TECHNICAL

PROCEEDINGS
HP 1000/9000

.ntE=h:x
o 8 6

DEE’\'O"

INTEREX

DETROIT CONFERENCE
SEPTEMBER 28 - OCTOBER 3, 1986

INTEREX

the International Association of
Hewlett—Packard Computer Users

Proceedings
of the

1986 Conference

at
Detroit, Michigan
Hosted by the
Southeastern Michigan Users Group

Papers for the
HP1000
and
HP9000

F. Stephen Gauss, Editor

Paper Review Committee

Wayne Asp
Cimarron Boozer
John Campbell
Dean Clamons
Donald Clapp
Art Gentry

Ken Griffin
Hugh Hanks

Marc Katz

Jock McFarlane
Richard Minor
Glen Mortensen
Chris Pappagianis
Larry Rosenblum
Tim Snider
William Steele
Dan Steiger
Steven Telford
Don Wright

Introduction

This volume of the Proceedings of the INTEREX 1986 North American
Conference was printed from camera-ready copy supplied by the
authors. Due to the proliferation of word procesors for HP and
other computers, it was deemed appropriate to request that the
authors format and print their own papers, rather than submitting

them in machine-readable form, as in the past. It was gratifying
to the editor to find that all of the authors were able to meet
this requirement, thus saving him several months of work. Papers

have been numbered sequentially in order of presentation at the
conference with HP1000 papers numbered 10xx and HP9000 papers
numbered 90xx. Papers based on the tutorials are numbered with a
T designator and appear at the beginning of this volume. Several
papers will be of interest to both communities, especially as the
1000 and 9000 lines merge at the high end. It is also quite likely
that papers in the companion volume for the HP3000 and Series 100
will be of interest.

Thanks go to the authors who met the submission requirements and
had their papers in by the deadline. Thanks also to the paper
review committee for their timely responses and helpful comments.
Many of the papers from Hewlett-Packard, including a number of the
tutorials, were obtained through the efforts of Pam Tower.

Finally, thanks to my wife, Vivian, and to my employers, for their
continueing support of my activities on behalf of the INTEREX
conferences.

F. Stephen Gauss

U. S. Naval Observatory
Washington, D.C.

1 August 1986

TABLE OF CONTENTS
Tutorials

Migration Strategies........... ..ottt
Gail Kinstler,Hewlett-Packard Co.

Using Regular Expressions In EDIT/1000............ccciiiiuniiinnnnnn.
John Johnson,Hewlett-Packard Co.

System Programming In Fortran..............ovueiiiiiniiininnennennenns
Bill Gibbons,Markheim Systems

Performance Data Collection and Analysis in the RTE Environment......
Dave Glover, Nigel Clunes,Hewlett-Packard Co.

Open System Tools.............../
Kevin Morgan,Hewlett-Packard Co.

FST- A High Performance Backup Utility For RTE.......................
Bill Hassell,Hewlett-Packard Co.

Bill Jacobs,Hewlett-Packard Co.
HP1000 Papers

KERMIT- A File-transfer Utility..............oiiiiiiii ..
Paul Schumann, E-Systems

Remote Control From Europe Of A Telescope In South America...........
Gianni Raffi,European Southern Observatory

Software Conversion Using An Automated Development Methodology.......
Charlie Small, SYSLOG

Design Considerations for Fourth Generation Language Developement....
William Gaines, Jonathan French, Industrial Computer Corp.

A Modular Integration of Factory Cells.............oovviiiiinnninnnnnn
Robert Combs,C & L Systems

Creating Customized Quality Control Charts.............covvinevninn..

- Cal Bonine,Statware

Connection of Black Box Devices to the HP1000 A-series...............
Wayne Asp,Hewlett-Packard Co.

Understanding the New Serial I/O Drivers............c.ooeuuieinneennn.
Johnny Klonaris,Hewlett Packard Co.

Understanding the New Serial I/O Drivers.............coovuiiinnninnn.
Alan Tibbetts,Telos Consulting

A Set Of IMAGE/1000 Database Tools For Screen AcCeSS.................
Data Manipulation and Statistics
Nhantu Le, Edward J. Kulis,Collagen Corp.

CCWORD/1000 - HP1000 Word Processing..............oovviiuuunininnnnnnn
Jens Behrens, Compuconsult A/S

Office Automation in an HP1000 Environment...........................
Theresa Destra,City of Philadelphia,Air Management Services Lab

How To Choose An Instrument Controller...................cooviuunnnn.
Terie Robinson,Hewlett-Packard Co.

Software Management Strategies................. ... i,
William Miller,City of Philadelphia,Air Management Services Lab
The First HP Precision Architecture Implementation...................

David Fotland,Hewlett Packard Co.

-iii-

David Thombs,Directorate General of Defence,Ministry of Defence

Establishing A Successful HP1000 Consulting Practice................. 1017
Marvin McInnis

Databases In the Scientific And Engineering Communities.............. 1018
Husni Sayed,IEM Inc.

PC-CAD By Itself Is A Giant Step Backward............................ 1019

Hector Holguin,Holguin Corp.
The Design Of A Graphical Database For the DRAWIT Drawing System..... 1020
Marc Katz,Graphicus

A General Purpose Process Graphics System..................coovunn... 1021
Phil Walden,Hewlett-Packard Co.

The Design of GEDIT - A General Purpose Graphics Editor.............. 1022
Kurt Van Ness,Flexware Inc.

Quality Assessment Of HP RTE SyStemS.uvviuniinninninennenennens 1023
Chris Smith, Bruce Campbell, Craig Fuget,Hewlett-Packard Co.

Designing and Implementing A Common System For the Development....... 1024

Of Large Application Packages
Stephen Fullerton, Statware
Effective Use Of Tools and Programming Style......................... 1025
In Managing Major Software Systems
Mathieu Federspiel,Statware

Robotics And Data Systems In the Chemical Analysis Laboratory........ 1026
Chris Scanlon,Hewlett-Packard Co.
Performance Analysis and Enhancements................coiiiinieennenn. 1027

for a Vehicle Electrical Test System
David Vickers, Stephen Novosad,Southwest Research Institute
Using the Touchscreen Features of the HP150 In Application Programs..1028
Michael Green, Kenneth Keuny,Dept of Aerospace Eng,Univ. of Maryland

SETKY-GETKY, A Keyed Access System for the HP1000.................... 1029
Dorothy Bickham, David Neumann,National Bureau of Standards

How Do the Users Use Your System?...........ooviiiiiiunnnnneenennnnnn 1030
Donald Wright,Interactive Computer Technology

Using C for Portable Programming.............coviviiiieiiiinnnnennnn. 1031
Tim Chase,Corporate Computer Systems

Making RTE System Calls In HP-UX........covviiiiniinininunnnnenennnnnnns 1032
Grant Sidwall,Hewlett-Packard Co.

Interfacing HP's New Tape Drives...........c.coviiiiniinnennnnnnnnnnn, 1033

To HP1000 A/E/F Series
David Doxey,Hewlett-Packard Co.

HP9000 Papers

HP-UX: Using Standards To Solve Real World Problems.................. 9001
Val Jermoluk, Chris Bego,Hewlett-Packard Co.
Decreasing Realtime Process Dispatch Latency Through................. 9003

Kernal Preemption
David Lennert,Hewlett Packard Co.

