
PROCEEDINGS

J~ ollP3ooo

....

Madrid, Spain, March 1 0 to 14, 1 986
Hotel Melia Castilla

COMMITTEES

Organizing Committee

Jesus Parada
Marta Jaudenes
Eduardo Lopez-Lozano
Antonio Lopez-Maya

Technical Program Committee

Jesus Garcia Catalan
Jesus Parada
Luis Baroja

Vendor Shows Committee

Jelle Grim
Tim cullis
Ma. Antonia Marin

- Chairman
- Secretary
- Treasurer
- Public Relations

- System Manager

Professional Congress Organizer

Ana Maria Eichler

VIAJES CREATUR
Profesor Waksman,11
28036 MADRID

- Creatur

SPANUG
Genova 17
28004 MADRID

3

CATEGORIZED INDEX OF SPEAKERS

Author/Company Title

DC - Datacommunications and Networks

Alam, Hassan
Hewlett-Packard

Coya, Stephen
MCI DISC

Coya, Stephen
MCI DISC

Grossler, Jorg
Jorg Grossler GmbH

Hymer, Jack
Hewlett-Packard

Hymer, Jack
Hewlett-Packard

Nelson, Deborah
Hewlett-Packard

Networking heterogenous computer
systems ••.•••••••••••••••••••.••••••.•••

X.25: What to Do After the Network
is in Place ••••••••••••••••••.••••••.•••

Anatomy of an X.25 Based EMS Appli-
cations •••••••••.••••.••••••••••••••••••

Packet Switched Networks-The future
of Data-Communications ••••••••••.•••••••

Sinchronous Communications. Causes
and Effects •••••••••••••••••••••••••••••

Network design for a distributor .••••••

Network Support: The Multivendor
Service Dilema ••••••••••••••••••.••.••••

DB - Data Base Management Systems

Barnes, Lynn
Hewlett-Packard

Beersmans, Luc
I.C. Systems n.v.

Chen, Doris
Hewlett-Packard

Chen, Doris
Hewlett-Packard

Frydenberg, Rolf
Synergy Technology

Janssens, Jan
Cobelfret n.v.

Kane, Peter
Hewlett-Packard

An overview of relational DBMS
Implementation on the HP3000 ••••••••••••

The logical life in your Data sets ••••.•

Turbo IMAGE Internal file Structure •••..

DB Changes ••.•.•.•.••••••.•••.•••••.••••

Multisystem Databases ••••••••••..•••••••

Tricks with(in) IMAGE ...•...•.•..•••••••

Turbo IMAGE Run-Time Options:
Balancing Performance with Data
Base Integrity ..•••.•.•.•••.•••.•••.•.•.

Page

15

35

43

61

71

91

113

119,583

121

123

145, 575

147

161

179

5

6

Author/Company

Larson, Orland
Hewlett-Packard

Matt, Wolfgang
Industrie Anlagen

Rego, Alfredo
Adager

Title Page

Relational Databaser How do we know
if we need one?......................... 187

Index Sequential Access to IMAGE
Data Bases.............................. 197

Database Dynamics....................... 203

AL - Advanced Languages and Development Tools

Bishop, Sharon
Hewlett-Packard

Fauser, Ulrich
Weigang MCS

Guerrero, Jorge
Hewlett-Packard

Hoeft, Mark L.
Hewlett-Packard

Irwin, Richard
Data Service Centre

Neuhaus, Peter
Hewlett-Packard

Ouellette, Raymond
Infocenter

Sieler, Stan
Allegro Consultants

Toback, Bruce
OPT

Wright, Norm
Informica

The 2001 siren's song: AI in the
Commercial Market Place .•.....•....•.••.

Business BASIC/3000, Phase II •.....•••••

SQL The Defacto standard for
relational databases ..••••...••....•....

HP Business BASIC/3000: An Upgrade
Path for HP250 Applications ..•..••.•••••

Implementation of Structured Methos
Using HP System Dictionary ..••••...•••••

Device independent graphics soft-
ware for the HP3000., ... ,., •••.... ,

Protoyping and Systems Development
Using 4 GL

C-Sick? •...••••••••..........•.•••.••••••

Performance and COBOL .••..•.•...••...•.•

Software Development in transition:
using Transact/3000 ..•......•••••.•••.••

SD - System Development

Boles, Sam
Hewlett-Packard

Gielens, Theo
Data Base Consult.

UNIX Through the eyes of MPE .•.•••.•....

From business activities to online
application design ••.•...•..•••.•.•.....

221

233

253,627

255

265

267

275

277

289

297

307

323

Author/Company

Jamback, Matti
Kemira Oy

Larson, Orland
Hewlett-Packard

Leong, Leon
Hewlett-Packard

Linnett, Richard
Cognos Inc.

Witteveen, Jos
Data Base Consult.

SM - System Management

Clapper, Brian
Hewlett-Packard

Cooper, Steven M.
Allegro Consultants

Stephens, Gregory
Hewlett-Packard

Title Page

A new method to develope better
software. . • . • • • • • . . . 337

Information Systems Protoyping.......... 351

A Data Dictionary architecture for
the Year 2001........................... 367

Microcomputer workstation. The path
to full integration..................... 379

From Data analysis to Turbo IMAGE
Design........................ . • • • . . • • • • 391

Disaster Recovery Planning ••••••••••.•••

Another look at the struggle
towards optimal performace ••••••••••••••

HP3000 object code compatibility on
future HP3000 systems ••••••••••.••••••••

407

415

427, 653

OP - Operation Management

Cole, Glenn

Cooper, Kevin
Hewlett-Packard

Jolles, Antonia S.
Soft ech, Inc.

Prather, Winston
Hewlett-Packard

Sager, Kurt
sws

VS - Various

Boles, Sam
Hewlett-Packard

Message Catalogs and native 429
language support .•.••••.••••••••••••••.•

Date handling beyond the year "99" 443

Interactive systems - Interfacing
with the HP3000 453

Mapped file access on next
generation HP3000 systems •.•.••••••••••• 463,647

How to Compute IMAGE Master Set TUE/4/G 465
Capacities.

What's a nice computer like HP3000
doing in a place 1 ike CAD/ CAM? ••••••••.. 475

7

8

Author/Company

Boles, Sam
Hewlett-Packard

Boskey, David
c.c.s.

Devitt, Karen
Martin Marietta

Dreher, Bjorn
Mainz University

Hermansson, Siv
PaBis ab

Horne, George T.
Hospital Sick Child.

Kramer, Jim
Hewlett-Packard

Oxford, Richard
MCI DISC

Title Page

A Blend of HP3000 and HP9000 for
computer graphics....................... 485

In search of the Software Transistor.... 495

The Challenge of the Remote Trouble-
shooter................................. 509

Distributed Data Aquisition and
Control Nuclear Physics Experiments..... 527

MPE Compared to HP-UX................... 537

Hospital Information Systems:
Today, Tomorrow and After............... 539

Series 58 Performance................... 549

HP2680A. The mystical printer........... 559

ADDITIONAL HEWLETT-PACKARD PAPERS

Name/Company

Chen, Doris
Hewlett-Packard

Barnes, Lynn
Hewlett-Packard

Dingerson, Michele
Hewlett-Packard

Guerrero, George
Hewlett-Packard

Prather, Winston
Hewlett-Packard

Stephens, R. Gregory
Hewlett-Packard

Title of Presentation

Turboimage DBchange

An Introduction to Hewlett-Packard 's
Implementation of SQL

Mapping Image Databases to a
Relational Environment

SQL The Defacto Standard for
Relational Databases

Memory Mapped File Access on the HP3000
900 Series Exploiting HP Precision
Architecture

HP 3000 Object Compatibility on
Future HP 3000 Systems

Page

575

583

601

627

647

653

Name/Company

Alam, Hassan
Hewlett-Packard

Barnes, Lynn
Hewlett-Packard

Beersmans, Luc
I.C. Systems n.v.

Bishop, Sharon
Hewlett-Packard

Boles, Sam
Hewlett-Packard

Boles, Sam
Hewlett-Packard

Boles, Sam
Hewlett-Packard

Boskey, David
c. c. s.

Chen, Doris
Hewlett-Packard

Chen, Doris
Hewlett-Packard

Clapper, Brian
Hewlett-Packard

Cole, Glenn

Cooper, Kevin
Hewlett-Packard

Cooper, Steven M.
Allegro Consultants

Coya, Stephen
MCI DISC

ALPHABETICAL INDEX OF SPEAKERS

Title of presentation

Networking heterogenous computer
systems ...••.•.•....•.•.•..•....•...•..•

An overview of relational DBMS
Implementation on the HP3000 .•...••....•

The logical life in your Data sets ••••..

The 2001 siren's song: AI in the
comercial marketplace •••••...••..•••••..

What's a nice computer like HP3000
doing in a place like CAD/CAM? ••.••.•...

UNIX Through the eyes of MPE .•...••..•.•

A Blend of HP3000 and HP9000 for
computer graphics •...•••.••.•••.•..•••.•

In search of the software Transistor .•.•

Turbo IMAGE Internal file Structure ••••.

DB Changes ..•••.•••...••••••••.•••.••.•.

Disaster Recovery Planning ••••••••.•••..

Message Catalogs and native
language support ••..•.•..•...•.•...••...

Date handling beyond the year "99" •.....

Another look at the struggle
towards optimal performace ••.•....••..••

X.25: What to Do After the Network
is in Place ••...•••...•.••..••.••.•.••••

Page

15

119

121

221

475

307

485

495

123

145

407

429

443

415

35

9

Name/Company Title of presentation

Coya, Stephen
MCI DISC

Devitt, Karen
Martin Marietta

Dreher, Bjorn
Mainz University

Fauser, Ulrich
Weigang MCS

Frydenberg, Rolf
Synergy Technology

Gielens, Theo
Data Base Consult.

Grossler, Jorg
Jorg Grossler GmbH

Guerrero, Jorge
Hewlett-Packard

Hermansson, Siv
PaBis ab

Hoeft, Mark L.
Hewlett-Packard

Horne, George T.
Hospital Sick Child.

Hymer, Jack
Hewlett-Packard

Hymer, Jack
Hewlett-Packard

Irwin, Richard
Data Service Centre

Jamback, Matti
Kemira Oy

Janssens, Jan
Cobelfret n.v.

10

Anatomy of an X.25 Based EMS Appli-
cations •.••••••••••••••••••••••••••••.••

The Challenge of the Remote Trouble-
shooter ••••••••••••••••••.•••••••.•••.••

Distributed Data Aquisition and
Control Nuclear Physics Experiments •••••

Business BASIC/3000, Phase II •••••.•••.•

Multisystem Databases •••••••••••••••••••

From business activities to online
application design ••••••••••••••••••••.•

Packet Switched ~etworks-The future
of Data-Communications ••••••••••.•••••..

SQL The Defacto standard for
relational databases ••••••••••••••••••••

MPE Compared to HP-UX •••••••••••••••••••

HP Business BASIC/30001 An Upgrade
Path for HP250 Applications •••••••••••.•

Hospital Information Systems:
Today, Tomorrow and After •••••••••••••••

Sinchronous Communications. Causes
and Effects •••••••••••••••••••••••••••••

Network design for a distributor ••••••••

Implementation of Structured Methods
Using HP System Dictionary ••••••••••••••

A new method to develope better
software ••••••••••••••••••••••••••••••.•

Tricks with(in) IMAGE •••••••••••••••••••

Page

43

509

527

233

141

323

61

253

537

255

539

71

91

265

337

161

Name/Company

Jolles, Antonia S.
Softech, Inc.

Kane, Peter
Hewlett-Packard

Kramer, Jim
Hewlett-Packard

Larson, Orland
Hewlett-Packard

Larson, Orland
Hewlett-Packard

Leong, Leon
Hewlett-Packard

Linnett, Richard
Cognos Inc.

Matt, Wolfgang
Industrie Anlagen

Nelson, Deborah
Hewlett-Packard

Neuhaus, Peter
Hewlett-Packard

Ouellette, Raymond
Infocenter

Oxford, Richard
MCI DISC

Prather, Winston
Hewlett-Packard

Rego, Alfredo
Adager

Title of presentation Page

Interactive systems - Interfacing
with the HP3000......................... 453

Turbo IMAGE Run-Time Options:
Balancing Performance with Data
Base Integrity.......................... 179

Series 58 Performance................... 549

Information Systems Protoyping.......... 351

Relational Database: How do we know
if we need one?......................... 187

A Data Dictionary architecture for
the Year 2001........................... 367

Microcomputer workstation. The path
to full integration..................... 379

Index Sequential Access to IMAGE
Data Bases.............................. 197

Network Support: The Multivendor
Service Dilema •••.• ~.................... 113

Device independent graphics soft-
ware for the HP3000..................... 267

Protoyping and Systems Development
Using 4 GL.............................. 275

HP2680A. The mystical printer........... 559

Mapped file access on next
generation HP3000 systems............... 463

Database Dynamics....................... 203

11

Name/Company

Sager, Kurt
sws

Sieler, Stan
Allegro Consultants

Stephens, Gregory
Hewlett-Packard

Toback, Bruce
OPT

Witteveen, Joa
Data Base Consult.

Wright, Norm
Informica

Title of presentation

How to Compute IMAGE Master Set
Capacities .•.....•......•..••....••...•.

C-Sick?••...•..••.•.••.•••.••••

HP3000 object code compatibility on
future HP3000 systems•..••...•......

Performance and COBOL ••..........•......

From Data analysis to Turbo IMAGE
Design ..•..•.•....•......••.••.....•....

Software Development in transition1
using Transact/3000 •••••••••••..•.•.••••

Page

465

277

427

289

391

297

Interconnecting

Heterogeneous Computer Systems

Hassan Alam
Network Specialist

International Region

15

16

Section 1
Overview

Table of Contents

I. 1 Abstract ... 1-1
I. 2 Organization of Paper ... 1-1

Section 2
Open Systems Interconnect Model

2. 1 OSI Model · 2-1

Section 3
Advantage of Layering

3. 1 Modularity .. 3-1
3. 2 Changing Your Network ... 3-1
3. 3 Expanding the Network .. 3-1
3. 4 Adopting New Technology . 3-2
3. S Advantages of Layering .. 3-2

Section 4
International Standards

4. 1 Advantage of Standards .. 4-1
4. 2 Mulitivendor Connectivity .. 4-1
4. 3 Product Longevity ... 4-1
4. 4 Lower Cost. 4-1
4. 5 Tradeoff for Standards .. 4-2

Section 5
Picking A Standard

5. 1 Linking the Systems .. 5-1
5. 2 Transporting the Data ... 5-2
5. 3 Network Applications ... 5-2

Section 6
Designing a System

6. 1 Company Computing Need .. 6-1
6. 2 Company Geography ... 6-2
6. 3 Picking The Network ... 6-2
6. 3. 1 Application Software .. 6-2
6. 3. 2 Transport Protocol. 6- 3
6. 3. 3 I.ink Technology. 6- 3

Section 7
Summary

Table of Contents

7. I Biography .. 7-1

17

18

.__o_v_er_v_ie_w~~~~~~~~~~__.l~l~l,ll,

1.1 Abstract

The rise in mini and micro computers led to proliferation of computer systems. With these inexpensive
computer systems each work group, and often person, could afford his own computational facility. This
proliferation of computer systems also increased the need for exchange of data between computers, and
the sharing of expensive resources. To address this need computer vendors produced their own proprietary
computer networking capability. Examples of this are HP's DS network which pioneered distributed
processing, and IBM's Binary Synchronous network, which was primarily hierarchical.

This approach worked well up to a point. It, however, had three limitations:

1) Proprietary networks did not communicate to other proprietary networks. Thus if users
bought computers from more than one vendor, inter-vendor communication was difficult at
best.

2) Once the network was implemented, it was expensive to rewire it as the computational need
of the user changed.

3) The proprietary nature of the networks precluded incorporation of new networking
technology.

To ameliorate this problem HP has adopted the International Standards Organization (ISO) Open Systems
Interconnect (OSI) model which allowed customers to get the benefit from their network. In contrast IBM
adopted its System Network Architecture (SNA), a closed architecture which obsoleted its older BSC
network.

This paper outlines a method of designing computer networks based on the ISO OSI model. It explains the
ISO model and develops criteria for selecting different hardware and software components from the model
to implement an efficient, flexible, and cost effective network based on computational and data traffic
needs. The paper shows how a network designed with such principles can allow heterogeneous
communications, changes in topology, and upgrading to newer technologies.

1.2 Organization of Paper

This paper addesses the need for developing networks which provide the benefits stated above. Section one
briefly explains the International Standard Organization Open Systems Interconnect model. Section two
examines the architecture of the OSI model, and the benefits of layering in providing modularity, and
expandability. In section three the advantages of using standard communication protocols are explained,
and this is expanded in section four which develops a model for selecting different communications
protocols. Sections five and six sum up with a case study of networking a multinational company, and a
summary of the paper.

.___o_p_e_n_s_y_s_t_e_m_s_1_n_te_r_c_o_n_n_e_c_t_M_o_d_e_1 __ ___.I~
With the advent of mini and personal computers, came lower prices and the proliferation of computers.
These computers were distributed in many sites, and a need arose to connect the computers together. The
International Standards Organization (ISO) developed the Open Systems Interconnect (OSI) model for
connecting computers to provide four services. They are:

• Share information. Computer networks allows companies to share and distribute information
over the entire company, even if the company is geographically dispersed

• High Reliability. Computer networks allow higher reliability by providing back up data and
processing power. If a disc drive or processor fails others are available to allow computation.

• Load Sharing. Computer networks allow computation to occur at the site of the data, thus
allowing only pertinent transactions to be transmitted, and lowering communications cost.

• Communications Network. Computer networks allow electronic mail between members of the
company.

This section examines the International System Organization (ISO) Open Systems Interconnect (OSI) model
for implementing computer networks which provide the above mentioned functionality. The objectives of
the layered model, and the functions of each layer are explained.

2.1 OSI Model

The ISO committee designed the OSI model in seven layers. With each layer the committee intended :

• Clearly defined layers.

• Each layer has a specific distinct task.

• Modularity in decomposing the network.

The OSI model above has seven layers. Each layer communicates with the layer above and below The
functions of the layers are:

• H~.!'..J.!..Tit~f!IJ:'.!lktl.1..a~. The bottom layer is the physical layer which transmits raw bits
over a communications channel. The layer defines the medium, the voltage, the length of
electrical signal. The layer defines mechanical, electrical, and procedural interfaces.

• H~Ll!_IM_p_],!!__!.ln!L!:.uer. The data link interprets the signals transmitted on the
physical link, and ensures accurate transmission and receipt of data through error correction
or retransmission. For instance a noise burst can destroy data. The data link protocol requests
retransmission and acknowledges the data received.

19

20

Open System Interconnect Model

Application protocol ---------------------------
Prnentetion protocol

8

N1meof unit

~----••ch111ged
Application

lnterf.ce

5

4

3

2

Host A

1

Seaion protocol

Tronoport protocOI

Communic1tion wbnet bound1ry

Network h-1 Network f-
lntern1I tubnet protocol

-1 D1t1 link µ 1 Oita link

Phylicol

Network loyor hoot •

Doti link loyor host

Physical i.vor hoot

PhyliCll

OSI Model

r
Pocket

Physic1I Bit

Host B

• !@.~.L.L.TitJ;.l'.!tl~!.l<_!,~er. The network layer controls the routing of data. It accepts the
data from a source converts them into packets and directs them to the right destination.

• !@.~.Li..I~_I~~i:!...Y~L. The transport layer accepts data from the session layer and
ensures the data arrives at the destination in the correct sequence. This is specially important
in a host computer which establishes multiple sessions with other computers.

• !@.~.LLTh.!e..~~Q!!.l&):'er. The session layer provides the user an interface into the network.
It establishes a connection between a user on one computer with a user or service on another
computer. This connection is known as the session. The session layer handles authentication,
and communication protocols employed in the lower layers.

Open System Interconnect Model

• ~.l:'.!lL~~~~~.!i.Q!L!-.!J.er. The presentation layer presents the data transfered by the
network in an understandable format. This is specially important when the two computers
involved employ different internal data representations (eg 7 bit and 8 bit characters). The
layers also handle data compression and encryption for speed and security.

• ~.l:'.!lLL.I.~~.P.Pli.c~JQ!L~m The application layer defines the topmost layer of the OSI
model. This layer is defined by the users of the computers. The actual format of the layers
depend on the application of the network, and the people implementing them. For instance,
electronic mail may use message passing, while distributed data bases may use remote data
base access, and distributed processing may use inter-process communication.

This layering allows building of modular networks, which the user can modify easily to adapt to new
computational needs and technology.

21

22

Advantage of Layering

3.1 Modularity

Since the layers in the OSI model pass well defined messages to the ones above and below, the OSI model
allows for modular decomposition of computer network commnunications. This modular decomposability
allows for individual, or group, of layers to be replaced easily by other layers providing the same
functionality of the layers replaced. This ability to replace layers makes changing of network topology,
communications protocol, and technology with minimum effect to other parts of the network and the
computer system. This section describes how modification of networks can be effected.

3.2 Changing Your Network

Firstly, modularity is useful in changing computer networks. For instance, suppose a user connects two
computer system using point to point synchronous connection on HDLC protocol. This line communicates
at 56KBPS, and adequately supports the communications need for the customer. As the users
computational needs grow, he purchases another computer and connects this to one of the other computers
This creates a problem since the user has to use one of his computers as an intermediate node between the
other two. This puts an extra communication burden on the intermediate computer. This is further
complicated because the users' communication needs increase.

To resolve this problem, the user switches from a point to point network to a 802. 3 local area network.
With this the user replaces the binary sychronous cable with a coaxial cable, and the HDLC protocol with
the 8 0 2. 3 protocol.

3.3 Expanding the Network

Let us examine the case if the customer needs to expand his network. Suppose the user wishes to add a
computer to another site at a different location. The user then needs to exchange data between his
current computer facility and the new computer facility. The user can designate a computer at each site
to act as a communications gateway and use an dial up line to connect the two computer sites on an "as
required" basis.

To connect these two sites the user adds lower level HDLC communication protocol over a twisted pair.
This protocol works in conjunction with the existing upper layers or networking software, allowing the
user to utilize existing network software over both the local area and the wide area network. In this
manner, from the user's point of view, the local and the wide area computers !eside on the same network,
the only difference being the speed of the line.

Advantage of Layering

3.4 Adopting New Technology

While the above examples illustrate addition, modification and substitution of the lower layers of the
network, network users can modify other layer with a similar approach. The user can expand this
approach to encompass new network technologies. For instance if the computer user decides to adopt a
mail network based on X. 400, he can simply pass messages through the existing lower six layers to
implement a new mail system. Similarly if the user increases his data traffic between his remote computer
sites, and a new technology, such as optical fiber, offers him a higher data throughput, he can replace his
twisted pair copper line with an optical fiber line.

3.5 Advantages of Layering

Thus a layered networking protocol provides a number of advantages:

I) Easy modification of network to suit actual data communications needs. Since the network is
layered, each layer can be replaced without major impact to the other layers.

2) Easy addition to exiting network to expand coverage. Additional links or services can be
added to the exiting network, thus providing more functionality when it is needed.

3) Easy incorporation of new networking technology. As new software and hardware
technologies become available, they can be added to the network without losing the existing
investment in the network.

4) Protection of investment. Because the network can be modified incrementally, existing
investment in software and hardware need not be scrapped to either change the network, or
adopt newer technology. This reduction of switching cost ensures networks can be cost
effectively developed for customer needs.

23

24

.__'"_t_e_rn_a_t_io_n_ai_s_t_a_n_da_r_d_s~~~~~~__.I~~
Once the user adopts the OSI layered communication protocol for networking, the user needs to decide
which specific protocol to implement. Many vendors offer their own protocol; some of the vendors
implement an OSI like layered communication protocol for their network. This approach allows users to
connect, to a large degree, computers manufactured by the same computer vendor. However, many users
apply computerr manufactured by different computer vendor for different task. if the user should wish to
connect these j;Omputers from multiple vendors in a homogeneous information management system, he
will often find the different vendors do not provide the ability to connect to computers manufactured by
another vendor. The user then is left to his own resources to pass information between these various
computers.

4.1 Advantage of Standards

Adopting networking standards relieves this problem in three way, firstly, through a standard set of
protocols, computers manufactured by different vendors can communicate with each other. Secondly,
economies of scale ensure cheaper and more reliable networks, and thirdly, international standards tend to
exist longer than single vendor protocol, and thereby offer protection to the users investment.

4.2 Mulltlvendor Connectivity

Adoption of international standards for all communication provides the user with one immediate benefit
- computers purchased from different vendors can communicate using the same protocol. While a vendor
proprietary protocol may allow more efficient communication between some of the machines of a given
vendor, communications between different vendors, and even different product lines of the same vendor
(IBM series 36 and Series 3 8) are more difficult. Adoption of internationally agreed upon protocol
standards (such as GM's MAP) allow users with more connectivity between heterogeneous computers.

4.3 Product Longevity

Another benefit of adopting standard communication protocol is that, the communication protocol tends
to exist longer than a protocol supported by one vendor. This is because typically many vendors will
support an international standard, and products communicating via the protocol will exist for a time
longer than products supported by a single vendor. This is important from a user's financial point of view,
as he can purchase communication products to supporting his existing application programs for a longer
time than application products using vendor proprietary products.

4.4 Lower Cost

Because multiple vendors support international standards, products supportmg these standard protocob are
developed•y a relatively large group of companies. This results in competition between the suppliers and
a lower cost product for the user. Also, because standard communication protocols are supported by

International Standards

multiple vendors, the number of products available increases, the number of units in use increases,
resulting in more variety and lower cost due to economies of scale.

4.5 Tradeoff for Standards

While following a standard provides many benefits for the computer user, typically the standard lag the
leading edge technology by a few years. This implies that customers needing to use the latest technology
cannot be guaranteed of an international standard with the above mentioned benefits. For instance, fiber
optic communication has no established protocol which looks like becoming an international standard.

Similarly, if a user wishes to provide the fastest communication between two specific systems, he may wish
to bypass a standard protocol and develop a protocol which he can fine tune to provide the best
performance for his specific application.

The user has to evaluate whether these advantages outweigh the benefits of standardization and low cost.
In systems like real time fire control on military aircraft, the user may indeed decide a high performance
proprietary protocol provides the technological edge to ensure survival of the aircraft. However, the user
should realize, that developing proprietary protocol will be more expensive and more time consuming than
using standard protocol. In the majority of the cases the user will opt for standard protocols.

25

26

._ ____ ~l~s· ~eking A Standard -~

Once the user commits to the OSI model for his computer communication, the question of what standards
to use for his application arises. HP aggregates the OSI model into three layers, and picks standard based
on these three layer. This makes choosing standards much simpler with three layers, and the network does
not lose much flexibility.

Starting from the bottom the layers are the link, incorporating layers 1 and 2 of the OSI model, the
transport, incorporating layers three and four of the OSI model, and the application incorporating layers 5
through 7 of the OSI model.

5.1 Linking the Systems

To establish the computer network, the user must first connect the two systems together. This is the link
between the computer systems. It incorporates the lower two level of the OSI model. The user needs to
ask himself a number of questions -vhen deciding the type of link over which he will connect his
computers.

I) Where does he plan to place his computers. The geography of his computer network
determines some of the options he has for connecting his computers. If all his computers are
in the same building within I. 5 KM of each other, he can use IEEE 802. 3 local area network.
If they are in separate nearby building he can use IEEE 802. 4 broadband LAN. The user can
also use point to point connections, phone switches, and X. 2 5 based data switches for local
connections. If distances are larger telephone lines, leased lines, public X. 2 5 networks, and
satellites may provide the appropriate connections.

2) What are the performance requirements of the network. In other words what applications
does the user expect to run over the network. If the applications require high data transfer,
LANS would be appropriate for local connection, and fiber optic and satellite for remote
connection. If the user expects rapid response, a satellite connection would cause too much
delay.

3) How many systems does the user intend to connect in the network. If the user intends to
connect few systems, point to point connections may be the most effective method of
connecting the systems. If he wishes to connect many systems, LANs, X. 25 switches, and PBX
switches (for local connections) may be necessary. LANs, X. 25, and PBX switches allow
multiple systems to coexist on the same network.

4) Price. How much is the user willing to pay for the network. The higher the performance and
functionality, typically, the higher the price.

The user needs to carefully analyze his current and future data communications requirements to develop
cost effective connections between his computer systems using the above mentioned guidelines.

Picking A Standard

5.2 Transporting the Data

After the user establishes a connection between his computer systems, he needs to transport his data
between the systems so that the receiving computer can meaningfully interpret the data sent by the
transmitting computer.

Luckily the choices here are less. The user needs to determine reliability of the link he has chosen and
adopt a transport protocol which provides the most throughput. For instance an 802. 3 LAN provides
more reliable data than a disc drive. Unfortunately there is only one major standard available today -
Transport Control Protocol/Internet Protocol (TCP/IP). TCP/IP was designed for relatively unreliable
communications links, and thus provides much higher error checking and correction than is necessary with
some of the modern links.

However, many vendors have adopted TCP/IP and it is key in connecting multi-vendor computer. Thus
till a better standard is designed by ISO (eg TP4), TCP /IP is the transport protocol of choice.

5.3 Network Applications

After the user develops a method for transferring data reliably from one computer to another, the next
task is to pick a set of applications which provide high degree of functionality. This layer covers layers 5,
6 and 7 of the OSI model. This layer provides the functionality of communicating between the computer
systems. Functions provided include:

• Inter Process Communication

• Network File Transfer

• Remote Terminal Capability

• Remote Process Management

• Remote Data Base Access

• Network Management

Many implementations of the application layer offer variations of these services. This layer is offered
both in vendor developed packages, and in packages based on internationally developed standards. In
picking the set of protocols in this layer the user has to keep two thing is mind:

I) Are the protocol based on ISO. That is can the protocols communicate using layers 1-4 of
standard international protocols such as TCP/IP X. 25, 802. 3 etc. If this is not true then the
protocols cannot provide communications between multiple vendors. If the protocol is based
on international standard, the user can either buy implementations of the protocols on
different vendors or, in the case of computer vendor developed protocols, implement these
protocols on machines of another vendor.

2) Do these protocols allow modular decomposition. In other works can these protocols allow
applications developed on one machine to be distributed over multiple machines. Global
address spaces and interprocess communication protocols allow for this expansion capability.
Inter-process communication tends to be easier to implement than global address spaces. With

27

28

Picking A Standard

IPC, the user can develop his application program in modules. As the user needs more
computation power, he can easily move modules to other computers on the same network, and
thereby increase his computational capability by utilizing multiple processors.

A number of international protocols are being developed for different application. They include the MAP
protocol for manufacturing environment, the TOP protocol for the engineering environment, and the
X. 400 protocol for the electronic mail environment. In addition vendors such as HP, DEC have developed
application protocols based on the OSI model.

._____ ____ __,1~61 ~signing a System -~

The previous sections described the OSI model, the advantanges of designing a network based on this
model, and some guidelines for. selecting layers of these models. This section integrates the previous
sections by applying the principles developed before to a hypothetical company which needs distributed
computation. The section describes the company's computational needs, its geography, and then designs a
network to serve the company

6.1 Company Computing Need

Let us assume we are dealing with a company named ABC. ABC designs, manufactures and sells
state-of-the-art widgits. To operate efficiently ABC divides its operations into four functional area,
Engineering, Manufacturing, Marketing and Sales, and Administration. Below are described the operations
and computational needs of each functional area.

• ~l\i!~~IB&:. The engineering organization designs the widgits with powerful Computer Aided
Design (CAD) workstations. These engineers need to share design between themselves to
efficiently design the widgits. They also need access to expensive plotters and disc drives to
plot and store the designs. The engineers also need input from the marketing organization for
new designs. They also would like to send the designs to the manufacturing operation quickly
so that designs can be manufactured and sold before the competition's widgits.

• Ml!!!l!f!!&!l!ti!i..&:. To keep costs down ABC company manufactures its widgits in a totally
automated factory. The orders are received from the sales force to a materials management
computer. This computer automatically plans production based on demand, and orders raw
materials and manages inventory. The orders are passed on to factory floor computers which
run the production process. Typically one production line is operated by multiple computers.
These computers build products based on designs sent to them by the CAD computers in the
engineering operation.

• Ml!!.~llit.&..!!IJ!.~les. Marketing and sales are two different functions in ABC's marketing
organization. The marketing organization performs traditional marketing function of
merchandising, forecasting, and product management. To accomplish this efficiently ABC has
provided its marketing staff with personal computers which support forecasting, data base
management, word processing and graphics. The marketing staff shares common data among
its staff. The sales organization was provided with portable computers. The sales force
determines price quotes with these computers and enters orders to the factory by these
computers.

• !!.4ID.ffiru.!],tion ABC employs a relatively small administrative staff. Their main functions
consists of accounting, personnel, and report generation. They use a minicomputer, and. need
data from all other operations on revenues, expenses, personnel, and capital outlays.

29

30

Designing a System

Network File Transfer. This function is needed to transfer files and share information
between users on different computers.

• Remote Data Base Access. This function provides access to data on remote computers.

• Virtual Terminal. This allows users of one system to initiate sessions on a remote computer.

6.3.2 Transport Protocol

The standard industry transport protocol is TCP /IP. Company ABC picks TCP /IP since this allows them
the most flexibility in choosing the upper level application software, and lower level network link.

6.3.3 Link Technology

ABC needs a number of communication links. Each of these links is for a different communication need.

• Broadband LAN. The manufacturing environment needs a deterministic real time network
which allows high speed communication between production line computers. for this purpose
a broad band 802. 4 LAN is appropriate. This LAN is extended to connect the manufacturing
planning computer to the production computers. The 802. 4 LAN also reaches the next
building where the CAD computer reside. It connects to the engineering computer network
via a gateway.

• Baseband LAN. For the engineering CAD stations a 802. 3 baseband LAN provides the same
high performance at a lower price than the broadband LAN. The workstations connect over
this I 0 MBPS LAN to each other and a dedicated server which supports high speed disc drives,
printers, and plotters.

• Work Group Thin Lan. For the marketing organization, a local high speed network is
necessary. The network implemented by ABC supports workgroups of four to six people. The
network uses a small minicomputer which double as a file, print, and plot server. Eighty per
cent of group communication is among themselves. Twenty per cent is to other group. To
accomplish this ABC employs two LANs. The first is for the group. It is a thin 802. 3 based
I 0 MBPS coaxial cable to connect the workgroup to each other. Each work group LAN in
turn connects to a campus wide thick 802. 3 coaxial cable. This backbone coaxial cable allows
the different groups to communicate among themselves.

• PBX. The minicomputer supporting the administrative staff also connects to the backbone
computer. The administrative group supports a large number of terminals. These terminals
connect to the mini computer via a telephone switch. The switch allows support of a large
number of terminal which all do not need to connect to the CPU at the same time.

• X. 25. The sales offices around the continent are connected to head quarters via a public X. 25
network. The X. 25 network allows flexible configuration, and a demand based network. ABC
is charged for actual data transfer between its remote computer systems.

• Point to Point Connection. The two main sites of ABC (marketing & administration and
engineering & manufacturing) transmit large amounts of data to each other. For this purpose,
ABC uses a direct telephone line.

Designing a System

6.2 Company Geography

ABC is arranged in three groups. The Engineering organization and manufacturing organization are
situated in adjacent buildings in one locations. Marketing and administration are located in another two
adjacent buildings in another city, and the sales offices are spread all over the continent.

• fut.&!rueirrill.&3.!!.<!..M!-.illll.a.f!Qrin&. ABC's engineering and manufacturing facilities are located
in an adjacent building. The engineers each have design workstations, and share a number of
high speed disk drives, printers, and plotters. The manufacturing floor is organized around
production lines. Each line is controlled by computers operating a number of PLCs. The
production line computers themselves are scheduled by a production planning computer.

• M!!!.kfutK..!ill!!..M.mill~~lli?!!.c· The Marketing and administration groups are situated in one
building. The marketing organization is grouped into 4 to 6 man units. Each person in the
unit works on PC and needs to share his information with others in his workgroup.
Occasionally a person in one group needs to share information with people in other groups.
The administrative organization employs a central computer to manage corporate wide data
bases. The people in administrative organization use intelligent terminals to establish sessions
on the computer. The computer is maintained in a central computer room.

• ~~_Q_ffice. ABCs sales offices are scattered all over the continent. Each sales office has a
small computer with a group of PCs. The main function of the computers is to generate
quotes, log orders, and keep track of customers. The sales office receives new parts lists every
week, and transmits orders every hour on an as-needed basis.

6.3 Picking The Network

Given ABC's computational needs, communications traffic, and geography, the next task is to pick the
application software, the transport protocol, the connection technology. The application software is
determined by the functionality required from the network, the transport is determined by performance
and error recovery concerns, and link technology is determined by the geography of the systems.

6.3.1 Application Software

ABC needs to perform a number of functions over the network. In the engineering environment it needs
to pass files between the engineers and access data bases remotely. In the manufacturing environment the
different computers need to pass information to each other in real time to inform the other computers on
process control. In the marketing organization, the PC users need terminal access to the mini computers,
and file transfer capability. The sales office needs batch file transfer capability, to HQ to receive updates
and send orders. All functional groups need a mail capability to pass messages. Below are a list of
standard protocols and services ABC implemented on its network.

• MAP. For the manufacturing operation the protocol to follow the Manufacturing
Automation Protocol (MAP) being developed. This protocol is being developed for real time
computer networks on the factory floor. This provides remote terminal and file transfer
capability.

• X. 400. For the corporate wide mail network, X. 400 is the networking protocol being
developed by the CCITT for electronic mail. This packages the messages from any computer
and routes it to another computer.

31

32

. _____ ___.1~71 ~mmary _L!._J

From the study of ABC corporation we saw how a company wide network can be designed using the ISO
OSI model. The different parts of the organization need different communications capability. This is done
by using the layered architecture and employing a multitude networking products based on the OSI
model. This allows ABC to:

• Share information between users.

• Provide higher reliability of information available.

• Share information between different computers.

• Communicate via electronic mail

The OSI structure ensures the ABC has the capability to:

• Connect computers from multiple vendors.

• Design a flexible network with multiple technologies.

• Upgrade and modify the network easily.

• Protect ABCs investment in the computer network.

7.1 Biography

The author, Hassan Alam, has been with HP for two years. He is a network specialist for HP's
international region. He has had work experience designing WANG's 1/0 system, and managing ROLM's
military computer products. Hassan Alam holds a Bachelor's degree in computer science, a Bachelor's
degree in Electrical Engineering from the Massachusetts Institute of Technology, and an MBA from
Stanford University.

X.25: WHAT TO DO AFTER THE NETWORK IS IN PLACE

Stephen J. Coya
MCI Digital Information Services, Washington, D.C., USA

Summary

Many organizations are discovering the advantages of using X.25 packet
switching networks to support their data communication requirements.
However, it's not until the network is installed that the real "fun"
begins: connecting all the hosts and getting them to talk to each other.
This is especially true when hosts from different vendors are to be
connected to the network. While the OSI model provides a good theoretical
framework, many vendors have implemented this model in different ways. As
a result, diverse, and sometimes incompatible, protocols must be
accommodated and coerced into cooperation before they can communicate.

This paper will review the problems (and solutions) encountered
connecting HP3000s, HPlOOOs, and DEC VAX ll/785s together over a
nationwide private X.25 network. It will touch on the physical connections
to the packet switch (OSI Level 1), a special Transport Layer protocol
that had to be developed (OSI Level 4), and some of the problems
encountered with DSN/DS (combination of OSI Levels 3 and 4) and what we
had to do to make it all work.

Introduction

We knew from the start it would be interesting. Many companies have
made the transition to X.25 networks with relative ease, but this can
often be traced to systems where only one vendor host is involved. For
example, a network consisting of HP3000s and the selection of a network
switch vendor that supports such an environment. The MCI Mail system, an
electronic mail system with hardcopy support, was designed around the use
of VAX hosts for the mail application and HP3000s to process and print
hardcopy traffic on 2680A Laser printers, and we knew the hosts would be
connected to the network switches (PSNs) at 56 kilobits per second (kbps).
We drew network (cloud) and system diagrams, examined technical
specifications for the hosts and the switches, realized what could and
could not work, and reached for the bottle of aspirin~

I should mention that there were time constraints involved that did
not permit extensive experimentation or research, and the capabilities
that exist on today's equipment did not exist three years ago. The system,
designed in the latter part of 1982 was built in six months during 1983.
Even after details were worked out in joint design meetings, special plugs
and cables had to be developed on the fly as we tried to meet our target
date, which we did.

35

Transport Layer (OSI Level 4)

The first "Gotcha" was getting information from the VAX hosts to the
HP3000s. All VAX hosts were located in a central facility while the HP3000
based print sites were set up across the country. Tape transfers were out
of the question, and the old standby, RJE, did not fit the overall system
design. When DSN/DS was initially developed, it was for point to point
communications between HP equipment. It was expanded to support X.25
interfaces, but still required the use of DS as a transport layer
protocol. So one still had to use DS to transfer files to an HP3000. Well,
DS was never implemented on VAX equipment, and we needed something that
would talk straight X.25 with the VAXen and DS with the HP3000s. Enter the
HPlOOO.

The HPlOOO was inserted into the network diagrams between the VAX
hosts and the HP3000s (we also started using pencils instead of pens to
draw the diagrams). We used two LAPB modem cards and two physical
connections to the packet network. one modem card was set up to use
straight X.25 (DSN/X.25) to communicate with the VAX hosts. The second
card was configured to use DS (DSN/1000-IV) to communicate with the
HP3000s. Simple? Not quite. While the HPlOOO could use DS to communicate
with the HP3000, there was no transport layer protocol to communicate with
the VAX.

The solution was to design a Simple File Transfer Protocol (SFTP) to
accommodate the need for a transport layer. This protocol was implemented
on the VAX equipment and on the HPlOOOs. As its name implies, it is a
simple protocol: no CRCs, just simple checksumming and byte counts. It was
also implemented on an IBM 4341 which was connected to the network and
served the application as the accounting and invoicing host.

so, we had finally identified the host equipment that would be
connected to the packet network and had designed a protocol that would
provide the OSI level 4 Transport Level between the VAX and HPlOOO
equipment. Back we go to the basics, OSI Level 1, and connect the
equipment to the packet switches.

Physical Layer (OSI Level 1)

OSI Level 1 pertains to physical connections, which pins are used for
what signals, and the electrical levels of those signals. Unfortunately,
there are a number of different standards that have been recommended and
implemented: RS232c, RS449/RS422, and V.35 were the ones we had to work
with (See figure on last page).

The packet switch nodes (PSN) supported RS449 physical connections.
The switches did not supply a clocking signal, and the hosts were to be
connected directly to the PSNs (no modems) at 56 kbps. I mention clocking
because at that time neither the HPlOOO, HP3000, or the VAX could supply
clocking at 56 kbps (if they could we didn't know about it). So we had to
connect three different hosts that support three different interfaces to a
packet switch that supported only one of the three.

The HPlOOO was the easiest as it uses RS449 as a physical interface.
All we had to do was insert a RS449 synchronous Modem Eliminator (SME)
between the HPlOOO and the PSN to provide clocking at 56 kbps. Since then,
we have been successful in operating without an SME as the HPlOOO will now
supply the clocking signal.

36

The HP3000, however, uses V.35 as its physical interface. To establish
this connection, a V.35 cable from the INP is used which terminates in a
Winchester type connector. The next link is a cable which terminates on
one end with a Winchester connector (connected to the HP3000 INP cable),
and on the other end with a DB-37 connector. The DB-37 connector is wired
to conform to the RS449 specification, the electrical characteristics of
which conform to RS422 (RS422 is the electrical specification for signals
carried on an RS449 interface). The DB-37 connector is then plugged into a
SME. From the SME comes a cable to a special V.35/RS422 convertor that is
plugged directly into the HP3000's port on the PSN. Two down, one to go.

The VAX supports RS232 connections, which is rated at 19.2 kbps up to
75 feet. However, the interface from the VAX to the packet switch goes
through a KMSll processor which has a rated speed of 56 kbps. A shielded
cable is used to connect the KMSll to a RS232/RS449 SME which is then
connected to the packet switch.

So we now have all the hosts connected to the network, transport
layers are in place, and we can transfer files where they need to go. All
done? Not yet - the system must be operated and strange things can happen!

To Flush or not

Our network supports data packets of up to 1024 bytes in length. When
data is to be transmitted from the HP3000 over the packet network, the DS
protocol sets up a buffer containing four 1024 byte packets. The packets
are sent one at a time to the local packet switch which acknowledges
receipt of each packet. After the fourth packet is transmitted and the
local PSN acknowledges receipt, the buffer is flushed and the next group
of 1024 byte packets are placed in the buffer. This looks acceptable on
paper, but in practice caused some problems.

As the packets traveled through the network on their way to the
destination PSN (the switch connected to the host to receive and process
the data from the HP3000; in this case, another HP3000), a network problem
caused a RESET to be generated by a packet switch. This RESET packet is
returned through the network to the originating HP3000, essentially
stating that something bad happened and requesting that the packet be
retransmitted. If the reset is received by the HP3000 before the fourth
packet has been acknowledged, the packet is located in the buffer and
retransmitted.

However, if the reset is received after the fourth packet has been
acknowledged, the buffer has been flushed and the packet is not available
to be retransmitted. When this happens, DS just sits there wondering what
to do. Recovery from this state required bringing down the DS connection,
bringing it back up, and starting the transmission all over again.

The problem was reported to HP, and our SE captured numerous dumps to
substantiate our claim, especially after HP informed us that 1) they
couldn't reproduce it and 2) the local PSN had acknowledged receipt of the
fo~rth packet, so it was a network problem, not an HP problem. That they
couldn't reproduce it was understandable; they'd need to replicate our
system switches, configuration, traffic patterns, line speeds, etc. Their
second claim was a little hard to live with as it wasn't a •network"
problem, but a SYSTEM problem. HP's position was understandable albeit
cavalier. By the way, the occurrence of a RESET packet is part of the CCITT
X.25 recommendations.

37

The solution? You won't believe it. We received a DS patch from HP
that essentially said •If network=Ol (BBN), don't flush the buffer until
acknowledgment received from destination PSN."

Error Checking and DS

As I mentioned earlier, DS was written originally as a point-to-point
transport agent for the HP3000s. It was later modified to support X.25
connections as a short term solution until a better defined interface was
developed. It should be noted that error checking in DS is only done at
the packet level (not message level) with the local PSN.

Lets step back a moment and look at what a packet switch is: a
computer. It's a special purpose computer, but a computer none the less.
And what makes a computer work? Software. A packet switch contains an
operating system, tables, microcode, routing'algorithms, etc. Guess what
happened when we upgraded the switch hardware and installed a new version
of the PSN software designed to run only on the upgraded software.

The new equipment and software was tested for some time in a test
mini-network we maintain that replicates our operational system, and we
verified its functionality, ne~ capabilities, and features. Unfortunately,
there's one thing that cannot be tested in our mini-network: LOAD. The new
hardware was installed throughout our network and the new software was
propagated over some period of time. Two weeks after full propagation we
got burned~

There was an obscure bug in the PSN software release that caused an
•overlay• of data, overwriting the data contents of a packet in the memory
of the PSN. The PSN then calculated the checksum and sent it on through
the network. The "bad" data was not noticed by the HP3000. when received,
since error checking is done on a packet level and the checksum for the
packet was ok (as it was not calculated until after the overlay), and it
was accepted. The "clobbered" message was printed and no error was
encountered ••• but there was an error in the message, one that got through
the network unnoticed by any of the software:

The PSN software was backed out and is only now being repropagated as
the cause of the problem has been identified and corrected. I mention this
here because there IS a deficiency (or hole) with DS and X.25 networks in
that these errors are not discovered. What is needed is an end-to-end
protocol that can be implemented on both the originator and receiver of
the message so that error checking may be done on the message level
itself, not just at the packet level which we now see is inadequate. But
there is hope.

NS/3000

The latest release of communication software from HP will include,
among other features, straight X.25 support; decoupling the requirement of
DS as the transport layer protocol, though it will still be available and
probably widely used, As an alternative to DS, NS/3000 will support the
TCP/IP protocol which includes an end-to-end (host-to-host) checksumming
algorithm that can be turned on and off. This is message level checking,
not packet level, and data errors cari be identified and recovered from by
the software.

38

As TCP/IP has been implemented on VAX equipment (The Wollongong
Group), it is feasible to use this protocol to permit VAXen and HP3000s to
communicate directly with each other without the HPlOOO being in the loop.
However, there are costs involved that must be considered before we make
the decision.

In our application, removing the HPlOOOs from the communication path
would eliminate a central focal point for real time monitoring and
controlling of the hardcopy system. On the other side of the coin, it
would remove a potential bottleneck as 24 VAXen now communicate with 20
HP3000s through three HPlOOOs.

The network impact of removing HPlOOOs must also be considered as this
would dramatically alter the flow of data over the packet switched network
as all VAXen and HP3000s would communicate over virtual circuits,
increasing the traffic and complexity of the network environment. A number
of network topology studies would have to be conducted to anticipate the
changes to the network, design host redeployment strategies, and determine
the network modifications required to accommodate these changes.

Another hurdle is that DEC has not officially •sanctioned" the
Wollongong Group implementation of TCP/IP. Indeed, DEC would prefer your
using DECNET in an all VAX environment, just as HP would prefer you using
DS in an all HP3000 environment. All this really means is that DEC is not
actively marketing TCP/IP, and users must ask about it specifically. Just
remember, user needs always outweigh vendor desires, especially since it
is the user doing the buying.

And finally, the benefits of implementing TCP/IP must be compared to
the costs. Error detection and recovery handling adds to the processing
requirements, which is one reason HP will permit this function to be
turned on and off (I do not know if the VAX implementation includes this
option or not). If the network and transport protocols are solid and the
encountered error rate is sufficiently low or within acceptable levels
within the current environment, the benefits of introducing end-to-end
error checking may not offset the costs incurred in modifying the system
to support the protocol. If data integrity is critical and there is a
history of damaged or incomplete messages/file transfers, the benefits may
outweigh the costs of implementation.

conclusion

In this paper, I have attempted to provide a little insight (and
humor) to the difficulties of bringing up a multi-vendor system on a
packet switching network: that there is more to do than wait for the
network to be installed before you just plug in the hosts. I included a
couple of "horror• stories to illustrate that the job isn't done when
everything has been connected and initial communication tests completed,
but that it is an on-going effort to operate, improve, and even upgrade
the system to support current and future requirements.

MCI believes in open architectures and makes no secret as to how the
MCI Mail system is implemented. In fact, a more detailed description of
our application and the network was the topic of another paper delivered
at the Madrid INTEREX conference. I have limited the length of this paper
and presentation so that there will be enough time to answer any questions
that might be raised, or to discuss other related topics: including the
experiences or plans of other organizations that might be building a
system from scratch as we did, or who might be planning a transition to a
X.25 network based system.

39

Biograph'y

Steve Coya has been with MCI Digital Information Services for the past
three years. He is the Senior Project Manager for MCI Mail Hardcopy
Systems Development, and is also responsible for the overall planning and
scheduling of system integration tests and for managing and coordinating
the implementation of new software releases into the operational
environment.

40

~

RS232
RS232/RS449

VAX IKM511 I SME

~N
RS449

DSN/X.25

Lf
I SME

HP1000 RS449
I RS449

DSN/1000-IV LI I SME
PSN

DB-37

I HP3000 i 1N•I V.'5 I 1 ·:.:~· I A PSN I
t V.35/RS422

Winchester
Connectors

Physical Connections to the PSN

Convert or

.....,.,

Stephen J. Coya

THE ANATOMY OF AN X.25 BASED EMS APPLICATION
(AND HOW WE PRINT THE MAIL)

MCI Digital Information Services, Washington, D.C., USA

summary

This presentation describes the architecture of a multi-vendor
electronic mail system (MCI Mail), concentrating on the innovative
Hardcopy Distribution System supported by HPlOOOs and HP3000s with 2680A
Laser Printers. The basic system consists of six Digital Equipment
corporation (DEC) VAX clusters and three HPlOOOs located in a central
facility, and a number of HP3000 based print sites located across the
United States and Europe. The components of this system are connected by a
private Bolt Beranek and Newman (BBN) X.25 packet switching network which
uses a combination of 9.6 and 56 kbps lines, largely derived from the MCI
Telecommunications Transmission System. There are three operational
centers, one of which monitors and controls the hardcopy system
exclusively.

This paper will include an overview of the network components and
system architecture, but will focus on the transmission and processing of
hardcopy bound mail. It will also describe our implementation of a
Graphics Design Center which supports the use of letterhead and signature
graphics, and will touch on our plans to provide a communications path to
support print sites located on foreign public data networks. The scope of
this paper does not provide for a detailed description of each and every
feature or capability of the electronic mail system.

This paper is divided into four sections covering the Packet Network,
the Electronic Mail System, the Hardcopy Distribution System, and the
support of "Off-Net" Print Sites. To facilitate the presentation, a
"simple" network configuration diagram is presented in Figure 1.

The Packet Network

The packet switching network is made up of five major components:
Packet switch Nodes, PADs, the Network Authentication Server, the server
Maintenance system, and the Network Operations Center. The switching
subsystem is made up of packet switch nodes (PSNs) which are
interconnected via MCI long-haul microwave or optical fiber trunks
operating at 9.6 or 56 kilobits per second.

Packet Switch Nodes

There are over 50 packet switches in our network, each of which can
support up to 30 host connections and 14 trunk lines, the total of which
is constrained to 44 or less. Each PSN can support a throughput rate of
approximately 300 packets per second, counting one-for a packet which
enters and leaves the PSN. The network interfaces to service hosts and
PADs by way of the CCITT X.25 protocol, and utilizes the balanced Link
Access Protocol (LAPB) version of CCITT standard High Data Level Link
control protocol (HDLC). Data rates up to 56 kilobits per second are
supported for host and PAD access to the PSN.

43

:t

Dow
Jones,.. \.
Host

Figure 1: "Simple" Network Diagram

In addition to the link level reliability provided between hosts and
PSNs, the inter-PSN protocols in the network permit adaptive alternate
routing in the event of network congestion, line or node failure. These
features preserve end-to-end virtual circuits even when intermediate nodes
or lines fail.

Packet Assembler/Disassembler (PAD)

The next component of the packet network is the PAD. This device
supports external access to the electronic mail system from dial-up and
hard-wired terminals, Personal Computers, Word Processors with
asynchronous dial-up support, Telex devices which use Direct Distance
Dialing, and other asynchronous access devices. There are approximately 60
PADs in the network, each of which support up to 64 devices operating at
speeds up to 19.2 kbps. Our system currently supports 110-1200 baud
asynchronous dial-up, and special hard-wired services at 4800 baud. For
our Document Processing service, special provision for the support of word
processors operating bisynchronously at 2400 baud is also provided.

Two special PAD variants, the Gateway PAD and Telex Switch PAD,
provide special purpose interfacing to domestic and international public
packet switch users, the Dow Jones News/Retrieval Service, and the Telex
user community.

Network Authentication Server

Access to the electronic mail system is controlled by a special
processor called the Network Authentication Server (NAS). There are three
NASes in our network to support both load sharing and reliability. Each
NAS has a database that contains information for all registered users of
the system, and PADS are able to access any NAS for purposes of user
authentication. The database contains login names, a one-way encrypted
password, the corresponding mailbox identifier, the network address of the
host serving the mailbox, and a table of user service privileges.

All users accessing the mail system begin by establishing a connection
from their device to a local access PAD. The access PAD prompts the user
for username and password. This information is sent, in an encrypted form,
to any one of the NAS servers, where the information is checked against
the database. Once a user is validated, the NAS provides the access PAD
with the network address of the user's mail host. The access PAD then
establishes a iirtual circuit to that host, and the mail session begins.

The NAS databases are updated daily by means of a Server Maintenance
System which runs as an adjunct to the Order Entry System. On a daily
basis, changes to the registered user database which must be reflected in
the NAS, such as password changes, addition of new users, movement of
mailboxes among service hosts, removal of users, and changes in user
service privileges are communicated to each NAS using a private
application protocol between the host running the Server Maintenance
system and each NAS.

45

Network Operations·center

The monitoring of the network is accomplished by another special
processor called the Network Operations Center (NOC) which uses a special
interface to the network to access internal processes operating in each
PSN. Each PSN reports periodically to the NOC the status of all attached
hosts and trunks, throughput, alarms, and abnormal conditions. The NOC is
also capable of monitoring the status of all network PADs. Statistics on
the use of PAD ports can be collected for analysis.

The NOC is capable of remotely controlling the reloading of
operational software into any of the packet switches. consequently, the
propagation of new software or recovery from a node failure is readily
accomplished. The NOC can also distribute new releases of the PAD software
by downline loading the operational programs through the network.

The Electronic Mail System

A multi-cluster system, situated in a central facility, acts as the
focal point for the electronic mail system. Physically, the system is made
up of DEC VAX ll/780s and ll/785s which are organized into six clusters of
four processors each. Each cluster supports twenty four large (404 mbyte)
disks which are sharable among all processors in the cluster. The system
supports disk shadowing so that the 24 disks in one cluster are organized
as 12 shadow pairs. Any data written to one of a shadow pair is also
written to the other. A disk failure does not cause any loss of service
and a new disk can be installed without interruption of service.

Each processor is connected to a 10 mbps Ethernet to support high
speed transfers both within and between VAX clusters. Each VAX is also
connected to a packet switch and it is this connection that permits PAD
users to access the mail system and to accommodate communication between
these VAXen and with hosts not connected to the Ethernet.

The Mail System

Users may use the electronic mail system either interactively or in
batch mode. Interactively, there are two classes of service: basic and
advanced. The basic service is menu driven and supports the basic
creation, editing, reading and sending of electronic mail to other
electronic mailboxes, Telex users, or to one of the print sites for postal
or courier delivery. The advanced service is command driven and provides
users with more capabilities. All users, basic and advanced, have access
to the Dow Jones News/Retrieval service and may exchange messages with the
Telex community.

Each mail host has access to a copy of a relational database
containing all registered subscribers of the mail system. During message
creation when users enter addressee names, they are looked up in the
database and any ambiguities or failures to find matches are instantly
reported. The service permits a correspondent to be addressed by his
formal name, user name, or the unique mailbox identifier.

