
intc~cx
1 9 8 6

i>Ct~Oit

TECHNICAL
PROCEEDINGS
HP 1000/9000

INTEREX
DETROIT CONFERENCE
SEPTEMBER 28 - OCTOBER 3, 1986

INTEREX
the International Association of

Hewlett-Packard Computer Users

Proceedings
of the

1986 Conference
at

Detroit, Michigan
Hosted by the

Southeastern Michigan Users Group

Papers for the
HP1000

and
HP9000

F. Stephen Gauss, Editor

Paper Review committee

Wayne Asp
Cimarron Boozer
John Campbell
Dean Clamons
Donald Clapp
Art Gentry
Ken Griffin
Hugh Hanks
Marc Katz
Jock McFarlane
Richard Minor
Glen Mortensen
Chris Pappagianis
Larry Rosenblum
Tim Snider
William Steele
Dan Steiger
Steven Telford
Don Wright

Introduction

This volume of the Proceedings of the INTEREX 1986 North American
Conference was printed from camera-ready copy supplied by the
authors. Due to the proliferation of word procesors for HP and
other computers, it was deemed appropriate to request that the
authors format and print their own papers, rather than submitting
them in machine-readable form, as in the past. It was gratifying
to the editor to find that all of the authors were able to meet
this requirement, thus saving him several months of work. Papers
have been numbered sequentially in order of p~esentation at the
conference with HPlOOO papers numbered lOxx and HP9000 papers
numbered 90xx. Papers based on the tutorials are numbered with a
T designator and appear at the beginning of this volume. Several
papers will be of interest to both communities, especially as the
1000 and 9000 lines merge at the high end. It is also quite likely
that papers in the companion volume for the HP3000 and Series 100
will be of interest.

Thanks go to the authors who met the submission requirements and
had their papers in by the deadline. Thanks also to the paper
review committee for their timely responses and helpful comments.
Many of the papers from Hewlett-Packard, including a number of the
tutorials, were obtained through the efforts of Pam Tower.

Finally, thanks to my wife, Vivian, and to my employers, for their
continueing support of my activities on behalf of the INTEREX
conferences.

F. Stephen Gauss
U. S. Naval Observatory
Washington, D.C.
1 August 1986

- i -

TABLE OF CONTENTS

Tutorials

Migration Strategies ... T 01
Gail Kinstler,Hewlett-Packard Co.

Using Regular Expressions In EDIT/1000 T 02
John Johnson,Hewlett-Packard Co.

System Programming In Fortran .. T 03
Bill Gibbons,Markheim Systems

Performance Data Collection and Analysis in the RTE Environment T 04
Dave Glover, Nigel Clunes,Hewlett-Packard Co.

Open System Tools .. T 05
Kevin Morgan,Hewlett-Packard /Co.

FST- A High Performance Backup Utility For RTE T 06
Bill Hassell,Hewlett-Packard Co.

HPUX-RT .. T 07
Bill Jacobs,Hewlett-Packard Co.

HPlOOO Papers

KERMIT- A File-transfer Utility 1001
Paul Schumann,E-Systems

Remote Control From Europe Of A Telescope In South America 1002
Gianni Raffi,European Southern Observatory

Software Conversion Using An Automated Development Methodology 1003
Charlie Small,SYSLOG

Design Considerations for Fourth Generation Language Developement 1004
William Gaines, Jonathan French, Industrial Computer Corp.

A Modular Integration of Factory Cells 1005
Robert Combs,C & L Systems

Creating Customized Quality Control Charts 1006
Cal Bonine,Statware

Connection of Black Box Devices to the HPlOOO A-series 1007
Wayne Asp,Hewlett-Packard Co.

Understanding the New Serial I/O Drivers 1008
Johnny Klonaris,Hewlett Packard Co.

Understanding the New Serial I/O Drivers 1009
Alan Tibbetts,Telos Consulting

A Set Of IMAGE/1000 Database Tools For Screen Access 1010
Data Manipulation and Statistics

Nhantu Le, Edward J. Kulis,Collagen Corp.
CCWORD/1000 - HPlOOO Word Processing 1011

Jens Behrens,Compuconsult A/S
Office Automation in an HPlOOO Environment 1012

Theresa Destra,City of Philadelphia,Air Management Services Lab
How To Choose An Instrument Controller 1013

Terie Robinson,Hewlett-Packard Co.
Software Management Strategies 1014

William Miller,City of Philadelphia,Air Management Services Lab
The First HP Precision Architecture Implementation 1015

David Fotland,Hewlett Packard Co.
Can Distributed Systems Be Managed Effectively? 1016

-iii-

David Thombs,Directorate General of Defence,Ministry of Defence
Establishing A Successful HPlOOO Consulting Practice 1017

Marvin Mcinnis
Databases In the Scientific And Engineering Corrmrunities 1018

Husni Sayed,IEM Inc.
PC-CAD By Itself Is A Giant Step Backward 1019

Hector Holguin,Holguin Corp.
The Design Of A Graphical Database For the DRAWIT Drawing System 1020

Marc Katz,Graphicus
A General Purpose Process Graphics System 1021

Phil Walden,Hewlett-Packard Co.
The Design of GEDIT - A General Purpose Graphics Editor 1022

Kurt Van Ness,Flexware Inc.
Quality Assessment Of HP RTE Systems 1023

Chris Smith, Bruce Campbell, Craig Fuget,Hewlett-Packard Co.
Designing and Implementing A Connnon System For the Development 1024

Of Large Application Packages
Stephen Fullerton,Statware

Effective Use Of Tools and Progrannning Style 1025
In Managing Major Software Systems
Mathieu Federspiel,Statware

Robotics And Data Systems In the Chemical Analysis laboratory 1026
Chris Scanlon,Hewlett-Packard Co.

Performance Analysis and Enhancements 1027
for a Vehicle Electrical Test System

David Vickers, Stephen Novosad,Southwest Research Institute
Using the Touchscreen Features of the HP150 In Application Programs .. 1028

Michael Green, Kenneth Keuny,Dept of Aerospace Eng,Univ. of Maryland
SETKY-GETKY, A Keyed Access System for the HPlOOO 1029

Dorothy Bickham, David Neumann,National Bureau of Standards
How Do the Users Use Your System? 1030

Donald Wright,Interactive Computer Technology
Using C for Portable Progrannning 1031

Tim Chase,Corporate Computer Systems
Making RTE System Calls In HP-UX 1032

Grant Sidwall,Hewlett-Packard Co.
Interfacing HP's New Tape Drives 1033

To HPlOOO A/E/F Series
David Doxey,Hewlett-Packard Co.

HP9000 Papers

HP-UX: Using Standards To Solve Real World Problems 9001
Val Jermoluk, Chris Bego,Hewlett-Packard Co.

Decreasing Realtime Process Dispatch Latency Through 9003
Kernal Preemption

David l.ennert,Hewlett Packard Co.
Interpreters/Compilers- Their Differences and Merits 9004

Husni Sayed,IEM Inc.
Disc Performance On HP-UX .. 9005

Carol Hubecka,Hewlett-Packard Co.

-iv-

Index By Author

Asp,Wayne,Hewlett-Packard Co 1007
Connection of Black Box Devices to the HP A-series

Bego, Chris ,Hewlett-Packard Co 9001
HP-UX: Using Standards To Solve Real World Problems

Behrens ,Jens ,Compuconsult A/S 1011
CCWORD/ - HP Word Processing

Bickham,Dorothy,National Bureau of Standards 1029
SETKY-GETKY, A Keyed Access System for the HPlOOO

Bonine, Cal, Statware ... 1006
Creating Customized Quality Control Charts

Campbell,Bruce,Hewlett-Packard Co 1023
Quality Assessment Of HP RTE Systems

Chase,Tim,Corporate Computer Systems 1031
Using C for Portable Programming

Clunes,Nigel,Hewlett-Packard Co T 04
Performance Data Collection and Analysis in the RTE Environment

Combs, Robert, C & L Systems .. 1005
A Modular Integration of Factory Cells

Destra,Theresa,City of Philadelphia,Air Management Services Lab ... 1012
Office Automation in an HP Environment

Doxey ,David,Hewlett-Packard Co 1033
Interfacing HP's New Tape Drives To HP A/E/F Series

Federspiel,Mathieu,Statware 1025
Effective Use Of Tools and Programming Style
In Managing Major Software Systems

Fotland,David,Hewlett Packard Co 1015
The First HP Precision Architecture Implementation

French,Jonathan,Industrial Computer Corp 1004
Design Considerations for Fourth Generation Language Developement

Fuget, Craig,Hewlett-Packard Co 1023
Quality Assessment Of HP RTE Systems

Fullerton, Stephen, Statware .. 1024
Designing and Implementing A Common System For the Development

Of Large Application Packages
Gaines,William E.,Industrial Computer Corp 1004

Design Considerations for Fourth Generation Language Developement
Gibbons,Bill,Markheim Systems T 03

System Programming In Fortran
Glover,Dave,Hewlett-Packard Co T 04

Performance Data Collection and Analysis in the RTE Environment
Green,Michael,Dept of Aerospace Eng,Univ. of Maryland 1028

Using the Touchscreen Features of the HP150 In Application Programs
Holguin,Hector ,Holguin Corp 1019

PC-CAD By Itself Is A Giant Step Backward

-v-

Hubecka,Carol,Hewlett-Packard Co 9005
Disc Performance On HP-UX

Hassell,Bill,Hewlett-Packard Co T 06
FST- A High Performance Backup Utility For RTE

Jacobs,Bill,Hewlett-Packard Co T .07
HPUX-RT

Jermoluk, Val ,Hewlett-Packard Co 9001
The HP-UX Strategy- Using Standards To Solve Real World Problems

Johnson,John,Hewlett-Packard Co T 02
Using Regular Expressions In EDIT/

Katz ,Marc, Graphicus ... 1020
The Design Of A Graphical Database For the DRAWIT Drawing System

Keuny,Kenneth,Dept of Aerospace Eng,Univ. of Maryland 1028
Using the Touchscreen Features of the HP150 In Application Programs

Kinstler,Gail,Hewlett-Packard Co T 01
Migration Strategies

Klonaris,Johnny,Hewlett Packard Co 1008
Understanding the New Serial I/O Drivers

Kulis,Edward J. ,Collagen Corp 1010
A Set Of IMAGE/ Database Tools For Screen Access

Data Manipulation and Statistics
Le,Nhantu, Collagen Corp ... 1010

A Set Of IMAGE/ Database Tools For Screen Access
Data Manipulation and Statistics

Lennert,David,Hewlett Packard Co 9003
Decreasing Realtime Process Dispatch Latency Through
Kernal Preemption

Mcinnis ,Marvin .. 1017
Establishing A Successful HP Consulting Practice

Miller,William,City of Philadelphia,Air Management Services Lab ... 1014
Software Management Strategies

Morgan,Kevin,Hewlett-Packard Co T 05
Open System Tools

Neumann,David,National Bureau of Standards 1029
SETKY-GETKY, A Keyed Access System for the HPlOOO

Novosad,Stephen,Southwest Research Institute 1027
Performance Analysis and Enhancements
for a Vehicle Electrical Test System

Raffi,Gianni,European Southern Observatory 1002
Remote Control From Europe Of A Telescope In South America

Robinson,Terie,Hewlett-Packard Co 1013
How To Choose An Instrument Controller

Sayed,Husni, IEM .. Inc .. 1018
Databases In the Scientific And Engineering Communities

Sayed,Husni, IEM .. Inc , 9004
Interpreters/Compilers- Their Differences and Merits

-vi-

Scanlon,Chris,Hewlett-Packard Co 1026
Robotics And Data Systems In the Chemical Analysis Laboratory

Schumann, Paul, E-Systems ... 1001
KERMIT- A File-transfer Utility

Sidwall,Grant,Hewlett-Packard Co 1032
Making RTE System Calls In HP-UX

Small, Charlie, SYS LOG .. 1003
Software Conversion Using An Automated Development Methodology

Smith, Chris, Hewlett-Packard Co 1023
Quality Assessment Of HP RTE Systems

Thombs,David,Directorate General of Defence,Ministry of Defence ... 1016
Can Distributed Systems Be Managed Effectively?

Tibbetts, Alan, Telos Consulting 1009
Understanding the New Serial I/O Drivers

Van Ness,Kurt,Flexware Inc .. 1022
The Design of GEDIT - A General Purpose Graphics Editor

Vickers,David,Southwest Research Institute 1027
Performance Analysis and Enhancements

for a Vehicle Electrical Test System
Walden,Phil,Hewlett-Packard Co 1021

A General Purpose Process Graphics System
Wright,Donald,Interactive Computer Technology 1030

How Do the Users Use Your System?

-vii-

Index By Title

A General Purpose Process Graphics System 1021
Phil Walden,Hewlett-Packard Co.

A Modular Integration of Factory Cells 1005
Robert Combs,C & L Systems

A Set Of IMAGE/1000 Database Tools For Screen Access 1010
Data Manipulation and Statistics
Nhantu Le, Edward J. Kulis, Collagen Corp.

Can Distributed Systems Be Managed Effectively? 1016
David Thombs,Directorate General of Defence,Ministry of Defence

CCWORD/1000 - HPlOOO Word Processing 1011
Jens Behrens , Compuconsul t A/S

Connection of Black Box Devices to the HPlOOO A-series 1007
Wayne Asp,Hewlett-Packard Co.

Creating Customized Quality Control Charts 1006
Cal Bonine,Statware

Databases In the Scientific And Engineering Communities 1018
Husni Sayed,IEM Inc.

Decreasing Realtime Process Dispatch Latency Through 9003
Kernal Preemption

David Lennert,Hewlett Packard Co.
Design Considerations for Fourth Generation Language Developement 1004

William Gaines, Jonathan French, Industrial Computer Corp.
Designing and Implementing A Common System For the Development 1024

Of Large Application Packages
Stephen FUllerton,Statware

Disc Performance On HP-UX .. 9005
Carol Hubecka,Hewlett-Packard Co.

Effective Use Of Tools and Programming Style 1025
In Managing Major Software Systems
Mathieu Federspiel,Statware

Establishing A Successful HPlOOO Consulting Practice 1017
Marvin Mcinnis

FST- A High Performance Backup Utility For RTE T 06
Bill Hassell,Hewlett-Packard Co.

How Do the Users Use Your System? 1030
Donald Wright,Interactive Computer Technology

How To Choose An Instrument Controller 1013
Terie Robinson,Hewlett-Packard Co.

HPUX-RT .. T 07
Bill Jacobs,Hewlett-Packard Co.

Interfacing HP' s New Tape Drives 1033
To HPlOOO A/E/F Series

David Doxey,Hewlett-Packard Co.
Interpreters/Compilers- Their Differences and Merits 9004

Husni Sayed, IEM Inc.
KERMIT- A File-transfer Utility 1001

Paul Schumann,E-Systems
Making RTE System Calls In HP-UX 1032

Grant Sidwall,Hewlett-Packard Co.
Migration Strategies ... T 01

Gail Kinstler,Hewlett-Packard Co.

-ix-

Office Automation in an HPlOOO Environment 1012
Theresa Destra,Gity of Philadelphia,Air Management Services Lab

Open System Tools .. T 05
Kevin Morgan,Hewlett-Packard Go.

PG-GAD By Itself Is A Giant Step Backward 1019
Hector Holguin,Holguin Gorp.

Performance Analysis and Enhancements 1027
for a Vehicle Electrical Test System

David Vickers, Stephen Novosad,Southwest Research Institute
Performance Data Collection and Analysis in the RTE Environment T 04

Dave Glover, Nigel Clunes,Hewlett-Packard Go.
Quality Assessment Of HP RTE Systems 1023

Chris Smith, Bruce Campbell, Craig Fuget,Hewlett-Packard Co.
Remote Control From Europe Of A Telescope In South America 1002

Gianni Raffi,European Southern Observatory
Robotics And Data Systems In the Chemical Analysis Laboratory 1026

Chris Scanlon,Hewlett-Packard Go.
SETKY-GETKY, A Keyed Access System for the HPlOOO 1029

Dorothy Bickham, David Neumarm,National Bureau of Standards
Software Conversion Using An Automated Development Methodology 1003

Charlie Small,SYSLOG
Software Management Strategies 1014

William Miller,City of Philadelphia,Air Management Services Lab
System Programming In Fortran .. T 03

Bill Gibbons,Markheim Systems
The Design Of A Graphical Database For the DRAWIT Drawing System 1020

Marc Katz,Graphicus
The Design of GEDIT - A General Purpose Graphics Editor 1022

Kurt Van Ness,Flexware Inc.
The First HP Precision Architecture Implementation 1015

David Fotland,Hewlett Packard Go.
HP-UX: Using Standards To Solve Real World Problems 9001

Val Jermoluk, Chris Bego,Hewlett-Packard Co.
Understanding the New Serial I/O Drivers 1008

Johrmy Klonaris,Hewlett Packard Go.
Understanding the New Serial I/O Drivers 1009

Alan Tibbetts,Telos Consulting
Using C for Portable Programming 1031

Tim Chase,Corporate Computer Systems
Using Regular Expressions In EDIT/1000 T 02

John Johnson,Hewlett-Packard Co.
Using the Touchscreen Features of the HP150 In Application Programs .. 1028

Michael Green, Kenneth Keuny,Dept of Aerospace Eng,Univ. of Maryland

-X-

Migration Strategies

by: Kinstler, Gail

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T01

Using Regular Expressions in EDIT/1000

by: Johnston, John

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T02

1. Introduction

System Programming in Fortran

Bill Gibbons

Mirkheim Systems
P.O. Box 203

Los Altos, CA 94023-0203
U.S.A.

The main difference between system programming and applications programming is control. The
system programmer wants to control implementation details such as:

• Data representation

• Memory organization

• Low-level algorithms

• File I/O

• Device I/O

• System resources

Most computer languages, including Fortran, give you very little control in these areas. Some don't
even provide I/O; it is tacked on as an afterthought.

Beginning programmers are told not to worry about implementation details; without doubt, this
makes programming much easier - if you never write system programs. In the real world, we often
must worry about these details if we want to write useful programs.

The Fortran compiler and runtime libraries for the HP 1000 provide a number of extensions for
system programming. Many of these are nonportable; some are outright dangerous. However, they
always result in more readable programs than assembly language.

In particular, this paper covers:

• Bit pushing

• Byte arrays

• Nonstandard calling sequences

• Nonstandard common blocks

• Freespace use

• Custom EMA mapping

• Strings and tables in code space

• Setjmp and Long.imp calls

• Various I/O extensions

Paper T03

2. Bit & Byte Manipulation

2.1 Bit Pushing

The traditional way to manipulate bits in li'ortran is with integer arithmetic. Bit fields can be
extracted with divide and MOD; they can be combined with multiply and add. For example, the
following code extracts the middle eight bits of a word:

I = MOD(J/16,256)

This works fine for positive numbers, but fails for negative numbers. The problem is that division
by a power of two is not the same as a right shift for negative numbers. Consider (-3)/(2) = (-1),
where (-3) is 1101 and (-1) is 1111, but (-3) right shifted one is 1110 o~ 0110, depending on
whether you extend the sign bit. This problem occurs on all two's complement machines such as
the HPlOOO.

The MOD function also produces au unexpected result for negative numbers. The remainder of
dividing a negative number by a positive number is negative or zero. For instance, MOD(-3, 2) = (-1).

On the other hand, multiplying by a power of two works fine. There is a potential problem when
shifting a field all the way to the left, e.g. multiplying by 256 to form the first character in a word.
If the sign of the result should become set, the multiply actually overflows. On the HPlOOO, the
overflow is ignored and the least 16 bits of the result are used; this makes the above case work.

Using an "add" to combine fields works if they are disjoint; but if two one-bits are added in the same
position, they cause a carry-out which invalidates the result. This makes "add" a poor substitute
for an ('or".

Subtract can be used to zero out a field, but it is cumbersome. To zero out the middle 8 bits of a
word, you have to write:

I = J - MOD(J/16,256)*16

What we really want is the bitwise logical operations: AND, OR, exclusive OR, etc. In a standard
Fortran program, you can use the . AND., . OR., . EQV., . NEQV. and . NOT. operators on LOGICAL
variables. Many compilers (including FTN7X) implement these by operating on the whole word. With
EQUIVALENCE, you can get bitwise logical operations on integer data.

This has two serious drawbacks; it is hard to write and nonportable. Some compilers (again including
FTN7X) let you use these operators on integer data. This eliminates the EQUIVALENCE, and produces
very readable code; it is still somewhat nonportable. It is more portable than the EQUIVALENCE
solution, which may compile but give wrong answers on some machines; if the second solution
compiles, it will almost certainly work.

Unfortunately, the precedence of the logical operators is confusing when you use them on integer
data. For example,

IF (IJK .AIJD. 3 .EQ. 0) ...

is parsed as

IF (IJK .AND. (3 .EQ. 0)) ...

because . EQ. has a higher precedence. This statement causes an error: mixing integer and logical
data. It is always a good idea to use parentheses when writing such masking expressions.

Paper T03 2

Actually, though you may see the above techniques in old programs, you should not use them
anymore. There is a set of functions known as MIL-STD-1753 which provide almost all the bit
manipulation you need. Many compilers implement this standard, which makes bit pushing almost
portable. FTN7X provides them for both 16-bit and 32-bit integers. Where practical, the functions
are done with inline code instead of library routine calls.

The MIL-STD-1753 masking functions perform bitwise logical operations. They are !AND, !OR, !XOR,
and NOT. For 16-bit integers, FTN7X uses inline code to implement these functions. For example:

I = J .AND. 377B yields: LDA J
AND =B377
STA I

The ISHFT and ISHFTC functions perform logical and circular shifts, respectively. A positive shift
count indicates a left shift; negative, a right shift . The ISHFTC call includes the siz of the field to
shift; for example, ISHFTC (I, 4, 8) swaps the nibbles in the low byte of I. When ISHFT is used with
a constant shift count, FTN7X generates inline code. To get inline code for ISHFTC you must also
have a field size of 16 or 32. (Other field sizes work, but a library routine is used.) For example:

I= ISHFT(J,-4) .AND. 377B yields: LDB J
LSR 4
LDA B
AND =B377
STA I

which is much better than the previous example using divide and MOD. Since fetching a bit field is
such a common operation, MIL-STD-1753 also includes the !BITS function, which does just that.
The field is described by the rightmost bit number and the number of bits. For example, we could
rewrite the above code as:

I = IBITS(J ,4,8) which yields: LDA J
RAR,RAR
RAR,RAR
AND =B377
STA I

The generated code is better, too, since it does not use the B-register; in the earlier example, any
value in the B-register would be stored into a temp.

The special case of a one-bit field is so common that there are special functions to set, clear, and
test a bit, namely IBSET, IBCLR and BTEST. The second parameter is the bit number. For example,

IF (BTEST(J,O)) . . . which yields: LDA J
SLA,RSS
JMP <around>

tests whether J is odd. Note that constant bit numbers generate inline code, and that BTEST returns
a LOGICAL result.

The last MIL-STD-1753 routine is the MVBITS subroutine. This routine copies a bit field in one
variable into a field of the same size in another variable. The call specifies both fields; think of
writing the source and destination !BITS parameters together, but leaving out the second field size
(which is redundant). For example:

CALL MVBITS(I, 0, 4, J, 12)

moves the low 4 bits of I into the high 4 bits of J.

The designers of MVBITS made a small design error; it should have been a function instead of a
subroutine. If it were actually done as a subroutine, there would be no way to handle mixed single
and double integers. The FTN7X compiler changes the call into a function, as in:

J = .IMBS(I, 0, 4, J, 12)

which is always well-defined. If I and J have mixed types, the shorter one is converted to double
integer and the double integer routine is called. The result is a double integer, which is shortened if
necessary.

3 Paper T03

2.2 Byte Arrays

One data type that system programmers want in Fortran is bytes. Some Fortran compilers provide
a byte data type as INTEGER*1 or LOGICAL*1; the only byte type in FTN7X is CHARACTER*1.

Character variables may seem an odd way to store bytes of numeric data, but it can be quite useful.
In practice, character data is implemented as a byte data type anyway. You can't store numbers
directly into a character variable or perform arithmetic, bu~ you can convert between characters and
integers.

The two conversion routines CHAR and !CHAR convert between integer and character data. No actual
conversion is done; only the meaning of the value changes. For example, !CHAR(' A') has the value
lOlB, which is the bit pattern used to represent 'A'. The data itself is unchanged; only the meaning
is different. This holds for all 256 characters, so all integers in the range 0-255 can be stored in
character variables.

For example, a large table of small constants can be kept in a character array. One example is the
state transition table generated by the lexical scanner generator LEX. The state table would be coded
in assembly language:

ENT TABLE
TABLE EQU *

BYT 12,34,56,0,7,7,7,4,17
BYT 17,17, -etc-

The Fortran program would access the table as a common block:

$ALIAS /TABLE/, NOALLOCATE

COMMON /TABLE/ TABLE(lOOO)
CHARACTER*1 TABLE

STATE = ICHAR(TABLE(J))

Which references the Jlh entry of the table. It takes a few more instructions to access a character
array than to access an integer array. In this example, the table is large and the access is only done
once or twice, so the net savings is large.

Another use of character arrays is to scan binary data. If the data is organized as bytes but does
not honor word boundaries, character arrays can be used to scan the record.

For example, if an input record from a device has the format:

byte 1: device ID

byte 2: device status

byte 3: channel number

byte 4: first byte of value

byte 5: second byte of value

The data could be extracted from the record like this:

Paper T03

CHARACTER RECORD(5)
READ(LU) RECORD
ID = ICHAR(RECORD(1))
STATUS = ICHAR(RECORD(2))
CHANNEL= ICHAR(RECORD(3))
VALUE= ISHFT(ICHAR(RECORD(4)),8) + ICHAR(RECORD(5))

4

This could be made clearer using EQUIVALENCE statements:

CHARACTER RECORD(5), CID, CSTATUS, CCHANNEL
EQUIVALENCE (RECORD(!) ,CID)
EQUIVALENCE (RECORD(2) ,CSTATUS)
EQUIVALENCE (RECORD(3) ,CCHANNEL)
EQUIVALENCE (RECORD(4) ,VALUE)
READ(LU) RECORD
ID = ICHAR(CID)
STATUS = ICHAR(CSTATUS)
CHANNEL = ICHAR(CCHANNEL)

Note that we equivalenced RECORD(4) and VALUE directly, since the data was already two bytes long.
To honor this equivalence, the compiler had to st.art RECORD at an odd byte boundary. If RECORD
was in common or had other equivalences, this might not be possible. In that case we could write:

CHARACTER OVALUE*2, EVALUE*2
EQUIVALENCE (RECORD(4) ,OVALUE)
EQUIVALENCE (EVALUE,VALUE)

EVALUE = OVALUE

which moves the two bytes from OVALUE, which could start on an odd byte, into EVALUE, which is
not restricted and can be equivalenced to VALUE.

When you pass a character variable or array to a subroutine, you can change its shape by declaring
a different length, number of dimensions, and dimension sizes (this is allowed by the standard). For
example, the following two subroutine reverse a string. The first one uses ordinary substrings:

SUBROUTINE REVERSE(S)
CHARACTERS*(*), T
L = LEN(S)
DO I=1,L/2

T = S(I:I)
S(I:I) = S(L-I+1:L-I+1)
S(L-I+1:L-I+1) = T

ENDDO
END

The second one treats the string as an array. Since the length of the string is ignored, we must pass
it explicitly:

SUBROUTINE REVERSE(S, L)
CHARACTER S(*)*1, T
DO I=1,L/2

T = S(I)
S(I) = S(L-I+1)
S(L-I+1) = T

END DO
END

The first routine compiles to 146 words of code and makes four calls to a library routine in each
loop. The second routine compiles to 78 words and does everything inline using the LBT and SBT
instructions.

3. Aliasing (Nonstandard External Symbols)

The ALIAS capability in FTN7X lets you use subroutines and common blocks with nonstandard names
and other attributes. The alternate name is supplied as a Fortran string, so it can have special
characters, lower case, and even blanks. The attributes are specified with keywords, as shown in the
examples below.

5 Paper T03

3.1 Subprogram Aliasing

There are a number of interesting system library routines that have nonstandard names and/or
calling sequences. Of course, system programmers want to use these routines. Some of the machine
instructions also look like subroutines, and the ALIAS mechanism can be used to call some of them
directly.

Many assembly language routines use the direct calling sequence, which does not have the "DEF
return" word. This is different from the standard . ENTR calling sequence which Fortran uses, but
you can tell Fortran to use direct calls with ALIAS:

$ALIAS MAPIT = '.LBPR', DIRECT

In this example, the routine is actually a machine instruction which performs EMA/VMA mapping.

Another nonstandard convention is the EXEC-style alternate return. Certain system routines, in­
cluding EXEC, may return to the normal return address when there is an error, and to the next
word if there is no error. This feature maps conveniently into the Fortran alternate return feature,
except that the actual Fortran implementation is completely different. With ALIAS, you can make
the compiler generate its alternate returns using the EXEC convention:

$ALIAS LURQ, NOABORT
CALL LURQ(40001B, 6, 1, *99)

will return to statement 99 if there is an error. The compiler knows about EXEC, XLUEX, DEXEC and
REIO; the ALIAS is not necessary for these routines.

3.2 Common Block Aliasing

A common block ALIAS is specified with slashes around the name, as in:

$ALIAS /TIME/ = '$TIME', NOALLOCATE

The NOALLOCATE option is used to make the common block name an external symbol (or entry, in a
block data) instead of an allocate symbol. Allocate symbols may not work with system entry points
such as $TIME because they are never undefined: as soon as the linker sees an allocate symbol, it
defines it.

Using the two kinds of ALIAS, you can rummage around in the operating system at will. For example:

$ALIAS /TIME/ = '$TIME' , NOALLOCATE
$ALIAS LOAD = '.XLA', DIRECT

COMMON /TIME/ TIME(2)
INTEGER TIME, HIGH, LOW
LOW= LOAD(TIME(1))
HIGH = LOAD (TIME (2))

This code fetches the current system clock. There are many such symbols in the operating systems
which might interest the system programmer.

There are times when you want to access a memory location by its address. With a common block
ALIAS, you can access specific addresses. For example:

$ALIAS /ID/ = 1717B
COMMON /ID/ ID

This code lets you access your program's ID segment address (on RTE-6). More generally,

$ALIAS /MEM/ = 0
COMMON /MEM/ MEM(O:O)

makes the array element MEM (J) the same as location J.

Paper T03 6

4. Freespace

The freespace area, or heap, is the area between the end of your program and the end of the memory
partition. You can adjust the size of freespace with the CI command SZ or the linker command HE,
without reloading the program. This is very convenient for certain kinds of programs.

You need two things to use freespace: the size of freespace available, and an access method. The
size can be found with LIMEM; there are several access methods.

The simplest access is with blank common. In a non-CDS program, LINK puts blank common just
before freespace. If the last (or only) item in blank common is a one-element array, you can use
the aITay to get to freespace. This only works in non-CDS programs; in CDS programs the stack is
between blank common and freespace.

In a similar manner, you can arrange your LINK command file to put a named common block at the
end of your program. You must use the NOALLOCATE option for the common block; this keeps LINK
from defining it immediately. After the libraries have been searched you relocate the BLOCKDATA for
the common block so that it becomes the last module in the load. In this case, you must not use
blank common because LINK will put it after the last module. Again, this method does not work
with CDS because of the stack.

Other methods involve using the address of freespace, which you can get with LIMEM. If you know
the address of an array M, you can access any given address I with the expression M(I-addr(M)+1).
As a quick proof, note that if I is the address of M then M(I-addr(M)+1) = M(1). By declaring M
with a lower bound of zero, you can eliminate the offset of one. For example:

INTEGER ADDRESSOF, M(O:O), I, N
N = ADDRESSOF(M)
WRITE(1,*) 'Contents of location', I, '=', M(I-N)

On older systems without Address Of, the routine . DRCT serves the same purpose. On such a system,
the above program must have the line:

$ALIAS ADDRESSOF = '.DRCT', DIRECT

The above method has the advantage that it works on a variety of different machines. On the other
hand, the use of the alias:

$ALIAS /MEM/ = 0

is less portable but more readable, since there is no constant offset to subtract. The ALIAS method
also produces slightly more efficient code. In either case, memory should be allocated by a central
routine which returns a (possibly adjusted) subscript. This makes it easy to port the code to another
machine. On a machine with no freespace mechanism or no way to use it from Fortran, you could
just declare MEM as a large array and allocate space from the array itself.

5. Custom EMA Mapping

When you need more than a few thousand words of memory for data, you have to use EMA. The
good news is that you can run a program that uses megabytes of data. The bad news is that it may
be very slow.

The problem with EMA is that your program changes the map registers for each and every EMA
access. There is no way for the compiler to map a large amount of data and leave it mapped in
while you work on it. However, you can do exactly that with custom mapping. (This section of the
paper assumes that you have some knowledge of how EMA works already.)

7 Paper T03

There are two parts to custom mapping. First, you must change the map registers. Second, you
have to get to the data on the mapped pages of memory.

There are a number of EMA mapping instructions; some are callable from Fortran, some are not.
The most useful are . LBPR and . ESEG .

The Fortran compiler uses . LBPR to map simple variables. It takes one parameter, an EMA address.
The page containing that location, and the next page, are mapped in. The instruction sets the
B-register to the mapped address which corresponds to the EMA address. For example, given:

$ALIAS /MEM/ = 0
$ALIAS MAPPER=' . LBPR' , DIRECT

COMMON /MEM/ MEM(O:O)
INTEGER*4 MAPPER
EMA LARGE(100000)

the sequence:

J MAPPER(LARGE(I))
K MEM(J)

does the same thing as the sequence:

K = LARGE(!)

Note that the first statement does an implicit conversion from double integer (MAPPER result) to
single integer (J). Since double integer functions return the result in (A,B), and the conversion just
uses the low-order word, we are putting (B) into the variable J. This is the mapped address.

This example isn't very practical because the compiler can handle simple mapping by itself. But
suppose we wanted to zero out an array in EMA. We might code the routine:

$ALIAS /MEM/ = 0
$ALIAS MAPPER= '.LBPR', DIRECT

SUBROUTINE CLEAR_EMA(ARRAY, SIZE)
IMPLICIT NONE
EMA ARRAY
INTEGER ARRAY(*), SIZE
COMMON /MEM/ MEM(O:O)
INTEGER MEM
INTEGER INDEX, LEFT, ADDR, CHUNK
INTEGER*4 MAPPER
LEFT = SIZE
INDEX = 1
DO WHILE (LEFT .GT. 0)

ADDR = MAPPER(ARRAY(INDEX))
CHUNK = MIN(LEFT, 1025)
DO ADDR=ADDR,ADDR+CHUNK-1

MEM(ADDR) = 0
ENDDO
INDEX = INDEX + CHUNK
LEFT = LEFT - CHUNK

ENDDO
END

Note that at least 1025 words are mapped on each call. With a little care, we could use 2048 words
from each call except the first and last.

Paper T03 8

Sometimes it's best to use actual pages and MSEG addresses. A normal 2-page MSEG begins at
address 74000B; we can use a common block ALIAS to access it as an array. The pages of EMA can
be arranged as columns of an array. For example:

$ALIAS /MSEG/ = 74000B
$ALIAS MAPPER = ' . LBPR' , DIRECT
$EMA /EMA/

SUBROUTINE MAPIT
COMMON /EMA/ EMA(0:1023,0:99)
COMMON /MSEG/ MSEG(0:2047)
INTEGER EMA, PAGE, OFFSET

CALL MAPPER(EMA(O,PAGE))
I = MSEG(OFFSET)

This routine uses (page,offset) pairs to access locations in EMA. Note that there must only be one
array in EMA, since we are assuming that it starts at EMA location zero.

The . ESEG routine provides another way to map using page numbers. It is passed an array of page
numbers; it maps corresponding pages of the MSEG to point to these pages. . ESEG must be called
from assembly language; see the Programmer's Reference Manual.

The . ESEG instruction is much more powerful than . LBPR. It can map more than two pages at a time,
and they need not be contiguous. This opens up a number of possibilities; in particular, a program
can work on data in different parts of EMA simultaneously without remapping each time. This is
the main purpose of . ESEG; the EMA Vector Instruction Set uses it to handle multiple vectors in
EMA.

One disadvantage of EMA is that the two-page MSEG comes out of your 32-page data segment, so
your non-EMA data is two pages smaller. In some cases these two pages can be reclaimed.

If you ask for two more pages of EMA than you need, you can map these pages into the MSEG and
leave them mapped in. When you use other areas of EMA, you must map the extra pages back when
you're done. The program uses the extra pages as additional freespace; it is totally transparent that
they happen to be in EMA.

A good use of this method is for putting DCB's in EMA. The access to the DCB's is tightly controlled
(only in FMP calls), so you have a small number of places where mapping and re-mapping must be
done. Of course, the data in the extra pages can't be used during any mapped FMP calls, because
the MSEG is temporarily different.

6. Strings and Tables in Code Space

In CDS programs, space in the data segment is at a premium. Large arrays can be moved into
EMA, but you can't initialize EMA variables in a DATA statement (for the moment). This makes
it difficult to move large constant tables out of the data segment. However, with a little work, large
tables (including strings) can be moved into a code segment.

The trick to putting constants in code space is the cross-map load instruction . XLA2 and the cross­
map move instructions . MW20 and . MB20 . The load instruction works like a cross-load, but it
fetches the word from the current code segment. The move instructions work like the CDS move­
words instruction . MWOO, but they move data from the current code segment into the data segment.

These instructions must be used in assembly language. Since there is no way to get Fortran to
put data in code space, the data itself must also be in assembly language. Also, the cross-map
instruction and the data must Le in the same code segment; the best way to ensure this is to put
both the code and the data in the same module {NAM).

9 Paper T03

Actually, the cross-load can be done from Fortran too. For example, the data in:

MACRO

TABLE

NAM TABLE
CDS ON
ENT TABLE
RELOC CODE
DEC 1,2,3,4,5
END

could be referenced by the Fortran subroutine:

$ALIAS /TABLE/, NOALLOCATE
$ALIAS LOAD= '.XLA2', DIRECT

INTEGER FUNCTION CGET(I)
COMMON /TABLE/ ITABLE(5)
CGET = LOAD(ITABLE(I))
END

The compiler thinks that TABLE is in data space. It performs arithmetic to get the address of
ITABLE(I) without ever trying to fetch the value. It passes this address to LOAD, which is really
.XLA2; the data is loaded to (A), which is where function results are returned.

Either way, the code that accesses the table should be centralized, as in the CGET routine above.

7. Setjmp and Longjmp

When an error occurs many subroutine calls deep in a program, it's useful to just pop out of
the current subroutine into some high-level routine, without executing all the RETURN statements in
between. In non-CDS programs, you can do this just by calling the high-level routine. The high-level
routine can no longer do a RETURN, but otherwise the program can continue normally.

In a CDS program, such calls are recursive. This has two drawbacks: all the local variables will be
new, and some stack space has been lost. That makes this approach almost useless.

UNIX systems have a solution to this problem; they supply two routines called SET JMP and LONGJMP.
The SET JMP routine records the current program counter and the stack pointer; the LONGJMP routine
restores them.

This means that there are two ways to get to the statement after a SET JMP call: returning from the
call itself, or resuming after a LONGJMP call. The two are distinguished by making SET JMP a function
which returns zero; when LONGJMP is called, it looks as if SET JMP returned with a nonzero value.

You can do the exact same thing with CDS programs using the SETJMP and LONGJMP on the next
page.

To use SET JMP, call it with a 3-word buffer. When you need to get back, call LONGJMP with the same
buffer and a nonzero value. For example:

Paper T03

INTEGER ENV(3), SETJMP
COMMotJ ENV

IF (SETJMP(ENV) .EQ.O) THEN
<first time>

ELSE
<from LONGJMP>

END IF

10

With a LONGJMP call such as:

INTEGER ENV(3)
COMMON ENV

CALL LONGJMP(ENV,1)

The alternative to SET JMP and LONGJMP is to have the routine return an error code. Then each
routine that calls it must check for the error, and return an error code, and so 011. The SET JMP
solution is unstructured, but it makes some programs much cleaner.

The SET JMP and LONGJMP code:

NAM SETJMP
CDS ON
ENT SETJMP,LONGJMP
EXT .CCQA, .XLA2, .EXITO

*
RELOC LOCAL

RTN_ADDR EQU *-4
CST_PCNT EQU *-3
ENVIRON BSS 1
RESULT BSS 1

*
RELOC CODE

SETJMP ABS 7

*

*

LDA RTN_ADDR
CCE,SSA
JMP SETJMP2

RAL,ERA
STA RTN_ADDR
JSB .XLA2
DEF 2000B
STA CST_PCNT

SETJMP2 JSB .CCQA
DLD ©A

*

STB ©ENVIRON
ISZ ENVIRON
DLD RTN_ADDR
DST ©ENVIRON
CLA
JSB .EXITO

LONGJMP ABS 8

*

JSB .CCQA
LDB ©ENVIRON
DST ©A
ISZ ENVIRON
DLD ©ENVIRON
DST RTN_ADDR
LDA ©RESULT
JSB .EXITO

END

OUR RETURN ADDRESS AT Q+2
OUR RETURN SEGMENT AT Q+3
3-WORD ENVIRONMENT BUFFER
RESULT PASSED TO LONGJMP

DID WE GET HERE WITH A
CROSS-SEGMENT CALL ?
YES. SEGMENT NUMBER VALID.

NO. FAKE IT AS IF WE DID:
SET THE CROSS-SEGMENT BIT
GET OUR SEGMENT NUMBER.

AND SET AS THE RETURN SEGMENT.

(A) = OUR STACK POINTER
(B) = PREVIOUS STACK POINTER
SAVE IT

(A,B) = RETURN ADDRESS & SEG
SAVE THEM
RETURN ZERO.

(A) = OUR STACK POINTER
(B) = SAVED STACK POINTER
SET IT AS OUR PREVIOUS ONE

(A,B) = RETURN ADDRESS & SEG
SET UP FOR OUR RETURN
RETURN 2ND PARAM AS RESULT
RETURN AS IF FROM SETJMP CALL

Note the cross-load from location 2000 in the current code segment; this location contains the current
segment number in the high byte. Since the LONG.JMP call can be in a different segment, we must set
up for a cross-segment return, even if the call to SET JMP was an intra-segment call.

11 Paper T03

8. Device I/O

8.1 READ and WRITE with 8-bit LU's

Most applications can get by with I/O to the terminal (LU 1), disc files, and commonly used devices
such as a tape drive. These devices generally have LU numbers in the range 1-63, and Fortran READ
and WRITE statements work fine with them. System programs, though, may need to use all LU's.
For example, non-session programs in RTE-6 don't have an SST, so even the terminal LU may be
greater than 63.

Older versions of RTE used a 6-bit LU number; high-order bits in the same word were used as option
or control bits. When a Fortran program used a READ or WRITE, Fortran passed the entire Fortran
LU to RTE, which used the lower 6 bits as a system LU and the upper bits as control bits. For
example, if the line printer was LU 6, writing to LU 134 (206B) caused the first character to print
instead of begin used for carriage control.

Then RTE was changed to allow LU's up to 255. Because many existing Fortran programs used
control bits, the 8-bit LU was made an option in Fortran. The default is 6-bit LU's, but you can
easily change or override the default to get 8-bit LU's.

The key is the symbol Z$CWD in the file %FRPLS; see the Fortran compiler files 11 FTN7X and &:FRPLS
for details.

8.2 Binary WRITE to the Terminal

When writing an escape sequence to a terminal, you usually don't want the trailing carriage return
and linefeed. Common practice on HPlOOO's is to end the line with an underscore; this tells the
driver to omit the carriage return and linefeed.

A better and more portable method is to use binary WRITE. For example:

WRITE(1) CHAR(27), 'H', CHAR(27), 'J'

writes exactly four characters to the terminal. Note that the Escape character is easily written with
the CHAR function. Better yet, put the Escape in a PARAMETER statement:

CHARACTER ESC
PARAMETER (ESC=CHAR(33B))

WRITE(!) ESC, 'A'

Making the entire escape sequence a named constant is more clear and generates slightly more
efficient code:

CHARACTER*(*) BLINKING
PARAMETER (BLINKING= CHAR(27) II '&:dA')

WRITE(1) BLINKING

Only the characters in the WRITE are written; there are no trailing blanks, CR/LF, blank-padding of
odd-length records, or other extraneous characters. The binary control bit is set in the REIO call.

Paper T03 12

8.3 Reading Variable-Length Records

Applications usually deal in ASCII files, but system programs often read and write binary files.
Fortran has a binary READ and \I/RITE, but the READ must know the length of the record before it
reads it. With many files, such as relocatables, there is no way to know the record length in advance.

The solution is to try to read a large record, trap t.he "record-too-small" error, and find out how
much was actually read. The error code is 496. The function ITLOG returns the number of bytes
actually read in the last READ statement. For example:

INTEGER BUFFER(129)

READ(8,IOSTAT=IOS) BUFFER
IF (!OS .EQ. 0) STOP 'Record too big.'
IF (!OS .LT. 0) STOP 'At EDF'
IF (!OS .NE. 496) STOP 'I/O error.'
LENGTH = ITLOG() / 2

The above code is suitable for reading relocatable files, which have records no larger than 128 words
long. Note the extra word in the buffer, which is used to catch any records which are too large.

8.4 READ /WRITE with a Z-buffer

The RTE EXEC read and write calls have an option called a Z-buffer. This is a second I/O buffer
which is passed to the driver; the use of the Z-buffer depends on the driver. For example, the
terminal drivers write the Z-buffer before they read or write the ordinary record.

This is very useful for writing to a device which will respond immediately with data which needs to
be read. If the read is not posted soon enough, the data is lost. If you code the write and the read
separately, RTE may interrupt your program between the two, causing the read to be posted too late
to catch the incoming data.

A simple example is the terminal status request. If you send an HP terminal the escape character
and a circumflex ('), it responds with status information. The read must be posted immediately
after the write, or the incoming data will cause a prompt.

The ideal solution is to combine the \I/RITE and READ into a single request using a Z-buffer. In FTN7X,
the ZBUF and ZLEN keywords can be used to specify a Z-buffer. For example:

INTEGER PROMPT
CHARACTER STRIIJG*20
PROMPT = ISHFT(33B,8) + !CHAR(''')
READ(l, '(a)', ZBUF=PROMPT, ZLEN=-2) STRING
\llRITE(1,*) STRING

If you try this program, you'll see the status information twice: once as it is echoed by the driver
(as if it were typed in), and once from the \I/RITE statement. This is because the READ statement
sets the echo bit in the read request.

There are two ways to turn off the echo bit in Fortran. One way is to use a binary READ. Unfor­
tunately, the Fortran library will attempt to read its full binary buffer size (120 characters). The
terminal driver will wait for 120 characters to be sent before it completes the read request. If you
know exactly how many characters are coming back (and it's an even number), you can use LGBUF
to set the buffer size; however, this is somewhat risky.

The new serial drivers in RTE provide a much better solution. You can explicitly ask for CPU-to­
CPU protocol. When the driver uses this protocol, a Fortran program using ZBUF and ZLEN can do
I/O to an intelligent device using serial I/O without the problems mentioned above.

At least one paper describing these drivers was to be presented at the conference.

13 Paper T03

8.5 HPIB and PRAM3/PRAM4

Many I/O drivers will accept one or two words of additional information in the EXEC request; these
are called PRAM3 and PRAM4, because they are the third and fourth data parameters in the EXEC
request. In a Fortran program, these values can be specified in a READ or WRITE:

READ(100:IPRAM3:IPRAM4) HPIP_DATA

The PRAM4 value is optional; in the above example, an LU of 100: IPRAM3 would be the same as
100: IPRAM3: 0.

For HPIB, these values are the secondary and tertiary HPIB addresses. Other drivers use them in
other ways. If you write your own drivers, you can pass these values directly from your Fortran
program.

9. Miscellaneous 1/0 Extensions

There are a number of other extensions and library rotttiues for device and file I/O. Rather than
describe them all in detail, I've provided a brief summary of each. For details, see the Fortran
manual and my recent TC Interface columns on Program Development.

FPOST - post buffered data to the disc immediately.

FLOCF - get the byte position and record number of a file.

FPOSN - set the byte position and record number of a file.

!TYPE - get the file type of an open file.

USE keyword - specify if the file is to be opened as shared exclusive access, or update
mode.

BUFSIZ keyword - specify the packing buffer (DCB) size.

FREESPACE keyword - allocate packing buffers (DCB's) out of frees pace (on the FILES direc-

10. Conclusion

tive).

NFIOB - get the number of available packing buffer blocks.

LGBUF - supply a new (possibly large) record buffer for READ and WRITE.

FFRCL - specify the maximum record size for free-field WRITE.

ITLOG - get the number of characters actually read by the last READ.

!STAT - get the status word from the last READ or WRITE; usually meaningless
after a WRITE.

The above techniques are not intended for ordinary programs. But when your choice is using these
extensions or writing in assembly language, the choice is clear: the program will be more readable
and maintainable written with unusual Fortran code than with straight assembly language.

Paper T03 14

Performance Data Collection and
Analysis in the RTE Environment

by: Glover, Dave
Clunes, Nigel

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T04

Open System Tools

by: Morgan, Kevin

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T05

FST - A High Performance
Backup Utility for RTE

by: Hassell, Bill
Clunes, Nigel

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T06

HPUX-RT

by: Jacobs, Bill

We regret that this paper
was not received for

inclusion in these proceedings.

Paper T07

KERMIT - a file-transfer utility
Paul Schumann
E-Systems, Inc.

P.O. Box 1056 CBN 101
Greenville, TX 75401

Introduction

One of the problems we face increasingly these days is the need to transfer text and other
information between similar systems with no compatible removable media, or unlike systems,
whether PC's or mainframes. In many cases networking solutions to these problems either don't
exist, or they are incompatible, like Ethernet vs. IEEE 802.3. If a compatible networking solution
can be found, it is probably too expensive in hardware costs alone for the kind of occasional
access required.

KERMIT was developed for the purpose of filling this gap using one of the cheapest and most
universal "media" available - the telecommunications (IEEE RS-232) port. It uses an
asynchronous, half-duplex protocol and the ASCII character-set. The protocol can be
implemented in many languages and it is already available for a large variety of mainframe- to
micro-size machines.

This paper is intended to serve three purposes:
1) Examine the KERMIT protocol, showing some of it's capabilities and limitations,
2) Compare KERMIT to other file-transfer methods,
3) Provide a manual to assist the users of KERMIT-RTE.

Section 1: The KERMIT protocol - a brief description

This is not intended as a rigorous description of the KERMIT protocol; rather, it is intended to
answer some of the "why" questions about it. A full definition may be found in the KERMIT
Protocol Manual, which is a part of the KERMIT submission in the CSU1000. Additional
information may also be obtained from the June and July (1984) issues of frr'.I.E magazine, from
which I first learned of KERMIT.

KERMIT is a copyrighted protocol developed by Bill Catchings and Frank da Cruz at the Columbia
University Center for Computing Activities (CUCCA). They designed and implemented the
protocol in order to allow students with PC's to maintain their own archival storage of work done
during the semester, to off-load some of the editing-type tasks from the mainframe, and to allow
file-transfers for any other reason. Note: the copyright was obtained to protect KERMIT,
Columbia University, and the contributors from having the work stolen and then sold as a product.
"KERMIT" is. a registered trademark of Henson Associates, Inc., creators of "The Muppet Show."

Under this protocol there are two KERMIT programs which mediate the transfer of (usually) text
files; one of the programs acts as the sender and the other as the receiver for a given file-transfer
operation. In the next file-transfer operation the two programs could swap jobs. It is naturally
assumed that each of these programs runs on opposite ends of the same communications link
between two possibly dissimilar machines. In addition to transferring files, many KERMIT
programs also function as rudimentary terminal-emulators (for the purpose of starting the KERMIT
program on the remote system), which eliminates the need to get out of the local KERMIT, then
start a separate program to perform this job.

Paper 1001

The sender divides the data in a file into more manageable pieces, called "packets." lnformatio11
is added before and after the data in each packet for control, descriptive, and error-detecting
purposes, and then the "data" packet is sent over the communications link to the receiver
program. The receiver must determine that the correct packet has been received and that the
contents of that packet have been received intact. If there is a problem with the received packet,
the receiver tells the sender to try again in a NAK packet, or Negative Ac.Knowledgement. If the
packet was properly received, the receiver extracts the data portion of the packet, places it in the
file being built, and then informs the sender that the packet was successfully received and that
the receiver is ready for more data. It does all of this in an ACK packet, or ~nowledgement. In
addition to sending data packets, the sender also transmits file-name, end-of-file, and end of
transmission information in packets. The KERMIT programs can only talk to each other in
packets, the general structure of which is shown below and described in the following
paragraphs. Note that all packets, regardless of purpose, conform to this structure.

I Mark I Len I Seq I Type I Data I Checksum I
Each packet begins with the only control-character actually required by the KERMIT protocol, the
"mark" character. This is usually a control-A (or SOH) in most implementations, chosen because
on most systems the SOH has no special meaning to the communications processor, and so is
passed to a program as data. The protocol states that each packet must begin with the
packet-marker for synchronization, so if there should occur another marker "within" a packet
(probably due to corruption of some part of the previous packet), the previous information is
discarded and the "new" mark is treated as if it really is the beginning of a new packet. Both the
sending and receiving KERMIT must agree on the choice of the Mark before any packet transfers
can occur. Note that no control-characters appear within a packet past the Mark character; all
other information within a packet is adjusted such that it is printable! The intent here is to avoid
any other control-characters which may have some special meaning to the host system's
communications front end, such as a control-D in RTE or control-C in DEC operating-systems. If
the mark should be corrupted, the receiver will eventually time-out; the NAK it sends causes the
sender to try again.

The second byte of any packet is the Length byte. Because there must be no control-characters
within a packet, the length byte is encoded by filk!.i.Qg 32 (decimal) to the actual number of bytes
within the packet which follow the length byte. [Adding 32 to a "number" in order to make it
printable is called the "char'' function in KERMIT parlance, which is not to be confused with the
FORTRAN character function of the same name.] The length does not include any padding
characters which some systems require, nor does it include the end-of-line character required by
other systems such as RTE; these characters are considered to be outside of a packet. It does
include the sequence-number byte, the type byte, zero or more data byte(s), and one to three
checksum bytes; it is the~ packet size minus two. Corruption here will probably cause the
checksum to fail, forcing a NAK and a retry.

The third byte of each packet is the sequence number, which ranges from O to 64, encoded via
char(). If it is corrupted, the receiver gets a sequence or checksum error, to which a NAK is
returned, prompting a retry.

The fourth byte of each packet is the type byte, a printable character which tells the receiving
KERMIT what kind of packet this is:

Paper 1001 2

D Data (from a file)
Y Acknowledge [ACK]; packet may contain special data
N Negative Acknowledge [NAK]
S Send Initiate (Send-I nit); sets packet parameters
R Receive Initiate; used to request files from a server
B Break transmission [EOl]; sent after all file-transfers are done
F File header; gives the receiver the name of the file to be sent
Z End of file [EOF]; is sent after each file
E Error; the data field may contain error text
G Generic commands. These may not be implemented by all KERMIT programs; a single

character in the data field, followed by O or more operands, requests host-independent
remote execution of a command:
L Logout or Bye; terminate KERMIT and log it's session off
F Finish; terminate KERMIT but .dQn.1 log off
D Directory query
U Disc usage query
E Erase or delete a file
T Type (list) a file to the terminal
Q Query server status

Others as defined by cooperating KERMIT implementations

C Host command; the data field contains a string to be executed as a system command by
the host-system's command processor

X Text display header; indicates the arrival of text to be displayed on the screen, possibly as
a result of a generic or host command. It behaves exactly like a "normal" file-transfer
operation, except that the data goes to the screen rather than a disc file.

The various packet types will be examined in more detail below. If the type byte is corrupted, the
checksum will be wrong and the receiver will ask for a retry.

The data field, as explained above, may be absent. The contents of the data field are dependent
on the packet type: a data packet holds data from a file being transferred, a file-header packet
contains the name of the file to be sent, a send-init packet holds parameters pertaining to the
pending file-transfer, and the ACK to a send-init packet contains the receiver's parameters for that
same file-transfer operation. (The send-iniVACK transaction will be further amplified below.) As
before, all data bytes must be printable; non-printable characters are treated in two ways to make
them printable depending upon the numeric value of the byte B in question:

a) O :::; B < 32 the control-character b is made printable by XOR-ing it with 64, preceded
by a special "quote" character

b) B = 127 treated as in case (a) above
c) 128:::; B:::; 255 All of these character have their "eighth" bit set. The byte is AND-ed

with 127, preceded by a "binary" quote character (the "BQuote") if
binary-quoting is enabled.

Note that after "binary" quoting, a byte may become subject to "control" quoting, as described in
case (a) above. A rudimentary data-compression scheme may also be applied to information in a
data packet. To do this, a sequential run of four or more of the same character can be
compressed into a 3-byte sequence, (ignoring any possible binary- or control-quoting which may
be necessary) by placing a repeat-count character "repc", the count itself [encoded via char() to
make it printable], then the character itself. If the Quote, the Bquote, or the Repc characters

3 Paper 1001

need to be sent, they are preceded by the quote character, but the XOR with 64 is IlQ1
performed. Not all KERMIT implementations perform binary quoting or repeat-count prefixing. If
all eight bits of the RS-232 character are controllable by both ends of the communications link,
binary quoting is not even desirable because it could double the transmission-time of half of the
(binary) data. All implementations of KERMIT .IJJUfil perform (control) quoting as describe above.
A (quoted) CR/LF sequence is used to delimit a logical record within a packet; no prefixing
sequences themselves may span a packet boundary, however.

The final field in a packet is from one (default) to three bytes long, and contains the packet's
checksum. Each byte is made printable by the char() function described above. All KERMIT
programs must implement the 1-byte checksum by simply adding up the numeric value of all
bytes between the mark and the checksum itself. Since this sums must be expressed as a single
printable character, the 7th and 8th bits of the sum would be lost, so they are extracted and
added back in to the sum in the first two bits as:

{ s + [(s and 300) I 100] } and 77 (in QmaI arithmetic).
The two-byte checksum is the low-order 12 bits of the same sum, broken into two 6-bit numbers
and then made printable via char(). The three-byte checksum is actually a Cyclic Redundancy
Check (CRC) formed by the CCITT-recommended polynomial

x 16 + x 12 + x5 + 1
which is also used in some other networks like DS-1000.

Some machines require a special character to terminate input. If one is needed, the sender
appends it after the checksum; it is not considered to be a part of the packet. Similarly, if a
machine requires some time to "turn the line around," padding characters are sent as needed;
these are also not considered to be a part of the packet.

How KERMITS talk to each other

The following is an example of the sequence of packets ~ as a file was copied from an
HP-1000 "F-series" machine running RTE-6/VM to a VAX 11/780 running under VAX/VMS; none
of the operator commands used to cause these events to occur are shown. The information
shown is taken from a debug-log of a re.al KERMIT-RTE session; I have edited only the beginning
of each packet to say "RTE" or "VAX" for the sake of clarity, and the lines which are too long have
a " .. "at the end as EDIT/1000 does in screen mode. The file sent from the RTE ("I/me") to the
VAX ("you") was:

This is a short file of test data used to demonstrate how KERMIT
transfers data from one place to another. It consists of a few very
short
records
to show
how we
can pack multiple records into a single packet, and it contains aver ..
y long record, showing how a record might span a packet.

Information shown in (this font) is actual debug-log data; information in (this font) is
commentary. The"•" is the mark character which must begin each packet.

RTE: •, S-& @-Hl-+

"I want to send you a file." I start the conversation with a 'send-init' packet in which I tell you
what special characteristics I expect. Taking the characters, as they appear from left to right,

Paper 1001 4

this is what this packet tells you:
'·' is the mark; it denotes the start of this and all packets
',' is the packet length in char() encoding; ''," = 44, so the packet has 12 bytes

following this one (44 -32 = 12)
' ' is the packet sequence-number, which is also char() encoded. Since " " = 32,

this is packet# o.
'S' is the packet type. "S" denotes send-init. The data field of this type of packet always

has the following format, where fields can be omitted from the right only for each
unimplemented feature:

1 2 3 4 5 6 7 8 9 10

Maxl Time nPad PadC EOL Qctl Qbin ChkT Repc Capas...

·-· is the Maxi, or maximum length of packets (in bytes) to send to me, encoded via
char(). "-" = 126; maxi= 94. If this field is not supplied (meaning that al! send-init
parameters were defaulted) then you must assume I will accept 80 bytes.

'&' is the Time (in seconds) after which you should time me out while waiting for a
packet from me, encoded via char(). "&" = 38, so time = 6 seconds, which is
reasonable at 9600 baud. RTE KERMIT adjusts this relative to the baud-rate being
used! If defaulted, no time-out processing should be performed.

' ' is the nPad, or number of padding characters I require, using char() encoding. The
blank means nPad = 0, so I require no padding. Zero is the default for this field.

'@' is the PadC, or pad-character to use for padding. The PadC is made printable via
the ctl() function, which complements bit-7 of it's argument [ctl(n) = n xor 64]. "@"
= 64, so PadC = 0, or "NUL." The NUL would be the default pad-character, but it is
ignored if the nPad field is zero.

' ' is the EOL, or end-of-line character I want at the end of each packet, encoded via
char(). "-" = 45, so the EOL should be 15 (CR) which is the default for this field.

'#' is the Qctl, or the (literal) Quote character to use for ,1<on1rol characters within the
data field of a data packet. "#" is the default control-quoting character.

'&' is the Qbin, or the (literal) Quote for Qinary (8th-bit set) characters appearing in a
file's data. Obin defaults to none: no binary quoting is to be performed.

'1' is the ChkT, or (literal) Q..!iec.!s.sum Jype to use. "1" signifies a single-byte
checksum as described above,"2" says use the 2-byte (simple) checksum, and "3"
means use the 3-byte CRC. All KERMITs must at least implement the default
1-byte checksums.

·-· is the Repc, or (literal) fim2eaH<ount character to use for any data compression, as
described above. The default is blank: don't perform repeat-count processing.

The next field(s) form the Capability mask(s), which are not yet implemented in
RTE-KERMIT. These are 6-bit groups [encoded via char()] in which a bit is set to
signal a processing capability:

hlt5 hlt4 hlt3 hlt2 hltl hltO

#l #2 #4 more

The "more" bit is set to indicate the presence of another byte of capability-mask
following this one. My KERMIT Em1o.co..l Ma.au.al (dated 4 November 1983) defines only
3 capability bits:

#1 Ability to time out
#2 Ability to accept server commands
#3 Ability to accept "A" (file-attribute) packets

5 Paper 1001

'+' is the checksum of this packet.

If this description seems long, this .is. a complicated packet.

VAX: •, Yp/ @-t&l-,
The VAX answers, "OK, send it to me using these parameters." This is a normal acknowledge,
but an acknowledge to a send-init is special because it contains all of the receiver's parameters
in send-jnit fi2rl:ruil! Thus this packet says:
'·, Y' is the header for a 12-byte packet, packet# O; "acknowledge."
'p/ @-#& 1-' is the packet data for:

Maxi =80 bytes
Time =15 seconds i,
Npad =0; no padding required
PadC =0 (NUL) is the pad character, ignored since Npad=O
EOL =13 (CR)
Qctl ="#"
Obin ="&"
ChkT =1-byte checksums io be used
Rape ="-"
No capability masks were sent

, is the packet's checksum
The exchange of parameters is a short operation; once the receiver has told the sender what i1
wants, there are no more negotiations. If RTE-KERMIT requests 3-byte checksums and the
other end cannot support it, then we must .bQ1h use 1-byte checksums.

RTE: • + ! FTESTFILEU •
'•+!F' is the header for an 11-byte packet, packet #1, type= file-header. It means, "prepare to
receive a file whose name is in the data field." In this case, the file's name is 'TESTFILE'
without a type-extension, although type-extensions are supported. The receiver must modify
the file's name as needed to conform to the file-naming rules of the receiver's file-system, and
to either rename it should there be a conflict with an existing file or to refuse reception, at the
receiver's discretion. RTE-KERMIT allows you to overwrite existing files only if you have
turned "file-warnings" off.

VAX: •t!Y?
This is an acknowledge to packet #1. If the receiver was unable to accept the file as named for
some reason, it could have responded with an error-packet, whose data field would contain
the text of an error message stating why the packet couldn't be received.

RTE: •j"D-& This is a short file of test data used to demonstrate how ..
KERMITtMtJ9

Since the VAX acknowledged my file-header, I send packet #2 as the first data packet. The
"-& " is data-compression for the 7 blanks which begin this record. The "#M#J" are the
quoted control-characters "CR" and "LF," which delimit the first record.

VAX: • t"Y@ "OK to packet #2"
RTE: •iiDtransfers data from one place to another. It consists of a ••

few verytMt
Packet #3 is another data packet. The logical record itself ~ fit in the packet, but the
record-delimiter didn't quite fit.

VAX: •OYA "Packet #3 is OK"
RTE: •i$DJtJshorttMtJrecordstMtJto showtMtJhow wetMtJcan pack multiple ..

records i]
Packet #4 is also a data packet. It shows how multiple records are packed into a single packet.

vAx: • ts YB "Packet #4 is OK"

Paper 1001 6

RTE: •i%Dnto a single packet, and it contains a very long record, she ..
wing how aL

Packet #5 is a data packet showing how a logical record might span a packet. In this case,
parts of the same logical record span 3 packets.

VAX: • t %YC "Packet #5 is OK"
RTE: • C&D record might span a packet. tMtJ\

Packet #6 is a data packet holding the last part of that long record.
VAX: • * & YD "Packet #6 is OK"
RTE: • t' zF "Packet #7 is the end-of-file for the "TESTFILE"
VAX : • t 'YE "OK on the end-of-file packet, #7"
RTE: ·#(Bl Packet #8 is a Break packet; "I am done sending."
VAX: • # (YF "OK on packet# 8; good-bye for now"

and the conversation ends. Had there been a problem in any packet transferred to the receiving
KERMIT, it would have responded with a NAK packet, and the sending KERMIT would re-send
the same packet. If a receiver's ACK packet was corrupted, the sender would, once again,
re-send the same packet (the receiver knows to discard duplicate packets - that's why the
sequence number is there).

What the user sees

In the following, you will see several complete KERMIT sessions wherein the same group of files
(RTE-KERMIT's common files, actually) are transferred from the same RTE-based system to the
same VAX. The underlined text is what the user enters in these sessions.

Session 1 : the user is already logged on to the VAX system.

VMS Kermit-32 version 3.1.066
Default terminal for transfers is: VTA 789:

Kermit-32>i;;. ~ "C" is short for "connect"

(OSWALD::Connecting to TXL7:. Type A]C to return to VAX/VMS
Kermit-32]

System 2 log on:schumann 54850

PASSWORD ?

SESSION 62 ON 10:37 AM THU., 15 MAY , 1986

PREVIOUS TOTAL SESSION TIME: 75 HRS., 25 MIN., 20 SEC.

This is RTE 6/VM: Rev. A.84 {messages last edited <860515.0929>}

All Backus systems will be DOWN for P. M. on Saturday, May 1 7

CI. 62> fill. /kermit
CI . 6 2 > kfil:m.li

(to make getting the files easier)

HP-1000 RTE-KERMIT Version 1. 98 <860429. 0904>

KERMIT-RTE requires EOL=l3 !

KERMIT-RTE is in remote-host mode; file transfers are ok

7 Paper 1001

Kermit-RTE> "sen" is minimum command for send; the mask says to get all
FORTRAN include-files in the current working-directory.

~
[OSWALD::Returning

(These don't really print - we are returning to the VAX)
to VAX/VMS Kermi t-32]

Kermit-32>=
Receiving: KERSTA.IFTN
Receiving: KERCMD.IFTN
Receiving:
Receiving:
Receiving:
Receiving:

KERCNF.IFTN
KERCOM.IFTN
KERDBG.IFTN
KERFIL. IFTN

Receiving: KCMNDS.IFTN
Kermit-32>.Q.

"rec" means receive; we will take all files sent.
as USRl: [SCHUMANN]KERSTA.IFT;3 [OK]
as USRl: [SCHUMANN]KERCMD.IFT;3 [OK]
as USRl: [SCHUMANN]KERCNF.IFT;3 [OK]
as USRl: [SCHUMANN]KERCOM.IFT;3 [OK]
as USRl: [SCHUMANN]KERDBG.IFT;3 [OK]
as USRl: [SCHUMANN]KERFIL.IFT;3 [OK]
as USRl: [SCHUMANN]KCMNDS.IFT;3 [OK]

Once RTE-KERMIT has sent all files given by the mask, it sends the "break" packet to the
VAX, which allows it to accept more user commands. We re-.Q.onnect to shut off the
RTE-KERMIT.

[OSWALD::Connecting to
Kermit-32]

TXL7:. Type A]C to return to VAX/VMS

Kermit-RTE> .e.A

CI. 62> ~
Finished
CI. 62 REMOVED

SESSION 62 OFF 10:39 AM THU., 15
CONNECT TIME: 00 HRS.,
CPU USAGE:
CUMULATIVE CONNECT TIME:
END OF SESSION

00 HRS.,
75 HRS.,

MAY , 1986
02 MIN., 35 SEC.
00 MIN., 15 SEC.,

27 MIN., 55 SEC.

~
[OSWALD::Returning

(Once again, not printed; back to the VAX)
to VAX/VMS Kermit-32]

Kermit-32>~ We're done with the VAX, so we log off.
$ l..Q.

SCHUMANN logged out at 15-MAY-1986 10:40:30.35

Session 2: The user is directly connected to the RTE-based system

System 2 log on:schumann.54850
PASSWORD ?

SESSION 69 ON 10:42 AM THU., 15 MAY, 1986
PREVIOUS TOTAL SESSION TIME: 75 HRS., 27 MIN., 55 SEC.

140 MS.

This is RTE 6/VM: Rev. A.84 {messages last edited <860515.0929>}

All Backus systems will be DOWN for P .M. on Saturday, May 17

CI - 69> lid. /kermit
c I. 6 9 > ka.l:.mil..
HP-1000 RTE-KERMIT Version 1. 98 <860429. 0904>

KERMIT-RTE requires EOL=l3 !

Paper 1001 8

KERMIT-RTE is in remote-host mode; file transfers are ok

Kermit-RTE> Ail L. a "L" is short for "line"; LU 62 is the direct VAX link
KERMIT-RTE is in local-host mode to LU 62 @ 9600 baud; Parity - NONE

As KERMIT-RTE begins to use another LU for file-transfers, It identifies that it really is on a
configured 12040 or 12792 MUX port, then shows you the baud-rate and parity of the line.

Kermit-RTE> i;;, "c" is short for connect (through LU 62)
[connecting to LU 62; return via "control-]" then "C"]

E-Systems Engineering Computer Center VAX

Username: SCHUMANN
Password:

Welcome to VAX/VMS version V4. 2 on node OSWALD
Last interactive login on Thursday, 15-MAY-1986 10: 33

ENGINEERING VAX
NODE: OSWALD
LAST BOOTED: 8-MAY-1986 19:06:46.08
$~
VMS Kermit-32 version 3.1.066
Default terminal

Kermit-32>=

for transfers is: TXL7:

~
[back at KERMIT-RTE]
Kermit-RTE> =n.i..f..t..n

Once again, the VAX takes all files we send
(These don't print, but we return to RTE-KERMIT)

As before, send all files in mask "@.iftn" The numbers below are a running packet count; the
file-header for the first file (KERSTA.IFTN) was packet #2, the header for KERCMD.IFTN
was #12, etc. The numbers after the "/" give counts for retries; none occurred in this session.

1/000 Sending KERSTA. IFTN: : : 4: 3: 38
11/000 Sending KERCMD. IFTN::: 4: 3: 37
20/000 Sending KERCNF. IFTN::: 4: 4: 37
35/000 Sending KERCOM.IFTN: ::4:10:38
67/000 Sending KERDBG.IFTN:::4:3:37
76/000 Sending KERFIL.IFTN:: :4: 6:38
93/000 Sending KCMNDS. IFTN::: 4: 4: 36

106/000 File transfer completed

Kermit-RTE> i;;, Re-.Q.onnect in order to log off the VAX
[connecting to LU 62; return via "control-]" then "C"]
Kermit-32>l:Ul
$ l.Q.

SCHUMANN

::..i.e.
logged out at 15-MAY-1986 10:47:57.52

(Escape back to local: RTE-KERMIT)
[back at KERMIT-RTE]
Kermit-RTE> !iUL

CI. 69> !iUL

Finished
CI • 6 9 REMOVED

SESSION 69
CONNECT TIME:
CPU USAGE:

OFF 10: 48 AM THU., 15
00 HRS.,
00 HRS.,

CUMULATIVE CONNECT TIME: 75 HRS.,
END OF SESSION

MAY , 1986
05 MIN., 31 SEC.
00 MIN., 20 SEC.,

33 MIN., 26 SEC.
10 MS.

Using KERMIT terminal-emulators can be a real problem; this is especially true of the RTE-version

9 Paper 1001

of KERMIT: you must type Y.e.Q1. slowly, and not all of your typing will be echoed back. There is an
alternative called the SERVER. Once invoked, the server takes it's commands from packets
generated by the local KERMIT.

Session 3: you are already logged on to the VAX and will invoke the RTE-KERMIT server.

$~
VMS Kermit-32 version 3 .1. 066
Default terminal for transfers is: VTA 7 8 9:
Kermi t-32>><. backus2 !As before, Qonnect to the correct RTE system)

[OSWALD::Connecting to _TXL7:.
Kermit-32]

[log on as usual]

Type A]C to return to VAX/VMS

CI. 62> ~ .a.e.I.:. KERMIT-RTE allows one command in the run-string
HP-1000 RTE-KERMIT Version 1.98 <860429.0904>

KERMIT-RTE requires EOL=l3 !

KERMIT-RTE is in remote-host mode; file transfers are ok
[KERMIT Server running on an HP-1000 host.

You must escape to your local machine now!]
.:.LJ;;. Escape back to VAX KERMIT
[OSWALD: :Returning to VAX/VMS Kermit-32]
Kermit-32>.11.fil;.. /kermit/.iftn

Note the use of the "get" command (not receive) and a full path-name for the files to be
received, assuming that I didn't already set the working-directory to /KERMIT. A "get"
command causes the local KERMIT to generate a "receive-init" (type = R) packet whose data is
the filespec given as the command's parameter. The server's response to this type of packet
is a send-init rather than the usual ACK packet. Some KERMITs will allow a a second
parameter which could rename received files.

Receiving: KERSTA.IFTN as USR1:[SCHUMANN]KERSTA.IFT;4 [OK]
Receiving: KERCMD.IFTN as USR1:[SCHUMANN]KERCMD.IFT;4 [OK]
Receiving: (etc.)
Receiving: KERFIL.IFTN
Receiving: KCMNDS.IFTN
Kermit-32>.f.

as USRl: [SCHUMANN]KERFIL.IFT;4 [OK]
as USRl: [SCHUMANN]KCMNDS.IFT;4 [OK]
"f" is short for finish, which terminates the remote KERMIT, but
doesn't log the session off.

The user would re-connect to the remote session [not KERMIT] to log off, then escape back to
the local KERMIT (which is providing the terminal emulation) to do other processing or to log off.

The example above illustrates a very important point. The connection between these two
"mainframe" computers is .oQ! a dial-up, but a permanent, hard-wired connection. Under these
circumstances, it is a bad idea to use the .LQgoff or BYE commands with a server because the
messages associated with the logging-off operation may be interpreted as attempts to log on to
the systems. Since these messages probably will not be valid user/password sequences, the
"log-on failure" message will be generated, and that might be interpreted by the other system as a
log-on attempt, etc. I have personally seen some (DEC) systems which were brought to their
knees by this type of "vicious cycle" unleashed by an unknowing user. The "most correct"
method for logging off a hard-wired connection is that shown above: finish, then Qonnect, log off
manually through the local KERMIT'S terminal-emulator, then escape back to the local KERMIT.

Paper 1001 10

Sessjon 4: you are directly connected to the RTE-based system and will interact with the
VAX-KERMIT server.

CI. 69> l1.ti /kermit
CI.69> ~
HP-1000 RTE-KERMIT Version 1. 98 <860429. 0904>

KERMIT-RTE requires EOL=l3 !

KERMIT-RTE is in remote-host mode; file transfers are ok
Kermit-RTE> .s;;. il (RTE-KERMIT can set line and connect in one step!)
KERMIT-RTE is in local-host mode to LU 62 @ 9600 baud; Parity NONE
[connecting to LU 62; return via "control-]" then "C"]

<< The usual log-on stuff >>

$ ~ ~ (VAX-KERMITwilltakerun-stringcommands)
VMS Kermit-32 version 3.1.066
Default terminal for transfers is: TXL 7:

[Kermit Server running on VAX/VMS host. Please type your escape
sequence to return to your local machine. Shut down the server by
typing the Kermit BYE or FINISH command at your local machine.]

.:L<. escape back to RTE-KERMIT
[back at KERMIT-RTE]
Kermit-RTE> ~il!..n.

1/000 Sending KERSTA.IFTN:: :4:3:38
11/000 Sending KERCMD.IFTN:::4:3:37

93/000 Sending KCMNDS. IFTN::: 4: 4: 36
106/000 File transfer completed

(You could send another group of files here, if desired, but we're done for now.)
Kermit-RTE> f. Terminate remote KERMIT, but don't log off.
Kermit-RTE> "'- Re-.Qonnect in order to log off safely.
Note that~ to a KERMIT acting as a server doesn't look very much different than sending
to an "interactive" KERMIT. The advantage is that you need not type slowly or worry that the
terminal-emulation provided by the local KERMIT has dropped or failed to display a key stroke, nor
are you required to keep switching back and forth between the local and remote KERMIT
programs.

Section 2: KERMIT vs. other protocols

In this section I will ~describe some other file-transfer methods, the XMODEM, PCLINK,
Advancelink™, and CompuServe "B" protocols, and compare them to the KERMIT protocol.
While this paper ja about KERMIT, I will try to be objective.

XMODEM Protocol

XMODEM is probably the best-known of file-transfer protocols. It was developed by Ward
Christenson for the purpose of reliably mediating the transfers of files for the users of a
CP/M-based bulletin-board system. My information on it comes from a document called "MODEM
Protocol Overview," uploaded to CompuServe by Ward Christenson himself, dated January 1,
1982.

11 Paper 1001

Like KERMIT, XMODEM is an asynchronous, half-duplex protocol which divides the data into
packets of convenient size whose bounds have no particular correspondence to the logical
records within them. Unlike KERMIT, only file data is transmitted in packets. An
XMODEM packet has the following structure:

SOH BLK• 128 Data Bytes Hi Chksum Lo Chksum

Each packet begins with the control-A (SOH) character, like KERMIT. The second byte of each
packet is the block-number. It starts at 1, incrementing once for each packet successfully sent,
and wraps from 255 to O (not 1, as you might expect). The third byte of a packet is the one's
complement of the same block# given by the second byte. The 4th through 131 st bytes of a
packet contain file data, with each logical record terminated by a (CR) and (LF), as in KERMIT.
XMODEM does not allow "short" packets; the last packet must be padded to 128 data bytes even
if it only contains the final (LF) for the last record. There is no requirement that all the data be
printable. The final two bytes of a packet contain the 16-bit simple checksum of the data bytes
only, ignoring any carries. There are some extensions to this protocol which compute the same
CCITI-CRC as is optional in KERMIT. The XMODEM standard requires 8-bit characters with no
parity; there are no specifications for a 7-bit plus parity implementation. An ASCII-only or
unpacked-hex method could be arranged easily enough (if both sides agree) by AND-ing the
non-data portions of the packets with 127 decimal, for those machines which have no control
over the parity of their communications ports.

The most major difference between the KERMIT and XMODEM protocols (aside from differences
in packet structure and length) is the method in which the receiving program performs
handshaking with the sender. KERMIT puts all "answers" into packets; XMODEM uses a single
character to acknowledge (05H - ASCII "ENO"). negative-acknowledge (15H - ASCII "NAK"), or
report errors (18H - ASCII "CAN") in received packets. A difference in the sender's operation is
that it waits for the first timeout from the receiver before it even sends the first packet; at
end-of-file it sends only a single character (04H - ASCII "EQT") to indicate that the sending of the
file is complete rather than a complete packet, as KERMIT does.

The result of these is that XMODEM has the potential to be faster than KERMIT:
a) A longer data packet, without special prefix characters, has a lower overhead (more data

bytes per byte of control)
b) A shorter response handshake sequence also cuts overhead

On a good communications.line (non-modem?) this potential can be realized. On a poor line, the
longer packet length will be subject to corruption more often; with KERMIT you can reduce the
packet size and perhaps transfer a file on a line which could be too noisy for the XMODEM
protocol. Since XMODEM has only one "type" of packet (the data packet), there are no
provisions for a file-server or other extensions of which KERMIT is capable.

PCLINK Protocol

PCLINK is a file-transfer protocol developed by Walker, Richter, and Quinn to be used between
HP 3000 or VAX machines and a terminal-emulation program for IBM PC's (and clones) originally
called PC2622; it is now called REFLECTION™. DIAS Corporation has also implemented the
protocol for HP 1 OOO's. My information on this protocol comes from a document file called
"Protocol.doc," and from the SPL/3000 source to PCLINK, both of which used to be supplied
with copies of PC2622.

Paper 1001 12

While it is currently in somewhat limited use, folks at INTEREX tell me that this protocol is
becoming more and more popular; PCLINK does deserve some examination because it
combines some of the features of both KERMIT and XMODEM. Like XMODEM, it utilizes a single
byte to report success or failure of the last packet received, and it has a method for
simultaneously acknowledging the last packet received and then "turning the line around." Like
KERMIT, it has several packet types and a semi-variable (but larger) packet size; the "master" (the
program running on the PC) normally "tells" the slave (running on the HP-1000/3000 or VAX) to
send or receive a file like a KERMIT server.

PCLINK packets are normally 128 bytes (unless changed by the master) and have the following
structure:

I<--- Link Header ----+>I

STX Type Length Block• "message" data Checksum

I< Information subject to checksum >I
All packets begin with the "STX" (decimal 2)
The type byte is one of
0 (ASCII "NUL") to change the standard block size; the minimum packet size is 128 bytes;

the SPU3000 program has a maximum packet size of 524 bytes, of which 512 are data.
1 (ASCII "SOH") for a data packet
3 (ASCII "ETX") for a dummy packet, used for synchronization purposes
The Length byte~ show the size (in bytes) of the data portion

• The Block# byte~ begin at zero, incrementing for each packet. A block# of zero indicates that
the packet should be accepted even if it is out of sequence.
The "message" portion of a packet is variable length; in a type-0 packet (change the standard
block size) two bytes give the new block size as a 16-bit number. All type-1 (data) packets
begin with a 16-bit "message-type," possibly followed by more information or file data.
Message types include:

0 Initial message; gives the slave's software version number
3 Start message; gives the name, record size, file size, type of transfer (ASCII or Binary)

and direction of transfer (to or from the master)
4 Answer start message (a response to the start message?); contains an error code (0

means no error), error text, the record length, and file size of the slave's file
5 Data message; this is the type of packet which transfers file data. I don't know if there is

any kind of quoting mechanism within the data.or if such is needed. PCLINK ~
perform some data compression.

6 End of data; contains no data and apparently signals the end of the file, like KERMIT'S
"Z" packet

7 Slave aborting; signals the master that for the reason given by the error code and text in
this packet, the slave has died

8 Answer end of data; reports errors when the slave cannot close the file it received
9 Terminate slave; the master tells the slave to terminate

• The checksum is computed using the same CCITI-CRC polynomial used for KERMIT'S
optional 3-byte checksum.

Unlike KERMIT, the PC running the PC2622/Reflection™ program is always the "master"
regardless of the direction of file transfer. The handshake is a single character, like XMODEM,
where "S" means success (ACK), "F" means failure (NAK), and "T" means "success and turn the
line around" (another kind of ACK). The "S" and "T" handshakes are unusual; the "S" seems to
be for the benefit of the file-recipient to allow it to say, "I got the last packet OK, but I need to say

13 Paper 1001

something now," whereas the "T" handshake says, "The last packet was ok; send some more."

PCLINK and XMODEM share some of the same strengths and weaknesses, and for the same
reasons: packet size and brevity of the handshake. PCLINK has the potential for even better
throughput than XMODEM due to the larger amount of data a packet can carry, and better data
reliability due to the CRC, but only on a relatively noise-free line. It would probably be frivolous to
try to use the maximum packet size on most modem connections because at 1200 baud, a packet
would take almost three and one-half seconds to transfer; at 300 baud it would take almost
fourteen seconds! It appears that the PCLINK protocol l1Q..e.s. support file masking and the
sending of several files with one command.

CompuServe "B" Protocol

I was fortunate to be able to bring this to you: as I was nearing the completion of this paper the
June, 1986 issue of Doctor Dobb's Journal of Software Tools arrived containing a brief
description of the protocol and most of a program which implements that protocol. The article is
entitled "The CompuServe B Protocol: A Better Way to Send Files," by Levi Thomas and Nick
Turner; in it the authors say that this is a better way to transfer files than XMODEM due chiefly to
the fact that XMODEM will time out if there are any delays in CompuServe's processing.

The CompuServe B protocol is invoked by the user, who requests a file upload or download.
Once invoked, the host (CompuServe) becomes the master and the PC becomes the slave, in a
reversal of PCLINK's method. The master and slave exchange some preliminary information
about the slave's capabilities, then the file-transfer begins in (mostly) fixed-length packets of 516
bytes:

I DLE I ·TYPE I SEQ• I DATA CHECK

• Each packet begins with the ASCII character "DLE" (Decimal 16)
• A data packet's type is "B"
• The sequence number is next; this is a literal "O" through "9" and wraps back to "O"
• The data field is next; the first byte of the data is another type code, the next 510 bytes are

data from the file being sent or received, and the last byte is the ASCII "ETX" (decimal 3)
character. If any of the data bytes are one of the B protocol's special characters (ASCII NUL,
ETX, ENO, DLE, NAK, XON, or XOFF), they are prefixed by a DLE, and then the special
character is modified by adding the"@" character (decimal 64) to it.

• The check character is built from the ~ llitld. ~ by:
1) shifting the previous checksum left one bit
2) If the checksum now exceeds 8 bits, it is masked back to 8 bits and 1 is added to it to

account for the "carry"
3) A data character is added to the checksum
4) The checksum is adjusted again as in step 2
5) The checksum is then placed into the packet as a single character.

The last data read from a file may not completely fill a packet, so the last packet of an upload or
download could be short. The B protocol then specifies that a "transfer packet" be sent to close
the file; this is a data packet formed like the above, but the first character is "T" for transfer, and
then ·c· (presumably for close). The receiver of the file may suspend the transmission by
sending an ASCII XOFF (decimal 19, control-S) and resume it with an ASCII XON (decimal 17, or
control-Q). If the receive has no problems with a given packet, it sends a DLE followed by the

Paper 1001 14

sequence number of the packet received. If there was a problem with the packet, the file's
receiver sends a single ASCII NAK (decimal 21) character. The slave can abort the transfer in
progress at any time by sending a data packet with an "A" (for abort) or "E" (for error) as the first
data byte, and text following that character for explanation, if desired. A packet may be retried up
to ten times; a packet will be NAK-ed if the receiver must wait more than ten seconds for a byte of
any packet, or if an XOFF condition remains on the line for more than ten seconds.

This protocol bears a fair resemblance to KERMIT. Like KERMIT, special characters must be
quoted, but there is no requirement that all information in a packet be printable as in KERMIT.
The data portions of a packet are marked with a special start and end character, and since most of
the packets containing file data are fixed at 516 bytes, there is no need for a length field. It seems
odd that a NAK operation only requires a single character which is not associated (by sequence
number) with the packet being refused, but an ACK operation does associate with the received
packet. The checksumming method is probably as effective as KERMIT'S 1-byte checksum. This
protocol is certainly not one to be used on a noisy line!

AdvanceLink Protocol

I have attempted to obtain a description of the Advancelink protocol, but it did not arrive in time
for this paper. Current indications are that this protocol is considered "too sensitive" to reveal to
the HP user public in this forum. I am therefore resorting to two second-hand sources of
information on the performance of this protocol, compared to the others described above.

In his article entitled "PCs and HP 1000s: No Longer Strange Bedfellows" (TC Interface, Volume
5, Issue 3, the May/June 1986 issue), Loyd Case (Jr.) compared KERMIT, XMODEM and
Advancelink protocols. While there was a passing reference to PCLINK protocol in his article, he
never quite got around to talking very much about it. His appraisal of the other three protocols
was that the best performance could be obtained from Advancelink, followed by XMODEM, then
KERMIT. He noted that Advancelink only works between HP's PCs, IBM PCs (and clones?), and
HP 1 OOOs (and 3000s) running the Monitor program. He felt that if .ot.bfil PCs, 1000s, and/or DEC
machines needed to talk, that XMODEM was the protocol of choice. I don't know why he had so
little to say about KERMIT; evidently he doesn't transfer many files between 1000s, between a
1000 and a 3000, or between either of those and many DEC machines.

For another point of view, we turn to Jack Armstrong, writing for The Chronicle (Volume 3,
Number 7a, the June 1986 issue), in an article called "Is There a Cure for Terminal Emulation?"
He compared PCLINK to Advancelink, running from an HP 150 and a Vectra to an HP 3000. He
admitted greater experience with the PC2622/Reflection™ software than with AdvanceLink
2392, but he claimed to be unbiased in his comparison. He complained at the lack of real
information in the Advancelink documentation, but that it was "very readable." In terms of
performance in transferring files, PCLINK came out the clear winner with a reported 20% to 30%
difference in transfer time. The only concession Mr. Armstrong made to Advancelink was that it
could be better than the PCLINK protocol in the future only because of it's interface into
AdvanceNet, HP's IEEE 802.3 Local Area Network product.

Section 3: A KERMIT User's Manual

General Information and Warnings

In writing this implementation of KERMIT, I tried to make it as much like other versions as possible,

15 Paper 1001

to shorten the learning cycle for those already familiar with some other KERMIT implementation.
The most sophisticated versions I have found are for VAX (under VMS) and PDP-11 (under RSX)
machines; these versions are the model for the RTE version I contributed to the CSL.

There are a few items of which the user should be aware before running KERMIT. KERMIT-RTE
is not the "friendliest" program in the world. I have tried to put as much helpful information into
KERMIT'S help file as possible, but there are some topics which would only be of interest to a
KERMIT implementer not the user. In the commentary to the help file below, I may refer to the
protocol description at the front of this paper or to the protocol manual; this information is
probably .mll necessary knowledge for the average user. There are some things (mostly external
to KERMIT-RTE) which all users should know; these things could affect the health of the systems Ii
used on .either end of any KERMIT link! ..

!

Warning #1: KERMIT-RTE modifies the configuration of the port(s) it uses on a 120408/C
(A-series) or 127928/C (M/E/F-series) multiplexer. When KERMIT terminates normally, it !
restores any parameters it has changed. For this reason, NEVER ABORT KERM!TI KERMIT-RTE
does check the break-flag inside some of it's processing so that if a user has lost control, KERMIT
can be made to either return to command mode or to terminate, depending on what it is doing at
the time. If you abort KERMIT-RTE, you will probably have to re-issue the control requests used
at bootup to set up the affected port(s), as well as restoring the timeout value to some reasonable
value. It should be noted that sometimes the affected ports may not be restored until the system
~re-booted. KERMIT-RTE can modify timeout, handshake, type-ahead, and parity.

Warning #2: Never use the "bye" command (to a server) if the two majnframe systems (defined
as a system which requires you to Log-on) are connected via a permanent hard-wired connection.
If you should do this, you may discover that both systems will be trying to log each other on, using
the end-of-session and failure to log-on messages generated by the opposite end as user names
and/or passwords, which, of course, are doomed to fail. KERMIT-RTE tries to avoid this by
"sleeping" for 5 seconds when you terminate a two-port session, but that may not always be
sufficient.

Caution #1: KERMIT-RTE has been known to "tie up" a port which it did not use during an
otherwise "normal'' session. The condition is recognized by the port echoing back any characters
it receives, including three or more carriage returns, and the affected port is ~on the same
mux card that KERMIT did. use. The problem is intermittent and seems to be a mux firmware or
hardware problem. You can usually fix the situation by starting, then aborting any kind of read
operation (like "LI") against the affected port(s). It is usually .am necessary to reconfigure a port in
this condition, and on occasion, reconfiguring these ports may render them unusable until the
system is re-booted. Note: if a port stops responding after two carriage returns, that port is
probably in type-ahead rather than the condition I have just described.

Caution #2: If you should ~onnect to an LU on which KERMIT is commonly run, and you see "#
N3", Don't Panjcl What you have just seen is a NAK packet (using 1-byte checksums), which
means that the other end is probably running KERMIT either as a server or actively trying to
transfer a file. If you escape back to the local KERMIT and give almost any server command (like
Finish) you will probably regain control of the other end of the connection. This is true for most
versions of KERMIT you may run, not just the RTE versions.

Caution #3: The KERMIT-RTE should not be used on an A-series machine if it will be used with a
noisy (modem?) line. Under RTE-A, because of a problem in the MUX device driver, KERMIT

Paper 1001 16

I•

bypasses the device driver and so it loses the ability to timeout a read request. It is the ability to
timeout which allows any version of KERMIT to deal with noise-induced corruption in a packet.
When you hear about a revision 2.00 or later of the RTE-KERMIT, this problem will have been
solved, because the driver will have been fixed!

Caution #4: KERMIT-RTE can only transfer files to another machine connected via the MUX cards
noted above. You may, however,~ KERMIT-RTE from a terminal which is connected to the
1000-series machine on ~type of interface card. The only problems you may incur under
these circumstances would be loss of data while in the terminal-emulation mode, especially if you
are connected via a 12531 card on an M-, E-, or F-series machine.

RUNNING KERMIT

Just enter "KERMIT.· If you would like, you may enter .Qllil KERMIT command in the run-string. If
it is not SERVER, EXIT, or QUIT, then once the command is completed KERMIT-RTE will request
more commands from your terminal. If the command entered in the run-string is "TR <file-name>,"
KERMIT-RTE will completely execute the transfer-file named before returning to the terminal for
more commands (assuming that the transfer-file doesni contain a SERVER, EXIT, QUIT, or BYE
command). In order to be able to get on-line help, KERMIT.HLP must be in ~
working-directory (if active), in the SYSTEM directory, or in the KERMIT directory, or it must be
named "KERMI in FMGR space. KERMIT.HLP (or "KERMI) must be a type-1 file prepared with
GENIX (which is why there is a GENIX.RUN in the CSL submission - for RTE-A users).

In the annotated version of the help file (supplied with the RTE versions of KERMIT) which
follows, unless noted to the contrary, the information here applies equally to the RTE-A and
RTE-6 versions of KERMIT. Information which appears in (this font) is text from the help file,
(this font) will give the additional information or explanations which don't conveniently fit in the
help file. The help-file text is always shown first. As usual, parameters appearing in square
brackets (''['' and ")") are optional parameters. In the following there will be references to the
"local" and the "remote" KERMIT. The local KERMIT (RTE version or otherwise) is the one
logically "closest" to your terminal; if you are running a PC KERMIT on your end of the
communications line and RTE-KERMIT on the other end, your PC is the local KERMIT and
KERMIT-RTE is the remote one. If, on the other hand, you are running KERMIT-RTE (either
through a terminal emulation on a PC or on a terminal) which is connected to another machine on
some LU other than (session-LU) 1, your PC or terminal is talking to the local KERMIT, and the
machine on the other LU is the remote one.

GETTING ON-LINE HELP

This info goes with KERMIT version 1.98 or later, as of June 2, 1986.

KERMIT is a file-transfer protocol for use over an asynchronous serial
telecommunications lines. Files are broken up into "packets", adding
checksums and other control information to ensure, with high
likelihood, error-free and complete transmission.

KERMIT-RTE is implemented for HP-1000 systems running RTE-6/VM or
RTE-A. The following commands may be entered in upper- or lower-case:

Bye Connect Exit Finish Get Help Quit REceive
RUn SET SENd SERver SHow STatus Transfer

Note: the minimum allowable abbreviation is shown in UPPER-CASE.

17 Paper 1001

Info about a given command's parameters, if any, is available via a "?"
"SET ?" gives you a list of settable parameters. Info about the
commands themselves is available via "HELP <command>" where you replace
"<command>" with one of the commands shown above. If you need even
more help, consult the KERMIT user's manual.

On the first line of general help information you will see the revision-code and date of the help file.
If this differs from the version and date of the KERMIT-RTE you are using (displayed as you first
run KERMIT), you may not be able to get help on all commands. I will always try to maintain
compatibility between versions of KERMIT-RTE as I improve it, but this is not always possible. For
instance, the 1.95 version was the first one I released to the CSL at the Washington conference
in 1985; it contains commands which are no longer present because I either didn't think they
were needed that much, or because I needed the space.

KERMIT-RTE has a user interface which will seem unusual:
It does accept lower-case commands
It doesn't have a command-stack
It will give you very brief assistance if you enter a "?"
It allows you to abbreviate commands, some as short as 1 character
It requires you to spell correctly if you decide to spell out a command

The reasons for this are that KERMIT cannot assume it is going to be interacting with a terminal
made by Hewlett-Packard, and this user interface is similar to the PDP-11 KERMIT user interface.
If you always use the first three characters of a command, you will always be correct. If you use
one or two characters and there are two or more commands which start with those, KERMIT will
remind you that what you have entered is ambiguous and matches those commands.

Most of the time the information you need about a given command can be obtained by entering
"Help, <Command>." It is possible to know all you need for "normal" file-transfer operations
without ever opening a user's or protocol manual. I will try to at least direct you to the sources of
information beyond the help file in these comments.

TERMINATING KERMIT

EXIT or QUIT causes this KERMIT to shut itself
(as opposed to crashing!), closing debugging
restoring various things to their original state

down in an orderly way
files if opened, and
before KERMIT was run.

If you are running KERMIT-RTE as a server, you must use the FINISH,
BYE, or LOGOFF commands from your local machine rather than QUIT or
EXIT.

BYE or FINISH

FINISH causes the remote KERMIT to terminate but not log-off from the
remote system when the remote KERMIT is acting as a server. It does
not cause the local KERMIT to terminate.

BYE causes - the remote KERMIT to terminate AND log-off from the remote
system when the remote KERMIT is acting as a server. It DOES cause
KERMIT-RTE to terminate as if an EXIT or QUIT command was given.

WARNING: You should NOT use the BYE command under any KERMIT if there
is a permanent connection between the systems, and if some kind of

Paper 1001 18

"log-on" is usually performed on BOTH systems. If you do use the BYE
command in such a situation, one system's log-off messages could act
like a log-on attempt to the other system, and since that is bound to
fail, the resulting message will be like a log-on attempt to the first
system, resulting in a chain-reaction which has been known to seriously
degrade system performance.

As stated before, you should never abort KERMIT-RTE! KERMIT changes the configuration of
the MUX port(s) through which it transfers files, but it will only restore that configuration if it
terminates normally; you won't be able to "fool" KERMIT by restarting it and then terminating.

If KERMIT-RTE is running as a (remote) server, you must use the FINISH, BYE, or LOGOFF
commands (as available in the local KERMIT version) to terminate the server. If KERMIT-RTE is
talking to a server, you may use the BYE command to terminate both the local KERMIT-RTE and
the remote KERMIT simultaneously, assuming that the remote KERMIT'S server supports this.
You should ~use a BYE or LOGOFF command if the connection is between two mainframe
machines with a permanent hard-wired connection!

RETRIEVING FILES FROM ANOTHER SYSTEM

GET <file-descriptor> [<receive file-mask>]
RECEIVE [<receive file-mask>]

GET and RECEIVE tell this KERMIT to receive one or more files from the
KERMIT running on the other computer, be it a PC or another mainframe.
If the other KERMIT is a SERVER, you MUST use GET instead of RECEIVE.
GET requires a file-descriptor which must be legal for the remote
system, and may contain wild-cards if the remote KERMIT accepts them.

The optional <file-mask> parameter allows you to rename all received
files according to that mask; if a full file-name and path is given,
the first file received will use that full name, and all remaining
files in the group will use all but the file-name part of the mask. If
the received files are put in FMGR space, their names will be subject
to (possibly severe) editing, since FMGR allows only 6 characters.
FILE-WARNING NOTE: If a received file's name conflicts with an existing
file, the RECEIVE or GET will be aborted with a message unless
file-warnings are off. If file-warnings are off, new files will
overlay the first existing one with the same name. Do "HELP SET
WARNING" if you need more information on this.

Files are moved from machine "A" to machine "B" using one of two methods:
The 'SEND-RECEIVE' method requires you to interact with both of the machines doing
the transfer, and to do that you must do fill of the work for one of the machines through the
other KERMIT's terminal-emulator.Examples of this method are the first two sessions
shown under "What the User Sees," above.
The 'SERVER' method only requires that you start the server, and then you can give all of
the commands needed from the local KERMIT. Examples of this method are the third and
fourth sessions shown under "What the User Sees," above.

Received files are normally named using the name of the file on the "other" system. If this is
undesirable, you may use a file mask as an optional parameter on either the GET or RECEIVE
commands to rename the received file(s). The first file received will use all parts of the file mask in

19 Paper 1001

it's name; any subsequent files received in the same group will use all but the file-name part of the
mask, if given. In this manner, you can change only the type-extension of received files, if
desired. Files will be put in the user's working-directory, if active, or in FMGR space if there is no
working-directory; this can be overridden if the optional file mask includes a file path. As noted
above, if a file's destination is a FMGR cartridge, the name used on reception will be truncated to
the first six characters if the name is longer than that.

If the name of a file to be received (after the optional renaming) conflicts with an existing file in the
same file path (or first mounted FMGR cartridge), KERMIT will normally abort the transfer rather
than overlay the file. If you really want to overlay the file, you should SET WARNINGS OFF. Note
that as a file is overlaid, it is lli21 purged and then recreated; an end-of-file is written as the first
record, then the file is completely rewritten.

TRANSMITIING FILES TO ANOTHER $YSTEM

SEND <file-descriptor> [<first file-name>]

"SEND <file-descriptor>" causes KERMIT-RTE to send the file (s) matching
the file-descriptor to the other KERMIT whether or not it is a SERVER.

"SEND <file-descriptor> <first file-name>" works as above starting with
the given file-name (wild-cards are NOT allowed here!); this is used
primarily to resume sending a set of files after some kind of
interruption.

Files' names are sent to the "other" KERMIT in a "packet" so that they
will know what to receive. If the SEND command is issued to the remote
KERMIT (you are CONNECTed) then you must escape back to the local
KERMIT to give a RECEIVE command within 15 seconds or this packet may
be lost. If this is not an appropriate delay, you may alter it using
the SET DELAY command.

Files are sent to a remote KERMIT or KERMIT server using the SEND command as described
above. If you want to tell the remote KERMIT to send a file to the local one, you must CONNECT
to the remote KERMIT, use the SEND command, then escape back to the local KERMIT and give
the RECEIVE command, all within the remote KERMIT'S delay time. KERMIT-RTE's delay time is
15 seconds by default and is changed via the SET DELAY command. Other KERMITs' delay
times may be different, so you should check.

If you need to transfer a group of ten files, and for whatever reason the transfer is aborted at the
eighth one, you QQ.o1 necessarily need to purge the seven files successfully received and then
re-send the whole group, nor must you manually send the remaining three. (You In.aj'.. need to
purge the file whose transfer was aborted, however.) You can use the same SEND command,
with the same file-descriptor (wild-card characters are OK), and with the eighth file's name as the
second parameter in the SEND command, and KERMIT-RTE will locate that file in the group, send
it, and send the remaining two files in the group. KERMIT tries to match the "first file name" on a
character-by-character basis to each file in the group until it matches, so you need not specify the
entire name if the first few characters will match only the desired file in the group. Once the
desired file has been transferred, KERMIT-RTE will resume sending the files that would have
normally followed it anyway. The file-masking routines will always return the names matching the
mask in the same order unless there is another file created matching the mask between the times
the two masked searches are performed.

Paper 1001 20

MAKING A CONNECTION TO ANOTHER MACHINE

CONNECT [<luJI>]

The CONNECT command puts KERMIT into a terminal-emulator state,
connecting your terminal to either the <luJI> in this command, if given,
or to the LUJI given in a previous SET LINE command. Anything you type
will be sent to the other "remote" computer; anything it sends back
will be displayed on your terminal. WARNING: HP-1000 systems currently
do not adapt well to this sort of thing, so be patient and TYPE SLOWLY!

When you are typing to KERMIT-RTE, it will prompt you with
"KERMIT-RTE>" unless you have changed the prompt (see SET PROMPT for
info}. When you CONNECT to another machine, you will see information
about how to ESCAPE back to KERMIT-RTE, and then you will be typing as
if you were on a terminal directly connected to the other machine.
When you need to return to KERMIT- RTE (to give it a command or to
exit), you will need to type the ESCAPE info as shown in the message
you got when you did the CONNECT (see SET ESCAPE for more info} • You
will then get a message about having returned to the local machine and
KERMIT-RTE.

In addition to being able to connect your PC with an HP-1000 system and transfer files, you can
also connect your PC Qr 1fill:Ilillill "through" the 1000 system and transfer files between the 1000
and another mainframe having a KERMIT program. The first step in this process is to connect to
that other machine and log on. The CONNECT command allows this to happen by acting as a
terminal-emulator between your terminal or PC and the other "remote" system. Before you can
successfully connect, you must either specify an LU as a parameter to this command, or you can
use the SET LINE command (if, for instance, you needed to change the parity setting on that LU).
Either way, KERMIT-RTE will enter the "local host" mode, which means that it is the machine that
will be the main control for the file-transfer operations. (When you first start the KERMIT session,
you are told that KERMIT is in "remote-host" mode, which means that it expects to be controlled
by another machine; it is llil1 the master of the communication link.) Once you have set the LU for
the remote system, KERMIT will remember it; if you need to connect again you don't need to
specify the LU again.

If you are running on an RTE-6 session system, the LU you give must be in your session. Under
RTE-A, LU numbers greater than 63 should be accessible, but this has not yet been tested. On
either system, KERMIT must be able to "lock" the LU in order to be sure that no other processes
can interfere in the file transfer. If KERMIT cannot lock the LU, it will tell you which program has
locked it. (Under RTE-6, you can ignore the "Inn" [nn is a number] which appears in the
message; it only applies to RTE-A systems.) The LU you give in this command must correspond
to a configured 120408/C or 127928/C MUX port.

STARTING THE KERMIT SERVER

SERVER

This command causes KERMIT-RTE to act as a server, getting all further
commands from another KERMIT in "packets". This command may only be
used if this KERMIT-RTE is the "remote" KERMIT and the "local" KERMIT
knows how to talk to a server (not all of them do!} . Once this KERMIT

21 Paper 1001

becomes a server, you will be told to ESCAPE back to the local KERMIT.

Once acting as a server, KERMIT-RTE may only be shut down by a local
KERMIT command such as FINISH, BYE, or LOGOUT, as appropriate. FINISH
will shut down KERMIT-RTE but not log-off the session. If you need to
rename received files or direct them to a particular directory during a
server receive, you may SET RMASK to accomplish this -- see SET RMASK
for info. KERMIT-RTE is set up so that if the default communication
parameters are already compatible with your PC, you can "[ru] kermit
SERver".

The server mode relieves you of the restrictions of terminal-emulation. The SERVER command
can only be used on a "remote" KERMIT, and only if it supports the server mode. The KERMIT
which communicates with the server must also be able to send server commands (get, send,
finish, bye, etc.). KERMIT-RTE can both act as a server and send commands to a server. The
server mode allows you to run the remote KERMIT with "remote control;" once it is serving, the
KERMIT looks for it's commands in special packets. A KERMIT server may only be shut down
using a finish, bye, or log-off command at the local KERMIT; if the server mode is established on a
KERMIT-RTE via a transfer-file, any commands appearing after the server command will not be
performed.

When you send files to the KERMIT-RTE server, it will put them into whatever working directory is
active, or into file-manager space if no working-directory is active. If this is a problem, you should
use the SET RMASK command to specify which directory-path should be used instead. This file
mask works~ like the optional file-mask you might otherwise use in a RECEIVE command in
that if a file-name is specified by the mask, that name will be used (in addition to the other
information present) for the first file recejved in each group. and all but the file-name will be used
for all succeeding files in the group(s) sent. Because you are not currently allowed to change the
receive-mask once the server is active (KERMIT-RTE has no way to get that information in a
packet, yet...), sending more than one group of files will be aborted by the server because the
named file will already exist, unless you have SET WARNINGS OFF, which will in effect cause the
first file of all previous groups to be overlaid! (That doesn't make much sense, does it?) For this
reason, a file-name should never be given in a SET RMASK command.

HOW WELL PIP THE LAST TRANSFER GO?

STATUS

STATUS causes KERMIT-RTE to display retry- and overall packet-counts
and timing information about the most recent file transfer, and retry­
and overall packet-counts of all file transfers done during the current
KERMIT-RTE session.

The STATUS command tells you about the most recent file-transfer operation performed, giving
information like how many bytes and packets were sent in each direction, how much of that was
overhead, how many retries there were (they count as overhead), what the average packet sizes
were in both directions, how long it took to do it, and the effective baud rate of the transfer. This
number is obtained by dividing the number of d..a1.a ~ transferred (which include the file's
name and any quoting characters added, and doesn't include characters removed by data
compression) by the amount of time it took to transfer them. Rates of up to 50% of the actual
baud rate are not unusual with 94-byte packets, which is the largest you can get in this protocol.
As you transfer more files and/or larger files in a group, your throughput will improve.