Interpreters/Compilers- Their Differences and Merits................. 9004
Husni Sayed,IEM Inc.
Disc Performance On HP-UX..........ciuiiiiiniiiiiiiiiiiniiiieennennnn, 9005

Carol Hubecka,Hewlett-Packard Co.

-iv-

Index By Author

Asp,Wayne ,Hewlett-Packard Co...........cciutiiniiiiitninnnnnnnnnn.. 1007
Connection of Black Box Devices to the HP A-series

Bego,Chris,Hewlett-Packard Co..........oiuiiiininninnnnnnnnnennns 9001
HP-UX: Using Standards To Solve Real World Problems

Behrens,Jens,Compuconsult A/S.iutiiiriinnernnnneennnenn. 1011
CCWORD/ - HP Word Processing

Bickham,Dorothy,National Bureau of Standards...................... 1029
SETKY-GETKY, A Keyed Access System for the HP1000

Bonine,Cal, StatWware . ..o v ittt ittt e 1006
Creating Customized Quality Control Charts

Campbell,Bruce,Hewlett-Packard CoO.........ccuiiiernnnnnnnnnerneannn 1023
Quality Assessment Of HP RTE Systems

Chase,Tim,Corporate Computer SYStemS............ouoviiuiueennnnennnn 1031
Using C for Portable Programming

Clunes,Nigel,Hewlett-Packard Co..........ouiuiiiiiinnninennnnennnn T 04
Performance Data Collection and Analysis in the RTE Environment

Combs ,Robert,C & L SysStems.uvutntnntntentennenneaneneeneennn 1005

A Modular Integration of Factory Cells
Destra,Theresa,City of Philadelphia,Air Management Services Lab...1012
Office Automation in an HP Environment

Doxey,David,Hewlett-Packard Co..........ouiiiiiiinnninnnnnnnnnnnn 1033
Interfacing HP's New Tape Drives To HP A/E/F Series
Federspiel,Mathieu,Statware.c.uuiiiinnitinnneeennnnns 1025

Effective Use Of Tools and Programming Style
In Managing Major Software Systems

Fotland,David,Hewlett Packard Co........c.ouvuiiiirminuineeeennnnnens 1015
The First HP Precision Architecture Implementation

French,Jonathan, Industrial Computer COrpP...........ouveueemueennnnn 1004
Design Considerations for Fourth Generation Language Developement

Fuget,Craig,Hewlett-Packard Co........ ...ttt iiiinininnnnnneeens 1023
Quality Assessment Of HP RTE Systems

Fullerton,Stephen,Statware.c..iuiniuininninennennennennennn 1024

Designing and Implementing A Common System For the Development
Of Large Application Packages

Gaines,William E.,Industrial Computer COYpP........ccvvverunnunnnn. 1004
Design Considerations for Fourth Generation Language Developement
Gibbons,Bill ,Markheim Systems............ouuiiuieienieennnneennnnn. T 03

System Programming In Fortran
Glover,Dave,Hewlett-Packard Co..........cuiiiiiiiieeennnnnnnnn T 04
Performance Data Collection and Analysis in the RTE Environment
Green,Michael,Dept of Aerospace Eng,Univ. of Maryland............. 1028
Using the Touchscreen Features of the HP150 In Application Programs
Holguin,Hector ,Holguin Corp........ .ottt . 1019

PC-CAD By Itself Is A Giant Step Backward

Hubecka,Carol,Hewlett-Packard CoO.......uuviiiinrmnneennenneennenn 9005
Disc Performance On HP-UX

Hassell,Bill,Hewlett-Packard Co.......c.uiiievreernnmmenennnnnnnn T 06
FST- A High Performance Backup Utility For RTE

Jacobs,Bill,Hewlett-Packard Co........uuivmuitenneenneennnneennnnn T 07
HPUX-RT

Jermoluk,Val,Hewlett-Packard Co........vviiurerernnmnnnneennnnnens 9001
The HP-UX Strategy- Using Standards To Solve Real World Problems

Johnson,John,Hewlett-Packard Co.........iiiiiiiiinnneeennnnnnn T 02
Using Regular Expressions In EDIT/
Katz,Marc,Graphicus.ottt it i i 1020
The Design Of A Graphical Database For the DRAWIT Drawing System
Keuny,Kenneth,Dept of Aerospace Eng,Univ. of Maryland............. 1028
Using the Touchscreen Features of the HP150 In Application Programs

Kinstler,Gail ,Hewlett-Packard CoO........cuiiurirtinneneennnnnnnn T 01
Migration Strategies

Klonaris,Johnny,Hewlett Packard Co...........o.tviiiinnennnnen... 1008
Understanding the New Serial I/O Drivers

Kulis,Edward J.,Collagen Corp........ueuuuenonueenneenneennnneenns 1010

A Set Of IMAGE/ Database Tools For Screen Access
Data Manipulation and Statistics
Le,Nhantu,Collagen CorP.....vuuvuutnntnennennenneaeoneneennennenenns 1010
A Set Of IMAGE/ Database Tools For Screen Access
Data Manipulation and Statistics
Lennert,David,Hewlett Packard Co..........cciviiinnnnrrnnnnnnnennnn 9003
Decreasing Realtime Process Dispatch Latency Through
Kernal Preemption
MeInnis, MarVin. ...ttt it et et e e e e 1017
Establishing A Successful HP Consulting Practice
Miller,William,City of Philadelphia,Air Management Services Lab...101l4
Software Management Strategies

Morgan,Kevin,Hewlett-Packard Co.......c.uoutiiiiinnninnneeeneeeeenns T 05
Open System Tools

Neumann,David,National Bureau of Standards.............couvuernnnn 1029
SETKY-GETKY, A Keyed Access System for the HP1000

Novosad, Stephen, Southwest Research Institute...................... 1027

Performance Analysis and Enhancements
for a Vehicle Electrical Test System

Raffi,Gianni,European Southern Observatory..............ceeeuneenn 1002
Remote Control From Europe Of A Telescope In South America

Robinson,Terie,Hewlett-Packard Co........c.viiirerrrnunnnneeennnnn 1013
How To Choose An Instrument Controller

Sayed,Husni ,IEM. .INC.t i ittt it i e e ei e 1018
Databases In the Scientific And Engineering Communities

Sayed ,Husni ,IEM. .INC.ttt ittt ittt ittt 9004

Interpreters/Compilers- Their Differences and Merits

-vi-

Scanlon,Chris,Hewlett-Packard CoO.........viiiienunennnennennnennn 1026
Robotics And Data Systems In the Chemical Analysis Laboratory

Schumann, Paul ,E-SyStems.o vttt ettt et teeeeenneanennns 1001
KERMIT- A File-transfer Utility

Sidwall,Grant,Hewlett-Packard Co..........c.viiiiiiinnenennnannns 1032
Making RTE System Calls In HP-UX

Small,Charlie, SYSLOG. oottt ettt ettt e 1003
Software Conversion Using An Automated Development Methodology

Smith,Chris,Hewlett-Packard CoO.......c.uiiniiiiinuninnnnneennannns 1023

Quality Assessment Of HP RTE Systems
Thombs,David,Directorate General of Defence,Ministry of Defence...1016
Can Distributed Systems Be Managed Effectively?