The batch electronic mail service is requested by the user when
initially connecting to the mail system. This service gives access to a
subset of the interactive services and is oriented around the requirement
to support computer based interfaces to the mail system. The batch service
provides an exchange protocol permitting the caller's PC or mainframe to
stay in synchrony with the mail service, handshaking at each major step to
assu~e completion and to report any problems in a machine understandable
fashion.

46

Each VAX mail host also has an administrative subsystem that includes
an accounting facility which logs information about user sessions and
message deliveries (including hardcopy and telex). On a daily basis, every
VAX sends this accounting file over the network to an IBM 4341 which
functions as the accounting host. The administrative subsystem also
maintains logs of system activity, error messages including any user
encountered problems that may be detected by either the application
software or the operating system. It also accepts daily updates to the
user databases produced by the Order Entry system which is described in
the next section of this paper.

Order Entry and the COP

There are two "special purpose" VAXen in our central facility. one is
the Order Entry (OE) machine. The Order Entry system is the means by which
the registered user databases are maintained and it is through this system
that user information is added, deleted, or modified. The system provides
customer service personnel with full interactive access to the user
database permitting the entry and editing of user records. The system also
supports interactive access via the network to the accounting and
invoicing database maintained on the IBM 4341. The Order Entry system is
the originator of all database transactions to the EMS database and,
through the Service Maintenance System, to the NAS databases.

The second special purpose VAX is called the COP (which doesn't mean
anything .•• it functions as a traffic COP) whose purpose is to interface
the electronic mail system with the Telex community. Every registered user
of our mail system has a unique Telex number which is simply the mailbox
identifier preceded by the characters 650. A telex sent to one of these
650 numbers comes through the Telex switch which has a connection to the
Telex switch PAD mentioned earlier. This PAD is linked to the COP through
the packet network and a special process turns the incoming telex message
into an electronic mail message and delivers that message to the user's
INBOX. In addition to sending messages to other registered users and to
the hardcopy system, mail users may also send messages to domestic or
international telex machines. In this case, the system reformats the
message for injection into the MCI International Telex Store and Forward
AUTOSAFE system, which automatically transfers the call to the Telex
switch.

The Hardcopy Distribution System

One of the innovative features of the mail system is the ability to
send hardcopy or "paper" mail to specific message recipients. The Hardcopy
Distribution System is made up of four components: the Hardcopy Relay
Agent which runs on the VAX, the HPlOOO which serves as an interface and
router, the HP3000 based print sites (called Digital Post Offices or
DPOs), and the Graphics Design center which maintains the master graphics
database.

If a user wishes to send a hardcopy letter to another registered user,
the mail system will look up that recipient's registered address from the
EMS database which becomes the mailing address. If the recipient is not a
registered user of the service, or the registered recipient is not at the
"home" address, the originator has the ability to supply a postal address
for the recipient. The registered address of the message originator is
used as the return address.

47

Another special service offered by the mail system is the Telex world
Letter (TWL). This service permits Telex users to address and send telex
messages from their devices that are to be printed at one of our HP3000
based print sites and delivered by the postal service. This service allows
telex users to take advantage of our hardcopy system without being
registered as mail users.

Though the message is created on a VAX which serves the user as a mail
host, copies need to be transmitted over the packet network to the
appropriate print sites, based on the postal code of each recipient, where
the copies will be printed on a 2680A Laser printer. This requirement
caused some problems initially as HP3000s insist on using DSN/DS as the
[OSI model) transport layer protocol and DS was not (and is not) available
on VAX equipment. The •normal" methods of transferring data files between
VAXen and HP3000s were not acceptable: tape transfers were obviously not
appropriate due to time constraints and geographic separation of the DPOs
and VAX facility, and RJE sessions did not support the overall design
concept of the electronic mail system, and would have been both expensive
and inefficient.

The solution was to introduce HPlOOOs between the VAX and the HP3000.
The HPlOOO has two modem cards installed, each of which is connected to a
PSN. One modem card is used to communicate with the VAX using the the
DSN/X.25 communication package and a simple file transfer protocol (SFTP)
transport layer developed internally to facilitate file transfers among
multi-vendor host computers. The other modem card uses DS/1000-IV to
communicate with the various print site based HP3000s, using DSN/DS as the
Transport Layer protocol.

The hardcopy system provides the user with the ability to specify that
a letterhead is to be printed on the first page of the message, and
whether or not a signature graphic is to be printed. Of course, this
requires that the user register the letterheads and signatures with the
mail system. The mail system will not permit a user to reference a
letterhead or signature graphic that is not associated with that user's
mail account.

Hardcopy messages can be delivered by one of three methods: the postal
service, courier for next day delivery, and courier for Four Hour, same
day delivery in some locations. When a user has created the message and
posts it, the mail system checks the country code, postal code, and
priority for each recipient. If the user has requested a delivery option
not available in the recipient's area, the system will not post the
message but will warn the user and permit the editing of the envelope.

Hardcopy Relay Agent

After the message has been posted by the user, a copy is delivered to
a special mailbox which is serviced by the Hardcopy Relay Agent (HCRA).
The HCRA processes only those recipients that are to receive the message
in hardcopy form. As a message may contain any number of recipients,
because there may be different delivery options specified for the hardcopy
recipients, and because the monitoring, tracking, and accounting must be
done for each copy, each postal recipient is handled as a separate unit.
Based on the combination of a recipient's postal code, country code, and
delivery option, the HCRA determines which print site is to receive and
print the message.

48

All hardcopy traffic is transmitted from the Hardcopy Relay Agent to
the one of the Hardcopy Distribution System Interfaces (HPlOOOs), which in
turn transmit the print files to the appropriate remote print site. Each
print site has a primary HPlOOO associated with it, and the VAX will
attempt to send all hardcopy messages to the primary HPlOOO. If the HPlOOO
is unable to accept the print files, the Hardcopy Relay Agent will send
the print files to an alternate HPlOOO. Each VAX may send hardcopy traffic
to any of the HPlOOOs, and each HPlOOO can communicate with any HP3000
print site. Interestingly enough, each HPlOOO believes it is the only
HPlOOO in the network, but what it doesn't know won't hurt it. While the
hardcopy environment is capable of being supported by a single HPlOOO,
three are used for backup and load leveling purposes.

The HCRA knows the node names of each of the print sites, but not the
network addresses. Instead, each print site is initially associated with
one of the HPlOOOs and the DTE addresses of these HPlOOOs are known to the
VAX. An output queue process exists for each HPlOOO in the network. The
HCRA takes each message and places it into one of <he output queues.
Within each output queue, the messages are maintained in priority order.

After the message has been sent from the VAX, acknowledgments are
returned from the remote print sites, permitting the HCRA to keep track of
successful processing of each hardcopy message. These acknowledgments are
used by the HCRA to generate accounting transactions, monitor the status
of individual messages, generate return receipt notifications (if
requested by the originator) and to maintain the status database of the
hardcopy system.

The Hardcopy Distribution System Interface

The Hardcopy Distribution System Interface (HPlOOO) serves as the
"router• of hardcopy traffic and provides operational personnel with an
overview of the state of the hardcopy environment.

When the connection to the HPlOOO is opened by the VAX, all print
files are transmitted in one session over an X.25 virtual circuit using
SFTP. The HPlOOO is responsible for examining each print file to determine
the target remote print site and the priority of the message. The HPlOOO
is capable of receiving print files from every VAX simultaneously, and
places these print files in the appropriate queues, based on the target
print site, and the priority of the message. These queues are maintained
internally in the memory of the HPlOOO, and the queues may be viewed or
manipulated by authorized operations personnel. It is possible to move the
contents of one print site's queue to another, and it is possible to
instruct the HPlOOO to always send a particular queue to an alternate
print site. Manipulating queues only effects the eventual print site that
will process and print the letter. The priority of the message is never
changed.

When the HPlOOO has print files in its queue for a particular print
site, a connection to that print site is made, using DS over an X.25
virtual circuit. The HPlOOO starts up the receiving process on the remote
HP3000 and transfers the contents of the queues in priority order,
receiving confirmation of successful transmission from the remote print
site for each print file transmitted. When the transmission of all print
files in every queue for the print site has been completed, the transfer
process is closed down and the connection is cleared.

49

The processing of acknowledgments from the remote print sites are
handled in a similar way. The print site will open a connection, via DS,
and transmit all the acknowledgments to the HPlOOO. The HPlOOO places the
acknowledgments in the appropriate queues, also maintained in memory, for
each VAX. Regardless of the print site that processed the print file,
acknowledgments are always returned to the VAX that originally sent it,
for monitoring and accounting purposes.

The HPlOOO permits the operations staff to monitor the state of the
hardcopy environment and provides mechanisms to react to potential
problems or operational decisions, such as the rerouting or moving of
print files to alternate print sites. Monitors are also used by operations
to show the progress of file transmissions between the HPlOOO and the EMS
hosts and the remote print sites. The monitors notify the operations staff
when problems are encountered in transmitting files to either the VAXen or
the remote print sites.

Laser Print Sites

The printing ·of hardcopy messages is performed at the remote print
sites. The application software runs on an HP3000 series 40 to which the
HP2680A Laser Printer is attached. Print site equipment also includes disk
and tape drives and operator terminals. The HP3000 and the Laser Printer
are configured with two mbytes of memory each.

The application which runs on the HP3000 has been designed in such a
way as to stream line much of the processing and printing activities,
minimizing the amount of operator intervention required, providing a real
time display of activity and status, and providing the capability to
control the flow of messages through the system. There are five major
processing modules that handle the messages to be printed, from receipt of
the message from the HPlOOO through the actual printing and sending of an
acknowledgment back to the originating VAX. The design of the print site
software is illustrated in Figure 2.

Receipt of Print Files

When the HPlOOO has messages in its queues for a particular print
site, the HPlOOO logs on to that HP3000 and initiates a process to accept
the print files. During the transfer, all print files are transmitted in
queued priority to the HP3000. The receipt process on the HP3000 notifies
the preprocessing module of incoming print files, and sends
acknowledgments back to the HPlOOO for each print file received. This
acknowledgment is not sent until the entire print file has been received
and stored on the HP3000.

If additional print files for the HP3000 are received at the HPlOOO
during the transmission, these files are injected into the queues and
transferred during the same session. When the entire transfer is
completed, the receipt process is closed down by the HPlOOO. The
application is designed to permit up to eight simultaneous transfers from
the HPlOOOs. The print site operator has the capability to disable any or
all of the HP3000 receipt processes to prevent any transfer from the
HPlOOO.

50

To Graphics

HP

Receipt
Process

IPC

1000

Acknowledgment
Process

IPC

Pre-processing
Module

Process
Design Center ...-------. Database Graphic

Research

Graphic
Database

Laser
Printing
Process

SPOOL

To Laser Printer

Figure 2: Remote Print Site Design

0
p
e
r
a
t
0

r

n
t
e
r
f
a
c
e

51

' Pre-processing of Print Files

The pre-processing module of the application examines the print file
contents for errors and graphic requirements, reformats the print file for
later processing and printing, and places the print file into a prespool
file. A prespool file is a collection of print files of the same priority.
Prespool files are used to optimize the efficiency and throughput of the
laser printer, and also to provide more controls to the remote print site
operations personnel.

The pre-processing module will continue to add print files to a
particular prespool file until the maximum number of print files has been
entered or until the configurable spool timer expires. When the prespool
file has been created, the pre-processor notifies the printing module,
which takes over the processing responsibility of the prespool file. If
necessary, the pre-processor immediately creates a new prespool file and
continues processing print files that have been received by the HP3000.
The pre-processing module dynamically allocates disk space to store the
prespool files. This process prevents the allocation of more storage than
is necessary to store the file, and also provides for the storage of very
large messages.

Another function of the pre-processing module is to examine the
0raphic requirements for a given message to determine if the required
graphics are in the remote print site's local graphics database. If the
graphics are in the local database, processing continues. If the graphics
are not in the local database, a message is sent to the graphics retrieval
process.

Graphics Retrieval

When the pre-processing module encounters a print file requiring a
graphic not stored locally at the print site, the print file is placed in
a separate prespool file and the graphics retrieval module is notified
that a particular prespool file contains one or more print files requiring
a specific graphic. The graphics retrieval module establishes a virtual
circuit through the packet switching network to the Graphics Design
Center. The print site HP3000 logs onto the Graphic Design Center and
performs a remote database access against the master graphics database.
When the requested graphic record is located and extracted, it is stored
in the local database. The graphic retrieval module then informs the
printing module directly that the prespool file is ready for printing. If
for any reason the requested graphic is not available, the printing module
is notified to print a reject page for that particular prespool file.

The local graphics database is actually two files. The first file
contains the unique identifier, margin settings and other data, including
pointers to a position in the second file. The second file contains the
actual partitioned raster files of all graphics stored at the local site.
The local graphic database also contains the date the graphic was last
referenced and print site operators have the ability to delete entries
from the local database.

52

Laser Printing of the Print files

The Laser Printing module accesses the prespool files, creates the
print spool files and submits them to the HP2680A laser printer. The
prespool files are processed and submitted to the laser in priority order.
In addition to the printing of text and either letterhead or signature
graphics, the laser printing module supports bolding, underscoring,
superscripting and subscripting, and the use of headers and footers within
the text of the message.

A spool file, containing the information needed to drive the laser
printer, is created for every prespool file submitted to the laser
printing module. The laser printing module prints a header and trailer
page before and after the letters in a prespool file. These pages contain
the name of the prespool file, the total number of letters within the
prespool file, and the unique identifier assigned to each recipient letter
by the HCRA.

Between the prespool header and trailer pages are the letters
themselves. Each printed letter is preceded by an address page, which
contains the mailing address of the recipient and the originator's return
address. Following the last page of each letter is a print control page
which contains information about the message just printed. These control
pages are maintained at the remote print site for tracing and monitoring
purposes, and as required by law.

To facilitate the handling and monitoring of priority mail, and to
meet the requirements of the courier company, each priority message is
assigned a bill of lading number as it is received at the HP3000. Each
remote print site has a unique location code (three characters), and this
location code becomes the first three characters of the bill of lading
number. The bill of lading number appears beneath the recipient mailing
address on the address page. For overnight or courier mail, a destination
airport code is appended to the bill of lading number.

This module will also print REJECT header and trailer pages if it is
not able to print a letter. Between the reject header and trailer pages
will be a control page stating the reason for the reject (for example, if
no graphic was found by the graphic retrieval process). Any •problem•
messages will result in a REJECT header page followed by a control sheet
indicating the problem, followed by the trailer page.

Acknowledgments

Throughout the processing of a print file, entries are made to a
process database, including the status returned from the Laser Printing
module. This information is included in the acknowledgment sent from the
HP3000, through the HPlOOO, and back to the originating EMS host VAX. The
acknowledgments require remote print site personnel to assert an
accounting code and cause the acknowledgments to be transmitted. The
accounting code is used to indicate whether the letter is billable or not.
Acknowledgments are generated for a given prespool file. The operator may
set a global accounting code for each print file within the prespool file,
though they do have the ability to modify the accounting codes for
particular print files.

Receipt of a successful printing and billable acknowledgment by the
EMS host VAX causes the accounting transaction record to be generated and,
if requested by the message originator, will cause a return receipt
notification to be generated and posted.

53

Remote site personnel also have the option of sending back an
acknowledgment that essentially requests the VAX to retransmit the print
file to an alternate print site. This capability facilitates the
processing of user mis-addressed mail which resulted in the print file
being transmitted to the default printer.

Acknowledgments are sent back to a primary HPlOOO, as configured at
each remote print site. If the network connection cannot be made to the
primary HPlOOO, or the HPlOOO cannot accept the acknowledgments, this
module will attempt to send the acknowledgments to an alternate HPlOOO.
Should the module determine that is is unable to send the acknowledgments
to any of the HPlOOOs, a warning message is printed and displayed on the
HP3000 status screen. In any event, these acknowledgments are maintained
in a queue until successfully transmitted.

Operator Interface

The operator interface module controls the hardcopy application
software on the HP3000 and continually displays the •state of the world•
when not being used by remote site personnel. The operator interface
module consists of four separate screens (Command, Status, Acknowledgment
Processing, and Report Generation) which are used by the site personnel to
monitor the application and hardcopy processing activities, or to process
operator commands and requests.

The command screen is used by the remote print site operators to
control the application and perform operational tasks. This screen is used
to start and stop the entire application, pause or resume certain
processes, check and delete graphics from the local database, reprint
letters received, and to provide control over the acceptance of new print
units and the transmission of acknowledgments.

The Command Screen will also display information on the screen, either
by prespool file or print file, and permits detailed examination of the
displayed information. The command screen also simplifies such tasks as
performing maintenance dumps (system backups), the ability to change the
information or status of an acknowledgment and the ability to retransmit
an acknowledgment.

As many of the command screen options are very powerful, some
capabilities require the operators to enter their personal operator code
before the requested process is begun. Some of the capabilities require
the password of the remote print site supervisor.

The Status Screen is a real time display which is continually updated
as it receives status information from the various modules. The status
screen will display which connections to the HPlOOOs are open, which are
currently active, which pre-processing components are active. If active,
the name of the prespool files are displayed with the number of letters
currently contained by the prespool file. The Status Screen also displays
which prespool files are being processed by the laser printing process,
along with the total number of pages that have been printed.

A table in the corner of the status screen displays, by priority, a
historical record of the number of letters that have been received,
printed, rejected, and acknowledged. The table also shows how many graphic
retrieval requests have been made and completed. These counters are
maintained over time, even if the application is stopped and restarted.
Through the Command Screen, the supervisor has the ability to reset all or
some of the counters.

The Acknowledgment Processing Screen is the interface used by the
operators in generating and transmitting the acknowledgments. The operator
is required to enter the prespool file name, enter the global accounting
code, change the status for any number of print units within a prespool
file, and request that the acknowledgments be transmitted. To facilitate
the process, this screen displays all valid accounting codes and validates
the operator's entry.

The Report Generation Screen, as its name implies, is used to generate
reports which are printed on the laser printer. The operator may request a
report and specify how the information to be displayed is to be sorted and
the time period the report is to cover. The report generation screen is
also used to generate the courier manifests which include the bill of
lading numbers. This manifest accompanies the letters to be delivered by
the courier.

The Graphics Design Center

The Graphic Design center, an HP3000 series 64, is the central
repository for all graphic information which may. be used at the remote
laser print sites. This includes both letterhead and signature graphics.
An HP26096A Digital Camera System is used to optically convert these
letterheads and signatures into a digital dot-bit format for electronic
transmission and reproduction. Storage, retrieval, maintenance, and
transmission facilities are included within the Design Center to allow
access to the registered graphics from all laser print sites.

Each graphic is stored in the graphics database at the Design Center
and associated with a unique graphic identifier. This identifier is
assigned by a module of the Order Entry system. Once the graphics have
been created and entered into the master graphic database, the graphic
identifiers are added to the user's EMS database record. At this point,
these graphics may be referenced by the user when creating a message to be
printed at a remote laser print site.

Each mail account has a default letterhead. If only one letterhead is
registered, it is the default. If more than one letterhead is registered,
the user specifies which letterhead is to be the default. An account may
also have more than one signature registered, but it is not necessary to
designate one as the default signature. The user assigns a name to each
letterhead and signature and references them by their assigned names. The
mail system will substitute the actual graphic identifier associated with
the named graphic when the message is posted by the user.

When creating a message, the user specifies which graphic is to be
used by providing the name of the graphic in the handling field of the
message. If no specific reference is entered, the defaults are used. If a
letterhead has not been registered, there exists a system default
letterhead whi~h appears on the laser printed message. There is no system
default signature. If no letterhead is desired, the.user may request a
"BLANK" letterhead.

All graphic information is stored in an IMAGE database. In addition to
the graphic identification number, the database contains internal
information such as the submission date, the creation date, margin
defaults, and the last access date.

55

Inter-Network Hardcopy Support

As system usage increased, it was noted that more and more users were
sending hardcopy messages to recipients in foreign countries. As this
percentage grew, we were soon faced with the demand for print sites
located outside of the United States, specifically in Europe, to support
time critical processing and delivery of hardcopy messages. A print site
was established in Belgium, connected by a private leased line to one of
our domestic switches, and plans were developed to establish additional
print sites in other foreign locations. The use of dedicated international
circuits to link foreign print sites to the domestic u.s. system is
expensive, however, and we were strongly motivated to make use of sharable
public packet net systems as an alternative means of supporting these
remote facilities.

These "off-net• print sites must still function as Digital Post
Offices, receiving hardcopy traffic, initiating graphic research requests
to the Graphics Design Center, and sending acknowledgments back to the
originating EMS host VAX located on the private network. In essence, a
link had to be established between our private network and a public
network.

Fortunately, our organization had just introduced a public packet
switching network (MCI DataTransport) and had established an x.75 Gateway
connection to our international packet switching network (MCII IMPACS)
which already had connections to a number of other public data networks.
All that remained was to link our private network and our public packet
networks.

X.75 only supports connections between public data networks, not
private networks, so x.25 links had to be established between the our
network and the public data network. This was accomplished by adding a
physical connection from the Graphics Design center .and from one of the
HPlOOOs to the public network switch (See Figure 3). From the public
network, traffic (print files) will pass through x.75 gateways to other
public networks, and from there to the final "destination• network. Once a
print file reaches the destination network, it will be delivered by the
network to the print site host at the destination DTE address.

An off-net print site must be connected to our public packet switching
network or to a network that can be reached by the public network through
a series of x.75 connections between consenting networks. All hardcopy
traffic destined for one of the off-net print sites is sent by the
Hardcopy Relay Agent to the inter-network HPlOOO whose network print site
link (to HP3000s) is connected to the public network. The inter-network
HPlOOO maintains a table of all off-net print sites, their Data Network
Identification Code (DNIC), which identifies the destination network, and
the DTE address.

The VAX-based Hardcopy Relay Agent still refers to the print site by
its node name only and does not need to know on which network the print
site is located or its DTE address. The destination print site is
determined by the country code and postal code of the recipient's mailing
address, though in the case of the off-net print site it will only key off
of the country code. If the destination print site is off-net, the
Hardcopy Relay Agent will transmit the print file to the inter-network
HPlOOO.

56

Ul
.....

Private X.25
EMS Packet
Switching
Network

Off-Net
Print Site

HP1000

Design
Center

X.25

X.25

X.25
International
Packet Switching

Data Network

MCI DataTransport
Packet Switching

Network

MCll IMPACS
International
Packet Switching

Data Network

Figure 3 Off-Net Print Site Architecture

Off-Net
Print Site

From the inter-network HPlOOO, a virtual circuit is established
through our public data network, out the X.75 gateway(s) to the public DTE
address of the off-net print site. Once the connection is established, the
print files are transferred to the off-net print site for processing and
printing. When the print site processing is completed, acknowledgments
from the off-net print site follow the same path back through the X.75
gateway(s) to the inter-network HPlOOO. The HPlOOO then establishes a
connection to the appropriate VAX and transmits the acknowledgments.

If an off-net print site receives a hardcopy message requiring a
graphic not available in the print site's graphic database, a Graphic
Research Request is initiated by the print site. This results in a
connection being established from the off-net print site on the
"destination• network through the X.75 gateways(s) to the Graphics Design
Center which is now connected to the public data network as well as our
private network. Once the connection is established, the off-net print
site performs a remote database access against the master database on the
Graphic Design Center, retrieves the necessary graphic information, and
closes down the connection. The graphic information is then placed into
the off-net print site's local graphic database for future use.

Mail Control

There are three operational centers supporting the mail application
and the network. Once of these, the Mail Control Center, is responsible
for monitoring and controlling the Hardcopy Distribution System. A central
facility is organized around a set of data terminals which are used to
access special software running on the VAX EMS hosts and on the HPlOOOs.
Mail control personnel have special privileges that permit them to access
these programs through the network from the data terminals connected to
PADS.

When connected to the VAX Master Node (where the software is located),
Mail control personnel are able to start or stop the Hardcopy Relay Agent
process on all or individual VAX hosts. They are also capable of viewing
the hardcopy process log files (and any error messages about problems in
processing hardcopy mail) and maintaining the postal code routing
databases. The software includes report and query options to display all
pending messages (those sent out but awaiting acknowledgments from the
print sites) and all queued messages, on a host by host basis.

When connected to an HPlOOO, Mail Control personnel can monitor and
control the various VAX and HP3000 queues maintained in memory. This
includes tbe moving of print files from one print site's queues to
another, entering instructions that will automatically reroute traffic
from one print site to an alternate print site, and stopping the flow of
traffic to individual HP3000s or VAXen. The software on the HPlOOO permits
the addition or deletion of hardcopy hosts, changing node names or DTE
addresses, and closing down all packet network links.

A data terminal is connected (again via a PAD) to each HPlOOO and
functions as a monitor, tracking the progress of file transmissions to and
from the HPlOOO. The software running this monitor displays inverse video
error messages and "beeps• whenever a problem is encountered establishing
a virtual circuit to either a VAX or HP3000.

58

conclusion

This paper has explored the basic architecture of most of the
components of our mail system in general, and the hardcopy system in
particular. It focused more on WHAT is done rather than HOW it is done.
There are a number of features and capabilities that were not mentioned at
all, such as our custom Mail product and Response Plus services to support
large volume mailings of hardcopy messages. Even though some of the tools
were described, there was no mentioned of the operational aspects of
supporting the hardcopy system, how and why these tools are needed and
used, or what is involved in digitizing customer letterheads and
signatures. Unfortunately, time and size limitations prohibit a more
detailed explanation.

The MCI Mail system integrates a broad range of technologies and vendor
products into a coherent collection of practical and innovative services.
The system described in this paper has been in operation since 1983. A
number of implementation details have changed since them as we learned
from experience about operating the system and supporting new and •unique•
client requirements, but the basic architecture has remained stable.

Biography

Steve Coya has been with MCI Digital Information services for the past
three years. He is the Senior Project Manager for MCI Mail Hardcopy
systems Development, and is also responsible for the overall planning and
scheduling of system integration tests and for managing and coordinating
the implementation of new software releases into the operational
environment.

59

PACKET SWITCHED NETWORKS •
THE FUTURE OF DATA-COMMUNICATIONS?

Joerg Groessler
Joerg Groessler GmbH, Berlin, West Germany

Summary

Packet Switched Networks (PSN) provide data communication on the basis of an international
standard data communication protocol (X.25). In addition to fail-proof data transfer it offers a
method of establishing logical rather than physical connections.

Since PSN has been introduced, efforts have been undertaken to create new standards for all
kinds of tasks in data communications (terminal access, file transfer, remote job entry) using X.25
as their basic transportation method. The first result was PAD (packet assembly and
disassembly) which meanwhile is supported on all major computer systems worldwide (including
HP3000). Other standards are still discussed or in the status of a draft (e.g. file transfer).

Alter some time of confusion (basically about handling and pricing) users start to understand that
PSN opens them a world where various computer systems made by different vendors can talk to
each other on a very high level of communication (something like DS working on all kinds of
systems). Big companies solve their problem of communication between different computer
systems. Other Companies start to provide services (like database access. electronic mail) which
can be used by everybody having PSN access.

1. Basic Structyce of PSN

In traditional data communication enviroments, data terminals (which stands for either a real
terminal or a host computer) are connected via telephone lines. Modems are required to
transform the digital signals which have a theoretically unlimited bandwidth to analog signals with
the bandwidth of a telephone line which is app. 3 Khz. Connections are done either by simply
dialing (using a handset) or by establishing a permanent connection (leased line).

c::::s

61

62

In Packet Switched Networks computers take care of establishing a connection between one
data terminal and another. The data terminal is connected via a modem to the exchange
computer (mostly using leased lines). Data is transmitted no longer in a steady flow but in
portions of so called packets. Each packet is provided with an address, which makes it possible
to have more than one logical connection open at a lime (using the address in the packet the
exchange computer knows which logical connection part of the data belongs to).

11=

2. Standards involved jn Packet Switched Networks:

X.3

X.21

Packet Assembly and Disassembly Unit (PAD) which is used in a PSN
enviroment for an asynchronous data terminal. A virtual terminal which can be
controlled (speed, XON/XOFF, echo etc.) by standard functions (e.g. escape
sequences) regardless to what host computer it is connected.

Interface between data terminals and data communication units (modems) for
synchronous transmission within public networks.

X.21 bis as X.21 but using the V-Series of modems (e.g. V .22)

X.25

X.28

X.29

X.75

X.121

Interface between data terminals and data communication unit for terminals
using packet switched networks.

Interface between a data terminal and a data communication unit for an
asynchronous terminal using a PAD unit to access the packet switched network
within the same country. This standard can also be applied to local PAD units
which may be a program in a mainframe or a PC.

Method of exchange of data and control information between a PAD unit and a
data terminal working in packet mode (which typically is the host computer).

Communications interface between different packet switched networks.

International numbering scheme for public packet switched networks.

OT - data terminal
OS-dataset

X.25

PA - packet adapter

host compuler

63

64

3 X 25 CharacterjsJlcs

T
level 4 -.....

0 ••• 4095

level 3

leval 2

level 1

data terminal

logical channels

l<>jj_ical interlace HDl.C

..
_

..

to remote data terminals

...

packet switched
network _

These are the main characteristics for packet switched networks:

0 Automatic dialing with various options (collect call, "closed user group" (access only
possible for a certain class of users), "call user datafield" (additional information about
the kind of connection)

o error proof data transfer using HDLC protocol on level 2

O flow control on level 3 (packet level)

o interrupt as a bypass in the event of e.g. errornous flow control

O various levels of error handling (soft, hard etc.) using RESTART and RESET packets

CALL-packet ..
...... CALL-ACCEPTED-packet

DATA packet

DATA packet
_.. -

.... DATA CONFIRM. packet

-- DATA packet

i.- DATA packet

...... INTERRUPT packet

INTERR.-CONFIRM.pack~

...... (RESET packet)

(RESET-CONF. packet)
....

(RESTART packet)

• (RESTART-CONF.packet)
_..
- ..

CLEAR packet ..
...._

CLEAR-CONF. packet

65

66

PAD: a standard data terminal; a set of parameters (speed, echo on/off etc) can be tested and
manipulated by both end user and host computer. So far this is the only available standard for
levels 4 to 7.

X.3-parameters

echo eon()off
autoLF eon ()off

XON/XOFF ()on 9<>ff
break eon ():>ff

speed 9600

chars/lino 80

.......

J~~~ X.J.parameters

~ command mode Ll line co~I !unctions ~

..... J L -......i X.25 _...

data transfer mode Jl l Iv
oxchange(_of data packe~

X.28 handling X.29 handling

4. HP3000 and PSN

Available for HP3000: DSN/X.25 (using an HP-specttic protocol on levels 4 to 7), X.29 PAD
protocol which allows to run PAD sessions in MPE

DJ]

HP2334A I

'-~(
\

.....

..
X.29 PAO protocol •••

..........................

5. Stryctyre of a PAP program

A PAD program would enable access to any host computers which support the X.29 PAD
protocol.

Introducing special stuctures a PAD program could be used for much more than just running a
session on a remote computer: As long as there is no international standard for file transfer, PAD
could perform this function temporarily. Another interesting feature would be to 'predefine' PAD
sessions so that they can be run in a job stream.

67

68

terminal access X.25 access

Biography

Joerg Groessler is founder and general manager of the Joerg Groessler GmbH company in
Berlin, West Germany. Since 1980 he designs and develops software tools for HP3000 and
works as a consultant in special technical issues (e.g. systems performance, special capabilities).
After having got in touch with an HP computer back in 1971 (HP2114) he now has over 10 years
of experience in HP3000 programming.

SYNCHRONOUS CAUSES AND EFFECTS

SALLIE KAY STODGHILL
AMFAC DISTRIBUTION CORPORATION
81 BLUE RAVINE ROAD
FOLSOM, CALIFORNIA 95630
916-985-5000

JACK HYMER
HEWLETT-PACKARD
15815 SE 37TH ST.
BELLEVUE, WASHINGTON 98006
206-643-4000

************~***

The synchronous communications used for high speed, long distance data
communications are adversely affected by imperfect transmission channels.
These channels, made up of modems or their equivalent (DCE) and transmission
facilities (leased lines, dial-up lines, microwave links, unloaded metallic
lines, fiber-optics, etc) introduce sporadic errors which are usually detected
by the communications protocol in use, causing re-transmission of at least the
block in error. These channels also introduce delays in the transmission of
data, which, though they may be quite small, prevent full utilization of the
apparent channel speed.

This paper examines the causes of these errors and delays, their measure­
ment and their effects on point-to-point communications links. MODEM test and
selection criteria are presented with emphasis on multiple parametric testing.

OUTLINE

Section I. Throughput over point-to-point links

A. Definition of throughput
B. Factors affecting throughput

1. MODEM (DCE) speed
2. Link error rate
3. MODEM turnaround time
4. Block size
5. Protocol

a. Half-duplex protocol
b. Full-duplex protocol
c. Protocol overhead characters

6. Path length
7. CPU/Interface servicing time

C. Calculation of throughput
D. Results

Section I I. MODEM (DCE) test and selection

A. MODEM economics
B. Measurement of MODEM quality

1. Live link testing
2. Impairment distribution on US Bell System
3. Simulated line testing

C. Comparative analysis
D. Results

71

72

Section I.

A. Definition of throughput

Number of bits correctly transmitted
Throughput = ------------------------------------

Time to correctly transmit the bits

The unit of measure used to express throughput here will be bits-per­
second, abbreviated BPS.

B. Factors affecting throughput

1. MODEM (DCE) speed

In the U.S. synchronous MODEMS (Data Communications Equipment - DCE) are
available at speeds ranging from 1200 to 230,400 BPS. MODEM equivalents (CSU/
DSU or ISU) are available for use on strictly digital facilities at speeds of
2400, 4800, 9600, 19200 (with duo-plexer) and 56000 BPS.

Devices which attach to these D~E, namely Intelligent Network Processors
(INPs), Synchronous Single Line Controllers (SSLCs), cluster controllers and
multiplexers, etc. normally receive bit timing information from the DCE (i.e.
when to send a .bit or when a bit may be sampled for received data) as opposed
to asynchronous equipment where the transmitting and receiving devices (Data
Terminal Equipment - DTE) pace the communications rate based on internal
clocking.

As a parameter taken alone, the faster the DCE speed, the higher the
throughput in direct proportion.

2. Link error rate

The imperfection of a data communications link is expressed as:

Bits in error
Error rate =

Bits transmitted

or

Blocks in error
Error rate =

Blocks transmitted

The most common error rate abbreviations are BER for the bit error rate
and BLER for the block error rate where a block is normally 1000 bits.

To measure the error rate of a channel, the DTE at the ends of the
point-to-point link are replaced by Bit Error Rate Test set (BERTs). A BERT
is capable of simultaneously transmitting and receiving a pseudo-random bit
stream (PRBS) of fixed length, usually 63, 511, 2047 or 4095 bits. Longer
tests are accomplished by simply repeating the fixed length PRBS. Receiver
synchronization takes place in a period set by the binary root of the PRBS,
(6 bit-times for 63-bit PRBS, 9 bit-times for 511-bit PRBS, 11 bit-times for
2047-bit PRBS, etc.) so it is not necessary to be terribly precise about

starting the test at both ends of the line at exactly the same time.
BERTs may be set to transfer a fixed number of bits (1000 bits - 1QA3,

10,000 bits - 1QA4, 100,000 bits - lOAS, etc. to 1,000,000,000 bits - 1QA9),
may be set to transmit for a fixed period (5, 10 and 15 minutes are commonly
used) or may be set to transmit continuously. By using a fixed number of
bits, the error rate may be expressed independently of the line rate and test
duration.

The link error rate is due to the combined imperfections in the com­
munications facility and the DCE connected to the facility. Impairments
which affect the error rate are composed of two types: Steady State and
Transient.

Steady State Impairments
Attenuation (Amplitude) Distortion
Background Noise
Frequency Shift (Offset)
Envelope (Delay) Distortion
Phase Jitter
Non-Linear Distortion

Transient Impairments
Impulse Noise
Gain Hits

. Phase Hits

. Dropouts

Steady state impairments appear as random errors in error rate testing
while transient impairments show up as bursts of errors.

The causes, measurement and acceptable limits of error rates and line
impairments are covered in the Bell System technical publications 41004
through 41009 and in the Hewlett-Packard manual "Data Communications Testing",
part number 5952-4973 chapters 2 and 3.

3. MODEM turnaround

On all half-duplex (HDX, two way non-simultaneous) links and on full­
duplex (FDX, two way simultaneous) links (point-to-point as well as multi­
point) some time is required for the receiving DCE to synchronize with the
transmitting DCE. To restrain the transmitting DTE from sending data during
this synchronizing (training) period, the transmitting DCE provides a delay
between the time the transmitting DTE turns Request-To-Send (RTS) ON and the
time when the transmitting DCE turns Clear-To-Send (CTS) ON. This time period
varies from about 7 milliseconds on short, slow speed circuits to over three
seconds on long, high-speed circuits. Common values fall in the range of ?ms
(ATTIS Model 201C FDX private line, switched carrier), 12-15 ms (fast-poll/
fast-train modems), 50 ms (ATTIS Model 208B with "50" switch pushed in on
short dial-up lines) to 148-150 ms (ATTIS Models 20IC and 208B dial-up lines
with normal settings).

On FDX channels the RTS-CTS delay time will be incurred only at link es­
tablishment if one selects the constant-carrier mode for the DCE. Then, for
the purposes of this discussion, the turnaround time may be considered to be
0.

Improper configuration of the MODEM and/or Communications controller
(INP or SSLC) transmission mode may adversely affect throughput by causing the
modems to re-synchronize on each and every transmission when in fact this is
not required. For example, on a full-duplex circuit, if the MODEM is strapped

74

for switched carrier and the !NP or SSLC is set to Transmission Mode= 1 (TM=l
under CSDEVICES) each transmission will be subject to an RTS/CTS delay which
is neither necessary or desirable.

4. Block. Length

As the block length of the transmitted data block is increased, the num­
ber of protocol overhead characters becomes a proportionally smaller fraction
of the overall block transmitted. However, as the block length is extended,
the probability that an error will occur is increased.

Block length is a parameter of throughput over which an HP3000 user has
some control. The parameter "Preferred Buffer Size" used to configure the
communications controller sets the default block length (excluding protocol
characters) in words, with maximum sizes of 1024 words (2048 bytes) on the !NP
and 4095 words (8190 bytes) on the SSLC. Communications subsystems may over­
ride the default settings as follows:

a. RJE
RJLINE

RJIN

RJOUT

b. Bisync OS

DSLINE

c. X.25 OS

MAXRPB parameter sets number of records per block
to be transferred. Size of block is the size of the
records times the number of records per block.

COMPRESS parameter is used to prevent the transmission
of EBCDIC blanks or ASCII spaces within each record.

TRUNCATE parameter is used to prevent the transmission
of EBCDIC blanks or ASCII spaces at the end of each
record. -

OUTSIZE parameter sets the length of the data records
to be received.

Configuring the monitor, IODSO as subtype 0 will cause
OS to transmit data in uncompressed format while
subtype 1 will cause OS to compress transmitted data.
Subtype 1 is recommended below 56000 BPS.

LINEBUF parameter sets the maximum size of the trans­
mitted data block in the range of 304 to 1024 words
(608 to 2048 bytes) if an INP is being used or 304 to
4095 words (608 to 8190 bytes) if an SSLC is being
used.

COMP parameter overrides the system configured default
turning compression on.

NOCOMP parameter overrides the system configuration
turning compression off.

Configuring the monitor, IODSXO as subtype 0 causes
OS to transmit uncompressed data while subtype 1
causes OS to transmit compressed data. Subtype 1 is
recommended below 56000 BPS.

d. MTS

NETCONF Line Characteristics Table: The PACKET SIZE
parameter set the maximum number of data bytes in a
packet in the range of 32 to 1024 bytes.

The maximum number of characters to be transmitted
in one write is 4096 (SSLC only).

The maximum number of characters to be received in
one read is 2048.

Writes to peripheral devices attached to MTS termi­
nals should be treated very carefully. Since the
attached device may use a transfer rate that is lower
than the communications line rate, checking transfer
status after writing each record should be avoided
because the status won't be available until after
the transfer to the peripheral has been completed
or interrupted and the status won't be returned to
the user's program until the group/device is next
polled. It is faster but slightly less secure to
write several records in a block (programmer is
controlling block length here) and then checking
transfer status.

Other subsytems (Bisync/SDLC, IMF, MRJE, NRJE and SNA/IMF override the
default buffer size parameter but are dependent on the host/FEP (Front End
Processor) configuration parameters.

5. Protocol Dependencies

a. Half-duplex protocols.

Half-duplex protocols require an acknowledgment block to be returned for
each data block transmitted. Only the data block in error will be re­
transmitted although there may be some additional protocol overhead when data
blocks are not perceived to be in error (i.e. when the acknowledgment is with­
held or is lost). The time required for these relatively infrequent occasions
will not be a part of this paper.

Two examples of half duplex protocol are Bisync (BSC - Binary Synchronous
Communications), used on any type of communications facility, and SDLC (Syn­
chronous Data Link Control), used on multipoint facilities (for example SDLC/
IMF, SNA/IMF and NRJE).

b. Full-duplex protocols.

Full-duplex protocols require positive acknowledgments only when the
transmit window size is reached. Negative acknowledgments indicate the
number of the frame received in error (or not received at all) and require the
re-transmission of not only the frame in error but also each frame transmitted
after the frame in error. On paths with little delay this normally involves
only the transmission of 2 frames (the frame in error and the frame following)
but in paths with large delays it may be necessary to transmit 3 or 4 or more
frames to correct the error and continue the transmission.

75

76

Examples of full duplex protocol are HDLC and its subsets SDLC and LAP/
LAP-B (used for X.25).

It should be further noted that higher levels in the communications sub­
system may degrade throughput even more by requiring end-to-end acknowledg­
ments for each packet. DS/X. 25 uses the "D" bit ON, requiring
an end-to-end packet acknowledgment when used with Public Data Networks
(PDNs).

c. Protocol overhead

The addition of protocol characters for error detection, addressing,
control information, etc. adversely affects throughput. For Bisync, approxi­
mately 8 characters are added per block (4 sync characters, STX, ETB/ETX, 2
block check characters). HDLC adds between 6 bytes (2 flags, address octet,
control octet, 2 frame check octets) and 7 bytes (2 control octets are· used
with window sizes between 8 and 127) plus bit-stuffing bits depending on the
content of the data.

The exact number of sync characters sent in Bisync can be obtained from
the CSTRACE Information Display in the DOPTIONS bits 14:2 as follows:

0= Send 4 Sync bytes
l= Send 8 Sync bytes
2= Send 12 Sync bytes
3= Send 16 Sync bytes

Higher levels in the full-duplex protocols add additional overhead in
the for of message headers for each level, the content and length of which are
beyond the scope of this paper.

6. Path length

Signal propagation through free space is approximately 186,000 miles
(300,000,000 meters) per second or, inversely, 5.4 microseconds per mile (3.3
microseconds per kilometer). Since not all of the communications path passes
through free space, a longer transit time is imposed on signals. A common
value used for propagation is 1 millisecond per 100 miles of actual circuit
path (not straight line mileage) which is about double the free space transit
time.

When a satellite is encountered in a communications path, an additional
delay of 250 to 300 milliseconds (earth-station to earth-station) transit time
must be added to the overall delay due to circuit delay.

7. CPU/Interface servicing time

The time required for servicing (generating an acknowledgment or starting
the next transmission) in the CPU/Communications Controller may be quite vari­
able. Interface response time is small compared to the delays introduced by
the modems and line paths and will be ignored here. CPU response time is
dependent on parameters outside of the scope of this paper and will also be
ignored.

C. Calculation of throughput

A model for the throughput of a link including the first 6 items above
becomes:

I * L * (1-P)
Throughput ------------------------------------

where

((L+O) * T/S) + D) * (1-P) + (N * P)

D - Delay between block transmissions
I - number of Information bits per character
L - Length of data block in characters
N - Number of blocks to be re-sent on error
0 - number of Overhead characters per block
P - Probability of error in a block
S - Modem speed in BPS
T - Total number of bits per character

Assumptions: Lost blocks and lost acknowledgments are ignored.
Errors are single bit errors (worst case)

Evaluations:

Probability of errors in a block

p; 1 - (1 - E) A ((I + 0) * T)

where E - Link error rate

Values often used for E are:

Analog lines JOA-5
Digital Lines lOA-6

For existing lines the actual value of E may be measured with a Bit Error
Rate Test set as described above.

An alternate method of obtaining the probability of error when the error
rate of a dedicated link is not known is as follows:

I. :SHOWCOM NN;RESET at location A

2. Send 1000 fixed length blocks with the communications subsystem at
hand from location A to location B.

3. :SHOWCOM NN;ERRORS at location A. The probability of error on the
link in the direction from location A to location B is:

Retransmissions
p ;

Messages Sent

as long as there are no response timeouts indicated.

77

78

Delay between blocks

The delay between blocks is the sum of:

1. The propagation delay from source to destination
2. The RTS/CTS delay of the destination DCE
3. The time required to send the acknowledgment which is:

where:

X * T
D =

s

T = Total bits per character
X = Number of characters in the acknowledgment block
S= Line speed in BPS

4. The RTS/CTS delay at the source DCE

D. Results

Results are presented below choosing block size as the independent vari­
able because block size is the parameter most easily controlled by a computer
user.

Figure 1 Throughput vs Line Error Rate
Figure 2 Throughput vs Modem/Line Type (Error Rate lE-5)
Figure 3 Throughput vs Modem/Line Type (Error Rate 5E-5)
Figure 4 Throughput vs Propagation
Figure 5 Throughput vs Protocol

4IOO THROUGHPUT IBITSISECI

'o IOO

TEST CONDITIONS:

Data Bits/Char
Total Bits/Char
Overhead Char/Block
Modem Speed
RTS/CTS Delay
Blocks Resent on Error
Length of Circuit
Length of ACK Block

THROUGHPUT VS LINE ERROR RATE

flOO

BLOCK SIZE ICHARACTERSI

8
8
6

4800 bits/sec
150 MS

1
1000 Miles

6

IOOO

-

llOO IOOO

Figure 1

79

80

THROUGHPUT VS MODEM/LINE lYPE

ERROR RATE 1 IN 1 o-s

~-------------
~ __. - - - - -----------/ - --- --/ ~ -- -- -=---:::.:.---

~ i // _,,_ -
I I
I I .,.,_

2400 I I .,, ~·~~~-------------·---
k;·· ,,,....---------------=-.:-...::=:-:-=::::_--==---====--===-=-
! ;" .,C/1_

120CI /

I
I

0 ~0.....__"-"'_._ ~,~ooo..._....,._._,~_ 2000-"-""""'_._.....,_ __.3000

BLOCK SIZE (CHARACTERS)

TEST CONDITIONS: (Error Rate 1E-5)

Data Bits/Char
Total Bits/Char
Overhead Char/Block
Blocks to Resend
Length of Circuit
Length of ACK

8
8
8
1

1000 Miles
6 Char

Figure 2

THROUGHPUT VS MODEM/LINE 'TYPE

ERROR RATE 5 IN 10•5

BLOCKSIZE

TEST CONDITIONS: (Error Rate 5E-5)

Data Bits/Char 8
Total Bits/Char 8
#Overhead Char/Block 8
#Blocks to Resend
Length of Circuit
Length of ACK

1000 Miles
6 Char

Figure 3

81

82

THROUGHPUT VS PROPAGATION

40000 MILES
r/~~~....-~-~-~~:-!"'~-~-!'!:'!'!!~,,.,,~,....,,~-,,· -;,,--- ---------=-

//~~,,,,,- --------------------- 'Z'

w/
3000 MILES

1500 MILES

2400

1000 MILES

500 MILES

1200

100 MILES

I/ ,,
I
I
I
I
I
I
I
I
I
I
I
I

TEST CONDITIONS:

Error Rate
Data Bits/Char
Total Bits/Char
Overhead Char/Block
Blocks to Resend
Length of ACK
Speed
RTS/CTS

1E-5
8
8
8
1

6 Char
4800 Bits/Sec
OMS

··

1000 1!500 2000

BLOCK SIZE ICHARACTERSl

Figure 4

4800 THROUGHPUT (BITS/SEC

2400

TEST CONDITIONS:

Line Speed
RTS/CTS
Length of ACK
Data Bits/Char
Total Bits/Char
Error Rate
Overhead Char/Block

THROUGHPUT VS PROTOCOL

BLOCK SIZE (CHARACTERS)

4800 Bits/Sec
0 MS
8 Char
8
8
1E-5
8 Char

Agure 5

83

Section II.

A. MODEM Economics

Currently available synchronous modems vary widely in price (from under
$300.00 to over $15,000.00), in speed (1200 to 56,000 BPS), in features (no
frills to modems with internal 16-bit processors, network management, built-in
diagnostic test equipment, keyboards, displays .. even modems that know their
own serial numbers) and in support (send it back to the factory, spare-in-the­
air, on-site same day service).

A method of normalization is suggested here: Select a minimum set of re­
quired features and compute THROUGHPUT vs. PRICE.

As can be seen from the graphs in section I, the error rate of the DCE
and line combination has a pronounced effect on throughput (Figure 1). If a
half-duplex MODEM is required, synchronization/training time becomes a factor;
however, this is a figure which may be obtained directly from the manufac­
turers data sheet.

Error rate, on the other hand, while it may be mentioned, is not usually
accompanied by much supporting data. Asking the vendor "What were the mea­
surement conditions - signal-to-noise ratio, amplitude distortion, phase jit­
ter, etc.?" or "Were the impairments used in testing this MODEM applied one at
a time or if applied in combination, what were the combinations?" usually
elicits a vague response of "Hmmm, uh, I guess I'd have to call the factory
for that information but our company tests our MODEMs real well," if there is
any response at all.

In addition to the MODEM error rate question above, how does the com­
munications facility measure up? Will a conditioned line be required? Should
a digital facility be considered?

The answers to these questions can be obtained by a judicious choice of
how to test the candidate MODEMs.

B. Measuring Modem Quality

1. Live link testing

Probably the simplest method of determining the quality of a particular
model of MODEM is to connect the candidate MODEM pair to an existing line and
comparing the throughput of the candidate pair with that of the pair previous­
ly in use by applying one of the error rate test methods noted above.

This method has severe limitations in that it tests the candidate MODEM
pair under only one set of line conditions, namely that set of conditions ex­
isting at the time of the test on the live circuit.

How can we tell how the MODEM will react under other conditions on other
lines?

2. Impairment Distribution

Studies performed on the U.S. Bell telephone system b~tween 1959 and 1970
(1970 is the latest survey for which results have been published) have pro­
vided information on the distribution of impairments to be found on a very
large number of lines. A summary of these studies is included as Figure 6.

PERCENT OF LINES

IMPAIRMENT ro w ~ ~ ~ w ro ~ oo %

ATTENUATION

DELAY

SIGNAL/NOISE

FREQ. SHIFT

PHASE JITTER

2ND HARMONIC

3RD HARMONIC

C4

C4

43

0

2

47

45

C2

C2

41

0

3

44

44

C1 C1 C1 C1 C1 UN UN*

C2 C2 C1 C1 C1 C1 C1 C1

40 39 38 36 34 33 28 27

0 0 .1 .2 .4 .7 1.1 2

3.5 3.8 4 5 6 7 8 9

42 41 39 37 36 34 31 29

43 41 39 36 35 34 32 31*

*UNCONDITIONED LINE LIMIT

Figure 6

In the first two rows of Figure 6, the designations Cl, C2, C4 and UN
refer to the leased line conditioning specifications. A summary of these
specifications is provided as Figure 7.

CONDlTIONING LEVEL

UNCONDITIONED C1 C2 C4

FREORANGE 300-JOOOHz 3000-JOOOHz 300-JOOOHz 300-3200Hz

RESPONSE
RANGE I DB VAR. 300-3000 I -3 TO +12 300-2100 I -2 TO +6 300-3000 I -2 TO +6 300-3200 I -2 TO +6

500-2500 I -2 TO +8 1000-2400 I -1 TO +3 500-2800 I -1 TO +3 500-3000 I -2 TO +3

300-30001-3 TO +12

DELAY OISTAISI <~I 800-2EOOHz. <llOOJS I I000-2400Hz <500uS 11000-2600 HZ <30<NS / I000-2600HZ

VALUE/FREQ <I~ I 800-2EOOHz. <1500l$/600-260CIHZ <500uS I 800-2800Hz

~ 1500-2800 Hz <1500u$ I ti00-3000Hz

<JOOOuS 1500-JOOOHz

IMPULSE$ 15 COUNTS I 15 MIN. 15 COUITS / 15 MIN. 15 COUNTS I 15 MIN. 15 COUNTS / 15 'MIN.

Figure 7

85

Please note that in reading Figure 6, the entries represent that a line
in a particular percentile column will have impairments no greater than the
amount shown.

The problem now is to find a hundred or so lines to sample that fall into
the summary chart within the percentage of confidence that we'd like to have
in our choice of MODEM and then test our candidate MODEM pair on each of these
lines.

Fortunately there is a better solution and it might be designated ' mul­
tiple parameter simulation ' for want of a shorter name.

3. Simulation testing

The simulation testing method is quite simple. Only three pieces of
equipment are required:

1. A candidate MODEM

2. A Bit Error Rate Test set (BERT)

3. A line simulator.

The test procedure consists of completing the following steps:

1. Connect the output of the candidate MODEM to the input of the
line simulator.

2. Connect the input of the candidate MODEM to the output of the
line simulator.

3. Connect the BERT to the candidate MODEM.

4. Power up all of the equipment.

5. SET UP THE LINE SIMULATOR FOR THE APPROPRIATE TEST CONDITIONS.

6. Start the BERT.

7. Record the results.

8. Repeat steps 5, 6 and 7 a few hundred times.

The key to success here, of course, is knowing how to set up the line
simulator.

C. Comparative testing

Examining the ranges of the parameters in Figures 6 and 7 and translating
them into combinations useful for the limited number of tests which can be run
economically is not difficult. Combinations of impairments might be chosen so
that the tests run are statistically representative of the universe of actual
circuits but that is another thing that is beyond the scope of this paper.
Let us choose a set of tests that are useful in COMPARING the performance of
our candidate MODEMS under varying line conditions by subjecting them to test
conditions which are likely to occur on a large percentage of available lines.

The error rates determined in these tests will lead to the

THROUGHPUT VS PRICE

used to select the most economic unit.

Figure 8 shows a mapping of the digits 0 through 9 to the quantized im­
pairment levels which were not exceeded in 95% of the lines tested in the
1969/1970 U.S. Bell System survey.

IMPAIRMENT

ATTENUATION
DELAY

SIGNAL/NOISE

FREQ. SHIFT

PHASE JITTER

2ND HARMONIC

3RD HARMONIC

IMPULSE NOISE

0

C4

C4

43

0

2

47

45

-18

RANDOM NUMBER

2 3 4 5 6 7

C2 C1 C1 C1 C1 C1 UN

C2 C2 C2 C1 C1 C1 C1

41 40 39 38 36 34 33

0 0 0 .1 .2 .4 .7

3 3.5 3.8 4 5 6 7

44 42 41 39 37 36 34

44 43 41 39 36 35 34

-16 -14 -12 -10 -8 -6 -4

*UNCONDITIONED LINE LIMIT

Figure 8

8 9

UN* UN

C1 C1

28 27

1.1 2

8 9

31 29

32 31*
-2 0

To determine the parametric combinations necessary to set up the line
simulator simply generate a series of random numbers of N digits (one digit
for each type of impairment covered by the line simulator) and apply each of
the digits to a corresponding parameter type and level.

For example, if the random number is 42633409 the line simulator setup
might be:

digit

4
2
6
3
3
4
0
9

parameter

Attenuation Distortion
Envelope (delay) Distortion
Signal-to noise ratio
Frequency Shift (offset)
Phase Jitter
Second Harmonic Distortion
Third Harmonic Distortion
Impulse Noise

level

Cl
C2
34 dB
0 Hz.
3.5 Degrees

-39 dB
-45 dB
0 dB.

87

88

Impulse noise repetition rate should be set to create 15 counts per 15
minutes of test duration.

If a bit error rate test of lOA6 bits is to be performed on a 4800 BPS
MODEM each test setup will require about 3.5 minutes (10A6 bits / 4800 bits
per second) to complete. Allowing 2.5 minutes to note the end of test, record
the result and set up the next test, shows that 100 test will take about 10
hours. If you were to test all of the 8 impairment types with the ten levels
shown in Figure 8, the time required would be approximately 190 years neglect­
ing time out for coffee breaks.

D. Presenting the results

Since each of the 100 or so tests performed. above has an individual
result, comparing candidate MODEMs on a test-by-test basis can still be dif­
ficult. However, if one simply multiplies the number of bits per test by the
number of test performed, subtracts the total number of errors and divides by
the number of tests times the time per test, the results will be:

Number of bits correctly transmitted
Throughput = -----------------------------------­

Time to correctly transmit the bits

It is now a simple matter to COMPARE candidate MODEMs using

THROUGHPUT VS PRICE

Biography

Sallie Kay Stodghill has been with AMFAC Distribution for just over 1 year
during which she has participated in the design of AMFAC's network of over 100
HP3000 computers. She is currently in the process of installing and managing
this network. A graduate of Mills College in Oakland, California, with de­
grees in mathematics and computer science, Mrs. Stodghill has been employed by
both Hewlett-Packard and Tandem Computer Co. in the field of data communica­
tions for years.

Jack Hymer has been employed by Hewlett-Packard for 10 years in the Bellevue,
Washington Sales and Service office. He is currently a Network Consultant.
Mr. Hymer graduated from the University of Washington in 1973 with a BSEE
after working as a communications technician for 9 years.

89

NETWORK DESIGN FOR A DISTRIBUTOR

JACK HYMER
NETWORK CONSULTANT
HEWLETT-PACKARD
15815 S.E. 37TH STREET
BELLEVUE, WA 98006
(206) 643-4000

This paper describes the business needs analysis, traffic study, network
design and alternative options analysis used at AMFAC Distribution to consoli­
date three separate operating divisions' data communications requirements in
one network of approximately 120 machines.