Paper 1001 22

KERMIT-RTE also keeps track of all packets and bytes sent in both directions since it was started,
in case you happen to be interested.

MODIFYING KERMIT'S PARAMETERS

SHOW
SET <param> <value>

SHOW and SET allow you to see or set system-dependent characteristics.

SHOW causes KERMIT-RTE to display the values of the SET parameters, and
various other information.

SET commands require one of
BI nary BQuote Check
PACket PARity PRompt
Warning

the following <parameter-names>:
DEBug DE Lay Escape Ibm
Quote REP eat RE Try RMask

Line
Sync

NOTE: The minimum allowable abbreviation is shown in UPPER-CASE.

SET commands may also require a value which is dependent on which
parameter is being set. If a parameter requires a numeric value, you
may enter it in decimal, octal (post-fixed with a 'B'), hexadecimal
(post-fixed with an 'H'), or as a single literal character (post-fixed
with a'"').

For more information on the
allowable values they require,
above list; to get help on set
set debug".

settable parameters and the type of
do "help set <parameter-name>" from the
debug, for example, you would type "help

It is possible that you could work for years with KERMIT programs for all machines and never .o..efil!
to change a single parameter. If you are a "C" programmer, however, you will probably want to at
least change the character used by KERMIT for control-quoting("#") in order to reduce overhead.
If you need to transfer a file which contains a large number of tildes or ampersands, you will
probably want to change the repeat-count or binary-quote characters, respectively. If the line is a
little noisy, you might want to reduce the packet size and thereby reduce the likelihood of a retry.
All these things can be done with the SET commands available in most KERMIT programs. The
SHOW command displays the current values in the user-adjustable parameters, in case you
forget whether you have already performed a given SET command.

All SET commands require the name of the parameter to be changed. These may be abbreviated
to the first 1-3 characters of the name as shown above. In addition, most SET commands require
a value to assign to the parameter. If a parameter requires a numeric parameter, it may be entered
in decimal, octal, hexadecimal, or as a literal character; you may use whatever mode is most
convenient. As an example, if you needed to change terminal-emulation escape character to a
control-\ (abbreviated as"\ in most KERMITs), then

SET E 28 (decimal, because there is no trailing character)
SET E 348 (octal, because of the trailing "B")
SET E 1 CH (hexadecimal, because of the trailing "H")
SET E "\" (literal, because of the trailing quote)

are all equivalent ways to set the escape character to an ASCII "FS." The benefit here is that you
can probably remember (in the context of how you use the escape character) the

23 Paper 1001

control-sequence you need to use better than the character-code needed. It wouldn't make
much sense to try to remember that the character code of a caret is 94 if you were wanting to
change the repeat count character to a caret, so KERMIT-RTE allows you to enter it as a literal.
Similarly, it wouldn't make much sense to remember that 94 is the character code for a caret if you
were going to set the packet size to 94 bytes.

SET BINARY ON or OFF

As of version 1.97, KERMIT-RTE can transfer non-ASCII files to
compatible KERMITs if you SET BINARY ON.

"Normal" (non-binary) transfers convert the logical END-OF-RECORD in a
file to a <CR> <LF> sequence which all KERMITs know how to use. If
this sequence appears as part of the normal data in a file, the
destination KERMIT will start a new record at that point and drop both
characters. Once you have SET BINARY ON, KERMIT-RTE will transfer all
data as it appears in the file and ignore the "special" significance of
CR/LF within the file. Further, the file's record-structure is
ignored; the file operates as if it's records are all 256 bytes long.
For this reason you should GET or RECEIVE (or SET RMASK) using a FULL
FILE DESCRIPTION, including the type, size, and record-length.
Otherwise the file will default to type-4, 24 blocks, record-length of
0. NOTE: if the communications line requires parity other than NONE,
and if you have disabled binary-quoting (see SET BQUOTE), transfers of
binary files will not be allowed.

We have been highly successful transferring KERMIT's relocatables to a VAX, and then to
another HP-1000 machine using binary transfers. The problem with KERMIT'S normal mode of
transfer is that if a carriage-return character is immediately followed by a line-feed character, the
KERMIT protocol says that a logical record has been ended. This condition may not happen very
much, but if it happens at all then the file will not be transferred intact. By setting binary mode on,
you do two things:

1) Disable the recognition of the end of a logical record, and
2) Force KERMIT-RTE to treat all files as if they were type-1 extendable, except for files which

are received explicitly as type-6, which may not be extended.

KERMIT-RTE doesn't need to worry about logical records when it is sending or receiving a type-1
file because it is transferring the "disc image" of that file. This has certain side-effects of which
you must be aware. Any unused space at the end of a file will be transferred, because
KERMIT-RTE will not recognize the logical end-of-file; this adds some overhead to the transfer.
The file(s) received must be renamed with the full specification of the type, size, and
record-length if they are not type-4 with 24 blocks for the first extent. If KERMIT creates the file
(rather than overlaying it) then if you always create the file arbitrarily larger than it is, KERMIT-RTE
will truncate the part into which no transferred data was written, creating a file with no extents.
Since the file is created without regard for it's logical structure, the Cl information regarding the
size of the largest record, how many records, where the EOF is, etc., will not be available, but this
is not usually a problem.

If you SET BQUOTE 32, you will turn off binary-quoting. This is not a problem unless the
communications line over which the file is to be transferred is using the parity bit. If the line parity
is something other than NONE, and if binary-quoting is disabled, KERMIT-RTE won't let you
transfer in binary mode because it would not be able to transfer the most significant bit of each

Paper 1001 24

byte.

Before you use binary mode in KERMIT-RTE, be sure that the other KERMIT will support it. In the
VAX KERMIT, you must SET FILE lYPE FIXED to use the binary mode in KERMIT-RTE; the VAX
KERMIT also has a SET FILE lYPE BINARY which is .DQ$. compatible with KERMIT-RTE's binary
mode. Even if you use SET FILE lYPE FIXED on a VAX KERMIT with the binary mode in
KERMIT-RTE, you will get an error-message anyway if a file with an odd number of blocks is sent
from the RTE system to the VAX, because it's minimum block is 512 bytes to RTE's 256.

SET BQUOTE <value>

If you need to send non-text data to another KERMIT using a
communications line with parity other than NONE, KERMIT~RTE can do
"8th-bit prefixing" if the other KERMIT agrees to do it also. What
this means is that if KERMIT is about to send a character which has
it's 8th bit set, KERMIT will send a special character (the "BQUOTE")
before it (which tells the other KERMIT to set the 8th bit on the next
character it receives). The setting of the 8th bit would otherwise be
lost due to the parity setting.

With this command you may set the BQUOTE to something other than the
usual "&" (46 octal). The value you enter is the character-code of the
character you would like to use (which must match what the other KERMIT
expects); it must be in the range of 33-62 or 96-126 (all numbers
decimal) and it must be different than the QUOTE (for control codes)
and the REPEAT (use for repeat- count processing) . You may enter this
number in decimal, octal (nnnB), hexadecimal (nnH), or as the literal
character followed by a quote (").

You should not have
BQUOTE to 32 decimal
interacts with the
binary-file transfers.

to change this for most KERMITs. Setting the
(ASCII blank) turns 8th-bit prefixing off; this
communications-line parity and may prevent

If you never try to transfer binary data (defined for our purposes as information which may have
the 8th bit in the byte set), you should never have to worry about the BQuote character. If you
transfer binary data, but the line parity is always NONE, you may want to disable binary-quoting
completely. Otherwise, BOTH of the KERMIT programs must agree to do binary-quoting, and
they must use the same character when they do it. That is where this command comes in. If you
know that the "other'' KERMIT's BQuote is different from KERMIT-RTE, you can change the
BQuote used by KERMIT-RTE. Be sure to read the information about the SET BINARY
command and the implications of disabling the BQuote.

SET CHECK <checksum type>

This command allows you to request alternate checksum bytes within
packets:

"SET CHECK 1" builds 1-byte (arithmetic) checksums <default>
"SET CHECK 2" builds 2-byte (arithmetic) checksums
"SET CHECK 3" builds 3-byte (CCITT-CRC) checksums

By setting CHECK to 2 or 3, KERMIT's error-detecting capability
increases, but only if the other KERMIT can also do it! If it can't do

25 Paper 1001

2- or 3-byte checksums, don't worry, because all KERMITs already know
to do the 1-byte checksum.

KERMIT's 1-byte checksum actually is very effective. If you are worried that a noisy
communications line might cause some errors that might not be caught in the 1-byte checksum,
you can improve KERMIT'S ability to detect errors by setting the checksum type to 2; if you are
YfilY worried, you might set it to the 3-byte CRC. The 2- and 3-byte checksums increase the
overhead by reducing the number of data bytes that will fit in a packet (not by much, obviously,
but it does add up).

When you request the 2- or 3-byte checksums, KERMIT-RTE will ask it's partner to do the same
type of checksum when it~ to a non-server KERMIT; the other KERMIT will ask KERMIT-RTE
to do 2- or 3-byte checksums only if you have given it the appropriate command telling it to ask for
these alternate checksum types, or if it accepts an "I" packet as a server. If you don't arrange for
both sides to do the alternate checking, or if the other KERMIT doesn't have an alternate
checksum implemented, both KERMITs will use the 1-byte checksumming method.

SET DEBUG <keyword>

In the event that you experience some problem with KERMIT-RTE's
operations, you may arrange for KERMIT-RTE to perform some
self-diagnosis. Before you can debug any of KERMIT-RTE' s operations,
you must first setup it's debug logging file via "SET DEBUG FILE
<file-name>", which will create the given file if it doesn't already
exist. NOTE - if the debug logging file already exists, it will be
overlaid! You may then "SET DEBUG <type>" as shown in the following to
obtain:

STATES - shows packet numbers/types and internal state as
A Abort transmission B Break transmission C Transfer complete
D Data E Error F File header
R Receive initiate S Send initiate T Timeout
Z End of file

PACKETS shows the actual data in incoming and outgoing KERMIT
packets. You will need to consult the KERMIT protocol manual in
order to get a description of these

ALL - a combination of STATES and PACKETS
OFF - turns off debugging

The built-in debugging features of KERMIT-RTE were more for of my own benefit during the
debugging phase. If you are trying to implement a KERMIT for some machine which currently has
none, you can use the debug logs to locate protocol errors or other bugs in the new program,
using KERMIT-RTE to send or receive messages as desired. In order for this information to be
very useful, you need to be familiar with the KERMIT protocol.

SET DELAY <value>

This sets the time in seconds which the KERMIT-RTE will delay before it
sends the first packet of a file. It starts out at 15 seconds and you
may change to anything from 1 to 30 seconds, to give yourself time to
escape back to the local KERMIT to give a RECEIVE command. This
command will not be allowed if this KERMIT is the local one.

SET DELAY 25 sets the send-delay to 25 seconds.

Paper 1001 26

When using the "Send-Receive" method to transfer files from a remote machine (using
KERMIT-RTE) to the local one, you must:

1) Connect and log-on to the remote machine, then invoke KERMIT,
2) Give the SEND command for the file(s) you want,
3) Escape back to the local machine, then finally
4) Give the receive command.

KERMIT-RTE will wait fifteen seconds after the completion of step 2 above before it will send the
first packet of the transfer. Assuming that you have no trouble performing step 3 and you don't
need to rename the received file(s), this should be ample time (maybe even too much). If you find
that it is taking you much longer or shorter to do steps 3 and 4 above, you may want to lengthen
(up to 30 seconds) or shorten (down to 1 second) the delay time.

SET ESCAPE <value>

The escape character is the character that you enter to "escape" back
to the local KERMIT after CONNECTing to another machine. The normal
escape for KERMIT-RTE is control-] (35 octal) and probably doesn't need
to be changed. If this character is commonly used by the other machine
for some reason, you may change by "SET ESCAPE <value>", where <value>
is the character-code (a number) of the escape character to be used,
which must range from 1 to 31 (decimal). The actual value may be
entered in decimal, octal (nnnB}, hexadecimal (nnH), or as a literal
followed by a quote character (") .

The escape character is always a control-code of some kind. It tells
the KERMIT terminal emulator to look for the next character as a KERMIT
command (rather than sending it to the remote computer). If the
default escape character (control-], abbreviated as Al) is in effect,
then

A] A] will actually send one A] to the remote computer
AJC will "Close" the CONNECTion (return to local)
Al Q will Quit debug logging, if active
A] R will Resume debug logging, if previously active

Note that there are no spaces between the escape and the command
character.

Wtien any KERMIT is emulating a terminal, it "listens" for keystrokes from your terminal (to send to
the remote system) and for data from the remote system (to send to your terminal's screen). An
escape character is needed if only to allow you to turn off the terminal-emulation. The "escape
character" merely tells the local KERMIT to listen for a local command given by the next character
typed (that is why there are no spaces between the escape and the next character). The escape
followed by the "c" (in upper- or lower-case) is just one of the commands accepted by most
KERMIT'S to turn off the terminal-emulator.

An example usage of this command: I occasionally use a Macintosh™ computer as a terminal on
our system. It is not unusual for me to want to run KERMIT-RTE to the VAX, but the
terminal-emulation program I use will not pass the""]" (control-]) key, for reasons unknown. To fix
the problem, I usually SET E "B", which sets the escape to control-B.

SET IBM ON pr OFF

You may "SET IBM ON" or "SET IBM OFF" only if the local KERMIT is

27 Paper 1001

talking to a remote KERMIT requiring IBM mode (half-duplex) • If IBM
mode is ON, KERMIT will wait until it has received a DCl (XON, or "Q)

character before it transmits anything. Further, IBM ON causes
KERMIT-RTE to locally echo keystrokes during CONNECT mode.

I am sorry to report that this is not tested at all. I am unable to find anyone locally who is interested
in installing a KERMIT on an IBM computer, or any other machine with similar (half-duplex)
communication requirements.

SET LINE <lu>

This tells KERMIT-RTE which logical unit number (<lu>) is to be used
for communications to a remote computer. The LUt must be legal for
your session, and should be a 12792B/C or 12040B/C multiplexer port
hooked to the desired remote computer or modem.

KERMIT-RTE starts up in "remote-host" mode, which means it expects that
you are running from a PC and will transfer files on "LU l". By
setting the line to some other LU, you are putting KERMIT-RTE into
"local-host" mode. Some commands work in one mode and not the other,
or they operate differently depending on the KERMIT' s mode. You can
switch from local-host mode back to remote-host mode by SETting LINE to
your terminal LU.

This command works like the CONNECT command with the optional LU# parameter included (in
fact CONNECT calls the SET LINE code to process the LU# parameter), except that it doesn't
actually start the terminal-emulator with the LU. You would use SET LINE rather than CONNECT if
you needed to alter the parity of a MUX port before you .did connect to it. Note that you will not be
allowed to SET LINE to anything but a MUX port, or back to your own LU if you SET LINE 1. When
you have completed a KERMIT session after having SET LINE to some other LU, you can avoid
the 5-second delay in the termination of KERMIT-RTE by setting the line back to your own
terminal.

SET PACKET <size>

This is used to change the packet size from it's default 94 bytes to
any size from 31 to 94 bytes. If the connection is very good, you will
get the best throughput with a packet size of 94 bytes. For noisy
lines, you can avoid some (costly) retries by reducing the packet size.

With this command you make the most major impact on the efficiency of the KERMIT protocol.
The larger the packet size (up to the 94-byte limit, which is the default value for KERMIT-RTE), the
lower the overhead, ignoring quoting sequences. If the line is noisy, any packet which has to be
retried is ~ overhead, so reducing the packet size under these circumstances would
increase the efficiency of the transfer.

SET PARITY NONE/ODD/EVEN/MARK/SPACE

As of version 1. 97, you may set the parity of KERMIT' s remote line.
When the system boots up, a port's parity is set by the system manager
to suit the needs of most users. If you need to communicate with a
remote system which uses some other parity, you may change it (before
you CONNECT) to be compatible with the other system. KERMIT will

Paper 1001 28

I
I

restore the original parity when you SET LINE to some other LU or exit
f rem KERMIT.

WARNING -- use this command with extreme caution! If the parity you
set is different from what the other system actually does use, you may
still be able to talk through CONNECT, but file-transfers will be
impossible, and it will be difficult to determine why!

NOTE -- KERMIT-RTE supports "binary quoting" for the transfer of some
non-printable data over lines where parity is not NONE (do H BQuote for
info}.

This command is not extensively tested - BEWARE' KERMIT-RTE correctly identifies ODD,
EVEN, and NONE parity if that is the way a port is already set, but it is possible that MARK and
SPACE parity have been reversed. If KERMIT-RTE correctly identifies these parity settings, then
it will probably do the correct operation in changing them.

SET PROMPT [<up to 20 non-blank characters>)

When you are trying to work with a copy of KERMIT-RTE at both ends of a
link, you may have some difficulty in determining whether a
command-line prompt is for the "local" KERMIT or for a "remote" KERMIT.
To resolve this problem, you may change the command-line prompt that
KERMIT-RTE uses to any sequence of up to 20 non-blank characters (a
blank terminates the prompt-string}; KERMIT-RTE will shift the string
to all upper-case. If no prompt-string is given, the original
command-prompt will be restored.

If you should try to use the same KERMIT program on both ends of a link, like aVAX-to-VAX or
RTE-to-RTE connection, you will discover that other than the slowness of the terminal emulation,
it is difficult to determine whether a given command is going to be processed by the local KERMIT
or by the remote one. This command can alleviate the problem (for the RTE-to-RTE link) by
changing the command-line prompt at either end. It is also useful if you don't like the normal
prompt used by KERMIT-RTE.

SET QUOTE <value>

The quote character is the character that the local KERMIT sends to
prefix control-characters which may occur in the files to be
transferred. The normal quote character is "#" (43 octal}, and there
should be no reason to change this. If the remote KERMIT requires some
other quote character, enter it's NUMERIC VALUE (character-code} as
"SET QUOTE <value>", entering the value in decimal, octal (nnnB},
hexadecimal (nnH} , or as a literal character followed by a quote
character ("} . The character-code for this alternate quote character
must be in the range of 33 to 126 (decimal}, and it must not conflict
with the BQUOTE character (for 8th-bit flagging} or the REPEAT
character (for repeat-count processing}.

ALI.. files contain control characters, if only to mark the end of a record! As noted above, if you
want to transfer a "C" program (which uses a "#" more than many other languages), you will
probably want to change the quote character, which itself must be quoted if it appears in the data
to be transferred.

29 Paper 1001

SET REPEAT <value>

The repeat character
prefix a repeat-count
the same character),
characters need to be

is the character that the local KERMIT
character. If both KERMITs agree to do
data can be compressed if 4 or more
sent consecutively.

sends to
it (with

identical

This command allows you to set KERMIT-RTE' s repeat character to match
the one that the other KERMIT is using. The usual repeat-character is
a "-" (tilde, decimal 126, or octal 176), and most KERMITs which know
how to do this will use it. If the KERMIT you want to talk with uses
some other character to prefix repeat-counts, you may enter it's
character code here in decimal, octal (nnnB) , hexadecimal (nnH) , or as
a literal character if entered followed by a quote character (") . It
must not be the same as either the QUOTE character (for control-codes)
or the BQUOTE character (for 8th-bit processing). The value you enter
must be in the range of 33-62 or 96-12 6.

Like the quote character, you would only want to change this if the file(s) you are trying to transfer
already contains a large number of"-" characters, and if the other KERMIT can do repeat-count
processing.

SET RETRY <number of retries/packet>

a packet to the
It will keep on

retry-limit is
is successfully

If KERMIT encounters an error in receiving or sending
other computer, it will retry sending that packet.
retrying the packet transfer operation until the
reached. The retry-counter 'is reset each time a packet
transferred so that an intermittently noisy line can be tolerated.

KERMIT-RTE starts with a retry-limit of 5; with this command you may
change it to any value from 5 to 30. If you can't transfer a packet
trying 30 times, you probably never will.

I hope you never need to change the retry-limit. 30 as an upper-limit for this value is purely
arbitrary. If you decide you need to retry even more often, you can alter the code in the SetRetry
subroutine; the time is yours.

SET RMASK <file-mask>

Since server-receives won't allow you to specify any receive-mask info,
this command, given before the server command, will do it for you. The
file mask may contain specifications for directory, subdirectory,
type-extension, file-type, file-size, security-code, record-length, and
so on, but wild-card characters may not be used. NO CHECKING IS
PERFORMED as to the validity of the file-mask when it is entered, only
when it is used. If the file-mask parameter is not given, a
previously-defined file-mask (if any) will be cleared; otherwise, any
subsequent server-receives will function exactly like a RECEIVE command
with the same file-mask. Do "HELP RECEIVE" for more information.

The receive-mask (RMASK) does for the KERMIT-RTE~ what the second parameter in a
RECEIVE command does for the local KERMIT-RTE: rename the first file in a group (if a file-name
and/or type-extension is given) and give a file-path for all of the files in that group (if the file-path is

Paper 1001 30

given). It is not a good idea to actually specify a file-name in the RMASK, because in addition to
this, it performs these actions for .all~ received by the server. I intend to add "remote"
commands to KERMIT-RTE in the future, which should help to alleviate this kind of problem.

SET SYNC <value>

The sync character is the character the local KERMIT expects to receive

as the first character of any packet from the other KERMIT. Control-A
is the default sync for most KERMITs and there should be no reason to
change it. If the other KERMIT uses some other SOR, you must "SET SYNC

where <value> is the character-code (a number) of the sync
to be used; it must be from 1 to 31 and must not conflict

EOL or IBM-prompt characters.

<value>",
character
with the

The character-code may be entered in decimal, octal
(nnH), or as a literal followed by a quote character

(nnnB),
(").

hexadecimal

You would only want to change the "sync" or "mark" character if, for some reason, the other
KERMIT had some problem with the default control-A and had some other sync implemented.

SET WARNING OFF or ON

You may "SET WARNING OFF" to allow received file (s) to overlay existing
file(s) with the same name.

You may "SET WARNING ON" to restore KERMIT-RTE' s starting condition, in
which a file-reception which would overlay an existing file will be
aborted and you will get an error message telling you about it.

We in the HP-1000 world don't have the luxury (or the headache) of multiple versions of a file (in
the same directory). If we did, this command wouldn't be necessary. KERMIT-RTE does not have
the ability to automatically rename a file (it can do so manually via SET RMASK or by the second
parameter to the RECEIVE command), so you choose: overlay the file or abort the transfer.

RUNNING ANOTHER PROGRAM WHILE INSiDE OF KERMIT

"RUN [XQ] <program-name>
schedule the named program

[<run-string parameters>]'' causes
with wait, passing any run-string

KERMIT to
parameters

as supplied. Due to the nature of KERMIT' s command parsing, it is not
possible to pass lower-case characters or commas in the run-string.
KERMIT will inform you of any scheduling errors if they occur. If the
program is scheduled successfully, KERMIT will report back any return
parameters (in decimal) and/or any return string.

Let's say that you are in the middle of receiving a file group, and KERMIT-RTE aborts the transfer
because the 5th file already exists. In the older versions of KERMIT-RTE, you had to shut down
the other end, disconnect, and wait for KERMIT to terminate before you could examine the local
file. Or perhaps there were some retries during the transfer and you want to see if the file is OK.
You can now run~ local program without leaving KERMIT. When KERMIT executes a program
while in local-host mode (meaning: you have SET LINE to some LU besides your own terminal),
KERMIT maintains the lock on the LU to the remote system, so that LOGON won't be bothered. If
you use the optional "XO" (after the RUN part of the command, and before the program name)
you can even run the program without wait under RTE-A.

31 Paper 1001

USING COMMAND FILES

Transfer <file-name> [NOecho]

This causes all further commands to be obtained from the file-name
given. If 'NO' or blanks appear after the file-name, commands obtained
from the file will not be echoed at the console; anything else will
cause those commands to be shown at your terminal as they are
processed.

Transfer-files
command itself.
will return to
transfer-file.
transfer-file,

may contain any legal KERMIT command
If the transfer-file contains a

your terminal for one command, and
If you should inadvertently put a
you will have to enter SOMETHING

except the transfer
blank line, control
then return to the
blank line in the
at the KERMIT-RTE

prompt; entering one or more
transfer-file. At the end of the
your terminal. NOTE: all commands

commas will return you to the
file control automatically return to
which appear after a SERVER command

in a transfer file will not be processed.

KERMIT-RTE supports a single level of transfer-file, for those who need a set routine for
transferring files . .Eacil blank line in the transfer-file causes KERMIT to request Qllil. command
from the user's terminal. If you decide that you don't want to give some command while within the
transfer-file (you just want to transfer back) just enter a single comma. You can use a "canned" set
of commands to do everything but send characters through the connect mode. If the transfer-file
ends without an EXIT, QUIT, or BYE command (which would terminate the local KERMIT), all
subsequent commands will once again be obtained from the user's terminal.

Paper 1001 32

REMOTE CONTROL FROM EUROPE OF A TELESCOPE IN SOUTH AMERICA

Gianni Raffi
European Southern Observatory

D-8046 Garching (Munich)
West Germany

INTRODUCTION

The European Southern Observatory (ESO),
eight European countries, runs a large
consisting of 13 telescopes, at La Silla
kms north of Santiago.

an institute comprising
astronomical Observatory,
in the Chilean Andes, 600

While astronomers today normally travel from Europe to Chile to
observe, remote control observing facilities from the ESO
headquarters in Munich, West Germany are currently under
investigation.
During an experimental remote control (RC) run carried out from
Munich, a 2.2 m diameter telescope in Chile, including its
instrumentation, was interactively controlled and used by a number of
astronomers for their observations in remote mode.
The configuration included two HP 1000 computers connected via a
leased telephone line.

THE TELEPHONE LINK

The RC set-up consisted of two HP 1000 computers: one was the
computer of the 2.2 m telescope at La Silla, Chile,
computer), and the second was located in Munich, Germany,
computer =near the user).

control
(remote
(local

They were connected via a leased telephone line, with a standard
bandwidth from 300Hz to 3.4 kHZ, available full-time to ESO over the
test period.

The telephone line consisted of the following trunks, starting from
the La Silla side:
a 500m cable from the 2.2 m telescope to the Chilean Post repeaters
at La Silla,
a microwave link between La Silla and Santiago in Chile,
a satellite link on Intelsat over the Atlantic up to Germany,
leased ground lines to ESO Headquarters.

Paper 1002

"'ti
Ill
"O
~
.....
0
0
l'IJ

l'IJ

LA SILLA 2. 2M TELESCOPE
(REMOTE SITE)

standard control
set-up

2. 2
control
electronic

(!HAP) (messa9es1
to
Garching)

B & W
RAMTEK
monitor

HP 1000

control/
ac'.}uisitio
computer

(in use)

REMOTE CONTROL CONF I GURA Tl ON

remote control
additions

phone

Fig. 1

INTELSAT
leased line

(4 wires)

r
I
i
I
I
I
I
I

GARCHING SET-UP
<LOCAL SITE)