Tibbetts,Alan,Telos Consulting............... .ttt 1009
Understanding the New Serial I/0 Drivers

Van Ness,Kurt,Flexware InC.........c.uuiiiimtiin e etnnenneenaennn 1022
The Design of GEDIT - A General Purpose Graphics Editor

Vickers,David, Southwest Research Institute........................ 1027

Performance Analysis and Enhancements
for a Vehicle Electrical Test System

Walden,Phil ,Hewlett-Packard Co........c..uutrininnnnnneneeneenennn 1021
A General Purpose Process Graphics System
Wright,Donald, Interactive Computer Technology..................... 1030

How Do the Users Use Your System?

-vii-

Index By Title

A General Purpose Process Graphics System...................... ..., 1021
Phil Walden,Hewlett-Packard Co.

A Modular Integration of Factory Cells.............coovveeiniiinnnnn. 1005
Robert Combs,C & L Systems

A Set Of IMAGE/1000 Database Tools For Screen ACCESS................. 1010

Data Manipulation and Statistics
Nhantu Le, Edward J. Kulis,Collagen Corp.

Can Distributed Systems Be Managed Effectively?...................... 1016
David Thombs,Directorate General of Defence,Ministry of Defence

CCWORD/1000 - HP1000 Word Processing.............ovviiiuuininnaneannn, 1011
Jens Behrens,Compuconsult A/S

Connection of Black Box Devices to the HP1000 A-series............... 1007
Wayne Asp,Hewlett-Packard Co.

Creating Customized Quality Control Charts........................... 1006
Cal Bonine,Statware

Databases In the Scientific And Engineering Communities.............. 1018
Husni Sayed,IEM 1Inc.

Decreasing Realtime Process Dispatch Latency Through................. 9003

Kernal Preemption
David Lennert,Hewlett Packard Co.
Design Considerations for Fourth Generation Language Developement....1004
William Gaines, Jonathan French, Industrial Computer Corp.
Designing and Implementing A Common System For the Development....... 1024
Of Large Application Packages
Stephen Fullerton,Statware

Disc Performance On HP-UK..........iiiniiininnnnenenenaenennannnnn 9005
Carol Hubecka,Hewlett-Packard Co.
Effective Use Of Tools and Programming Style......................... 1025

In Managing Major Software Systems
Mathieu Federspiel,Statware

Establishing A Successful HP1000 Consulting Practice................. 1017
Marvin McInnis

FST- A High Performance Backup Utility For RTE....................... T 06
Bill Hassell,Hewlett-Packard Co.

How Do the Users Use Your System?..........coeiiiiinunninnennneennnnnn 1030
Donald Wright,Interactive Computer Technology

How To Choose An Instrument Controller..................ccoviviunnnn. 1013
Terie Robinson,Hewlett-Packard Co.

2800 PP T 07
Bill Jacobs,Hewlett-Packard Co.

Interfacing HP’'s New Tape Drives...........c.cuiiiiniiinnniennneennn. 1033

To HP1000 A/E/F Series
David Doxey,Hewlett-Packard Co.

Interpreters/Compilers- Their Differences and Merits................. 9004
Husni Sayed,IEM Inc.

KERMIT- A File-transfer Utility.............coiiiiiiiiiiinin... 1001
Paul Schumann,E-Systems

Making RTE System Calls In HP-UX.........ooiiiiiiiiiiiiiiii e, 1032
Grant Sidwall,Hewlett-Packard Co.

Migration Strategies...........ooiiiiiiiii il T 01

Gail Kinstler, Hewlett-Packard Co.

-ix-

Office Automation in an HP1000 Enviromment...............c.veuuenen.. 1012
Theresa Destra,City of Philadelphia,Air Management Services Lab

Open SYStemM TOOLS. . o uuvtent e eneneeeneeeeanneeaanneeeanneeeeannenns T 05
Kevin Morgan,Hewlett-Packard Co.

PC-CAD By Itself Is A Giant Step Backward.................covuuvann.. 1019
Hector Holguin,Holguin Coxrp.

Performance Analysis and Enhancements................cooiiiiineiann.. 1027

for a Vehicle Electrical Test System
David Vickers, Stephen Novosad,Southwest Research Institute

Performance Data Collection and Analysis in the RTE Enviromment...... T 04
Dave Glover, Nigel Clunes,Hewlett-Packard Co.

Quality Assessment Of HP RTE Systems...........ccuuuuniineeennnnnnnns 1023
Chris Smith, Bruce Campbell, Craig Fuget,Hewlett-Packard Co.

Remote Control From Europe Of A Telescope In South America........... 1002
Gianni Raffi,European Southern Observatory

Robotics And Data Systems In the Chemical Analysis Laboratory........ 1026
Chris Scanlon,Hewlett-Packard Co.

SETIKY-GETKY, A Keyed Access System for the HP1000.................... 1029
Dorothy Bickham, David Neumann,National Bureau of Standards

Software Conversion Using An Automated Development Methodology....... 1003
Charlie Small, SYSLOG

Software Management Strategies..............cceveiiiiiiiiiiiiininenann 1014
William Miller,City of Philadelphia,Air Management Services Lab

System Programming In Fortran..............cccoviiiiiiiiiiinnenennn, T 03

Bill Gibbons,Markheim Systems
The Design Of A Graphical Database For the DRAWIT Drawing System..... 1020
Marc Katz,Graphicus

The Design of GEDIT - A General Purpose Graphics Editor.............. 1022
Kurt Van Ness,Flexware Inc.

The First HP Precision Architecture Implementation................... 1015
David Fotland,Hewlett Packard Co.

HP-UX: Using Standards To Solve Real World Problems.................. 9001
Val Jermoluk, Chris Bego,Hewlett-Packard Co.

Understanding the New Serial I/O Drivers.............c.ccouiiuninneevnnn. 1008
Johnny Klonaris,Hewlett Packard Co.

Understanding the New Serial I/O Drivers............c.covviuviennnnnn. 1009
Alan Tibbetts,Telos Consulting

Using C for Portable Programming..................coiiiuiunnnnnenennn 1031
Tim Chase,Corporate Computer Systems

Using Regular Expressions In EDIT/1000.............c.ccivuinennn.... T 02

John Johnson,Hewlett-Packard Co.
Using the Touchscreen Features of the HP150 In Application Programs..1028
Michael Green, Kenneth Keuny,Dept of Aerospace Eng,Univ. of Maryland

-X-

Migration Strategies
by: Kinstler, Gail

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper TO1

Using Regular Expressions in EDIT/1000
by: Johnston, John

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper T02

System Programming in Fortran

Bill Gibbons

Mirkheim Systems
P.O. Box 203
Los Altos, CA 94023-0203
U.S.A.

1. Introduction

The main difference between system programming and applications programming is control. The
system programmer wants to control implementation details such as:

e Data representation
e Memory organization
o Low-level algorithms
e File I/O

Device I/O

e System resources

Most computer languages, including Fortran, give you very little control in these areas. Some don’t
even provide I/O; it is tacked on as an afterthought.

Beginning programmers are told not to worry about implementation details; without doubt, this
makes programming much easier - if you never write system programs. In the real world, we often
must worry about these details if we want to write useful programs.