Bisync autodial OS, X.25 private network and terminal/multiplexer solu­
tions integration methods are presented. Network management and operation
problems are discussed. Use of commercially available network design software
in the design of this network is discussed. Analog and digital cost models
are covered.

OUTLINE

Section I. The Opportunity

A. AMFAC Distribution
1. Operating Divisions Organizations
2. Business Volumes
3. Geographic Distribution

B. Applications to be Supported
1. SFD (Systems for Distributors)
2. MTI (Management Technology Incorporated)
3. ADI (American Data Industries)
4. HPDESKMANAGER

C. Information Flow and Traffic Volumes
I. Electric
2. Industrial and Plumbing (I&P)
3. Health Care

D. Restraints and Requirements

Section II. Alternatives

A. Topologies
I. Central CPU(s) with point-to-point multiplexer links
2. Central CPU(s) with multipoint links
3. X.25 Public and Private Networks
4. Dialup

91

92

B. Response Time Modeling
1. Connections Software

a. Input data
b. Tariffs
c. Output data

2. Results
c. Considerations

1. Analog vs Digital lines
2. Private vs Public X.25 Networks

Section III. Recommendations

A. General
B Electric
C. I&P
D. Health Care

Section IV. Network Management

A. Available Types and Selection
1. Analog Lines
2. Digital Lines
3. Multiplexers
4. X.25 Switches

Section V. Summary

Section I. The Opportunity

A. AMFAC Distribution Group

AMFAC, Incorporated is a New York stock exchange listed diversified ser­
vice company with interests in wholesale distribution, food processing,
retailing, hotels and resorts, sugar and land development and management.

AMFAC Distribution Group is the largest of the AMFAC, Incorporated core
business, generating revenues of more than 1.3 billion dollars in 1985 from
three specialized segments of the US wholesaling sector. AMFAC Distribution
Group is located in Folsom California, 15 miles east of Sacramento.

AMFAC Electric Supply has 87 branches in 16 states marketing a full line
of wire, cable, conduit lighting, switchgear and other electrical products to
the residential and commercial construction industry, dealers, utilities and
government customers. AMFAC Electric ranks fourth in sales within the US
electric wholesaling industry.

The AMFAC Electric Supply business is organized as 7 regions located in
California(2), Hawaii, Washington, Utah and Texas(2), serving branch locations
in up to 5 states from each region office.

AMFAC Industrial and Plumbing Supply (I & P) serves 24 states through 156
branches distributing pipe, valves, fittings, plumbing supplies, building

materials, fluid power and industrial supplies to construction, utility in­
dustrial and government customers. AMFAC I & P has the largest geographical
coverage of any US mechanical supplies distributor.

The AMFAC I & P business is organized as 5 regions located in Califor­
nia(2), Colorado, Texas and Washington serving 18 geographical Market Areas
composed of branches located in up to 4 states per Market Area.

AMFAC Health Care serves 47 states through 57 branches distributing ethi­
cal pharmaceuticals and selected over-the-counter items to independent drug
stores, retail drug chains and hospital pharmacies.

The AMFAC Health Care business is organized as 4 regional accounting cen­
ters located in California, Indiana, Texas and Washington serving the indi­
vidual branch offices and reporting to Folsom.

B. Application Support

Application software system selected by AMFAC for distribution control
were Hewlett-Packard's Systems For Distributors (SFDf for the Mechanical divi­
sion, Management Technology Incorporated (MTI) for the Electric Division and
American Data Industries (ADI) for the Health Care division. These applica­
tions differ in their terminal handling characteristics in that character mode
(Health Care's ADI software), V/Plus Block mode (Health Care's ADI software
and Electric's MTI software) and Data Entry Library (DEL) Block mode (Mechani­
cal 's SFD and Electric's MTI software) are used.

The significant limitation in the terminal handling methods to be used is
that DEL Block mode is not supported in an X.25/Packet Assembler/Disassembler
(PAD) environment, eliminating X.25 as a consideration in terminal connection
for the Mechanical and Electric divisions.

Analysis of the actual screens used by the three applications showed CPU
character counts ranging from 4 to 7055 characters and CPU input character
counts of 1 to 609 characters.

As CPU output character counts exceed about 400 characters, delays encoun­
tered in the communications link can cause perceptible screen-writing time
degradation. Above about 2000 characters these delays may render screen­
writing time unacceptable.

For example, a 2000 character screen requires 2000/80=25 ENQ/ACK hand­
shakes. At 9600 BPS direct connect this screen would require:

2000 data characters + 25 ENQs + 25 ACKs

960 characters/second

2050

960
= 2 .14 seconds

93

94

For a single user, a statistical time division multiplexer (STATMUX) with
a terrestrial 9600 BPS composite link rate and no ENQ/ACK spoofing generates a
maximum screen-writing time of approximately:

2025
T(in) = ---- = 2.11 sec

960

+

2300
T(xmit) 1. 92 sec

1200

+

2025
T(out) 2 .11 sec

960

+

25
T(acki) --- = 0.03 sec

960

+

275
T(ackx) ---- = 0.23 sec

1200

+

25
T(acko) --- = 0.03 sec

960

=6.41 seconds

Time to put characters into CPU side MUX
at 9600 BPS.

Time to transmit characters to remote MUX
with 10 overhead characters per MUX frame.

Time to move characters from remote MUX
to remote terminal at 9600 BPS.

Time to move ACK from remote terminal to
remote MUX

Time to move ACKs from remote MUX to CPU
MUX with 10 overhead characters per
frame

Time to move ACKs from CPU mux to CPU

While use of a STATMUX with a terrestrial 9600 BPS composite link rate
and ENQ/ACK spoofing might theoretically produce a screen-writing time close
to that of the direct attached terminal with one user, measurements indicated
a screen-writing time of 3.1 to 4.4 seconds could be expected with real multi­
plexers, modems and lines.

Due to the large screen requirements, a primary design goal was to imple­
ment terminal links with minimum delays.

AMFAC expressed interest in using HPDESKMANAGER in the Distribution
Group, creating an all-systems interconnection requirement to be considered
during the network design process.

c. Information Flow and Traffic Volumes.

Figure 1 is a pictorial summary of the communications requirements for
AMFAC Electric Supply division.

Figure 2 is a pictorial summary of the communications requirements for
AMFAC I & P division.

Figure 3 is a pictorial summary of the communications requirements for
AMFAC Health Care division.

95

96

ELECTRIC DIVISION HP3000
,,.
, "
'
'
'

REGION HP3000

BRANCH H P3000' S
Legends:

1 Pricing Updates
2 Application Software Updates
3 Conversion Files
4 Consolidated Purchasing
5 EiC Summary
6 Central Item Number Assignment
7 Stock Status Inquiries

' '
' /,";_ ' "---0---'

8 General Ledger Account Balance Summary
9 Summary Database

"' '

10 Regional Accounting
11 Inter-Branch Ordering
12 Electronic Moil Figure 1

__ Botch File Transfer
______ Interactive

I & P DIVISION HP3000

8

REGION HP3000

0

MARKET AREA HP3000

Legends:

1 financial Doto
2 Soles Statistics
3 Pricing Updates
4 Software Updates
5 SFD Application
6 Credit Manager Access
7 Regional Accounting
8 Electronic Moil

'

~
'

figure 2

__ Botch File Transfer
_ _ _ _ _ _ Interactive

97

98

HEALTH CARE DIVISION HP3000

BRANCH HP3000

Legends:

1 Centralized Poyobles
2 Centralized Purchasing
3 Marketing Doto
4 Journal Entries
5 Inventory Management
6 Software Updates
1 Regional Accounting
8 Electronic Moil Figure 3

ri'
'•' .
0

__ Botch File Transfer
_ _ _ _ _ _ Interactive

Traffic volumes were collected for the information flow paths shown in
the figures (where available) and were estimated where data was not available.
collection techniques varied form obtaining AMFAC-prepared detailed informa­
tion, to interview and data collection via prepared forms, to character count­
ing with an HP4951A data analyzer on active applications terminals. Traffic
volume information is quite extensive and will not be presented here unless
pertinent to the network design activity being discussed.

D. Restraints and Requirements.

As in any real network, several restraints and requirements were imposed
on the network design by the customer, AMFAC Distribution, Inc.

These restraints/requirements were:

1. Industrial and Plumbing
Restraints:

a. All CPU locations were pre-determined.
b. Region, Market Area and Branch connectivity were predetermined.

These restraints limited the application of network design algorithms
which produce minimum cost networks.

Requirements:
a. Terminal response time less than 3 seconds average, less than 9

seconds 95th percentile.
b. Batch communications complete overnight.

2. Electric
Restraints:

a. On topology - minimal within a region. Some small, terminal
only branches were pre-determined.

b. Region locations are pre-determined.

Requirements:
a. Terminal response time less than 3 seconds average, less than

9 seconds 95th percentile.
b. Branches should have the capability to do inter-branch ordering
c. Batch traffic completes overnight.

3. Health Care
Restraints:

a. CPU per branch.
b. Region accounting locations pre-determined (no CPUs).

Requirements:
a. Batch traffic completes overnight.

99

100

Section II.

A. Topologies

Topology considerations were quite simple.

I & P:

I & P restraints and requirements dictated a terminal network with point­
to-point lines and multiplexers for a supported configuration with minimal
link delays and Region-to-Division batch links (dialup bisync DS).Many Region
and Market Area HP3000's were co-located dictating a direct connection for DS
between these machines. The only topology consideration, then, was the
Region-to-Market Area cases where the Market Area HP3000 and the Region HP3000
were not co-located. The interactive regional accounting traffic dictated a
leased line between these sites but the volume did not support 24 hour connec­
tivitiy. A design goal of facility sharing between I & P and Electric net­
works was developed to permit I & P use of existing Electric leased facilities
where possible to permit low volume interactive traffic for I & P regional
accounting.

Health Care:

Health Care requirements and restraints dictated a dialup network using
bisync autodial DS at all branch locations. The traffic analysis study indi­
cated that communications for the largest branch would require 92 minutes per
day and the smallest branch 21 minutes per day at 4800 BPS, half-duplex, 150
ms. turnaround delay or 143 and 33 minutes respectively at 2400 BPS, full­
duplex, no turnaround delay on lines with an error rate of 1 in lOA5 bits.
Daily and monthly data transfer costs were determined based on 11 PM to 8 AM
AT&T direct dialing rates to do comparative costing of the two speed choices.
Results were $7268 per month at 2400 BPS and $4699 at 4800 BPS, a difference
of $2569 per month. For the 41 sites considered, a modem cost differential of
$1500 per site could thus be accommodated for a 24 month purchase price pay­
back from line cost savings. (24*$2569/41=$1503). A 4800 BPS Bell 208B com­
patible MODEM and Bell 801C compatible autodialer that met this cost criteria
were selected and, to further increase savings, WATS lines were installed and
50 ms. turnaround was selected at central site MODEMS to be used with sites
within 100 miles per the Bell PUB41211 paragraph 2.2 recommendation.

To verify the estimated transfer times for the largest branch, multiple
tests at 2400 and 4800 BPS were performed with actual data. Results agreed to
within 4 percent at 240 BPS and were exact at 4800 BPS.

Electric:

For the Electric division, 4 topologies were considered:

1. 1 or 2 Central CPUs within a region (large HP3000/Series 48 or small
HP3000/Series 68) with point-to-point terminal multiplexer links to
branch locations.

2. 1 or 2 Central CPUs within a region (large HP3000/Series 48 or small
HP3000/Series 68) with multidrop links to terminal locations.

3. Distributed HP3000/Series 37s at branches, HP3000/Series 42 or 48 at
Region locations. Non-cpu branches (twigs} connected via
point-to-point multiplexer links. Fully interconnect CPUs within
a region via private or public X.25 networks to limit INP
requirements at each site.

4. Autodial DS between systems.

Item 4 was discarded immediately due to the 1 to 2 minute delay in es­
tablishing connection with another branch plus the CPU overhead associated
with session establishment and deletion.

Topologies 1, 2 and 3 were then modeled for response time and cost using
the techniques described in Section IIB. All three topologies met the 3
second average and 9 second 95th percentile response time requirements with an
assumed host response time of 2 seconds with exponential variation. Topolo­
gies 1 and 2 failed to meet the response time objectives when remote site
printing requirements were imposed on the links.

More importantly, and contrary to the modeler's intuition, the cost com­
parison of these 3 topologies revealed that a private X.25 network with analog
links was 29.65% less expensive than a point-to-point terminal/multiplexer
network with 2 central CPUs and 24.26% less expensive than a multidrop network
with 2 central CPUs.

Diagrams of the actual topologies modeled are included as Figures 4, 5
and 6.

101

102

Santa Rosa
Branch Eureka San Rafael Stockton

0000
9.6 ~ 9.6 ~ 9.6 ~ 9.6 ~

HP3000/SERIES 68 SANTA ROSA REGION

Gilroy

9.6 D
4.8 to Folsom

HP3000/SERIES 68 SAN JOSE

Concord Santa Cruz San Carlos

Multiplexer I 2 CPU
Figure 4

Sparks ..---~
NV

4.8

Tonopa~MUX
NV
2312 2134

4.8 San Rafael 9.6 Stockton 9.6 Eureka

HP3000/SERIES 68 SANTA ROSA REGION

HP3000/SERIES 68 SAN JOSE

Santa Cruz

4.8

Gilroy

CJ =2934 0 = 2333

c::l:J = 2392

San Carlos

4.8

Concord

Multidrop I 2 CPU

Figure 5

4.8 to Folsom

Tonopah

103

104

Santa Rosa Santa Rosa
Eureka San Rafael Stockton Branch Region

~ S42 ~ ~ ~
~·· D ~·· ~ .. ~·· dlO

9.6 -

X.25 SWITCH SANTA ROSA REGION)

(
San Jose

S42

G~roy

~··
X.25 SWITCH SAN JOSE)

~ ~ ~ ~ ~·~~
B B B S37

Concord Santa Cruz San Garlos

() = X.25 Switch
-----'" =° =2392 I..

o=MUX c::i = 2934 "I

LJRCJ
X.25 Private Network

Figure 6
Tonopah, NV

B. Response Time Modeling.

Of the tools available for network design and analysis, two were con­
sidered applicable at AMFAC: MNDS (Multipoint Network Design Software) from
Connections, Inc. and MIND (Modular Interactive Network Designer) from CONTEL
Information Systems. MNDS was selected on a cost, speed and ease of use ba­
sis. MNDS runs on an IBM PC/XT and was considered suitable for long-term use
at AMFAC designing, pricing and verifying networks of the AMFAC region size.

1. CONNECTIONS Software.

MNDS provides the user with the capability of performing 2 primary
functions:

1. Predictive performance analysis of multipoint networks.
Point-to-point links are simply multipoint links with only 2 points.

2. Topological optimization and alternative price comparison for data
communications.

MNDS uses the Esau-Williams algorithm for network optimization which pro­
duces a minimum cost conectivity but is not exact (i.e. link drops/adds may
produce a lower cost solution).

A. Input Data.

Data required to model a network is provided to MNDS in the following
categories:

1. The message file (MF) contains the details of each of the applications
which operate in the network. MNDS can consider up to 50 separate
application types.

2. The protocol file (PF) is already prepared with 4 default protocols.
If these are acceptable, the designer only has to review them and
save them in the network database. If the designer is using non­
default or customized protocols to do performance analysis (such as
when DS or MTS are considered), then the PF must be completed for each
of them.

3. The network file (NF) is used to enter the design default values.
These are not necessary if the designer is only doing optimum routing
and pricing. The NF is also not needed if the designer chooses to
enter all of the performance criteria directly into the response
model (RM).

4. The site file (SF) contains the specifics of each physical location
in the network. MNDS can accommodate up to 200 locations, 10 host
computer sites and 20 concentrator/multiplexer sites. A total of
230 sites in each unique network can be handled.

5. The traffic file (TF) contains the number of times each application
occurs at each sit in the site file (SF) during the period
specified by the designer.

105

106

B. Tariffs.

MNDS uses FCC tariffs 9,10 and 11 for pricing. FCC tariff 9 covers
Interoffice channels, tariff 10 covers the location of offices and services
for serving central offices and tariff 11 covers access rates on a state
average basis. Since a large portion of AMFAC's network is located in Cal­
ifornia, a California specific pricing diskette was obtained for intra-LATA
and inter-rate-center channel pricing.

c. Output.

MNDS has 4 modeling programs:

1. Response Model (RM) allows calculation of response time and line
utilization for a selected set of network characteristics.

2. Distribution Model (DM) graphically depicts the RM results.

3. Link Model (LM) provides the least cost network layouts and pricing.

4. Operator model (OM) approximates the number of terminals, operators
and telephone trunks required at a site.

2. Results.

Modeling was performed on 4 branch sizes in the Electric Supply division's
Northern California Region for multipoint and point-to-point multiplexer lines
considering each MTI application without screen changes (i.e. data and separa­
tor characters only). The results were used to determine a network topology
for the Electric supply division. These results showed that neither multi­
point (of even 1 drop) or point-to-point multiplexer links could meet the
stated goal of 3 seconds average response time when printing was taking place.

C. Considerations.

Of the many items considered during the network design, probably the most
taxing areas centered around using digital or analog communications links for
leased lines and whether to use public or private x.25 networks for CPU
interconnection.

1. Analog vs Digital lines.

Analog lines have the following benefits:
a. Widespread availability
b. Modem availability from 1200 to 19200 BPS
c. Well developed testing methods
d. Moderate costs
e. MODEM based network management systems are available.

Analog lines have the following disadvantages:
a. Comparatively high error rates (1 in !OAS bits worst case, in

lOA6 bits expected with some currently available MODEMS)
b. High speed MODEMS have relatively high cost
c. Timing considerations in large networks may be difficult.

Digital lines have the following benefits:
a. Low error rates. Do not confuse the expected error rate of 1 in

lOA7 bits with the expected 99.5% error-free seconds which can
be translated into a bit error rate of .5 in lOA2 or 5 in lOA3
which is not very good.

b. Low DCE (Data Communications Equipment) cost.
c. Automatic circuit rerouting to alternate path.

Digital lines have the following disadvantages:
a. Higher cost than analog lines. Cost analysis of the model region

and of the entire network revealed that on the average a digital
line costs 1.92 times as much as an analog line. Comparisons
were also done in California alone using both the AT&T and CPUC
pricing which showed that digital cost 1.85 times as much as
analog.

b. Limited availability.
c. Limited variety of DCE speed. Present offerings are 2.4, 4.8

9.6 and 56000 BPS.
d. Limited customer testing options.
e. Limited network management options.

For cost comparison a 9600 BPS circuit was chosen. Costs were:

DIGITAL
2ea CSU/DSU ~= $1,600

line at $960 /month

ANALOG
2ea MODEM @"15";900 = $11,800

line at $500 /month

Neglecting the error rate differences, it can be seen that the analog
investment can be paid off in ($11,800-$1600) I ($960-$500) = 23 months.
On a 5-year cost of ownership basis the difference is:

Digital=$1,600 + (60*$960) = $59,200
-Analog=$11,800 + (60*$500) = $41,800

$17' 400

Amplifying factors such as the non-availability of digital service at
many of the sites in the network and the long digital installation lead times
plus the lack of network management options for·digital solidified the choice
of analog circuits for AMFAC's network.

2. Private vs X.25 networks.

Comparison of the cost of public vs private X.25 networks was relatively
straightforward. Using public data networks (GTE TELENET chosen for compari­
son) the cost of CPU interconnect for Electric and I & P was $154,209 per
month. Acquisition cost of the private X.25 network was computed at $261,000
for switches plus monthly MODEM and line lease costs of $81,877 (AT&T Total
Service Offering). Comparison shows a payback of:

$261,000/ ($154,209-$81,877) = 4 months!!

107

108

III. Reconvnendations.

Recommendations to Amfac took the following forms:

A. General:

1. Use analog lease lines.
2. Use analog MODEMS with network management capability (Codex 2600

series)
3. Use multiplexers with ENQ/ACK spoofing, with a buffering scheme which

will allow termtype 19 remote spooled printers to be used and with HP
line, page and user-controlled block mode support (Codex 6002 series)

B. Electric Supply Division:

1. Use an X.25 Private network for CPU interconnect.

C. I & P:

1. Use a Point-to-point multiplexer terminal network.
2. Connect CPU's via leased facilities using x.25 DS and share facilities

with Electric when possible.
3. Use time division multiplexing (TDM) for minimum delay times to build

multidrop-like lines to minimize mileage costs. (4 and 6 channel TDMs
are available as a low cost option to the Codex 2600 series MODEMS)

D. Health Care:

1. Use dialup bisync DS at 4800 BPS.
2. Use OUTWATS lines
3. Use Codex 520BR MODEMS and 2207 autocall units

E. Independent Verification

Toward the end of the network design process AMFAC Distribution group
secured the services of Network Strategies Inc. (NSI) to perform 6 tasks:

1. Review all documentation relative to the network design
2. Resolve open issues and interview AMFAC staff
3. Develop network requirements
4. Develop Major network architecture components
5. Develop detailed architecture report
6. Develop a 2-year phased implementation plan

The results of NSI's first 5 tasks is presented in Figure 7. Examination
of the the least cost solution column shows agreement with the HP designed
solution.

Architecture Cost Comparison

Dial Leased Publlc Private StatMux Lea at
Une X.25 X.25 (Leased Line) Coat

Host- 2 Too Few 3 1
Too Few Private

Host INP Slots INP Slots X.25
Electric

Host-
3 2

No PAD No PAD 1 StatMux Te~r,:nal Support Support
Host- No Private
Host 4 2 3 1 Collocation

X.25 l&P _21 !iQfils

Host- 3 2
No PAD No PAD 1 StatMux Terminal Support Support l6002!

Host- 1
Oial•x.whet'ie

Health Host (High) (High) (High) (High) COllOcaled w/
other tof'ns

Care Host- 1 PAD to

Terminal 4 3 5 (PAD) 2 x.25 _..,, Switch

Can't Can't Can't Can't Conaolldatlon
None Handle Handle Handle

Problems l&P l&P Handle
Electric Terminals Terminals Electric

Need Need Need
Need X.25 Conaolldatlon StatMux StatMux

Configuration
All Dial X.25 For For l&P For l&P For Electric

Electric Terminals Terminals

Figure 7

109

110

Section IV Network Management

A. Available types
1. Analog lines

Analog MODEMS are available which provide network management by using
part of the available channel bandwidth for an independent commun.ications path
(side channel). These systems provide error statistics, modem configuration
control, individual modem identification, set-point alarming, management
reporting, etc. Features vary from front panel access to multiple node, mul­
tiple operator control and costs range from a few hundred dollars per MODEM to
over $100,000 per system. The Codex 2600 Series MODEMS support Codex Dis­
tributed Network Control System (DNCS).

2. Digital lines.
Only two systems were evaluated for digital link network management

systems. One system, AT&T's DATAPHONE II LEVEL 4 provided most of the fea­
tures noted above but was limited to a non-distributed controlling environ­
ment. An alternative offering, Customer Test Service, available from AT&T on
a line-by-line basis and requiring only a terminal and 1200 BPS MODEM
for access was evaluated but proved to be extremely limited in its testing and
problem resolution capacity. Since the anticipated direction was to have an
all analog network, these two solutions were not exhaustively evaluated.

3. Multiplexers.
The multiplexers chosen for the AMFAC network have a control port from

which the multiplexer may be configured and statistics obtained. The minimum
requirement is to set the control port baud rate via front panel switches.
Remote access to multiple units is accomplished via a Telematics programmable
selector switch and a 1200BPS dialup modem.

4. X.25 Switches
Dynapac Model 8 and 12 X.25 switches chosen for this network based on

HP hardware and software support availability for the Model 8 and the connec­
tivity and throughput of the Model 12. Access to these devices for configura­
tion and statistics will be vial a PAD at Folsom.

Section V Sununary

During 1985 86 CPU and 56 terminal/multiplexer sites were installed.
Current HP activities include the completion of the design of the network man­
agement. AMFAC activities include continued installation of sites and im­
plementation of an X.25 pilot region.

**

Jack Hymer has been with Hewlett-Packard for 10 years and is currently engaged
in network design activities for HP customers as a Network Consultant.
Mr.Hymer obtained a BSEE degree from the University of Washington in 1973
after working as a communications technician for 6 years.

NETWORK SUPPORT:

THE MULTIVENDOR SERVICE DILEMMA

SUMMARY

Deborah Nelson
Hewlett-Packard Co.

When a network is malfunctioning, efficient problem diagnosis and resolution is the
immediate goal. However, since most networks are a combination of computer and
communication vendors' equipment, problem escalation procedures become unclear.
Fingerpointing among vendors is counterproductive to restoring the network to normal
operation. Service vendors need to recognize that to provide comprehensive support. they
must integrate cooperative problem resolution into their escalation process. However,
putting in place daily operating procedures between worldwide service organizations is
nontrivial. The user organization also has a responsibility to provide an internal operating
structure which will accomplish efficient problem resolution. A united effort of vendor
and user organizations is the key to effective network support.

INTRODUCTION

The multivendor environment is a fact of life in data communications. The multitude of
computation and communication products and technologies, specialized applications, and
the linking of departmental automation points have contributed to this situation. As
networks become more and more predominant, and therefore critical to business
applications, achieving efficient problem resolution within the multivendor environment
becomes imperative.

Providing effective service in this context produces a challenge for both vendor and user
organizations. Just as there are standards for communication between vendors providing a
common methodology for transferring information, a standard mode of operation shoul<l
be established for problem resolution among vendors.

To successfully support networking customers through a multivendor service
methodology, each vendor must examine their own service structure and define internal
service requirements. In addition, each customer needs to understand their role and
responsibilities in successful ongoing network operations and support.

SITUATION ANALYSIS

Many vendor support strategies are oriented to a homogeneous environment, which is
defined as one where they provide most, if not all, of the products, and therefore service.
For the customer it is difficult to find the best communications solution if a company is
restrained to one vendor as one vendor will not usually provide all possible data

113

114

communication and computation products. So instead, an applicable communications
solution is designed and implemented with the ongoing support tackled on a per incident
basis.

The vendors, being responsible solely on a product by product basis under traditional
service contracts, leave a large part of the initial problem diagnosis on the customer's
shoulders. The customer calls in the service personnel from each vendor separately to
work on the problem. If a solution is not forthcoming, the customer may ask all vendors
involved to work together on the problem, and then has the challenge of attemJ)fing to
schedule a mutual time. Once assembled, this situation can result in the customer
refereeing the vendors' service efforts with each vendor proclaiming innocence and the
problem still existing. Service vendors must begin to take a broader view of service and
incorporate dealing with other service organizations into their normal escalation
procedures.

CERTIFICATION

As a basis for a successful working relationship between vendors, the performance of the
vendor interconnection should be characterized. Both customers and vendors should
understand which vendor products work together within a specified environment. In
addition to providing a basis for mutual support, this would provide customers with
increased latitude in designing communication solutions to fit their application.

One way to achieve this is a program of cooperative testing between two or more vendors
to provide compatibility assurance to their customers. As vendors cannot test each of the
multitude of hardware and software configurations, a subset must be defined for the
testing. This subset should be as representative as possible of the most likely application
environments.

Often termed certification testing, this process confirms that within a defined
environment the tested products operate in their specified manner. For customers. this
provides confidence in the proper operation of the certified products when used within
the specifications. In addition, during the problem diagnosis stages, the interconnection or
these products could be supported by both vendors. Thus certification sets the stage for
successful support of the network.

Products could be chosen for the certification based on demand from mutual customers
and fit within each vendors offering. For example, a computer vendor may wish to
certify several modem models from different vendors in order to be able to support their
customers in the widest range of communication solutions. In summary, the certification
process offers customers a very flexible and robust range of communications solutions.
plus the added assurance that the configurations have been tested and are supported by
both vendors.

JOINT MAINTENANCE

The next step in providing a multivendor service methodology is to set up a formal
relationship between vendor service organizations. Under this arrangement, the vendors
will not physically service each other's equipment, but will integrate the other vendor(s)
into their escalation procedure. To be successful this relationship must be an explicit
process, clearly understood, and a part of each organization's daily operating process.

A suci:essful service relationship can be built between vendors with similar organizational
structures. For example, both vendors can have a centralized support facility as the initial
customer contact. This would allow customers a choice of initiating contact with either
service organization and provide a centralized contact between organizations. While
keeping the customer informed of the progress, the vendors could exchange information
regarding a problem on a timely basis. The methodology and type of information
exchanged would be described in a joint support operating plan which is created by and
shared between both organizations.

A centralized vendor contact is only part of the picture. Local cooperation between
vendors is also critical to a customer's success. Once a problem has been escalated to
onsite assistance, it may be necessary to have intervendor relations to either work jointly
at the customer site, or to initiate a service call and communicate problem status. The
local joint support effort will be based on a preestablished protocol and commitment
between vendors. As a result of the direct vendor interaction, the customer experiences a
more efficient and less frustrating problem resolution process.

VENDOR RESPONSIBILITIFS

The service vendor's responsibility is two-fold: to deliver effective network problem
resolution and to keep the customer informed and involved in the problem resolution
process. To accomplish this, the vendor first must implement joint operating agreements
with representative vendors. In implementing this, the vendor must realize that the
certified configurations will most likely vary from country to country, dependent on local
communications restrictions and popularity. The local vendor representatives should be
included in the initial support planning process before network installation, if the
customer wishes to take advantage of the cooperative vendor relations.

Another way to help ensure a customer's success, is to hold regular reviews to clarify
vendor and customer expectations, performance requirements, and outline expat1sion plans.
At this time, the customer can bring the vendor up to date on related network activities
and the vendor can work with the customer to plan for changes to the network, such as
major software revisions. This will give the customer added control of his own network
environment. The vendor can also help the customer identify internal operating
procedures to facilitate timely problem resolution.

CUSTOMER RFSPONSIBILITY

Customers have the responsibility to structure his internal operating procedures to
accomplish effective problem resolution in partnership with the various service
organizations and to facilitate communication among network service vendors.

The structure of an internal operations staff will have an obvious effect on timely
problem resolution. Even under a program of cooperative vendor relationships, the
customer organization must do the best job possible of initial problem description and
diagnosis. If the symptoms are described correctly up front, this will hasten any problem
resolution process. The customer organization should have an identified person to "own"
the problem, thus avoiding additional time delays and internal confusion. Good network
documentation can preclude frustration in the event of a knowledgeable staff member's
absence.

115

116

A critical factor in managing a network is the coordination of changes and expansion.
The customer, as the focal point for all vendor activities, must ensure that the vendors' are
aware of simultaneous or related activities, such as node or product additions.

And finally, active participation in periodic reviews with all service vendors provides a
formal process for the clarification of expectations, review of past performance, and an
arena to discuss future changes.

CONCLUSION

As the number and size of networks increase, accomplishing effective problem resolution
within the multivendor environment becomes critical. Vendors must expand their
traditional view of service to include cooperative vendor relationships. The success of
these relationships is based on the development of an explicit problem escalation process
integrated into each organization's daily operating procedures. A program of certification
testing can provide the foundation for joint maintenance. Certification will also provide
compatibility assurance to customers and broaden the available range of supported
communication solutions. In addition, the customer's internal operations must be
structured to facilitate the communication and problem resolution process. The mutual
efforts of vendor and customer organizations can effectively put an end to the
multivendor service dilemma bf network support.

Deborah Nelson ls presently Network Support Product Manager for the Product
Support Dl•lslon at Hewlett-Packard In Cupertino, California. In this capacity she
ls responsible for the de•e/opment and marketing of network maintenance and
Installation products. Deborah joined HP In 1981 and holds a Bachelor of Scle11ce
degree In Industrial Engineering and Management Scie11ce from Northwestern
Unl1>erslty.

Lynn Barnes
Hewlett-Packard Cupertino
U.S.A.

NOTE: See page 583.

119

Luo Beersmans
I.e. Systems n.v.
Belgium

"The Logical Life in your Data Sets".

NOTE1 Because of reasons out of the hand of the Host Committee, this
paper will not be published in the Conference Proceedings.

121

Introduction

TurboIMAGE INTERNAL FILE STRUCTURE

Doris Chen
Hewlett-Packard

Cupertino, California, USA

Through the last decade, many people have developed interest and expertise in IMAGE. Thousands of
programs and products have been written using IMAGE databases. With the release of Turbo!MAGE, an
enhanced version of IMAGE, the internal file structure has changed. To upgrade to Turbo!MAGE,
databases must be converted. The purpose of this paper is to provide IMAGE experts a better
understanding of the new file structure. Any privileged mode programs dependent on IMAGE internal
file structures may require modifications to run with Turbo!MAGE. The complete TurboIMAGE file
structure is presented here. The differences from IMAGE are discussed. Some examples will be given
during the live presentation. Note: Some information in this paper will also be included in the U-MIT
System Tables Reference Manual.

TurbolMAGE vs IMAGE

Turbo!MAGE has relaxed many IMAGE limitations (refer to the TurbolMAGE Reference Manual for
the new limitations). These are the reasons for changing the database data structure. A Turbo!MAGE
database consists of 3 types of files: a root file, master data sets, and/or detail data sets (same as IMAGE).
Master data sets must be converted due to the change of the detail chain count in the master set entries.
It was increased from a single word (65K entries in a detail chain) to a double word. The root file must be
converted due to the following changes:

a. The maximum number of items in a database was increased from 255 to 1023. An item number
can no longer be stored in a byte, it requires a word. Thus, the Item Table and Data Set Control
Blocks were changed.

b. The maximum number of data sets in a database was increased from 99 to 199. The Set Table and
Data Set Control Blocks were changed to accommodate additional data sets in the database and
additional fields in the data set. (A field is an item defined in the data set).

c. All major tables, i.e. the Item Table, the Set Table, and Data Set Control Blocks, have been moved
to begin at the record boundry for easy access.

d. Some information has been added to the root file information (label 0) and the database global
information (record 0) for general housekeeping purposes.

e. Two tables were added: Item/Set Maps and the Device Class Table.

Throughout this paper, a'+' next to a variable indicates the value or the meaning of the variable is new or
has been changed for Turbo!MAGE.

123

124

The database root file is an MPE file, with a file code of -400, created by DBSCHEMA. It consists of
information about the database: the password table, item table, set table, etc. The record size is 128 words,
fixed, binary format with a file system blocking factor of I. The size of the file depends on the number
of data items and data sets defined in the database.

Following is the general format of the root file. The detailed format of each table in the root file follows
the general format.

I
LABEL 0 ROOTFILE INFORMATION I

12B words!
~~~~~~ - I 

PASSWORD TABLE I 
~~~~~~~~~-' 

I
2 PASSWORD TABLE (CONT.) I
~~~~~~~~~-' 

I 
3 ITEM R/W TABLE I 
~~~~~~~~~-' 

SET R/W TABLE

I
RECORD 0 DATABASE GLOBAL INFO I

I 12B wordsl
I ITEM MAP - I
1------------------------1
I SET MAP I
I- - I

2 I ITEM TABLE I
I (variable size) I
I I
I SET TABLE I
I (variable size) I
I I
I DATA SET CONTROL BLOCKS!
I I
I (DSCB) I
I I
I (variable size) I
I I
I DEVICE CLASS TABLE I
I (variable size) I
I I

%
WORD 0 I RL'CONDITION (rootfile condition) I 0

1 1-RL'DATE --(creation -date) -, 1
2 1-RL'TIME (creation-time) I 2
3 I I 3
4 I RL' EVE RO PEN I 4
5 1-RL'COLDLOADID (cold_load_id) I 5
6 ,-RL'USERCOUNT -- I 6
7 1-RL'DBG'DST (DBG DST number) I 7
8 1-RL'LOGID ---(log-id for I 10

I transaction logging) I
11 I I 13
12 I RL' LOG PASS (log id password) I 14

I I
15 I I 11
16 I RL'FLAGS (database flags) I 20
17 1-RL'STORDATE (DBSTORE date) ---, 21
18 1-RL'STORTIME--(DBSTORE-time) I 22
19 I I 23
20 I RL' BUFSPECCOUNT (buffer s pee count) I 24
21 1-RL'ILRCREATEDAT'f""(date ILR log created) I 25
22 l-RL'ILRCREATETIME-(time-ILR-log-created)-1 26
23 I I 21
24 I RL'ILRLASTDATE (last log access date) I 30
25 l-RL'ILRLASTTIME-(last-log-access-time)-1 31
26 I 32
27 I RL'RBPREDATE (previous rollback date) 33
28 1-RL'RBPRETIME--(previous-rollback-time) 34
29 I 35
30 I RL'RBDATE (rollback date) 36
31 1-RL'RBTIME (rollback-time) 37
HI ~
33 I RESERVED 41
34 1-RL'LANGUAGE'ID (language id) 42
35 1-RL'LANG'MNEMONl<:(language-mnemonic) 43

I
42 I 52
43 I RESERVED FOR DBCONV 53
44 I • 54

RESERVED FOR FUTURE USE
63
64 RL'MAINTWORD
65
66
67
68 RL'BUFFERSPECS

to

127

77
(database maintenance 100
word) 101

102
103

(buffer specifications) 104

177

125

126

RL'CONOITION (IN ASCII):
TurboIMAGE uses 2 ASCII characters to indicate the condition of the database.
Following are the condition codes:

JB
FW
RM

MC
ME
IL
IE
IO
CN (+)

CA (+)

MV (+)

- The database has not been created yet.
- The database is OK.
- Random Modification. The database is being modified with

output defer mode.
- Maintenance Create. The database is being created by DBUTIL.
- Maintenance Erase. The database is being erased by OBUTIL.
- ILR is in progress (OBOPEN).
- ILR enable is in progress (OBUTIL).
- ILR disable is in progress (OBUTIL).
- Conversion by OBCONV is in progress. The process can NOT

be continued if OBCONV is interrupted.
- Conversion by OBCONV is in progress. The process can be

continued if OBCONV is interrupted.
- Data set move is in progress (DBUTIL).

RL'OATE: Root file creation date*. Its format is:

O: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15
lyear - - - - - lday:of:year I

RL'TIME: Root file creation time*. Its format is:

0: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15
lhour - - - - - - lmin~tes I
I seconds ltenth_of_seconds~~~I

RL'EVEROPEN: This field is no longer used under IMAGE Band TurboIMAGE.

RL'COLOLOAOIO: MPE system cold load id. This id and the RL'USERCOUNT
are used to determine if there was a system failure while
the database was in used.

RL'USERCOUNT: The number of users currently accessing the database.

RL'OBG'OST (+): The OBG (Data Base Global Control Block) OST number. When
the database is opened by the first user, this number is
stored here. Subsequent users can find the database OBG
easily.

RL'FLAGS:
bit 0 RECOVERY Def au 1 t is NO (0)

1 - LOGGING Default is NO (0)
2 ACCESS Oefau lt is YES (1)
3 DUMPING Oefaul t is NO (0)
4 - AUTO DEFER (+) Oefau lt is NO (0)

5-6 - SUBSYSTEM ACCESS Oefau lt is R/W (00)

7 - ILR Default is NO (0)
8 - ROLLBACK Defau 1 t is NO (0)
9 - Reserved for future use.

10 - DIRTY FLAG Default is YES (1).
This indicates the database has
been modified but not DBSTOREd.

11 - DBRECOV RESTART (+) Default is NO (0)
12-15 - Reserved for future use.

Bits 0 to 8 are set by DBUTIL. Bit 10 is set by DBSTORE, DBDELETE,
DBPUT, or DBUPDATE. Bit 11 is set by DBRECOV.

RL'STORDATE: Same format as RL'DATE*.

RL'STORTIME: Same format as RL'TIME*.

RL'BUFSPECCOUNT: Maximum number of buffer specifications allowed.

RL'ILRCREATEDATE: Same format as RL'DATE*.

RL'ILRCREATETIME: Same format as RL'TIME*.

RL'ILRLASTDATE: Same format as RL'DATE*.

RL'ILRLASTTIME: Same format as RL'TIME*.

RL'RBPREDATE (+): Same format as RL'DATE*.

RL'RBPRETIME (+): Same format as RL'TIME*.

RL'RBDATE (+): Same format as RL'DATE*.

RL'RBTIME (+): Same format as RL'TIME*.

RL'LANGUAGE'ID: Same format as defined in the system configuration.

RL'LANG'MNEMONIC: Language mnemonic for this database.
Maximum of 16 characters.

RL'MAINTWORD: For data bases with no maintenance word this field has
2 semicolons (';;') and trailing blanks.

RL'BUffSPECS:
O: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15 "

WO 68 lbuffers for 1 user- - !buffers for 2 users I 104
69 I buffers-for-3 user-s--1 buffers -for-4 users--1 105

I etc .•. - - -- - - --1
I I

127 lbuffers_for_119 users_lbuffers_for_120 users I 177

* All DA TE and TIME fields can be formatted (for display purposes) individually by calling the
FMTCALENDAR and FMTCLOCK Intrinsics respectively. Both fields can also be formatted at once
with the FMTDATE Intrinsic.

127

128

WORD 0
1
2
3
4
5
6
7
8
9

10
11

124
125
126
127

LABEL #1......,,.-----..,----:,..------­
-Password for user class O

(this is a dummy field since user
class 0 is not defined)

Password for user class 1

Password for user class 2

Password for user class 31

LABEL #2
0 -Passw0rd~f-o_r_u_s_e_r~c-l_a_s_s~32~~~~~-

1
2
3
4 Password for user class 33
5
6
7
8 Password for user class 34
9

10
11

124
125
126
127

Password for user class 63

" 0
1
2
3
4
5
6
7
10
11
12
13

174
175
176
177

0
1
2
3
4
5
6
7
10
11
12
13

174
175
176
177

The Password Table occupies user labels number 1 and 2. There are four words (8 characters) reserved for
each password. The relative position of a password corresponds to the user class number defined in the
schema. For user class numbers not defined in the SCHEMA, the four word field is filled with blanks.

LABEL #3_..---,----------­
WORD 0 -ltem1-read/write bit map

7
8 Item2 read/write bit map

15
16 Item3 read/write bit map

119
120 Item16 read/write bit map
121

127

% (Octal)
0

7
10

17
20

167
170
171

177

The Item Read/Write Table begins at user label 3. There are eight words for each Item Read/Write bit
map. For databases with more than 16 items, the read/write table continues in the next user label. The
specific format of this table is explained after the Set Read/Write Table since it is defined the same way.
The number of user labels occupied by the Item Read/Write Table depends on the number of data items
defined in the schema and can be obtained by rounding up (ceiling) the result of:

Num-of-labels = [(Num-of-items)*8)/l 28

Since there can only be a maximum of 1023 data items in the schema, the maximum size for this table in
user labels would be:

Max-size• [(1023)*8Vl28 • 63.93 •> 64 labels.

129

130

LABEL #?~-----------
WORD 0 -Set1 read/write bit map

1
2
3
4
5
6
7
8 Set2 read/write bit map
9

15
16 Set3 read/write bit map
17

119
120 Set16 read/write bit map
121

127

l' (octal)
0
1
2
3
4
5
6
7
10
11

17
20
21

167
170
171

177

The Set Read/Write Table begins at a user label boundary following the Item Read/Write. Table. There
are eight words for each Set Read/Write bit map. For databases with more than 16 data sets, the
read/write table continues in the next user label. The specific format of this table is shown in the next
page.

The number of user labels occupied by the Set Read/Write Table depends on the number of data sets
defined in the schema, and is obtained by rounding up (ceiling) the result of:

Num-of-labels a [(Num-of-sets)*8]/128

Since there can only be a maximum of 199 data sets defined in the schema the maximum size for this
table in user labels is:

Max-size •((199)*8]/128 • 12.44=> 13 labels

The Read/Write Table has an entry for each item/set in the database. Each entry is 8 words long and up
to 16 items/sets per record (user label). Within each 8 words, the first 4 words are the flags for the user
classes which have read access to the item/set. The second 4 words are the flags for the user classes which
have write access to the item/set. The detailed format for an eight word field is shown below.

A. Four words for read access:

0 ______ 15 16 ______ 31 32. ______ 47 48 ______ 63
l_word_ T_word_2 T_word_3 T_word_ 4 I

4 words represent 64 bits. Bit n represents read access for user class n to the item/set. If bit n is set to 1
then user class n has read access to the item/set. For example, if the word settings are:

word 1
,;000016

word 2
,;020000

word 3
,;000410

word 4
,;001300

This means that user classes 12, 13, 14, 18, 39, 44, 54, 56 and 57 have read access to the item/set. If no
read/write security is defined at all for the item/set, then all of the read security bits are set to 1 by
default.

B. Four words for write access:

0 ______ 15 16 _____ 31 32. _____ 47 48 _____ 63

l_word_1 T_word_2 T_word_3 T_word_4 I

Write access flags have the same format as the read access flags. Bit n represents write access for user
class n to the item/set. If bit n is set to 1, then user class n has write access to the item/set For example,
if the word settings are:

word 1
,;000010

word 2
,;020000

word 3
,;000000

word 4
,;001100

This means that the user classes 12, 18, 54 and 57 have write access to the item/set. If no read/write
security is defined at all for the item/set, then all of the write security bits are set to 0 by default.

131

132

word 0
1

4
5
6
7
8
9

10
11
12
13
14
15
16

19
20
21
22
23
24
25

28
29

32
33

36
37

RECORD #0 %
1-ROOT'DBSTATUS 0
1-ROOT'DBNAME
I
I 4
I ROOT'TRLRLGTH (trailer area length) 5
I-ROOT' BUFFLGTH-(buffer length) 6
1-ROOT'LGTH -(rootfile length) 7
I 10
I ROOT'ITEMCT (number of items) 11
1-ROOT'SETCT --(number-of-data sets) 12
1-ROOT'ITEMP~(record-# of item table) 13
1-ROOT'DSETPTR--(record=#=of=set_ table) 14
1-ROOT'DSCBPTR--(record #of DSCBs) I 15
1-ROOT'DEVICEP~(record-#-of-device class tbl) I 16
1-ROOT'DBGFLAG ~ - - - - - -I 17
I-RESERVED (set to blanks) I 20
I I
I I 23
I NOWOPEN I 24
,-MAXOPEN I 25
1-RR'RESTART'CALENDAR I 26
-RR'RESTART'TIMESTAMP 27

30
RR' RESTART' FNAME 31

RR'RESTART'FGROUP

RR'RESTART'FACCT

RESERVED (for future use)
(set to binary Os)

34
35

40
41

44
45

127 177

ROOT'DBSTATUS - TurboIMAGE:
(0:8) 'C' in ASCII.
(8:8) Octal 2 (filler).

IMAGE (NLS version):
(0:8) 'C' in ASCII.
(8:8) Octal 1 (filler).

IMAGE (pre-NLS version):
(0:8) '8' in ASCII.
(8:8) Octal 1 (filler).

ROOT'DBNAME: DATABASE name left justified (last 2 chars are blank).

ROOT'TRLRLGTH: The DBG trailer length. This is one of many variables
DBOPEN uses to determine the DBG size.

ROOT'BUFFLGTH: The largest buffer size required to accommodate the
database blocks.

ROOT'LGTH (+): The size of the root file. This variable was changed from
a single word to a double word.

ROOT'ITEMCT: The number of items defined in the database.

ROOT'SETCT: The number of data sets defined in the database.

ROOT'ITEMPTR (+): The Item Table Pointer. It consists of the record
number where the Item Table resides.

ROOT'DSETPTR (+): The Data Set Table Pointer. It consists of the record
number where the Data Set Table resides.

ROOT'DSCBPTR (+): The DSCB (Data Set Control Blocks) Pointer. It consists
of the record number where the DSCB resides.

ROOT'DEVICEPTR (+): The Device Table Pointer. It consists of the record
number where the Device Table resides.

NOWOPEN: Number of data sets opened. This field is NOT used in IMAGE B
and TurboIMAGE.

MAXOPEN: Maximum number of data sets that can be opened. This field is
NOT used in IMAGE B and TurboIMAGE.

ROOT'DBGFLAG (+): 1: Information can fit in the DSG.
0: Information cannot fit in the DBG.

RR'RESTART'FNAME (+): Restart file name for DBRECOV stop/restart.

133

134

l!!.!!!..£'l!!k.LM.a..1M.Ltl

RECORD#1 " word 0 0
1 1

ITEM MAP

30 36
31 37
32 40
33 41

Reserved for future use

62 76
63 77
64 100
65 101

SET MAP

94 136
95 137
96 140
97 141

Reserved for future use

126 176
127 177

The Item Map occupies words 0 to 30. The Set Map occupies words 64 to 94. These two maps are new
in TurbolMAGE. The Item Map is used for searching an item in the Item Table and the Set Map is used
for searching a data set in the Set Table.

An item name (or a data set name) is hashed, through the internal hash function, to a double-word value.
The final hash value is the modufo for the double-word value by 31 (double-word value MOD 31). All
items (or sets) which have the same hash value are chained together. There are total of 31 chains in the
Item Table (or Set Table). The Item Map serves as the chain head for each chain in the Item Table and
the Set Map serves as the chain head for each chain in the Set Table.

bits/
word 0

1

0: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15 "
l-item-name-1- - - - - - o
I 1
I
I

7 !.....,...,.~~--=-~~~~~~~~~~~~
8 I item-no-of-synonym
9 I-reserved-I ~~,,-r-e_s_e_r_v_e~d~-~2-----~

10 I-item-type 1-subitem-count
11 l-subitem-l_e_n_g-th----1-(not used) ----
12 l-item-name-2
13 I

I
I

19 l-,..,~~--::--~~~~~~~~~~~~-
20 I item-no-of-synonym
21 l-reserved-1 ~-,.--r-e_s_e_r_v_e~d~-~2-----~

22 I-item-type 1-subitem-count
23 l-subitem-l_e_n_g-th----1-(not used) ----
24 ,-

7
10
11
12
13
14
15

23
24
25
26
27
30

The Item Table starts in record 2. Each entry·is 12 words long and the length of the table depends on the
number of data items defined in the schema. The relative position of an item definition depends on its
relative position in the schema.

item-name: A data item name, left-justified with trailing blanks.

item-no-of-synonym (+): The number of the item whose name has the same
hashed result as this one (this is utilized

item-type:

for quick item name searches). This has been
changed from a byte to a word.

One of the following: I, J, K, R, X, U, Z, or P

item-type
I

VALUES, 20J2;
I lsubitem-length
isubitem-count

The maximum size for this table is 12*1023 • 12276 words

Note: The reserved-I and reserved-2 fields are the old level numbers
for read and write security. Now, these values are always zero.

135

136

bits/
word 0

1

0: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15 "
l-set-name~1 - - - - - - O
I 1
I
I

6 I 7 I _________,.... ________ _
8 I set-no-of-synonym I reserved-1
9 I-reserved-2 --1-data-set-t-y-pe ____ _

10 1-DSCB-pointer -

11 1-...,.-~---.,,....-~~~~~~~~~~~~-
12 I set-name-2
13 I

I
I

18 I
19 l~~~-=-~~~~--.-~~~.,.......,.~~~~-
20 I set-no-of-synonym I reserved-1~-----
21 I-reserved-2 --I-data-set-type ___ _
22 1-DSCB-pointer -
23 I
24 1-------------------

6
7
10
11
12
13
14
15

22
23
24
25
26
27
30

The Set Table follows the Item Table. It starts at a record boundry. Each entry is 12 words long. The
length of the table depends on the number of data sets defined in the schema. The relative position of a
set definition depends on its relative position in the schema.

set-name: A data set name, left-justified and with trailing blanks.

set-no-of-synonym: The number of a data set whose name has the same
hashed result as this one (this is utilized for
quick set name searches).

data-set-type: One of the following: A, Mor D.

DSCB-pointer (+): A pointer to the Data Set Control Block. It has been
changed from one word to a double word. The pointer
is a word offset from record 0. The DSCB is
described on the following pages.

The maximum size for this table is 12*199 ~ 2388 words.

Note: The reserved-I and reserved-2 fields are the old level
numbers for the read and write access respectively. Since
this concept no longer applies, the values are set to zero.