HP 1000

colour
RAMTEK· i

monitor

B & W
RAMTEK
monitor

instrurnen
console

~~~~;~1 ~~~~=~~= 
computer 

RACAL-MILGO 
modem 
(9600 Baud) 

THOMSON 
Tevelex 
receiver 

field 
monitor 

system 
~----lconsole 

(messages 
from La Silla) 



The line was a 4 wire line, conditioned (equalised) in Munich and 
Santiago, to provide good quality transmission. 

The digital communication was via 2 modems, with adjustable speeds up 
to 9600 baud, belonging to ESO. It was permitted to have our own 
modems on the leased international line and this solved the problem 
of different "quasi-compatible" modems, which is what the German and 
the Chilean Post would offer. 
The communication was point to point, full-duplex and the protocol 
used was HDLC. 
The communication software used at system level was DS/1000 and the 
ESQ software was developed over it. 

THE SYSTEM CONFIGURATION 

Fig. 1 gives a complete picture of the RC configuration. 
It can be seen there how the leased line was shared, so that it was 
possible to have telephone communication and analog image 
transmission additionally to digital data transmission, by means of a 
manual switch. 
In particular telephone conversation was possible via special 
telephone sets connected to the modem. 
Analog image transmission was possible via a system to transmit 
analog video frames, built by Thomson. This was connected to the 
field acquisition monitor and finder telescopes to send a reduced TV 
image to Munich in a very short time (25 sec). 

It should be noted that the use of the line in an analog way (either 
for telephone or for video frames) was an alternative to computer 
communication. 
So this could be done only when no data transmission was in progress, 
but computer operations could later continue unaffected. 

THE RC SOFTWARE 

1. IN GENERAL 

One aim of the RC software was to be able to offer exactly the same 
interface to the 2.2 m telescope instrumentation from Munich as is 
available in La Silla (e.g. same softkey menus and forms as on the 
2.2 m instrument console). 

It was instead preferred to leave direct telescope control via the 

3 Paper 1002 



Fig. 2 

REMOTE CONSOLE SET-UP 

From top left: 

Field Acquisition TV Monitor, TV Images Receiver, Modem, 
Phone, Console to send Messages, 
B & W Image Display Monitor, Console to receive Messages, 
Colour Images Display, Instrument Control Console, 
Graphic Console. 

Paper 1002 4 



telescope control console to the night assistant in La Silla, 
following the usual scheme of work at the telescope, where 
interactive control is shared between night assistant and astronomer. 
Fig. 2 shows the RC room for the 2.2 m telescope as set up in Munich. 

Fig. 3 shows the RC software in a general way. 
At the top the ESO control/acquisition software is shown, where the 
control functions, dealing with the interface electronics and user 
end part, are implemented in separate packages. 
The two parts communicate via mailboxes. 
At the bottom of Fig. 3 the same modules communicate under RC via 
remote - rather than normal - mailboxes. On the user side, while the 
user end interface was kept unchanged, some interface subroutines had 
to be added. 

2. THE ESO CONTROL / ACQUISITION SOFTWARE 

The detailed structure of the various software packages involved in 
the control/acquisition of the 2.2 m telescope is shown in Fig. 4. 
The connecting paths between modules (programs) are implemented with 
Class I/O and concern the command/reply mechanism. 
User end programs make use of function keys and forms (block mode 
from terminal). This offers the astronomer an interface which is easy 
to use, but at the same time demands considerable disc I/O. 
The information exchanged with the controller programs, directly 
dealing with the interface electronics, is instead limited to a few 
simple messages. An example would be the setting of an instrument 
requiring a dozen motors to be positioned. This has to be explained 
at length in a form to the user, but when it comes to actually moving 
the motors, 12 values do the job. 
This is why it is advantageous to have the user-end parts and their 
associated files (for form descriptions, function key menus etc ••• ) 
as separate modules from the actual control software. 
The two parts have a simplified class I/O interface and are suitable 
to be put on two different computers, provided that a replacement for 
class I/O exists over DS/1000. 
Fig. 4 shows also the cut points between user end and controller -
programs. 
Fig. 5 shows in detail the structure of the RC version of the same 
programs, where they have been split into local and remote programs 
on two different computers. 

5 Paper 1002 



STANDARD 
ESO 
DATA 
ACQUISITION 
SYSTEM 

LA SILLA 

~ . . 
MAILBOXES 
(CLASS l/O) 

CONTROLLE '.:·.,·!.<'«''-·>/ ,::. 

(UNCHANGED) MAI -

Paper 1002 

REMOTE CONTROL SOFTWARE 
=====---=-=-======== 

REMOTE 
CLASS l/o 

FIG. 3 

6 

GARClll.NG 

~= 
ADDED COMMUNICATION 
SOFTWARE 
(REMOTE CLASS !/O + 
INTERFACES) 



-.J 

"'tl 
I» 
"O 
~ 
~ 

0 
0 
I\) 

TELESCOPE C.ONTROL CONSOLE 
t 

TERMINAL 
HANDLER 

--------· 
TELESCOPE 
CONTROL 
INTERFACE 

TELESCOPE 
CONTROL 
FUNCTIONS 

. 

THE 2.2 M CONTROL~~~~~!~!!!~~=~~~!~~~~ INSTRur1ENTATION CONSOLE =================--------- t 

-----

IMAG 
PROC 

TERM~~AL 
HAMDLER 

----

SUPERVISORY 
PROGRl\M 

r--1----=1 
·--- r,:TR~M~ [=~~C~:RJ 

E 
ESSING 

ER-Eti~~---1 USER-END 

~. ······· ~I 
INSTRUMENTJ- l DETECTOR 
CONTROL CONTROL 

;- ~=-=-

~. / 
comROL ELECTRONICS -- :: CLASS l/o PATHS 

Fir., 4 :: REMOTE CONTROL CUT POINTS 



"U 

"' i 
~ 

0 

~ 

CJ) 

TELESCOPE CONTROL CONSOLE 2.2 M TELESCOPE REMOTE CONlROL SOFTWARE INSTRUMENT AT ION CONSOLE 

t 
TERMINAL 
HANDLER 

TELESCOPE 
CONTROL 
I NERF ACE 

TELESCOPE 
CONTROL 
FUNCTIONS . 

' 

REMOTE SIDE 
OF CONTROL SW 

I 
I 

i 
I 

REMOTE ra' CLASS 
1--~~~~~~~-~~~~~--lI/o . 

REMOTE 
IMAGE 
PROCESSING 

_[:i 
Ir NSTRUMENT 

CONTROL 

DS/1000 

'--T-r-

~ ETECTOR 
ONTROL 

~ I / 
CONTROL ELECTRONICS FIG, 5 

REMOTE 
CLASS 
I/o 

t 

TERMINAL 
HANDLER 

SUPERVISORY 
PROGRAM 

II I ~~~~~~MENT 
!~ND 

LOCAL SIDE 
OF CONTROL SW 

~-~ 
DETECTOR 
USER-END r !LOCAL 

IMAGE 
PROCESSING 



3. REMOTE CLASS I/O 

As DS/1000 did not offer the possibility to do class I/O between two 
different computers, this had to be added. 

The way class I/O is used is so that programs stay waiting on a class 
until a message arrives. Every program has one class used only for 
input. 
Replies/acknowledgments to a command are returned to the input class 
of the program, which sent the command. 

To keep the control software unchanged under remote control, programs 
have to do always class I/O to local classes and have to be unaware 
of the fact that every message may be going to another computer. 

Fig. 6 shows how Remote Class I/O was implemented. 
DS/1000 offers master-slave program communication, which is, in other 
words, a one-way channel on which messages travel from master to 
slave. 
The Remote Class I/O package associates classes on one computer to 
classes on a different computer, so that every message sent to one 
class is delivered by the package over DS/1000 to the corresponding 
class on the second computer. 

For efficiency (speed), classes are grouped in two clusters, 
depending on the direction of messages, so that two one way channels 
implemented with master-slave programs are operated in parallel. 
This is shown in Fig. 6, where at the top messages travel from the 
left to the right hand side and at the bottom in the opposite 
direction. 

In the implementation described here the programs RC Master 1 and RC 
Master 2 continually poll their clusters of input classes to look for 
incoming messages to be delivered to the other computer. 
Alternatively it would have been possible for master programs to wait 
on one class only, where then incoming messages should have been 
tagged with the different destination class numbers. 

The implementation described here demands that classes on two 
different nodes are "connected" with an initialization call, which 
establishes the connection between the two and the direction of 
messages. Class numbers can be connected in different ways: 
given class numbers on either node can be connected either to a new 
class number on the other node (to be asked to the operating system 
there) or to a pre-existing class number. 

9 Paper 1002 



0 II 
'-11 
-11 

II 
Vl II 
Vl II 
C::::: II 
...J II 
Ull 

II 
Wll 
I- II 
011 
~II 
Wll 
er; II 

Paper 1002 

~-·· f T 
\ Tl. 

I 

I 
Cl • 

w 
~ 

U..J 
er:(/) 

0 
0 
0 
.-i ...... 
(/) 
Q 

::.<: 
% 

..J 

0 
0 
0 
.-i ...... 
(/) 
Q 

10 

N 

c:: 
w 
1-
(/) 

W< 
0:::: :c 

N 

w 
> < 

U..J 
0::::(1) 

! 
I 

I 

--~ 

I' 

l.C 

(,!; -~ 



Considering again Fig. 3, it can be seen that the user end programs 
have been enlarged with some subroutines for RC. These subroutines do 
the connections mentioned above at class allocation time. This means, 
in other words, that at class allocation time the Remote Class I/O 
programs are started and establish their threads among class numbers 
on the two computers. 

The calling of the connect subroutines in the user end programs is 
the only addition for RC. In practice this is a portion of code, 
executed conditionally when a node number for a remote computer 
connection is given. 
In this way the same program can now be executed in loca 1 mode and 
simply no connections are done, whereby the Remote Class I/O package 
and DS/1000 remain inactive. 

4. DATA FLOW 

Following the data flow in Fig. 7 it can be seen that data were 
acquired on the control computer of the 2.2 m telescope (according to 
commands sent from Munich). 
Afterwards data were sent from La Silla via a compression/expansion 
package. Data went directly from an image processing file in La Silla 
to a corresponding file in Munich, with an option to display them on 
an image display monitor. 
It should be emphasized that this activity could be carried out in 
parallel, both with the sending of new commands and with local image 
processing. This means also that transmission times were much less 
noticeable than if the user had been idle and waiting. 

RESULTS 

The leased line, once set-up and equalised, was reliable and stable 
in time. There were no hang-ups. 

The DS set-up was not obvious for such a line. In particular the HDLC 
cards had to be set at a very low baud rate to achieve longer 
timeouts, and anyhow the actual baud rate is imposed by the modem. 

DS statistics gave negligible 
Maladjustment of some parameters 
substantially increase these rates 
would be unreliable. 

error/retransmission 
or bad 1 ine quality 

and transmission of long 

rates. 
would 
files 

Disturbances (cross-talk) on the line producing high retransmission 
rates were measured only once/twice for about one hour in a week. 

11 Paper 1002 



LA SILLA 

I CAMAC 
I 

HP 1000 

REMOTE 
IMAGE PROCESSING 

Paper 1002 

DATA FLOW 

GARCHING 

HP' 1000 

COMMANDS 

)/l!y1111l1/ll/I//"··:·· ·:>DATA 

MESSAGES 

FIG, 7 

12 

l 

Gf,: 
/ 

/ 

LOCAL 
IMAGE PROCESSING 



About global reliability, very few restarts of the control software 
environment were ever needed. Even short accidental interruptions of 
the line, by using the telephone when data transmission was going on, 
were recovered. 

The line was operated at 9600 baud. 
The transmission of a full CCD frame (around l 70KW) took about 10 
mins. 
Typical data transfer times were however smaller: 7 min for images, 
2,5 min for spectroscopic data. 
This is because data compression/expansion was used and, for spectra, 
only the relevant part of an image was sent. Data were sent complete 
(i.e. without loss of information) in the given times. 

Out of 7 min total time, 2 min went for the data 
compression/expansion algorithm, whereby an image was typically cut 
down to 50% of its size - so CPU time (on a loaded HP 1000 F CPU) did 
play quite a role. This would obviously be much better on either an 
A900 or a Precision Architecture computer. 

Altogether the net throughput was some 40-45% slower than in the 
laboratory tests. This depends on the measurable delays introduced by 
the satellite link. 

The large amount of data transmitted plus the additional advantage of 
free telephone calls during the day time, make a leased line a 
preferable solution with respect to packet switching from an economic 
point of view. 
Reliability, reduced delays and all-time availability of a leased 
line are additional bonuses. 

The relatively high cost 
reasonable when compared 
Europe to Chile. 

of the line, about US $ 500/day, is still 
to the costs of astronomers trips from 

CONCLUSIONS 

The success of this test will mean considerable encouragement for 
ESO, which is investigating the possibility to offer RC as a 
permanent feature on new telescopes. 

The performances of DS over a leased line are quite acceptable for an 
interactive control system like the one described and in practice no 
difference with local control is noticeable to the user. 

13 Paper 1002 



The long transmission times are 
data transmission, where data 
improve net throughput. The 
compression algorithms is 

instead clearly a bottleneck for bulk 
compression has to be applied to 
limit to the complexity of data 

naturally given by the 
negligible in comparison with compression/expansion times, not 

transmission times. 

On the whole, DS/1000 and HDLC cards proved to be extremely reliable 
even in such an extreme case and an improvement on net throughput, 
due to faster compression/expansion, should be expected with the 
newest models of the HP 1000 family. 

I wish to acknowledge the relevant contribution to this project of my 
ESO colleagues P. Biereichel, W. Nees and M. Ziebell. 

Paper 1002 14 



Abstract: 

Charles N. Small 
Syslog Inc. 

4996, Place de.la Savane 
Montreal, Que. Canada H4P 1Z8 

A global automated methodology (SOS) was successfully applied to 
the salvaging of software from an obsolete hardware environment 
and its conversion to and implementation on an HP-1000. The 
application was an automated circuit-board testing system with 
customized test stations, interfaces and operating system, and 
specialized languages for writing test programs. 

The SOS automated tools support development of hierarchical 
systems using an integrated methodology applicable from 
specification through design, coding and testing to maintenance. 
Using SOS, a system is decomposed into processes, where each 
process is specified as a strategy executing within an 
environment. Strategies and environments are structured from 
primitive components which are stored relationally in a 
database. The relational system model makes possible rigorous 
analysis and verification before coding begins and provides 
detailed metrics during development. 

Source code is produced directly from the system model using 
automated code generation. This provides a high level of 
language independence, enforces consistency between 
specification and code, and ensures complete and accurate 
documentation. 

Introduction: 

This paper describes the application of an automated methodology 
to a medium-size software development project. Section 1 
outlines problems of software development in general terms; 
section 2 provides specifics of the particular application 
project; section 3 outlines the methodology and describes the 
computer-based tools which implement it. Section 4 outlines some 
of the benefits which we perceive in using development tools of 
this type. Section 5 then outlines, for this particular project, 
each stage in the application of the methodology, from 
requirements definition to completion; and section 6 provides an 
informal evaluation of the tools and some observations regarding 
the process of converting to a new methodology. 

Paper 1003 



1. An Integrated Approach to Design & Development: 

Most software development over the past fifteen years has been 
guided by the so-called "waterfall" model. D.efects in this 
approach have recently been widely recognized [21]. One problem 
is the use of distinct methodologies for particular stages of 
development - typically, one for requirements and specification, 
another for design and coding, perhaps another for testing. 
Because interfaces between the discrete stages are not well 
defined, translation must at some point be performed manually, 
and errors can creep in. 

Also, it is difficult to reflect changes made at a late stage 
back onto the initial specification. This results in 
inconsistencies. 

Another disadvantage to the "waterfall" model is the long time 
lag often entailed between design and testing. This makes errors 
difficult to detect (because the system under test is already so 
large and complex) and expensive to correct. Design flaws are 
very costly to change at this stage. 

In addition, traditional methods of software design have been 
inadequately automated, in the sense that too few computer-based 
tools for software design and analysis have been at the disposal 
of systems analysts. In designing complex systems, it is clearly 
desirable to relieve analysts and programmers of as much of the 
burden of repetitive tasks as possible and to provide as much 
computerized checking and verification as possible at an early 
stage of design. 

In our design environment at Syslog we have been very conscious 
of these problems, since our work involves complex and 
specialized automation and control systems in application areas 
as diverse as water purification systems, steel plant automation 
and satellite telecommunications. This requires rapid mastery by 
our staff of specialized needs. Since many of these systems are 
developed for installation at geographically remote sites, they 
must be extensively developed before on-site testing can be 
undertaken. We therefore have been interested in finding and 
applying development methodologies which are broadly applicable 
and flexible, which provide a high measure of reliability in the 
end product, and which allow accurate estimation at any stage of 
the overall size and detailed status of a development effort. 

Paper 1003 2 



It was in this context that we began to introduce SOS 
(Strategy-Oriented System) methodology on certain of our 
development projects [15] . So far, two medium-size projects 
have been completed on which SOS was applied from start to 
finish. One is described in this paper and the second elsewhere 
[14]. Since the approaches to design required by these two 
projects were so clearly distinguishable - in fact, almost 
diametrically opposed - we felt they would constitute a good test 
of the method's flexibility. 

2. The Application System 

In the project described here, SOS automated tools were applied 
to the salvaging of software from an outdated hardware 
environment and its conversion to and implementation on a newer 
machine (an HP-1000). It should be emphasized that this is far 
from being the only possible application of the tools. It is not 
even true that salvaging and conversion was necessarily the best 
course to have adopted in this particular situation. 

However, many enterprises are today in the position of having 
heavy investments in existing software systems which run on, and 
are dependent on, hardware that will be obsolete several years 
from now. These software systems in many cases embody knowledge 
that is invaluable, because it is so specific to that enterprise 
and its particular needs. 

Enterprises that depend on some existing systems that provide 
functionality to meet highly specialized needs will be 
understandably reluctant to simply scrap these systems and "start 
from scratch" because the systems are insufficiently portable and 
their hardware is aging. Knowing the unpredictability of the 
software development process, they may well fear investing large 
sums with inadequate results. They may instead choose to salvage 
the existing system piecemeal, knowing that even though the 
process may be more difficult, they will be able throughout the 
process to retain a system that meets their needs. 

Salvage and conversion in this sense is thus an important but 
little-studied problem. In a more general sense, however, there 
are probably few projects that actually begin with a completely 
clean slate. In most cases, there are components, procedures, 
modules, design approaches, which were evolved elsewhere and 
which it is felt should be retained or adapted with modifications 
in a new environment. What is to be shared may be, at one 
extreme, a complete system design, or, at the other, simply file 
structures, I/O routines, or user input screen formats. 

3 Paper 1003 



In any case, traditional top-down design approaches deal 
inadequately, in most cases, with the integration of these 
pre-existing components. 

For the application discussed here, salvage involved implementing 
a system so as to be functionally equivalent to an existing 
system. The application was an automated circuit-board testing 
system with customized test stations, interfaces and operating 
system, and specialized languages for writing test programs. 
Software for compilers and test execution facilities was 
converted from PDP-9 assembler code to HP-1000 C. 

The only specification for the system to be implemented (apart 
from manuals designed for the end user) was the assembler code 
itself, with its annotations. Installation required that the new 
system interface to all existing special-purpose hardware and 
communicate with it over the original PDP-9 bus using the 
protocols in place, so that all existing test programs might be 
executed without modification. The assembler code for the PDP-9 
system amounted to roughly 10,000 lines. 

An additional complication was that none of the original system 
designers were available. In fact, no individuals at the present 
installation had any detailed knowledge of the system's 
internals. 

The problem then required working backwards from the executing 
assembler code in order to extract a specification from it, and 
then working forward from the specification to its implementation 
in a new environment. SOS tools were used throughout this 
process, and using them it was possible at each stage to identify 
particular components of the existing system with corresponding 
components of the new system. 

In fact, not all of the system needed to be salvaged, since it 
had been coupled with a time-sharing operating system built 
in-house, many of the facilities of which were either obsolete 
(e. g. paper tape read) or provided directly by RTE-A on the 
HP-1000 (e. g. file system access, user scheduling). 

Specifically, the system to be converted included three custom­
built hardware test stations for performing specified sequences 
of tests on circuit boards at the operator's request. One 
station was operated by hard-coded commands and the other two 
were accessed through a 16 x 64 x 2 matrix of code points. Test 
facilities included A/ D measurement (voltage, resistance, 
current drain, diode forward and diode leakage),and measures of 
timing and propagation delay, individually programmable by logic 
family and driver threshold windows. 

Paper 1003 4 



Test sequences are written in customized programming languages, 
each program specifying a sequence of tests to be performed on a 
unit. The language syntax and commands vary depending on the 
station used for testing. Facilities are provided which allow 
programs to be edited, saved, compiled and executed. Source 
programs are compiled to an assembler-like format using opcodes 
and operands. The compiled programs are interpreted by a test 
execution facility. During execution, options are available to 
the operator to specify break points, looping, data display 
modes,etc. 

The hardware test stations were to be retained in the new system, 
together with the interface through which they communicated to 
the PDP-9. An additional "black box" interface was built to 
provide 16-to-18-bit mapping and voltage level conversion. This 
new interface connected, at one side, directly to the existing 
hardware interface ; at the other, to a parallel interface card 
in the HP-1000. An interface driver for the PIC and device 
drivers for the individual stations were designed and configured 
into the HP-1000 operating system to handle communications. 

The system specification required that the new system provide an 
execution environment in which all test sequences performed as 
they did on the current system, and provide, in addition, 
functionally identical compilation facilities and operator 
interfaces, and appropriate system management features. 

3. The SOS Automated Methodology 

SOS (Strategy-Oriented System) developed out of research 
conducted at Concordia University in Montreal, over the last 
fifteen years, by W. M. Jaworski and his co-workers [6, 7, 11, 
16, 19, 23] based on work in such areas as decision structures 
[18, 22], relational representations [4] and problem-solving 
strategies [25]. Numerous experimental applications had been 
developed during this time, but it was not until Syslog adopted 
the approach that it was applied to applications of real-world 
size and complexity. 

5 Paper 1003 



There are three fundamental principles on which SOS is based: 

1) Any software system can be represented as a network (usually 
hierarchical) of PROCESSES, where each process can itself be 
represented as a STRATEGY executing in some ENVIRONMENT. The 
strategy can be thought of (roughly) as the control flow of the 
process and the environment as its data flow. 

2) Strategies and environments and all the components of each 
can be represented relationally and stored in a database. This 
database is then not simply a repository of software, but a tool 
which allows multiple views of the system to be extracted and 
verification and consistency checking to be performed at the 
level of specifications. It also allows code to be generated 
automatically from the specifications and the constructed 
environment of the process, once verification is complete. 

3) The technology is designed to be easy to learn, convenient to 
use, and "transparent" (meaning that internal functions are 
easily accessible). This last feature makes the system flexible 
and easy to adapt for special purposes. 

A STRATEGY is composed of CLUSTERS and ALTERNATIVES. CLUSTERS 
correspond to points during the execution of a process at which 
CONDITIONS are evaluated and one out of a number of ALTERNATIVES 
is chosen for execution. The alternative corresponds to some 
specified sequence of ACTIONS, along with a NEXT cluster and an 
EXCEPTION cluster. A simple example is shown in Fig. 1. 

Ordinarily, after the actions of an alternative are executed, 
control flow passes immediately to the NEXT cluster, which is the 
decision point to be evaluated next. By convention, execution of 
a process begins at decision point 1 and continues until a NEXT 
cluster of O is found. This O indicates the exit point. 

In the example, Al will be unconditionally executed on entry to 
the process. Then, depending on the current state of Condition 1 
(true or false), either Alternative 2 or Alternative 3 will be 
executed. In the second case, execution of the process ends. In 
the first, it passes to another decision point (Cluster 3). In 
the case of loops, alternatives will return to the decision point 
at which they start, as in the case of A4 and AS in the example. 

Note that any action executed as one of the sequence of actions 
for an alternative may ITSELF be a complex action, or process, 
executing its own specified strategy in its own environment. In 
that case, control returns to the higher level process on exit 
from the lower level one. 

Paper 1003 6 

I 



Alternatives may optionally be created with postconditions as 
well as preconditions, to ensure that specified conditions are 
met before transferring to the next decision point. These 
postconditions are known as GOALS. When an alternative fails a 
postcondition test, control passes to the EXCEPTION cluster 
instead of the NEXT cluster. An entry in the EXC column 
indicates that such a postcondition check has been specified. 

The ENVIRONMENT in which a process executes is specified by 
OBJECTS (data elements) and OPERATORS which modify objects or 
test their status. In combination, these two are used to build 
ACTIONS and CONDITIONS for the environment. Data flow may be 
determined at the level of an action, alternative, cluster or 
process by examining the input and output relations of objects in 
each action and condition. 

All components of strategies and environments are represented 
relationally in a database, which is then used for querying, 
verification and validation, report generation, and source code 
generation (Fig. 2 provides an overall schematic view of the 
development process). Reports may be produced in a variety of 
formats, intended for designers, project leaders,administrators 
or end users, showing control flow and data flow for a process, 
part of a process, or the system as a whole, process hierarchies, 
project status reports, and so on. These are produced in SOS 
notation, in structured English, tabular format or graphically. 

4. Advantages of an Automated Methodology 

We investigated several available development methodologies (1, 
2, 3, 5, 8, 10, 12, 13, 17, 24, 26, 27, 28, 29] and found, in 
general, that most existing tools are designed only for a 
particular stage of the software life cycle and that they do not 
fully exploit the potential of automation in providing 
computer-based tools which may be used throughout the life 
cycle. Nor do they provide much support in moving from the 
design phase to the coding phase, or from code back to design, 
when revisions are necessary. 

Newer tools intended to provide such support and validation are 
beginning to appear (9, 20]. However, they are still expensive, 
not as easy to use as one might like, and require expensive 
hardware to run. We see these tools as likely to become 
increasingly important in the near future. SOS provides, for us, 
valuable capabilities without exorbitant cost, and, as a further 
benefit, allows our software designers to become familiar with 
the tools not only as users but as developers and improvers of 
them. 

7 Paper 1003 



SOS, we find, provides a notation in which system designs may be 
specified simply yet precisely, allowing inconsistencies and 
vague terminology to be pinpointed and clarified. Using SOS, ar. 
abstract model of the system may be designed quickly, partially 
implemented, and tested at an early stage, when many of its 
modules are simply "stubs". At this early stage, the eventual 
end user can interact with the system, approve or disapprove, ar. 
make suggestions or recommendations. This process may be 
repeated throughout development so as to avoid unpleasant 
surprises in the final product. 

There are no gaps between the specif !cation and design phases ar 
the coding phase of development. Once a process has been 
specified and verified in its abstract form, and an environment 
has been designed for it, implementation ls then simply a 
matter of coding primitive elements of the environment in some 
selected source language, be it FORTRAN, Pascal, C or Assembler. 
Primitive elements are often simply single lines of source code. 
Once this has been done, code may be generated automatically. 

Systems developed may be designed to run on any particular targE 
machine and be compiled using any desired programming language 
and compiler. Provided there ls a means of transferring source 
code from the development machine to the target machine, there 
will, in most cases, be only minor changes required in the code 
generator. In the project considered here, development was donE 
using SOS facilities installed on PC XT and AT compatibles, for 
implementation in C on an HP-1000. Another project developed 
FORTRAN code for a PDP-11; in a third (now in progress), 
assembler code ls generated. Identical SOS technology ls used 
all cases. 

We have found it worthwhile to provide each software engineer 
with an individual PC on his/ her desk, with an individual SOS 
database and copies of all the tools. The cost of the tools ar 
the individual microcomputers ls low enough to allow us to do 
this. Designers may work independently of the hardware of the 
eventual target machine, thus minimizing bottlenecks due to 
hardware and software testing or system overload. It ls posslb: 
at any stage of development to integrate several individual 
databases on a single machine to acquire a full project overvle1 

Paper 1003 8 



Using a relational model for software allows the designer to be 
equipped with tools which permit much analysis to be automated -
control flow and data flow may be verified for consistency and 
completeness, strategies and environments or their components may 
be copied and reused, graphics dispiays and diagrams may be 
generated, and so on. Some of these tools already exist in our 
SOS systems, and we are in the process of adding others as the 
need for them makes itself felt. 

Software components are entered, viewed and manipulated using 
screen-based editing facilities with a query language (SQL or the 
equivalent) interface. Using SOS, it is possible to work at any 
point in a system, on any process within it, at any time. This 
allows great flexibility in allocating development resources and 
determining which modules are to be developed when, and to what 
level of completion. 

In some cases, it is desirable and practical to design and 
implement a system from the top down - first a shell, command 
processor, or user interface routine, and then downwards, ending 
with utility functions, low-level I/0 routines, and so on. In 
other cases, a bottom-up strategy may be preferable, at least for 
certain components of the system. SOS allows both approaches, or 
a mixture of them. 

It is also often the case that a system is not designed "from 
scratch", but with the advantage of algorithms, data structures, 
interfaces, code modules, assembly routines and documentation 
developed elsewhere, or independently, or for earlier versions of 
the system. With SOS, components and subsystems can be copied 
and reused, or simply specified as "external" and introduced at 
the appropriate point without further decomposition. 

At all times during development, it is possible for project 
leaders to find out quickly how much has been done and where, 
and to estimate accurately how much remains to be done. The 
metrics used are number of processes, strategies, environments, 
actions, conditions and objects, number of environments coded, 
and number of processes generated and tested. Fig. 3 provides an 
example of one such status report, generated at a series of dates 
for one of the subsystems (a compiler) of the project described 
here. 

9 Paper 1003 



During testing, SOS code generation tools provide dynamic trace 
and debugging facilities. The trace may be activated during 
testing and removed, in the case of each specific process, when 
its validation is completed. It may be replaced later if 
problems develop or modifications to the process are to be 
performed. 

We have found SOS documentation tools to be useful both at 
intermediate stages of development and'for completed and 
installed systems. With SOS, it is possible to ensure that 
documentation is complete and consistent, since it is produced 
during development (instead of after it, as is usually the case), 
and is automatically updated when components are added to the 
running system, or when existing components or changed or 
deleted. It is an invaluable feature of SOS, in fact, that 
system documentation, system specification, and executing code 
are always in precise correspondence one with another. 

Paper 1003 10 

1;. 
I 



5. The Development Process 

The project described here involved four major software 
components: three compilers and a test execution facility. 
Each used, in addition to the SOS-specified processes, specially 
designed drivers and a small number of library processes to 
provide access to HP-hardware dependent facilities. Overall, 
the system included 270 processes, as follows: 

Processes: 

Compiler 1 25 
Compiler 2 50 
Compiler 3 65 
Test Executive 80 
Libraries 50 
Total 270 

Approximate totals for components in the delivered system are as 
follows: 

Clusters 
Alternatives 
Objects 
Actions 
Conditions 

845 
2375 
2595 
2980 
1465 

The phases through which conversion proceeded were the following: 

1) Extraction of assembler into informal pseudo-code. (This was 
done in the initial stages prior to the introduction of SOS 
tools; in later stages it was not found to be necessary and SOS 
strategies and environments were designed directly.) Fig. 4 is a 
sample of the original assembler code. 

2) Structuring of strategies and environments using SOS tools. 
Strategies were extracted as single-entry and single-exit units 
of control flow. Environments were isolated using models of 
internal system data flow. Fig. 5 is a data flow model for the 
assembler routine of Fig. 4, showing objects identified as global 
or local, input or output. Fig. 6 shows actions and conditions 
for this same environment, structured from the primitive objects 
of Fig. 5. 

11 Paper 1003 



3) Modeling of complete system as hierarchy of processes, each 
of which comprised a strategy and an environment. Components of 
the system are at this stage represented using narrative 
description. Much of the verification for consistency and 
completeness of the system takes place here. Global data flow 
for the system, is assembled from the environments of individual 
processes, and used for verification. Fig. 7 shows the strategy 
(control flow) of the assembler routine of Fig. 4. 

4) Coding of primitive components of the environments of each 
process (actions, objects, and conditions) in an implementation 
language (in this case, C). Code for components is shown in 
Figure 8. 

5) Automated generation of source code for each individual 
process using the SOS model. Code is generated with embedded 
dynamic trace capabilities for purposes of testing and 
debugging. Source code is transferred to the target machine 
using a communications program, and is compiled and linked on the 
target machine. Each process in the system is modeled, 
generated, compiled and tested separately. Verification, in this 
case, proceeded in a top-down manner through the system. Fig. 9 
shows a sample of generated C code for the assembler routine of 
Fig. 4. 

During development, the SOS project database was partitioned 
between two PCs. At times, additional PCs were used for report 
generation, code generation, or file transfer. Because design 
and development was not done on the target machine, it was 
possible to design processes yet to be implemented in parallel 
with testing of already coded processes. Using the PCs for 
development also allowed designers to use friendly and 
easily-modified screen-based interfaces to the database. 

Typically, new processes were added to the running system one at 
a time, or in small functionally related groups, all with 
embedded trace and debug code. Corrections for errors or bugs 

-found during testing were entered into the SOS databases on the 
PCs and processes were regenerated and transferred to the target 
machine. Provided turnaround time in this process is adequate, 
it should never be necessary to edit source code manually on the 
target machine. If this rule is observed, specification, 
documentation and executing code will always correspond 
precisely. 

Paper 1003 12 



From start to completion, the project required 16 months, 
although the size of the team varied during this period (from 2 
members initially to 5 at its peak, toward completion). The 
table below shows estimated productivity levels in terms of 
system components at various phases of the development process: 

Months: 2 4 6 8 10 12 14 16 
Totals: 
Strategies(narrative): 10 40 60 70 80 130 200 270 
Environments 
(narrative): 2 2 2 10 60 120 190 270 
Processes 
(narrative): 5 30 50 60 70 110 180 270 
Environments 
(coded): O O O 10 40 100 160 270 
Processes 
(tested): O 0 0 O 5 50 150 270 

The noticeable speed-up towards the end of the project may be 
attributed to four factors: 

1) The largest and most difficult system (the test executive) 
was built and tested first. 

2) Not all of the SOS tools were in place at the start of the 
project, and when they were available there was a learning curve 
before the team thoroughly understood them and found the best 
ways of applying them to their particular problems. 

3) There was, in addition to the design and specification work, 
much clarification of the hardware environment of the 
application, implementation language features, and working 
methodology (file transfer, compilation and linking, version 
control, test data design and testing methodology, etc.) that 
needed to be carried out in the early phases of the project. 

6. Evaluation and Commentary 

Software salvage and conversion is a demanding task, and one 
which is somewhat unrewarding for the designer: instead of the 
satisfaction of seeing a new system perform to specifications, 
the best that can be hoped for is to see an old system still 
doing what it always did. Moreover, the task is particularly 
difficult where inadequate documentation exists for the system to 
be salvaged. Without automated tools (and the challenge of 
learning how to use and improve them), the task would perhaps 
have been irremediably unattractive. 

13 Paper 1003 



With SOS, it was possible to do a good part of the design work 
without reference to the original assembler code. Once an 
initial specification was extracted, returning to the assembler 
listings was only necessary where difficulties arose. 

Mechanical conversion of such a system without grasping the 
purpose and functionality of each separate module was clearly 
impossible. SOS was most useful in providing means for arriving 
at the semantic understanding needed for converting a module. It 
made it possible to determine what a piece of code was intended 
to do, quite apart from implementation details. At this level, 
we used SOS as a knowledge modeling tool. 

As an additional benefit, the knowledge extracted in this way is 
later helpful to the users of the system, as a means of 
understanding in non-technical fashion what the system actually 
does, as opposed to what it was designed to do, or what its users 
generally believe it to do. 

Once a reasonable semantic understanding was obtained, two 
approaches typically presented themselves: to reimplement the 
existing algorithms so as to approximate as closely as possible 
the original, or to simplify the algorithms and reimplement only 
the functionality. 

The first approach was tempting where the original code was 
difficult to comprehend; but problems might arise if the 
incomprehensibility resulted from exploiting special hardware 
features of the original machine, or from code that was poorly 
designed or frequently revised in the original. 

The second approach seemed in many cases to promise increased 
clarity and simplicity, but modifying some piece of code 
drastically involved the assumption that we thoroughly understood 
the original. This was rarely the case. In addition, if code in 
the new system differed too much from the original, it became 
difficult to map one system into the other during debugging, as 
we found we frequently had to do. 

In most cases, we adopted the first approach, mechanical 
reimplementation, as being the safer. This worked, on the whole, 
surprisingly well, in conjunction with the SOS tools. Even 
complex and difficult modules would commonly perform on the first 
run with only minor and obvious bugs, if extraction and 
conversion had been done with care. 

Paper 1003 14 



Determining what precisely was to be considered a bug presented 
special problems. In some cases, the bugs we found existed in 
the original version. In these cases, we did not attempt to 
correct the problems, but merely reimplemented the bug, leaving 
improvements for later. In other cases the bugs had clearly been 
introduced during conversion and the required corrections were 
obvious. Many cases, however, were on the borderline. For 
these, it was either difficult to determine what the original 
system did, or difficult to understand whether what it apparently 
did was correct. In general, it proved safer to implement the 
system as closely as possible to the original. There were 
functions in the original which actually depended for their 
operation on the existence of some bug in another function. 

All source code was automatically generated from the SOS 
database, except for a handful of library modules for I/ O and 
similar features. The advantages of using generated code are 
considerable: the elimination of laborious hand coding, drastic 
reduction of syntax errors and typographical errors, promotion of 
the reuse of components, and production of a language-independent 
design. 

We found no problem with the efficiency of the generated and 
compiled code. However, the benefits to be derived from reducing 
sources of error and ensuring consistency of code with 
specification depend greatly on the turnaround time for source 
code generation. Without adequate turnaround time, it becomes 
tempting to patch source code manually rather than wait for the 
output of the generator. Initially, turnaround time was fairly 
slow: roughly fifteen minutes for a process of several hundred 
lines, on a standard PC XT-compatible. With enhanced hardware, 
however, we have reduced the time for generation of an equivalent 
process to one to two minutes, much closer, we believe, to an 
acceptable range. 

SOS provides a high degree of control over the development 
process. This is particularly needed in large and complex 
systems. It is possible from data flow reports to isolate groups 
of modules which may be worked on without introducing side 
effects elsewhere, or with side effects whose results are known 
and controlled. It is also possible, using data models, to 
effect global changes fairly easily, pinpointing all the modules 
to be affected by a change in a data structure or access method, 
for example. In this way, it is possible to obtain increased 
parallelism within a group of designers working on a project. 

15 Paper 1003 



An interesting side effect of the approach used was the 
extraction of a hardware-independent design. This occurred 
because a complete and detailed design was produced before any 
attempt was made to map actions and conditions onto specific 
features of the target machine (the HP-1000). As a result, in 
the final system, hardware dependent routines (those which use 
RTE EXEC calls or EMA, for example) were coded separately and 
isolated in specific library modules. 

All the programming and design staff at Syslog has by now been 
trained in the use of SOS. We believe it can provide a useful 
tool for communication across as well as within projects. For 
example, knowing the method, it will, we believe, take less time 
to bring a new project team member "up to speed" than it 
otherwise would. 

It is of course necessary that there be precise and generally 
agreed-upon definitions of key terms, an inventory of available 
tools (editors, generators, queries) and their use, and a means 
of training new staff and, at times, clients, in the 
methodology. It is too early to determine how many of the tools 
developed so far will be reusable on other projects, but we 
believe many of them will be, since their application is fairly 
general. It is probably helpful to have a staff that is (as is 
the case at Syslog) generally young and flexible in outlook, 
without commitments to traditional ways of doing things, and 
willing to experiment. 

We have adopted an approach in which our available SOS resources 
will be expanded incrementally, using input and suggestions from 
our own personnel, who are most familiar with the method and its 
use. We envision as an eventual possibility a system with a full 
user-friendly interface which will allow even inexperienced 
computer users to design, and build processes to meet their 
particular computing needs. 

Acknowledgments: 

The following individuals (among others) contributed to the 
success of this project, and their participation is here 
gratefully acknowledged: Michel Virard, Zbigniew Wojcik, Nguyen 
Thi Thanh Huong, Ewa Olow, Martin Walker, Wojciech M. Jaworski 
and David Morton. 

Paper 1003 16 



References: 

[l] Bergland, G.D., "A Guided Tour of Program Design 
Methodologies", IEEE Computer, Qct. 1981, pp. 13-37. 

[2] Caine, S. H. & Gordon, E. 
Design", in P. Freeman & A. I. 
Software Design Techniques (3rd 
1980, pp. 380-385. 

K., "POL - A Tool for Software 
Wasserman (eds.), Tutorial on 

edition), IEEE Computer Society, 

[3] Cottrell, L. K. & Workman, D. A., "GRASP: An Interactive 
Environment for Software Development and Maintenance", Database 
11:3 (1980), pp. 84-87. 

[4] Date, C. J., An Introduction to Database Systems. 
Addison-Wesley, London, 1977. 

[5] Falla, M. E., "The Gamma Software Engineering System", 
Computer Journal 24: 3 (1981), pp. 235-242. 

[6] Fancott, T. & Jaworski, W. M., "Primitive Logic Constructs 
Considered Harmful in Structured Programs", Canadian Computer 
Conference, Session 1976 (Mar. 1976), pp. 332-344. 

[7] Ficocelli, L.A., "Problems to Programs: A Humanistic 
Approach (An Introduction to ABL Methodology)", unpublished 
master's thesis, Dept. of Computer Science, Concordia University, 
Montreal, Que., 1982. 

[8] Freeman, P. & Wasserman, A. I. (eds.), Tutorial on Software 
Design Techniques. IEEE Computer Society, Long Beach, CA, 1980. 

[9] Hamilton, M. & Zeldin, S., "Higher Order Software: A 
Methodology for Defining Software", IEEE Trans. Soft. Eng. SE-2: 
1 (Mar. 1976), pp. 9-32. 

[10) Heacox, H. C., "RDL: A Language for Software Development", 
ACM SIGPLAN Notices, Dec. 1979, pp. 71-79. 

[11) Hinterberger, H. & Jaworski, W. M., "Controlled Program 
Design by Use of the ABL Programming Concept", Angewandte 
Informatik (Applied Informatics), Weisbaden, Germany, July 1981, 
pp. 302-310. 

17 Paper 1003 



[12] IBM Corporation, Data Processing Division, White Plains, 
NY, "HIPO - A design Aid and Documentation technique", Order no. 
GC-20-1851, 1974. 

[13] Jackson, M.A., Principles of Program Design. Academic 
Press, New York, 1975. 

[14] Jaworski, W., Maccuaig, I., Mar.inelli, T. & Nyisztor, T., 
"'Executable' Specification for a Large Industrial Process", 
Proceedings of the 1986 Canadian Conference on Industrial 
Computer Systems (Montreal, May 28-30, 1986), Canadian Industrial 
Computer Society, Ottawa, 1986, pp. 60-1 - 60-5. 

[15] Jaworski, W. & Virard, M., "Converting a Software Company 
to a New Technology", Proceedings of the 1986 Canadian Conference 
on Industrial Computer Systems (Montreal, May 28-30, 1986), 
Canadian Industrial Computer Society, Ottawa, 1986, pp. 12-1 -
12-7. 

[ 16] Kronick, M., "An ABL Software Environment for a Mini 
Computer", unpublished master's thesis, Dept. of Computer 
Science, Concordia University, Montreal, Que., 1983. 

[17] Lauber, R. J., "Development Support Systems", IEEE Computer 
15: 5 (May 1982), pp. 36-46. 

[18] Lew, A. "On the Emulation of Flowcharts by Decision 
Tables", Communications of the ACM 25: 12 (Dec. 1982), pp. 
895-905. 

[19] Linares, J., "A Comprehensive Support System for Microcode 
Generation", unpublished master's thesis, Dept. of Computer 
Science, Concordia University, Montreal, Que., 1982. 

[20] Martin, J., System Design from Provably Correct 
Constructs. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983. 

[21] Martin, J. & McClure, C., Structured Techniques for 
Computing. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985. 

[22] Moret, B., "Decision Trees and Diagrams", ACM Computing 
Surveys 14: 4 (Dec. 1982), pp. 593-623. 

[23] Morgan, A.H., "An Engineering Approach to Problem 
Analysis", unpublished master's thesis, Dept. of Computer 
Science, Concordia University, Montreal, Que., 1981. 

Paper 1003 18 



[24] Nassi, I. & Shneiderman, B., "Flowchart Techniques for 
Structured Programming", ACM SIGPLAN Notices 8: 8 (Aug. 1973), 
pp. 12-26. 

[25] Newell, A. & Simon, H. A., Human Problem Solving. 
Prentice-Hall, Englewood Cliffs, NJ, 1972. 

[26] Riddle, William E., "An Event-Based Design Methodology 
Supported by DREAM", in P. Freeman & A. I. Wasserman (eds.), 
Tutorial on Software Design Techniques (3rd edition), IEEE 
Computer Society, 1980, pp. 269-283. 

[27] Ross, D. T. & Scheman, K. E., "Structured Analysis for 
Requirements Definition", IEEE Transactions on Software 
Engineering, SE-3: 1 (Jan. 1977), pp. 6-15. 

[28] Stevens, W., Myers, G. & Constantine, L., "Structured 
Design", IBM Systems Journal, 13: 2 (1974), pp. 115-139. 

[29] Teichroew, D. & Hershey, E. A., III, "PSL/ PSA: A 
Computer-Aided Technique for Structured Documentation and 
Analysis of Information Processing Systems", IEEE Transactions on 
Software Engineering SE-3: 1 (Jan. 1977), pp. 41-48. 

19 Paper 1003 



Fig. 1 

A simple SOS process: 

Process Number_Game 

1. Initialize 
Al. Display initial prompt 

2. Begin new game 
A2. Get first guess 
A3. Exit 

3. Evaluate guess 
A4. Guess is too high 
AS. Guess is too low 
A6. Guess is correct 

Actions for Process Number_Game 

NEXT EXC 

2 

3 
0 

3 
3 
2 

ACTl. Print "Guess-a-Number Game. To play, type 'Y'" 
ACT2. Read character from input. 
ACT3. Print "Enter a number between land 10:" 
ACT4. Read integer I from input. 
ACTS. Print "Goodbye !" 
ACT6. Exit 
ACT7. Select a random number J in range 1 - 10. 
ACTS. Print "Too high. Guess again." 
ACT9. Print "Too low. Guess again." 
ACTlO. Print "You're right ! Play again ? " 

Conditions for Process Number_Game 

CNDl. Input = 'Y' 
CND2. I > J 
CND3. I = J 

Process Number_Game (Detailed Specification) 
NEXT EXC 

l. Initialize 
Al. < > [ l, 2 ] 2 

2. Begin new game 
A2. < 1 > [ 7, 3, 4 3 
A3. < -1 > [ s, 6 ] 0 

3. Evaluate guess 
A4. < 2 > 8, 4 ] 3 
AS. < -2, -3 > 9, 4 ] 3 
A6. < 3 > 10, 2 ] 2 

Paper 1003 20 



ls.o.~~DEVELOPMENT] 

[EDITING l q 
PROJECT 

DATA 'C- H .. J' BASE 

1J D 

STRATEGY ~ 
DESIGN ~ 

q 

~ 

STRATEGY 
REPORTS 

ACTION 
TABULO­

GRAM 

,q 
STRUCTURED 

TEXT 
REPORTS 

-

<\:, 
~ CODED 

TABULO­
GRAM 

~ 
~ 

TO TARGET 
COMPUTER (S) 



Fig. 3: Project status reports for compiler subsystem development 

sos Project Summary Report Computer: 10 21-APR-86 

Number of Processes: 20 
Number Of Strategies: 20 
Number of Environments: 20 
Number Of Clusters: 80 
Number of Alternatives: 272 
Number of Actions Defined: 312 
Number of Conditions Defined: 168 

SOS Project Summary Report Computer: 10 28-APR-86 

Number Of Processes: 29 
Number of Strategies: 29 
Number of Environments: 29 
Number of Clusters: 114 
Number of Alternatives: 381 
Number of Actions Defined: 436 
Number of Conditions Defined: 227 

SOS Project Summary Report Computer: 10 05-MAY-86 

Number of Processes: 37 
Number of Strategies: 37 
Number of Environments: 37 
Number of Clusters: 149 
Number of Alternatives: 510 
Number of Actions Defined: 652 
Number of Conditions Defined: 308 

SOS Project Summary Report Computer: 10 26-MAY-86 

Number of Processes: 55 
Number of Strategies: 55 
Number Of Environments: 55 
Number of Clusters: 239 
Number of Alternatives: 817 
Number Of Actions Defined: 1001 
Number Of Conditions Defined: 476 

21 Paper 1003 



Fig. 4: Example routine in original PDP-9 assembler code: 

Mll, JMS NEXTEC 
DAC CB+37 
JMS NEXTEC 
JMS PINSAV 
JMS TRANSM 

Mll .. A, LAC (225600) 
JMS TRANSM 
LAC ( 144) 
JMS WAIT 
JMS ADCVRD 
DAC Mll .. S 
LAC (225604) 
JMS TRANSM 
LAC (224600) 
JMS TRANSM 
LAC (144) 
JMS WAIT 
JMS ADCVRD 
JMS NONEGM 
DAC Mll .. T 
LAC CB+37 
SMA 
JMP .+6 
LAC CB+24 
JMS MPYDIV 
2103 
1750 
DAC Mll .. T 
LAC Mll .. T 
CMA 
TAD Mll .. S 
TAD MASKTB+21 
DAC Mll .. S 
SZA 

/MULTIPLICATION FACTOR 
/SAVE IT 
/MEASUREMENT POINT FTR2 
/SAVE PIN FOR TYPING 
/TRANSMIT FTR2 TO STATION 

/CONNECT ADC TO BUS 8 

/WAIT 10 MS 
/GET VC 

/RELEASE ADC FROM BUS 8 

/CONNECT ADC TO BUS 6 

/WAIT 10 MS 
/GET VX 
/ZERO ANSWER IF NEGATIVE 

/MULTIPLICATION FACTOR 
/RS =l MEG 
/NO 
/VX 
/MULTIPLY VX BY 1091; DIVIDE BY 1000 
/1091 
/1000 
/VX=l.9 VX 
/VX OR VX 

/VC-VX (OR VC-VX) 
/PS VOL. = MEAS. VOL. 
/NO JMP 

LAC 
JMP 
LAC 
AND 
DAC 
LAC 
JMS 
0 

.+3 
(DECIMAL 
Mll .. S+l 
CB+37 
(377777) 
.+3 
CB+24 
MPYDIV 

99999 OCTAL /YES, ANS. OVERFLOW 

Mll .. S, 0 
DAC CB+24 
LAC (224604) 
JMS TRANSM 

Paper 1003 

/MULTIPLICATION FACTOR 
/REMOVE RS=l MEG INDICATOR BIT 

/VX 
/RS = MUL. FACT. X VX/(VC-VX) 
/MULTIPLICATION FACTOR 
/VC-VX 
/STORE ANSWER 

/RELEASE ADC FROM BUS 6 

22 



LAC (Mll .. A+K 
JMS SCCATR 

Mll .. B, JMS PINRLS 
JMS CHFTR2 
JMP ECHAND+l 
JMP Mll+3 

Mll .. T, 0 

/SAVE ADD. AND TYPE RESULT 
/ANSWER OK, RELEASE PIN 
/NEXT EC A CONNECT FTR2 
/NO 
/YES 

23 Paper 1003 



Fig. 5: Environment (data flow) for routine of Fig. 4 

ENV 

233 
233 

233 

233 
233 
233 

233 

233 
233 
233 

233 
233 

ID 

160 
117 

90 

112 
126 
185 

24 

127 
128 
900 

6 
8 

Paper 1003 

I/0 

0 
0 

0 

0 
0 
0 

I 

0 

0 
0 

G/L 

L 
L 

L 

L 
L 
L 

L 

L 
L 

L 

L 
L 

OBJECT DESCRIPTION 

ADC .. 1: XADVRD (CAL) register 
CB+l5: 0 ret.to EXWAIT,10d.-Ml0+7,lld.-Ml 

CB+l6: 

CB+24: 
CB+37: 
CNTWD: 

ERRFLG: 

1 .. A,12d.-Ml2+3,14d.-Ml4+2, 
16d.-Ml6 .. l,20d. -CHKOUT; 

-1 if return address is ECHAND. Fl 
Flag is sent by ECHAND to EXWAIT, 
to be tested by CONTIN 

measurement answer storage 
multiplication factor 
control word for EXEC call; tno 
table number for xcall() 
Set to one when an error is 
encountered 

Mll .. S: A/D voltage read (Ve) for Mll 
Mll .. T: A/D voltage read (Vx) for Mll 

Output buffer for clwrite(p) (p=l 
if dump immediate, p=O if dump 
when buffer is full) 

TRANA: transmit buffer 
WAIT.A: buffer for waiting time of AMT5 

and AMT6 

24 



Fig. 6: Actions and conditions for environment of example process: 

ENV 

233 
233 

233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 

233 
233 
233 

233 

ENV 

233 
233 
233 
233 

ID 

8 
11 

253 
259 
264 
265 5 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
474 

482 
522 
523 

526 

ID 

86 
121 
123 
124 

ACTION DESCRIPTION 

Call TRANST (strategy 88, transmit to station) 
Xcall XWAIT (wait call for AMT5 or AMT6) 
with WAITA 
Call RESULT (strategy 50) 
Store [CB+24] into Mll .. S 
Store 225600 octal in TRAN.A+O 

Store 000144 octal in WAIT.A (10 ms wait) 
Store 225604 octal in TRAN.A+O 
Store 224600 octal in TRAN.A+O 
Clear CB+24 
Store [CB+24] in Mll .. T 
Multiply Mll .. T by 1.091 
Store ( [Mll .. S] - [Mll.. T]) in Mll .. S 
Store 99999 in CB+24 
Set bit 17 of CB+37 to 0 
Store ([CB+24] x [CB+37] I [Mll .. S]) in CB+24 
Store 224604 octal in TRAN.A+O 
Set CB+l5 equal to 11 decimal 
Set [CB+l6] equal to 61 decimal 
(return address is Mll .. B) 
Call Mll .. B (strategy 84) 
Xcall XADVRD with ADC .. l 
Store bits 17 and 0-11 of ADC .. l 
into the same bits of CB+24 
Convert the result of measurement in CB24_ANS 

CONDITION DESCRIPTION 

ERRFLG = 0 (no error) 
[CB+24] < 0 
Bit 17 of CB+37 is 1 
[Mll .. S] = 0 (PS2 voltage =measured voltage) 

25 Paper 1003 



Fig. 7 Strategy (control flow) listing for routine of Fig. 4 

SYSLOG report CFOl 19-MAR-86 

PROGRAM:33 Strategy for AMT6 resistance measurement 

1 AMT6 resistance measurement 

Al Start checking --> 2 

2 Verify polarity of A/D voltage read (Vx) 

AZ Negative voltage --> 3 
A3 Not negative voltage --> 3 

3 Verify multiplication factor 

A4 Resistance Rs is in 1 meg range --> 4 
A5 Otherwise --> 4 

4 Verify A/D voltages read 

A6 PS2 voltage is equal to measured voltage --> 5 
A7 Otherwise --> 5 

5 Verify result 

AS Result ok --> 0 
A9 Result not Ok --> 0 

Paper 1003 26 



Fig. 8: Coded environment for example process: 

ENV 

233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 

ENV 

233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 
233 

ID 

160 
117 

90 
112 
126 
185 

24 
127 
128 
900 

6 
8 

ID 

8 
11 

253 
259 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
474 
482 
522 
523 
526 

OBJECT CODE 

extern long ADCl 
extern int CB15_REP 
extern int CB16_RET 
extern long CB24_ANS 
extern long CB37_MUL 
extern int CNTWD; extern int tno 
extern int ERRFLG 
long MllS_ADV 
long MllT 
extern char OUTBUF[80] 
extern long TRANA[2] 
extern long WAITA 

ACTION CODE 

TRANST() 
CNTWD = 03000; tno = l; xcall() 
RESULT() 
MllS_ADV = CB24_ANS 
TRANA[O] = 0225600L 
WAITA = 0144L 
TRANA[O] = 0225604L 
TRANA[O] = 0224600L 
CB24_ANS = OL 
MllT = CB24_ANS 
MllT = MllT * 1091L I lOOOL 
MllS_ADV = MllS_ADV MllT 
CB24_ANS = 99999L 
CB37_MUL = CB37_MUL & 0377777L 
CB24_ANS = CB24_ANS * CB37_MUL I MllS_ADV 
TRANA[O] = 0224604L 
CB15_REP = 11 
CB16_RET = 61 
MllB() 
CNTWD = 01000; tno = 8; xcall() 
CB24_ANS = ADCl & 0407777L 
cnvflt () 

27 Paper 1003 



ENV 

233 
233 
233 
233 

Paper 1003 

ID 

86 
121 
123 
124 

CONDITION CODE 

ERRF1G == 0 
(CB24_ANS & 04000001) 04000001 
(CB37_MU1 & 04000001) -- 04000001 
MllS ADV -- 01 

28 



Fig. 9: Sample of generated source code in C for example process 

hpc,l,"P033, Mll handler 
#include <stdioh: :libraries> 
mll () 
{ 
extern long TRANA[2] 
extern long WAITA ; 
extern int ERRFLG ; 
extern int CB16_RET 
extern long CB24_ANS ; 
extern int CB15_REP ; 
extern long CB37_MUL 
long MllS_ADV ; 
long MllT ; 
extern long ADCl 
extern int CNTWD; extern int tno 
extern char OUTBUF[80) 
fprintf (stderr,"PRC # 033\n"); 
1001: 

{ 
{ 
fprintf (stderr, "PRC 033 ALT# 1 \n"); 
TRANA[O] = 0225600L 
TRANST () ; 
WAITA = 0144L ; 
CNTWD = 03000; tno = l; xcall() 
CB24_ANS = OL ; 
CNTWD = 01000; tno = 8; xcall() 
CB24_ANS = ADCl & 0407777L ; 

Date: 13-MAR-86"; 

29 Paper 1003 



DESIGN CONSIDERATIONS FOR FOURTH GENERATION 

LANGUAGE DEVELOPMENT 

JONATHAN C. FRENCH AND WILLIAM E. GAINES 

INTRODUCTION 

INDUSTRIAL COMPUTER CORPORATION 
6065 BARFIELD ROAD, SUITE 114 

ATLANTA, GA 30328 

The benefits of computer technology are well known and understood by 
management in industry today. The problem is that today's managers have a 
difficult time responding to the technological advances and changes occurring in 
the computer and software industries. Software costs are rising, while the backlog 
of undeveloped applications continues to increase. Traditional software 
development, utilizing the corporate DP department, is unsuccessful at meeting the 
needs of end users. As the amount of information users must deal with increases, 
timely application solutions are essential to a company's ability to respond to 
changes in the marketplace. In summary, we need a new way to develop computer 
applications that relies on the user's knowledge of an application, rather than on 
programmers who may not know the application as well. This would allow the 
programming staff to catch up with the backlog, and implement the more complex 
systems that are beyond the scope of end user computing. 

With the advent of software automation tools such as Fourth Generation 
Languages, computer applications can be developed faster, easier, and at a much 
lower cost. The goal of a Fourth Generation Language is to automate the software 
development cycle by allowing the end user to develop systems and solve problems 
typically requiring the assistance of a programmer. The development responsibility 
is shifted from the corporate data processing department to the end user, who can 
develop computer applications without having to understand the complexity of his 
computer system. End user computing makes sense because no one is better 
qualified to develop an application than the user who conceived the idea. 

Traditional software development uses Third Generation computer languages 
(3GL), such as Fortran or Cobol, which force the developer to break his problem 
into minute steps that the computer must perform. Conversely, Fourth Generation 
Languages typically require a problem definition, and a description of the way to 
display output, allowing the system to define the step-by-step procedures the 
computer will use. By automating the software development process, many 
advantages can be realized, such as reduced development costs and increased user 
satisfaction with the new applications. 

Paper 1004 



DESIGN OBJECTIVES 

Two major design objectives must be considered in developing a Fourth Generation 
Language (4GL). First, the 4GL should provide an interactive and flexible 
environment that allows the end user to solve problems without needing the 
assistance from the programming staff. Second, the language should serve as a 
"tool" that enables the programmer to develop application specific solutions in a 
fraction of the time required by conventional programming techniques. 

Typically, these design objectives are mutually exclusive, resulting in Fourth 
Generation Languages that are not capable of serving both the end user and the 
software professional. In light of this, a 4GL system model utilizing an "open 
architecture" approach will be presented. The open architecture approach to 4GL 
development embraces the need to satisfy both end users and programmers. When 
using the 4GL, the user will interact with a friendly end user presentation level 
that uses natural language and facilitates problem definition and solution. The 
programmer, on the other hand, will interface with the system thru "hooks" into 
the 4GL internals. At this level the programmer should have access to all features 
and subsystems, allowing him to use the 4GL as an aid in the software 
development process. 

THE "OPEN ARCHITECTURE" 4GL MODEL 

The "open architecture" 4GL model consists of an integration of the four major 
subsystems listed below: 

I) User Interface 

2) Data Acquisition 

3) Language Processing 

4) Application Generation 

The model is successful only if each subsystem has the access levels described 
earlier: end user presentation level and programmer hooks. 

Paper 1004 2 



User Interface Subsystem 

The User Interface Subsystem is extremely important for 4GL success as an end 
user tool. The purpose of the User Interface is to allow the end user to present his 
problem to the system using natural language. The natural language should be 
non-procedural, describing what is to be done rather than how it is done. The 
"human factor" principles incorporated into this level should be extensive, 
providing help, tutorials, and ease-of-use functions. For acceptance by end users, 
the User Interface should be built on a menu-driven forms system which contains a 
screen painter and an automatic form builder. To aid the programmers, there 
should be programmatic access to the forms system allowing on-line transaction 
development without the burden and complexity of having to know escape codes 
and the operation of different terminals. 

Data Acauisition Subsystem 

The purpose of the Data Acquisition Subsystem is to manage database access 
within the 4GL, while shielding the end user from DBMS complexities. The Data 
Acquisition Subsystem is based on a flexible data dictionary which allows both the 
user and programmer to describe how the 4GL can access data items available to 
end users. As data items are entered into the dictionary, this subsystem maintains 
information about the relationships between available data items. This capability 
permits relational database access, even if the underlying files are not a part of a 
relational DBMS. Also, the Data Acquisition Subsystem must be able to pull 
together information from separate file systems or database systems, since the end 
user will not know where the items he is asking for are located. 

Language Processing Subsystem 

The third component of the 4GL model is the Language Processing Subsystem. 
This subsystem permits end users to enter natural language sentences. To accept 
the end user's natural language, the language processor consults a language 
dictionary to verify language elements and grammatical constructs. If the sentence 
is accepted, the language processor translates the non-procedural natural language 
into a command metalanguage. The metalanguage consists of a list of procedural 
commands which describe how the computer will solve the user's problem. In order 
to increase the capabilities of the 4GL, a primary design goal of the Language 
Processing Subsystem is to permit programmers to expand on it by adding new 
language. Also, the end user should be able to customize and personalize the 
language so that it is easier to use. 

3 Paper 1004 



Apnlication Generation Subsystem 

The final piece of the model is the Application Generation Subsystem. This 
component of the model is responsible for translating the command metalanguage 
into executable object code. After the application is generated, the end user should 
be able to run the application or catalog it for later use. Optionally, the 
Application Generator should be capable of providing automatic documentation of 
the application. Also, the Application Generator should provide the means for a 
programmer to modify the "normal" application generation process. Such a feature 
would, for example, permit programmers to invoke modules of their own. 

DESIGN DECISIONS REOUIRED BY THE MODEL 

Two major design decisions have been made which influence the development of a 
4GL under the "open architecture" model. 

First, the system should not be internal to its own database system. Instead, it 
should be able to access m1X. database or data file system merely by "acquiring" a 
description of the access method to the database or data file. This decision allows 
the 4GL to use existing data files without requiring re-entry of all existing data 
elements into the system. 

The second design decision is that the Application Generator should write high 
level language source code in a variety of different languages, such as Fortran, C, 
and Pascal. The code produced should be well documented and commented so that 
a programmer can easily customize or modify it. Also, the 4GL should encourage 
programmer enhancements by allowing language invoked functions and calculated 
data items. 

MODEL DATAFLOW 

Based on the system model and design decisions presented earlier, the 4GL we have 
described must translate natural language into high level source code. In order to 
do this, the Language Processor relates sentences into a set of metalanguage 
commands which form an outline for the software solution to the problem. The 
command language is essentially a super high level language in that one 
metalanguage command corresponds to many 3GL source code lines. To write the 
code necessary to run the application, the Application Generator expands the 
metalanguage list into a source code "shell", and fills in the application specifics 
based on the data items used. The 4GL system must then compile and link the 
newly created program so that the end user may execute it. In summary, the 4GL 
system converts natural language to metalanguage, and then metalanguage into 
3GL source code. 

Paper 1004 4 



AN IMPLEMENTATION OF A FOURTH GENERATION LANGUAGE 

We will now describe a Fourth Generation Language (4GL) system that conforms to 
the model previously described. Our system for a 4GL that is easy for the end user 
to use, as well as versatile enough for a programmer to use, is divided into four 
subsystems. They are the User Interface Subsystem, the Data Acquisition 
Subsystem, the Language Processing Subsystem, and the Application Generation 
Subsystem. 

The 4GL System Overview diagram below encompasses the four subsystems that we 
will be discussing in the remainder of this paper. You will want to refer back to 
this figure as you read through this section. 

r---·-··-· ------------------ -- ---------------·-·------ ------ ----, 
i 

i 4GL SYSTEM OVERVIEW I 
I 

I 

!--------------~ ~ I 

---L-~~~~~a=~ess~------~-- I 

//// ~ ~~~ram~ I 

i ~~J ~=l I 

I_ c~:J~_ ..... _.~~/····~on~J 
The User Interface Subsystem is a menu-driven interface that makes it easy for an 
end user to create solutions to a problem. These solutions can range from entering 
data in a database to generating a report of data. 

The Data Acquisition Subsystem allows the database administrator or programmer 
to enter the structure of the data as well as the list of data items that an end user 
may use in the User Interface Subsystem. This subsystem must contain enough 
protection to prevent the user from accessing restricted data. 

5 Paper 1004 



The Language Processing Subsystem is the natural language interface that the end 
user and programmer use to generate a solution to their specific problem. The 
natural language interface allows the user to enter English-like sentences to 
describe the problem that needs to be solved. , 

The Application Generation Subsystem builds an executable program that will run 
on the system and generate the solution to the user's problem. Optionally, it 
generates actual Third Generation Language (3GL) source code that a programmer 
can later modify. 

USER INTERFACE SUBSYSTEM 

The User Interface Subsystem is the part of the 4GL with which the end user 
actually interfaces. It allows the end user to solve a problem by entering natural 
language sentences. It also has plenty of on-line help for the user whenever the 
next step or operation is not obvious. 

The User Interface also contains the following human factors. 

o The means of establishing contact and signing on the 4GL is simple, natural, 
and obvious. 

o The user needs to know very little about the system itself to get started. 

o The user does not have to remember mnemonics or alien syntax. 

o The user always knows what he needs to do next. 

o All error messages are self explanatory. 

o There is full use of a data dictionary, directory, or encyclopedia. 

o Although the technique for achie.ving user friendliness may seem slow or 
oversimplified, an expert mode is provided which allows the user to use a 
faster, more direct technique when he becomes experienced. 

o The software is self-teaching, with good quality on-line help that can be 
invoked at any point while building the solution to the user's problem. 

The User Interface also maintains database integrity via a protection scheme. In 
addition, it is capable of producing production quality reports, forms, and graphs. 

The User Interface is menu-driven and performs four functions: 

I) It defines a new application program. 

2) It edits an existing application program. 

Paper 1004 6 

i: 



3) It executes previously defined application programs. 

4) It deletes existing application programs. 

Applications generated by the User Interface can be defined as either temporary or 
permanent. The user may generate a temporary application if it is to be used only 
once. This type of application can include reports or inquiries of a database as 
well as one time data entry functions. When the user exits the 4GL system, the 
system will automatically remove any temporary applications that the user defines. 
The user may generate a permanent application if it is to be used more than once. 
When the user leaves the 4GL system, all permanent applications will be saved. 

The 4GL system is also capable of generating two types of application programs. 
The first is a program that uses a database. This type of application program is 
used for data entry into a database, or for generating reports or graphs from 
existing data in a database. The second kind of program is a menu. The menu 
program is used to give the end user a menu-driven interface to his application 
programs. Database programs or other menu programs can be scheduled from a 
menu. 

To prevent the user from accessing and changing database information that he 
should not be using, two methods of protection are provided. Both of these 
security methods are used by the database administrator to control the information 
that the user may access. 

The first method of protection is the implementation of read/write access 
permission for a specific database item or piece of data. By using the read/write 
access flag, the database administrator can control which pieces of data can be 
accessed or written in the database. 

The second method of protection is the use of data relationships to limit the access 
of users. A data relationship specifies the data items (or pieces of data) that a 
particular end user or groups of end users may use. When the end user logs into 
the 4GL system, he must select the data relationship that he wishes to access. This 
immediately limits the database items that he may use. 

The define and edit functions of the User Interface are very similar. They allow 
the user to enter natural language sentences to describe the problem that he wishes 
to solve. 

The sentence entry part of the 4GL system is very easy for the end user to use. At 
the bottom of the sentence entry form, choices for the next possible word are 
listed. Once the end user chooses one of the words, the 4GL system automatically 
updates the list for the next set of possible words. This type of sentence entry is 
designed for the novice user. Once he becomes more familiar with the natural 
language, he can enter a sentence in its entirety rather than a word at a time. 

7 Paper 1004 



Once the user has described his problem, he will generate a form or set of forms 
using the screen painter that describes the layout of the report or data entry form. 
This is performed by moving the cursor around on the terminal screen and pressing 
a function key when the cursor is correctly positioned for the current data item. 

After a program and forms have been generated for a data entry or report 
application, the user has the option of executing it immediately or at a later date. 
The execute function will remember the applications the end user has generated 
during the current 4GL session, and allow him to easily execute any of them. The 
user may also execute applications generated during earlier sessions. 

The last function that the User Interface performs is the deletion of existing 
programs (applications). It will only let the user delete programs that were 
generated with the 4GL system. 

The User Interface allows the programmer to play more of an assistance role in 
developing end user applications. Instead of having to write lengthy software 
programs, the programmer can concentrate on enhancing existing applications and 
programs. He may occasionally have to assist the end user to implement solutions 
that cannot be generated with the 4GL. He may implement these solutions by 
using calculated data items or by providing his own user-defined functions. As a 
last resort, he may also modify the program source code generated by the 4GL 
system. 

The User Interface helps the end user in several ways. He can develop reports, 
data entry forms, and graphs without having to wait for a programmer to catch up 
with the backlog --- a situation that sometimes makes the solution to a problem 
come too late. The end user can also use the 4GL system to prototype a complete 
application system with a few sample programs without having to rely on a 
programmer. 

DAT A ACQUISITION SUBSYSTEM 

The Data Acquisition Subsystem allows the database administrator or programmer 
to enter the information about all of the databases and files that are available on 
the system where the 4GL will be used. It is based on a data dictionary system 
that makes a relational database system out of databases that may or may not be 
relational. 

The data dictionary is divided into several volumes that allow the administrator to 
specify how the data in the databases is to be accessed. The volumes that compose 
the data dictionary are as follows: 

1) Database Types Volume 
2) Database Volume 
3) Data File Volume 
4) Data Item Volume 
5) Data Relationship Volume 
6) Revisions List 

Paper 1004 8 



The figure below illustrates the Data Dictionary Volumes and their relationship to 
the Data Dictionary Maintenance function. 

--, 
4GL DATA DICTIONARY VOLUMES I 

-------=-:::! 
Database Ty__Pes I 

Databases~~ Data Files 
/ Data Items 

----·--~-f / Data Relationships Data - ----
Dictionary , _ _ _ _r~-=:- ---:::-i 

Maintenance ',,,~-- ~vi~~~~ 

',,'{Yun_ctio_r:i_~ 

I 
I 

-··-----~-------------··-------------~ 

Data Base Tynes Volume 

The database types volume contains entries to indicate the types of databases that 
exist on the user's system. Examples of these are flat file databases, IMAGE 
databases, and any of the relational DBMS's that are available. For each database 
type there is a set of generic database access routines that will access the type of 
database specified. These routines are provided with the fourth generation 
product, but can be added to by a programmer when a new type of database is 
needed for which there are no supported generic access routines. 

Database Volume 

Once the database types volume has been given the information about all of the 
database types, information may be entered in the database volume. The database 
volume contains the names of all of the databases on the user's system. For each 
database, the administrator must enter a database reference name, where to find 
the database, and a database type. By entering the database type, the 
administrator has given the 4GL system the information needed to access the 
specified database. 

9 Paper 1004 



Data File Volume 

After the administrator has entered the information about the databases on the 
system, he may enter the information about the files. The data files volume 
contains the information necessary to access the different files on the system. For 
each file entry, the administrator must enter a data file reference for the file, the 
file name, and a database reference. By specifying the database reference, the 
administrator has linked the data file to a database on the system. 

Data Item Volume 

After the administrator has entered the information about a data file, he enters 
information about each individual piece of data (data item) that will be accessed. 
Two types of data items are supported. The first type is one that resides 
somewhere in a data file. The second type is one which is calculated and does not 
reside in a file. 

File Resident Data Item 

For each individual data item that resides in a file, the administrator enters a data 
item reference name, the actual data item name, a "picture" of how the item will 
look on a form or report, the highest and lowest acceptable input value for 
numbers, and a list of all of the file references where the data item resides. The 
data item "picture" may need further explanation. This is a COBOL-like picture 
which specifies how the data item will look on a form or report. For example, the 
picture that might be used for a social security number data item is as follows: 

NNN-NN-NNNN 

The "N" in the picture indicates that the data item is a numeric data item with 9 
data positions (9 ASCII characters). The "-" represents a character that will be 
placed on the form or report to divide pieces of the data item. Almost any 
character (even a space) can be used to divide a picture. 

The last step needed to set up the data items that reside in files is the entry of the 
data file references that each data item resides in. Along with the data file 
reference, a read/write indicator will be specified, and whether the data item is to 
be a key path in the specified file. The read/write indicator helps limit access to a 
data item if necessary. The key path helps the 4GL make a better choice at how it 
should read the files that are required. 

Paper 1004 10 



Calculated Data Item 

The calculated data item requires basically the same information as the data item 
that resides in a file. The difference is that an equation is given for it instead of 
a list of data file references. The equation may contain other previously defined 
data items, arithmetic operators, or functions. The previously defined data items 
may be either data items in files or other calculated data items. The functions 
that may be used in the calculations are either provided by the 4GL or may be 
added by the programming staff. 

By allowing a programmer to enhance the end user language via calculated data 
items and functions, site-specific enhancements can be made to the 4GL. Using 
functions to make enhancements keeps the programmer from modifying 4GL 
generated source code that cannot be reproduced when the end user needs changes 
made. When the enhancements are put in a function, the end user can change his 
problem without worrying about whether the site-specific changes will be 
remembered --- they always will. 

Data Relationship Volume 

Once the database administrator has entered the information about data items, he 
may set up the data relationships that will be used to control user access to 
individual data items. Inside the data relationships volume, the administrator 
gives a data relationship reference name and then a complete list of all data items 
that the user of the data relationship can use. An end user using a particular data 
relationship, then, does not have to worry about which files are required for what 
data items. Only if a data item resides in more than one file will the end user be 
required to select the file of his choice. The lack of files helps break down the 
access barriers and allows the database administrator to make a relational database 
out of databases or files that may not be relational. 

Revisions List 

One of the last parts of the Data Acquisition Subsystem, and certainly one of the 
most important, is the revisions list. The revisions list is a file which contains a 
list of all of the changes that have been made in the data dictionary (excluding 
new entries in any of the data dictionary volumes). The revisions list is very 
useful because it recreates all of the programs that need to be changed due to a 
data dictionary change. One reason that a program should be recreated is that the 
byte position of a data item has changed in one of the data files. Another reason 
might be that a data file has been changed to have a shorter or longer record 
length. The program recreation process is either performed automatically at 
certain intervals, or on demand by the user. 

The Data Acquisition Subsystem allows the programmer to focus more on the 
apolication that he is providing rather than the implementation of the application. 
This is because all of the tedious parts of programming have been removed. For 
example, opening and closing data files, formatting the report, and accessing the 
database are functions that the 4GL can automate for the programmer. 

11 Paper 1004 



The Data Acquisition Subsystem helps the database administrator because he does 
not have to specify how to access data in different files. This eliminates the 
problem of some 4GL systems that require the database administrator to specify 
the links between the different data files that will be used by the end user. This 
4GL system will automatically generate that information as it is needed. 

LANGUAGE PROCESSING SUBSYSTEM 

The Language Processing Subsystem is the natural language interface that the end 
user or programmer uses to specify the solution to his problem. The natural 
language interface is based on English-structured sentences that the end user enters 
into the 4GL system. 

Consider the following example. 

PRINT REPORT OF MINOR REPAIRS FOR TERMINALS OF TYPE 
"TOUCHSCREEN". 

The breakdown of this sentence does not adhere to strict English grammar, but the 
natural language interface interprets it as follows: 

VERB: print report 
NOUN: repairs 
DESCRIBING ADJECTIVE: minor 
LIMITING ADJECTIVE: terminals of type 
CONJUNCTION: for 
NULL WORD: of 
CONST ANT: "TOUCHSCREEN" 

The natural language interface describes the individual pieces as follows: 

1) Verb - The action statement in a sentence. In our natural language, the verb 
must always be the first word in a sentence. 

2) Noun - The object of the verb (the language allows more than one side-by-side). 

3) Describing Adjective - Precedes the nouns and describes the scope of the nouns. 

4) Limiting Adjective - This adjective phrase imposes some limiting constraints on 
the sentence. Limiting adjectives follow the noun. 

5) Conjunction - A joiner of limiting adjectives. 

6) Null Word - A word that is ignored by the natural language. Null words help 
to make the language more natural to the end user. 

7) Constant - Fills the place of a data item with an actual value. 

Paper 1004 12 



Please note that the term adjective is used very loosely in our natural language 
description. The definition implies a describer or modifier. Further, no 
distinction is made between English language adverbs and adjectives since both 
help describe some action in the natural language. 

Also note that when we describe a word in the natural language, it can be a single 
word or a phrase of words depending on how the language is entered. In the 
example sentence, "PRINT REPORT" is considered one word in the natural 
language. A discussion about entering the natural language will come later. 

Now that the components of the language have been described, we can show how 
the natural language is actually pieced together. Another data dictionary (called 
the language dictionary) is used to hold the natural language for the 4GL system. 
This permits the easy addition of natural language. Additions can be made by the 
4GL supplier as well as the programming staff of the company using it. Additions 
to the language that have been added by a firm using the 4GL are always used 
before the language supplied with the product. This allows the meaning of the 
supplied language to be changed if necessary. 

r·-·----------------------------------------------1 

4GL LANGUAGE DICTIONARY 

Verbs I Synonyms ------, -Q------~ 
Adjectives r Language Family 

Macro Name I 
Number of Nouns I 

Type of Nouns ! 

[
--·--- ----------, 

_____________ J 

I 

I 

.____ _____________ _ __ _J 

13 Paper 1004 



There is an entry in the language dictionary for each word that is available to the 
end user. Remember, a word can be a phrase. Each word may also have a number 
of synonyms. For example, one end user may prefer to enter the words "PRINT 
REPORT" to get his report, while another user may prefer "SHOW ME". Each 
synonym has a language flag associated with it so that if a user prefers to use 
language other than English, he may have it specified in his user accounting 
information for logging onto the 4GL system, and the 4GL system will 
automatically only give him choices in the language specified. 

For each word in the language dictionary, there is also a macro directive 
(metalanguage command) associated with it. The 4GL system uses the macro 
directive to indicate what type of programming language source code will be used 1 ·· 

to perform the function necessary for the word. The macros will be explained in 
more detail when the Application Generation Subsystem is described. 

Each word in the dictionary may specify that a noun or nouns follow it. These 
nouns can either be data items from the language dictionary, or constants. The 
programmer that sets up the language has the choice of whether data items, 
constants, or both are allowed. An example of this is: 

SELECT USERS 

SELECT is the word (verb) in the language dictionary and USERS is a noun (data 
item) in the data dictionary. In the language dictionary, the word SELECT would 
specify that it allows one noun to follow it that is a data item. 

Another example is: 

DISPLAY USER "211-01-2322" 

In this example, DISPLAY is the word (verb) in the language dictionary, USER is 
a noun (data item) in the data dictionary, and "211-01-2322" is a constant. In the 
language dictionary, the word DISPLAY would specify that it allows two nouns to 
follow it, one of which is a data item, and the other a constant. 

For each word in the language dictionary, there is also a list of describing 
adjectives that the natural language will accept prior to the noun in a sentence. 
These describing adjectives have an entry in the language dictionary just like any 
other word. An example using a describing adjective is: 

PRINT USER SELECTED TOYS. 

In this sentence, PRINT is the verb, USER SELECTED is the describing adjective, 
TOYS is the noun. In this example, USER SELECTED refers to the process of 
querying the end user for a TOY prior to printing all of the data about it. 

Paper 1004 14 



With each word in the language dictionary, a set of limiting adjectives may also be 
specified. The limiting adjectives are used to limit the scope of the verb. They 
also tie the words in a sentence together. When the natural language sentence 
processor is evaluating a word in the sentence, it knows what the next word may 
be by checking the limiting adjectives. When it finds a correct limiting adjective, 
it proceeds through the sentence and begins processing the limiting adjective as if 
it were the beginning of the sentence. An example of using a limiting adjective is: 

PRINT TOYS WITH MANUFACTURE DATE GREATER THAN "12-01-86". 

In this sentence, WITH and GREATER THAN are limiting adjectives. When the 
language processing system is interpreting the sentence, it divides the sentence into 
the following pieces. 

1) PRINT TOYS 

2) WITH MANUFACTURE DATE 

3) GREATER THAN "12-01-86" 

The last piece of information that can be entered in the language dictionary is 
used only for verbs (the action statement and first word in a natural language 
sentence). It is a list of all of the verbs that may start the sentence following the 
current one. This allows the language to proceed in a manner that keeps the end 
user from typing in sentences that are not related. 

This method of language construction helps the programmer by redefining part of 
his job. Since each word in a sentence is related to a macro, it is the programmer's 
responsibility to code these macros. When the programmer writes these software 
macros, he is solving a particular problem in general without regards to the 
database or data file that he will need to access. While it may take twice as long 
to implement software in this form, the resulting piece of software may be used 
over and over again by the 4GL system without any modification. The source code 
has already been debugged once and should never have to be done again. In the 
long run, the programmer spends less time on user needs. 

APPLICATION GENERATION SUBSYSTEM 

The Application Generation Subsystem is the part of the 4GL system that actually 
converts natural language sentences to an executable software program. Three 
translations occur during this process. First, the natural language sentences are 
converted to an internal metalanguage. Second, the internal metalanguage is 
converted to a third generation software language. Finally, the computer system's 
compiler and linker are used to convert the 3GL software code to an executable 
program on the end user's computer. 

15 Paper 1004 



The diagram below illustrates the relationship of these translations. 

----·· -··-- --·-·--·---·----------, 

APPLICATION GENERATION i 

Se-~ten~-e-s--1 

Verbs, Adject~~-'~~ 

-----------~--~~ 

Lan~uage 
Dictionary 

Compile 
Link 

!screen l 
LJ:_ainter_J 

~ 
arms .J 
-~ 

--------- ---------·-- ! 

·--..----- I I 4GL App~catio~ I 
~-----··----·-·---·--·-_J 

The first phase of the translation is to convert natural language sentences to a 
series of macro directives. These directives are obtained by the language processor 
when it scans the sentences that have been entered by the end user. Since each 
word in the language dictionary corresponds to a macro, the macro name is used 
along with any data items that the end user has specified to generate a macro 
directive. The following example illustrates how a sentence is translated into 
macro language. 

SELECT TOYS WITH MANUFACTURE DATE EARLIER THAN "12-01-86". 

The macro directives generated for the sentence would be as follows: 

SELECT,TOY 
IF ,MANUF ACTUREDA TE 
LESS-THAN," 12-01-86" 
THEN 

The nouns have been compressed to remove blanks from their name. Also, the 
macro directives for some of the language are different from the natural language. 
For example, the natural language word WITH generates a macro directive named 
IF. 

Paper 1004 16 



In order for the next phase of translation to be performed, a file must exist with 
3GL source code for each macro directive that has been used. The 3GL source 
code that is in the macros are well commented and use standard portable code. 
The code also uses generic database access calls to allow a programmer to add a 
new kind of database at a later time. Database and file specifics are always 
gathered at run time to allow for data dictionary changes. 

The last phase of translation is from 3GL code to an executable program. This is 
performed by scheduling the system's compiler and linker if necessary. 

One of the nice things about this type of three phase translation is that the output 
of the first two phases is optionally left for the programmer to modify. He may 
modify the macro directives from the first phase of translation and change the 
form of the resulting program. He may also modify the commented 3GL source 
code that is output from the second phase of translation. 

Once again, the use of the macros allows the programmer to develop code once 
using generic database access calls that can be used over and over again without 
any enhancements. It also frees him to further extend the natural language with 
other macros or write 3GL source code that cannot be generated from a 4GL 
system. 

CONCLUSION 

The 4GL model we have presented can serve both the end user and the 
programmer. Our 4GL implementation provides a powerful, easy to use 
applications development facility for end users. This 4GL product is capable of 
reducing DP costs, while increasing end user satisfaction levels as their software 
needs are met in a timely manner. This implementation serves the programmer 
equally well as an aid to development, prototyping, and documentation. It even 
increases programmer job satisfaction by eliminating the tedious development 
required to generate end user reports and on-line applications. 

In future times, software development will rely heavily on software automation 
with the 4GL. If implemented as we have described, not only can the 4GL 
redefine the programmer's job by placing him in a role that better utilizes his 
technical skills, but also the end user can become a central part of the application 
development process. 

17 Paper 1004 





Introduction 

A Modular Integration of Factory Cells 

Robert C. Combs 
C & L Systems 

1250 E. Ridgewood Ave 
Ridgewood, NJ 07450 

The need for programmers continues to rise and the supply of available 
talent continues to fall behind that growing need. This coupled with the 
increasing expense of software development has created a thirst for 
standardized software. But as the problem of "customized" applications 
continues to wane, there are solutions. One approach to this dilemma is 
to utilize standard modules which can be arranged in many different 
configurations. With a modular approach, a large amount of the 
application can be implemented with standard packages, using custom 
programs to complete the total system. 

This paper will discuss a modular approach to factory cell data 
acquisition and various implementations that can and have been achieved 
with this approach. First the factory cell will be defined with 
identification of the goals desired from its' automation. The idea of a 
modular design approach will be presented, detailing the various modules 
and their functional abilities. The utility of these modules will be 
examined by exploring a few actual and possible implementations. 

1. Definition of Factory Cell 

Many are already familiar with the term "factory cell". To others, it 
might be known as a workstation, unit, pilot unit, test cell, or test 
stand. For the purposes of our discussions, these are all equivalent. 

The factory cell is a definable 
be treated as a separate entity. 
such as temperatures, pressures, 
Signals may also be going to the 
parameters. 

piece of automation or machinery that can 
There are signals coming from the cell, 

flow rates, voltages, power usage, etc. 
factory cell for control of some of these 

The cell is 
performing 
include part 
testing. 

usually self-contained unto itself 
some specific task or function. 

manufacturing, mixing/processing 

and is responsible for 
Typical functions might 

measuring, evaluating, or 

Factory cell automation is 
Manufacturing (CIM). Without 

the 
well 

first level of Computer Integrated 
structured cell control, an integrated 

Paper 1005 



facility cannot be implemented with any measure of success. Therefore, 
the factory cell automation should be well planned. 

2. Identification of Cell Goals 

Before any design can be 
Without clear goals, any 
success. 

effective, 
design will 

it must have clearly defined goals. 
do, but never with any measurable 

The cell's purpose may have any of several different purposes for being. 
Its mission may be to produce a product, to perform quality control 
checks, to test a new production technique, or to run research 
experiments. Determining the cell's mission will help define some of the 
other requirements. 

Questions that must be answered before beginning the design are: 

What types of signals must be acquired? Any analytical results? 

What are the control requirements? 

What types of data storage/archiving are needed? 

Is there a host computer? How is data sent to it? 

These types of questions will help define the goals of the factory cell 
and its data needs. 

3. Modular Design 

A modular design is a design that makes use of smaller building blocks to 
quickly implement a variety of data acquisition and control strategies. 
The advantages of using standard modules include fast system 
implementations, reduced maintenance problems, standard operation 
techniques, and compatible data structures. The standard modules or 
bulding blocks that will be used in this paper are identified below. 

DATA ACQUISITION 
The Data Acquisition module scans 
engineering units. It performs 
trends signals. 

CALCULATION & CONTROL 

the signals and converts all values to 
alarm checking, processes readings, and 

The Calculation & Control module provides the ability to perform 
computations with the measured signals and to execute standard PID control 
functions. Outputs are generated by this module which are used to achieve 
the desired continuous control of the cell. 

Paper 1005 2 



HISTORIAN 
The Historian module stores data and events into files for later access. 
Generally these files are circular so that data is automatically thrown 
away after some period of time. There can be data compression techniques 
used within this module to conserve disc space. 

DATA BASE INTERFACE 
Long term archiving of data is 
into a data base using a Data 
actually be used to transmit the 
storing in a data base. 

accomplished by storing the historical data 
Base Interface module. This module may 
information to another system rather than 

GRAPHICS 
A Graphics module allows color graphic displays 
constructed. The purpose of this module is to 
interfaces to be easily and efficiently generated. 
periodically updated in real-time when used. 

BATCH 

of the data to be 
allow custom user 

These displays are 

The Batch module provides the ability 
through which the phases of the cell are 
includes either event driven, time driven, 
achieve total flexibility. 

to define the sequential steps 
to be processed. This sequencing 

or a combination of the two to 

LABORATORY ACQUISITION 
Results from the analytical equipment, whether process or analytical GCs, 
etc., are processed into the data base by the Lab Acquisition module. The 
results are time correlated into the data base with the data from the Data 
Acquisition module so that a unified report can be generated from all 
pertinent data. 

These modules are interconnected to solve various cell control problems. 

It is important to view cell automation design from a layered aspect. The 
initial layer, the most basic layer, is the data acquisition. 

The next layer is the continuous 
values from the data acquisition 
On-line computations are also done 
algorithms. 

control. Continuous control takes the 
layer and computes the control outputs. 
in this layer, as are adaptive control 

The sequential control layer sits over the continuous layer. Sequential 
control monitors the acquired and computed data and makes changes in 
continuous control parameters based on the sequential logic. 

3 Paper 1005 



The management layer determines what tasks the sequential layer should L~ 
executing and downloads appropriate orders. This layer would typically be 
used to select the product to be manufacutered or the type of testing to 
perform. This layer is not discussed in this paper. 

4. Case Examples 

To illustrate the use of this modularity, let's examine a couple of 
different configurations. 

CASE I 

The first case that should be examined, is a basic design that really only 
requires one or two modules. In this application, a cell is to be 
monitored, looking for conditions out of limits. The system's sole 
purpose is to watch for production problems and hazardous operational 
conditions. 

This design consists only of the Data Acquisition module. The Data 
Acquisition module performs the measurement scanning and the alarm 
processing. An annunciator can be used so that alarms trip an audiable 
warning. In the case of special shutdown errors, the alarms can schedule 
a user written program to stop the cell. The Graphics module can be used 
to augment the operator displays, showing error conditions in yellow or 
red colors for quick problem assessment. 

CASE II 

This case is a straight forward 
process, and send the results 
operators must be able to review 
last 16 hours worth of data. The 
to be placed into a file by shift. 
the link at the require time. 

system that is to measure and control a 
to another host computer. The local 
the current and prior shift's data; the 
data to be sent to the host computer is 

The host will read the shift file over 

In this design, only three of the modules are needed. The Data 
Acquisition and Calculation & Control modules will perform the fundamental 
operation of the process. The Historian will take the data and place it 
into files, changing the filename at the end of each shift. There are 
three different filenames used; one for each shift. As the Historian 
steps to the next file, the host computer will fetch the previous file. 
Naturally there is a preset time delay between when a shift ends and when 
the host comes looking for that file. This ensures that the data file is 
complete. 

Paper 1005 4 



CASE III 

In this case, the system must not only gather cell data and perform 
control, but also pick up analytical results and report on the total 
aggregate data. The system is wholly self-contained and must therefore 
archive the data in a data base for future reports and comparisons. 

This design utilizes most of the modules. The Data Acquisition and 
Calculation & Control modules generate the data which the Historian places 
in a circular file. The Data Base Interface module places that data into 
the IMAGE data base for permanent storage. Analytical results from gas 
chromatographs, etc., are picked up by the Laboratory Acquisisition module 
and placed in user files. The results might normally be stored directly 
into the data base, but in this system the user needs to perform custom 
processing of the results before saving them. Once the user's processing 
is complete, the user file of results are stored into the IMAGE data base. 
The stored readings are time correlated with the measured data, using the 
injection time of the sample. In this way the analytical results will 
reflect correctly with the process state. 

The Report module allows reports from the combined data base information, 
and optionally a graphic report may be obtained. 

One little incidental the system has is a data base Cleanser module. This 
module can be configured to either clean specific data out of the data 
base upon interactive operator commands, or to periodically purge old 
data. 

5. Summary 

As has been shown, the modular approach to data acquisition system design 
can affectively be applied. The results are solid systems with a 
conformity of software that makes maintenance of the software viable. 

The case examples, although disguised, are real proven implementations of 
systems that my company has installed. The modular concept is field 
tested and proven. 

The advantages of standardized modules, to reiterate, are 
* fast system implementations 
* reduced maintenance problems 
* standard operation techniques 
* compatible data structures 

These advantages result in labor and 
maintenance, easy training and shifting 
integration of cell control into the 
management's point of view, that is what 

5 

time savings, reduced costs for 
of personnel, and easier, quicker 

manufacturing network. And from 
its all about. 

Paper 1005 



cell I/O 

cell I/O 

cell I/O 

analytical 
results 

Paper 1005 

------31,DATA ACQ 

~DATA ACQ 

HISTORIAN 

_, 
7'0ATA ACQ 

CALC LOOP 

_,.. 
"jLAB ACQ 

CASE I 

~HISTORIAN --S- host 
computer 

CASE II 

_,., 
~ PATA BASE ~ - 7 HISTORIAN REPORTS 

-II' 

_,,, 
...,.. user prog 

CASE III 

6 



Introduction 

CREATING CUSTO'lllZED QUALITY CONTROL CHARTS 

Cal Bonine 
St a twa re , I n c • 

P.O. Box 510881 
Salt Lake City, UT 84151 

Since many production facilities are turning to automation whenever 
practical, quality control (QC) programs must also evolve to keep pace 
with the dynamic forms and quantity of data as well as the changing 
types of analyses. in contrast to a program that only accepts data in 
one form and performs a canned analysis, a flexible, customizable 
program offers many benefits. 

A flexible analysis system should: 

Be easy to use 
Al low different forms of data 
Provide extensive data management abi Ii ties 
Be easily customizable 
Al low the user to extend the system 

With these goals in mind, the packages STAT80 and GRAFIT* have joined 
forces to provide HP 1000 users with a complete set of procedures to 
produce professional, presentation quality QC charts. 

I n t h i s comb i n a t i on ST AT 80 pr o v i de s t he u s e r i n t e r face , s t a t i s t i ca I 
computations and acts as a driver for .GRAFIT which provides the graphics 
output. Since GRAFIT is a separate package, one can interactively 
customize the QC charts by adding graph annotation and many other 
advanced functions which GRAFIT supports. 

* STAT80, a data analysis system, is a copyright program of Statware, 
Inc. (801/521-9309). 

GRAFIT, a technically-oriented graph generation package, is a 
copyright program of Graphicus (408/246-9530). 

Paper 1006 



Ease of use 

For a program to be useful it must be easy to use. 

Since the syntax of all STAT80 conmands is the same (including user 
created procedures, which will be explained later), the program is both 
easy to use and quick to learn. 

The basic syntax is of the form: 

conmand-name var i ab I e ( s) /option(s) 

Al I "conmand names" may be viewed by entering HELP COWv\t\NDS or for 
STAT80 1 s QC charts in particular, HELP QC. The HELP system for a 
particular conmand will describe the conmand and each of its options. 
"Variable(s)" refers to columns of numbers that are Identified as Vl for 
the first column, V2 for the second column, etc. (Note that a variable 
may also be labeled and then this label used for reference.) "Options" 
permit the user to give additional information that is not normally 
required by the conmand. Options form one basis for customization and 
will be shown shortly. 

As an example of the ease of use of these charts, the single STAT80 
conmand, XRCHART GRF ALL, wi II produce the results displayed in Figure 1 
(assuming that the appropriate data are in STAT80 1 s workspace). 

Paper 1006 2 



1.569 

1.557 

1.545 

1.532 

1.52 

Ix 1.507 

1.495 

1.482 

1.47 

1.457 

1.445 

.228 

.205 

.182 

.16 

.137 

a:: .114 

.091 

.068 

.046 

.023 

0 

X and R Charts 

-0- SU!19roup ~ 
- Upper Control 
- Central Une 
- Lower Control 

-0- SUbgroup Range. 
- Upper Control 
- Central Une 
- l.ower Control 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Time 

Figure 1 

3 

Jun. 26, 1986 
13:50:48 

Paper 1006 



To help the user when entering comnands, STAT80 provides an in-line help 
facility which is very useful and easy to use. The in-line help may be 
used to display the form of the comnand and also list the options that 
are available. When the user is entering a comnand and would like to be 
reminded of what is required by the comnand, simply enter a question 
mark and press the return key. 

For example, Figure 2 illustrates the use of in-line help for the 
comnand XCHART_GRF. {User input has been underlined.) 

STAT80 Analysis System -- Release 3.00 10-Jun-86 14:17:19 
Copyright (C) 1985 -- Statware, All Rights Reserved 

Ready 
getfile xrchart.wrk 
Retrieving STAT80 file: xrchart.wrk 
Written Mon jun 9, 1986 09:42:45 AM, STAT80 version 3.0 
Variables Vl to V20 read. 
Ready 
xchart grf 1 
xchart_grf 1 <variable list> Variable{s) containing measured data 
Ready 
xchar t gr f vl to v20 1 
xchart_grf vl to v20 7 <variable list> Variable{s) containing measured data 

or one of the following option(s): 

/Axis 
/NSigma 
/STddev 

/Device 
/Rstandard 
/Title 

/Mstandard 
/SAve 

Or a RETURN to execute the comnand. 

Ready 

Figure 2 

/NOexit 
/SIZe 

Thus, STAT80 is easy to use and very helpful. This is particularly true 
for the novice, yet since the in-line help ls brief and instantaneous, 
it also serves as a quick reminder to guide the seasoned user whenever 
necessary. 

Paper 1006 4 



Flexible Data Formats 

A potentially serious drawback for many QC software packages is that 
they can only handle one form of data. This may present problems since 
companies often have different types of machines collecting data. 
Taking this into consideration, STAT80 has the ability to process data 
in a variety of formats. The examples given below read data from files. 
STAT80 also offers three methods of entering data interactively. 

The following data set, called 11 wide.data 11 , was collected on 
20 variables (subgroups) each with 5 observations. The first record 
contains the first set of observations for subgroups 1 to 10, the second 
record contains the first observations for subgroups 11 to 20, and the 
third record contains the second observations for subgroups 1to10, 
etc: 

1.452 1.465 1.538 1.501 1.416 1.581 1.605 1.523 1.563 1.533 
1.512 1.499 1.493 1.475 1.542 1.518 1.458 1.534 1.556 1.387 
1.472 1.451 1.398 1.494 1.493 1.573 1.533 1.446 1.526 1.542 
1.485 1.557 1.542 1.563 1.498 1.519 1.557 1.531 1.519 1.514 
1.517 1.521 1.565 1.544 1.431 1.501 1.513 1.487 1.453 1.442 
1.562 1.501 1.503 1.516 1.447 1.470 1.550 1.485 1.450 1.496 
1.474 1.534 1.555 1.449 1.525 1.460 1.516 1.619 1.513 1.531 
1.526 1.488 1.521 1.492 1.461 1.404 1.550 1.533 1.488 1.543 
1.520 1.468 1.558 1.418 1.460 1.554 1.495 1.617 1.544 1.588 
1.473 1.481 1.518 1.486 1.476 1.508 1.547 1.463 1.538 1.510 

This file may be read and processed using a FORTRAN-like format. Using 
this data set, the following commands result in an X-bar chart: 

FILE wide.data 
FORMAT (10(F5.3,X),/ ,10(F5.3,X)) 
RDFILE 20 VARIABLES WITH 5 CASES /FORMAT 
XCHART GRF Vl to V20 

S i n c e the v a I u es a r e separated by b I an ks , the I RECORDS opt i on on the 
RDFILE command allows the file to be read in a free-field format. This 
results in an even easier set of commands to generate the same chart: 

FILE wide.data 
RDFILE 20 VARIABLES WITH 5 CASES /RECORDS 
XCHART GRF Vl to V20 

5 

2 

Paper 1006 



If the same data were organized as a single column of values in the file 
"long.data" as follows: 

1.452 
1.472 
1. 517 

1.496 
1. 543 
1. 510 

Subgroup 1, observation 1 
Subgroup 1, observation 2 
Subgroup 1, observation 3 

Subgroup 20, observation 3 
Subgroup 20, observation 4 
Subgroup 20, observation 5 

The following commands will use this data set to generate the same 
chart: 

FILE long.data 
RDFILE 1 VARIABLE WITH 100 CASES 
XCHART_GRF Vl /SIZE = 5 

The /SIZE option tel Is STAT80 to use the first 5 observations as one 
subgroup, observations 6 through 10 as the second subgroup, etc. 

Data sets which are organized by using 'grouping' variables to define 
the subgroups may also be processed. In the following example, which 
uses the f i I e "group.data", each of the observations in co I umn one wi 11 
be in the subgroup defined by column two: 

1.452 
1 .465 
1.538 

1. 534 
1.556 
1.387 
1.472 
1 .451 
1. 398 

Paper 1006 

1 
2 
3 

18 
19 
20 

1 
2 
3 

6 



The appropriate conmands, using this data set, to generate the X-bar 
chart given in Figure 3 are: 

FILE group.data 
RDFILE 2 WITH 100 
XCAT_GRF V1 WITH V2 

1.569 

1.557 

1.545 

1.532 

1.52 

1.507 

1.495 

1.482 

1.47 

1.457 

1.445 

x Chart 

---0- Subgroup Means 
-- Upper Control 
-- Central Una 
-- Lower Control 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Time 
~1-

Figure 3 

Data Management 

The abi Ii ty to perform data management is a very important feature of a 
complete QC program. Data management consists of transforming the data, 
r emo v i n g mi s s i n g v a I u e s , comb i n i n g or s p I i t t i n g var i ab I e s , c re a t i n g 
and/or modifying data files, etc. 

STAT80 provides extensive transformation abilities with the LET conmand. 
This conmand furnishes over 120 functions ranging from trigonometry 
calculations and random number generation to a wide variety of 

7 Paper 1006 



statistical functions. 

For example, to change the Celsius data In Vl to Fahrenheit data in V2, 
the following co1T111and may be used: 

LET V2 = Vl * 9 / S + 32 

STAT80 also provides comprehensive missing data handling, not available 
in most QC packages. 

While many programs can only process subgroups with an equal number of 
observations, STAT80 furnishes QC charts that will adjust the limits 
appropriately as shown in Figure 4. 

u Chart 

9.072 
-0- Nonconformltlea/Unit 

8.165 -- Upper Control 
-- Central Une 

7.258 -- Lower Control 

6.351 

5.443 

4.536 

3.629 

2.722 

1.814 

.907 

0 

0 10 20 30 

Time 

Figure 4 

Additional data management co1T111ands allow the user to combine and split 
variables. 

Paper 1006 8 



Data files may be easily combined by STAT80. This may be necessary in 
order to produce a QC chart using both a data fl le created a year ago 
and one created recently. The resulting combined data set may be saved 
for future use. 

STAT80 also provides the capability to merge (add observations), update 
(add variables), match-merge (a relational join), and concatenate data 
sets. 

Customizing 

Many aspects of the QC chart should be al lowed to be adjusted by the 
user. 

For example, the control I imits for al I STAT80 QC charts are placed, by 
default, at the industry-standard plus and minus 3-sigma from the 
central line. Theoretically, this should cover over 99% of the plotted 
points if the process is in control. In some instances this interval is 
too wide and should be narrowed. This may be done very easily by using 
one of the numerous options that the QC procs offer. For example, the 
comman$! XOiART_GRF ALL /NSIGMA = 2.0 will place the limits at +/- 2-

9 Paper 1006 



sigma on the X-bar chart shown in Figure 5. 

1.549 

1.54 

1.532 

1.524 

1.515 

1.507 

1.499 

1.49 

1.482 

1.473 

1.465 

X Chart 

-0- Subgroup Means 
-- Upper Control 
-- Central Line 
-- lower Control 

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 
Time 

Figure 5 

In addition to specifying how far the control limits should be placed 
fr om the cent r a I I i n e , the user may a I so d i ct ate where the cent r a I I i n e 
should be located. 

If the management or engineers provide standard values at which it is 
expected that the process can be controlled, the QC charts may be easily 
customized to reflect these values. For example, if the mean of the 
process is given as 1.515 and the standard deviation is given as 0.05, 
then the relevant comnand is 

XCHART_GRF ALL /NSIGMA = 2.0 /MSTANDARD 1.515 /RSTANDARD = 0.05 

Paper 1006 10 



The results of this conmand are given in Figure 6. 

1.56 

1.55 

1.541 

1.53·1 

1.522 

1.512 

1.503 

1.493 

1.484 

1.474 

1.465 

x Chart 

-0- Subgroup Means 
-- Upper Control 
-- Central Line 
-- Lower Control 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Time 

Figure 6 

This example has illustrated how easily complete control over the limits 
and central line may be exercised. 

Still other options are avai I able that allow the appearance of the chart 
to be customized. These include the /TITLE, /AXIS, and /NOEXIT options. 

The /TITLE option permits the user to specify a title for the chart. 
The title will be on multiple lines if separate strings are specified; 
e.g., /TITLE= "Line One" "Line Two". The strings may also include 
corrmands called instruction strings. Instruction strings allow the user 
to turn on and off different fonts such as block, italic, gothic and 
math (which includes Greek symbols) and also change the character's 
height and vertical placement. 

The /AXIS option allows the user to specify a variable to be used on the 

11 Paper 1006 



X axis of the plot. The label from this variable will be used as the 
label for the X axis and may also include Instruction strings. 

If the previous example is further modified by: 

- Creating a variable (V21) for the X axis with a label "May 1986" 
- Changing the title to "Customized" "QC Chart" 

Then the conmand, whose output is given in Figure 7, becomes: 

XCHART GRF Vl to V20 /NSIGMA = 2.0 /MSTANDARD = 1.515 /RSTANDARD 0.05 
/TITLE= "Customized" "QC Chart" /AXIS = V21 

1.555 

1.546 

1.537 

1.528 

1.519 

1.51 

1.501 

1.492 

1.483 

1.474 

1.465 

Customized 
QC Chart 

-0- Subgroup Means 
-- Upper Control 
-- Central Line 
-- Lower Control 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
May 1986 

Figure 7 

Briefly, the method that the STATSO/GRAFIT interface uses is to have 
STAT SO bu i Id a conmand f i I e for GRAF IT then execute GRAF IT with this 
conmand file. By default, when the graph has been completed, GRAFIT 
exits and returns control to STATSO. However, there are numerous 

Paper 1006 12 



capabilities that GRAF IT has that may be more fully utilized through Its 
interactive mode (which requires a graphics terminal). For example, 

GRAFIT can perform text functions normally found only in word 
processors. Users may easily format, position, and scale graphic 
annotation using powerful text generation capabilities such as 
super/subscripting, underlining, height modification and font selection 
(GRAFIT has 15 fonts). GRAFIT also allows multiple charts on the same 
graph. 

The interactive mode is often used to modify the chart by adding text, 
axes names, arrows and changing colors. A popular use of this mode is 
to mark a point that Is out of bounds and give an explanation for its 
position. This mode is entered by adding the option /NOEXIT to STAT80 1 s 
corrmand. This option is used to keep GRAFIT from returning control to 
STAT80 when its conmand file has finished executing. After the chart 
has been generated, the GRAFIT banner and prompt "G> 11 wi II be displayed 
indicating that GRAFIT is now in interactive mode, 

To enter text onto the chart, fol low these steps: 

Enter the conmand: 

TEXT 1 1 Explanation 1 LOCATE 

"Explanation" is the text to be displayed on the chart. The conmand 
LOCATE results in the locator symbol appearing at the origin. This 
symbol is then moved, using the arrow keys, to the position on the chart 
where the text is to be placed. 

To put a gold frame around the text, enter the conmand: 

TEXT 1 FRM1E COLOR GOLD GO 

This wi 11 cause the chart to be redrawn, including the framed text. 

Drawing an arrow from the text to a particular point on the chart is 
done similarly. 

13 Paper 1006 



Figure 8 illustrates some of the annotation capabilities of GRAFIT. 

1.555 

1.546 

CD 1.537 
L. 
::J 1.528 -~ C' 
CD 1.519 
O.b 
E8 1.51 
CD -
t- ~ 1.501 
c 
CD 1.492 
> 

0 1.483 

1.474 

1.465 

Extensible 

X Chart 
Kiln 1A 

-0- Subgroup Means 
-- Upper Control 
-- Centrol Une 
-- Lower Control 

1 2 3 4 5 6 7 8 9 1011121314151617181920 
May 1986 

Figure 8 

In addition to the existing QC charts, users may also write other 
procedures (proc-s) using STAT80 1 s internal language. This language 
closely resembles the 11 C11 progranming language yet requires no complier 
or linker. Since all source code for the existing QC charts is supplied 
with STATSO, a user may modify any chart to add options, or use it as a 
skeleton for creating a different chart. This allows the creation of 
charts to meet Individual needs. 

Paper 1006 14 

I 



Sunrnary 

The STAT80 and GRAFIT combination provides a QC system that is flexible, 
easy to use, and has extensive data management capabi I ities. The 
procedures to generate the QC charts are easily customized and new 
procedures may be added to the system. 

15 Paper 1006 



I' 



Connection of Black Box Devices 
to the 

HPIOOO A-Series 

Wayne R. Asp 
Hewlett-Packard Company 

2025 W. Larpenteur Avenue 
St. Paul, Minnesota 55113 

INTRODUCTION 

In many HPlOOO A-Series applications, the need arises to connect some non-HP device, 
or black box, to the system. Peripheral devices such as printers, tape drives, and 
terminals, in addition to data acquisition instrumentation and communications 
equipment, might be classified as a black-box, or generic interface device. These 
devices usually communicate with the computer system through either IEEE-488 
(HP-IB), parallel, or serial (RS-232) interfaces. The IEEE-488 (HP-IB) interface is 
fairly well defined by the IEEE standard promoting a good level of compatibility 
between various manufacturer's devices. In contrast, the parallel and serial interfaces 
lack standardization presenting systems integrators with unique problems when using 
devices which require these interfaces. 

This paper describes the parallel interfacing techniques which are available on the 
HP-1000 A-Series from both a hardware and software viewpoint using the standard HP 
supplied I/O Driver. 

The l 2006A Parallel Interface Card 

The 12006A Parallel Interface Card (PIC) is a very flexible interface providing 16 input 
lines, 16 output lines, 4 device control lines, and 4 device status lines. Two additional 
control lines are provided to handshake with the device. The PIC also provides external 
interrupt capability through one status line or one handshake line. Inputs and outputs 
can be performed using either 8 or 16 bits. Automatic byte packing is provided for 8 
bit transfers. The HP data sheet for the PIC is exhibited in Appendix A. 

The 40 data, status, and control lines are hardware configurable to TTL(+5V) or +12V 
operation and software configurable for low-true or high-true sense. This is 
accomplished by toggling bit 4 (SNS) PIC Control Register 31 (see Appendix B). 

Two lines are dedicated to handshaking the data to/from the device. The Device 
Command (DVCMD) line is controlled by the computer and signals that the computer is 
initiating a data transfer. The Device Flag, or Service Request (SRQ) line, is controlled 
by the device and signals the device's completion of the data transfer. When the PIC is 
armed for device interrupt, the device can interrupt by asserting SRQ. 

Four general purpose control lines are provided for computer to device status signaling. 
These lines are set up on each input or output transfer and are constantly driven out to 
the device. 

Paper 1007 



The user can force these lines to a given state via a control request to the driver. The 
driver also has the capability to change line states automatically on read requests or 
when the card is armed for an interrupt. The user can override the driver and force 
these lines to any state for any read/write request. 

Four status lines are provided for device to computer status signaling. These status lines 
can be latched on the PIC on each device SRQ signal or be made dynamically available. 

Two of the status lines can be used by the device to perform special functions. When 
configured, status line 0 can be asserted by the device when requesting interrupt service 
(IRQEN, bit 8, PIC Control Register 31). This bit is normally handled by the driver. 
An input request can be terminated prematurely by the device by asserting status line 1 
if bit 9 (LBYEN) PIC Control Register 31 is set for the input request. To terminate 
input, the device must assert status line 1 before asserting SRQ. 

Device Handshaking 

There are 8 data handshake modes available on the 12006A interface to allow the 
synchronization of data transferred to or from the device. Six control lines can be 
utilized for the data handshaking. Two of these, Device Command (DVCMD) and 
Device Flag, or Service Request (SRQ) are required. The other four general purpose 
control lines can be used to signal the device for specific operations, e.g. input or output 
transfer. 

The DVCMD line is driven by the 12006A card and is used to request the initiation of a 
data transfer with the device. The SRQ line is driven by the device and is used to 
signal completion of the DVCMD request for data transfer. DVCMD may be configured 
for either high-true or low-true operation. Ul Switch 2 configures the DVCMD sense. 
SRQ does not have a sense, but instead is configured using positive and negative going 
edges. Bit 12 (DFS) PIC Control Register 31 controls which edge of Device Flag (SRQ) 
causes the actual SRQ to occur. This is the point at which the data must be valid and/or 
latched signaling the device's completion of the data transfer. 

Full mode and pulsed mode are the two primary modes of handshaking which are 
configurable. In full mode, DVCMD is asserted to initiate a data transfer and remains 
asserted until the device has acknowledged transfer completion by asserting SRQ. This 
is configured by bit 11 (DCL) of PIC Control Register 31 which selects which edge of 
the SRQ signal clears DVCMD. In pulsed mode, DVCMD is asserted for approximately 
227 nanoseconds and then deasserted. The device must then acknowledge the transfer 
by asserting SRQ. Provided that the device can use pulse mode and meet associated 
timing requirements, pulsed mode operation can increase data transfer throughput. Full 
mode or pulsed mode is selected by toggling bit 10 (PL V) in PIC Control Register 31. 

Figures 1 through 4 illustrate the eight handshaking modes which are configurable using 
PLY, DFS, and DCL. The figures shown assume that the 12006A has been configured 
for high-true logic. Times noted do not necessarily reflect the actual proportional time 
for operations. 

Paper 1007 2 

' 
! 



0 

set 
DVCMD 

clear 

SRO 

SRQ 
re.cly 

Data is Valid 

__ ___, '-· --_---_---~--1~~1 

tO t1 t2 t3 t4 

Figure 1: Level Mode Output Handshake 

Data ln1 ---------x Data is Valid 
0 

&et 

DVCMD .__I - -_-- -_-- -~--1~~1 
clear 

SRO 

SRO 
ready 

tO 

. . . . 

t1 t2 t3 t4 

Figure 2: Level Mode Input Handshake 

3 Paper 1007 



1--
Data Out 

0 

set 
DVCMD cleer __ _, 

SRO 

SRO 
ready 

Data is Valid 

l....__ ____ __.I 
r-·---- I I------------: 

. . . . . . . . 

tO t1 t2 t3 t4 t5 

Figure 3: Pulsed Mode Output Handshake 

Data 1~ X ___ o_a_ta_is_V_al_id _____ _ 
0 

aet 
DVCMD 

clear __ _, 

SRO 
SRQ 

ready 

tO 

l.....__ ___ __.I 
r-r-1 1 ------------; 

. . . . . . . . . . . . . . . . . . . . 

t1 t2 t3 t4 t5 

Figure 4: Pulsed Mode Input Handshake 

Paper 1007 4 



Figure 1 illustrates a level mode output handshake. At time tO, the data in the 12006A 
output register is valid and DVCMD is asserted. At tl, the device asserts SRQ. If the 
device has already latched the output data between tO and tl, then DCL should be 
configured for the edge at t1 which will clear DVCMD at t2. In this case, SRQ 
assertion indicates that the transfer is completed. The card is then ready for the next 
data transfer. If the device latches the data between tl and t3, then DCL should be 
configured for the edge at t3 which will clear DVCMD at t4. In this case, SRQ 
deassertion indicates that the card has completed latching the data. 

Figure 2 illustrates a level mode input handshake. At tO, DVCMD is asserted to indicate 
that the 12006A is ready for data. SRQ is asserted by the device at time ti. The 
device begins to hold data valid on the data input lines between ti and t3. At t3, the 
device signals data valid by deasserting SRQ. DCL has been configured for this edge. 
DVCMD is then cleared at t4. Alternately, the device can begin to hold valid data on 
the input lines between tO and tl (not shown), and DCL is configured for the edge at tl. 
In this case, SRQ occurs at tl instead of t3 and DVCMD is cleared at t2. 

DFS and DCL also provide some other possibilities. For instance, DVCMD could be 
cleared at t2, but SRQ will not occur until t3. Thus, DFS and DCL provide for 
maximum flexibility for full mode operation. Care must be exercised that DFS and 
DCL are not configured such the the 12006A is ready for the next transfer before the 
device has completed the previous one. If this happens, unexpected results or hangs 
could occur. 

Figure 3 illustrates the pulsed mode output handshake. The 12006A latches valid data 
on the output data lines and asserts DVCMD to initiate the transfer for approximately 
227 nanoseconds from tO to t2. The device begins to latch the data and asserts SRQ 
somewhere between t1 and t3. The device completes its operation and releases SRQ 
somewhere between t4 and t5. Note that it is possible for the data to be invalid between 
t4 and t5 if DFS selected the edge from tl to t3 for actual SRQ. 

Figure 4 illustrates the pulsed mode input handshake. DVCMD is asserted for about 227 
nanoseconds from tO to t2 to indicate that the 12006A is ready for input. The device 
then outputs valid data on the input data lines. Between tl and t3, the device asserts 
SRQ indicating that the data is valid. DFS selects this edge and the request is 
completed. SRQ is deasserted by the device between t4 and t5. Alternately, the device 
could output valid data after asserting SRQ (not shown) and signal valid data between t4 
and t5 by configuring DFS for that edge of SRQ. 

As can be seen from figures 3 and 4, pulsed mode is capable of faster data transfers 
because the next data transfer can be initiated before the SRQ line has been deasserted 
by the device from the last transfer. This allows the data transfers to be overlapped 
slightly, giving greater throughput. For maximum throughput, the data must be valid 
when SRQ is asserted between tl and t3. 

Card Status 

The 12006A card status is available from PIC Input Status Register 32. This status 
register is loaded on each SRQ assertion, but can be made dynamically available by 
toggling bit 6 (SRM) PIC Control Register 31. The status word includes general purpose 
control line states, status line states from the device, SRQ and DVCMD states, DMA 

5 Paper 1007 



state, and diagnostic information. Status Register 32 is retrieved by the driver after each 
request, and is user accessible, as we will see later. 

Sample Device Configuration 

Let us assume that we have a device which uses all high-true logic and asserts SRQ 
when Tthe device is busy and deasserts SRQ when the device has completed its requested 
action. How should the PIC be configured? 

1. UlS2 open indicating high-true DVCMD sense. 

2. PIC Control Register 31 Configuration: 

• CTLO-CTL3 General Purpose Control Lines. Set to 0. These will be 
controlled from the driver. 

• SNS Sense Signal Select. Set to 1 for high-true logic. 
• ORM Data Register Mode. Set to 1 (almost always). 
• SRM Status Register Mode. Set to 1. Load on SRQ. 
• PL V Pulsed Level Mode. Set to 0 for level mode. 
• DCL Device Command Clear. Set to 0. Same edge as DFS. 
• DFS Device Flag Select. Set to 0. Negative edge SRQ. 
• All other bits set to 0. 

Driver Control of the 12006A Card 

Operating system control of the 12006A card is accomplished through the standard 
interface driver ID.50. Features discussed in this section assume a software revision of 
DSD5.0 or later. Previous revisions will contain only a subset of the features discussed 
here. 

From a programmers viewpoint, the first thing which must be done is to configure the 
Card Control Word, Register 31, to match the device. This is stored in DVT parameter 
word 1 and may be changed at generation time or via a control 40B request. The value 
in DVT parameter 1 is in the same format as documented in the 12006A hardware 
manual for Register 31 (see Appendix B). This will be referred to as the default 
Register 31 value. ID.50 is capable of changing bits in this word before using it. This 
is mainly done for IRQEN and CTL3-CTLO. DVT parameter word 1 will not be 
modified except on a control 40B request. 

The next step of configuration involves setting DVT parameter word 2 bits 0,1, and 2. 