The Fortran compiler and runtime libraries for the HP1000 provide a number of extensions for
system programming. Many of these are nonportable; some are outright dangerous. However, they
always result in more readable programs than assembly language.
In particular, this paper covers:

e Bit pushing

o Byte arrays

e Nonstandard calling sequences

e Nonstandard common blocks

o Freespace use

o Custom EMA mapping

e Strings and tables in code space

o Setjmp and Longjmp calls

e Various I/O extensions

1 Paper T03

2. Bit & Byte Manipulation
2.1 Bit Pushing

The traditional way to manipulate bits in Fortran is with integer arithmetic. Bit fields can be
extracted with divide and MOD; they can be combined with multiply and add. For example, the
following code extracts the middle eight bits of a word:

I = MOD(J/16,256)

This works fine for positive numbers, but fails for negative numbers. The problem is that division
by a power of two is not the same as a right shift for negative numbers. Consider (—3)/(2) = (—1),
where (—3) is 1101 and (-1) is 1111, but (—3) right shifted one is 1110 or 0110, depending on
whether you extend the sign bit. This problem occurs on all two’s complement machines such as
the HP1000.

The MOD function also produces an unexpected result for negative numbers. The remainder of
dividing a negative number by a positive number is negative or zero. For instance, MOD(—3,2) = (—1).

On the other hand, multiplying by a power of two works fine. There is a potential problem when
shifting a field all the way to the left, e.g. multiplying by 256 to form the first character in a word.
If the sign of the result should become set, the multiply actually overflows. On the HP1000, the
overflow is ignored and the least 16 bits of the result are used; this makes the above case work.

Using an “add” to combine fields works if they are disjoint; but if two one-bits are added in the same
position, they cause a carry-out which invalidates the result. This makes “add” a poor substitute
for an “or”.

Subtract can be used to zero out a field, but it is cumbersome. To zero out the middle 8 bits of a
word, you have to write:

I=2J- MOD(J/16,256)%*16

What we really want is the bitwise logical operations: AND, OR, exclusive OR, etc. In a standard
Fortran program, you can use the .AND., .OR., .EQV., .NEQV. and .NOT. operators on LOGICAL
variables. Many compilers (including FTN7X) implement these by operating on the whole word. With
EQUIVALENCE, you can get bitwise logical operations on integer data.

This has two serious drawbacks; it is hard to write and nonportable. Some compilers (again including
FTN7X) let you use these operators on integer data. This eliminates the EQUIVALENCE, and produces
very readable code; it is still somewhat nonportable. It is more portable than the EQUIVALENCE

solution, which may compile but give wrong answers on some machines; if the second solution
compiles, it will almost certainly work.

Unfortunately, the precedence of the logical operators is confusing when you use them on integer
data. For example,

IF (IJK .AND. 3 .EQ. 0) ...
is parsed as
IF (IJK .AND. (3 .EQ. 0))

because .EQ. has a higher precedence. This statement causes an error: mixing integer and logical
data. It is always a good idea to use parentheses when writing such masking expressions.

Paper T03 2

Actually, though you may see the above techniques in old programs, you should not use them
anymore. There is a set of functions known as MIL-STD-1753 which provide almost all the bit
manipulation you need. Many compilers implement this standard, which makes bit pushing almost
portable. FTN7X provides them for both 16-bit and 32-bit integers. Where practical, the functions
are done with inline code instead of library routine calls.

The MIL-STD-1753 masking functions perform bitwise logical operations. They are TAND, I0R, IXOR,
and NOT. For 16-bit integers, FTN7X uses inline code to implement these functions. For example:
I =J .AND. 377B yields: LDA J
AND =B377
STA I

The ISHFT and ISHFTC functions perform logical and circular shifts, respectively. A positive shift
count indicates a left shift; negative, a right shift . The ISHFTC call includes the siz of the field to
shift; for example, ISHFTC(I,4,8) swaps the nibbles in the low byte of I. When ISHFT is used with
a constant shift count, FTN7X generates inline code. To get inline code for ISHFTC you must also
have a field size of 16 or 32. (Other field sizes work, but a library routine is used.) For example:

I = ISHFT(J,-4) .AND. 377B yields: LDB J
LSR 4
LDA B
AND =B377
STA I

which is much better than the previous example using divide and MOD. Since fetching a bit field is
such a common operation, MIL-STD-1753 also includes the IBITS function, which does just that.
The field is described by the rightmost bit number and the number of bits. For example, we could
rewrite the above code as:
I = IBITS(J,4,8) which yields: LDA J

RAR,RAR

RAR,RAR

AND =B377

STA I

The generated code is better, too, since it does not use the B-register; in the earlier example, any
value in the B-register would be stored into a temp.

The special case of a one-bit field is so common that there are special functions to set, clear, and
test a bit, namely IBSET, IBCLR and BTEST. The second parameter is the bit number. For example,
IF (BTEST(J,0)) ... which yields: LDA J
: SLA,RSS
JMP <around>

tests whether J is odd. Note that constant bit numbers generate inline code, and that BTEST returns
a LOGICAL result.

The last MIL-STD-1753 routine is the MVBITS subroutine. This routine copies a bit field in one
variable into a field of the same size in another variable. The call specifies both fields; think of
writing the source and destination IBITS parameters together, but leaving out the second field size
(which is redundant). For example:

CALL MVBITS(I, O, 4, J, 12)

moves the low 4 bits of I into the high 4 bits of J.

The designers of MVBITS made a small design error; it should have been a function instead of a
subroutine. If it were actually done as a subroutine, there would be no way to handle mixed single
and double integers. The FTN7X compiler changes the call into a function, as in:

J = .IMBS(I, 0, 4, J, 12)
which is always well-defined. If I and J have mixed types, the shorter one is converted to double
integer and the double integer routine is called. The result is a double integer, which is shortened if
necessary.

3 Paper T03

2.2 Byte Arrays

One data type that system programmers want in Fortran is bytes. Some Fortran compilers provide
a byte data type as INTEGER*1 or LOGICAL*1; the only byte type in FTN7X is CHARACTER*1.

Character variables may seem an odd way to store bytes of numeric data, but it can be quite useful.
In practice, character data is implemented as a byte data type anyway. You can’t store numbers
directly into a character variable or perform arithmetic, but you can convert between characters and
integers.

The two conversion routines CHAR and ICHAR convert between integer and character data. No actual
conversion is done; only the meaning of the value changes. For example, ICHAR(’A’) has the value
101B, which is the bit pattern used to represent ’A’. The data itself is unchanged; only the meaning
is different. This holds for all 256 characters, so all integers in the range 0-255 can be stored in
character variables.

For example, a large table of small constants can be kept in a character array. One example is the
state transition table generated by the lexical scanner generator LEX. The state table would be coded
in assembly language:

ENT TABLE

TABLE EQU =*
BYT 12,34,56,0,7,7,7,4,17
BYT 17,17, -etc-

The Fortran program would access the table as a common block:
$ALIAS /TABLE/, NOALLOCATE

COMMON /TABLE/ TABLE (1000)
CHARACTER*1 TABLE

STATE = ICHAR(TABLE(J))

Which references the J** entry of the table. It takes a few more instructions to access a character
array than to access an integer array. In this example, the table is large and the access is only done
once or twice, so the net savings is large.

Another use of character arrays is to scan binary data. If the data is organized as bytes but does
not honor word boundaries, character arrays can be used to scan the record.