DATA SET GLOBAL AREA (set 1) I-}
I (capacity, lengths, counts, etc) I }
I 30 wds. I }
I ________________________ I }
I RECORD DEFINITION TABLE (set 1) I }
I a. ITEM NUMBERS I } DSCB
I b. ITEM DISPLACEMENT I } set1
I fieldcount*2+1 I }

I-PATH TABLE (set-1) - - - - - - - - - - - - - - l i
I (search item, sort item, etc.) I }
I pathcount*3 I }
I I >
I DATA SET GLOBAL AREA (set 2) I- }
I (capacity, lengths, counts, etc) I }
I 30 wds. I }
I I >
I-RECORD DEFINITION-TABLE-(set 2)- - - - - - - - I }
I a. ITEM NUMBERS I } DSCB
I b. ITEM DISPLACEMENT I } set2
I fieldcount*2+1 I }
I I >
-PATH TABLE (set-2) - - - - - - - - - - - - - - I }

(search item, sort item, etc.) I }
pathcount*3 I }

~~~~~~~~~~~~~~I } 
I 

1-
-D_A=T~A-S~E=T--G-LO~B~A~L-A~R=E~A_,..,(l~a-s_t_s_e_t~)~~~~~~-I } 

(capacity, lengths, counts, etc) I } 
30 wds. I } 

I > 
I-RECORD DEFINITION-TABLE-(last-set) - - - - - - I } 
I a. ITEM NUMBERS I } DSCB 
I b. ITEM DISPLACEMENT I } last set 
I fieldcount*2+1 I } 

I-PATH TABLE (iast set)- - - - - - - - - - - - - l i 
I (search item, sort item, etc.) I } 
I pathcount*3 I } 
I I_} 

The DSCBs follow the Set Table in the Root File. There is one DSCB for each data set defined. The 
function of the DSCB is to define each data set within the data base. 

137 



138 

bit/ 
word 

DSC AP 

0: 1: 2: 3: 4: 5: 6: 7: 8: 9:10:11:12:13:14:15 " 
o 1-DSCAP- - - -(data-set capacity) 0 
1 I 1 
2 I OSBLOCKLGTH (block length) 2 
3 1-DSMEOIALGTH--(media-record length) 3 
4 1-DSENTRYLGTH--(entry-length) 4 
5 1-DSBLOCKFAC -- -I OSPATHCT 5 
6 1-DSFIELDCT - 6 
1 1-X I DSPRIMKEY 1 
8 1-DSPATHPTR (offset to path table) 10 
9 I-logical end of file 11 

10 I 12 
11 I max num of records in set 13 
12 I 14 
13 I 17 words of binary zeroes 15 

29 35 

- data set capacity as reported by DBSCHEMA. 

DSBLOCKLGTH - data set block length including the bit map overhead. 

DSMEOIALGTH - data set media record length (remember that this length includes the 
pointer overhead) 

DSENTRYLGTH - data set entry length. 

DSBLOCKFAC - data set blocking factor. 

DSPATHCT - data set path count. This is the number of paths that are specified 
for the data set. 

DSFIELDCT(+)- data set field count. This is the number of fields (items) 
specified for the data set. It has been changed from a byte to a 
word. 

X-DSKEYTYPE - data set key type. If DSKEYTYPE = TRUE then the key is hashed. 

DSPRIMKEY - data set primary path or key. 
field number of the search item. 
path number of the primary path. 

For master data sets, this is the 
For detail data sets, this is the 

DSPATHPTR - data set path table pointer. This is a Word offset (relative to its 
own DSCB) to the data set path table which contains an entry for 
each path defined. It points to 0th entry in the path table, so to 
get to the first entry the pointer should be incremented by the 
length of the entry (which currently is 3 words). 



word 0 I item num of 1st field 
1 l-item-num-of-2nd-field~~~ 
2 l-item-num-of-3rd-field~~~-

I- - - - - --

item num of last field - - - - ~~~ 

The Item Numbers Table is part of the Record Definition Table in the DSCB. It follows the Global Area 
of the DSCB. The size of this table (in words) is equal to the number of items in the data set. This table 
has been changed from a byte array to a word array to support larger item numbers, for example, 300. 

The first field is the first item defined in the data set. The last field is the last item defined in the data 
set. 

word 0 I word offset to first field 
1 I-word-offset-to-second fiel-d~~-
2 l=word=offset=to=third_field-==== 

I word offset to last field 
l=length_of_entry~~~~~~~~ 

The Item Displacement is also part of the Record Definition Table in the DSCB. It immediately follows 
the Item Numbers Table. 

The word offset points to the starting location of the field within the media record. Remember that the 
media record includes the pointer overhead so this offset varies for master and detail data sets. If a 
master data set has only one path, the word offset for the first field is 11, since there are 11 words of 
overhead (S words for the synonym chain pointers and 6 words for the data set chain head). For a detail 
data set with one path, the overhead is only 4 words. 

The 'length-of-entry' is the same as the media record length. 

139 



140 

word 0 1st path definition 
1 
2 
3 2nd path definition 
4 
5 
6 

last path definition 

The Path Table follows the Record Definition Table in the DSCB. There are 3 words (6 bytes) for each 
path definition. The Path Table for master data sets has a different layout from the Path Table for detail 
data sets. 

Master sets: 
Byte 
1-2 
3-4 

5 
6 

Detail sets: 
Byte 
1-2 
3-4 

5 
6 

Description 
Item number of the search item in the related detail set. 
Item number of the sort item in the related detail set. 
Set number of the related detail data set. 
Path number of the corresponding path in the related 
detail data set. 

Description 
Field number of the search item. 
Field number of the sort item. 
Set number of the related master data set. 
Path number of the corresponding path in the related 
master data set. 



!kJ:l.tt.0ML'fE.~.1!1 

~ 
word 0 DevClass-name for set 1 I o 

1 I 1 
2 I 2 
3 I 3 
4 DevClass-name for set 2 I 4 
5 I 5 
6 I 6 
7 I 1 
8 DevClass-name for set 3 10 
9 11 

10 12 
11 13 
12 DevClass-name for set 4 14 
13 15 
14 16 
15 17 
16 20 

The Device Class Table follows the DSCBs. It begins at a record boundry. There is an entry reserved for 
each data set defined in the schema. Each entry is 4 words long. It contains the device class name which 
can be optionally specified for the data set in the schema. For data sets without device class names, the 
entries will be filled with blanks. 

This table is created by DBSCHEMA. DBUTIL uses this information to create the data sets. A data set 
without a device class defined will be created with "DISC" as the default. Once the database is created, 
the information in this table will NOT be used again. The new DBUTIL command "MOVE" moves a data 
set from one device to another. However, it does not update the Device Class Table. 

The length of the table depends on the number of data sets defined in the schema. 

The maximum size for this table is 4* 199 E 796 words. 

141 



142 

Data Set Structure 

A data set is an MPE file, with a file code of -401, created by DBUTIL. It consists of a user label for the 
data set information, and many records for the user data. The record size by default is 512 words, fixed, 
binary format with a file system blocking factor of I. A record is a TurbolMAGE block. The block size 
can be defined in the schema to be different from the default by using the TurbolMAGE blocking factor 
and BLOCKMAX options. A different blocking factor can be specified for each data set. Following is an 
example of defining a blocking factor: 

NAME: 
ENTRY: 

SETA, Detail 
item1, 
item2, 
item3, 
item last; 

CAPACITY: 511 (22); 

In the above example, the data set SET A has a capacity of 511 and a blocking factor of 22, i.e. 22 entries 
in a TurbolMAGE block. The blocking factor is used to define the block size. If the block size is larger 
than the default, the BLOCKMAX must be specified before the data set: 

$CONTROL BLOCKMAX=nnnn 

where "nnnn" is the maximum block size for the data sets that follow this statement. 

Following is the general format of a data set: 

LABEL 0 Data Set Information 

User Data (first block) 
RECORD 0 

User Data (second block) 
RECORD 

User Data (last block) 
RECORD N 



The Data Set User Label consists of 6 words of information. The information for a master data set is 
different from a detail data set. 

Master: 
word 0-1: The record name• of the last entry allowed in the set, 

i.e. the capacity of the data set. 

Detail: 
Word 

2-3: 

4-5: 

0-1: 

The number of free records in the data set. This 
number is incremented when a record is deleted and 
decremented when a record is added. To determine the 
current number of entries in the data set, subtract 
Word 2-3 (free records) from the data set capacity. 

Not used. 

High Water Mark. This is the record name of the 
highest record that has been used in the detail set. 
It is updated by DBPUT only. for example, a detail 
set with 75 entries and a capacity of 100 has a High 
Water Mark pointing to the 75th entry. The High Water 
Mark stays the same even after entries are deleted. 

2-3: The number of free records in the data set; this is 
the same as the master data set. 

4-5: The delete chain head for the detail set. It points 
to the record most recently deleted. It has a value 
of zero if no records have been deleted from the 
data set. 

* A record name is a double word that consists of a block number (i.e. file system record number) and the 
slot number in the block. The first 3 bytes is the block number and the last byte is the slot number. A 
slot is an area in the block allocated for a media record. The first media record in the block is slot 
number I. The last media record is slot number N where N is the blocking factor. The first block in 
the data set is block number 0. 

The format of a TurboIMAGE block is the same as described in the IMAGE Reference Manual with the 
exception of the chain count in the master entries. The chain count has been changed from a single to a 
double word. The largest number that can be stored in a single word is 6 SK, thus 6 SK was the limitation 
for IMAGE. With a double word, Turbo!MAGE does not have this limitation. However, this DOES NOT 
mean that all entries in the set should be linked in one chain. It would have a negative impact on the 
performance of chain reads. In fact, it is strongly recommended that all chains be kept short. 

Doris Chen is the R&D project manager for TurbolMAGE, IMAGE, and DBchange. She has been with 
Hewlett-Packard since 1979. 

143 





Doris Chen 
Hewlett-Packard Cupertino 
U.S.A. 

NOTE: See continuation on page 575. 

145 





MULTI SYSTEM DATABASES 
By Rolf Frydenberg 
Hewlett-Packard Norge A/S 
Oslo, Norway 

The term Multi System Databases (or MSDB, for short), is used to refer to 
applications that utilize data from more than one database, located on geograp­
hically separated computers. 

The paper presents and discusses MSDB, or distributed data sharing systems 
as they are sometimes referred to. This area is still largely experimental, 
but a major R & D effort is going on. MSDB will probably become of major im­
portance within the next decade, and at least by the turn of the century. 

The first part of this presentation focuses on the end-user needs that make 
MSDB a future necessity. Distributed data sharing systems based on homogeneous 
computers and database management systems are discussed, as well as those based 
on heterogeneous systems. 

The second major part of this paper presents two existing (though mostly 
experimental} MSDB's. We have also included a brief prensentation of HP3000 
capabilities in this area. 

Finally, we indicate the direction we think this area is moving in, and how 
we - as users - can prepare for that development. 

I. WHAT IS A MULTISYSTBK DATABASE? 

Before proceeding to the details of this presentation, I would like to give 
you a thumbnail sketch of what multisystem databases are. This should bring 
the area into closer perspective, so that we all know what we are looking at. 

A multisystem database is a database that consists of information stored on 
more than one computer system. The data stored may be of different formats, or 
the same. And we will also look at any file - flat file, KSAM file, or "true" 
database - as being a database or part of one; so long as a description of its 
format is available to us. 

The computer systems that store the multisystem database may be identical -
e.g. a set of HP3000's - or they may be different - e.g. some PC's, some 
HP3000's and a non-HP mainframe. 

The data co11D11unications link between the computers is assumed to work, but 
we will not specify it in any level of detail: It might be a dial-up asynchro­
nous link, a leased 9600 bps line, an X.25 connection, or an SNA-link. For 
the sake of this presentation, we will ignore those differences. 

Let me also mention that there are two other expressions often applied to 
multisystem databases: Distributed databases, and distributed data sharing 
systems. We will treat these expressions as referring to the same genereal 
concept, though some people do consider at least the term "distributed databas­
es" as being more restrictive that the other two terms. 

There are many possible approcaches to distributing a database over a net­
work of computer systems. Four of the main distribution strategies are: 

1. Iaclepeaclent databases; this means that each computer system has its "own" 
database( s), controlled fully by this computer system. Each independent 
database "contributes" some of its data to the overall Multisystem 
database. 

2. Centralized database with replicated subsets; this means that there exists 
one, centrally located, database, which contains all the data. Subsets of 

147 



148 

this database are copied to other locations, mainly for higher speed of 
access to frequently used data. Typically, updates are only accepted at 
the central site, and transmitted to remote locations in batches. 

3. Horizontal partitioning; this means that the same record types may exist 
at many locations, but a specific record is at just one location. A file 
of orders, for example, could be distributed so that all orders are located 
at the warehouse that will process them. 

4. Vertical partitioning; this means that different components of a specific 
record may be located at different sites. In a vertically partitioned da­
tabase, some kind of replication may be used, so that all locations may 
know all customer-numbers and customer-names, but more detailed information 
is only stored at the site that actually handles this customer. 

In many real-life situations the best solution is a combination of strate­
gies. Strategy number 1 - independent databases - is the most common method of 
handling the integration of previously independent databases. That makes this 
strategy important now, though not necessarily as important in the future. 

Another aspect of multisystem databases is whether they allow purely local 
users to exist. Local users are those who access data on one specific computer 
in the network, without knowledge of, or access to, the "complete" mulitsystem 
database. Some MSDB systems allow this - particularly those systems designed 
to handle existing databases - whereas others treat all users as global users, 
and all transactions as global transactions. 

Processing global queries (i.e. data retrieval from the multisystem databa­
se) is a reasonably straight forward operation. Updates, though are potential­
ly much more complex. There are two reasons for this complexity: If data is 
replicated, then all copies of the record must be updated; if the record is 
split between multiple sites, then all sites must update their part of the rec­
ord. And, of course, the MSDB's system must keep track of whether the indivi­
dual updates succeeded, and if they did not, then it must perform whatever 
backtracking is necessary. 

If there is no replication within the multisystem database, then it is pos­
sible to restrict all updates to being purely local transactions, i.e. transac­
tions that may be processed completely on a single computer system. This sig­
nificantly simplifies the manner in which updates are processed. Centralized 
systems also simplify updating the database, since only the central copy of the 
data must be updated. 

II. THE llDD POil HDLTISYSTlll DATABASES 

A large amount of research into the area of multi system databases is cur­
rently being carried out all over the world. Is this research just being car­
ried out "for the fun of it", as the business world often accuses the academic 
community of, or is it something we will really need in the not too distant 
future? 

It is my contention, that multi system databases are something we need, and 
consequently that it is an important topic for research. And though it may 
take a number of years before complete, high-performance, easy-to-use systems 
are available, we need to forge ahead in this research. There may be many in­
termediate solutions that represent small steps in the right direction. 

Since this is not intended as a theoretical paper - I am not a theoretical 
computer scientist, but rather a practical engineer - let me present the kind 
of situations where I think multi system databases can represent a solution for 
users. 

Many data processing users currently have more than one computer system. 
This is true not only of large corporations with central mainframes, but also 
for medium-sized companies that may have two or more minicomputers; or smaller 



companies where the computer mix is made up of microcomputers only, or micros 
combined with minis. In all these cases, corporate data is stored on more than 
one computer. 

These, often diverse, computer systems communicate more and more closely. 
This need for co111Dunication has grown out of the need for access to data 
through terminal-emulators, but that is only a brief stage in the total deve­
lopment of corporate data communications: As the storage capacity of "non­
central" computers (micros and minis) continues to grow rapidly, so the need 
for accessing this data directly, instead of transferring it to a central site 
and accessing it there, grows proportionately. 

For many users this is already in the process of becoming a problem. The 
amount of data stored at the decentralized sites is growing so rapidly that it 
is no longer possible to copy everything to the central site. So far, the so­
lution is to keep "local" data at the decentralized sites, and "common" data at 
the central site. But this is not a valid solution for the future: Data is a 
common corporate resource, and timely access to it is getting ever more 
important. 

In addition to the amount of local data increasing at a rapid rate, yet 
another issue is cropping up: More and more "local" applications also• need 
access to central data files, so parts of central databases are frequently cop­
ied to the local sites. As soon as this data is updated centrally, the local 
data bases are no longer consistent with the contents of the central data ~ase. 
Current DBMSs do not have any functions for managing this. Consequently, de­
centralized sites do not know whether the data they use is valid or not! 

The interim "solution" to this problem, is to copy the databases regularly 
(e.g. once a week), or to collect all updates in a special file, which is 
transferred at regular intervals to all sites. Either of these methods is use­
ful, but it does not completely solve the problem: It is only immediately aft­
er the file transfer that the databases are consistent; as soon as a single 
update is made to the central data base, consistency is lost. 

Another problem is that all updates of such databases must take place cen­
trally: If we allow updates at the local level as well as the central level, 
consistency is not only lost much faster, we can end up with updated informati­
on being replaced by "obsolete" data from the central database at update-time. 

One approach to solving this kind of problem is to avoid centralization, 
and let every local site manage its own data. This means that for data which 
is really common to all sites, we end up with as many copies of it as we have 
sites. If the amount of common data is small, this may be acceptable, but in 
most cases it is not acceptable. 

Yet another problem with this distributed approach of data management at 
each site is the problem of stuctural consistency between databases. Even in 
very distributed corporations, with high degree of local control of operations, 
there is a need for communicating information to higher levels of management, 
where this data is collected into corporate wide data. For this reason, as 
well as for reasons of accountability and controllability, the data structure 
used to store one type of data should be consistent across all local sites 
within the corporation. With complete local control, this will often not be 
the case. 

Perhaps the main reason why HP3000 users are among those who need distribu­
ted databases the most, is that the HP3000 is so popular as a departmental com­
puter. For this reason, a large number of the corporations that have HP3000s 
have more than one such computer. When you add to this the fact that the 
HP3000 has very good data communications facilities (to other HP3000s particu­
larly, but also to other computers, e.g. IBM mainframes), you get a system that 
is almost "begging" to be used for the implementation of multi system 
databases. 

149 



150 

III. CURllDlT SYSTEMS 

The currently existing multisystem databases (MSDBs) are all experimental. 
But these exipermental or pilot projects at least to some extent indicate the 
driection in which the world of distributed processing is moving. And even 
though a number of these projects are based in the academic collDJlunity, which 
has not always been known for a collDJlercial orientation, there seems to be a 
significant amount of realism behind many of the projects. 

The selection of systems that we have done for this presentation is somewh­
at random or haphazard. But they should still represent a cross-section of the 
types of experimental multisystem databases currently under investigation at 
research institutions all over the world. Much of this presentation based on 
data presented at the Second and Third International Symposia on Distributed 
Databases, held in 1982 and 1984, respectively. The proceedings from these 
conferences are available in book form (see the chapter on references). 

III. A: MDLTIBASE 

Multibase is a set of programs for accessing data stored in multiple data­
bases. These databases may exist on identical or diverse computers. Multibase 
is intended as a co=ercial product, and as such is no longer a "prototype". 
Multibase is a product of Computer Corporation of America. It is currently 
only available for IBM mainframes. 

There are four main reasons why we have included Multibase in this 
presentation: 

1. Multibase is a "real" product, not just a prototype; 
2. Multibase is a typical query-only multisystem database; 
3. Multibase allows access to existing databases; 
4. Multibase uses a copied catalogue concept. 

This makes Multibase an "extreme" multisystem database from one point of 
view, and it makes it very easy to contrast Multibase with another - and very 
different - MDBS: POREL. We will have more to say about POREL later; for now 
let us concentrate on the features and functions of CCA's MultiBase. 

Multibase is a product that allows relational queries to be made that ac­
cess multiple databases, on multiple computer systems. Queries Multibase are 
formulated based on an integrated schema, which defines a "virtual" databases 
(called views) that each may consist of the data in relations stored on one or 
more of the computers in the network. 

Some views !'1ay be "simple" in that they access only data stored in one re­
lation, whereas others may be quite complex, and access data in multiple rela~ 
tions, with mapping of data from one field or item to another. Multibase also 
supports recalculation before integration. An example of this is when data 
from relation A specifies monetary values in Pesetas, and relation B specifies 
it in dollars. In the integrated view, such monetary values from relation A 
are recalculated as dollars before being introduced into the integrated view. 

Another feature of Multibase is that it does not require the actual data 
storage to be relational. There are internal facilifies in the system for re­
lational retrieval of data from other types of databases, including hierarchic­
al and network databases. This means that pre-existing databases of almost any 
type may be accessed from the query facility of Multibase. 

A Multibase user has access to a language called DAPLEX for data definition 
and manipulation. This language is first used to set up the views, through 
definition of a Global Schema. Subsequent access to the integrated multi sy­
stem database is though this schema. Additionally, DAPLEX Local Schemas are 



defined for each actual database to be accessed. These schema map one-to-one 
to the Local Host schemas, which define each database in the "native" database 
definition language of the local computer system(s). 

The overall organization of Multibase schemas is as illustrated below: 

DAPLEX Global Schema 

DAPLEX Local 
Schema No.l 

I 
I 

Host Local 
Schema No.l 

DAPLEX Local 
Schema No.2 

Host Local 
Schema No.2 

Figure 3.1: Multibase schemas. 

DAPLEX Local 
Schema No.N 

! 
Host Local 
Schema No.N 

When a user accesses Multibase, he does so through the Multibase Global 
Data Manager (GDM). The GDM finds out how to process the query from the Global 
Schema. The GDM splits up the query into a number of "single-site" queries 
i.e. queries that can be accessed with knowledge only of one DAPLEX Local Sche­
ma. The GDM then forwards these single-site queries, through the connnunicati­
ons network, to Local Database Interfaces (LDis), where the DAPLEX Local Schema 
is used in order to retrieve the necessary data from the actual database. LDis 
then send their results back to the GDM, which performs any required coordina­
tion of data, or operations that require data from more than one host computer 
Finally, the GDM passes the results of the whole query back to the user. 

We have illustrated the relationships between the GDM, LDis, and 
schemas in the following figure: 

Schemas used: 

DAPLEX Global 

DAPLEX Local 

Host Local 

END USER 

GDM 
! ! ! 

~~~~- -~~~~ 

LDI No.l LDI No.N

DBMS No.I DBMS No.N

Figure 3.2: Multibase component interaction.

Information flow:
DOWN: UP:

Global Query

Single-site
Query

Local Query

Result

Formatted
Data

"Raw"-data

The Global Data Manager is the central piece of software in Multibase. It
contains a number of advanced functions, including a description of each LDI
concerning the capabilities - or lack of such - at each site within the net­
work. This ensures that the queries sent to the LDis only request functions
that really are supported by the local Host DBMS. This function should help to
keep the amount of work in creating Multibase LDis for new systems low, which
again means that Multibase might quickly become implemented on a number of di­
verse computers.

151

152

Among other GDM functions, which are not unique to Multibase, but rather
standard for MSDBs, are global and local query optimization, and an auxiliary
database for data needed to coordinate data from different local databases Mul­
tibase uses an internal DBMS to access this database in the final stage of pre­
paring the results for the user.

The Multibase Local Database Interface (LDI), which gives DAPLEX support to
each local host DBMS, is a relatively simple processor. Its main purpose is
the translation of queries from the DAPLEX language to whatever the host sup­
ports. As has been noted previously, the GDM has knowledge of which functions
are supported by each LOI/Host DBMS combination, which also simplifies the de­
sign of each LOI. For a typical DBMS, the effort necessary to implement an LDI
is of the order of 3-6 manmonths.

We can probably assume that typical Multi base networks will contain two
types of nodes: Those that support a GDM and LDI, and those that only support
an LDI. This means that Multibase is not a uniformly distributed system, which
may not matter much to actual users.

At the time of writing this paper, the author knew of no sites where Multi­
base has been implemented. But since the product is now commercially available
the first real user experiences should be available soon.

III. B: POREL

POREL represents one of the other extremes of multisystem databases. POREL
is a prototype developed at the University of Stuttgart in the Federal Republic
of Germany. Among the major differences between POREL and Multibase are:

1. POREL is still only a prototype, not a product;
2. POREL only allows access to databases created with POREL;
3. POREL allows for all types of access, update and add as well as

retrieval;
4. POREL uses a distributed calagoue, where some information may be

retrieved from other sites;
5. POREL treats all users as "global".

In other words, we are looking at a database system with significant diffe­
rences as compared to Multibase. Many of these differences, though on the po­
sitive side; they are additional features, not available in Multibase or compa­
rable systems.

Perhaps the most negative difference, from a user's point of view, is that
POREL requires all databases to be recreated. If data is to be copied over
from an existing database, the user will have to develop the necessary programs
on his own. This makes POREL primarily useful for dedicated, applications.
This clearly contrasts with Multibase, which is primarily intended as an access
method to existing databases.

Let us now take a closer look at POREL, which it definitely deserves: It is
a very interesting system, and may point the way farther into the future then
the much more restricted Multibase-system.

POREL is a distributed database management system developed for a network
of interconnected minicomputers. POREL has been implemented on minicomputers
with an 16-bit addressing range, and therefore consists - on each computer - as
a set of interacting processes. All of POREL has been written in PASCAL. (This
should make it possible to transport POREL to the HP3000 and HPlOOO systems if
desired; though I have not performed any evaluation of this possibility).

For computer-to-computer data communications, POREL uses X.25. A POREL
system may be arbitrarily large, but the greater the number of processors, the
higher the probability of failure in communications.

One of the most noteworthy features in the design of POREL is the emphasis
placed on reliability and error-recovery. POREL is designed not only so that
the failure of one node does not bring the network down, but the restart of
nodes, including picking up where they were when they failed, has been careful­
ly designed. (This may lead one to suppose that the computers used to imple­
ment POREL are unreliable, or that the level of programming performed is not
reliable. There is no proof of either of these assumptions, though).

POREL transactions are described through either the use of a special query
language (RDBL = Relational Data Base Language) or though special code availa­
ble to PASCAL programmers (P-RDBL). This PASCAL-support is based on the pro­
grammer inserting special statements in his code, which is converted to proce­
dure calls by a pre-compiler.

During the compilation of a PASCAL program with P-RDBL statements, or th
compilation of a query stated using regular RDBL, a Network Independent Analy­
sis is performed. Then, after all checks have passed at this level Network
Oriented Analysis is performed. At this stage POREL may access nodes in order
to retrieve information about data stored there.

When a complete transaction has been analyzed, it may be executed. This
cause sub-queries to be sent to all relevant processors, and they are asked to
retrieve the specified data. In the case of an update, a two-phase locking
strategy is used, whereby first all data is locked (at all involved locations)
and then the update is performed through the use of a COMMIT command. This
allows for backing out of a partially completed update if one or more node(s)
should fail during the update.

All POREL machines keep track of transactions in progress, and can therefo­
re recover from the point where they were, should any kind of failure occur.
The machines also keep track of which other systems are UP or DOWN, which helps
avoid locking some data entries when it will not be possible to lock all the
ones that are needed for the transaction, because one or more of the machines
required are down.

POREL also has support for storing parts of a relation on different comput­
ers as well as for storing duplicate copies of a relation - or part of one - on
separate computers. This will help keep the amount of data communications down
during query processing, but it adds a lot of complexity to update processing.
If we assume that query is the most common operation, and update is much less
frequent, this may not necessarily impact performance of the overall system too
much.

In managing multiple copies of a relation, POREL marks one as being prima­
ry,and the other ones as secondary. Updates of secondary copies may be delayed
until the next time the data in this tuple of the relation is needed, which
means that we can postpone some of the update activity until the system has
"idle" time. POREL also keeps track of whether there are any outstanding upda­
tes to be performed on a secondary copy of a relation, to avoid letting users
retrieved not fully updated information.

IV. HP3000 CAPABILITIES

The current capabilities of the HP3000 file and database systems do not
include MSDB support. But there are ways of implementing some MSDB type
functions. In this chapter we will look at some of these, both implementation
of multisystem databases where only HP3000s are involved and where the HP3000
is a node in a non-HP network (in this case, an IBM mainframe oriented SNA­
network).

153

154

IV.A: HP3000-TO-HP3000 MSDB'S

In order to access one HP3000 from another, the natural data communications
product to use is DSN/DS. This product allows two or more HP3000s to be con­
nected together, running either BSC protocol or X.25 over a public packet swit­
ched network (PSN). When using X.25 over a PSN, the HP3000 can also communica­
te with computers from other vendors that support this method of communication.

DSN/DS can also be used to communicate with HPlOOO computers, both the BSC
protocol and x. 25 is supported on these computers. In this presentation we
will concentrate on communication between two or more HP3000s all of which DSN/
DS/X.25 over a packet switched network.

(HPs NS (Network Services) product, which handles communications over Local
Area Network (LAN) can also be used for HP3000-to-HP3000 communication. For
the presentation of DS in this paper, NS and DS may be viewed as providing es­
sentially the same services. We will therefore only refer to DS, and it is up
to the reader to supply this with a comment of "or NS" in each instance, if he
so desires.)

DSN/DS allows a user on one HP3000 to log on to another HP3000, and to run
those programs on the remote system which his account- and username give him
access to. It is also possible to handle the logon etc. programmatically, so
that the user is not aware of the connection. With DS/X.25, one physical line
be used to access multiple computers simultaneously, by one or several us~rs.

(X.25 allows up to 4095 simultaneous sessions across one link; no current
HP3000 system can handle it, and the amount of data transmitted would be much
higher capacities than is currently available: Typical DS/X.25 connections are
at 9600 bps, or 1200 characters per second. Should 4095 users share this capa­
city, they could each send one character every 3.5 seconds!)

One of the many important features of DS, compared to similar offerings
from other vendors, is the complete transparency of a OS-connection to softwa­
re: A simple FILE-equation can be used to signal that a file resides on another
computer; the file system will then automatically use Remote File Access (RFA)
capabilitites to access the file on the remote system, in a fully transparent
manner - as seen from the user and the application program.

The same kind of capability is available for databases, through DS Remot
DataBase Access (RDBA). This provides the capability of accessing IMAGE data­
bases on remote systems as if they were locally available.

RFA and RDBA are important capabilitites, but do not really support multi
system database access. One of the reasons for this is that they do not allow
for processing of queries on the remote computer before passing the result back
to the host (or local) computer. For this reason, selecting data on other than
an exact key match, will cause too much data to be transmitted over the data
communications link.

Let me give a small example: Let us suppose we have an IMAGE master that
contains information about customers. The key is probably the customernumber
or the customer name. If we want to find the customers who are in the city
Madrid (which could be none!), we will have to search serially through the set.
In this case, if we use normal RDBA, information about about all the customers
would be transmitted, and the application program would have to select the data
it actually needs.

(There is only one available method for optimizing this access; that is to
read only a few fields from the set, typically the key (customer-number) and
the field we are scanning (city). For those that match, we can afterwards do a
direct lookup by key to get all information about this customer.

In order to support true multi system databases, we will have to develop
efficient programs that allow us to pass a query to the remote computer, inste­
ad of an IMAGE intrinsic call. For relatively simple types of queries, this
should not be too difficult. The easy way to do it, is to develop inter-

process co1lDl\unication for the standard QUERY/3000 program, and use this as the
vehicle for retrieving information from databases on multiple systems.

There is another facility that is needed as well. This is the ability to
specify, in a DICTIONARY type of format, where the individual databases that
form our overall multisystem database are located. This dictionary must be
capable of defining different types of data transformations that should be per­
formed on the local data before it is compared with data from other databases,
i.e. before it is integrated into the overall multisystem database.

IV.B. HP3000-TO-IBH MSDB's

Many HP3000 users also have large IBM minframes as their central data pro­
cessing systems. These users frequently C01lDllunicate between their HP3000s and
the maniframe(s), using either the BSC products (RJE, MRJE, or IMF), of the SNA
products (NRJE or SNA IMF). For interactive C01lDllunications, only two of these
products may be used, IMF (for BSC) and SNA IMF. These two products are compa­
tible from the point of view of a user program attempting to access data on the
mainframe, since they have exactly the same intrinsics. There is only one
slight difference in one of the intrinsics (OPEN3270, which is called only once
by a program anyway).

There are three types of multisystem databases that can be created for a
mix of HP3000s and IBM mainframes. These are:

1. HP3000 can access IBM, not the other way;
2. IBM can access HPJOOO, not the other way;
3. Access is allowed both ways.

For approach 1, above, programming need only be done on the HP3000. For
access other way, it is necessary to implement programs on both types of com­
puters even though approach 2 does not require access in both directions. This
is because IMF is a "one-way" type of product, for HP-to-IBM access, and requ­
ires that conununication is started from the HP3000.

Currently, there are some users who do interactive access to data stored on
IBM mainframes from HP3000s. This is mostly done in a tailored manner where
the application contains its own code for the actual data access on the main­
frame. To the best of my knowledge, no general system exists. But a general
approach has been described at a previous INTEREX conference, by the author of
this paper. Below I will try to explain how multisystem database access to an
IBM mainframe is possible with the current HP3000-to-IBM mainframe products:
IMF and SNA IMF.

The lowest, user-accesible, level of both IMF products is a well-defined
set of intrinsics. These intrinsics allow the user-program to emulate all fun­
tions of an IBM327X terminal with 24 lines of 80 characters each (i.e. larger
screen sizes and graphics are not supported). By calling these intrinsics, the
user-program can access any IBM mainframe database accessible through a user­
oriented program (e.g. a query faciliy).

The customized way these intrinsics are <!llrrently used is to allow program
interactive access to specific programs, which again access data in one or more
specific databases. By redesigning these programs, to work with a general que­
ry facility on the mainframe, and a data dictionary (which could be on either
system) it is possible to allow the user to formulate a query on the HP3000,
execute the query on the IBM mainframe, transfer the resulting data to the
HP3000 via "screens", and finally reformat and display the data to the end­
user. This kind of facility exists today on PCs, generally designed to work
with a specific mainframe query-program, often from the same vendor as the PC

155

156

This kind of facility exists today on PCs, generally designed to work with a
specific mainframe query-program, often from the same vendor as the PC
software.

On the HP3000 we can take this approach one step further. We can develope
a data dictionary facility on the HP3000 that allows for specification of main­
frame and HP3000 databases (local and remote), and then allow the user to for­
mulate queries based on all these databases, These queries must then be sp
into subqueries, one for each computer, and transmitted to these system, where
the database is located for execution.

For this approach to be really useful, it would be an advantage to provides
vendor-independent access-method to the mainframe, since HP3000-users have dif­
ferent query-facilities on their IBM mainframes. This is a challenge to HP and
to third parties who have HP3000-based query and data dictional products.

Another approach to multisystem databases in a mixed HP-IBM environment, is
it implement an IBM mainframe oriented distributed database program, for examp­
le Multibase, on the HPJOOO. This approach would consist of two components:
The necessary software for allowing the MDBS to access IMAGE databases (i'.e.
the LDl level of Multibase), and the actual software for managing distributed
queries (i.e. the GDM facility of Multibase). This, of course, would have to
be done by, or in cooperation with, the vendor of the MDBS.

Perhaps one of the first pieces of software that will really help ''s to
move in this direction is HPSQL - an HP-developed, SQL-compatible query langua­
ge the HP3000. This product could work as the access method to HP3000-based
databases, and would make it easier to ensure compatibility between queries
formulated based on HP3000-structured databases, and IBM mainframe database
systems.

V. FUTUU TJlElllDS

In this paper so far, we have looked at the current "future of the art" and
at most a few years into the future. Let me now look a little further ahead
towards "the shape of things to come".

There are three specific trends that impact multisystem databases, and we
will look at each of these in turn. They are all related to standardization,
within the following areas:
i. Data communications facilities
ii. Database structures
iii. Database query languages

V.A. TURDS Ill DATA COHlllJllICATIOllS

There are three trends in data communications worth watching. They are:
i. Protocol standardization, which focuses on the Open System

Interconnection (OSI) Model from ISO. The lower three levels of OSI are
virtually identical to X.25. (IBMs SNA is another focus for
standardization).

ii. Digitalization, which means that future communication services will be
provided through all-digital packet- and circuit-switched networks; the
modem is on its way out of basic system-to-system communications.

iii.Higher transmission rates, which makes the movement of significant amounts
of data through public and private networks feasible without excessive re
sponse times.

Taken together, these trends will lead to the availability of high-speed vir­
tually error-free data communications between all points on the globe

(or into space, for that matter). In the 1990s the typical packed-switched
interface will probably work at speeds up to l Mbit per second, rather than the
current 9600 bps.

All significant vendors in the 1990 computer business will supply software
and hardware to connect their systems to others, all supporting at least the
four or five lowest levels of OSI. With standardized LAN facilities in the 10-
100 Mbps range, local conununication should also be standardized.

V.B. TURDS Ill DATABASE STRUCTUllES

Perhaps the most significant trend in database structures of late, is the
movement towards relational and semi-relationals structures. Another trend is
the emergence and use of system-wide data dictionaries, that can be accessed
from a multitude of progranuning languages, and that can perform additional
tasks such as data base creation and restructuring.

Another trend in databases is the growing size - though not necessarily
complexity - of databases in conunon use in businesses. This is a trend that
has been made possible though the rapidly falling prices for direct-access sto­
rage media. The emergence now of optical-disk systems for archival datastora­
ge, means that in the future "old" data will not be stored offline on magnetic
tape (or paper, for that matter) in a vault somewhere, but will be acc.~~ible
on-line at all times. This will severely impact database size.

Even on single computers, there is a trend towards integrating data from
multiple databases into one conunon database - logically if not physically. This
means that some of the basis for implementing distributed databases is already
in place.

V.C. TURDS Ill QUEllY LAllGUAGES

Query languages of one form or another have existed since before the term
"database" was invented. Most of the query languages in existence today (in­
cluding HP QUERY/3000) are more or less ad hoc solutions that have developed
slowly over the years, and have a set of functions dictated by combination of
history and user demands.

With the trend towards a standardized set of database functions, i.e. the
relational model for database structure, a standard for database query is
emerging. This is the query language SQL (Structured Query Language, also
known as SEQUEL), developed by IBM. Most vendors of relational database sy­
stems seem to have jumped on the SQL bandwagon, and sell an SQL-compatible que­
ry language together with their DBMS. This is now also true of HP.

More and more of the SQL-compatible query languages support a progrannnatic
interface, so that database access from a program can take place through the
same, simple interface that is used by on-line users. This is definitely an
advantage, something anybody who has prograunned using procedure calls for data­
base access will recognize. This is even more true of progranuners with expe­
rience from DBMSs such as IMS.

In the rapidly expanding world of multisystem databases, SQL can almost be
considered the "de facto" standard for query languages. This trend will conti­
nue, and we will also see that SQL-compatible query languages will become avai­
lable for non-relational (i.e. network or hierarchical) databases.

157

158

COllCLUSIOllS

This paper has spanned a wide area of topics, and therefore has been unable
to cqver the subject-matter to any great depth. Additionally, the area of
Multisystem Databases is a very large one, and it is growing rapidly. So we
have only scratched the surface. But still, we may draw certain conclusions
from the content o·f this paper. These are:

1. Multisystem Databases are possible;
2. Several approaches exist, with different capabilities;
3. The HP3000 datacommunications capabilities make it an interesting computer

for implementation of multisystem databases;
4. Several future trends point towards making multisystem databases feasible

in the near future.

So, in order to approach the year 2001 in a forward-looking manner, what do
we do as HP computer users, need to think of? In this area, at least, we
should consider the following:

1. Move towards relational or pseudo-relational database management systems,
not just on HP3000's, but on all our computers;

2. Move towards standardized query/retrieval languages for databases,
particularly systems such as HPSQL;

3. Use only internationally standardized data communiation facilities,e.g.
X.25 for wide-area datacommunications, and IEEE 802.3 for local area
networking.

By following the above guidelines, we should be on our way towards solving
the data-processing and data-communications challenges of the next few
decades.

RKFEREllCES

For a more complete description of Multibase, see: "An Overview of Multiba­
se" by T. Landers and R.L. Rosenberg; in H. J. Schneider (ed): Distributed Data
Base, North-Holland Publishing Company, Amsterdam, 1982.

This above paper - presented at "the second international symposium on
distributed data bases" in Berlin, 1982 - gives a concise description of Multi­
base, it's capabilities and functions. For more information on this product,
contact Computer Corporation of America (Ann Arbor, Michigan, USA) or their
representatives.

For more information about POREL, see: "An Overview of the Architecture of
the distributed Data Base System "POREL" by E.J. Neuhold and B. Walter; in the
same book as quoted above.

For a more detailed paper on access to on-line IBM applications from an
HP3000 using see: "Implementing Distributed Applicaitons in a Mixed HP-IBM En­
vironment" by Rolf Frydenberg; in the proceedings of the HP3000 International
Users Group conference, Montreal, 1983; available from INTEREX Santa Clara,
California, USA.

Information about IMAGE Remote DataBase Access, and the products IMF and
SNA IMF is available from your local HP sales office.

Other books that may be of interest are: James Martin: "Distributed Pro­
cessing", Prentice-Hall, Princeton, NJ, USA, 1980. F.A. Schreiber and w. Litw­
in (eds): "Distributed Data Sharing Systems", North-Holland, Amsterdam, The
Netherlands, 1984.

BIOGBAPBY

Rolf Frydenberg
has been with Hewlett-Packard Norge A/S for four months. His job is that of an
Applications Engineer, specializing in Data Communicating and Programming Lan­
guages. Before joining HP last year, Rolf Frydenberg worked as an independent
consultant and a software developer. He was one of the principals behind the
HP-to-IBM data communications product VTS/IMAS. He has also worked on other
types of data communications software.

Rolf Frydenberg has been a frequent speaker at INTEREX international and
national conferences since 1982, mostly on topics related to data communicati­
ons. Rolf Frydenberg has also written articles for trade magazines in the USA
and Norway, and is the author of a book on selecting computer systems (in
Norwegian).

159

summary

TRICKS WITH(IN) IMAGE

Jan Janssens
Cobelfret N.V.

Antwerpen, Belgium

IMAGE-databases are very attractive for storing information: they
are very reliable, they are easy to use, they can be accessed by
querylanguages and they can be easy managed. Allmost every application
on a HP3000, which is very important or deals with a huge amount of
data, is forced to use IMAGE for its data-storage. (Of course there are
other possibilities, but that seems to be more like re-inventing the
wheel).

Unfortunately IMAGE/3000-databases have also some disadvantages:
they can become slow if chainlengths or datasetcapacities are growing
(10.000 entries is fine, but 1.000.000 entries is something else!!),
they don't provide in a indexed access, their structure is sometimes too
simple or rigid for the given problem.

This paper describes a method for "inventing tricks" to bypass the
problem (which by the way can be applied to all kind of problems) and
gives detailed (non-PM!!!) methods to overcome some IMAGE/3000-problems.

l. The "finding tricks"-technology

We will illustrate this technology through the use of the following
example:

- A certain bookkeeping application had some databases and some
other files in a separate account per company for which
bookkeeping was done by a certain group of users. The files
were builded by the financial on-line program and formed the
input of a complex batchprogram that runned at night.

- If a user wanted to switch to another company, he had to log
off and log on in the appropriate account. This involved a lot
of overhead, and had to be done for every single inquiry in
another account (company).

- The programs could easily be adapted to access the database and
files in another account, BUT could not create (:BUILD) the
inputf iles in another account (where the batchprogram and
on-line programs of other users expected them) unless they
should use PM.

1.1 Getting started

The first thing that has to be done is to FORMULATE THE PROBLEM.
For the above example this seems to be "building files into another
account". This is really THE problem, because if you could build

161

files into another account, the users could "swap" easily from the
bookkeeping system of one company to that of another one (
reinitialisation + close/open of database and files) .

1.2 Think it over

The second step is : "WHY DO WE WANT TO SOLVE THIS PROBLEM?". Why
do you want something to do that is very difficult, impossible or
has some disadvantages ? In this case the reason is that programs
expect to find the files in the "home-account", but that you can't
build them from another one.

1.3 Look for "weak" and "strong" points

When we've located the real problem, we can attack it. It is
comparable with the situation of an army that has surrounded a fortress
and wants to take it over.
One could take the fort by attacking the big entrancedoor with a lot of
soldiers. But is very likely that the •current fortress owners' have
made a fine defence system around the door and that the door is made of
a very good material. The door is a "strong" point of the problem and
its better to avoid it. Perhaps there are more less obvious ways in
entering the fortress, but giving the same result. The defence system is
perhaps not so strong if you could go in by the system that provides the
fortress in fresh water.

In our case the implicit expectation of finding/building files in
the homeaccount is the "strong point".
The "weak point" is that it is not necessarily to have the files in a
certain account: as long as we are in the possibility to refind all the
files that belong to one company, everything is okl

1.4 Bypass the "weak" point

In the above case the problem can be bypassed by adding a dataset
to the company database with a key=FILENAME and a field which has the
fully qualified filename (filename + group + account) of the file under
which name it was really saved.
All programs must first read in the (already open) database to find the
actual filename! They also must do a delete or an update to it when the
file is deleted or renamed.

162

2. Example of an own database system within an IMAGE database

2.1 Definition of the problem

The setup of a database system for a bookkeeping application posed
the following problems (after the "think-it-over" phase) :

it muat be
chains (i.e.
till 28 JULY)

possible to do extremely fast lookup in very long
give all entries for a big customer from 18 JUNE

- it must be possible to locate very fast all records belonging
to a certain period (the period was unpredictable)

- the user-input, which consisted sometimes of more than 50
lines, must be registrated in a detail data-set with 3 keys
(DOCUMENT, CUSTOMER, FILE), so that "up-to-second" consulting
was possible.Allmost all transactions (say 98 %) were done on
this data-set.
Some chains exceeded the IMAGE/3000 upperlimit of 65535 entries.

- a payment of a single customer could cover more than 1500
entries, which must be updated on-line to avoid double usage.
It must be possible to interrupt a transaction and to go on
with it the next working day.

- the "accounts payable" and "accounts receivable" must be
located in separate datasets to speed up batchjobs (serial
read) and on-line transactions (reorganisation of the records
to minimize DISCIO when consulting via the CUSTOMER-path (a
frequent transaction))

- a certain department required such a complex presentation of
their "accounts payable and receivable" that it was nearly
impossible to do all that work at inquiry-time.(A lot of
lookups in other data-sets was needed to define the
sortcriteria and presentation lay-out).
It must also be possible to run their job with a minimum
elapsed time.

- it must be possible to
datastructure.

2.2 "Strong" and "weak" points

The "strong" points were:

use querylanguages on the developed

- the complete system must work with the same efficiency for big
and small databases.
the long chains couldn't be changed into a lot of small ones
with each a different key.
the large transactions couldn't be broken up into small ones.
if IMAGE was not used then a lot of maintenance-, management­
and inquiry-programs needed to be written

163

The "weak" points were:
1:- all transactions were done in a chronological order: at each

moment, input was done in only two (bookkeeping)periods, and
the periods changed always in a chronological manner.
Consulting was also done in chronogical order.

2:- info entered in the system, was never deleted to allow full
auditing. (Besides of "clean-up" jobs after some years).

3:- the number of "outstanding records" was only a fraction of the
complete history. People wanted to keep track of all bookings
for at least 2-3 years (900.000 records), and the
"outstandings" covered only 30.000 records.

4:- when entering information in the detail-dataset with 3 keys,
most of the time 2 of 3 keys didn't change within the
transaction. A lot of transactions also left some keyvalues
zero or blank.

5:- the department that required the complex inquiries and jobs
was a very important, but a small one.

6:- it was unnecessary and even unwanted to update immediately all
payments. As long as one could not pay 2 times the same
invoice, everything was ok. By not doing the update
immediately users had the time to correct mistakes they
encountered when closing their payments at the end of the day.

2.3 Bypassing the "weak" points

2.3.l Data-structure for "historic" information

164

Working on the first 2 "weak points" the following design was drawn
for the "history" detail-dataset:

Man-Master Detail Detail

KEY KEYPOINT DETAIL-HIST

I---I first for A I----------I !----------!
I A I--I----------->I*A 01JAN86I------->I A I<--01JAN86
I B I !last unl/relI*A 02JAN86I-----I I B I
I C I I----------->I*A 05JAN86I---I I I A I
I D I I I B 01JAN86I I I I C I
I E I I I C 01JAN86I I I I D I
I I I I*A 10JAN86I-I I I I E I
I I I I C 10JAN86I I I I->I A I<--02JAN86
I I I I .•••.••• ! I IC I
I I I last for A I ••...... ! I I A I
I I I----------->I*A 27FEB86I-I I I A I
I I I III IB I
I I last in set! I I I I B I
I---I ---------->! F 28FEB86I I I A I

I I I I C I<--05JAN86
!----------! I I C I

I--->I A I
I B I
I A !<--last
I I in set
I----------I

- The detail data-set with 3 keys is a stand-alone detail-dataset.
This dataset is always filled up with "empty" records. This
gives us the opportunity to place the records where we want them
by doing an DBUPDATE instead of a DBPUT. To find all records
within a given period, we only have to read all records starting
with the first record of the given "startdate" till we find a
record with a date greater than the 11 enddate 11 .An index is
maintained to keep track of the first record for each date and
the last "used" record. Locating ALL records of ALL keys within
a given period out of a dataset of more than 1.000.000 entries,
is rlow possible in a fraction of a second!!!!!

- For each of the 3 keys a pointerchain is maintained in the
detaildataset. Because no information will be deleted and
consulting doesn't need a "backchained read", a
"forward"-pointer is enough. The pointerchain gives us the
possibility to do a "chained get" a certain record of a chain is
read.

- For each key a "KEYPOINT"-data-set is maintained which gives the
recordnumber of the first record of that key with a date greater
or equal to a given date. This data-set is also a stand-alone
detaildataset prefilled with "empty"-records and contains again
a pointerchain for each keyvalue. The masterdata-set "KEY" has
pointers to the first and last entry for that key in the
"KEYPOINT 11 -data-set. In addition the last "free" entry in
KEYPOINT must be kept aside.

In the KEYPOINT-dataset are pointers written if:

AND

- the number of records written in DETAIL-HIST,
last record which has a pointer to it in
exceeds a given number. The recordcounter
upperlimit are also stored in the KEY-dataset.

since the
KEYPOINT,

and its

- the date differs from the date in the last record for the
key in DETAIL-HIST.

This system allows to define how many "entrypoints" you want to
the chain of a given key. The number of entrypoints grows
dynamically with the number of entries in the detail-dataset.

- To locate the first entry for a key for a date greater or equal
to a given date, the search can be done in the data-set
KEYPOINT.
Once a record is read with a value greater than the given date,
one must "backtrack" one record, read in DETAIL-HIST at the
location given by the pointer of KEYPOINT and read further in
DETAIL-HIST by following the pointers of the appropriate key
until a record is read with date greater or equal to the asked
startingdate.
Because KEYPOINT contains less records than DETAIL-HIST and has
a greater blocking factor, locating of a record in the chain
goes much faster than a chained read in DETAIL-HIST.

165

166

- If the number of
great, localizing
(although it will
DETAIL-HIST) •

records fc~ a given key in KEYPOINT becomes
records in DETAIL-HIST will slow down
still be faster than the chained read in

To overcome this situation an "unload-reload" of the data-set
KEYPOINT can be done, so that records with the same keyvalue
become adjacent.
This gives already a very good improvement by eliminating a lot
of disc IO (KEYPOINT can have a blocking factor of 80-100).
The "unload-reload" can be done by writing a simple program.
Because this program can write its records from the end to the
beginning (only forward pointers are maintained) and only
DBUPDATE's are done, processing of it goes very fast.

- It is also possible to do a "partial unload-reload" : one could
reorganize only those entries after the last record of the last
"full unload-reload". This action puts all records of the same
key together in two blocks instead of one (one "partial reload"
after a "full reload").
Because we have only forward pointers, one must have a pointer
to the last "fully unload-reloaded" record in KEYPOINT for each
key.
The effort is minimal, timesavings are high and results can be
great: users are often consulting the most recent history and a
"full reload" with a few "partial reloads" gives nearly the same
effect as a set of "full reloads".
This concept of "partial reloads" can also be applied to
"normal" IMAGE-datasets. It's a pitty that such a smart reload
is not yet available.

- By maintaining in the data-set KEY the last record in KEYPOINT
which is "fully unloaded-reloaded" another improvement can be
done in speeding up consulting: If the given startdate is less
than the date given by the last "unloaded-reloaded" record, a
binary search can be done in KEYPOINT between the first record
for that key and the last "unloaded-reloaded" record of it.

- For 1 of the 3 keys (DOCUMENTNR) a different approach was made
because the number of entries was rather small (1 to 100) and
all records were always introduced in one single transaction.
(This is in fact another "weak" point).
Only a pointer to the first and last record are provided.

2.3.2 Data-structure for "current" information

Considering "weak points" 3 and 4, a separate dataset (DETAILCUR)
is used which holds all outstandings yet in DETAILHIST and all
input of the day.

KEY DETAILCUR

I-------I first entry I-------I
I A I-I---------------------->I A * c I
IB II IA*hI
I II IA*aI
I-------I I last reorganised entrI A * i I

I---------------------->I A * n I
I I B I
I I c I<-- last unl/rel
I I I
I last entr. in HIST. I A * I
I---------------------->I A * I
I I B I<-- last hist
I last entry I I
I---------------------->I A * I

I B I
I F I<-- last used
I I
I I
I-------I

- For each key the following pointers are provided in the master KE

- first entry in this dataset for the given key
- last entry in this dataset for the given key
- last entry in this dataset for the given key that is already

present in DETAILHIST. (lasthistoryponter)
- last entry in this dataset for the given key that was

"unloaded-reloaded"

In addition a pointer to the last "used" record, the last "fully
unloaded-reloaded" and the last record already in DETAILHIST of
this dataset itself must be kept aside.
In the dataset DETAILCUR all entries belonging to the same key
are linked together with forward pointers.

Here we don't need the KEYPOINT-dataset because:

- most of the time all outstandings are asked (no selection on
date)

- the number of entries is rather small and and the dataset
itself can be "unloaded-reloaded" for the most used path
(CUSTOMER) in a rather small amount of time. The trick of a
"partial unloadreload" can also be used.

167

168

- consulting of "outstandings" can be done in the same manner as
explicated above for the KEYPOINT dataset. The trick of
consulting with the binary search mechanism only works for the
path to which reorganizing was done!!!!

- All input is done to DETAILCUR-dataset, even if it's not
"outstanding".
All those records receive a special code and will be skipped when
consulting the outstandings.
No input is done in the DETAILHIST-dataset. When consul~ing the
history for a given key, one starts reading in the
DETAILHIST-dataset untill the end of the chain is reached, reads
the record in DETAILCUR indicated by the "lasthistorypointer",
and continues reading the next record of the chain.

Speeding up registration of a booking is done as follows:

- the pointers for a key are only updated if the key changes
in the next record. For most of the bookings our dataset now
acted as a detaildataset with only one key.

- no pointers are created if a key is omitted (say zero or
blank).

- only 11 DBUPDATE 111 s are done instead of DBPUT's.
- registration is only done in 1 dataset instead of 2.

- Input of the day is posted to the DETAILHIST-dataset by a
batch-job that runs overnight. When no "reorganisation" is done
the job can start at the record just after the one indicated by
the "lasthistorypointer11 of this dataset.
All modifications to already existant records in DETAILCUR are
also redone in the DETAILHIST-dataset. Because modifications
mostly exist of "payments of outstanding records" and those
records are linked together with another "chain", one can easily
retrieve the modified records. Other modifications are tracked
by writing away the documentnr in a separate dataset.

- The complete system now becomes:

DETAILHIST KEYlPOINT KEYl DETAILCUR

I-------I 5 I-------I 1 I-------I 6 I------I
B->I 12 I<---------I 11 I<--------I-I I-I------->I 13 I

I I I-----I I 2 I I I I I I
I I I I I<--------I I I I I I
I I I I--I I I I I I I I

B->I I<---I I I I I I I I I I
I I I I I II II I I

B->I I<------I I I I I-------I I 7 I I
I I I I I I------->I I
I I DI I 3 I I I I
I I ---->I I<--------I I 8 I I
I I C I I I I------->I I

B->I I ---->I-------I I I 9 I I
I I I I------->I I
I I 4 I I I
I I<---------------------------I I I
I I I I

B->I I KEYPOINT2 KEY2 I I
I I I I
I I 5 I-------I 1 I-------I 6 I I
I 12 I<---------I 11 I<--------I-I I-I------->I 13 I
I I I I 2 II II I I
I I I I<--------I I I I I I

B->I I I I I I I I I I
I I I I II II I I
I I DI I II II I I
I I ---->I I I I-------I I 7 I I
I I I I I I------->I I
I I I I 3 I I I I

B->I I C I I<--------I I 8 I I
I I ---->I I I I------->I I
I I I-------I I I I I
I I I I 9 I I
I I 4 I I------->I I
I I<---------------------------I I I

B->I I I I
I I I I<-G
I I KEY3 I I
I I 10 I-------I 6 I I
I 12 I<---------------------------I-I I-I------->I 13 I
I I II II I I

B->I I I I I I I I
I I I I I I I I<-F
I I II II 7 I I
I I I I I I------->I I
I I I I-------I I I I

B->I I I I 8 I I
I I 4 I I------->I I
I I<---------------------------I I I I
I I I 9 I I

A->I I I------->I I<-E
I I I I
I I I I
I-------I I------I

169

l: A pointer to the first record in KEYPOINT.
In KEYPOINT all records of the same key are linked together and are
always sorted on date. This is done by the overnight batchjob.

2: A pointer to the last "fully unloaded-reloaded" record in KEYPOINT.
This pointer is maintained by the "fully unloadreload" program.

3: A pointer to the last record in KEYPOINT.
A record in KEYPOINT is written if :

OR
- the current pointer O (no entries in history yet for key)

- the number
record in
registrated
of the last

of records written in DETAILHIST since the last
KEYPOINT exceeds a certain value (both to be
in dataset KEY) and the date differs from the date

record in DETAILHIST.

4: A pointer to the last record in DETAILHIST.
' The pointer is maintained by the overnightjob.

5: For each combination of KEY and DATE : a pointer to the first record
in DETAILHIST. Written by the overnightjob.

6: A pointer to the first record of the key in DETAILCUR. Updated by
the on-line programs and by the "reorganisation"-job of DETAILCUR.

7: A pointer to the last record of the key in DETAILCUR that is already
available in DETAILHIST. Updated by the overnightjob.

8: A pointer to the last record of the key that is "fully
unloaded-reloaded".
Updated by the 11 reorganisationjob11 •

9: A pointer to the last record of the key in DETAILCUR. This pointer
is updated by the on-line programs and by the "reorganisationjob".

10: A pointer to the first record of the key (DOCUMENTNR) in DETAILHIST.
Updated by the overnightjob.

ll: In KEYPOINT are all records with the same key linked together.

12: In DETAILHIST are all records with the same key linked together.

13: In DETAILCUR are all records with the same key linked together.

A: Pointer to the last used record in DETAILHIST.

B: Pointer to the first record of a given date in DETAILHIST

C: Pointer to the last used record in KEYPOINT.

D: Pointer to the last "fully unloaded-reloaded" record of KEYPOINT.

E: Pointer to the last used record in DETAILCUR.

F: Pointer to the last record of DETAILCUR that is also in DETAILHIST.

G: Pointer to the last "fully unloaded-reloaded" record of DETAILCUR.

170

2.3.3 Speeding up complex inquiries

To allow fast processing of the jobs of the (small) important
department and to solve their complex inquiries the following
modifications were done on the above design:

- the complete structure is made in double one for the
important department and one for all the others. This reduces
the capacity of all datasets for that department by 3000 %
(compared with the other departments).
The result on the elapsed time of jobs that have to do a serial
read is in the same order.

- a separate small file is builded (by a now fast running job)
which contains the "outstandings" in a complex
presentation-layout. The job runs overnight and at the quiet
periods in the day.
A separate masterdataset is builded which contains pointers to
the file for each key and a pointer to the last record of
DETAILCUR that is already in the file. When consulting is done
on that file, all records of the given key are given, and
eventualy additional records in DETAILCUR complete the
overview.
Whenever the jobs runs during the day, records are always added
to the file and the appropriate pointers are changed after
adding all records to the file. Consulting stays possible when
the job is running!!!
The EOF of the file is reset to zero when the jobs starts
overnight.
A file was chosen because:

- writing in it goes faster than writing in a database
- all info is safely placed in the database
- all info can be reconstructed by rerunning the job
- reading in it goes faster than reading in a database

2.3.4 Large interruptable transactions

The registration of the complex payments (update of over 1500
entries in a single transaction with the possibility to "undo" it
within the same working day was handled in the following way:

- A (central) bitmap for the DETAILCUR-dataset is created. Each
bit in it corresponds with an (outstanding) record in DETAILCUR
with a relative recordnumber equal to the bitnumber in the
bitmap. When the bit = o, the corresponding record is "free" for
payment, otherwise it is "used".

- When the user starts the input of a certain payment, a copy of
the bitmap is taken into an XDS (local bitmap) .
When payment references to an already registrated document, the
records of it are read in DETAILCUR. If the corresponding bit
(in the local bitmap) is zero, one can go on, otherwise the
document is already used in another transaction.

171

The recordnumber of each line in the workfile or scroll is added
to the line itself.
No bits are set in the local bitmap.

- When a user terminates a transaction (i.e. payment of a customer)
a module is called to set the appropriate bits in the central
bitmap.
(His workfile or scroll will be scanned to gather the right
bitnumbers). The results of this module can be:

- Everything ok: the transaction of the user can now
(temporarily) be stored outside the database
in a normal MPE-file.
Further payments on referenced documents in
it, are now disabled by the bitmap.
1500 or more DBUPDATE's are changed to a few
discaccesses to UPDATE the bitmap!!!!

- Double usage of bits : the user entered two times the same
document. The workfile or scroll is
scanned to retrieve them (relative
recordnumber) and a message is
given to the user.

- A bit changed to 1 another user referenced the same record
before this user could registrate his
input.

- When a user deletes a transaction the same module is called to
reset the referenced bits in the central bitmap to zero. The
appropriate records are again free.
If some of the corresponding bits are already zero, the current
bitmap is "corrupt", and must be recovered starting from the
MPE-files (the user-input) .

- When a user wants to change a transaction, the same is done when
deleting one (but the user-info is not cleared to allow
modifications).
When registrating the modified transaction, the bits are resetted

- After validating the complete input (eventually after hours, or
even at the end of the day), a job runs to post the user-input
in the MPEfiles into the database. This can be done at the quiet
periods or even overnight.

2.3.5 Query

172

The use of querylanguages was rather easy to imply:

- Because all data is located in IMAGE/3000 databases, reporting
itself imposes no problem, once the records are retrieved.

- Modules were build to "localate" records in DETAILCUR and
DETAILHIST, using the available pointers in the datasets KEY,
KEYPOINT, DETAILCUR and DETAILHIST. Those modules build a
"selectfile" that holds the relative recordnumbers of the
retrieved entries and is used as input for the query-reporter.

3. "Various" tricks

3.1 Speeding up registration in a detaildataset

A lot of transactions work on detaildatasets in the following way:

If there are entries available in the detaildataset for a given
key, they are shown to the user.

- The user can add, delete and insert lines or change existing
lines.

- Registration in the database.

Because inserting and deleting records in a chain is a rather
difficult thing to achieve within IMAGE, the easiest programming way for
this problem is deleting all existing entries and then writing the new
records.

However, as long as the keyvalues remain the same the thing can
easily speeded up in the following way:

clear flag fend
<findfrom db="BASE" ds="SET" di="ITEM" from="ITEMVALUE">
if $image'= 17 then' set flag 1 fend '

<getchain,db= 11 BASE 11 ,ds="SET",di="ITEM11 >
if $image = 15 then set flag fend
while info available in user workfile or scroll

move values from workfile or scroll to buffer
if flag fend

<putdb,db="BASE",ds= 11 SET 11 >
else

<updatedb,db="BASE",ds= 11 SET 11 >
<getchain,db="BASE 11 ,ds="SET",di= 11 ITEM 11 >
if $image = 15 then set flag fend

endif
endwhile

endif
ifnot flag fend

while $image = O
<deletedb,db="BASE 11 ,ds= 11 SET 11 >
<getchain,db="BASE 11 ,ds="SET 11 ,di=11 ITEM 11 >

endif

Changing information becomes now quicker than introducing new
information!!