Bit 0 specifies a 16 bit or 8 bit interface (see Appendix C). In our previous example, 
bit 0 would be set to 1 to indicate 8 bit transfer. Bits 1 and 2 work together to 
determine the AUTO bit value for input and output requests. AUTO on input means 
that DVCMD will be asserted after the las~ element has been input. AUTO on output 
means that no SRQ is necessary to begin the transfer. The normal configuration is no 
AUTO on input, and AUTO on output, or both bits set to 0. Bits 3,4, and 5 of DVT 
Parameter word 2 are not used for the 12006A card and should be set to 0. 

General Purpose Control Line Signaling 

Recall that the general purpose control lines provide four computer to device status 
signals. These control lines are set up in PIC Control Register 31 and are constantly 

Paper 1007 6 

I' 
I 

i 



driven out to the device once the register is loaded. ID.50 automatically loads Register 
31 on each I/O request initiation. Also, Register 31 is loaded when arming for an 
asynchronous interrupt, if enabled. 

For a write request, the default Register 31 value is or'ed with the first optional 
parameter of the EXEC write request. Thus, the user may specify any bit, including the 
general purpose control line bits, to be set for that request. If no optional parameter is 
specified, the default Register 31 value is used. 

A read request begins the same as a write request. The default Register 31 value is 
or'ed with the first optional parameter of the EXEC request. Next, the value in bits 11, 
10, 9, and 8 of DVT parameter word 2 are or'ed with the Register 31 value representing 
CTL3, CTL2, CTLl, and CTLO, respectively. The resulting value is then loaded into 
Register 31 on the 12006A. The use of these four bits in DVT parameter word 2 allow 
ID.50 to automatically signal the device for a read versus write request, thus relieving 
the user from using the optional parameter in the EXEC request. The optional 
parameter can still be used if desired. 

When program scheduling, or asynchronous interrupts, have been enabled, the 12006A is 
armed for interrupt following any I/O request. Register 31 is loaded just before the 
card is armed. The Register 31 value loaded is the default value with bits 15, 14, 13 , 
and 12 of DVT parameter word 2 or'ed representing CTL3, CTL2, CTLl, and CTLO 
respectively. This allows ID.50 to signal the device when an asynchronous interrupt has 
been armed on the PIC card. 

If the programmer uses the default Register 31 value and configures bits 15-8 of DVT 
parameter word 2 correctly, the device can examine the control lines and determine what 
type of request is currently pending; read, write, or interrupt. If more sophisticated 
signaling is needed, the user can assert the control lines directly through the optional 
parameter in the EXEC read or write request. 

If the user needs to signal the device independent of an I/O request, ID.50 provides the 
24B control request. In this request, the lower four bits of PRAMl are or'ed with the 
default Register 31 value and the result is loaded on the 12006A. Note that if 
asynchronous interrupts have been enabled, Register 31 will be immediately reloaded by 
the interrupt arming upon driver exit from the control 24b request processing. In this 
instance, the control lines asserted by the control 24B request will remain asserted for 
only 75 microseconds on an A600+. 

An excellent example of control line usage is using the 12006A to communicate with a 
GPIO device. GPIO requires an input/output line(IO) driven by the computer to signal 
the device as to the direction of the data transfer. IO is always high-true and asserted 
only for inputs. In PIC Control Register 31, the interface sense (SNS) would be set for 
high-true. The IO line from the device would be connected to one of the general 
purpose control lines, CTL3 for instance. Bit 3 in the default Register 31 value would 
be set to 0. Bit 11 in DVT parameter word 2 would be set to I. On a read request, 
ID.50 would automatically assert (high) IO(CTL3). For a write request, IO(CTL3) 
would not be asserted (low). This technique allows the device to process both inputs and 
outputs which are signaled automatically from the driver. 

7 Paper 1007 



Device Status 

After completion of each EXEC request to ID.50, the 12006A Status Register 32 (see 
Appendix B) is loaded from the card and saved in DVT word 18. This status 
information can be retrieved in the standard way by making a RMP AR call immediately 
following the EXEC request. 

The status information can be obtained dynamically by executing a control 6B request. 
The lower 4 bits of the status word reflect the actual states of the device status lines. If 
the Status Register Mode (SRM) bit is set to 1 in PIC Control Register 31, then the 
status was loaded into Register 32 on the last assertion of SRQ. Otherwise, the status is 
"transparently latched" or loaded every 227 nanoseconds. 

Program Scheduling 

If the device requires asynchronous service, an interrupt program can be scheduled by 
ID.50 upon receipt of an asynchronous interrupt. Program scheduling is enabled via the 
control 20B request. When the program is scheduled, the interrupted LU, Register 32 
Status, and an optional user parameter word are passed to the program through the run 
string. In VC+ systems, the program must have been AT ACH'ed to the system session 
prior to the control 20B request. For maximum efficiency, the program should 
terminate saving resources, although serially reusable and standard termination are also 
acceptable. Program scheduling is disabled with the control 21B request. 

New at revision DSD5.0 is the ability to enable/disable asynchronous interrupts with a 
control 23B request. Using this request, ID.50 does not "forget" the name of the 
interrupt program to schedule as with the control 21 b request. Thus, the user can enable 
or disable interrupts as required without supplying the program name every time. This 
can even be done from the interrupt program itself as will be shown later. When 
initially setting up scheduling with the control 20B request, a control 23B request is 
unnecessary as the 20B request will enable asynchronous interrupts automatically. 

DVT parameter word 2 bit 6 provides ability to enable/disable the illegal interrupt 
message. An illegal interrupt occurs whenever an unexpected interrupt is received or a 
valid interrupt cannot be processed for some reason. This feature should be enabled for 
most applications. 

If DVCMD and SRQ are tied together at the device to show an immediate completion 
and the DVCMD, SNS, and DFS senses are appropriate, it is possible that the 12006A 
will become interrupt bound upon receipt of an interrupt, thus hanging the entire 
system. This is because the 12006A is rearmed for interrupt upon driver exit, which 
asserts DVCMD, which asserts SRQ (as they are tied together), which generates another 
interrupt. The easiest solution to this problem is not to tie DVCMD and SRQ together 
at the device. If this is not possible, there are two options in ID.50. 

If the device expects to have DVCMD asserted when the PIC is armed, set DVT 
parameter word 2 bit 7. This bit tells the driver to clear the first SRQ it receives after 
DVCMD has been asserted. When the PIC is armed, DVCMD is asserted, SRQ is 
asserted and then cleared. The next assertion of SRQ will generate the interrupt. If the 
device does not have DVCMD and SRQ tied directly together and introduces more than 

Paper 1007 8 



a 6 microsecond delay, the first SRQ will not get cleared and the problem can still 
occur. 

If the device does not expect to have DVCMD asserted on interrupt arming, this can be 
completely disabled by setting bit 0 in DVT parameter word 3. DVCMD will then not 
be asserted when the card is armed. 

Some devices do not assert the SRQ line when interrupting, but have a separate interrupt 
line altogether. To accommodate these devices, the 12006A allows the first status line, 
STO, to be used as the interrupt request line. To enable this feature in ID.50, bit I of 
DVT parameter word 3 should be set. This enables the driver to automatically set the 
IRQEN bit in PIC Control Register 31 when the card is armed. The device can then 
assert either STO or SRQ to request an interrupt. 

Handling Multiple Device Interrupts 

When multiple interrupts occur from a device before the interrupt program can process 
them all, the driver must take some action to handle the additional interrupts. ID.50 has 
three user configurable modes to accomplish this. 

* The additional interrupts can simply be ignored. This is the default configuration of 
ID.50. If the interrupt program is busy and another interrupt occurs, the driver will 
ignore it and print an illegal interrupt message, if enabled (see previous discussion). 

* The interrupt program has full control over interrupt enable/disable. To use this 
feature, bit 2 of DVT parameter word 3 must be set. When an interrupt occurs, ID.50 
schedules the interrupt program and then disables interrupts as in the control 23B 
request. The interrupt program then executes. Upon completion of processing, the 
interrupt program (or some other program or user) must reenable interrupts via a 
control 23B request. In this case, no interrupts are recognized until the enable control 
23B request is executed. 

* The driver has the ability to hold off pending interrupts if the interrupt program is 
busy. To use this feature, bit 3 of DVT parameter word 3 should be set. When an 
interrupt occurs, the interrupt program is scheduled and the 12006A is rearmed. If 
another interrupt occurs before the program has completed processing, the driver 
disarms the card and holds the interrupt until the program has completed. The interrupt 
program is then scheduled for the second interrupt and the card is armed once again. 
The program is checked for completion every 20 milliseconds. 

Should the user inadvertently set both bits 2 and 3 in DVT parameter word 3, ID.50 will 
operate as if only bit 2 was set. For most applications, allowing the driver to hold off 
pending interrupts will suffice. 

Transparent Latched (Dynamic) Reads 

In addition to standard read and writes, ID.50 also supports a special I word read 
scheme called transparently latched reads. By setting bit 9 in the CNTWD word of an 
EXEC read request, the user can transparently read exactly one word or one byte of 
data from the data input lines. When this bit is set, ID.50 configures the 12006A for 
transparent latched mode on the data input register. This means that the device does not 
have to assert SRQ to complete the request as the data is latched every 227 nanoseconds 

9 Paper 1007 



into the data input register. This is particularly useful for devices which do not support 
the full or pulsed handshake methods as their data input lines can read dynamically. 

A Real Life Example 

ABCD Publishing Company has recently purchased a new phototypesetting machine 
which they want to interface to their typeset production system, an A900. The new 
machine comes with either a serial or parallel interface option. ABCD decided to 
purchase the parallel option as they should be able to produce material many times faster 
than with the serial interface. 

The parallel interface on the new machine is specified in the data sheets as follows: 

+12V Device Interface 
8 data input lines 
6 data output lines (status) 
3 command input lines (send commands to machine) 
I Computer Ready line (DVCMD) 
I Device Ready line (SRQ) 
I Interrupt request line 

An analysis of the timing diagrams provided show a throughput of 300Kb/sec utilizing 
full handshake mode. All signals on the interface are low-true, except the Computer 
Ready Line, which is High-True. When the computer ready line is asserted, the 3 
command input lines tell the machine what command is on the data input lines, e.g. 
command, data, status request, etc. The machine then takes the appropriate action and 
strobes Device Ready. Status is always dynamically available on the 6 data output lines. 
The machine requests an interrupt when operator intervention is required to correct 
some problem. 

Configuration of the 12006A includes setting the card for +12V operation and 
fabricating a cable. The cable will route the 8 data input lines to the lower 8 data 
output lines of the 12006A. The 6 data output lines will be connected to the lower 6 
data input lines for the card. The 3 command input lines will be connected to CTL3, 
CTL2, and CTLI. The DVCMD and SRQ lines are connected as indicated. The 
interrupt request line is routed to STO. Lastly, UIS2 is configured for high-true 
operation. 

In the generation, ID.50 is configured as follows: 

IFT,%ID*50,SC:35B 
DVT,,,LU:54,T0:5000,TX:2,DX:3,DP:l:I0040B:l02101B:l3B,DT:50B 

Alternately, if ID.50 was already genned in, the control 40B request could have been 
used: 

CN,54,40b,10040B,102101B,l3B 

Using some preliminary test programs, ABDC verified that this configuration could 
communicate properly to the machine. 

Paper 1007 10 



ABCD then wrote a set of communications programs to handle 1/0 to the machine. A 
short excerpt is shown here: 

c 

subroutine output(command,buffer,length,status) 
integer command, buffer ,length,status 

command = iand( command, l 7B ) ! mask control bits only 

c Output the command and data. The read/write command line 
c (connected to CTL2) is handled automatically. 
c 

call exec(2,54,buffer ,length,command) 
c 
c Now get the status from the status lines transparently. 
c 

call exec(l,IOOOB+54,status,l) 

The next step was to set up the interrupt program. Since the driver was configured to 
hold off pending interrupts, this did· not have to be done in the interrupt program. 
Quite simply, the program needed only to get the current status from the 6 status lines, 
look up an error message, and display it on the terminal. The program then terminates 
saving resources. After writing the program(OPERM) ABCD enabled interrupts as 
follows: 

CN,54,20B,OPERM,O 

When enabled for interrupt, the machine expected to see one of the control lines 
asserted. This line, connected to CTL3, will be automatically handled by the driver. 
Since the DVCMD line was not expected to be asserted in this instance, this feature was 
disabled in the DVT parameters. 

Summary 

The 12006A Parallel Interface card is highly flexible and can be configured to fit most 
black box type devices utilizing this type of interface. The standard driver, ID.50, can 
be configured to handle a wide range of functions. These include automatic device 
signaling on the control lines, asynchronous interrupt with program scheduling, and 
transparently latched data input, in addition to standard reads and writes. Additional 
control signaling is available to the user through the optional EXEC read/write 
parameter. Status information is available to the user either statically or dynamically. 

11 Paper 1007 



Appendix A: 12006A datasheet 

Paper 1007 12 



F,4-:.1 HEWLETT 
~~PACKARD 

The HP 12006A is a multi-purpose interface for 
8 or 16 bit bidirectional data transfers between 
external devices and HP I 000 A-Series 
Computers and Systems. 

Features 

* TTL (+SV) and +12V interface compatibility 
* Separate 16-bit input and output storage 

registers 
* Built-in DMA capability offering maximum 

data rates to 850K words per second on in­
puts and 730K words per second on outputs 

* Wide choice of programmable operating 
modes for easy use with instrumentation 

* 8 or 16-bit operation with hardware packing 
of bytes into or from words 

* Pin compatibility with 125668/C interface 
used in other HP 1000 Computers and 
Systems 

Functional Specifications 

DATA TRANSFER 

Protocol: Transfers either 8 or 16 parallel bits at 
a time. 

Maximum Rate: The following transfer rates 
can be attained in a quiescent RTE-A environ­
ment with the 12006A interface in the highest 
priority position. 

A600+ 
A700 
A900 

l.!!..l!.!!1 
8SOK words/s 
790K words/s 
740K words/s 

,output 
730K words/s 
6SOK words/s 
SOOK words/s 

Typical CPU to CPU transfer rates will be less 
than 50'1. of the output rate. 

High Logic Level Choices: TTL (+5V) is stan­
dard; removal of six resistor packages converts 
the interface to + 12V level. 

HP 1 000 A -Series 

Parallel Interface 

Product Number 1 2006A 

Logic Levels and Circuits: 

Ya. ma•=0.7V 
v .. ina1•6.o.t 
VDM ml"-4.0V 
la. mo••2'70rrlot. (Slnli) 
1 .. mcu:•4'M (SourM) 

lh1n11-11rnA(Sourc.) 
llMlnCl--tfnA(Slnk) 
Vil -x-0.8Y 
VIM mil"l•:ZV 
VI" -•·15V 

2.21( 

TO 
O£YKX 

+12118-E•~-+12V 
75451 TO 

VCll. -••0.7Y 
Voninar•12."' 
v .. rnin-SV 
I • ma••HamA(S".,.) 
l1t1ma1•1.ltnA(S--) 

""""' 

=· >----f}B-
OATA llFllT 

11 l fllO'l•O.lrM (Soun:it) 
It" mo1•40 tA (Sink} 
Vil ma1•0.IY 

"''" ,,.;-zv v111mos-1sv 

Figure I. I 2006A Logic Levels and Circuits 

13 Paper 1007 



Byte Packing: For use with 8-bit devices, such as 
tape readers, tape punches, and some line print­
ers, the interface may be programmed to auto­
matically pack/unpack bytes into/from 16-bit 
computer words. 

Device Command Sense Selection: The interface 
can be set to respond to either high-true or low­
true device command from the interfaced device 
for card/device synchronization. 

Clocked Mode: The parallel interface supports a 
clocked mode in which data transfers to/from 
external devices are synchronized by a flag-to­
device handshake that is clocked by the external 
device. 

Transparent (asynchronous) Mode: The parallel 
interface can also be used to send data to or 
receive data from one or several devices, such as 
indicators or switches, that do not provide or use 
any type of clocking signal. Information is out­
put to the destination device(s) exclusively under 
program control and input information may be 
read at any time. 

CONTROL AND STATUS BIT 
COMMUNICATION 

Control Output: Four control bits may be sent to 
the interfaced device via an output control word 
for use as control, command, or address bits. For 
instance, they can be decoded to address any of 
16 device registers or actions, or to address any 
of 16 devices connected to the same parallel in­
terface. 

Status Input: Four status bits may be received 
from the interfaced device via an input control 
word. 

DIRECT MEMORY ACCESS (DMA) 
OPERATION 

DMA Accessibility: The I 2006A can access 
memory under control of its I/O master proces­
sor, regardless of how many other interfaces in 
the system are also accessing memory via DMA. 

Self Configured, Chained DMA Mode: The 1/0 
master processor on the I 2006A interface sup-

Paper 1007 14 

ports a self configuring mode of operation. fr,· 
this mode, instead of interrupting the central 
processor after a block transfer, the I/O processor 
fetches a new set of control words for the next 
transfer. This process continues as long as 
additional sets of control words are available. 
Chained DMA transfer is particularly useful for 
storing several sequential scans of measurement 
channels from an instrumentation subsystem into 
memory, which can be accomplished without in­
terrupting computations or other processing by 
the central processor. 

CONFIGURATION INFORMATION 

Computer and System Compatibility: The 
I 2006A Parallel Interface is compatible with all 
HP l 000 A-Series Computers and Systems. 

Connector Compatibility: The 12 006A interface 
printed circuit cable connector is pin-compatible 
with the 125668/C Microcircuit Interface, per­
mitting direct substitution of an HP l 000 
A-Series Computer or System with the I 2006A 
interface for an HP I 000 M/E/F-Series with 
125668/C interface. 

Software Support: The 12006A interface is sup­
ported by RTE-A interface driver ID.SO. 

Diagnostic Support: A diagnostic and a test hood 
for the I 2006A interface are provided in the 
2461 2A Diagnostic Package. 

Installation: Set device command sense switch to 
appropriate level; set the interface's 1/0 address 
on the select code switches; turn off power to the 
computer and interfaced device; plug the inter­
face into the computer backplane; connect an 
appropriate cable from the interface to the 
device; and integrate the interface driver into 
the operating system if that has not been ac­
complished previously. 

NOTE: The 1/0 address setting of the interface 
select code switches is independent of the inter­
face card's position in the computer backplane. 



ELECTRICAL SPECIFICATIONS 

Direct Current Requirements: 
Configured as a +SV Device interface: 

+SV at l.94A 
+12V at 179mA 

Configured as a + 12V Device interface: 
+SVat 1.61A 
+12Vat175mA 

PHYSICAL CHARACTERISTICS 

Dimensions: 289mm (11.38 in) long by 172mm 
(6.75in) wide by l.6mm (0.063in) board thick­
ness, with 10.2 mm(0.4in) top-of-board parts 
clearance and 5.lmm (0.2in) beneath-board 
clearance. 

Weight: 370 grams (13oz) with mating 
connector. 

Ordering Information 

The 12006A includes: 
12006-60003 Parallel Interface Card 
5061-3426 48-pin Connector Kit 

12006-90001 Reference Manual 

15 Paper 1007 



Appendix B: 12006A Register Formats 

Paper 1007 16 



CONTROL REGISTER 31 

Register 31 control word is used for both DMA and pro­
grammed 1/0. Its contents usually depend on the type of 
device being used. 

Two control word examples are as follows: 

HP 2895 Paper Tape Punch 

10 9 5 4 2 0 

0 0 0 0 0 0 

HP 2748 Paper Tape Reader 

5 4 3 

0 0 0 0 0 

The definitions of the bits in register 31 are as follows: 

17 

Bits 0 - 3: CTLO through CTL3 

Four general purpose lines that may be used to address, 
control, or handshake with various types of peripheral 
devices. These lines are latched onto the PIC during 
execution of an OTA 31 (global register enabled) and dur­
ing DMA self-configuration, and constantly driven out to 
the peripheral device. 

Bit 4: SNS Sense Select Signal 

O = Inverts all 40 status, data, and control signals trans­
ferred between the PIC and the device (16 output 
data lines, 16 input data lines, four control lines to 
the device, and four status lines from the device). 
Theref6re, this bit, if clear, causes a low true tground> 
device interface. 

= All 40 signals are not inverted, and a high true (posi­
tive) device interface exist.s. 

Bit 5: DRM Data Register Mode 

= Causes data register 30 (input data register, U53 and 
U83 l to be loaded on each DEVICE FLAG signal 
assertion. 

O = Causes data register 30 to act as a transparent latch 
so that 16 bits of data are dynamically available. 

Bit 6: SRM Status Register Mode 

= Causes status register 32 lU54, U64> to be loaded on 
each Device Flag assertion. 

0 = Causes status register 32 to act as a transparent latch 
so that the status is dynamically available. 

Bit 7: TSTL Test Lower Bytes 

Used by diagnostics to test the operation of the lower bytes 
of the control and status registers. 

Bit 8: IRQEN Interrupt Request Enable 

1 = Enables the assertion of STO to set the Interrupt 
Request llRQl line, thereby causing Flag 30. 

O = Disables Interrupt Request from being asserted. 

Bit 9: LBYEN Last Byte Enable 

LBYEN enables early termination of a DMA input 
transfer. 

= Enables the assertion of STl to cause orderly shut­
down of a DMA transfer before word count rollover 
occurs. 

O =Prevents assertion of LSBYT llast byte), DMA con­
tinues until word count rollover occurs. 

When this feature is used, STl should be asserted prior to 
the Device Flag accompanying the last word or byte. The 
assertion of STl will not be recognized until the Device 
Flag Signal is also as~erted. 

Paper 1007 



Bit 10: PLV Pulse Level 

PLV selects between a pulsed or a level Device Command 
signal. 

= Produces a Device Command signal, which is a pulse 
with a duration of one period of SCLK, or approxi­
mately 227 nsec. 

0 = Produces a level mode Device Command. 

The Device Command is asserted upon execution of a STC, 
or automatically during each DMA transfer. The level 
mode Device Command is deasserted on a selected edge of 
Device Flag. Also, while DMA is not running, the level 
mode Device Command signal may be deasserted by clear­
ing the Control flip-flop (executing a CLC 30l. 

Bit 11: DCL Device Command Clear 

DCL selects which edge of Device Flag clears Device 
Command. This bit only has effect ifbit 10 above is clear. 

= Device Command will be cleared on the opposite edge 
of Device Flag than that which caused the SRQ. 

0 = Device Command will be cleared on the same edge of 
Device Flag which caused the assertion of SRQ. 

Bit 12: DFS Device Flag Select 

DFS selects which edge of Device Flag causes the Service 
Request ISRQJ signal. 

1 = Positive-going edge of Device Flag causes SRQ. 

0 = Negative-going edge of Device Flag causes SRQ. 

Bits 13 and 14: Not used (spare l. 

Bit 15: TSTU Test Upper Bytes 

Used by diagnostics to check the operation of the upper 
bytes of the control and status registers. 

INPUT STATUS WORD, 
REGISTER 32 

It is often desirable to interrogate a device as to its status 
in order to obtain such information as the cause of an 
interrupt or the state of a control circuit. Sixteen bits of 
status information are available in a software-accessible 
status word, which may be fetched using an LIA 32 or LIB 
32 with the global register enabled. 

Definitions of the bits in status register 32 IU54, U64l are 
as follows: 

Bits 0 - 3: STO - ST3 Status 0 - 3 

These four bits provide the PIC with status information 
from the device to which it is connected. These bits can be 

Paper 1007 

latched into register 32 on each Device Flag assertion or 
they can be dynamically available, according to the sense 
of bit 6 of register 31 (see paragraph 3-6l. 

Bit 4: DCSS Device Command Sense Switch 

DCSS indicates the setting of the Device Command Sense 
Switch. 

=Active high <high true) Device Command 1DVCMD1 
was selected. 

0 = Active low ilow true l Device Command I DVCMD l 
was selected. 

Bit 5: FLAG 

FLAG reads the logical sense of the Device Flag line. 
Initially, FLAG should be zero. This information is most 
often used for diagnostic purposes. 

Bit 6: DFF Device Command Flip-Flop 

DFF reads the sense of the Device Command flip-flop. This 
bit is most often used for diagnostic purposes. 

Bit 7 TSTL Test Lower Byte 

TSTL is used by diagnostics to check the operation of the 
lower byte of the control (register 31 l and status (register 
32) registers. 

Bits 8 - 11: CNTO - CNT3 

These four bits check the status of general purpose lines 
CNTO through CNT3 of control register 31. CNTO through 
CNT3 of control register 31 are used for address, control, 
or handshake with various types of peripheral devices. 

Bit 12: PACK Pack Bytes 

PACK is the Q output of the PACK flip-flop. 

1 = DMA is executing in byte mode, with two bytes 
packed into each word. 

0 = Either DMA is executing in word mode, or DMA is 
not currently running. 

Bit 13: DMAON- DMA On 

DMAON- is the Q- output of the Dl\IAON flip-flop. 

0 = DlllA is executing. 
1 = DMA is not executing. 

Bit 14: SLV Slave 

0 = PIC is in normal mode of operation. 

= PIC is requesting slave mode (access to the Virtual 
Control Panel code). 

Bit 15: TSTU Test Upper Byte 

TSTU is used by diagnostics to check the operation of the 
upper byte of the control (register 31) and status !register 
32) registers. 

18 



Appendix C: ID.50 DVT Parameters Word Format 

19 Paper 1007 



Format of DVT Parameter Words: 

Word I: Same as PIC Control Register 31 

Word 2: Defined as follows: 

Bit 15: 

Bit 14: 

Bit 13: 

Bit 12: 

Bit 11: 

Bit 10: 

Bit 9: 

Bit 8 : 

Bit 7 : 

Bit 6: 

Bit 5 : 

Bit 4: 

Bit 3: 

Bit 2: 

Bit I : 
Bit 0: 

When set to 1, CNTL3 is asserted when the PIC is armed for 
program scheduling. When set to 0, bit 3 of DVPI is used for 
CNTL3 state. 
When set to l, CNTL2 is asserted when the PIC is armed for program 
scheduling. When set to 0, bit 2 of DVPI is used for CNTL2 state. 
When set to l, CNTLI is asserted when the PIC is armed for program 
scheduling. When set to 0, bit I of DVPI is used for CNTLI state. 
When set to 1, CNTLO is asserted when the PIC is armed for program 
scheduling. When set to 0, bit 0 of DVPI is used for CNTLO state. 
When set to 1, CNTL3 is asserted when the PIC is set up for a read 
request. When set to 0, bit 3 of DVPI is used for CNTL3 state. 
When set to 1, CNTL2 is asserted when the PIC is set up for a read 
request. When set to 0, bit 2 of DVPI is used for CNTL2 state. 
When set to l, CNTLI is asserted when the PIC is set up for a read 
request. When set to 0, bit 1 of DVPl is used for CNTLI state. 
When set to 1, CNTLO is asserted when the PIC is set up for a read 
request. When set to 0, bit 0 of DVPI is used for CNTLO state. 
When set to I, a CLF 30B will be issued to the card after the STC 
30B arms the card for asynch interrupt. User having DVCMD 
connected to FLAG can use this to eliminate continuous interrupts. 
When set to 1, an Illegal Interrupt message will be generated if an 
interrupt occurs and the program to be scheduled is busy. When set 
to 0, the interrupt will be ignored. 
DMA Completion interrupts are inhibited on write requests when the 
bit is set. 
On driver completion exit, do not CLC 30b,C and do not change the 
card control word if arming for an asynch interrupt when set. 
Ignore optional parameter on read/write requests and place the EXEL 
code (1/2) into the card control register, or'ed with Driver Parameter 
I when bit is set. 
When set, toggle the DMA AUTO bit in register 21 after 
processing bit I (AUTO on input) 
Set to I if the DMA Auto bit is to be asserted on input. 
Set to 1 for 8 bit transfers, set to 0 for 16 bit transfers. 

Bit I and Bit 2 can be used together to select the AUTO feature for both read 
and write requests according to the following table. 

Paper 1007 20 



AUTO States for Bits 1 and 2: 

Auto on Auto on 
Bit 2 Bit 1 read write ---

0 0 off on 

0 on on 

0 on off 

off off 

Word 3: Defined as follows: 

Bits 15-3: Undefined at present. 

Bit 3: Driver will hold off pending interrupt if program is not dormant if 
set. When program goes dormant, it is scheduled and the card is 
armed for interrupts again. (Note: in this case, timeouts are used. 
Request timeouts take precedence over pending interrupt timeouts.) 

Bit 2: Driver will disable interrupts upon scheduling interrupt program. 
Program must re-enable interrupts when completed. 

Bit 1: When set, enable IRQEN in register 30 (STO interrupts) before 
arming the card for interrupts, if enabled. Note: if DVTP2 bit 4 is 
set, this bit will have no effect. 

Bit 0: When set, do not assert DVCMD to the device when arming for an 
asynch. interrupt. 

21 Paper 1007 



i' 



UNDERSTANDING THE NEW SERIAL I/O DRIVERS 

Johnny Klonaris 
Hewlett-Packard Co. 

11000 Wolfe Ro~d 
Cupertino, CA 95014 

INTRODUCTION 

At the 4.1 update for RTE-A and the 5.0 update for RTE-6/VM, a 
complete set of new serial I/O drivers will be available. These 
drivers have been completely rewritten. This paper will discuss why 
the drivers were rewritten, ·what those changes mean and how users of 
RTE-A and RTE-6/VM can convert to using these new drivers. 

The intent of this paper is not to document specific changes that need 
to be made as these will be discussed in the appropriate HP 
documentation. What this paper will discuss is general types of 
changes that will be likely, what to look for, and strategies for 
conversion. 

I will discuss specifically considerations for 

- Black box I/O 
- Block mode terminal I/O 
- Modem considerations 
- Program scheduling 

Unless specifically stated, the information in this paper refers to 
both RTE-6/VM and RTE-A. With that in mind, please remember that this 
information is not 'official' and is subject to change. 
Hewlett-Packard will supply documentation when the new drivers and 
firmware are available. This paper is meant to be an aid to people 
planning for an upgrade, not to serve as technical documentation. 

WHY 

There were three major design goals for the Serial I/O driver 
redesign: improved performance, better reliabilty, and a consistant 
interface. The approach taken is discussed below. 

Performance 

It is fairly well known that the current multiplexers cannot support 
9600 baud continuously on all eight ports. In addition, there are 
other limitations that make the mulitplexers and other serial I/O 
cards unacceptable for communication to some devices, in particular, 
black boxes. A major consideration of this redesign was to improve 

Paper 1008 



performance, particularly for the eight channel multiplexers (12040 
and 12792). We can now support 9600 baud on all eight ports. With 
the use of bi-directional XON/XOFF we can support 19200 baud on all 
eight ports. Further, the addition of the control 17b request means 
that there is much more flexiblity in terminating reads which should 
greatly simplify interfacing to black boxes. 

Reliability 

This is much harder to qualify. The new drivers and firmware have 
been designed with structured programming techniques; the External 
Reference Summary was completed and reviewed before coding began. By 
release, the testing of the serial I/O drivers will have been the most 
extensive testing yet done on serial drivers. It is our intent that 
at release, the new serial drivers will be as 'clean' and 'bug free' 
as we can make them. 

Flexibility was also an issue. The current design is flexible in 
areas where it doesn't need to be and not where it probably should be. 
Needed flexibility is good and the current design strives to be 
flexible as needed. Yet, unneeded flexibility can cause unnecessary 
complication. The new serial I/O drivers were designed specifically 
to talk to serial devices. As a consequence, reading and writing to 
such devices is simpler in nearly every case than with the existing 
drivers. 

Consistency 

The differences in interfacing to the ASIC, BACI, and multiplexers, 
both RTE-A and -6 have been a major stumbling block to applications 
writers hoping to run their applications on different machines. The 
differences for block mode applications have been particularly 
difficult. Another major goal of the redesign has been to create a 
'standard' interface; to make it possible to write a program that can 
do terminal I/O without having to know what system it is running on or 
what type of interface it is talking to. For the most part, this has 
been done. In the few places where it is not possible to make 
everything the same, a standard interface subroutine has been supplied 
to handle the difference. 

WHAT 

As one might expect, the above changes have required a change in the 
interfacing of programs; if an inconsistent interface is made 
consistent, something has to change. The intent was to minimize the 
changes needed. In general, standard I/O from Fortran, Pascal, and 

Paper 1008 2 



Basic programs will require no changes. S1i;;i;>le EXEC 
go unchanged. What may require changes are some 
reads, HP block mode I/O, and most control requests. 

calls will also 
types of binary 

Specifically, this section will discuss the differences between the 
new drivers and the old in the areas of reads, writes, and control 
requests. 

Read Requests 

Read request for the most part are fairly straight-forward. I have 
broken reads out into three catagories: ASCII/Binary reads, block mode 
reads, and the new special status read. 

-ASCII/Binary Reads 
The only real difference in the way that reads are done is the 
handling of the control bits in the EXEC request. There are three 
bits that I will discuss: the binary, transparent, and echo bits. 

The binary bit, if set, causes ALL transfers to terminate on count. 
This is different for RTE-A users used to using bit 13 in DVPl which 
caused binary reads to terminate on receipt of a terminator character. 
Also, the transparent bit is ignored in binary mode; everything goes 
into the buffer. If clear, the read becomes an ASCII read, 
terminating on a terminator character. 

The transparent bit now only affects ASCII reads (binary bit clear) as 
mentioned above. If not set, all is pretty much as it was before with 
a couple of exceptions: backspaces are now 'destructive' meaning that 
if 'echo' is turned on a backspace-space-backspace sequence is sent 
out. This has the effect of 'eating' the end off of the line. Also 
the terminator character is programable (where the hardware can 
support it) via the control-17b (more later). If the transparent bit 
is turned on, all special character processing is suppressed with the 
exception of the terminator character. 

The echo bit is just that - if turned on, characters are echoed back 
to the terminal, including the destructive backspace mentioned above; 
if clear, no data are echoed back. 

-Block Mode Reads 
The block mode process is significantly simplified. In general, the 
procedure is to strap the terminal to the desired configuration, issue 
a control-25b request to configure the driver to the terminal, and do 
the read. The only option is the auto-home bit. The auto-home bit 
forces an escape-c/escape-H sequence to be sent before reading the 
terminal. This is a keyboard lock and a home cursor and during a 
'user-initiated' transfer prevents the user from 'disturbing' the data 

3 Paper 1008 



after hitting the enter key. Note that the Auto-home bit is ignored 
in all modes except bl~ck mode. 

-Special Status Read 
All serial I/O drivers now support a special status read which is an 
EXEC read of length 32 (words) with all 5 function control bits set 
(37b). Data are returned to the user buffer specifying all sorts of 
useful, and previously unavailable data. Such information as the 
driver name and revision code, the device type, and the returned 
information from control requests including information like baud 
rate, protocol, and terminator character. 

The exisiting drivers have been modified to return the fact that the 
driver is an 'old' one in response to the special status read, 
allowing an application to determine what sort of interface it is 
talking to. 

This should open up all sorts of possibilites for applications that 
can talk to any sort of interface. 

Write Requests 

Write requests have changed very little except that there are now bits 
in the EXEC control word that effect their operation. These are 
enhancements and should not effect existing code (unless of course 
these bits are set in existing code). The bits and a short 
description of their function follow. 

Transparent bit 
If clear, an underscore as the 
will suppress the CrLf normally 
the underscore character will be 

Binary bit 

last character of 
following a write. 
printed. 

a buffer 
If set, 

If set, ENQ/ACK handshaking, if enabled, will be suppressed 
for this write. 

Force handshake bit 
When in 'HP protocol' mode (ENQ/ACK handshaking see 
control 34b) this bit, when set, causes an ENQ/ACK handshake 
to be done before the line is sent. This prevents data from 
begin lost even if the terminal is turned off or switched to 
a different line. The main purpose for this bit however if 
for graphics - some graphics devices do not tolerate the 
ENQ/ACK handshake well while receiving graphics data. 

Paper 1008 4 



Control Requests 

The majority of the changes have occured to the control request. Some 
have been added, some deleted, and many changed: there is a control 
17b which adds the capability for user definable terminators on the 
muxes and to a limited extent on the 12005 ASIC card, the control 52b 
and 12b requests have been eliminated as there is no longer any need 
for them - type ahead works in a much friendlier way now, and the 
control 30b and 33b have changed - this will require most mux users to 
modify their 'welcome' files. More on this later. 

There is a 'Nice' bit in the control 34b request which allows illegal 
control requests to be ignored rather than flagged as an error. This 
will allow many applications to run without change. This should be 
considered a temporary solution at best as it constitutes running with 
error checking turned off. 

The major change for most people, outside ~f having to modify the 
welcome file, is the handling of type-ahead or 'FIFO' mode data on the 
multiplexers. The old way forced a maximum of one record into each of 
the two 254 character buffers available for each port. Two carriage 
returns could fill both buffers. This is no longer true. Each port 
has a 1024 character circular buffer for input. Buffers are filled 
independent of context - the buffer is not terminated when a carriage 
return or other terminator character is encountered. This gives a 
much larger (and much more useful) buffering scheme. Further, a 
dynamic status request will now return the actual data on the card -
not just the currently terminated buffer. The elimates the need for 
the control 52b/12b buffer terminate request, and the control 37b and 
36b type-ahead buffer terminator and length requests. In many cases, 
the requests can be removed and the application will run as expected, 
but this is of course application dependent (or as mentioned above, 
the 'Nice' bit in the control 34b can be set to allow the application 
to run without error). The fact that the dynamic status request will 
return the number of characters currently stored on the card should 
simplify many applications. The specifics will be discussed in the HP 
documentation that will accompany the update. 

Finally, note that these requests are legal to all of the new serial 
I/O drivers. It is perfectly acceptable to send a control 30b request 
to an ASIC or BACI serial card PROVIDED that the parameters passed are 
legal. Namely, the port number and BRG must be zero and in the case 
of the ASIC card the baud rate must match the current baud rate of the 
card or be zero (default). Note that there is an interesting 
consequence of this. Since the special status read returns the 
'returned' parameters of most control requests, it is possible to 
determine information like baud rate from not only mux cards but also 
serial cards as well. 

5 Paper 1008 



The following is a list of control request and a brief synopsis of 
their function. 

Control 6b - Dynamic Status 
The length returned in the B-Register is the data currently 
on the card, as discussed above. 

Control llb - Line Spacing/Page Eject 
Designed for serial line printers, 
skipping a specified number of lines 
form feed can be conditional. 

this request allows 
or a form feed. The 

Control 17b - Definable Terminator 
This request allows the definition of a user 
terminator character on the mux, or the selection 
based terminator on the A-Series ASIC card (12005). 

Control 20b/21b - Program Schedule Enable/Disable 

specified 
of a ROM 

Program scheduling enable/disable is essentially the same 
except that in RTE-A, the 21b disable request disables all 
program scheduling, including the control program (typically 
the 'System' prompt). This eliminates the need for three 
EXEC calls to disable program scheduling. If either the 
primary or secondary program is enabled in RTE-A, the 
control program is enabled. 

Control 25b - Read HP Terminal Straps 
No real change from the standpoint of 
allows block mode transfers to occur 
configured to match the configuration of 

Control 30b - Set Port ID 

use, this request 
the driver is 

the terminal. 

There have been two notable changes to the control 30b. 
First, the ENQ/ACK bit (bit 7) has been moved to the control 
34b request. Secondly, there is now an ability to allow 
speed sensing on the muliplexers. This is done by sending 
ENQ characters and waiting for ACK characters to return. If 
the port is connected to an HP terminal using ENQ/ACK, speed 
sensing is automatic. If the terminal does not respond to 
an ENQ with an ACK, the port will configure itself when 
someone starts typing carriage returns. 

Note that the value of the parameters is returned from the 
control 30b and accessible via the special status read. 
This means that it is possible to retrieve the wiring of the 
hood as well as the baud rates of the ports. In fact, the 
baud rate generator (BRG) bit in the request is ignored. 
The driver determines the actual value from the mux and uses 
that. The BRG number for a port can then be retrieved with 
a special status read. There is still a limited number baud 
rates that can be generated by one BRG. The baud rate 

Paper 1008 6 



combinations available are a super 
on the existing 'B' and 'C' muxes 
baud rate per BRG). 

set of what is available 
('A' muxes had only one 

Control 31b - Set Modem Environment 
Enables/Disables auto answer and allows connection and 
disconnection. 

Control 32b - Generate Break 
Allows programmatic generation of breaks. Note that break 
is not a character: the data line is held low for 
approximately 250 milliseconds. 

Control 33b - FIFO Buff er Mode Control 
This request has changed more than any other. Because of 
the simplicity of FIFO (or type-ahead) mode, much of what 
made up the old control 33b, is now gone. What this request 
does do is: 

Enables/disables FIFO mode 
Allows incoming characters to be buffered or to 
cause scheduling 
Determines whether or not to keep data upon 
receipt of a break. 

Control 34b - Set Port Protocol 
This request used to just turn on or off XON/XOFF protocol. 
It is now the way to set all protocol for the port. 
Included is our friend the 'Nice' bit which was discussed 
above. Additionally, the request specifies if the port is 
connected to a terminal or hard copy device and what to do 
with incoming data on timeout. But the main function of 
this request is the setting of the actual protocol to be 
used. Of course ENQ/ACK (HP protocol) is available. 
XON/XOFF is also available on the muxes but now it is 
bi-directional. Bi-directional XON/XOFF makes it possible 
for the multiplexer to pace incoming data. This allows very 
high baud rates (even if throughput may not always keep 
pace) without ANY data loss. 

Control 36b/37b - Type-ahead Length and Terminator. 
Gone. As discussed above, these are no longer needed as 
FIFO mode data are no longer 'terminated' as they come in. 

Control 12b/52b - Buffer terminate command. 
Likewise. This request (12b for RTE-6/VM, 52b 
made data on the card available to the driver. 
the card are now available to the driver. 

7 

for RTE-A) 
All data on 

Paper 1008 



HOW 

Having .all of this 
can't install it. 
straight forward; 
may be a bit more 
fact not be worth 

wonderful functionality is not of much use if one 
For most, installing the new drivers should be very 

comparable to most system upgrades. For others, it 
difficult, and for a (hopefully) very few it may in 
the trouble. 

There are basically two considerations here: installation 
drivers and firmware and conversion of exisiting transfer 
applications. 

of the new 
files and 

Installation 

Installing the new drivers should be very easy. It is essentially a 
matter of modifying the answer file to use the new driver rather than 
the old one and changing the generation parameters. 

The software drivers will consist of the following drivers. 

IDlOO 
ID101 
rn4oo 
ID800 
ID801 

DDCOO 
DDCOl 
DVCOO 
DVC05 
DMC05 

A-Series 12005 ASIC interface driver 
A-Series 12005 ASIC interface driver with modem support 
A-400 On-Board I/O driver 
A-Series 12040 8-channel multiplexer interface driver 
A-Series 12040 8-channel multiplexer interface driver 
with modem support 
A-Series Terminal device driver 
A-Series Terminal and CTU device driver 
MEF-Series 'dumb' interface card driver 
MEF-Series 12966 BACI card driver 
MEF-Series 12792 8-channel multiplexer driver 

Changing the generation parameters is more of a challenge on RTE-A 
since there really aren't any on RTE-6 (other than specifying the DRT, 
EQT, and Interrupt table entries and these will change little). Many 
will recall that 57 words of system table space are required as DVT 
extension for each port on the existing multiplexer. This number is 
way down (eleven) with the new driver. The gen parameters are 
different but are easily determined from existing parameters and 
documentation. 

Another consideration for multiplexer users is the firmware upgrade of 
the card. In order to use the new drivers it is necessary to upgrade 
the multiplexer. A low cost kit will be available from HP which will 
include a ROM to replace the one now on the card, and for A-Series 
users not on firmware subscription service, the kit will also include 
updated VCP ROM's. 

Once a multiplexer has been upgraded with the new ROM it becomes a 'D' 

Paper 1008 8 



model and WILL NO LONGER WORK WITH THE EXISTING MUX DRIVERS. So, for 
this reason, and the fact that an HP Customer Engineer must install 
the ROM's, it is important that the user have a system generated and 
ready to go before the new ROM's are installed. Note that the new VCP 
ROM's will work with either the new or old drivers and that a system 
can have both kinds of drivers and mux cards installed in the same 
system. 

Details of ordering and installation will be available from HP Support 
Offices. Most supported HP-1000 customers with muxes should have been 
contacted by the time of INTEREX or shortly thereafter. 

Conversion 

Conversion of a system to the new serial I/O drivers will vary in 
complexity from nearly trivial to very involved. Users whose 
applications do only standard reads and writes from higher level 
languages will most probably only have to change their welcome files. 
Users twiddling bits in the DVT or EQT in hundreds of custom 
applications may find themselves with a significant task ahead of 
them. Here we are going to take a look at what kinds of 
considerations are involved for different types applications. 

-Configuration Files 
The control requests to configure the multiplexers are most probably 
going to have to change. For most installations, this will require 
clearing bit seven (ENQ/ACK) in the control 30b, rebuilding a new 
control 33b parameter, as well as one for the control 34b. Also, many 
may want to take advantage of the new speed sensing capabilities by 
changing the baud rate field in the control 30b. 

-Standard 110 
This includes simple reads and writes from applications written in 
FTN7X, PASCAL, or BASIC or simple EXEC calls that only make use of the 
echo and binary bits. The vast majority, if not all, of these 
programs will not have to be changed at all. This was a design goal 
of the project. 

-Black Box 110 
Talking to the proverbial black box is where we've seen the most use 
of the old 'FIFO' mode - namely that involved example in the manual 
where the mux is configured first for binary mode, then for a length 
of 254 bytes and is then alternately 'terminated' and read from. I 
know, I've written a couple of these myself. The good news is that 
none of this is necessary anymore. The bad news is that none of this 
is necessary anymore. It means taking code out of a working program; 

9 Paper 1008 



a scary proposition at best. However, since most 
applications look something like this .... 

set up for binary type-ahead (control 37b) 
set read length to 254 (control 36b) 
terminate buffer (control 52b/12b) 
loop-start 

dynamic status, any data? (control 6b) 
if data then 

else 

read the data 
terminate a buffer (control 52b/12b) 
- take some action -

- take some other action -
endif 
time-delay if appropriate 

loop-end 

Most will end up looking something like this ... 

loop-start 
dynamic status, any data? (control 6b) 
if data then 

read the data 
- take some action -

else 
- take some other action -

endif 
time-delay if appropriate 

loop-end 

of these 

This is typical of 'full duplex' applications where it is important 
not to issue a read until data are available because it may be 
necessary to send data out. We do expect that most black box 
applications will only require that code be taken out. Note that the 
first example would work fine with the new drivers if the 'Nice' bit 
were set in the control 34b; all that was taken out were the control 
requests that are no longer supported. 

-Block Mode Considerations 
I know that there are many applications out there that required many 
long hours to perfect to get around some quirk that came up in some 
corner case: getting the cursor to home, reading multiple fields in 
block-line mode, or tring to get one application to read from more 
than one type of interface. I wish I could tell you that all of your 
applications will run without change on all interfaces but this is not 
so. However, we expect that most will. If your application uses a 
control 25b to configure the driver, chances are very good that it 
will require little or no modification. It is now possible to write a 

Paper 1008 10 



program that will do block mode transfers in a straight forward way 
and run on serial cards or muxes on RTE-A or RTE-6/VM. 

There is one important difference. All existing HP serial drivers 
strip out the unit separator (US) characters out of the buffer except 
the BACI card driver DVA05 on RTE-6/VM. Since newer terminals now 
support a 'modified fields only' mode in which unchanged fields are 
not sent, this is no longer a very useful feature. All of the new 
serial I/O drivers leave all US and RS characters in the user buffer. 
The routine HPCrt StripChar will be supplied to duplicate this 
function of DVA05.- (HPCrt StripChar can also be used to remove RS 
characters or any other character for that matter.) 

Our expectation is that nearly all block mode applications will 
continue to run without modification except as noted above for DVA05 
based applications. 

-Modem Considerations 
Modem use has been simplified. The control 30b request still has a 
bit that indicates a port is a modem port for the 37214 modem card 
cage. The only other control request having to do with modems is the 
control 3lb. Two bits are used: one for answering and one for 
connection. If enabled for answering, program HPMDM is scheduled when 
a ring is detected. HPMDM is the standard name for the program to be 
scheduled when ever a modem 'event' occurs - ringing or hanging up. 
By moving most of the modem functions to the HPMDM program, many of 
the earlier complications should go away. 

The HPMDM program will be supplied with source. 

-Program Scheduling 
As was mentioned above, program scheduling on RTE-A is slightly 
different. Specifying the scheduled program at gen time is now a 
matter of encoding a word that contains indices of the programs in a 
table. The most commonly used programs are already in the table 
(PROMT, CI, CM, FMGR, and COMND). This means that the six words that 
used to take up space as driver parameters are now reduced to one 
word. 

Specifying programs to be scheduled on interrupt from CI is the same 
as before. To make things easier, there are two HP supplied routines 
named HPCrtSchedProg and HPCrtSchedProg S the make specifying these 
programs even easier. The ' S' version-takes Fortran CHARACTER type 
variables as input. 

-Documentation 
I bring this up here because it is critical to any conversion effort. 
There is more documentation involved with the serial I/O project than 

11 Paper 1008 



any I've seen and it is good quality documentation. Two of the three 
engineers working on the project are ex-HP SE's so they are very 
familiar with the frustrations we've all had in the past. The 
documentation should be very helpful to anyone who reads it. 

-HPCrt.Lib Routines 
Along with the drivers and documentation there is a supplied library 
of routines that do many of the functions that are needed when doing 
serial I/O. This partial list is presented just to give an idea of 
the functionality supplied. 

HpCrt SSRCDriver 
HpCrt-SchedProg 
HpCrt-StripChar 
HpCrt-GetField S 
HpCrt-GetField-I 
HpCrt-Page Mode 
HpCrt=Line=Mode 
HpCrt Char Mode 
HpCrt=CommandStack 
HpCrt SendString 
HpCrt=GetString 
and many more ... 

- Does driver support Special Status Read 
- Set up interupt program 
- Remove specified character from a buffer 
- Get a character field 
- Get an integer field 
- Configure for page/block mode 
- Configure for line/block mode 
- Configure for character mode 
- A command stack routine 
- Write a Fortran character variable 
- Read a Fortran character variable 

FINAL NOTE 

A lot of time and effort have gone into this project, mostly by people 
that have had experience with the existing serial I/O drivers, to make 
this system the best it can be. We hope that as many users as 
possible will be able to change over to these new drivers soon. Yet, 
at the same time we realize that not everyone will be able to convert. 
Rest assured that the old drivers are still there and will be there 
and they are still supported. But remember also that there will be no 
enhancements to the old drivers. Also, only critical bugs will be 
fixed in the future as the new drivers fix the bugs we know about. 
Also note that some 'bugs' can't be fixed because they are being used 
by others as 'features'. We won't change the functionality of the 
existing drivers for this reason - you can consider them as 'frozen' 
code from the point of current functionality. 

We hope that these drivers and firmware will solve most if not all of 
the problems we know many of you have been living with and should 
greatly ease the development of new applications. Good luck. 

Paper 1008 12 



Understanding the New Serial 
1/0 Drivers 

by: Klonaris, Johnny 

We regret that this paper 
was not received for 

inclusion in these proceedings. 

Paper 1009 





A SET OF IMAGE/1000 DATABASE TOOLS FOR SCREEN ACCESS, 
DATA MANIPULATION AND STATISTICS 

Edward J. Kulis and Nhantu Le 
Collagen Corporation 

2500 Faber Place 
Palo Alto, CA 94303 

At Collagen Corporation, we have developed three general 
purpose software tools for HPlOOO IMAGE database program­
mers and sophisticated users. The first tool, GSA (Generic 
Screen Access), allows the implementation of an interactive 
screen-oriented IMAGE/1000 database without any program­
ming. The second tool, ·DBMAP, provides extensive capabil­
ities for data movement and reformatting within and between 
IMAGE/1000 datasets and databases. The third tool, STATS, 
provides basic statistics, and percentages for grouped 
numeric or character field ranges in records selected by 
HP's QUERY. In this paper we'll begin with a description 
of our hardware and provide an historical summary of the 
evolution of our database capabilities. Then, we'll 
describe in detail our database requirements, the tools 
that we purchased and the software that we developed to 
fulfill them. We'll also comment on some limitations of 
the tools and software, and we'll illustrate some tricks to 
enhance their power. At the present time, we have a 
versatile mature system of tools that permits us to accom­
plish most database tasks without any FORTRAN programming. 

HISTORICAL SUMMARY 

Clinical Database Requirements 

Collagen Corporation manufactures implantable materials for 
the repair and augmentation of human tissues. We test the 
safety and efficacy of new products in human clinical 
trials. We use the IMAGE/1000 database on an HPlOOO A600 
to track the progress of our clinical trials and to record 
efficacy data for the material under test. The database 
task is complex and a complete definition of data items, 
coding, selection, sorting, and reporting requirements is 
not possible before database implementation. In addition, 
our clinical report forms are compact documents that 
contain many pieces of information on each page. Figure 2 
illustrates the quantity of information contained on a 
typical clinical report form. The compact forms reduce the 
paper flow required during a clinical trial. 

The sophistication of our tools to enter, retrieve, and 
process data in response to the complex and dynamic re­
quirements of clinical studies evolved through the 5 phases 
listed below. 

Paper 1010 



Evolution of Database Capabilities 

Phase 1: We learned to use the IMAGE/1000 utilities, DBDS, 
DBBLD, QUERY, DBULD, DBLOD. IMAGE on the HPlOOO was a 
great improvement in cost and performance over the consul­
tants and the time sharing service that we had used but we 
also discovered that IMAGE had some limitations. We 
learned some tricks to enhance our ability to manipulate 
and report data, but we realized that we needed more 
capability. 

Phase 2: To extend out database capabilities, we purchased 
the SOLUTION software system from Polaris Systems, Inc. 
{Manasquan, NJ). Before the purchase, we had also 
considered QUESTOR and QREPORT from Combs and LaRobardiere, 
Inc. (Ridgewood, NJ) and TERMINAL MANAGER and ASK/1000 from 
Corporate Computer Systems, Inc. {Holmdel, NJ) but after 
considerable analysis we decided that SOLUTION most closely 
matched our requirements. SOLUTION consists of three 
packages: 1) INSIGHT, a screen-oriented report generator 
for the general database user, 2) VIEW, a programmer tool 
that simplifies the use and documentation of terminal 
screens, and 3) DIMENSION, a programmer tool that simpli­
fies and documents the programmatic interface between VIEW 
screens and the IMAGE/1000 database. Again we found that 
while our capabilities had improved there were still limit­
ations that we wished to overcome. 

Phase 3: To simplify database access and to allow the 
implementation of a screen-oriented database without any 
programming, we developed GSA. Currently in daily oper­
ation, GSA provides a general purpose interface to our 
IMAGE/1000 databases and it allows a non-programmer to 
design completely and to implement a database and its 
screens using the tools, DBDS, VIEW, DIMENSION, and GSA. 

Phase 4: To enhance the power of the report generators 
INSIGHT and QUERY we designed and developed the FORTRAN 77 
program DBMAP. Both report generators have strong and weak 
points. We wished to supplement the weak points and we did 
not want to re-invent capabilities that we already had. 
DBMAP provides extensive capabilities to move and recombine 
data among datasets. Thus, INSIGHT and QUERY can select 
and sort the recombined data and provide formatted reports 
that employ data from multiple datasets. 

Phase 5: To provide statistical summary reports from our 
databases we developed the FORTRAN?? program STATS. STATS 
provides group counts, averages, standard deviations, stan­
dard errors, minimums, maximums for 20 variables from 
records in a QUERY select file. STATS also provides row, 
column, depth, and total percentages for three variables 
and 20 ranges. STATS can also exclude missing values. 
There are statistics packages available for the HPlOOO 
{e.g. STAT80 from STATWARE, Salt Lake City, UT) but we 

Paper 1010 2 



wished to develop one that used data directly from an 
IMAGE/1000 dataset. 

DEVELOPMENT OF OUR CLINICAL STUDIES DATABASE CAPABILITIES 

HARDWARE 

Figure 1 contains a list of our computer and communications 
hardware. An HPlOOO A600 running the RTE-A operating sys­
tem has served our database needs since December of 1983. 
A 7914TD provides 132 Mbytes of disk storage and a 7970 
9-track tape drive; a 7946A provides an additional 55 
Mbytes of storage and a cartridge tape drive. We have 2 
Mbytes of memory, 2 12005B asynch cards and 2 12040B 8 
channel MUX cards. Our peripherals include 6 2392A 
terminals, 2 printers (a 2631B and a 2934A), 9 HP9816 
desktop computers, 3 IBM PC clones, and 1 IBM XT. The 
HP9816's function mostly as laboratory workstations but 
they also emulate HP2622 terminals to provide the labor­
atories with access to centralized IMAGE/1000 databases. 
The IBM clones function as personal workstations and the 
IBM XT runs BMDP Statistical Software from BMDP in Los 
Angeles, CA for our advanced statistical needs. The IBM 
machines also emulate HP2622's and freely exchange data 
with the HPlOOO. All terminals, printers, and computers, 
distributed throughout 2 buildings, communicate with the 
HPlOOO via an RS232 Distributed Data Switch from Metapath, 
Inc. (Foster City, CA). 

CLINICAL STUDIES DATABASE REQUIREMENTS 

A Hypothetical Clinical Study 

To illustrate the requirements of a clinical studies data­
base, we'll describe the conduct of a hypothetical clinical 
study. This study, its clinical report forms, and its 
database are much simpler than real ones but they will 
serve to illustrate the key database concepts and software 
tools that we use. 

Figure 3 contains a schematic representation of the course 
of a hypothetical clinical study. This study examines the 
ability of a product to correct a facial defect such as a 
wrinkle or an acne pit. The doctor treats the patient with 
1 of 2 products at 1 or more sites. Correction level is 
the parameter of efficacy and both the patient and the doc­
tor estimate the level of correction for each site on a 1 
worst to 5 best scale at the time of 1 to 3 treatments. 
The patient and the doctor estimate correction remaining 
using the same scale at 5 evaluation visits scheduled over 
the 2 years following the last treatment. The 5 evaluation 
visits occur at 7 weeks, 3 months, 6 months, 1 year, and 2 
years. The doctor and his staff complete 4 types of 
clinical report forms during the study. The first form, 
completed once, records the enrollment of the doctor. A 

3 Paper 1010 



second form, completed once, records the patient's informed 
consent and medical history. A third form, completed at 
each treatment, records the materials used, the sites 
treated and the estimates of correction. Similarily, a 
fourth form, records the estimates of correction remaining 
at each of the evaluation visits. 

Figure 4 contains a list of database requirements during 
the conduct of a clinical study. The tasks are listed in 
the approximate order that we were able to implement them 
on our HPlOOO. With the implementation of each new compu-
ter capability we increased our productivity because we I! 
reduced the amount of hand collation and calculation re­
quired during a particular task. 

Image/1000 Database Schemas and Clinical Studies Data 

The ability to retrieve information from any computer data­
base depends on the structures available in the database, 
the user's design of the database, and the coding conven­
tions employed during data entry. IMAGE/1000 provides a 
simple network structure which is suited for use in clini­
cal studies. A single patient returns to the doctor for 
multiple treatment and evaluation visits. IMAGE/1000 can 
represent the patient as a data entry at the head of a 
chain in a master dataset. This master entry can also 
record information that is related to the whole patient 
such as informed consent and medical history. Data entries 
along each patient chain in a detail dataset can then re­
cord information related to each visit. In addition, ap­
propriately chosen visit codes can sort each patient chain 
in time. Applications programs can take advantage of these 
sorted chains because the order of record access is well 
defined.· 

While IMAGE/1000 provided a logical structure to represent 
clinical studies data, it did not provide the utilities to 
take full advantage of its structure! As a result, as we 
acquired more database tools, the design of our database 
schemas changed to take advantage of the properties of the 
IMAGE/1000 structure and our new tools. Figure 5 summar­
izes the database design considerations that led us to use 
4 different types of database structures during the evolu­
tion of our database capabilities. Figure 6 lists speci­
fically the elements included in each type of database 
schema design and Figures 7 through 10 each contain an an­
notated part of an IMAGE/1000 schema that illustrates the 
key concepts that we employed in our clinical databases at 
each stage of development. 

PHASE 1: IMAGE/1000 and HP UTILITIES 

IMAGE/1000 is in one sense a complete system: QUERY can 
add, replace, delete, and report data immediately after the 
DBDS utility builds the database from a schema designed by 

Paper 1010 4 

i' 
' 



the user. This immediate ability to access and retrieve 
data can be very useful at times when the need for a com­
puter database is urgent. In this section, we'll describe 
the benefits gained and the limitations that we discovered 
as we began to fulfill our clinical database requirements 
with IMAGE/1000. 

The Database Schema for the Hypothetical Clinical Study 

Figure 7 contains an annotated part of an IMAGE/1000 schema 
that illustrates the key concepts that we employ in our 
clinical databases. The schema in Figure 7 was optimal for 
use by QUERY. The 4 datasets, QDMD, QDHIST, QDTREA, and 
QDEVAL, correspond to the 4 hypothetical clinical report 
forms for the MD information, and each patient's visits for 
history, treatment, and evaluation. As each form arrives 
its data is added to the database via QUERY's UPDATE ADD. 
Information from different forms resides in different 
datasets because each form arrives at a different time and 
each contains different information about an MD, patient, 
or a patient's sites. 

The data items MONO and PATNO are key items in master 
datasets. Since a master dataset can have only one value 
of a key item, each MONO and PATNO is unique. These key 
items define data chains in the detail datasets QDTREA and 
QDEVAL and thus prevent the addition of an MONO or PATNO 
that does not exist in the master. However, the entry of a 
mis-matched but valid MONO for a given PATNO is possible. 
In the master dataset QDHIST, CUSTNO contains the MONO for 
each patient. MONO cannot be used in QDHIST because it is 
a key item in the master dataset QDMD. CUSTNO allows QUERY 
to sort patient histories by MD number. 

In both QDTREA and QDEVAL, the item PTRECl provides a way 
to identify the patient's first site at the particular vi­
sit. Since each data entry contains information about a 
particular site, there is no way to determine the number of 
patients that have been treated or evaluated without the 
PTRECl item. The data entry operator enters a Y into 
PTRECl for the patient's first site at a particular visit. 
PTRECl is left blank for the records of the remaining sites 
at that visit. 

In QDEVAL, the item DAYCNT is the number of days between 
the last treatment and the current evaluation. When QUERY 
alone is used, the data entry operator computes this value 
manually from the date of last treatment and enters it. 

Benefits 

With IMAGE/lOOu, we could fulfill the first 3 requirements 
in Figure 4 for a clinical study database. With QUERY we 
could add, modify, retrieve, sort, and report data from 
each clinical report form. We could add items to the data-

5 Paper 1010 



base during the course of the study by unloading the data 
with the utility DBULD, changing the schema, and re-loading 
the data with DBLOD. 

Limitations 

Data entry via QUERY is line oriented, and user prompting 
is limited to the 6 character item name. (The cryptic 
prompt lengthens the training time for a data entry oper­
ator.) QUERY searches are limited to a single dataset and 
the searches cannot compare one item to another. At the 
time, find statements could not contain wild-card charac­
ters and reports can contain only 10 output lines per rec­
ord. Arithmetic manipulation is limited to counts, totals, 
and averages on a single item. The ability to add items to 
a dataset is also limited. DBLOD can only add items to the 
end of a dataset and this may be inconvenient for the oper­
ator since during an UPDATE ADD, QUERY presents items in 
the order that occur they in the schema and the new order 
may not correspond to the order of items on the clinical 
report form. 

Techniques and Work-Arounds 

Although DBLOD cannnot add items to the middle of a data­
set, a combination of other HP utilities can. The tech­
nique involves the use of QUERY, EDIT/1000, and another 
IMAGE/1000 utility DBBLD. DBBLD can add data from a column 
formatted ASCII type 3 file to a dataset. QUERY can pro­
duce a report file with data from the old dataset aligned 
in the proper columns for the enlarged dataset. EDIT/1000 
can remove spurious characters (such as the formfeed 
characters in column 1) from the file and provide a way to 
insert DBBLD instructions into the file. Then, DBBLD can 
add the data in the file to the new enlarged dataset. 

PHASE 2: THE INSIGHT REPORT GENERATOR FROM POLARIS 

Benefits 

The first part of the SOLUTION package that we implemented 
was INSIGHT. We wished to perform wild-card and compara­
tive searches and multiple item arithmetic manipulations 
in reports longer than 10 lines from multiple datasets. 
INSIGHT made this possible. We were able to select data 
with wild-card find statements from as many as 6 datasets 
and produce reports with as many as 60 lines per page. 
INSIGHT'S threading feature enables access to as many as 10 
additional datasets for each dataset referenced in a find 
statement. We could select data based on a comparison of 
items within a dataset. For example, we could find all 
records in QDTREA (Fig. 7) in which the patient's estimate 
of correction did not match the MD's. INSIGHT's register 
arithmetic manipulation enabled us to produce reports that 
calculated statistical standard deviations in addition to 

Paper 1010 6 



counts, totals, and averages. INSIGHT provided us with 
many new capabilities and it has proved a valuable tool. 
In addition, its screen-oriented user interface simplifies 
data access by the occasional user. 

Limitations 

When we attempted to produce full patient reports with 
INSIGHT, we discovered that though we could produce the re­
ports sorted by patient, we could not produce them sorted 
by patient within MD. The problem occurred because INSIGHT 
connects or links records in different datasets by a single 
data item and that item must also be the highest sort item. 
The proper item for full patient reports sorted by MD, a 
concatenation of MONO and PATNO, was not present in our 
datasets! Figure 11 illustrates this problem. If the 
connector item was PATNO, INSIGHT could produce a proper 
report containing the data from each patient's history form 
followed by the data from the patient's treatment and eval­
uation forms but the MONO associated with each patient was 
different from one patient to the next. If the connector 
item was MONO then the data from all patient histories for 
a particular MD would group together, followed by the data 
from all treatment forms for all patients of each MD and 
that was followed by the data from the all evaluations of 
that MD's patients. Thus, although the report was sorted 
by MONO, data was grouped by form and not by patient. 
Manual collation of the full patient reports by MD was 
tedious and time consuming. 

We also discovered another limitation of multiple dataset 
finds and reports. The link item between datasets is the 
highest sort item. Changes in value of sort items define 
group breaks where group operations are performed, and 
higher group breaks force lower group breaks. So after se­
lection of records from 2 datasets all group breaks occur 
when the link item changes value. Since the link item must 
be specific to match records in different datasets, the 
power to perform grouped arithmetic operations is limited. 
In essence, only final total operations are still useful. 
A description of a particular reporting task will illus­
trate this limitation. 

Refer to the schema in Figure 7, during the following dis­
cussion. Suppose that we wish to average the volumes used 
for each treatment in the QDTREA dataset and that we want 
the averages for females only. The dataset QDHIST contains 
the sex of the patient. INSIGHT can find all SEX is F in 
QDHIST and use PATNO to link exclusively the records in 
QDT~EA that contain matching PATNO's, but since PATNO is 
the highest sort item, INSIGHT can only group visits under 
patients. It cannot provide the grouping of patients under 
visits that is required for the calculation of average vol­
umes for females at each visit. INSIGHT can provide the 
averages in the final total lines in separate reports, one 

7 Paper 1010 



for each visit. However, multiple reports are less con­
venient than a single grouped report. 

Techniques and Work-Arounds 

To enable INSIGHT to produce full patient reports sorted by 
MDNO, we added an item named IDNO item to all patient 
datasets using the techniques described above. IDNO is the 
concatenation of MDNO and PATNO. We retained both the 
items MDNO and PATNO because we still wished to link and 
sort by them individually. Figure 8 shows an optimal 
schema for use by QUERY and INSIGHT and Figure 12 shows a 
short FORTRAN 77 program using IMAGE/1000 calls to produce 
an item in a dataset from the concatenation of 2 items in 
the same dataset. With the addition of IDNO, INSIGHT was 
able to produce the full patient reports sorted in the 
manner that we desired. We did not solve the problem of 
fully flexible multiple dataset reporting until we 
developed DBMAP, which we'll describe below. 

PHASE 3: GSA (GENERIC SCREEN ACCESS) 

Benefits 

To obtain the benefits of screen-oriented database access 
and to overcome the limitations inherent in QUERY's line­
oriented access we developed the FORTRAN 77 program GSA. 

Screen-oriented database access enhances the use of clini­
cal studies databases in a number of ways. Data entry op­
erators require less time to become familiar with a new 
database because screens that look similar to the clinical 
report forms help orient the operator. Actual data entry 
is easier because the operator can check the screen and 
correct errors before posting the screen to the database. 
Data coding is also much easier because the screen can 
display the coding conventions. Occasional database users 
especially find screen access far easier than line access. 

GSA makes extensive use of Polaris's programmer tools, VIEW 
and DIMENSION and these tools greatly simplified the pro­
gramming and documentation needed for us to developed a 
general purpose database access tool. VIEW provides an in­
teractive way to design and store terminal screens for 
later use. GSA or any program can then access the screens 
through VIEW subroutine calls. VIEW eliminates the need 
for a programmer to deal with all the escape sequences and 
control codes necessary to format a terminal screen and 
VIEW stores the screens by name in a forms file and thus 
removes the need to store screen specifications within a 
program. Instead, the program can reference the screen by 
name. DIMENSION provides an interactive way to map the 
windows on a VIEW screen to an IMAGE/1000 database. A pro­
gram can then invoke a screen and its relation to a data -

Paper 1010 8 



base with a single transaction number. Days or weeks of 
tedious programming work are eliminated and changes to a 
screen or a database require only changes in the VIEW and 
DIMENSION configurations instead of program modifications 
and re-compilations. 

Although VIEW and DIMENSION provide powerf~l tools to move 
data between terminal screens and IMAGE/1000 databases, a 
shell program must be developed to orchestrate the use of 
the tools and to co-ordinate the database access. We did 
not wish to compile, document, and maintain different pro­
grams for each database, so we designed and developed GSA, 
a generic program that provides access for any database 
that we design. 

GSA removes the need to write and maintain separate shell 
programs for each database. GSA reduces database imple­
mentation to 4 steps: 1) Design an IMAGE schema and create 
a database, 2) With VIEW, design one top menu screen for 
the database and one or more data entry screens for each 
dataset, 3) Map the dataset screens to the database with 
DIMENSION, 4) Map menu numbers to DIMENSION transaction 
numbers with GSA. Once an IMAGE/1000 database and VIEW 
screens are designed, DIMENSION and GSA mapping require 
less than 15 minutes per dataset. 

As depicted in Figure 13, GSA provides a standardized type 
of screen access for our IMAGE/1000 databases. The top 
menu screen, contains contains an annotated list of menu 
numbers and each number allows selection of a particular 
screen for each dataset. The menu can contain as many as 
99 selections and there may be more than one screen for 
each dataset. Four modes, ADD, CHANGE, SHOW, and DELETE 
are available for each menu number. ADD mode allows 
addition of new records to a dataset, CHANGE mode allows 
changes to existing records, SHOW mode allows the display 
of existing records but prevents any modifications, and 
DELETE mode allows the removal of records from the dataset. 

Figure 13 illustrates the function keys available in the 
CHANGE mode. Only function key 2 is mode specific, the 
other functions are available in all modes. Three keys, 
find, forward browse, and backward browse locate records in 
a dataset. The find key locates a key item in a master 
dataset or the head of a chain in a detail dataset. The 
browse keys locate and allow movement forward or backward 
along a detail chain. Forward browse begins at the head of 
the chain and backward browse begins at the end of the 
chain. Browse works best along a sorted chain because the 
records will appear in a predictable order. The CHANGE, 
SHOW, and DELETE modes obviously require the record loca­
tion keys but the keys are useful in the ADD mode also. 
Backward browse recalls to the screen the items from last 
record in a patient's chain and the operator can check that 
the information in previous items is consistent with the 

9 Paper 1010 



new information. Items whose information hasn't changed 
from the last record are already present, thus the operator 
needs only to type items with new information and add a new 
record from the newly constructed screen. 

As each record in a dataset is added, changed, or deleted, 
GSA provides a time-stamped print-out of the terminal 
screen and it puts the characters from the screen in a 
program buffer. The previous screen key can recall the 
information from the last screen quickly to provide the 
operator with another look at what was modified or to speed 
up the addition of a series of records with similar 
information. At any time the operator can print the 
curr~nt screen via the print screen key. 

Limitations 

GSA serves our clinical database needs very well but some 
enhancements could make it even more useful. Location of a 
record in a detail dataset is rapid only if it is located 
in a short sorted chain. Figure 9 contains an IMAGE/1000 
schema optimal for use by GSA, INSIGHT, and QUERY reports. 
An automatic master dataset contains PTVIS, a concatenation 
of patient number and visit. The detail datasets GDTREA 
and GDEVAL now contain sorted chains to allow orderly 
browsing in GSA. The most useful chain is PTVIS because it 
enables the location of all of a patient's sites at a par­
ticular visit. Since there are never more than 4 sites in 
our hypothetical clinical study, it is not time-consuming 
to browse to a particular record. The next version of GSA 
will employ a new DIMENSION call that performs a chain read 
until a successful character match occurs between the 
screen and the database record. The new call directly 
locates an individual record. 

Another limitation of VIEW (and therefore GSA) is screen 
size. VIEW will only accept screens up to about 47 lines 
in length. Many times the design of a 47 line screen pro­
viding an acceptable representation of a clinical report 
form is a difficult chore. Our terminals have at least 96 
lines of screen memory and we would welcome the ability to 
use all of the lines available. 

Techniques and Work-Arounds 

Efficient use of the current version of GSA requires that 
detail datasets have at least one short sorted chain in 
order to locate records rapidly. Use of an automatic 
master dataset provides a way to accomplish this and short 
sorted chains also make access by other programs efficient 
and powerful. 

Paper 1010 10 



PHASE 3: DBMAP (THE DATABASE MANIPULATOR) 

Benefits 

With QUERY, INSIGHT, and GSA we had partially fulfilled 
each of the requirements outlined in Figure 4, but there 
were still reporting tasks that required hand collation and 
calculation. For instance a report displaying the change 
in an estimated correction level from treatment to each 
evaluation required items from 2 datasets as did a report 
grouping treatment or evaluation parameters by sex. 
INSIGHT was able to provide some of these reports within 
the limitations listed above, but there were other reports 
such as those containing the calculation of days between 
dates that neither INSIGHT nor QUERY could produce. We 
designed DBMAP to enhance the power of QUERY and INSIGHT 
and to provide database tool to enable us to fulfill more 
fully the requirements listed in Figure 4. 

Figure 10 contains a schema that is optimal for use by 
QUERY, INSIGHT, GSA, and DBMAP. DBMAP copies data from one 
dataset to another in response to instructions contained in 
an ASCII file produced with EDIT/1000. QUERY and INSIGHT 
then can operate on a single dataset that contains data 
collected from many datasets by DBMAP. DBMAP also works 
within a single dataset to produce an item such as IDNO 
from the concatenation of other items. In addition, DBMAP 
can recombine and transfer all the data from an old data­
base to the datasets in a riew redesigned database. 

DBMAP examples 

Figure 14 contains the DBMAP instructions to produce IDNO 
in the dataset DDHIST. The arguments in the PROCESS line 
are the process name, a name for a QUERY select-file, and a 
modification type. DBMAP can perform 5 types of modifica­
tions that differ in,. the way they add to or update records 
in the the output dataset. The types also differ in the 
way that they treat non-existent or duplicate link items. 
The DATA-BASE line contains the parameters database:securi­
ty-code:cartridge, level-word, mode, and dataset. The FIND 
line is any legal QUERY find statement and it produces the 
select-file named in the PROCESS line. The FIND line is 
omitted if the named select-file references a file 
previously produced by QUERY. The LET lines instruct DBMAP 
to move characters from one item to another. LET IDNO 
MDNO will cause DBMAP to copy all characters in the right 
item to the left item. LET IDN0:7:10 PATNO will cause 
DBMAP to copy the characters 1 through 4 in PATNO into the 
positions 7 through 10 in IDNO. The process repeats the 
copies for all records in the select-file. The same DBMAP 
instruction file can contain other similar processes to 
fill IDNO in the DDTREA and DDEVAL datasets. Thus aided by 
DBMAP, INSIGHT can now produce a full patient report sorted 
by MDNO and the data entry operator did not need to type 

11 Paper 1010 



redundant characters into IDNO nor did a programmer need to 
prepare a FORTRAN program such as the one in Figure 12. 

Figure 15 contains DBMAP instructions to copy the contents 
of the SEX item in the DDHIST to an item named UTIL in the 
DDTREA dataset. The TO line contains the type of arguments 
in the DATA-BASE line plus a link argument. The link argu­
ment, this case PATNO, is an item list that corresponds to 
the argument of the LINK line. These 2 link arguments 
allow DBMAP to copy information from a record with a speci­
fic PATNO in DDHIST to all records with the same PATNO in 
DDTREA. We put l or more utility fields like UTIL in our f: 
datasets to provide space to copy data for special report-
ing purposes. UTILIN provides space for temporary integer 
data, although this is not strictly necessary because DBMAP 
will also perform data type conversions. 

Figure 16 contains DBMAP instructions to compute the age of 
each patient on the day that DBMAP is run. The instruc­
tions LET AGE = @D #YEAR "$T" - DOB tell DBMAP to perform a 
date function and fill the AGE item in the DDHIST dataset 
with the number of years between the contents of the DOB 
item and the system date "$T". Any valid date item or 
literal date string in YYMMDD format can replace the $T in 
a DBMAP date function. DBMAP can also compute days or 
months between dates and project a future dates from a date 
and a given interval. 

Figure 17 illustrates how we use DBMAP to enable QUERY to 
count the number of patients at each visit in a dataset. 
Each record in the DDEVAL contains information about a 
particular site on a patient at a particular visit. The 
total number of records in the dataset therefore reflects 
the total number of evaluated sites at all evaluation vi­
sits. For clinical studies tracking and reporting pur­
poses, it is important to know the number of patients that 
have been evaluated at each visit and without help neither 
QUERY nor INSIGHT can provide this information. The 
DATA-BASE line in Figure 17 has 3 additional arguments 
ptvis, $F, siteno that specify operations performed on a 
sorted "pseudochain". DBMAP processes the records in the 
select-file in the sorted order of the concatenated items 
PTVIS and SITENO. The $F after PTVIS instructs DBMAP to 
perform the LET operations in the process on a single re­
cord when the value of PTVIS changes. Thus, PTRECl is 
marked Y once for each patient at each visit. The addi­
tional sort by SITENO causes DBMAP to mark the patient's 
first site. Now, based on PTRECl, QUERY or INSIGHT can 
select a single record for each patient at each visit, thus 
counting each patient once at each visit. 

Figure 18 illustrates that DBMAP can use items from differ­
ent datasets to compute changes in patient parameters over 
time. The FROM line specifies the input dataset and its 
link item-list PATNO,VISIT,SITENO. The LINK line specifies 

Paper 1010 12 

I' 



the link item-list PATNO,VISIT,SITENO for the dataset in 
the DATA-BASE line. DBMAP will match records from the 
DATA-BASE dataset and the FROM dataset based on the charac­
ters in each concatenated item-list and allow register com­
putations with items in the input or output records. LET 
MDCRCH = @R instructs DBMAP to place the result of the 
computation in the MDCRCH item in the output dataset 
DDEVAL. The REGISTER line contains arguments, specified in 
Reverse Polish Notation, to compute the difference between 
MDCRTR in DDTREA and MDCREV in DDEVAL. DBMAP obtains the 
value of items from the output record by default, so 
MDTREA::::I instructs DBMAP to obtain the value of MDTREA 
from the input record in DDTREA instead of the output 
record in DDEVAL. This process also computes PTCRCH. 
There is no limit on the number of register operations that 
each process can contain. 

Figure 19 contains DBMAP instructions that identify the 
occurrence of a treatment failure in a patient and then 
indicate that failure in all of that patient's records. 
For the hypothetical clinical study, a treatment failure 
occurs when both the patient and the doctor estimate that 
the correction level has decreased by 2. The FIND line in 
Figure 19 identifies these failures in the DDEVAL dataset 
and produces a select-file that identifies 1 or more sites 
on any patient for whom the treatment has failed. In this 
case, the TO dataset is the same as the DATA-BASE dataset 
and DBMAP fills FAILCH with an F for all records in the 
PATNO chain identified by each PATNO in the select-file. 
The argument, $F, in the DATA-BASE line prevents redundant 
processing of the PATNO chain by instructing that DBMAP 
process the PATNO chain only once when it finds the first 
failure for a PATNO in the select-file. 

Limitations 

Although, the instructions for a simple DBMAP task, such as 
the one in Figure 14, are reasonably straight-forward, 
DBMAP has a cryptic command language for the specification 
of the more complex tasks such as the one in Figure 16. 
The DBMAP language represents a compromise between user­
friendliness and ease of software development. There is 
another feature of DBMAP might be perceived as a limita­
tion. DBMAP must run separately before a report generator, 
such as QUERY or INSIGHT, can report on the correctly 
processed data. This lengthens the time required to produce 
a report. We usually use CI command files to run DBMAP 
before report generation to guarantee correctly processed 
output listings. 

Techniques 

On the whole, DBMAP has proved to be a very powerful tool. 
It provides us with a special purpose instruction language 
to fulfill the database requirements for clinical studies 

13 Paper 1010 



listed in Figure 4. DBMAP does lengthen the amount of time 
required to produce a report but the cost is not high for 
all the power that DBMAP provides. We compared processing 
times for QUERY, DBMAP, and INSIGHT during normal system 
activity. For 1000 records, QUERY required 5.7 minutes to 
sort a single dataset and produce a report file. For 1000 
records, DBMAP required 8.5 minutes to perform a cross­
dataset transfer and produce a log file, and for 1000 rec -
ords, INSIGHT required 12.9 minutes to sort a single data­
set and produce a report file. We have described only some 
of the simpler uses of DBMAP and we have found that we have 
been able to accomplish tasks of increasing complexity as 
we have become more proficient in its use. 

PHASE 5: STATS - STATISTICS FOR IMAGE/1000 

Benefits 

We developed STATS to provide us with some simple scien­
tific statistics that we could not obtain satisfactorily 
with QUERY or INSIGHT. We wanted to develop software that 
obtained its data directly from records identified by a 
QUERY select-file because then we could accomplish some 
statistical tasks rapidly by eliminating the need to pro­
duce, and reformat files for input to a separate statistics 
package. STATS provides 2 kinds of statistical reports 
which we will describe below. 

STATS Examples 

Figure 20 contains an example of the STATS instructions and 
the output for a BASIC report that provides count, mean, 
standard deviation, minimum, maximum, and standard error 
for grouped variables or ungrouped variables. The PROCESS 
line contains the process name, a name of a QUERY 
select-file, a level-word, mode, and the STATS keyword 
BASIC. The arguments in the DATA-BASE line are the data­
base:security-code:cartridge, level-word, mode, dataset, 
and a group item list. The FIND line is any legal QUERY 
find statement and it produces the select-file named in the 
PROCESS line. The DATA-BASE and the FIND line may be 
omitted if the named select-file references a file previ­
ously produced by QUERY. If the GROUP line is not includ­
ed, STATS performs the statistics based on all records 
referenced in the select-file. If the GROUP line is 
included, its argument must match the group item list in 
the DATA-BASE line and STATS will perform the statistics 
every time that the group item list changes value. STATS 
will process the all items referenced in the ITEM lines and 
the items may be individually scaled by multiplication or 
division and offset addition or subtraction. The offset 
can occur before or after the scaling. STATS will also 
exclude a single missing value per item. Figure 20 shows 
the items divided by 100 with a missing value specified as 
-999. At the end of the statistical report, STATS pro -

Paper 1010 14 



vides reference information that identifies the sources of 
the input file and the data items. 

Figure 21 contains an example of the STATS instructions and 
the output for a FREQ report that provides row and column 
counts, totals, and percentages for 2 items. The PROCESS, 
DATA-BASE, FIND, and GROUP lines are similar to the lines 
in the BASIC instruction file except for the keyword FREQ 
in the PROCESS line. STATS will compute the frequencies of 
each value of the items in the ITEM lines unless an option­
al range list defines counting bins. In the range lists, 
parentheses indicate exclusion of an end point and square 
brackets indicate inclusion of an end point. Null values 
imply an infinite lower or upper bound. STATS will produce 
a row and column labeled 'other' if it encounters an item 
value that is not in the range list. 

Limitations 

STATS will only exclude 1 missing value per item. This is 
sometimes inconvenient because we have found that it is 
useful to code missing values based on the reason for their 
absence. We use DBMAP to recode such missing values before 
we process them with STATS. Another limitation is that 
STATS can only group data at one level based on the change 
of a concatenated item list e.g. MONO and PATNO. This 
grouping is equivalent to the lowest group level in QUERY. 
Thus, one STATS report is needed to produce statistics 
grouped by MONO and a second report is needed to produce 
statistics grouped by PATNO. Lastly, the STATS FREQ option 
can only group data into 20 bins. However, we have found 
that 20 bins are more than adequate for most tasks. 

CONCLUSION 

We have had our HPlOOO for 2 and 1/2 years now to serve our 
clinical studies database needs and it has greatly enhanced 
our productivity at all phases. The excellent programming 
environment has enabled us to develop the general purpose 
software tools GSA, DBMAP, and STATS to aid and supplement 
HP'S IMAGE/1000 database and the database tools VIEW, DI­
MENSION, and INSIGHT from Polaris, Inc. By concentrating 
on the use and development of software tools instead of ad 
hoc applications programs, we now routinely fulfill the 
clinical studies requirements listed in Figure 4 without 
programming. Our programless solutions simplify documenta­
tion, greatly reduce the time required to implement a new 
database task, and they provide IMAGE/1000 with some rela­
tional capabilities making it easier for the user to enter 
and retrieve data in a more natural manner. 

15 Paper 1010 



Paper 1010 

Collagen Scientific Computer 

System Hardware 
HP1000 

RTE-A Operating System with VC+ 
2 Mbytes Memory 
2 120408 8 channel Mux cards 
2 120058 Async cards 
6 2392A Terminals 
1 26318 Printer 
1 2934 Printer 
9 9816 Scientific Workstations 
3 IBM PC clones 
1 IBM XT 

HP7214TD 
132 Mbyte Disk 
7970E 1600 BPI 

HP7946A 
55 Mbyte Disk 
Catridge Tape Drive 

RS232 Distributed Data Switch from Metapath, Inc. 

Figure 1 

16 

11 

·-



Rn Example of a Cl in cal Report Form 

PFC/tu. FOR THE R.l".PAill. or Pl".11.IOOO:i"TA.L lNTil.AOSSf'.OUS OP:fl'.CTS 

l. o,•,..>r.raphie Oat"' 

Pa<tm ''""' l_J_J_l__J_l_l_l_l_J_l_l_l_l_J_l_l_I l_!_l_l_J 

lnv.,stl~11tor ID: l_l_l_!_!_l_I 
M l_J F l_J 

lnvestlgator ~lame: l_l_l_J_J_l_l_l_l_l_I 
Date of Birth: l_l_I l_l_I l_l_J 

D•y PatientRac:lalB.icltground: 

Social Sll!Curity Number: l_l_l_l-l_l_l-l_l_l_l_I l_I Asian l_I Black 

Address: 

I I c.~uca1111m I I 111span1c 

l_l_l_l_l_l_!_l_l_l_!_l_!_l_l_l_!_I l=I Otho' l_l__::J_l_l_l_l_l_I 
1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 ,,.,,,, 
1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_: 

Telephone: u_u-u_u-u_1_u 

PatlentUlstory 

Pare A: Pat:lent U1.,tu~y/Contralodicatio11a I_[ Hc<.licativ"/food alieri:;les {List): 

Chect. if applicable. IF YES, 00 NOT ENROU. lN TIU!: STUDY. 

l_ILtdocainehypersensltivlty 

l_lcurrentpre;:narH:y 

l_IHlstoryofanaphylactoidreactiotlS 

!_I Diabetes 

I_! Chenotherapy/r~d1othernpy --------

l_IP:iget'sdlsease 

l_IOsteoporosis 

i_I rlstcomalacia 

l_i Cus:-itng's Syndrome 

[ I Hyperthyrnidtsm 

l_!Hyperparathyrnldisro 

I I Chronic Liverdtsea.se 
LJ None of the a.hove 

If pat lent l~ c,,rrent ly rcgul.1rlv t;ikin;: a;w of tloe 

fo1lo..,1ng 111edlc,n!uns, check below. If' YE".S, DO NOT 

l_I Sonsterni<'al anti-inflam:natories (aspirin) 

l_ISteroids 
l_J Anticoar,Lllants (Coumandin, Heparin) 

l_J Tetrncycline 

l_l Patient 111 not l'.:!!'jula-rly tal<tng any of the above 

f'•-rt !I: Patient History Related to Protocol Precautions 

(Check 1f applicable and givedateoE most recent 

episode.) 

I I H'1yfever -------------

1=1 EcZ<'r"a -----------

1_1 Aqth:n.1 --------------

1_1 l)rtir..1rt.1l react!onq or rashes------

!fpat1enthcunently~~ta:Cin'(an)l'ofthe 

follow1".; med1catlans, chcco< belaw. 

I_] r\v<'.antoins(Dllantin) 

l_I Estro.;cn/blnhcontrolpllls 

l_i Vir.i':tinC tne>:ce«s of I gro/day 

l_IThyroid 

I_: ACTH 

l_I A:lti!>lotics 

l_jNoneoftheabove 

Part C: Patient History {checlr. if appllc3hle) 

I ! A•1t Ol':1:'1une di ~e.1~e ( Perscn:ll >,is c r:ay) 

l_I Systeoicordlscoid tupuscr)'thc::atosus 

l_IKh('uriatoldarthrltis 
i_I Polyartedtlsnodosa 

I_: Has:liooto's tl1yro1diUs 

l_IGrav"s'dls"ase 

:_I Pr:.~•~ssive systcr:lic ~cl~ro~ls (Scl .. roder.,a) 

l_IO.,rmatomyosltis 

l_I Polv01yositis 

l_!Psoriaticarthrltts 

l_IUlcerntlvecolitls 

l_i Croh,,'s di'>'"'"" 

l_I S;o;:r~n's d1se,1se 

I I RPiter's dise15e 

I I ~txed con:iectlve tt«stJe disea5e 

l_INoneoftheabove 

Teat [nfnr..,.tlon 

Dat .. of Blood ~I Draun l_!_l-l_l_l-l_l__J 

Dace of ZYOER.'1 Skin T<,sl l_l_[-f_l_J-l_i_! Lot 'i<Jrnber l_l_l_l_l_l_I 

Send thh Corm. first bl<V>1 specimen and slf:ned lnform<'<:! Con~cnt F<>rm to): .. rh.,r to Colla~en Corpnr.1tior1. 

lnveutigator'H Signature:-------------

•hlte and Y"l low Copieq: ~end to Col la~en Cllrporat ton Pink Cnpv: ?.etaln for pa: lent record 
(l06bprop.1) 

F gure 2 

17 Paper 1010 



"'D 

i ... 
~ 
0 

... 
co 

Schematic Representation of a Hypothetical Clinical Study 

MD 
Enrollment 
Form 

Enrollment 
MONO 

Patient 
History 
Form 

History Form 
PATNO 

Patient 
Treatment 
Forms 

Treat Form 
PATNO 
Sites 1 ... n 

Treat 1 
Treat 2 

Treat 3 

Figure 3 

Patient 
Evaluation 
Forms 

Eval Form 
PATNO 
Sites 1 ... n 

Eval 042 
Eval M03 

Eval M06 
' Eval Y01 

Eval Y02 

;;;. ~- I ~-



Database Requirements for 

Clinical Studies 

1) Storage, verification, and selection of patient parameters provided on 
each clinical report form. 

2> Selection of data groups based on time point, patient, and site of 
treatment. 

3) The ability to add new parameters to the database during the course of a 
study. 

4) Retrieval of full patient reports compiled from all data on each 
patient. 

5) Selection of data for scientific analysis based on flexible user-defined 
criteria. 

6) Computation of changes in patient parameters over time. 

7> Identification of complete cases under a specific criterion. 

B> Identification of treatment successes and failures. 

Figure 4 

19 !-'aper 1010 



General Database Design Considerations 
for Optimal Use of Database Tools 

Paper 1010 

Tool + Benefit 
Limitation 

QUERY 
CHP) 

INSIGHT 
<Polar isl 

GSA 
<Collagen) 
VIEW and 
DIMENSION 
<Polaris) 

DBMAP 
<Collagen) 

+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 

Considerations 

implementation is quick and simple 
select and report commands are straight-forward 
data modification and report commands are 
available at the same time 
can name select files for subsequent use 
cannot change sort or key items 
the only user prompt is the item name 
items are presented in schema order 
reports are limited to a single dataset 
reports contain only 10 lines 
no arithmetic operations 

screen oriented user prompts 
extensive reports from multiple datasets 
reports can contain 66 lines 
register and arithmetic operations 
data modification commands not available 
cannot name select files 
multiple dataset connector or link items must be 
the same lengths and types 
links and sorts must be whole items 
link item must be the highest sort item 
higher group breaks force lower breaks and limit 
group operations on linked datasets 

no programming required for 
screen database implementation 
database access is menu driven 
screens can contain any user prompts 
items are presented in any order 
can change sort or key items 
implementation slower than QUERY because of screen 
design 

takes advantage of sorted chains 
moves data between databases and datasets 
links can be multi-item of different lengths and 
types 
can recombine data so the power of any report 
generator is enhanced and redundant data entry is 
reduced 
DBMAP must run separately after data entry and 
before report generation 

Figure 5 

20 



Spec 

Tool 

QUERY 

INSIGHT 

GSA using 
VIEW and 
DIMENSION 

DBMAP 

fie Database Design Elements for 

Opt ma 1 Use of Database Tools 

Design Element 

No sort items because an update of a sort item requires 
deletion and re-entry of an entire record. 

Link items were added to enhance for cross-dataset 
reporting. 

An automatic: master dataset containing record 
identification items was added to provide for 
rapid screen access during finds and updates. 

Utility items were added to datasets to contain computed 
and temporary find, sort, link, and marker items. 

Figure 6 

21 Paper 1010 



Paper 1010 

IMAGE/1000 Database Schema Opt mal 
for Use by QUERY 

sets: 
(( 

CC for optiMal use by QUERY 

(( 

(( 

(( 

naMe:qdMd: :::~3,M; 
entry: « one 

Mdno<2>, 
MdnaMe, << x16 
Mdspec, << x2 

(( p = 
capacity:5; 

naMe:qdhist: :23,M; 
entry: (( one 

patno<2>, 
custno, « x6 
date, « x6 
patnM, << x26 
dob, « x6 
yob, « il 
sex, << x2 

capacity:11; 

naMe1qdtrea:123,d; 
entry: « one 

patno <qdhist>, 
Md no (qdMd l, 
visit, « x4 
date, « x6 
siteno, << x2 
site, (( x4 
Matl, << x2 
vol, « il 
Mdcrtr, << il 
ptcrtr, (( il 
ptrec1, << x2 

capacity:99; 

naMe:qdeval: 123,d; 
entry: « one 

patno (qdhist>, 
Mdno <qdMdl, 
visit, << x4 

{( 

« 
date, « x6 
daycnt, << il 
siteno, << x2 
site, « x4 
Mdcrev, << it 
ptcrev, « il 
ptrecl, << x2 

capacity: 165; 

r•~c or-d per Md 
« x6 Md nuMber 

Md last naMe 
Md speciality D 

plastic surgeon E 
« total Md's 

derMatolooist 
eye/ear/n;se/throat 

record per each patient history 
(( x4 patient id nuMber 

Md nuMber 
date history taken 
patient naMe, 
date of birth 
year of birth 
sex 

<< total patients 

(yyMMdd) 
(last, first> 
(yyMMdd) 

CM/Fl 

)) 

)) 
) ) 

)) 
)) 

)) 

) ) 

) > 

}) 
}) 

)} 

}) 

}} 

)) 

» 
}) 

)} 
)) 

record per site per patient treatMent >> 
<< x4 patient nuMber )) 
< < x6 Md nuMber ) } 

treatMent nuMber (1/2/3) )) 
treatMent date <yyMMddl )) 
site nUMber (G1/G2/G3/Zl/Z::?/Z3) )) 
site code <GL/NU )) 
Materi-1111 used <G/Z) )} 
voluMe (50/150/1050 l ( 0-1 OMLl > > 
estiMc1tes o-F' correction Cl worst -· "'best) )} 
after treatMent by Md and patient >> 
patient's first site ? CY/ ) )} 

<< 11 patients * 3 treatMents * 3 sites >> 

record per site per patient evaluation 
<< x4 patient nuMber 
<< x6 Md nuMber 

visit codes sort in tiMe D42 
M03 = 3 Months M06 
YOl = 1 year Y02 

evaluahon date < YYMMdd l 
days since treatMent 

7 weeks 
6 Months 
2 years 

site nuMber <Gl ,G2,G3,.Z1 ,Z2,Z3> 
site code (NL,GL.,CHK ,CHN,ORALl 
estiMates of correction Cl worst - 5 best) 
at this evaluation by Md and patient 
patient's first site ? CY/ > 

<< 11 patients* 5 evaluations * 3 sites 

Figure 7 

22 

)) 

)} 

)) 

)) 

)) 

) ) 

) > 
) ) 

) ) 

) ) 

)} 

)) 

)} 

) ) 

I ' .'~ 

I 



IMAGE/1000 Database Schema Optimal 
for Use by QUERY and INSIGHT 

sets: 
{( 

CC for optiMal use by QUERY and INSIGHT 
)} 

naMe:idMd: :23,M; << ensures unique Mclno in idMd dataset }} 
entry1 « one recor•d per Md )) 

Mdno(2), << x6 MdnuMber )i 

MdnaMe, « x16 Md last naMe » 
Mdspec, << x2 Md speciality D derMc1tologist )} 

<< P = plastic surgeon E eye/ear/nose/throat }} 
capacity:5; « total Md's )) 

{( ) ) 

(( 

« 

naMe:idhist: :23,M; 
entry: CC one 

pat no C2l, 
idno, << x!O 
custno, << x6 
date, « x6 
patnM, << x26 
dob, CC x6 
yob, « i1 
sex, < < x2 

capacity:11; 

naMe l idtrea:: 23,d; 
en try: CC one 

patno (idhistl, 
idno, << x!O 
11dno c idMd I, 
visit, << x4 
date, (( x6 
siteno, << x2 
site, << x4 
Matl, << x2 
vol, « il 
Mdcrtr, (( i 1 
ptcrtr, CC il 
ptrect, << x2 

capacity:99; 

naMe:ideval: :23,d; 

<< ensures unique patno in idhist dataset }} 
record per each patient history >> 

CC x4 patient id nuMber )) 
patno & Mdno for INSIGHT report•>> 
Md nuMber )) 
date history taken 
patient ""~Me, 
date of birth 
year of birth 
!>ex 

<< total patients 

CyyMMddJ 
Clast, firs;.t) 
(yyMMdd) 

CM/Fl 

)} 

}) 

)) ,, 
) ) 

)) 

) ) 

record per site per patient treatMent >> 
<< x4 patient nuMber >> 

patno & Mdno for INSIGHT repor-ts)) 
« x6 Md nuMber )) 

treatMent nuMber Ct/2/3) >> 
tre1:itMent date <yyMMdd) >> 
site nuMber (G1/G2/G3/Zl/Z2/Z3) }} 
site code (GL/NL) )) 
Material used CG/Z) >> 
voluMe (50/150/10501 CO····! Ot1U I) 
estiMates of correction (1 worst - 5 best) >> 
after treatMent by Md and patient '' 
patient's first site ? CY/ ) >> 

<< 11 patients * 3 treatMents * 3 sites >> 
» 

entry: << one record per site per patient evaluation )) 
) ) patno Cidhistl, << x4 patient nuMber 

idno, « x!O p.>tno .\ Mdno for INSIGHT reporti::-.>> 
)) 
)} 

)) 

)) 
)) 

Mdno CidMdl, « x6 Md nuMber 
visit, (( x4 vi1-'iit codes sort in t1Me D42 

« M03 = 3 Months M06 
CC YO 1 = 1 ye,•r Y02 

date, << x6 evaluation date CyyMMddl 
daycnt, < < i 1 days sinc:•z. treatMent 

7 week~:> 

6 Months 
2 years 

siteno, << x2 site nuMber (G1,G2,G3,Z1 1 Z2,Z3> 
si.te, CC x4 ,;ite code CNL,GL,Cl·llC,CHN,Ol<AU 
Mdcrev, << it estiMates of c:orrectj.on (1 worst ·- 5 best> 
ptcrev, << it at this evaluation by Md and patient 
ptrec1, << x2 patient's first site ? CY/ ) 

capacity:1651 << 11 patients• 5 evaluations• 3 sites 

Figure 8 

)) 

)) 

)} 

)) 

) ) 

) } 

)) 

23 Paper 1010 



IMAGE/1000 
for Use by 

Database Schema 

QUERY, INSIGHT, 
Opt 
and 

ma l 

GSA 

set·s: 
« 

CC for optiMal use by QUERY, INSIGHT, and GSA 
)) 

cc 

cc 

cc 

(( 

Paper 1010 

naMe:gdptvi: :23>a> 
en try' « one 

ptvis<2>, 
capacity:307; 

naMe:gdMd: :23,MJ 
entry: (( one 

Mdno<2>, 
MdnaMe, cc x16 
Md spec, cc x2 

cc p = 
capacity:5; 

naMe:gdhist: :23>MJ 
entry: cc one 

patno <2> > 
idno, cc xlO 
custno 1 « x6 
date, cc x6 
patnM, (( x26 
doh, (( x6 
yob, cc il 
sex, « x2 

capacity:tl; 

naMe:gdtrea::23,d; 

<< to provide for rapid scr•een find )} 
re~ord per si~e per treatMent or evaluation >> 

CC x8 patno.!.visit for GSA finds>> 
CC 99 treats + 165 evals + soMe extra >> 

<< ensures unique Mdno in dataset 
record per Md 

cc 'x6 
Md last naMe 

Md nuMber 

Md speciali~y D 
plastic surgeon E 
<< total Md's 

derMatologist 
eye/ear/nose/throat 

)) 

)) 
}) 

» 
}) 

) > 
}) 

» 
} ) 

<< patno chain is sorted in tiMe by visits >> 
record per each patient history )} 

CC x4 patient id nuMber )) 
patno &i Mdno for INSIGHT report=»> 
Md nuMber >> 
date history taken CyyMMddl ) ) 
patient naMe, <last, first> >> 
date of birth (yyMMdd) ) ) 
year of birth )) 
sex (M/F) }} 

<< total patients >> 
) ) 

entry: << one record per site per patient treatMent )) 

finds)) 
}) 

reports}) 
) } 

ptvis (gdptvi(sitenoll, C< x8 
patno (gdhist(visit )) 1 CC x4 
idno, CC xlO patno & Mdno 

patno&ivisit for GSA 
patient nuMber 

for INSIGHT 
Md no (gdMd <patno l l, < C x6 Md nuMber 
visit, « x4 treatMent nuMber (l/2/3) 
date, « x6 treatMent date CyyMMdd) 
siteno, « x2 site nuMber CG1/G2/G3/Zl/Z2/Z3) 
site, « x4 site code < GL/NLl 
Matl, « x2 Material used CG/Z) 

}) 

}} 

}} 

vol, « il voluMe (50/150/1050)(0-lOMLl )) 
Mdcrtr, << it estiMates of correction Cl worst - 5 best) 
ptcrtr, C< il after treatMent by Md and patient 
ptrect, << x2 patient's first site? CY/) 

capacity:99; CC 11 patients* 3 treatMents * 3 sites 

naMe: gdev~1J.:: 23,d; 

" ,, 
}} 

» 
)} 

entry: << one record per site per patient evaluation 
ptvis CgdptviCsitenoll, << x8 patno&visit for GSA 
patno Cgdhist(oisit >>, CC x4 patient nuMber 

}} 

finds>) 
)} 

Mdno (gdMd Cpatno >>, C< x6 Md nuMber 
visit, << x4 visit codes sort in tiMe D42 

C< M03 = 3 Months M06 
« YOl = 1 year Y02 

date, « x6 evaluation date <yyMMddl 

7 weeks 
6 Months 
2 years 

siteno, << x2 site nuMber CG1,G2,G3,Zl,Z2,Z3) 
site, « x4 site code CNL,GL.,CHl<,CHN,ORALl 
Mdcrev, << it estiMates of correction Cl worst - 5 best> 
ptcrev, CC il at this evaluation by Md and patient 
ptrecl, CC x2 .patient's first site? CY/ ) 
daycnt, CC it days since treatMent 

>) 
» 
)} 

» 

)) 

» 
)) 

}} 

) ) 

idno, « xtO patno & Mdno for INSIGHT reports)) 
capacity:165J << 11 patients* 5 evaluations * 3 sites )) 

F gure 9 

24 



IMRGE/1000 Database Schema Optimal 
for Use by QUERY, INSIGHT, GSA, and DBMRP 

sets: 
« 

(C for optiMal use by QUERY, INSIGHT, GSA. and DBMAP )} 
)} 

({ 

« 

(( 

(( 

naMe:ddptui: :23,a; 
en try: « one 

pt uis(2), 

« to provide for rapid :.creen finrl )) 
record per site per treatMent or evaluat1on >> 

(( x8 patnoo!.visit for GSA finds>> 
capacity :307; (( 99 treats + 165 evals + soMe extra }) 

naMe:ddMd; :23,M.i ( ( ensures unique Mdno in d~".\taset 
)) 

)) 

)) 

)) 
)) 

)) 

)) 

)) 

entry: ( < 
Mdno(2), 
MdnaMe, 
Md spec, 

capacity; 5; 

({ 

({ 

« 

record per Md 
« xb 

xt6 Md last naMe 
x2 Md speciulity D derMatologist 
P = plastic surqeon E = eye/ear/no~,e/throat 

<< total Md;s 
)) 

naMe:ddhist: :23 1 Mi << patno ch<;iin is sorted in tiMe by visit-; » 
entry: « one record per each patient history ) } 
patnoC.~>, « x4 patient id nuMber )) 
custno 1 ({ 

date 1 ({ 

patnM 1 (( 

d ob, « 
sex 1 (( 

(( 

(( 
({ 

id no, (( 

age, ({ 

Ut iJ. I ({ 

Ut i lin 1 ({ 

capacity:tl; 

x6 Md nuMbE~r 

x6 date history taken 
x26 patient naMe, 
x6 date of birth 
x2 sex 

(yyMMdd) 
( 1 a st 1 ·fir-~- t) 

(yyMMdd) 
(M/F) 

)) 

)) 

)} 

iteMs below loaded or cottputed by DDMAr' 

x10 Mdno&putno 
il age of patient 
x30 utility t'ieldf", 
i1 utility fields 

<< total patient~ 

)) 

for INSIGHT repv;~ts}} 

/} 
}) 

)} 

)} 

)} 

naMe:ddtrea: :23,d; 
entry: << one record per r->ite per p<:itient treat11ent ;) 
ptvis <ddptvi<siteno>), « x8 patnotwisit for GS1~ finds)} 
p;~tno <ddhist(visit )), « x4 patient nuMber )) 

Mdno (ddMd (patno )) , {( x6 Md nuMber 
visit, « x4 tre;nMent nu"'bcr (1/2/3) ;) 
date, (( x6 treatMent date iyyMMdd) 
s:i.teno, (( x2 site nuMber (Cl/G2/G:::/Zl/Z2/;:3) )) 

site 1 << x4 s-.ite code <GL./NU )) 

)) M<nl, << x2 Material u~:-.ed <GIZ) 
vol, « il voluMe C'jO/t~rn/10:-iD)<0-10t1L> )} 
Mdcrtr, (( il est1Mates of correction (1 wor7>t - 5 best) }} 
ptcrtr, « il after trecltMent by Md and patient 

(( 

({ iteMS below loaded or coMputed by DDMAP 
:> 
)) 

« 
idno, « 
p tree 1 1 < < 
u ti l, (( 
ut ilin, « 

capacity :99i 

x 1 0 
x2 
x30 
ii 

p<:itno ~ Mdno for 
p,~ti~:'!nt/s fir'1t site ? <YI ) 
u ti J.1 ty field,.., 
utility fielcL:> 

({ 11 patients ·ll'i 3 treatMPnts -x-

)) 

INSIGHT reports}) 
)) 

)) 

3 <;,1 tes } :; 
)) 

naME~: ddeva 1: : 23 ,d; 
entry: << rf?cord per <;ite p<Jr p,lt1ent evalu;111on >> 
ptvis (ddptv:i.(siteno)), {{ xB patno&v1sJ.t for Gs,; find~.>; 
patno (ddh"i:it(vis1t )), « x4 pafi.0.nt nuMber ;) 
Mdno <ddMrJ <patno )), << x6 Md nuMbc>r }~ 

visit, {{ x4 visit code<.:, sort in t1Me D42 7 W!·:'!ek.,., >> 

date, 
si. tono, 
s1te 1 

Mdcr-ev 1 

p tcrev 1 

Mdr:rch 1 

ptcrch, 
p tree 1 1 

daycnt, 
f •~ i lrc, 
failch 1 

.lrlno, 
11t1l, 
11til1n 1 

capacity: 

{{ M03 "" 3 Months MO(:. Months }} 
({ 

(( 

(( 

(( 

({ 

(( 
(( 

« 
« 
(( 

(( 

(( 

(( 

(( 

(( 

« 
(( 

(( 

(( 

1l5j 

YOl = 1 yedr Y02 2 yt~ars ) } 
x6 evaluation date (yyMMdd) }} 
x2 r,o.i1"e nuMber <r.t 1G2 1G::,::1 ,:.:2 1:3> } > 
x4 sit<:? code ct~L 1 GL 1 CHK 1 CHN 1 t:Hlt1L) )) 
il (-:'!StiM,~tes of corrcct].on (1 worst - 5 best) }) 
it at this ev~1J.11at1on hy Md and p~t1ent )) 

)} 

iteMs below loaded or coMputc)d by DBMAr ); 

ch.1nge in estiMate efj 11dcr ·- 11c.lcrtr 
il chanqP. in Md P.<:".t"1MiHe 
11 changQ in put1cnt r~tlM~te )) 

J.2 pat1~nt's f'trst 'itt<? 7 (Y/ ) 
il day'"", '"",l.nce 1re~1tMPnt 
x2 trc~,1tMf"nt ~'d.ilure r~:·r:,1rd 
x2 tre~1MP.nt f~ilure 

p<1tno .\ Mdno 
p~·,.,tJdo chain ) ; 

t. I 0 
x3D 

" 
u ti] t y 11.eJ.d :;, 
u t :i. l t y r 1e lds 

{{ 11 pat1en1"• ·X 5 

r·or Hl:1"rGHT .~eror·te;} > 
)) 

)) 

.;o•vc1lu,1t1onc, x 3 sile"., 

F gure 10 

25 Paper 1010 



Effects of the INSIGHT Connector Item 
on Cross-Dataset Grouping 

If PATNO is the connector item: If MONO is the connector item: 

PATNO MONO HISTORY PATNO 1 MONO HISTORY 
PATNO MONO TREAT 1 PATNO 3 MONO HISTORY 
PATNO MONO EVAL 1 PATNO 1 MONO TREAT 1 
PATNO MONO EVAL 2 PATNO 3 MONO TREAT 1 

PATNO 2 MONO 5 HISTORY PATNO 1 MONO EVAL 
PATNO 2 MONO 5 TREAT 1 PATNO 1 MONO EVAL 2 
PATNO 2 MONO 5 EVAL 1 PATNO 3 MONO EVAL 1 
PATNO 2 MONO 5 EVAL 2 PATNO 3 MONO EVAL 2 

PATNO 3 MONO HISTORY PATNO 2 MONO 5 HISTORY 
PATNO 3 MONO TREAT 1 PATNO 4 MONO 5 HISTORY 
PATNO 3 MONO EVAL 1 PATNO 2 MONO 5 TREAT 1 
PATNO 3 MONO EVAL 2 PATNO 4 MONO 5 TREAT 

PATNO 4 MONO 5 HISTORY PATNO 2 MONO 5 EVAL 
PATNO 4 MONO 5 TREAT 1 PATNO 2 MONO 5 EVAL 2 

PATNO 4 MONO 5 EVAL 1 PATNO 4 MONO 5 EVAL 
PATNO 4 MONO 5 EVAL 2 PATNO 4 MONO 5 EVAL 2 

If IDNO is the connector item: 

IDNO 11 PATNO MONO HISTORY 
IDNO 11 PAT NO MONO TREAT 1 
IDNO 11 PATNO MONO EVAL 1 
IDNO 11 PATNO MONO EVAL 2 

IDNO 13 PATNO 3 MONO HISTORY 
IDNO 13 PATNO 3 MONO TREAT 1 
IDNO 13 PATNO 3 MONO EVAL 1 
IDNO 13 PATNO 3 MONO EVAL 2 

IONO 52 PATNO 2 MONO 5 HISTORY 
IDNO 52 PATNO 2 MONO 5 TREAT 1 
IDNO 52 PATNO 2 MONO 5 EVAL 
IDNO 52 PATNO 2 MONO 5 EVAL 2 

IDNO 54 PATNO 4 MONO 5 HISTORY 
IDNO 54 PATNO 4 MONO 5 TREAT 
IDNO 54 PATNO 4 MONO 5 EVAL 
IDNO 54 PATNO 4 MONO 5 EVAL 2 

Figure 11 

Paper 1010 26 



A Fortran Program to Concatenate 

2 Items in a Dataset 
PROGRAM COCAT 
INTEGER Ibuf(401,Tlog,Inbuf(401 
CHARACTER Cbuf•BO,Cinbuf•BO 
EQUIVALENCE ICbuf,Ibufl,<Cinbuf,Inbufl 
INTEGER Dbase(91,DsetC31,Leoel<31,Mode 
INTEGER OutC31,In1(31,In2(31,Inllength,Istat(101 
LOGICAL End_of_file 

***************************************************************** 
" ~ * get run string and parse into Data-base Data-set Level Mode * 
* Destination-iteM and two Source-iteMs ~ 

* * 
****************************************************************~ 

CALL Getst<Ibuf,40,Tlogl . 
CALL ParseString(Cbuf,Dbase,Dset,Level,Mode,Out,In1,In2> 
CALL Dbopn(Dbase,Leoel,Mode,Istat) 
IF <Istat.ne.01 GOTO 9999 

********************************************************************* 
" ·>< 

" .,. 
" 
" 

a) get value of the first source iteM 
b> get value of the second source ite~ 

c> concatenate these values 
d) put value of the concatenated string in destination iteM 

********************************************************************~ 
CALL Dbget(Dbase,Dset,2,Istat,Inl,Ibuf) ! read first, get lnt 
IF <Istat.ne.O.and.Istat.ne.121 GOTO 9999 
In1length=Istat<2>•2 
End_of_file=<Istat,eq,121 
DO WHILE <.not.End of file) 

CALL DbgetCDbase:Ds;t,1,Istat,In2,Inbuf) ! re-read, get In2 
·IF <Istat.ne.OJ GOTO 9999 
Cbuf<Inl length+l: l=Cinbuf ! concatenate 
CALL Dblck(Dbase,Dset,1,Istatl 
IF (Istat.ne.01 GOTO 9999 
CALL Dbupd(Dbase,Dset,1,Istat,Out,Ibufl ! put in the destination 
IF (!stat.ne.01 GOTO 9999 
CALL Dbunl<Dbase,Dset,1,Istatl 
IF <Istat.ne.OJ GOTO 9999 
CALL DbgetCDbase,Dset,2,Istat,Int,Ibuf) ! read next, get Int 
IF <Istat.ne.O.and.Istat.ne.121 GOTO 9999 
End_of_file=<Istat.eq.121 

END DO 
CALL Dbcls<Dbase,Dset,1,Istatl 
STOP 'Successful' 

9999 WRITE<l,•> '!Mage error ',Istat(l),', AbnarMal ending. 
CALL Dbcls<Dbase,Dset,1,Istat) 
END 

SUBROUTINE PdrseString<String,Dbase,Dset,Level,Mode,Out,Inl,In2) 
CHARACTER String*(*) 
INTEGER Dbase<•>,Dset<•>,Level<*>,Mode,Out(•),InlC*),In2(•) 
INTEGER Ibuffer<40J,DeciMalToint,ierr 
CHARACTER Cbuffer><BO 
EQUIVALENCE <Cbuffer,Ibufferl 
Dbt:ise=2H 
CALL SplitString(String,Cbuffer,Stringl 
CALL SMooe(Ibuffer,1,16,Dbase,3> 
CALL SplitStringCString,Cbuffer,String> 
CALL SMooe<Ibuffer,1,6,Dset,1) 
CALL SplitString(String,Cbuffer,Btringl 
CALL BMove(Ibuffer,1,6,Leoel,11 
CALL SplitStringCString,Cbuffer,String> 
Mode:::D-ecit-talToin-t(Cbuffw:o.r"J :ierr) 
CALL SplitStringCString,Cbuffer,String> 
CALL BMove<Ibuffer,1,6,0ut,11 
CALL SplitStringCString,Cbuffer,String> 
CALL BMooe<Ibuffer,1,6,Inl,11 
CALL SplitString<String,Cbuffer,Stringl 
CALL 5Mave<Ibuffer,1,6,In2,t> 
RETURN 
END 

Figure 12 

27 Paper 1010 



GSA - Generic Screen Access 

Top Menu 

1 - Screen 1 for Dataset 1 
2 - Screen 2 for Dataset 1 
3 - Screen 1 for Dataset 2 
4 - Screen 1 for Dataset 3 

Type menu # and select 
mode key below 

~....._Ch-Hg_'_.__S_ho_•_.__D•-~t_•~ 

1 

Exit 
System 

Screen 2 for Dataset 1 

Item Item 2 Item 3 

Item 5 Item 6 Item 7 

I I 

Item 4 

I 

oCHANGE** press f2 key to change record **CHANGE** c::= CHANGE t~:~ t~:!::rd ~~:1us I :C~~n I I Exit I 

(ADD, CHANGE, SHOW, and DELETE modes hove sim ilor f keys) 
Copyright 1986 Collagen Corp. 

Figure 13 

Paper 1010 28 

i. 
! 
I 
! 

I 



Task: Fill IDNO with the concatenation of MONO and PA TNO 

DBMAP instructions for 1 dataset: 

PROCESS:idno_dem o,qyidno_dem o,2 
DATA-BASE ddemdb:7:23,write,1,ddhist 
FIND ddhist.patno ine 11 11 end 
LET id no = m dno 
LET idno:7:10 = patno 

END 

Figure 14 

Task: Copy SEX from DDHIST to UTIL in DDTREA 

DBMAP instructions: 

PROCESS:sex_dem o,qysex_dem o,2 
DATA-BASE ddem db:7:23,read, 1 ,ddhist 

END 

FIND ddhist.patno ine 11 11 end 
TO ddemodb:7:23,write,1,ddtrea,patno 
LINK patno 
LET util = sex 

Figure 15 

Task: Compute AGE today from year of birth YOB 

DBMAP instructions: 

PR 0 C ESS:age_dem o,qyage_dem o,2 
DATA-BASE ddem db:7:23,write, 1,ddhist 
FIND ddhist.patno ine 11 11 end 
LET age = @D #YEAR 11 $T 11 - dob 

END 

Figure 16 

29 Paper 1010 



Task: Fill PTRECl with Y if record the occurs first in 
a sorted PTVIS chain 

DBMAP instructions for 1 dataset: 

PROCESS:chain_dem o,qychain_dem o,2 
DATA-BASE ddem db:7:23,write, 1,ddtrea,ptvis,$F,siteno 

END 

FIND ddtrea.patno ine 11 11 end I 
LET ptrec 1 = 11 VU 

Figure 17 

Task: Fill MDCRCH and PTCRCH in DDEVAL with MDCREV in 
DDEVAL min us MDCRTR in DD TR EA, ditto for PT. 

DBMAP instructions: 

PROCESS:xdsch ange_dem o ,qyxdschan ge_dem o ,2 
DATA-BASE ddem db:7:23,read, 1,ddeval 
FIND ddeval.patno ine 11 11 end 
FROM ddem odb:7:23,write,1 ,ddtrea ,patno,visit,siteno 
LINK patno,visit,siteno 
LET mdcrch = OR 
REGISTER mdcrev mdcrtr::::I -
LET ptcrch = OR 
REGISTER ptcrev ptcrtr::::I -

END 
Figure 18 

Task: Find site failures in DDEVAL where MDCRCH and PTCRCH 
are < -2. Fill failch with F for all patient records if 
any site at any visit failed. 

DBMAP instructions: 

PROCESS:m ark_failure,qym ark_failure,2 
DATA-BASE ddemdb:7:23,write,1,ddeval,patno,$F 
FIND ddeval.mdcrch ilt 11 -2 11 and ptcrch ilt 11 -2 11 end 
TO ddem db:7:23,write, 1,ddeval,patno 
LINK patno 
LET failch = 11 F11 

END 

Paper 1010 

Figure 19 

30 



Instructions and Output for a 
STATS BASIC Process 

PROCESS:evaluation~change qyevaluation read 1 BASIC 

END 

VISIT 
DOO 
ITEM 

DAYCNT 
MDCREV 
PT CR EV 
MDCRCH 
PTCRCH 

VISIT 
D42 
ITEM 

DATA-BASE de"Mdb:2:23 read 1 ddeval 
FIND ddeval.patno ine . . end 
GROUP v~sit 
ITEM daycnt I 100 Miss -999 
ITEM Mdcreu I 100 Miss -999 
ITEM ptcreu I 100 Miss -999 
ITEM Mdcrch I 100 Miss -999 
ITEM ptcrch I 100 Miss -999 

Count Mean Std Deu 

77 16.273 5.513 
77 19.636 4.239 
77 17.273 6.114 
77 15.273 5.101 
77 16.494 3,865 

Count Mean Std Dev 

visit 

MiniMUM MaxiMUM 

7.000 31. o o o 
11.000 29.000 

5.000 33.000 
a.ooo 30.000 
9. 000 30.000 

Mini MUM MaxiMUM 

Std Err 

.628 

.483 

.697 

.581 

.440 

Std Err 
============================================================================== 
DAYCNT 77 21.305 5.218 0.000 37.500 .595 
MDCREV 76 23.816 4.127 16.000 34. 000 .473 
PT CR EV 76 22.684 4.894 14.000 40.000 .561 
MDCRCll 76 20.487 4.577 13. 000 35.000 .525 
PT CR CH 76 20.368 3.895 14.000 34. 000 .447 

VISIT 
M03 
ITEM Count Mean Std Dev MiniMUM MaxiMUM Std Err 
=·==•=*••===================================================================== 
DAYCNT 76 20.645 5.209 o.ooo 37.500 .598 
MDCREV 75 23.227 3.954 16. 000 32. 00 0 .457 
PTCREV 75 21.947 4.879 14.000 40.000 .563 
MDCRCH 75 19.893 4.599 12.000 35. 0 0 0 .531 
PTCRCH 75 19.707 3.941 14.000 34.000 .455 

VISIT 
ALL 
ITEM Count Mean Std Deu MiniMuM MaxiMuM Std ~~rr 

============================================================================== 
DAYCNT 230 19.402 5.748 o.ooo 37.500 .379 
MDCREV 228 22.211 4.494 11 . 000 34. 0 0 0 .298 
PT CR EV 229 20.614 5.831 5.000 40.000 .386 
MDCRCH 228 18.531 5.293 8.000 35. 0 00 .351 
PT CR CH 228 18.842 4.240 9. 000 34.000 .282 

*** Reference *** 
Input file INTEREX.STAT 
Process EVALUATION~CHANGE 
Select file /FORT/TU/QYEVALUATION: 111:6:128 
Data base DDEMDB12:23 Set DDEVAL 

Figure 20 

31 Paper 1010 



Inst ruct i ans and Output fa r a 

STATS FREQ Process 

PROCESS:sex_aqe qy'!:;ex_ac.~e read 1 Fl<EO 
DATA-E«~SE cldeMdb l 2 l 23 read 1 ddhist Mdno 
FIND ddhi.st.patno ine " " end 
GROUP Md no 
ITEM age ( '20] [21: 40 l [ 41: 60] [ 61 : ) 
ITEM !5eX 

END 

MDNO 
10()058 

AGE 
SEX MIN )= 21 )= 41 >'" 61 Tot i:t 1 

(= 20 ('"' 40 <= 60 MAX 
F In = 3 In 7 In 1 In = ln 11 

1:::: = 18.75 I"' '" 4:l. 75 1:::: 6' ;;,~5 1:::: .... I). 0 0 1 i; -· 68.75 
Ir/.= 27.27 Ir/.= (:)3. 64 Ir/."' t:t, 09 Ir%•• I) • 0 0 I 
I c:/.= 75. 00 le/.= 77.713 I c%= 33.33 I ci:>=x·-X··X·XX-X· I 

M In = In ... 2 In ... ;_?. In -· 0 In 5 
1:::: = 6.25 Ii. - 12. ~:;o 1% ·- 12.~jO Ii. ... 0. 0 II 1% 31.25 
Ir/.= :~o. o o Ir/.= 40.00 I rY.=• 40.00 Ir/.= o.oo I 
I c/.= 25. 00 le/.= ~!.2. 2:~~ I c: /~'~-: 66.67 I c%::::·x--X·-X-X*·>,: 

Tot 11 l In 4 In 9 In 3 In 0 IN 16 
of ColuMn 1% 2~). 0 0 1:::: 5ti. 25 I/. ... HJ. 75 I/. I). 0 0 I 

MDNO 
560~~15 

AGE 
SE'.X MIN > ::'~ 21 )•'- 4t >= 61 Tot,,1 

<= ;.~o <= 40 <= 60 MAX 
F In ... 3 In 4 In 10 In ... ii In 17 

IY. = 12.50 I/. 16.67 I:;.; 41.67 1% - 0 . II 0 I i~ 70.83 
Ir/." 17.65 Ir%=• ;?.3 .~i3 Ir/.•" 58.82 Ir%•= 0 . 0 II I 
le/.= 60.00 lcY.= 66. 6'7 le:%= 76, S)2 I c:i::::::X-X·X:)!>X·X I 

M In := 2 In ... ;2 In = ,, In . .. 0 In 7 
I/. = 8,33 1:::: = 8.33 I i~ - 12.50 I"·' '· ·- () • [I() I"' '· 29. 17 
I r·I.= 28. 57 Ir%= ~!.B. e;7 Ir/.= 4:2, B6 Ir%"- {),()() 

le/.= 40.00 I c%= 33.33 I Cl." 23.08 I c:%=:X··X:·X··X:-X·X 

Total In 5 In 6 In t::l In () IN :~4 

of ColuMn 1% ... 20.83 I/. -· 25. 00 1% =: 54 .17 I/. -- 0 . 0 () I 

MDNO 
ALL 

AGE 
SEX MIN )= 21 i ·- 41 >= 61 Total 

<= 20 <= 40 <= bO Mr'>X 
F In .... b In 11 In 11 In - 0 In .... 28 

1% ·- 15. 0 0 IY. 27.50 I:;.; 27.50 1% :::; 0 . 0 0 I"' '• 70 '0 0 
Ir%= 21. 43 Ir%= 39. ~~9 Ir%"' 3r_i>, ~.~9 I r'Y.= 0.00 
I cl.= 66.67 I c%= 73 .3:3 I c%"• 6B.75 I c '.f.::::·X··X .. X .. X·X-X-

M In :::: 3 In = 4 In - 5 In ... () In ·12 
1% = 7.50 I:;.; = 10.00 1% - 1 ;.:~ '~; 0 Ii~ ... () . 0 () I/; 30.00 
Irr.= 25. 00 Ir%'= :33. 3:3 Ir%"- 41. 6'7 Ir%= () '() 0 I 
I cl.= 33.33 I c::::'~ 26.67 I c;~::: 31. 25 I c ;~ :::: ·X· ·X· -X· ·X· ·X· x I 

Total In 9 In 15 In 16 In () IN 40 
of ColoMn I/. ... 22.50 1% 37.50 1% 40 '0 0 1% 0 . 0 () 

*** Reference *** 
Input file INTEREX.FREO 
Process SEX_AGE 
Select file /FORT/TU/QYSEX_ACE::: 1:6:12fJ 
Da·ta base DDEMDB:2:23 Set DDl·IIST 

Figure 21 

Paper 1010 32 



CC Word/100 - HP1000 Word Processing 

by: Behrens, Jens 

We regret that this paper 
was not received for 

inclusion in these proceedings. 

Paper 1011 



I' 



Office Automation in an 
HP1000 Environment 

by: Destra, Theresa 

We regret that this paper 
was not received for 

inclusion in these proceedings. 

Paper 1012 





HOW TO CHOOSE AN INSTRUMENT CONTROLLER: 

A TUTORIAL 

Terie Robinson 
Hewlett-Packard Co. 

3003 Scott Blvd. 
Santa Clara, CA 95054 

INTRODUCTION 

The purpose behind this paper is to help people understand 
why "just any ol' computer" will not necessarily solve a 
given control problem. A particular computer may be 
ineffective, even if it has an assortment of accessories 
that seem workable. There is a lot more to the job of 
instrument control than it would first appear. 

In that vein, we'll first take a look at the instrument 
control issue in terms of the measurement control task. 
Out of this will come a list of questions which must be 
asked about a given computer. These questions can be used 
to ascertain its ability to perform as an instrument 
controller. 

Fundamental control capability is just part of the problem. 
There are features uf the particular application which will 
impose additional requirements. For example, the 
measurement data may have to be input very quickly or very 
slowly. Needs such as this will further disqualify 
potential instrument controllers from a particular 
application. 

The physical location of the system, 
implementation concerns must be explored to 
requirements list. 

and certain 
complete the 

Paper 1013 



I'd like to point out that one of the major problems with 
topic of instrument control is that people throw terms 
around without defining them. This has led to a certain 
amount of confusion. For purposes of clarity, I'll 
establish some working definitions for the most important 
terms. A more complete list of terms and their definitions 
can be found in the glossary at the end of the paper. 

The first thing that should be discussed is what to call 
this computer application area? Many in the industry call 
it data acquistion, others, real-time. The first implies 
that the user of the phrase is looking at the problem from 
the instrument perspective (acquiring physical data), while 
the latter is looking at the problem from the computer end 
(communicating with devices in the outside world in a 
timely manner). There is also automated test and, a term 
that has been brought recently into general use within 
Hewlett-Packard: measurement automation. (Perhaps these 
would indicate an attempt to look at the problem from both 
sides at once.) 

An instrument controller is a computer which controls the 
operation of instruments. We might call it a controller, 
for short. Industry-wide, other terms for an instrument 
controller include data acquisition computer and real-time 
computer. 

In order to be a controller, a computer must have both 
hardware and software to perform I/O, so as to communicate 
with instrumention. An interface card provides the 
hardware necessary to convert from the world of the 
computer to the world of the instrument. A piece of 
software, called an interface driver, is used by the 
operating system to control the interface. 

Measurements performed by an instrument often require 
immediate transfer to the controller. However, the 
controller may have other things to do while the 
measurement is being made. Interrupts are a hardware means 
of signalling the controller for service. Thus, an 
instrument can interrupt the CPU via the interface. 

However, if the operating system is unable to deal with the 
interrupt as an event, not much can be done to override 
that inability. Therefore, an operating system with that 
capability might be desirable. Labelled a real-time system, 

Paper 1013 2 



it's designed to respond to 
device-determined time frames. 

a physical event in 

Real-time therefore connotes a fast response to interrupts. 
The time it should take to respond has not been quantified 
by the industry, i.e. response time has no set value 
associated with it. Its required value can vary ~adically, 
from application to application. 

Real-time also suggests an interrupt-driven, multi-tasking 
operating system. This means that it has the capability to 
run more than one user program at the same time. If an 
interrupt is detected, it will drop everything to take care 
of the event. RTE (Real Time Executive operating system) 
on the HP 1000 mini-computers works this way. Programs 
designated as "real-time" in RTE will not "share" the CPU 
unless it asks for a slow 1/0 transaction or access to a 
system resource which has been locked by another user-level 
program. At this time, the program will be suspended until 
the request has been satisfied. Certain other 1/0 requests 
will not suspend the program. 

A real-time system contrasts with a time-sharing system, 
which uses time slices to determine how long a particular 
program can use the CPU. Hardware interrupts are not 
utilized as a reason to schedule user-level software for 
execution. Instead, a program typically polls a device or 
the operating system until it is determined that the event 
of interest has occurred. There is no way of determining 
how long between hardware interrupt detection and the 
user-level software's finding out. For this reason, 
time-slice operating systems are not generally described as 
being deterministic. 

Traditional AT&T UNIX(tm) operating systems are not known 
as being deterministic in nature. To get around this, 
HP-UX/RT, for the HP 9000 Model 840, uses kernel 
pre-emption techniques. This means that the operating 
system has been enhanced to periodically check to see if 
interrupts have occured, even in the middle of tasks. By 
doing this, observed response times have improved 
remarkably. 

Beware of another computer industry definition of 
real-time. In the commercial computing environment, 
real-time refers to transaction-based systems. These 
systems are used in such applications as automated-tellers 
and airline ticketing. Make sure that when you talk to 
people about real-time applications that you both agree on 
the same working definition. 

3 Paper 1013 



Single-tasking operating systems, i.e. those which run 
onl~ one user program at a time, can be just as effective, 
or more so, for real-time response than multi-tasking 
systems. This is due to the simplicity of their operating 
system design. 

VIEWING THE PROBLEM IN TERMS 
OF THE MEASUREMENT TASK 

Many people have discovered the benefits of automating 
manual testing--more measurements in less time, increased 
efficiency, greater measurement and documentation 
consistency--all of which leads to higher productivity on 
the part of the individual responsible for testing. 

Software automating the measurement process exhibit 
surprisingly similar design. In data acquisition programs, 
the task consists of doing some setup work, taking the 
basic measurement(s), doing some computation to yield the 
desired answer, presenting the answer, then perhaps, going 
back to do it all over again. (See Figure 1.) Process 
monitoring and control works similarly. 

Data Acquisition 

Cll Setup 
C2l Make measurements 
C3l Do computation 

C4l Present results 
C5l Store results 
[61 Go back to C2l 

FIG. 1; THE TASK AT HANQ 

Process Monitoring 
& Control 

[ l l 
[ 2 l 
[ 3 l 

[ 4 l 

[ 5 l 

Setup 
Make measurements 
Make decision about 
r:irocess 
Make needed process 
adjustments 
Go back to C2l 

In the above lists you will find typical actions in 
the order in which they are performed in many 
automated test and measurement applications. As 
examples, these lists provide a framework for 
discussing the issue of how to select an instrument 
controller. 

Paper 1013 4 

j, 



DEVICE 

INSTRUMENT 
signal-

UNDER 

TEST 

Figure 2A: THE MEASUREMENT -- Simplest Case 

All automated processes must start with "the 
measurement." Some device or comparable source 
produces a signal to be measured by the instrument. 
In this simplest case, the signal is produced 
constantly. 

DEVICE 

INSTRUMENT 
response 

UNDER 

TEST 

synohronize 

SOURCE 
stimuius 

Fjgure 28: THE MEASUREMENT -- Common Case 

Most measurements are not made on devices that simply 
produce a signal. More commonly, there is a signal 
source which stimulates the device to be tested. The 
responding output signal from the device is then 
measured by the instrument. A synchronizing signal 
often triggers the instrument to make the measurement 
at the rignt time. 

5 Paper 1013 



let's analyze the data acquisition process in terms of the 
task requirements, to see how it might affect the desirable 
characteristics of an instrument controller. 

The Measurement 

First, there is the measurement. You must verify whether 
or not the instrument can take it. (See Figures 2A and 
28.) Usually, this is done manually. 

Of concern at this stage in the process is how the 
measurement must be made, whether or not the data must be 
brought in immediately, how much data must be brought in 
per measurement and over what period of time. These things 
determine just how quickly a controller must respond to the 
instrument and what kind of minimum throughput it must be 
able to sustain over a given time frame. 

For example, the instrument might be a digital voltmeter 
(OVM). In the given test, for each trigger of the DVM, it 
may take 200 readings. At 14 bytes per reading, this 
translates to only 2,800 bytes per measurement. If the 
next test must be run within 30 seconds of the previous, 
the controller should be able to input the data from the 
DVM at a rate of something better than 100 bytes per 
second, allowing for two or three seconds to re-arm the 
instrument for the next measurement. This application 
probably can be run by a low speed controller, such as an 
HP-71B. 

Figure 3 . . THE MEASUREMENT 

• Can the measurement be made with the desired 
equipment? 

• How quick1r must the measurement be made 
and brough into the computer? 

• How often must the measurement be made? 

• How many data points are there per 
measurement? (How many bytes or words of/ 
data must be brought in?) 

Paper 1013 6 



Other applications may require quick turn-arounds (for 
example, respond with output within 10 milliseconds of an 
input} on very short bursts of data (say, less than 20 
bytes}. Another may require a sustained throughput of 
800,000 bytes per second for five minutes, producing a 
total of 240 megabytes of data. Obviously, the former will 
require a controller with a response time of five to eight 
milliseconds, in order to output in time. The latter 
requires high-speed data transfer, plus a high speed unit 
in which to deposit the data, e.g. a rigid disc drive. 
Figure 3 lists the questions which should be asked about 
this stage of the data acquisition task. The answers to 
these questions will determine the 1/0 characteristics of 
the controller. 

Instrument to Interface 

After verifying the measurement, the physical communication 
link must be established between the instrument and the 
interface installed in the computer. Of primary importance 
is whether or not an interface can be found to match the 
instrument's interface--mechanically (connector to cable to 
connector), electrically (signal levels, timing}, and 
functionally (handshaking, protocols}. It's often 