For example, if an input record from a device has the format:
byte 1: device ID
byte 2: device status
byte 3: channel number
byte 4: first byte of value
byte 5: second byte of value

The data could be extracted from the record like this:

CHARACTER RECORD(5)

READ(LU) RECORD

ID = ICHAR(RECORD(1))

STATUS = ICHAR(RECORD(2))

CHANNEL = ICHAR(RECORD(3))

VALUE = ISHFT(ICHAR(RECORD(4)),8) + ICHAR(RECORD(5))

Paper T03 4

This could be made clearer using EQUIVALENCE statements:

CHARACTER RECORD(5), CID, CSTATUS, CCHANNEL
EQUIVALENCE (RECORD(1),CID)

EQUIVALENCE (RECORD(2),CSTATUS)

EQUIVALENCE (RECORD(3),CCHANNEL)
EQUIVALENCE (RECORD(4),VALUE)

READ(LU) RECORD

ID = ICHAR(CID)

STATUS = ICHAR(CSTATUS)

CHANNEL = ICHAR(CCHANNEL)

Note that we equivalenced RECORD(4) and VALUE directly, since the data was already two bytes long.
To honor this equivalence, the compiler had to start RECORD at an odd byte boundary. If RECORD
was in common or had other equivalences, this might not be possible. In that case we could write:

CHARACTER OVALUE*2, EVALUE*2
EQUIVALENCE (RECORD(4),0VALUE)
EQUIVALENCE (EVALUE,VALUE)

EVALUE = OVALUE
which moves the two bytes from OVALUE, which could start on an odd byte, into EVALUE, which is

not restricted and can be equivalenced to VALUE.

When you pass a character variable or array to a subroutine, you can change its shape by declaring
a different length, number of dimensions, and dimension sizes (this is allowed by the standard). For
example, the following two subroutine reverse a string. The first one uses ordinary substrings:

SUBROUTINE REVERSE(S)
CHARACTER S%(*), T

L = LEN(S)
DO I=1,L/2
T = 8(I:1)

S(I:I) = S(L-I+1:L-I+1)
S(L-I+1:L-I+1) =T
ENDDO
END

The second one treats the string as an array. Since the length of the string is ignored, we must pass
it explicitly:

SUBROUTINE REVERSE(S, L)
CHARACTER S(*)*1, T

DO I=1,L/2
T = s(I)
S(I) = S(L-I+1)
S(L-I+1) = T
ENDDO
END

The first routine compiles to 146 words of code and makes four calls to a library routine in each
loop. The second routine compiles to 78 words and does everything inline using the LBT and SBT
instructions.

3. Aliasing (Nonstandard External Symbols)

The ALIAS capability in FTN7X lets you use subroutines and common blocks with nonstandard names
and other attributes. The alternate name is supplied as a Fortran string, so it can have special
characters, lower case, and even blanks. The attributes are specified with keywords, as shown in the
examples below.

5 Paper T03

3.1 Subprogram Aliasing

There are a number of interesting system library routines that have nonstandard names and/or
calling sequences. Of course, system programmers want to use these routines. Some of the machine
instructions also look like subroutines, and the ALIAS mechanism can be used to call some of them
directly.

Many assembly language routines use the direct calling sequence, which does not have the “DEF
return” word. This is different from the standard .ENTR calling sequence which Fortran uses, but
you can tell Fortran to use direct calls with ALIAS:

$ALIAS MAPIT = ’.LBPR’, DIRECT

In this example, the routine is actually a machine instruction which performs EMA/VMA mapping.

Another nonstandard convention is the EXEC-style alternate return. Certain system routines, in-
cluding EXEC, may return to the normal return address when there is an error, and to the next
word if there is no error. This feature maps conveniently into the Fortran alternate return feature,
except that the actual Fortran implementation is completely different. With ALIAS, you can make
the compiler generate its alternate returns using the EXEC convention:

$ALIAS LURQ, NOABORT
CALL LURQ(40001B, 6, 1, %99)

will return to statement 99 if there is an error. The compiler knows about EXEC, XLUEX, DEXEC and
REIO; the ALIAS is not necessary for these routines.

3.2 Common Block Aliasing

A common block ALIAS is specified with slashes around the name, as in:
$ALIAS /TIME/ = *$TIME’, NOALLOCATE

The NOALLOCATE option is used to make the common block name an external symbol (or entry, in a
block data) instead of an allocate symbol. Allocate symbols may not work with system entry points
such as $TIME because they are never undefined: as soon as the linker sees an allocate symbol, it
defines it.

Using the two kinds of ALIAS, you can rummage around in the operating system at will. For example:

$ALIAS /TIME/ = '$TIME’, NOALLOCATE
$ALIAS LOAD = ’.XLA’, DIRECT

COMMON /TIME/ TIME(2)

INTEGER TIME, HIGH, LOW

LOW = LOAD(TIME(1))

HIGH = LOAD(TIME(2))

This code fetches the current system clock. There are many such symbols in the operating systems
which might interest the system programmer.

There are times when you want to access a memory location by its address. With a common block
ALIAS, you can access specific addresses. For example:

$ALIAS /ID/ = 1717B
COMMON /ID/ ID

This code lets you access your program’s ID segment address (on RTE-6). More generally,

$ALIAS /MEM/ = O
COMMON /MEM/ MEM(0:0)

makes the array element MEM(J) the same as location J.

Paper T03 6

4. Freespace

The freespace area, or heap, is the area between the end of your program and the end of the memory
partition. You can adjust the size of freespace with the CI command SZ or the linker command HE,
without reloading the program. This is very convenient for certain kinds of programs.

You need two things to use freespace: the size of freespace available, and an access method. The
size can be found with LIMEM; there are several access methods.

The simplest access is with blank common. In a non-CDS program, LINK puts blank common just
before freespace. If the last (or only) item in blank common is a one-element array, you can use
the array to get to freespace. This only works in non-CDS programs; in CDS programs the stack is
between blank common and freespace.

In a similar manner, you can arrange your LINK comumand file to put a named common block at the
end of your program. You must use the NOALLOCATE option for the common block; this keeps LINK
from defining it immediately. After the libraries have been searched you relocate the BLOCKDATA for
the commen block so that it becomes the last module in the load. In this case, you must not use
blank common because LINK will put it after the last module. Again, this method does not work
with CDS because of the stack.

Other methods involve using the address of freespace, which you can get with LIMEM. If you know
the address of an array M, you can access any given address I with the expression M(I-addr(M)+1).
As a quick proof, note that if I is the address of M then M(I-addr(M)+1) = M(1). By declaring M
with a lower bound of zero, you can eliminate the offset of one. For example:

INTEGER ADDRESSOF, M(0:0), I, N
N = ADDRESSOF (M)
WRITE(1,*) ’Contents of location’, I, *® =', M(I-N)

On older systems without Address0f, the routine . DRCT serves the same purpose. On such a system,
the above program must have the line:

$ALIAS ADDRESSOF = ’.DRCT’, DIRECT

The above method has the advantage that it works on a variety of different machines. On the other
hand, the use of the alias:

$ALIAS /MEM/ = O

is less portable but more readable, since there is no constant offset to subtract. The ALIAS method
also produces slightly more efficient code. In either case, memory should be allocated by a central
routine which returns a (possibly adjusted) subscript. This makes it easy to port the code to another
machine. On a machine with no freespace mechanism or no way to use it from Fortran, you could
just declare MEM as a large array and allocate space from the array itself.