173

3.2 Locking in a PH-environment and use of MR-capabilities

To avoid "overlapping updates" on data, there are 2 possibilities:

--> METHOD 1 <--

transaction WITHOUT permanent lock

- get data
- modification by user
- lock data
- re-get data
- if re-getted data = old data

•update'
else

appropriate action or
give message to user

endif
- unlock data

--> METHOD 2 <--

transaction WITH permanent lock

- lock data
- get data
- modification by user
- •update' data
- unlock data

The first method leaves the database free of "locks" until the
update really takes place. It assures a minimum of lockingproblems (not
avoiding deadlocks, but avoiding that a user has to wait for another one
(who is entering his information or is drinking a cup of coffee while he
has something locked that prevents the other user to registrate his
data) .
The disadvantage is that the processing can become difficult or even
impossible.

Method 2 has the advantage that it
problems if locking can be done on ITEM-level.
one has to lock one or more datasets or
database. (Remark: locking on dataset-level is
MASTER-datasets) .

is easy. It even gives no
The problem arises when
eventually the complete
required when updating

In a PH-environment where a process stays alive when activating another
one (perhaps in in the middle of a transaction that has a lock on the
database) this method can not be used and can cause deadlocks (because
MR-capability must be used) .

The problem can be solved by applying first a "soft lock" and later
on a "hard lock". The "soft lock" takes a lock at item-level in a
complete separate database. This database consists only of 1 standalone
detail-dataset with just 1 field and has no records in it.
When a user wants to add, modify or delete certain data, a lock at
itemlevel is taken on the dummy database. The lockdescriptor is composed
as follows:

- descriptionidentifier (i.e. "CUSTOMERNR")
- value (i.e. 11 62417")

Although the modifications
datasets or even databases,
database is required.

174

--> "CUSTOMERNR62417 11

itself require locking on several items,
only one "logical lock" in the dummy

(Data of given CUSTOMER can be stored in several records in several
datasets and even several databases) .
"Logical or soft" locks should be defined for the whole application
system, and all programs should use them in the following way:

- conditional lock on dummy database at ITEM-level.
- if lock is not granted

user-access in application program changed to "READ" as
long as user works on this data.

else
user is allowed to make his modifications
lock data ("hard lock" as required by IMAGE)
update data
unlock data ("hard lock")
unlock dummy database ("soft lock")

endif

This system has two advantages:

- only specific "working data" is locked, leaving "THE" database
free of locks, so that waiting time for obtaining locks is
minimalized.

- no complicate processing when doing the "real" update, so that
the number of quiet periods on the database can stay at a good
level.

Remark: as long as there are no transactions that lock the complete
database, or work on more than on database, the "soft-locking"
can be done on a dummy dataset of the database itself.

3.3 The use of dummy sorted paths

IMAGE lacks the capability to do an indexed look-up with the
possiblity to retrieve the next or prior value for a given item. If all
your keys follow a certain pattern (i.e. DATE, DOCUMENTNR ...) and if
entries are most of the time entered in "good" sequence, the following
approach can be taken:

Suppose a follow-up program for certain stockmarket indexes: each
day all indexes are registrated and the program must give a quick
overview of the evolution of them, starting with a date greater or equal
to a given date:

175

I------------I I-------------I
I DUMMY-KEYS I I DATES I
I------------I I-------------I

I I
I I

path sorted I I 1 entry for each
on DATE I I--------------------I I date

I I MARKET-INDEXES I I
I I--------------------I I
I I I I
I I I I
1---->I I 02 JUL 86I I

I I c 03 JUL 86I I
I I h 06 JUL 86I <---1
I I a 07 JUL 86I
I I i 08 JUL 86I
I I n 09 JUL 86I
I I I
I--------------------I

DUMMY-KEYS is an automatic master with just one entry. The path to
MARKET-INDEXES is sorted on DATE(YMD). DATE is also an automatic
master.
All transactions simply work on the dataset MARKETINDEXES. Because
most figures are inputted in sequencial order (the input are the
figures of the day), there is little overhead due to the sortpath.

To localize the first entry and read the next entries

get in dataset DATES with the given date
while no record found

compute next day
get record in dataset DATES with computed date

endwhile
read corresponding entry in MARKET-INDEXES for path DATE
reread same entry in MARKET-INDEXES for path DUMMY-KEY
chained read in MARKET-INDEXES for path DUMMY-KEY

Remark: the application program has to check if the startdate falls
in "a region of values" that is "supported" by the
database. Otherwise, locating the first record can take too
much time.

3.4 "Bulk"-handling of information

If one has to store a huge amount of userdata in one single
transaction, and if re-screening of it must be done very fast, it is
impossible to write all information record by record into a database.

However, if the records are compacted to one big record, the
improvement can be astonishing ! Suppose you have a workfile or scroll
that has to be saved, and which has 200 lines in it, each of 80
characters wide. The maximum entrysize in IMAGE is 2047 words 4094

176

bytes. Up to 50 lines of your workfile or scroll will fit in such one
big IMAGE-record, and the complete information can be stored in 4
IMAGE-records!
A very easy compression technique like compression of blanks will
further reduce the amount of records with a factor 2 (a lot of data has
blanks in it) and even reduce CPU-usage by avoiding extra IMAGE-calls.
See further to 3.1 to increase speed when writing to a detaildataset.
Retrieving data goes at the same spectacular speed. At our site, storing
and restoring information in this manner requires on a loaded machine
less than l second for a "screen" with 200 lines.

The price that is paid, is that the data is now in its denormalized
form. This can be overcome by writing the modified key-values to a
message file.
A second process can now in background read the messagefile and reread
~he saved (denormalized) entries and write them to a second
"CLONE"-database in its normalized form.
Programs that work on information "in the way" it was stored, can still
work on the fast denormalized database. The others must work on the
normalized one.

Biography

Jan Janssens is since 1980 system manager at Cobelfret N.V. - Antwerp,
where he worked exclusively with HP3000-computers. He is a civil
engineer of the KU-Leuven and followed MBA at the university of Ghent.

177

TURBOIMAGE RUN-TIME OPTIONS: BALANCING PERFORMANCE WITH DATA BASE INTEGRITY

Author: Peter Kane, Information Technology Group,
Hewlett-Packard, Cupertino, California, U.S.A.

Summary

Along with improvements in the areas of performance and data base limitations,
run-time options were added to TurboIMAGE to allow more flexibility between having
high performance and high recoverability. A run-time option is an option which can
be used without changes made to any application. In the case of TurboIMAGE, all of
the options I will discuss can be enabled through DBUTIL. The purpose of this paper
is to compare all combinations of these options, considering the performance impact
and what recovery is available.

Introduction

In I~AGE/3000, two run-time options, LOGGING and Intrinsic Level Recovery
(ILR) are available. A user can enable LOGGING, ILR, both, or neither. There are
two differences between these options. The first is that ILR guarantees only
physical integrity, i.e. no broken chains, while using logging and DBRECOV
guarantees both physical and logical integrity, i.e. only finished transactions
appear in the data base after recovery. The second difference is that with ILR,
recovery happens automatically on the first DBOPEN of the data base following an
interrupted DBPUT or DBDELETE, while using DBRECOV means restoring an old copy of the
data base and waiting while all finished transactions in the log file are issued.
Whatever the wait on DBRECOV, it is a much less lengthy process than recovery of a
data base not using either ILR or logging, which is by DBUNLOAD and DBLOAD (or a
third party utility).

Another option which is not a run-time option since it means application changes,
is output deferred mode. Output deferred can be enabled in IMAGE/3000 only when
the data base is opened in mode 3 (exclusive modify access), and is enabled by
calling DBCONTROL with mode 1. Output deferred can therefore be used only in single­
user environments. This mode can drop significantly the elapsed and CPU times needed
by DBPUT, DBDELETE, and DBUPDATE. The reason is that modified buffers and set labels
are not written to the data base until either the buffer is needed to hold a
different data block, or else a DBCLOSE mode 1 or 2 is issued. The drawback of output
deferred can be inferred by this last point, which is that a system failure occurring
in the middle of an output deferred application can leave a badly damaged data base.
The usual use for output deferred is in a batch environment, where the data base is
stored before running the applications. If the system fails while the applications
are running, the stored data base would be restored and the applications would then be
restarted. Output deferred mode can be used in an interactive environment, if logging
is set up (otherwise a DBUNLOAD and DBLOAD is necessary if the system fails). However,
exclusive access is required, which usually eliminates output deferred for consideration
in an interactive environment.

The above options allow some flexibility, but some issues have been outstanding:

1. If there are a lot of transactions on a log file, recovery to achieve logical
integrity can mean a lot of down-time.

2. In shortening the maintenance cycle so that recovery can take less time, the
data base must be stored more often. Users can not issue transactions
against the data base during these times.

179

3. Applications using output deferred mode must be operating exclusively.
Therefore batch processing can take longer than necessary.

4. A high volume of modifications can have a major impact on performance.

Therefore two more run-time options have been added to TurbolMAGE as answers to
the above issues. These are: AUTODEFER, or multi-user output deferred mode, and
ROLLBACK, or Rollback recovery which allows a faster recovery than IMAGE'S recovery
method (which I refer to as Roll Forward recovery). The options which have been
available in IMAGE have all been carried over to TurboIMAGE, giving four different
run-time options. These options can be used in seven different combinations to
balance performance and integrity. In this paper I will discuss each combination,
specifying the .advantages and disadvantages and my recommendations for its use.

Combinations Available with TurbolMAGE

The following is a list of the possible combinations:

1. No options used
2. LOGGING enabled
3. AUTODEFER enabled
4. AUTODEFER and LOGGING enabled
5. ILR enabled
6. ILR and LOGGING enabled
7. ROLLBACK enabled

It may noted that some options are not compatible with o.thers, for instance
AUTODEFER and ILR are not compatible. It also should be noted that enabling ROLLBACK
automatically enables LOGGING and ILR.

Each of these combinations will now. be looked at separately.

Combination 1: No options used.

180

Performance: Modified buffers and labels are written to disc (or cache if
caching is enabled and BLOCKONWRITE is set to NO), within the
intrinsic which did the modification. This means that modify
intensive applications must wait frequently for writes to occur.
It also means that buffers are never left dirty after an intrinsic
finishes, which has a positive impact on read intensive environments
(more on this in the discussion of AUTODEFER).

Integrity: If the system fails during processing, physical corruption may
result. If this happens, a DBUNLOAD and DBLOAD (other utilities
from third parties may be used instead) is necessary to recover
the data base. Note that logical recovery is not possible in this
case. If disc caching is used and BLOCKONWRITE is set to NO,
multiple corruptions can result from a single system failure.

Advantages: The multi-user, read intensive environment probably sees the best
performance with this combination. The overhead of logging and
ILR is not seen.

Disadvantages: Very lengthy recovery if a system failure has caused physical
corruption.

Combination 1 (continued)

RecOl'llllendation: Use for read intensive (approximately 80% reads, 20% modifications)
application mixes on non-critical data bases. Modify intensive
environments can be improved in performance by using other options.

Combination 2: LOGGING enabled.

Performance: Contrary to what many users bel 1eve, logging causes only a sl 1ght
(ranging from about 3% to 8%) degradation in performance. The
higher end of this range is usually seen in the modify intensive
environments. The reason the degradation is slight is because
with only logging enabled log writes stay in memory until a DBEND
or a DBCLOSE is issued, or if the log buffer in memory fills up.
Therefore this combination is only slightly lower in performance
than using no options at all.

Integrity: Physical integrity can be achieved without using the lengthy
process of DBUNLOAD and DBLOAD. logical integrity is possible if
the applications are written using DBBEGINs and DBENDs. By loggin9
to tape, disc failures can be recovered from.

Advantages: Physical recovery is far less lengthy than DBUNLOAD and DBLOAD.
User specific data can be obtained from the log file. Logging to
tape or to a different disc from the data base can provide recovery
from media failures.

Disadvantages: Dedicated tape drive or usage of disc space for log records. To
attain logical recovery, applications must have DBBEGIN and DBEND
calls to define logical transactions. Periodic down-time is
necessary to back up the data base and start a new log cycle.

Recommendation: Probably best use is in read intensive environments where logical
transactions have been defined, where logical recovery is desired,
and where application performance is more of an issue than down­
time required to recover from a failure. Also provides best
protection against media failures.

Combination 3: AUTODEFER enabled.

Performance: Usually will prove to allow the best performance, especially in
modify intensive environments. Dirty buffers and labels are not
flushed to disc (or cache) until DBCLOSE mode 1 or 2, or unless a
buffer is needed to hold a different data block from the data base
and all other buffers are dirty. From this one can see that
Turbo IMAGE wi 11 try to keep dirty buffers in memory as long as
possible, in an effor to eliminate unnecessary writes to disc.
This is useful if users are modifying the same buffers over and
over again. However, if one user modifies a buffer containing a
data block no other user ever accesses, that block may stay in its
buffer for a long time. This will mean less buffers for the other
users to do reads, which will in turn mean that buffers may be
overlayed with other data blocks before the original user is
through. This has an impact on the read intensive environment
where there are occasional modifications. In the modify intensive

181

Combination 3 (continued)

Performance: environments this is not much of an issue because all of the
(continued) buffers are modified in time.

Integrity: In short, NEVER use AUTODEFER by itself in interactive environments.
This is because the user never has any idea whether the modified
blocks or labels (which contain data set ends of file, delete
chain heads, etc.) have made it to disc until DBCLOSE time. A
DBUNLOAD/DBLOAD is necessary to recover anything at all if the
system fails while applications are running. AUTODEFER is fine
with batch processing, if a store of the data base is done first.
Then if the system fails, the data base could be restored and the
applications redone.

Advantages: Highest performance in applications which do more than an
occasional modification.

Disadvantages: Physical integrity is highly at stake. Logical recovery not
possible at all.

Recommendation: Batch processing where applications modify the data base more than
occasionally.

Combination 4: AUTODEFER and LOGGING enabled.

182

Performance: Since the log writes are buffered by MPE until the buffer fills or
until DBCLOSE or DBEND, logging adds very little performance
overhead in this combination as opposed to having AUTODEFER alone.
The performance advantages of AUTODEFER are still realized with
this combination.

Integrity: Roll forward recovery is available. Therefore, physical integrity
can be achieved, while logical integrity can be achieved if
transactions have been defined in the applications using DBBEGINs
and DBENDs.

Advantages: High performance in applications which do more than occasional
modifications along with a recovery method in case of a system
failure. May be the best combination for environments which are
CPU bound.

Disadvantages: Roll forward recovery is not the fastest recovery method. Down­
time is necessary to back up the data base and start a new log
cycle. Dedicated tape drive or disc space is necessary.

Recommendation: Use in interactive environments where application performance is
highest concern, and where data base modifications are done more
than occasionally.

Combination 5: ILR enabled.

Perfonnance: Perfonnance degradation with modifications, for two reasons. The
first is because there are at least t\olo additional writes to disc
to update the ILR file for each DBPUT and DBDELETE. The second
reason is that all writes to the data base and to the ILR file go
through the Serial Write Queue. TurboIMAGE calls FSETMODE to set
this file system option if it determines that ILR is enabled.
Going through the Serial Write Queue means that writes can not
operate concurrently if they are to different discs.

Integrity: Automatic physical recovery on the first DBOPEN of the data base
following an interrupted DBPUT or DBDELETE. ILR has been enhanced
to redo the interrupted intrinsic rather than rolling it out as
in IMAGE. No logical recovery is available. ILR alone does not
protect against media failures.

Advantages: Quick physical recovery method, which is automatic. Easy to
use.

Disadvantages: Performance degradation for applications using a high number of
DBPUTs and DBDELETEs. No logical recovery available. Can not
recover from media failures. Not compatible with AUTODEFER.

Recommendation: For environments with a low volume of DBPUTs and DBDELETEs, this
is an inexpensive and painless way of insuring physical integrity.
For applications without DBBEGINs and DBENDs, this may be more
useful than enabling ROLLBACK.

Combination 6: ILR and LOGGING enabled.

Performance: Logging will cause a slight amount of degradation over having
ILR alone enabled.

Integrity: Can achieve quick and automatic physical recovery with ILR, and
can have logical recovery with DBRECOV. Media failures can be
recovered from.

Advantages: Quick physical recovery method. Logical recovery available.
Recovery from media failures is available.

Disadvantages: Performance degradation due to ILR during DBPUTs and DBDELETEs.
Logging maintenance.

Recommendation: Probably best use is in environments where ILR's automatic
recovery is the usual recovery method, and where logging is used
to protect from media failures. For environments where logical
recovery is possible (DBBEGINs and DBENDs are used}, ROLLBACK
is probably a better option.

183

Combination 7: ROLLBACK enabled (ILR and LOGGING will also be enabled).

Perfonnance: This combination has some more degradation over Combination 6.
This is because log writes will now be written directly to disc
using BLOCKONWRITE instead of being buffered by MPE as in all
of the other combinations using logging. Furthennore, since all
data base and ILR writes on this option will go through the Serial
Write Queue, the log write will have to wait for any or all of
the previous writes before it can be written itself. Therefore,
DBPUT and DBDELETE should see the most perfonnance degradation
from this method. ·

Integrity: Rollback recovery used for system failure or "soft crash".
Roll forward recovery can be used if there has been a media failure
or "hard crash". Logical and physical recovery are both available.

Advantages: Quick logical and physical recovery (rollback is much faster
than roll forward recovery). Stores of the data base do not have
to be taken as often, since the length of the log file is not as
great of an issue with rollback.

Disadvantages: Performance degradation, especially on DBPUTs and DBDELETEs.
DBUPDATEs also affected.

Recommendation: Use where transactions have been defined and where it is crucial
that the data base be available, and logically intact.

Biography

Peter Kane
has been with Hewlett-Packard for the last 3 1/2 years. He is an Online Support
Engineer for Data Base products, which includes IMAGE/3000 and TurboIMAGE/3000.
He in the past was responsible for SE training on the same products.

184

RELATIONAL DATA BASE: HOW DO WE KNOW IF WE NEED ONE?

Orland Larson
Hewlett-Packard Company, Cupertino, California, USA

'The field of relational technology is clearly misunderstood by a large number of
people. One major obstacle to acceptance of the relational model is the
unfamiliar terminology in which relational concepts are expressed. In addition,
"there are a number of misconceptions or "myths" that have grown up in the past
few years concerning relational systems. The purpose of this paper is to define
those terms, correct some of those misconceptions and to help you decide if your
company can benefit from adding relational data base technology to your current
capabilities.

This paper reports on the growing body of knowledge about relational technology.
I"t begins by reviewing the challenges facing the MIS organization and the
motivation for relational technology. It then briefly describes the history of
relational technology and defines the basic terminology used in the relational
approach. This will be followed by an examination of the productivity features
of the relational approach and why it should be seen as a complement rather than
a replacement for existing network databases such as the IMAGE data base
management system. Typical application areas where the relational approach can
be very effective will also be surveyed. Finally, a checklist will be reviewed
that will help the audience determine if, indeed, they really can benefit from
using a relational data base.

Introduction

The Challenges Facing MIS

The MIS manager is facing many challenges in today's modern information systems
organization. The backlog of applications waiting to be developed is one of key
challenges concerning MIS. In most medium to large installations the backlog of
applications waiting to be developed is anywhere from two to five years. This
estimate doesn't include the "invisible backlog," the needed applications which
aren't even requested because of the current known backlog. Software costs are
increasing because people costs are going up and because of the shortage of
skilled EDP specialists. The data base administrator is typically using non­
relational data bases where a great deal of time is spent predefining data
relationships only to find that the users data requirements are changing
dynamically. These changes in user requirements cause modifications to the data
base structure and, in many cases, the associated application programs.

The application programmer is spending a significant amount of time developing
applications using these non-relational data bases, which require traversing or
navigating the data base. This results in excessive application development
time. Because the users requirements change dynamically, it also means a great
deal of time spent maintaining applications. The programmer is also frequently
restricted by the data structures in the data base, adding to the complexity of
accessing data.

187

188

End users or business professionals are frustrated by the limited access to
information that they know exists somewhere in the data base. Their business
environment is changing dynamically, and they feel MIS should keep up with these
changes. They find the applications are inflexible, due to the pre-defined
relationships designed into the data base. They also lack powerful inquiry
facilities to aid in the decision-making process, which would allow them to ask
anything about anything residing in that data base.

The Motivation for Relational

Dr. Codd, considered to be the originator of the relational model for data
bases , noted when presented the 1981 ACM Turing Award, that the most important
motivation for the research work resulting in the relational model was the
objective of providing a sharp and clear boundary between the logical and
physical aspects of data base management (including data base design, data
retrieval, and data manipulation). This is called the data independence
objective.

A second objective was to make the model structurally simple, so that all kinds
of users and programmers could have a common understanding of the data, and
could therefore communicate with one another about the database. This is called
the communicability objective.

A third objective was to introduce high level language concepts to enable users
to express operations on large chunks of information at a time. This entailed
providing a foundation for set oriented processing (i.e., the ability to express
in a single statement the processing of multiple sets of records at a time).
This is called the set-processing objective.

Another primary motivation for development of the relational model has been to
make data access more flexible. Because there are no pointers embedded with the
data, the relational programmer does not have to be concerned about following
pre-defined access paths or navigating the database, which force him to think
and code at a needlessly low level of structural detail.

The Relational Data Model: ~ Brief History

In 1970, Dr. E.F. Codd published an article in the Communications of the ACM
entitled "A Relational Model of Data for Large Shared Data Banks." This classic
paper marks the "birth" of the relational model. Dr. Codd was the first to
inject mathematical principles and rigor into the .study of database management.

By the mid 70's, there were two database prototypes being developed. IBM was
behind a project called "System R," and there was another relational database
being developed at the University of California, Berkeley called INGRES. It was
late 1979 before the first commercially available relational database arrived in
the marketplace called ORACLE, from ORACLE Co.rp., which was an implementation
based on System R. In 1981 Relational Technology Inc. introduced INGRES which
was a different implementation based on the research done at Berkeley. Today
there are several additional advanced relational products available, such as
SQL/DS and DB2 from IBM and Rdb from Digital Equipment Corporation. There are
additional products sometimes referred to as "born again" relational databases
such as IDMS/R from Cullinet, ADR's DATACOM/DB, and Software AG's ADABAS, to
name a few.

Relational Database Defined

The relational database model is the easiest one to understand - at least at the
most basic level. In this model, data are represented as a table, with each
horizontal row representing a record and each vertical column representing one
of the attributes, or fields, of the record. Users find it natural to organize
and manipulate data stored in tables, having long familiarity with tables dating
from elementary school.

The Table, or two dimensional array, in a "true" relational data base is subject
to some special constraints. First, no row can exactly duplicate any other row.
(If it did, one of the rows would be unnecessary). Second, there must be an
entry in at least one column or combination of columns that is unique for each
row; the column heading for this column, or group of columns, is the "key" that
identifies the table and serves as a marker for search operations. Third, there
must be one and only one entry in each row-column cell.

A fourth requirement, that the rows be in no particular order, is both a
strength and a weakness of the relational model. Adding a new item can be
thought of as adding a row at the bottom of the table; hence there is no need to
squeeze a new item in between preexisting items as in other database structures.
However, to find a particular item, the entire table may have to be searched.

There are three kinds of tables in the relational model: base tables, views,
and result tables. A base table is named, defined in detail, filled with data,
and is more or less a permanent structure in the database.

A view can be seen as a "window" into one or more tables. It consists of a row
and/or column subset of one or more base tables. Data is not stored in a view,
so a view is often referred to as a logical or virtual table. Only the
definition of a view is stored in the database, and. that view definition is then
invoked whenever the view is referenced in a command. Views are convenient for
limiting the picture a user or program has of the data, thereby simplifying both
data security and data access.

A result table contains the data that results from a retrieval request. It has
no name and generally has a brief existence. This kind of table is not stored
in the database, but can be directed to an output device.

The Relational Language

The defacto industry standard language for relational data bases is SQL. SQL
stands for Structured Query Language. This name is deceiving in that it only
describes one facet of SQL's capabilities. In addition to the inquiry or data
retrieval operations, SQL also includes all the commands needed for data
manipulation. The user only needs to learn four commands to handle all data
retrieval and manipulation of a relational database. These four commands are:
SELECT, UPDATE, DELETE and INSERT.

189

190

The relational model uses three primary operations to retrieve records from one
or more tables: select, project and join. These operations are based on the
mathematical theories that underlie relational technology, and they all use the
same command, SELECT. The select operation retrieves a subset of rows from a
table that meet certain criteria. The project retrieves specific columns from a
table. The join operation combines data from two or more tables by matching
values in one table against values in the other tables. For all rows that
·contain matching values, a result row is created by combining the columns from
the tables eliminating redundant columns.

The basic form of the SELECT command is:

SELECT
FROM
WHERE

some data (field names)
some place (table names)
certain conditions (if any) are to be met

In some instances WHERE may not be neccessary. Around this SELECT .. FROM .. WHERE
structure, the user can place other SQL commands in order to express the many
powerful operations of the language.

In all uses of SQL, the user does not have to be concerned with how the system
should get the data. Rather, the user tells the system what he--wa:nts. This
means that the user only needs to know the meaning of the data, not its physical
representation, and this feature can relieve the user from many of the
complexities of data access.

The data manipulation operations include UPDATE, DELETE and INSERT. The UPDATE
·command changes data values in all rows that meet the WHERE qualification. The
DELETE command deletes all rows that meet the WHERE qualification and the INSERT
command adds new rows to a table.

When retrieving data in application programs it is important to remember that
SQL retrieves sets of data rather than individual records and consequently
requires different programming techniques. There are two options for presenting
selected data to programs. If an array is established in the program, a BULK
SELECT can retrieve the entire set of qualifying rows, and store them in the
array for programmatic processing. Alternatively, it is possible to activate a
cursor that will present rows to programs one at a time.

SQL has a set of built-in, aggregate functions. The functions available are
count, sum, average, minimum, and maximum. They operate on a collection of
values and produce a single value.

In addition to commands for data retrieval and modification, SQL also includes
commands for defining all database objects. The data definition commands are
CREATE, ALTER and DROP. The CREATE command is used to create base tables and
views. The ALTER provides for the expansion of existing tables and the DROP
deletes a view. One of the most powerful features of SQL is its dynamic
definition capability. This function allows the user to add columns, tables and
views to the database without unloading and reloading existing data or changing
any current programs. More importantly, these changes can be made while the
databases are in use.

Productivity Features of Using Relational Technology

Relational technology is one very important tool that can contribute to making
data processing professionals more productive. The programmer can benefit from
a facility called interactive program development, which allows the development
and debugging of SQL commands and then permits the moving of those same commands
into the application programs. It is convenient and easy to set up test
databases interactively and then to confirm the effect of a program on the
database. All of these characteristics make SQL a powerful prototyping tool.
The on-line facilities of SQL can be used to create prototype tables loaded with
sample or production data. On-line queries can easily be written to demonstrat
application usage. End users can see the proposed scheme in operation prior to
formal application development. In this prototype approach, people-time and
computer-time are saved while design flaws are easily corrected early in
development.

The data base administrator profits from the productivity features already
described for programmers. The database administrator has a great deal of
freedom in structuring the database, since it is unneccessary to predict all
future access paths at design time. Instead, the DBA can concentrate on
specific data requirements of the user. Nonrelational models, on the other
hand, require all relationships be pre-defined, which adds to the complexity of
the application and lengthens development time.

Additional productivity features for the database administrator include the
capability to modify tables without affecting existing programs and the
capability to dynamically allocate additional space while the database is still
in use. SQL goes far beyond many database management systems in the degree of
protection that it provides for data. Views make it possible to narrow access
privileges down to a single field. Users can even be limited to summary data.
Protection can be specified for database, system catalog, tables, views,
columns, rows and fields. It is also possible to restrict access to a subset of
commands. These access privileges can be changed dynamically, as the need
arises.

In many installations, the key to overall productivity is the ability of DP too
offload the appropriate portions of the development and maintenance to the end
user. The flexible design approach of relational databases allows an
application to be designed with the end user's requirements in mind. This could
enable the DP professional to implement an application up to the point where the
end user could create and execute his own queries, thereby expanding the
application on his own and reducing his dependence on the data processing
department. Through SQL, the end user is provided with extremely flexible
access and simple but powerful commands.

191

192

Relational and Nonrelational: Complementary Technologies

Within a data processing department already using a well-established non­
relational DBMS, what role can relational technology be expected to play? We
know that DP will not automatically drop everything and go to relational.
Rather, relational technology should be seen as a complement rather than a
replacement for nonrelational database systems. Both approaches offer a host of
benefits, and most applications can be implemented with either of the two.

The relational approach is preferred when the application has a large number of
data relationships or when the data relationships are unknown or changing
dynamically. The relational approach provides the needed flexibility to
establish relationships at the time of inquiry, not when the database is
designed. If the application has unknown of incomplete data specifications,
which is usually the case in a prototyping environment, then a relational system
may be preferable. If the application requires a quick turnaround, the quick
design and implementation capabilities of a relational database can be
important. The ability to handle ad hoc requests is a definite strength of the
relational model as is the ability to extract data for use in a modeling,
forecasting, or analytical framework.

The nonrelational approach is preferred for high-volume on-line transaction
processing applications where performance is the most critical requirement.

Choosing the Right Technology

The choice of the "correct" database management system must be based on the
environment in which the database will be used and on the needs of the
particular application. The key feature of relational technology is that it
allows for maximum flexibility, and will probably be the choice for many new
applications. On the other hand, nonrelational systems may continue to be
preferrable for very stable or structured applications in which data
manipulation requirements are highly predictable, and high transaction
throughput is important.

The optimum approach for many MIS departments will be to use the relational
system concurrently with the existing nonrelational system, matching the
appropriate technology to the applicatio~. The only problem with such an
approach is that the data for an application developed in one technology may
sometimes be needed by applications developed in the other technology. Data may
be "locked out" from an application that needs it, or users might be tempted to
duplicate the data, maintaining both copies. The most desirable solution would
obviously be to provide both relational and nonrelational access to a single
database.

Relational Applications

There are many application areas - particularly those involving user analysis,
reporting, and planning - where the very nature of the application is constantly
changing. Some typical application areas are:

" Financial
- Budget analysis
- Profit and Loss
- Risk assessment

" Inventory
- Vendor performance
- Buyer performance

" Marketing and sales
- Tracking and analysis
- Forecasting

* Personnel
- Compliance
- Skills and job tracking

* Project management
- Checkpoint/milestone progress
- Development and test status

* EDP auditing
- Data verification
- Installation configuration

* Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical data analysis

These applications typify instances where it is of primary importance to
establish interrelationships within the database and to define new tables.

193

194

Checklist for Deciding Whether £!: Not You Need ~ Relational Database

Kote: If you answer yes to any of the following questions, you should
seriously consider taking advantage of relational technology.

1. Does my company have an excessive backlog of applications to be
developed, including an invisible backlog?

2. Are we spending too much money developing applications due to the
complexities of using non relational systems?

3. Do our users' requirements for information change dynamically?

4. Are we spending too much time maintaining applications caused by
changing data requirements or relationships?

5. Do our users feel restricted by a non-relational database?

6. Are programmers spending an excessive amount of time writing code
to navigate through nonrelational databases?

7. Is the nature of our applications such that it is constantly
changing?

8. Would your users find it natural to organize and manipulate data in
tables?

9. Do your users currently use LOTUS 1-2-3 or spreadsheets?

10. Is your company moving towards a true distributed
environment?

database

Bibliography

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
CACM, 13 6,(June 1970),pp. 377-387.

Codd, E.F. ,"Relational Database: A Practical Foundation for Productivity,"
CACM, 25 2,(February 1982,pp. 109-117.

Date, C.J., An Introduction to Database Systems. Addison-Wesley, 1977.

~~-,,-~_,Relational Technology: A Productivity Solution, Hewlett-Packard Co.,
Computer Systems Division,Cupertino,Ca.,5954-6676,January 1986.

Biography

Orland Larson
is currently Information Resource Management Specialist for Hewlett-Packard. As
the database and application development specialist for the Information Systems
Tactical Marketing Center he develops and presents seminars worldwide on
database management, information systems prototyping and productivity tools for
information resource management. He is a regular speaker at Hewlett-Packard's
Productivity Shows and Users Group Meetings and also participates in various
National Data Base and 4th Generation Language symposiums. Previously he was
the Product Manager for IMAGE/3000, Hewlett-Packard's award winning database
management system.

Before joining HP he worked as a Senior Analyst in the MIS Department of a large
California-based insurance company and prior to that as a Programmer/Analyst for
various software companies. Mr. Larson has been with Hewlett-Packard since
1972.

195

INDEX SEQUENTIAL ACCESS TO IMAGE DATA BASES

Wolfgang Matt
Industrieanlagen-Betriebsgesellschaft mbH,
Einsteinstrasse 20, D-8012 Ottobrunn, West Germany

Summary

IMAGE, though being a very successful data base system, has essential
drawbacks: it does not allow access by generic keys and sorted chains
show bad performance. Using KSA.M in addition to IMAGE solves some
problems, but means additional programming and extensive use of system
resources. It is also not possible to log and recover H'!AGE and KSAM
consistently, unless you rewrite the logging software. This paper
presents a software designed to enhance IMAGE for indexsequential access
i.e. generic keys and sorted chains. The software uses only IMAGE and
is itself IMAGE compatible (same database, intrinsics and calling
sequences). It does not use privilegded mode.

The user can define indexsequential access paths for any item of master
and detail data sets. These access paths are treated like IMAGE chains,
but unlike I~GE chains they can be defined and deleted without unloading
the database. Many user applications (e.g. TRANSACT programs) can take
advantage of generic keys and sorted chains without program changes,
but programmers can take full advantage of the features by calling DBFIND
and DBGET with mode parameters not used by IMAGE.

The paper compares the new access method with traditional access methods
with regards to features, usability and performance.

Performance of Typical Database Accesses

We consider a typical data base consisting of a CUSTOMER master and an
ORDER detail. Both are connected by the search item CUSTNR, the customer
number. For the ORDER detail there exists a second search item, the
article number ARTNR (connected to an automatic master) .
We now consider some typical inquiries to this data base to see how
IMAGE performs.

1. Retrieve name and address of a customer with a given CUSTNR.
IMAGE does a hashed access which is very efficient.

2. Retrieve the address of a customer with a given name.
A serial read has to be done which is very inefficient.

197

3. Retrieve all orders for a given customer number ordered by article
number.
If we have a sorted chain, retrieval is efficient, but adding and
deleting is not. If no sorted chain is defined, an online sort must
be programmed which is not efficient.

4. P.etrieve all orders for given customer and article number.
A chained read must be done which may be inefficient if many entries
are discarded.

5. Retrieve all customers which buy a given article.
A chained read on the second path is very efficient.

6. Retrieve all customers which buy a given group of articles identified
by the first two characters of the article number. A serial read has
to be done which is very inefficient.

It can be seen from these examples that IMAGE performs well when the
access is made using exactly one of the fields defined as IMAGE keys.
Performance is bad when we need an access by a none key field of a
master, by a combination of keys, or by a partial key. Since these
questions exist, we have to look for an alternative method of accessing
data in an IMAGE data base. This method should be able to retrieve long
keys (i.e. the combination of several IMAGE fields) the same way as
partial keys (e.g. the first character of a customer's name). This
method should also provide the possibility of sorted retrieval without
the overhead of sorted chains.

The B-Tree Method

The method which allows partial key access and retrieval in ascending
order is called index sequential access. One starts with a given index
and reads from there in a logically sequential order. HP has implemented
this access method in KSAM but not in IMAGE.

The method used by KSAM and tools of other manufacturers is based on
the B-tree principle invented by R. Baier. Keys and data are stored in
a special way which minimises disc read and allows fast access to any
key. In order to make this method efficient, only pointers to the data
are usually stored within the B-tree. This method is ideally applicaple
to data stored in IMAGE data bases, since we only have to add a B-tree
for the keys. A B-tree consists of blocks containing key values, the
associated data pointers and pointers to other blocks.

To illustrate the B-tree method we use very small dimensions: a key length
of one character and assume·that 4 keys fit into one block. We initiaLly
want to store the letters A E I M Q u. After storing the first four
letters the first block is full

198

To add Q the block must be "s9litted":

I

M Q

The new root block contains besides the key I the pointers to the two
leave blocks. After adding the key U into the second leave block we want
to add the remaining letters of the alphabet. We can add the keys B and C
into the first leave block by shifting E but to add D we have to split
again:

C I

A B D E M Q U

Using the B-tree we now demonstrate the retrieval of a key e.g. key E.
First the root block is read. It does not contain key E, but since E
is located in the alphabet between C and I (the two keys in the root
block), the pointer is followed and the second leave block retrieved.
In this block the key E is found and also the associated data pointer
(not shown in the figures above) •

Interfacing B-Trees with IMAGE

When we started to design an index sequential access method for IMAGE
data bases, we decided not to use one of the following approaches:

1. We did not want to use KSAM. The reason was that standard recovery
methods did not allow to keep KSAM and IMAGE files consistent in
case of a system failure. Another disadvantage of KSAM is the exten­
sive use of system resources.

2. We did not want to change the IMAGE source code. This was done to
be independent of HP enhancing IMAGE (e.g. TURBO IMAGE).

199

3. We did not want to use privileged mode. Access to IMAGE is done but
solely using the documented IMAGE intrinsics. This makes the software
independent of internal IMAGE changes and adds to system security.

For the interface software we defined the following requirements:

1. Indices must be covered by logging

The B-tree must be stored in a data set within the data base to which
it refers. Neither an MPE file nor a seperate data base can provide
a consistency between data and keys in case of a system failure. A
separate program to reconstruct the B-tree from the data may run for
hours, while roll-back recovery can be done within a few minutes
using TURBO IMAGE. One extra data set (stand alone detail) is suffi­
cient to store the B-trees of all fields (or combinations of fields)
for which index sequential access is defined. The data set also
includes the definitions themselves. This leads to a logical struc­
ture like this:

global definitions in record

l definitions for dset I definitions for dset 2

i
lroot key I root key 2 root key 3

2. Indices must be updated automatically

It would be tedious and prone to error if a programmer had to code
a normal DBPUT and then an intrinsic call to update the B-tree, code
a DBBEGIN and DBEND around it and also include the index data set in
the lock descriptor. We need a "super DBPUT." which does this all
automatically. The same is true for DBDELETE and also for DBUPDATE,
since we allow the new keys to be updated. Since DBDELETE does not
have an argument buffer, the "super DBDELETE" must find out which
keys have to be deleted according to the latest DBGET.

3. The calling sequence must be identical

200

Though the "super DBPUT" does everything necessary, you do not want
to change all programs replacing the call to DBPUT by a new call with
additional parameters and pass new parameters from routine to routine.
No - the "super DBPUT" must be called DBPUT and it must have identical
parameters. Only this garantees existing programs to run without
modification, recompilation or patching. The only restriction is that
the new intrinsics must reside in an account SL, since they call the
HP intrinsics in SL.PUB.SYS.

4. The logic of retrieval must be unchanged

Though partial key access is an addition to the standard IMAGE
retrieval methods, it should be done by the same logic. You want
do a DBFIND with the partial key as argument, and a series of DBGET's
(mode 5) should retrieve all entries belonging to this partial key.

An end-of-chain indicator (condition word 15) should also be returned.
But somehow you have to tell the software, how long the partial key
is. This is the only information not provided in the standard IMAGE
calling sequence. We provide two methods:

- new values for the mode parameter allow to code the length of the
partial key and also allow to specify wether the search should
start at the lowest or the highest key which matches the partial
key. In the latter case a backward read (mode 6) may be performed.

- software which cannot use anything but mode 1 for DBFIND (existing
programs, RPG, 4GLs) can terminate the argument by a@> • All
characters up to the <e:> are treated as partial key. This is
especially convenient when an automatic master is replaced by
index sequential access. You do not need to change any of your
programs.
This method also works for 4GLs like TRANSACT. But some 4GLs do
not trust IMAGE. They compare the result of DBGET with the argument
of DBFIND, which is of course not identical for partial key access.

Biography

Wolfgang Matt holds a PhD in physics. Since 1977 he works with IABG,
a company with 1700 employees near Munich. He is head of a group of
scientists, consulting HP 3000 users and developping individual software
for them. He is the author of SI-IMAGE, a product for index sequential
access to IMAGE data bases.

201

Database Dynamics

F. Alfredo Rego

Adager

Apartado 248
Antigua

Guatemala

The disciplines of Database Dynamics deal with the
normalized design, maintenance and orchestration of
databases which perform well under heavy-duty use.

In this essay, we see specific examples based on
IMAGE, the award-winning database management
system built by Hewlett-Packard for the family of
HP3000 computers. These examples illustrate funda­
mental principles which are simple, timely, timeless
and, above all, powerful.

203

204

Database buzzwords

A database models the dynamic behavior of entities and their relationships by means of entries.
An entry consists of a key (which uniquely identifies the entity or relationship) and a collection
of attributes (which give quality and color to the entity or relationship).

Entities and relationships don't just sit there. They interact with one another and with their
environments: Transactions happen which affect (and are affected by) entities and relationships.
Such transactions include changes in database structure as well as changes in the meaning and
value of the information maintained by the structure.

We cannot store a real entity or a real relationship in a database, just as we cannot store a real
orchestra in a stereo cassette. At best, we can hope to store a half-decent description or
representation which, through the magic of electronics, will play back a reasonably useful
likeness. The representation, due to limitations of technology and economics, will consist of a
group of values for a relatively small collection of characteristics which, in the case of
databases, we call fields.

A dataset is a homogeneous collection of entries. There are different kinds of datasets, each
optimized for a specific access technique. In IMAGE, we like to use master datasets to keep
entities and detail datasets to keep relationships. (IMAGE master datasets come in two flavors:
manual masters and automatic masters. Please see the IMAGE reference manual for specific
details). Naturally, we may use all kinds of conglomerates of physical datasets (masters and/or
details) to represent logical master or detail datasets. It all depends on our choices of specialized
indexing techniques.

To make an IMAGE database functional, we access its entries in a variety of ways, ranging
from serial scans of entire datasets (the only way to go in the good old days of batch machines)
to hashing and chaining (quite convenient for online applications). Hashing and chaining are
techniques based on direct access to specific addresses so that we may jump directly into the
entry or entries which interest us without having to wade through millions of irrelevant entries.
Please see the IMAGE reference manual for a detailed discussion of hashing and chaining.

The database challenge

Fundamentally, we are interested in two database operations: the addition of new entries and
the finding of existing entries (so that we may relate them, report them, update them, or delete
them). A Database Management System (DBMS) attempts to help us in the pursuit of these
worthy objectives.

Structure vis-a-vis Interface

For efficiency's sake, a DBMS has some type of internal structure to find and assemble entries.
For convenience's sake, a DBMS has some type of user interface to create, maintain, and relate
entries to produce, somehow, information on a timely basis. The resulting entries which the
user "sees" through the interface may be real (if they exist physically in the database) or virtual
(if they are the result of relational operations on real or virtual entries).

The user interface serves as an ambassador between the raw bits-and-bytes computer stuff and
the human-like specifications of the end-user. A poor interface imposes the restrictions of the
structure upon suffering users. A good interface shields users from the structure's shenanigans,
while still being able to take full advantage of the structure's properties. A good user interface
is as efficient as possible without being obnoxious. An interface knows the internals of the

database structures as well as the externals of the user desires, and spends its existence
translating back and forth between bits and thoughts. This may very well be the fastest kind of
shuttle diplomacy!

Complexity and normalization

Ideally, things should be simple. Unfortunately, though, things are complex. But we should
avoid unnecessary complexity. This is the objective of normalization, in the mathematical sense.

Normalization is the breakdown of seemingly-complex operations into simpler processes. The
challenge, at the beginning, is to place the appropriate resources (no more and no less) where
they belong, at the appropriate level, at the appropriate place, at the appropriate time. Then,
the challenge continues, since we must be able to reallocate resources quickly and effectively to
balance the load, at any time, all the time. Normalizing is an ongoing, dynamic activity.

Normalization applies at every level in the global computer hierarchy:

- entry
- dataset
- database
- computer
- node
- network

A normalized structure is open-ended. We can add more elements at any layer without
affecting existing systems. We can delete elements from any layer without affecting existing
systems which do not access such elements.

Efficiency and normalization

Do we want to favor efficiency in terms of access or do we want to favor efficiency in terms of
maintenance? In general, the higher the degree of normalization (i.e., the finer the splitting into
chunks), the higher the communications and coordination costs. Normalization is neither good
nor bad. It is simply a method which allows us the freedom to choose our favorite spot in a
spectrum (or rainbow), which has highly unnormalized databases at one end and highly
normalized databases at the other.

Usually, efficiency in terms of access implies redundancy. But redundancy, in itself, is not bad.
It is just more difficult to maintain a bunch of redundant things in perfect synchronization.
This is analogous to a one-man band who must play all kinds of disparate instruments in a
(more or less) coordinated fashion.

Usually, efficiency in terms of maintenance implies simplicity of roles and a multiplicity of
role-players. If we want to change one role, we only have to change one player. But it can be
a drag to keep track of thousands of players. This is analogous to those fascinating groups of
musicians who play bells, one bell per musician. Each person is a specialist who can only play
one note. In terms of maintenance, we can see how difficult it would be to tune a complex
instrument during a performance and how easy it would be, on the other hand, to simply
exchange a bell which is out of tune.

A super-normalized database contains a large number of small entries, with many instances of
key fields distributed over many datasets. Even simple queries may require that we assemble
the information from many sources. But we may have a better chance that each of these

205

206

sources is correct. It is simpler to maintain a "specialist" source up to date than it is to maintain
a complex source which tries to keep track of everything at the same time, like a one-man
band.

Even though it is paradoxical, our experience shows that normalized databases may actually
occupy less total disc space than unnormalized databases. Particularly if the keys are short,
which, fortunately, seems to be the case most of the time. For instance, your identity number is
probably shorter than your job description. Naturally, we can go to ridiculous extremes and
normalize a database to death. We could conceivably chop up the information about an
employee in many entries, each containing a single attribute such as name, birth date, salary,
and so on. But this would really be splitting hairs! Common sense should prevent us from
committing such atrocities, and this is the motivation behind the rules for the fifth normal form:
An entry is in fifth normal form when there is nothing significant left to normalize!

Access strategies

In an online database system, we want to get information about given entities and their
relationships while somebody waits over the counter or over the telephone. This means that we
want to find the entry (or group of entries) of interest to us, among millions of entries, as
efficiently as possible. We should design (and periodically tune) our database systems to provide
the fastest possible response time for the most important transactions and queries.

Some people have spent endless amounts of time and talent on a fascinating problem: How to
minimize the effort required to answer the most infrequently-asked (and most arcane) questions.

- Other people have invested their time and talent on another problem: How to minimize the
effort required to answer the most frequently-asked (arcane or not) questions, while still
preserving a reasonably efficient environment for those who must toil, on a daily basis, with the
thankless task of feeding and baby-sitting the database.

IMAGE provides two access methods which are optimized for efficiency: hashing and chaining.
We may access entities (in master datasets) by means of hashing and we may access relationships
(in detail datasets) by means of chains which IMAGE maintains for us as we add or delete detail
entries. These are contenls-oriented access modes (as opposed to address-oriented access modes,
such as serial or directed).

IMAGE allows us the freedom to go "explorer-like" with sequential and direct access methods.
It also allows us the convenience of traveling through "pre-established hubs" by means of
techniques such as hashing and paths. We do not have to access anything in a predetermined
way. But it is nice to know that we may do so, if we know that a given "routine-route" will get
us more quickly to our desired destination. Why wade through swamps if we can use a bridge?
Why swim across the Atlantic if we can take the Concorde?

Naturally, we may have valid reasons (usually having to do with convenience, performance, or
both) that motivate us to use our own combinations of physical master and detail datasets, with
or without physical paths, to model a given collection of entities and/or relationships. Usually,
these valid reasons are dictated by our choices of customized indexing techniques which we
build on top of IMAGE'S intrinsic access modes. (IMAGE itself does not have indexing.
IMAGE provides pre-fabricated access methods which allow us to implement all kinds of
indexing strategies, according to our pleasure).

Entitles, relationships, and keys

In terms of space, an entity may be related to zero, one, or more entities (of its own class or of
different classes). In terms of time, these relationships may happen all at once or they may
happen one after another, in a strictly sequential fashion. To make things more interesting,
some virtuoso relationships may come all at once in an unending sequence of complexities!

A relationship is an entity. It all depends on our viewpoint. For example, a marriage is a
relationship between two people, and a marriage is also the subject of attention of a marriage
counselor who treats it as an entity. By the same token, an entity is a relationship. For
example, an individual is an entity, and an individual is a relationship formed by internal
organs, genes, environment, and so on. It is a matter of convenience to designate some "thing" as
an entity or as a relationship.

Usually, a relationship's key is a concatenated key, composed of a collection of the keys of the
related entities. If we can relate the same entities in different ways or under different
circumstances (thereby giving rise to several detail entries to represent the different relation­
ships), then each relationship's key must include some additional attribute(s) which define the
differences. For example, consider discretionary pricing (or discriminatory, or whatever you
may want to call it). In this case, the price of a product for a customer may depend on the
part's supplier, on the customer's rating within the company, on the order date and/or on the
ship date, and so on. In other words, the price is an attribute of the relationship among all
these entities; the price is not an attribute of the product alone.

IMAGE's implementation highlights

An IMAGE entry (master or detail) models an entity or a relationship with equal ease. The only
difference between a master entry and a detail entry is the method of access: master datasets are
biased for hashing while detail datasets are biased for chaining.

An IMAGE dataset (master or detail) is a homogeneous collection of entries and an IMAGE
database is a homogeneous collection of datasets. Since the fundamental atomic unit is the
entry, let's review its main features. An IMAGE entry has:

- A unique identifier (key) for the represented entity or relationship;
- Attributes (if any) which further qualify the characteristics of the entity or relationship.

Please note that a key is simply a field (or a collection of fields) which uniquely identifies an
entry. A key does not have to be an IMAGE search field. IMAGE search fields are defined
only for performance's sake, to allow paths between master and detail datasets. Paths are
particularly attractive for online access to fashionable relationships, since paths tell IMAGE to
maintain appropriate physical linkages when adding or deleting entries.

Since entities and relationships are equivalent, IMAGE uses the same construct ("entry") to
represent either an entity or a relationship. For convenience (and performance) you may want
to use master datasets as repositories of entities and detail datasets as repositories of relation­
ships, since masters are biased for hashed access while details are optimized for chained access.
This would allow you to pick out the entry that interests you right now (by means of hashing
into the master) and would display its relationships right now (by following chain links in detail
datasets, controlled by chain heads in the master entry).

207

208

The order of keys and/or attributes in an entity (or in a relationship) is arbitrary. Therefore,
the sequence of fields in an IMAGE entry is also arbitrary. To allow for stability within this
flexibility, IMAGE provides the list construct to map any subsets and permutations of key(s)
and/or attribute(s) to/from the user's buffers. This permits us to add, delete, or reshuffle fields
without the need to recompile all the programs which access the affected dataset(s). We must
recompile only those programs which explicitly access the affected fields. This gives us a high
degree of data independence.

Database Dynamics

The concepts of Database Dynamics deal with the orchestration of the transactions which affect
(and are affected by) databases. A transaction is something that adds, deletes, or modifies an
entry (or a collection of entries, in the case of a complex transaction).

We use picoseconds (trillionths of a second) to measure events which we think are super-fast.
We use aeons (billions of years) to measure events which we think are super-slow. Somewhere
in the middle of this wide spectrum we find the events which occupy most of our attention in
our daily concerns. By definition, these are the events which are the most useful and
interesting. Most IMAGE databases, for instance, keep track of entities and relationships whose
event-speed ranges from a "fast" which we can measure in hours to a "slow" which we can
measure in years.

The functional dependencies among keys and attributes will tend to show a remarkable stability,
particularly if you cluster things around entities and relationships which are obvious to you.
For instance, the functional dependency between a personal identification number and the name
of a person will probably hold for life. Nevertheless, the particular manners in which people
access, combine, manipulate, present, and otherwise massage the data contained in the database
will tend to change according to the inevitable shifts in the organization's political winds.

Given these facts of life, it might make more sense to focus our limited energies and resources
on the analysis of the most permanent things: entities and their relationships. As a bonus, we
find that this entity-relationship approach automatically and conveniently requires very simple
interfaces to maintain (and obtain) information using the database.

Naturally, stability should not imply inflexibility. The challenge is to be as stable as possible
while still being sufficiently flexible and adaptable to changing environmental conditions. But
there should be some back-bone to the whole thing!

A practical database methodology

All this nice database theory is certainly a lot of intellectual fun. But you also have to address
the practicalities! Specifically, you have to remember that your ultimate responsibility is to
develop an application system which uses databases only as a means to an end.

Since 1974, I have kept copious notes of theoretical and practical issues which have influenced
my failures as well as my successes. The integration of these notes has led me to a practical
database methodology whose ideas and steps I consider simple, timely, timeless and, above all,
powerful. Here is the outline:

First of all, classify your Entities and your Relationships

Graphics are great for the process of classifying and for displaying the resulting classification!
like to use rectangles to represent collections of entities, circles to represent collections of
relationships, and lines to make relationships explicit. Since entities and relationships are
equivalent, this is a valid choice of geometric figures: After all, a rectangle and a circle are
topologically equivalent!

209

210

Regardless of the graphics you use to guide your classification, your entities and your relation­
ships will conveniently fall into categories which are obvious to you and to people who are
versed in your business. For instance, if you are a manufacturer or a distributor, you could
choose something along these lines:

__/_
*************** __/ _

/
_/ _

I \
(Assembly)
_ _/

_ _/
!V!
! !

* * I \ * *
*MANUFACTURER *-------------(Manufactures)---------* PRODUCT *
* * _ __/ * *

\ _/_
__/ _
I \

(Represents)
_ __/

_ _/ \
v \

_ __/
v

* * * DISTRIBUTOR *

* *

- I _/ v
I \

(Sells)
_ _/
IV

I

Notice, with pleasure, that this fundamental step of classifying your entities and relationships
has all kinds of bonuses. First of all, you will get a clearer picture, in your own mind, of your
own system. Later on, you will also see that the resulting IMAGE database(s) will automatically
have a clean and elegant design and will be in a very respectable state of normalization.

As an interesting example of a bill-of-materials, modeled with a minimum of database elements,
please see the "Assembly" relationship which relates "products" to "products" (or, if you prefer,
you may use "parts", or "components", or whatever, instead of "products") so that we may
quickly answer either of these questions with equal ease: "Which products do I need to assemble
this product?" and "Which products can I assemble with this product?".

Let's see now an example which stresses the importance of the attributes associated with
relationships. Even though the related entities are important in themselves, we will see that
shuffling things around a little bit to place the spotlight on the relationships may reward us with
pleasant surprises. In this example, we will take attributes which are commonly assigned to
entities and we shall assign them to relationships. This way, the entities are free to "wear"
different attributes, depending on their relationships, without being stuck with them for life.
This is the essence of dynamism, after all! Just for fun, let's study a database model of
presidential administrations, on a world-wide scale. Please stretch your mind beyond any
parochial limitations:

* * * YEAR *
* * ********

*********** __/- ~ -__ *************
* * I \ * *
* COUNTRY * / Presidential \ * PRESIDENT *
* *-------(Administration)-------* *
*********** \ I *************

__ __/
\ I

* * * PARTY *
* * *********

Notice that this design does not include restrictions such as citizenship and uniqueness. The
same person could be the president of more than one country at the same time and many
persons could be simultaneous presidents of the same country (have you heard recently of
"presidents in exile"?). You can quickly find an administration by beginning year or by ending
year, as well as all current administrations regardless of their beginning. Without any radical
changes, this same design could apply to directors of corporations (and would be very useful to
trace interlocking boards!)

Time for a little computerese!

Translate your nice graphics to IMAGE's database definition language. Create an IMAGE
schema which the schema processor (DBSCHEMA) will understand. Rectangles ("collections of
entities") translate immediately to master datasets (either manual masters or automatic masters,
depending on your orchestration style; don't lose too much sleep on this). Circles ("collections of

211

212

relationships") translate immediately to detail datasets. Lines which represent obviously "hot"
relationships translate immediately into paths (so that we may use IMAGE's hashing and
chaining shortcuts to find the entities and relationships which we want at any time). Lines
which represent "so-so" relationships are, by definition, not worthy of paths. These lukewarm
relationships will rarely pop up in our daily database usage. If they surface every now and
again, they will become the subject of serial scans (which are not so bad if you do them only
once a month in the middle of the night). If we notice an alarming trend in the rate of serial
scans, then we simply add a path. No big deal!

Refine your indexing for performance

IMAGE's search fields just happen to be convenient for the sake of IMAGE's hashing algorithm
(which converts a data value to an address) and IMAGE's chaining algorithm (which links
logical neighbors even when they are millions of entries away from each other). But you can
design any mathematical mapping of your choice that will convert any data value into a
reference to whatever keys you may have defined for IMAGE. Don't stop at the obvious. Let
your creativity soar to new heights. IMAGE will be delighted to cooperate with you. If you
need some inspiration, simply ask a fellow HP3000 user. You will be amazed at the unbeliev­
able variety of IMAGE indexing techniques in existence today. It is fun to do fantastic things
with IMAGE.

For instance, you may get sophisticated and decide to use clusters of masters and details to
index selected entries which reside in specific masters or in specific details. If your indexing
incorporates trees and other structures which facilitate keyed sequential access to entries, you
may consider stand-alone detail datasets as ideally suited for the storage of such specialized
structures. There is no reason to have indexing structures residing outside of IMAGE if we can
have them as full IMAGE citizens. A stand-alone detail dataset is equivalent to a standard MPE
file and offers many additional advantages, such as IMAGE's buffering, backup and protection
mechanisms, locking, and remote access.

Choreograph your Transactions

This is the dymanic part! Specify the transactions that will allow you to add, modify, delete,
and report these entities and their relationships. Decide whether or not some of these transac­
tions need to be undisturbed by other concurrent transactions. Take advantage of IMAGE's
Jocking to make sure that you achieve a fair compromise between privacy and sharing.

Perform your Transactions

At your convenience, add, delete, find, modify, relate, and report entries. Do it solo or invite
your friends and fellow workers, from the next desk, from the next building, from the next
country, or from anywhere in the network. IMAGE is a multi-tasking multi-computer database
management system, after all!