relatively easy to find interfaces matching in the 
mechanical and electrical areas. If you're handy with a 
soldering iron and wire clippers, you might be able to fix 
any disparity between voltage and current, or connectors. 

The functional aspects of the communication link are more 
difficult. The IEEE-488 interface standard goes into quite 
a bit of detail to ensure that the mechanical, electrical, 
and functional aspects of a conforming interface are fully 
compatible. The EIA Recommended Standard RS-232-C, on the 
other hand, does little more than recommend the mechanical 
and electrical interface characteristics--inevitably 
leading to considerable confusion among users, due to 
disparate implementations. Figure 4 helps to illustrate. 

Figure 5 contains the checklist for the physical 
communication part of the data acquisition process. Since 
I've already discussed the points brought up by the first 
three questions, I'd like to concentrate on the rest. 

Timing and speed is highly important to the physical 
communication layer. Handshake timings must be observed 
between the sending and receiving interfaces, if data is to 
be transferred without error and within the desired length 

7 Paper 1013 



status 

COMPUTER control 
INSTRUMENT 

INTERFACE 
data 

Figure 4: PHYSICAL COMMUNICATION 

The interface for the computer provides the 
mechanism for matching characteristics with the 
instrument's interface. On the functional 
level, the interface provides the means to 
obtain status information from the instrument, 
to control the operation of the instrument, and 
to obtain measurement data from the instrument. 

be transferred without error and within the desired length 
of time. For example, under certain circumstances with a 
two-wire handshake, the computer's interface may get ahead 
of the instrument's interface by changing the data lines 
before the instrument has finished processing the data. 
The three-wire handshake patented by Hewlett-Packard, on 
the other hand, guarantees no data loss due to the 
handshake timing. The three-wire handshake is utilized by 
IEEE-488. 

Hardware buffering, either in the instrument, or on the 
computer's interface card can affect the timing/speed 
characteristics desired of the controller. If there is 
buffering in the instrument, multiple readings or 
measurements may be stored up until there is enough to send 
to the controller. This will loosen response time 
requirements for each discrete item to bring in from the 
instrument. 

Buffering on the interface card will help to increase the 
time frame during which the interface driver must process 
incoming data (bring it into the operating system from off 
the card). Buffering can also help to reduce the number of 
times the driver must push data out onto the card for 
output, by allowing it to hand a number of bytes or words 

Paper 1013 8 



to the interface, and let it pace the output to the 
receiving device. Without buffering, the driver would have 
to hand the interface one byte or word at a time. 

Let's look at an analogy: It's Sunday morning, and you 
would like to make scrambled eggs for the family. You find 
that you need to go to the store for the eggs. You could 
go to the store and buy a carton containing one dozen eggs. 
You could also go to the store, buy one egg, bring it home, 
then repeat the process until you have enough eggs for 
breakfast. The first method is similar to buffering, the 
second, to handing an interface card one byte at a time. 

Fioure 5: PHYSICAL COMMUNICATION BETWEEN 

INSTRUMENT ANP COMPUTER INTERFACES 

• ls there an interface available and room for 
it in the controller package? 

• 
• 
• 
• 
• 
• 

• 

Does the interface match the electrical 
characteristics of the instrument interface? 

Does the interface connector match the cable 
connector? (e.g. wiring, plugs) 

ls the correct cable/connector available? 

Can the interface match handshake timing 
with the instrument's interface? 

Can the interface produce the protocol 
expected by the instrument's interface? 

Does the interface interfere with anything 
else in the computer system? (Especially if 
you make ¥our own interface, or bought a 
third party s interface card.) 

lf there's no interface (e.g. you made your 
own device), is there enough information 
available about the computer to make one? 

• Does the instrument have hardware buffering? 

• Does the interface contain some amount of 
hardware buffering? 

• How intelligent/complex is the instrument? 
Can it send a signal to the computer's 
interface regarding measurement completion or 
detected errors? 

9 Paper 1013 



You may get the impression that hardware buffering is much 
more efficient than the one-at-a-time approach. Well, 
maybe. It all depends on your computer and its operating 
system. In a system with a quick response time, it may not 
matter which way the hardware is designed. Some systems, 
however, have more difficulty dealing with a large amount 
of data in per 1/0 transaction. So, it may switch to 
processing smaller packets of data, thereby slowing the 
process down anyway. In such a situation, it may have the 
same or better throughput in the one-at-a-time approach. 

Interface to Driver 

From the interface card to the driver, the measurement has 
entered the software domain (see Figure 6). To this end, 
it would be wise to make sure that the software for the 
hardware exists in the form of the driver. If so, then the 
driver must be checked to see if it has full control of the 
interface card. That would guarantee maximum flexibility 
and capability of the potential instrument controller. 

r-------------, interface status 

INTERFACE 

DRIVER 

' interface controi 

' instrument data 

~-------------~ 

INTERFACE 

fjgure 6; MOVING THE COMMUNICATIONS TASK FROM 

HARDWARE TO SOFTWARE 

The interface card must have a piece of software 
to run it, so the operating system can perform 
1/0. In order to control the interface, ~ou 
must be able to obtain status information 
describing the interface's current condition or 
state. All non-interface-related information 
from the instrument, is transferred to the 
driver as data. This includes instrument status 
and commands, and the measurement data. 
Instrument control is also sent typically as 
data through the interface. 

Paper 1013 10 



Control of something begins with knowing what state it's 
in. The driver must be able to interrogate the card for 
current operational settings, error conditions, and so on. 
This way, errors and abnormal interface states can be 
detected and handled. Status information is typically 
stored in registers on the card. The information read back 
is interface-dependent in meaning. This makes sense 
because different interfaces have different operational 
characteristics. (You don't normally ask an RS-232-C 
interface if it is a system controller--a function 
associated with IEEE-488.) 

Control of an interface card means the ability to change 
its operational characteristics. This is typically done by 
setting certain registers on the card which have specific 
meaning to that interface. Each type of interface, like 
IEEE-488 or RS-232-C, will have different register 
definitions: Some RS-232-C cards can be told to change 
transmit/receive bit rate and error detection mode 
(parity). In IEEE-488, it is necessary to control the 
state of the attention line to define the meaning of data 
lines. 

If the interface driver doesn't provide full control, it's 
a good bet that you'll need to control a device some day 
that will require that control, and you'll be out of luck. 
So, go for driver flexibility. 

You have now determined that the driver is available, etc. 
Now you must determine if the driver can keep up with the 
interface in a high-speed application, or, in a low-speed 
application, that the driver mustn't over-run the 
interface. 

One note: Make sure that the driver is able to transfer 
all data to and from the interface. Many interface drivers 
will provide transaction termination detection and control. 
For example, an instrument may require all commands to be 
terminated with a certain byte sequence, say carriage 
return, followed by a line feed (ASCII decimal codes 13 
and 10). These commands, routed through the driver as a 
data stream, may have the termination sequence appended to 
it by the driver, rather than forcing you, the programmer, 
to embed it in the data stream. On input, these data item 
separation bytes may be stripped, so you don't have to 
worry about them. 

In another instrument, the carriage return/line feed 
sequence may happen to occur in the measurement data by 
coincidence. The driver may decide to remove those bytes 

11 Paper 1013 



from the measurement information, or worse, stop inputting 
the data, having interpreted the bytes as a indicator to 
terminate the input. You'd like the driver to have the 
capability to switch from attaching meaning to the 
transmitted data to a transparent mode. This mode would 
force the driver to transfer the data "as is." Figure 7 
lists the questions to be asked of the driver-interface 
interaction. 

Figure 7; MOVING THE COMMUNICATION TASK 

FROM HARDWARE TO SOFTWARE 

• Does the driver exist? 

• If I have to write my own, it there enough 
information and support to do this? 

• Does the driver coexist peaceful1¥ with 
everything else? (Especially if I write my 
own or buy a third party driver.) 

• Can the driver obtain all interface status? 

• Can the driver transfer data to and from the 
interface without overrunning it or losing 
data? 

• Can the driver transfer data transparently? 

Driver to Operating System 

Once data has reached the driver, it must be passed on to 
the operating system for later application program access. 

Figure 8 shows how the driver communicates with the 
operating system. Timing continues to play a heavy part. 
It does no good to have a high-performance driver if the 
operating system drops the ball, and vice versa. Timing 
checks must be made on response time to the driver and 
throughput on buffered transfers (l/O with data being moved 
to and from blocks of specially-designated 
memory--buffers). This was touched on earlier. 

Paper 1013 12 



r--------------, 
driver status 

r--------------, 

OPERATING driver control. INTERFACE 

SYSTEM driver data DRIVER 

L-------------...1 L-------------...1 

Figure 8; OPERATING SYSTEM AND INTERFACE DRIVER 

The interface driver is used by the operating 
system to provide the control software for the 
interface hardware. The driver may or may not 
transform the data as it goes to and from the 
interface. Instrument commands pass through the 
driver as data. Control over the interface must 
be implemented as control commands to the 
driver. Status of the interface may be returned 
via the driver status or as data. Measurement 
data is passed as data from the driver. 

Figure 2; QPERATlfHi SYHE!! UTERMT IOI WITl:l 

THE INTERFACE DRIVER 

I Does the operating system fully utilize the 
driver? 

I Does the operatin~ system provide a~~lication 
pro~ram access o the driver? at's the 
mec anism provided by the operating system 
for programmatic access to the driver? 

I Can the operating system communicate with the 
driver quicklf enough to accommodate the 
timing needs o the external device? 

I Can the operating system keep up with the 
driver in a large, high-speed buffered 
transfer? 

I Can the operating s~stem respond to the 
driver guickly enoug so as to not lose an{ 
data? Or lose precious time in the contro 
loop? Or, in production, hold up the line? 

13 Paper 1013 



Another consideration, as pointed out by Figure 9, is the 
operating system use of the driver. The interface driver 
may make full use of the interface, but if the operating 
system hasn't full control over the driver to make use of 
all it's capabilities, there could be trouble. 

Operating System to Your Program 

By now, it should be clear that your program must go all 
the way through the computer's operating system to talk to 
the instrument. (Figure 10 illustrates.) The operating 
system, being the glue that ties everything together for 
the computer, therefore, generates the longest list of 
concerns. The list may appear intimidating at first, but 
it's really just an extension of the previous levels' 
capabilities. 

r-------------, status/error 

USER 
' controt 

APPLICATION '~~~~~~~~~~ 

PROGRAM ' data from O.S. 

L-------------~ 

r-------------, 

OPERATING 

SYSTEM 

L-------------~ 

figure 10: USER PROGRAM ANO OPERATING SYSTEM 

The application-level program must be able to 
request data transfers to and from external 
devices, such as instruments and terminals from 
the operating system. It should also be kept 
aprised of the results through error and other 
status messages. 

The gist of the questions about the operating system have 
to do with the dilemma: "ls this thing going to work for 
me or against me?" 

Areas which commonly cause problems at the operating system 
level include the following: lack of access to the 
interface driver; lack of high-level task support (e.g. 
no formatter or human interface device drivers); lack of 

Paper 1013 14 



support for external event detection. In Figure 11, these 
have been organized into two categories: operating system 
intrinsic capabilites (Fig. llA), and utilities (Fig. 118). 

figure llA: PROGRAM INTERACTION WITH THE OS: 

I 

I 

I 

I 

I 

• 
I 

I 

Instrinsic Capabilities 

Does the operating system design define I/O 
as file system I/O? If so, is there any way 
around it? 

Does the operating system provide low-level 
user access to system resources~ such as to 
interface and device drivers? Ir not can 
the system be bypassed--with how much effort? 

ls there user-level control available over 
the I/O method, i.e. with or without OMA, 
byte-by-byte, buffered, transparent 1 etc. and 
how I/O transactions are terminated¥ 

Does the program have access 
detection information? If so, then 
time"? Can routines or tasks be 
upon event detection? 

to event 
in "real­
executed 

Can the program transfer large blocks of data 
at a high-enough transfer rate? 

If resources aren't readily available to the 
user level, can any user-written software 
bypass the operating system? If so, is there 
enough documentation and support available? 

If the hardware configuration is changed, how 
much impact will this have on user software, 
i.e. how well is software insulated from 
driver and hardware differences? 

In a multi-tasking environment is there ... 

user-level control over task scheduling 
in the form of task priorities and the 
ability to lock a process into main memory 
and/or to the CPU? 

interprocess communication, in order to be 
able to synchronize tasks and share data? 

15 Paper 1013 



OS Intrinsics. The operating system may have been designed 
to consider interface and device drivers its exclusive 
domain. There may be indirect access to these by making 
certain I/O requests, yet the user has no low-level access. 
This is characteristic of a "closed" system. 

A closed system may not be a problem if its designers 
provided some very fancy I/O routines for the user. For 
example, BASIC, as an operating system on the HP Series 80 
and HP 9000 Series 200/300, is closed. However, it works 
very well by providing language extensions that have a high 
degree of control over the interface driver. [; 

! ,_ 
An additional problem with many general purpose operating 
systems is their insistence on considering file 1/0 to be i 
the same as device I/O, that is, I/O to instruments. In 
these systems, it may be possible to bypass the file 
subsystem, if the system is open (has hooks for users to 
change or bypass the normal operating system and has enough 
user-available documentation and support to be successful). 

A warning about attempting bypassing or changing an 
operating system: It isn't easy to force a system to do 
something for which it was not designed. It takes a lot of 
time to implement. Furthermore, it requires extensive 
testing to ensure that the changes have not affected the 
normal system operation. Thus, in the end, it may cost far 
more in engineering labor than it would have cost to 
purchase a system which was designed to perform the 
necessary I/O. The same goes for "rolling your own" 
operating system. 

Events are another area of concern. When an interrupt 
occurs on an interface, it may have to be serviced 
immediately. If your program has no way of detecting that 
interrupt as an event, you're out of luck. 

At the very least, the controller's operating system must 
provide the information that an event has occurred. A data 
acquisition program could continually ask the operating 
system: "Has the event occurred yet?" This method is 
known as polling, and works quite well in applications 
where other things don't have to be done during the waiting 
period. It also works okay in situations where other 
things should be done and timing isn't too critical. 

Event-driven programming is easier to design and implement 
when the operating system can be instructed to execute 
specially designated code when the designated event has 
occurred. Combined with polling, it is among the most 

Paper 1013 16 



desirable attributes of an instrument controller. It can 
be used in the situation where tasks other than waiting for 
the event to occur must be done. 

Speed is an issue if response time is critical to the 
application. The time it takes the operating system to 
decide that the event has occurre~, stop the currently 
executing code, save the current state, and initiate the 
event-servicing software must be less than the required 
response time. 

Multi-tasking operating systems can take much longer at 
event reponse than single-tasking operating systems because 
of the problem of saving appropriate information and 
starting the event-servicing code. Depending on how much 
the operating system must save and do to start the next 
will significantly impact response time: Compare the HP 
9000 Series 200/300 Pascal Workstation (single-tasking OS) 
vs. HP 1000 A900 (real-time, multi-tasking OS) response 
times in the Controller Survey section. 

These attributes of event (interrupt) detection, 
event-driven programming, and "satisfactory" response time 
are what people involved with instrument control often mean 
when they refer to "real-time". 

Of the items listed in the checklist, one other item should 
be noted. Many operating systems do not do a good job of 
insulating the software environment from changes in the 
hardware configuration of the system. For example, if a 
change in an instrument's address is made, or another one 
added, it may require taking the system down to change the 
operating system: In the case of HP-UX on the HP 9000 
Model 840, the operating system must be re-compiled with a 
new device table so the drivers know what to do with the 
attached devices. In the case of some MS-DOS computers, 
changing the CRT can have profound affects on programs 
producing graphics because of the design of the supplied 
graphics libraries. Conclusion: If the controller is to 
be in an environment of constant hardware change, or 
potential change, it would be a good idea to look into this 
issue. 

Finally, the issue of a multi-tasking environment should be 
discussed, since it adds complexity to the issue of 
instrument control. 

The capability of having more than one program handled at 
the same time by the operating system can make the job of 
subdividing the tasks of measurement automation program 

17 Paper 1013 



easier. Each task can be a different program, making the 
debugging a little more straight-forward. One program can 
be an event-handler. Another can just deal with the user. 
Yet another can compute the results of a measurement, then 
insert it into a data base. 

It would be important ·to associate priorities with these 
different programs. The event-handler should have the 
utmost importance, at all times. If data starts bursting 
in from an unbuffered, non-handshaking device which 
transmits in bursts, at unpredictable times, such as a 
satellite, it must be dealt with immediately: The user can 
wait. 

Many multi-tasking operating systems allow the user to set 
priorities on different programs. Essential in the 
satellite example, however, is the ability to also tell the 
operating system, that it should immediately suspend any 
other task, even if it's the operating system itself. In 
some general-purpose operating systems, such as AT&T's 
UNIX(tm), priorities may be set, but the operating system 
cannot be disturbed. The kernel of UNIX cannot be 
preempted. One of the things that was done to make HP-UX 
on the HP 9000 Model 840 respond more quickly was to 
provide for kernel preemption. 

Another thing that was done was to provide a special kind 
of priority, real-time, that also does not degrade in 
importance. In many multi-tasking systems, including UNIX, 
priority will degrade over successive time-slices, so as to 
give other programs a "fair chance" at executing. In 
real-time situations, such a priority scheme will give the 
response time a "fair chance" of failing application 
requirements. Non-degrading priorities are a must. 

When the event occurs, it is essential that it takes as 
little time as possible to find the event-handling program. 
The best place to find it would be in main memory. A 
desirable characteristic of the system would be the ability 
of the user to specify that the program is to be locked in 
memory. Otherwise, the operating system may swap it out to 
disc, while other programs have their turn at execution. 
The ability to lock a program in memory is known as 
"process locking." 

When the instrument or device requires immediate resonse 
from its controller after sending data, it makes sense to 
also lock the program to the CPU itself. Let's see why: 
In most multi-tasking systems, if the program issues a 
request to input or output data, it is temporarily 

Paper 1013 18 



suspended from execution, awaiting completion of the 
transaction. If the program must input data, evaluate it, 
then issue an immediate response, that lag time of being 
suspended, run, suspended, etc. could be disastrous. 
Imagine the consequences in a situation where people's 
lives depend on the controller's performance, such as on a 
factory floor where the computer may be the master of heavy 
mechanical equipment. 

Assured that the real-time programs can run properly, how 
does it communicate with the other programs, to let them 
know that data is available? Various mechanisms have been 
developed for "interprocess communication." One of the 
oldest and easiest to implement is to set aside a special 
area of memory which has been defined as "shared." 
Programs depending on the actions of other programs can 
access and change this area. The programs must agree on 
the definition and rules for handling the shared memory, in 
order for it to work properly. 

Newer methods of communicating between programs include 
signals and semaphores. This requires the operating system 
to have the ability to carry messages between programs. 
Data still may have to be shared, but task synchronization 
is made easier for the user to implement with semaphore 
support. Thus, instead of continually checking memory to 
see if the measurement data is available to process, a 
program could "wait" for a message to that effect. 

language and Utility Support. It may be all very good that 
the potential controller's operating system supports all of 
the capabilities mentioned above, plus direct driver 
access, but if the system supports no high-level languages 
which also provide access, what good is it? That's why the 
issue is mentioned in the checklist in Figure 118. 

It also makes sense, to look for support of as many other 
utilities that would help to shorten the project 
development cycle as possible. Much of the time spent 
writing instrument control software is in getting the data 
transformed into the format that the instrument needs to 
see it in on output. On input, more time is spent writing 
code to transform the measurement and instrument status 
information into a usable form--in other words, formatting! 
The computer should have some general-purpose utility to 
help out with this chore, or the high-level language of 
choice should. 

Another area that takes a lot of time to implement, and the 
area that may make or break a software package, is the user 

Paper 1013 



communication portion. The operating system must support 
the required human interface devices in a high-level 
fashion. This is especially true of complex ones, such as 
graphics devices. 

Fiqyre 118; PROGRAM INTERACTION WITH THE OS; 

Lanqyage & Utility Support 

• 
• 

Ooes the operating system support a high 
level language that allows full access to 
its resources? 

Once the data has been brought in or is ready 
to be sent to the device, are there utilities 
(such as a formatter provided by the pro~ram 
language) to help to transform the data into 
the desired format? 

• Can I communicate with the user in a 
simple and satisfactory manner? That is, is 
there a high-level, flexible ... 

J graphics library? 

J printer and CRT control? 

J human input device control? 

Putting It Altogether: The Big Picture 

It should be clear that looking at the problem from the 
measurement perspective helps to clarify what 
characteristics an instrument controller should have, in 
order to perform the job adequately. (See Figure 12.) 
There are, however, a few more areas of concern, involving 
the specific requirements of the measurement automation 
application and its implementation. 

Application requirements. The type, size, complexity, and 
environment of the application must each be considered when 
making a controller selection. For instance, the larger 
and more complex the application is, the more likely it 
won't fit or run efficiently on a PC or a single-tasking 
system--and don't forget the amount of data to be acquired 
and manipulated. Futhermore, in a constantly changing 
application environment, such as test software development 

Paper 1013 20 



in a university or in a company's R&O department, the 
existence of simple, quick and well-supported program 
development tools is necessary. (See Figure 13.} 

The physical environment defines the environmental 
specifications for the potential instrument controller. 
Take the office environment: It's pretty forgiving on 
equipment. However, unless a piece of hardware is built 
for such places, the desert, glaciers, foundry floors, or 
moving vehicles can be disastrous. Consider, too, if the 
equipment has to be moved around a lot. Equipment, such as 
certain disc drives, can be moved, but must be specially 
handled during the move and recalibrated after the move. 

Reliability is also important. If that satellite must be 
monitored 1001 of the time, or if a worker's life can be 
endangered, you must make sure of the guaranteed uptime for 
the potential controller--or see if it supports fully 
redundant system configurations. 

Does the measurement result have to be communicated to 
another computer system? If so, then networking, or data 
communications support is important. Simple file transfer 
mechanisms will work in this case. Some systems, say those 
in a CIM environment, also require the capability to take 
orders on what test suite to run next. 

The complex world of networking is one where standards and 
compatibility are critical to the success of communication. 
This is not the place to discuss it at length. Just be 
advised that if this is a required part of the application, 
that you should be insistent upon standards compliance and 
full support of the necessary networking capabilities. 

The number of people who have to use the system, the number 
of different kinds of tasks the system has to support, and 
when, is another issue. If two or more people need access 
to the computer at once, or if two or more completely 
separate tasks must be run simultaneously (e.g. payroll 
and measurement automation}, then a multi-tasking system 
may be called for. I use the word "may" because a 
distributed system may accomplish the same objective. 

Choice between the two depends on other factors, such as 
initial system cost versus cost of adding new stations 
later. A multi-tasking, multi-user system typically costs 
much more at initial purchase than a small network of 
single-user, single-tasking systems. However, adding a 
terminal to the multi-tasking system later will cost much 
less than adding another computer to the distributed 

21 Paper 1013 



l 
device status 

HUMAN 
device contr-oZ. 

INTERFACE INTERFACE 

oper-ationaZ. data DEVICE 

r_l __ l __ l_, 
test J 
r-esuZ.ts 

I INTERFACE I test 
I DRIVER I . I contr-oZ. 
1--------------1 test . DEVICE I 

I DRIVER I conditi.ons/data 
I I L_T ______ T_...J 
r _____ l _____ , E Hi. l z i Il:I E II Ii e u;TUBE 

OPERATING Each step in the process 
I I must work correctlr • rA_P_P_L_fr_A_T_I_o-N1 • before the measuremen 
I I PROGRAM I I can be said to have been 
I L __________ ...J I automated. 
I SYSTEM I L _____ T _____ ...J 
r_l ______ l_1 

DEVICE 
I INTERFACE I UNDER 
I DRIVER I TEST 
I I 

L-r--1--r-...J T J 
instr-ument status 

instr-ument contr-oZ. 
INTERFACE INSTRUMENTS 

measur-ement data 

COMPUTER SYSTEM J 

Paper 1013 22 



system. Going with the distributed system does allow you 
to start with one or two functional systems, then add one 
or two per year--a boon to the small yearly budget. 

Figure 13; APPLICATION CONSIDERATIONS 

• How often will the application software be 
modified, added to, or updated? 

• Will software development and use of the 
s~stem as a controller have to be at the same 
time? 

• How big is the application software likely to 
be? 

• Into what kind of physical environment will 
the system be placed? 

• What is the projected number of users for the 
system? 

• What is the application speed requirements? 

• How much on-line and off-line storage is 
needed? 

• How is the human interfacing to be done? 

• What is the projected system use over time? 

Another consideration is uptime. If you can't afford the 
~hole system to be down at once, then the distributed 
system may be the better choice. On the other hand, if 
sharing information between users and tasks is of utmost 
importance, you may not be able to afford to have the 
network go down. The multi-tasking system is a better 
choice in that case. So, the bottom line is that it's all 
a matter of trade-offs. You pick the system based on your 
particular application's most important requirements. 

Speed has been discussed a lot, yet it needs one final 
mention. Computation speed of the computer will affect the 
final, overall throughput of the application. This is 
because, as pointed out earlier in Figure 1, it's very rare 
for the computer to just take a measurement. Some 
manipulation of the data must be done in order to yield the 
results which, in turn, must be dealt with somehow: 
communicated to the user; sent to another computer; 

23 Paper 1013 



stored for future analysis, etc. Thus, the time to 
manipulate the measurement data will add to the I/O time to 
determine application throughput. In the end, the last is 
the only figure of merit that counts. It answers the 
question, "Can I get the answer in time?" 

Earlier, hardware issues were touched on briefly, in terms 
of overall system architecture, and availability of 
interface cards. There are other things which should be 
checked. These include RAM and peripheral availability and 
expandability. 

Be sure to get a system that has enough memory to run the 
operating system and application software, plus space for 
data. Don't skimp on memory. It's easy to keep adding to 
application software until it fills available RAM and then 
some. In a system which cannot dynamically load new code 
segments, this could make the system rather unhappy. 
Attempting to set aside more memory locations than is 
available for data also could cause the system to stop. If 
that isn't the case, and most of the system RAM is being 
utilized, a true performance problem may occur. Waiting 
for new code segments to load, or parts of RAM to be 
released back to the system, contributes to performance 
degredation. 

Another reason to make sure that the computer has RAM to 
spare is that new revisions of the operating system or 
application software are rarely smaller than the last: 
Those features that everyone asks for has to take its toll 
somewhere! Make sure that you have enough room to grow 
over time. 

Once the memory configuration question 
what peripherals are available 
controller. Peripherals can be 
categories as mass storage and human 
These should be examined separately. 

is settled, look at 
for the potential 

grouped into such 
input/output devices. 

The great majority of instrument controllers use some sort 
of mass storage device, if only to boot the operating 
system. These devices may be disc drives for flexible or 
rigid discs, tape drives, or even semiconductor memories, 
such as EPROM and bubble memory. This mass storage is used 
for operating systems, system software, utilities, 
application software, and data. In performing this 
function, it becomes a vital part of the system. It can 
affect the system throughput. It is also keeper of all 
that priceless information. 

Paper 1013 24 



When deciding on mass storage peripherals, be sure to 
include methods or devices to make copies of important 
information. When calculating the minimum requisite 
storage capacity, be sure to include the operating system 
size and needs (it may need extra space for system 
functions), and program and data space. Be sure to leave 
plenty of room for growth. 

By the way, be careful with disc drives in hazardous or 
extremely dusty environments. The drives are not as robust 
as the computers, due to their mechanical nature. 
Vibration and shock are a problem for most drives, 
especially those with hard discs. Dusty environments can 
leave coatings of particles on the mechanical parts, 
causing wear or corrosion. Use drives with sealed head and 
disc assemblies, such as Winchester drives. Better yet, go 
with something like bubble memory, or a networked system. 

Human input/output devices can be viewed as two basic 
types: alphanumeric and graphic. Alphanumeric devices 
include printers, terminals, keyboards, custom keypads, 
etc. Graphic devices include plotters and special 
monitors. Some devices are capable of supporting both 
types of 1/0. Such devices include mice and touchscreens 
(in alphanumeric mode, they control alphanumeric cursors; 
in graphic mode, they control graphic cursors), terminals, 
and printers. 

Many applications require limited 1/0 with the system 
operator. Production applications are an ideal example. 
Often, there is no room to have a keyboard, which may also 
add a confusion factor to a production station. Therefore, 
touchscreens, custom keypads, and barcode readers, make 
excellent input devices. A single light, voice output, or 
a monitor for output, also works. If your application is 
in this sort of environment, or an extremely hazardous one, 
check to see if the system supports these sorts of 1/0 
devices. Often, third parties provide them with standard 
interfaces, like RS-232-C. 

Perhaps I should discuss why graphics should be utilized in 
a data acquisition system. The abundance of graphics 
output devices indicate the human penchant for processing 
information graphically. Pictures are easier to 
assimilate, can contain more information in less area, 
transcend language barriers, and convey the information 
more accurately. Real-time graphics allows the user to see 
the current state of the process in a process-monitoring 
and control application--at a glance. Post-measurement 
graphics can show the waveform results, not just a single 

25 Paper 1013 



pass/fail value, which can be of great value in R&O and 
quality assurance areas. 

When configuring a system, don't forget future expansion 
possibilities. If there is even the remotest chance that 
the system might change in some way, then be sure that the 
system is extendable. ·some areas to check are: memory, 
CPU power, more l/O ports, and new peripheral support. 
Also make sure that adding capacity to the system does not 
mean you should have a black belt in hardware modification, 
and have minimal impact on existing software. Many systems 
are difficult to upgrade and force significant changes to i 
application software, which increases cost of ownership 
significantly and may invalidate support contracts with the 
original vendor. 

Implementation concerns. Many of the things that can go 
wrong during the implementation phase of a project seem to 
be forgotten in the process of selecting an instrument 
controller. Yet, they are crucial considerations. The 
problems that arise at this time can determine whether or 
not the system will be successful. See Figure 14 for a 
list of those questions which should be asked about 
implementation issues. 

The first question on the list deals with the existence of 
user-oriented tools to implement the system. I define 
tools in this case to be all those things which will help 
to satisfactorily complete the project. As such, I have 
included hardware, such as logic analyzers, protocol 
analyzers, etc. 

Software tools that help are things like debuggers, 
languages, and utilities like data base managers, graphics 
libraries, and so on. 

Oocumenta~ion must be available in the form of data sheets, 
manuals, application notes, bug reports, etc. (This 
documentation must also be decipherable by the one(s) who 
must implement the system. I would recommend that you ask 
for a copy of the manual to peruse before system purchase.) 

Often, the documentation may be very well done, but 
training is required to synthesize the information it 
contains for a given application. Training will also 
shorten the implementation time by introducing the 
information necessary to make the system work in a shorter 
time than it would take to learn the same information by 
learning it alone. 

Paper 1013 26 



Figure 14; IMPLEMENTATION CONCERNS 

I What development tools are available in the 
form of hardware, software, training, people, 
and published documents? 

I What kind of support is available for the 
hardware and software? 

I How much will the system really cost over 
time? 

I What kind of compatibility is needed? 

I How much time is available to implement the 
system, once it arrives? 

I Who will implement the system? How much 
experience does he/she/they have? ls tending 
the system the only job responsibilty? 

People can be considered tools in the sense that they can 
be considered resources of information. The vendor of the 
computer should have specialists on the computer or the 
application of data acquisition. Users groups can be 
invaluable. Furthermore, you shouldn't overlook the people 
in your own organization that might already know something 
of the potential computer. 

In addition to the existence of tools, make sure that 
support is available, both for hardware and for software. 
By "support," I mean that there is a way to get information 
about the system after purchase, that you can get the 
hardware fixed, get software updates, and so on. 

Support costs can also be a way to evaluate potential 
controllers. The usual figure of merit is what percentage 
of the initial investment is the support cost per year, in 
dollars, where initial investment is the total cost of 
hardware, software, labor (including fees for consultants 
and contractors), and development time (e.g., as long as 
the system is down, X$ of revenue are lost per day). The 
lower the number for yearly support, the better. It can be 
used to compare various computers; for hardware support, 
it can be used as an indicator of product reliability. 

Cost of ownership is related: It's how much the system 
will cost to keep up over time. It includes support costs, 
whether you buy a contract or not. Obviously, it doesn't 

27 Paper 1013 



make sense to buy a computer with a projected high cost of 
ownership: It would indicate that it breaks down a lot. 

Compatibility is of two types: hardware and software. 
Typically, you look for something that is hardware 
compatible when the system vendor doesn't provide the 
desired part (or at the right price), or you're upgrading 
your present system. If you're likely to be in this 
situation, check to make sure that the new part doesn't 
affect any other part of the system. 

In general, hardware compatibility is complete to a given 
level. Software, however, is another matter. 
Compatibility of features tends to be haphazard. If you 
are considering a purchase of "compatible" software, ask 
for a detailed list of differences, or better yet, get a 
demonstration. 

Be careful about why you're asking for compatibility. For 
instance, if you want to transport the software you're 
about to develop to some other system in the future or to 
preserve currently running software, be sure that you are 
targetting a machine that will be a good instrument 
controller for your application. Furthermore, there is no 
guarantee that what is the desirable operating system or 
language today will be so tomorrow. De facto standards 
come and go in popularity, but real-world problems are 
always here. The features of instrument controllers 
haven't even come close to developing and maintaining de 
facto standards. Thus, even if you sacrifice some 
performance and development time to implement on a 
"standard" system, as soon as you add the instrument 
control, the system is no longer "standard." 

It is also important to look at the development time that 
you will have to finish the project. The longer you have, 
the more complex the system you can afford to purchase. 
The less time you have, the more you should insist on a 
system with proven quick development time: The implementer 
won't have time to learn all the features and to spend a 
lot of time trying out ideas. 

It's also important to consider the one(s) who will have to 
implement the system, since this will impact development 
time. If the programmer has little or no knowledge of 
computing or of the selected system, then training time 
subtracts from the available implementation time. 
Furthermore, it must be determined if the group needing the 
system can afford to dedicate one or more people to tend 
the system and do development. Many users cannot dedicate 

Paper 1013 28 



a programmer or system manager to the computer. 
case, it makes sense to get a simple system 
interactive environment which provides immediate 
and the ability to test out ideas quickly. 

CONCLUSION 

In this 
with an 
feedback 

There's not much more to say on the topic of selecting an 
instrument controller. If you use the checklists provided 
to guide you in choosing wisely, you will avoid the 
problems listed in the last figure. In addition, I've 
included a survey of Hewlett-Packard computers with 
potential as instrument controllers. In the survey you'll 
find such information as 1/0 speed, operating system 
capabilities, recommended user backgrounds, and a list of 
application requirements that the computer in question will 
fulfill. 

Good luck on finding the right controller. 

29 Paper 1013 



Figure 8; COMMON PROBLEMS 

• I couldn't get the computer to control the 
interface to the instrument because ... 

I I couldn't get the right interface. 

I the interface wouldn't work right. 

I I had to write the driver and I didn't 
know how or didn't have time or didn't 
care. 

I I couldn't control the interface driver 
satisfactorily. 

I the driver had bugs and the vendor would 
not fix it. 

• In my application, timing was a problem. I ... 

• 

I couldn't get data into the computer from 
the instrument fast enough. 

I couldn't analyze the data fast enough. 

I had trouble with the interface: It was 
too fast or too slow for my instrument . 

I couldn't figure out how to make the computer 
do what I wanted it to do because ... 

I the documentation didn't make sense: 
It wasn't written so that could 
understand it. 

I there wasn't enough information in the 
documentation. 

I there was too much documentation and I 
didn't know where to start. 

I the system wasn't sophisticated 
and I got tired of fighting it. 

enough 

Paper 1013 30 



SURVEY OF HEWLETT-PACKARD CONTROLLERS 

Handheld Computers 

Product Family: Series 40, Series 70 

Processor: HP proprietary 

Product Description: Small, lightweight, highly portable 
(fits in the hand), low cost ($1000), battery-powered. 
Supports HP-IL as primary interface. Converters to HP-IB, 
RS-232-C, and GPIO (general-purpose, 16-bit parallel) 
available. 

Software: Single-user, single-tasking operating systems in 
ROM. Series 40 features a proprietary RPN-style OS, while 
the Series 70 uses an extended semi-compiled (tokenized) 
BASIC which provides some event-driven programming 
capability; furthermore, with the HP-IL interface module, 
high-level formatting commands are provided. 

Some instrument software is available, especially for the 
HP 3421A Data Acquisition/Control Unit from HP's Loveland 
Instrument Division. 

Data communication/networking is available through 
user-written software. 

Recommended Use: Very slowi, very small and simple 1/0 
applications as a controller for low-cost test equipment in 
such areas as production process monitoring or laboratory 
bench tops, and portable data acquisition. Best transfer 
speeds are achieved on the HP-IL interface (on the order of 
4 K-bytes per second, no formatting). HP-IB transfer rates 
on the order of 2.7 K-bytes per second can be observed when 
passing data from HP-IL to HP-IB in Translator Mode. 

Portable Computers 

31 Paper 1013 



Product Family: Series 80 

Processor: HP proprietary 

Product Description: Small, portable (generally fits under 
an arm, relatively low cost (less than $5,000), extended 
BASIC language as the operating system. Supports standard 
instrument interfaces: HP-IB, RS-232-C, BCD (Binary Coded 
Decimal), GPIO, and HP-IL. 

Software: Single-user, single-tasking operating system in 
ROM. This version of BASIC comes as an operating system 
and semi-compiled language. A series of optional ROMs can 
add language functionality and system capability. I/O 
support through the I/O ROM is quite good at both high and 
low levels. A high degree of driver and formatting control 
is provided, as well as event-driven programming. (This 
BASIC provides the basis for HP Technical BASIC now 
available as an interpreter on HP-UX.) 

Many HP instrument divisions have software for the Series 
80--especially the HP-85A. 

Data communications/networking is available through 
terminal emulators and user-written software. Alternative 
operating systems are available for the HP-86 and HP-87: 
UCSD p-System2 and CP/M(r). 

Recommended Use: Slowt, small, simple I/O applications 
as a controller for low-cost test equipment in such areas 
as production process monitoring or laboratory bench tops, 
and portable data acquisition. (HP-IB transfer rates may 
be observed at up to 26.2 K-bytes/sec. using fast 
handshake, unformatted transfers, and on the order of 19 
K-bytes per second with GPIO.) Good for non-computer 
literate users or for those who have little time to spend 
programming. Use also in applications with short project 
implementation times. 

Product Family: HP 9807 Integral Personal Computer (IPC) 

Processor: MC68000 

Product Description: Transportable (fits under an airplane 
seat), integrated (keyboard, flat-panel display, Thinkjet 
printer, double-sided 3i" floppy disc drive in one unit), 
low cost (starts at $5,000), HP-UX-based system. Supports 
standard instrument interfaces: HP-IL, HP-IB, RS-232-C, 

Paper 1013 32 



BCD, GPIO. 

Software: The ROM-based HP-UX is AT&T UNIX(tm) 
compatible. It is also single-user and multi-tasking. HP 
Technical BASIC (upwards-compatible with Series 80 BASIC, 
including I/O support, and event-driven programming) is 
available in ROM or on floppy. Other languages available 
include C, Pascal, and Fortran. The HP-UX standard device 
I/O library and real-time extensions are supported. The 
user-interface to the system is through the Personal 
Application Manager (PAM) and windows, with each running 
program typically assigned to one window (including PAM). 

Many Series 80 software packages have been ported and 
several of the technical office automation programs for 
HP-UX have been qualified. 

Data communications/networking is available through uucp, 
terminal emulation, and user-written software. 

Recommended Use: 
applications requiring 
operating system, or as 
Series 80 and could use 

MS-DOS Computers 

Use in slow to medium speed1 
an industry standard multi-tasking 

an upgrade path for those using the 
a friendly introduction to HP-UX. 

Product Family: HP-150, Vectra PC 

Processor: Intel 8088 in HP-150, Intel 80286 in Vectra 

.Product Description: IBM PC compatible, desktop system, 
low cost (less than $4,000). Instrument interfaces 
available include HP-IB, and the PC-Instruments bus for HP 
New Jersey Division personal instruments. 

Software: Single-tasking, single-user industry standard 
system: MS-OOS3. HP-supported MS-DOS HP-IB Command 
Library, PC-Instruments, and ASYST4 analysis software 
provide low to mid-level driver control. 

Data communications and networking capability includes 
terminal emulation, and HP LAN. 

Recommended Use: Use in applications which need slow to 
medium! speed buffered transfers and slow response time, 
plus complete compatibility with IBM PCs or PC-compatibles. 

33 Paper 1013 



Control of low cost instrumentation works well. 

Language Workstation Comouters 

Product Family: HP 9000 Series 200/300 

Processor: MC68000, MC68010, MC68020 (processor and clock 
rate depend on model) 

Product Description: Desktop or rackmount (19" or taboret) 
versions, medium cost ($6,000-$30,000). Choice of 
operating system (BASIC, Pascal, HP-UX from HP; HPL, Forth 
from third party software suppliers). Standard instrument 
interfaces supported (depending on operating system): 
HP-IB, RS-232-C, GPIO, BCD, VME-bus, RS-422/423 and RS-449. 
A breadboard card is available. EPROM and bubble memory 
are available as mass storage alternatives. Internals 
documentation is available for the Pascal operating system. 

Software: The language-based operating systems BASIC 
(often referred to as "Rocky Mountain BASIC" or RMB, for 
short), Pascal, and HPL are single-user, single-tasking 
systems. Forth is single-user, multi-tasking. A Pascal 
language compiler and an assembler are provided in the 
Pascal system. A Fortran/77 compiler is available for the 
Pascal system through a third party. The language systems 
provide both high and low level 1/0 support, with RMB being 
the most complete. RMB and HPL are semi-compiled languages 
and support formatting, event-driven programming, and 
background 1/0 transfers. 

A lot of instrument-specific software is available, 
with some technical office automation tools. 

along 

Much of the technical office automation software introduced 
recently have been designed to run under a low-cost HP-UX 
kernel, referred to as AXE. One of the things that runs 
under AXE is the MS-DOS co-processor, which allows the 
running of IBM PC/AT(tm) software. 

Data communications/networking is available through 
terminal emulation and user-written software. Distributed 
processing available through a shared resource management 
system CSRM), supporting other HP 9000 Series 200/300 
computers. 

Recommended Use: Use in medium to very high speed1 1/0 

Paper 1013 34 



applications. (Best transfers rates can be achieved with 
OMA on the GPIO interface--on the order of 700 to 800 
K-words/sec. or K-bytes/sec., depending on transfer mode. 
HP-IB transfer rates with OMA are on the order of 300 
K-bytes/sec. Interrupt response times are on the order of 
10 µsec. in the Pascal operating system, while event 
response times in BASIC can be on the order of 2 to 8 
msec.5) Box versions are suitable for hazardous 
environments. Good for non-computer literate or for those 
who can afford to spend little time programming. Use also 
in applications with short project implementation times. 

HP-UX Comouters 

Product Family: HP 9000 Series 200/300/500/800 

Processor: MC68000 for Series 200/300; HP proprietary for 
Series 500 and Series 800 (RISC-based) 

Product Description: Desktop, floor, or rackmount (19" or 
taboret) versions; medium high to very high cost ($15,000 
to over $150,000). Series 500 can be multi-processor (up 
to three CPU's in one system). Computationally, the Model 
840 is fastest, being able to perform on the order of 
1,927,000 double-precision Whetstones/sec. The instrument 
interfaces, GPIO and HP-IB, are supported. RS-232-C is 
supported through the standard terminal handlers. 

Software: HP-UX is AT&T System V UNIX(tm) compatible. It 
supports some Berkeley enhancements, where not in conflict 
with System V. Languages available include C, Fortran/77, 
Pascal, LISP. Real-time extensions have been added, 
especially to the Model 840, in the form of kernel 
preemption capability and real-time priorities. Kernel 
preemption, when invoked, gives the Model 840 an average 
process dispatch time (in response to an interrupt) on the 
order of 1.5 msec. and a maximum observed one of 11.77 
msec. A device independent 1/0 library, OIL, is a standard 
feature, providing low level 1/0 and buffered transfer 
capabilities. On the Model 840, a skeleton driver will be 
made available; source code also will available to those 
with a source code license. 

A growing number of technical office automation, data base 
management systems (including HP SQL), computer-aided 
design packages are available. Also available is a 
Common LISP environment for artificial intelligence tool 

35 Paper 1013 



designers. 

Data communications and networking available include uucp 
and HP's local area network. Access is also available 
through file transfer utilities to HP's SRM (except Models 
207 and 840). 

Recommended Use: Slow to high speed1 I/O applications. 
If also compution-intensive, examine the Model 840. 
Recommended series and model depends on required transfer 
rates and response times. Good in complex applications 
requiring a multi-tasking, industry-standard operating 
system. Must have dedicated system administrator and 
programmers understanding multi-tasking environments. 

HP 1000 Minicomputers 

Product F'ami ly: E/F Series, A Series 

Processor: HP proprietary 

Product Description: Rack mount or floor models, 
medium-high cost ($20,000 and up). Standard interfaces: 
HP-IB, parallel, RS-232-C, AID, DIA, breadboard. 

Software: Multi-user, multi-tasking, real-time operating 
system (RTE). RTE on the A900 yields a mean process 
dispatch time (in response to an interrupt) on the order of 
710 µsec., and a maximum observed one of 5.99 msec. 
Languages supported include Fortran/77 with military 
extensions, Pascal, C (from a third party), BASIC (both 
interpreted and compiled), macro-assembler, and 
micro-programming. User-written drivers are supported. 

Instrument-specific, data base management, and general 
purpose technical application software is available. 

Data communications/networking 
distributed systems (DS/1000), 
user-written software. 

capabilities include 
X.25, HP's LAN, and 

Recommended Use: Medium to very high speed1 I/O, complex 
and/or high speed computation-intensive applications. A 
dedicated system manager is required, along with 
programmers who understand multi-tasking applications. 
Frequently used in hazardous environments. 

Paper 1013 36 



1 A rough guide to 1/0 speeds: 

Very slow: 
Slow: 

Medium: 
High: 

Very high: 

0 to 5,000 bytes per second. 
5,000 to 15,000 bytes ber second. 
15,000 to 50,000 bytes per second. 
50,000 to 100,000 bytes per second. 
Greater than 100,000 bytes per second. 

2 UCSO p-System are trademarks of the Regents of the 
University of California. 

3 MS(tm)-OOS is a U.S. trademark of Microsoft, Inc. 

~ ASYST Scientific Software is a 
Macmillan Software Company. 

U.S. trademark of 

5 Semi-compiled languages, as implemented by HP on the HP 
9000 family of computers, log interrupts as they occur, but 
service them only upon completion of the current line of 
user's code. Thus, if the user's program has a PAUSE to 
wait for the operator to press the CONTINUE key, the 
theoretical response time could be infinite. 

37 Paper 1013 



A GLOSSARY OF TERMS 

This glossary is intended to be an informal list 
of common jargon used in the measurement 
automation world. It is by no means complete, 
nor has it been checked against any other 
industry-published dictionary. 

batch. An operating system that runs queued up programs. 
The earliest method of running multiple programs, each 
program gets full utilization of the computer. Still 
used in commercial computing environments due to its 
efficiency in running very large accounting packages. 
[See also timesharing, interrupt-driven system.] 

cache. High speed memory associated with the CPU. The idea 
is to reduce fetch times associated with executing 
instructions. It is generally of two types: 
instruction and data. CSee also CPU, instruction 
cache and data cache.] 

CIM. Abbreviation for computer-integrated manufacturing. 
CSee computer-integrated manufacturing.] 

compatible, compatiblity. When some aspect of a 
computer's hardware or software behaves the same way 
as another. A computer may be compatible with another 
to the extent that it supports the most commonly used 
features of the other machine. The degree to which a 
computer or operating system is compatible is 
determined by the amount of change that must be made 
upon an item which was developed first on one machine, 
then transported to the one in question. 

computer-integrated manufacturing. The process of 
automating the manufacturing process with computers 
and instrumentation, then linking them altogether with 
higher level controllers. The goal is to be able to 
integrate the whole manufacturing entity. 

context switch. The process of suspending one process to 

Paper 1013 38 



execute another. This typically requires three actions in 
most multi-tasking systems: (1) Process the event 
which is causing the context switch; (2) Suspend the 
currently executing process; (3) Begin executing the 
highest priority process. CSee also context switch 
time.l 

context switch time. The amount of time it takes to 
suspend the currently executing process, then begin 
executing the highest priority runnable process. 

controller. A device that controls one or more other 
devices. Specifically, a computer which controls the 
operation of other devices. CSee also data 
acquistion computer, instrument controller.] 

cost of ownership. The cost of maintaining the system 
over time for both hardware, software, and support. 

CPU. An abbreviation for central processing unit. That 
part of a computer which performs instructions. 

data acquisition. The process of collecting data from 
the physical world, using electronic transducers and 
measurement devices (instruments). 

data acquisition computer. A computer that acts as a 
controller to perform data acquistion. Such a 
computer requires special capabilities, including 
real-time response and a high degree of control over 
the 1/0 system. CSee also controller, instrument 
controller.] 

data cache. Cache reserved only for data. Its usefulness 
is dependent upon the likelihood that, as data is 
fetched from memory, it will be used over and over 
again, thus reducing the amount of time to process 
this data. CSee also cache, instruction cache.] 

data communications. The exchange of data between 
computers, or between computers and terminals. The 
communication is assumed to be via RS-232-C and/or 
over telephone lines. CSee also networking.] 

device driver. A driver which controls a device, 
a plotter or a disc drive. It often 
incorporates an interface driver. [See also 
interface driver.] 

such as 
uses or 
driver, 

direct memory access, OMA. A method of performing 1/0 

39 Paper 1013 



operations as quickly as possible, with hardware 
assistance. There is more than one implementation 
scheme. One is to steal time away from the CPU to 
bring data in, on a cycle-stealing basis. In other 
words, when the CPU would normally be waiting for 
memory to return an instruction, that clock cycle is 
"stolen" to perfo~m the I/O operation. 

Another method, supported by the Motorola MC68000 
family of microprocessors is to use an auxilliary 
processor, called a OMA controller, which specializes 
in moving data to and from RAM as quickly as possible. 
It is able to accomplish this by shutting down the CPU 
while the I/O operation is taking place. When 
complete, the OMA controller will release system 
control back to the CPU. CSee also CPU, I/O, 
microprocessor, RAM.l 

distributed system. A method of dividing up the workload 
and distributing computers located over a given area 
to increase overall computational power and capacity. 
The computers are linked together in some sort of 
network to coordinate the work and to share data. 
[See also network.] 

OMA. Abbreviation for direct memory access. [See direct 
memory access.] 

driver. A program associated with an operating system 
that controls some sort of hardware, such as interface 
cards or peripherals. There are two basic kinds of 
drivers: interface drivers and device drivers. 

end user. A person who uses the computer in the manner 
for which it was intended. Usually, the end user 
knows enough about the computer to run specific 
application software. 

event. The conceptual interpretation of an interrupt by 
the operating system of a controller. 

friendly, user-friendly. A given 
on a computer which can be 
acceptable level of frustration. 

task to be performed 
accomplished with an 

general purpose computer. 
special application 
computation tasks. It 
time-sharing operating 

Paper 1013 

A computer designed 
in mind, except 

may use either a 
system. 

40 

with no 
general 

batch or 



nandshake. That sequence of 
which allows 

signal changes between 
interfaces the orderly exchange of 
information between them. 

hardware floating point. Hardware designed to assist the 
CPU with floating point Creal number) computation. 

human input device. A device designed to let a user 
input information into the computer system. Input 
devices may deal with alphanumeric or graphical 
information. Examples include: keyboard, mouse, 
touchscreen, barcode reader, light pen, arrow keys. 

HP-IB. Hewlett-Packard's implementation of IEEE-488. 
lSee IEEE-488.l 

IEEE-488-1978, IEEE-488. A popular interfacing standard 
designed to connect multiple intelligent instruments 
to one port in a bench-top environment. It is also 
known as HP-18, HP-18, GP-18, the Plus Bus, the ASCII 
Bus, the IEEE bus. The latest revision was issued in 
1978 by the Institute of Electrical and Electronics 
Engineers, Inc. (IEEE). It has also been approved by 
the American National Standards Institute (ANSI), 
hence the full name: ANSI/IEEE Std 488-1978 IEEE 
Standard Digital Interface for Programmable 
Instrumentation. [See also interfacing, HP-18.l 

instruction cache. Cache reserved only for instructions. 
Instructions are placed in the cache memory as they 
are fetched from main memory and executed. The 
usefulness of instruction caching is based on the fact 
that programmers tend to program in short loops or 
request relatively short branches. So, soon, the CPU 
should be executing instructions out of cache instead 
of lower-speed main memory. [See also cache, data 
cache.] 

instrument. Electronic device that measures 
phenomena with 
thermocouples. 

various sensing devices, 
CSee also data acquisition.] 

physical 
such as 

instrument controller. A computer that controls 
instruments. CSee also data acquisition controller.] 

interface card. A printed circuit board providing the 
electrical, mechanical, and functional conversion 
between the host and another device located outside 
the host. This is accomplished by translating between 
the internal bus of the computer and the external bus 

41 Paper 1013 



(cable). In a computer, it is typically installed 
into an I/O port. Intelligent instruments have 
interface cards built in. It is sometimes referred to 
simply as an interface. 

interface driver. A driver designed to control a 
particular interface card. 

interfacing. The process of connecting a 
communication 

device to a 
between the computer and establishing 

two. 

interrupt. An asynchronous request for attention from a 
device connected to a controller. This request for 
attention is implemented in hardware. 

interrupt-driven system. A multi-tasking operating 
system which allows interrupt-based event~ to 
determine the next task to be performed. The system 
may be exclusively interrupt-driven or use time-slices 
until an event occurs. An example of the latter 
approach is RTE (Real-Time Executive), the operating 
system provided for HP 1000 mini-computers. 

interrupt response time. The time it takes for the 

1/0. 

computer to detect that an interrupt has occurred, it 
recognizes the interrupt as a permissible event, then 
starts to do something about it. What that something 
is depends on the system. Sometimes it's the time it 
takes to enter the interface driver. Other times it's 
the time it takes to enter the user's designated 
event-handling code. CSee also interrupt.] 

Abbreviation for input/output. CSee input/outputl. 

1/0 subsystem. That part of an operating system which 
provides access to the interfaces and drivers. 

1/0 port. The physical connection point in the computer 
for an interface card. 

input/output. (1) The process of moving data into the 
computer (input) and moving data out of the computer 
(output) via the 1/0 subsystem. (2) Storing (output) 
and retrieving data (input) from files on external 
mass storage. This definition is the more common one 
on general purpose computers. 

LAN. Abbreviation for local area network. CSee local area 
network]. 

Paper 1013 42 



local area network. A network restricted in distance 
between computer systems, so as to increase possible 
data transfer rates. An increasingly popular network 
design, IEEE-802.3 is a common basis for LANs. 

mass storage device, mass storage. A device with the 
capability to store and retrieve data for the 
computer. Examples include hard and floppy disc 
drives and tape drives. 

measurement automation. The process of making physical 
measurements an automated task, involving a controller 
and one or more instruments. The measurements taken 
may or may not be sensor-based. A more general term 
than data acquisition. 

microprocessor. 
micro chip. 

A processor that has been implemented on a 
Often abbreviated as µP. 

modem. Stands for MOdulator-DEModulator. In RS-232-C, it 
is a device which allows the conversion from the 
RS-232-C interface signals to a single signal which 
can be transported through the standard telephone 
system. Modems come in pairs: One is to go from 
RS-232-C to the telephone line; The other is to go 
from the telephone line to RS-232-C. This allows for 
a way around the limitation of 50 feet of wire between 
devices, as recommended by RS-232-C. CSee also 
RS-232-C.l 
RS-232-C 

multi-tasking. An operating system characteristic: More 
than one user program can be executed at the same 
time. An operating system may be pseudo multi-tasking 
by allowing certain program requests to operate in 
parallel with the rest of the program execution. An 
example of this is starting an 1/0 operation, then 
going on to the instruction without waiting for 
completion of the 1/0. CSee also time-slice and 
interrupt-driven.] 

network. A number of computers connected together with a 
data communications scheme so as to share information 
and tasks between them. It is usually based around 
RS-232-C. Using modems, there is no limit to the 
physical distance between systems (nodes). CSee also 
local area network, RS-232-C.l 

operating system. The software which. provides access to 

43 Paper 1013 



the resources of the computer. As such, it can run 
other software. Common abbreviations include OS and 
Op. Sys. 

OS. Abbreviation for operating system. CSee operating 
system. 

networking. The process of connecting computers together 
and establishing effective communication between them. 

output device. A physical device used to output data from 

PC. 

the computer, often in human-viewable form. 

Abbreviation for personal computer. 
used as an abbreviation for the IBM PC. 
computer.] 

Also sometimes 
CSee personal 

peripheral. A device which can be attached to a computer 
to perform at least one of a variety of functions 
along the lines of external storage, data input, and 
data output. CSee also mass storage, human input 
device, output device.] 

personal computer. A physically small computer that is 
intended for the use of only one person at a time. 

priority. In a multi-tasking operating system, a value 
which can be assigned to a program or event and used 
by the operating system to decide which task is next. 

polling. The act of requesting information from a device, 
such as an instrument or interface card. Polling can 
be done once or repeatedly. 

preemption. The ability of the operating system to be 
briefly suspended from it's normal processing sequence 
to act on external events. This is done by having the 
operating system periodically check for these events, 
when it is safe to do so, meaning that the system is 
in a known, and keepable state. 

preemption latency. The period of time the CPU is used by 
a system process before voluntarily giving it up to an 
event-handling process of higher priority. 

process dispatch time. The time from when an interrupt 
occurs, to when the event-handling process starts 
running. In UNIX(tm) systems, it includes the 
interrupt response time, kernel preemption time, and 
context switch time. CSee also interrupt response 

Paper 1013 



time, preemption latency, context switch time.) 

process monitoring and control. Found 
environments or other places 
automates a process: The job of 
process and making modification 
necessary. 

in manufacturing 
where a computer 

watching over a 
where and when 

RAM. An abbreviation for random access memory 
electronic storage inside the computer, used for the 
operating system, programs, and data storage. Also 
known as memory. 

real-time. (1) In scientific and engineering computing 
applications, an operating system implementation that 
allows as fast a computer response is as necessary to 
respond to physical stimuli (interrupts). Required 
response times vary from application to application. 
Thus, it is a relative, rather than absolute value. 
(2) In commercial applications, an operating system 
implementation oriented towards on-line transaction 
processing, such as airline ticketing. Response time 
is based on human response-time. 

real-time computer. A computer with a real-time 
operating system. lmplcit in the design is a special 
hardware architecture to improve 1/0 throughput and 
interrupt response. 

real-time data acquisition. The process of performing 
data acquisiton in real-time. This suggests a need to 
respond very quickly to interrupts and to sustain high 
rates of throughput. 

real-time system. (1) A real-time operating system. In 
order to be real-time, an operating system must be 
able to respond to events in a real-time fashion. It 
implies a high level of user control over the I/O 
subsystem and some degree of multi-tasking capability. 
(2) A real-time computer system. 

response time. In the most general sense, the time it 
takes the operating system to detect an interrupt and 
to do something about it. Some define it as the time 
it takes to detect an interrupt and enter the 
interface driver code. Another definition is the time 
it takes to detect an interrupt and and enter the 
application program's event-handling code. There is 
no actual or de-facto industry standard definition for 
this term. [See also process dispatch time.] 

45 Paper 1013 



responsiveness. An operating system characteristic 
the kind of response time to expect for an interrupt. 

RS-232-C. A recommended standard published in August 1969 
by the Electronic Industries Association (EIA). It 
defines an "Interface Between Data Terminal Equipment 
and Data Communication Equipment Employing Serial 
Binary Data Interchange." It details the electrical, 
operational, and mechanical aspects of the interface. 
Typical data terminal equipment (DTE) include 
computers, printers, and terminals. Data 
communications equipment CDCE) refers to modems. 
CSee also modem, data communications, networking.] 

semi-compiled. A method of translating user-written 
programs into a series of symbols, or tokens, whose 
meaning will be interpreted at run time. Semi-compiled 
languages have the advantages of interpreted ones, 
while running more efficiently. Advantages include an 
interactive programming environment and smaller 
programs. CSee also tokenized.) 

single-tasking. An operating system characteristic: It 
can execute just one user program at a time. 

SPU. An abbreviation for system processing unit. It 
includes a CPU and supporting hardware, not directly 
relating to executing instructions, for example 
virtual memory and cache. CSee also CPU, virtual 
memory, cache.] 

support. (1) A service or collection of services 
provided by product vendors to help the buyer to use 
and maintain the product. (2) Tools designed to help 
the user to implement his application. Tools include 
software (such as debuggers and other utilities), and 
documentation (such as manuals, and application 
notes). (3) Is able to run particular software. 

task. A logically related collection of procedural 
instructions executed by the system, e.g. a program. 

throughput. In reference to 1/0, a figure of merit used to 
measure I/O performance. It is calculated by 
examining how quickly a computer can input data from 
some source and deposit it in some destination, 
perhaps in a new form. In other words, it is the 
number of data items per second transferred from the 
input to the output. Often, data items are measured 

Paper 1013 46 



as bytes. lt is quite useful as a yardstick of 
performance in measurement automation applications 
characterized by the need to gather large bursts of 
data in a short amount of time. 

time-sharing system. An operating system using 
time-slice architecture. An example is HP-UX, 
Hewlett-Packard's implementation of Bell System's UNIX 
(tm) operating system. 

time-slice. Jn a multi-tasking operating system, a 
period of time that a particular task is allowed to 
execute in. lf a task requests 1/0, it may be 
suspended immediately (before the end of the 
time-slice) until the l/O operation is finished. 
Through a series of time slices, the program will run 
to completion. 

time-slice architecture. An operating system design that 
uses the time-slice as the only method of running 
multiple programs at the same time. Programs include 
operating system and user programs. 

tokenized. The state of a program, statement, or command 
after having been translated from a logical sequence 
of characters into a series of symbols or tokens, 
which will be interpreted and acted upon later. 

turnkey software. Application software that does 
everything desired and requires little user knowledge 
of computing to run. It is typically not modifiable 
by the buyer. 

virtual memory. The ability of an operating system, or the 
SPU and operating system, to manage a user's program 
space or data space as if it were using physical 
memory, when in fact it may be located out on disc. 
This frees the programmer from having to worry about 
the size of his program or amount of data in memory, 
since the operating system will bring in the pieces of 
program and/or data on demand. 

47 Paper 1013 



Institute of 
ANSI/IEEE 
Interface 
Institute 
1978. 

LIST OF REFERENCES 

Electrical and Electronics Engineers, Inc. 
Standard 488-1978: IEEE Standard Digital 

for Programmable Instrumentation. New York: 
of Electrical and Electronics Engineers, Inc., 

Electronic Industries Association. EIA Standard RS-232-C: 
Interface Between Data Terminal Equipment and Data 
Communication Equipment Employing Serial Binary Data 
Interchange. Washington, O.C.: Electronic Industries 
Association, 1969. 

Hewlett-Packard Company, Inc. 
Instrument Control Using HP 
number 50011B. Mountain View: 
Inc., 1985. 

Paper 1013 48 

Student Guide: HP-IB 
Series 200 BASIC, course 
Hewlett-Packard Company, 



ACKNOWLEDGEMENTS 

I'd like to thank the following people for their help in 
the original research for this paper: Albert Alcorn, Data 
Acquisition Systems Engineer, HP Neely Pleasanton; Jim 
Gendreau, Communications Manager, HP Data Systems Division; 
John Jensen, Dynamic Signal Analysis Systems Engineer, HP 
Neely Santa Clara; Don Richmond, District Systems Engineer 
Manager; Kent Simcoe, Data Communications Systems Engineer, 
HP Neely Pleasanton; Dave Whitton, Microwave/RF 
Measurements Systems Engineer, HP Neely Palo Alto. 

Two people who endured constant iterations of this paper 
(and who cried out, "Oh, no! Not again!") in order to 
provide technical expertise and general support deserve 
special mention: Nigel Clunes, HP 1000 Systems Engineer, 
HP Australia and Alan Tibbetts, consultant, Telos 
Consulting Services. 

Dave Myers was a sales representative who wanted a white 
paper on how to choose instrument controllers, so he could 
help his customers make a good decision. That was in 
February 1985. I originally promised to have it done by 
that April. It was actually finished in November. Dave 
was promoted to Sales District Manager that summer, 
however. He still encouraged me to finish it: Thanks, 
Dave. 

49 Paper 1013 





Software Management Strategies 

by: Miller, William 
Clunes, Nigel 

We regret that this paper 
was not received for 

inclusion in these proceedings. 

Paper 1014 





THE FIRST HP PRECISION ARCHITECTURE IMPLEMENTATION 

David Fotland 
Hewlett-Packard Co. 

11000 Wolfe rd 
Cupertino Ca 95129 

Introduction 

The HP Precision Architecture is based on reduced instruction set (RISC) 
principles but goes beyond RISC to add features in the areas of floating 
point support, virtual memory management, and I/O. Simplified instruc­
tion sets allow processors to be less expensive and faster when execut­
ing integer based programs. Provision for coprocessors allows high 
speed implementation of floating point, hardware multiply, and other 
similar functions. Paged virtual memory allows efficient execution of 
very large programs. A new high performance I/O system is needed to 
keep the processor busy. 

The HP9000 model 840 is the first technical version of the HP Precision 
Architecture computer family. It runs the HP-UX operating system and is 
2 to 3 times faster than an HP1000/A900 or an HP9000/550. The HP3000 
model 930 is the first commercial version of the HP Precision Architec­
ture. It runs the MPE operating system and is about 2 times faster than 
an HP3000 series 68. The model HP9000 model 840 and the HP9000 model 
840 are very similar internally. This paper will concentrate on the 
HP9000 model 840. The model 840 is built from off the shelf TTL MSI, 
PALS, and RAMs. It has a three stage instruction pipeline allowing it 
to execute about 4.5 million instructions per second (MIPS). A 4096 
entry translation lookaside buffer (TLB) and a 128 Kbyte cache system 
allow address translation and memory accesses to keep up with the pro­
cessor. Main memory is implemented with 256 Kbit dynamic RAMs and can 
be up to 24 Mbytes. The connection between the processor, memory con­
trollers, and I/O channels is a new synchronous bus with 20 
Mbytes/second bandwidth. A CIO bus is used for I/O cards. This is the 
same I/O bus as on the 9000/550. 

The Processor 

The model 840 processor is implemented on three boards of TTL logic. 
Each board has about 150 !Cs. These boards are the Instruction Unit 
(IU), the Execution Unit (EU), and the Register Files (RF). The proces­
sor has a 125ns cycle time and can fetch a new instruction each cycle. 
This implies a maximum performance of 8 MIPS. Precision Architecture 
instructions are all 32 bits long and have very similar fc~mats. No 
instruction has more than two source registers and the source register 

Paper 1015 



numbers are in the same place in every instruction. This makes it pos­
sible to fetch and decode and instruction every clock cycle. 

The IU contains the program counter (PC) and the logic to update it. It 
executes branch instructions and has the PC incrementer and the PC 
offset queue. It also handles traps and interrupts. The RF contains 
the 31 general purpose registers, copies of 16 of the control registers, 
the external interrupt register and several other control registers. 
The EU contains the main ALU and the barrel shifter used to execute 
instructions as well as the condition generation logic. 

The three cycles of the pipeline are called fetch, execute, and 
load/store. During the fetch cycle the IU sends the program counter 
(PC) to the instruction cache and TLB. The returned instruction comes 
to all the boards where it is decoded. The RF board reads the source 
registers and the IU increments the PC. During the execute cycle the EU 
calculates the result for this instruction and sends it to the RF. If 
the instruction is a load or store, the EU also calculates the address 
and sends it to the data cache and TLB. The EU also calculates the con­
dition to be used in a conditional branch or trap on condition. The 
condition goes back to the IU. During the load/store cycle the result 
is written back to the register files on the RF board. If the instruc­
tion is a load or store the actual reading or writing of the data cache 
takes place during this cycle. At any one time one instruction is in 
fetch phase, the preceding instruction is in execute phase and the one 
before that is in load/store phase. 

Floating Point 

Pure RISC architectures generally have poor floating point performance 
so the Precision Architecture allows a coprocessor for floating point. 
The floating point coprocessor has its own 12 floating point registers 
so as not to interfere with the main processor. The main processor exe­
cutes coprocessor load and store instructions to update these registers. 
Coprocessor operation instructions (such as floating point add FADD) 
take one cycle in the main processor. They then execute on the copro­
cessor in parallel with instructions on the main processor. This over­
lapping allows higher performance. The floating point coprocessor in 
the model 840 is based on an HP proprietary 3 chip set implemented in 
the NMOS III process. This is the same chip set used in the HP9000 
model 550. In addition there is a register file and micromachine built 
from standard '!TL. The micromachine handles self test, instruction 
sequencing, and exceptions. The model 840 is about 2 times faster than 
the HPlOOO A900 and about 3 times faster than the HP9000 series 550 when 
executing floating point intensive programs such as Spice, Whetstone, or 
Linpack. 

Paper 1015 2 



Cache and TLB 

The Precision Architecture has an unusual virtual memory system since 
the virtual addresses are 48 or 64 bits. The model 840 uses 48 bit vir­
tual addresses. There is a single virtual address space for the entire 
system rather than one per process. The mapping between virtual and 
physical addresses is one to one. This virtual address scheme has 
several advantages. Since the mapping is one to one it is possible to 
index into the caches with the virtual address. This speeds up the 
machine since the address translation can be done in parallel with the 
cache access. Since there is a single address space the virtual to phy­
sical mapping does not change when there is a context switch. This 
means that the TLB entries remain valid across context switches and a 
large TLB can be effectively used. 

Since the Precision Architecture has a global address space, any user 
program can generate any address. Protection must be on a page basis. 
The TLB entry for a virtual page contains the physical page number as 
well as the access rights and access ID and tag. A TLB entry is over 70 
bits long. The model 840 has one set of TLB hardware because of the TLB 
width, but it is pipelined and serves as both the instruction and data 
TLB by being read twice in each cycle. The TLB provides a physical page 
number to the cache which is compared with the cache tag to determine if 
there has been a hit or miss. The TLB hit rate is about 99.993 for the 
instruction TLB and about 99.8% for the data TLB. 

The model 840 has separate instruction and data caches. This provides 
twice the cache bandwidth and allows each cache to be customized to its 
function. The I cache has to be very fast since there is only half of 
the fetch cycle to access it. This is accomplished by giving it it's 
own address bus and putting the data RAMs on the EU board, right in the 
processor. The data cache has more time and can be stored into. It 
needs more control and is on the cache board. The caches in the model 
840 are addressed with virtual addresses in parallel with the TLB 
lookup. The caches are direct mapped. This means that each memory 
location only has a single place in the cache where it can be placed. A 
direct mapped cache can be accessed faster than a multiway associative ' 
cache, but it has a slightly worse hit rate. The cache hit rate is 
about 97 to 98 percent. The data cache is store to, which means data is 
stored into the cache and not updated in main memory immediately. This 
reduces the amount of memory bandwidth required by the processor. Since 
OMA I/O goes to main memory, I/O buffers must be flushed from the cache 
before an I/O operation begins. There are special cache flush instruc­
tions used by the operating system for this purpose. 

3 Paper 1015 



The Midbus 

The model 840 has a new processor to memory bus called the Midbus. This 
is a synchronous bus optimized for burst data transfers of 16 or 32 
bytes. It is a 32 bit bus. The model 840 has a 16 byte cache line so a 
cache miss can be satisfied with a single burst transfer which takes 7 
clocks or 875 ns. The Midbus has a bandwidth of about 20 Mbytes per 
second. It is designed for reliability. Synchronous busses are 
inherently more reliable since there are no race conditions or synchron­
izer failures. The bus is fully parity protected for addresses. data. 
and control. In addition there are hardware time outs to detect stuck 
control bits. Addresses and data are transferred on the same 32 wires. 
The master in the transaction can arbitrate for the bus in one clock and 
send the address and transaction type in the next clock. The slave can 
cause the master to wait. or cause the transaction to be ignored and 
retried. The protocols and transaction types are designed to allow bus 
converters to be built for extending the bus if needed. The model 840 
has 7 general purpose Midbus slots. 6 Midbus slots dedicated to memory. 
and one Midbus slot dedicated to the processor. High performance I/O 
cards such as a 10 Mbyte per second parallel I/O card can be plugged 
directly into the Midbus. Most I/O is on the CIO bus and uses the CIO 
channel to interface to the Midbus. 

The Memory System 

The model 840 has 6 Midbus slots dedicated to memory cards. The memory 
is built from 256 Kbit dynamic RAM chips. Single bit error correction 
and double bit error detection is standard. Battery backup is also 
standard providing power for at least 15 minutes when the AC power 
fails. The memory system consists of memory controllers and memory 
arrays. Each memory controller has 3 Mbytes of memory on it and can 
control a single 5 Mbyte memory array. 3 memory controllers and their 
arrays provide the maximum 24 Mbytes of memory. The HP9000 m0del 840 
comes with 8 Mbytes of memory standard and the HP3000 model 930 comes 
with 16 Mbytes standard. The processor limits future memory expansion 
with new memory boards to 128 Mbytes maximum. 

The CIO Channel 

The CIO channel is a two board set that plugs into the Midbus. It han­
dles DMA and polling on the CIO bus. The CIO bus built into the Model 
840 has 12 general purpose I/O slots. one slot dedicated to the access 
port card. and one slot for the connection to the CIO channel. The CIO 
channel can handle up to 65000 simultaneous DMA transfers. The channel 
can chain multiple transfers together into a single large transfer. 
This helps reduce software overhead for I/O. The CIO bus and channel 
have a maximum bandwidth of 5 Mbytes per second. The CIO channel aliows 

Paper 1015 4 

I•· 



software direct access to any CIO bus primitive operation. The HP3000 
model 930 allows two additional CIO channels with two more 8 slot CIO 
busses in an I/O expansion box. The CIO channel has a maximum bandwidth 
of 5 Mbytes per second when used with the AFI parallel I/O card. CIO 
cards with the BIC chip such as the HPIB and serial multiplexor cards 
are limited to 2.4 Mbytes per second. So, the HP9000 model 840 has 2.4 
Mbytes per second of I/O bandwidth for disc transfers and the HP3000 
model 930 has 7.2 Mbytes per second of I/O bandwidth for disc transfers. 

Conclusion 

The HP Precision Architecture is a complete system solution. It 
includes the RISC instruction set for fast, low cost CPUs as well as 
hardware floating point support, a paged virtual memory system, and a 
new I/O architecture. The HP3000 model 930 and the HP9000 model 840 are 
TTL implementations for the commercial and technical markets respec­
tively. They provide 2 or more times the performance of the previous 
high end machines in each of these markets. 

5 Paper 1015 





Can distributed sy§tems be manaaed effectivelv? 

Dr. David A Thombs 

Directorate General of Defence Quality Assurance 
Ministry of Defence 
Royal Arsenal East 

Woolwich 
London SE1B BTD 
United Kingdom 

Introduction 

It is widely recognised that the combination of high speed, low cost computer hardware, reliable cheap 
communications and fourth I fifth generation software tools are becoming the most important factors in the 
design of computer systems. 

However, it is also realised that the management of such systems is significantly more difficult than the single 
site systems of the past. The combination of a number of factors, such as, geographical distribution, 
communications and distributed data-base management systems and a paucity of timely Information on resource 
utilisation and performance has made the task difficult, if not impossible. 

The net effect of these deficiencies Is that management decisions are being taken on inaccurate data, which can 
have disastrous effects In both the short and long term. 

A typical small network 

In order to illustrate the problems, the DGDQA network will be considered. Fig. 1 shows the distribution of 
current user sites and Fig. 2 shows a schematic of the basic network. The prime characteristic of the network 
is that it is constantly changing and tending to grow. 

User capabilities on the network vary from scientists and engineers developing Instrumentation and data analysis 
systems to clerical staff and data input staff running menu driven MIS programs. 

The main user areas are: 

* Management Information Systems - Corporate IMAGE DBMS distributed over three nodes and accessed at all 
nodes and most terminals. 

* Technical Information Systems - Corporate IMAGE DBMS at single nodes and accessed at most nodes and 
most terminals. 

* Instrumentation Systems - Local use only. 

* Development - Corporate and private development, covering all areas and all nodes. 

* Other systems - Mainly statistical analysis and number crunching. 

Paper 1016 



The problem 

The main problem encountered when managing the type of system shown above is a lack of information on 
resource utilisation and efficiency. This results in considerable difficulties in making the system 'future proof'. The 
following areas are of particular concern but are by no means exhaustive: 

*DBMS 
Private IMAGE implementations and resource utilisation. 

Corporate distributed IMAGE systems and the problems found in tightly coupled time dependent systems. 

* Communications 
Cost 
Loading and congestion on private lines and public data networks. 

* Users 
Inexperienced users. 
Experienced and clever users. 
System response time. 

* Unattended systems 
System crashes and recovery. 
Routine tasks. 

* Back up and disaster recovery 
What caused the problem. 

How to recover and length of time required to recover. 

*Security 
Physical security. 
Software security. 

Hardware security. 
Hackers. 

*Micros 
Compatibility. 

Re-invention of the wheel. 
Clever users 

It would be difficult in a paper of this length to cover all the above areas in detail, but the paper should raise a 
few discussion points, and hopefully suggest a few possible lines of attack in solving the problems. 

Operational problems 

The term "operational problem" is used to indicate the difficulties encountered in day to day running of the 

system. Typical information required instantly is: 

• Which users are active. 

• What programs are the users running. 

• Which programs is the operating system running. 

Paper 1016 2 



Nhich programs are swapped out. 

!Nhich data-bases are in use. 

What response time are the users getting and what is the loading on the comms lines. 

>r slngle systems the Information can be obtained by the use of a dynamic system monitor, of the type 
!Scribed by the author at the 1984 San Jose Conference. The basic problem with this type of monitor is that, 
1en for a single system, the amount of useful information is far greater than can be displayed on a standard 
l character by 24 line display. However, by careful matching of the system utilisation to the information 
!splayed, a very useful operational aid can be built. 

>bviously, in the case of a distributed system, the problem Is far worse, due to the volume of information being 
. multiple of the single system case. One possible solution is to use a monitor program of the type described, 
unning at all nodes and to map the Information from each node onto a separate display running on a system 
it the management site. This tends to produce a rather confusing set of displays and is costly on mux ports. If 
ye consider the network above it would require 11 or 12 displays to show the activity profile. Another way of 
1howing this type of display, would be to overwrite a single screen with the information from each node in 
1equence. The obvious problem with this approach is that the whole set of Information is not available at any 
one time. 

A more sensible solution to the problem is a single display showing user activity at all nodes. An example of 
this distributed status monitor is shown in Fig. 3. As can be seen from the example, it Is easy to comprehend 
and assimilate and gives a very broad view of the user activity. H problems are noted, further details of the 
system giving problems could be obtained from a display giving more detailed information on that system. 

Distributed system monitors are fairly easy to write, but a few small points should be noted. 

* It would be desirable to write a single program, running on one system, which interrogates other systems on 
the network to obtain the information required. This seems to be Impossible because of the need to obtain 
information from various system tables. 

* The method used to implement the DGDQA monitor is to use a PTOP master at the network management 
system and slaves at local nodes. Data is passed with PTOP calls for display at the network management 
system. 

* The master is scheduled at suitable intervals to obtain the display updates. Care should be taken not to 
schedule the program too frequently, since you would end up with large comms bills and reduce the 
bandwidth available to users. 

* The Information displayed is shown below: 

US - Two character user identifier. 
LU - Terminal logical unit number. 
CAP - User capability level. 
TIM - The number of minutes the user has been logged on. 
PROG - Program name. Due to space restrictions, Cl, FMGR and QAMIS (our own user interface) are not 

displayed. If the user is running more than one program, only one is displayed. If for example, a user 
was running DEBUG on a program, either DEBUG or the program would be displayed. 

ST - Program status. 
PR - Program priority. 

3 Paper 1016 



*For Node 1, infonnation is displayed on the DS1000-IV comms lines utilisation. The infonnation is shown in 
the following fonnat: 

LU - Comms line logical unit number 
GOOD - The number of good frames received and transmitted. 
BAD - The number of bad frames received and transmitted. 
%ST - The percentage utilisation of the comms line since the monitor last ran. 
%LT - The percentage utilisation of the comms line since the monitor started. 

N.B. In the case of non HDLC cards, the infonnation is easily obtained, since the infonnation is contained in 
the system. In the case of HDLC cards the information is stored on the card and ca!) be obtained with two 
XLUEX calls. 

CALL XLUEX(1,CNWD,BUFF,10,1) 
CALL XLUEX(1,CNWD,BUFF,11,2) 

It should be noted that the bytes in the words returned are reversed and the calls only apply to DS1000-IV 
direct connect and modem cards. I have yet to sort out the details for the X.25 cards. 

* For other points on writing this type of monitor see the 1984 San Jose Conference proceedings. 

A film will now be shown demonstrating this type of monitor in action. Several points should be noted: 

* The schedule interval is small in order to reduce the running time of the film. 

* Several nodes are down in order to show limited activity. 

* The display was filmed on a live network. 

Tactical Problems 

The tenn "tactical problem' is used to indicate the difficulties encountered in maintaining efficient operation and 
system integrity over a period of time. 

The problem can be split into two sections: 

* Control of users and resources. 

* Information on user actions and resource utilisation. 

Control of users and resources 

Each user of the system should have a clearly defined set of capabilities, covering all aspects of system 
utilisation. These should include the following: 

* Which systems can be accessed. 

* Which programs can be accessed. 

* Which segments within programs can be accessed. 

Paper 1016 4 



* What data can be accessed. 

* Read or write capability. 

* File creation and deletion capability 

* Peripheral access. 

Management information requirements 

Information required to manage the system should Include the following: 

* User profiles. 

* Terminal usage profiles. 

* Program usage profiles. 

* Data-base usage profiles. 

* Unexpected event logging - program crashes, invalid log ons etc. 

* Comms lines utilisation. 

Why not use the HP Accounts System ? 

* There are many problems with using the accounts system for controlling user access, the major problems 
being: 

* It is not capable of providing sufficient control of user capabilities. 

* Requires large amounts of memory for a large user base. 

* Lack of unusual event logging. 

* Users can not change their own passwords and the system does not enforce regular changes. 

* Little security on accounts system and a fairly inexperienced hacker can easily break the system. 

How to write a better control system 

There are many ways to write a better system and the following points should be considered when designing 

the system: 

* Use one or more HP accounts to roughly define the capabilities of your users and when logged on transfer 

to your control program as the primary program. 

* When users are in the control program, enter a. password routine. 

* Keep routine users out of Cl and FMGR. 

5 Paper 1016 



• Make as much of the control program as possible menu driven and do not use program names in the menu. 

• Allow users to change their passwords and enforce changes at suitable time intervals by warning users that 
passwords are getting old. If passwords are not changed, remove access. 

• When passwords are changed, check for surnames, first names, telephone numbers etc., this is much easier 
if the program can access a personnel data-base. 

• Encrypt all passwords in the data-base, using as sophisticated a routine as possible. 

• Do not link data access capabilities to people, if possible link to the position in your company. This saves a 
considerable effort when staff change jobs. 

• Since users are running on a small number of sessions, it is desirable to identify them to utilities, such as the 
dynamic system monitor. This can be done by simply overwriting the user entry in the Session Control Block. 
In RTE-A this can be done quite easily, in RTE-6VM it is a little more difficult but can be done without too 
much trouble. 

• Log all unexpected events, such as, program crashes, failures to log on etc. 

• Log all transactions to hard copy, as well as the data-base. 

• Use IMAGE to implement the data-base. 

• In a network situation how many copies of the data-base are needed? You will probably find that a copy of 
the data-base is required at all nodes. This introduces problems when changes occur in the data-base. If a 
node is down when a change occurs, the change should be made as soon as the node is back on line. 

• Look out for loopholes in programs, in particular the scheduling of programs from EDIT, BASIC etc. 

• Test and double test the system! 

• The following items could be of use in a data-base and perhaps other items as well? 

Personal identifier 
Staff number 
Position in company 

Password (encrypted) 
Date password last changed 

Total log on time 

Program names 

Segment names 

Data-base names 

Capabilities 

LU 
Log on time 
Log off time 

Program run 
Data-base used 

Paper 1016 6 



Systems used 
Comms facillties used 
Peripherals used 

llme of unexpected events and description 

Problem areas 

One major problem is encountered when using dial up, X.25 PAD lines or a number of other devices, such as 
statistical multiplexors. Due to the first come, first served nature of these devices and services It is impossible to 
link the LU to a specific location. In the case of dial up, it would be possible to use a call back facility in which 
case terminal locations could be identified, but for other devices and services this is of course impossible. 

Strateaic Problems 

The term "strategic problem" is used to indicate. the difficulties encountered in the overall lifetime of a system. 
This covers a large number of areas, including: 

* Future loading and resource requirements. 

* Crashes and disaster recovery plans. 

* Distributed IMAGE. 

* Compatibility. 

Future loading and resource requirements 

Systems are constantly changing, the usage patterns alter with time and It is widely recognised that one of the 
most difficult management problems Is predicting the Mure. However, using the data obtained from a 
comprehensive accounts system it is possible to extrapolate system usage. This is obviously prone to serious 
errors but is better than nothing! 

Crashes and disaster recovery plans 

A recent survey in the U.K. computer press indicated that less than half of all computer installations had a 
disaster recovery plan. This shows a remarkable lack of foresight and a misplaced trust in computers. The term 
disaster recovery covers a wide range of possible problems, ranging from data-base corruption problems to the 
loss of the entire system due to fire. It is not my intention to cover what should comprise a disaster recovery 
plan but merely to ask the question, " Could your company survive for days or weeks without the system ?". 

Distributed IMAGE 

The question of whether IMAGE is a distributed DBMS, depends on the definition of a distributed DBMS. 
IMAGE programs are capable of accessing data-bases on different nodes but IMAGE is not capable of 
spreading a data-base across nodes. The problems introduced by using distributed IMAGE, even on loosely 
coupled data-bases, should not be underestimated and the design should be very carefully considered with 
respect to actions to be performed when a node goes down. If a very tightly coupled, time dependent system 
is required, design with extreme care and ensure that recovery is possible, even in the event of several nodes 

going down. 

7 Paper 1016 



Compatibility 

Compatibility is another serious worry and should be considered in depth. In particular the rapid expansion in 
the use of micros is posing a serious compatibility problem. The requirement to network the micros crops up 

frequently and with the mix of equipment found in the average company, this can prove to be difficult if not 
impossible. There are numerous other areas where compatibility must be considered but I will leave this problem 
to other speakers at the conference. 

Conclusions 

It would seem possible to manage distributed systems effectively but it is not easy. The key points are control 
and information. Using only HP supplied network management aids the task is difficult but by implementing 
suitable aids, matched to your requirements, the task becomes much easier. However, we are still in the stone 
age and are slowly groping our way forward. If the concept of distributed systems is to expand, it is essential 
that manufacturers standardise and produce more sophisticated management tools. 

Copyright C Controller HMSO, London 1986 

Paper 1016 8 



Distribution of DGDQA systems and major user sites 

•Systems 

0 Terminals 

9 

0 

Paper 1016 



Paper 1016 

DGDQA Network Topology 

• MIS 

S TIS 

@ INSTRUMENTATION 

Fig. 2 

10 

• 

@ DEVELOPMENT 

Q OTHER 



-u 
Ill 
"'C 

~ 
~ 

0 

O'.> 

"Tl 

<fl" 

"' 

lus LU CAP TIM PROG ST PRI 

NODE NUMBER 1 

LU GOOD BAD %ST %LT 
115 1030 1 3 1 
117 703 0 41 27 

AE 32 1 3 MAC32 I 99 
BZ 76 1 14 MAC76 A 99 
FF 91 1 10 MAC91 I 99 
DP 97 63 19 
DP 96 63 35 EDI96 I 51 

NODE NUMBER 2 

us 1 30 68 

NODE NUMBER 3 DOWN 

NODE NUMBER 4 

TR 66 p 62 
MA 59 N 2 SDLTR I 90 
ST 54 N 12 EDIT I 51 
DA 50 N 1 
GO 52 N 81 SK D 99 
MA 61 s 49 GRIOM I 30 
MI 52 N 13 WH I 5 

DISTRIBUTED SYSTEM MONITOR 

lus LU CAP TIM PROG ST PRI lus LU CAP TIM PROG ST PRI 

GE 63 N 2 DEBUG I 50 

NODE NUMBER 5 DOWN 

NODE NUMBER 6 DOWN 

NODE NUMBER 7 DOWN 

NODE NUMBER 8 

us 1 30 68 

NODE NUMBER 9 

TR 71 p 150 
GF 51 N 32 
KL 63 N 69 
CD 50 N 5 PER50 I 99 
zz 62 N 24 PER62 I 99 
AA 52 N 12 PER52 I 99 
DP 97 N 19 
MA 57 N 19 QUIS I 90 

NODE NUMBER 10 

MA 44 63 124 EDI44 I 51 

1: 27 PM WED., 22 JAN., 1986 





ESTABLISHING A SUCCESSFUL HPlOOO CONSULTING PRACTICE 

A. Marvin Mcinnis 
5250 W. 94th Terrace, #114 
Prairie Village, KS 66207 

INTRODUCTION 

Independent consulting can be an attractive alternative to 
more traditional career paths for experienced HPlOOO 
specialists. While many mature HPlOOO users are technically 
qualified to be independent consultants, technical 
competence alone will not assure success. Success in 
professional consulting requires business, marketing, and 
communications skills as well as technical knowledge. And 
just as important, some very talented HPlOOO specialists are 
unlikely ever to be successful in private practice due to 
personality, lifestyle, or other factors. 

This presentation assumes that you are interested in 
establishing yourself as an independent consultant 
specializing in HPlOOO systems. We will examine some of the 
essential elements of building a successful practice, and 
while the major emphasis will be on HPlOOO consulting, the 
general principles will apply to consulting in other 
technical areas as well. 

THE PRACTICE OF CONSULTING 

We have all heard humorous definitions 
my favorite is "anyone who is out 
briefcase." For our purposes, however, 
consultant as a person with specialized 
who provides advice and/or services, 
contract basis. 

of the consultant; 
of work but has a 
we will define a 
skills or knowledge 
for a fee, on a 

Although there are many types of consulting organizations, 
from the job shops to the large professional (accounting, 
engineering, etc.) and consulting firms, we will assume that 
you will be establishing a private consulting practice or 
small consulting firm. These businesses (and they are, 
first of all, businesses) can range in size from a single 
individual to more than twenty consultants, are privately 
owned, and are often entrepreneurial in their orientation. 
Consulting in specialized technical areas is their primary 
business activity, and most clients are small to medium 
sized businesses or government agencies. Projects can last 
from less than one month to more than a year, and the firm 
will typically perform work for several clients each month. 

Establishing a Successful HPlOOO Consulting Practice 

Paper 1017 



ADVANTAGES/DISADVANTAGES OF PRIVATE PRACTICE 

As with many other types of entrepreneurial businesses, 
consulting in private practice offers independence and 
flexibility among its advantages, and there is virtually 
unlimited opportunity for professional growth. There is 
also the POTENTIAL for financial reward significantly 
greater than can be expected as someone else's employee. It 
has been my observation that most entrepreneurs who stick 
with it for more than ten years are far better off than if 
they had remained working for someone else. But first you 
must survive the crucial start-up years! 

Private practice can be a particularly attractive option for 
experienced technical specialists who are, for some reason, 
blocked in their career development. It also can be a good 
choice for women, minorities, or otherwise competent persons 
with limited academic credentials. 

As an independent consultant, your reputation is directly 
related to the perceived quality of the work you perform for 
your clients. No one else will receive the recognition for 
your accomplishments. 

As an added bonus, relatively little start-up capital is 
required to establish a small consulting practice. 

Just like any other entrepreneurial venture, the biggest 
disadvantage of private practice is the risk of failure. 
There is no guarantee of success and the initial risk is 
always high. 

And, as an independent consultant, you must forever give up 
the myth that anyone but you is responsible for your success 
or failure. This attitude is very difficult for some 
persons to adopt, but I believe that that it is essential to 
the long term success of any start-up business. 

Another disadvantage is that you will g~ve up the apparent 
security of regular employment; if you do not work you do 
not eat. However, I feel that this "security" is highly 
overrated since in the past decade even very large companies 
have laid off substantial numbers of professional and 
technical employees. 

In the early years as an independent, your income will 
almost certainly be irregular, and this can be a source of 
considerable stress. Some persons can never adjust. And 
even when your practice has achieved financial stability, 
you will still find it much more difficult to borrow money 
(for any purpose) than when you "had a real job." 

Paper 1017 2 



In private practice, you will accrue some long term 
financial and contractual obligations from which you cannot 
just resign, as you might from a regular job. Working for 
yourself is usually more stressful than working for someone 
else, and the effort necessary to achieve success in your 
work may be highly detrimental to your personal and family 
life. 

Finally, there is always the risk of developing a successful 
practice and then discovering too late that the state of the 
art has passed you by. The risk of dead-ending yourself is 
always there, just as in conventional employment, and the 
results can be just as tragic. Over-specialization will 
substantantially increase this risk, but we will discuss 
that in more detail later. 

WHO SHOULD/SHOULD NOT CONSIDER PRIVATE PRACTICE 

Qualifying yourself is one of the 
to establishing a business. 
lifestyle, past work experience, 
are all important factors in this 
no means complete, the lists 
things I feel are very important 
practice. 

most important steps prior 
Personal preferences, 

and professional abilities 
self evaluation. While by 
below contain some of the 

in considering private 

You may be a good candidate for your own practice if you 
posses most of the following qualifications: 

1) You consider yourself very competent, with at 
least five years of work experience in your 
technical specialty and five years with HPlOOO 
systems. 

2) You are a generalist rather than a specialist. 
You get extra points if your academic training was 
in something other than computer science. 

3) You have an entrepreneurial 
have had since you were a child. 
YOUR idea to open a lemonade 
always help someone else?) 

personality, and 
(Was it usually 
stand or did you 

4) You are self-motivated and well organized, and 
often impatient with your employer's formal 
procedures or with the office bureaucracy. You 
are sometimes told that you try too hard or that 
you care too much about the quality of your work. 

5) Beyond being technically competent, you can 
communicate clearly in standard English, both 

3 Paper 1017 



orally and 
effectively 
communication 
ideas. 

in writing. Remember that listening 
usually is as important to 

as being able to express your own 

6) Persons in your present organization usually 
seek YOU out for assistance with their technical 
problems, rather than-going elsewhere. 

7) You are analytical, holistic, and creative, and 
can be these things all at the same time. 

Conversely, you should consider yourself a poor candidate 
for private practice if you recognize many of the following 
characteristics in your personality: 

1) You are a perfectionist. Perfectionists often 
have great difficulty finishing anything, which is 
seldom what the client wants. 

2) You place a high value on security and 
stability in all aspects of your life, financial 
or otherwise. You do not function well in 
ambiguous situations. 

3) You must depend on a regular income 
your financial obligations. (You will 
have NO net income for the first year to 
months of private practice!) 

to meet 
probably 
eighteen 

4) You place a high value on your marriage and 
family, or on other aspects of your personal life. 
(The available statistics on this subject are 
rather grim.) 

5) You work best doing one task at a time, and 
find it difficult to handle more than two or three 
things at once. 

6) You are basically an introvert and almost 
always do your best work when assigned a task and 
then left undisturbed. 

7) You think that selling is a disreputable 
activity, or at best a waste of valuable time. 
(You will have to develop marketing and sales 
skills to succeed!) 

TEN REASONS WHY NEW BUSINESSES DO NOT SUCCEED 

Before going any further, it is worth. considering why more 

Paper 1017 4 



than four out of five new businesses fail within the first 
two years. Here is a highly abbreviated list of ten major 
reasons for this dismal record: 

1 - Lack of Commitment 

This is a personal matter. If you are going to establish a 
practice, make a commitment! Don't do it half heartedly. I 
recommend that you not start on a part time basis, because 
doing so fosters the attitude that "I'll try it for a few 
months, and I can always find a job if it doesn't work out." 
You must be determined in order to succeed! 

2 - Inadequate Capitalization 

This is clearly a financial problem. Realistically, it will 
probably be eighteen months before your consulting practice 
will generate enough income to pay the business overhead 
expenses, taxes, and a regular salary to you. And even 
then, capital will be required to fund growth. 

3 - Too Few Clients 

This is primarily a marketing problem, but may also reflect 
on management. If you do not develop a large enough, and 
somewhat diversified, clientele you will certainly fail. 

4 - Lack of Technical Competence 

Large companies may occasionally get away with poor 
technical performance, but your practice cannot. Indeed, 
competence is often the primary reason that a client retains 
a small firm, rather than going elsewhere. 

5 - Overspecialization / Underspecialization 

This is both a technical and management problem. Increasing 
specialization decreases the potential number of clients for 
your services, but may also increase your value to those 
remaining clients. Determining the appropriate degree of 
specialization requires both a careful evaluation of your 
capabilities and an understanding of your potential market. 

6 - Lack of Persistence I Inconsistent Goals 

This is clearly a management problem! Very few businesses 
can survive if allowed to wander from project to project 
without any underlying direction. You must decide what you 
are NOT going to do as carefully as what you ARE, and then 
stick with your plan for a reasonable time. 

5 Paper 1017 



7 - Poor Management 

The long term survival of your practice depends on good 
day-to-day management. The firm must have long term goals, 
and some kind of plan for achieving them. Daily decisions 
must then be evaluated against your goals: "Does this 
decision move us in the direction of our long term goals, or 
in some other direction?" 

8 - Overcommitment I Too Many Clients / Projects Too Large 

This is both a financial and a management problem. After 
the critical start-up phase, the most dangerous period for 
any business is when it begins to be successful and is 
experiencing rapid growth! Financial capability and 
management decisions must control the growth of your 
practice, not the other way around. 

9 - Poor Client Relations 

If your clients are not satisfied with your services, for 
whatever reason, they probably will not be back. This is 
ultimately a management problem, even though it may have its 
roots in technical, ethical, interpersonal, or marketing 
areas. 

10 - Stagnation I Lack of Technical Growth 

This is one of the least acknowledged management problems. 
It is often quite difficult to reserve a substantial portion 
of your time for learning, research, and professional 
development. But always remember that you must continually 
be preparing for next years' projects. 

DESIGNING YOUR PRACTICE - DEVELOPING A BUSINESS PLAN 

While it may seem overly basic, before doing anything else 
you will have to decide: 

- what services you will offer 

who the potential clients for your services are 

- what geographic area you will serve 

- how you can reach your potential market 

- how you can do all this profitably 

These basic decisions will become the core of your business 
plan. While I am not an advocate of the formal business 

Paper 1017 6 



plans so favored by MBAs and bankers (who, I suspect, seldom 
read one in its entirety), I do believe in working up a 
comprehensive outline of the new business for one reason: 
the evidence convincingly supports the notion that the 
clearer an image you have of your goals, the more likely you 
are to achieve them! 

Let's examine some of the elements of a business plan in 
more detail. 

THE SERVICES YOU WILL OFFER 

I take it as a given that you are competent and technically 
qualified to be an independent consultant. But never forget 
that the very best work you can do is barely adequate when 
working in private practice. 

For a small business, especially a consulting practice, to 
be successful, you must carefully select a market niche and 
commit your resources to servicing it. You may ultimately 
choose several market niches, but each of them must be 
chosen carefully. There are good business opportunities 
everywhere, and often the most difficult decisions are in 
choosing what you are NOT going to do. 

In defining the scope of the services which you intend to 
offer, you will ultimately have to deal with the twin issues 
of expertise and specialization. Obviously, as an 
established wizard, the HPlOOO will be one of your 
specialties. But will you try to cover the full HPlOOO 
product offering, or will you limit yourself to the 
subsystems with which you have the most experience? Or will 
you specialize in a particular application area? Will you 
limit yourself to HPlOOOs or will you work on other HP 
products? And what about other vendors' systems? 

The advent of the Spectrum-family technical computers offers 
an example of the choices available. I predict that these 
new systems will offer numerous consulting opportunities in 
at least three distinct market niches: 

1) first-time HP technical computer customers 

2) existing HPlOOO customers who are migrating 
their applications to the Spectrum family 

3) existing HPlOOO customers who are stampeding 
off to other vendors rather than migrate 

In defining 
intangibles. 

the services you will offer, don't forget the 
For example, HP has been criticized for the 

7 Paper 1017 



lack of experience of many of their SEs, as well as for the 
unavailability of the more experienced SEs and Specialists; 
indeed, HP often goes to great lengths to isolate the SEs 
and Specialists from their customers. You can compete 
effectively with HP by offering what they do not: both 
expertise and availability. (Note that HP does consider 
itself one of your competitors; this was not always so, I'm 
sad to say.) 

But defining the services you will offer is only the 
beginning - you must also have clients for those services. 

MARKETING YOUR SERVICES 

Defining the services you will offer, identifying potential 
clients, and making them aware of your services are the 
central functions of marketing, which is a business activity 
distinct from sales. Marketing is such a large and 
important topic that it is really beyond the scope of this 
presentation, so we will consider only a few central issues 
most pertinent to private practice. 

The importance of marketing to your success cannot be 
overemphasized; poor marketing is second only to inadequate 
capitalization as a cause of small business failures. This 
can be a particular problem for the independent consultant, 
not only because marketing is probably the most "for~ign" of 
the skills you will have to learn, but also because you have 
nothing to sell other than your own expertise. 

From the beginning, do not deceive yourself by thinking that 
your potential clients will seek you out. This is a mistake 
that too many technical people make; the world just doesn't 
work that way! It is your responsibility to locate your 
potential clients and make them aware of your services. 
This is hard, often discouraging work; you will be doing 
very well if more than five percent (one in twenty!) of the 
prospects you contact ever retain you. 

The first task of marketing is identifying your potential 
clients. Obviously, your market will come from somewhere 
within the body of HPlOOO users, those whose applications 
roughly match the services you are offering. But you will 
need to focus on some smaller number of prospects. 
Additional selection criteria might include: 

- What geographical area will you serve? You will 
probably have to serve more than just your 
community unless you are located in a large 
metropolitan area with many HPlOOO users. 

Paper 1017 8 

I' 



In what industries or application areas 
(manufacturing, laboratory, communications, etc.), 
if any, do you wish to specialize? 

- Should you concentrate on small-to-medium sized 
businesses, large corporations, government 
agencies, or some mix? Your personal background 
may provide you with a particular marketing 
advantage with certain groups. 

You should continue in this way until you have developed the 
selection criteria for your primary market. You may also 
have identified one or more secondary markets as well. 

A companion task is to identify the specific companies which 
satisfy your market criteria. How do you do this? 
Research! That is, research and plain hard work. 

Although HP policy treats customer lists as confidential, 
you can certainly identify some HP users in casual 
conversations with HP employees. Interex and local users 
groups are also a good way of identifying prospects. Local 
newspapers and business journals are sources of information, 
as well as the business directories available at most 
metropolitan public libraries. "Help Wanted" ads are a good 
resource; an advertiser may not have considered consulting 
as an alternative to hiring. 

You should also try to identify at least one contact person 
in each prospect organization. This person should be 
someone who has technical responsibility and the authority 
to retain your services, but any name is better than none. 
If you do not know where else to find out, business 
directories often contain this kind of information, although 
it is often obsolete. 

Identifying your prospects alone does no good at all if you 
cannot reach them and make them aware of your services. 
While the solution in most businesses is "advertising," the 
market for your consulting services is so small that 
traditional advertising approaches are usually 
inappropriate. (COMPUTER CONSULTANT, a trade journal, 
reported that fifty percent of consulting firms responding 
to a survey on business practices had never advertised!) 

Probably the most effective technique for your initial 
contact is a standard brochure mailing to your prospects. 
Your standard brochure should be a simple document which 
introduces your firm and describes the services you offer, 
with emphasis on special areas of expertise. A simple 3 x 9 
inch format (an 8 1/2 x 11 inch sheet, folded twice) is 

9 Paper 1017 



convenient and easy to mail, although you may prefer a 
larger and more elaborate presentation. Regardless of the 
format you select, the brochure must be carefully written 
and must look professional. Since this brochure will make 
the first impression with many of your prospects, it must 
reflect the very best work you can do! If your research has 
yielded the name of an appropriate contact person for a 
prospect, include a short cover letter introducing yourself; 
but form letters are forbidden! 

It is an established principle of advertising that the more 
frequently prospects are exposed to a product name, the more 
likely they are to try it. Using several quality marketing 
techniques at the same time can increase your overall 
marketing effectiveness. Some techniques which have been 
used successfully include: 

conducting seminars 

- writing articles for publication 

- presenting papers at professional conferences 

- public speaking (through speakers bureaus) 

- publishing a newsletter 

- lecturing or teaching courses at local colleges 

In addition to these techniques, by far the most effective 
marketing tool available to you is word-of-mouth referrals 
from your existing clients or from third parties such as HP 
employees. These referrals no only identify the potential 
clients for you, but they also contain an implied 
endorsement. By all means solicit referrals from your 
existing clients and HP, but do not depend on them for your 
success. 

Whatever marketing techniques you choose to employ, remember 
that quality is of paramount importance. You must always be 
a professional, and you must always project the image of 
professionalism that is characteristic of your practice. 

FINANCIAL CONSIDERATIONS 

The final aspect of your business plan is financial: can 
you operate your consulting practice profitably? This is 
the point at which you must supress your desire and 
determination to succeed and evaluate the situation as 
objectively as possible. 

Paper 1017 10 



One of the advantages of consulting as a business venture is 
that relatively little start up capital is required. 
Balanced against that, however, is the fact that you have 
nothing to sell but your own professional skills. At the 
minimum, you will need sufficient initial capital to pay the 
business overhead, your own personal obligations, and taxes 
for at least eighteen months, until your practice becomes 
profitable. 

Before you can determine how much start-up capital your 
practice will require, you must develop the most realistic 
possible estimate of your anticipated income and expenses. 
But always remember that these figures are just that: 
estimates! Your estimates will almost certainly be wrong, 
but you must do the best you can and then adjust them for 
contingencies. 

You should select your business form and accounting method 
at this time, since these will help in identifying the 
dozens of categories of income and expense which you must 
consider. 

As a business form, Sole Proprietorship is certainly the 
easiest and least expensive to establish if you will be the 
sole owner of the company; you can always convert to a 
small business (IRS Subchapter-S) or regular corporation at 
any time in the future. You definitely should discuss this 
decision with a business consultant; this may be your 
attorney and/or your accountant, but remember that they may 
have a conflict of interest since incorporation usually 
means more business for them! 

In selecting an accounting system, I would recommend that 
you use the accrual method rather than the cash method, 
although some sources will disagree. It is my feeling that 
the accrual method, while slightly more complex, is more 
flexible and can give you a more accurate picture of the 
monthly performance of your business. But regardless of the 
method you choose, your accounting system MUST be formally 
set up and faithfully maintained. 

I would also recommend that you plan to do the bookkeeping 
yourself for the first couple of years, with periodic review 
by your accountant. You need to develop an intuitive 
understanding of the accounting transactions in your 
business; it is in your interest to do so, and besides, it 
is your legal responsibility that your books accurately 
reflect the conduct of your business! 

Two fundamental questions at this point are how to charge 
for your services and how to set your rates. At the most 

11 Paper 1017 



basic level, you can bill by units of time (hour, day, 
etc.), a flat fee for a specified job, or on a retainer 
basis. Unless there are special circumstances, I recommend 
that you charge by units of time whenever possible. It took 
me many years (too many!) to figure out that my most 
satisfied clients, and the ones I was most satisfied working 
for, were my hourly clients. But each client is different, 
and you will have to decide for yourself. 

Regardless of how you bill, your charges must ultimately be 
based on some hourly rate for your time. What should your 
hourly rate be? You will have to decide for yourself, but 
here are some things to consider: 

- It is a disservice to yourself and to your 
clients to charge so little that your practice 
cannot be profitable. If it is not, you won't be 
in business very long. 

- It has been my experience that, given 
that the management of your practice will 
a maximum of 60% of your working time 
billable to your clients. Your average 
time will be less. 

the time 
require, 
will be 
billable 

Your business overhead expenses, plus a 
reasonable salary for yourself, will determine the 
break-even point for your practice. The absolute 
need to eventually be profitable will point toward 
the lowest rates you can charge. 

HP charges $825 per 8-hour day for SEs and 
$1,000 per day for Specialists. This probably 
sets the upper limit for the rates an independent 
can charge, regardless of your skills. (We won't 
even consider the "big name" accounting firms 
which are charging $150 per hour or more for 
"consultants" with less than six months 
experience!) 

Your overhead expenses will be somewhat easier to estimate 
than your income, but still I suggest that you develop your 
best estimate and then add 25% for the inevitable 
contingencies. At a minim,um, your overhead estimate should 
include the following categories of expenses: 

- Salaries and employee expense (include yourself) 

Professional services (accounting, legal, etc.) 

Office and facilities (office rent, utilities, 

Paper 1017 12 

1, 



telephone, office supplies, etc.) 

- Marketing 

- Professional development (continuing education, 
professional organizations, reference materials, 
etc.) 

- Business travel and subsistence 

- General overhead (insurance, taxes, interest) 

- Equipment rental and maintenance 

- Depreciation (capital items) 

- Miscellaneous 

Once you have a reasonable estimate of your income and 
overhead expenses, you can determine how much start-up 
capital will be required. This is something that you should 
review carefully with your accountant at this time. 

The start-up capital you need is not usually available from 
conventional financing sources due to the intagible nature 
of consulting services; you will have to locate the sources 
for yourself. But regardless of the source, this capital 
should be in cash or some other form which can readily be 
converted to cash as needed. Some possible sources include: 

- Personal savings 

- Life insurance cash value 

- Stocks and other investments which can easily be 
liquidated 

- Second mortgage or refinancing on your home (You 
must do this while you still have a job, and you 
must not mention that you plan to go into business 
for yourself!) 

Loans and/or 
sources (I DO NOT 
friends!) 

equity investment 
recommend family 

from private 
or personal 

Loans and/or equity investment from potential 
clients 

Note that because your principal asset (your expertise!) is 
intangible, you probably will not be able to borrow money to 

13 Paper 1017 



finance your business. (Your bank won't even want to talk 
to you for the first two years of your practice. And forget 
about buying a home if you don't already own one!) 

If the capital you are able to obtain is inadequate to fund 
your business plan for at least eighteen months, you must go 
back and develop a revised plan. You may have to do this 
several times before you end up with a plan which has a 
reasonable chance of success. 

When all is done to your satisfaction, have your accountants 
review the financial aspects of your plan with you. They 
can give you their advice, but remember that the final 
decisions are YOURS. 

HINTS FOR MANAGING YOUR PRACTICE 

Having gone through the admittedly tedious process of 
developing a business plan, you are much better prepared to 
succeed than 90% of new businesses! Now, in addition to the 
factors we have previously discussed, your success will 
depend on your ability to effectively manage your practice 
on a day to day basis. 

Here are some hints, in no particular order, which may be 
helpful to you: 

Three of the most important persons in the success of your 
practice are your attorney, your accountant, and your 
banker. Choose them as carefully as you would choose a 
lover, and take the time to determine that they are as 
competent in their fields as you are in yours. You will not 
need them often, but mutual confidence and understanding 
will be very important when you do. 

[f you can, find a banker who will establish a credit line 
of $10,000 to $20,000 for your business, borrow against it, 
and put the money into into a CD. You will end up paying 
about 2% to build yourself a credit history this way; it's 
one of the best investments you can make! (Note that even 
if you incorporate, for the first few years your personal 
guarantee will be required on loans to the company. Other 
creditors may require your guarantee as well.) Incidentally, 
NEVER pay a credit-line loan off in full before it matures -
pay it down to $1 instead. This will drive your bank nuts, 
but it will keep your credit line open! 

Maintain a daily awareness of your business' cash position. 
Daily cash management is often crucial when cash is a scarce 
commodity, as it surely will be at times during your first 
year. Make it a policy always to pay your bills on time; 

Paper 1017 14 



your dependability can be a valuable asset when dealing with 
creditors. 

Maintain adequate insurance to cover your obligations, but 
do not over-insure. Note that professional liability 
insurance is virtually unobtainable, even though your 
exposure is very low. Consult with your attorney (BEFORE 
you have a problem, please) if you are concerned about 
professional liability. 

Avoid becoming dependent on a few big clients! Diversify 
both your clientele and, if possible, your clients' 
industries. For example, many consultants working 
exclusively in the petroleum industry are in serious trouble 
right now. 

As a matter of policy, never undertake work without some 
kind of written agreement, especially with new clients. 
This agreement can take the form of a purchase order issued 
by your client, a standard form you provide, a formal 
contract, or a simple letter of agreement. Whatever the 
form, the agreement should include the following: 

a description of the work to be performed, in 
sufficient detail to provide a basis for 
determining your satisfactory performance 