5. Custom EMA Mapping

When you need more than a few thousand words of memory for data, you have to use EMA. The
good news is that you can run a program that uses megabytes of data. The bad news is that it may
be very slow.

The problem with EMA is that your program changes the map registers for each and every EMA
access. There is no way for the compiler to map a large amount of data and leave it mapped in
while you work on it. However, you can do exactly that with custom mapping. (This section of the
paper assumes that you have some knowledge of how EMA works already.)

7 Paper T03

There are two parts to custom mapping. First, you must change the map registers. Second, you
have to get to the data on the mapped pages of memory.

There are a number of EMA mapping instructions; some are callable from Fortran, some are not.
The most useful are .LBPR and .ESEG .

The Fortran compiler uses .LBPR to map simple variables. It takes one parameter, an EMA address.
The page containing that location, and the next page, are mapped in. The instruction sets the
B-register to the mapped address which corresponds to the EMA address. For example, given:

$ALIAS /MEM/ = O

$ALIAS MAPPER='.LBPR’, DIRECT
COMMON /MEM/ MEM(0:0)
INTEGER*4 MAPPER
EMA LARGE (100000)

the sequence:

J
K

MAPPER (LARGE(I))
MEM(J)

does the same thing as the sequence:
K = LARGE(I)

Note that the first statement does an implicit conversion from double integer (MAPPER result) to
single integer (J). Since double integer functions return the result in (A,B), and the conversion just
uses the low-order word, we are putting (B) into the variable J. This is the mapped address.

This example isn’t very practical because the compiler can handle simple mapping by itself. But
suppose we wanted to zero out an array in EMA. We might code the routine:

$ALIAS /MEM/ = O
$ALIAS MAPPER = ’.LBPR’, DIRECT
SUBROUTINE CLEAR_EMA(ARRAY, SIZE)
IMPLICIT NONE
EMA ARRAY
INTEGER ARRAY(*), SIZE
COMMON /MEM/ MEM(0:0)
INTEGER MEM
INTEGER INDEX, LEFT, ADDR, CHUNK
INTEGER*4 MAPPER
LEFT = SIZE
INDEX = 1
DO WHILE (LEFT .GT. 0)
ADDR = MAPPER (ARRAY (INDEX))
CHUNK = MIN(LEFT, 1025)
DO ADDR=ADDR, ADDR+CHUNK-1
MEM(ADDR) = 0
ENDDO
INDEX = INDEX + CHUNK
LEFT = LEFT - CHUNK
ENDDO
END

Note that at least 1025 words are mapped on each call. With a little care, we could use 2048 words
from each call except the first and last.

Paper T03 8

Sometimes it’s best to use actual pages and MSEG addresses. A normal 2-page MSEG begins at
address 74000B; we can use a common block ALIAS to access it as an array. The pages of EMA can
be arranged as columns of an array. For example:

$ALIAS /MSEG/ = 74000B
$ALIAS MAPPER = ' .LBPR’, DIRECT
$EMA /EMA/
SUBROUTINE MAPIT
COMMON /EMA/ EMA(0:1023,0:99)
COMMON /MSEG/ MSEG(0:2047)
INTEGER EMA, PAGE, OFFSET

CALL MAPPER(EMA(O,PAGE))
I = MSEG(OFFSET)

This routine uses (page,offset) pairs to access locations in EMA. Note that there must only be one
array in EMA, since we are assuming that it starts at EMA location zero.

The .ESEG routine provides another way to map using page numbers. It is passed an array of page
numbers; it maps corresponding pages of the MSEG to point to these pages. .ESEG must be called
from assembly language; see the Programmer’s Reference Manual.

The .ESEG instruction is much more powerful than .LBPR. It can map more than two pages at a time,
and they need not be contiguous. This opens up a number of possibilities; in particular, a program
can work on data in different parts of EMA simultaneously without remapping each time. This is
the main purpose of .ESEG; the EMA Vector Instruction Set uses it to handle multiple vectors in
EMA.

One disadvantage of EMA is that the two-page MSEG comes out of your 32-page data segment, so
your non-EMA data is two pages smaller. In some cases these two pages can be reclaimed.

If you ask for two more pages of EMA than you need, you can map these pages into the MSEG and
leave them mapped in. When you use other areas of EMA, you must map the extra pages back when
you’re done. The program uses the extra pages as additional freespace; it is totally transparent that
they happen to be in EMA.

A good use of this method is for putting DCB’s in EMA. The access to the DCB’s is tightly controlled
(only in FMP calls), so you have a small number of places where mapping and re-mapping must be
done. Of course, the data in the extra pages can’t be used during any mapped FMP calls, because
the MSEG is temporarily different.

6. Strings and Tables in Code Space

In CDS programs, space in the data segment is at a premium. Large arrays can be moved into
EMA, but you can’t initialize EMA variables in a DATA statement (for the moment). This makes
it difficult to move large constant tables out of the data segment. However, with a little work, large
tables (including strings) can be moved into a code segment.

The trick to putting constants in code space is the cross-map load instruction .XLA2 and the cross-
map move instructions .MW20 and .MB20 . The load instruction works like a cross-load, but it
fetches the word from the current code segment. The move instructions work like the CDS move-
words instruction .MWO0O0, but they move data from the current code segment into the data segment.

These instructions must be used in assembly language. Since there is no way to get Fortran to
put data in code space, the data itself must also be in assembly language. Also, the cross-map
instruction and the data must be in the same code segment; the best way to ensure this is to put
both the code and the data in the same module (NAM).

9 Paper T03

Actually, the cross-load can be done from Fortran too. For example, the data in:

MACRO
NAM TABLE
CDS ON
ENT TABLE
RELOC CODE
TABLE DEC 1,2,3,4,5
END

could be referenced by the Fortran subroutine:

$ALIAS /TABLE/, NOALLOCATE

$ALIAS LOAD = ’.XLA2’, DIRECT
INTEGER FUNCTION CGET(I)
COMMON /TABLE/ ITABLE(5)
CGET = LOAD(ITABLE(I))
END

The compiler thinks that TABLE is in data space. It performs arithmetic to get the address of
ITABLE(I) without ever trying to fetch the value. It passes this address to LOAD, which is really
.XLA2; the data is loaded to (A), which is where function results are returned.

Either way, the code that accesses the table should be centralized, as in the CGET routine above.
7. Setjmp and Longjmp

When an error occurs many subroutine calls deep in a program, it’s useful to just pop out of
the current subroutine into some high-level routine, without executing all the RETURN statements in
between. In non-CDS programs, you can do this just by calling the high-level routine. The high-level
routine can no longer do a RETURN, but otherwise the program can continue normally.

In a CDS program, such calls are recursive. This has two drawbacks: all the local variables will be
new, and some stack space has been lost. That makes this approach almost useless.

UNIX systems have a solution to this problem; they supply two routines called SETJMP and LONGJMP.
The SETJMP routine records the current program counter and the stack pointer; the LONGIJMP routine
restores them.

This means that there are two ways to get to the statement after a SETIMP call: returning from the
call itself, or resuming after a LONGJMP call. The two are distinguished by making SETJMP a function
which returns zero; when LONGJIMP is called, it looks as if SETJMP returned with a nonzero value.

You can do the exact same thing with CDS programs using the SETJMP and LONGJMP on the next
page.