A good performance implies the orchestration of a myriad of simple technical details into an
impressive, overwhelming presentation. The presentation is your application. The technical
details are the result of your normalization. Since you carefully allocated the appropriate
resources (no more and no less) where they belong, at the appropriate level, at the appropriate
place, at the appropriate time, you have a balanced performance.

Tune up your Performance

Balance, though, by its very nature, is a dynamic concept. You cannot just relax and assume
that you will never lose it!

As you specify your masters, your details, and your paths, keep in mind that the important
question is: "Can you define, redefine or cancel these entities and their relationships at any time
during the life of the database?" For performance reasons, you may want to wire some obvious
relationships hot in the database's structure by means of paths. But you do not want to be stuck
for life, since some hot relationships may cool off and some sleepers may wake up unexpectedly!

The same questions apply to every component of your database and the same advice applies to
every database administrator: Fine tune things in such a way that y-0u reach a reasonable
compromise between the response time for any of these functions and the global throughput for
the whole transaction load.

Bravo! You are now a database master, thanks to IMAGE.

Hewlett-Packard's IMAGE database management system has unique mathematical properties
which are natural consequences of its original design criteria. These IMAGE properties allow
you to model your entities and their relationships in a nicely normalized fashion, without any
unnecessary and inconvenient convolutions.

Take advantage of IMAGE's properties. They are sound and they are classic. But they do not
have a life of their own. They need you!

Like any fine instrument, IMAGE is there, dormant, wattmg for you to wake it up with your
dynamism. Play it well, with soul. At the beginning, you may want to join a group of fellow
enthusiasts, to improve your technique while you develop your style. Eventually, you may want
to solo. In any case, happy crescendo!

213

214

Appendix A

IMAGE schema for the Distributor database mentioned in the Practical Methodology section.

Begin database DISTR;

<<

NOTES:

Your imagination and convenience should decide how many (and
which) attributes to include at the"···"·

The paths are NOT necessary at all, but we include them as
examples of performance boosters for relationships which
seem to be "hot and heavy". You can always take ALL paths
away, or add OTHER paths at will. IMAGE does not care: You
are free to play with the tradeoffs involving time, space
and the bias on efficiency.

Capacities can go from one entry to several million entries.
The help of intelligently-defined paths becomes more obvious
when you deal with millions of entries. Toy-like academic
examples, of course, do not require any overhead in terms of
structure.

>>

Passwords:_

10 SeeAll;
<< ••• >>

Items:

Manufacturer#,
Distributor#,
Product#,
assembly,
component,
name,
addressl,
address2,
city,
department,
country,
amount,
production,
supervision,
responsibility,
<< ••• >>

x6 ;
x4 ;
xlO;
xlO;
xlO;
X40;
X40;
X40;
x30;
x30;
X30;
r4
j2
j2
j2

<<Or "State" or "Province">>

Sets:

Name: MANUFACTURER, manual:

Entry:
Manufacturer# (2), <<2 paths, to "Manufactures"

and "Represents">>
name,
addressl,
address2,
city,
department,
country:
<< ••• >>

Capacity: 2000:

Name: PRODUCT, manual:

Entry:
Product# (4),

name:
<< ••• >>

Capacity: soooo:

<<4 paths, to "Manufactures", to "Sells",
to "Assembly" as a part of another
product and to "Assembly" as a product
which, itself, has components>>

Name: DISTRIBUTOR, manual:

Entry:
Distributor# (2), <<2 paths, to "Represents" and "Sells">>
name,
addressl,
address2,
city,
department,
country:
<< ..• >>

Capacity: 20000:

Name: ASSEMBLY, detail: <<Relates products which are, in turn,
parts of other products>>

Entry:
assembly (PRODUCT),

component (PRODUCT),

amount,
Production,
Supervision,

<<This search field allows us to f ~nd all
the products which we need to assemble
a given product>>

<<This search field allows us to find all
the products which we can assemble with
a given product>>

<<Person in charge, for instance>>
<<Person in charge, for instance>>

215

216

Responsibility; <<Person in charge, for instance>>
<< ••• >>

Capacity: 150000;

Name: MANUFACTURES, detail; <<Relates manufacturers
to products>> Entry:

Manufacturer# (MANUFACTURER),
Product# (PRODUCT);
<< ••• >>

Capacity: 2000000;

Name: REPRESENTS, detail; <<Relates manufacturers
to distributors>> Entry:

Manufacturer# (MANUFACTURER),
Distributor# (DISTRIBUTOR);
<< ••• >>

Capacity: 5000;

Name: SELLS, detail; <<Relates distributors to products>>

Entry:
Distributor#
Product#
<< ••• >>

Capacity: 5000;
End.

(DISTRIBUTOR) I

(PRODUCT);

Appendix B

IMAGE schema for the Presidential database mentioned in the Practical Methodology section.

Begin database CHIEF;

<<

NOTES:

Your imagination and convenience should decide how many (and
which) attributes to include at the"···"·

The paths are NOT necessary at all, but we include them as
examples of performance boosters for relationships which
seem to be "hot and heavy". You can always take ALL paths
away, or add OTHER paths at will. IMAGE does not care: You
are free to play with the tradeoffs involving time, space
and the bias on efficiency.

Capacities can go from one entry to several million entries.
The help of intelligently-defined paths becomes more obvious
when you deal with millions of entries. Toy-like academic
examples, of course, do not require any overhead in terms of
structure.

>>

Passwords:

35 GuessWho;
<< ••• >>

Items:

Country#,
President#,
Name,
Year,
Year-In,
Year-out,
party,
<< ••• >>

Sets:

i
i2 I

xso;
i2 ;
i2 ;
i2 ;
x20;

Name: COUNTRY, manual;

Entry:
Country# (1), <<path to "Administration">>
name;
<< ••• >>

217

218

Capacity: 300;

Name: YEAR, manual;

Entry:
Year (2); <<2 paths, to "Administration">>
<< ••• >>

Capacity: 4000; <<You might want to go back to the Etruscans!>>

Name: PRESIDENT, manual;

Entry:
President# (1), <<path to "Administration">>
name;
<< ••• >>

Capacity: 20000;

Name: PARTY, manual;

Entry:
Party (l);
<< ••• >>

<<path.to "Administration">>

Capacity: 1000;

Name: ADMINISTRATION, detail; <<Relates countries to presidents
to In and Out years>>

Entry:
Year-In (YEAR), <<This search field allows us to find all

the administrations, anywhere in the world,
which began in a given year>>

Year-Out (YEAR), <<This search field allows us to find all the
administrations, anywhere in the world,
which ended in a given year. We can treat
Year-out=O as a current administration>>

Country# (COUNTRY),

President# (PRESIDENT),
Party (Party); <<Who knows? Presidents might have different

parties from one administration to the other.
Party is NOT an attribute of PRESIDENTS,

<< ••• >>
Capacity: 150000;

End.

as it might appear. Party IS an attribute of
ADMINISTRATIONS!>>

THE 2001 SIREN'S SONG: Al IN THE COMMERCIAL MARKETPLACE

Summary

Sharon Bishop
Information Technology Group

Hewlett-Packard
11000 Wolfe Road, Cupertino, Ca., 95014

This paper gives a brief overview of Artificial Intelligence (AI) and the emerging market parameters that
are motivating the use of Al, how Al differs from traditonal programming, examples of tools we take for
granted today that are the result of the ''fallout" from AI research over the past 20 years, expert systems
and HP's activity in AI and finally, some trends and future predictions we might anticipate for this
technology.

Introduction

Is Artificial Intelligence the modern-day sea nymph -- vart bird and part woman -- of Roman
mythology who lured sailors to their death on rocky cliffs by seductive singing? Are we the modern-day
sailors snared by the eager contemplation of songs foretelling the day we will have machines that
eliminate the need for highly paid human experts, computers that speak and understand speech, robots and
vision systems that have the ability to recognize patterns of input stimuli and act accordingly, learning
systems that learn from usage patterns and modify themselves consequently, self-programming systems,
etc.?

Artificial intelligence, popularly defined as the science of enabling computers to reason, make judgments
and even learn, has generated considerable interest in the computer industry over the past year.
Optimistic analysts forecast a market growth in excess of $ 5 billion by 1990. Stories about fifth
generation computers and the Japanese effort to build "thinking" computers by 1992 have added urgency
to competitive efforts in the U. S. and Europe.

The evolution of Al can be viewed as a two-part process. The first stage of this evolution is the 20-year
old ongoing research effort aimed at developing computer systems that can emulate human thought and
decision- making processes. The second stage is the newly emerging commercial market for Al-based
products.

Hewlett-Packard has, for some time, been developing Al technology at our Corporate Research and
Development laboratories. Our first entry into the AI market was presented at the International Joint
Conference on Artificial Intelligence, held in Los Angeles during August 1985. Initially, we are
addressing the productivity issue, that is, the motivation for power tools for programmers. Other examples
of internal development activity using our AI technology include expert systems for natural language
understanding, an organic compound analyzer, an l/C photolithography advisor, computer peripheral
diagnosticians, and an electrocardiograph advisor. HP views Al not as a revolution, but as part of an
evolution toward more powerful and sophisticated computer systems, and we have targeted AI technology
to play an important role in our future.

Definition of Artificial Intelligence

Artificial intelligence is a buzzword for a group of technologies It is a multidisciplinary study, utilizing
and synthesizing knowledge from several fields includmg cognitive science, philosophy, sociology,
computer science and electrical engineering. It is not in itself a commercial field but a science and a

221

222

technology. As an academic discipline, it is a collection of concepts and ideas which are appropriate for
research, but which cannot be marketed. However, artificial intelligence is the scientific foundation for
several growing commercial technologies. AI techniques make a variety of AI applications possible,
including expert systems, computer-aided instruction, automated programming, natural language
understanding, vision systems, voice recognition systems and robotics. The unifying factor in all of these
diverse applications is the encapsulation of some knowledge or expertise related to humans.

Goals of Artificial Intelligence

The primary goal of Artificial Intelligence is to make machines smarter. The goal of the basic researcher
is to understand what intelligence is, and the goal of the entrepreneur is to make machines more useful.
To date, we have used computers to evaluate problems we have already solved, for example, computers
give us solutions to models and simulations or they solve algorithms for us. The goal with AI is to move
toward having computers participate in the analysis and synthesis of problem-solving -- to help us
develop the solutions, rather than simply calculating the results. In it's short history, AI as an academic
discipline has developed techniques that support computer systems that do seem to exhibit intelligence.
For example, researchers have developed systems that comprehend natural language, systems that can
outperform human experts, systems that see and robots that manipulate tools. The caveat of course, is
that the current systems are limited and work successfully only in a narrow and specified domain. They
cannot respond to unanticipated events in the environment and learn efficiently from experience. Still,
even though there is criticism of the current systems and their limitations, they have demonstrated
significant capabilities that have captured the imagination and attention of commercial and government
institutions. Rapid developments in more powerful computer systems at lower costs have increased the
number of applications that are now feasible and economical. Today's challenge for commercial users is
to identify practical, worthwhile applications and to develop and market these applications.

Al Systems vs. Traditional Systems

Artificial intelligence development is usually characterized by the use of tools and techniques which
facilitate the handling of variable, ill-defined and unspecified programming parameters. While the
presence or absence of such tools and techniques does not necessarily make a product "genuine AI", it is
clear that AI places new demands on traditional tools and languages and the programmers who use them.

Generally the processing power and memory demands on Al development has led to a dedicated
workstation approach. The terms "symbolic processing", "object-oriented programming,"
"knowledge-representation" and others refer to the process of representing information in a fluid rather
than highly structured form. These techniques are often required because in contrast to traditional
programming objectives, data must be represented symbolically and related through parameters and
conditions in a program similar to the human decision-making process. Languages like LISP, PROLOG
and SMALLTALK which are highly interpretive and are function or object-oriented, as opposed to
procedurally oriented, lend themselves to incremental programming and rapid prototyping. In contrast,
conventional programming techniques are ill-suited to handling uncertain or changing specifications.
Virtually all modern programming methodology, such as structured design is targeted to ensure that the
implementation follows a fixed specification in a controlled fashion, rather than wandering off in an
unpredictable direction. In a well-executed conventional implementation project, a great deal of internal
rigidity is built into the system, ensuring its orderly development.

AI applications in general incorporate a knowledge base and separate units of code that operate on the
knowledge base, the combination of the two being used to solve a problem. Knowledge used by the system
is represented explicitly within the system. In constrast, traditional computer programs state procedures
explicity, and knowledge about the domain is implicit in the procedures. This concept of the difference
between traditional computer systems and AI systems forms a useful basis to distinguish AI programs from

traditional programs. The following table highlights some of the differe.,ces between traditional systems
and AI systems:

Traditional Computer Systems vs. AI Computer Systems

TRADITIONAL SYSTEMS AI SYSTEMS

Host/timesharing approach Workstation/PC approach

Separate programming tools, usually not Integrated environments,
well integrated sophisticated programming tools

Minimal prototyping; systems are hard to Rapid prototyping; systems are easy to
modify as the environment changes update, treat knowledge as data

Tend to degrade with age Can improve with experience
increases; knowledge explicit in
system and easily updated

Use compiled-only languages, follow Use function or object-oriented
complete predefined step-by-step languages, fluid design, follow a line
procedures, algorithms of reasoning

Process numbers Process symbols, as well as numbers

Use a "black box" approach Can explain line of reasoning

The Al Productivity 'Fallout'

It is interesting to note that virtually all the environments we use today in traditional computing
environments, whether tightly coupled to proprietary operating systems, or highly portable accross
vendors, take for granted many capabilities that are essentially the "fallout" from AI developoment that
took place in the AI research laboratories through the l 960's and 1970's. For example, in the l 960's, the
first computer time-sharing systems were developed in Al laboratories to addresss a faster means of
debugging very complex programs. Word processing was developed in the Al lab in the l 960's and expert
systems started in 1965. Bit map displays, the now-popular mouse controls and the whole structure of
display windows were also originated during the l 960's as well as object-based programming (as in
SMALLTALK) and a number of other productivity tools.

Commercial use of these tools originally was discouraged by the fact that they require large computing
and storage capabilities, but in the l 970's improved computer performance at lower cost made it practical
to start using these tools in conventional programming environments. For example, there has been a
dramatic improvement in recent workstation and interface technology, with great cost/performance
benefits for group work. Powerful networked workstations/personal computers with high-resolution
graphics are becoming widespread. Today machines offered by vendors such as Hewlett-Packard, IBM,
DEC, Xerox, Sun, Texas Instruments and Symbolics support tools and languages such as LISP and PROLOG
at modest cost. These machines provide adequate hosts for radically improved programming
environments.

223

224

Market Characterization of Al

When looking at the market for Artificial Intelligence, it is important to remember that this market is
very young and did not exist in the minds of commercial users even five years ago. There was no market
for expert systems or symbolic computing outside the confines of the academic research and development
environs. For example, Symbolics, Inc., the leading supplier of LISP machines today, is generally credited
for creating a market that nobody knew they wanted; potential users didn't even know what a LISP
machine was. Symbolics created a. burgeoning industry out of something that researchers did not realize
existed, but found to be a very useful tool once they were educated as to its capabilities.

Another point to keep in mind when anticipating the AI market is that you have to view it in terms of
commercially viable products that are for sale and can be used by the end-user. There is continuing basic
research going on at universities attempting to understand the nature of intelligence and how to replicate
the human brain that isn't transferable today into commercial products.

Market segmentation and sizing are two of the hottest topics in AI today. For puposes of this paper, the
market will be segmented into the following areas: voice and vision recognition systems, expert systems,
natural language understanding and AI computers and languages. Each of these segments is a viable
market in and of itself.

* Al COMPUTERS

THE ARTIFICIAL INTEWGENCE MARKET
PRODUCT AREAS - 1986 a.a•

AIL.anguagea Natural Lanauaae•

SOURCE: OM Dalo, Inc.

This is the largest segment of the industry because it includes machines that are LISP-oriented (such as
those produced by Symbolics, Inc.) and general purpose computers that can also be used for AI applications
(such as Hewlett-Packard, Digital Equipment and IBM).

* Al LANGUAGES

AI languages is really a subset of Al computers. This segment includes LISP and PROLOG programming
languages and environments for AI applications. LISP is the most popular programming language in the
United States. One of the principal features of LISP is that it allows the user to compute with symbolic
expressions rather than numbers; that is, bit patterns in a computer's memory and registers can stand for
arbitrary symbols; not just those of arithmetic. LISP itself is the programming language often used to
develop expert system building tools .. PROLOG is the language of choice for AI applications in Europe
and Japan. It is based on the idea of representing a program as a set of declarative statements in a form
of logic.

* EXPERT SYSTEMS

Expert systems are currently the most visible of the AI technologies because they are the most easily
understood in terms of what they actually do: an expert's knowledge in a particular domain is
programmed into an expert system and that system emulates his/her behavior. The expert system is
composed of two parts: (!) a knowledge base which is the actual information given by the expert and
programmed into the system (for example, a doctor who specializes in bone grafts); and (2) an inference
engine which is the actual computer program tha~ runs that information, making the correlations and
associations between the information that has been programmed in. Expert systems is forecasted to be the
largest growing segment of the Al market. More people are aware of its potential capabilities and will
plan to utiltize expert systems in order to achieve competitive advantages and profit.

* NATURAL LANGUAGE

Natural language does not encompass voice recognition or actual speaking into a microphone. It is simply
communication with the computer or terminal in written conversational style. Natural language systems
have to deal with many ambiquities, such as regional slang, and the correct interpretation of a number of
variables in sentences. Therefore, it is forecasted that this segment will not grow as rapidly as expert
systems. It is expected that natural language will be included in with other packages, such as expert
systems and AI hardware. Since natural language still requires the end-user to type, some market analysts
forecast the value of this type of interface will be much less than voice rec<!gnition.

* VOICE RECOGNITION

Voice recognition tehnology in the context of Al is not to be confused with voice store and forward, which
is the recording of a human voice and then replaying it later; or synthesized speech, which is a computer
emulating the sound of a voice. It is actually the ability of a computer to respond to vocal commands
exactly like it responds to keyboard commands. Utilizing a microphone instead of a keyboard, usen would
talk to the computer and it would react accordingly. Again, as with natural language, the system has to
deal with many ambiguities: speech patterns, pitch, tone and the variability of each word. Most
voice-recognition systems today have 1,000 to 2,000 words of memory and are speaker-dependent. There
are companies promising to produce voice-recognition typewriters in the near futr.:e with memory lists of
10,000 to 15,000 words, however, it is felt that this technology is at least five years from being a truly
viable market.

225

226

* ARTIFICIAL VISION

In the U.S., artificial vision is mainly associated with the auto industry and robotics. General Motors has
holdings in six of the major artificial vision companies. Ford has holding in two others, and Chrysler has
holdings it has not disclosed. Quality inspection and areas where it's too difficult for humans to work or
the failure differentials are too small for a human to react to or to be able to perceive are a few of the
possibilities for this technology. The major research push today is for 3-D vision systems that have
acceptable real-time capabilities for commercial exploitation. The market segment is expected to expanc'.
and grow rapidly.

THE ARTIFICIAL INTEWGENCE MARKET
(Mllllona of Dollars)

MARKET N'lll!A 1187 1118
Expert Systems 74 145 245 385 570
Nalllral Language 59 125 210 320 '465
Visual Recognition 168 260 370 500 660
Voice Recognition 33 55 85 140 200
Al Languages 21 35 45 65 80
Al Computers 364 510 710 970 1250
Government Contracts* 95 150 150 155 175

TOTAL 719 1130 1665 2380 3225

•Not In total; almdy- h -_

1l80

810
650
840
270
105

1570
200

4245

SOURCE: OM Doto. Inc.

User Needs Characterization

In-house corporate and university research development projects are the largest users of artificial
intelligence today. The U.S. government, primarily the military, is the next-largest user.

It is important that we look at the underlying need that is driving the purchase of computing systems that
support symbolic computing, that is, that area of computer technology where the aim is to optimize the
processing of symbols, representing objects or concepts rather than numerical data or text.

* There is an overwhelming need for a major breakthrough in programmer productivity. Symbolics, Inc.
has stated that their customers, with a Symbolics system, claim productivity increases in software
development by a factor of between two and 50. Even taking the low end of that range, if a customer
can solve a problem in one year instead of two, they can gain a major competitive advantage.

* Symbolic computing allows a customer to pursue applications that are difficult or impossible to
approach using conventional computing techniques. These complex applications require a sophisticated
development environment. Customers purchase systems because of speed, but equally important is a
high-performance LISP compiler and a superior programming environment.

* Symbolic computing can fill the need for automation of nonclerical tasks. Just as word-processing has
had a major impact on productivity for clerical personnel, symbolic computing can have a profound effect

on the productivity of professionals doing such tasks as integrated-circuit design and computer systems
maintenance.

The majority of users evaluating Al technology want to develop expert systems. They want tools that are
easy to use and lower cost systems with competitive performance. They need access to AI technology
through training by vendors or consultants. Systems need to be easy to use with superior user interfaces.
Standard networking facilities are needed so they can coexist with multiple vendors. Customers want
integration with existing languages such as COBOL, FORTRAN and Pascal to allow use of existing code to
extend the usability and simplify the maintenance of their conventional programs.

Expert Systems

Expert systems is the fastest growing segment of the AI market today. An expert system is a program that
can reason, make recommendations and explain its reasoning, based on extensive knowledge of a given
field such as geology or medicine. It can be thought of as a form of "intellectual cloning". An example of
an expert system that is well-known is General Electric's CATS-I. This expert system diagnoses problems
in diesel locomotive engines. The knowledge and rules for the system were culled from a 40-year vetern
at GE who was an expert in locomotive trouble-shooting. In the commercial market, the term "expert
system" is used to encompass most knowledge-based systems. All knowledge-based systems today, whether
or not they are truly expert, address a narrow problem domain. It is important to remember that today's
expert system can only capture expertise that humans already have. We are still far from the goal of
building systems that can reason as people do and learn from experience.

Anatomy of an Expert System

The major components of an expert system are the knowledge base, the inference engine, and the user
interface. Other components may be optional such as external sources of information residing in external
databases and external sensors. The knowledge base consists of facts and rules about a specific domain.
The inference engine communicates with the knowledge base to determine what rules may apply to the
current situation and it also keeps track of the status of the problem. The inference engine may also have
optional access to external sources of information. In some cases when the data in the knowledge base is
not definite, a "certainty factor" may be assigned. When certainty factors are used, the inference engine
includes procedures for calculating and reporting the level of certainty for answers to problems. Some
expert systems may support an interactive dialog with the user who may ask why a certain conclusion was
reached or why a particular question is being asked. Some user interfaces for expert systems may include
a natural language processor and a graphics editor.

Hewlett-Packard has an internal tool that is a flexible expert systems construction environment that
provides advanced reasoning and representation tools for development of applications. It has served as the
basis for the expert systems development activity at Hewlett-Packard.

Application Areas for Expert Systems

Generic categories of applications suitable for expert systems development include interpreting and
monitoring sensory input, diagnosing equipment, prescribing and implementing remedies, planning and
design and prediction systems. Possible application areas cover a multitude of industries such as finance,
law, medicine, military, education, manufacturing and service, agriculture and mineral exploration.
Many of the actual expert systems that have been built and are well-known were built at Stanford for
medical applications.

227

228

While many application areas may be candidates for expert systems development, this should only be
chosen over traditional programming techniques when the domain knowledge is not firm. When the
knowledge and problem is firm, fixed and formalized, algorithmic programs are more appropriate than
heuristic ones and should be used. If the knowledge is subjective, ill-defined and partly judgmental,
expert systems and hueristic programming are appropriate.

DIAGNOSTIC AND MAINTENANCE: In today's environment, a list of expert systems would most surely
include a multitude of diagnostic systems for equipment. Hewlett-Packard has expert sytems in use today
in their response centers to diagnose and trouble-shoot data comm lines and disc drives. Other examples
include DEC's SPEAR system for diagnosing problems in their tape drives and PRIME's DOC expert
system for assisting with troubleshooting on their 750 minicomputer. IBM has DART for disk fault
diagnosis and AT&T Bell Laboratories has ACE to manage telephone cable maintenance.

U.S. MILITARY: The U. S. military has targeted a considerable amount of funding for expert sytems
projects and has declared AI-based applications critical to upcoming generations of military hardware and
software. Examples of expert systems that have potential include a pilot's associate, battlefield advisor
and roving vehicles for use in hazardous conditions.

FINANCE: This application area holds great promise for the use of expert systems. The management of
money is a real, measurable goal and those companies that do it best are going to have a competitive
advantage. Areas proprosed for use of expert systems are cash management, portfolio management,
underwriting, Joan management and corporate finance. Financial expert systems would be able to handle
huge amounts of rapidly changing data and apply the rules of finance to assist in decision making. For
example, when to go public, covering of foreign exchange exposure and so forth. Cognitive Systems, Inc.,
TAD expert system assists in tax preparation.

MEDICAL: The medical field has also been a natural application for AI because much of a doctor's skill
involves applying rules to evidence presented by a patient. HP is marketing an ECG electrocardiograph
expert system that aids physicians in the diagnosis of heart disease. The product supports diagnosis
justification, modifiable rules, stand-alone use and integration with other systems. MYCIN and
ONCOSYN and PUFF are expert systems from Stanford University. MYCIN diagnoses meningitis and
other blood-borne bacterial infections and recommends theraphy. ONCOSYN recommends drug
treatment for cancer patients. PUFF is used for pulmonary function test interpretation.

MANUFACTURING: This is fertile territory for expert systems to be the brain for robots and to assist
managers and engineers in decision-making with massive amounts of data. Hewlett-Packard has a
Manufacturing Research Group in our applied research laboratories at Corporate headquarters that is
specifically addressing advanced technologies for the manufacturing arena. We are very interested in
robotics and machine vision.

SCIENCE & ELECTRONICS: Activity in many of the major electronics firms such as Hewlett-Packard,
IBM, Xerox, Texas Instruments, DEC and others bear out predictions that increased importance is being
placed on AI technology for in-house use. HP has developed an IC photolithography advisor that
diagnosis fabrication defects and recommends correction action. The system allows for single or multiple
faults, and gives conclusions and justification and can display video images to help identify faults. HP
also has an IC design tool in the form of a procedural Jangage embedded in LISP for designing integrated
circuits from library parts. VLSI is a ripe area for expert systems since we are rapidly approaching the
density of one million transistors on a single chip. To design this manually is like designing a city block
by block - the complexity goes up exponentially and the opportunities for error are great. Using AI
techniques allows the design engineer to take a much more modular approach to design - much like
writing a program with the added flexibility for change and prototyping providing definite productivity
gains. Other examples of expert systems in use by electronics firms include DEC with their RI (alias for
XCON) expert system to help configure computers and their XSITE expert system to recommend computer

site preparation. Xerox has KBVLSI which aids in VLSI design, Daisy Systems markets GA TEMASTER
and LOGICIAN for performing gate array layouts.

OTHER: Of course there are many other areas that have potential for use of expert systems. In HP, we
have internal research applications underway for a number of internal tools, including natural language
understanding, expert systems for the office and expert systems to provide more powerful and
sophisticated programming environments.

Future Trends

The Al market milestones from now through the l 990's seem relatively clear. The industry and
university collaboration that has already lead to development of several expert systems and the emergence
of hardware tools and development environments will continue. More sophisticated software and
hardware tools will be introduced in the near term and hardware prices will continue to edge down. At
the moment, no AI tool supplier can claim to be the leader, but as further refinement takes place in the
market and tools, companies will start to turn from "research- driven" to "market-driven" to get their Al
products into the marketplace. By 1987 and 1988 it is felt that "off the shelf" expert systems will start
emerging for the consumer. AI will become a normal part of the software market. By 1990 AI
capabilities will be incorporated into most products.

However, while AI research continues at a brisk pace, full commercialization faces several potential
hurdles, among which are (I) limited industry expertise in building knowledge-based systems, (2) the
need for development tools and standards that are easy to use and economically feasible and (3) the need
for characterizing the still ill-defined market and addressing critical market issues such as niche
definition, pricing, channels of distribution and customer training and support. The period of market
definition is likely to continue for the next two or three years. Software metrics also need to be gathered
to give a more solid indication of productivity gains, since this technology is likely to involve a lengthy
learning curve.

Summary

The world of the mainstream computer supplier is changing and the arbiter of that change is symbolic
computing. Symbolic computing is the area of computer technology where the aim is to optimize the
processing of symbols, representing objects or concepts rather than numerical data or text. In the past,
changes in the 8 and 16-bit microprocessors had profound effects in the market, creating new industries
and new competitors. Now the emergence of symbolic computing will have even more impact; not only
will new markets be created, but existing markets will be severely impacted over the next few years.

In 1985 some major players in AI -- including IBM, Xerox, Hewlett-Packard, and Texas Instruments -­
introduced new AI-related products and reaffirmed their committment to AI research and development.
The products included AI programming "shells" to build expert systems, programming languages and tools
and high-performance, lower-cost workstations that support AI products. It is anticipated that in 1986,
these products will become even more widely available, marking a milestone in the evolution of Al from
the research and development laboratories to the commercial marketplace. As the market becomes more
clearly focused, all major computer companies, mainframe, minicomputer and microcomputer, will enter
into direct competition and will vie to offer systems of comparable functionality. This will elevate the
competition to a new level.

For AI suppliers, success in the AI market will not necessarily be determined by previous success or failure
in the 16 or 32-bit world. More likley, success will depend on the manufacturer's ability to produce on
schedule these order of magnitude more complex systems; the ability to adequately supplement the systems
with support for Al programming languages (LISP and PROLOG); high performance mass-storage devices

229

230

and high-resolution graphics displays; the implementation of a large virtual address space and large
amounts of physical memory; and the garnering of third-party software support for languages,
development tools and applications.

For the major computer manufacturers such as HP, IBM and DEC, it has become a question of not
whether they should develop an Al-based product line, but rather which system processor they should
choose and when. As with any technological upheaval, the emergence of symbolic computing on
high-performance workstations and PC's give new players the opportunity to get the jump on the existing
competitors. However, difficult decisions must be made on the basis of technical, marketing and support
issues. Choosing the right market niche and third party suppliers will be tantamount to choosing the
right horse. Also, choosing a 32-bit processor family is not enough, as many system manufacturers will
choose the same processor family. The issues of system design, price/perforamnce ratios, marketing
strategies and software support will make the critical difference between success and failure.

For the potential customers of Artificial Intelligence, it is well to heed the siren's song -- with a clear eye
and an alert mind. End users owe it to themselves to become educated about this technology and
informed of the activity that is taking place. Many vendors are becoming very agressive in marketing
tools and an escalation of this activity will surely take place over the next couple of years. It is important
to examine your business for potential applications, keeping in mind that commercially viable products on
the market today are far from fulfilling the promise of AI. Researchers are still trying to understand and
capture the nature of human intelligence -- we do not have machines today that can reason as humans do
and learn from experience.

Biography

Sharon Bishop is a product manager in Hewlett-Packard's Information Technology Group in Cupertino,
California, with responsiblity for several products, among which are AI lanaguges and programming
environments. During her eight years with Hewlett-Packard, she has held senior programming positions,
managed a group of application software engineers and, most recently, moved into product m11.rketing for
computer languages.

BUSINESS BASIC PHASE II,
THE NEXT STEP TO A FRIENDLY COMMERCIAL PROGRAMMING LANGUAGE

Dr.Ulrich E. Fauser
WEIGANG MCS
Stoberlstr. 68
D-8000 Munchen 21, W-GERMANY

Whereas the already powerful phase I released with T-Delta 2
and presented at the Washington conference was primarily aimed
towards former BASIC/3000 users, the new phase II to be released
mid-86 adds even more advanced statements so that a real flexible
and rich language for commercial programming will be available.

This and the nevertheless comparable performance make• HPBB a
real competitor to the other prevailing commercial languages COBOL
and PASCAL.

This paper will give an overview of the new features from an
OEM's view who has been also a beta-testsite from the beginning of
the HPBB project.

Phase II will include features like:

softkey integration for userfriendly programflow control

cursor and screen I/O

a full fledged report writer facility in a 4th generation style

database search and sort with multiple threads

other database extensions

a new forms handling package working in character mode allowing
fieldwise program interaction

All this and the existing conversion tools make HPBB not only a
language with a high programmer productivity but also the perfect
migration tool for BASIC/260 users as it is approx. 80 90%
compatible to the 260 language after which of course HPBB was
modeled.

Another feature making HPBB attractive is HP's commitment in
making it available not only with the high end spectrum series but
also including the low end 260 in its range of commercial
computers through the JOIN/3000 program.

In this way an OEM will have a reasonable portable language
throughout the range of the HP computer family.

233

234

Introduction

This paper will be presented in two different parts. The first
will deal with the purely technical matters trying to give you an
overview of the newly added statements and power to the phase II
of HPBB like this language is officially named.

The second will bring you some of the experiences and problems
that we as a major 250/260 OEM have met first as a beta testsite
and then in converting our different manufacturing and commercial
application packages to the 3000 environment, a still continuing
effort.

Some History

The HP3000 Business Basic project was originally started in 1981
but it took a lot of pressure from some HP260 OEMs like us to
really make it going finally in 83.

HPBB had several goals, first as the 250/260 OEMs and users
slowly grew beyond the capabilities of their machine the demand
for a growth path into a new hardware family was obvious but there
was no suitable replacement with a similar friendliness and
productivity within HPs range of commercial computers. Second
BASIC/3000 users were not really pleased with their language so
something had to be done to make it attractive again. And third
many people were looking for an easy and friendly commercial
language providing not only simple access to most of the necessary
subsystems like IMAGE, VPLUS etc. but also increasing programmer's
productivity by doing a lot of the housekeeping routines usally
left to him, therefore leaving more time for better solutions.

Although most of HPBBs features were inherited from BASIC/260
one of the languages with the highest rating in user satisfaction
most of BASIC/3000s features are incorporated too.

It was decided to release HPBB in two phases, phase I was
primarily aimed towards former BASIC/3000 users or OEMs who wanted
to start rewriting their applications with the still restricted
language subset. This phase was released last year with T-Delta 2.
Phase II which is scheduled to be released in mid 86 now provides
a real upgrade path for former 260 users, especially after phase
II was enhanced by a product made in HP Boblingen, called
JOINFORM, giving the same screen handling facilities like on the
260. Thus the compatibility to BASIC/260 by not having to use
VPLUS was drastically improved.

A short review of phase I

For those of you who haven't been in Washington and haven't read
the proceedings here is a quick summary of the features of phase I.

Interpreter and compiler available

Full debugging and trace capability

Builtin editor with immediate syntax check and many edit functions
and program development environment

Extensive ON LINE HELP

Always actice calculator and immediate command mode

All standard control structures
GOTO, GOSUB, CALL, ON GOTO, ON GOSUB, function calls
FOR-NEXT, IF-THEN-ELSE, WHILE-ENDWHILE, REPEAT-UNTIL,
SELECT-CASE, LOOP-EXIT IF-ENDLOOP

Real subprograms and functions with parameters and local variables

Named and unnamed COMMON

Various OPTIONS to control interpreter and compiler

Variable and label names up to 63 characters

Seven datatypes INTEGER, REAL, DECIMAL (each SHORT and FULL precision)
and Strings

Dynamic checks for ON ERROR, ON DBERROR, ON HALT, ON END

Statements for accessing all IMAGE intrinsics with easy handling

Rich output formatting features

Access to MPE commands (:SYSTEM) and control of son processes
(:SYSTEMRUN)

Interface to routines written in SPL and PASCAL

More than necessary functions for stringhandling, numeric,
mathematical, matrix, conversion, bithandling, logical, files

All possibilities to access the file system
also special BDATA type file including type information with
data
KSAM only via intrinsics

and many more features of a modern language.

§o(tk~s and typiJlg aid k-™

HPBB supports the 8 softkeys provided with most HP terminals in
two ways: as typing aid keys and programatic keys. Typing aid keys
are used for often needed charactersequences especially by
programmers. GET KEY and SAVE key are used to save and store
these. Definition and changes are made via standard terminal
features.

More important are programatic keys or more often just called
softkeys. These are used to allow the user control the flow of
control for his program. In a program a softkey is defined using
the ON KEY statement with a number (1 to Bl, a priority, a
keylabel and a softkeyaction which can be thought of as an
interrupt routine. Only on the 3000 softkey actions are no longer
real interrupts like on the 260 where an action could be invoked
at the end of every statement or within INPUT statements and they

235

236

always returned to the point of invocation, except with GOTO.
On the 3000 there are no real softkey interrupts, they are

handled like special character sequences and only work when the
program is in an input state. When the user presses a softkey
during an input the statement is terminated and the corresponding
softkey action is executed. Unlike on the 260 the flow of control
here goes to the next statement after the input (not with GOTO)
and it is left to the programmer what to do. To do this HPBB
provides a builtin function RESPONSE which tells you how an input
was terminated (softkey, HALT, timeout, data etc). This is not as
it used to be on the 260 but it works and the additional handling
around the input statements is automatically inserted by the
conversion program.

The following statements are available: (examples)

ON KEY 7 CALL Selection;LABEL="SELECT DATA"
action can be CALL, GOSUB or GOTO

OFF KEY or OFF KEY 6 deactivates all or specified keys

ENABLE, DISABLE allow or disallow keyinterrupts to occur

PRESS KEY n makes HPBB think a softkey was pressed by user

CURKEY function returns the number of the last key pressed

Waiting for softkey, no data input allowed

LOOP
ACCEPT

END LOOP

Waiting for data or softkey, exit also when HALT is pressed

LOOP
INPUT Var
EXIT IF RESPONSE>O

END LOOP

Cursor and screen I/O

The CURSOR statement allows you to place the cursor anywhere on
the screen and define any of the available video enhancements

E.g. CURSOR (12,5) positions the cursor in row 12, column 5

CURSOR (15,ll,C"BI",-3) positions the cursor to 15,1 and
displays a blinking, inverse field 3 spaces long

The builtin functions CPOS and RPOS return the current column
or row position of the cursor.

The ENTER and LENTER statements work
except that the input is taken from the
whole line including commas whereas for
item separators.

just like INPUT and LINPUT
screen. LINPUT reads a
ENTER commas mean data

HPFORMS CVPLUSl interface

For interfacing the most common VPLUS intrinsics HPBB provides
statements releaving the programmer from all the usual hassles of
providing the right parameters or defining his common area. For
special problems however VPLUS intrinsics still have to be called
directly.

Statements:

OPEN FORM with HOME/OVERLAY/APPEND/FREEZE options

CLOSE FORM with REMAIN option

READ FORM <variablelist> with TIMEOUT and SKIP option
including imbedded FOR loops

CLEAR FORM with DEFAULT option

WRITE FORM <expr.list> with CURSOR option
including imbedded FOR loops

JOINFORM Forms/260 interface

To provide a higher compatibility for 260 users and also as an
alternative to VPLUS HP Boblingen (BGDl decided to launch an
additional project called JOINFORM for HP260 FORMS conversion and
emulation in HP Business Basic. This team has implemented a set of
library subroutines performing the same functions as FORMS/260.
Calling these routines is integrated into HPBB i.e. several
statements (like on the 260) check if a 260 form is active and
they then behave differently.

All 260 forms can be converted into
are different from VPLUS files (filecode
be a new friendly FORMS editor for
printing these forms.

JOINFORM formfiles
BFORMJ. There will
defining, modifying

which
also

and

JOINFORM does not work in blockmode, but in formatmode.

The forms handling statements are the same as for VPLUS, they
decide from the filecode which subsystem to call.

OPEN FORM

CLOSE FORM and CLOSE FORM REMAIN

CLEAR FORM

inputf ieldorder and an JOINFORM allows forms to have an
outputfieldorder independent from each
fieldtypes provided. Fields can be arranged
screen.There is no more extra tabfieldorder
is now equal to the inputfieldorder like it

other for the two
in any order on the
like on the 260. This
was done mostly on the

237

238

260 anyhow. Internally still three pointers are maintained, an
input- output- and cursorfieldpointer.

The CURSOR statement was enhanced to position the cursor to
these fields by adding the builtinfunctions IFLD, OFLD and CFLD

Thus CURSOR IFLD(S) sets input and cursorpointer to field #5

CURSOR OFLD(4l sets the outputpointer

CURSOR CFLD(3) sets the cursorfieldpointer

An additional builtin TFLD returns the fieldnumber of the last
input field where return was pressed, this is the same as TFNUM on
the 260.

All I/O interaction between program and form is done with
normal I/O statements which internally behave differently when a
form is active by calling the appropriate subroutines.

DISP and PRINT output to the actual outputfield thereby increasing
the internal pointer.

INPUT and ACCEPT <variablelist> read from the current cursorfield
for the benefit of the user it is only read what is really on
the screen, so insert,delete and cursorkeys can be used, as the
inputbuffer is simply discarded

ENTER <variablelist> reads starting from the current inputfield
from the screen

Unlike VPLUS additional "normal" I/O can take place outside the
form boundaries using LDISP and LINPUT/LENTER. The user doesn't
have to distinguish between enter and return, all input is ended
with return. This may cause some confusion if he uses his
application together with VPLUS oriented utilities or other
programs.

Database extensions

Using a socalled PACKFMT or an IN DATA SET statement allows DBGET,
DBPUT and DBUPDATE to implicitly do packing and unpacking of the
IMAGE buffer into/from program variables without extra PACK/UNPACK
statements or program buffers.

Example:
Label: PACKFMT Partno$,Customer,Quantity
or
Label: IN DATASET "ORDERS" USE Partno$,Customer,quantity

DBGET Dbase$ USING Label;DATASET="ORDERS" will then immediately
read databasevalues into program variables

The PREDICATE statement allows simple specifications
predicate for DBLOCK modes 5 and 6 without having to deal
wordcounts, entrylength and all that internal stuff.

of
with

PREDICATE P$ FROM "ORDERS" WITH Customer=1254;Quantity>100

Database SEARCH and SORT

Besides the report writer this is certainly the most powerful
construct in HPBB. It allows programmers to select and sort IMAGE
databases in an almost relational way, not only on single datasets
but over multiple sets. HPBB supports the concept of workfile
containing only pointers to selected/sorted records that is the
database itself is not changed at all. This is available nowhere
else on the 3000.

The DBASE IS Dbase$ statement only defines which database is
actually to be searched and sorted

WORKFILE IS #1 defines the previously opened file #1
special type for handling IMAGE pointers. Files with the
option are treated specially and have some restrictions.

to be a
WORKFILE

We have already presented the IN DATASET statement which is
essential here too.

The THREAD IS statement defines which datasets are involved in
a SEARCH or SORT. Up to 10 sets can be specified, no two
consecutive sets of the same kind (master,detaill can be
connected. If a master is linked to a detail with more than one
path the PATH option allows to select which one to use. There is
an additional contruct called a synthetical link when there is no
real path from a detail to a master in the thread. CLINK Variable
option)

The SEARCH statement searches all involved datasets according
to the thread and evaluates its conditional expression. There are
certain programming techniques keeping the number of records in
the first dataset of the thread small because this is the only one
to be read sequentially thus greatly influencing the performance.
The result is stored as tuples of pointers in the workfile, one
pointer for each dataset.

The SORT statement allows sorting of the pointers according to
the related data in ascending or descending order with up to ten
sortkeys. If a SEARCH preceded the SORT only the already selected
records are sorted and vice versa.

Example (see also appendix)

Dsetl: IN DATASET "ORDERS" USE Partno$,Customer
Dset2: IN DATASET "PARTMASTER" USE Partno$
Dset3: IN DATASET "PARTS" USE Partno$,SKIP 46,Storageloc$

ASSIGN "FILEA" to #1
WORKFILE IS #1

Thread1: THREAD IS Dset1,Dset2,Dset3

SEARCH USING Thread1;Customer=1254 AND Storageloc$•"STORE_B"

This selects all records for customer 1254 whose parts are stored

239

240

in STORE_B.

SORT USING Threadl;Storageloc$,Partno$

Now sort them according to storagelocation and partnumber

Now a LOOP would read the workfile, access the database with DBGET
in mode 4 and process the records in whatever way.

Syntax and semantic is somewhat different from
had, there it was much more flexible, but due to
some restrictions had to be made.

what the 260
be compilable

This is probably the most powerful tool available to the
programmer allowing him to easily define and produce reports. The
definition of a report is done in a 4th generation style by
telling the system how it should look like instead of programming
every little single step. The report writer system takes care of
all routine work like pageformat and numbering, headers, trailers,
totals and averages. It also lets you define when logical breaks
are to occur and what happens then.

The actual production of the report is controlled by simple
output statements, the DETAIL LINE construct.

Therefore the report writer system has 3 distinct parts

The report definition part

Statements controlling the activation of the report

Functions giving various informations

The report writer definition

The REPORT HEADER defines
page format
margins
which GRAND TOTALS are to be taken
under which conditions a break occurs

with up to 9 break levels

PAGE LENGTH
LEFT MARGIN
GRAND TOTALS
BREAK n IF <cond>
BREAK n WHEN var CHANGES

and also the appearance of a one time report header

The REPORT TRAILER defines a one time report ending trailer

The PAGE HEADER/TRAILER defines what is to be done when a new page
starts or a pagebreak occurs

The HEADER/TRAILER level statements define what
when a break for a certain level occurs, which
kept, under which conditions a line is printed
protecting sensitive information.

has to be done
local TOTALS are
at all, thereby

A REPORT EXIT section defines what is to be done in case of

abnormal termination via a STOP REPORT command.

For an example see the appendix

REPORT WRITER executable statements

A report definition alone does nothing, it has to be activated
before it can be used by a BEGIN REPORT Rptlabel statement No
printing is done yet only internal initialization.

All actual printing is done triggered by the DETAIL LINE
statement. It checks whether the report has started at all, which
break occurs, printing appropriate headers and trailers, keeping
local and grand totals and so on, all with one statement.

For rare cases when this is not enough special flow control can
be activated be triggering some events like TRIGGER PAGE BREAK or
TRIGGER BREAK level activating the corresponding sections in the
report description.

END REPORT is the normal termination of a report, all remaining
events are triggered, the report trailer is printed followed by a
final page trailer. The report definition is deactivated.

STOP REPORT indicates an abnormal termination. No more normal
processing is done, only the report exit section is activated if
present usually giving some hints to the cause of the termination.

Report writer functions

They return various information about internal conditions and can
be used to control the report even finer if necessary and to
access numeric results.

AVG (level,i) average for the i-th expression of the TOTAL
statement in level (0 being the GRAND TOTALS)

LASTBREAK level of last break condition

NUMBREAK (level) how often has a break for this level occured

NUMDETAIL (level) how many lines have been printed in level

OLDCV and OLDCV$ return the value of the last controlvariable for
the BREAK WHEN statement, so even if you have read already a
record which triggered the break the old value is still available

NUMLINE how many lines already on current page

PAGENUM current page number

RWINFO some more seldom used information

TOTAL (level,iJ giving the i-th total for level

Missing features

For those of you familiar with BASIC/260 here is
features not available in HPBB. Programs using these

a list of
statements

~1

242

have to be rewritten.

AVAIL
BUFFER#
CATLINE
CATFILE
CHECKREAD ON/OFF
DET without parameter
DIRECT
DIRECT NOUPDATE
DOOR LOCK/UNLOCK
DUPTEST
EDIT
EDIT KEY
HOLE
INDIRECT
LINK
LIST KEY
LOAD / STORE BIN
ON / OFF DELAY
PRINT LABEL
READ LABEL
REQUEST
RELEASE
RES
SD / SI
SET DATE TO
SET TIME TO
SYS ID$

All TASK Statements

All PERFORM Statements

All TIO Statements

All MEDIA Statements

IN DATA SET DIM ALL
IN DATA SET USE ALL
IN DATA SET IN COM
IN DATA SET FREE
DBCLOSE MODE 4
DBINFO Mode 4xx
DBCREATE
DBERASE
DBMAINT
DBPASS
DB PURGE
DBRESTORE
DB STORE
READ / WRITE DBPASSWORD
XCOPY

replace through IN DATA SET USE <list>

There are no QUERY controlnumbers and no corresponding DBINFO

Like in phase I there is also an interpreter and compiler in phase
II but unlike phase I all the new statements of phase II are
compilable without exception.

The purpose of the interpreter is mainly for programmers use
only or at most for one shot programs as its speed is too slow for
everyday production programs. So its advantage is primarily for
program development, testing and symbolic debugging in its fullest
sense, because in the interpreter all source information is still
available. You can not only look at or modify variables but also
add, delete or modify the source program.

For enduser applications the compiled code is the only
reasonable way to go, maybe with some programs needing noncom­
pilable statements still interpreted. Remember you can call
compiled programs from the interpreter but not viceversa.

Some speed ratios HP260 vs HP3000/37

HPBB interpreter 2-5 times slower than BASIC/260

HPBB compiler 5-10 times faster than interpreter

-> on the 137 a compiled program is on the average 2 times
faster than the interpreted program on the 260

That shows clearly that the 137 is no upgrade path for users who
have outgrown their HP260

Comparison to other languages

So far only measurements with phase I have been made as phase II
features are not available in most other languages and they
indicate a slightly slower performance compared to PASCAL/COBOL,
we talk about 10 to 20% for CPU bound programs. For I/O or IMAGE
bound programs there is of course not much difference since most
of their time is spent in the system intrinsics anyhow.

With the corning phase II extensions performance should favor
HPBB because of the really powerful statements especially if yo11
take into account a faster development cycle and better and more
flexible programs.

Please note that all tests are preliminary as especially phase
II is not yet performance tuned.

For ways of improving performance even more by switching off
some off the features like dynamic error checking etc in the
compiler see the appropriate sections in the HPBB manual.

Those of you familiar with BASIC/260 can probably tell by now that
converting existing 260 application packages still requires some
manual work but also that there are no real big obstacles. Just
how much effort do prospective OEMs still have to put in before
their programs are running in HPBB and in an HP3000 environment.

243

'244

Let me give you some of the results we have got in converting
our first packages.

Before any conversion can be done some very timeconsuming
preparations have to be made first, I mean preparing all your
files and databases for transfer and the filetransfer itself.
There are two ways two do it, a slow and cheap one using a RS232
connection or a faster, expensive one using INPs. We had only the
slow connection available at 9600 Baud CHP recommends only 4800,
but we didn't have any problems) and with the preparations on the
260 side and the filetransfer you can easily spend some 3-4 days
or more, mostly depending on the size of your database which has
to be unloaded, transfered and loaded set by set. Conversion of
databases is straightforward as the 260 uses almost the same IMAGE
subsystem.

The good thing is most preparation and transfer procedures can
be automated using PERFORM on the 260 or batchfiles for the
transfer, so this can easily run overnight. An example is shown in
the appendix, without further comment.

The cheap transfer tool is TRNSFR a 260 utility provided with
HPBB, the expensive one is DSN/DS and INP hardware on both sides.

The conversion itself is done by a supplied utility BBCT250
which takes care of all the syntax changes and some but not all of
the semantic changes. After this is done the converted program is
loaded into HPBB with the GET command and now its your time to do
the remaining manual adaptation.

The worst problem we encountered was a program too big for HPBB
to accept in one piece. As the 260 has a single 64 KB address
space for one user it is possible to write programs up to 60 KB as
a single subroutine or main program. Unfortunately this is not
acceptable by HPBB, it can only accept so called subunits (main,
subroutine or function) up to approx. 20-25 KB or about 400-500
lines of code but of course many of these subunits i.e. the whole
program can get much larger but there is that damned restriction
on the subunit size.

Well no problem, we said, we just segment the big ones into
some smaller subroutines and a control program. Easier said than
done, I have to admit because some of them just turned out to be
ugly, unstructured monster programs which were much simpler to
rewrite than to segment and convert. But we were lucky, these
programs were less than 10\ of all, nevertheless this subunitsize
restriction can be a serious bottleneck for a successful
conversion effort.

The small enough programs (90% or morel were relatively easy to
convert the conversion program BBCT250 doing most of the work.
However some minor manual changes still had to be made. (The
following lis·t is not complete)

Create a unique subprogram name, on the 260 all
subprograms were called Pgm because they were
loaded just before the CALL by the menu.

our application
all selectively

Change all references to the database statusarray to doubleword
references, the 260 only had 16 bit pointers and capacities

Make file and formnames acceptable to the 3000, the 260 allowed
upper and lowercase and also special characters

Change DBGET, DBPUT and DBUPDATE and insert the USING clause, the
260 did the variable assignment dynamically, here it is static

When using direct wordpointers for accessing files, check them
because due to other storage requirements they may have changed

The biggest manual changes however requiring some knowledge about
the programflow are adapting the IN DATASET, THREAD, SEARCH and
SORT statements as their logic is somewhat different.

And some minor stuff, some of them could be done using the HPBB
editor functions and by redirecting HPBB's inputfile to a
commandfile.

All in all it took us about one hour per program for the
conversion. I think an acceptable result as it offers a whole new
dataprocessing environment keeping OEMs software investments and
almost the same functionality in the applications. Thus a user
having to move to a bigger machine due to size limitations of the
260 can immediately continue to work in a familiar way without a
timeconsuming learning process.

for the current phases

Phase I released in mid 85

Phase II and Joinform beta test in February 86
release mid 86

Pre~jew into the future

Further development within HPBB (no HP commitment yet)

After the release of phase II in mid 86 there might be ongoing
efforts to enhance further the useability, power and friendliness
of HPBB.

Several topics have been discussed including:

File sort statements, thus getting rid of intrinsic calls

data structures, at least simple ones

printing into and reading from strings, like PL/1 GET/PUT STRING

support of fully qualified filenames for distributed systems

full screen editor with immediate syntax check within HPBB

and some more

All these points are still subject to discussion and no
commitment has been made by HP so far.

245

246

Porting HPBB to SPECTRUM

This project started in Nov 85

According to Dave Elliot IHPBB manager phase IJ about 10\ of
the existing code has to be changed to adapt HPBB to the new
hardware but for performance reasons approximately 20\ will be
modified. HPs plan is to release HPBB on SPECTRUM at the same time
as on the 3000, mid 86.

Concerning database access it is planned to provide
softwarelayer between HPBBs DB statements and the new database
that a programmer can continue using his well known IMAGE
statements without changes.

a
so
DB

In doing this he will of course not be able to exploit the full
range of the features of the new database, therefore additional DB
statements have to be integrated too.

Right now no direct interface is in discussion between HPBB and
the SQL like DB language, this can be done at first using e.g. a
PASCAL subprogram.

to HPBB This is probably of
because already todays
relational like access

not such a big
THREAD, SEARCh and
to IMAGE.

concern
SORT commands

users
provide

Increasing compatibility downwards to the 260

As the 260 despite its limitations is still going strong
especially in Europe some tentative projects are discussed
(JOIN/260) enhancing the BASIC/260 language with constructs from
HPBB and maybe even make some changes to already existing
statements with the goal of being more compatible with the grownup
members of the family.

With all these activities going on you can clearly see that
Business Basic has a strong support within HP. HPBB is planned to
be the commercial Basic for all future systems, from the 260
across the 3000 up to SPECTRUM.

Acknowledgements

I am very grateful to HP Boblingen and Cupertino for
to stay with the research team directly in Cupertino
months. Also to my company for letting me go for such
to ensure the usefullness of the product for 260 OEMs.

enabling me
for over 3

a long time

My thanks also go to the HPBB team for the good cooperation
despite my being sometimes a very uncomfortable demanding customer
but I think it turned out to benefit both sides, HP" and HPBB user.

Authors biography

Dr.Ulrich Fauser
has been with WEIGANG MCS since 1981.

He is R&D manager and system software specialist therefore
responsible for the selection of future hard- and software for use
within his company.

He also deals with the europewide system software and technical
support for all used computersystems, right now exclusively HP
products.

He studied computer science at the university of Stuttgart with
emphasis on compiler construction and microprogramming. While he
was teaching computer science there afterwards his interest
shifted to distributed relational database systems of which a
prototype was implemented by his research team. This has been also
the subject of his doctoral thesis in 1980.

Before he started with his present company he spent a year at
the University of California in Santa Cruz researching within
Prof. F.Deremers Translator Writing Systems project.

His primary interest today are operating systems, databases and
programming languages.

Privately his favorite pastimes are sailing, skiing and scuba
diving.