- a statement of the fee you will receive for your 
work and how it will be paid 

a statement establishing that you are an 
independent contractor rather than an employee of 
your client (consult your attorney for standard 
language acceptable both to the IRS and your state 
government) 

a statement of mutual confidentiality with 
respect to trade secrets and business practices 

- if appropriate, a project schedule 

- if the project involves creating new software, a 
clear statement of ownership and license terms 

if appropriate, a statement of how changes or 
additional work beyond the scope of this agreement 
will be handled 

Normally, you can safely perform hourly work for an 
established client without a written agreement. But beware 
of the new client who expects you to work on the basis of an 

15 Paper 1017 



oral agreement and a handshake; there are almost certain to 
be problems. A written agreement provides protection for 
both parties, as well as a clear description of the job to 
be done. 

Always identify a person in the client organization who has 
both the willingness to work with you and the authority (the 
power!) to make things happen. Note that this person may or 
may not be your designated contact with the client, 
particularly if it is a large organization. 

Never accept a contract in which you expect to lose money or 
just break even, especially with the expectation that doing 
so will generate future business. You must be profitable to 
survive, and it is a disservice to your other clients to 
hasten your own demise in this way. By all means, donate 
some of your time to charitable work as a matter of 
professional ethics, but do not confuse charitable work with 
business. 

Have a basic contingency plan for the business, in case 
things go badly. Decide when you will throw in the towel, 
should it ever become necessary. Establish regular check 
points (at least every six months) to re-evaluate the 
progress of the business, make changes, and even modify the 
business plan if necessary. Remember that, when the chips 
are down, doing without is an excellent survival tactic. 

YOUR RELATIONSHIP WITH H-P 

While HP doesn't have a formal consultant program for 
technical computers, as with their commercial systems, they 
still can be a valuable source of leads and referrals. 

As a matter of policy, HP is very conservative about 
referring their customers to consultants. This has always 
been so, but now that the Systems Engineering organization 
is competing for some business formerly referred to third 
parties, they are being even more selective. But HP still 
considers independent consultants to be an important 
resource in support of their sales activities. 

HP sales and support personnel are outstanding in the 
industry, both from a technical and an ethical standpoint, 
and working with referrals from HP does not present any 
problems as long as you both remember that your primary 
responsibility is to the client, and not to each other. 
Though it occasionally causes conflicts with HP, your 
recommendations must remain independent and professional. 
Even when you must disagree with HP, you can offer your 
opinion without being critical of them. 

Paper 1017 16 



Finally, don't expect HP to find work for you. Rather, 
position yourself to be an additional resource HP can call 
on to solve the customer's problems. Calling your local 
sales rep every week to solicit referrals is the surest way 
I can think of to kill the golden goose. 

MAINTAINING GOOD CLIENT RELATIONS 

Maintaining good client relations is essential for your long 
term success. Fortunately, it is not difficult to do, but 
it does take concious effort on your part. The reason that 
you must work at client relations is that it is based on how 
the client perceives your work, which may be different than 
how you perceive it. 

Obviously, doing your best work is a key component of good 
client relations. Correspondence, reports, documentation, 
and programs should always project the best work you can do. 
Documents must LOOK good before the first word is read! A 
corollary to this is: don't let a client see your poor or 
incomplete work. Ever! 

Always strive to project the image of the competent, 
dignified professional that you are. Dress slightly more 
formally than the norm for each client, but always maintain 
a natural look. Less formal dress may connote sloppy work, 
while much more formal attire may project a stuffy or 
superficial image. 

Effective communication is also very important. It is easy 
to make your work mysterious and arcane, but your clients 
will usually be delighted if you take some time to include 
them in what you are doing. I find that I spend a 
considerable amount of my billable time teaching, with the 
goal that the client will become less dependent on me, and 
this has been well received. 

Don't be afraid to tell a client "I don't know the answer to 
your question, but I can find it for you." Some consultants 
strongly disagree with this advice, but I feel that it is 
not your job to know all the answers; rather a major part 
of consulting is knowing where to find the answers, and 
developing solutions where no definitive answers exist. 

Here are several more suggestions for maintaining good 
client relations: 

- As a general rule, I recommend that you do not 
mix personal and professional friendships. 

Maintain absolute client confidentiality, even 

17 Paper 1017 



when it is not required. And even when you have 
your client's approval, be discreet. 

Never speak disparagingly of another client, a 
vendor, or a competitor. 

Establish a standard fee schedule. Avoid 
charging clients different rates for the same kind 
of work. While this may or may not be unethical 
(I feel that it is), it is certainly asking for 
trouble! 

- If you maintain a good professional relationship 
with your clients, collections will probably not 
be a problem. But don't be bashful about making a 
polite inquiry if a payment is late. 

PROFESSIONAL ETHICS 

Contrary to cynical observations by some people, it is 
possible for a business to operate ethically and still be 
competitive and profitable. It is fortunate that ethical 
problems are a fairly infrequent occurrence in consulting, 
since when it comes to maintaining ethical standards you are 
pretty much on your own. 

The ethical problems a consultant does encounter are seldom 
black and white. In fourteen years of consulting, I can 
think of only two cases of blatant ethical conflicts. (One 
involved a client who wanted a highly non-standard 
transaction embedded in an inventory system, and the other 
involved a vendor sales rep - not HP! - who was insistent 
that my firm receive a "commission" on a potential sale.) A 
more common, and much more subtle, area of ethical problems 
is conflict of interest. 

Unfortunately, it is my experience that you cannot look to 
established professional organizations for much in the way 
of ethical guidance. Many of them do publish canons of 
ethics which are worthy of your consideration, but 
enforcement of those standards has been, at best, 
inconsistent and ineffective, and at its worst, petty and 
ridiculous. (One example sticks in my mind. In the fall of 
1983, the National Society of Professional Engineers 
reprimanded an engineering firm for having its name on the 
uniforms of an amateur softball team, having concluded that 
this was unethical conduct. That same month, the entire 
country was was shocked to learn that more than twenty 
Professional Engineers had been indicted for bribery in the 
state of Maryland, along with the Vice President of the 
United States!) 

Paper 1017 18 



My conclusion is that you are going to have to establish 
your own ethical standards, perhaps incorporating some of 
the better ideas from outside sources. Always strive to 
maintain absolute honesty and independence of your opinions, 
and to deserve the confidence of your clients. Some 
specific suggestions are: 

Be constantly alert for potential 
interest. When confidentiality 
discussing the potential conflict with 
is usually the best way to resolve it. 

conflict of 
permits, 

all parties 

Never accept commissions or finders fees from 
vendors. This is risky even if you do so with the 
full knowledge of your client, since it may impair 
your independence. 

As a general rule, do not sell proprietary 
products, or products in which you have a 
financial interest, to your consulting clients. 
It is difficult to remain objective as a 
consultant if you are also trying to sell hardware 
or software to the same client. 

- Always give credit to others for their work 
rather than claiming it as your own. You are just 
as valuable to the client for knowing where to 
find it. 

CONCLUSION 

Like anything in life worth achieving, establishing your own 
consulting practice takes hard work and dedication. Over 
the long run it can be very rewarding, both in financial 
terms and in personal satisfaction. 

I hope that this presentation has provided information you 
will find useful in determining whether or not private 
practice is a career alternative for you. And for those of 
you who choose this road less travelled, I wish you success. 

19 Paper 1017 



I 



Databases in the Scientific and Engineering Community 

Husni Sayed 
IEM, Inc. 

P.O. Box 8915 
Fort Collins, CO 80525 

INTRODUCTION 

A database is, in the broadest of terms, a collection of information, usually related in 
some way. Databases have long been very popular in the business world due to their 
ability to store, manage and process very large amounts of information. Recently, other 
disciplines, including those that are Science and Engineering related, have begun to rea­
lize the potential of databases. As easily as a database manages mailing lists and inven­
tory, it can manage numerical data gathered from a variety of sources. 

Though databases are used in very diverse fields, there are many differences in what a 
business person would need from a data base, and what a Scientist would need. There­
fore, before choosing a database, you must be aware of what is available, and what fea­
tures you need. 

HIERARCHICAL VS. RELATIONAL DATABASES 

Among the ways in which databases can be structured, hierarchical and relational data 
bases are the most common types. These two different ways of structuring a database 
support very different applications. 

A hierarchical database is organized into different "layers" of information, like a tree 
structure. When you are searching for a particular piece of information, the length of 
time it takes to locate that information depends upon where in the hierarchy it exists. 
To access information at the lowest level, you will need to scan through all the higher 
levels first. Also in a hierarchical database, every database is completely separate from 
the others. The separate databases have no way to share information, as only one data 
base at a time can be accessed. This can mean a great deal of redundancy if different 
databases have a lot of information in common. If you want to redefine relationships 
in a hierarchical database, the entire structure of the database must be changed. 

A relational database permits more flexible handling of data, because data items can be 
related in many ways. A relational data base is structured more like a multi-dimensional 
table, where a single piece of information can be identified by many different attributes. 
Data organization in a relational structure can be re-defined without changing the data 
strucutre, rather by simply changing or adding relationships between data. A specific 

Paper 1018 



piece of data is easily accessed, without searching through every piece of information 
that is located physically before it. Also in a relational system, information can be 
shared between different databases, eliminating redundancy. The major drawback to 
a relational system is that it appears to occupy more space than a hierarchical system 
as the relations get more complex and the size of the database gets smaller. In a very 
large database, a relational system may be smaller than a hierarchical system, due to 
the elimination of redundant information. 

MENU DRIVEN VS. LANGUAGE DRIVEN 

Another way to differentiate between databases is to classify them as menu driven, or 
language driven. 

A menu driven data base tends to be very user-friendly, and easy to use. As with any 
menu driven program, a menu driven database guides you through the data base. The 
database modules list your options, and wait for you to select the option you need. While 
menu driven systems are initially very easy to use, more experienced users may find 
that they are too limited in their capabilities. Some menu driven databases offer script 
capabilities, which is their way of allowing the experienced user to automate their data 
base access. Script capabilities allow you to enter sequences of keystrokes to be stored 
on disk, and later retrieved and executed. 

A language driven database, on the other hand, is very flexible, but may initially be 
very difficult to use. Such a system requires that you learn a new language to use the 
database. Rather than having your options displayed on the screen, they are listed in a 
user's manual--and you must program them in to use the database. Especially for those 
who dislike programming, this may be a very negative characteristic. However, langu­
age driven databases may prove to be more flexible than menu driven ones. If a menu 
driven database provides other "language" capabilities, such as a programming interface, 
the menu driven database may be more flexible and efficient than the language driven 
database: especially if the programming interface allows the use of common high-level 
languages, such as FOR TRAN or Pascal. 

DATABASE NEEDS OF SCIENTISTS AND ENGINEERS 

Once you know a little about databases, you need to decide on the characteristics that 
are important to your needs. A few characteristics that are important to every applica­
tion are: 

- Speed 
- Flexibility 
- Ease of use 

Obviously, no one want to sit around waiting for their database to process information. 
Flexibility is important for two reasons: first, you must be sure that the database can 
be structured to fit your data; second, it must be able to manipulate or analyze the data 
in the way that you want. Ease of use is always important, lest you get frustrated with 
the system, and go back to your calculator and pencil. 

The most common ways in which a database can be used by Scientists and Engineers 
can be grouped into 4 main categories: data acquisition, data manipulation, data anal-

Paper 1018 2 



ysis, and data presentation. Data acquisition entails the gathering of information, from 
any source (perhaps an instrument). Databases can be very efficient tools for the data 
acquisition process, as long as the user is able to collect the data programmatically (auto­
matically) rather than manually. Data manipulation entails storing, grouping, and re­
grouping data. This sort of manipulation is done more easily and quickly by a relational 
database than a hierarchical database. Data analysis can be done easily by any database 
that incorporates statistical analysis capabilities, and data presentation can likewise be 
very efficient if the database you are using supports integration of text and data into 
forms and reports. 

ADIMENS AS A SOLUTION 

Features of ADIMENS 

ADIMENS is a successful, time-proven relational database that is currently licensed 
and marketed by Hewlett-Packard in Europe. ADIMENS has many features that make 
it an attractive product for Scientists and Engineers: 

- ADIMENS is a relational database, allowing for greater flexibility, and elimina­
ting repetitive information. 

- With a guaranteed record access time of less than 0.1 seconds for HP Series 200/ 
300 users, ADIMENS is extremely fast. 

- ADIMENS allows for menu driven, script, and programmatic access into database 
files. 

- ADIMENS removes system dependence. Available on a wide variety of HP com­
puters, (HP 110+, 150, 1000, 3000, 9000 and VECTRA), applications can be devel­
oped on a Series 300 under Pascal, then run on a VECTRA under MS/DOS, on a 
Series 300 or 500 under HP-UX, or both. 

- ADIMENS includes a fully integrated package for statistical analysis of data. 

- ADIMENS can be used with other application packages and programs, such as 
MEIO and EGS. It is very suitable for use by OEMs. 

Components of ADIMENS 

The ADIMENS relational database is composed of four segments, or modules: INIT, 
EXEC, TEDI and PROG. 

!NIT is the module that is used to design your database. Based upon the type of data 
that you will be gathering (or have already gathered), you should decide on a layout for 
your database, and how different data items will be related. After these decisions have 
been made, INIT allows you to create files and fields for your database, create screen 
masks for your database (to help you access and/or view your data), set access rights on 
items in the database, and change the storage size for key files and data files. INIT can 
be menu driven or script driven. 

3 Paper 1018 



The EXEC module can be used after the database has already been designed. It allows 
you to enter, change, find, display and remove data. With EXEC you can also select 
data items based on up to 150 different criteria (characteristics), and set up free-form 
spreadsheet calculations, obtain information on the status of the database, or perform 
statistical analysis of a data set. The statistical analysis segment of this module is flexi­
ble enough to allow you to define (and save) your own analytical equations/operations. 
This segment also allows you to select groups of data on which you would like the anal­
ysis performed. EXEC can be menu driven or script driven. 

TEDI provides word processing capabilities that allow you to access, and incorporate, 
information from the database. This can be extremely helpful for generating letters, 
forms and reports that include your data. 

PROG is the module that allows programmatic access into your data base files. PROG 
is a library of pre-defined procedures that can be accessed from FORTRAN, Pascal 
and C programs. This incorporates the flexibility of language-driven databases, without 
making you learn a new programming language. The PROG database interface establish­
es a link between your program and the database. The pre-defined procedures in PROG 
allow you to write application programs that can enter information into the data base 
(perhaps in the form of measurements read from instruments), access and manipu-late 
data already contained in the data base, analyze data, produce graphical output, etc. In 
fact, any function of the database can be accessed programmatically using PROG. 

Most of the uses for databases in the Scientific and Engineering communities are in 4 
areas: data acquisition and management, data manipulation, data analysis, and data pre­
sentation. Now we will see how ADIMENS can help solve those problems most often 
faced in these areas. 

Data Acguisition and Management 

Data acquisition occupies a large percentage of any Scientist or Engineer's time. With 
many database systems, you could spend time acquiring data, and then spend an equal or 
greater amount of time entering the information into the database. This highlights one 
attraction of a database that allows programmatic access into its contents. With such a 
system, you can write a single program that will collect your data, fillQ. enter it directly 
into the database. Of course, before you can enter information into the database, you 
must know how your data is going to be organized. This is done (either directly, or 
programmatically) using INIT. 

Once you have acquired your data, it needs to be maintained, or managed. Data man­
agement involves maintaining necessary relationships between data items, and changing 
or updating the data as necessary. Another outstanding feature of ADIMENS is that it 
allows you to change or add fields to data rec<'fds, without destroying the information 
you have collected. In many systems, you cannot restructure your data without destroy­
ing it. 

Data Manipulation 

Data manipulation is the process of reordering or changing your data to reflect a parti­
cular situation or condition. As mentioned earlier, reorganizing data in a hierarchical 
database can be very time consuming, as each reorganization entails restructuring the 

Paper 1018 4 



database. (Not to be misleading, the restructuring is done by the computer, not by you.) 
And if you want to group together data based upon information contained in more than 
one database, forget it. At least let your spouse know that you won't be home for dinner 

The ADIMENS database makes it very easy to sort your data in different ways. In fact, 
in many instances, it is faster to produce sorted than non-sorted output. This process is 
faster than hierarchical systems, because no restructuring of the database is required: 
all of the necessary relationsips are already defined in the database, they just need to be 
accessed. The ADIMENS database also allows you to select or define groups of related 
data based on up to 150 distinguishing characteristics, with information from more than 
one database used in the selection process. 

Data Analysis 

ADIMENS contains an integrated statistical analysis package for analysing data. Alter­
natively, data can be extracted from the database and analyzed programmatically. 

ADIMENS allows you to analyze your data to suit your needs, by allowing you to de­
fine (and save) your own equations and operations. This is extremely helpful when you 
need to go beyond the normal analytical abilities of most statistical analysis packages. 
These operations that you define can be saved, recalled, and re-used any number of 
times. Remember again that these operations can be used from directly within the data 
base, or programmatically. 

Data Presentation 

After you have collected your data, manipulated it, and analyzed it, it is helpful (and 
often necessary) to present this information in the form of a report, or perhaps graphi­
cally. ADIMENS makes it easy for you to do both. The integrated word processing 
package, TEDI, allows you to access information from the database, and integrate it 
into forms, letters or reports. This not only saves time, but it eliminates the human 
errors that occur when information is manually transported from one source to another. 

If you have a very specialized format for presenting data, a simple application program 
(written in FORTRAN, C or Pascal) can be used to extract the necessary information 
from the database, and present it in the desired manner. And this same application 
program can be used to extract and present data from any ADIMENS database file, on 
any ADIMENS-compatible machine. 

5 Paper 1018 





PC-CAD BY ITSELF IS A GIANT STEP BACKWARD 

Hector Holguin, P.E. 
The Holguin Corporation 

5822 Cromo Drive 
El Paso, Texas 79912 

INTRODUCTION. 

In the real world of CAD, you must develop a plan with a strategic 
focus to achieve your ultimate automation goals. Architects and 
engineers by the thousands are moving to PC products to fulfill their 
CAD automation goals. Unfortunately, valuable time and resources will 
be wasted as they unravel the proper application and direction of their 
new tools. The ever-accelerating pace of technology only magnifies this 
problem. The PC of today does not have the controls or horsepower to 
govern the massive boundaries of design and drafting operations. The 
HP Vectra by itself is a giant step backward because it ignores the 
automation advantage of the more Advanced HP workstations (HP 9000/1000 
series). Major improvements in productivity must be realized to achieve 
true automation; improved drafting quality by itself is not enough. You 
must plan and manage the design and drafting process with the best net­
working combination of HP Vectra and Advanced HP workstations. 

LOST OPPORTUNITIES 

Even the smallest of firms might appear secure in their PC investment, 
but the corresponding confined scope of operations and lost opportuni­
ties will severely limit their positioning for the future. YOUR BEST 
PEOPLE MUST HAVE THE BEST TOOLS TO CHALLENGE THE LEADING EDGE OF CAD 
BENEFITS. 

A NEW GENERATION 

A new generation of master craftsmen must have the proper tools to 
produce the designs of tomorrow. Traditionally, architects and 
engineers demand the highest standards for creative, quality, func­
tional and cost-effective production. In our rapidly changing world, 
we must optimize the skills, experience and creativity of each designer 
and drafter. 

PRIMARY CONSIDERATIONS 

Each typical drawing file, architectural or engineering, demands 
countless computations and large storage requirements with precise 
organization and instant manipulation of each element of data. In even 
the smallest of operations, thousands of elements must be constantly 
massaged (precise mathematical relationships, copies, transfers, 

Paper 1019 



compilations, derivatives, etc.). Each CAD operation will ultimately 
demand instant storage and access to hundreds of drawings and thousands 
of standards (details, symbols, notes, templates, patterns, etc.). 
Typically, within the first two years of operation, the investment in 
the CAD library of standards will exceed the cost of the hardware and 
software. 

LEVELS OF AUTOMATION 

IT IS CRITICAL THAT YOU RECOGNIZE THAT THERE ARE DIFFERENT LEVELS 01'' 

AUTOMATION. And, the HP Vee tra will only serve the first level of 
drafting, design and analysis. The HP Vectra is too limited and too 
costly beyond the introductory level of CAD applications. You must 
analyze the memory and hard disc requirements to produce, store and 
access a typical drawing file. You must observe the interactive 
processing speed and production benchmarks of the Advanced HP work­
stations. You must dissect the operating system and disc management 
tools of these advanced systems. The HP 9000 and HP 1000 series 
support the proper internal controls for sophisticated data manipu­
lation, editing, filing, backups, background plotting, etc. 

A BALANCED NETWORK 

YOUR AUTOMATION STRATEGY MUST INCORPORATE A PROPER BALANCE OF HP VECTRA 
AND ADVANCED HP WORKSTATIONS. You must become acutely aware of the 
severe limitations of a CAD investment that does not have a proper 
balance of HP Vectra and Advanced HP workstations. A balanced invest­
ment will give you the automation advantage in the evolving high-tech 
world of design and drafting. A CAD network can include HP Vectras but 
only with the proper alignment and integration to the more Advanced HP 
workstations. The productivity gain from each HP Vectra plus its 
ability to support a broad range of PC software must contribute to a 
cost-effective network and a dynamic growth path to Advanced HP worksta-­
tions for your.more creative and productive people. 

THE GOVERNING FACTOR 

Once you amortize the cost of a CAD system over a 5 year period, the 
hourly cost of the operator (salary and benef~ts) becomes the governing 
factor. The following simplified example wili highlight the importance 
of moving your best people to a higher level of automation. This 
example is based on a 5-year amortization of the workstation cost; the 
Advanced HP workstation is assumed to outperform the HP Vectra by a 
productivity gain of "2-to-1" (at least 2-to-3 times faster based on 
conservative industry reports. . . . . advanced functions, operations and 
controls multiply the productivity potential). 

Paper 1019 

COST OF WORKSTATION 
$10,000 

30,000 

2 

COST PER HOUR 
$1.00 

3.00 



1. Assume HP Vectra cost to be $20 per hour 
$1 per hour PC cost plus $19 per hour operator cost 
(operator cost includes salary and benefits) 

2. Assume Advanced HP workstation cost to be $22 per hour 
$3 per hour station cost plus $19 per hour operator cost 

3. Assume one-month project using HP Vectra 
Total cost = $20/hour X 173 hours = $3,460 

4. Assume Advanced HP station reduces time to 86.5 hours 
Total cost= $22/hour X 86.5 hours = $1,903 

5. Total savings per workstation per month 
$3,460 - $1,903 = $1,557 

6. Total savings per workstation per year 
$1,557 x 12 = $18,684 

7. Total system savings per year 
Multiply $18,684 by number of expected workstations 

In this example, the difference in cost between an HP Vectra and an 
Advanced HP workstation can be recovered within the first year of 
operation. 

COST-EFFECTIVENESS 

Since all companies are in the business to make a profit, it is impor­
tant to determine the cost-effectiveness of all capital investments. A 
CAD system is a capital investment. Too often companies who purchase 
CAD systems only consider the increase in productivity without carefully 
analyzing the cost-effectiveness of the acquisition. Productivity is 
one factor among many within the scope of evaluating cost-effectiveness. 
Cost-effectiveness parameters provide a more comprehensive evaluation 
process. 

COST-Er'F'ECTIVENESS relates f:OStS of CAD methods to manual methods. 
whereas productivity relates the speed of CAD methods to manual methods. 

COST-EFFECTIVENESS PARAMETERS 

The following parameters affect cost-effectiveness and, therefore, 
should be considered in evaluating various CAD alternatives: 

1. Purchase Price of System 

The total cost of all CAD workstations (software, hardware, train­
ing, maintenance, support, etc.). 

3 Paper 1019 



2. Workstation Cost 

The allocated cost of each workstation is determined by dividing 
the total purchase price of the system by the number of work­
stations. It is important to calculate the single workstation 
cost; the cost-effectiveness analysis must compare CAD methods to 
manual methods for the same unit of output. 

3. Productivity or Productivity Ratio 

Ratio comparing the speed of producing a drawing with a CAD opera­
tion relative to a manual operation. Productivity evaluations must 
consider the following factors: 

a. Management of system 
b. Nature of work 
c. Software characteristics 
d. Hardware characteristics 
e. Training period - The amount of time that it takes to learn the 

CAD operations in order to achieve a productivity level equal 
to or greater than manual methods. With all systems, the user 
will experience a period where manual methods will be faster 
than CAD methods to produce a drawing. Some systems will enable 
the user to achieve a 1-to-l productivity in one week of opera­
tion, whereas others may take six months or more. The training 
period has an important impact on the cost-effectiveness and 
payback period of each CAD system. 

4. Operator Cost 

Operator cost includes salary and benefits (vacation, sick leave, 
insurance, profit sharing, overhead allocation, etc.). 

5. Overhead Cost 

The cost associated with changing any facilities to accommodate a 
CAD system. Some systems require extensive changes, others require 
no changes, and others may even reduce the overhead costs. 

6. Maintenance of System 

The cost of maintaining the hardware and the software. Some 
companies include software updates in their maintenance price; 
therefore, you may not want to view the total maintenance payment 
as an expense for analysis purposes. 

7. Other Factors 

Other items that must be defined for a proper evaluation process: 

Paper 1019 4 



a. Interest cost of money 
b. Period of amortization for capital assets 
c. Present payroll drafting costs, including payroll overhead such 

as medical insurance, pension plan, FICA, etc. 

Using the above factors, the formula derived below will produce the 
following results: 

1. Compare the cost-·effectiveness of any CAD system. 

2. Compare the cost of manual methods to CAD methods and cost-justify 
the benefits of automation. 

COST-EFFECTIVENESS FORMULA 

LET: 

1. CE 
2. ws 
3. MWS 

4. p 

5. MOPC 
6. MOH 

Cost-Effectiveness 
Workstation Cost 
Monthly Workstation 
maintenance, etc. 
Productivity Factor 

Cost, 

Monthly Operator Cost for GAD 
Monthly Overhead Cost for CAD 

which includes interest, 

7. 
8. 

M 
MDC 

Maintenance of System (expressed as percentage of WS) 
Monthly Drafter's Cost (Payroll plus Payroll Overhead) for 
manual methods 

9. AP 
10. I 

Amortization Period for Capital Expenditures 
Interest Rate on Money 

COST-EFFECTIVE FORMULA 

Cost-Effectiveness MDC 
MOPC+MWS+MOH 

p 

This provides a ratio of manual 
drafting cost to CAD cost 

Supporting Formulas: 

1. Monthly Cost of Drafting with CAD 

2. Monthly Cost of Drafting 
Using CAD for same output as 

3. 

4. 

Manual Methods = MOPC+MWS+MOH 
p 

MWS 

MOH 

WS[l+(I*AP)] + WS(M*AP) 
AP AP 

OH[l+(I*AP)] 
AP 

5 

MOPC + MWS + MOH 

Paper 1019 



COST-EFFECTIVENESS EXAMPLE 

Question: What are the savings of producing a drawing with CAD 
methods over manual methods? 

Assunwtions: Evaluate the following two CAD workstations: 

WSl HP Vectra 
WS2 HP 9000 Model 320 

The purchase price of the first workstation, WSl 
$10, 000; the purchase price of the second workstation, 
WS2 $30,000. 

Workstation Cost WSl $10,000 WS2 $30,000 

Monthly Drafter Cost MDC $2,600 

Productivity Pl = 1.5-to-l; P2 = 3-to-l 

Based on Industry benchmarks, the productivity rating for HP Vectra 
is set at 1.5-to-1 and the HP 9000 Model 320 is set at 3-to-1. 

Monthly Operator Cost MOPC $2,600 (same as MDC) 

Overhead OH = 0 

Maintenance M 103 of WS per year (.8333 per month) 

Interest I 133 per year (1.0833 per month) 

Amortization Period AP = 60 months 

First compute MWS (Monthly Workstation Cost) as follows: 

MWS WS[l+(I*AP)] 

MWSl 

MWS2 

Paper 1019 

AP 

10,000[l+(.01083*60)] 
60 

275 

30,000[l+(.01083*60)] 
60 

825 

+ 

+ 

+ 

+ 

+ 

6 

WS(M*AP) 
AP 

10,000(.00833*60) 
60 

83 

30,000(.00833*60) 
60 

250 



Cost-effectiveness is computed as follows: 

CE 

CEl 

MCD 
MOPC+MWS+MOH 

p 

2600 
2600+385+0 

2 

2600 
1972 

1.32 

FIRST WORKSTATION (HP VECTRA) 

CE2 2600 
2600+1075+0 

2 

2600 
1225 

2.12 

For the same unit of output, it will cost you 1.32 times more with 
manual methods. Another way to interpret these results is to invert 
the cost-effective ratio from 2600/1972 to 1972/2600 which yields 76%. 
Thereby, the HP Vectra provides a 24% savings over a manual operation. 

SECOND WORKSTATION (HP 9000 MODEL 320) 

The HP 9000 Model 320 yields 47% (1225/2600) and a 53% savings over a 
manual operation. 

COST-EFFECTIVENESS COMPARISONS WITH LEADING CAD SYSTEMS 

This study will assume a balanced network of four HP workstations ( 2 
Model 320 and 2 HP Vectra). These four workstations are sharing all 
peripherals and the prorated cost for each workstation is $25,000. 

Based on the typical cost and performance benchmarks of the leading GAD 
systems, the tables in this section will evaluate the cost-effectiveness 
of the corresponding range of CAD workstations. These benchmarks are 
compared to the time and cost of producing the same drawing on a 
DRAFTING :J'ABLE. 

7 Paper 1019 



IS THE DRAFTING TABLE OBSOLETE? 

Purchase Monthly Monthly Total Equivalent Equivalent 
Cost Per Cost Per Cost of Monthly Monthly Cost Monthly Costj 

Workstation Workstation Operator Cost *2 to 1 *3 to 1 
ws MWS MOPC D E F 

$ 25,000(HP) $ 896 $2,600 $3,496 $1, 7 48 $1,165 
50,000 1,792 3,120 4,912 2,456 1,637 
75,000 2,687 3,120 5,807 2,904 1,936 

100,000 3,583 3,120 6,703 3,352 2,234 
150,000 5,375 3,120 8,495 4,248 2,832 

*2-to-1: One person on CAD workstation produces work of two persons on 
drafting tables. 

*3-to-1: One person on CAD workstation produces work of three persons 
on drafting tables. 

WS: The first column above, "WS", is the total cost of a typical 
four workstation CAD system divided by 4 to establish the 
purchase cost distribution ~ typical workstation. Each 
system must be totally operational. ..... disc storage, tape 
archiving, plotter, digitizer, software, etc. 

MWS: The second column above, "MWS", is the monthly cost per 
workstation based on 5 year amortization, 13% annual 
interest, 10% annual maintenance and software support. 

MOPC: 

Paper 1019 

MWS = WS[l+(.01083x60)] 
60 

0275WS+.00833WS 
.03583WS 

+ WS(.00833x60) 
60 

The third column above, "MOPC", is the monthly cost of 
operator for each workstation. Assume that the $25, 000 HP 
workstation uses existing staff without requiring specialist 
training; thereby, the identical cost of a person on a 
drafting table is assigned to this workstation. 

Assume $15 per hour (includes salary, benefits, overhead) 

MOPC = 15 x 2080 = $2,600 per month 
12 

8 



D: 

E: 

F: 

Most systems require specialist training and generally 
provide increased salary and benefits. Assume $18 per hour 
(includes salary, benefits, overhead) 

MOPC = 18 x 2080 = $3,120 per month. 
12 

Column "D" above is the total monthly cost of workstation 
plus operator. 

D = MWS + MOPC 

Column "E" above is the equivalent monthly cost of producing 
the same drawing on a CAD workstation based on a production 
multiplier of 2-to-l. One person on CAD workstation produces 
equivalent work of two persons on drafting tables. 

E = D/2 

Column "1''" above is identical to E, but based on production 
multiplier of 3-to-l. One person on CAD workstation produces 
equivalent work of three persons on drafting tables. 

F = D/3 

IMPOR'l'ANT: THE TYPICAL PRODUCTIVITY GAIN BEING REPORTED BY MOST 1''IRMS/ 
AGENCIES IS IN THE RANGE OF 2-TO-l TO }-T0-1. Thereby, this study will 
not exceed this range to establish the cost-effective benefits of each 
workstation. 

COST-EFFECTIVE RATING 

Purchase Cost 
per Workstation 2-to-l 3-to-l 

ws G H 

$ 25,000 -33% Savings -55% Savings 
50,000 - 6% Savings -·37% Savings 
75,000 +12% Extra Cost -26% Savings 

100,000 +29% Extra Cost -14% Savings 
150,000 +63% Extra Cost + 9% Extra Cost 

**NOTE: This table does not include training costs. 

9 Paper 1019 



G: 

H: 

I: 

Column "G" above compares the cost of producing the same 
drawing on a CAD workstation and a drafting table, based on 
production multiplier of 2-to-1. 

G = (E--2600)100 
2600 

G .Ji -100 
26 

Column "H" above is identical to "G", but based on 3-to-l 
production multiplier. 

H = _f -100 
26 

NOTE: For both "G" and "H". 

Negative (-)% = Cost to produce drawing on CAD workstation is 
less than cost to produce said drawing on 
drafting table ..... SAVINGS. 

Positive (+)% Cost to produce drawing on CAD workstation is 
more than cost to produce said drawing on 
drafting table ..... EXTRA COST. 

Purchase Training Yearly $ Yearly $ 
Cost Per Cost Per Savings or Savings or 

Workstation Workstation Increase Increase 

$ 

2-to-1 3-to-1 
ws I J K 

25,000 $ 1, 750 -$40' 896 -$68,880 
50,000 29,472 - 6,912 - 46,224 
75,000 34,842 + 14,592 - 31,872 

100,000 40,218 + 36 ,096 - 17,568 
150,000 50,970 + 79,104 + 11,136 

Column "I" above is the total training cost per workstation. 

Assume that the $25, 000 HP workstation requires a maximum 
learning cycle of one week. Each operator is fully trained 
within 5 days with increased productivity and profitability 
in the second week of operations. 

Paper 1019 10 



Assume 1/2 month of training: 

Il = MWS+MOPC = 896 + 2600 = $1,748 
2 2 

use $1,750 

Most systems require months of extensive specialist training. 
Increased productivity of 2-to-l does not typically occur 
until the second year of operations. 

Assume 6 months of training: 

I2 6 (MWS+MOPC) 
6 MWS+(6x$3,120) 
6 MWS+$18,720 

CAUTION: Six months may be too low. Based on today's CAD installa­
tions, many firms are experiencing training costs up to 50% 
of the initial system costs. The training costs above do not 
include the supervisory (management) time required in the 
training process. 

J: Column "J" above is the yearly savings or increase in produc­
tion costs by each CAD system (all 4-workstation). Based on 
2-to-l production multiplier. 

K: 

NOTE: 

J = (12 x E x 4) - ($31,200 x 4) 
4 workstations Annual cost of drafting table 

J = 48E - $124,800 

Negative (-) $ value represents SAVINGS 
Positive (+) $ value represents INCREASED COSTS 

Column "K" above is identical to "J", but based on 3-to-l 
production multiplier 

K = 48F - $124,800 

"J" and "K" values do not account for the training costs; 
these costs will be deducted below. 

11 Paper 1019 



L: 

M: 

N: 

ACCUMULATED SAVINGS 

Total System 
Cost Year 1 Yeat' 2 Year 3 Yeat' 4 Year 5 

L M N p Q R 

$100,000 -39,146 -108,026 -176,906 -245,786 -314,666 
200,000 +29,472 + 22,560 - 23,664 - 69,888 -116'112 
300,000 +34,842 + 49,434 + 17,562 - 14,310 - 46,182 
400,000 +40,218 + 76,314 + 58' 746 + 41,178 + 23,610 
600,000 +50,970 +130,074 +141,210 +152,346 +163,482 

Column "L" above is the total cost of each 4-woI"kstation 
system. 

L = 4xWS 

Column "M" above is the SAVINGS or EXTRA COSTS incurred in 
the first year of CAD operations. 

Assume the $25, 000 HP workstation achieves 2-to-1 pt'oduction 
multiplier within a few weeks. 

Ml J + I 
Ml -$40,896 + $1,750 
Ml -$39,146 SAVINGS 

Other systems do not achieve 2-to-l production multiplier 
until second year. Even though other costs at"e incurred, 
this column will only be assigned the tt"aining costs of 
column I. 

M2 = I 

Column "N" above is the ACCUMULATED SAVINGS or EXTRA COSTS 
incurt"ed in the first two years of CAD operations. 

Assume the $25, 000 HP woI"kstation achieves 3-to-1 production 
multiplier in second year. 

Nl 
Nl 

M + K 
-39,146-68,880 
-$108,026 SAVINGS 

Paper 1019 12 



P: 

Q: 

R: 

Assume other systems achieve 2-to-1 production multiplier in 
second year. 

N2 = M + J 

Column "P" above is the ACCUMULATED SAVINGS or EXTRA COSTS 
incurred in the first three years of CAD operations. 

Assume all systems at 3-to-1 production multiplier by third 
year. 

P = N + K 

Column "Q" above is identical to "P", but based on accumu­
lating first four years of CAD operations. 

Q = p + K 

Column "R" above is identical to "P", but based on accumu­
lating first five years of CAD operations. 

R = Q + K 

CONCLUSIONS 

1. The $25, 000 HP workstation has a complete cash payback within the 
first two years of operation. 

2. Based on accumulated savings over a drafting table, none of the 
other systems produce a cash payback within the first five years of 
operations. The closest competitive 4-workstation system ($200,000) 
has only accumulated savings of $116,112. 

3. WHAT PERCENTAGE OF THE TOTAL DESIGN AND DRAFTING WORK is the tedious 
placement of lines on paper, standard details, patterns, symbols, 
notes, title blocks, repetitive elements, derivatives of standards, 
mathematical models, etc.? The replacement of the DRAFTING TABLE 
is where the maximum benefits of CAD can be established. 

4. COST-EFF'ECTIVE WORKSTATIONS will force the leading CAD vendors to 
reevaluate their expensive workstations for drafting applications, 
especially if the cost-effective workstations can support I.G.E.S. 
and its electronic transfer of drawing files to other CAD systems 
for specialized design functions. 

RECOMMENDATIONS 

Expensive workstations must be eliminated from the drafting functions. 
The cost of these systems can be dramatically reduced by tailoring the 

13 Paper 1019 



expensive workstations to specialized design and analysis applications 
that can justify these expenditures. Each CAD operation must create a 
NETWORK that can properly support (by cost and performance) their 
future needs. Clusters of cost-effective workstations can readily feed 
production drawing files and mathematical models to specialized design 
workstations. A COST-EF'FECTIVE NETWORK must govern each CAD decision. 

THE LEADING EDGE 

Each design and drafting operation must keep pace with the latest tech-
nology. Each time that they are ready to expand their CAD operations, i 
they simply move their more productive people to the latest and most 
Advanced HP workstations available and network this capability to their 
current operation. The power and dynamic opportunities that they will 
gain by moving through the total world of CAD is true design automation. 
They must plan and manage the automation process. They must not just 
throw hardware and software at the problem or they will tend to mecha-
nize and not automate. The only alternative is to reach for the leading 
edge of CAD technology and benefits. 

Paper 1019 14 



The Design of a Graphical Database for the 

DRAWIT Drawing System 

OVERVIEW 

Marc Katz 
Graphicus 

160 Saratoga Ave #32 
Santa Clara, CA 95051 

The Drawit database is a graphics database capable of storing graphics data and 
accessing it for display, picking, archival and for user manipulation. The database 
was designed for the Drawit drawing system, which is an interactive drawing 
system targeted for scientific, engineering and general drawing applications. 

The Drawit product is composed of three parts: the user interface, the database 
and the device interface. The user interface interacts with the user through 
pop-up menus and text forms to determine what graphical primitives need to be 
created and manipulated. The user interface controls the database to manipulate, 
create and display graphical primitives. 

The device interface is used to display graphics in a device independent manner. 
Text generation, blanking and clipping are handled at the device interface level. 
The device interface uses a graphics subsystem like CORE or GKS (DGL is used 
on the HP1000) to interface to devices. 

GOALS 

The database project had several, often conflicting goals. Minimizing code space 
was a major consideration because the Drawit product must run on E and F series 
computers, which are very space limited. Minimizing data storage space and access 
time were often in conflict. Also the code had to be portable since this product 
will eventually run on several different machines. The database is written in 
Pascal, using as few system dependencies as possible. 

STRUCTURE 

Extents 

One of the most important design elements of the database is the use of extents. 
The extent of a primitive is the maximum area it covers at its North, South, East 
and West edges. Extents are used to optimize operations such as clipping and 
picking. Extents are maintained for text and line primitives and for groups. The 
extent of a group includes the extent of every item included in the group. 

Paper 1020 



Lines 

Line primitives are connected line sequences known in the graphics world as 
polylines. They may be quite large (hundreds of line segments) or small (two 
points for a straight line). Each line has an associated set of attributes, including 
color, linewidth and linestyle for its edge and fill lines, fill angle, density, 
hatching and a spline attribute. 

Lines are stored as a sequence of points connected by pointers. Five words of 
storage space is required per x,y,opcode triplet. In addition, a two-word pointer is 
used to link them together. While it would have been more efficient to store lines 
in one contiguous area (thus avoiding those two-word pointers) it would have 
created other difficulties. Pascal does not support the ability to dynamically 
allocate arrays of variable size. Also, because we support the ability to insert and 
delete points the linked list structure is very convenient. 

Line primitive structure 

Une 
Primitive 

Extent (size) 

view 
number 
attribute 
record 

A line has a list of points in a singly linked list structure. 
The point record contains an x,y pair and a type Indicating a 
move or draw. 

There are only two primitives in the Drawit system: lines and text. This is 
different from many graphics systems that also store arcs, circles, ellipses and 

Paper 1020 2 



others. While arcs and circles can be created, they are stored as connected line 
sequences like any other line. The advantage is that they may be scaled and 
rotated, displayed, retrieved, edited and archived like any other line. This saves 
code space and complexity. 

We were able to optimize our treatment of lines because we had only two kinds of 
primitives to worry about. In this environment, data space is more available 
(through the virtual memory area) than code space. This is very similar to the 
tradeoffs inherent in a RISC architecture where a small number of optimized 
instructions are used. 

One disadvantage of this scheme is that storage of circles and arcs uses more data 
space than it would if only the center and radius were stored. This disadvantage 
is partially alleviated by using the spline attribute with circles and arcs. Circles 
and arcs are generated with only enough points to make them reasonably smooth, 
thus minimizing the space used. The spline attribute can be used to make these 
primitives smoother. 

Text 

Text has 17 attributes affecting its appearance, including height, aspect ratio, gap, 
line spacing, font, slant and rotation. These attributes affect the size and position 
of the text. Text primitives may have a large number of strings that are displayed 
as a block of text. 

When text is scaled or rotated, the attributes must change in response. Height, 
rotation, aspect ratio and text location may be affected by transformations. The 
database gets information about text transformations by interacting with the 
device interface. 

Groups 

Groups allow several primitives to be treated together for purposes such as 
copying, transforming, etc. Actually, groups can be viewed as a third type of 
primitive item because in all operations, the group must be acted upon and its 
extent updated. The database has only one level of grouping (a group cannot 
contain other groups). 

3 Paper 1020 



Structure of a Drawit group 

Primitive t------i~ Group 1----Primitive 

Primitive Primitive 

This figure shows a group containing three f rimitives. Note that 
pointers are maintained to the first and las primitive in the group 
so the group can be traversed both forwards and backwards. 

Drawit database structure 

Strings 
or 
Points 

A list of objects may be defined for each viewing window. 
This list is traversed to redraw the window or to select an object. 

Paper 1020 4 



Viewing 

The database is a multi-window oriented system. While there is only one drawing 
area in Drawit, there are two figure menu areas that contain figures which can be 
placed onto the drawing and a prompt line. Also, the viewing system is used for 
the pop-up menu areas to allow the selection of menu items with the graphics 
cursor. The following figure shows a Dra wit screen that shows five windows. 

l.eian•• _l.llJ_a, •t _a_ DRAll!l_L c"""""iui: 

~ 0 © C) © 0 0 / I I 
L Linea 

-- B Boxes 
C Circle• 

\ "' ~ // 11 ~ ~ 0 R Arca 
,?:::::f -- -- T Text 

A Attribute• 
E Ed It Fl_g_a 

">::=:! X Xform Fl_g_a Iv 0 K Kopy Figs 
P Purge Fig• 
G Group Fig• 
V Viewing 

ii--:::=- M Moda .. tGrld• -- F Figure• -:: D Drawing• 

~ 
~ I Environment 

NH 
0 Output Plot 
S Syatem 

0 I 
~ 

Nko 
1 Move 
2 Scala Box 

t--- 3 Stretch Boxj 

C> 4 Flip<> 
5 Fl Ip Av 

t--- 6 Rotation 

0 7 Rotate 90 
8 Re-Start 

t--=- H 9 Draw Fig 

() • ..l2.lln.L 

Each window has a viewing transformation associated with it and additional 
information about clipping and coloring. A window may also have an object list 
associated with it that stores primitives and groups to be displayed in that window. 
Zoom and Pan operations are performed by changing the viewing transformation. 
Changes in the location of the drawing or figure menu areas are also done that 
way. 

By setting up a flexible windowing system, we made it possible to implement the 
basic drawing features, menu picking and the figure menu feature. We can also 
use this to add additional capabilities like layers, zoom windows, etc. 

5 Paper 1020 



ALGORITHMS 

Picking 

Picking is the selection of a primitive or group with the graphics cursor. When the 
user inputs a point, a search is made to find a primitive which is close to the 
cursor (this region is called the pick aperture). What if several primitives are close 
to the cursor? 

A common solution is to search the whole database, returning the primitive that is 
closest to the cursor. A great disadvantage of this scheme is that the entire i, 
database is always searched. Also, complexities arise when defining the meaning 
of "closest." Filled regions can be picked anywhere inside their boundary. If the 
cursor is placed near a line lying on a filled region, which is closest? Many pick 
algorithms have to make special rules for filled areas which give favor to lines 
intersecting them. If two primitives lie on top of each other, which is closer? 

A better picking algorithm takes into account the true behavior of users. Users 
usually pick objects in a place where there is no confusion; therefore in the vast 
majority of cases, the first object in the pick aperture is the object desired. When 
picking in a dense area, it is not likely that the user would be able to determine 
closeness and use it to pick the correct object. In this case, the user must be 
allowed to cycle through possible selections until the correct one is obtained. 

Our algorithm returns the first primitive within the pick aperture. In most cases 
this produces the correct selection because most users try to pick in an uncluttered 
area. We also provide a "next pick" function that allows another pick in the same 
location to result in the continuance of the search. This solution surmounts all 
complications in picking by giving the user control. 

Clipping 

Clipping causes primitives that are not totally visible to be "clipped" at the 
drawing area boundary. Primitives that are partially on the display need to be 
intersected with the edge of display area so only visible sections are drawn. 
Although clipping is performed in the device interface level, checking is done in 
the database using extents to prevent unnecessary processing. 

When clipping a primitive, if the primitive is completely outside the window it 
need not be clipped or drawn at all; if it is completely inside the window, it must 
be drawn but does not need to be clipped at all. Only if the extent is partially 
inside the window does clipping need to be performed. Similarly for picking, only 
objects whose extent includes the pick aperture need to be processed further. The 
expense of storing and maintaining the extent is amply paid back by increased 
drawing speed and picking response. These efficiencies are especially great when 
zoomed in since then many of the objects are not displayed and should not be 
considered at all in the clipping or picking algorithms. 

Paper 1020 6 



B-spline smoothing 

With traditional pen and paper drawing, curves can be drawn fluidly and easily. 
Many computer drawing systems are very limited in curve drawing, allowing arcs, 
circles and other simple curves only. Complex curves can be generated by piecing 
together simpler curves. This is not natural or easy. 

Splines offer a good way to draw curves with a computer drawing system. A 
sequence of guiding control points are defined; a B-spline smoothing algorithm is 
used to draw a smooth curve controlled by those points. Spline is an attribute of 
lines; therefore any line may be smoothed by enabling the spline attribute. 

0 

circles represent the control points 

Splines are not kept in the database because several different situations could alter 
the spline, requiring it to be regenerated. While the curve is being defined, it is 
very common to move or add control points to change the shape of the curve. 

The resolution of the spline attribute is controllable for each device. On plotters, a 
high resolution spline is the default. Lower resolution is the default on terminals 
because less detail is needed. Fewer spline points may be mandated for filled 
regions since there is a limit on the number of points in a filled line. The spline 

7 Paper 1020 



function will lower the resolution for lines that have too many points to be filled 
to make filling possible. 

Splines must be picked also. Since they are not actually stored in the database but 
are generated for display, they must be generated for picking. To decrease the 
computational load, they are generated at very low resolution for picking. Also, 
they are not computed at all unless the pick aperture is within the extent of the 
line. 

Blanking 

Groups and text have a blanking attribute that allows them to be shielded from 
obstruction by lines. A common use would be placing a legend on a graph or 
placing text on top of a filled region. The following illustration shows some uses 
for blanking. Blanking is more commonly useful than we thought originally. It is 
very useful in complicated drawings and for special filling effects. Extents help 
decrease computation load here, too. The blanking algorithm need only consider 
objects with extents intersecting the blanked areas. 

!!I'll/ BLANKING 

Paper 1020 8 

I 

I 



Transformations 

Transformations are two-dimensional manipulations that can be applied to 
primitives or groups. The transformations we support are translation (move), 
scale, rotate and mirroring. Transformations can be implemented with a 3x2 
matrix multiplication. This is not very efficient because the most common 
transformation is translation, which can be implemented by addition alone. Scale 
is the next most common and it requires an addition and a multiply. Only a 
complex transformation involving rotation plus scale or translation requires the 
whole 3x2 matrix multiply. By optimizing for translation and scale, these 
operations will use dramatically less CPU time. 

CONCLUSION 

The HPIOOO computer environment is a demanding environment for large program 
development. It demands solutions that make the best tradeoffs between resource 
use and function. We have tried to show how computation could be minimized by 
optimizing for the most common cases and how the tradeoffs between memory use 
and performance were reconciled for what we hope is the best overall solution. 

9 Paper 1020 



Paper 1021 

A General Purpose Process 
Graphics System 

by: Walden, Phil 

We regret that this paper 
was not received for 

inclusion in these proceedings. 



'Ihe Design of GEDIT - A General Purpose Graphics Editor 
Kurt Van Ness 
Flexware Inc. 

533 East "F" Street 
Ontario, California 91764 

1.0 Introduction 

GEDIT is an interactive program used to create and modify 
drawing files, much like EDIT/1000 is used to create and 
modify text files. The basic input device is a block mode 
graphics terminal. Output devices range from plotters to 
dot matrix printers, laser printers, and film plotters. 

2.0 Design Philosophy 

The goal in designing GEDIT was to create a program with 
powerful functions that was also easy to learn and use. 
Functionality and ease of use are usually at odds with each 
other: simple programs, functions, commands are generally 
easier to use than their more complex counterparts. 

To simplify the user interface, menus and forms are used. 
Because of all the functions GEDIT offers, there are a lot 
of menus and forms. The challenge comes in describing how 
all the menus and forms are used. 

2.1 Demonstration and Online Help Capability 

Initially, a reference manual was written with the purpose 
of describing each menu and function, and illustrating their 
use with examples. The problem with manuals is that users 
don't like reading them. In practice, few users ever ac­
tually read the GEDIT reference manual - the typical novice 
user learned by example from a more experienced user. The 
solution was to design an automated experienced user that 
teaches by example and can explain each operation as it is 
performed. The result was the development of a demonstra­
tion capability that allows tutorials and demos to be 
generated by experienced users and played back by novice 
users. In addition, an online help capability was developed 
which allows users to ask for help at any time. 

3.0 Design Implementation 

As with any graphics editor, GEDIT defines a set of objects 
and a set of operations that manipulate the objects. The 
objects, referred hereafter as entities, consist of: lines, 
arcs/circles, text, polygons, polygon fills, figures, and 
flowchart entities. 

Paper 1022 



3.1 Entities 

Each entity consists of properties, geometric or otherwise. 
Examples of non-geometric properties are layer and pen 
number. Because of limited space in this paper, only the 
more interesting properties will be described in any detail. 

3.1.1 Lines and Arcs 

Geometrically, lines are defined by their end points, and 
arcs by their origin, radius, start and stop angles. Lines 
may be drawn by successively digitizing their end points. 
Digitizing is the process of positioning the graphics cursor 
and pressing a menu key, mouse button or tablet stylus. 
Lines may also be drawn by specifying one end point, an 
angle, and a length. Arcs may be specified as origin and 
radius with start and stop angles or three circumference 
points. Circles may be specified as~ origin and radius, two 
circumference points, or origin and one circumference point. 

3.1.1.1 Properties of Lines and Arcs 

Some interesting properties of lines and arcs are width, 
justification, and end point profile. The width allows 
lines thicker than a pen to be drawn by making multiple pen 
strokes. The justification specifies how thick lines are 
justified relative to a "zero" width line. Justification 
may be to the right, centered or to the left. The end point 
profile is how the end points of thick lines are drawn. The 
profile may be edge, square, or rounded. The round profile 
is particularly useful when contiguous thick lines at odd 
angles are drawn since the gaps and voids at end points are 
eliminated. 

Paper 1022 2 



....... 
.. . . 

: e.•••• :e 

e ---•:r 

·······~·················· . . . . . . . . . . . . .. . . . . . .. . . . . .... 

. : :s ~ ... : : : : : ~ ~ ~ ~ : : : : : : : ... ; :~. 

Line and Arc End Point Profiles. 

OD c 
OCJ a 

Cl 
le.ft . center right. 

.edge. 

square 

round 

Results of Justification with Different Profiles on Lines. 

3 Paper 1022 



3.1. 2 Text 

Text is inserted as blocks. A block consists of l or 
several lines of text. Text has a rich set of attributes.\ 
Common attributes are height, angle, justification, font, 
and pen. The font and pen may be specified on a character 
by character basis. Other attributes are; layer, aspect 
ratio, slant angle, proportional/nonproportional spacing, 
character spacing, and line spacing. 

Text parameter examples. 

3 .1. 3 Polygons 

Polygons enclose an area. Polygons are composed of linear 
or circular edges (segments and arcs). Polygons may be con­
structed from existing lines and arcs or by digitizing ver­
tex points. An automatic selection algorithm allows an en­
tire polygon to be constructed by selecting a single edge. 

Paper 1022 4 



3.1.4 Polygon Area Filling 

Polygon filling is accomplished by selecting one or more 
polygons and specifying a fill pattern. Area attributes are 
layer, pen, angle, pattern on length, pattern off length, 
skew angle, and origin. 

Basic polygon fill pattern. 

More 
Coniinue 

Particularly unique attributes of GEDIT's fill pattern are 
the pattern origin, x and y, and the skew angle. The "on" 
portion of the fill pattern begins at the origin. The skew 
angle defines the alignment of the "on" portions of adjacent 
fill lines. Taking advantage of these attributes allows a 
large variety of interesting fill patterns to be generated 
by simply combining different combinations of the basic fill 
pattern. 

5 Paper 1022 



l-!ic:e Dele-te Window opera"tion More 
di1'/Move Edi-t/r::opy on'tinue 

- - - - l1l1l1l1l, - - - - ++++++++ 
- - - - 11l1l1l1l1 - - - - ++++++++ 
- - - - 11l1l1l1l1 - - - - ++++++++ 
- - - - 11l1l1l1l1 - - - - ++++++++ 
·- - - - 1-1-1-1-1 - - - - ++++ +__:_ 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I 

As shown just above, a horizontally oriented, filled rec­
tangle is combined with 3 vertically oriented, filled rec­
tangles. The only difference between the 3 vertical filled 
rectangles is the location of the pattern origin - yet 3 en­
tirely different fill patterns are generated in the over­
lapped areas. 

Paper 1022 6 



I I- - - - =~DODD I I II I I I I I I- - - -
1-- - - - = DODD I I II I I I II I- - - -
1-- - -- - =00000 II II I l l I I 1-- - - -
I- -- - - - bDDDCJ II I I I I I I I I 
1-- - - - -
1-- - - - - tLOillJ. n 11 l_LJ_Ll11 
1-- b 

---- - - - D D 0 D I I I I I I I I I I- - - -- -
1-- -- - - - b D D D D I I I I I I I II I- - - - -
1-- - - - - p 0 D D D I I I I I II I I I- - - ·- -
1-- - - - - p 0 D D 0 111111111 1-- - - - --
1-- - - - - h n _o In in 11 lJ JI I I I 

As shown above, four different polygon fills are overlapped. 
Each polygon is a square 2 units on a side. The unit square 
in the middle is overlapped by all four polygon fills. 

3.1. 5 Figures 

Figures are composed of lines, arcs, text, polygons, polygon 
fills, and other figures. They are analogous to a 
subroutine with respect to a program. 

Figures are created by copying the desired entities from a 
drawing to a figure file. Once created, a figure may then 
be inserted into drawings. Attributes of figures are; 
origin, layer, scale, angle, and mirror/no-mirror. 

3.1.6 Flow Chart Entities 

GEDIT contains a special purpose interactive flow chart 
capability that allows flow charts to be drawn quickly and 
easily. When drawing flowcharts, several design rules are 
enforced. These rules prevent flow chart boxes from over­
lapping and don't allow flow chart lines to cut thru flow 
chart boxes. In addition, flowchart lines must be or­
thogonal - arrows may appear only at the end points of flow 

7 Paper 1022 



chart lines. Jumps may appear at four way intersections of 
flow chart lines. 

3.2 Drawing Modes 

Several drawing modes are selectable. The most important 
among these are the units and grid definition. The basic 
unit of measure may be defined as an English or Metric unit. 
Examples are; inches, deci-inches, centimeters or mil­
limeters. A displayed grid and a snap grid are definable. 
Grids assist in the accurate placement and alignment of en­
tities. 

3.3 Operations 

Operations may be divided into several catagorizes; in­
dividual operations, binary operations, and window opera­
tions. 

3.3.l Individual Operations 

The individual operation catagory consists of the move, 
copy, edit, and delete operations. An individual operation 
begins with selecting the entity to be operated on. This is 
accomplished by either of two methods. 

3.3.1.1 Form Editing Method 

Using the first method, the cursor is placed near the entity 
and a selection key from the menu is pressed. The at­
tributes of the selected entity are then displayed in a form 
allowing the user to modify any of the entity attributes. 
Next another menu key is pressed that replaces or copies the 
entity with the new attributes. A line, for example, could 
have its width increased or be moved by changing its end 
point coordinates. 

3.3.1.2 Source and Destination Marker Method 

The second method is generally used for moving and copying 
entities. Two menu keys allow a "source marker" and a 
"destination marker" to be defined. Placing the cursor near 
an entity and pressing the "set source" menu key defines the 
position of the source marker and selects the entity. 
Moving the cursor and pressing the "set destination" menu 
key defines the destination marker position. Once the 
source and destination markers have been defined and an en­
tity selected, the "move" and "copy" menu keys may be 
pressed resulting in a "move" or "copy" operation. 

3.3.1.2.1 Move operation 

If a 
moved 

"move" operation was specified, the selected entity is 
from the source position to the destination position. 

Paper 1022 8 



Next, the source and destination marker positions are 
swapped; the moved entity remains selected. This allows the 
entity to be easily returned to its original position by 
simply pressing the "move" menu key once more. 

3.3.1.2.2 Copy operation 

If a "copy" operation was specified, the selected entity is 
copied from the source position to the destination position. 
Next, the source and destination markers are moved by the 
same displacement as the copied entity and the copied entity 
becomes the selected entity. This allows step and repeat 
operations to be performed by repeatedly pressing the "copy" 
menu key. 

3.3.2 Window Operations 

Window operations are so named because a window is used to 
select the entities to be operated upon. A simple window is 
defined by digitizing only two points. The points define 
the diagonal of an orthogonal rectangular area. A polygon 
window is defined by digitizing more than two points. Each 
point defines a vertex of the polygon. 

Entities are selected on the bases of being inside, outside, 
or crossing the window or any combination thereof. Two 
powerful classes of operations may be performed on entities 
so selected: transformations and attribute editing. 

3.3.2.1 Transformations 

Transformation operators consist of displacement (move), 
rotation, scaling, and mirroring. For displacement, a 
source and destination point are digitized and the selected 
objects are moved from the source position to the destina­
tion position. Mirroring requires two mirror points to be 
digitized. These points define an axis about which the ob­
jects are mirrored. For rotation and scaling, a rotation 
point and a scaling point are digitized and the selected ob­
jects rotated or scaled about the respective points. 

A stretch modifier allows lines, polygon edges, and polygon 
fill edges to be stretched if they cross the window. A copy 
parameter generates N copies of the selected entities by 
performing the transformation N times. If a delete option 
is specified, the selected entities are deleted instead of 
transformed. 

3.3.2.2 Attribute Editing 

Attribute editing allows the attributes of all the selected 
entities to be modified in a single step. Examples would be 
to change all the entity pen numbers to 4, increment widths 
by .1, or multiply layers by 2. For each attribute to be 

9 Paper 1022 



modified, an operand value and an optional operator are 
specified. The operators may be addition, subtraction, mul­
tiplication, division, and modulo. The old attribute value 
is modified by the operator and the operand value. If an 
operator is not specified, the old value is simply replaced 
by the new value. 

3.3.3 Binary Operations - Trimming and Dissection 

Binary operations are so called because two entities are in­
volved. The entities must be either arcs or lines. The 
"Select trim entity" menu key selects the trim entity. The 
"Trim" menu key selects another entity and trims it to the 
trim entity by extending or shortening the selected entity 
until it intersects the trim entity. The "Dissect" menu key 
splits the selected entity into two pieces at its intersec­
tion with the trim entity. 

3.3.4 View Control - Zoom 

The zoom function allows the user to select the size of the 
work window and to display any portion of the drawing in the 
work window. The work window is the rectangular area con­
taining the current view of the drawing. Zooming allows 
portions of the drawing to be enlarged, if, for example, 
detailed work needs to done in a particular area. It also 
allows the entire drawing to be redisplayed. 

3.3.4.l The Zoom Window 

The zoom window is a small rectangular area representing the 
boundary of the drawing and is displayed on the screen while 
in the zoom menu. The user selects the new work window by 
digitizing the diagonal of a rectangle. Digitizations may 
be made in either the current work window or the zoom win­
dow. The zoom window is a key feature in allowing access to 
any portion of the drawing when "panning" or "zooming out". 

3.4 Plotting 

Plots can be generated on any device supported by HP's 
Device independent Graphics Library (DGL). If DGL is 
unavailable, plots can be generated on devices that under­
stand HPGL (Hewlett Packard Graphics Language). 

3.4.1 Scaling and Rotation 

A plot scale may be specified during plotting which allows 
the drawing to be plotted the desired size. Also, the plot 
may be rotated 90 degrees before being plotted. 

Paper 1022 10 



3.4.2 Pens 

Plotting pens have the following attributes; width, speed, 
acceleration, and force. The values of each attribute may 
be specified individually for each pen. Varying the speed, 
acceleration, and force allows users to make their own 
quality versus speed tradeoffs. Specifying the pen width 
allows the polygon fill and thick line/arc generating 
routines to calculate the exact number of pen passes needed 
to fill an area. Alternatively, the user can cause any 
desired overlap or underlap during solid filling. 

4.0 User Support Tools 

4.1 GEDHELPGEN - On Line Help Generator 

The GEDHELPGEN utility program allows the on-line help file, 
provided as part of the software package, to be modified and 
customized by the system manager. 

4.2 GEDDEMOGEN - Demo Generator 

The GEDDEMOGEN program allows users to create their own 
demonstration files in addition to the ones provided. 
During the demo creation phase two terminals are used. The 
first terminal runs the GEDIT program, the second is used to 
input the captions that will be displayed when the demo is 
performed. 

4.3 GEDDEMO - Demo Performer 

The GEDDEMO program performs a demo. It uses files that are 
generated by GEDDEMOGEN. During a demo performance, the 
user can observe the operations being performed and can con­
trol the pace of the demo play back. Typically each key 
stroke is explained before it is performed. This provides 
the user with an immediate example of how to use the func­
tions to perform common or complex operations. 

4.4 GEDBOXES - Flowchart Box and Font Generator 

The GEDBOXES program allows additional flowchart boxes to be 
generated and merged with the text fonts. 

4.5 GEDPLOT - Plot Program 

The GEDPLOT program plots the drawing files. 
scheduled directly from GEDIT, but it may 
stand-alone fashion. 

11 

Usually it is 
be used in a 

Paper 1022 



5.0 Development Philosophy 

In the course of any software project or as part of any 
software environment, needs for specialized tools are con­
tinually generated. Usually the most useful tools are 
simple in concept and consume a modest amount of development 
effort. It makes sense to develop these tools as they are 
needed rather than suffering without them. However, it is 
often the case that tool development is neglected until 
after the suffering and resulting frustration have taken 
their toll on the patience of the programmer. 

Tool building was an important motivational factor behind 
the development of GEDIT. GEDIT itself evolved from a 
program named FLOW, a tool developed to generate simple flow 
charts. 

5.1 Development Tools 

Several tools were identified and developed specifically to 
support GEDIT. The following sections briefly describe the 
tools and how they are used. 

5.1.1 SERCH program 

The first tool developed was the SERCH program. At the 
time, GEDIT consisted of several hundred C source files and 
20 odd different data structure include files. Whenever it 
was necessary to modify a data structure, so began the 
laborious task of identifying each source file that utilized 
the data structure so that it could be modified and recom­
piled. The result of neglecting any source file resulted in 
errors that were very difficult and time consuming to find. 

The solution was to develop a program that given a command 
file containing all the files to search, would generate a 
listing of string occurrances cross referenced with the file 
names containing them. 

5.1.2 MAKEREPORT Program 

The MAKEREPORT program was developed to maintain current 
program source listings and generate command files. The 
core of the MAKEREPORT program is the data base file. Each 
line in the database file contains the name of each file, a 
time stamp, and attribute fields. When the update option is 
specified, the MAKEREPORT program scans each source file for 
an edit time stamp, e.g. <860612.2040>, and copies it to 
the data base file. If a report option is specified, the 
MAKEREPORT program lists each file in the data base file 
that contains an attribute that matches one of the at­
tributes specified in its run string. 

Paper 1022 12 



S.1.2.1 Maintaining Current Listings 

The source files for GEDIT have several listing attributes. 
To generate the initial master listing, MAKEREPORT is ex­
ecuted with the update option and with the report attribute 
that specifies all source files. All the time stamps in the 
data base file are updated and each source file name is in­
cluded in the report file. The report file is then used by 
a listing program to print out all the source files. 

As development continues, any source files that are edited 
have their time stamps changed by the EDIT program. New 
subroutines that are written also have entries added to the 
data base file. When a current listing is desired, only new 
files or files whose contents have been modified should be 
printed out. To generate a report file to print out just 
these files requires MAKEREPORT to be run with the update 
and time stamp mismatch options and with the attribute that 
specifies all source files. Files whose time stamp does not 
match the data base file's time stamp have their time stamps 
updated and have their name included in the report file. 
The report file is then used by a listing program to print 
out the new and modified files. 

S.1.2.2 Generating Command Files 

Another use of MAKEREPORT is to generate a MERGE program 
command file for constructing relocatable library files. In 
the data base file, each relocatable file would contain one 
or more attributes that specify in which libraries they 
should be contained. Executing MAKEREPORT and specifying 
the desired library attribute would generate a report file 
containing the name of each file with that attribute. Next 
MERGE would be run using the report file as its command 
file. As new routines are written during the course of 
development, their names are added to the data base file. 

S.1.3 LISTS Program 

The LISTS program was developed for 
The LISTS program is an interactive 
relocatable file, report program. 

library 
type S 

maintenance. 
file, i.e. 

LISTS can list the NAM records of each relocatable module. 
This allows quick checks to be made of which version of a 
subroutine is actually in a library. Modules from an exter­
nal library can be extracted for inclusion into a local 
library. If a subroutine needs to have its calling sequence 
changed, e.g. the number of parameters increases, LISTS can 
generate a listing of all modules which call the subroutine. 
The subroutines can then be modified and recompiled. 

13 Paper 1022 



5.1.4 CRRE5 Program 

The CRRE5 program generates a cross reference listing of 
type 5 file entry points and external references. For each 
symbol, the modules defining the symbol and the names of the 
relocatable files containing the modules which define the 
symbol are listed. In addition, indentured lists of modules 
referencing and reference by the symbol's defining modules 
are created. The resulting invocation trees can be used to 
identify which subroutines call a module in which the 
calling sequence has been modified, so that the modules can 
be updated and recompiled. 

5.1.5 CRREF Program 

The CRREF program is similar to the CRRE5 program and is 
used in many of the same ways. It scans C source files in­
stead of relocatable files. Each routine has the source 
files which define the routine listed. In addition, inden­
tured lists of the routines which the routine references or 
is referenced by are created. 

6.0 Program Implementation - Segmentation and EMA 

The non-CDS version of the HP-1000 limits the partition size 
to 32 pages. Thus it was necessary to rely on segmentation 
and EMA to support the large amount of code and data needed. 

6.1 Program Composition 

GEDIT is composed of a main program and 29 segments, and is 
written almost entirely in c, a high level structured 
language. The residue is written in assembly. GEDIT is 
composed of 497 C source files, 52 C typedef include files, 
and 34 macro files. 

6.2 Modularized I/O 

Modularizing the input and output routines resulted in many 
advantages. A "DEVICE" structure is used to control the 
output to the graphics device and to keep track of the ter­
minal state. This allows redundant calls that change pen 
numbers, line types, and graphic modes to be eliminated. 

6.2.1 Output 

The graphics plotting sequence can also be optimized. If it 
is known that the terminal is currently processing a 
graphics plotting sequence, it is unnecessary to retransmit 
the plotting sequence preamble for each vector. This can 
result in a factor of 2 improvement in vector drawing speed. 
Keeping track the of the current pen position allows the 
binary short incremental format can be used whenever 

Paper 1022 14 



possible. This can result in up to another factor of 2 im­
provement in vector drawing speed. 

6.2.2 Input 

The userinput() subroutine is the main interface between 
GEDIT and the user. It is responsible for determining which 
menu key is pressed, reading the form contents and per­
forming the appropriate class I/O during demo generation and 
demo performance. 

6.2.2.1 Demo Generations and Performances 

During demo generations, each time the userinput() routine 
is called, it first sends to GEDDEMOGEN, via class I/O, 
which softkey was pressed. Next, userinput() sends the form 
contents, and the cursor position read from the terminal. 
GEDDEMOGEN copies this information to the demo file and 
prompts the user at a second terminal for caption data, 
which is also written to the demo file. 

During demo performances, each time the userinput() routine 
is called, GEDDEMO first reads the caption information from 
the demo file and displays it on the terminal screen and 
then waits for the user to press the return key. Next GED­
DEMO sends the softkey number, form contents, and cursor 
position, via class I/O, to the userinput() routine. The 
userinput() routine displays the form data in the form and 
otherwise behaves as if the input data originated from the 
terminal and not from GEDDEMO. 

6.2.2.2 Edit Logging and Replaying Edits 

The demo capability also allows edit logging as an option. 
When in edit logging mode, the GEDIT and GEDDEMOGEN programs 
behave as if a demo generation is being performed except 
that caption information is not captured from a second ter­
minal. This allows all the commands initiated by a user to 
be saved in a file. If some catastrophe should halt the 
computer, or abort the GEDIT program, the saved commands 
could be replayed at a later time, allowing the drawing to 
be regenerated. A user may also decide, at the end of an 
edit session, to replay the edits up to an intermediate 
point, thus recovering the drawing at some intermediate 
stage. 

7.0 Summary 

GEDIT suits the needs of both the novice and experienced 
graphic user. The menu driven interface, on-line help, and 
demo performance capability all contribute to making GEDIT 
easy to learn and use. The rich set of entities, attributes 
and powerful operations provide even the experienced user 
with a highly efficient and sophisticated tool. 

15 Paper 1022 





QUALITY ASSESSMENT OF HP R'rE SYSTEMS 

Chris Smith, Bruce Campbell, Craig Fuget 
11000 Wolfe Rd. 

Cupertino, CA 95014 

ABSTRACT 

As a result of Data Systems Division's emphasis on 
continued customer satisfaction, the Systems Certification 
function of DSD's Software Quality Engineering Department 
has been recently expanded. The increased attention given 
to quality issues related to mature code has led to the 
development of a new testing model for the DSD's RTE 
PCO's. The model includes: 

~ Testing functions and goals, 
~ Department and divisional responsibilities and 

dependencies, and 
~ Quality goal assessment methods. 

As an important side issue, there has been a new emphasis 
on the systems approach to DSD software. This has given 
rise to a cooperative approach to the certification of 
integrated systems software. This extensive effort and 
the refinement of our testing model have provided a 
fertile bed for learning about quality assessment. Many 
of these lessons are generic in nature. The emphasis of 
this paper will be to communicate our testing model and 
examples related to the refinement of the model. This 
information should be useful to OEM's and other systems 
developers. 

HISTORY 

Historically, the DSD Software Quality Engineering 
Department was primarily involved in quality assessment 
related to new operating system releases. This included 
testing at both the systeml and functional2 levels. 

1 System Testing is the attempt to demonstrate how the 
product does not meet its objectives. 

2 Functional Testing is the process of attempting to 
find discrepancies between the program and its 
external specification. 

Paper 1023 



Responsibility for the testing of software updates (or 
Product Change Orders, "PCO's") was distributed among the 
software laboratories. To integrate the development and 
test efforts of the software update cycle, a 
temporary PCO Program Manager was assigned for the C.83 
release. SQE's involvement was limited to the testing of 
the New File System software on RTE-6 at the C.83 PCO. By 
the A.85 release, a full time Program Manager was 
in place. Additionally, the Software Quality Engineering 
Department began allocating resources to assist in 
the testing of PCO's. For the A.85 PCO, QE was 
responsible for the system level testing of both RTE-A and 
RTE-6. 

A model was developed to use as a framework for the system 
test effort. This model broke the system testing into 
two distinct levels: 1) Stress and 2) Usability (a 
description of the System Testing Model will follow). 
For the A.85 PCO, System Testing was limited to Level 
l/Stress with implementation of Level 2/Usability 
occurring at the DSD 4.0 PCO. 

The history of RTE development and enhancement is not 
uncommon to the computer industry. While code development 
in the early years of computer manufacturing was 
considered a dark art, it has been evolving to the point 
of an engineering discipline. Some speculate that at the 
point at which solid data about the development process 
can be uniformly collected across the industry it will 
have become a science. The RTE systems represent a 
collage of software, evolved over a long period of time. 
This is a prevailing theme among established software 
producers. At some point, however, the total sum of 
software is much greater than its parts. That is, the 
developers no longer can change the code with a high 
degree of confidence that all affected parts are well 
understood. The need for a rigorous testing procedure on 
mature code is a common one. 

TESTING MODEL 

The model calls for testing in several different 
categories (see Figure 1). Level l/Stress Testing focuses 
on the operating system and its major components. It is a 
characterization of the reliability of the core system. 
Historically, completion of this phase is signaled by an 
Acceptance Test.3 

Paper 1023 2 



Level l/Stress Level 2/Usabili ty 

Busy System Busy System 
Destructive Customer Simulation 
Prelim. Installation Full Installation 
Configuration Subsystem Compatibility 

Configuration 

Figure 1. DSD System Testing Model 

Busy System 

Busy System Testing is the most familiar form of System 
Testing. It subjects various parts of the O.S. to large 
amounts of input or causes the O.S. to service a large 
number of processes. The goal is to verify that the 
interaction between O.S. modules and the integrity of the 
O.S. data structures remain intact under heavy system 
loads. 

Some examples of the focus areas are: 

$ Memory Management 
$ Swapping 
$ Process Management 
$ Resource Management 
$ State Processing 
$ System Calls 

This type of testing is accomplished through the use of 
test suites specifically designed and created for this 
purpose and applicable subsets of tests created for 
Functional Testing. 

Destructive 
capabilities 
opposed to 

Destructive 

Tests force the O.S. to exceed its 
and are a characterization of robustness as 

an actual test in the classical sense. 

3 This Acceptance Test actually entails six CPUs (three 
RTE-6 systems and three RTE-A systems) each running 
with tests for 96 hours. The acceptance criteria is 
that no serious or critical defects are discovered and 
that no unresolved defects remain. 

3 Paper 1023 



Although there is usually no correct or incorrect 
response, destructive testing does give valid insights 
into how the system will react in various situations. One 
example relates to the fact that RTE is an open 
architecture machine and although it may not be supported, 
some customers may attempt to manipulate the O.S. for a 
specific application for performance reasons. Information 
obtained via Destructive Testing yields a better 
understanding of what may be expected by modifying various 
system tables, especially if they .are modified 
incorrectly. 

Preliminary Jnstallation 

Preliminary Installation is a by-product of doing Busy 
System Testing. In order to use the system, it must first 
be installed. The purpose is to verify that load files 
and command files which are supplied with the o.s. work as 
they were intended. Although the types of problems 
encountered at this stage {i.e. typo's, missing comments, 
••• ) often seem minor, it is important they be addressed 
prior to Level 2/Usability Testing. Also,·Preliminary 
Installation provides valuable input for the "Generation 
and Installation" chapter of the Software Update Notice. 

Configuration 

In conjunction with Busy System Testing, Configuration 
Testing verifies that the system operates correctly with 
varying system parameters. The make-up of any given R'rE 
system is the result of a number of tradeoffs made at 
generation time. What modules are generated in, how many 
resource numbers are used, what peripherals are used, and 
how many ID segments are allowed, etc. all have an effect 
on the structure of the system. 

Obviously it is impossible to use all possible 
combinations of system parameters, therefore, the idea is 
to select a reasonable set of system configurations which 
take into account "real world" usage and areas of change 
at a given PCO. These configurations are then used during 
the Busy System Test execution. 

LEVEL 1/USABILITY 

Level 2/Usability Testing is the second half of the system 
test effort and focuses on the interactions between 
feature products, applications and the operating system. 
It attempts to model real world configurations. This is 
the last phase of testing prior to the softw~Le going to 
manufacturing and ends with an Installation Checkout that 

Paper 1023 4 



is the final verification to insure that all of the pieces 
of the system have come together correctly. A number of 
customers have been involved in the final check-out during 
the last two major RTE PCO's. 

Installation 

Preliminary Installation of subsystems is accomplished via 
the DSD SQE Partners Program.4 We rely on the Partners to 
provide tests which they feel adequately exercise basic 
functionality and installation of their product. 

The Installation Tests end with an Installation Check-Out 
which verifies that a defined set of subsystems can be 
installed on a base o.s. (typically a Primary System). 
The check-out focuses on verifying that the installation 
procedures are correct and adequately reflect the state of 
the software and media. 

Customer Simulation 

Customer Simulation is an attempt to model "real world" 
systems. The purpose is to find those problems which have 
not been caught by other forms of testing and are most 
likely to be encountered by the end user. This is a 
"regular use" form of testing and is accomplished by using 
demos and existing applications to verify correct 
operation of the system, and to characterize the impact to 
the customer of changes in the system. 

Subsystem Compatibility 

At DSD, our definition of compatibility continues to be 
directed by our customer's needs. We can however, gain 
some insight from reviewing the definitions and op1n1ons 
of others. The IEEE 749 Standard defines compatibility to 
be the ability of two or more systems to exchange 
information. 

John R. Grogan of International Computers Limited, England 
makes some worthwhile comments in "A Manufacturer's 
View".5 He suggests that compatibility be viewed as a 

4 RTE subsystems such as Image and BASIC provide a 
subset of their tests to the System Certification 
Group for inclusion in the Level 2/Usability Testing 
which makes them DSD Partners. 

5 Paper 1023 



many faceted concept. The components of compatibility 
should be ordered by importance and then mapped onto a 
product which a computer manufacturer can afford to offer 
customers and which will offer an economical computing 
service that will satisfy most if not all of a customer's 
computing needs. 

He also suggests that differences between 
make certain compatibility issues more 
others. Most of the differences between 
fall into the following categories: 

$ Configuration 
$ File Structure 
$ User Names 
$ Accounting 
$ Operation 
$ Libraries 
$ Support Routines 
$ Recovery 
$ Restart 
$ Version 
$ Maintenance Level 
$ Work Priorities 

customers will 
important than 

customers will 

Currently, DSD is using the IEEE 749 Standard definition 
as a guide to the development of Compatibility Tests. The 
actual focus areas were determined by a Subsystem 
Compatibility Survey conducted by SQE. Information 
concerning current compatibility issues was obtained from 
DSD' Online Support, Field SE's, engineers from Advanced 
Manufacturing Systems Operation, and engineers from 
subsystem groups (e.g. BASIC, Image, ••. ). For the purpose 
of System Testing at DSD, the scope of compatibility has 
been defined to be: 

$ Size Constraints 
$ Installation procedures 
$ System Resource Contention (e.g. SAM, class numbers, ... ) 
$ Subsystem Interaction 
$ Data Corruption 

5 Brown, P.J. Ed., Software Portability, Cambridge Univ. 
Press, N.Y., 1977. 

Paper 1023 6 



A Compatibility Matrix was developed from the results of 
the Subsystem Compatibility Survey. Subsystem 
Compatibility Testing is addressed through the use of 
software which exercises the interactions defined on the 
Compatibility Matrix. The software used to address the 
matrix consists of demos, customer applications and 
subsystem specific test packages. 

Configuration 

Taken from Software Distribution Center's Dec., 1984 
Survey: "System configurations are so varied and complex 
that is is virtually impossible to produce a complete 
sampling for Field Review Tests. Generally speaking, 
inputs from the Field stated that full blown systems 
should be used with various data communications products. 
These systems should test subsystems concurrently with 
heavy disc I/O. Installations and generations should be 
accomplished with the aid of the Software Update Notices 
and Generation and Installation manuals to verify their 
validity." 

Usability Configuration Testing is addressed through the 
use of a Customer Answer Files Test Suite. Focus areas 
have been identified, based on surveys by Product 
Marketing and SQE, and customer answer files have been 
obtained from the Field to address these areas. The 
answer files are run through the generator to verify the 
system can still be built or to quantify the magnitude of 
change in the update. These answer files provide a net in 
which to catch problems related to ease of upgrading (with 
respect to configuration) an RTE system. 

The main 
provided 
order to 
general 
quality 
process 

USE OF TESTING MODEL 

benefit of this model is the framework it 
for uniform data collection and analysis. In 

improve any process, you must get at least a 
understanding of how it works, then measure the 

and efficiency of its sub-processes. The sub-
with the most problems is the one to attack. 

For each problem logged, we try to understand which phase 
of the process caused the problem. If a problem is 
discovered in a phase other than the one which caused it, 
we attempt to find why it wasn't discovered earlier. We 
also work with R&D to determine how to prevent the problem 
from reoccurring. 

7 Paper 1023 



The quality data may be utilized to improve software 
maintenance productivity through the incorporation of the 
following steps: 

1. Keep track of the following major items: 

A. Defects: 

e What went wrong 

e When it went wrong 

$ Why it went wrong 

e What portion(s) of the software were 
affected 

e What was done about it (Was it really a 
problem or just a misunderstanding?) 

e Who found and who resolved the problem 

e How long it took to address the problem 

B. Software Revisions: 

e How many occurred during the test phases 

e How many defects each revision had 

e When the revisions started 

c. Time investment: how long the testing took in 
months and engineering time. 

2. Correlate the data to determine what the biggest 
problem areas were (We've found Pareto Charts to be 
quite useful.) • 

3. Ask why problems occurred. Was it: 

e Poor Training 
e Poor Documentation 
e Poor Communications 
e Lack of Source Control 
e etc. 

4. Prepare a plan to attack the causes of the problems, 
not just the problems themselves. 

Paper 1023 8 



5. Ensure that management in all affected areas are 
aware of the problems and the potential solutions. 
(We present a full report at the end of each project 
to the project management.) 

SUMMARY 

We at DSD have found that by carefully evaluating the data 
we already had, we could gain additional insights into a 
time and resource intensive process without having to 
affect the process itself. This data allows us to learn 
from the problems at each phase, and to address new 
quality issues rather than old ones. We are excited about 
the challenge of exceeding customer quality expectations. 
and are committed to servicing our existing RTE customer 
base with products which match H-P's high standard of 
excellence. 

9 Paper 1023 





DESIGNll'li AND IMPLEMENTll'li A CO'l1'v'£:N SYSTEM 
FOR THE DEVELOPMENT OF LARGE APPLICATION PACKAGES 

Stephen C. Fullerton 
Statware, Inc. 

P.O. Box 510881 
Salt lake City, UT 84151 

INTRODUCTION 

The development of large application packages usually requires many 
man-years for the entire cycle of design, development, implementation, 
and testing to be comp I eted. This process is usually repeated for the 
development of each individual package. Our goal was to design and 
implement a development system that would permit a much easier and rapid 
generation of application packages. 

Our system is not an application generator and should not be compared to 
a 4Gl system. Rather it provides us with the basis for an entire family 
of application packages. This basis includes: memory management, 
common 1/0, exchange of data between applications, common user 
interface, etc. When creating a new application package, we need only 
design each command and write its specific code. No parsing code need 
be written, the commands are described in an English-like grammar that 
is processed by the system and causes each command to be completely 
parsed before it is ever executed. 

STAT80 llJ, Release 3.0, was developed using this system and since 
STAT80 is a dynamic package, subsequent releases will be much more 
frequent and much easier to port to other machines. 

This paper will focus on the different modules of this development 
system and demonstrate how an application can be designed and written. 

FRAMEWORK 

Our de v e I o pme n t sys t em [ 2i f a mu I t i- t i ere d sys t em that i s part i a I I y 
modeled after the UNIX system libraries and system calls. Level 1 
is the host operating system. Level 2 contains the system calls to the 
host operating systems for various system dependent operations; e.g., 
file handling, date and time processing, etc, This includes all low 
level 1/0 operations. Level 3 contains memory management and the 
library 1/0 operations. Level 4 contains the high level 1/0 operations 
and the command history stack, Level 5 contains the processing code for 
the grammar and the various parsing modules. Finally, level 6 contains 
the command she 11 for the package with a proc fac i Ii ty bu i It-in. 

Paper 1024 



The following diagram illustrates this layering effect. All subroutine 
and function cal Is are made inward so at each level the number of core 
routines increases. 

DEVELOPMENT LANGUAGE 

The production version of our development 3ystem is written entirely in 
Ratfor, a RATional FORtran preprocessor [ • Ratfor is a very common 
preprocessor; however, it does suffer from quite a variety of dialects. 
We are using the Ratfor in use on UNIX and GCOS systems. This Ratfor 
provides: 

- statement grouping 
- if-else and switch for decision making 
- while, for, do, and repeat-until for looping 
- break and next for controlling loop exits 
- free form input (multiple statements/line, automatic continuation) 
- translation of>, >=, etc., into .GT., .GE., etc 
- return(expression) statement for functions 
- define statement for symbolic parameters 
- Include statement for including source files 

Most dialects of Ratfor provide these features and often many more. 
However, the UNIX version of Ratfo{ 4 flso supports the logical operators 
used in the C programming language • 

The Sftran3 [SJ preprocessor was also evaluated, but rejected due to its 
lack of similarity with the C programming language. A project is 
currently underway translating our entire system to C. Since it is in a 
dialect of Ratfor that is very similar to C, the work is progressing 
rapidly. 

Paper 1024 2 

I 



LEVEL 1: I-DST OPERATll'l> SYSTEM 

Our system is designed to be independent of the host operating system. 
The entire interface to the host operating system is done with the 
Level 2 routines. As an example of the degree of operating system 
independence, STAT80 Release 3.0 consists of over 100,000 I ines of 
Ratfor source code and was completely converted to the HP 1000 RTE-A 
operating system in less than two man-weeks. In cont[Cf t, STAT80 
Release 2.9k consisted of over 90,000 lines of PFORT verified 
FORTRAN source code [;qd

0 

required two months to be converted to the 
HP 1000 RTE-A system J 

LEVEL 2: OPERATll'l> SYSTEM INTERFACE 

Level 2 of our system is closely modeled after the UNIX level 2 system 
library. This collection of routines are the only system dependent 
routines in our system and must be customized for each operating system. 
This level consists of 1/0 routines, date and time routines, and 
character handling routines. 

1/0 Routines 

The following table lists the names and a brief description of the 
system dependent 1/0 routines. 

Leve I 1 !.JS2. Routines 

Name Descrietion 

syscls close a f i I e 
sysdel delete a f i I e 
sysopn open a f i I e 
sysrbb read byte buffer in binary 
sysrbd read double precision buffer in binary 
sysrbi read integer buffer in binary 
sysrbr read real buff er in binary 
sysred read byte buffer 
syssek seek in a f i I e 
syswbb write byte buffer in binary 
syswbd write double precision buffer in binary 
syswbi write integer buffer in binary 
syswbr write real buffer in binary 
syswrt write byte buffer 

The implementation of these routines varies greatly from system to 
system. For example, on the HP 1000 these routines use FMP, XREIO, and 
EXEC. On the HP 3000, the system intrinsics are used. And on UNIX 
systems, the level 2 kernel routines are used. 

3 Paper 1024 



Every attempt is made to avoid using the FORTRAN 1/0 statements to 
implement these routines. However, if necessary, a version of these 
routines is available that uses FORTRAN 1/0 as a basis. The only real 
loss is in the overal I performance of the application. 

Miscellaneous Routines 

The following table lists the names and a brief description of various 
other system dependent routines. 

Name 

date 
time 

Level 2 Miscellaneous Routines ----
Description 

return current date 
return current time 

abts80 abort application irnnediately with message 

i 1mach 
r1mach 

machine dependent integer parameters 
machine dependent real parameters 

The date and time is usually easy to determine regardless of the 
operating system. [T~e routines i1mach and r1mach are part of the PORT 
Library Framework 8 and supply the machine dependent parameters for 
each operating system; e.g., number of bits per integer unit, number 
base of the machine, largest relative spacing, etc. 

Character Primitives 

The following table lists the names and a brief description of the 
system dependent character handling routines. 

Name 

chrasu 
karasc 
karasu 
karchr 
karcm2 
karcmp 
karget 
karid2 
karidx 
karlc 
karlcl 
karmov 

Paper 1024 

Level 1 Character Primitives 

Description 

upper case ASCII ordinate of character*1 character 
ASCII ordinate of character 
upper case ASCII ordinate of character 
character of ASCII ordinate 
string comparison ignoring case 
string comparison 
get character from packed string 
substring index ignoring case 
substring index 
lower case character 
local character of ASCII ordinate 
move characters from packed strings 

4 



Name 

karord 
karpak 
karput 
karuc 
karupk 
k ar v fy 
karxlt 
krctoi 
krgetc 
krgeto 
krgetu 
kritoc 
krputo 
I ent rm 

Level 2 Character Primitives 

Description 

local ordinate of character 
pack characters 
put character into packed string 
upper case character 
unpack characters 
verify characters 
translate characters 
character to packed string 
character get from packed string 
character get returning ASCII ordinate 
character get returning upper case ASCII ordinate 
packed string to character 
put ASCII ordinate into packed string 
length of character string 

~g]use the term Hollerith rather loosely. Rather than using the FORTRAN 
character data type which has many shortcomings, we have adopted the 

Pascal methodology of storing character strings. Al I strings are stored 
packed into integer arrays with each string preceded by its length as a 
single integer. This was necessary in order to comply with our memory 
management rules discussed in the next section. 

No di re ct comparison of characters is ever made, rather a 11 compares and 
lookups deal with the ordinal value of each character {ASCII ordinate). 

LEVEL 3: MEMORY MANAGEMENT AND LIBRARY 1/0 

Memory Management 

Effective memory management is one of the major features of our 
development system. Since FORTRAN does not support dynamic al location 
of memory or a pointer data type, we designed and implemented our own 
portable memory management scheme. 

Our memory routines manage a heap that contains a I inked I ist of free 
and allocated blocks of memory. The heap is maintained in a FORTRAN 
common block. In order for dynamic memory allocation to be useful, it 
mus t s up po r t byte , i n t e g er , r ea I , and do u b I e p r e c i s i on d at a • Comp I ex 
data might also be useful and could be easily added to our system. 

At the beginning of the memory block is the I ink to the next block and 
at the end of the block is a check digit. This digit is tested when the 
block is released and if corrupted, the application will abort. This is 
very useful during the development phase as it quickly locates memory 

5 Paper 1024 



boundary errors. 

The memory management routines handle data types, BYTE, INT, REAL, and 
DOUBLE. In order to avoid alignment problems with machines with 
different lengths for INT and REAL, all allocation is done by alignment 
to the boundary of the largest unit; i.e., DOUBLE. This is unfortunate 
i n that sma II a II o cat i on s have extra overhead; however , i t i s n e c es s a r y 
for portability. 

The following is the Ratfor include that contains the FORTRAN conmon 
block and other definitions for our memory management routines. Al I 
routines using the memory management must include these statements. 

# 
# @(#) memory.h 1.5 10/15/85 16:56:42 
# 
# Memory conmon block (used by memory handling routines) 
# 
define(MEMINT,30000) 
define(MEMREAL,30000) 
define(MEMDBLE,15000) 
define(MEMSIZE,15000) 
# 
define(BYTE,1) 
define(INT,2) 
define(REAL,3) 
define(DOUBLE,4) 
# 

# 

# 

integer 
real 
double precision 

conmon / s80cb6 
equivalence 

maxmem, imemry(MEMINT), nxsrch 
rmemry(MEMREAL) 
dmemry(MEMDBLE) 

maxmem, nxsrch, dmemry 
( dmemry(1), rmemry( 1), imemry( 1)) 

Note the absence of the FORTRAN character data type. This is because of 
two major problems: first, character variables cannot be[gfuivalenced 
to non-character i terns. And second, the ANSI standard fai Is to 
define a minimum or maximum limit of the length of a character variable. 
Some FORTRAN compilers do not place restrictions on either of these 
cases; however, many others choose an arbitrary limit. Character 
strings in our system are stored packed into integers similar to the 
string storage in the Pascal programning language. 

The following table lists the names and a brief description of the 

Paper 1024 6 



memory management routines. 

Name 

mal loc 
mal lorn 
mfree 
mpartf 
mgarbc 
memmap 
memerr 
mini t 

Level 1 Memory Management 

Description 

al locate a block of memory 
al locate the largest block of memory 
release a block of memory 
release partial block of memory 
garbage collection 
histogram of memory usage 
display memory allocation error message 
memory management initialization 

We used a n am i n g convent i on very s i mi I a r to the UN IX memory management 
routines used in the C programming I anguage. Function mal I oc returns an 
index to the requested block of memory. For example, 

np = mal loc(lOO, INT); 

sets the variable, np, to be 
requested 100 words of memory. 

imemry(np) 
imemry(np+l) 
imemry(np+2) 

i memr y ( np+98) 
i memr y ( np+99) 

word 1 
word 2 
word 3 

word 99 
word 100 

used as an 
That is, 

index into imemry() for the 

Analogously, real (floating-point) memory is allocated as: 

nr = mal loc(SO,REAL); 

This sets the variable, nr, to be used as an index into rmemry() as 
fo 11 ows: 

rmemry(nr) 
rmemry(nr+l) 

rmemry(nr+48) 
rmemry(nr+49) 

word 
word 2 

word 49 
word 50 

Note that th i s scheme i s es sent i a I I y a po i n t er to a bas e-z er o a r ray, 
just as it is done in the C programming language. 

7 Paper 1024 



The byte data type is different in that the malloc routine returns an 
index into imemry() with enough memory to contain the packed byte 
stream. 

The memory is released by cal ling the mfree subroutine as fol lows: 

call mfree(np,INT); 
call mfree(nr,REAL); 

The allocation is done by searching the free list for either an exact 
match or for the smallest block that is large enough. This type of 
search avoids fragmentation of the heap. If a large enough block isn't 
found, then the garbage collection routine is called. It performs only 
a simple collection by connecting adjacent free blocks of memory to be a 
single large block. If there still isn't a large enough block, then the 
return value is negative, with its magnitude being the largest available 
free block. 

All of the higher levels in our development system rely upon these 
memory management routines. Therefore, they must be simple, efficient, 
and reliable. 

Library 1/0 

The library 1/0 routines have been copied in form and functionality from 
the UNIX level 3 1/0 functions. However, all of our applications have 
the capabi I ity for the output to be sent to both the terminal and a 
paginated log file. For this reason, al I oftiie printing routines 
support two file pointers rather than one. Al so, terminal pagination 
with forgiving interrupt capability is also desired. At the end of a 
terminal screen, this prompt is displayed: 

More? 

Entering a RETURN wi 11 cause the application to resume and display the 
next screen. Other valid responses are: 

Valid Responses.!_£ 11 More? 11 Prompt 

Application Responds With 

RETURN Next screen of output. 
y Next screen of output. 

Next I i ne of output. 
c Continuous output un ti I finished. 
n Suppress terminal output, processing continues 

Break Character Abort current command 
Abort Character Session aborts; application exits. 

? Display possible responses 

Paper 1024 8 



The "Y" response is identical to a RETURN, "·"will only display the 
next Ii ne of output, and "C" wi 11 continue the output of the conmand 
without terminal pagination. The "N" response will suppress terminal 
output; however, processing of the conmand continues along with output 
to the log file, if any. The break character, usually an upper case 
11 8 11 , will cause the break flag to be set. This will interrupt output to 
both the terminal and the log file. The abort ·character, usually an 
upper case 11 A11 , will cause the application to abort inmediately. 

Al I of the popular 1/0 functions from UNIX and C [ 4 ] are supported along 
with many more. Analogous the the printf() family of functions in Care 
the functions: prtfc, prtff, prtfh, prtfi, prtfm, mprtff, mprtfi, and 
mprtfm. Since FORTRAN doesn't support routines with a variable number 
of arguments and types, each of these routines supports only one 
argument and only one type. For example, to print a floating-point 
value, rval, enter: 

call prtff(stdout,NULLFP, 1Value = %f&n 1 ,rval); 

The output is to 1 or 2 file pointers, either to a pre-defined file 
pointer such as stdout and stderr, or one set by the fopen function. 
NULLFP is the defined parameter for a null file pointer; i.e., not set. 
The conversion string, 1Value = %f&n 1 , controls how the value is output. 
The conversion string is similar to that of the C prograrnning language; 
however, many more conversion characters are supported. Also, if the 
field width or prec1s1on isn't specified, then only the significant 
digits of the value wi II be output. This makes for much cleaner 
reporting. 

The following table lists most of the avai I able 1/0 routines: 

Name 

ct of 
ctoi 
decstr 
fclose 
ferror 
ff lush 
f gets 
fin it 
fop en 
fputc 
fputcs 
fputo 
fputs 
fread 
frewnd 

Level 1 Library lf.Q 

Description 

decode floating-point from character 
decode integer from charac~er, base 2 •• 16 
decode character string 
file close 
report file error 
flush buffer 
read string 
f i I e I /O in it i a I i za ti on 
file open 
put character to file pointer 
put character string to file pointer 
put ASCII ordinate to file pointer 
put packed string to file pointer 
read binary 
rewind file 

9 Paper 1024 



Name 

fseek 
fterm 
ftoc 
ftoi10 
fwr i te 
getc 
geto 
itoc 
itocu 
i tor 
mpr t ff 
mprtfi 
mprtfm 
per re 
perrf 
perrh 
perri 
per rm 
pffmt 
pf toe 
pictfc 
pictfh 
pictfm 
pi toe 
pi tor 
prtfc 
prtff 
prtfh 
prtf i 
prtfm 
prttcp 
prtts8 
putc 
put cs 
puto 
puts 
readrc 
termpg 
te rmr s 
ungetc 
ungeto 
writ re 

Paper 1024 

Level 1 Library 1/0 

Description 

file position 
file 1/0 termination 
code floating-point in character form 
floating-point to integer array, base 10 
write binary 
get character 
get ASCII ordinate 
integer to character form 
integer to character form, unpacked 
integer to roman numerals 
pr·nt floating-point formatted, format in packed string 
pr n t i n t e g er formatted, format i n packed s tr i n g 
pr nt packed string formatted, format in packed string 
pr nt error message, character value 
pr nt error message, floating-point value 
pr nt error message, Ho 11 er i th value 
pr nt error message, integer value 
pr nt error message, packed string 
pr nt floating-point with F-type format 
pr nt floating-point 
pr nt floating-point using picture format 
Ho lerith front-end to pictfc() 
packed string front-end to pictfc() 
print integer 
print integer as roman numerals 
print character string formatted 
print floating-point formatted 
print Hollerith string formatted 
print integer formatted 
print packed string formatted 
print to column position 
print to 8 column tab stop 
put character 
put character string 
put ASCII ordinate 
put string 
read direct access 
terminal pagination 
terminal reset 
unget character 
unget ASCII ordinate 
write direct access 

10 



LEVEL 4: HIGH LEVEL 1/0 AND HISTORY STACK 

Level 4 is the first level in our system that goes beyond the current 
capabilities of most development systems. That is, levels 1-3 provide 
an operating system interface, low level 1/0, memory management, 
ch a r a c t e r hand I i n g , and a comp I e t e I i b r a r y of I / 0 r out i n e s • Mu ch of 
this is provided in prograrrming languages; e.g., C. However, in order 
to ma i n ta i n a homogeneous de v e I o pme n t sys t em w i th a h i g h degree of 
portability, we had to design and implement these levels without regard 
to the I an g u age • Ev en i n o u r C v e r s i on o f o u r s y s t em, we s t i II 
implemented al I of these levels without using the LNIX libraries. 

Al I of our applications support a higher level of 1/0; i.e., line 
continuation, 
characters, and 
routines to be 
routines. 

in-line corrments, an escape mechanism for special 
a history stack. This requires yet another level of 1/0 
layered in between the application and the library 1/0 

The additional routines provide each of these capabilities transparently 
to the application. For example, the history stack is avai table to 
every conn1and that does terminal input. Our hi story stack is mode I ed 
after the corrmand history in the UNIX csh (C shell). 

The following are valid history corrmands for using the history stack, 
assuming that the history character is set to 1 / 1 : 

Corrmand 

/* 
II 
/n 

/-i 
Is 

Meaning 

Display corrmand stack. 
Retrieve last corrmand. 
Retrieve comnand number 11 n 11 • 

Retrieve corrmand 11 i 11 back on stack. 
Re tr i eve I as t comnan d start in g w i th st r in g 11 s 11 • 

The retrieved corrmand may be modified by the substitution of one string 
of characters for another string, or by appending additional information 
to the corrmand. 

Additional information is appended by entering it after the retrieval 
comnand, de I imi ted by a single space. This may also be used in 
conjunction with a substitution modifier, when the additional 
information is entered after the substitution modifier. 

Substitution of strings is indicated by one of the following modifiers, 
assuming that the history delimiter character is 11 : 11 • 

11 Paper 1024 



Modifier 

: s 
:g 
:p 
:q 
: r 

Meaning 

Single substitute. 
GI obal substitute. 
Single substitute, put back on stack. 
Global substitute, put back on stack. 
Substitute the character "?". 

The first character to follow the :s, ;g, or :p modifier is used as the 
string delimiting character. The first string, set apart with this 
character, wi 11 be substituted with the second string, again set apart 
with this character. For example, 

/22:s 1 /file' /not ist 1 

means that in the retrieved command (#22), the string "/file" is to be 
replaced with the string 11 /nolist" before the command is passed to the 
application for execution. The apostrophe, being the first character 
fo I I ow i n g the subs t i tut i on mod i f i er , i s used as the s tr i n g de I i mi t er • 
An unmatched delimiter would result in an error. Other examples: 

// :g$v3$v2$ 
Ip r int: p I a I I / v2 to v4, v7 I 

The substitution modifiers differ as summarized in the above table. The 
":s" modifier wi I I substitute the first occurrence of the first string. 
The ":g" modifier will substitute all occurrences of the first string. 
The 11 :p 11 modifier will do a single substitution and put the command on 
the top of the history stack without execution; this is used when 
multiple substitutions are required and cannot be done with one command. 
The ":q" modifier wi 11 substitute al I occurrences of the first string 
and put the command on the top of the hi story stack as does the 11 :p 11 

modifier. The 11 :r" modifier will replace the in-line help character, 
11 ? 11 , with whatever is fol lowing this command. 

Suppose the last command on the history stack is: 

HISTOGRAM V3 /SELECT=(V3 > 5) 

Paper 1024 12 



Then the the user issues this history corrmand: 

/I: g 1 v3 1 v4 1 /CIM 

The breakdown of this corrmand is as follows: 

II retrieve the last corrmand from the corrmand stack 
-- delimiter, indicating a substitution corrmand 

g -- global substitution 
-- string delimiter 

V3 -- first string 
-- string delimiter 

V4 -- second string 
string delimiter, final 

/CUM append this text to the corrmand 

Thus, the resulting corrmand which is submitted for execution is: 

HISTOGRAM V4 /SELECT=(V4 > 5) /CUM 

LEVEL 5: GRMMAR DEFINITION AND PARSll'G 

Level 5 is the beginning of the more complex modules of our system. At 
this point all of the lower level code has been defined and implemented 
that will support a very large range of applications; however, a great 
deal of effort would be required in order to create a new application 
using only levels 1-4. 

In this level we define a grarrmar that allows the developer to design 
and test corrmand form without having to write any code. Furthermore, 
our grarrmar does a complete parse of the input corrmands including all 
arithmetic, logical, and matrix expressions. Currently, arithmetic 
expressions have 120 functions and 15 operators avai I able and matrix 
expressions have 51 functions and 18 operators available. All of this 
can be incorporated into the application without developing any new 
code. 

Our grarrmar is not defined in a Backus-Naur Form (BNF) and not in a form 
typically rfB1 by compi I er-compilers such as YACC (Yet Another Compiler 
Compiler) • Rather, we are developing applications that use data 
stored either as bytes, integers, reals, or double precision in such 
entities as scalars, columns, tables, vectors, and matrices. There was 
no reason to begin a grarrmar definition at such a low level since we 
already know a great deal about the objects manipulated in our 
applications. 

Another reason for NOT going the route of a parser-generator or 
compiler-compiler is that each of our applications are extensible; that 

13 Paper 1024 



is, the user can easily add new conmands and procedures dynamically. 
Our language supports looping, branching, statement grouping, etc., so 
that the user can create new conmands using this language. In order for 
the new conmand to be integrated into our applications, we provide the 
user with a granmar to define the conmand form. This granmar is the 
same one we use to develop the application. 

The fol lowing is a simplified example of our granmar: 

PRINT:97 @C<PRINT V4 to VS> <V,E,RC,CD>@C<Variable(s) to print> 

The conmand name is PRINT and is identified to the application by the id 
number 97. Fol lowing the conmand name is an example of the conmand in 
use: @C<PRINT V4 to VS>. This can be displayed whenever a user 
requests an example of the PRINT conmand. The next item tel Is the 
application that a variable list is required: <V,E,RC,CD>. The 11V 11 

tells the application that a variable list is needed, the 11 E 11 means that 
the variables must exist, the 11 RC 11 means that they may be either real 
(floating-point) or character, the 11 CD 11 means that either a column 
variable or a dummy variable (our terminology for a scalar variable) may 
be printed. The last item, @C<Variable(s) to print>, will be displayed 
when the user enters: 

PRINT ? 

requesting in-I ine help. 

In a nutshell, our granmar provides us with a means for quickly 
designing new commands and modifying existing conmands. We have also 
built an in-line help system into the granmar. This was quite easy 
since the grammar directs the application as to what is needed from the 
user; therefore, if a 11 ?" is encountered, just display this information 
to the user. Furthermore, whenever an error occurs, the granmar 
contains the information to alert the user to what was expected. 

The following table lists the different granmar terminal symbols 
(identifiers) with a brief description: 

Symbol 

NAME or 1 name' 
/NAME 
<V> 
<Y#> 
<R> 
<R#> 
<I> 
<I#> 

Paper 1024 

Example 

Cases or 
/Classes 
<V,E,RC> 
<Vl > 
<R> 
<R3> 
<I> 
<IS> 

·=· 

Granmar Symbo Is 

Definition 

Literal, must be specified by the user 
Option name 
Variable list, 1 or more variables 
Fixed variable I ist, 1 to# variables 
Real value list, 1 or more values 
Fixed real value I ist, 1 to# values 
Integer value list, 1 or more values 
Fixed integer value list, 1 to# values 

14 



Symbol 

<S> 
<S#> 
<F> 
<A> 
<$> 
<#> 
<%> 
<T> 
<T#> 
<E> 
<M> 
@C< ••• > 
00< 
00> 
@I< 
@I> 

Example 

<S> 
<S2> 
<F> 
<A> 
<$> 
<#> 
<%> 
<T> 
<Tl> 
<E> 
<M> 
@C<Dependent> 
00< 
00> 
@I< 
@I> 

Granmar Symbols 

Definition 

String list, 1 or more strings 
Fixed string list, 1 to# strings 
File name, blank delimited name 
Anything, 0 or more words (items) 
Integer temporary variable 
Real temporary variable 
String (character) temporary variable 
Token list, 1 or more tokens (words or items 
Token list, 1 to# tokens (words or items) 
Arithmetic or logical expression 
Matrix expression 
Conment for in-line help 
Begin optional list 
End optional I ist 
Begin index I ist 
End index I ist 

LEVEL 6: PACKAGE SHELL AND PROC FACILITY 

of the I ower 
enables the 

Al I that is needed at this time is a driver program for all 
level routines. The granmar definition and parsing code 
user to define from 1 to 196 conmands for the application. 
is identified by a numerical conmand id which is in the 
196. Recal I the example conmand described in the previous 

Each conmand 
range from 1-
sect ion: 

PRINT:97 @C<PRINT V4 to VS> <V,E,RC,CD>@C<Variable(s) to print> 

The conmand id for this conmand is 97. Our package shell has calls for 
subroutines CMD001-CMD196 already installed. When the user correctly 
enters the PRINT conmand, the package shell calls CMD097. Conmon blocks 
are provided via Ratfor include statements to provide the conmand 
rout i n e w i th a I I of the par s i n g i n format i on ; e • g. , var i ab I e names , 
options, etc. 

Therefore, all that is really needed in order to produce a new 
application is to describe the conmands in the granmar and then write 
the routines for the individual conmands. Everything else is already 
provided. 

Our applications al so support what we refer to as a 11 proc 11 faci Ii ty. A 
11 proc 11 is a conmand or procedure that is written by the user and is 
executed under the control of the application. The language is called 

15 Paper 1024 



the "proc" language and contains control statements such as IF­
THEN/ELSE, WHILE-ENDWHILE, REPEAT-UNTIL, FOR-ENDFOR, DO-ENDDO, DOCASE­
CASE-ENDCASE, GOTO, GOSUB, etc. The comnand form for these procs is 
written using the same gramnar as all of the built-in comnands. An 
internal compiler is also available that processes these procs so that 
they become integrated with the application. 

Paper 1024 16 



References 

1. STAT80 User's Guide, Statware, Inc., P.O. Box 510881, Salt Lake 
City, UTS4l51{19s6). 

2. UNIX Progranmer 1_! Manual, Bell Telephone Laboratories, Inc. Murray 
Hi II, New Jersey, Holt, Rinehart and Winston. 

3. Kernighan, Brian W., RATFOR - ~Preprocessor for~ Rational Fortran, 
Software - Practice and Experience i, 395 (1975). 

4. Kernighan, Brian W., Ritchie, Dennis M., The C Progranming Language, 
Bell Laboratories, Murray Hill, New Jemy:- Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey 07632. 

5. Lawson, C.L. and Flynn, J.A., Sftran3 Progranmer 1_! Reference Manual, 
JPL Document No. 1846-98, December 1, 1978, Jet Propulsion 
Laboratory, California Institute of Technology, Pasadena, 
California. 

6. Ryder, B.G. and Hall, A.O., The PFORT Verifier, Software Practice 
and Experience!, No. 4, October-December 1974, pp. 359-377. 

7. RTE-~ Progranmer 1_! Reference Manual, Hewlett-Packard, Data Systems 
Division, 11000 Wolfe Road, Cupertino, CA 95014, Part No. 92077-
90007. 

8. Fox, P.A., Hall, A.O., and Schryer, N.L., Algorithm 528. Framework 
for~ Portable Library, ACM Transactions on Mathematical Software!, 
177-188 (1978). 

9. American Nati ona I Standards Conmi t tee, 
Progranming Language FORTRAN (FORTRAN 
American National Standards Institute, 
York, NY 10018. 

American National Standard 
77), Document X3.9-1978, 
Inc., 1430 Broadway, New 

10. Johnson, S.C., YACC (Yet Another Compiler Compiler), Computing 
Science Technical Report #32, July 1975. 

17 Paper 1024 



I 



Effective Use Of Tools And Programming Style 
In Managing Major Software Systems 

Mathieu Federspiel 
Statware 

P .o. Box 510881 
Salt Lake City, UT 84151 

Introduction 

Major software systems pose special programming problems for 
software companies. These problems include portabi I ity, documentation, 
ease of modification, documentation of changes, and training of new 
programmers. Many aspects of what is considered •good programming 
practice• help to reduce the impact of these problems. These practices 
are good, but the needs of our company exceed the problem solution 
capabi I ity provided by these practices. We have implemented procedures 
which require the development of structured programs, uti I ize modular 
code with multiple levels, enforce extensive programmer documentation of 
code, and uti I ize tools to record changes in the code and produce 
formated documentation for each module. 

Many articles have appeared in the literature to discuss aspects of 
this problem from various perspectives. In general, portability and 
ease of modification of major software systems is achieved by 
enforcement of programming standards. These standards may include 
modular programming, structured coding, and documentation standards. 

At Statware, we have implemented coding and documentatfcon standards 
which are followed by our programmers. We have written s<l':"~are toors 
to aid in our documentation, and use software administrative tools 
provided as part of our Unix operating environment. The use of software 
tools not only aids our documentation, but enforces programming 
standards by requiring specific Information in the source code in a 
restricted format. 

This paper focuses on one of our in-house software tools, ABST. As 
the use of this tool requires the use of other tools and the use of 
coding standards, the discussion wi I I also enter these areas. 

Paper 1025 





Problem and Solution 

Statware develops the statistical software product STAT80~. A 
staff of 4 programmers maintain the source code and documentation. The 
source code consists of over 600 Ratfor modules. 

The problem is how to keep al I programmers current of software 
changes. Changes occur during bug fixes and the addition of 
enhancements to the code. When a change is made in a module, it must be 
documented to al I programmers who may use that module. 

The solution used at Statware is an in-house tool used to create an 
ab s t r a c t f o r each mod u I e • Th i s ab s t r a c t mus t p r o v i de ad e q u a t e 
documentation for a programmer to use the module correctly without 
looking at the sour~e code, The abstract is used as the first reference 
to the module and its function. The programmer may quickly note changes 
in the abstract, and check al I modules which reference the modified 
module. 

The program we use is called ABST. ABST is a C program, and 
follows standard Unix program invocation. At invocation, the program 
name is followed by several options and a list of files to be processed. 
Output is written to standard output, 

An example of ABST output follows. 
the command: 

This output was 

abst -m -t 11 1/0 ROUTINES" -r 11 1,2 11 fopen.r fop en .ab 

created with 

The output file, fopen.ab, was processed through mm(l) with the command: 

mm -T450-12 -rW80 fopen.ab > fopen,ab.mm 

Pipes may be used to do the complete processing with one command i n e • 

Paper 1025 2 



FOPEN(l.2) I /O ROUTINES FOPEN(l .2) 

NAME 

fop en file open 

SCCS 

@(#) fopen.r 1.8 10/24/85 11 :48:50 

SYNOPSIS 

integer function fopen (fi lnam,mode,recsiz,bufsiz,access,blksiz,mfsize, 
stattli!) 

character*(*) fi lnam 
integer mode 
integer re<;siz 
integer bufsiz 
integer access 
integer blksiz 
integer mfsize 
integer status 

DESCRIPTION 

Routine to handle al I of the file opening of STATSO (including 
standard input, standard output, and standard error). 

Fopen() allocates a block of memory and uses the following structure: 

fpoint( fp): 
fmodes( fp): 
f I name( fp): 
fn ame s ( 1 , f p ) : 
frecsz( fp): 
fbufsz( fp): 
fbufnc( fp): 
fbufpt( fp): 
faccss( fp): 
fblock(fp): 
ffsize(fp): 
fstats(fp): 
fcolps(fp): 
fbuffr(fp): 

file number (system dependent) 
mode (0-r, 1-w, 2-r/w, 3-a, etc) 
length of file name in bytes 
file name (packed) 
record length (may not be used on some systems) 
buffer length (can be one for unbuffered 1/0) 
number of characters in the buffer 
pointer to current location in the buffer 
file access DIRECT or SEQUENTIAL 
block size 
maximum file size for access ==DIRECT 
file status, PERM or SCRATCH 
column position 
file buffer 

3 Paper 1025 



FOPEN(l .2) 

INCLUDE FILES 

include fl les.h 
Include memory.h 

EXTERNAL REFERENCES 

external refs 
external refs 

EXTERNAL FUNCTl<JllS 

Integer 
Integer 

Paper 1025 

maxO, 
len, 

maxO, 
sysopn 

I /O ROUTINES 

mall ob, 
mfr ee, 

mal lob, 

4 

gtfnam, 
sysopn 

gtfnam, 

FOPEN(l .2) 

krctol 

len 



Output and Usage 

The output produced by ABST fol lows the format of standard 
manuals, The output may be an English text file, or a text 
containing embedded mm(l) formatting commands. In the latter 
processing by mm(l) produces the abstract in the standard format, 

Unix 
f i I e 

case, 

The information used by ABST in creating its output is taken from 
the Ratfor source code. The source code for the example abstract is 
given in Appendix 1. Some information may be added at the time of 
abstract creation by the user, e.g., adding a ti tie in the title bar 
with the -t option. 

To enable correct parsing of the source code, standards must be 
adhered to. ABST requires that blocks of code containing specific 
information be separated by a record beginning with the character 
sequence "#- - - - - - - - - -"· Within each block, a search is made 
for specific types of information. Blocks are referenced by number 
starting with block zero, Programmers must create these blocks of code 
with the appropriate information for ABST to produce a correct abstract, 
ABST has I imited warning and error capabi I I ties for detecting source 
code which does not meet these standards. 

Block zero of the source code contains the module declaration I ine 
and a one I ine comment containing a description of the function of the 
module, Block one contains the copyright notice and is ignored by ABST. 
Block two contains an extended description of the routine and the SCCS 
I ine. Blocks greater than two are checked for variable typing, external 
references, external functions, and include files. 

ABST has seven options which permit the user to design and control 
output from the program. With this many options available, a bui It in 
help system is useful, ABST fol lows Unix standards, printing a summary 
usage description when invoked with no parameters, An example of this 
output fol lows with the user input is under I ined: 

% .!.!?...Ll 
Usage: abst [-m -o outfile -c -p -t title -r rev -i ifile) file-names 

-m produce output for mm processing 
(e.g.: mm -rW80 -rOO file> file.mm) 

-o direct output to outfi le 
-c chatter to tty about what is happening 
-p start each abstract on page one 
-t put title on output 
-r put revision in parentheses on header 
-i dump name and summary line to ifile 
file-names == Ii st of files to process 

% 

As an additional aid a man page is available for ABST. 

5 Paper 1025 



Note that the options -p, -t, and -r have no effect unless the -m 
option is also specified. These three options use the page heading and 
page footer macros of the mm(l) text-formatting macro package. 

The optional ti tie bar at the top of the page is created with the 
-t option. This option places the fol lowing string as a title at the 
center of the top of the page. The module name, appearing in each 
corner of the title bar, permits easy identification of the abstract 
when bound with others. 

The module name is obtained from the module declaration I ine. ABST 
will parse this ine to extract the name from valid preceding 
definitions and fol lowing parameters. This I ine may extend over several 
records, as is permitted by Ratfor. No coding standards beyond those 
set by Ratfor need be fol lowed by the programmer at this point. 

The next section of the abstract page contains the module name and 
a one I i n e de s c r i pt i on • The mod u I e name , w h i ch was a I so used i n the 
title bar, is obtained from the module declaration I ine. The one I ine 
description is obtained from the first comment I ine after the module 
declaration I ine. ABST requires this text be enclosed by parentheses. 
If not present, the abstract will not have a description following the 
name and a warning wi I I be issued. 

The SCCS section copt<fins information regarding the module's 
position in the SCCS systeml l J. The SCCS system is used by Statware to 
manage the development and changes made to the source code. This system 
provides the fol lowing features: 

- Tracking of all changes 