To use SETJINP, call it with a 3-word buffer. When you need to get back, call LONGJMP with the same
buffer and a nonzero value. For example:

INTEGER ENV(3), SETJMP
COMMON ENV

IF (SETJMP(ENV) .EQ.0) THEN
<first time>

ELSE
<from LONGJMP>

ENDIF

Paper T03 10

With a LONGJMP call such as:

INTEGER ENV(3)
COMMON ENV

CALL LONGJMP (ENV,1)

The alternative to SETIMP and LONGJMP is to have the routine return an error code. Then each
routine that calls it must check for the error, and return an error code, and so on. The SETJMP
solution is unstructured, but it makes some programs much cleaner.

The SETJMP and LONGJMP code:
NAM SETJMP
CDS ON
ENT SETJMP,LONGJMP
EXT .CCQA, .XLA2, .EXITO

RELOC LOCAL

RTN_ADDR EQU *-4 OUR RETURN ADDRESS AT Q+2
CST_PCNT EQU *-3 OUR RETURN SEGMENT AT Q+3
ENVIRON BSS 1 3-WORD ENVIRONMENT BUFFER
RESULT BSS 1 RESULT PASSED TO LONGJMP
E3

RELOC CODE

SETJMP ABS 7
LDA RTN_ADDR DID WE GET HERE WITH A
CCE,SSA CROSS-SEGMENT CALL ?
JMP SETJMP2 YES. SEGMENT NUMBER VALID.

RAL,ERA NO. FAKE IT AS IF VWE DID:
STA RTN_ADDR SET THE CROSS-SEGMENT BIT
JSB .XLA2 GET OUR SEGMENT NUMBER.
DEF 2000B

STA CST_PCNT AND SET AS THE RETURN SEGMENT.
*
SETJMP2 JSB .CCQA (4) OUR STACK POINTER
DLD @A (B) = PREVIOUS STACK POINTER
STB QENVIRON SAVE IT
ISZ ENVIRON
DLD RTN_ADDR (A,B) = RETURN ADDRESS & SEG
DST QENVIRON SAVE THEM

1]

CLA RETURN ZERO.
JSB .EXITO

£

LONGJMP ABS 8
JSB .CCQA (A) = OUR STACK POINTER
LDB QENVIRON (B) = SAVED STACK POINTER
DST @A SET IT AS OUR PREVIOUS ONE

ISZ ENVIRON

DLD QENVIRON (A,B) = RETURN ADDRESS & SEG
DST RTN_ADDR SET UP FOR OUR RETURN

LDA @RESULT RETURN 2ND PARAM AS RESULT
JSB .EXITO RETURN AS IF FROM SETJMP CALL

END

Note the cross-load from location 2000 in the current code segment; this location contains the current
segment number in the high byte. Since the LONGJIMP call can be in a different segment, we must set
up for a cross-segment return, even if the call to SETIMP was an intra-segment call.

1 Paper T03

8. Device I/O

8.1 READ and WRITE with 8-bit LU’s

Most applications can get by with I/O to the terminal (LU 1), disc files, and commonly used devices
such as a tape drive. These devices generally have LU numbers in the range 1-63, and Fortran READ
and WRITE statements work fine with them. System programs, though, may need to use all LU’s.
For example, non-session programs in RTE-6 don’t have an SST, so even the terminal LU may be
greater than 63.

Older versions of RTE used a 6-bit LU number; high-order bits in the same word were used as option
or control bits. When a Fortran program used a READ or WRITE, Fortran passed the entire Fortran
LU to RTE, which used the lower 6 bits as a systemm LU and the upper bits as control bits. For

example, if the line printer was LU 6, writing to LU 134 (206B) caused the first character to print
instead of begin used for carriage control.

Then RTE was changed to allow LU’s up to 255. Because many existing Fortran programs used
control bits, the 8-bit LU was made an option in Fortran. The default is 6-bit LU’s, but you can
easily change or override the default to get 8-bit LU’s.

The key is the symbol Z$CWD in the file %XFRPLS; see the Fortran compiler files "FTN7X and &FRPLS

for details.

8.2 Binary WRITE to the Terminal

When writing an escape sequence to a terminal, you usually don’t want the trailing carriage return
and linefeed. Common practice on HP1000’s is to end the line with an underscore; this tells the
driver to omit the carriage return and linefeed.

A better and more portable method is to use binary WRITE. For example:
WRITE(1) CHAR(27), 'H’, CHAR(27), 'J’

writes exactly four characters to the terminal. Note that the Escape character is easily written with
the CHAR function. Better yet, put the Escape in a PARAMETER statement:

CHARACTER ESC
PARAMETER (ESC=CHAR(33B))

WRITE(1) ESC, 'A’

Making the entire escape sequence a named constant is more clear and generates slightly more
efficient code:

CHARACTER* (*) BLINKING
PARAMETER (BLINKING = CHAR(27) // ’&dA’)

WRITE(1) BLINKING

Only the characters in the WRITE are written; there are no trailing blanks, CR/LF, blank-padding of
odd-length records, or other extraneous characters. The binary control bit is set in the REIO call.

Paper T03 12

8.3 Reading Variable-Length Records

Applications usually deal in ASCII files, but system programs often read and write binary files.
Fortran has a binary READ and WRITE, but the READ must know the length of the record before it
reads it. With many files, such as relocatables, there is no way to know the record length in advance.

The solution is to try to read a large record, trap the “record-too-small” error, and find out how
much was actually read. The error code is 496. The function ITLOG returns the number of bytes
actually read in the last READ statement. For example:

INTEGER BUFFER(129)

READ(8,I0STAT=I0S) BUFFER

IF (I0S .EQ. 0) STOP ’'Record too big.’
IF (I0S .LT. 0) STOP 'At EOF’

IF (I0S .NE. 496) STOP 'I/0 error.’
LENGTH = ITLOG() / 2

The above code is suitable for reading relocatable files, which have records no larger than 128 words
long. Note the extra word in the buffer, which is used to catch any records which are too large.

8.4 READ/WRITE with a Z-buffer

The RTE EXEC read and write calls have an option called a Z-buffer. This is a second I/O buffer
which is passed to the driver; the use of the Z-buffer depends on the driver. For example, the
terminal drivers write the Z-buffer before they read or write the ordinary record.

This is very useful for writing to a device which will respond immediately with data which needs to
be read. If the read is not posted soon enough, the data is lost. If you code the write and the read
separately, RTE may interrupt your program between the two, causing the read to be posted too late
to catch the incoming data.

A simple example is the terminal status request. If you send an HP terminal the escape character
and a circumflex ("), it responds with status information. The read must be posted immediately
after the write, or the incoming data will cause a prompt.

The ideal solution is to combine the WRITE and READ into a single request using a Z-buffer. In FTNTX,
the ZBUF and ZLEN keywords can be used to specify a Z-buffer. For example:

INTEGER PROMPT

CHARACTER STRING*20

PROMPT = ISHFT(33B,8) + ICHAR(’"~’)

READ(1, ’(a)’, ZBUF=PROMPT, ZLEN=-2) STRING
WRITE(1,+*) STRING

If you try this program, you’ll see the status information twice: once as it is echoed by the driver
(as if it were typed in), and once from the WRITE statement. This is because the READ statement
sets the echo bit in the read request.