References

HPBB Reference Manual , 32115-90001

HPBB Quick Reference Guide , 32115-90002

HPBB Programmers Guide , 32115-90003

BASIC/3000 to HPBB Conversion Guide , 32115-90004

BASIC/250 to HPBB Conversion Guide 1 32115-90005

Phase II External Reference Specification

JOINFORM External Reference Specification

no manuals for phase It are available yet

247

248

1 : ! Perform "PERFOl:M" ! COMMAND file
2 : ! Files, beginning with FBH (FIBUl and of type
3 :! PROG, DATA or FORM , are read per CATLINE from
4 : ! tape and copied to :M, PROG files are saved as
5 :! ASCII-Files
6 :! In a parallel process an EDITOR file is created,
7 :! later to be used as a batchfile for the TRNSFR program
8 :! The program WARTl only waits for the parallel task to
8.1 :! be in INPUT state ·
9 :! **

10 REQUEST#?
11 SEND CONTROL HALT#?
12 SEND COMMAND#7,"RUN "&CHR$(34l&"EDITOR:M"&CHR$(34)
13 RUN"WARTl:H"
14 SEND INPUT#7,"S LENGTH=160"
15 RUN"WARTl:M"
16 SEND INPUT#7,"A"
17 RUN"WARTl:H"
18 :DIM PARHl8l
19 :SET PARH(l) TO 0
20 : LOOP
21 :SET PARM(ll TO PARM(l)+l
22 CATLINE PARM(1 l ON ":K" ,A$
23 :EXIT IF A$[1,3]="EOD"
24 :IF A$[1,2]="FB" THEN
2S :IF A$[14;4]="PROG" OR A$[14;4]="DATA" OR A$[14;4]="FORH" THEN
26 :SET PARM(5) TO NUM(A$[4;1ll
27 :SET PARH(6) TO NUM(A$[S;l])
28 :SET PARH(7) TO NUH(A$[6;1]l
29 :IF A$[14;4l="PROG" THEN
30 LOAD A$[1,6]&":K"
31 B$="FBP"&CHR$CPARM(S)l&CHR$(PARM(6))&CHR$(PARH(7))&":M"
32 SAVE B$
33 SEND INPUT#7,"DATA_FILE_TRANSFER "&B$&" TO FBH"&B$[4,6]
34 RUN"WARTl:M"
3S :ELSE
36 :IF A$[14;4]•"DATA" THEN
37 B$•"FBD"&CHR$CPARM(Sll&CHR$(PARM(6)}&CHR$(PARM(7))&":H"
38 :END IF
39 :IF A$[14;4]="FORH" THEN
40 B$•"FBF"&CHR$(PARM(S))&CHR$(PARM(6})&CHR$(PARM(7))&":H"
41 :END IF
42 SEND INPUT#7,"ARCHIVE_TRANSFER "&B$&" TO FBH"&B$[4,6]
43 C$•"FBH"&B$[4,6J&":K"
44 COPY C$ TO B$
4S RUN"WARTl:H"
46 :END IF
47 : END IF
48 :END IF
49 :END LOOP
SO SEND INPUT#?,"//"
Sl RUN"WARTl:M"
S2 SEND INPUT#7,"K"&CHR$(34)&"TRATES:M"&CHR$(34)&" ,UNN"
S3 RUN"WARTl:M"
S4 SEND INPUT#7,"E"
SS :END IF
S6 :END

1 : ! SAMPLE OUTPUT OF PERFORM COMMAND FILE
1.1
2 DATA_FILE_TRANSFER FBP044:M TO FBH044
3 DATA_FILE_TRANSFER FBP045:M TO FBH045
4 DATA_FILE_TRANSFER FBP046:M TO FBH046
5 DATA_FILE_TRANSFER FBP047:M TO FBH047
6 DATA_FILE_TRANSFER FBP048:M TO FBH048
7 DATA_FILE_TRANSFER FBP049:M TO FBH049
8 DATA_FILE_TRANSFER FBP051:M TO FBH051
9 DATA_FILE_TRANSFER FBP052:M TO FBH052

10 DATA_FILE_TRANSFER FBP054:M TO FBH054
11 DATA_FILE_TRANSFER FBP065:M TO FBH065
12 DATA_FILE_TRANSFER FBP057:M TO FBH057
13 DATA_FILE_TRANSFER FBP055:M TO FBH055
14 DATA_FILE_TRANSFER FBP053:M TO FBH053
15 DATA_FILE_TRANSFER FBP056:M TO FBH056
16 DATA_FILE_TRANSFER FBP058:M TO FBH058
17 DATA_FILE_TRANSFER FBP059:M TO FBH059
18 ARCHIVE_TRANSFER FBF301:M TO FBH301
19 ARCHIVE_ TRANSFER FBF302:M TO FBH302
20 ARCHIVE_TRANSFER FBF303:M TO FBH303
21 ARCHIVE_TRANSFER FBF304:M TO FBH304
22 ARCHIVE_TRANSFER FBF305:M TO FBH305
23 ARCHIVE_TRANSFER FBF306:M TO FBH306
24 ARCHIVE_TRANSFER FBF307:M TO FBH307
25 ARCHIVE_ TRANSFER FBF308:M TO FBH308
26 ARCHIVE_ TRANSFER FBF309:M TO FBH309
27 ARCHIVE_ TRANS FER FBF310:M TO FBH310
28 ARCHIVE_ TRANSFER FBF311:M TO FBH311
29 ARCHIVE_ TRANSFER FBF312:M TO FBH312
30 ARCHIVE_ TRANSFER FBF313:M TO FBH313
31 ARCHIVE_ TRANSFER FBF314:M TO FBH314
32 ARCHIVE_TRANSFER FBF315:M TO FBH315
33 ARCHIVE_ TRANSFER FBF316:M TO FBH316
34 ARCHIVE_ TRANSFER FBF317:M TO FBH317
35 ARCHIVE_TRANSFER FBF318:M TO FBH318
36 ARCHIVE_ TRANSFER FBF319:M TO FBH319
37 ARCHIVE_ TRANSFER FBF320:M TO FBH320
38 ARCHIVE_TRANSFER FBF321:M TO FBH321
39 ARCHIVE_TRANSFER FBF322:M TO FBH322

249

250

simple HPBB example program demontrating database extensions
and report writer
not every detail shown
Cline numbers have been ommitted)
YES I know it can be done in a different and easier way

SUB Orderreport
COM Dbas$,Limit ! lets assume database opened excusive in MENU

Variable definitions only partially

DIM Partno$[16J,Storageloc$[6]
INTEGER Customer,Orderno
DECIMAL Quantity

Dset1: IN DATASET "ORDERS" USE Partno$,Customer,Orderno,Quantity,
Salesarea,Orderdate$

Dset2: IN DATASET "PARTSMASTER" USE Partno$
Dset3: IN DATASET "PARTS" USE Partno$,Partdesc$,SKIP 46,Storageloc$

Prt=FNSelectprinter ! ask user which printer to use
SYSTEM "FILE LP;DEV="+VAL$CPrt)
DBASE IS Dbas$
ASSIGN #1 TO "WORK"

Input: !
OFF KEY
CALL Clearscreen
CALL Ask_userC"Report for which salesarea",Area$)
CALL Ask_user("for which month",Month$l
WORKFILE IS #1
POSITION #l;RESET

Thread1: THREAD IS Dset1,Dset2,Dset3
SEARCH USING Thread1;Salesarea=VAL(Area$) AND VAL(Orderdate$[3;2])

=VAL(Month$)
IF NUMREC(#l)=O THEN

CALL Msg("No orders for this salesarea and month")
ON KEY 8 GOTO Final;LABEL="EXIT"
ON KEY 2 GOTO Input;LABEL="NEW INPUT"
LOOP

ACCEPT
END LOOP

END IF
IF NUMREC(#1)>1 THEN SORT USING Thread1;Customer,Partno$
ON HALT GOTO Exit
SEND OUTPUT TO "*LP"
BEGIN REPORT Rpt1
FOR I=1 TO NUMRECC#1)

READ #l;Orderptr,Dummy,Partptr
DBGET Dbas$ USING Dset1;DATASET="ORDERS",MODE=4,KEY=Orderptr
DBGET Dbas$ USING Dset3;DATASET="PARTS" ,MODE=4,KEY=Partptr
DETAIL LINE 1 USING Dtl;Orderno,Quantity

NEXT I
END REPORT

Exit: STOP REPORT
Final: SEND OUTPUT TO DISPLAY

SYSTEM "RESET LP"
SUBEXIT ! return to menu

! Report layout for monthly order printout

Rptl: REPORT HEADER WITH 3 LINES
GRAND TOTALS ON Quantity*Price
PAGE LENGTH 72 1 2,2
LEFT MARGIN 10
BREAK 1 WHEN Customer CHANGES
BREAK 2 WHEN Partno$ CHANGES
PRINT USING Hd1;Title$,Area$

PAGE HEADER WITH 2 LINES
PRINT USING Ph1;DATE$(1J,TIME$

PAGE TRAILER WITH 0 LINES can also be omitted
HEADER 1 WITH 2 LINES

TOTALS ON Quantity*Price
GOSUB Readcustomername
PRINT USING Hdl;"Orders for "+Custname$
HEADER 2 WITH 2 LINES

TOTALS ON Quantity,Quantity*Price
PRINT USING Hd2;"0rders for "+Partno$,Partdesc$,Storageloc$

TRAILER 2 WITH 2 LINES
PRINT USING Tr2;"Quantity for this part ",TOTALC2,1l
PRINT USING Tr2_l;"Ordervalue ",TOTAL(2 1 2)

TRAILER 1 WITH 2 LINES
PRINT USING Trl;"Ordervalue for this customer ",TOTALCl,11

REPORT TRAILER WITH 3 LINES
PRINT USING Rtrl;"Total ordervalue for salesarea",TOTALC0,11
IF TOTAL(O,ll<Limit THEN PRINT "Orderlimit not reached"

REPORT EXIT WITH 3 LINES
PRINT USING Rel;"TERMINATION DUE TO USERREQUEST"

END REPORT DESCRIPTION

Output format specifications would be here

SU BEND

! Other subroutines like Ask_user, FNSelectprinter etc would follow

PARrS

Partno$
Partdesc$

Storageloc$

PARrSMASTER

~ ~""' ORDrn5
T 1-112 ~A 0 ~""' 1.----------....

. ~ Partno$
CUstcner
Orderno
Quantity
Salesarea
Orderdate$

251

Jorge Guerrero
Hewlett-Packard Cupertino
U.S.A.

NOTE: See page 627.

253

HP BUSINESS BASIC/3000: AN UPGRADE PATH FOR HP260 APPLICATIONS

Mark L. Hoeft
Hewlett-Packard-Computer Languages Lab
Cupertino, California, USA

Summary

One of the goals of HP Business BASIC/3000 is to provide an
upgrade path from the HP260 to the HP3000, The next release will
be targeted specifically for this market. Because the HP260 and
the HP3000 are very different machines this conversion will not
be 100% automatic, This paper will discuss how to convert HP260
applications to HP Business BASIC/3000, dealing with the mechan­
ics of the automatic conversion and how to make the manual con­
version as easy as possible. How to have your applications make
the most out of HP Business BASIC/3000 will also be discussed.

Introduction

HP Business BASIC/3000 Phase I was introduced last year and
Phase II will be introduced later this year. It is a complete
program development system providing editing, debugging and pro­
gram execution in one environment. The main reason that HP has
brought out HP Business BASIC/3000 was to provide upgrade paths
from HP260 to HP3000 and to provide a superior BASIC for BASIC/
3000 users. HP Business BASIC/3000 was started in August 1981,
after several years of investigation and specification. It has'
taken over 60 man-years to complete, and contains over 310,000
lines of PASCAL source (180,000 lines of real code). HP Business
BASIC/3000 will be the standard for BASIC on all future HP commer­
cial systems.

HP Business BASIC/3000 is intended to be used in developing
business applications and utilities. Its easy subsystems access
makes it convenient to write large applications and its rich lan­
guage features and interpretive environment make it easy to write
quick utilities, HP Business BASIC/3000's features allow the pro­
grammer to spend time on WHAT should be done and not on HOW to do
it.

There is a conversion package to be used in moving HP260
applications to the HP3000. The conversion package will allow the
transfer and conversion of BAS}C/260 source programs, data files,
databases and forms files. The run-time behavior of each HP Busi­
ness BASIC/3000 statement has been carefully designed to duplicate,
as closely as possible, the behavior of the corresponding BASIC/
260 statement.

The specific details for the conversion from BASIC/260 are
described in the BASIC/260 to HP Business BASIC/3000 conversion
guide. It should be read before attempting a real conversion.
This manual describes the mechanics of doing the automatic con­
version. However, it does not describe many of the little tricks
which can be used to make the conversion easy, nor does it de­
scribe what to do about the incompatibilities that do exist, This
paper will try to do both of these. It will begin with a quick
overview of the conversion process, and then will go into more de­
tail supplying the user with hints to make the process easier and

255

256

pitfalls to avoid. The sections dealing with the manual conversion,
and enhancement and ~ptimization go into detail about how to get your
application up and running, and running well. Also, hints will be
given to those programmers with advanced skills who will be convert­
ing large applications.

Overview of Conversion

Before you start you should make sure that this application will
be successful on the HP3000. Was it written many years ago and is
now out of date or are there already other applications on the mach­
ine which do just what yours does. Perhaps only some of your appli­
cations need to be converted. Perhaps some of the applications can
be converted to Phase I instead of waiting for Phase II to convert
all of the applications at once. Also, keep in mind what you are
going to be doing with new applications.

In general, there are 5 steps in converting an application.
These are site preparations, transferring the files, automatic con­
version, manual conversion, and enhancement and optimization. Site
preparations deals with making sure everything is ready to transfer
the files, and to do the conversion. Transferring the files from
the HP260 to the HP3000 can be done in several ways: using a DS
line or a terminal line between the two systems. The automatic con­
version does most of the needed conversion. The manual conversion
is the remaining work necessary to get the application up and run­
ning. The enhancement and optimization portion of the conversion
involves making the application run well, and letting it take ad­
vantage of the features of HP Business BASIC/3000 and the HP3000.
The first three steps are fairly easy. It is the step of manual
conversion in which most of the work will be done.

Before the conversion process is explained, some expectations
should be set. First, some parts of HP Business BASIC/3000 are very
compatible with BASIC/260 (i.e. exactly the same). Other parts are
different or do not exist at all. Fortunately, most of the language
is compatible, but how much work will be needed depends on the mix
of features that the application uses. Some applications will be
very easy to convert; others will be very difficult. This paper and
the conversion guide will help you figure out how difficult the con­
version is. Second, the HP3000 is a different machine. Even though
much of BASIC looks the same, things are different and hopefully
better. Third, the highest level of compatibility is in the inter­
preter because many applications use non-compilable features such as
GET SUB and COMMAND. The compiler is many times faster than the
compiler for CPU intensive programs. The proper use of the inter­
preter is for development, and then compile the application for pro­
duction use. This will result in greater user satisfaction.
Fourth, there are a fair amount of details to be dealt with in the
conversion. Programs won't work automatically. However, the more
time taken to make the programs better, the more satisfying the end
product. Because of the differences in the BASIC, a program which
is converted "just so it runs" will not run well. Take the time
and do a good job.

Many applications can be converted into the Phase I version of
BASIC, however, some may need to wait till Phase II for some features
such as forms, keys, reports and some advanced data base features.
Even if this choice is made, it is to the user's advantage to get
onto HP Business BASIC/3000 during Phase I to learn this version of
BASIC and to learn the HP3000 in general. There will be an updated
version of the conversion program when Phase II is released.

Site Preparations

The first step in site preparations is to understand what you
are going to be dealing with. This means you should know your appli­
cation, the HP260, the HP3000, HP Business BASIC and any subsystems
which will be used. A good way to start this is to read the manuals
on these items. You should have up-to-date manuals and listings of
everything that you will be using. This means HP manuals (HP260 and
HP3000), your manuals, program listings, data bases schemas (from
DBMODS), forms layouts (from PFORM) and any internal documentation
of your application.

Also, you need to have solid equipment and software. Make sure
that you are using a fully supported system. Both the HP260 and the
HP3000 should have the latest software releases. A link must be es­
tablished between the two machines. This can either be a DS (Dis­
truted Systems) line or a regular terminal line. The DS line is
recommended. Both machines should be completely backed up.

It will help if you set up an account on the HP3000 to be used
for the conversion. It should have groups in for files just trans­
ferred, files from the conversion program, reports from the conver­
sion program, files which need hand conversion, files which are
fully converted, documentation files and miscellaneous files. The
names of these groups could be HP260, CONVERT, REPORT, HALFCVRT,
FULLCVRT, DOC and MISC. Some users may find if they only have a
small number of files to be converted that they can use one group
with letters appended to the end of the file names to distinguish
what version the file is. Since the maximum number of characters
in an HP260 file name is 6, and the maximum number of characters in
an HP3000 file name is 8, this should be no problem. Remember that
only letters and numbers can be used in HP3000 file names, that they
must start with a letter, and that the case of the letters has no
meaning.

PROGRAMS

DATA FILES

FORMS

DATA-BASE SCHEMAS

DATA-BASE DATA SETS

KEYS FILES

unprotected, unsecured, unrunonly,
DATA (SAVE) files

unprotected DATA files created with the
CREATE not the FCREATE command

unprotected FORM files

unprotected DATA (DBMODS) files

unloaded, unprotected BKUP (DBUNLD)
files

cannot be converted

If you have a large number of files to prepare, you may wish to
use the PERFORM statement and write some small programs to build
scripts. For instance, you could use the CATLINE statement to get
a list of all of the PROG files on a disk and use this to build a
script which would do a SCRATCH P, LOAD "PROG" and SAVE "DATA" for
each program file. This can also be useful in any of the other
tedious tasks which must be done for a lot of files.

If you have the opportunity, you may wish to change your appli­
cation on the HP260 to not use features which are not available in
HP Business BASIC. This is true if you are planning to enhance it
and will be changing it anyway. Sometimes the choice of features
is arbitrary and now that you know that it makes a difference you

257

258

will choose features which are easily converted, Also, whenever you
write new code you should use features which are easily converted,
See the section on manual conversion and Appendix C in the BASIC/260
to HP Business BASIC Conversion Guide,

Transferring Files

The next step in converting an application is to transfer all
of the files used in the application from the HP260 to the HP3000.
There are two suggested means of transferring the files: the pre­
ferred method DSM/DS/260, and a program based on LK3000 called
TRNSFR. Put all files in the HP260 group on the HP3000.

On the HP260, files of characters are just regular DATA files,
but on the HP3000 these files are called ASCII files and are differ­
ent from BINARY files. You must know what kind of file you wish to
use on the HP3000 when you do the file transfer, and there is a
different style of transfer for the two file types, Here is a table
of the correct styles:

PROGRAMs

DATA FILES

FORMS

DATA-BASE SCHEMAS

DATA-BASE DATA SETS

Documentation files

Miscellaneous files

DATA FILE TRANSFER of the saved
program

ARCHIVE FILE TRANSFER

ARCHIVE FILE TRANSFER

DATA FILE TRANSFER

ARCHIVE FILE TRANSFER of the UNLOADED
file

DATA FILE TRANSFER

DATA FILE TRANSFER

For information on DSM/DS/260 see the DSN/DS/260 manual, For
information on TRNSFR/260 see appendix A of the Conversion Guide,
As to which of the two means of transfer to choose, there are some
good points and some bad points to each,

1)
systems.
systems.
lino.

DS/260 uses a distributed systems line between the two
This line takes care of any errors that occur between the
TRNSFR/260 gets confusing if there is any noise on the

2) DS/260 runs at 9600 baud, The fastest supported speed of
TRNSFR is 4800 baud and all bytes are transmitted in hex and, as a
result, take two characters each on the transmission line. There­
fore, the fastest speed of TRNSFR is really 2400 baud, which is 4
times slower than DS/260,

3) DS/260 makes ARCHIVE transfers directly from the file, In
the current release of TRNSFR, a separate file is made which con­
tains hex, The extra writes and reads to and from this file have a
serious negative effect on the performance of TRNSFR. This file is
2 to 3 times the size of the original file which may create disk
space problems.

4) TRNSFR/260 uses regular terminal lines and therefore doesn't
require the extra board in each system that DS/260 requires resulting
in a cost savings, DS/260 needs to be installed by an SE. For
TRNSFR to be used, file BBCTHEX,PUB.SYS needs to be present on the
system,

S) TRNSFR/260 is slightly easier to use for transferring
several files one after another. The PERFORM DROM must be used to
do this for DS/260 and because of the need to push softkeys to do
the transfer, this is a bit tricky. However, this is described in
Appendix D in the HP260 to HP Business BASIC Conversion Guide.
TRNSFR some Jecisions about the number of records and the size of
them for ASCII files on the HP3000. The decision about the record
size makes it a little easier but sometimes it is very inefficient.
The record size TRNSFR uses is 160 bytes in a record. This is
correct for program files with long lines, but if all of the lines
in the program are shorter or you are transferring•docum~ntation,
your file probably takes up twice as much space as it needs to.

Regardless of the method of transfer, here are some hints. If
you have a large number of files try to write a script for us~ with
PERFORM or BATCH to let the transfer run unattended. This lets the
programmer spend his or her time doing something productiy~ instead
of watch a terminal. If the transfer is to run overnight, be aware
that you will not be able to create new files when the HP3000 is
being backed up.

Automatic Conversion

The core of the automatic conversion is the file BBCT2SO.PUB.
SYS. However, there may be a few extra steps necessary for the con­
version depending on the file type used. To use this program RUN
BBCT2SO.PUB.SYS and type CONVERT (in file name), (out file name),(re­
port file name • The file type of the conversion can be used in­
stead of the word CONVERT to avoid confusion. It is suggested to
make a report of all of the files converted. Here is a list of haw
the conversion is done. This list has been paraphrased. For a de­
tailed description, see the Conversion Guide.

PROGRAMs:

:RUN BBCT250.PUB.SYS
=) PROG MYPROG.HP260,MYPROG.CONVERT,MYPROG.REPORT
=) EXIT
:BBASIC

>COPY ALL OUTPUT TO MYPROG.MISC
>GET MYPROG.CONVERT
>SAVE MYPROG.HP3-000
: EXIT

DATA FILES:

:RUN BBCT2SO.PUB.SYS
=> DATA MYDATA.HP260,MYDATA.FULLCVRT
=> EXIT

FORMS:

There are two kinds of forms in HP Business BASIC. One
is based on VPLUS and one was written from scratch to provide
a higher level of compatibility with the HP260. Here is a
description of the conversion to a VPLUS form. The conversion
and use of the other forms file type is d~scribed in the Con­
version Guide.

259

260

:RUN BBCT250.PUB,SYS
=>FORM MYFORM.HP260,MYFORM.FULLCVRT,MYFILE.REPORT
=> EXIT

DATA-BASE SCHEMAS:

:RUN BBCT250.PUB,SYS
=.> SCHEMA MYSCHEMA.HP260,MYFILE,FULLCVRT
=> EXIT
Create the data base in the correct account with
DBSCHMEA.PUB.SYS

DATA-BASE DATA SETS:

:RUN BBCT250.PUB.SYS
=> DATASET MYDSET1.HP260, name of database
=>DATASET MYDSET2.HP260, name of database
=::> EXIT

DOCUMENTATION AND MISCELLANEOUS FILES:

Move these to the group DOC and MISC. This may be a simple
file copy or you may wish to change the record length.

After all of this is done you should make an offline listing
of the names of your files using the LISTF,2 MPE command, print
of all the files and make sure a backup is done soon (perhaps that
night). The files to be printed include programs, reports, schema
and documentation.

There are some options in doing the conversion. These are
OPTION INPUTLOOPS and OPTION REAL, OPTION INPUTLOOPS places loop
around INPUT statements in converted programs. It is described in
chapter 3 of the Conversion Guide. OPTION REAL converts all decimal
values to real values during the conversion. There is no direct
hardware support for DECIMAL data types and so they are slower than
REALS, however, they are more accurate.

Manual Conversion

Although it may be tedious, everything that has been discussed
so far has been rather straight forward and easy to do. The re­
mainder of the work to be done may be easy or may be difficult, de­
pending on your application. This is the place where technical ex­
pertise is most needed. Manual Conversion is that part where you
take a program and change it so that it syntaxes, and then runs
correctly. Normally this is the bare minimum that must be done,
but there may be a lot of room for improvement in the application.
The resulting programs should be placed in the group FULLCVRT.

Most of the incompatibilities between BASIC/260 and HP Busi­
ness BASIC are described in Appendix C of the Conversion Guide.
However, there are a few to watch out for:

1) Programs can be much larger than they were in BASIC/260,
however, the individual subunits (main, subprograms and multi-line
functions) must be sma.ller. For a well modulized program this will
not be a problem, but you have to break up a large program into
multiple subunits, and this can be very time consuming,

2) There are certain features which do not exist at all, in
which case those portions of the application which use these will
need to be rewritten.

3) you may find that the problems encountered in manual con­
version are with features of your application which can be removed

because these deal with minor features.
4) You may find that the work necessary to deal with the prob­

lems encountered in manual conversion is greater than the rewriting
portions of the application. If this is the case, rewrite those
portions.

Optimization and Enhancements

Now you have an application that runs but there may still be
some work to do. There may be some features to be added to the
application. The application may not take advantage of some of the
features of the language or the system. The cost of optimization
and enhancement should not be counted in the cost of converting
your application but they can add greatly to the success of your
application.

There was a paper presented at the INTEREX'85 conference in
Washington, D.C., USA by the author in September, 1985 called
Developing Cost Effective Applications and Utilities using HP
Business BASIC/3000. It gives many suggestions on performance
tuning. These are a few of those suggestions:

1) Get your program to compile. Normally, this will be just
removing COMMAND, GET SUBS and DEL SUBS from the program. However,
there may be more to it if your subunits are too big. Compiling
your program will make the CPU intensive portions run many times
faster. If you cannot compile the entire application you may be
able to compile portions of your application.

2) There are several compiler options to improve the perform­
ance of your application. These are the GOPTION NO RANGE CHECKING
and COPTION NO ERROR CHECKING.

3) Some part of the application could be rewritten to take
advantage of features that did not exist in BASIC/260.

Conclusion

This paper is intended to give the user a better understanding
of the how to convert BASIC/260 applications to HP Business BASIC/
3000 applications. Hopefully, the hints and discussion of the
process will help in the conversion. Please note that this is only
one of the sources of information on this topic and needs to be
used in connection with the BASIC/260 to HP Business BASIC/3000
Conversion Guide. With the proper preparation and understanding of
the conversion process you should be able to provide a successful
application on the HP3000.

261

262

References

For more information on the conversion process or on any of the
features in HP Business BASIC/3000, please refer to the HP Business
BASIC/3000 Manual series. This is a set of five manuals which con­
stitute the user documentation of HP Business BASIC/3000, There is
also an on-line HELP facility in the interpreter which provides in­
formation on syntax and functionality of all of the HP Business
BASIC/3000 keywords and statements.

BASIC/260 to HP Business BASIC/3000 Conversion Guide, Part No.
32115-90010

This guide describes how to convert BASIC/260 applications into
HP Business BASIC/3000 applications. It also describes the incom­
patibilities and the conversions which take place.

HP Business BASIC/3000 Programmer's Guide, Part No. 32115-90007

This guide is for those who want to learn how to program in
HP Business BASIC/3000.

HP Business BASIC/3000 Reference Manual, Part No. 32115-90006

This manual describes all of the features of HP Business BASIC/
3000. It is for those who wish to look up how an HP Business BASIC/
3000 feature works.

HP Business BASIC/3000 Quick Reference Guide, Part No. 32115-90008

This is a "Quick Reference" version of the reference manual.

BASIC/3000 to H~ Business BASIC/3000 Conversion Guide, Part No.
32115-90009

This guide describes how to convert BASIC/3000 applications
into HP Business BASIC/3000 applications. It also describes the
incompatibilities between the two BASICs.

The following manuals may also be helpful:

BASIC/260 Programming Manual

BASIC/260 Utilities Manual

HP/260 Console Operators Guide

DSN/DS/260 User's Manual

FORMS/260 Reference Manual

IMAGE/260 Programming Manual

TI0/260 Programming Manual

REPORT WRITER/260 Programming Manual

MPE Commands Reference Manual

IMAGE/3000 Programming Manual

HP3000 Intrinsics Manual

VPLUS/3000 Reference Manual

SORT-MERGE/3000 Reference Manual

Developing Cost Effective Applications and Utilities Using HP
Business BASIC/3000 - Mark L, Hoeft, 1985 INTEREX, Washington D.C,

Biography

Mark Hoeft
has worked at Hewlett-Packard for 6 years and has been on the

HP Business BASIC/3000 project for 5 years. Before that, he worked
on the HP260 Lab, He wrote the HP260 to HP Business BASIC/3000 con­
version package, and worked on the User Interface portions of HP
Business BASIC (KEYS, FORMS, etc.) He also presented a paper at
the 1985 INTEREX meeting in Washington, D.C, on the topic of HP
Business BASIC,

263

Richard Irwin
Hewlett-Packard Cupertino
U.S.A.

NOTE: Due to the nature of the subject is not possible to include
the full paper in the Conference Proceedings at this time.

265

DEVICE INDEPENDENT GRAPHICS SOFTWARE FOR THE HP3000

Peter Neuhaus
Hewlett Packard Company
Cupertino, California, USA

Summary

Occasionally, the requirements for displaying data graphically go beyond
the capabilities of existing software packages. Consequently, it becomes
necessary to begin the unpleasant task of developing custom code. Since this
typically 'involves a significant investment of resources, it is important that
the software be written so as to maximize its longevity and maintainability.
To achieve these goals, it is necessary to understand the basic principles of
graphic device independence and the concept of the Virtual Device Interface.

This paper wi 11 discuss these to pi cs along with a discussion of how
available graphics software tools can be used to assist in the development of
device independent graphics software for the HP3000.

Background

In the early 1970s, the computer graphics industry realized that it
needed to standardize some of the methods used in developing graphics
software. The resulting conventions made it possible to create graphics in
one environment (computer) and transport them to another with a minimum of
recoding.

To date, only a few standards have been established, but others are under
investigation. The Graphics Kernal System (GKS) has been adopted by the
International Standards Organization and is being used extensively throughout
Europe while the Siggragh CORE system, proposed in 1979, has not gained much
acceptance. The debate continues, but GKS seems to be pulling ahead.

Regardless of whether or not one chooses to fol low a strict standard,
considerable improvements can be made in the writing of graphics software by
following a few simple guidelines.

Frequently, companies plan to use only the specific graphics output
devices that they already own, for example a HP7550 plotter or perhaps a
non-HP graphics terminal. To support these devices, the specific commands
required by the devices would be scattered throughout the application program
(see figure 1). The result would be very efficient but would necessitate
excessive modifications if new or additional output devices were acquired at a
later date.

The First Step

Device independence is nothing new to the professional programmer.
Common functions such as cursor control are often modularized into separate
subroutines (device drivers) that can be easily modified or replaced to
accommodate new output devices that require different commands for their
proper operation. When it was necessary to drive more than one output device,
a duplicate set of subroutines is written for each device (see figure 2).

In addition, if more than one device might be used simultaneously, it is
necessary for subroutines with identical functions to have different names,

267

268

such as LINEl, for drawing a line on device 1, or LINE2 for device 2. At this
level, device independence was still not achieved since the LINEl and LINE2
calls must be embedded in the application program.

Step Two

By inserting another level between the application program and the device
drivers, the interface between the application program and the outside world
is standardized. If this new level, perhaps a commercially available GKS
package or CGL/3000 from the contributed library, contains a function that
al lows the application program to select which output device should be used,
it is possible to remove the references to LINEl and LINE2 and substitute a
call to the new LINE function in the GKS/CGL package (see figure 3).

At this point, true device independence has been achieved since new
devices can be supported without modifying the application program as long as
someone writes a device driver for the new device. However, creating these
new drivers can consume enormous amounts of programming effort because each
device is unique in that it requires specific nonstandard "escape sequences"
to perform a given task.

VDI - The Last Step

The graphics industry is attempting to standardize the hardware
instruct ions required by graphic output devices through a concept called the
Virtual Device Interface (now often called the Computer Graphics Interface).
A VDI driver accepts all the command that a generic device might receive but
only implements or emulates those that its device can perform.

If all graphic devices understood the same commands, the need for device
drivers would be eliminated (see figure 4). Essentially, the device drivers
would be implemented within the device's firmware. However, until the VDI
concept becomes commonplace, it is necessary to employ the basic concepts of
device independence when writing graphics applications. Several alternatives
are possible.

Ways to be Independent

The most straightforward solution would be to obtain a graphics software
library either from the computer manufacturer or from an independent third
party. Such packages include a number of device drivers for the most popular
graphic devices. The disadvantage to this solution becomes evident if it is
necessary to change host computers at a later date.

Even switching between computer lines offered by the same manufacturer
can cause significant problems. Therefore, when shopping for this type of
software product, it is important to investigate the possibility of moving the
product between systems. Packages written in standard languages such as
Fortran or Pascal help simplify portability. But even standard languages
often do not port well.

The ability to move to another CPU may sound like something that would
not be done too often, but as desktop computers become as powerful as typical
multi-user systems, many applications will be moved to smaller workstations.
It's much like the user who feels he needs only 50 megabytes of disc storage,
orders lOOMB even though he "knows" it will never be needed, then runs out of
disc space six months later. Applications and technologies change

continuously. Investing the extra resources to implement a flexible solution
often pays high dividends at a future date.

Sharing Graphics Data

Frequently, graphic databases created on one system need to be processed
on another. To address this need, a standard format for exchanging databases,
called the Initial Graphics Exchange Specification (IGES), has been
established and is currently supported by a number of graphics packages. A
similar newer standard, the Virtual Device Metafile (VDM), performs much the
same functions.

Within HP, a standard called the Graphics Peripheral Interface Standard
(GPIS) has been developed and is currently used by some HP150 graphics
programs. Since it is similar .. to VDM, it can be easily modified to conform to
the final version of VDM.

By simply using the IGES or VDM device driver, an application can store
the resulting image or object description onto a transportable media such as
magnetic tape, which can then be read by another IGES/VDM compatible system.
Applications written in a device independent manner are able to utilize this
useful feature.

Summary

The trade-offs involved in the decision to standardize the development of
computer graphics software deals mainly with short term versus long term
benefits. Projects that seem to be "one shot" programs may not appear to
necessitate the features of device independence. But often, the programs are
modified and used again, possibly for another "one shot" application. In
general, establishing standards or guidelines in a programming environment
leads to increases in productivity. The slight performance degradation
created by the overhead of a graphics subroutine library can be offset by the
ever decreasing costs of computer hardware.

Once standards have been implemented, applications can be developed
faster· since it becomes unnecessary to reinvent the wheel for each new
project. In addition, program maintenance is simplified since each programmer
understands the basic strategies used by his fellow graphics programmers.
Overall, the need to be device independent will become increasingly important
as the number and capabilities of systems and graphic devices expand.

Biography

Peter Neuhaus is a computer graphics specialist in the Information Systems
and Networks Group, Marketing Communications Graphics Department. He is
involved in exploring the use of computers by graphics artists to increase
their productivity. During a leave from Hewlett-Packard, he taught computer
graphics to engineers and artists at California State University, Long Beach.

269

"'
0

Application
<esc>*pb100,200

System 1/0
Interface

PA100,200

System 1/0
Interface

Figure 1 - Device dependent commands scattered within application program

"' -.J

Application
CALL INm

INITI I MOVE1 I UNE1

System 1/0
Interface

CALL INIT2

INIT2 I MOVE2 I UNE2

System 1/0
Interface

Figure 2 - One set of subroutines for each device

IV
IV

Application
GKS or CGL ____ _

PROTOCOL

DEVICE
DRIVERS

Graphics Package

INIT1 I MOVE1 I UNE1

System 1/0
Interface

INIT2 I MOVE2 I UNE2

System 1/0
Interface

Figure 3 - Graphics package with its device drivers

"'
w

VDI
PROTOCOL

Application

Graphics Package

System 1/0
Interface

System 1/0
Interface

Figure 4 - Devices with internal VDI drivers

Raymond Ouellette
Infocenter
Canada

"Prototyping and Systems Development Using 4GL".

NOTE1 Because of reasons out of the hand of the Host Committee, this
paper will not be published in the Conference Proceedings.

ns

C-sick?

or

How To Convert From SPL To C Without Making Waves

by

Stan Sieler

Stan Sieler has had seven years of experience on the
HP3000, including over four years with Hewlett Packard
in the operating system laboratory for the HP3000. He
has been professionally involved with programming since
1972, and is currently a member of the Adager R & D
team. He holds a BA degree in Computer Science from
the University of California, San Diego.

This paper was made possible by Adager, S.A.

277

278

Converting SPL to C

0. Introduction

For many years, SPL has been the language of choice for implementigg efficient, high
level programs on the HP3000.

Before I offend TOO many readers, let me mention that I am primarily referring to
programming languages used for major programs that must be fast and maintainable. I
realize that every HP3000 language has been used in such projects at various times, and
for many people using something other than SPL is the preferred choice (for a variety of
reasons, e.g.: not having any programmers who know SPL, or needing COBOL's packed
decimal arithmetic).

During the early years of the HP3000, only two reliable languages existed: SPL and
FORTRAN. After COBOL II was released, the number grew to three, but SPL remained
preeminent. Of the three, SPL was clearly the most tightly coupled to the HP3000. That
coupling, plus its ALGOL-like structure, made it the most powerful of the available
languages. (That the power could be abused is true, but not relevant here.)

Eventually, other languages started appearing for the HP3000: RPG, BASIC, SPLII, APL,
Pascal, FORTRAN 77, Business BASIC, and Fourth Generation Languages. But all of
these had various drawbacks, and never managed to displace SPL.

However, the HP3000 is aging, compiler technology is improving, and computer
architectures continue to change. As a result of this, many programmers on the HP3000
are looking for a language that will work well today, and will be available on tomorrow's
computers as well. SPL clearly works very well today, but its death knell has sounded.
HP has made it clear that a native mode SPL will not exist for Spectrum, the successor to
the HP3000. What language, then, can we use instead of SPL to achieve the twofold goals
of efficiency and portability?

Pascal 'immediately comes to mind. Unfortunately, Pascal was designed as a teaching
language, and lacks a number of features that would qualify it as a replacement for SPL.
Within HP, it is not Pascal that is being used to write. their next operating system but
MODCAL, a MODified version of pasCAL which overcomes most (but NOT all) of the
weaknesses of Pascal. But ... this language is not available to the HP3000 programmer
today.

FORTRAN/77 also comes to mind, but this language has three strikes against it. First,
many programmers will look at the name FORTRAN and dismiss i_t ... this isn't fair, but it
happens. Second, it is a new compiler on the HP3000 (released in late 1985) and has some
reliability problems at present. Third, it isn't clear that FORTRAN/77 compilers will be
available on most other machines. This third point, portability, is important for people
who might want to move their programs to non-HP computers in the future.

What other languages are available on the HP3000? Until recently, the answer was: none.
In 1986, two companys have announced C compilers for the HP3000.

What is C? Can it aspire to be the replacement for SPL?

Converting SPL to C

To quote from the C bible ('The C Programming Language' by Kernighan and Ritchie), "C
is a general-purpose programming language which features economy of expression, modern
control flow and data structures, and a rich set of operators". While I have found the
phrase about "economy" to really mean: "we hated to type much, so there is a lot of
cryptic stuff in C'', I do generally agree with the authors. C provides the programmer
with a lot of power (and it is even easier to abuse than SPL!).

C compilers exist for most computers, ranging from the tiny 6502 microprocessor (the
Apple II), to the might~y Amdahl 580. Now, C is on the HP3000.

The ease with which the C compiler, and the UNIX operating system, has been ported
from the PDP-I I to many different computers says a lot for the portability of C.

The major strike against C on the HP3000 is the compiler reliability question. C is a new
language on the HP3000, so we can expect some problems with the compilers initially.
However, I think that the compilers will mature quickly. Unlike the FORTRAN/77
compiler, which was probably new code, I expect that both of the C compilers were ported
from different machines, which would result in a compiler with less new code to debug.
Additionally, I wouldn't be surprised if there is a larger number of programmers who
want to use C rather than FORTRAN/77, so the C compilers will be "tested" more quickly.

For this paper I happened to use the C from CCSC. This should NOT be taken as an
endorsement for CCSC's C over Tymlab's C, since I currently do not have enough
information to make such a decision.

1. Introduction to C

This section is designed to introduce the reader to C, so I had better mention something
about coding style in C. As a relative beginner in C, my C coding style still resembles my
SPL coding style. I have noticed in the past that when I learn new languages, I often try
to impose the style of an older language on the new one. This rarely works to anyone's
satisfaction. It is important when using a language to try to code somewhat like the rest
of the users of the language, so you can read their code, and vice versa. This shouldn't be
taken to extremes ... remember that the refrain "but everybody does it" does NOT
necessarily make something right. One of the most important aspects of coding is to pick
a style and stick with it.

Programs in C consist of one or more functions, including one special function called
main. C refers to "function" in place of SPL's procedure, but the word "function• is
actually never used in the language.

An example program that calculates the modulus-11 checksum for a bank account number
is shown on the next page, with every line numbered as an aid to referring to them in the
text. (The algorithm was extracted from the back of the V /3000 manual.)

279

280

Converting SPL to C

I. #include stdio.h.ccsc
2. #include stdefs.h.ccsc
3.
4. short
5. weights
6.

[6] = { 2, 3, 4, 5, 6, 7 };

7. /**/
8. short calccheck 11 (ptr, Jen);
9.

IO.
12.
13.
14.
15.
16.

char *ptr;
short Jen;

{
short

rslt,
winx;

17. printf ("MODI I (%s) ··> ", ptr);
18.
19. winx = O;
20. ptr += Jen - l; /*point at units digit*/
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
33.
34.
35.
36.

rslt = O;
while (--len >= 0)

{
rslt += (*ptr - 'O') * weights[winx];
winx = (winx + I) % 6;
ptr--;
}

if ((rslt = 11 - (rslt % 11)) == II)
rslt = O;

if (rslt == 10)
return (-!);

else
return (rslt);

37. }
38. /**/
40. main()
41. (
42. char num [IO];
43. short rslt;
44.
45. while (TRUE) {
46. printf ("Enter 8 digit number: ");
47. scanf ("%s", num);
48. if (num[O] == • /')
49. terminate ();
50.
51. rslt = calccheck 11 (num, 8);
52. if (rslt < 0)
53. printf ("Unable to determine mod! l for %s\n", num);
54. else
55. printf ("Rslt = %d\n", rslt);
56.
57.

Converting SPL to C

The outer block of a C program is the function main. This one starts at line 40 and
declares two local variables: an array of characters called num (index from 0 to 9), and a
16 bit integer called rslt. Line 41 contains a (, which is C's version of SPL's begin
(remember. .. the authors of C hated to type!).

Line 45 is the start of a while loop, but notice two differences from SPL here: the boolean
expression is parenthesized, and there is no do after the boolean expression, just a (.

Notice the uppercase TRUE on line 45. Most C compilers differentiate between uppercase
and lowercase, unlike SPL. This is unfortunate, as it allows variables like i and !, which
are NOT the same variable.

The traditional C usage is: most things in lowercase, identifiers that are macros (defines)
are in uppercase, and when variable names are composed of more than one word, make
the first character of each word uppercase (e.g.: CardCounter). TRUE in line 45 was
uppercase because it was a define (found in the file stdefs.h). This is the area where I
will depart from the existing C conventions. In SPL I use lowercase everywhere, with
procedure names being verbs and variable names being nouns. I intend to apply the same
rationale to C. Thus, after this paper is finished, I will edit stdefs.h to say:

#define true 1
instead of:

#define TRUE 1

(Note: TRUE is defined as 1 in stdefs.h ... this could cause some problems when interfacing
with other HP3000 languages, like SPL, where true = -1.)

C has NO I/0 defined within it, just like SPL. And, just like SPL (or ALGOL), this was a
serious mistake. Luckily, the users of C have developed a relatively standard set of
functions to provide I/O capabilities. Most C compilers come with these functions. For
example, line 46 will probably compile and run on every C compiler. The standard print/
function is a lot like the Pascal write statement. It provides a variety of formatting
capabilities. Line 55 shows two of them: the %d in the quoted string is a signal to print/
that it should grab the parameter after the string (rslt), format it as an integer, stick it
into the string "Rslt ... ", and print the result. Since print/ doesn't do carriage control for
you (just as write doesn't), the \n is a request to print/ to do a CR/LF at the end of the
line. Thus, any print/ whose formatting string ends with a \n is similar to Pascal's writeln.

On line 48 note two differences between SPL's if and C's if. First, there is no then.
Second, the boolean expression is parenthesized. The lack of a then doesn't bother me
because I have always maintained that then is "syntactic sugar" (something that really
didn't have to exist), which is why I always code my SPL if statements as:

if then

else

rather than as:
if ...
then (or then ...)

else (or else ...)

281

282

Converting SPL to C

If you feel you REALLY miss the then, and just MUST have it, why, then, C has the
answer for you! Just include the following line in your C programs:

#define then

This is eq ui valen t to SPL 's:

define then = #;

Line 48 shows one of the quirks of C, caused by people who hate to type. SPL, Pascal,
and ALGOL use := as the assignment operator, and = as a comparison operator. C uses =
as an assignment operator (like FORTRAN and BASIC), and == as the comparison
operator. THIS CAN CAUSE A LOT OF MISTAKES FOR SPL PROGRAMMERS
MOVING TO C!

Consider the following code fragment:

if(a=b}
terminate ();

What this code does is: set a to the value of b; then, if a is non-0 (after the assignment),
call terminate. The SPL programmer who glanced at the code would have said it meant: if
the value of a equals the value of b, then terminate. Mistakes of this type will happen
more frequently if the SPL programmer succumbs to the temptation to use the null define
then (shown above), because then that statement in C would have looked like:

i I (a = b) then
terminate ();

Or, in other words, it would have looked so similar to SPL that no mental flags would
have been raised saying "look at me closer, I am different"!

Comments in C are different, and similar to Pascal's ('* and '*). A comment is anything
following /'* and before the next '* /. Most C compilers do not allow nested comments, so
the best practice is to not use them.

Linc 8 shows the declaration of a function, calccheckll, which will return a 16 bit integer
as its result. Notice that the word "function" is not used. Again, if you feel more
comfortable, you could do the following:

#define function

and then say:

short function calcheckl 1 (ptr,len);

Converting SPL to C

C often shows clues to the machine of its origin. It has two interesting operators,
pre-increment and post-increment, that were one word instructions on the PDP-I I. Line
27 shows an example of post-decrementing. Line 23 shows an example of
pre-incrementing .. .it says: take the value stored in Jen, subtract one, store that number
back into len, and use it in a comparison against 0. The basic pre/post operators are:

++Joo
Joo++
--Joo
Joo--

increment Joo, use new value in expression.
increment Joo, use prior value in expression.
decrement Joo, use new value in expression.
decrement Joo, use prior value in expression.

As we end our very brief introduction to C, let us look at line 20. The += shows that C
originated before compilers were smart enough to optimize expressions like:

a[i+j] = a[i+j] + k;

Instead, C lets the programmer do the optimization:

a[i+ j] += k;

which means the same thing (barring side effects while evaluating and j). It's also
easier to type.

2. SPL to C Translation

This section discusses techniques for translating SPL to C. It has two major components:
the easy part and the hard part.

2.1 Easy Automatic Translation

Much of the conversion of an existing SPL program to C can be very easily automated by
your favorite editor. In the following examples I use Robelle's QEDIT, but many other
editors would work as well.

Note: the following lines are numbered to facilitate referring to various lines.

I. set shift down 2
2. pq down@
3. c "<<"/*"@
4. c ">>"*/"@
5. c "$include"#include"@
6. c "procedure"(S)"" @
7. c "in teger"(S) "short" @
8. c "byte"(S) "char" @
9. c "real"(S) "float" @

I 0. c "logical"(S) "unsigned short" @
11. c "double"(S) "**TEMP**"@
12. c "long"(S) "double" @

283

284

Converting SPL to C

13. c "**TEMP**"long" @
14. c ":="-"@
15. c "<="<-"@
16. c ">=">-"@
17. c "="==" @
18. c "-"="@
19. c 11 <>"!="@
20. c "then"(S) "" @
21. c "do"(S) "" "while"(s)
22. c "begin"(S) "("@
23. c "end"(S} "}" @

Line 1 tells QEDIT that I win be downshifting SPL style text. Option 2 says: don't change
anything within double quotes (").

Line 2 downshifts all text within the source file EXCEPT quoted strings.

Lines 3 and 4 convert SPL comments to C comments. You will have to manually search
for SPL comments using the new "throw away the rest of the line" comment character !
(introduced in MPE V /E SPL). With most editors, this might change a few occurrences of
"<<"and ">>" that you did not intend to change (for example, if you had "<<" in a quoted
string, then you probably did not want it changed to "/*").

Line 5 changes references to SPL $include files to the C format. Note: be sure to change
the include files too!

Line 7 changes SPL 16-bit integers to C 16-bit integers. With CCSC's C, int and short both
mean 16-bit integer, but I chose short because I would guess that int might mean 32-bit
integers on Spectrum ... it is an aspect of C that is NOT well defined.

Lines 8 through 12 change the common SPL variable types to their C equivalents. Note
the fancy editing in lines 11, 12 and 13. C uses the terms double and long EXACTLY
backwards from SPL. Thus, the simplistic approach of saying: change double to long, and
then change long to double would merely change all double and all long to double with no
more longs in the file!

NOTE: changes like those in lines 10 and 12 can cause problems if the resulting line is too
large for your text file.

Lines 14 through 19 effect the following changes:

SPL <>
c !=

The extra trick here is to avoid changing things like <= into <== by accident. Again,
these change commands could accidentally change items within quoted strings that you
did not want changed.

Lines 20 and 21 get rid of the unnecessary thens and dos. Note that line 21 is qualified so
that it only affects dos that are on the same line as whiles, thus not touching do/until
loops.

Converting SPL to C

2.2 Easy Manual Translation

SPL defines can easily be converted to C #defines. For example:

define twox = (x + x) #. fourx = (4 • x) #;

would be changed to:

#define twox (x + x)
#define fourx (4 • x)

Similarly, equates in SPL are easy to handle as #defines in C. Another method of handling
equates might be chosen for some usages. For example, consider an input parser that
returns the type of token found, via equates, in a variable called iclass:

equate unknownv = 0,
tokenv = I,
numberv = 2,
stringv = 3;

integer iclass; <<always is: unknownv ... stringv>>

In C this could be changed to use enum, which is similar to Pascal's enumerated types:
enum scanner {unknownv, tokenv, numberv, stringv};
enum scanner iclass; NOTE: not all C compilers support enum.

2.3 Harder Aspects Of Translation

Some of the conversion of an existing SPL program to C can be difficult. Consider some
of the following constructs of SPL:

- address equation at variable declaration;

- subroutines within procedures;

- move statement;

- scan statement;

- assemble statement;

- register usage (push and pop);

- entry points;

- if expressions.

Some of these constructs will be very difficult to move to C, particularly assemble.

285

286

Converting SPL to C

Although C does offer a form of address equation with the union statement, you may not
need to use it since address equation is not used often in high-level SPL programs.

Subroutines pose a large problem. C does not allow functions within functions, which
would have been a nice solution. If a short subroutine has call-by-name parameters (or
call-by-value ones which are not altered), then it might be converted into a macro.
Consider the following SPL example subroutine:

integer subroutine min (x. y);
value x, y;
integer x. y;

begin
if x < y then

min:= x
else

min:= y;
end <<min sub>>;

It can be converted into the following macro:
#define min(x,y) ((x) < (y)? (x): (y})

Then, calls to min will work as before.

Sometimes, a subroutine can be converted into a separate function. Ideal candidates for
this are subroutines that use none of the local variables of the surrounding procedure.

If a subroutine only uses a small number of a procedure's local variables, then you might
consider making it a separate function and pass those variables in as additional
parameters.

The SPL move statement can be translated into a function call:
move pl := p2, (JO);

translates into:
move (pl, p2, 10);

This, of course, assumes that the original SPL 2move was a byte-oriented, not
word-oriented. Note that you may have to write a move function yourself in C.
Alternatively, the following macro accomplishes the same SPL move:

#define move(pl, p2, /en) {short ktr; for (ktr=O; ktr </en; ktr++) \
pl{ktr] = p2[ktr];}

(The backslash (\) indicates that the line is continued on the next input line.)

Or, as another alternative, some C compilers provide the routine memcopy for moving
bytes:

#define move memcopy

The SPL scan statement can be handled in a similar manner.

There is almost no hope for the SPL assemble statement. But, luckily, there is almost no
reason for it to be in your SPL programs anyway.

Converting SPL to C

Similarly, any SPL code that explicitly accesses any hardware registers (e.g.: Q. DB. X. S.
DL) will have to be examined by hand.

Some C compilers for the HP3000 do not support entry points. While most programmers
do not use entry points, and therefore will not miss them, some do. For example, many
HP programs in PUB.SYS have documented entry points (e.g.: EDITOR) that drastically
affect their behavior. I have a policy of having a HELP entry point in every program I
write, so that a new user only needs to say:

run tapedir, help

to get safe help information (such programs ALWAYS terminate after delivering the help
information).

The C if statement differs in an important way from the SPL if (besides in appearance).
In SPL, the then part will be executed if the boolean expression is true ... but "true" is
defined as "bottom bit is a l ". If C, the then part will be executed if the expression is
non-0. This difference can drastically affect programs. Consider the following SPL code
that checks to see if a variable is an odd integer:

if logical{k) then

If this were translated to C without thinking as:
if (k)

then it means: "if k is not O". Instead, a proper C translation would be:
if(k&l)

which does a "bitwise and" with k and 1, returning 0 if the value was even and 1 if the
value was odd.

3. Conclusion

C is a very powerful language, and exists on many different computers. Because of this, I
feel that it is an excellent candidate for replacing SPL.

I am not abandoning SPL right now, but I am going to start coding SPL with the thought
in the back of my mind that someday, soon, I will be moving to C. This knowledge will
provide an incentive to avoid those features of SPL that ARE hard to convert to C (or to
ANY other language). Additionally, I plan to work further in C on both the HP3000 and
on various microcomputers in an effort to get "up to speed" in it as fast as I can.

Remember ... keep an eye on C ... it may be the language in your future!

287

Performance and COBOL

Bruce Toback
OPT, Inc.

2205 Fulton Road
La Verne, CA 91750 USA

(714)593-1681, Telex 532678

289

290

Performance and COBOL

The first standard COBOL was proposed in 1960, when computers were very different
from today's mini- and microcomputers. They were single-user, multi-priest behemoths
with architectures designed to fit the electronic components available at the time. Fast
memory was prohibitively expensive; slow memory was merely expensive. The processor
itself required a large corporation and a large staff to purchase and maintain it.

The original COBOL standard was designed with these facts in mind, and many of the
programming practices and accumulated wit and wisdom of the COBOL programmer
come from those times. Presented here is a selection of that wit and wisdom, and how
it relates to COBOL/3000 (and indeed most modern computers).

I. Indexing is faster than subscripting.

Remember registers? (If you ever programmed in assembly language, you certainly do.
If you've only programmed in a high-level language, you probably don't.) General
purpose computers usually had a limited number of these high-speed memory locations,
generally eight or sixteen. The compiler, when generating code for a COBOL source
program used several of these for itself, but the remainder were available to the
programmer for USAGE IS INDEX items. Indexing was much faster than subscripting
because in order to access an array element, a subscript would have to be brought into
a register, and possibly converted to a different data type. Indexing, by definition,
meant using an item which was already in a register, so bypassing the conversion and
data movement steps. Worse still, some computers had addresses that could be operated
on only by special instructions (e.g., the Burroughs B200/300/500 series). This is the
reason that indices can only be added to or subtracted from.

On the HP3000, though, there is only one index register, andit is shared by all arrays.
Therefore, as long as the subscript you are using is USAGE COMP PIC S9(4), there is
no difference between indexing and subscripting - either in the generated code or the
speed of the resulting program. Shops which try to speed up programs by converting
them to use indexing would be better off devoting the time to programmers' vacations:
system performance would then at least be improved because of a smaller program
development load! However, performance can be improved by changing your subscripts
from COMP-3 to COMP: the compiler emits code necessary to do the required
conversion, but this is relatively expensive in run time. (But see 5.)

2. COBOL sorts take longer than external sorts.

This is very application dependent, and again has strong roots in history and folklore.
In the Dark Times, the COBOL SORT verb generated in-line code to call some routines
the compiler folks wrote. The compiler folks generally had better things to do than
write sorts, so the sorts were not necessarily very good. In addition, these sorts were not
very adaptive to circumstances, and had a limited performance range. They might
involve additional overlays that had to be read in from (heaven forbid!) cards. Besides,
in a batch-oriented, job-step environment there was not much point to an internal sort.

On the HP3000, though, all sorting is done by the SORT /3000 subsystem, regardless of
whether you use SORT.PUB.SYS or the COBOL SORT verb: the HP3000 COBOL
compilers simply emit code to call SORT /3000 intrinsics on behalf of your program.
The result of this is that sorts done with the same sets of keys and in the same kinds

of environments will take the same amount of time, regardless of whether you invoke
them through COBOL or through MPE.

The key here is in the same kinds of environments. SORT/3000 needs memory to work:
the more, the better. If your COBOL program requires 20k words of memory for itself
when you execute the SORT verb, SORT/3000 will get only about 9k. Experiments
show that when sorting 80-byte records, SORT/3000 needs about 8k words to produce
acceptable performance, and works best with at least 16k words. So, you'll have better
performance with an external sort ...

Sometimes. To determine whether to use an internal sort or an external one, you should
look at your entire application. Many batch-oriented systems converted to run on the
HP3000 have jobsteps that include a sort to a temporary file, a report on the temp file,
a different sort to a temp file, a report on the new temp file, and so on. This means
that each record in your master file is being handled three times: once as input to the
sort, once as output to the temp file, and once again as input from the temp file.
Replacing the external sort with a SORT verb with an OUTPUT PROCEDURE reduces
this to only one: records are read once by SORT/3000 on behalf of your program, and
then passed to your program via the output procedure. (Of course, SORT/3000 handles
records several times during its execution, but this number is largely irreducible except
by providing more memory for the sort.) The results of this kind of redesign can be
dramatic: reductions of 2:1 or 3:1 in runtime are possible.

3. COMPUTE is faster/slower than the ADD/SUBTRACT/MULTIPLY/DIVIDE verbs.

Like SORT, this depends on how you use the various computational verbs available to
you in COBOL. If the object is to perform a complex series of arithemetic operations,
using COMPUTE will generally be faster (by a few microseconds). If you are simply
adding values to an accumulator, ADD and COMPUTE will generate exactly the same
code, and so there will be no performance difference.

4. COBOL is inefficient at arithmetic.

As the previous point shows, how "efficient" a language is at a particular task depends
mostly on how you use it. (This generalization applies only to general-purpose
languages.) By following a few simple rules, COBOL is as efficient as, say, FORTRAN
at arithmetic. In particular, avoid either implicit or explicit type conversions: don't mix
COMP-3 and COMP items, and try not to mix COMP PIC S9(1-4) with COMP PIC
S9(5-9). And in addition, avoid arithmetic with USAGE DISPLAY items, since these
always require type conversions. (The HP3000 has instructions to operate directly on
COMP and COMP-3 items, but lacks arithmetic instructions to operate on DISPLAY
types.) For an extended discussion of this, see Jim May's paper Programming for
Performance , published in the Proceedings of the 1982 HP3000 IUG Conference,
Edinburgh.

5. Searching: IMAGE and internal techniques.

earches, or table lookups, are very common in data processing operations. You probably
do them without thinking in most cases, since every IMAGE master lookup (DBGET
mode 7, or DBFIND) is really a search operation. If you routinely use IMAGE to do
your table lookups for you, you might be surprised at how much time can be saved by
using your own code to perform the same operation.