and comments about what 

to a mod u I e f i I e as we I I 
the change was. 

as who made them 

The current version of the source may be retrieved at any time. 

Previous versions of the source code may be retrieved at any time. 

Mu I t i p I e cop i es of source code at di ff ere n t per i o d s of 
need not be kept on disk at one time. 

development 

- An SCCS System Administrator may be designated to control 
change the source code. 

Paper 1025 6 

who may 



The information used by ABST is either the what(1) line produced by 
get{l ), or the SCCS I ine entered by the programmer prior to the module 
being placed in the SCCS system for the first time. This line must 
appear in block two of the source code. If no line is found, the SCCS 
section on the abstract is blank. 

The synopsis section contains the full module declaration line, 
fol lowed by the variable type of each parameter passed to the module. 
ABST stores the name of each parameter passed to the routine and types 
it when parsing the variable declaration section of the source code. 
This important information requires no special coding by the programmer 
as ABST fol lows the rules of Ratfor. 

The description section contains an informative description of the 
action of the module. This text is taken from block two of the source 
code. The text in this block is written by the author of the module, 
and wi I I describe what the module does, what parameters are required, 
and what parameters are returned. The author should make this text 
clear and completely descriptive to others who may need this 
information. 

The include files are read directly from the Ratfor source code. 
They are Identified by the records which begin with the string "include" 
starting in column one. Only blocks of code after block two are checked 
for include files. If not include files are defined, this section is 
b I an k. 

External references are expected to occur in a block of code with 
no other types of records. The first record which is not a blank 
comment record will contain the string 11 external references 11 • Following 
Ni I I be the comment records which contain the string •external refs" 
followed by function, subroutine, or common variable names. 

External functions are expected in a block of code similar to that 
for the external references. The first record which is not a blank 
comment record will contain the string •external functions•. Following 
records wi I I contain function and subroutine type definitions. 

7 Paper 1025 



This section of code Is generated by the Extended PFORT Verifier. 
This Veotier was originally developed by Ryder and Hall as the PFORT 
Verifier • The verifier Is a program which parses a FORTRAN source 
code (!le to identify portability problems. Additional work was done by 
Beebe to make the program more tolerant of the input FORTRAN code, 
and this tool, the Extended PFORT Verifier, is used at Statware. The 
Verifier identifies machine dependencies in our "code as wel I and 
produces an output file containing the external references and functions 
in each module, and non-common variable definitions. This file is 
incorporated into the source code, replacing the declarations used 
during the design of the module. 

Either of these sections may be blank if the module has no external 
references or external functions. 

Variables which are local to the module are not reported in the 
abstract. The abstract is intended for the programmer who wi II be 
ca I I I n g the mod u I e f r om o the r mod u I es and w i I I no t be con c e r n e d w i th the 
internal workings of the module. 

Sections on the abstract which are blank indicate that nothing for 
that section is present in the module. The section heading is kept in 
the abstract to indicate that the programmer need not be concerned with 
items in this section. The author of the module should check the 
abstract for completeness and as a self check that coding standards have 
been fo 11 owed. 

Summary 

The management of major software systems is possible through the 
use of tools and programming standards. Software tools, both those 
written in-house and those in general distribution, may be effectively 
used to aid the management and development of software systems, and to 
enforce the programming standards which have been set. ABST has been an 
important tool in enforcing the standards we set for ourselves, and in 
providing timely information to prevent wasted development time. 

Paper 102s- 8 



1. SCCS, HP-UX Concepts and Tutorials Vol. 3: Programming Environment, 
Hewlett-Packard Company, Fort Col I ins, co, 1986. 

2. Ryder, B.G. and A.D. Hall, "The PFORT Verifier", f.~.!!.ll.!!..& Science 
Technical E!.£2.!:.l #.!_1, Bell Laboratories, Murray Hill, New Jersey-; 
M~y-1973-; revised January 1981. 

3. Beebe, Nelson H.F., "The Extended PFORT V e r i f i e r 11 , f.2.!..!.!__&~ 2.!. 
Science f.2~£.!!.l.!!. E~.!:.l• University of Utah, 
1981:---

Salt Lake City, Utah, 

9 Paper 1025 



Appendix 1: Ratfor Source Code for Example ABST Formatted Output 

# 

integer function fopen (filnam,mode,recsiz,bufsiz,access,blksiz,mfsize, 
status) 

(file open) 
#- - - - - - - - - - - - - - - - - - - - - - - - -
# 
# 
# 
If 
# 
# 
# 
# 
# 
# 

STAT80: An Interactive Statistical Package 

Copyright (C) 1985 Statware -- All Rights Reserved 

Proprietary Software: The contents of this routine shall 
not be disclosed or made available, or any portion thereof 
in any form whatsoever to any person other than the author 
without prior written approval of the author. 

#- - - - - - - - - - - - - - -
# 
# 
# 
# 
# 
# 
# 
II 
# 
II 
II 
If 
# 
# 
# 
# 
# 
II 
II 
# 
# 
II 
# 
#- -
II 
# 
II 
II 
II 
II 

Routine to handle all of the file opening of STAT80 (including 
standard input, standard output, and standard error). 

Fopen() allocates a block of memory and uses the following structure: 

fpoint(fp): 
fmodes(fp): 
flname(fp): 
fnames( 1 ,fp): 
frecsz ( fp) : 
fbufsz(fp): 
fbufnc(fp): 
fbufpt(fp): 
faccss(fp): 
fblock(fp): 
ffsize(fp): 
fstats(fp): 
fcolps( fp): 
fbuffr(fp): 

file number (system dependent) 
mode (0-r, 1-w, 2-r/w, 3-a, etc) 
length of file name in bytes 
file name (packed) 
record length (may not be used on some systems) 
buffer length (can be one for unbuffered I/O) 
number of characters in the buffer 
pointer to current location in the buffer 
file access DIRECT or SEQUENTIAL 
block size 
maximum file size 
file status, PERM 
column position 
file buff er 

for access == DIRECT 
or SCRATCH 

@(11) fopen.r 1.8 10/24/85 11:48:50 

external references (function,subroutine,common) 

external refs 
external refs 

maxO, 
len, 

mallob, 
mfree, 

gtfnam, 
sysopn 

krctoi 

11-------

Paper 1025 10 



# 
# external functions and subroutines 
# 

integer 
integer 

#- - - - - - - -
# 

maxO, 
sysopn 

# non-common variables 
# 
# sets 
# sets 
# sets 
# 

# 

integer 
integer 
integer 
integer 
integer 
character*(*) 

include files.h 
include memory.h 
# 

fioerr = O; 

fp, 
nblksz, 
nrecsz, 

blksiz, 
i, 
mode, 
nfilsz, 
status 
filnam 

lennam = len(filnam); 
fp = O; 

mallob, 

i, 
nbufsz, 
lennam 

bufsiz, 
ifptr, 
nblksz, 
nrecsz, 

gtfnam, 

ifptr, 
nfilsz 

access, 
lfn, 
nbuf sz 
lennam, 

for ( i = 1; i <= maxbfs; i = i + 1) { # find open slot 
if (fbuffr(i) == 0) { # got one 

fp = i; 
break; 

} 
if (fp != 0) { # not at maximum yet 

if (gtfnam(filnam,lennam) < 0) # bad file name 
return(-2); 

if (mode< READ II mode> APPUPD) #illegal mode 
return(-3); 

len 

lfn 

fp 
mfsize 

recsiz 

if (access I= SEQUENTIAL && access != DIRECT && access != BINARY) 
return(-1 ); 

if (recsiz == (DEFAULTREC)) 
nrecsz = RECSIZE; 

else 
nrecsz = max0(1,recsiz); 

if (bufsiz == (DEFAULTBUF)) 
nbufsz = BUFSIZE; 

else 

11 Paper 1025 



# 

nbufsz = max0(1,bufsiz); 
if (blksiz == (DEFAULTBLK)) 

nblksz = BLKSIZE; 
else 

nblksz = blksiz; 
if (mfsize == (DEFAULTSIZ)) 

nfilsz = FILSIZE; 
else 

nfilsz = mfsize; 
ifptr = mallob(nbufsz); 
if (ifptr <= 0) { # not enough memory 

call memerr('file open' ,nbufsz,ifptr,BYTE); 
return(-4); 

} 
lfn = sysopn(filnam,mode,nrecsz,nbufsz,access,nblksz,nfilsz,status); 
if (lfn < 0) { # open failed 

call mfree(ifptr,BYTE); # free buffer 
return(-5); 

# set up buff er 
# 

fpoint(fp) = lfn; # file number (system dependent) 
fmodes(fp) = mode; # mode 
flname(fp) = lennam; # length of file name (in bytes) 
call krctoi(fnames(1 ,fp),1,filnam,lennam); #put in filename 
frec.sz(fp) nrecsz; # record size 
fbufsz(fp) nbufsz; # buffer size 
fbufnc(fp) O; # number of characters in buffer 
fbufpt(fp) O; # pointer to current location 
faccss(fp) access; # file access 
fblock(fp) nblksz; # block size 
ffsize(fp) nfilsz; # file size 
fstats(fp) status; # file open status 
fcolps(fp) = O; # column position 
fbuffr(fp) = ifptr; # pointer to buffer 
return(fp); 

else # max files open 
return(-6); 

return; 
end 

Paper 1025 12 





ROBOTICS AND DATA SYSTEMS 
IN THE 

CHEMICAL ANALYSIS LABORATORY 

Chris Scanlon 
Hewlett-Packard 

4326 Cascade Road, s.E. 
Grand Rapids, Michigan 49506 

INTRODUCTION 

The tasks in the analytical chemical laboratory can be 
divided into three general areas: 

l) sample preparation 
2) sample analysis 
3) data handling 

Over the past 10 - 15 years, laboratory automation efforts 
have been focused primarily on sample analysis and data 
handling. Hewlett-Packard products for sample analysis 
include gas and liquid chromatographs, mass spectrometers 
and spectrophotometers. Data handling products include 
standalone integrators, single user workstations (HP 9000) 
and multi-user lab data systems (HP 1000). HP's 1000-based 
systems for data acquisition and lab data management are 
installed in well over 1000 laboratories world wide. More 
recently, the problem of automating sample preparation and 
handling has begun to be addressed through the use of 
robotics and dedicated sample handling systems such as bar 
code readers, autodiluters, pipetters, etc. These latest 
developments have provided the last pieces necessary for a 
totally automated laboratory bench. The challenge ahead 
will be to tie the automated sample preparation to the 
chemical instrumentation and data handling networks so that 
they all work in unison and can be configured to each user's 
particular needs. Thus, with little or no human 
intervention, samples can be automatically logged in for 
tracking, prepared and analyzed, then results and tracking 
information can be stored in a database. From there, final 
reports can be generated and passed on to printing devices 
and/or other more general purpose mini-computers or 
mainframes in the corporate information network. 

Paper 1026 



The purpose of this paper is to describe how robotic sample 
preparation has already been integrated with Hewlett-Packard 
sample analysis instruments and computer systems. In two 
examples, a Zymark automatic sample preparation system is 
used to pass prepared samples to an HP gas chromatography 
system. In the first case, an HP 150 is configured to 
co-ordinate the data transfer between the sample preparation 
system and the analytical system and then stores the results 
of the analysis for later use. The second example employs 
an HP 1000 system that can not only co-ordinate data 
transfer but can also select the analysis to be performed 
based on the sample identification information passed to it 
from the robotics system, initiate the analysis, acquire raw 
digitized data from the analysis system, reduce the data 
into peak information plus chemical component identification 
and amounts, and produce customized reports. By adding 
LABSAM/1000 software either on the same system or on another 
system connected via DS/1000, LIMS sample management 
capabilities are easily integrated as well. 

Paper 1026 2 



EQUIPMENT OVERVIEW 

Both examples that will be described utilize a Zymark 
robotics system for automatic sample preparation and an HP 
5890 gas chromatographic system for chemical analysis. 
Specific components are shown in figures 1 and 2. 

The Zymark system includes a Zl20 Zymate Controller, ZllO 
Robot Module, Z830 Power and Event Controller and additional 
modules for the sample preparation (Figure 1). 

lntegnitor 

Optical Sensor ~ 

Injector 

~ 

~ 
Master Lab Station Vortexer 

Power MCI Ewent Controller 

Figure 1 

3 Paper 1026 



The Hewlett-Packard qas chromatoqraphy system includes an HP 
5890 Gas Chromatoqraph, HP 7673A Automatic Injector, and an 
HP 3392A Inteqrator which communicate with one another over 
an INET (Instrument Network) communications loop (Fiqure 2). 

Paper 1026 

H 7873A Automatic Injector 

HPsa.A 
Gu Chromatog,.ph ----t 

Power SUpply 

------ INET ----~ 
Communatlon1 

Loop 

Fiqure 2 

4 

____ ..,..Remote 
C•ble 

HPamA 
lntegr.tor 



EXAMPLE ONE 

The HP 3392A integrator acts as a controller on the INET 
loop and stores pertinent setpoint and control information 
about each of the loop devices in files called workfiles. 
The information in these workfiles can be accessed, and if 
necessary, edited and transmitted via an RS-232 port on the 
HP 3392 integrator. The Zymark controller also uses an 
RS-232 module card for communication with other RS-232 
devices or computers. However, the software protocols used 
by the two systems are not compatible and cannot be altered 
to let the integrator and the Zymate controller communicate 
directly. An HP 150 personal computer, though, can be set 
up to act as a translator between the two and also provide 
archival storage for the data (Figure 3). 

Zymat• Controller 

AS-232 

RS-232 

HP 150 p.,._1 Computer 

zuoP­
•nd 

Event Controller 

Sl•tua Lin• 

HP 33t2A 
Integrator 

HP 7873A 
(P-Supply) 

Figure 3 

5 

HP 7873A 

INET 

HP 58IOA BH Chromatogreph 

Paper 1026 



The Zymark system prepares the sample and monitors the 
status of the GC system (using the Power and event 
Controller and the "Ready Output" line) to determine if it 
is ready to accept a sample. The Zymark places the sample 
in the automatic injector, then sends the sample 
identification information (weights, volumes, etc.) over the 
RS-232 interface to the HP 150. The information is not sent 
until a sample has been placed in the injector to insure 
that a sample is present prior to a start injection command. 
A program on the HP 150 then incorporates this information 
into a workfile that the integrator will use to calculate 
the amounts of the components of interest in that sample. 
The computer then sends down a remote start command and 
waits until the integrator indicates that the run is 
complete. The results are printed out at the integrator and 
sent to the HP 150 for archival storage and integration into 
other database routines. The program then waits for 
information on the next sample or a message that all samples 
have been analyzed from the Zymate controller. 

Paper 1026 6 



EXAMPLE TWO 

A more fully automated arrangement takes advantage of the HP 
1000-based laboratory automation system in place of the HP 
150 as shown in Figure 4. 

Balance 
Robot 

Zymate controller 

P-Cable, 
Control Line• 

HP 7173A controller 
(P-supply) 

/ 
RS.232 

RS.232 

HP 2121 

Figure 4 

7 

HP 5890A 
I I 
I I 

l1NETI 
I I 
I I 

4tjit;J) 
HP 3312A 

I 
HPDL 

Paper 1026 



In this case, the HP 1000 initiates the routine by 
instructinq the Zymate to prepare a sample. It then polls 
the Zymate until the sample is prepared and the sample 
identification is passed to. it. It then instructs the 
Zymate to load the sample and do the injection. When the 
Zymate siqnals that the injection is complete, the HP 1000 
instructs it to beqin preparinq the next sample. The HP 
1000 then instructs the GC system to do the analysis, it 
collects the data, and when that operation is completed, 
qoes back to pollinq the Zymate to wait for the next sample 
to be prepared. 

Zymate HP 1000 GC 

., ____ "PREPARE.SAMPLE" 

"READY" 

4----- "SAMPLE.ID?" 

"IO-NXXX" -----11~ 

"DONE" 

Paper 1026 

Check value of N from 
sample id, select method 
based on value of N and 
download method to 3392. 

"LOAD.INJECT" 

-----11~ "PREPARE NEXT SAMPLE" 

"START ANALYSIS" ____ ,..,.., 
3392 controls 

analysis usinq 
method selected 
by the HP 1000. 

~---- 11ANALYSIS DONE" 

"SEND DATA" 

"DATA" 

Data is filed; 
., ____ "SAMPLE READY? II 

8 



Now while the process is repeating itself preparing and 
analyzing the sample and gathering the data, the 3350 can 
process the data, store it on a disc for later retrieval, 
prepare plots and reports, and pass data on to LABSAM/1000 
sample management software. 

SUMMARY 

Based on these examples, you can easily imagine a number of 
variations to the examples that would tailor configurations 
and programs to match the processes used in your own 
laboratories. The most important step in evaluating and 
planning how to more fully automate and integrate your 
sample preparation, analysis, and data collection is to 
first outline, in as much detail as possible, what is 
required of the combined systems, in terms of answering the 
laboratory needs. The answer to these needs will include 
some conbination of control, status, error and data lines. 
The resulting configuration will be dependent upon the 
equipment involved, the time and funds available to 
implement it, and the expertise of the people defining and 
designing the system. Interfacing options will become 
clearer as robotic systems establish themselves as an 
integral component of the automated bench. 

References: 

1. Knipe, Charles R., "The Automated Bench: How Does Your 
Robot Communicate with Analytical Instruments?" 

9 Paper 1026 



I 



Performance Analysis and Enhancements 
for a Vehicle Electrical Test System 

David w. Vickers 
Stephen E. Novosad 

Southwest Research Institute 
6220 Culebra Road 

P. o. Drawer 28510 
San Antonio, TX 78284 

INTRODUCTION 

Modern luxury automobiles feature many electrical and electronic com­
ponents. Those components are varied and complex. Some luxury vehicles 
have several computers as integral parts of their electronic systems. 
The increased complexity of the electronic systems in vehicles has made 
the use of more capable test systems necessary to ensure correct assem­
bly and functionality of the vehicles being manufactured. A vehicle 
Electrical Test System (ETS) has been developed to facilitate the test­
ing of vehicle electrical and electronic systems. Major portions of the 
test system software were written by Southwest Research Institute 
(SwRI). 

The ETS consists of a network with three kinds of nodes. Development 
nodes allow test designers to develop vehicle tests. Development nodes 
also supply most of the support capabilities for the ETS including 
tester system configuration data, downloading of test sequences to 
tester nodes, and archiving of all the components and descriptions 
needed for the development and execution of tests. Gateway nodes con­
nect the tester network to the plant vehicle database computers, to the 
plant quality control computers and to the development nodes. Tester 
nodes are used to identify vehicles and run the appropriate tests on 
them. 

This paper will briefly describe the ETS and then focus on several tech­
niques used to enhance tester node performance during tests execution. 

DESCRIPTION OF ETS 

The development nodes are based on HP A900s with 3 Mbytes of memory and 
at least 468 Mbytes of disk storage on each node. The development nodes 
also include the many peripherals necessary to develop tests, such as 
printers, plotters, graphics tablets, color CRT terminals and, in some 
instances, tape drives. The development node software consists of 
several forms-based editors, a test group compiler, a test sequence 
linker and a set of general utilities. The test designer first 

Paper 1027 



describes the test system, its hardware and its connections to the 
vehicle. The test designer then describes the tests to be performed in 
logical blocks called groups. The compiler is used to generate inter­
mediate files containing the test and hardware information for the test 
groups. The test designer then describes the relationship between the 
test groups in an entire vehicle test called a test sequence. The 
linker, provided with the sequence description and the group intermedi­
ate files, is then used to link the sequence. When the tests have been 
linked they can be downloaded to tester nodes to be executed. 

The gateway nodes are HP A600s with 1 Mbyte of memory and small disk 
drives. The gateway nodes are used to communicate between the tester 
nodes and a vehicle database external to the ETS to retrieve vehicle­
specif ic information necessary to test a vehicle. The database contains 
the option content for each vehicle. The option content affects the 
test requirements for the vehicle. The gateway nodes are also used to 
communicate quality and historical information to other systems in the 
plant. In addition, the gateway systems have the capability to report 
the results of recent tests completed by the tester nodes. 

The tester nodes consist of Micro-26s. A Micro-26'consists of an A600 
computer with an integral Winchester disk and 3 1/4-inch floppies in a 
19-inch rack mountable cabinet. The A600s contain 2 Mbytes of memory 
each and the internal Winchesters contain 55 Mbytes. The tester nodes 
also include an Operator Interface Unit (OIU) which has a touch sensi­
tive color graphics CRT screen. Other custom hardware is added to the 
tester nodes as necessary to interface to the vehicle. The tester soft­
ware provides initialization, operator logon, task selection, vehicle 
identification and test execution. 

Figure 1 is a diagram of a specific plant network. All of the specially 
designed interconnections between nodes on the plant floor use fiber 
optic DS connections. 

SOFTWARE ENVIRONMENT DURING TESTS 

During test execution, several programs are executing concurrently in 
the tester nodes. The Vehicle Test Execution Supervisor (VTES) controls 
overall execution of the tests. Several programs are used to interact 
with the operator through the QIU, with data going to or from those pro­
grams through Class I/O. Other programs are used to send data to the 
vehicle or to receive data from the vehicle. Up to 10 Monitor and Alarm 
programs may be spawned by VTES to ~Jntrol parallel portions of vehicle 
tests. Figure 2 gives an overview of the important programs which 
execute during vehicle testing. 

For some I/O, the test control programs (VTES, Monitors and Alarms) read 
and write directly to or from I/O cards. For other I/O, specifically 
I/O to the OIU and I/O to the serial interface to the vehicle, the I/O 

Paper 1027 2 

i . 



(,) 

"'C 
Ill 
"O 
~ 
~ 

0 
N 
-..J 

JD 

FIGURE 1 
DEVELOPMENT GATEWAY AND TESTER NODES SPECIFIC NETWORK 



ALARM M 

ALARM 1 

MONITOR N 

MONITOR 1 

TEST CONTROL PROGRAMS 

CIO 

SCREEN 
MANAGER 

VTES EMA 
SHARED EMA 

0 1/0 1/0 

u 
BUFFER 

HANDLER DETRA 
HIGHLIGHTING 

CIO 1/0 CIO 

MESSAGE TO BCD 
HANDLER TRACKING 

SOFTWARE 1/0 
HARDWARE- -- -- - ---

Paper 1027 

SERIAL CARD 
CUSTOM 

HARDWARE 

VEHICLE 

FIGURE 2 
MAJOR PROGRAMS DATA FLOW PATHS 

DURING TEST EXECUTION 

4 

VIDEO CARD 

OIU 



is routed through Class I/O to other programs where it is processed and 
placed in memory for use by the test control programs. 

When a byte from a message on the Serial Diagnostic Link (SDL) interface 
to the vehicle is to be used by a test, then the test control program 
needing the byte sets up information in tables in the shared Extended 
Memory Area (EMA) used by VTES (TESEMA). The test control program also 
initiates collection of the message containing that byte, if necessary, 
and then continues to other tests, occasionally checking to see if the 
data has been collected. When the message is received, it is retrieved 
by the Message Handler and passed through Class 1/0 from the card to the 
Buffer Handler. The Buffer Handler processes the information in the 
message and puts it in the tables in TESEMA. The next time the test 
control program checks, it retrieves the data from the tables to com­
plete the test. 

When a test control program needs to put a message on the CRT screen of 
the OIU, it sends a request to the Screen Manager through Class I/O. 
The Screen Manager then puts the mes.sage onto the screen. When the 
operator touches the touch screen, the tracking program places a cross 
hair where the screen is touched. When the touch is removed, the track­
ing program sends the coordinates of the touch to the highlighting pro­
gram which checks to see if the touched point is in an activated area. 
If it is, the highlighting program highlights the area and sends an 
indication of the touch back to the test control program which activated 
that area on the screen. 

PERFORMANCE IMPROVEMENTS DURING DEVELOPMENT 

During initial development, programs were assigned default characteris­
tics. Priorities defaulted to 99. Programs defaulted to Code and Data 
Separation (CDS) and the linker was allowed to segment programs. Once 
individual programs were ready for integration, work could begin on 
tuning the system for higher performance. 

The relationship between the priorities of the programs and the two 
fences was one of the first variables tuned. The two fences are the 
background fence, set at 30, and the time slicing fence, set at SO. 
Programs with lower priorities (higher numbers) than the background 
fence are swapped out rather than those with higher priorities. A pro­
gram with a priority higher than the time slicing fence is executed 
exclusivly as long as it is CPU bound, but those programs with lower 
priority are time sliced. 

Since some DS 1000 programs use real-time priorities and DS 1000 was 
necessary, we did not change the boundaries from the default values. 
Also, no programs were put at a higher priority than the real-time DS 
1000 programs. The next higher programs, those between 30 and 51, were 

5 Paper 1027 



background programs but were not time slicing programs. The programs 
assigned to priorities in this range were those doing the data acquisi­
tion, the initial analysis and the interaction with the OIU screen. 
These programs, since they provided new data to the tests, needed to 
execute as rapidly as possible. They also had to execute in a short 
enough time to allow the other programs to continue. These programs 
were therefore assigned priorities in the 30 to 51 range. 

Test control programs differed from data acquisition programs in that 
test control programs, by definition, must time share so that they can 
operate concurrently. The test control programs were, therefore, given 
a priority of 51, immediately below the time sharing fence. The other 
programs, not needing to operate during actual test execution, were 
given the default priority of 99. 

After the programs in the system had reasonable priorities, the next 
area of investigation centered on the swapping of programs. Several 
avenues were utilized in the effort to reduce swapping. Programs were 
segmented by hand, made into shared code programs and/or assigned to 
partitions. 

Using the WH command and writes in the code showed that, during the 
execution of vehicle tests with many test control programs, memory was 
being fragmented and only three or four test control programs could 
simultaneously reside in memory. Programs which were required during 
tests, especially small ones which tend to make fragmenting worse, were 
assigned to partitions. Programs not required during actual testing 
were assigned to the same partitions as larger programs which were 
required during tests to ensure that the ones not required were swapped 
out during testing. 

The VTES and Monitor programs (the Monitor program executes Alarms as 
well as Monitors) were each hand segmented. The subroutines in VTES 
were segregated by use, since some were used only during part of the 
vehicle tests and others were used only at some test sites or during 
abnormal circumstances. 

VTES was initially linked as three 31-page segments. Each segment con­
tained a random set of subroutines. The program was hand segmented 
using the Link NS (New Segment) command in the Link input file, and the 
subroutines were rearranged so that six of ten segments were in memory 
at one time using the Link CD (CoDe) command. Overall, some memory was 
saved and almost no swapping occurred. 

The Monitor program was also initially linked as three 31-page segments 
and a copy of each segment was made each time the monitor program was 
cloned. The code in the Monitor program is, in reality, only about 63 
or 64 pages long. The linker used 91 pages of physical memory because 
it used the default segment size of 31 pages. Using the Link NS command 
and specifying a size, the linker can be forced to break the program up 

Paper 1027 6 



into three nearly equal length segments so that it only takes up about 
67 pages of physical memory. 

The largest saving in physical memory space, however, was made by making 
the Monitor program into a Shared code Program (SP). Since the program 
was already a CDS program, adding the SP command to the Link command 
file was all that was required to make it a shared program. By making 
the Monitor program a shared program, only one copy of the code segment 
was kept in memory and memory space was saved. 

POST-DEVELOPMENT ENHANCEMENTS 

The techniques used above provided a useable system; however, as line 
speeds increased in the plant, the vehicle tests needed to run faster. 
During integration, tradeoffs were made to increase the performance of 
some innermost loop routines at the cost of readability or modularity. 
After integration, two techniques were applied to provide additional 
performance enhancements. They were: (1) using large file reads, and 
(2) changing the system time quantum. 

The techniques used to determine which subroutines were worth working on 
and finding the information required to improve those subroutines were 
dictated by the characteristics of the tester and development systems. 
All tester software was developed on one of the development nodes. The 
tester nodes did not contain the source code for the tester software. 
The Symbolic Debugger was therefore of little use. When a study of the 
runtime data produced by the tester software was not sufficient to solve 
a problem, the normal debug method was to put write statements into the 
code to find and fix the problem. 

The first technique used to measure the performance of various portions 
of the software was the insertion of write statements. In order to 
minimize affect on execution, the timing data was taken using a cross 
load from the system time count, $TIME. The timing data was put into an 
array and printed after execution was complete. When more complex and 
less intrusive techniques were needed, an HP-64000 system with an inter­
face to the A-600 backplane was used. For those programs which were not 
shared code and were all in memory at one time, the address lines of the 
backplane gave excellent statistical information on which parts of code 
were being used. The major drawback was the limited number of data 
points over which data could be taken. This limitation could be some­
what overcome in two ways. The first was to take statistical data over 
smaller portions of the program, and the second was to take data in a 
repeat mode and estimate the averages as the numbers on the screen 
changed. 

Using the logic analyzer, data also was obtained from shared code pro­
grams; however, that data was less easily used since it came from more 
than one program executing at one time. Data could be obtained from 

7 Paper 1027 



programs not normally in memory by putting all segments into memory. 
Unfortunately, this method provided less information about actual execu­
tion behavior, since the swapping of segments did not occur. The logic 
analyzer also provided statistical data regarding execution of system 
routines, but not about DMA-type activity such as data transfers from 
disk. Using the data from the write statements and the logic analyzer, 
and general knowledge of HP-1000 systems and the TES in particular, two 
major and several minor changes were made. 

Figure 3 gives an overview of the elements of the tests as seen by the 
test execution software. A particular sequence is executed based on the 
vehicle to be tested. The sequence consists of partial tests called I, 
groups. These are executed serially by VTES which also spawns the Moni-
tors and Alarms that execute in parallel with VTES. The basic structure 
of Groups, Monitors and Alarms is the same. The data that VTES and the 
clones of the Monitor program need to execute the Groups, Monitors and 
Alarms is provided to the tester in type 2 files (files consisting of 
records of a constant, predefinable length) with various short record 
lengths. Since the files were being read one record at a time, the 
actual reading of the Group-type files was taking a significant part of 
the test time. 

One way to decrease the time required to read the files was to force the 
files to type 1 (record length equals 128) using the F option during the 
FmpOpen call and then to read the files into a large buffer. There is, 
however, no room for a large buffer in the data segment of either VTES 
or the Monitor program. A separate program (Group Read) was therefore 
written which has room for a large buffer in the data segment. The new 
program has access to TESEMA, where the data from the files must be 
stored. Only two parameters must be passed to Group Read to put the 
data in the correct places in TESEMA. These parameters are passed to 
Group Read through the run string. Some data must be passed directly 
from Group Read to the calling test control program. That data is 
passed back via an EXEC 14 string passage call using a buffer reserved 
by the calling test control program which scheduled Group Read. After 
some experimentation, the tests were found to execute faster if the 
EXEC calls scheduling Group Reads were queued. The EXEC calls, of 
course, must be with "wait," since a return buffer is expected. The 
scheduling EXEC call is therefore an EXEC 23 queue schedule with "wait." 

In order to get the information into the correct place in EMA using the 
type 1 reads, more calculations must be made. A call to Group Read 
results in the following actions by Group Read. The first read gets the 
code for the Group or Monitor to be executed. The second read provides 
the data necessary to calculate the position and length of all the data 
for the Group or Monitor. The next two reads get all of the data. 
Then, using the information from the second read, all of the data is 
separated and put into the correct places in EMA. 

Paper 1027 8 



co 

"'C 
Ill 
"O 
~ 
~ 

0 
l\J 
-.J 

DEFINITIONS: 

SEQUENCE=: [SEQUENCE STATEMENT]*• END SEQUENCE 

SEQUENCE STATEMENT E jSPAWN MONITOR/ALARM, 
SEQUENCE CONDITIONAL, 
GROUP, 
KILL MONITOR/ ALARM l 

GROUP=: [GROUP STATEMENT]*· END GROUP, FAULT MAP 
GROUP STATEMENT E jGROUP CONDITIONAL, 

PRIMITIVE FUNCTION l 

MONITOR=: [GROUP STATEMENT]*· END GROUP 

ALARM= [GROUP STATEMENT, ALARM CONDITION]*· END GROUP 

EXAMPLE: 

SEQUENCE A 
SEQUENCE CONDITIONAL 
SPAWN MONITOR _______________________ MONITOR 

GROUP B __________ GROUP B GROUP CONDITIONAL 

SEQUENCE CONDITIONAL PRIMITIVE D PRIMITIVE 
SPAWN ALARM PRIMITIVE E GROUP CONDITIONAL 
GROUP C PRIMITIVE F GROUP CONDITIONAL 

KILL MONITOR 
KILL ALAR& 
END SEQUENCE 

GROUP CONDITIONAL 
PRIMITIVE G 
PRIMITIVE H 
END GROUP 
FAULT MAP 

FIGURE 3 

PRIMITIVE 
PRIMITIVE 
END GROUP 



During actual execution of tests, especially at those sites where the 
serial line is the only connection to the vehicle, much of the execution 
time is spent polling the primitive functions to determine if they have 
been completed. This process is normally compute-bound since it con­
sists primarily of checking tables in memory. Since the test control 
programs have priorities above the time swapping fence, they execute 
until the quantum is over. During tests, a test control program will 
sometimes loop, delaying testing until a parallel test control program 
has determined that a stable condition exists in the vehicle. There­
fore, some of the time that control programs are executing is not being 
used effectively. To be most effective, programs should execute their 
loop once to check for data, but should not continue to execute if there 
is no new data. The system quantum determines the amount of time a pro­
gram is executed before another program is executed. Experiments were 
made to determine the effect on the total test time of changing the sys­
tem time quantum. The raw results of those experiments are shown in 
Tables 1 through 3. 

One of the most indicative experiments was the first one. The data from 
Table 1 is plotted in Figure 4. The decrease in overall time and in the 
standard deviation of the time as the time quantum is changed from the 
300-millisecond default to 100 milliseconds is obvious. Below 100 
milliseconds, although there are still some shorter tests, there are 
also some longer tests. The data from Tables 2 and 3, together with 
data from Table 1, indicate that the optimum time quantum is between 80 
and 110 milliseconds. Since the time quantum is only variable in lO's 
of milliseconds, 100 milliseconds was chosen as the time quantum. 

The data gathered during the experiments could not always be placed on a 
simple smooth curve. There are several reasons for the variations. The 
amount of time taken by a particular test was dependent on some external 
variables. For example, if the test was run on a vehicle with a cold 
engine, the test took much longer to complete. The number of samples at 
each quantum may not have been enough to provide a statistically sig­
nificant sample. Small variations and inconsistencies in the operation 
of the vehicle during the tests could, at times, have had a significant 
effect on the time. For example, the test that took 184 seconds to com­
plete with the time quantum set to 250 milliseconds was almost certainly 
the result of some vehicle condition. As the time quantum was reduced 
below 100, the dispersion of the times increased significantly. Over­
all, the data did indicate the basic trends involved in changing the 
time quantum and provided sufficient information to determine a suitable 
value for it. 

CONCLUSION 

There are many different methods which can be used to increase the per­
formance of a system. The methods used during the development of a sys­
tem may differ in some ways from those used later, but they are in many 

Paper 1027 10 



TABLE l 
TIMES (IN SECONDS) FOR 10 TESTS AT SO-MILLISECOND INTERVALS 

Time Quantum (Milliseconds) 

50 100 150 200 250 300 

1 143 144 147 157 168 172 

2 146 142 150 146 184 178 

T 3 142 138 147 153 165 168 
E 
s 4 148 136 151 156 156 159 
T 

5 155 143 149 149 157 156 
N 
u 6 136 138 150 156 160 167 
M 
B 7 138 135 150 159 1 62 162 
E 
R 8 146 139 147 151 159 174 

9 141 147 151 160 171 162 

10 133 142 144 155 151 160 

Max 
Time 155 147 151 160 184 178 

Min 
Time 133 135 144 146 151 156 

Avg 
Time 142.8 140.4 148.6 154.2 163.3 165.8 

11 Paper 1027 



TABLE 2 
TIMES (IN SECONDS) FOR 10 TESTS AT INTERVALS 

BETWEEN SO AND 110 MILLISECONDS 

Time Quantum (Milliseconds) 

so 70 80 110 

1 140 lSO 141 140 

2 144 133 1S6 147 

T 3 140 137 143 148 
E 
s 4 138 148 146 144 
T 

s 142 lSO 143 140 
N 
u 6 149 143 137 144 
M 
B 7 141 149 1S4 lSO 
E 
R 8 149 139 148 143 

9 147 136 168 148 

10 149 134 lSO 14S 

Max 
Time 149 lSO 168 lSO 

Min 
Time 138 133 137 140 

Avg 
Time 143.9 141.9 148.3 143.2 

Paper 1027 12 



TABLE 3 
TIMES (IN SECONDS) FOR 10 TESTS AT 50 AND 100 
MILLISECONDS WITH AND WITHOUT OPERATOR ACTIONS 

Time Quantum (Milliseconds) 

50 50A 100 lOOA 

1 164 135 145 137 

2 139 134 148 148 

T 3 140 132 138 129 
E 
s 4 141 134 148 135 
T 

5 144 125 144 135 
N 
u 6 148 146 143 131 
M 
B 7 155 129 148 145 
E 
R 8 146 130 143 142 

9 146 130 139 129 

10 146 131 146 141 

Max 
Time 164 146 148 148 

Min 
Time 139 125 138 129 

Avg 
Time 146.9 131.6 144.2 137.2 

13 Paper 1027 



@ ANOMILY 

180 

x 
I 

,' x 
I x i: 

170 I 
Ix 

I 
I x 

I 
* J 160 ~ 

'* ,. 
~ 

I 
I // 

\ I Y! \ x 
150 \ , x / x \/ / 

* 
x ,,I 

X-" 
I 

140 
I 

~I x 
x 1 
x,--' 

130 
50 100 150 200 250 300 

FIGURE 4 
SCATTER PLOT FOR 50 MILLISECOND INTERVALS 

Paper 1027 14 



respects similar. Enhancements, both during and after development, con­
sist largely of two related actions. The first is to determine what 
system tasks are taking significant amounts of time. The second is to 
tune the use of the existing system to optimize or eliminate those sys­
tem tasks. Attempts to optimize all parts of a large system may be 
inappropriate, but optimizing the most critical or the most time consum­
ing portions of a system can be very beneficial. 

15 Paper 1027 





Using the Touchscreen Features of the HP150 in Application 
Programs 

Michael D. Green 
Kenneth L. Kueny 

Department of Aerospace Engineering 
University of Maryland 
College Park, MD 20742 

I. Introduction 

Many devices are available for manual input of data into 
computers. Keypads, barcode readers, the mouse, joysticks 
and touchscreens are a few examples. Each device has 
advantages and disadvantages in ease of use, resolution, 
hardware complexity, error rejection, robustness, and size. 
The Hewlett Packard 150 personal computer incorporates a 
touchscreen into its display. The main advantage of the 
touchscreen is that the input mechanism is combined with the 
display and no additional hardware is required. Many 
applications are available for the HP150 personal computer 
which utilize its touchscreen features. This paper will 
describe how to use the touchscreen as an input device to 
HP1000 application programs. 

II. Hardware Overview 

The touchscreen consists of a grid of 21 by 14 pairs of 
infrared emitters and photo-detectors along opposite sides 
of the screen bezel [Ref. 1]. A keyboard and touchscreen 
controller scans the emitters and detectors checking for a 
blocked pair.The data is averaged if two adjacent pairs are 
interrupted and thus the resolution is greater than the 
number of pairs used. A valid hit is reported to the 
controller as one of 27 rows and one of 41 columns. 

III. Software 

The touchscreen capabilities are accessed through sequences 
of escape codes [Ref. 2,3]. The codes are defined below: 

A. Reporting Mode 

There are two modes of detecting •touches'; field reporting 
and row-column reporting. Field reporting defines areas of 
the screen as fields and also establishes the response of 

Paper 1028 



the fields to touch. Field mode is useful for menu driven 
applications. Row-column reporting senses the row and column 
address of a touch and is useful for cursor positioning. 

The default mode for touchscreen reporting is off, touches 
are not reported. The following escape sequence sets up the 
touch field reporting modes. 

ESC - z <smode> n [<tmode> MJ 

where 

<smode> defines the screen mode. 

O = Turn off all reporting without deleting 
any fields. 

1 = Enable row-column reporting only. Disable 
field reporting,row-column address 
returned. 

2 Enable touch-field reporting only.Reports 
from defined fields. 

3 = Enable row-column and field reporting. 
Defined fields are returned if touched, 
other areas of the screen are returned 
as row-column address. 

4 = Toggle touchscreen on/off. 

<tmode> defines the touch mode for row-column 
reporting.Tmode is required for row-column sensing 
but is optional for field sensing. Possible values 
for tmode are: 

1 Report on touch only. 
2 Report on release only. 
3 Report on touch and release. 

B. Defining a touch field 

If touch field reporting is chosen the following escape 
sequence defines the field. 

Paper 1028 

ESC - z g <R> r <C> c <curs> p <beep> b <off> e 
<on> f <attr> a <mode> m <buff-len> L 
<buf> 

2 



where 

<R> The beginning and ending rows for the 
field.(O to 47) Entered as <start­
row,end-row> and end-row must be greater 
than or equal to start-row. 

<C> The beginning and ending columns for the 
field.(O to 79). ~ntered as <start­
column,end-column>, again end-column 
must be greater than or equal to start­
col umn • 

.... curs> = The position of the alpha cursor when 
the field is touched. If <curs> is 
omitted the cursor is not positioned on 
touch. Values for <curs> are 

O = The cursor is not positioned. 
l = The cursor is positioned at the 

upper left corner of the 
field. 

<beep> = The sound made when a field is touched. 
If <beep> is omitted no beep occurs. 
Values for <beep> are 

o No sound is made when field is 
touched. 

l = The system beeps when field is 
touched. 

<off> = The enhancement displayed when the field 
is off (not touched) • Values are 
displayed in the enhancement table shown 
below. If <off> is omitted the default 
value of 10 (half-bright, inverse) is 
assumed. 

<on> = The enhancement displayed when the field 
is on (touched). Again, possible values 
are displayed in the table below. If 
<on> is omitted the default value of 2 
(inverse) is assumed. 

3 Paper 1028 



Touch Enhancement Table 

I o l 2 3 4 5 6 1 8 9 10 11 12 13 14 15 

Half-bright I 
Underline I 
Inverse I 
Blinking IX 

x x 
x x x x 

x x x x 
x x x x 

x x x x x x 
x x x x 

x x x x 
x x x 

<attr> The type of field to be defined. 

1 ASCII field 

<mode> 

<buf-len> 

<buf> 

3 Toggle field 
4 Normal field 

The next section describes the types of 
fields available. 

The sensing mode for this field. Values 
for mode are : 

1 Report on touch. 
2 Report on release. 
3 = Report and release. 

The length of the character string 
associated with this field. 

The character string associated with 
the field. Buf can be up to 80 
characters for ASCII fields and must 
be 2 characters for Toggle and 
Normal fields. 

c. Types of touch fields 

Paper 1028 

1 = ASCII field. A buffer of 80 characters is 
associated with the field. When the 
field is touched the buffer is sent 
to the application. 

3 = Toggle field. When the field is first 
touched it is toggled on, when 
touched again it is toggled off. 
When touched it returns the 
following escape sequence: 

ESC - z <buf> <state> Q 

4 



Where 

<buf> is a two character buffer as 
specified at the end of the main 
escape sequence, thus <buf-len> 
needs be defined as 2. <Buf> can be 
used to identify which field has 
been activated and is returned in 
lower case. 

<state> returns one of two values: 
1 = toggle field turned ON 
2 = toggle field turned OFF 

4 = Normal field. Similar to 
ASCII fields but only two characters are 
associated with <buf>. The following 
escape sequence is returned to the 
application program. 

ESC - z <buf> <type> Q 

Where 

<buf> = two character buffer 
returned, again in lower-case. 

<type> = 5 when normal field is 
touched 

= 6 when normal field is 
released 

NOTE: A toggle field has two states, 
either ON or OFF whereas a normal field 
is ON only while being touched. 

D. Row-column reporting 

When row-column reporting is activated the following escape 
sequence is returned when the screen is touched. 

ESC - z <row> x <col> y <type> Q 

Where 

<row> = two-digit integer specifying the row. 
(O to 47) 

5 Paper 1028 



<column> = two-digit integer specifying the 
column. (0 to 79) 

<type> 3 when row-column is touched. 
= 4 when row-column is released. 

E. Deleting Touch Fields 

When defined the touch fields remain in operation within the 
two page alpha memory unless explicitly disabled. Even if 
they are scrolled off the screen they still remain in effect 
and will be active if scrolled down again. The following 
escape sequence removes a single touch field. 

ESC - z d <row> r <col> c 

Where <row> and <col> define any coordinate within 
the touch field. No action is taken if no field is 
defined at this point. 

The following escape sequence deletes all touch fields. 

ESC - z D 

F. Resetting Touch Fields 

Resetting the touchscreen turns all fields OFF but does not 
affect touch sensing or reporting. The following escape 
sequence resets the touch fields. 

ESC - z J 

IV. Sample Program 

The following is a sample program developed to demonstrate 
the use of the touchscreen principles described above.There 
are two main applications for user defined touch fields: 
data entry and command entry and the sample program 
demonstrates both. A menu driven touchscreen program 
requires scroll suppression and a pending read following 
the touch field definition. Without scroll suppression the 
touch field will scroll off the screen. The touch field 
response is not detected unless the driver program has a 
pending read. 

Paper 1028 6 



The main program is just 
subroutine FIELD could be 
generates touch fields that 
wide. 

a simple driver, however, the 
used in any application. It 

are 3 rows high and 18 columns 

The output from the sample program appears as follows. 
Touching the displayed values generates a request to enter a 
new value for the parameter which is then updated. Touching 
the STOP field stops the program, and then the touch fields 
are disabled. The field which has been touched is 
determined by checking the value of the returned character 
buffer. 

1---F~··~r~~~==1--.· -,,,, ::-, J--[.=:'"~c, J ! 
~:;~ :] ~:~~~~:_l ~~::_~;--] 
ill L~71-<9_] ~,~,,,~-] ~~-V(9(:81~~ 
I 1-- ~~:p- --1 
I L ________ _J 

Ill Enter new V (1): _ 

L _____ ----------- -·-·--·-·---

7 Paper 1028 



PROGRAM TOUCH 

CHARACTER*lO RESP 
INTEGER R,C 
REAL V(9),X 

************************************************************ 
* * 
* * 
* General Purpose Touch Field Program * 
* * 
* Department of Aerospace Engineering * 
* * 
* University of Maryland * 
* * 
* College Park, Maryland * 
* * 
* 8 January 1986 * 
* * 
* * 
* * 
************************************************************ 

c Written by: Michael D. Green & Kenneth L. Kueny 

c Generate Dummy Data for display. 

DO I=l,9 
V(I)=I*I 

END DO 

c Home cursor and clear display 

5 WRITE(l,*) CHAR(27), 1 H1 ,CHAR(27), 1J 1 

c Call FIELD Subroutine (Row,Column,Label,Response,Value) 
c Row => defines the top row of the touch field 
c Column => defines the left hand column of the touch 
c field 
c Label => 6 character string defining touch field 
c label 
c Response => 10 character string defining touch field 
c response 
c Value => value to be displayed in touch field 

CALL FIELD(l,l, 'V(l)= ','New V(l)= 1 ,V(l)) 
CALL FIELD(l,30, 1V(2)= ','New V(2)= ',V(2)) 

Paper 1028 8 



CALL FIELD(l,60, 1V(3)= 
CALL FIELD(5,l, 'V(4)= 
CALL FIELD(5,30, 1V(5)= 
CALL FIELD(5,60,'V(6)= 
CALL FIELD(9,l, 1V(7)= 
CALL FIELD(9,30, 1V(8)= 
CALL FIELD(9,60, 1V(9)= 
CALL FIELD(l3,30, 1 STOP 

','New V(3)= 1 ,V(3)) 
','New V(4)= 1 ,V(4)) 
','New V(5)= 1 ,V(5)) 
','New V(6)= 1 ,V(6)) 
','New V(7)= 1 ,V(7)) 
','New V(S)= 1 ,V(S)) 
','New V(9)= ',V(9)) 
','Hit return',X) 

c Read touch field response 

10 FORMAT (A10,F4.4) 
READ (1,10) RESP,X 
WRITE(l,*) CHAR(27),'A',CHAR(27),'K' 

IF (RESP.EQ.'Hit return') THEN 
GOTO 99 

ELSE 
IF (RESP.EQ.'New V(l)= ') V(l)=X 
IF (RESP.EQ.'New V(2)= ') V(2)=X 
IF (RESP.EQ.'New V(3)= ') V(3)=X 
IF (RESP.EQ.'New V(4)= ') V(4)=X 
IF (RESP.EQ.'New V(5)= ') V(5)=X 
IF (RESP.EQ.'New V(6)= 1 ) V(6)=X 
IF (RESP.EQ.'New V(7)= ') V(7)=X 
IF (RESP.EQ. 1New V(S)= ') V(S)=X 
IF (RESP.EQ.'New V(9)= ') V(9)=X 
GOTO 5 

ENDIF 

Pending read 
Scroll off 

! Stop selected 
!turn off fields 

! Redraw screen 

c Main body of program would go here. Other IF statements 
c can be used to determine action to be taken for a given 
c response. 
c eg. programatic scheduling 

c Deactivate all touch fields 

99 WRITE(l,*) CHAR(27), 1 -ZD 1 

STOP 
END 

c ----------------------------------------------------------

SUBROUTINE FIELD(R,C,LABEL,RESP,Z) 

CHARACTER*6 LABEL 

9 Paper 1028 



c 

c 

CHARACTER*10 RESP 
CHARACTER*1 E,CR 
REAL Z 
INTEGER R,C,H,W 

H=2 

W=l7 

Row height of touch field minus one (Can be 
modified) 
Column width of touch field minus one (Can be 
modified) 

E=CHAR(27) 
CR=CHAR ( 13 ) 

Escape character definition 
Carriage return character definition 

c Row bound error message 

IF (R.GT.23-H.OR.R.LT.l) THEN 
WRITE(l,*) E,'-zD' 
WRITE(1,*) '>>>ERROR<<<' 
WRITE(l,*) 'Row parameter for ',label,' is 1 ,R, 1 • 1 

WRITE(l,*) 'Row parameter range is 1 to ',23-H, 1 • 1 

STOP 
END IF 

c Column bound error message 

IF (C.GT.79-W.OR.C.LT.l) THEN 
WRITE(l,*) E, 1 -zD' 
WRITE(1,*) '>>> ERROR <<<' 
WRITE(l,*) 'Column parameter for ',label, 1 

$ is 1 ,c, 1 • 1 

WRITE(1,*) 'Column parameter range is 1 to ',79 
$ 

STOP 
END IF 

-W, I, I 

c Activate touch field reporting only. 

WRITE(l,*) E, 1 -Z2N 1 

c Define touch field with predefined row and column 
c address, no cursor positioning, beep on, half bright 
c inverse field when off, inverse when on, ASCII field 
c report on touch, buffer length 10 characters, buffer 
c predefined as •resp'. 

WRITE(l,*) E, 1 -zg 1 ,R, 1 , 1 ,R+H, 1 r 1 ,C, 1 , 1 ,C+W,'clbl0e2fla 
&lm10L 1 ,RESP//CR 

Paper 1028 10 



c Position cursor and label touch field 

IF (LABEL.NE. 1 STOP 1 ) THEN 
WRITE(l,*) E, 1 &a 1 ,R+l,'r',C+l,'C',LABEL,Z 

ELSE 
WRITE(l,*) E, 1 &a 1 ,R+l, 1 r 1 ,c+1, 1 c 1 ,LABEL 

END IF 

c Position cursor at bottom of screen for response 

WRITE(l,*) E, 1 &al8rlC' 

RETURN 
END 

c ----------------------------------------------------------

11 Paper 1028 



v. References 

1. HP 150 Technical reference manual. PN 45625A 
2. HP 150 Programmer's reference manual. PN 45435-90002 
3. Grow your own touch. Bill Crow. Professional Computing 

Dec/Jan 1985 Volume 1, Number 5. 

Paper 1028 12 

I . . 



SETKY-GETKY, A KEYED ACCESS SYSTEM FOR THE HPlOOO 

Dorothy Bickham 
David Neumann 

Chemical Thermodynamics Division 
National Bureau of Standards 

Gaithersburg, MD 20899 

INTRODUCTION 

SETKY-GETKY (1) is a public domain keyed access system written for the 
Hewlett-Packard HPlOOO mini-computer*. Its main function is to provide 
rapid access to free formatted textual or tabular material stored in 
large data files. It provides a choice among output devices and some 
user control over the format of the material displayed. Applications 
where SETKY-GETKY could be used include an online phone directory, a 
correspondence file, a data base of computer users or vendors, an online 
help system, and a storage and retrieval system for tabular data. 

The basic characteristic of a keyed or indexed access system is that, in 
order to access data in a data file, a separate, smaller, more rapidly 
searchable file is created containing only the keys to and the locations 
of the records in the original data file. Such a file is called an 
index or key file (2) It provides a means of rapid retrieval, via 
direct access, of records from the data file. In the SETKY-GETKY 
system, the keys or keywords are defined by the user and serve to 
identify, for future retrieval, groups of records in the data file. 

The GETKY program performs the data retrieval for a requested keyword 
when invoked by the user as follows: 

CI> GETKY, <keyword>, <keyfile> 

In the above, and in other examples below, "CI>" is the command 
interpreter prompt issued by the HP operating system. The form of the 
GETKY runstring allows for other options and parameters, some of which 

* Certain commercial equipment including computer software is 
identified in this paper in order to adequately specify procedures, 
experiments, and techniques used. Such identification does not imply 
recommendation or endorsement by the National Bureau of Standards, 
nor does it imply that the materials, equipment, or software 
identified are necessarily the best available for the purpose. 

Paper 1029 



are shown below. A complete description can be found in the manua1(1,3) 
for the system. The SETKY program generates the key file used by GETKY 
to retrieve the data and is invoked as follows: 

CI> SETKY, <datafile> 

Again, details on the SETKY runstring are given in the manual(l,3). 

To implement the SETKY-GETKY system, the user modifies an existing data 
file by including SETKY commands indicating which groups of data records 
are to be associated with which keywords. Keywords are ASCII character ! ' 

strings, up to 24 characters in length. Depending on the application, 
keywords might be author names, program names, abstract numbers, or 
chemical substance formulas. The data itself can be textual or tabular 
information, a transfer command, or a command to run a program. 

After the data file has been organized, the SETKY program is run to 
generate the key file used by GETKY. GETKY can then be used to access 
and display data associated with any keyword. In its interactive mode, 
GETKY will display on the terminal screen an alphabetized list of 
keywords that bracket a requested keyword when the keyword itself is not 
in the key file. The user may then select one of the displayed keywords 
or move forward or backward through a list of keywords. SETKY-GETKY 
also provides an automatic facility for transferring from one key file 
to another. 

SETKY and GETKY were modeled after the programs, GENix(4) and CMD(4), 
respectively, which Hewlett-Packard no longer supports on the HPlOOO 
model A900. GENIX, available under RTE-6(4), is a utility program which 
creates index files for use by the HP HELP(4) and CMD utilities. There 
are many similarities between SETKY and GENIX and between GETKY and CMD. 
Both pairs of programs, SETKY-GETKY and GENIX-CMD, provide for the 
retrieval of free formatted text, allow multiple .keys to access the same 
data, provide a facility for blocking the text into subsections for 
display purposes, allow transfers from one indexed file to another, and 
display a list of valid keys to chose from if the user enters an invalid 
one. 

There are some differences between the two systems. CMD allows for a 
partial match on a key; for example, OXY would be recognized as a match 
for OXYGEN if no other keyword in the key file began with the letters, 
OXY. On the other hand, SETKY allows duplicate keys, i.e., one key 
~eferencing more than one set of data. GETKY also provides some 
additional features: spooling of output to a printer, output to a disc 

Paper 1029 2 



file, execution of run commands in the data, and the availability of a 
programmatic interface. 

Three examples are presented below to demonstrate the use of 
SETKY-GETKY. The first is a simple example of a database of computer 
users. The second example shows the development of an online help 
system and user's manual. The last example involves the storage and 
retrieval of tables of chemical thermodynamic functions. It illustrates 
how the SETKY-GETKY programmatic interface subroutines: OpenKy, CloseKy, 
PositionKy, and ReadKy can be invoked from an application program. 

USERS INFORMATION SYSTEM 

A small database was created using SETKY-GETKY for the storage and 
retrieval of pertinent information about the users of our HPlOOO. The 
data items stored for each user included first and last name, phone 
number, building and room number, data center, type of terminal or 
microcomputer, and mux port. This information, along with the required 
SETKY commands, was stored in one data file, called USERS.IDX. It is a 
convention of the SETKY-GETKY system that all data files have an 
extension of IDX. The program SETKY was run as follows: 

CI> SETKY, USERS.IDX 

to create the key file, USERS.KEY. Again, by convention, all key files 
generated by SETKY have a KEY extension. 

GETKY is invoked to retrieve data from USERS.IDX via the location 
information contained in the key file, USERS.KEY. For example, to 
display the data stored on the user named Neumann, enter 

CI> GETKY, NEUMANN, USERS.KEY 

and the following is displayed. 

David Neumann 
Phone 921-3632 
Bldg. 222 / Room Al57 
Chemical Thermodynamics Data Center 
Vectra Microcomputer 
MUX port 63 

On the other hand, if a user enters 

CI> GETKY, HP150, USERS.KEY 

3 Paper 1029 



then, there being more than one HPlSO keyword in USERS.IDX, the first 
entry appears followed by a continuation message: 

David Smith-Magowan 
Phone 921-2108 
Bldg. 222 / Room Al60 
Electrolyte Data Center 
HPlSO Microcomputer 
MUX port 26 

NOTE: 
Another occurrence of this key has been found. 
Hit <CR> to display, A,<CR> to stop 

If the user were looking for the data 
displayed, he could enter an A (for abort) 
to abort GETKY. On the other hand, if 
another HPlSO, he could enter a carriage 
of data indexed under HPlSO. 

on the HPlSO that was just 
followed by a carriage return 
he were looking for data on 

return to display the next set 

In our users data file we have information on 32 users, plus 4 modems, 
and a graphics workstation. This information is keyed not only by user 
name, but also by data center, terminal type, mux port number, and 
graphics capability of the user's terminal, if any. For example, the 
data and SETKY commands for David Neumann are entered in the data file, 
USERS.IDX, as follows: 

"NEUMANN 
"SS 
David Neumann 
Phone 921-3632 
Bldg. 222 / Room Al57 
Chemical Thermodynamics Data Center 
"CTDC 
Vectra Microcomputer 
"vectra 
"graphics 
MUX port 63 
"lu63 
"XX 

All the records that begin with a double quote, ", are SETKY commands 
and will not be displayed with the data. The pair of double quotes, 

Paper 1029 4 



is used to signal SETKY that a key is coming for a new data segment. 
The next record is the key, in this case, NEUMANN, preceded by a double 
quote. The "SS and "XX records are used to mark the beginning and end 
of the data associated with the key, NEUMANN. Within the demarcated 
data block, the records that start with a double quote are additional 
keys that reference the same data as the key NEUMANN does. 

These additional keys allow the user to look at the information in the 
data base in a variety of ways. If the system manager wants to refresh 
his memory as to who is using an HP2621 terminal, he can enter 

CI> GETKY, HP2621, USERS.KEY 

If he is working on some graphics software and wants to determine who 
might be affected by changes, he can enter 

CI> GETKY, GRAPHICS, USERS.KEY 

for a display of the users with graphics monitors, their terminal 
and their mux ports. For instance this information is required 
configuration file used by the GRAFIT/lOOo(S) software package. 

types, 
for a 

The GETKY program also offers the option of sending the data retrieved 
to a printer or a disc file, as well as to the screen. To obtain a 
listing of all the users who belong to the Chemical Thermodynamics Data 
Center, indexed under CTDC, on the printer, lu 6, simply enter 

CI> GETKY, CTDC, USERS.KEY, 6 

and the GETKY program will retrieve all the data and automatically spool 
it to the printer. 

On a day-to-day basis, it seems that the most common use of this users 
data file is for the retrieval of phone numbers. To make the runstring 
short and easy to remember, a short, simple Fortran program, called 
PHONE, was written. Now a user only has to enter 

Cl> PHONE, <username> 

where username is the name of the user whose phone number is desired and 
the information in USERS.IDX on the requested user is displayed. The 
program, PHONE, calls a subroutine named, RuGetKy, which schedules GETKY 
with the given username as the key and USERS.KEY as the key file. 

5 Paper 1029 



ONLINE HELP SYSTEM PLUS USER'S MANUAL 

A help system provides both online help information and a hardcopy 
user's manual. This is accomplished through the construction of a 
single data file that incorporates not only the information on a variety 
of topics describing programs, tips, procedures, and other information 
needed by the users, but also SETKY commands. Then, after this data 
file is processed by SETKY to produce a key file, online help is 
available with GETKY. By adding TEXED(6) commands and running the TEXED 
program, a user's manual is produced from this same data file. This is 
possible because SETKY-GETKY is completely compatible with TEXED, 
document processor for the HPlOOO. 

The data file is named HELP.IDX, the name of the default help file of 
the SETKY-GETKY system. The SETKY commands are inserted into HELP.IDX 
by using EDIT/10QQ(7). The textual information to be retrieved by GETKY 
for each individual topic is preceded by a "SS record and followed by a 
"XX record. A descriptive keyword is placed before each "SS record in 
the required SETKY format. Frequently one or more additional keywords 
are used to reference the same text. These additional keywords are 
placed within the body of the text preceded by a double quote to 
indicate that they are keywords, not part of the text to be retrieved by 
GETKY. For example, four print programs are described. Each of these 
print programs is indexed under two keywords, the individual program 
name and the generic word print. Thus information on our program, PT, 
is arranged as follows: 

"" 
"PT 
"SS 
<first line of text describing program PT> 
<second line of text describing program PT> 

"PRINT 
<next line of text describing program PT> 

<last line of text describing program PT. 
"XX 

When a user enters 

Paper 1029 6 



CI> GETKY, PT 

at his terminal, the text in the file HELP.IDX that describes PT is 
flashed on his screen. 

If, on the other hand, the user enters 

CI> GETKY, PRINT 

information on all four print programs will be displayed, one set at a 
time, with a prompt after each program's description giving the user the 
option of aborting the GETKY program or continuing with the display of 
the information on the next program. 

To make the display on the screen easily readable during interactive use 
by not showing more than one screenful of data at a time, the SETKY 
command, "&, is inserted into the text every 15 or so lines. This 
command causes GETKY to pause the display at each "& and give a prompt 
allowing the user to display more text or abort the display. 

A list of keywords under which help information is indexed in HELP.IDX 
will be displayed when a user enters 

CI> GETKY, ? or 

CI> GETKY, HELP 

In fact, any time GETKY is run with a character string that is not a 
valid keyword in HELP.IDX, a list of valid keywords which bracket, in 
alphabetical (ASCII) order, the requested word will be displayed. Then 
the user may chose one of the keywords displayed, move forward or 
backward through the list, or halt GETKY. 

Of course, GETKY allows the user the option of sending the text found 
under the keywords to a printer or to a file, as well as defaulting to 
the screen. But for this situation where a manual is also available, 
the screen is the main output device. 

Because the intention was to generate a user's manual as well as to 
provide online help from this data file, a certain amount of forethought 
went into the ordering of the data file. First an introduction to the 
manual was written and placed at the beginning of the data file. Then 
help topics were added in the order in which they were to appear in the 
book. Finally SETKY and TEXED commands were inserted into the file. 
The same data file can be used for input to SETKY-GETKY and to TEXED 

7 Paper 1029 



because all the commands for SETKY-GETKY begin with a double quote in 
column 1, and TEXED treats as comments records beginning with a double 
quote in column 1. On the other hand, all TEXED commands begin with a 
period in column 1, and SETKY~GETKY ignores all records beginning with a 
period in column 1 with two exceptions, .INDEX and .PAGE, which are 
interpreted in an analogous manner by both programs. 

Thus the standard TEXED commands to define margins, page lengths, 
headings, chapter titles, etc., could be inserted in the HELP.IDX file 
without interferring with its keyed access via SETKY-GETKY. For 
example, all the topics relating to data communications were arranged 
together in the file preceded by a TEXED chapter heading for data 
communications. Then the entire HELP.IDX file was processed by the 
TEXED program to produce a manual complete with an introduction and a 
table of contents. 

It is also possible to provide an index to the user's manual by using 
the .INDEX command .. This command is acted upon by both TEXED and SETKY. 
In SETKY, the .INDEX command is an alternative method of referencing 
data by additional keys. The leading key, preceded by the pair of 
double quotes, is always required. However, if the user wants to have 
additional keys reference the data, they may be embedded within the body 
of the data, i.e., between the "SS and "XX records. These embedded 
keywords must be preceded with either a double quote, as was done with 
the keyword PRINT in the previous example, or .INDEX starting in 
column 1. When the data file is intended to be processed by TEXED, this 
option gives the creator of the file the ability to determine whether or 
not a keyword will go into the TEXED index. To ensure that the keyword 
will go into the index, use the .INDEX command. To have a keyword that 
is recognized by SETKY, but does not appear in the TEXED index, use the 
SETKY quote method of marking keywords. 

Another useful feature of the SETKY-GETKY system is that it only 
accesses data that is preceded by a keyword and surrounded by "SS and 
"XX. Thus it is possible to include sections of text in the data file 
that are intended for the manual alone, such as the introduction, that 
do not appear in the online system. 

Conversely it is possible to have online information available that is 
not to be included in the manual. For example, it is desirable to have 
many of the Hewlett-Packard supplied help files on commands available in 
the online system, but it is redundant to include them in our user's 
manual for our HPlOOO, since they are already described in the HP User's 
Manual. This is be accomplished quite easily by taking advantage of the 
GETKY facility for executing run commands embedded in the data file. 

Paper 1029 8 



For instance, to have information on the CI command, 
one of the keywords in HELP.IDX, it is sufficient 
HELP.IDX file the following three SETKY commands: 

"WD 
"RU, LI, /HELP/WD 

WD, available under 
to include in the 

Since these three records all begin with they will be ignored as 
comments by TEXED and not go into the manual. But when the user enters 

CI> GETKY, WD 

the CI program, LI, is scheduled by the embedded run command ("RU) and 
lists the contents of the HP-supplied help file, /HELP/WD. 

The option also exists to make available as online information text that 
is stored in a different indexed data file on the computer. For 
example, it might be desirable to have online help available on using 
PC's without including it in the HPlOOO user's manual. There could be 
another data file called PC.IDX, which contains information relating to 
PC's. Within this PC.IDX file, there could be a section of text that 
describes how to use the Vectra and is indexed under the keyword VECTRA. 
Then in HELP.IDX only the following three SETKY commands would be 
required: 

"VECTRA 
"TR, PC.KEY 

Then the program GETKY will automatically transfer to the PC.KEY key 
file to find the location of the data stored under the keyword VECTRA in 
the corresponding PC.IDX data file and then display the data indexed 
there. 

The option of changing the keyword between data files also exists. For 
instance the same data indexed under VECTRA in PC.IDX could be displayed 
when the user enters 

CI> GETKY, MICROCOMPUTER 

if the following three SETKY COMMANDS were included in HELP.IDX 

9 Paper 1029 



Hit 

"MICROCOMPUTER 
"TR, PC.KEY, VECTRA 

In the case where a keyword references a relatively long section of 
text, it is desirable to be able to break up the text in two different 
ways: into relatively short sections, about 15 lines long, for the 
screen and into longer sections for pages of the manual. This can be 
accomplished by judiciously interspersing the "& and .PAGE commands so 
that a .PAGE command occurs only after two or three "& commands have 
been given. GETKY treats both commands the same way so it will pause 
the display at each occurrence of either command. TEXED, on the other 
hand, will ignore the "& commands and go to a new page only at the .PAGE 
command. 

The information available both in the online system and in the user's 
manual can be easily changed or updated in both places by making the 
appropriate changes in the one data file, HELP.IDX. However, any time 
the data· is modified, SETKY must be rerun to generate a new key file to 
be used by GETKY to locate the data. And, of course, TEXED should be 
rerun to incorporate the changes into the manual. 

is the 
a program 

ability to 
using an 

generate 
incorrect 

A corollary feature of this help system 
online help when a user tries to run 
runstring. Assuming that an explanation 
is included in the data file, HELP.IDX, 

of the program's correct usage 
this explanation can easily be 

accessed from the program being run if each program is written to 
provide a special error routine. This error routine can call the 
subroutine, RuGetKy, from the SETKY-GETKY subroutine library to run 
GETKY with the program's own name as the key so that the information on 
its usage will be displayed from HELP.IDX. This is much easier than 
having to repeat an explanation of the program's usage within its own 
code. Also, when the directions for running a program are changed, the 
change only has to be documented in one place in HELP.IDX and the new 
directions will automatically be available in the general online help 
system, in the latest version of the user's manual, and from the program 
itself. 

ACCESSING TABULAR DATA FROM AN APPLICATION PROGRAM 

Another situation in which SETKY-GETKY can be very useful is in the 
retrieval of tabular data. It was used in our data center to access 
tables of chemical thermodynamic functions that were stored in a large 
data file, containing over 9000 records, on the HPlOOO. This file had 
been created before SETKY-GETKY was written. There were about 180 

Paper 1029 10 



different tables of data in the file, called INTCOD. Each table was 
organized according to the same specified format. For example, table 
number 3 for 02(g) was set up as follows: 

ST: 
T#:3 

* CODATA Thermodynamic Tables 
SP: 02(g) 
RE: IVTAN DEC 83 FOR CODATA CTT (AUXILIARY DATA) 
GS: 8.31448 
CN: 0.1 MPa 
* Table 6.1.xx. THERMODYNAMIC FUNCTIONS at 0.1 MPa: 02(g) 
CH: T, Cp ,-(G-H(O))/T, S H-H(O) 
UN: K, ,J/(K.MOL), J/(K.MOL) ,J/(K.MOL), KJ/MOL 
DT: 6 

$ 
* 
ER; 5 

$ 

0 
100 
200 
300 
400 
500 
600 

3900 
4000 

298.15 

300 
1000 
4000 

0.000 0.000 0.000 0.000 
29 .112 144.298 173.308 2.901 
29.128 164.424 193.489 5.813 
29.387 176.217 205.333 8.735 
30.108 184.606 213. 871 11. 706 
31.093 191.163 220.693 14.765 
32.093 196.576 226.451 17.925 

41.546 258.412 295.211 143.517 
41. 695 259.345 296.265 147.681 
29.378 176.038 205.152 8.680 

Uncertainties in Functions 

0.003 0.005 0.005 0.002 
0.005 0.010 0.010 0.010 
0.010 0.010 0.020 0.020 

CC: Functions from CODATA Key Values for Thermodynamics [84COD] 
* AfH0 (0)/kJ.mol-l 0.0 
* AfH0 (298.15 K)/k:J.mo1-l = 0.0 
* AfG 0 (298.15 K)/k:J.mo1-l = 0.0 
CP:*Values at 100, 200, changed to match IVTAN Mar 11 '84 printout 
SF:/GARVIN/CODATA/NAUXCA,02(G) 
ED: 

To prepare these tables for publication, a processing program, RTOS, was 
written to retrieve the requested tables (each identified by a unique 

11 Paper 1029 



table number), re-arrange their data into the required output format, 
and write the reformatted tables into a file for printing on a laser 
printer. Tables were processed in the order in which they were to be 
published, not the order in which they were stored in the original file, 
INTCOD. 

Running the RTOS program was very time-consuming, taking about 40 to 45 
minutes for 65 tables. The majority of time was taken up, not by the 
actual processing of the tables, but by the sequential search in INTCOD 
for the tables. 

To speed up processing, we converted RTOS to use the programmatic 
interface available with SETKY-GETKY to retrieve the requested tables. 
First, SETKY commands were inserted in INTCOD so that the number of each 
table became a unique key to the table. Minor editing was required to 
insert the necessary SETKY commands into INTCOD and produce an indexed 
file, called INTCOD.IDX. Each table was preceded by "" and "<table no.> 
records. The ST: and ED: records in INTCOD were replaced by "SS and 
"XX, respectively. The T#: records were removed. The remainder of the 
table remained unchanged as shown below: 

"003 
"SS 

* 
SP: 
RE: 
GS: 
CN: 

* 
CH: 
UN: 
DT: 

02(g) 
IVTAN DEC 
8.31448 
0.1 MPa 

6 

Table 
T, 
K, 

0 
100 
200 
300 
400 
500 
600 

3900 
4000 

Paper 1029 

CODATA Thermodynamic Tables 

83 FOR CODATA CTT (AUXILIARY DATA) 

6.1.xx. THERMODYNAMIC FUNCTIONS at 0.1 MPa: 02(g) 
Cp ,-(G-H(O))/T, S H-H(O) 

,J/(K.MOL), J/(K.MOL) ,J/(K.MOL), KJ/MOL 

0.000 
29 .112 
29.128 
29.387 
30.108 
31. 093 
32.093 

41.546 
41. 695 

0.000 
144.298 
164.424 
176.217 
184.606 
191.163 
196.576 

258.412 
259.345 

12 

0.000 
173.308 
193.489 
205.333 
213. 871 
220.693 
226.451 

295.211 
296.265 

0.000 
2.901 
5.813 
8.735 

11. 706 
14.765 
17.925 

143.517 
147.681 



298.15 
$ 
* 
ER: 5 

300 
1000 
4000 

$ 

29.378 176.038 205.152 

Uncertainties in Functions 

0.003 
0.005 
0.010 

0.005 
0.010 
0.010 

0.005 
0.010 
0.020 

8.680 

0.002 
0.010 
0.020 

CC: Functions from CODATA Key Values for Thermodynamics [84COD) 
* 6fH0 (0)/kJ.mo1-l 0.0 
* 6fH0 (298.15 K)/kJ.mo1-l 0.0 
* 6fG 0 (298.15 K)/kJ.mo1-l 0.0 
CP:*Values at 100, 200, changed to match IVTAN Mar 11 '84 printout 
SF:/GARVIN/CODATA/NAUXCA,02(G) 
"XX 

Then SETKY was run as follows: 

CI> SETKY, INTCOD.IDX 

to generate the key file, INTCOD.KEY. 

The table processing program, RTOS, was modified so that the requested 
tables were retrieved from INTCOD.IDX by using the programmatic 
interface available with SETKY-GETKY, rather than by sequential reads of 
INTCOD. This modified version, CTABS, of RTOS uses the subroutine, 
OpenKy, to open both the data file, INTCOD.IDX, and the key file, 
INTCOD.KEY, with the following call: 

call OpenKy (datafile, error) 

where datafile is a character string set equal to INTCOD.IDX and error 
is an integer used to return an error value. 

To position the data file at the location of the next table to be 
processed, the SETKY subroutine, PositionKy, was used: 

call PositionKy (key, datafile, mode, error) 

where key is the character string defining the keyword for which 
datafile is to be positioned. In this case, key is set equal to the 
table number desired. Datafile and error are as defined for OpenKy. 
Mode is an integer that specifies whether or not the key file should be 
rewound before the search is made for the key. In this case, it does 
not matter, as the table numbers are unique keys. However, when 

13 Paper 1029 



PositionKy is to be used in a situation where identical keys reference 
different sets of data, mode is significant. If the key file is always 
rewound, PositionKy will always position the data file at the location 
of the data indexed by the first occurrence of the key. On the other 
hand, if the key file is not rewound, successive calls to PositionKy 
with the same key will locate successive sets of data referenced by that 
key. 

Once the data file has been positioned at the start of the data for the 
next table to be processed, the ReadKy subroutine is called repeatedly 
to retrieve the data from the data file one record at a time: 

call ReadKy (datafile, cbuf, length, mode, error) 

Again datafile, in this case, is a character string set equal to 
INTCOD.IDX. Cbuf is a character string buffer in which the data 
retrieved from the data file by ReadKy is returned. Length is an 
integer parameter defining the length in bytes of cbuf. Mode determines 
the type of read to be performed. In CTABS, mode is set so that only 
data is returned. In word processing types of applications, mode could 
be set so that both data and TEXED commands, if there are any in the 
data file, are returned. Error is an error value returned by ReadKy to 
define the results of the read, such as, whether data is being returned 
or whether an end-of-data SETKY command was encountered. 

After all the requested tables have been processed by CTABS, the data 
file, INTCOD.IDX, and the key file, INTCOD.KEY, are closed by a single 
call to CloseKy: 

call CloseKy (datafile, error) 

where datafile is set equal to INTCOD.IDX. 

The completed program, CTABS, was run a few times on the data file, 
INTCOD.IDX, using the same list of 65 requested tables as were run from 
RTOS using the original data file, INTCOD. CTABS took only 8 to 9 
minutes to run, compared with the 40 to 45 minutes it took RTOS to 
process the same tables. So a substantial savings of computer time 
resulted from the conversion. 

In addition, once the data file is indexed on table numbers, it is easy 
to add a second key to each table, using the .INDEX command followed by 
the substance name for that table. For example, table number 3, which 
was already indexed by the key, 003, was also indexed by the key, 02(G), 
simply by inserting a record, .INDEX 02(G), following the SP: 02(G) 

Paper 1029 14 



record in INTCOD.IDX. This doubled the number of keys to INTCOD.IDX. 
SETKY was rerun to generate an updated version of the key file, 
INTCOD.KEY. Then if a chemist is interested in viewing the table 
contained in INTCOD.IDX for a particular substance, for example, H20(G), 
he only has to enter 

CI> GETKY, H20(G), INTCOD.KEY 

to have it displayed. 

For the cases where there is more than one table for the same substance, 
the user is given the opportunity to see each table in succession. For 
instance there are two tables for C(GRAPHITE) in INTCOD.IDX. To see 
both, enter 

CI> GETKY, C(GRAPHITE), INTCOD.IDX 

To obtain a listing of the same two tables on the printer, lu =6, enter 

CI> GETKY, C(GRAPHITE), INTCOD.IDX, 6 

SUMMARY 

The SETKY and GETKY programs, along 
provide a fairly simple, yet flexible 
free formatted textual or tabular data 
be helpful to users at various levels. 

with the programmatic interface, 
system for indexing and accessing 
on the computer. This system can 

(1) GETKY can be run by users possessing minimal computer skills to 
retrieve keyed data, display it, print it, or capture it in a 
file. 

(2) SETKY can be run by users experienced in editing to set up keyed 
access to their own data files by inserting the appropriate SETKY 
commands. 

(3) The programmatic interface available with SETKY-GETKY can be used 
by programmers to access keyed data from within their own 
programs. 

15 Paper 1029 



REFERENCES 

(1) "SETKY-GETKY Keyed Access System" 
CSL/1000 release for 1986 (release 
Avenue, Sunnyvale, CA 94086, and is 

is scheduled for inclusion in the 
2625) from INTEREX, 680 Almanor 
available from the authors upon 

request. 
(2) Atre, s.' 
Performance, and 
Page 197. 

Data Base: Structured Techniques for Design, 
Management. John Wiley & Sons, Inc., New York, 1980. 

(3) Bickham, D. and Neumann, D., "SETKY-GETKY - A keyed access system 
for the HPlOOO - A user's guide," National Bureau of Standards, internal 
report available from the authors upon request. 
(4) GENIX, HELP, CMD, and RTE-6 are all Hewlett-Packard products and are 
referred to in the manual RTE-6/VM Terminal User's Reference Manual 
(December 1981), Part No. 92084-90004, Hewlett-Packard Co., 11000 Wolfe 
Road, Cupertino, CA 95014. 
(5) GRAFIT/1000 is a software product of Graphicus, Graphic User 
Systems, Inc., 160 Saratoga Avenue, Suite 32, Santa Clara, CA 95051. 
(6) "TEXED User's Guide, A Document Processor for the HPl000, 11 

documentation edited by Bill Hassell, adapted by Bruce H. Stowell, Jim 
Bridges, Bill Hassell, and John Johnson. The TEXED program and manual 
are available on the swap tape from the INTEREX Conference held in 
Washington, D.C., in September, 1985. 
(7) EDIT/1000 is a Hewlett-Packard product and is described in the 
manual EDIT/1000 User's Guide (August 1980), Part No. 92074-90001, 
Hewlett-Packard Co., 11000 Wolfe Road, Cupertino, CA 95014. 

Paper 1029 16 



HOW DO THE USERS USE YOUR SYSTEM? 

Donald A. Wright 
Interactive Computer Technology 

2069 Lake Elmo Avenue North 
Lake Elmo, MN 55042 USA 

INTRODUCTION 

The HP/1000 accounting system maintains cumulative totals of 
logon time and CPU utilization for each user. But for the 
purposes of justifying a new system or the existence of a 
current one, or for analyzing how users' needs might be bet­
ter served, more information is needed. This paper des­
cribes programs and a data base for collecting usage infor­
mation and reporting that in a useful way. The following is 
collected for each session: 

* Logon/logoff times, CPU usage per session. 
* Time spent in each program and CPU usage per program. 

The following may be reported for any time period: 

* Each user's programs with their CPU and usage times. 
*Each program's users with their CPU and usage times. 
* Overall summaries. 

The system creates very little overhead of its own. The 
Image data base may also be examined by QUERY or any other 
inquiry program for ad-hoc reports. The package has been 
contributed to the Detroit Conference Swap Tape. 

MANAGEMENT ISSUES 

Technical computer systems are very often found in areas 
where computers are not the main business - - laboratories 
and manufacturing plants are typical locations. Often the 
people with overall management responsibility in such areas 
see the HP/1000 as a tool which aids in meeting their over­
all objectives. They want to know how the tool is being 
used and by whom. Without this information they find it 

Paper 1030 



difficult to justify additional or even continuing costs. 
Managers are faced with these issues, among others: 

* Is a dedicated system-manager really justified? 
* Shall we purchase (or renew) software maintenance agree­

ments? 
* How about hardware maintenance? 
* Are the requests for more peripherals (terminals, disks, 

plotters, printers, etc.) justified? 
* Do we really need another new system? 

These issues can be much more easily resolved if two ques­
tions can be answered in an understandable way: 

* Who, What, How much? 
* What, Who, How much? 

The first question really asks "Who is using the computer, 
what programs are being used by those users, and how much 
are they used by those users?". The second question asks 
for exactly the same information, but sorted first by prog­
ram and then by user. 

The RTE accounting system provides only Who and How Much in 
total. It simply doesn't save enough information for any 
purpose except for assigning costs. 

PROPOSED SOLUTION 

For this solution it was decided to keep the following 
information in an Image data base for each user session: 

* Start and length of the session. 
* For each program the user runs: 

* Time of first and last runs. 
* CPU utilization. 
* Total usage time. 

It was decided that it was NOT important to know how many 
different times a user ran a program - but the total amount 
of time that a user uses a program may be quite interesting. 

The initial need for this solution was perceived by 
of a very large F-Series system running RTE-6. The 
described can, in principal, be applied to RTE-A 
have been by conference time. 

Paper 1030 2 

managers 
solution 

and may 



Data Collection: 

Requirements for the data-collection process were defined as 
follows: 

* The process must start automatically at boot, e.g. from 
the WELCOM file. 

* The data collection must be a non-intrusive measurement. 
In other words, it must not substantially affect the 
measurement by its own operation and existence. There­
fore the data-collection program must not hog or even be 
a dominant user of any resource - CPU, disk, or Image 
subsystem. 

* Every reasonable means must be used to accurately ident­
ify each user and the true name of each program. 

* We decided not to try to rewrite RTE to collect the 
information, but rather to use programs operating out­
side the operating system. 

* A sampling technique would suffice if the sampling 
interval could be adjusted and could be short enough. 

* Non-session programs can be ignored. On the system for 
which this monitor program was designed, very few users 
run programs in batch or detached, and those few are 
genuinely special cases. 

* Group information was not of interest on this particular 
system, where groups are not really used at all. 

3 Paper 1030 



Data Presentation: 

QUERY is used for ad-hoc reports where the data must be sel­
ected in a way not otherwise provided for. But the bread­
and-butter report program for management's use is designed 
to meet these requirements: 

* Reporting period must be selectable, from one day up. 

* The Who, What, How much report: 

For each user the programs are tabulated in alphabet­
ical order, with usage information: 

* Program name 
* CPU seconds for the program. 
* Usage seconds for the program. 

Total CPU seconds and connect time are also reported. 

* The What, Who, How much report: 

For each program its users are tabulated in alphabet­
ical order, with usage information: 

* Username. 
* CPU seconds for this user. 
* Usage seconds for this user. 

Total CPU seconds and usage time for the program are 
also reported. 

* Total number of different programs and users for the 
reporting period. 

* The data-base search, sort, and reporting must be fast 
and easy enough that managers will actually use it. 

Paper 1030 4 



DATA BASE STRUCTURE 

Thi~ rather simple data-base structure was selected: 

A A A 
------- ------- -------

\. BDATES/ \. PROGS I \. USERS I 
\. I \. I \. I 

\. I \. I \. I 
\. /1009 \. /503 \. /1009 
v v v 

\.BDATE IPROG /USER 
\ I I 

\. I I 
I 

\. I I 
D \.I I 

+----v----+ 
I I 
I PRU NS I 
+---------+ 150000 

BDATE X6 ( k) Beginning date, YYMMDD 
BT I ME X6 Beginning time, hhmmss 
EDATE X6 Ending date, YYMMDD 
ET I ME X6 Ending time, hhmmss 
INTERV 11 Interval between observations, seconds 
PNAME X6 ID-segment (runtime) program name 
PROG X6 ( k) Actual program name, before cloning 
SECCPU R2 Seconds of CPU usage, this program/session 
SE CON R2 Seconds first observation to last 
SEC USE R2 Seconds program-usage/session-connect time 
SESNUM 11 Session number 
USER XlO ( k) User's logon name 

This structure contains three automatic master data sets 
linked to a single detail data set. This provides for very 
fast searching on any of the three key items Date, Program, 
or User. In practice it eliminates the need for serial 
searches in the large majority of data extractions. 

The detail data set PRUNS contains one entry for each user 
session, and one for each program that the user ran during 
that session. The session entry is distinguished from prog­
ram entries by the value SESSN in the PROG item. In this 
case, the user's runtime primary program name is inserted in 
the PNAME item. 

5 Paper 1030 



Thus when a typical session ends, the data-collection prog­
ram puts one session entry and several program entries in 
the data base. 

Note that 
Image 2. 

the current implementation uses Image 1, 
Presumably Image 2 will work as well. 

DATA COLLECTION 

not 

The MONITOR program is scheduled from the WELCOM file. It 
initializes itself, places itself in the time list, and beg­
ins the first data-collection run. When finished, it term­
inates saving resources. Since it doesn't lock itself into 
memory, it is swappable between runs, although its priority 
would normally cause some other program to be swapped. 

It reads all usernames from disk into local memory on the 
very first run and each hour thereafter, on the hour. 

The standard data-collection interval is 10 seconds, but 
this can be adjusted by a runstring parameter to any number 
of seconds. 

Each time MONITOR runs it goes through three phases: 

* Data collection. 
* Accounts resolution (comparing current sessions with 

previous ones). 
*Data logging (writing to the data base). 

Data Collection: 

The accounts system is first locked, so that no changes can 
occur while the sessions are being examined. 

Every session-control block is examined. If it is new, an 
entry is built in the Local Session table. Then the current 
CPU utilization is recorded, the ID-segment address of the 
currently-executing program is saved, and the session is 
flagged as having been found. 

The accounts system is unlocked at the end of this search, 
which typically requires only two or three milliseconds. 
No disk accesses are ever required, nor are any privileged 
operations. 

Paper 1030 6 



Accounts Resolution: 

In this phase, the accounts system is unlocked and and disk 
accesses are permitted, though they are required only occas­
ionally. Each entry in the Local Session Table is examined 
as follows: 

* Ignore the session if not found this run, as it will be 
dealt with in the data logging phase. 

* If this is a new session entry this run, build an init­
ial entry and put it in the data base. 

* Find the program's actual name: 

* Use the ID-segment name if it is a memory-resident 
program or if the ID-segment indicates that the name 
is not a clone name. 

* Else look in the table of already-identified names 
for a program with exactly the same disk address. 

* If not there and the disk address indicates that the 
program is not in FMP file space, search for an 
identical permanent ID-segment and use that name. 

* Last resort - a disk operation. Go to the actual 
type-6 file on disk and pull the name out of that 
file. Put the resulting name in the local table 
of already-identified names. 

* Search the session's linked-list of program names for 
this name, add if not found. 

* Accumulate the statistics for the session and program. 
The CPU utilization and time interval for the time 
between the past and current run are allocated to the 
currently-executing program. Note that this can create 
an error proportional to the sampling interval - a gran­
ularity error. 

7 Paper 1030 



Data Logging: 

This involves another scan of the Local Session Table, look­
ing for sessions which have disappeared from the system's 
session tables and thus were not found on this run. When 
such an entry is detected, or if the program is shutting 
down (described later), the following steps are taken: 

* The data base is locked. 

* The initial session entry, created when the session was 
first detected, is recovered with a DBGET. 

* The final session statistics are integrated into this 
entry and it is DBUPDated. 

* For each program in the session's linked list, a program 
entry is built in memory and DBPUT in the data base. 

* The data base is unlocked, and the Local Session Table 
entry is deallocated for re-use. 

Other MONITOR Features: 

The runstring for the MONITOR program is: 

RU MONITOR [interval [password ]] 

Where interval is the number of seconds between MONITOR runs 
or the characters EN or SD. EN or SD causes MONITOR to shut 
itself down, closing out all open Local Session Table ent­
ries as if they actually logged off. This is useful during 
debugging, and if the system manager intends to boot the 
system. If SD is specified, the RTE-6 accounts system will 
actually be shut down, preventing further logons. When the 
system is booted, the accounts system will be available for 
logon again. 

If EN or SD is specified, the password must be supplied. 

Note: If MONITOR encounters any kind of fatal error during 
operation, such as an Image or EXEC error, it will enter the 
shutdown mode and attempt to close out all sessions before 
terminating. 

Paper 1030 8 



It runs at a priority of 29, which gives it priority over 
most DS monitors but not over the monitors which are time­
critical. If it is not allowed to run at its scheduled time 
no real harm is done - when it does run the actual interval 
rather than the scheduled interval will be used in increm­
enting usage time counts. 

DATA PRESENTATION 

The data-presentation program USAGE is interactive, and has 
three operational phases: 

* Operator input. 
* Data base search. 
* Formatted output, to file or device. 

Operator Input: 

Prompts are issued for the following information: 

* Beginning search date. 
* Ending search date. 
* Output file or device for the report by User. If none 

is supplied, no report by User will be issued. 
* Output file or device for the report by Program. If 

none is supplied, no such report will be issued. 
* Output report format: Full or Summary. 

Data Base Search: 

The data base is always searched on the BDATE (beginning 
date) chains, starting with the beginning search date and 
incrementing through the ending search date. Thus every 
entry retrieved is a needed entry. For each entry found, 
the following steps are executed: 

* Program-name translation is done. This is a process 
which allows program names known to be incorrect in the 
data base to be translated to proper ones. The trans­
lation file is created and updated with EDIT, so that 
this represents an after-the-fact way to correct reports 
on a cut-and-try basis if necessary. 

* Program and User names are inserted into sorted tables 
with no duplicates. 

9 Paper 1030 



* For each user, a linked-list is maintained in EMA of all 
associated programs and their statistics. 

* Likewise for each program, a linked-list is maintained 
in EMA of all associated users and their statistics. 

The speed of this process is constrained by the data-base 
disk accesses. The name-sorting and list-maintenance comp­
onents appear to take almost no time by comparison. Binary 
searches are used on sorted tables, serial searches on the 
linked lists. 

Report Output: 

Production of the reports is extremely straightforward. The 
sorted tables of Users and Programs are written in order, 
with the linked-lists of associated programs and users sort­
ed in a simple manner and written along with them. Reports 
are written at a speed dependent upon the output device, 
whether disk or something else. 

The following is a portion of an actual report: 

HP/1000 USAGE 860603 through 860609 

USERNAME PROGRAM CPU SEC % ELAPSED SEC % 
------ ------- ---

AEJ CI 0.00 0.0 10.00 .o 
CONFR 6.60 .1 26440.00 17.6 
D.RTR 2.55 .0 30.00 .0 
EMUL8 4.21 .1 330.00 .2 
METER 6652.92 99.7 123200.00 82.1 
TYPE 4.83 .1 50.00 .o 

6671.11 47. 0 150060.00 25.5 

DJL BASIC 3.14 .5 70.00 .4 
CI 2.17 .3 250.00 1.3 
C:ONFR 13.93 2.0 150.00 .8 
D.RTR 77 .69 11.2 420.00 2.1 
DL 7.49 1.1 60.00 .3 
GRAF I 42.19 6.1 430.00 2.2 
GRMSG 20.39 2.9 80.00 .4 
SKETC 524.23 75.8 18350.00 92.6 

------- --
691.23 4.9 19810.00 3.4 

Paper 1030 10 



RNR ACCTS .95 .1 20.00 .0 
CALC 3.50 .2 460.00 .2 
CI 18.05 1. 2 1330.00 .7 
CIX 3.60 .2 50.00 .o 
CONFR 109.16 7.3 41386.00 22.4 
D.RTR 118.16 7.9 580.00 .3 
DISCV .59 .0 20.00 .0 
DL 17.14 1.1 242.00 .1 
EDIT 7.65 .5 2050.00 1.1 
EMUL8 42.26 2.8 12420.00 6.7 
Fov.N 111. 79 7.4 310.00 .2 
IOMAP .32 .0 60.00 .0 
KERMI 8.38 .6 1140.00 .6 
LI 19.25 1.3 870.00 .5 
METER 1031.56 68.7 122872.00 66.5 
TF 2.27 .2 900.00 .5 
TYPE 4.88 .3 40.00 .o 
USAGE 2.35 .2 100.00 .1 

------- -----
1501. 86 10. 6 184850.00 31.4 

Grand totals: 14207.18 589235.00 
Programs: 32 
Users: 29 

ACTUAL USE 

In use, it appears that the MONITOR program actually does 
achieve the objective of non-intrusive measurement. Timing 
tests showed it to require 20 to 30 milliseconds of elapsed 
time for most runs, with a normal logon load of 5 to 10 
users. Occasionally this number increases significantly 
when data-base accesses are necessary. Thus when the inter­
val between runs is 10 seconds, MONITOR requires only about 
0.3% of the CPU's time and presumably an even smaller fract­
ion of the disk accesses. Its priority can be adjusted to 
avoid harming other real-time processes if necessary, with­
out substantially impairing its accuracy. These tests were 
done on a very large F-series system running RTE-6 C.83. 

The reporting program USAGE achieves its objectives with the 
maximum possible speed, limited only by the disk accesses 
required to read the data from the data base. 

11 Paper 1030 





Using C For Portable Programming 

Tim Chase 

Corporate Computer Systems, Inc. 
33 West Main Street 

Holmdel, New Jersey 07733 
U.S.A. 

(201)946-3800 

642672 CCSHOLM 

Increasing software development costs, changing computer architectures 
and greater user reliance on standardized application packages are 
forcing close examination of software portability. Many feel that the C 
programming language is an excellent tool for developing applications 
which are to be ported from one computer to another. Unfortunately, al­
though the literature abounds with introductions to programming in C, 
there are few references which provide insight as to how applications 
developed in C may be structured so as to increase their portability. 

C is currently a widely used programming language and with standardiza­
tion efforts on the part of ANSI, we can be assured in the near future 
that C will become a "pure" language on all computers which offer con­
forming implementations. Because of C's features, programs written in C 
can be easily moved between computers which support the language. As 
with all current programming languages, C, is not automatically 
portable. Applications developed in C require conscious use of C's fea­
tures in order to insure portability. Although C makes writing portable 
programs easier, the task is still not "for free." The programmer must 
know what he is doing in order to achieve true portability. 

What is true portability? 

The definition of portability varies from person to person. We will 
define a portable program to be any program which may be moved from one 
computer to another with less effort than would be necessary to develop 
it again from scratch for the second machine. 

This definition often surprises some people who believe that a portable 
program is one which runs on any computer immediately after it is recom­
piled. In actuality, portability covers a range of programs. At one 
end of the range lie programs which, in fact, do run after a recompile. 
At the other end are programs which must be substantially rewritten in 
order to port them. When dealing with software portability, it is im­
portant to correctly set your expectation level. Someone who advertises 
an "easily ported" program may be over-selling capabilities because 
there is no accepted definition of portability. 

Paper 1031 



How is portability achieved? 

In essence, a program is made portable by: 

1. Using a standard language. 

This means that the application must be implemented in a language 
which is available on all of the machines the program is to be 
ported to. It will do you no good to write an application in your 
favorite language if that language is not implemented on a potential 
target machine. Fortunately for the C developer, the C language is 
offered on virtually all modern computers. 

2. Isolating machine dependencies. 

The well written portable program is broken into two parts. The 
first part is the "machine independent" part while the second part 
is the "machine dependent" part. The plan is to rewrite the machine 
dependent part each time the code is ported and to not rewrite the 
machine independent part. To make the port job attractive, the 
machine dependent part should be (much) smaller than the machine in­
dependent part. 

In this two step approach the first step (selection of a language) is 
simple. For the purposes of this paper the language will be C. The 
reason for this choice for an increasing number of developers is because 
C makes the work involved in the second step simpler. This is because C 
offers a number of unique features which make the isolation of machine 
dependencies easier than in other languages. We will show these fea­
tures at work later in this paper and we will draw from experience in 
porting programs between HP/3000's and HP/1000's as well as non-HP com­
puters. 

How are machine dependencies found? 

That's the big question. The comic Steve Martin has a routine in which 
he claims to be able to tell you how to get a million dollars and not 
pay any taxes on it. The first step is "get a million dollars." Mr. 
Martin offers no more direction than that as phase one of his tax 
avoidance scheme. Our advice on finding machine dependencies will be 
more long-winded than Mr. Martin's punch line, but after all the words 
settle, the answer will be about the same -- find them. 

Locating the machine dependencies is the art behind writing portable 
programs. There are guide lines. We can tell you where to look out for 
machine dependencies, but there are no cut and dried rules. Although 
this paper concludes with some general rules, experience will be your 
best teacher. The more computers you port your software to, the better 
you will become at writing portable programs. The act of porting 
software actually makes it more portable. Having developed several C 
compilers for HP equipment, we have been approached by a number of 
software suppliers who want to port their applications. Those who have 
ported their software to a number of other computers usually have no 
problems while those who have never ported their software are often con-

Paper 1031 2 



fronted by profound problems. 

Using C does not insure that an application will port. Further, just 
because something is written in C does not mean that it will port 
easily. The reality is that portability is something which comes from 
extra care, extra development dollars and extra creativity during design 
and programming. Using C, however, is a good way to minimize these ex­
tras. 

If you are beginning to think that developing a portable program is more 
expensive than developing a non-portable program, you are right. 
Clearly there are times when it does not matter at all if a program is 
portable. Still, many of the techniques that are used in developing 
portable programs have application in non-portable software development. 
They tend to make programs more easily maintainable and more easily un­
derstood. 

Where to look for machine dependencies. 

Although it is impossible to present a complete list, some of the places 
which usually cause portability problems include: 

Word size and alignment 

If your program assumes that memory locations have a given number of 
bits in them, it will not port to computers which have different sized 
words. This is one of the most important things to remember when 
writing programs for the 1000/3000 computers which must port to the 
Spectrum machines. 

Storage alignment is the requirement placed on some computer designs 
that storage units begin on certain addressing boundaries. For example, 
if a computer has a byte oriented memory, a 16 or 32 bit word may only 
be allowed to begin on a special "boundary" or multiple of bytes. A 16 
bit word might only be allowed to start on an even byte address. This 
is a requirement of the HP/3000 and the HP/1000 although because both 
computers are word addressed, programmers seldom think of this as an 
alignment rule. 

Alignment rules become important when you are designing "data ag­
gregates" or collections of objects which are to treated as a whole. 
C's struct feature allows users to define records of data objects. If 
your program makes assumptions about how those objects are physically 
placed in memory, chances are it won't port. 

3 Paper 1031 



Character usage. 

Character sets vary from one computer to another. Many computers are 
ASCII based, but others may use different coding schemes. For example, 
IBM is generally EBCDIC. This means that algorithms which rely on a 
given character.being represented in a given way, will not port. For 
example, if you want to be able to retrieve a value from an array X by 
indexing with a character 'A': 

value= X['A']; 

The initial value of the X array will depend on the character set of the 
computer you are porting to. Such a program written for the HP/3000 
would not port to most IBM machines. 

Another problem with characters is how many can be placed into a single 
word of computer memory. A 16 bit computer would allow 2 while a 32 bit 
computer would allow 4. Again, programs making use of these facts will 
not port. 

Arithmetic portability. 

If you are writing numerical applications, the values obtained on one 
computer could differ substantially from those generated by the iden­
tical program on another computer. This is because of the precision of­
fered by different machines. For example, a C integer (type int) offers 
16 bits of precision on the HP/1000, but 32 bits of precision on the 
Spectrum processors. 

Arithmetic portability problems, strangely enough, are found even in 
more "arithmetic based" languages like PASCAL and ADA. This is because 
range checking is usually performed at value assignment time rather than 
after each intermediate expression. This means that intermediate ex­
pressions could produce implementation dependent results which would not 
be caught by runtime checking. The result would be a program which 
could produce different results on different processors -- clearly not 
portable. 

Operating system environment 

This is perhaps one of the single largest factors effecting portability. 
If the operating system services which your application uses are not 
found on a potential target machine, the port job will be difficult. 
One common problem with non-portable C applications is the assumption by 
the developer that "where there's C there's UNIX." 

Getting back to basics, UNIX is an operating system and C is a language. 
Although C and UNIX are often found in the same places, the existence of 
C does not in any way imply the existence of UNIX. UNIX, as an 
operating system, offers many of the same features found in most 
operating systems, but it often offers them in slightly weird ways (Bell 
Labs, don' cha know?) Applications which use these features are doomed to 
be difficult to port. 

Paper 1031 4 



File and data base systems. 

How files are accessed differs from system to system. Again, UNIX 
offers an ideal example. The file system found on UNIX is different 
from "normal" file systems because of its file naming and its file or­
ganization. Applications relying on a UNIX file system present porting 
challenges. Likewise, applications which rely on a certain data base 
system can only be ported to computer environments which support that 
system. If you call IMAGE in your application and you want to get a 
version working on a DEC VAX you are in for a fun evening. 

So what's a programmer to do? 

What we have said up to now is that programming a portable application 
is simple if you avoid characters and arithmetic, don't call the 
operating system, don't use files and stay away from data bases. The 
only problem is that if you develop by these rules, you won't be able to 
write a very interesting application. The real answer is not to avoid 
these areas, but rather to recognize them as problem spots and to design 
your application so that you can still use the features of the computer, 
yet do so in a machine independent way. This is done through a tech­
nique we call "abstract interfaces". 

An abstract interface is a fancy name for finding out the essential re­
quirements you need for your application and then writing code to inter­
face those requirements to the resources offered by your target com­
puter. 

When you·stop to think about it, this is what is being done for you each 
time you use a compiler for any language. If you are a FORTRAN 
programmer, you think of the computer in terms of FORTRAN. You really 
don't care how the computer does its work, you are programming an "ab­
stract" FORTRAN machine. The compiler, in this case, is the abstract 
interface you are using so that you, as a programmer, are portable from 
computer to computer. Abstract interfaces which you develop as part of 
your portable application behave in the same way and address differences 
in computers which are not covered by the language you are using. 

When you develop an abstract interface, you can call it from your ap­
plication. The abstract interface will be rewritten for each computer 
you are going to port your application to. The abstract interface 
becomes the machine dependent code. Let's look at a concrete example of 
this. 

Suppose you want to develop a C program which will execute on both the 
HP/1000 and the HP/3000. Assume, for the moment, that you do not want 
to use the standard I/O library which comes with the C compiler (This 
I/O library is, in fact, an abstract interface defined by the designers 
of C which provides standard access to the file system of the host com­
puter). In designing your program, you discover that you will have to 
make use of disc files. Remembering every word of this paper, you 
realize that file usage is a place where you must look for machine 
dependencies. Sure enough, when you compare the routines used for file 
access on the RTE and the MPE you discover they are different -- very 

5 Paper 1031 



different. How do you make an application cope with the differences? 

First, you look at your application's needs. Both the RTE and MPE sup­
port a wide range of file operations, but will you need access to all of 
them? Chances are you won't. So you select the set of features which 
you really need. Remember, each feature you select contributes to the 
size of the abstract interface and will therefore make the port job more 
difficult. 

For our example, we discover that we will need file open, file create, 
file close, file read and file write. Other applications might need 
other functions like rewind and purge, but our example application is 
simple so we only include the features we need. 

Next, we design the abstract interface for these functions. The ques­
tion is what will each file routine do. Again, look at the application 
and pick only the features necessary to do the job. More features mean 
more work which means harder porting. 

For the sake of brevity, we will only look at the file open routine. If 
we break the open down to its essential functionality, its job is to map 
a file name into an internal file descriptor. The descriptor can then 
be passed to other file routines for reading and writing. The open call 
looks like this: 

descriptor= my_open(name); 

The descriptor, however, is quite machine dependent. On the HP/lOOO's 
RTE a descriptor is a 144 word data control buffer while on the 
HP/3000's MPE the descriptor is a single 16 bit word. C offers features 
enabling you to define new data types which can be different on dif­
ferent machines. This is done through the use of the "typedef". We 
might make the following typedef definitions. For the HP/1000: 

typedef struct {int dcb[l44];} file_desc; 

and for the HP/3000: 

typedef int file_desc; 

This has defined a new data type in terms of existing data types. The 
name of the new type is "file_desc" and it behaves much the same as any 
other data type in the language. Once defined, it may be used. Those 
uses are independent of the definition. We could write code like the 
following: 

Paper 1031 6 



#include "dependent.h" 

extern file desc my_open(); 

main() 
{ 

file desc input; 
file desc output; 

input~ my_open(in_file_name); 
output~ my_open(out_file_name); 

The basic technique here is to gather together all of the machine depen­
dent definitions (the typedef for example) and to place them into a C 
"include" file. In this case, the include file is called "dependent.h". 
There will be one include file for each target machine. When the above 
program is compiled on the HP/1000, the compiler will read the HP/1000 
version of the dependent.h include file. When compiled on the HP/3000, 
the compiler reads the dependent.h file for the 3000. The compiler 
changes the object code output as a result of the different definitions 
found in the dependent.h include file. 

The job of porting becomes one of rewriting the dependent include files 
and rewriting the abstract interfaces. 

What are C's portability related features? 

This is a tough question because any feature in the 
timately be used to construct an abstract interface. 
some features which are especially useful in writing 
What follows is a listing of these features and a 
with respect to their use in portable programming. 

The #include 

language could ul­
There are, though, 
portable programs. 
discussion of each 

The include statement is part of C's macro pre-pass. It causes a file 
to be merged at some point in a source program during compilation. Its 
primary use in portable programming is to isolate machine dependent 
definitions from machine independent code. All machine dependent 
definitions are collected together in to one (or more) include file(s) 
which are written for each target implementation. Include files of this 
type usually contain the typedefs, #defines and structure definitions 
which are required to implement the necessary abstract interfaces. 

7 naper 1031 



The #if 

This is another pre-processor feature. It is used to conditionally con­
trol compilation of source code. For example, 

#if HP 1000 
exec(2, 1, mesg, -12); 

#elif HP 3000 
print( (char*)mesg, -12, 0); 

#endif 

In this program fragment, if the pre-processor variable HP 1000 is 
defined, then the EXEC call will be compiled. If the HP 3000 variable 
is defined, then the PRINT intrinsic will be compiled. Using the con­
ditional compilation feature for portability is obvious, but it is 
generally not a good idea. The resulting source code is difficult to 
read. Defining a macro would be a better way to achieve the same 
results as we shall see. 

The #define. 

The #define statement is part of the pre-pass which defines macros. 
Macros are an important way in which C programmers write portable 
programs which are efficient. The define statement may be used to 
declare two different types of macros: those with parameters and those 
without. 

Macros without parameters are useful for separating machine dependent 
constants from the pure portable code. For example, a data base file 
name might be defined in a machine dependent include file by using a 
macro. On the 1000 it might look like: 

#define DATA_BASE_NAME "/system/roots/data.dbs" 

While on the 3000 it might look like: 

#define DATA BASE NAME "DATA.PUB.DBASE" 

If we wanted to write portable code to open the data base file as per 
our file system example we would write: 

data base= my_open(DATA_BASE_NAME); 

The define processor in the pre-pass would take care of all of the 
machine dependencies. 

The second form of macro is one which has parameters. This is more com­
plex, but much more powerful. Again, the machine dependent macros can 
be defined in the machine dependent include files. Assume we want to 
make an abstract interface to tell the operator something. The routine 
will be called "tell". The tell function will accept a string as its 
argument. The string will be printed to the operator's terminal. 

What we have just done is to describe the abstract interface for 

Paper 1031 8 



printing a string to the operator. Now we must implement it. There are 
two approaches. The first approach is to actually write a subroutine 
which is rewritten each time the application is ported. This is what we 
did for the "my_open" routine. If the interface is simple enough we 
might be able to implement it as a macro. This will increase the ef­
ficiency of the interface because there will be no subroutine call. 
Again, include files are used to contain the dependent code: 

HP/1000 include file 

extern int exec(); 
#define tell(s) exec(2, 1, *(int*)s, -strlen(s)) 

HP/3000 include file 

#pragma intrinsic print 
#define tell(s) print(s, -strlen(s), 0) 

The portable programmer may feel free to use the tell macro whenever a 
message is to be sent to the operator: 

tell("Hello, how's it going?"); 

Not only is this usage portable across both the 1000 and the 3000, it is 
efficient and much easier to read than using the #if construct. 

Most C compilers support some form of embedded assembly language. This 
is useful for getting at special instructions which perform certain 
functions. It would appear impossible to use embedded assembly language 
in a portable program. But using abstract interfaces and C features 
makes it easy. 

Take, for example, a move byte operation. The HP/3000 has a move byte 
instruction. Most HP/1000 computers also have a move byte, but some 
don't. The abstract interface we will design is: 

move_bytes(from, to, number); 

"From" is the source 
character pointer and 

character pointer, "to" is the 
"number" is the number of bytes. 

the following machine dependent include files: 

For the HP/1000: 

#if OLD HP 
extern do_move(); 
#define move_bytes(f, t, n) do_move(f, t, n); 
#else 
#define move_bytes(f, t, n) asm { \ 

lda f; \ 
ldb t; \ 
ldx n; \ 
mbOO; l 

#end if 

9 

destination 
We can define 

Paper 1031 



Notice that the #if is used in the include file to check the pre-pass 
variable "OLD HP". If the OLD_HP flag has been set, then the external 
routine "do move" is called to do the move. If the flag is not set, 
then the macro move_bytes is defined to generate in-line code to access 
the mbOO instruction. 

The include file for the HP/3000 is: 

#define move_bytes(f, t, 
TOS (unsigned) f; 

_TOS_ = (unsigned) t; 
_TOS_ = (unsigned) n; 
asm(0020063); 

n) \ 
\ 
\ 
\ 

Again, the application now may be written which uses the "move_bytes" 
feature regardless of the computer it will ultimately run on. Because 
macros have been used to implement the abstract interface, the resulting 
code is very efficient. 

Structures, unions, typedefs, and bit fields 

These four powerful features may be put in a single class with regards 
to portability. They enable the user to remove the definition of data 
from the algorithm which works on the data. This is key to the develop­
ment of a successful abstract interface. The definition of data is 
often the the biggest difference between computers. The "what is being 
done" part is usually portable if we can develop a description of the 
data. 

Some languages make the separation of data and algorithm difficult. How 
many FORTRAN programs have you seen where integers are multiplied by 
powers of 2 in order to shift bit fields to appropriate locations? This 
type of programming intermixes the definition of data and the definition 
of the algorithms to access that data in ways which are extremely dif­
ficult to find and change. 

The typedef is a feature which provides for the separation of data 
definitions and program definitions. As we saw in the file open ex­
ample, the typedef can be used to define machine dependent arguments to 
abstract interfaces. Another interesting use for the typedef is in con­
trolling integer precision. 

The C language supports names for types which have nothing to do with 
the precision of the types. For e:·dmple, the type "int" on the HP/1000 
means a 16 bit word while the same type on the Spectrum means a 32 bit 
word. This can cause problems if the programmer specifically wants a 
certain representation. It is difficult to count to 123,423 with only 
16 bits. 

Typedef's defining new types can be made part of the the machine depen­
dent include files written for each target computer. An example on the 
HP/1000 and the HP/Spectrum might be: 

Paper 1031 10 



HP/1000 Include file 

typedef int bitsl6; 
typedef long bits32; 

Spectrum Include file 

typedef short bitsl6; 
typedef int bits32; 

If we write the following in the portable portion of the program 

bits32 a[20]; 

then we are specifying the allocation of an array of 20 elements named 
"a". Each element of the array will contain 32 bits of precision. On 
the HP/1000, the definition of the type "bits32" is a long. On the 
1000, a long is implemented using double precision integer arithmetic. 
On the Spectrum (a 32 bit machine), the same type name has been defined 
to be an int. A Spectrum int is 32 bits. 

If we write the declaration: 

bitsl6 b[20]; 

We will allocate an array b which also has 20 elements, but each of b's 
elements will have 16 bit representation. 

A good example of the use of C structures is in the solution of the 
"NUXI" (pronounced nux-ee) problem. The DEC PDP-11 numbers its bytes 
"backward" from the HP/1000 and HP/3000: 

PDP/11 HP/1000 HP/3000 
+--------+--------+ +--------+--------+ 
I byte 1 I byte o I I byte o I byte 1 I 
+--------+--------+ +--------+--------+ 

The problem is that ASCII text stored into computer words gets reversed 
on the PDP/11 (unless you are a DEC programmer, then it gets reversed on 
the HP computers!) If an integer "x" contains two ASCII characters and 
we mask off the high order 8 bits expecting to get the "first" byte, we 
will discover the "second" byte if the program runs on the PDP/11. For 
example, the C expression: 

(x » 8) & 0377 

Returns byte 1 on the PDP/11 and byte 0 
property which gives the problem its name. 
into an array and read out on the "wrong" 
(ahh, Bell Labs again). 

on the HPs. It is this odd 
If the string "UNIX" is put 

machine it becomes "NUXI" --

Anyway, the NUXI problem provides a good example of separation of data 
and algorithm. The "abstract interface" into the data is this: first, 
we want to be able to get at a word as a 16 bit integer and second, we 
want to be able to find the "first" ASCII character in the word regard­
less of the machine organization. 

Unsurprisingly (by now) this can be done with code in machine dependent 
include files: 

11 Paper 1031 



HP/3000 Include file 

union charloc 
struct { 

char first; 
char second; 

c; 
int i; 
x; 

PDP/11 Include file 

union charloc { 
struct { 

char second; 
char first; 

c; 
int i; 
x; 

The include file on the HP/3000 indicates that x.c.first is the most 
significant 8 bits of an integer, while the same expression on the 
PDP/11 indicates the least significant 8 bits. We may now write the 
following portable code: 

if(x.c.first =='A') .... 

When compiled on the HP/3000, the if statement tests the upper byte of 
the integer, yet when compiled on the PDP/11 (using the PDP/ll's machine 
dependent include file), the lower byte will be tested. 

The union enables the object "x" to be viewed either as an integer or as 
a structure of 2 characters. Notice the important fact that the " " 
operator used to select the appropriate component of "x" knows how to 
access the data based on the definition of x. Contrast this will coding 
the access method in the program: 

(x » 8) & 0377; 

Coding 
of the 
must be 

the access method into the program is clearly non-portable. All 
places in the program where the shift and mask technique is used 
located and changed each time the program is ported. 

The need to use shifting and masking to extract and deposit strings of 
bits from words is completely eliminated by C's bit fields. A structure 
may be defined which has members which are actually bit fields within 
the same computer word. For example, the structure 

struct 
int 
int 
int 

x; 

i· 
' 

j:4; 
k:6; 

Defines x to be a collection of 3 data objects. The first is a single 
integer called "i" while the second and third objects are bit fields of 
3 and 5 bits each: 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+ 
I j field k field unused 
+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+ 

To set the "k" field of x to a value of 47 we would write 

Paper 1031 12 



x.k=47; 

There is no source code which deals with the fact that k is a field 
within the object x. In fact, if for reasons of portability, we were to 
change the definition of the structure so that k were no longer a field, 
but rather a full integer, only the definition would change. We would 
not have to change source code. Give me some rules already! 

We have gone through a definition of portability, we have described the 
use of the abstract interface and we have shown you some of the features 
of C which are especially useful for portable programming. Although im­
possible to make complete, we will finish with a set of "rules" which 
can be used as guidelines in developing a portable program. Some rules 
are quite definite while others are quite vague. Such is the current 
state of the portable art. 

1. Design before you code. 

Sounds like motherhood and the flag, but many portability problems 
can be designed out at the earliest stages of a project. Recognize 
the "problem areas" we pointed out and make sure that your design 
addresses them. Generally, the most troublesome problems stem from 
choices made early in the implementation cycle. 

2. Know your target computers. 

If you have a good idea what computers you are going to port your 
software to, you can make the wisest implementation decisions. This 
is not often possible, but if you know a good sub-set of target 
machines, it will point out what sorts of things your design will 
have to accommodate. 

3. Use features wisely. 

Just because a system you are programming on has some nice feature, 
does not mean you are obligated to use it. In fact the "nicer" a 
feature is probably the more obscure and non-portable it is. Watch 
out for special language "enhancements" which are supposed to make 
your implementation better. Are they generally available? Special 
features should be isolated with abstract interfaces so they can be 
programmed around if they are not available. 

4. Recognize and use the lowest common denominator. 

If your target set of computers includes one with a 64K address 
space and one with a virtual address space, you'd better design for 
the smaller machine. If one computer only supports fixed sized 
files and another supports fixed and variable sized files, you'd 
better design using only fixed sized files. Again, knowing where 
you're going helps here. 

13 Paper 1031 



5. Use standard libraries. 

ANSI is doing a lot 
Some implementations 
ful functions which 
non-portable. 

to standardize the I/O libraries found in C. 
brag that they have all these weird and wonder­

make programming easier -- they also make it 

6. Avoid system calls like the plague. 

Do not make any direct system calls. Instead abstract them either 
through macros or by writing intermediate code. Make sure that you 
have found the really important features of the system call. If, 
for example, you have a open function which will open a file and 
return the time of day with one call, ask yourself if you really 
need the time of day. If you don't, don't put that part of the fea­
ture in your abstract interface to the open function. The simpler 
the better. 

One of the really gray areas is in shared memory 
process management. There are as many (different) 
for these features as there are operating systems. 

7. Develop style rules and stick with them. 

functions and 
implementations 

Remember, portable programs are always being rewritten. They must 
be clear and easily understood. Adopting a programming style and 
sticking with it makes all code modules appear uniform. Programmers 
can quickly become accustom to where things will be and how they 
will be written. 

8. Separate dependencies into include files. 

Isolate machine dependencies into different include files. For ex­
ample, perhaps an include file named "dependent.h" could be used. 
This should contain all of your machine dependent definitions. 

9. Avoid coding "data access" in your program. 

Let the compiler do this work for you. Use the struct, union and 
typedef features to describe the data you are using. Often you can 
change these definitions and your programs will remain unchanged. 
If you must code shift/mask type operations, make them portable. 
For example, to clear the low order 3 bits of an integer you might 
write 

x & 0177770; 

This is not portable because it assumes that x is 16 bits. A better 
way to write this would be: 

x & -07; 

The compiler will make the appropriate sized constant for you. 

Paper 1031 14 



10. Document assumptions. 

If you are assuming certain features are present, document those as­
sumptions. One of the by-products of a portable program is the 
"port manual." This is a document which describes what has to be 
done to successfully port the program. 

11. Write test programs to check out features. 

If you expect a certain feature to be a certain way, write a simple 
test program to check the feature. Before porting you can run the 
test to get a feel for what the target compiler is doing. 

12. Don't "hard code" constants. 

You should never code constants directly into source programs. In­
stead, use the macro facility of C to give constants names. 

13. Use short external names and don't mix upper and lower case. 

Different C compilers (and system loaders) do different things with 
external names. For example, CCS/C on the 3000 allows external 
names up to 31 characters in length, but CCS/C on the 1000 limits 
these names to 16 characters. Over all, 6 character external names 
appears safe. Fortunately, this size is increasing. 

Conclusions 

Our own experience and the experience of others has shown that by fol­
lowing these rules and by programming in C it is possible to develop 
highly portable software. A case in point is the CCS/C compiler. This 
compiler was developed for the HP/3000 on the HP/1000. When completed, 
the 1000 version of the compiler compiled the 3000 version which was 
then loaded on the 3000 and run! The entire porting process took about 
2 weeks to complete. 

The UNIX operating system perhaps stands at the best testament to C's 
portability. Most computers which execute UNIX are compatible with each 
other because they are running the same code. We doubt if this degree 
of portability has been achieved with any other language. 

15 Paper 1031 





MAKING RTE SYSTEM CALLS IN HP-UX 

Grant Sidwall 
Hewlett-Packard (Canada) Ltd. 

1825 Inkster Blvd. 
Winnipeg, Manitoba R2X 1R3 

INTRODUCTION 

To create a computerized system, consisting of multiple 
programs communicating with each other and with I/O devices, 
a programmer requires capabilities beyond those defined in 
standard programming languages. These capabilities, such as 
communication between programs, appropriate scheduling of 
processes, control of process priority, and I/O to 
non-standard devices, are normally provided as extensions to 
the language through subroutine calls to the operating 
system. The available calls, the capabilities provided, and 
the concepts implemented are specific to the operating 
system hosting the application, although the basic set of 
capabilities and concepts are fairly standard. 

This paper takes the basic capabilities with which an HP 
1000 RTE programmer is familiar, and shows how the same, or 
similar, concepts are implemented in HP-UX. The 
capabilities discussed are: process scheduling, 
interprocess communication, shared memory, process locking, 
priority setting, I/O control requests, and asynchronous I/O 
(class I/O). 

PROCESS SCHEDULING 

In RTE, a process exists in three areas of memory; an ID 
segment, a code segment, and a data segment. A new process 
is created through an EXEC call which causes the operating 
system to locate free memory for each of the three segments 
and then copy the appropriate portions of a program file to 
the segments. 

A process in HP-UX also has three main parts; a system data 
segment, a text (code) segment, and a user data segment. 
However, in HP-UX, only the initial process at bootup is 
created from 'scratch.' 

Paper 1032 



All other processes are created by copying an existing 
process (the fork call) , and then overlaying the duplicated 
program with the contents of the desired program file (the 
exec call). 

For example, for an existing process to cause a program 
residing in the file 'SONNY' to be executed, the code in RTE 
FORTRAN would be: 

PROGRAM DAD 
WRITE ( 1, I ("DAD IS RUNNING") I) 
CALL EXEC (10, 6HSONNY ) !assume program is RP'd 
WRITE ( 1, I ("SONNY SCHEDULED") I) 
END 

In HP-UX using c, this would be accomplished by: 

main() 
int pid; 
{ 
pid = fork () ; 
if (pid == 0) /* if I am the new (child) process */ 

/* overlay myself with 'sonny' */ 
execl ("/users/grant/sonny", "sonny",O); 

printf ("father is done \n"); 
} 

The RTE call causes RTE to locate the program file ('SONNY') 
via the ID segment, and sufficient memory for the programs 
code and data segments. RTE then copies the program into 
memory, including completing the ID segment. (One of the 
things RTE does in filling out the ID segment is to insert a 
pointer to the scheduling program so the parent-child 
relationship can be maintained). Finally, RTE places the 
program in the schedule list to run at its pre-assigned 
priority. 

The HP-UX process launch is a two step process. The first 
call (fork) causes HP-UX to locate the required free areas 
in memory (i.e. system data area, user text area and user 
data area), and then copy the existing process into it. 
This new process is identical to the calling process in that 
it is executing at the same point, has its own copy of the 
same data, and has the same files open at the same points. 

Paper 1032 2 



The two processes do differ in the value of the process ID 
(pid) returned by the fork call. The value returned to the 
parent process is the unique process ID number of the child 
program, while the value returned to the child program is 
zero. 

This difference in the returned value is used to cause only 
the child process to execute the second step, the •exec' 
call. This call causes HP-UX to locate the specified 