There are two ways to turn off the echo bit in Fortran. One way is to use a binary READ. Unfor-
tunately, the Fortran library will attempt to read its full binary buffer size (120 characters). The
terminal driver will wait for 120 characters to be sent before it completes the read request. If you
know exactly how many characters are coming back (and it’s an even number), you can use LGBUF
to set the buffer size; however, this is somewhat risky.

The new serial drivers in RTE provide a much better solution. You can explicitly ask for CPU-to-
CPU protocol. When the driver uses this protocol, a Fortran program using ZBUF and ZLEN can do

I/O to an intelligent device using serial I/O without the problems mentioned above.

At least one paper describing these drivers was to be presented at the conference.

13 Paper T03

8.5 HPIB and PRAM3/PRAM4

Many I/O drivers will accept one or two words of additional information in the EXEC request; these
are called PRAM3 and PRAM4, because they are the third and fourth data parameters in the EXEC
request. In a Fortran program, these values can be specified in a READ or WRITE:

READ(100: IPRAM3: IPRAM4) HPIP_DATA

The PRAM4 value is optional; in the above example, an LU of 100: IPRAM3 would be the same as
100: IPRAM3:O0.

For HPIB, these values are the secondary and tertiary HPIB addresses. Other drivers use them in
other ways. If you write your own drivers, you can pass these values directly from your Fortran
program.

9. Miscellaneous I/O Extensions

There are a number of other extensions and library routines for device and file I/O. Rather than
describe them all in detail, I’ve provided a brief summary of each. For details, see the Fortran
manual and my recent TC Interface columns on Program Development.

FPOST - post buffered data to the disc immediately.
FLOCF - get the byte position and record number of a file.
FPOSN - set the byte position and record number of a file.
ITYPE - get the file type of an open file.

USE keyword - specify if the file is to be opened as shared exclusive access, or update
mode.

BUFSIZ keyword - specify the packing buffer (DCB) size.

FREESPACE keyword - allocate packing buffers (DCB’s) out of freespace (on the FILES direc-
tive).

NFIOB - get the number of available packing buffer blocks.

LGBUF - supply a new (possibly large) record buffer for READ and WRITE.
FFRCL - specify the maximum record size for free-field WRITE.

ITLOG - get the number of characters actually read by the last READ.

ISTAT - get the status word from the last READ or WRITE; usually meaningless

after a WRITE.

10. Conclusion

The above techniques are not intended for ordinary programs. But when your choice is using these
extensions or writing in assembly language, the choice is clear: the program will be more readable
and maintainable written with unusual Fortran code than with straight assembly language.

Paper T03 14

Performance Data Collection and
Analysis in the RTE Environment

by: Glover, Dave
Clunes, Nigel

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper T04

Open System Tools
by: Morgan, Kevin

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper T05

FST — A High Performance
Backup Utility for RTE

by: Hassell, Bill
Clunes, Nigel

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper T06

HPUX-RT
by: Jacobs, Bill

We regret that this paper
was not received for
inclusion in these proceedings.

1 Paper T07

KERMIT - a file-transfer utility
Paul Schumann
E-Systems, Inc.
P.O. Box 1056 CBN 101
Greenville, TX 75401

Introduction

One of the problems we face increasingly these days is the need to transfer text and other
information between similar systems with no compatible removable media, or unlike systems,
whether PC's or mainframes. In many cases networking solutions to these problems either don't
exist, or they are incompatible, like Ethernet vs. IEEE 802.3. If a compatible networking solution
can be found, it is probably too expensive in hardware costs alone for the kind of occasional
access required.

KERMIT was developed for the purpose of filling this gap using one of the cheapest and most
universal "media” available - the telecommunications (IEEE RS-232) port. It uses an
asynchronous, half-duplex protocol and the ASCIl character-set. The protocol can be
implemented in many languages and it is already available for a large variety of mainframe- to
micro-size machines.

This paper is intended to serve three purposes:
1) Examine the KERMIT protocol, showing some of it's capabilities and limitations,
2) Compare KERMIT to other file-transfer methods,
3) Provide a manual to assist the users of KERMIT-RTE.

Section 1: The KERMIT protocol - a brief descripti

This is not intended as a rigorous description of the KERMIT protocol; rather, it is intended to
answer some of the "why" questions about it. A full definition may be found in the KERMIT
Protocol Manual, which is a part of the KERMIT submission in the CSL/1000. Additional
information may also be obtained from the June and July (1984) issues of BYTE magazine, from
which I first learned of KERMIT.

KERMIT is a copyrighted protocol developed by Bill Catchings and Frank da Cruz at the Columbia
University Center for Computing Activities (CUCCA). They designed and implemented the
protocol in order to allow students with PC's to maintain their own archival storage of work done
during the semester, to off-load some of the editing-type tasks from the mainframe, and to allow
file-transfers for any other reason. Note: the copyright was obtained to protect KERMIT,
Columbia University, and the contributors from having the work stolen and then sold as a product.
"KERMIT" js a registered trademark of Henson Associates, Inc., creators of "The Muppet Show."

Under this protocol there are two KERMIT programs which mediate the transfer of (usually) text
files; one of the programs acts as the sender and the other as the receiver for a given file-transfer
operation. In the next file-transfer operation the two programs could swap jobs. It is naturally
assumed that each of these programs runs on opposite ends of the same communications link
between two possibly dissimilar machines. In addition to transferring files, many KERMIT
programs also function as rudimentary terminal-emulators (for the purpose of starting the KERMIT
program on the remote system), which eliminates the need to get out of the local KERMIT, then
start a separate program to perform this job.

1 Paper 1001

The sender divides the data in a file into more manageable pieces, called “packets.” Information
is added before and after the data in each packet for control, descriptive, and error-detecting
purposes, and then the "data" packet is sent over the communications link to the receiver
program. The receiver must determine that the correct packet has been received and that the
contents of that packet have been received intact. If there is a problem with the received packet,
the receiver tells the sender to try again in a NAK packet, or Negative AcKnowledgement. If the
packet was properly received, the receiver extracts the data portion of the packet, places it in the
file being built, and then informs the sender that the packet was successfully received and that
the receiver is ready for more data. It does all of this in an ACK packet, or ACKnowledgement. In
addition to sending data packets, the sender also transmits file-name, end-of-file, and end of
transmission information in packets. The KERMIT programs can only talk to each other in
packets, the general structure of which is shown below and described in the following
paragraphs. Note that all packets, regardless of purpose, conform to this structure.

Mark Len Seq Type Data Checksum

Each packet begins with the only control-character actually required by the KERMIT protocol, the
"mark" character. This is usually a control-A (or SOH) in most implementations, chosen because
on most systems the SOH has no special meaning to the communications processor, and so is
passed to a program as data. The protocol states that each packet must begin with the
packet-marker for synchronization, so if there should occur another marker "within" a packet
(probably due to corruption of some part of the previous packet), the previous information is
discarded and the "new" mark is treated as if it really is the beginning of a new packet. Both the
sending and receiving KERMIT must agree on the choice of the Mark before any packet transfers
can occur. Note that no control-characters appear within a packet past the Mark character; all
other information within a packet is adjusted such that it is printable! The intent here is to avoid
any other control-characters which may have some special meaning to the host system's
communications front end, such as a control-D in RTE or control-C in DEC operating-systems. If
the mark should be corrupted