program file and use it to overlay the child process. The 
process ID of the child process remains the same, so the 
parent-child relationship is still maintained, but the 
content of the process (i.e. the program the process is 
running), is changed. The new program has its own data, 
starts from its own initial point of execution, may open its 
own files, and generally bears no resemblance to the process 
it has overlaid, although it is executing in the same 
environment (conceptually similar to an RTE SEGLD call). 

In RTE, we have the concept of a program being 'busy' (i.e. 
the process associated with an ID segment exists the 
program is non-dormant). This results in RTE having the 
'regular' schedule call (EXEC 10) and a queued schedule call 
(EXEC 24). The regular schedule call will cause the program 
to be executed only if it is dormant, and will return an 
error code otherwise. The queued schedule call also causes 
a program to be scheduled for execution if it is dormant, 
but, if the program is non-dormant, will cause it to be 
scheduled as soon as it becomes dormant. (This is made 
somewhat transparent by the use of the utility routine 
FmpRunProgram, which creates a new ID segment with a 
different name if the required one is busy) . 

Because HP-UX tracks a process by its unique pid, rather 
than by a named ID segment, the concept of a program being 
unschedulable because it is busy has no meaning. A program 
can only be requested by the name of the file containing it; 
a previous process copied from that file has a unique pid, 
and is not related to the new invocation. 

RTE also provides the capability for a parent program to 
wait for a child to finish executing before the parent 
continues (EXEC 9 or 23). This capability is also provided 
in HP-UX, but is different in that the parent process may 
elect to wait for the child at any point in its code, rather 
than only waiting at the schedule call. 

3 Paper 1032 



e.g. In RTE: 

PROGRAM DADWAIT 
WRITE (1, '("DAD IS RUNNING")') 
CALL EXEC (9, 6HSONNY ) !program waits while sonny 

!runs 
WRITE ( 1, I (II SON FINISHED") I ) 

END 

e.g. In HP-UX: 

main ( ) 
{ 
int pid, *statusp; 
pid = fork ( ) ; 
if (pid == 0) 

execl ("users/grant/sonny","sonny",O); 
/* parent does something */ 
printf ("I'm still the parent \n"); 
wait (statusp); /*decides to wait for son*/ 
printf ("son is done \n"); 
} 

In the HP-UX case, the parent program, after spawning the 
child, continues execution (the printf statement) and only 
waits for the child to complete (the wait statement) when it 
has no other work to do. Placing the wait statement 
directly below the exec! call would achieve the same effect 
as the RTE EXEC 9 call. 

Another feature of program scheduling implemented in RTE is 
the ability to pass parameters from the parent process to 
the child, and from the child back to the parent. 

Data is passed to the child in the schedule call (EXEC 9, 
10, 23 and 24) and received in the child using the RMPAR 
call to obtain up to 5 sixteen bit words and the GETST or 
EXEC 14 call to receive a buffer of character data. 

This is illustrated in 
programs (literals are 
simplicity) : 

Paper 1032 

the following 
used as much 

4 

parent and child 
as possible for 



PROGRAM PARENT 
INTEGER BUFR(20), PARMS(5), TLOG, I 
CALL EXEC(23,6HCHILD ,1986,0,66,7,0,14H,,FOR MY CHILD,7) 
CALL RMPAR (PARMS) !Pick up the 5 integers 
CALL GETST (BUFR,20,TLOG) !Get the returned buffer 
WRITE (1,10) PARMS, (BUFR(I) ,I=l,TLOG) 

10 FORMAT (/" PARMS ARE : 11 ,5I6/ 11 STRING IS : 11 ,20A2) 
END 

PROGRAM CHILD 
INTEGER BUFR(20), PARMS(5), TLOG, I, SUM 
CALL RMPAR (PARMS) !Get the 5 integers 
CALL GETST (BUFR,20,TLOG) !Pick up character string 
WRITE (1,10) PARMS, (BUFR(I) ,I=l,TLOG) 

10 FORMAT ("PARENT SENT 5 INTEGERS :",5I6)/ 
"AND 1 STRING : 11 ,20A2) 

SUM = PARMS (1) + PARMS (3) !Change 
PARMS (1) = SUM !the 
DO 20 I=2,5 !integer 

20 PARMS (I) = O !parameters 
CALL PRTN (PARMS) !and return them 
CALL EXEC (14,2,12H,,THANKS,DAD,6) 
END 

The result of running the parent programs: 

Cl> PARENT 
PARENT SENT 5 INTEGERS : 1986 
AND 1 STRING: FOR MY CHILD 

PARMS ARE 
STRING IS 

CI> 

2052 0 0 
THANKS,DAD 

0 66 

0 0 

7 0 

HP-UX also provides the capability for a program to pass 
data to a child process. However, the data must be in 
character form, although there is no limit to the number of 
character strings that can be passed. 

The concept is very similar to GETST/EXEC 14 in RTE in that 
the receiving program expects to pick up a runstring. This 
is illustrated in the following pair of programs: 

5 Paper 1032 



main ( ) ~/*the parent program*/ 
{ 
int pid,status; 
pid=fork () 
if (pid==O) 
execl("users/grant/child","child" "first string", 

"second",O) 
wait (&status) 
printf("Child's exit status was %x \n",status); 
} 

main (argc,argv) /*child process expecting parameters*/ 
int argc; /*parameter count */ 
char *argv[ ]; /*pointer to array of pointers to 

parameters*/ 
{ 
int i; 
fqr (i=O;i<argc;i++) 
printf ("Parameter %d is 
} 

%s\n",i,argv[i]); 

Running this set of programs produces the following: 

$ parent 
Parameter O is child 
Parameter 1 is first string 
Parameter 2 is second 
Child's exit status was o 
$ 

Because the number of parameter strings (arguments in HP-UX 
terminology) is variable, some constructs not found in RTE 
are used. These are worth explaining. 

They syntax of the execl scheduling call is defined as: 

int execl (path,argo,argl, 
char *path,*argO,*argl, .. 

Paper 1032 6 

,argn,O) 
,*argn; 



The arguments to execl are all pointers to character • 
strings, with the last one being a null pointer (zero) to 
terminate the list. The first argument, path, defines the 
path to the program file from which the process will be 
overlaid. The second argument, by convention, is the name 
of the program file - similar in concept to GETST in RTE, 
which expects to strip out 'RU' and the program name before 
passing in the 'real' data. The remaining arguments are 
pointers to strings, each of which is one parameter. 

HP-UX determines how many parameters are in the list, and 
sets the value in argc before invoking the child, which is 
the same as what is done when a program is run 
interactively. 

The child can then pick up the parameters as it needs them; 
this need not be the first step in the program. 

Since the parameters can only be strings, the only way to 
pass numeric values is to convert them into strings in the 
parent program, and then convert them back in the child 
program. 

HP-UX does not provide a method of retrieving data from a 
child program at its termination. Data may be passed back 
and forth using interprocess communication, which is 
discussed later, but the only value returned to the wait 
call is the terminating status of the child program (i.e. 
the reason it terminated). 

INTERPROCESS COMMUNICATION 

RTE provides for interprocess communication beyond simple 
parameter passing at schedule time via the set of EXEC calls 
referred to as class I/O. This method of communication is 
based on a key referred to as a class number. This key 
allows communicating programs to read and write to buffers 
in the system Available Memory area of RTE. Communication 
is established by obtaining a class number from RTE (CLRQ 
call) and passing it to programs which need to communicate 
with each other. 

7 Paper 1032 



Communication is accomplished by one program performing a 
class write (EXEC 20) to the class number to create a buffer 
containing the desired data, following by another program 
performing a class get (EXEC 21) to read the data into its 
area. Note that the class number assigned by RTE through 
the CLRQ call is essentially random, and may vary each time 
the program is invoked, requiring that the class number 
always be distributed to all programs participating in the 
communication, since any previous value is irrelevant. 

HP-UX provides a very comparable service, based on the idea 
of message queues associated with a message queue 
identifier. The difference is that the message queue 
identifier is associated with a user-provided key, so that 
access to a specific message queue 'may be requested by 
specifying a known key. 

In other words, if a group of programs agree on a specific 
key value, either by hard coding it or by deriving it in a 
systematic fashion, they can access the messages without 
first requiring some other form of interprocess 
communication to obtain the key value. In fact, HP-UX 
provides a routine, 'ftok, ' which will return a unique, 
consistent key value when given a specific file name. 

Another feature of message queues in HP-UX is protect i.on. 
When a message queue is created in HP-UX, its creator 
provides a set of read/write permissions identical to those 
for a file (i.e. access is granted in three levels: owner, 
group, and all other) . These permissions can be used to 
control access to the message queue, and prevent accidental 
or malicious tampering with the messages. 

In some instances, especially in a system being ported from 
RTE, the programmers may not be interested in the key value 
associated with the message queue, but simply want a private 
mailbox as is provided by class I/O in RTE. This is 
provided in HP-UX by a special case of message queues called 
private messages. To obtain a private message queue 
identifier, a special key value, referred to as IPC PRIVATE, 
is specified when creating the message queue. As in the 
allocation of a class number in RTE, the message queue 
identifier returned cannot be determined before it is 
assigned by the operating system. Consequently, as in RTE, 
the message queue identifier must be communicated to all 
programs needing to access the message queue. 

Paper 1032 8 



In HP-UX, the first 32 bits (a long integer) of each message 
are treated as a message type. This could be considered to 
be similar to the two tag parameters in RTE class I/O calls 
in that it is set by the sending program and received by the 
receiving program. Additionally, a receiving program may 
specify, through the message type parameter in the message 
receive call, that it will receive only the type of message 
specified, or only messages having a type less than or equal 
to the type specified, or any message regardless of type. 
In other words, a program can make use of the message type 
to select specific messages, or ignore it by setting it to 
zero when receiving. 

Messages on HP-UX are implemented in four routines: 

msgget - creates or obtains access to a message queue 
based on the key value specified. 

msgsnd - send a message to a queue. 

msgrcv - gets a message from a queue (and deletes it 
from the queue) . 

msgctl - performs utility operations such as changing 
queue permissions, obtaining queue status, and 
destroying the queue when it is no longer needed. 

To illustrate the similarity (and difference) of the 
implementation, the following sets of programs illustrate 
the use of interprocess communication to pass a buffer from 
one program to another for processing and return, first in 
RTE, then in HP-UX. To keep it simple, error checking and 
the use of no-wait bits (available in both RTE and HP-UX) 
are left out. 

First, in RTE: 

PROGRAM FIRST 
INTEGER BUF(20), CLASS 

C get class number 
CLASS = 0 
CALL CLRQ (l,CLASS) 

c fill the buffer 
DO 10 I=l,20 

10 BUFR(I) = I 
C write the buffer to the queue 

CALL EXEC (20,0,BUFR,20,0,0,CLASS) 
c 

9 Paper 1032 



Paper 1032 

c schedule the second program (with wait) 
c and pass it the class number 

CALL EXEC (9,6HSECND ,CLASS) 
c 
C read back the buffer and print it 

CALL EXEC (21,CLASS+20000B,BUFR,20) 
WRITE (1,20) BUFR 

20 FORMAT (/"BUFFER IS :",20I3) 
c 
c release the class number 

CALL CLRQ (2,CLASS) 
END 

PROGRAM SECND 
INTEGER PARMS(5), CLASS, BUFR(20), TMP 

c get the class number 

c 

CALL RMPAR (PARMS) 
CLASS = PARMS(l) 

C read buffer, don't deallocate class # 
CALL EXEC (21,CLASS+20000B,BUFR,20) 

c 
c reverse the buff er 

DO 10 I=l,10 
TMP = BUFR(21-I) 
BUFR(21-I) = BUFR(I) 

10 BUFR(I) = TMP 
c 
C write the buffer back 

CALL EXEC (20,0,BUFR,20,0,0,CLASS) 
c 

END 

Now, in HP-UX using c: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 
main() /* first program */ 
{ 
key t key; 
int-msqid, msgflg, msgsz, i, pid, status; 
struct { 

long mtype; 
short mint[20]; 
} msg; 

long msgtyp; 
char msqid_char[l2]; 

10 



/* get a message queue */ 
key = IPC PRIVATE /* want a private queue */ 
msgflg = 0600; /* owner only can read/write */ 
msqid = msgget (key,msgflg); 

/* fill the buffer */ 
for (i=O; i<20; i++ ) msg.mint[i]=i; 

/* write the buffer to the 
msgsz = 20*sizeof(short); 
msg.mtype = lL; 

queue */ 
/* 20 short integers */ 
/* type must be > O */ 

msgflg O; 
status = msgsnd 

/* no special features */ 
(msqid,&msg,msgsz,msgflg); 

/* convert key to characters for passing */ 
sprintf (msqid_char,"%d",msqid); 

/* invoke second program */ 
pid = fork() ; 
if ( pid == 0 ) 

execl ("users/grant/interex/second", 
"second",msqid_char,O); 

wait (&status); 

/* read the modified buffer back */ 
msgtyp OL; /* first message on queue */ 
status= msgrcv (msqid,&msg,msgsz,msgtyp,msgflg); 

/* write the buffer out */ 
printf ("Buffer is : ") ; 
for (i=O; i<20; printf (" %d",msg.mint[i++]) ) ; 
printf ("\n"); 

/* release the message queue */ 
msgctl (msqid,IPC RMID,&msg): 
} 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 
main (argc,argv) 
int argc; 
char *argv[]; 

{ 

/* second program */ 

int msqid,msgflg, msgsz, i, tmp, status; 
struct { 

long mtype; 
short mint[20]; 

11 Paper 1032 



} msg; 
long msgtyp; 

/* convert the key from incoming string */ 
msqid = atoi (argv[l]); /* second argument */ 

/* read in the buffer */ 
msgsz = 20*sizeof(short); 
status= msgrcv (msqid,&msg,msgsz,OL,O); 

/* reverse the buffer */ 
for ( i=O; i<lO; i++ ) { 

tmp = msg.mint[l9-i); 
msg.mint[l9-i] = msg.mint[i]; 
msg.mint[i) = tmp; 
} 

/* send the buffer back */ 
msg.mtype=lL; 
status = msgsnd (msqid,&msg,msgsz,O); 

Note that since this example used a private message queue, 
the message queue identifier had to be passed to the 
receiving program in the schedule call (as a string, since 
that is the only form of data that can be passed by that 
call). If the key had been based on the name of a file 
known to both (using 1 ftok'), the second program could have 
used msgget to obtain a message queue identifier associated 
with the desired message queue. Also, the message queue 
must be explicitly released when it is no longer needed, or 
it will remain on the system until manually released using 
utility ipcrm. The status of all active messages can be 
viewed using utility ipcs. 

SHARED MEMORY 

Another method of communicating between programs is via 
shared memory, where a portion of memory is mapped into the 
address space of all participating programs. This is the 
fastest method of communication between programs, since 
there is no overhead due to data movement; when data is 
placed in shared memory, it is immediately available to all 
participating programs. In RTE, sharable memory is 
implemented as named common blocks located in the Extended 
Memory Area. 

Paper 1032 12 



As such, accessing shared memory requires only a $EMA 
declaration in the program code, and an 'SH' directive at 
LINK time (i.e. there is no active code required in a 
program to access shared memory). This is very simple, and 
easy to use, al though it does 1 imi t the user to only one 
shared memory segment per program, and that segment is in 
place of any unshared EMA or VMA. 

RTE shared memory can also be locked into memory so that the 
data in it will be retained even when no active programs are 
accessing it. 

In HP-UX, shared memory is treated as a resource which is 
acquired by a program as it executes, much 1 ike message 
queues. The process of acquiring access to a shared memory 
segment is similar to that for accessing a message queue. 
Access to a shared memory segment identifier is based on a 
user-specified key value, unless a private segment is 
requested, in which case the system assigns a unique 
indentifier. If a new shared memory segment is being 
created, the user must specify the segment size in bytes and 
the file-like permission bits. The segment is then mapped 
into the users address space, yielding a pointer to the 
shared memory segment. All access to the shared memory is 
then done as offsets from this pointer, similar to array 
addressing in C. A program may attach multiple shared 
memory segments to itself with each one being considered as 
a shared array. A program can also detach itself from any 
shared memory segment to which it is attached, and, by 
retaining the shared memory segment identifier re-attach to 
the same segment provided it has not been removed in the 
intervening time. Shared memory segments can be locked into 
memory to improve performance in a system where there is 
heavy paging to disc. 

The manipulation of shared memory is accomplished in HP-UX 
by four routines: 

shmget - creates or grants access to a shared memory 
segment of user specified size, based on a user 
specified key. 

shmat - attaches the shared memory segment to the calling 
program. Returns the address of (pointer to) the 
start of the segment. 

shmdt - detaches the shared memory segment from the 
program. 

13 Paper 1032 



shmctl - performs utility operations, such as obtaining 
status, changing permission, locking a segment 
into memory, and removing a segment that is no 
longer needed. 

Because a shared memory segment, like a message queue, can 
be accessed by any program which knows or discovers the key 
value or identifier, it is created with the same read and 
write protection capabilities as a message queue or ordinary 
file. 

RESOURCE SHARING 

Once access to a portion of shared memory is obtained, 
either by RTE's SHEMA mechanism or HP-UX's shmget and shmat 
calls, it is treated as ordinary memory i.e. all access to 
shared memory is made through ordinary program language 
statements, with no operating system intervention to provide 
synchronization. This can lead to access problems, such as 
two or more programs writing to shared memory at the same 
time without knowing of each others activity. This problem 
is normally handled by an operating system feature which 
prevents co-operating programs from simultaneously accessing 
a single resource. The implementation consists of the 
association of the resource or resources with an entity that 
has a mechanism to prevent simultaneous use (i.e. guaranteed 
1 atomic' lock and unlock mechanisms) . (The term atomic in 
HP-UX is used to imply an operation that will always 
complete, once started, before it can be started again by 
another process). I.e. once one process starts the locking 
mechanism for a given entity, no other process can start or 
try to start a lock on that entity until the current 
activity is completed. 

In RTE, the entity associated with the resource(s) is known 
as a resource number, and access to the resources ( s) is 
controlled by locking and unlocking the resource number. A 
resource number is allocated, locked, and unlocked using the 
RNRQ call. Because the association between the shared 
resource and the resource number is made within the 
co-operating programs, as many or as few resources as the 
user desires are associated with a single resource number. 
If multiple resource numbers are used, the locking and 
unlocking sequences must be carefully established to avoid 
deadlocks. 

Paper 1032 14 



In HP-UX, the facility for co-ordinating resource usage is 
known as a semaphore. The process of locking the resource 
is known as acquiring a semaphore, and unlocking is referred 
to as releasing the semaphore. 

HP-UX has the ability to deal with a set of semaphores (i.e. 
a group of one or more semaphores, all identified with a 
single semaphore identifier). All operations and the set 
are atomic, i.e. if a program tries to acquire (lock) all 
the members of a set, none of them are locked until all of 
them are available. This allows programs in which multiple 
resources are being shared to be coded to avoid deadlock 
more easily. 

The calls used to handle semaphores are: 

semget - creates or obtains access to a set of 
semaphores for the supplied key value 

semop - acquires and releases semaphores 

semctl - obtains semaphore status, sets and resets 
semaphores, and removes semaphores that are no 
longer needed. 

In HP-UX, a set of semaphores is assigned read and write 
permissions when it is created. 

An example of three programs communicating through shared 
memory, and co-ordinating the communication through resource 
numbers/semaphores follows. In the example, one program 
initially schedules the two others. The two children write 
into a 31 element array in memory, which is printed out by 
the parent program when it is full. The last element in the 
array is used to keep track of the number of elements 
written. One child program writes the element number into 
an array element; the other program writes the square of the 
element number. 

The example is given first in FORTRAN for RTE, then in C for 
HP-UX: 

$EMA /SHARE/ 
PROGRAM KING 

c 

COMMON /SHARE/ IX(31) 
LOGICAL GOING 

IX(31) = 1 !Initialize counter 
c allocate resource number 

CALL RNRQ (20B, IRN) 

15 Paper 1032 



c schedule serving programs 

c 
c 

CALL EXEC (10,6HSERF2 , IRN) 
CALL EXEC (20,6HSERF1 , IRN) 

watch for array to 
GOING = .TRUE. 

be full 

!lock 
DO WHILE (GOING) 

CALL RNRQ (2,IRN) 
IF ( IX(31) .GE.30 
CALL RNRQ (4,IRN) 
DO 12 I = 1,32767 
CONTINUE 

) GOING = .FALSE. 
!unlock 
!kill time 

12 
END DO 

c 
C write out array 

WRITE ( 1, 2 0) (I, IX (I) , I=l, 3 0) 
20 FORMAT ("Element ",I2, 11 : 11 ,I3) 
c 
c release resource number 

CALL RNRQ (40B,IRN) 
END 

$EMA /SHARE/ 
PROGRAM SERFl 

c 

COMMON /SHARE/ IX(31) 
LOGICAL GOING 
INTEGER PARMS(5), IRN, COUNT, LOCK, UNLOCK 
DATA LOCK /2/, UNLOCK /4/ 

C get resource # 

c 

CALL RMPAR (PARMS) 
IRN = PARMS(l) 

c change an element every chance we get 
GOING = .TRUE. 
DO WHILE (GOING) 

CALL RNRQ (LOCK,IRN) 
IF ( IX(31) .LE.30 ) THEN 

COUNT = IX(31) 
IX(COUNT) = COUNT 
IX(31) = COUNT + 1 

ELSE 
GOING = .FALSE. 
ENDIF 
CALL RNRQ (UNLOCK,IRN) 
DO 10 I = 1,32767 !kill time 

10 CONTINUE 
END DO 
END 

Paper 1032 16 



In HP-UX, because shared memory is dynamically acquired, the 
code is more complex: 

#include <sys/types.h> 
#include (sys/ipc.h> 
#include <sys/sem.h> 
#include <sys/shm.h> 
main() /*king.c */ 
{ 
key t key; 
int-i,running, semid, shmid, pid, status; 
short *array; 
struct sembuf sops; 
char *shmat(); 

/* get a key based on runnable file of this program */ 
key= (key t) ftok ("users/grant/interex/king",'z'); 

/* get shared memory segment - 62 bytes (31 short ints) */ 
shmid = shmget (key,62,IPC CREATI0600): 

/* attach the memory and initialize 31st element */ 
array = (short *) shmat (shmid,O,O); 
array[30] = l; /*elements are o ••• 30 */ 

/* get a set consisting of only one semaphore */ 
semid = semget (key,l,IPC CREATI0600); 

/* initialize the semaphore */ 
sops.sem_num = O; 
sops.sem op = l; 
sops.sem-flg = SEM UNDO; 
status =-semop (semid,&sops,l); 

/* start up the two slaves */ 
pid = fork() ; 
if ( pid == 0) 

execl ("serfl","serfl",O); 
pid = fork() ; 
if ( pid == 0) 

execl ("serf2","serf2",0); 

/* wait for the array to be full */ 
running = l; 
while (running) { 

/* acquire the semaphore */ 
sops.sem op = -1; 
status =-semop (semid,&sops,l); 
if ( array[30] >=30 ) running = O; 

17 Paper 1032 



/* release the semaphore */ 
sops.sem op = l; 
status =-semop (semid,&sops,l); 
} 

/* print out the array */ 
for ( i=O; i<31; i++ ) { 

printf ("Element %d : %d\n",i+l,array[i]); 
} 

/* destroy the semaphore */ 
status = semctl (semid,O,IPC_RMID,i); 

/* detach and destroy the shared memory segment */ 
status shmdt ((int *)array); 
status = shmctl (shmid,IPC_RMID,i); 

Note that the HP-UX implementation of semaphores and shared 
memory offers more capability and flexibility, but requires 
more user written code. 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 
#include <sys/shm.h> 
main() /*serfl.c */ 
{ 
key t key; 
int-i, running, semid, shmid, count, status; 
short *array; 
struct sembuf sops; 
char *shmat () ; 

/* get a key based on runnable file of king program */ 
key= (key_t) ftok ("users/grant/interex/king", 'z'); 

/* get access to shared memory segment */ 
shmid = shmget (key,62,0600); 
/* attach the shared memory */ 
array= (short *) shmat (shmid,O,O); 

/* get access to the set of semaphores */ 
semid = semget (key,1,0600); 
sops.sem num 
sops. sem = flg 

O; 
SEM_UNDO; 

/* change an element every chance we get */ 
running = l; 

Paper 1032 18 



while (running) { 
/* acquire the semaphore */ 
sops.sem op = -1; 
status =-semop (semid,&sops,l); 
if ( array[30) <=30) { 

count= array[30); 
array[count-1] = count; 
array[30) = count + l; 
} 

else 
running = O; 

/* release the semaphore */ 
sops.sem op = l; 
status =-semop (semid,&sops,l); 
for (i=O;i<32767;i++); /*kill time*/ 
} 

/* detach the shared memory segment */ 
status= shmdt ((int *)array); 

PROCESS MEMORY LOCKING 

In an event driven environment, it is often necessary to 
guarantee that a program will respond to an event in the 
minimum time possible. One way to accomplish is to have the 
operating system keep the responding program in memory. 
This capability is referred to as program swapping control 
or process locking. In RTE, this is implemented in the 
EXEC 22 call which can lock or unlock the data and/or code 
partitions of the calling program memory. In HP-UX, process 
locking is implemented by plock, which can lock the code 
and/or data segments into memory, or remove any locks 
present. The difference between the two is that in RTE you 
can choose to unlock only the code or only the data 
partition (or both), while in HP-UX the only unlock option 
is to remove all locks. 

PRIORITY SETTING 

In an environment where many processes are running at once, 
it is often desirable to prioritize the programs (i.e. some 
programs are more 'important' than others and should get 
preference) . 

19 Paper 1032 



This differentiation is accomplished by giving each program 
a priority relative to other programs, and constructing the 
operating system such that programs having a higher priority 
will get preferential access to resources. 

At this point, it is worth considering the way in which RTE 
handles programs having default priority and programs having 
equal priority. In RTE, programs of equal priority are 
treated differently depending on their priority relative to 
a level referred to as the timeslice priority. Programs of 
equal priority that is lower (higher numerical value) than 
the timeslice priority are timesliced (i.e. each gets an 
equal share of processor time). Equal priority programs 
higher than the timeslice priority take turns running to 
suspension or completion (i.e. whichever one is running will 
run until it completes or suspends, then the other will take 
over). RTE also has a Background Priority setting. 
Programs with a higher (numerically lower) priority than 
this value get preferential treatment when decisions are 
made as to which programs are to be swapped out in favour of 
other programs. 

In RTE, a program's priority is set at compile time to a 
value in the 'PROGRAM' statement. This value may be 
overridden at link time, and may be further modified, using 
the 'PR' command once it has an ID segment. This value may 
also be adjusted _by the program itself, using the CHNGPR 
call, as the program runs. The operating system does not 
adjust the programs priority in any way according to the 
load it places on system resources, nor for any other 
reason. There is no way provided for one program to adjust 
the priority of another, unless the program goes privileged 
and writes on another program's ID segment. 

Program priority in HP-UX is handled quite differently. In 
the default method of operation the operating system 
controls program priority in a way that tries to balance the 
system load. As a process uses more system resources, its 
priority is degraded, and as it uses less resources, its 
priority will improve. This tends to balance the system 
load in favour of interactive, non-computer bound processes 
over resource intensive processes so that interactive 
response time is maintained. One component in calculating a 
process priority is its nice value. This value may be 
adjusted when a program is invoked - a program with an 
increased nice value has a lower priority and will be less 
of a load on the system (be nicer, as far as other users are 
concerned). Special capability is required to decrease a 
program's nice value. 

Paper 1032 20 



To provide real-time response capability, HP-UX contains a 
capability to override the normal HP-UX priority 
manipulations. Usi~g the com~and rtprio priority program,a 
program may be invoked with an absolute, real-time 
nondegrading priority. such a process executes at a highe~ 
priority (lower numerical value) than regular time-share 
processes. It is, however, timesliced with programs of the 
same priority, and so will only give up the processor to an 
equal or higher priority 'real-time' process or certain 
interrupts. A compute bound, high priority real-time 
process can effectively halt all other activity, including 
interactive command processing. 

Rtprio can also be used to set the real-time priority of any 
executing process (rtprio priority pid), provided the user 
has sufficient capability. The above can also be 
accomplished programmatically using the rtprio subroutine. 

I/O CONTROL REQUESTS 

There are basically three types of I/O control requests: 

i) 

ii) 

iii) 

requests to set device parameters, such as baud 
rate or magnetic tape density. 

requests to do utility physical operations, such as 
tape rewind or page eject. 

requests to get the status of the last completed 
operation on the device. 

In RTE, these requests are handled in various ways. 
Requests to set up configuration parameters are handled by 
the EXEC 3 call, but these may be temporarily overriden by 
options in a single read or write request (EXEC 1 or 2). 
Utility operations in RTE are performed by the EXEC 3 call. 
Status requests may be handled by an EXEC 3, EXEC 13 or a 
RMPAR call. In RTE, utility and configuration requests are 
accomplished by sending the driver a group of settings that 
the driver stores or passes on to the hardware. Status 
requests return a structure of status words from the 
driver's table area. 

In HP-UX, all three types of requests are handled through 
one interface to the operating system, the ioctl call. In 
HP-UX, a read or write request has only three parameters: a 
file descriptor, a buffer address, and the buffer length. 

21 Paper 1032 



There is no place for any configuration modification 
parameters, and the return value is always a transmission 
log or error flag. Consequently, all configuration changes 
are handled by ioctl, and are deemed to be permanent (i.e. 
in effect for all subsequent reads and writes. There is an 
exception to this - when a device file is cr.eated, some 
parameters, such as whether a mag tape should be rewound 
when its file is closed, are set by bits in the creation 
command) . The general flow of an ioctl operation is to read 
in a structure containing the current configuration, modify 
the structure, and set the structure back. The 
modifications are made easier by the availability of include 
files which contain mnemonic names for the various parameter 
settings as well as definitions of the structures used. 
This methodology is illustrated by the following subroutine 
which opens up a serial device file whose name is given as 
its only parameter, sets the baud rate to 9600, character 
size to 8 bits, echo on, maps carriage return (CR) to new 
line (NL) on input, and enables canonical (backspace, etc.) 
processing. 

#include <fcntl.h> 
#include <termio.h> 
#include <sys/ioctl.h> 

openterm (dev) 
char dev[]; 
{ 
int fd,result; 
struct termio term; 

fd = open (dev,o RDWR); 
if (fd < 1) return (fd); 

/* routine openterm */ 

/* parameter structure */ 

/* read/write mode */ 

/* get control structure */ 
result= ioctl (fd, TCGETA, &term); 
if (result < O) return (result); 

/* modify the structure */ 
term.c cflag B9600 + CS8 + CLOCAL + CREAD; 
term.c-lflag I ECHO + ICANON; 
term.c=iflag I = ICRNL; 

/* send the structure back */ 
result = ioctl (fd, TCSETA, &term); 
if (result < O) return (result); 

return ( fd) ; 
} 

Paper 1032 22 



In the case of utility operations, all that may be required 
is to send the driver a structure describing the operation 
to be performed. 

ASYNCHRONOUS I/O 

Asynchronous I/O is non-blocking I/O. That is, it is I/O 
operation that is initiated by a process, but the process 
does not wait for it to complete. Instead, the process is 
free to perform other processing and only completes the I/O 
request after it has completed some other processing. In 
fact, if, after the process has done some work, it checks 
and finds that the request has not completed, the process 
should be free to do other processing. In other words, the 
process should be able to try to complete the request 
without blocking on the completion, as well as not blocking 
on the initiation. 

This facility is provided in a straightforward fashion by 
the class I/O facility (EXEC 17, 18 and 21) in RTE. Like 
the interprocess communication facility discussed earlier, 
the facility is based on buffers linked to a system-assigned 
class number. An EXEC 17 or 18 call initiates a transfer 
from or to a device via a buffer placed in SAM. When the 
request completes, the input buffer or output buffer header 
is linked to the queue of completed requests for that class. 
The program can complete the request by issuing an EXEC 21 
(class get) on that class number. The class get can be 
either blocking or non-blocking, depending on the setting of 
the NO WAIT bit in the call. This provides a very efficient 
method-of doing asynchronous I/O with no polling overhead. 

There is no completely similar feature in HP-UX. Similar 
efficiency and capability can be achieved by using the 
interprocess message facility to connect the main program to 
small server programs. The server programs receive messages 
from one queue and write the messages to their associated 
device. Data received from the device is written to another 
queue (possibly using tne message type to identify which 
device wrote it) from which the main program does blocking 
or non-blocking reads (depending on the NO WAIT flag) . 
HP-UX also includes the select statement wh:lch allows a 
program to wait for input from any one of a group of 
terminals. The wait can be made non-blocking through the 
use of a timeout, but this differs from the idea of 
asynchronous I/O in that select reacts to any input, not 
just completed operations, resulting in a process that is 
more like polling than true asynchronous I/O. 

23 Paper 1032 



The following program illustrates a single RTE program using 
class I/O to take data in from two terminals: 

c 

PROGRAM QUEEN 
INTEGER 5UFIN(40), CLASS, LU1(2), LU2(2), LU(2) 
LOGICAL RUNNING 
DATA LUl/71,4005/, LU2/72,4005/, LU/0,4005/ 

c get class number 
CLASS = 0 
CALL CLRQ (1,CLASS) 

c prompt users for input 
WRITE (LUl, 10) 
WRITE (LU2, 10) 

10 FORMAT ("Enter data : _") 
C place class read on each terminal 

c 

CALL XLUEX (17,LUl,BUFIN,40,LUl(l),O,CLASS) 
CALL XLUEX (17,LU2,BUFIN,40,LU2(1),0,CLASS) 

NUSERS = 2 
RUNNING = .TRUE. 
DO WHILE ( RUNNING ) 

C wait at class get for input 
CALL EXEC (21,CLASS+20000B,BUFIN,40,LUIN) 
CALL ABREG (IA,IB) 

c check for termination 
IF ( BUFIN(l).EQ.2H!! ) THEN 

NUSERS = NUSERS - 1 
IF ( NUSERS.EQ.O ) RUNNING .FALSE. 

ELSE 
C prompt for more input 

WRITE ( LUIN, 10) 
LU(l) = LUIN 
CALL XLUEX (17,LU,BUFIN,40,LUIN,O,CLASS) 

C write input to console 
WRITE (1,20) LUIN, (BUFIN(I) ,I=l,IB) 

20 FORMAT ("Data from LU ",I2, 11 : ",20A2) 
c clear buffer 

DO 30 I=l,40 
30 BUFIN(I)=2H 

ENDIF 
END DO 

c 
C release class # and quit' 

CALL CLRQ (2,CLASS) 
END 

Paper 1032 24 



The following pair of programs accomplish the same thing as 
the previous RTE program, e'xcept that in HP-UX we need the 
server program. The server program performs the same 
function as the class I/O portion of the RTE system code, 
i.e. it takes the terminal input, and turns it into a message 
for the main program to receive. 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 
main() /*queen.c*/ 
{ 
int midin, midout, pidi status; 
int running, nusers, i; 
key_t key; 
long msgtyp; 
struct { 

long mtype; 
char text[SO); 
} msg; 

/* get keys & create 2 message queues (in & out) */ 
key= (key t) ftok ("/users/grant/interex/queen", 'i'); 
midin = msgget (key,IPC CREATJ0600); 
key= (key t) ftok ("/users/grant/interex/queen", 'o'); 
midout = msgget (key,IPC CREATJ0600); 

/* start up two servers */ 
pid = fork() ; 
if ( pid == 0 ) 

execl ("server", "server", "/dev/tty03", 11 3 11 , O); 
pid = fork() ; 
if ( pid == 0) 

execl ("server", "server", "/dev/tty04", "4"0); 

/* send a prompt to each */ 
msg.mtype = 3L; /* for server on tty03 */ 
strcpy (msg.text,"Enter data :"); 
status = msgsnd (midout,&msg,strlen(msg.text)+l,O); 
msg.mtype = 4L; /* for server on tyy04 */ 
strcpy (msg.text,"Enter data :"); 
status= msgsnd (midout,&msg,strlen(msg.text)+l,O); 

/* loop for each response received */ 
running = l; 
nusers = 2; 
while ( running 

/* wait for a response */ 
status= msgrcv (midin,&msg,80,0L,O); 
/* check for user exit */ 

25 Paper 1032 



if ( msg.text[O] == '!' ) 
nusers -=l; 
if ( nusers == 0 ) running O; 
} 

else { 
/* echo input to console */ 
printf ("Data from dev %d : %s",msg.mtype,msg.text); 
/* issue prompt again to mtype in input */ 
strcpy (msg.text,"Enter data : "); 
status= msgsnd (midout,&msg,strlen(msg.text)+1,0); 
} 

} 
/* release the message queues */ 
msgctl (midin,IPC RMID,&msg); 
msgctl (midout,IPC_RMID,&msg); 
} 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 
main (argc,argv) /*server.c*/ 
int argc; 
char *argv [) ; 
{ 
int midin, midout, fd, status, n; 
int running, nusers, i; 
key t key; 
long mtype; 
struct { 

long mtype; 
char text[80); 
} msg; 

/* open the specified terminal */ 
fd = openterm (argv[l]); 
/* pick up our message type */ 
mtype = atol (argv[2]); 

/* get keys & access to 2 message queues (in & out) */ 
key= (key t) ftok ("/users/grant/interex/queen", 'o'); 
midin = msgget (key,0600); 
key= (key t) ftok ("/users/grant/interex/queen", 'i'); 
midout = msgget (key,0600): 
/* (in and out are opposite to master) */ 

/* loop for each prompt received */ 
running = l; 
while ( running ) { 

/* wait for a prompt */ 
status= msgrcv (midin,&msg,80,mtype,O); 

Paper 1032 26 



/* echo prompt to terminal */ 
status= write (fd,msg.text,strlen(msg.text)); 
/* read input */ 
n = read (fd,msg.text,80); 
msg.text[n]='\O'; /*add string terminator*/ 
/* pass input up to master */ 
status = msgsnd (midout,&msg,n+l,O); 
/* check for user termination */ 
if ( msg.text[O] == '!' ) running= O; 
} 

SUMMARY 

RTE and HP-UX both provide the user with the tools to build 
complex multi program systems. Generally, the RTE features 
are implemented in a more specific fashion, i.e. some 
features use EXEC calls, some use their own subroutines,and 
some, like shared memory, are implemented transparently.This 
makes some features easier to understand and implement, 
while others are more difficult. HP-UX features tend to be 
mor-e general, and implemented in a more regular fashion i.e. 
all acquired resources are associated with a user-defined 
key, and are acquired and released in the same way by 
similarly named routines. In HP-UX, resources have read and 
write protection just like files, but they are not 
automatically deallocated when a program ends, and some, 
like semaphores, must be manually initialized. 

Both RTE and HP-UX are highly capable operating systems. 
Only someone who is familiar with both systems and the given 
application can say which would be 'better' for the 
application, since this will involve trade-offs in 
development time, system cost, and performance. 

27 Paper 1032 





INTERFACING HP'S NEW TAPE DRIVES TO HP 1000 A/E/F SERIES 

INTRODUCTION 

Dave Doxey 
Hewlett-Packard Co. 

2130 West 2100 South 
Salt Lake City, UT 84119 

Hewlett-Packard offers a variety of magnetic tape drives for 
use on HP 1000 computer systems. These include new models 
as well as those for which obsolescence has been recently 
announced. It is sometimes difficult to select the tape 
drive that most closely matches the computer's application, 
disc capacity, and performance requirements. This paper 
presents data to aid in this selection process. Particular 
emphasis is given to the newest tape drives from HP's 
Greeley Division, the 7974A and the 7978B. Included are 
actual benchmark data comparing the 7970B, 7970E, 7974A, 
7978A, and 7978B on both HP 1000 A Series and E/F Series 
computers. The advantages and disadvantages of each tape 
drive are discussed in relation to the application and 
performance requirements. 

HARDWARE 

There are a number of possible hardware choices for a 
9-track magnetic tape drive on an HP 1000. Some of the tape 
drives will interface to E/F Series only or the A Series 
only while others may be interfaced to both. Listed below 
is a matrix which shows the CPU and tape drive combinations 
that are supported as of the DSD 4.0 software release: 

CPU DRIVER MAG TAPE DRIVE 

E/F Series DVR23 7970B/E 
RTE-6/VM DVS23 7974A, 

7978A/B* 

A Series DD*23 7970E 
RTE-A DD*24 7974A, 

7978A/B 

Paper 1033 



* The 7978A/B will work with the DSD 4.0 RTE-6/VM, but 
the utilities do not currently support streaming. 

The 7970B has been obsoleted by Hewlett-Packard and the 
7970E will be obsoleted in the fall of 1986. Obsolescence 
means that HP will no longer manufacture and sell these 
products as new. This is a result of technological 
advances, manufacturing economics, and changes in market 
demand. The 7970 will still be available as a used or 
remarketed tape drive. Both hardware and software support 
will continue for at least five years. 

The specifications for the various tape 
below. The 7970B/E is included here 
benchmark data because many existing E/F 
be contemplating an upgrade to a newer or 

drives are listed 
and also in the 
Series users might 
faster tape drive. 

SPECIFICATIONS 

Density (cpi) 
7974A opt 800 

Approx. Capacity 
(2400 ft. reel) 

Operating Mode* 

Tape Speed 
Start-Stop 
Streaming 

Rewind Speed 

Burst Transfer 
Start-Stop 

Streaming 

7970B 

800 

20 Mb 

s-s 

45 ips 
N/A 

160 ips 

36 Kb/s 

N/A 

7970E 

1600 

40 Mb 

s-s 

45 ips 
N/A 

160 ips 

72 Kb/s 

N/A 

7974A 

1600 
1600/800 

40 Mb 
40/20 Mb 

s-s,str 

50 ips 
100 ips 

200 ips 

80 Kb/s 

160 Kb/s 

7978A/B 

6250/1600 

140/40 Mb 

Str 

N/A 
75 ips 

250 ips 

N/A 

468 Kb/s 
(6250) 

120 Kb/s 
(1600) 

* Operating Mode: s-s = Start-Stop; Str Streaming 

A few words of explanation would be appropriate. Tape 
drives write and read data to and from the tape in physical 
records. These records may contain just a few bytes of data 
or several kilobytes. Between each record on the tape, an 
inter-record gap is written to define the records. This gap 
is a fixed length, regardless of the size of the data 

Paper 1033 2 



record. Record size has a significant effect on tape drive 
performance and tape utilization. 

What is a streaming tape drive versus a start-stop drive? 
Start-stop tape drives have a mechanical tape transport that 
moves the tape the exact amount necessary to read or write 
the data that has been requested. The transport may move 
the tape a fraction of an inch or several inches to satisfy 
one request. A tension arm usually buffers the tape from 
the constant "starting" and "stopping" of the transport. 
The tape movement may seem to be rather jerky to the casual 
observer. A streaming tape drive attempts to provide a 
faster, more constant tape movement with the net result of a 
much higher data throughput. This constant-velocity tape 
motion is known as "streaming". Data must either be 
supplied to the drive or accepted by the host computer at a 
rate fast enough to allow the transport to maintain its 
streaming operation. If not, the streaming tape drive will 
operate very poorly, constantly over-shooting the 
inter-record gap and having to reposition itself for the 
next read or write. Performance may actually be much lower 
with a streaming tape drive operating in this manner than a 
slower start-stop drive. 

The 7974A appears to have the best of both worlds, as it can 
automatically drop into start-stop mode if the data rate 
slows below that necessary to maintain efficient streaming 
operation. It also has the option of an 800 cpi density. 
Thus, a single 7974A with option 800 can replace the 
functionality of both a 7970B and a 7970E for E/F Series 
systems. 

In the area of high-density (6250 cpi) tape drives, 
Hewlett-Packard has offered three different models. The 
7976A was the first 6250 cpi drive, but it used an expensive 
vacuum-column transport which also had very high maintenance 
costs. It was targeted for large HP 3000 systems and was 
only available to HP 1000 users through purchase of a 
"special" driver. The 7978A was introduced in early 1984 as 
a replacement for the high-cost 7976A. The 7978B superceded 
the 7978A about 18 months later. The only difference 
between the two is that the 7978B has a 256K data buffer 
versus a 32K buffer in the 7978A. This buffer size increase 
has made significant improvements in the performance of most 
utilities. The tape controller buffers the individual 
read/write requests until the tape movement can be optimized 
in an attempt to maintain streaming. This allows margin for 
operating system overhead and disc accesses while still 
permitting a streaming operation. 

Another advantage to the 7974A and 7978B tape drives is that 

3 Paper 1033 



they use an HP-IB interface. This means that a single tape 
drive may be shared among HP 1000, 3000, and 9000 systems. 
Also, an E/F Series user may now retain his tape drive for 
use on an A Series if he decides to upgrade his system. 

BENCHMARK PROGRAMS 

The specifications can give an idea of the performance of a 
particular tape drive, but they do not take into account 
operating system and driver overhead. Also, the difference 
between a streaming and a start-stop tape drive is very 
significant in actual operation. It was decided to test the 
different tape drives using various utilities and test 
programs to provide "real-world" performance data. 

First, a test program was written to analyze the raw 
performance of each tape drive by writing a buffer directly 
from memory to tape using an EXEC call. The size of the 
buffer was varied to show its effect on overall performance. 
This program will also account for the operating system and 
driver overhead. 

The standard RTE backup utilities were tested next. TF, FC, 
SAVER, and PSAVE were tested for RTE-6/VM, while TF, FC, and 
ASAVE were tested for RTE-A. 

Because of disappointing results with PSAVE and the 7978 on 
an RTE-6/VM system, a special streaming utility called FSAVE 
(Fast SAVE) was written to do a track-by-track disc backup. 
FSAVE is actually composed of two programs, one to read data 
from the disc and another to write the data to tape. A 
49-page SHEMA partition is used to pass the data between the 
two programs. VMAIO calls are used to read 4 disc tracks at 
a time into SHEMA. The tape write program then breaks the 
4-track buffers into physical tape records of 1 track each. 
Double-buffering with handshaking is employed so that each 
program runs at the highest possible speed. This approach 
minimizes the number of disc accesses and allows a constant 
flow of data to the tape drive, thus permitting streaming 
operation at 6250 cpi. FSAVE was written to run on either 
RTE-6/VM or RTE-A. 

All tests were run in a single-user environment with only DS 
running in background. An F-Series was used for the 
RTE-6/VM tests and an A900 for RTE-A. Also, all tests were 
write-to-tape operations only. Read performance should be 
similar, but it was felt that the most important criteria 
was the transfer rate for a tape backup rather than a 
restore. 

Paper 1033 4 



TEST RESULTS 

First, let's look at the performance of each tape drive, 
giving consideration to operating system and driver 
overhead. This is the memory to tape test program. This 
test was performed on a 7978A instead of a 7978B, but the 
results should be comparable. The difference between the 
A-series and the F-series performance is slight, thus 
indicating the similarities in operating system and driver 
throughput. 

Refer to Figures 1 and 2 on page 8. As buffer size is 
increased, the overall transfer rate in Kbytes/sec 
increases, but begins to level off at about the 2000 
words/buffer mark with the exception of the 7978A at 6250 
cpi. The curve is still rising at 340 Kbytes/sec using a 
6144-word buffer! This realiy illustrates the performance 
of a streaming tape drive at 6250 cpi. You will also notice 
the difference of start-stop mode versus streaming mode on 
the 7974A - A900 combination. Streaming mode at 100 inches 
per second has a transfer rate roughly twice as fast as 
start-stop mode at 50 ips. Theory proven right again! 
Also, the 7978A at 1600 7pi is slower than the 7974A 
streaming because of a 75 ips versus 100 ips difference. 
All of these performance data seem to illustrate the 
specification differences of the tape drives. Note, 
however, that there is some crossover at the 128 to 512 
word-per-buffer range. This is due to the inertial and 
mechanical differences of the drives. Streaming mode 
definitely suffers when you can't get enough data to the 
tape drive to maintain the transport in motion at the proper 
speed. 

Now let's see what happens when we add a disc access to the 
process. These next tests were performed using the standard 
RTE utilities and the custom-written FSAVE. A disc seek and 
read is required to read in a buffer before it can be 
written out to tape. 

ASAVE is able to take advantage of immediate-completion I/O 
calls available in RTE-A, thus we see the streaming 
capability at 6250 cpi. RTE-6/VM does not have this option, 
so in order to allow a streaming backup utility, a 
two-program, double-buffering scheme must be used as 
described in the benchmark section. 

The transfer rate for these disc backup utilities is a 
function of both tape record size and disc access method. 
TF, FC, and SAVER use tape record sizes in the 2K-word 
range, while WRITT, PSAVE, ASAVE, and FSAVE typically write 
an entire disc track in a single tape record. This record 

5 Paper 1033 



size is at least 4K words and often 6K words. Disc access 
method has perhaps the greatest effect on performance. TF, 
FC, and SAVER are file backup utilities and must search the 
directories and open the individual files, thus incurring 
the overhead of the file system. There can be several disc 
accesses involved and possibly many if the files have 
extents. There are even differences between TF and the 
other file utilities. FC and SAVER do all directory 
searches prior to saving any files to tape, while TF does 
its directory searches as it saves each file. The 
flexibility of TF comes with a penalty in performance. The 
physical backup utilities do not have to access directories 
or files. They operate on a track-by-track basis for an 
entire disc LU or unit. 

These differences are evident in Figures 3 and 4 on page 9. 
Note the significant difference in performance of FC on 
RTE-6/VM and RTE-A. FC on RTE-6 allows a much higher 
throughput with the streaming tape drives than does RTE-A 
because of the way the driver DVS23 operates versus DD*24. 
RTE-G's DVS23 allows a default streaming mode for all 
subsequent I/O requests while DD*24 requires that the 
streaming bit be set in each individual EXEC call. FC and 
TF do not set the required streaming bit for each EXEC call, 
thus the performance is severely degraded on RTE-A. ASAVE 
does not have this handicap, however, and similar 
performance is seen for both ASAVE/FSAVE on RTE-A and FSAVE 
on RTE-6/VM. PSAVE's performance suffers because of its 
internal operation. PSAVE goes the extra mile to preserve 
data integrity by doing two separate disc reads for each 
track and then comparing the checksums. These extra 
operations cause the overall throughput to be reduced below 
that required for streaming. If a PSAVE verify is also 
invoked, the performance suffers even more. 

CONCLUSIONS 

Now that the results have been compiled, which is the right 
tape drive to choose? For most HP 1000 systems with disc 
capacities of 404 Mb or less, the 7974A would be the best 
choice. It is less expensive than the older 7970E, and 
offers better performance both in start-stop and streaming 
modes. It is supported by both RTE-6/VM and RTE-A and can 
"grow" with the system when an upgrade is required. Also, 
the 800 cpi compatibility option is important for some 
applications. For systems with larger disc capacities (and 
there are some big ones!), the 7978B would be justified 
because of the savings in both tape media and backup time 
when operating at a density of 6250 cpi. Physical utilities 
would be the most efficient means of backing up large 

Paper 1033 6 



amounts of disc storage with occasional incremental file 
backups using TF. 

Existing HP 1000 systems could also benefit from the 
addition of a new streaming tape drive to complement a 7970. 
A 7978B could be used for high-s~eed physical backups while 
the 7970 would best fit the role for incremental file 
backups. 

FUTURE DIRECTIONS 

Hewlett-Packard is committed to designing, manufacturing, 
and marketing products that fill a need and make 
technological contributions. The current offering of 7974A 
and 7978B drives meets these criteria. This family of 
streaming mag tape drives will very likely be expanded in 
the future. 

Perhaps the best news of all is that Data Systems Division 
is committed to provide software support and utilities for 
the Greeley Division tape drives.• This includes support for 
RTE-6/VM running on E/F Series machines. The software 
driver DVS23 is now a standard driver rather than a 
"special". A boot loader ROM is also available for use with 
a version of !BCKOF which supports the 7974A and the 7978B 
tape drives. A new file backup utility will soon be 
released on both RTE-A and RTE-6/VM which will support 
streaming at 6250 cpi. A streaming physical backup utility 
for RTE-6/VM will also be released. There really is a 
future for HP 1000 users! 

7 Paper 1033 



0 
Q) 

400 

'300 
.a 
~ 

c ·-
Q) 200 -c 

ct:: 
L. 
Q) 

1i; 100 
c 
c 
L. 
I-

0 
0 

F-SERIES MEMORY TO TAPE 

-·- 7978A - 6250 cpi 

----· 7978A - 1600 cpi ......... 7974A - 1600 stream ~·_,,, -- 79708 - 1600 cpi 
~· 

~· 
~· 

~· 
/. -

/. 
·~~······································································· 

/ .... ------------------------------
~-,....~~~~~-----------. 

,'. 
,~~-
~ _[_ _[_ _[_ _[_ _J_ _[_ 

1000 2000 3000 4000 5000 6000 
Buff er Length in Words 

Figure 1 

A900 MEMORY TO TAPE 
400.---------------------....------------------------~ 

0 
Q) 

,300 
.a 
~ 

c 

- -- 7978A - 6250 cpi 
-·- 7978A - 1600 cpi 
----· 7974A - 1600 stream 
......... 7974A - 1600 s-s 

-- 7970E - 1 600 cpi 

/-----
-------------------

, 
/' 

Q) 200 t--c 
ct:: , , 
~ / -------------------------------------

-11) 100 , ----- ·-·-·-·-
I- , ---- ---·-·--·-

§ /r·--· ······································ ;: /,/' ·················································· , ... 
0 ..._ _____ i.._ ____ ....... i ______ ~i _______ i...._ ____ -i..i-------'-'i 

0 1000 2000 3000 4000 5000 6000 
Buff er Length in Words 

Figure 2 

Paper 1033 8 



TAPE BACKUP ON RTE-6 

E'.ZZl 79788 - 6250 cpi 
emmB 79788 - 1600 cpi 

c ~ 7974A - stream 
E 15 1--~ ~ 7974A - strtjstp 
£ rs::::s:::sJ 79708 - 800 cpi 
~ 

c 
Q) 10 ..__--------------------~/ -0 

0::: 

I.. 
Q) 

"iii 5 1-------------------i+ltV 
c 
0 
I.. 
~ 

c 

TF FC SAVER 
Figure 3 

PSAVE 

TAPE BACKUP ON RTE-A 

ona 79788 - 6250 cpi 
~ 79788 - 1 600 cpi 
rs::::s:::sJ 7974A - 1600 cpi 

FSAVE 

E 15 ..__ ______________ -!:: )( X~------KX)<ll 
.......... 
..a 
~ 

c 
Q) 10 ..__---------------!VV'l--------1"\.t'VH -0 

0::: 

I.. 
Q) 

"iii 5 
c 
0 
I.. 
~ 

TF FC ASAVE FSAVE 
Figure 4 

9 Paper 1033 





HP-UX: Using Standards to Solve Real World Problems 

Val Jermoluk and Chris Bego 
Hewlett Packard/mailstop 42LV 

19420 Homestead Road 
Cupertino, CA 95014 

Introduction 

It was only seven years ago that UNIX* systems first arrived in the 
commercial market. Since then, their importance has been hotly debated. 
Proponents enthusiastically insisted benefits such as hardware 
independence, a wealth of applications software, and portability would 
lead to spiraling growth rates and eventual domination of the multiuser 
market. However, by 1984 the UNIX operating system held only a small 
share of the commercial computing market. The "wealth" of UNIX software 
began to be referred to as a myth, especially outside of the technical 
arena. Would the market for UNIX products ever mature? 

In 1985, several events clarified the future of the controversial 
operating system. AT&T published a specification for a standard 
implementation of the UNIX operating system, the System V Interface 
Definition, ensuring applications portability between conforming UNIX 
systems. Many of the largest computer users including the U. S. 
government and General Motors began to require the UNIX operating system 
for new aquisitions. A critical mass of applications software appeared, 
evidenced by fat third party catalogs from AT&T and /usr/group, market 
data, and growing commercial activity at industry tradeshows such as 
UNIX EXPO and UNIFORUM. Major computer vendors such as IBM, Amdahl and 
DEC, gave their stamp of approval with stronger commitments to UNIX 
products. Finally, the UNIX operating system has become a major force 
in the multi-user computing market. 

This paper will highlight HP-UX, HP's implementation of the UNIX 
operating system and its unique contributions to the marketplace. First 
of all, though, why has the UNIX operating system become so important? 

Benefits of the UNIX operating system 

The attention showered upon the UNIX operating system is well deserved. 
Its feature set and position as a standard offer the customer several 
benefits not achieved with other operating systems. A UNIX user 
realizes: 

- portability of software between UNIX systems 
- hardware and vendor independence 
- easy access to existing applications software 
- multi-vendor networking 

* UNIX is a registered trademark of AT&T 

Paper 9001 



- lower software development costs 
- early access to new technologies 

These benefits stem from the revolutionary design and composition of the 
operating system itself. AT&T Bell Labs originally developed the UNIX 
operating system in 1969 for internal use. A few years later, it was 
rewritten in C, a high level language, making it much easier to port 
from machine to machine than operating systems written in assembly 
language. The modular structure of the UNIX operating system also 
facilitated porting, as only a small portion is customized to the 
hardware. AT&T originally made UNIX source available to universities 
for a small fee and offered it to the public in the early 1980's. At 
that point, hardware vendors had an inexpensive and readily available 
alternative to developing a new operating system from scratch. This 
alternative has proven popular: today UNIX systems are available from 
over 74 vendors (Infocorp, February 1986). 

Moving applications between machines with identical operating system 
interfaces is straightforward, requiring only recompiliation and 
relinking on the new machine. Portability has been a major plus for 
UNIX from the start, but as the number of implementations has grown, 
variations of the operating system have cropped up, hampering the ease 
of porting applications. To stem the divergence of the UNIX operating 
system, AT&T published the first System V Interface Definition (SVID) in 
1985. The SVID clearly defines a machine independent UNIX operating 
system interface. It focuses on the interface to application software, 
not on the implementation. Adherence to the SVID by implementors of 
UNIX systems guarantees portability of applications with any similiarly 
compliant systems. The SVID has quickly established itself as a defacto 
industry standard wfth acceptance by all major UNIX system vendors. 
Even proponents of the BSD versions developed at U.C. Berkeley are 
jumping on the SVID bandwagon: 'Sun Microsystems has signed an agreement 
with AT&T to converge their 4.2BSD-based operating system with the SVID. 
The SVID is thus ensuring one of the biggest advantages to owning a UNIX 
system, the ease of porting software. 

HP's Software Evaluation and Migration Center (SEMC) can testify to the 
portability of SVID compliant software. They recently ported HIL0-3 
from Genrad (a logic simulation package consisting of 150,000 lines of C 
code) to HP-UX in 4 days. Minx, an inventory and control package with 
170,000 lines of C code, was ported in 4 hours. Compare this to months 
or years when porting to proprietary systems! 

As the UNIX industry has matured, the number of software applications 
have multiplied. Today there are over 600 applications listed in the 
1986 product published by /usr/grp. AT&T lists over 500 applications 
supported on System V . Because this software is portable, it is 
accessable to all UNIX users. HP's catalog lists over 270 software 
packages currently supported on HP-UX and this number is growing 
rapidly. 

Paper 9001 2 



Since the UNIX operating system resides on a diverse assortment of 
machines ranging from personal computers like the IBM PC to 
supercomputers such as the Cray-II, users with UNIX software are no 
longer dependent on a particular hardware or vendor. This freedom means 
access to a range of hardware and a protected software investment ... 
vendor independence. 

The widespread acceptance of the UNIX operating system has indirectly 
created new defacto standards in the area of networking. The TCP/IP 
protocol and ArpaNet services developed at U.C. Berkeley have become a 
defacto standard for Local Area Networking on UNIX systems. The Network 
File System (NFS) developed by Sun Microsystems delivers transparent 
file access among computers from many different vendors. With their 
latest release of System V.3, AT&T introduced RFS, a transparent file 
access system designed for UNIX machines only. While RFS has yet to 
prove itself in the market, TCP/IP with Arpa/Berkeley Services and, to a 
lesser extent, NFS are widely implemented defacto standards. HP's 
Series 300 and Series 800 computers support TCP/IP with Arpa/Berkeley 
Services, allowing HP-UX users to communicate in a multi-vendor network. 

The UNIX operating system was developed by program developers expressly 
FOR program development. Today, almost twenty years later, it is still 
regarded as the premier software development environment. Programmers, 
armed with over two hundred utilities and the ability to connect them 
become more efficient. Finding programmers already proficient with the 
UNIX operating system is easy due to its prevalence in university 
curriculum. The combination of less training and increased programmer 
productivity drives software development costs down. 

The owners of UNIX systems are privileged with early access to new 
innovations in hardware and software because the UNIX environment 
provides scientists an existing, well understood and flexible base. 
Development work with RISC architecture, artificial intelligence, 
parallel processing, fourth generation languages, etc., is being done on 
UNIX systems. 

Perceived drawbacks of the UNIX operating system 

As you see, the UNIX operating system offers invaluable advantages. 
However, because it was designed for use in a cooperative, timesharing 
development environment, some of its most exciting chararacteristics 
have been seen as a drawback in other markets. Features which have 
hindered wider acceptance include disc caching, program scheduling, the 
kernel preemption scheme, the user interface and security. Let me 
review each for you, and later discuss HP's solution. 

The UNIX operating system speeds disc access in a manner transparent to 
the user through "disc caching". Frequently used portions of the disc 
are kept in memory, minimizing the number of timeconsuming disc 
accesses. Disc caching is a popular performance booster but when a 

3 Paper9001 



power outtage occurs and the contents of memory are lost, the effects 
can be debilitating. Why? With a disc cached system, many files and 
information on the structure of the file system are kept in memory, 
allowing for potential loss of data and corruption of the file system. 
At the January UNIFORUM trade show (the largest exhibition devoted to 
UNIX systems) half of the floor lost power temporarily. All of the 
affected systems went down, and some didn't come up for many hours after 
the power resumed. HP's solution to this problem for our customers 
desiring high data integrity will be discussed later. 

Operating system schedulers determine when each independent task, or 
process, will be run by the cpu. Tuned for a timesharing load, the UNIX 
scheduler allocates the available computing resources fairly, giving 
each process a proportionate amount. The user can assign higher 
priorities to critical tasks, but the scheduler dynamically adjusts the 
priorites of all processes to ensure each gets equal treatment. Such a 
scheduler is inadequate for time critical tasks requiring an immediate 
response. HP's creation of a more autocratic or deterministic scheduler 
for real-time applications is addressed later. 

The speed with which a process can get the attention of the cpu may also 
be critical. With UNIX systems, all operating system functions (such as 
disc I/O and system calls) have priority over any user job. The kernel 
will not "give up the CPU" until the current service completes, or is 
blocked. During this time, the system will respond to interrupts by 
entering I/O drivers, but will not execute a realtime program. Real­
time tasks, by definition require a predictable and immediate response 
and must have the ability to preempt or interrupt any other task. 
Without kernel preemption traditional UNIX systems have stayed out of 
the real-time arena. Later HP's unique innovations in this area will be 
examined. 

One of the most contested aspects of UNIX is its ease-of-use. For 
experienced application developers, it is the system of choice, 
unsurpassed in providing the power and flexibility needed for software 
development. On the other hand, the user interface, full of terse yet 
powerful commands, is frightening to novices and casual users who 
rightfully complain of a steep learning curve, cryptic command names, 
and a confusing array of options. (You can tell its creators were hunt­
andpeck typists with "cc" standing for C compiler, "mv" for move, etc. 
Do you know what the command "grep" does? It stands for "global regular 
expression printer".) To take full advantage of the power of the 
operating system the user must understand the concepts of recursion, 
iteration, regular expressions, etc., in other words, have 
considerable programming expertise. System administration can be 
overwhelming to the novice as well, accomplished by over 50 individual 
commands which assume a great deal of of knowledge and experience on the 
part of the system administrator. Clearly, traditional UNIX systems are 
a far cry from the friendly menus, icons, etc. of today's personal 
computers. 

Paper 9001 4 



The UNIX operating system was designed for use in a small, cooperative 
environment. As a result, system security - the ability to prevent 
unauthorized access to certain information - was a low priority. The 
powerful development tools enable experienced programmers to easily 
access the internal structure of the system and gain information outside 
of their assigned jurisdiction. A sophisticated system administrator 
with a thorough understanding of the UNIX operating system is required 
to build increased levels of protection. The U.S. government has 
addressed the issue of operating system security head on by defining 
strict guidelines for classifying systems called the "Trusted Computer 
System Evaluation Criteria" HP is currently evaluating how to best 
meet their requirements with HP-UX. 

HP-UX: Meeting standards and going beyond ... 

Weighing the growing market opportunities for UNIX systems and the 
unique advantages it offers our customers against any drawbacks, HP has 
chosen to sell a UNIX operating system on a range of computers. "HP­
UX", as we call it, offers all the advantages of a standard UNIX 
operating system but goes beyond other implementations to overcome the 
drawbacks for our target markets. Some of the unique contributions of 
HP-UX which set it apart from other operating systems - without 
compromising on compatibility - include: 

- powerfail recovery 
- real-time capabilities 
- enhanced user interfaces 
- the Device 1/0 Library 
- Native Language Support 

HP-UX on the Series 800 Model 840 protects customers from data loss 
during a power failure. First, the programmer can select whether or not 
the disc cache is flushed to the disc at the end of a set of I/O 
requests. This control of data flow to and from the disc minimizes the 
possiblity of data loss from external power failure. Secondly, thP. 
Model 840 can suffer a power failure for up to 15 minutes in a 24 Mb 
system and then recover gracefully when power is returned. User 
programs continue where they left off, not losing data. HP-UX offers 
the added performance of disc caching without the drawbacks. 

Modifications to the scheduler in HP-UX are just one set of enhancements 
ensuring control for realtime applications. Unlike traditional UNIX 
systems, HP-UX allows the programmer to: 

*assign real-time processes a non-degrading, higher priority than any 
other process 

*have a real-time process preempt any process with a lower priority 

*have a real-time process take over the cpu, even while it is in the 
midst of an operating system function (impossible on traditional UNIX 
systems). This is called "kernel preemption". 

5 Paper9001 



Not only is HP's kernel preemption unique, 
transparent to users and application programs. 
Model 840 only.) 

but it is fully 
(Available on the 

The end result of these and other enhancements is a UNIX system on the 
Model 840 with real time performance roughly equivalent to an 
established industry leader, the HP 1000 A900. 

HP-UX products offer a choice of interfaces for users with different 
needs. HP Windows/9000 allows the user to create and move windows to 
house applications (including graphics) either interactively or 
programmatically. Also supported is the creation of custom menus, icons 
and type fonts. HP Windows provides a highly productive working 
environment as well as a valuable component for solution creators to 
customize for their applications. The Personal Application Manager, or 
PAM, gives the user simple access to powerful applications and operating 
system functions via a friendly and easy to use menu. AXE or the 
Application Execution Environment provides a low cost, compact HP-UX 
environment on the Series 300 for the user desiring only to run 
applications. (The commands and utilities needed to create, compile and 
modify software are not available.) AXE incorporates PAM, HP Windows 
and other features to allow the user to use and maintain the system 
without knowing HP-UX. For example, users can pick an application they 
want to run from a menu on the screen. HP Windows, PAM and AXE are just 
three alternatives to the standard user interface. 

HP's experience in the instrument business has been incorporated into 
HP-UX through the Device 1/0 Library or OIL. OIL makes programming HP-
18 and parallel 1/0 simpler and more powerful. It allows the user/ 
programmer to easily read from, write to, and control HP-18 and parallel 
interfaces to connect unsupported peripherals. 

HP leads the UNIX industry in helping customers provide international 
solutions. Native Language Support, or NLS, provides the tools for an 
programmer to produce applications which are adaptable for use in 
different countries or local environments. An enduser of such an 
application could, for example, enter data from a keyboard laid out in 
his local alphabet, have it stored unchanged, sort it according to the 
ordering of his alphabet, read error messages in his own language, and 
print it out in the local character set. A single application can be 
modified to run in another language without recompiling or modifying the 
source code. NLS also allows many HP-UX commands to send error messages 
in the local language, assisting the programmer as well as the enduser. 
Today there are 18 supported languages including Japanese, Turkish, and 
most European languages. 

A broad, compatible family of products 

The powerful features of HP-UX are available on an impressive range of 
hardware. 

Paper 9001 6 



At the low end is the Integral PC, a single-user, multi-tasking HPUX 
computer system in a fully integrated, 25 lb. transportable package. 
The IPC is easy-to-use: it turns on and off like a personal computer 
and is automatically configured at power on. 

The HP Series 300 workstations provide a wide choice of power and 
performance through their modular, plug-in design. The Series 300's are 
based on the industry available MC68010 and MC68020 micro processors. 

The Series 500 multi-user 32-bit computers support up to 64 users and 
are ideal for high-performance graphics, computation or general purpose 
applications. 

The Series 800 Model 840, tops the HP-UX family today as HP's first 
superminicomputer based on the Precision Architecture. It provides fast 
computational power for specialized tasks within engineering, CIM, 
scientific and general technical applications. 

As you can see, the HP 9000 family provides a range of power wide enough 
to address many computing needs, linked together with a common operating 
system. To optimize the potential of this family, corporate-wide goals 
have been established to ensure that all HP-UX products support: 

1) effortless applications and user migration 
from AT&T UNIX, and easy migration from other 
popular UNIX environments 

2) effortless applications and user migrations 
between any HP-UX systems 

3) added value to encourage migration to HP-UX 

A closer look at the composition of HP-UX reveals our strategy for 
meeting these goals. At the heart of HP-UX lies AT&T's System V 
Interface Definition, Issue 1 (SVID). In the SVID, AT&T clearly defines 
a version of the UNIX operating system which acts identically on 
different hardware and is machine independent. Software designed to run 
on one SVID compliant system will run without change on any other. The 
SVID has quickly been adopted by all major vendors including Sun, DEC, 
Microsoft (Xenix), Amdahl, Data General, Apollo, Sperry, NCR, etc., etc. 
By complying to the SVID, HP-UX provides applications portability within 
the HP 9000 family and with other SVID compliant systems. 

In addition to the SVID, HP-UX contains almost all of the hardware 
independent features of AT&T's System V.2. HP-UX also contains 
enhancements developed at U.C. Berkely and HP. These have been 
incorporated into our internal standard to ensure consistency across the 
HP 9000 family. Through adherence to industry standards our customers 
realize the benefits of hardware independence, portable software and a 
very secure software investment. 

7 Paper9001 



HP-UX: Key to HP's operating system strategy 

No other major computer vendor has as strong a commitment to a UNIX 
operating system as HP. In fact, HP-UX is HP's primary operating system 
targetted for the design, engineering, factory automation and 
computation intensive markets. How does this fit into HP's overall 
operating system strategy? 

The MPE operating system available on HP 3000 computers has been 
designed and tuned for what we at HP call the "commercial market". This 
includes transaction-based applications such as financial accounting, 
manufacturing planning and control (e.g. MRP and MM), and office ! 
automation. The HP 1000 and HP 9000 have been targetted for 
applications in factory automation, design engineering and process 
control. 

With the increasing demand for UNIX solutions from all markets, the 
traditional boundary line between "technical" computers and "commercial" 
computers is blurring. In fact, customers are beginning to request HP­
UX products for traditionally commercial applications. While the HP 
3000 with MPE is still our main thrust for these applications, HP is 
monitoring customer demand closely to determine if we should incorporate 
special features into HP-UX for on-line transaction processing 
applications. 

Now that full real-time functionality has been achieved with HP-UX on 
the HP 9000 Model 840, the distinction between the HP 1000 and HP 9000 
families is less clear. A comparison of real-time performance between 
the A900 and the Model 840 shows them to be about equal: where the 
Model 840 is a bit faster at CPU bound real-time tasks, the A900 is a 
bit faster for I/O bound tasks. These differences plus their disparate 
processing capability and price make them easy to position. For most 
real-time applications, especially those requiring dedicated processors, 
a low cost solution, or optimal I/O performance, the HP 1000 family 
provides the best fit. The HP IOOO's can coexist with the Model 840 on 
a network or use the Model 840 as an upward growth path. Migration from 
RTE to HP-UX is facilitated with HP's PORT/HP-UX package. 

Essential to HP's overriding goal of providing complete solutions is the 
integration and coexistance of all of our products. Through our 
networking strategy, HP-UX, MPE, and RTE products can transfer files 
with each other, access systems from other vendors such as IBM and DEC, 
etc. to solve a multitude of problems. (see figures) 

HP representatives work actively with industry standards committees on 
the evolving definition of the UNIX operating system. 

Our efforts in the area of real-time UNIX have paid off - not only does 
the Model 840 have most of the base real-time features likely to be 
required by General Motors and other industry leaders - but 

HP-UX: Using Standards to Solve Real World Problems 

Paper 9001 8 



IBM 
WAN 

THE DAT.A.COMMUNICATION SERVICES 
THAT EXIST TODAY 

IBM -
Model840 

3001500 

-

Ii Ji 
Mode1840 

IBM 

f 
NOTE: Products either exist or will be orderable by December, 1986. 

VT • virtual terminal RDBA • remote database acceaa 
NFT • network file tranafer IPC = lnterproceaa communication 

fmdrw2 RFA = .....,- file acceaa RPM • remote proceaa management SUMTDY 

~ 

0 
0 
en 
iii 
c. 
«l 

Cl.. 

en 



HP 9000 
S/800 

NFT 
AFAIHP-Ul<I 
UP4/4.JUJSD 
Ne~PC 802.J 

HP System-to-System Networking Matrix 

HP 9000 
51500 

HP 9000 
51300 

HP 9000 
51200 

HP 1000 
ASorioa 

HP 1000 
MEFSorioa 

HP 3000 
37-70 

HP 3000 
930 
950 

Vectra 

toVM 

to IBM 

• Thru HP 8000' 

Etlwnet 

NFT I NFT RFA tiP-UlO AFA IHP-Ul<I 

802.J IPC 802.3 
Ettwnet UA Ethernet 

NFT 
RFA IHP-UX) 
AAPMIS04.2 

NFT 

802.3 
Etlwnot 

802.J 
Etlwnet 

802.J 

SNA-

NFT I NFT AfA IHP-Ul<I AFA IHP-Ul<I 
AAPA/BS04.2 

802.3 802.3 
llA Ethernet l1A Ethernet 

NFT I NFT I NFT AFA IHP-Ul<I AFA IHP-Ul<I RFA IHP-Ul<I 

802.3 802.J 802.3 
Ethernet Ethernet LiA Ethernet 

NFT I NFT 

802.3 I 802.3 

NFT 

802.3 

NFT 

802.3 

NFT 802.3 
Ethernet 

BSC/RJE 
3270 Term.Em. 

NFT 

802.3 

NFT 

802.3 

NFT 802.3 
Ethernet 

BSCIRJE 
3270Ten:n.Eta. 
SNA 3270 

BSCIRJE 
3270 Term.Em. 

Sert. 300 eerwr- HP 9000 ....,. S/300 MOO 

...... '"""" 

(Orderable by December 1986) 

NFT 
DS-1000 IV 

802.3 
HDLC 

ODA X.25 

NFT 
DS-1000 IV 

802.3 
HDLC 
X.25 

NFT 
05/3000 

NFT 
05/3000 

NFT 

802.3 
BSC 
X.25 

802.3 
BSC 
X.25 

802.3 

DS-1000 IV 
802.3 
BSC 
HOLC 
X.25 

05/3000 

802.3 
BSC 
X.25 

NFT AFA 
VT 
Afl8'\ 802.3 
Net IPC BSC 
05/3000 X.25 

NFT AFA 
VT 
Afl8'\ 

802.3 

VT 

AdvUnk FT 

802.3 

Fl 
pun~ 

Direct 
Driver 
Acceaa 

Link 
or Level 

Acceaa 

Services iD. italicized priD.t 
are Dot yet available, but 
1'i11 be orderable by 12/88. 

NFT RFA 
VT 
Afl8'\ 

802.3 

Thru an 
Office Share 
Server 

802.3 

NFT I NFT 
802.3 I 802.3 

BSCIRJE.MAJE, I BSCIRJE,MAJE. , asc.RJE.~ I SNA/NAJE.IMF 
PMF PMF 5NA/l<ft..E.IMF 'Ila MPE-V arvr. 

lll~'lnl<: ........ 
lmdrw1 

5113186 ....... ·- ... .... -- HP 3000 
37-10 

HP 3000 - -

0 

0 
0 
0) 

Cii 
a. 
<ti 
a.. 



the key real-time extensions developed by HP are expected to comprise 
most of the spec in the first-round of IEEE standards 

/usr/group consists of representatives from many companies with UNIX 
concerns and works to define standards in the areas of 
internationalization, database, graphics, networking, real time, 
performance, and security. HP representatives participate in all of 
these. One project manager co-chairs the internationalization group. 

HP's active involvement in IEEE's Pl003 standards group for UNIX 
includes co-chairmanship. The group has just published their first 
trial-use standard for a machine independent implementation of UNIX, 
Pl003.l. Although AT&T's SVID is widely accepted today as the base 
standard for UNIX systems, many companies would like to follow a 
publicly controlled standard such as Pl003.l if it were fully defined. 
The National Bureau of Standards is considering using it as a basis of a 
federal standard, ANSI is considering adopting it, as is ISO. 

HP is involved in close, cooperative relationships with international 
standards groups such as X/OPEN, the UNIX consortium in Europe. 

HP's active involvement in standards committees demonstrates our 
commitment to working in the public interest. By staying abreast of the 
latest developments, we can promptly respond to new standards. 
Standards bodies also provide a forum for HP's proprietary developments 
to be considered for wider adoption. 

Future directions for HP-UX 

Hewlett Packard is committed to tracking industry standards in the 
future. Specifically, we are evaluating how to incorporate AT&T's 
latest release, System V.3. Providing distributed sytems is also 
critical to our strategy, and investigations are underway to determine 
the best approach. Both NFS and RFS are under consideration. In the 
area of windowing, X has emerged out of MIT as a defacto standard. 
Future windowing products from HP will be based on X and maintain source 
code compatibility to HP Windows/9000. (HP Windows/9000 will continue 
to be supported to provide full object code compatibility to existing 
Windows/9000 applications.) With X, users will realize performance 
improvements and greater importability of windowing software. HP has 
recently begun a partnership relationship with DEC and MIT to steer the 
course of X. To make custom, friendly user interfaces for HP-UX as easy 
as possible to design, a set of interactive development tools are being 
created. 

A version of the UNIX operating system created by Microsoft explicitly 
for use on personal computers, Xenix, has enjoyed great popularity. In 
fact, Xenix sits on over 52% of all UNIX systems (IDC Yates}, and 
supports over 500 commercially available software applications. HP is 
working with Santa Cruz Operation to port Xenix 

11 Paper900i 



5.0 to the Vectra PC. The product will be introduced later this fall 
and is targetted for sales through the OEM/VAR channel to small 
businesses. How do Xenix and HP-UX relate? They are both based on the 
SVID, so applications are portable across the two. However, each has 
its own set of extensions: HP-UX is tuned for engineering and 
manufacturing applications, and Xenix is tuned for the personal computer 
user in a business environment. Providing a migration path between HP­
UX and Xenix is under investigation. Come to the UNIX Expo tradeshow 
next month in Manhatten for a first hand view! 

We have touched on just a few directions HP-UX will be taking. We are 
committed to providing standard products with the necessary features to 
solve our customers problems. Keep in touch with us and our sales force 
to let us know if we are on track! 

Paper9001 12 



Decreasing Realtime Process Dispatch Latency Through 
Kernel Preemption 

David C. Lennert 

Hewlett-Packard Company 
19447 Pruneridge Avenue 

Cupertino, CA 95014 
hplabs !hpda! davel 

ABSTRACT 

A key measure of a realtime system is how quickly a waiting process can be 
dispatched in response to some event (for example, 1/0 completion). One 
major component of this is the time it takes to preempt the currently execut­
ing process. In a traditional UNIXt system, a process executing in user code 
can be preempted immediately. However, when executing in the kernel, the 
process gives up the CPU only voluntarily and explicitly (for example, by 
blocking for some unavailable re.source or by completing a system call). The 
kernel can therefore execute for a significant period of time before giving up 
the processor to another process. This period of time is called preemption 
latency and, when significant, it is unacceptable in a realtime system. This 
paper describes modifications to the HP-UX kernel which substantially 
reduce this time. Measurement results are presented which quantify these 
times and the improvements that have been made. 

1. INTRODUCTION 
This paper discusses one aspect of realtime operating system performance, process preemp­
tion latency, and presents changes made in the HP-UX operating system for the HP9000 
Model 840 which reduce this latency. 

First a brief overview of realtime system concerns and features is given. Then the process 
preemption latency problem is defined and alternative solutions are discussed. Finally an 
overview of the chosen solution and its implementation are presented followed by measure­
ment results which quantify the improvement made. 

2. REAL TIME SYSTEMS 

2.1. Realtime system concerns 

A realtime operating system distinguishes itself from a non-realtime operating system in that it 
responds to a real world event within a real world time constraint. This is usually defined in 
terms of event response time and/or sustained data throughput. 

Quick event response time allows a process to respond to an event fast enough to satisfy some 
external requirement. One example would be repositioning a cursor in response to a moving 
mouse fast enough to appear instantaneous to a human observer. Another example would be 
halting the supply of steel to an automated assembly line when a jam occurs. 

t UNIX is a trademark of AT&T. 

Paper 9003 



A large sustained data throughput allows quickly generated data to be gathered. If the pro­
cess cannot gather data as fast as the external source is generating it, then data loss usually 
results. An example would be digitizing a map. 

Nate that the performance requirements imposed on real time systems usually come from the 
physical world. The cost of not meeting the requirements can be minor (screen jitter), major 
(hip deep in steel), or catastrophic (reactor meltdown). This variation in cost gives rise to a 
range of demands on the reliability of realtime performance (from "most of the time" to "all of 
the time"). 

2.2. Realtime system features 
To address these performance needs realtime systems employ features which are usually 
absent from non-realtime systems. 

Process priorities determine the importance of a process so that a more important (stronger 
priority) process will execute before a less important (weaker priority) process. Timeshare 
systems typically adjust a process' priority frequently while it runs. On UNIX systems a pro­
cess can change from a stronger to a weaker priority with respect to another process (or vice 
versa) many times a second. Non-degrading priorities allow a process to maintain a fixed 
(usually stronger) priority with respect to other processes and thus obtain a constant, max­
imum preference. 

Another factor which delays process execution is swapping or paging. If a process is 
swapped or paged out of memory when it needs to run then response latency is increased. 
Allowing processes locked in memory prevents this problem. 

Processes usually wait while a requested I/0 operation (for example, a device read) is per­
formed. Higher data throughput can be obtained by allowing a process to overlap execution 
with its I/0 operations. This asynchronous l/O capability is sometimes provided directly by 
the operating system or can be implemented via multiple processes communicating through a 
high speed mechanism such as shared memory synchronized with semaphores. 

3. PREEMPTION LATENCY 

3.1. The problem 

Non-degrading priorities and memory locked processes give maximum preference to a real­
time process which is ready to execute. There is, however, one major factor to overcome 
before the process can execute: If another process is currently executing then it must be 
preempted and the realtime process restarted. 

Traditional UNIX systems can preempt a process immediately while the process is executing 
in user mode. If, however, the current process is executing within the kernel then it only 
voluntarily and explicitly gives up the processor. Specifically, it gives up the processor when 
either 1) the kernel calls the sleep() routine to suspend the current process until a needed 
resource becomes available, or 2) the kernel returns control to the user program at the com­
pletion of a system call thereby returning to user mode and allowing preemption to occur. 
The kernel can execute for a significant period of time before giving up the processor to 
another process. This greatly increases process preemption latency and decreases the 
system's ability to provide quick and predictable event response time. 

3.2. Alternative solutions 

The goal is to decrease the amount of time the kernel executes before it gives up the proces­
sor to a waiting higher priority realtime process. To achieve this goal there are two basic 
alternatives: 1) the kernel can be made to execute all of its functions more quickly or 2) the 
kernel can be made to tolerate interrupting its execution in deference to the waiting process 
(preemption). 

Paper 9003 2 



The former is clearly a superior approach as it has the side benefit of causing the entire sys­
tem to execute faster and with Jess kernel overhead. It can be achieved through a combina­
tion of faster hardware and algorithmic changes. In addition to algorithm changes which 
reduce total execution time one can shift code from the kernel into the user program. One 
example would be to implement the file system manipulation code in a user library and leave 
only the code supporting basic device access in the kernel. This allows more of the "kernel" 
to execute in user mode where it is readily preemptable. The problems with moving kernel 
algorithms into user mode are a loss of reliable security checking and a loss of atomicity of 
operation with respect to other processes. In addition, there is only so much kernel code that 
can be reasonably moved into user mode. In the final analysis, preemption latency is typi­
cally left unacceptably high. So the second alternative, increasing the preemptability of the 
kernel, is explored. 

The problem with making the kernel arbitrarily precmptable is a loss of atomicity. Kernel 
data structures can be viewed as memory which is shared among all the user processes. Each 
process makes requests of the kernel which update this shared data. There must be a 
mechanism which ensures that these updates are performed atomically; otherwise, faulty 
operations and a system crash usually result. Simultaneous (multi-processor) and interleaved 
(uni-processor) data structure access is prevented either through one or more semaphores 
(which reduces the problem to updating shared semaphores) or by preventing even the possi­
bility of contending access. The latter approach is usually provided by atomic hardware 
instructions and/or so architecting the system that such colliding accesses never happen. 

The mechanism used in a traditional UNIX system is this latter approach: nothing interrupts 
a process while it is running in the kernel. (The exception to this, I/0 interrupt processing, 
will be discussed later.) This implementation has too coarse a granularity. That is, the data 
structure "lock" can be held for a long period of time which can prevent other processes from 
running even if they don't access the same data structures being currently updated. Thus the 
lock covers more data structures and lasts for a longer period of time than is usually needed. 
It is this drawback which gives rise to the poor preemption latency of the UNIX system. 

4. SOLUTION IMPLEMENTATION 

4.1. Overview 

The preferred solution is to use multiple semaphores and have each semaphore control access 
to an independently used data structure. No other process will access the data structures 
which the preempted process is using since no other process has the necessary semaphores 
locked. The kernel can then be immediately preempted at any point in its execution. This 
results in the fastest preemption time but requires that the entire kernel be modified to 
adhere to semaphoring conventions. Just sorting through the various data structures and 
assigning semaphores can be a large amount of work. This approach is typically employed in 
multi-processor systems. For a description of one such implementation and the effort 
required see [Bach84] and [Felton84]. 

An approach which is easier to implement is to find places in the kernel where it is already 
safe to preempt and only allow preemption there. (Such a "safe place" is a spot or region in 
kernel code where all kernel data structures are either updated and consistent or locked via 
semaphore.) This does not require modifying the entire kernel to conform to a new data 
access philosophy. It does have several drawbacks though. Rather than occurring immedi­
ately, preemption is held off until the next "safe place". Also, our experience has shown that 
these safe places are not found but made. It is easier, however, to make a "few" safe places 
than to rewrite a kernel. 

Because implementation schedule was of strong importance, our solution combines both these 
preemption styles: there is a synchronous method which allows preemption at a specific 
point during kernel execution, and an asynchronous method which allows preemption 

3 Paper 9003 



anywhere during a region of kernel execution. 

4.2. Details 
The synchronous method is useful when places can be identified in the kernel where data 
structures are either in a consistent state (i.e., between an access transaction) or all required 
resources are locked via some semaphoring mechanism. 

The synchronous method is invoked by placing a call to the macro KPREEMPTPOINT() at 
such a safe place in the kernel. This macro merely checks a global flag, reqkpreempt, which 
indicates the presence of a higher priority realtime process which is ready to run and calls a 
function, kpreempt(), to cause a swtch() to the process. (The reqkprempt flag is similar in 
function to the runrun flag used in typical UNIX systems to indicate that a higher priority 
timeshare process is ready to run.) 

There is also a function variant of KPREEMPTPOINT() called IFKPREEMPTPOINT() 
which returns true if a pending preemption was serviced; otherwise it returns false. This is 
useful if lengthy algorithms need to allow preemption but, if preemption occurs, there are 
assumptions which may have been invalidated and now must be rechecked. 

The asynchronous method is useful when preemption can be tolerated over a region of exe­
cution and synchronous polling via KPREEMPTPOINT() would incur unacceptable over­
head (for example, large memory copies during fork, exec, or user I/0). This method is 
implemented via a software-generated interrupt which is recognized by hardware. Hardware 
causes an asynchronous transfer of control to the trap handling routine (similar to a pagefault 
taken inside the kernel when accessing user pages) which in turn calls kpreempt() to preempt 
the kernel. 

Hardware recognition of this interrupt is controlled via spl levels. The routines splpreemp­
tok() and splnopreempt() have been added to allow and disallow recognition, respectively. 
Both of these new spl levels are weaker than other spl levels (i.e., they do not hold off other 
interrupts). Also, other spl levels are stronger and hence imply that kernel preemption is held 
off. Thus, interrupt processing activity which typically runs at spl4() or higher automatically 
disables preemption. Usually the 1'ernel runs at splnopreempt() (whereas before kernel 
preemption it used to run at sp!O(), which no longer exists). 

When a higher priority realtime process becomes runnable, kernel preemption is request~d by 
calling preemptkernel(). This routine sets the reqkpreempt flag and generates the hardware 
supported interrupt. The flag and interrupt are both cleared by swtch() whenever it switches 
to a new (highest priority) process. 

The now pending preemption request is serviced at the first point when either: 

a) a KPREEMPTPOINT() is executed (which tests the reqkpreempt flag), 

b) the spl level drops to splpreemptok() (which allows the pending interrupt), 

c) user mode is entered (this is just one case where the spl level drops to splpreemp­
tok()), or 

d) swtch() is called (which always transfers to the highest priority runnable process). 

In total, approximately 180 synchronous preemption points and 20 asynchronous preemption 
regions were added to the HP-UX kernel. 

4.3. Limitations 

There is one overriding limitation on what kernel preemption can accomplish: Kernel 
preemption can only preempt (suspend via swtch()) an operation which is being executed 
within a process context. It cannot preempt interrupt processing code and allow a process to 
execute because the UNIX system does not support this type of operation. 

Therefore, all interrupt processing is implicitly considered to be of higher priority than any 
(realtime) process. This means that no matter how .quickly preemptable one makes the 

Paper 9003 4 



kernel, if interrupt processing becomes unacceptably time consuming then timely kernel 
preemption cannot be achieved. So the only option is to reduce interrupt processing over­
head to an acceptable level. 

Note that, even if all individual interrupt servicing operations are short, kernel preemption 
can be held off for an arbitrarily long time by many quickly arriving (back-to-back) inter­
rupts during heavy 1/0 activity. There is nothing that can be done in this situation since 
interrupt processing, by definition, has priority over all process execution. 

In addition to the typical I/O driver code, the UNIX system allows non-I/O code to be exe­
cuted in an interrupt processing context. This facility, called the callout queue, causes a ker­
nel procedure to be executed at a specified time offset. The procedure is invoked from an 
interrupt processing context during clock interrupt servicing. This is usually done at a 
weaker interrupt priority than all other I/O interrupts. (See [Stra86] for a more detailed dis­
cussion of the callout queue mechanism.) 

4.4. Overcomming limitations 

To minimize callout queue execution overhead, a separate system process was created to pro­
vide a preemptable process context in which to execute some lengthy callout queue code. 
This process, the statdaemon, is a lightweight kernel process similar to the scheduling daemon 
or the pageout daemon. It waits for the lightning bolt eventt and then executes a standard set 
of statistics gathering routines. These routines represent the lengthy portion of the 
schedcpu() function. (Among other things schedcpu() recomputes process priorities every 
second; see [Stra86] for a discussion of its operation.) A new routine, sendlbolt(), is now 
scheduled on the callout queue in place of schedcpu(). Sendlbolt() performs the quick func­
tions of schedcpu() including generating the lightning bolt event. 

4.5. General. performance improvements 

In addition to the preemption specific modifications, kernel preemption times were improved 
by several general performance improvements. These include making the process table 
multi-threaded and placing entries in different states on different lists, as well as using hash­
ing techniques to speed data structure searches. See [Feder84] or [McKusick85] for a discus­
sion.of similar improvements; 

4.6. Debug facilities 

A set of debug facilities allow dynamic control over the preemption system. These facilities 
are conditionally compiled into the kernel and include the ability to turn preemption on or 
off, enable kernel preemption for timeshare as well as realtime processes, and forcing (almost) 
all preemption points to "preempt" (sleep for a random amount of time). 

4.7. Timing measurement facilities 

In order to tell how long the kernel executes without blocking or preempting, and where in 
the kernel these long execution paths are, the kernel was instrumented to collect timing meas­
urements. 

Timing measurements are taken by sampling the time at kernel entry and exit (syscall(), 
trap(), and swtch()) and also whenever the kernel changed between a preemptable and non­
preemptable state (KPREEMPTPOINT() and all spl routines). The time intervals during 
which the kernel executes in a non-preemptable state are logged. Also, in order to tell where 
in the kernel this execution occurs, a program counter (pc) procedure call trace of the kernel 
stack is collected when the time is sampled, and the pc traces for start and stop points of the 
interval are logged along with the delta time. 

t The lightning bolt event is a standard UNIX event which occurs frequently, for example, every second. 

5 Paper 9003 



However these times fluctuate based on the amount of interrupt processing activity which 
occurs during the measurements (since device interrupts are injected "randomly" into non­
interrupt kernel execution). To account for this, the measurement system also counts the 
interrupt processing time which occurs during a kernel path measurement and logs this as 
well. This allows the interrupt processing time to be precisely removed from the "normal" 
kernel execution times. Results are reported both ways. · 

The interrupt processing time is counted in a fashion similar to the "normal" execution time. 
Whenever the processor switches to or from the interrupt stack the time is sampled. On exit­
ing the interrupt stack, the time difference is computed and added into an ongoing count. 
This count is zeroed at the beginning and logged at the end of a "normal" measurement. 
In order to obtain sufficiently accurate times, a new kernel routine was introduced to obtain 
clock time accurate to a microsecond. 
Data logging is done into a circular kernel buffer. A user level program retrieves the data by 
reading the pseudo-device file, /dev/kmem, which accesses kernel memory. 
A workload is run on a kernel equipped with the measurement system while data is collected 
into a file. The file is later reduced by a set of user level programs. 

5. MEASURED IMPROVEMENT 

5.1. Presentation of results 

To determine the improvement made in realtirne process dispatch time, two sets of measure­
ments were taken using the timing measurement facilities discussed above. One set with ker­
nel preemption enabled and one set with it disabled. The same workload was run during 
both measurements. 
The workload consisted of a suite of tests which validate the correct working of all kernel 
functions. Because the instrumented kernel precisely measures each section of the kernel 
every time it is executed, it is not necessary to execute a kernel code path more than once. 
The raw results consist of a stream of times. Each time represents an interval when the kernel 
was non-preemptable. As one way of summarizing the results, a distribution was computed 
which represents the percentage of total kernel execution time that was spent in code paths of 
less than than x milliseconds. 
Figure l shows this distribution for both preemption on and preemption off. Figure 2 shows 
a blowup of the portion of Figure l near the y axis and more clearly shows the "preemption 
on" case. Each graph can be interpreted as: y percent of kernel execution time was spent in 
code paths shorter than x milliseconds, or y percent of the time, the kernel can be preempted 
in less than x milliseconds. A sharply rising curve indicates that more of the total system 
time was spent in quickly preemptable code paths. It is readily apparent that without kernel 
preemption most of the kernel execution time occurs in code paths which are fairly long. 
The endpoint on each curve\indicates the maximum observed value (observed worst case) for 
this test run. Note, however, that the curve labelled ''Without Kernel ireemption" has been 
clipped in Figure 2; the real endpoint is shown in Figure I. 
The results in Figu,res I and 2 are summarized in Table I. 

Paper 9003 6 



" 100 
e 

90 ... 
I-

Without Kernel Preemption 

c: 80 0 ... .. 70 ::J 
Cl 

" 60 
)( .... 50 .. 
" 40 c: 
i. 

" 30 ~ .. 20 c: 
" Cl 10 i. 

" 0 Q. 

0 200 400 600 800 1000 1200 
Time (millis.aonds) 

Figure 1 

" 100 e ... 90 I-
With Kernel Preemption 

c: 80 0 ... .. 70 ::J 
Cl 
QI 60 )( .... 50 .. 
" c: 40 i. 

" 30 ~ .. 20 c 

" Cl 10 i. 

" Q. 0 
0 2 4 6 8 10 12 14 16 18 20 

Time (milliseconds) 

Figure 2 

7 Paper 9003 



Table 1 
Non-preemptable Kernel Time (milliseconds) 

Preemption Off Preemption On Improvement 

90% kernel 
99% kernel 
max kernel 

40 ms 
129 ms 

1127 ms 

1.4 ms 
3.4 ms 

14.6 ms 

x28 
x37 
x77 

Disclaimer: Note that these results are for a particular run of a particular workload. Results 
will vary from run to run and from workload to workload. 

5.2. Discussion of results 

It was found that a traditional UNIX system (equivalent to measurements made with kernel 
preemption disabled) could provide acceptable realtime process dispatch time in some cases 
but it could not provide it consistently (and hence not reliably). This is due to the fact that, 
while many code paths in the UNIX kernel are short, some code paths can execute for a very 
significant amount of time. Unfortunately, this problem is not limited to only those kernel 
code paths executed on behalf of the realtime application; any simultaneously running 
application(s) could cause the kernel to execute a lengthy code path. This means that, on a 
traditional UNIX system, a realtime application which works simultaneously with one back­
ground workload may fail with a different workload or even with the same workload on a 
different occasion. 

In contrast, Table l shows that HP-UX kernel preemption has provided significant improve­
ments in realtime process dispatch time. In the worst case observed with our workloads the 
improvement was well over 50 fold. With preemption enabled it was found that non­
preemptable kernel code paths were significantly shorter, and more consistently so, than in 
the traditional case. This resulted in better and more reliable timely dispatch of realtime 
processes regardless of background workload. 

In the case where preemption is off, the longest non-preemptable code paths are typically 
large data copies during process creation (fork), process overlay (exec), or user I/O opera­
tions. Other major contenders include process termination (exit), shared memory setup 
operations, and file link/unlink. In the case where preemption is on, the current longest code 
paths are now in the terminal driver. 

These results represent the status of HP's preemption tuning activities as of this writing; work 
is currently underway to further reduce these times. 

6. EVALUATION AND FUTURE DIRECTIONS 

The time to dispatch a waiting process in response to an external event has been made 
significantly smaller and more uniformly predictable. This has allowed the HP-UX system to 
solidly address the performance needs of a much broader range of realtime applications. 

Future work will entail further improvemen+ 0 to realtime performance via increased kernel 
semaphoring in order to address more stringent application needs. 

7. ACKNOWLEDGEMENTS 

The following people from Hewlett-Packard contributed to this work: James 0. Hays intro­
duced preemption points and regions into the memory and process management systems; he 
also offloaded interrupt processing functions into the newly created statdaemon. Sol F. Kavy 
introduced preemption points and regions into the file system. Suzanne M. Doughty edited 
early versions of this paper. 

Paper 9003 8 



8. REFERENCES 

(Bach84] M J. Bach and S. J. Buroff, "Multiprocessor UNIX Operating Systems' 
AT&T Bell Lab. Tech. J., 63, No. 8 (October 1984), pp. 1733-1749. 

[Feder84] J. Feder, "The Evolution of UNIX System Performance", AT&T Bell Lal 
Tech. J., 63, No. 8 (October 1984), pp. 1791-1814. 

(Felton84] W. A. Felton, et. al., "A UNIX System Implementation for System/370" 
AT&T Bell Lab. Tech. J., 63, No. 8 (October 1984), pp. 1751-1767. 

[McKusick85] M Kirk McKusick and Mike Karels, "Performance Improvements and Func­
tional Enhancements in 4.3BSD", USENIX Conference Proceedings, Summer 
1985, pp. 519-531. 

[Stra86] Jeffrey H. Straathof, Ashok K. Thareja, Ashok K. Agrawala, "UNIX 
Scheduling for Large Systems", USENIX Conference Proceedings, Winter 
1986, pp. 111-139. 

9 Paper 9003 





Interpreters/Compilers - Their Differences and Merits 

Husni Sayed 
IEM, Inc. 

P.O. Box 8915 
Fort Collins CO 80525 

INTRODUCTION 

The use of computers by Engineers and Scientists is rapidly increasing. Programming 
is becoming a requirement in the field, due to the nature and the complexity of the 
problems faced by Engineers and Scientists on a daily basis. 

The problems solved by Engineers and Scientists can be broken down into 4 major 
categories: experimentation, modeling, process control, and CAD/CAM. 

Experimentation is carried out in the lab: the Engineer or Scientist is experimenting 
with a new body of knowledge. The job of the Engineer or Scientist in this instance 
is to come up with new algorithms or techniques to fit each experiment. Computer 
programs may be used to control instruments or devices in the lab. 

Modeling entails taking a predetermined algorithm, and putting it to work on specific 
data. The role of the computer in this situation is to vary inputs to an algorithm, and 
monitor the outputs. A model "simulates" a situation to see how a system will behave 
under a given set of circumstances. 

Process Control programs are used mainly in a manufacturing process, and sometimes 
in the lab. This is similar to modeling in that the computer uses a pre-existing 
algorithm to measure inputs and outputs. Process Control, however, is guided more 
toward the manufacturing process. Such programs usually require continuous feedback 
to the computer: adjustments to the process are made automatically as needed. 

CAD !CAM programs are used for a wide variety of industrial and scientific 
applications. CAD/CAM applications tools aid in the design and manufacturing of 
products and product components. 

Problems requiring modeling, process control, or CAD/CAM are fairly static problems, 
with static algorithms. The user takes a predetermined program, and monitors or varies 
inputs and outputs. Static problems such as these require little programming, as the 
necessary algorithms are already available to the user, and change very little. 

Experimentation, on the other hand, is the area that may require greater programming 
skills. As the problem is not always well-defined, an algorithm must grow and change 
as the user's understanding of the problem grows and changes. Dynamic algorithms are 
constantly undergoing modification. 

This paper is going to focus on the differences between interpreters and compilers, and 
the advantages and disadvantages of each in the solving of dynamic problems. 

Paper 9004 



COMPILERS VS. INTERPRJffERS 

Most Engineers and Scientists are not programmers, but they need some programming 
skills to stay ahead of the complex problems they are trying to solve. The biggest 
problem in this area is that software tools are not advancing as quickly as hardware. It 
is essential that Engineers and Scientists have friendly and tolerant systems available 
for their use. They need to spend more time using their machines, and less time 
fighting them. 

An Ideal System for Engineers and Scientists 

The Ideal system for Engineers and Scientists requires: 

- support for structured programming and modularity, to facilitate development of 
easily maintained code; 

- support for library development and maintenance, so an algorithm can be stored and 
used in other programs; 

- support for single-statement matrix operations (such as vector operations, evaluation 
of determinants, or initialization of an identity matrix), so that commonly used 
operations are performed easily, without the need to create an entire algorithm; 

- support for a rich set of math functions, and; 
- support for graphics and data acquisition, so that massive amounts of data can be 

analyzed and transformed into visual results. 

A system meeting all these requirements would need to: 

- be tolerant toward human programming errors; 
- have built-in error detection and recovery routines that could be accessed from 

within a program; 
- have friendly and powerful debugging tools; 
- allow for incremental programming (the ability to make quick changes and see the 

results), and; 
- produce results very quickly once the program is developed. 

Tools Currently Available 

Currently, an Engineer or Scientist can choose either a compiler or an interpreter to aid 
in program development. 

A compiler is a computer program that translates another computer program (one that 
is written in an English-like language) into the machine language bit pattern. The 
resultant "machine code" can be understood and carried out directly by the CPU of 
the machine. 

An interpreter is a computer program that can directly execute the tasks specified by 
another program (which is represented in an English-like language). 

The Program Development Cycle 

The program development cycle in an interpreted environment is a continuous, inter­
related process. There are no definite steps involved in the cycle. A programmer can type 
in one or more lines, executing those lines at any time, and modify the lines, or type in 
more lines, etc. So the "unit of program development" is the line: programs are executed 
on a line-by-line basis: 

Paper 9004 2 



Type in 
a line 

Syntax 

Parser 

Run the 

In a compiled environment, however, there is a definite distinction in the steps of 
program development: 

and the different steps do not interact at all. The "unit of program development" is an 
entire program. A program must be syntactically complete before it can be compiled, 
and it must be compiled before it can be run. 

Compiled VS. Interpreted Memory Usage 

INTERPRETER 

The BASIC interpreter produces I-codes, which are the interpreted intermediate code 
produced when a line is typed in. I-codes are a "compact" duplication of your source 
code. At run time, the interpreter makes use of three main data structures: the symbol 
table, the value area, and the BASIC stack. 

The svmbol table keeps information about what variables are used in the program, 
lines addressed by GOTOs or branching, etc. 

The value area is the area where the values of elements defined in the symbol table are 
kept. When you operate on a particular variable, its name is in the symbol table, but 
its value is in the value area. 

The BASIC stack is the mechanism which controls the execution techniques used by 
the interpreter. The interpreter operates on a reverse Polish notation technique: it 

"'pushes two operands onto the stack, and then performs the operation on them. 

COMPILER 

On the same operating system (the BASIC Operating System), the compiler produces 
machine language instructions as the representation of program source code. The 
compiler also makes use of a value area (there is no symbol table), and three control 
mechanisms: the system registers, the system stack, and the BASIC stack. 

3 Paper 9004 



The system registers are the most efficient, and are used to perform simple operations, 
and pointer address operations. 

The system stack is used to store intermediate results of expression evaluation. It is 
not as efficient as the system registers, but is more efficient than the BASIC stack. 

The BASIC stack is the least efficient mechanism used. It is needed to call operating 
system routines. 

Interoreted VS. Compiled Code 

In an interpreted BASIC program, each BASIC line is represented as a series of 
"intermediate codes" (referred to as I-codes): 

I ~:::e~ I 1-code I 1-code I ... EOL 

Each I-code represents an activity that must be carried out by the interpreter. The 
EOL represents the end-of-line I-code, and it occupies one byte. The line header 
ocetipies 6-8 bytes, depending upon whether or not the line is labeled. 

An interpreted BASIC program is fairly compact as far as code size goes: the I-codes 
do not occupy too much space. The "expense" of interpreted BASIC occurs at run 
time. Each I-code has to be fetched and recognized by the interpreter. After this, an 
interpretation of the I-code semantics is made, and the I-code instruction is carried out. 

In a compiled program, every BASIC line is represented directly in machine code. 
Machine code is a form that can be understood by the computer: it is a direct, exact 
representation of the semantics of the original BASIC line. Since the statements have 
been "expanded" into machine code, a compiled program will be larger than an inter­
preted one. Even though the file is larger, a compiled program usually executes faster 
than the interpreted version: this is because the overhead associated with fetching and 
recognizing instructions at run time is eliminated. 

COMPUTE-BOUND CODE 

Compute-bound code is code that consists of mainly computational statements. 
Computational statements include assignment statements, arithmetic(+,-,*,/), etc. 
Compute bound code tends to produce favorable results when compiled. 

In an interpreted BASIC program, the expression "A = B + C" is represented as: 

I line 
header I 12 113 I 14 I 232 I 144 I EOL I 

where the I-code: 

12 tells the computerto push the address of A onto the BASIC•tack 
13 tells the computer to push the address of B onto the BASIC stack 
14 tells the computer to push the address of C onto the BASIC stack 
232 tells the computer to add B and C, and push the result on the stack 
144 tells the computer to store the value on the top of the stack in A 

These I-codes occupy about 5 bytes of storage. The interpreter will execute at least 
200 machine code instructions to carry out the operation. 

Paper 9004 4 



In a compiled program, the statement "A = B + C" is represented in machine code as: 

move.w ·26(A4), DO 
add.w ·28(A4), DO 

move.w DO, ·24(A4) 

This machine code occupies 12 bytes. However, this operation is executed by 3 machine 
code instructions. 

For this assignment statement, the code expansion ratio (the amount the code expands 
when compiled) is 12/5, or 2.4. This means that the compiled code is about 2.4 times 
the size of the interpreted code. It should, however, be about 40 to 70 times faster. 

1/0 BOUND CODE 

1/0 bound code is code that consists mainly of 1/0 or graphics operations. This would 
include PRINT, READ, etc. 1/0 bound code does not fare as well as compute bound 
code when compiled. 

In interpreted BASIC, the statement "PRINT A" is represented as: 

I line ~eader 155 0 164 EOL 

where the I-code: 

155 initializes the print operation 
0 tells the computer to push the address of A onto the BASIC stack 
164 performs and 1/0 operation 

These I-codes occupy about 3 bytes. 

In a compiled program, the statement "PRINT A" is represented in machine code as: 

lea global_pntr, AS 
move.l A2, B_TOS 
jsr Print_ ini t 

movea. l Valptr, A4 
movea. l B·TOS, A2 
movem. l ·8CA4), DO_D1 
movem. l DO_D1, ·(A2) 
clr.w ·CA2) 
movea.w #443, A3 
move. l A3, !PC 

movea. l 36(A4), AO 
jsr Goto_os 

This machine code occupies 64 bytes. 

The code expansion ratio for this example is 21. The form shown above is one of the 
worst case examples for compiled BASIC. On the average, the code expansion ratio for 
I/0 bound code will be between 2.5 and 4.0. The code expansion ratio for a PRINT 
statement with 20 items after it would be much smaller: the compiled program has no 
additional overhead after the first item is printed. With an interpreted program, the 
overhead would continue for each item in the list to be printed. 

5 Paper 9004 



The speed increases for 1/0 bound code are not as great as for compute bound code. 
On the average, the speed increases that can be expected for 1/0 bound code are from 
20% to 50% (1.2 to 1.5 times faster), depending upon the device and operating system 
routines being used. 

Advantages/Disadvantages of Compilers VS. Interpreters 

In general, an interpreter has the advantage at program development time, and the 
compiler has the advantage at run time. The advantages of an interpreter include: 

- Quick feedback during program development. The programmer can type in a few 
lines, run them, and get results. This lends itself to incremental programming. 

- Small code size. User programs are very compact because of the use of I-codes. 
- Powerful system and error control. Events, keys and interrupts are very easy to 

control from within an interpreted environment. 
- Symbolic debugging and easy line tracing. Because the symbol table is always 

present at run time, symbolic debugging is trivial. Programmers can retreive the 
values of variables at any time, parse the program, modify them, and resume the 
program. 

- Source available during program execution. The programmer can always refer back 
to the source code. 

- Quick and easy changes can be made to the program. 

The disadvantages of a interpreter are: 

- Slow execution time. The fetching and translating of I-codes at run time causes a 
considerable delay at execution time. 

- Program source is unprotected. Because the program source code is always resident 
in memory at run time, it cannot be hidden from other users. 

- Portability to other systems is limited. 
- More memory is needed at run time to hold the symbol table. 
- Redundant parsing at run time. Every time the program is run, each line must be 

re-parsed and re-translated. 
- Comments are expensive, because they occupy space in a program, which is resident 

in memory at run time. 
- Repetitive constants are expensive. Interpreted BASIC does not support a constant 

pool to hold constants used in a program. 

The advantages of a compiler include: 

- Fast execution time. Compilers are almost always faster than interpreters. The 
difference in speed will vary, depending upon how intelligent the compiler is, and 
how well it presents the code. All tasks of syntactic parsing are performed at compile 
time, so translation is only done once. 

- Program source is protected. The source code need not be resident at run time, and 
the original program is very difficult to reconstruct from the object code. 

- Portability to other systems is only limited by the hardware and operating system 
capabilities. 

- Symbol table is not resident at run time, therefore less memory is occupied. 
- System control is bound only by the availability of operating system tools. Any 

capabilities supported by the operating system, and available to the compiler writer, 
can also be supported in a compiled environment. 

- Constant pool eliminates redundancy. A constant is not stored more than once in a 
context that is compiled. 

Paper 9004 6 



The disadvantages of a compiler are: 

- Slow program development. The user must wait until compilation is complete to see 
the results of a program. Compilation may be seconds or minutes, depending upon 
the size and complexity of a program. 

- Larger code size. In a compiled program, the code to perform a task is expanded at 
compile time. Therefore, a compiled program occupies more space than the I-codes 
produced by the interpreter. 

- Symbolic debugging requires a resident debugger. To debug a program that is 
already compiled, the user needs a debugger that can control the execution, and the 
symbol table must be STOREd into memory. 

- Programs are not easily modified. Since every modification to the program requires 
editing, compiling, and running, quick changes to the program cannot be made. 

CONSIDERATIONS 

MEMORY USAGE 

In the program development cycle, an interpreted program takes about the same amount 
of memory as a compiled orie. In the program execution stage, a compiled program 
generally occupies more RAM than the equivalent interpreted program. 

PROGRAM SPEED 

In the program development stage, the interpreter is usually faster than the compiler, 
because the user can type in a line, and see the results immediately. In the program 
execution stage, however, the compiler is definitely faster than the interpreter. 

CONCLUSION 

The ideal system for Engineers and Scientists would combine the ease of interpreted 
program development with the speed of compiled program execution. The best solution 
is a system that can make use of both an interpreted and a compiled language. With 
such a system, the user could develop and test programs in an interpreted environment, 
and once a program is fully developed, compile it to achieve the speed increases at run 
time. In such a case, the time spent to compile a program is not a major factor, as 
compilation need only occur once. 

7 Paper 9004 





DISC PERFORMANCE ON HPUX 

Carol A. Hubecka 
Hewlett-Packard Company 

Disc Memory Division 
P.O. Box 39 

Boise ID 83707 

INTRODUCTION 

This is a discussion of disc performance on HPUX; 
Hewlett-Packard's version of the UNIX* operating system. 
The paper is divided into two parts. The first half is a 
discussion of the basics of disc performance as they relate 
soley to the disc drive. The components of a disc 
transaction and associated performance are discussed as a 
means of explaining how HP calculates data sheet 
performance statistics. 

The second half explains some of the factors that influence 
disc performance on HPUX. Block size is discussed as it 
affects performance. Disc location and its associated 
performance implications are discussed. And lastly, 
multiple unit activity is discussed as a means to increase 
performance. Performance measurements are used where 
available. 

DISC BASICS 

Any discussion of performance naturally begins with an 
understanding of how the performance is measured or 
calculated. The following text explains HP's definition of 
a disc transaction and how the performance of each of its 
components are measured or calculated, independent of 
system parameters. 

* UNIX is a tradmark of AT&T Bell Laboratories 

Paper9005 



Disc Transaction 

A disc transaction is comprised of four components: disc 
controller overhead, seek time, latency and the actual 
transfer of information. The mechanical components, seek 
and latency, respectively comprise the greatest part of the 
transaction time. Controller overhead is the next largest 
component and then transfer time. 

Disc Transaction 

D c x 
I 0 SEEK LATENCY F 
s N E 
c T R 

The following table compares the average transaction 
components of Hewlett-Packard disc drives: 

Transaction Components 

controller seek latency transfer 

7912 4.0 27.1 8.3 1.2 
7914 4.0 28.1 8.3 1.2 
7933 4.5 24.0 11.1 1. 0 
7945 10.1 30.0 8.3 2.0 

Disc controller 

The disc controller provides the intelligence of 
transaction electronically. It begins processing 
transaction by: 

Paper 9005 2 

ms 
ms 
ms 
ms 

the 
the 



o Decoding the disc command sent by the host computer; 
o executing the command; 
o and reporting the execution status back to the host. 

Controller overhead is sacrificed for the sake of 
controller intelligence. However, experience has allowed 
HP to make controllers efficient in doing the greatest 
amount of work in the smallest amount of time. 

Seek Time 

once the controller has decoded the command, the disc must 
perform some mechanical functions to prepare for command 
execution. The drive must first find the desired disc 
location by moving its heads to the desired media track. 
This action is defined as the seek. 

The time to find the desired track varies with the track 
location and the current position of the heads. A more 
accurate estimate of seek time is the average seek. It is 
defined as the time to do all possible seeks divided by the 
total number of seeks possible. 

Latency (or Rotational Delay) 

Once the drive has found the correct track it must then 
find the desired sector on that track. The media continues 
to rotate beneath the heads as the track is searched. The 
time required for one rotation of the disc is defined as 
the latency. The latency, like the seek, is mechanical. 

This definition of latency is certainly a "worse case" 
time, since the head is generally closer to the desired 
sector than one full rotation. The average latency is a 
more accurate measure and is defined as the time to 
complete one half a rotation. 

Transfer 

The transfer is defined as the actual movement of data from 
the cpu to the disc, or vice versa. 

HP defines the average transfer as the average rate that 
data comes off the disc when reading an entire sector. 
Multiples of full sectors are always transfered to optimize 
performance. 

3 Paper 9005 



Transaction Time 

Each of the components of a disc transaction contribute to 
the total time involved in completing that transaction. 
The summation of the average time it takes to complete each 
component measures the average time to perform such a 
transaction. 

The total average transaction time is defined as follows: 

Average Controller Overhead 
+ Average Seek Time 
+ Average Latency 
+ Average Time to Transfer 1 kbyte 

Total Average Transaction Time 

The following figures are calculated transactions times for 
Hewlett-Packard disc drives: 

Performance Metric 

Transaction Times 

7912 
7914 
7933 
7945 

40.6 ms 
41.6 ms 
39.6 ms 
50.4 ms 

Hewlett-Packard uses the metric of I/O per second to 
measure disc performance. I/O per second is defined as the 
maximum number of disc transactions per second that a 
specific drive can perform at a transfer size of 1 kbyte. 
This measure is calculated by taking the inverse of the 
total transaction time that was just described. I/O per 
second is a measure of raw disc performance and does not 
take into account system specifics. 

The following figures are the I/O per second calculation 
for HP products: 

Paper9005 4 



7912 
7914 
7933 
7945 

Disc Performance 

24.6 I/O per second 
24.0 I/O per second 
25.3 I/O per second 
20.0 I/O per second 

PERFORMANCE FACTORS 

There are several factors that influence disc performance 
on HPUX. The preceding discussion on disc basics does not 
take into account system or application specifics, but is a 
good measure of the relative performance as it relates to 
HPUX and describes some of the factors that affect 
performance. 

Block Size 

It is possible to replace the above calculated data sheet 
statistics with figures actually measured on HPUX. Because 
these measurements do not go through the file system they 
should be used to measure relative performance rather than 
absolute. 

Data sheet transfer rates are calculated for transfer sizes 
of 1 kbyte blocks. Due to the flexibility in configuring 
HPUX systems, it is useful to examine transfer rates at 
various block sizes. For instance, transfer sizes of 8 
kbyte blocks and 4 kbyte blocks are very important to 
Series 300 HPUX. The default file system on Series 300 
HPUX attempts to transfer data in blocks of 8 kbytes and 
will fragment small transfers into 4 kbyte blocks. 

The following data is a measure of disc throughput on 
Series 300 and 500 HPUX for block sizes varying from 256 
bytes to 65536 bytes. The test used to obtain the data 
measures the time required to perform random disc reads of 
the varying sizes. Actual performance will vary with 
system and application. 

5 Paper9005 



Disc Performance * 
Series 300 HPUX 

size 
(bytes) 7912 7914 7945 

256 6.9 6.7 5.9 
512 13.6 13.2 11.8 

1024 27.1 26.0 22.4 
2048 52.5 51.2 42.7 
4096 99.8 97.2 81.1 
8192 182.6 176.0 141.5 

16384 313.1 306.1 205.1 
32768 475.1 469.1 261.1 
65536 632.7 633.7 301.1 

* measured in kbytes / sec 

Disc Performance * 
Series 500 HPUX 

size 
(bytes) 7912 7914 7933 7945 

256 5.9 5.9 6.3 5.1 
512 12.3 12.0 12.4 10.0 

1024 23.7 23.6 23.6 19.2 
2048 46.0 45.0 47.1 36.2 
4096 87.1 86.7 88.1 76.9 
8192 156.2 157.4 154.2 118. 2 

16384 267.9 266.6 266.3 171.8 
32768 396.0 395.7 404.1 220.3 
65536 514.1 515.0 525.4 265.0 

* measured in kbytes I sec 

Paper 9005 6 



The same data represented in graphical form depicts the 
relationship between data transfer size and transfer rate. 

-
IOO 

... .IO 

19IR -
IOO 

T """' Rohl ld>ytWlod .. 

200 

... 

Disc Performance 

Serlea JOO HPUX 

- -
7 

~., 

l7 ......... 7 ········ 
-:;:;? .... ... 

'""""""'" • :12 .. 
T ranater SAz• W»ytea) 

Disc Performance 

Series 500 HPUX 

"'33 -
[7 

7 
/ ········· .. 

~ ...... ... 
~ 

~ 
.... - • :12 .. 

7 Paper 9005 



Disc Location 

The physical location of the disc drive can also affect 
performance. Of specific interest is the location of the 
virtual memory disc and the root device. Both discs are 
kept very busy by HPUX. The virtual memory disc is 
responsible for managing logical address space, physical 
memory utilization, and swap space. The root device is the 
"root" of the file system, from which all other file 
systems are mounted. It contains the files required for 
HPUX to properly run. 

For single drive configurations, the virtual memory disc 
and the root device are one in the same device. Because 
these two logical discs are accessed so frequently, it 
makes sense, if feasible, to split them into two separate 
physical discs located on separated interfaces. This will 
allow both drives to be accessed concurrently, thus 
optimizing performance. 

Multiple Units 

As mentioned, the interface between the disc and CPU can 
cause a performance bottleneck. This is often the case 
with HPUX because of its frequent disc accesses. There 
are, however, a few ways to allieviate this contention. 

One way to allieviate bus contention is to spread multiple 
disc drives across multiple interfaces. The success of 
this is dependent upon the application. For instance, two 
drives on separate interfaces can increase I/O while 
running multiple processes that access both discs. The CPU 
can then offload to the I/O processor and keep both drives 
busy. Thus, the performance increase. 

Two discs will not help the user running a single disc 
application. Remember, you only benefit if you can keep 
both drives busy. Two discs on the same interface will not 
improve performance, either. Only one device can have the 
bus at a time. 

For example, the following graph displays results (in I/O 
per second) of a benchmark running two processes on Series 
500 HPUX. Each process accesses a disc. There is little 
difference in one 7945 versus two 7945 drives on the same 

Paper 9005 8 



interface (18.2 vs. 18.0). 
(22.8) and two 7945 drives 
shows the best performance. 

The 7914 is a higher performer 
on separate interfaces (35.4) 

IO 

ao 

10 

7914 -vs- 7945 
S.rlea 500 HPUX 

1-71'4 l-1Mfl 

--"" 

Another way to reduce bus contention is to place the root 
disc and cartridge tape on separate interfaces. In this 
configuration, both the tape and disc can be accessed 
simultaneously. Also, disc accesses can occur while the 
tape is loading and unloading. 

These are just a few of the ways interface contention can 
be relieved. Systems with multiple users and multiple 
processes should consider either of the above suggestions, 
or both. 

SUMMARY 

The disc transaction is comprised of many components. Each 
component, in turn, impacts overall disc performance. 
These performance factors are fixed, and cannot be tuned by 

9 Paper 9005 



the HPUX user. The understanding of these static factors 
provides insight into the operation of the disc drive and, 
ultimately, overall disc performance. 

There are several factors affecting disc performance on 
HPUX that the user does have control over. By examining 
disc performance at the various transfer lengths, rather 
~nan at the fixed length of 1 kbyte, the user can select 
the mass storage that best suits the way in which the 
system is used. Location of the mass storage should also 
be examined for optimal performance. In addition, for 
those systems where frequent multiple processing is going 
on, performance may be improved with multiple disc/tapes on 
separate interfaces. 

Paper9005 10 