291

292

The examples used for this article are derived from a real-life applicaiton: printing a
purchase order report. Purchase order records were contained in a detail data set
containing four items: a part number, a vendor number, a purchase date, and a quantity.
(Other items were left out for the purpose of this example.) Each part number's
corresponding manual master record contains a description for it, and each vendor
number's corresponding manual master record contains the vendor's name and address.
To test the methods outlined here, I wrote a small COBOL-II program to generate a
simple purchase order report, and then modified it to try different search methods.

In the first example, the item being looked up was the vendor's name. The program in
Figure I is representative of most such programs: a serial read (or perhaps, a sort output
procedure) gets each detail record, and then a lookup is performed on the associated
manual master to get descriptive information. The lookup is entirely contained in the
paragraph GET-VENDOR, so that various lookup techniques can be tried without
making significant changes in the rest of the program. (If your programs are written like
this, you should be able to simply lift code from the examples, place it in your system,
and enjoy the kudos.)

All of the examples, and the performance information derived from them, comes from a
1/2-megabyte Series 30 running T-delta~I (MPE-V/T) and a single 7925 disc drive. You
should keep this in mind when you examine the performance data. If you are running a
faster system (you couldn't possibly be running a slower one), you should divide the
"CPU-seconds" figures by 2 if you are on a Series III or Series 37; by 5 on a Series 4x
CPU; or by 12 (!) if you are on a Series 6x machine. Clock times will not scale by as
much, since non-cached I/O rates for a single disc drive are almost identical on all
CPU's. In addition, all timing was done with disc caching turned off. Caching will in
most cases improve wall-time performance, but leave CPU time almost unchanged.
(Disc caching resulted in a slight performance degradation on this small-memory Series
30.)

The first test was run using the "standard" program in Figure I. To produce this 9,000-
line report took just under thirteen minutes, and used 475 CPU seconds. (If you are
scaling these numbers for your Series 68 CPU, you should come out with about 5:45
clock time, and 40 CPU seconds.) Is any improvement possible? Since by now you have
looked at the graph in Figure 5, you know the answer is "yes." The program in Figure 2
replaces the DBGET with a SEARCH verb, which performs a serial search of a table in
memory. Of course, some preparation is required for this technique, and this is done in
the paragraph INIT-VENDOR-SEARCH. INIT-VENDOR-SEARCH does a simple serial
read of VENDOR-MASTER, and saves the vendor number and vendor name in
VENDOR-TABLE. The result of running Program 2 is almost a 2:1 reduction in run­
time, and savings of about one-third in CPU time. Clearly the extra effort of creating a
table in memory was well-spent.

COBOL, though, supports an even faster search verb: SEARCH ALL. Using SEARCH
A LL requires that the table used for the search be sorted into ascending or descending
order. This, of course, requires some additional preparation, shown in Figure 3. SORT­
VENDOR-TABLE is a generalized Shell sort, and you should be able to use this in any
of your programs by changing only the identifiers used for the table. For sorting tables
that fit entirely in memory, it is much faster than the SORT verb. (The sort would
execute faster still if it were programmed in SPL, but the difference for small tables is
not worth the extra effort.)

The result of using SEARCH ALL is a further improvement, although not as dramatic a
change as eliminating IMAGE from the picture. The ratio will improve noticeably,
though, with larger tables, as you will see shortly.

There is a search method even faster than binary search, however, for most commercial
data. The "80-20" rule is a generalization about most things in business: twenty percent
of the customers generate eighty percent of the revenue (or orders, or complaints);
twenty percent of your vendors are responsible for eighty percent of your shortages, and
so on. (As practical examples, think about the number of transactions in your accounting
system that use the "accounts payable" or "inventory" accounts.) Because your computer
records will (should) reflect the parameters in your business, you will probably discover
that eigty percent of the records in a detail are linked to only twenty percent of your
master entries. (Of course, for pure "control" information such as invoice numbers, this
is not true.) This will probably apply to parts in inventory, to purchase order line items,
to sales order items, and other details requiring "descriptive" information from associated
masters.

You can use this property of business data to come up with a new search rule for your
memory array: Whenever an item is found in the table, it is moved up one entry.
Repeated application of this rule rapidly and automatically organizes your table by
frequency of use. The resulting program is shown in Figure 4; the very simple change is
in paragraph GET-VENDOR. About 20 percent less clock time is required now, and
about about 15 percent less CPU time as well. (The test data used for these timings was
designed to have approximately an 80-20 distribution.)

To summarize the information gathered so far, look at Figure 5. (You've probably
already done this, but look again.) Clearly, the "standard" method is the worst of the lot.
Given the small effort involved in adding any of these internal searches, they are
probably an easy way to gain performance. The small amount of "overhead" time in each
bar is the time required to do any pre-processing before the report starts. In program I,
the time is spent only in opening the data base and output files. In programs 2 and 4,
there is additional time required to read the master data set, and in program 3, some
additional time is required to sort the array. The overhead time is very low for all three
"fast" methods.

These techniques will work on small master data sets (a few hundred entries or so), but
what about masters too large to fit into the stack? (Unless you are sorting using a
separate process, you should leave at least 12K words for any required sort.) In the case
of the vendor file, the maximum would be about 1100 entries. In the case of the part
master, however, the maximum would be only about 650 entries. (In a practical program,
there would be even fewer entries, since these small test programs make no allowance
for V /3000 space, extra files open, or other uses of the stack. Moreover, there would
probably be several manual masters on which lookups were to be performed.) A
modification of the technique used in Program 4 can still be used as long as the master
data set or sets are not extremely large.

In this case, rather than reading the entire master data set into memory at once, entries
are read in "on demand." No initial "preload" of the array is performed. Instead, the table
size is set to zero during initialization, and as each detail record is read, a table search is
performed. If the table search fails, the program looks up the key in the appropriate
master data set, and the newly read record is added to the growing array. (If the
requested record is found in the array, its position is adjusted as in Program 4.) When
the array becomes full, there are two choices. First, the entry at the bottom of the array
can be thrown away to make room for the new entry. This method will efficiently

293

294

handle cases in which detail records with a particular key are "clustered" - newly-read
records will tend to migrate to the top of the array as their "cluster" is read.

6. A perspective on performance.

With the exception of searching and sorting, most of the
performance questions analyzed here, and most. performance
debates in general are matters of microseconds on modern
computers. You should take this into account before
embarking on any large rewrite projects. For example,
changing a subscript from COMP-3 to COMP may save 50
microseconds (millionths of a second) per array access. If
you access the table in question ten million times over the
course of a three-hour run, your rewrite will save 500
seconds, or about eight minutes out of 180 a 4-1/2
percent improvement.

Conversely, if you are doing an external sort followed by a
report, for a total run-time of three hours, changing the
application to run with a single internal sort might save an
hour or more, a savings which would justify a two-day
redesign. (Assuming that the report is run more often than
once a year.)

Finally, performance is much more a matter of choosing the
right design in the first place, rather than "tweaking" a
poor design to get more speed out of it. As the sorting
example shows, shaving 20 percent off the run-time of a bad
design will usually pay a lot less than finding a good
design to start with. For an excellent discussion of this,
see The Elements of Programming Style, Kernighan and
Plauger (1974), Chapter 6.

SOFTWARE DEVELOPMENT IN TRANSITION:

USING TRANSACT / 3000

by Norm Wright

Summary The paper presents a comparative study of
programmer productivity on several recent development
efforts on the HP3000. The development projects are good
subjects f~r comparison, since the software effort was of a
similar size and scope, and each used a dedicated staff
with approximately equal capabilities. They also involved
the same customer and demanded that the end product be
comparable from the point of view of the user. Two of the
projects involved Cobol, Image, and VPlus; the third used
Rapid/3000, including Transact, almost exclusively.
Statistics are presented which delineate the modest
productivity savings which were achieved. Additional
improvements which were achieved in user presentation are
mentioned, along with a brief discussion of the expected
impact of Transact on program maintenance. Additional
discussion will focus on the the experiences of the
development staff in adapting to Transact/3000. Changes in
concepts, procedures, and strategies of Cobol programmers
using the new dictionary-based development methodologies
are discussed.

297

298

For the past three years, our organization has been
involved in a number of medium to large-scale software
development efforts, all on Hewlett Packard 3000 equipment.
Among three recent projects, two involved the conventional
HP3000 development triad: Cobol, Image, VPlus. A third
major project launched boldly into the fourth generation,
utilizing HP's most recent software development tools:
Dictionary/3000 and Transact, with its built-in access
bridge to VPlus and Image. The discussion which follows is
based upon perceptions which evolved from this succession
of projects.

For most users of HP3000 equipment, there are several
initial deterrents to undertaking major software
development effort in Rapid/3000. One deterrent may be the
high performance overheads which are reportedly experienced
in production software using Transact. Almost all users
who have gotten beyond casual or experimental use of
Transact sooner or later will experience this problem
this is true at least with the present generation of HP
equipment. Fortunately for those users, the well-known
problem has an equally well-know solution. The solution
comes in the form of a well-known Transact optimizing
compiler which has become a standard remedy for users who
are experiencing performance headaches.

A second major deterrent may be the high cost of the
Rapid/3000 package: For many small organizations,
especially those in competitive markets, the cost of
development software itself may seem prohibitive. Only if
the user organization is large and spends a considerable
amount on in-house software development is the cost of
Dictionary/3000 likely to be justifiable. If the
differential can reasonably be expected to be absorbed by
the reduced development or maintenance costs of new
systems, the software becomes cost justifiable.

Unfortunately, the subject of developmental time and
cost savings has seldom been reasonably addressed. Vendor
claims for the economies which can be expected from the
implementation of fourth generation methodologies tend to
be moderately to wildly exaggerated. Claims ranging from
100 to 1000 per cent leave the prospective user of fourth
generation languages feeling like the incredible shrinking

man. Above all, such vendor claims seem rarely based upon
realistic and reasonable assessments of practical user
situations. The discussion which follows is an attempt to
realistically measure the impact of Transact on a real life
software development process.

Table l presents the historical experience of our
organization in software development with three recent
projects. The columns Cl and C2 both represent
Cobol-Image-VPlus software development, while the column Tl
represents the development effort which utilized Transact
almost exclusively. The three projects offer a variety of
built-in advantages for comparison. All were carried out
with a similar staff makeup, comprising a range of
programming skills and experience levels. Unique to the
working environment, all three development efforts were
carried on with "captive" staff the personnel were
dedicated completely to the project at hand and had no
other professional duties which were outside the area. All
three projects were designed and implemented for the same
client, hence all three attempted to hit a level of
sophistication, user expectation, and documentation that
was approximately the same.

The development time figures are expressed in man
months, which have been adjusted for overtime and holidays
to reflect a work week of approximately 40 hours. The
figures shown represent the total development, beginning
with the systems analysis and database design. The time
overheads involved in loading the data dictionary are
included for the Transact code, as well as the time for
building VPlus for~s in both Cobol and Transact. Program
design, coding, and debugging times are included, as well
as the time necessary to integrate and test the system
prior to implementation. The man-month figures also
include the time involved in producing reasonably complete
user, program maintenance, and operations documentation for
each system. They do not include the initial project
definition and functional specification phases.

Measures of programmer productivity which have been
applied in the past frequently relied upon the total number
of lines of code produced. Accordingly, the table presents
the total number of lines of code comprising each system,
broken down for comparison of interactive versus batch
programs. Seperate categories show the size of associated
copy libraries, include modules, and other supporting code.

299

system System system
Cl C2 Tl

1. Interactive
Programs 34 37 64

2. # Lines Code,
Interactive 26,720 37,714 60,529

3. Average Prog Size 786 lines 1019 lines 946 lines
Interactive

4. Batch Programs 58 35 56

5 # Lines Code,
Batch 40,047 28,022 29,046/48 *

i\

6. Average Prog Size
Batch 690 lines 801 lines 605 lines

7. Total Programs 92 72 120

a. # Lines Misc Code:
Copylib/Include/etc. 4,224 4,388 3,758

9. Total Lines 70,991 70,124 93,333/112 *
10. Average Prog

Size 772 lines 974 lines 833 lines

11. Total Man Months 74 52.5 60

12. Man Months per
Program Module .so .73 .50

* Eight batch COBOL reporting programs in system Tl
averaged 904 lines each.

- TABLE l -

SOFTWARE DEVELOPMENT STATISTICS

FROM THREE SYSTEMS DEVELOPMENT PROJECTS

300

No adjustment is made for the Transact system to attempt to
capture the size and coding involved in the data dictionary
itself. The figures for the Transact system also do not
include a significant (and growing) number of Report and
Inform auxilliary programs.

In comparing Transact with Cobol, one would
intuitively feel that a measure involving the total
absolute number of lines of code would be inadequate.
After all, one of the most well-publicized features of
fourth generation languages is their syntactic brevity, and
the ability to condense complex programming structures into
a short sequence of statements. But this reputation for
brevity is not borne out by the absolute number of lines of
code produced in these three projects. Instead, Table 1
shows as much variability between the two Cobol systems in
terms of the number of lines of code per program, as it
does between the Cobol and Transact systems. Of course,
had the statistics extended to the level of capturing the
number of words or characters produced, then it is very
possible that the fourth generation's good reputation could
have been restored in this respect.

But even though the figures do not show a consistent
differential between Transact and Cobol in the number of
lines of code produced, it seems wise not to base any
measure of productivity upon such a measure. A better
measure of productivity would make some attempt to quantify
the program complexity. In particular, it would seem
relevant to try to measure the functionality of the
programs produced -- the overall "work" or "complexity" of
the resulting system. Ideally one would like to know how
much time would be saved in writing exactly identical
systems -- one using each development methodology.

Fortunately, in the case at hand, there is no need to
attempt to develop a new programmer or productivity
measurement. There is a much easier way, offered by the
fact that all three systems were produced at a similar
level of design sophistication. While the three systems
are not identical -- in fact they are quite different
applications -- they do represent perhaps the closest it is
possible to come to this condition in a real world setting.

Since all three systems are similar from the
standpoint of both design and user presentation, we can
take the program itself as a functional unit of
measurement. This is to say that, roughly speaking, given
the three systems presented here, a single program from any
system behaves in the same way and performs the same
functional "work". Of course some programs will be more

301

302

complex, accessing a large number of datasets and
performing many functions. But overall in the three
systems shown here the total "functionality" of the system
is roughly proportional to the number of programs in the
system. such a measure would, of course, be inappropriate
for systems which were designed to different standards of
either functionality or modularity. But the three systems
under consideration offer somewhat of an ideal case in this
regard.

Using the program itself as a measure of
functionality, the productivity measure which is listed
last in the attached table can be derived, the figure "Man
Months per Program". This measure can be used to give a
close approximation of the overall time savings,
experienced in these projects, of Transact over Cobol. As
the table shows, programmers on the Cobol projects required
between .7 and .8 man months to produce each functional
program module. The time for a similar module using
Transact was .5 man months. This would suggest that
productivity improvements in the range of 28% to 38% were
experienced.

The reader will note that the variability between the
two Cobol projects (Cl and C2) is one third as high as
between Cobol and Transact. In fact, the project Cl
involved high startup costs in terms of a team of
programmers getting oriented toward a new client and a new
environment. The time savings which were experienced in C2
are more the result of a team pursuing established methods,
and capitalizing on working tools (program shells, drivers,
database routines, copy libraries, etc.) established during
the first project. To a certain extent, some of these
established methods were also useful in Tl -- the Transact
project -- in that they did at least provide an existing
standard which had only to be adapted to the new
programming methodology. Although the startup overheads of
learning and adapting to Transact were considerable,
especially in the first few months of the project (Tl), the
project was also facilitated in many phases by being the
third in an established series. overall, it is at least
convenient to assume that the overhead of learning Transact
in Tl was counterbalanced by the beneficial effects of the
pre-existing models in Cobol.

An additional factor is not satisfactorily reflected
in the statistical presentation in the table. The use of
Transact in Tl facilitated a number of significant
improvements, particularly in the area of user friendliness
and ease of use. As two examples, the increased use of
sorted record presentations and the increased capabilities
of browse-type record accesses in Tl could be cited. Both
types of presentation are vastly easier in Transact than in
Cobol. The programmatic ease of such capabilities in
Transact meant that many functions in the Tl system
utilized the features, where the nearest Cobol equivalent
did not. Overall this did lead to a significant improvment
in user presentation for the Tl system users over that
provided by the two Cobol systems. Our installation does
not appear to be unique in this experience. The increased
sophistication of Transact code from the user point of view
has been mentioned by a number of other users of Transact.

Another very interesting topic which we will not
attempt to cover here is the matter of improvements in
program maintenance to be expected from Rapid/3000. To
some extent, program maintenance is a continuation of the
same processes which were going on in development.
Programs are being enhanced and extended, screens are
being changed and rearranged, and the database must also
occasionally be revised and restructured. This would
suggest that as a minimum, we could expect the same
economies as during the development process.

Our own preliminary experiences with maintenance of a
Rapid/3000 system would suggest that this is true. In
addition, it would be wrong not to add that the
capabilities of Report and Inform have also proven to be
tremendous advantages. The defacto and specialised
reporting capabilities are especially useful in reducing
the backlog of maintenance activities. This allows the
maintenance staff to be in a better position to react to
the more complex and far-reaching requirements of users.
This is the reverse of the maintenance predicament at most
installations, where the steady background of minor changes
and request overwhelms the staff resources long before more
complex changes can even be considered.

Well, the productivity gains which were experienced
during the development phase of our project were modest,
especially in view of the elaborate claims which have been
made for some fourth generation languages. Perhaps it is
important at this point not to forget that productivity
gains in excess of 25% in almost any industry are bound to

303

304

have important, far reaching impacts. Above all, it is
probably wrong to expect the entire process of computer
analysis and software design to vanish into nothing at this
particular stage of its development. Whether it is the
fourth generation or natural language interfaces, important
problems still remain in the formulation of complex,
real-world problems into computer algorithms and processes.

Norm Wright - has worked on a variety of software systems
for HP3000 computers since 1975. He has spoken at previous
Interex conferences in Baltimore, Orlando, and Copenhagen.
He is currently associated with INFORMICA, an independent
software firm, doing business in the Kingdom of Saudi
Arabia.

l11terex H 1'3000 J.Hachid Conference, Marclr 1986
1'/rem<•: 1Migratio11 to 2001'

... universal software in 2001 ... some UN/phi/es would
say that the year 2001 will see one world, under UNIX··,

indivisible, with liberty and c shells for all ..•
here's a light-weight introduction to conversational UN IX··
so you can get food, directions and maybe lodgings for the

night in the Migration to 2001 ...•

UNIX* thru the Eyes of MPE

Sam Boles, Member Technical Staff

Wltft UNIX•• evolving as tlie de fqcto "industry standard" operating system,
Hewlett-Packard now includes tliis important dimension ill its array of
computer tec/mology. Tiie H P9000 computer family currently supports
H P-U X, a powerful dialect of UN Ix••, wit Ii more under development.

Here you can get a ••iew of UNIX•• tliru the eyes of MPE. The friendly
vernacular of MPE -- second language to HP3000 users around the world -­
becomes the familiar basis ill terms of wit/cit tftose new to UNIX•• can
acquaint themselves with tlie terse power of this operating system.

Starting with fundamentals that map one-to-one, you'll see some MPE
UDC's used wltft HP summer students to accelerate tftelr productivity by
providing a transitional mechanism from tlieir UNIX•• background. From
tltere you'll move Into tfte more complex facilities tl1at the UNIX••
productivity engine gives to botlt programmers and end-users alike.

... since 1969 •••
a little UN IX··
lore, mystique

and
culture

Archeological evidence of UNIX'" dates back to
1969. For the children among us, that's the
year one of the leaders in the computer

industry "unbundled" in recognition of the fact
that software was no longer just the packing
that came free with the hardware to keep rt
from rattling around in the carton. Anything
that's survived in this business since 1969 has
some lore, mystique and culture. UNIX'" is no
exception.

First of all, it's an operating system of the
programmers, for the programmers, by the
programmers. That's why we byte hacks love
it. And that's why civilized people spend
large sums of money for commercial shells to
cover the lean terse power of UNIX••.

*UNfX•• ls a trademark of AT&T Bell
Laboratories.

307

308

UNIX* thru the EJ"es of IHPE
Sam Boles, !1ttert>x Hl'JOOO Madrid Co1tfere1tt.'e, March 1986

Some say it's unfriendly. But you have to
remember that one man's "friendly" may be
another man's "verbose."

It's the classic controversy of efficiency vs
friendliness. Do you have an elaborate
high-overhead ritual to establish friendliness or
do you get right to the point? Do you ask for a
confirmation that the user really wants to purge
every file in his group, or do you assume that if
he's smart enough to ask for it you'll do it
for/to him?

You can look at it this way: a lot of
development nodes save trees by running
OUTFENCE high, going to hardcopy on only a
small portion of printer output. That means to
get hardcopy you need to enter something like

ALTSPOOLF!LE #0936;PR!=10

Now that's mnemonic and intuitive, probably.
It's maybe what you'd call friendly. But about
the third time you do it, you decide it's worth
the trouble of updating your UDC's with
something like

ASF SPL=0,PR1=1,COP!ES=1
OPTION LIST
AL TSPOOLF l LE #0! SPL; PR I=! PR l ;COP! ES=! COP l ES

that you invoke with something like

ASF 936 10

That's the UNIX'" style.

It's terse.

Crisp.

All right, cryptic.

Powerful.

A rich repertoire of commands and options to
do the kinds of things programmers do to build
and document software.

. maybe something
of a misnomer:

today, there's little
UN I in UN IX'" beyond

UNlfying

UNIX'" may be a misnomer. Legend has it that
when the brilliant Ken Thompson named his
brilliant child, he did it in counterpoint to the
multi-tasking multi-user MULTICS at MIT. His
was a single-user system for a single-engineer
work station. Today there is little UNI in
UNIX'" beyond the fact that it may be the single
most UN/lying element across the wide variety
of hardware architectures and configurations in
the industry today. Beyond that great UN/lying
attribute and signal contribution, UNIX'" is
MULT/tasking, MULTI-user, MULTl-noded,
MULTI-shelled, even MULTI-processed on the
HP9000/500 with its tri-CPU design.

One aspect of the "non-UNI" of UNIX'" is its
multiplicity of dialects. This is probably good
and bad at the same time. Like any worthwhile
software system, UNIX'" is evolving. It's
inevitable that such a magnificent theme have
myriad variations. The Bell Labs UN IX'",
perhaps the seat of orthodoxy, has a System Ill
and a System V. There's the Berkeley 4.1.
And HP-UX, XENIX, VENIX, QNX, UNI-plus,
-star, -plex and, of course, the powerful NIX of
the anti-UNIX'" clingons.

Now we can't hold back tomorrow. We don't
even want to. Just don't be deluded into
thinking that the UNIX'" "industry standard" is
going to get you entirely out of the
technological retread business we've been
confronted with for generations (computer, that
is), with all its learning curve entropy and
proactive inhibitions.

As Churchill once said about Democracy: It's
not perfect by any means; it's just the best
we've been able to come up with. The same
assessment might apply to UNIX'".

UNIX• thrtt the E'yes of MPE'
Sam Boles, lnterex H PJOOO Madrid Conference, March 1986

UNIX·· and MPE
side by side,

going thru a few
ordinary everyday

commands .•..

First a few words about the examples you see
here. We all know the frustration of the
example that doesn't work. One way to
reduce that problem is to capture the example
right at the screen in vivo.

Now to do this for the MPE part is a fairly
straightforward exercise If you have an old
2647 like mine. You work the example on the
terminal on-line to the computer, then position
the cursor at the start of the example. You go
into local command mode to do a

COPY ALL FROM DI SPLAY TO LEFT TAPE

When you've gotten the latest batch of
examples on tape, you do a

MARK LEFT TAPE

REWIND LEFT TAPE

Then you get into TDP (Text & Document
Processor), lind the place where you want to
splice in the example, do an

/A nnn.nn

Then when you get the line number prompt,
touch the READ key to get the cartridge tape
contents spliced into your text file.

Getting the UNIX•• examples is a little different.

If you're using an HP9000/520, you've got an
integrated 5" floppy disc drive. As you do the
examples you precede the example with an
echo or a cat » to the disc file where you're
collecting your actual examples. For example,
for the ps (process show) command:

echo $ ps - e > > seb

(The » means to append or concatenate the
string after echo to the target file seb.) Then you
actually do the command but redirect the
output to the same file:

ps ·e >> seb

This gives you what would have been on the
screen In your disc file. Then, if you haven't
bothered to engineer any better datacom, you
can

l ifcp seb /dev/rfd:SEB

to get your examples onto a floppy in LIF
(Logical Interchange Format), take it over to
your HP9000/236, do a virtual terminal file
transfer to the HP3000 where the main body of
your text is for doing your laser typesetting via
TDP, and join the examples into the appropriate
spot.

In the examples you see the HP-UX form, then
the MPE form with an HP-UX-llke UDC. In the
UDC there's an option List to.show you how
the UDC gets expanded and executed.
Imagine a Carriage/Cursor Return at the end of
each line unless specified otherwise. II there's
a Control-D you'll see cctl ·DJ.

So much for the logistics. Let's get started.

First, get on the system:

309

310

UNIX• thr11 the /iyes of Ml'E
Sam Boles, lnterex H l'.JOOO Madrid Conference, March 1986

HP-UX:

login: boles

Welcome to Hewlett·Packa.rd System 9000 HP·UX

MPE:

:hello boles.cad
HP3000 I MPE V G.B0.00 (BASE G.B0.00). MON, DEC 24, 1984, 4:24 PM

Accounting in HP-UX is done generally at the user level, as opposed to user.account In MPE.
There are some other differences, too. For example, if you have a password and key it wrong,
MPE asks you several times to try again; HP-UX doesn't tell you whether it's the user or the
password or a backspace that's the problem, but asks for everything again.

HP-UX:

S who am i
boles console Dec 24 13:26

MPE:

:whoaml
SHOllME
USER: #S85,BOLES.CAD,UNIX (NOT IN BREAK)
MPE VERSION: HP32033G.BO.OO. CBASE G.B0.00).
CURRENT: MON, DEC 24, 1984, 4:26 PM
LOGON: MON, DEC 24, 1984, 4:24 PM
CPU SECONDS: 5 CONNECT MINUTES: 2
SSTDIN LDEV: 22 SSTDLIST LDEV: 22

Notice the blanks are suppressed in the UDC to get the showme.

HP-UX:

S date
Mon Dec 24 13:48:48 PST 1984

MPE:

:date
SHOWT IHE
MON, DEC 24, 1984, 4:26 PM

Basically the same but a little more time granularity In HP-UX and a GMT (Greenwich Mean Time)
basis.

UNIX• thru the Eyes of MPE
Sam Boles, J11terex HPJOOO Madrid Conference, March 1986

HP-UX:

$ ps -e
PID TTY TIME COMMAND

27335 co 0:00 ps
27279 co 0:04 sh

35 ? 0:01 getty
34 a2 0:02 getty
33 a1 0:01 getty
32 aO 0:01 getty

1 ? 0:01 i nit

MPE:

:pse
SHOW JOB

JOBNUM STATE IPRI JIN JLIST

#S69 EXEC 20 20
#S85 EXEC 22 22

JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
2 EXEC; INCL 2 SESSIONS
0 SUSP

INTRODUCED JOB NAME

FRI 8:54A OPERATOR.SYS
MON 4:24P BOLES.CAD

JOBFENCE= 0; JLIMIT= 5; SLIMIT= 60

The ps, like showiob, tells you what's running in the system. Some differences are cosmetic: syntax,
format, nomenclature; but CPU consumption, state and start time are all useful but not available in
both systems with these comparable commands.

HP-UX:

$ ls
seb
sebb

MPE:

: ls
LISTF iil

FI LE NAME

SEBUNX

Again, mostly cosmetic differences.

HP-UX:

$ ll
total 3
- rw- rw- rw­
. rw· rw- rw­
. rw- rw- rw-

boles
boles
boles

101
101
101

370 Dec 24 13:51 seb
100 Dec 24 13:48 sebb
365 Dec 24 13:51 sebc

311

312

UNIX* thru the E}'es of MPE
Sam Holes, lnterex R 1'3000 Madrid Conferenc.·e, March 1986

MPE:

:ll
LISTF Gl,2
ACCOUNT= tAO GROUP= UNIX

FILENAME CODE • • • • ········LOGICAL RECORD··········· ····SPACE····
SIZE TYP EOF LIMIT R/B SECTORS #X MX

SEBUNX * 72B FA 48 48 16 1

The HP-UX "long" file list gives security, date and owner. The -rw-rw-rw- means it's an ordinary
data file (not a directory nor a device special file), the owner of the file has read and write access
but not execute permission, as do the owner's group and the public in general. The listing also
includes number of directory links, owner, group code, size in bytes, date and time of last
modification.

Tlils to11cl1es 011 a maior dlffere11ce: tlie file system. Tlie U.N IX'" directory str11ct11re a11d file
co11cepts are a ma/or tra11Sltlo11al co11slderatlo11, a11d beyo11d tlie scope of tlils paper. You get
glimpses /1ere /11 tlie lillks illformatioll a11d ill tlie mkdl r a11d cd examples below. But remember
tlils ls 011ly Ifie tip -- tliere's a real iceberg tliere.

HP-UX:

$ cat
This is to show cat with no parms.
This is to show cat with no perms.
This is line 2 of show cat.
This is line 2 of show cat.
[ct l ·Dl

MPE:

: cat
FCOPY FROM=;TO=
HP32212A. 3.18 f I LE COP! ER (C) HEWLETT· PACKARD CO. 1983

This is to show cat with no parms.
This is to show cat with no perms.
This is line 2 of show cat.
This is line 2 of show cat.

< CONTROL Y >

2 R[CORDS PROCESSED *** 0 ERRORS

END Of SUBSYSTEM

This is the cat (for concatenate) form without parameters. It's basically input from $STDIN and
output to $STDLIST -- the CRT in this case.

UNIX* t/1m tlte f.).>es of Ml'E
Sam Boles, /utel'ex H 1'3000 Mudrid Couferetlce, lHllrch 1986

HP-UX:

$cat> filel
This is to show the translation of
the UNlX vernacular to an MPE environment.
It's getting harder.
[Ct l ·DJ

MPE:

:catt file1
FCOPY FROM=;TO=file1;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UN IX vernacular to an MPE environment.
It's getting harder.
< CONTROL Y >

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

This is the concatenation of CRT input to a new or replaced file on disc. An easy way to build a file
without getting into the editor -- but you give up the more powerful edits. Notice the >. That's
UNIX•• redireclion from the default CRT to the named file. Be careful: UNIX•· has high regard for
your presence of mind. If it finds a file out there already by that name, it doesn't ask as MPE does
whether you're sure you want to purge it (unless you've removed the write permission with a chmod)
-- it just writes over the old file.

HP-UX:

$ cat fi le1
This is to show the translation of
the UN IX vernacular to an MPE environment.
It's getting harder.

MPE:

:catf file1
FCOPY FROM=fi le1;TO=
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.
EDF FOUND IN FROMFILE AFTER RECORD

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

Here with an implicit < redirection of input, we concatenate from the named file to the CRT.

313

314

UNIX* tltru tlte E)•es of MPE
Sam Boles, Interex H 1'3000 Madrid Conference, March 1986

HP-UX:

$ cp fi le1 file2
$ ll file*
- rw- rw- rw-
- rw- rw- rw-
$ cat file2

boles
boles

101
101

This iS to show the translation of

121 Dec 24 14:01 file1
121 Dec 25 20:44 file2

the UN IX vernacul er to an MPE environment.
It 1 s getting harder.

MPE:

:cp file1 file2
FCOPY FROM=file1;TO=file2;NEll
HP32212A.3.18 FILE COPIER (C) HEllLETT·PACKARD CO. 1983

EOF FOUND IN FROMF I LE AFTER RECORD

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:ll file@
L!STF file@,2
ACCOUNT= CAD GROUP= UNIX

FI LE NAME CODE • · · • · ·······LOG I CAL RECORD····· • • · · · • ····SPACE····
SIZE TYP EOF LIMIT R/B SECTORS #X MX

FI LE1
FI LE2

:catf file2

808 FA
808 FA

FCOPY FROM=fi le2;TO=

1023
1023

HP32212A.3.18 FILE COPIER (C) HEllLETT·PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an MPE environment.
It 1 s getting harder.
EOF FOUND IN FROMFILE AFTER RECORD

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

128
128

8
8

This is a simple file copy with no changes as you can see from the L l and cat listings. Note the
wild card • that gives you all files starting with "file".

UNIX• thr11 the Eyes of MPE
Sum Boles, lnterex H PJOOO Mu1lrid Conference, Marclr 1986

HP-UX:

$ cat » file2
Th;s is some more text to illustrate the
concatenation facility of UNIX in this game
of Hfol low the Leader 11 with MPE.
[Ct l -DJ

MPE:

:cattt fi le2
FILE fi le2,0LD;ACC=APPEND
FCOPY FROM=;TO=*fi le2
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is some more text to illustrate the
concatenation facility of UNIX in this game
of 11 Fol low the Leader 11 with MPE.

< CONTROL Y >

3 RECORDS PROCESSED *** D ERRORS

END OF SUBSYSTEM
:catf file2
FCOPY FROM=fi le2;TO=
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an HPE environment.
It's getting harder.
This is some more text to illustrate the
concatenation facility of UNIX in this game
of "Fol low the Leader" with MPE.
EOF FOUND IN FROMFILE AFTER RECORD

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

Here you see a concatenation with the append redirection instead of the replace. Control-D signals
End of Data.

HP-UX:

$ cp f ile2 fi le3
$ cp f i le2 fi le3b
S cp f ile2 f ile3c
$ ll fi le3*
- rw· rw· rw· boles 101 247 Dec 25 20:55 f ile3
- rw- rw· rw· boles 101 247 Dec 25 20:55 fi le3b
- rw· rw- rw- boles 101 247 Dec 25 20:55 f ile3c
S rm fi le3*
$ ll fi le3*
file3* not found

315

316

UNtX• thru the t')•es of MP/i
Sam Boles, /11t~rex Hl'JOOO Mii.drid COnference, March 1986

MPE:

:cp file2 file3
FCOPY FROM=fi le2;TO=fi le3;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT·PACKARD CO. 1983

EDF FOUND IN FROMF I LE AFTER RECORD

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:cp file2 file3b
FCOPY FROM=fi le2;TO=fi le3b;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT·PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:cp ft le2 fi le3c
FCOPY FROM=file2;TO=file3c;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT·PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD

6 RECORDS PROCESSED ••• 0 ERRORS

END OF SUBSYSTEM
: l l f lle3Q
LISTF file3Q,2
ACCOUNT= CAD GROUP= UN IX

FILENAME CODE ·····LOGICAL RECORD··········· ····SPACE····

FI LE3
FI LE3B
FI LE3C
:rm file3
PURGE f il e3
: rm f ile3b
PURGE f il e3b
: rm f i le3c
PURGE f i l e3c
: l l file3Q
LISTF file3&l,2

SIZE TYP EOF LIMIT R/B SECTORS #X MX

80B FA
SOB FA
8QB FA

6
6
6

1023
1023
1023

128 1 8
128 1 8
128 1 8

NO FILES FOUND IN FILE·SET (CIWARN 431)

Note here the generic purge, representative of the UNIX•• respect for the programmer's presence of
mind. (Some of us who only marginally deserve that respect do a lot more back-ups under
UNIX'".) You can protect yourself on sensitive mes by removing write permission and thereby
getting UNIX•• to prompt for confirmation of .purge.

UNIX* t/1r1t tire Eyes of MPE
Sam Boles, l11terex H 1'3000 Madrid Co11fereuce, March 1986

HP-UX:

$ ll file1
- rw- rw- rw· 1 boles
$ chmod 600 file1

MPE:

: l l f ile1
LISTF fiLe1,2
ACCOUNT= CAD

1 boles

101 121 Dec 24 14:01 file1

101 121 Dec 24 14:01 file1

GROUP= UN IX

FILENAME CODE ------------LOGICAL RECORD---········ -··-SPACE·-·-

FI LE 1

:chmod600 fi Le1
SECURE file1

SIZE TYP

BOB FA

EOF LIMIT R/B SECTORS #X MX

3 1023 128

Here's an example of changing access permissions on a file. We don't have a simple parallel in
MPE. This now disallows group and public users to access the file. Note that the UNIX··
granularity of control could be approximated by a combination of the secure you see here and the
a L tgroup xxx; access= facilities in MPE.

HP-UX:

$ cp file2 f i le3
$ LL file*
- rw- - - - - - - boles 101 121 Dec 24 14: 01 f ile1
- rw· rw- rw- boles 101 247 Dec 25 20: 53 f i le2
- rw· rw· rw· boles 101 247 Dec 25 21 :06 f i le3
$ mv f i Le3 f i Le4
$ lL file*
- rw· · - - - - - boles 101 121 Dec 24 14:01 f i Le1
· rw· rw- rw- boles 101 247 Dec 25 20 :53 f i le2
- rw- rw- rw- boles 101 247 Dec 25 21 :06 f i Le4

MPE:

:cp file2 fi Le3
FCOPY FROM=fi Le2;TO=fi Le3;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

317

318

UN Ix• tlrru the Eyes of MI' Ii
Sam Boles, lnterex HPJOOO Madrid Conference, March 1986

: l l f i lelil
LISTF file@,2
ACCOUNT= CAD GROUP= UNIX

FI LE NAME CODE • •• ·········LOGICAL RECORD···········

FI LE1
F ILE2
F ILE3

:mv file3 fi le4
RENAME fi le3, fi le4
: l l f i lelil
LISTF file@,2
ACCOUNT= CAD

SIZE

SOB
SOB
SOB

TYP

FA
FA
FA

GROUP= UNIX

EOF LJMJ T R/B

3 1023
6 1023
6 1023

FI LE NAME CODE ············LOGICAL RECORD···········
SIZE TYP EOF LIMIT R/B

F ILE1 SOB FA 3 1023
F ILE2 SOB FA 6 1023
F ILE4 SOB FA 6 1023

Here you see the move or rename facility in action.

HP-UX:

$ pwd
/users/boles
S mkdir dir2
$ ll
total 15
drwxrwxrwx
- rw- - - - · - ·
- rw· rw- rw-
- rw- rw- rw-
- rw- rw· rw-
. rw· rw· rw·
- rw- rw· rw·
-rw·rw-rw·

boles
boles
boles
boles
boles
boles
boles
boles

-rw·rw-rw- boles
S cd dir2
S pwd
/users/boles/di r2
S cp .. /file1 file1dir2
$ l l
total 1

101
101
101
101
101
101
101
101
101

0 Dec 25 21 :26
121 Dec 24 14:01
247 Dec 25 20:53
247 Dec 25 21 :06

2536 Dec 25 21:2S
1055 Dec 24 14:07
1055 Dec 25 20:43
1607 Dec 25 20:54
2059 Dec 25 21 :04

····SPACE····
SECTORS #X MX

12S s
12S s
12S s

····SPACE····
SECTORS #X MX

12S s
12S s
12S s

di r2
fi le1
f i le2
f i l e4
seb
sebe
sebf
sebg
sebh

·rw······· 1 boles 101 121 Dec 25 21:35 file1dir2
S cd
S pwd
/users/boles

UNIX• thru the E)•es of MPE
Sam Doles, lnterex H 1'3000 Madrid Conference, March 1986

MPE:

Here we don't have an MPE analog closer than he! lo with a new group specified. In the example,
while in the home directory, you make a new directory with mkdlr. The directory file (Initial "d" in
the 11 listing) now appears in its parent directory. A cd (change directory) to the subdirectory di r2
is confirmed with a pwd showing the path name up the directory chain. The cp uses a .. / to
indicate the parent directory of the current working directory. A cd without an explicit directory gets
us back to the home directory, which the pwd confirms. this is just a quick dip in the deep end of
the pool. Don't worry about this for the brief glimpse of UNIX'" you get here. But do be aware that
the UNIX•• file system is different from MPE.

$ who > f i le4
$ cat fi le4
boles console Dec 24 13:26
$ date >> f i l e4
$ cat fi le4
boles console Dec 24 13:26
Tue Dec 25 21:42:10 PST 1984
$ ll fl le4
- rw- rw- rw­
$ WC file4

2

1 boles 101

11 59 file4
$ grep 1 MPE' file1
the UNIX vernacular to an MPE
S ll file1 > temp1; wc file1
·rw-· ··· ·· 1 boles 101

5 22 121 file1

MPE:

59 Dec 25 21 :42 file4

environment .
> temp2; cat temp1 temp2 I grep 'file•

121 Dec 24 14:01 fi le1

Don't try to map this one-for-one to MPE. You see some redirection and a new counter command,
we, to set up an illustration of piping (the I operand) and the string finder, grep. The we counts
lines, words and characters. The grep lists the lines that contain the general expression {"mess":
mnemonics are merely a state of mind) search string argument. Here the cat has 2 input files that
it pipes to grep which outputs the two lines containing the search string 'file'.

319

320

UNIX* thrll the E')'"·' of' MPE
Stun Boles, lttterex H P3000 Mad..td Coufe1·e1tce, March 1986

Before wrapping up, let's scratch the surface of
the UNIX'" shell. First some simple shell
scripts. Suppose you want your UNIX'" to
speak MPE. Here you see a file called listt
that contains ls. At first it won't execute but
the chmod fixes that.

$cat> listf
ls
[Ct l ·Dl
$ l i stf
list f ~ cannot execute
$ chmod 777 l istf
$ l i stf
di r2
f i le1

f i Le2
f i le4

temp1 temp3
temp2

Here you see a file called purge with a $1, lhe
symbol for the first argument, which is the
name of the file you want to purge. The chmod
makes it executable.

$ cat > purge
rm $1
[ct l ·DJ

$ chmod 777 purge
$ purge temp4

Next you see a shell control loop that edits all
the files starting with "file", using the
commands in sebmod.

$ cat sebsh
for i in file*

do cd $i < sebmod
done

Here's what sebmod looks like. It gives the file
name, lists the first record, inserts a new line,
then lists the first three lines, then quits.

cat sebmod

Begin with Mar 1986 Interex HP3000 Cont •..

1,3p
q!

Here's an execution:

$ sebsh
107
f i l e1
This is to show the translation of
Begin with Mar 1986 Interex HP3000 Conf .•
This is to show the translation of
the UNIX vernacular to an MPE environment.

233
f i le2
This is to show the translation of
Begin with Mar 1986 lnterex HP3000 Conf ..
This is to show the translation of
the UNIX vernacular to an MPE environment.

59
f i le4
boles console Dec 24 13:26
Begin with Mar 1986 Interex HP3000 Conf ..•
boles console Dec 24 13:26
Tue Dec 25 21: 42: 10 PST 1984

Epilogue ...

There you hm•e it: a glimpse thru tile Looking Glass from MPE-land into
tlze Land of UNIX'". You've seen our "MPENIX": some of tlze elementary
functions ill 0111· quasi-UNIX'" UDC's tlzat we built to help our summer
students. From there you sampled some of tlze UN IX power that enables a
computer user to reach new levels of productivity. You've seen some of the
featm·es tltat hm•e enabled UNIX•• to establish a good t1·ack record as the
common link that lets us move with reasonable gi·acefulness across a
substantial portion of the computer world today.

UN IX* thru the E1•es of Ml'E
Sam Boles, lnterex H P3000 Madrid Conference, MarL·h 1986

About the Author .••.

Sam Boles ls a Member Tech11lca/ Staff In the Hewlett-Packard
lnformatlo11 Software Operat/011 In Cupertl110, Callfor11la. With HP s/ltce
1976, his computer experle11ce started back '11 the A UTOCODER days of the
1401/ 1410, migrated tlzru the 360/370 era, and now focuses on
11ext-ge11eratio11 operating system software. Sam received his MS at UCLA
in 1 nf ormatio11 Sy stems.

sebiug48 2135 27jan86

321

TITLE FROM BUSINESS ACTIVITIES TO ONLINE APPLICATION DESIGN

Theo Gielens
Database Consultants Europe B.V.
Amsterdam, Netherlands

ABSTRACT

All Design begins with Analysis and, in this paper, we look at how the
results of a top-down, structured analysis of activities, using functional
decomposition, can be input into a structured online application design.

The applications, when developed, should support the natural flow of
operational and administrative activities and, further, should ensure that
the organisation's data is kept consistent, up-to-date and accurate.

The following topics are covered:

Activity Analysis
Online Application Systems Design.

1. INTRODUCTION

Figure 1 shows the System Development Cycle required in a Shared Data
Interactive environment. The left side of the diagram is concerned with
the analysis and design of the data ie. Data Analysis, Logical Database
Design and Physical Database Design.
The right side is concerned with the analysis and design of the activities
ie. Activity Analysis, Application System Design and Structured Program
Design.
The centre of the diagram covers the steps required to ensure that the
interactions between data resources and business activities are fully
catered for during the analysis, design and eventual implementation.

This paper covers the following areas:

1. Activity Analysis
A method used to understand and record the
activities and the flow of data between them.

2. Application Systems Design
A method to transform the decomposed activities
from the activity analysis phase into structured
and clearly defined online or batch programs.

It is evident that the participation of the user in both areas is of vital
importance. This implies that the techniques used by the analysts and the
designers should provide them with simple, diagrammatic tools that enable
effective communication with the users.

The business area "COURSE ADMINISTRATION" has been chosen for illustration.

323

324

FIGURE 1 - The Systems Development Cycle in a Shared-Data,
Interactive Environment.

2. ACTIVITY ANALYSIS

Activity analysis is a step-by-step, diagrammatic method used to analyse
business activities by starting at a high overview of business areas
and progressively decompose them, through lower levels of activity,
into greater detail.

2.1. Deliverables

The output from activity analysis comprises Q?.ta [low Q.iagrams and
Activity Decomposition Diagrams supported by appropriate documentation.
The DFD shows the activities, concerned with a business area, and the
flow of data into and out of them.
The ADD provides an overview of the activities showing commonality,
trigger events and the sequence in which the activities are performed
(top-to-bottom and left-to-right).

2.2. Tasks for Activity Analysis

Activity Analysis consists of the following tasks:

2.2.1. Decompose the activities

The first objective is to clearly identify the major activities within
the business area and the flow of data concerned with these activities
(see Figure 2).
The next step is to break these activities down into smaller activities.
The information is gathered using a number of sources as follows:

2.2.2.

interviews
documentation of current systems
documents currently in use
etc.

Identify Elementary Activities

The decomposition of activities stops when a level of Elementary
Activities has been reached (see Figure 3):

An elementary activity is one which cannot be decomposed further without
either destroying the consistency of the data it uses and outputs ~
(in case of an enquiry type activity) ceases to provide all the output
necessary to the objective of the activity.

Elementary activities become candidate transactions

325

326

consultant

details

course
request

teacher
availability
details

course
details

Figure 2 - Major activities Jn a course administration

B
I
I
\

Figure 3 - Elementary activities

\~ ,_
cour e

reque's t

COMPANY

TEACHER
eacher willingness

course

course
brochure

COURSE

course
details

2.2.3. Document low level DFD's

Since the DFD's are input to both the System Application Design and
Conceptual Access Path Analysis phase it is essential to document them
showing:

2.2.4.

description of the activity and the data flows.
volumes
where the activity is performed

Describe the elementary activity in detail

In order to avoid misconception and misunderstanding it is essential to
describe the elementary activity in detail. A very useful technique to
employ is structured text. This technique also provides a means of
identifying commonality during System Application Design.

2.2.5. Create the ADD

The ADD is a hierarchical representation of the business activities
showing how they decompose from the highest level activities down to
the elementary activities. The sequence in which the activities are
being performed (implied within the DFD) is also shown (see Figure 4).

2.3. Activity analysis and its interaction towards the data

The activities that need to be performed on the data will normally
influence how the database is organised. From the elementary activities
the entry points, navigation paths and access sequences are identified
during a process called Conceptual Access Path Analysis (see Figure 1).
The resulting output comprises:

Activity Logic Diagrams
diagrams showing what entities are accessed/created/deleted and the
sequence that is required.

Activity Usage Figures
figures showing the frequency of logical accesses on entities.

3. ONLINE APPLICATION SYSTEM DESIGN

Application System Design is a method of further decomposing the elementary
activities into processes that can be implemented as programs, modules or
sub-routines, providing, therefore, a technique to design the structure of
the online system.

3.1. Tasks for Online Application System Design

3.1.1. Identify common processes

In order to design an optimum systems network and to avoid repetitive
design and development of those processes which may be common to more

327

COURSE
ADMINISTRA-

TION

l l l
CONSULTANT COURSE COURSE
HANDLING HANDLING GIVING

MANAGEMENT

: l :
I I

RE

l
HANDLE ~ UPDATE
COURSE COURSE

OURSE REQUEST FEEDBACK
QUEST

c

I T
I

l l l
HANDLE ~ RECORD \:j PRODUCE

COMPANY SKELETON COURSE IN
DETAILS COURSE DETAIL

I
I •

Figure 4 - ~ctivity ~ecomposition ~iagram

3iB

I
I

l
INVOICING

:
I

-
l

RECORD
COURSE IN
DETAIL

LEGEND

elementary activity
(incl. number)

non mechanisable
elementary activity

triggering event

)I shows couunonality

than one activity, it is necessary to identify commonality as the first
step in Online Application System Design.
Commonality can exist at three levels, as follows:

Elementary activities
Components: action on an entity type and its attributes
Primitives: action on an attribute type or its attribute values, or

action on more than one attribute type in combination

Normally commonality of elementary activities would have been clearly
identified, already, during the construction of the ADD. However,
commonality of Components and Primitives can only be identified by a
thorough examination of the structured text produced earlier.

COMPONENTS become candidate modules

PRIMITIVES become candidate modules or sub-routines

Both components and primitives are added to the ADD and, where they are
common across more than one elementary activity, this is shown.

3.1.2. Systems Network Design

The systems network is designed using information contained in the DFD's
and ADD and, in addition, the following considerations:

standard navigation paths
user preference on menus:

(define function keys)
based on trigger events
based around entities
based around responsibility
etc.

frequency a navigation path for an activity which is being
used frequently should be as short as possible.

The result is a ~stems N_etwork Q_iagram showing :

- hierarchy of transactions.
- flow of control (sequence, selection and iteration)
- listings (output)
- passed parameters
- how control is passed

To illustrate how a DFD can impact on the eventual SND an example is
provided showing how a "course request" could be handled in two
different ways. Figure Sa shows one example resulting in a SND as
shown in Figure 6a.
Figure Sb shows a similar "course request" containing one extra
activity, "CHECK IF COMPANY EXISTS", resulting in a significantly
different SND, as shown in Figure 6b.

329

COMPANY

Figure Sa

COMPANY

COURSE

Figure Sb

330

Figure 6a
TO

MENU

Tl
--1----------c_o_m..;;p..,any not exist

RECORD NEW
COMP.DETAit

~
comp.no.

LEGEND

D transaction + name
+ function

--+ parameter

'-._./ selection

-- flow and returnpoint

Tl

RECORD NEW
COMP.DETAILS

--7
comp.no.

Figure 6b

T4

RECORD SKELETON
COURSE DETA1ILS

T4

CHECK IF
EXISTS

T3

RECORD SKELETON
COURSE DETA~LS

T2 ?

decided
UPDATE EXI~TING by user
COMP.DETAIES

~
comp.no.

T2
?

UPDATE EXISTING decided
' COMP.DETAILS by user

~
comp.no.

331

332

Before the system network design is complete, it is necessary to check
the following:

3.1. 3.

Is every transaction available as required?
Each user should be able to reach all activities he is entitled to
use, subject to suitable authorisation.

Is every common process fully integrated in the SND ?
Where applicable, parameters should be added to the SND. Also all
updating logic should be moved to "lower level" transactions in order
to preserve the consistency.

Multiple implementation of Elementary Activities

It is possible that for some elementary activities, more than one
transaction may need to be defined, for the following reasons:

- need for fallback systems

- different mechanisms for different users:
casual user version

- experienced user version

- different installations (hardware/software)

For each transaction, however, the logic stays the same, although the
mechanisms may be differ<0:1t. Whenever this occurs it affects the systems
network:

3.1.4.

fall-back transactions and production transactions must~ be put
into the same network.
transactions for different installations must never be put into the
same network.
transactions which provide alternative dialogues may or may not be
put into the same network, depending on the users preference.

Design the dialogue(s)

The design is done together with the user. The design primarily
consists of designing the user and computer actions for each
transaction. The basic steps consist of:

1. determine the inputs and outputs
2. decide the technique of conversation
3. design the dialogue in broad outline
4. optimise and refine

3.1.4.1. Determine the input and output

From the structured text of each elementary activity, it can be
determined what input (and when) is required to be able to perform the
activity and what output is required to provide the user with what he
requires.

3.1.4.2. Decide the technique of conversation

This depends highly on the users skills and preferences. Various
possibilities exist, as follows:

keyword (free format)
question and answer
form filling
multiple choice (menu)
etc.

3.1.4.3. Design the dialogue in broad outline

Again a diagram is used, which allows discussion with the user. The
example (Figure 7) shows how new company details could be handled
(refer to figure 6b activity Tl). Note that the updates are performed
in M06, with reference to the points discussed earlier regarding
consistency for elementary activities.

3.1.4.4. Optimise and refine

Using prototyping tools the dialogue can be implemented. This could
result in feedback from the user, as a result of which some steps may
have to take place again. If no prototyping tools are provided, a desk
check examining the dialogue should take place.

3.2. Interaction towards the data

Whereas, in the Conceptual Access Path Analysis (see Figure 1) the
output is used to perform the Logical Database Design the outputs of
Detailed Access Path Analysis provide the output that is used to either
create a first pass physical database or optimise the physical database
design.
The feedback from the database design could also enforce an alteration
of some activities and possible the SND.

THEO GIELENS

Since the start of his data processing career in 1977, Theo Gielens has
been particularly involved in the areas of Application Design and Activity
Analysis. After joining DCE as a consultant, some two years ago, he
extended his experience in the area of Data Analysis and he participated
in the development of DCE's Application Design Course.

333

334

Pro'ecVSystem: Course Administration System

Author: DLN

Version: 5

Transaction Name: Record New Company Details

USER

Letter from
Company

SCREEN (ETC)

S019

S019

Sub-ProjecVSub-System:

Date: 12112189 Page~·:

Status: Agreed

Number: TOSO

COMPUTER

M01

Validate Compan
Number

Validate Company
Details

Validate Location
Details

Figure 7

THE WALL METHOD - A NEW METHOD TO DEVELOP
BETTER SOFTWARE

Matti Jamback
Kemira Oy, Helsinki, Finland

SUMMARY

The end-users are very seldom satisfied with the first
version of a new application system. Something has to be added,
something has to be changed and something is not necessary. This is
very familiar to everyone who has worked in the software development
projects.

There are a lot of reasons why software projects end like
this, but one of the most common ones is the communicathm gap
between end-users and software people. They have no common language.

In Finland a method called "The Wall Method", has been
available in system design for over four years. The developer of the
method is Kari Saaren-Seppala.

The Wall Method is a visual method that helps end-users and
systems people work in teams and solve problems in a way that
everyone understands.

The main characteristics of the wall method are:
large, colourful, easily modifiable pictures on the wall
the end-users, from different levels of the organization
make the pictures in small, dynamically changing teams
the working environment encourages creative spirit by
visualizing the design phase in common terms.

DATA PROCESSING IS STILL YOUNG

Data processing has been done in large scale only about 25
years. Therefore, it is natural, that the system design methods are
not as good and perfect as for instance in architecture. Yet,
systems have been designed and some have succeeded and some have not.

WHY IS IT SO DIFFICULT TO SUCCEED?

The traditional way of designing application systems can be
divided roughly in four parts:
1 Feasibility study, where the need and the benefits of thr

system are clarified.
2 System design, where the data content and the function of

the system are designed.
3 Programming and testing.
4 Inauguration.

If you make big mistakes in part 1, e.g. you decide to make
a system which is not necessary or the advantages of the system are
not greater than the disadvantages, there is not very much matter
what you do after, because the system will not satisfy the end-users.

If you make mistakes in system design, these mistakes can be
corrected, but that costs often time and money which both are
limited resources. To balance the budget and the schedule of the
project compromises are made, but then the final target of the
system is often lost.

The programming errors cannot be avoided but if these errors
are caused by inaccuracies in the system design we are in trouble.

337

338

And finally, when the entire system should
troubles begin. The end-users are not satisfied
corrections and changes have to be made until
satisfactory.

start, all
and a lot
the system

the
of
is

All the above mentioned is probably very familiar to those
who have been designing application systems. There are many reasons
why software projects don't succeed, some reasons are technical,
some project management reasons and perhaps the most common ones are
the definitional reasons. Usually it is the mixture of all these
reasons.

LET THE END-USERS DEFINE THEIR OWN SYSTEMS

It is a fact that if you can't get the end-users to take
part in system design the whole system is in great danger to fail.

Usually an inquiry is made for the end-users at the early
phase of the system design. He is asked about the data content and
the services he expects from the new system. After the proper
answers have been received, the system professionals design the
system and adp-professionals accomplish it.

The role of the end-user must not be just an object of the
inquiries, but th0 area where they take part in the system design
must be much wicior. The end-user may quite well manage the design
phase.

Four levels of participation for the end-user can be defined
in the life-cycle of an application system.

Level 1:

Level 2:

Lr•·r· I 3:

Level 4:

an inquiry is made about the present problems and about the
proposal for the new system
the facts that already are quite clear get clearer but the
point of virw of the end-users does not change.

the plan for the new system is gone through actively and
thoroughly in small dynamically changing teams
the real material is used
the end-us0rs try to imagine the future form of their work
ideas and experiments are made
many rounds of improvements are gained
when the work goes on, the point of view of the participants
changes and gets wider and the end-users learn to know new
features about their work.

this level is mainly accomplishing and testing the nearly
finished system
the methods are about the same as on Level 2, but now the
computer is also used
the prototyping is very much recommended on this level
the end-users learn to know the system which they have to
use for the next few years and they can imagine the
influences and changes the new system may cause to their
work.

this is the continuous use of the system which will last for
several years.

Very often the end-users take part in the system design only
on Level 1. Level 2, partly also Level 3 have been done by the
system professionals. At this point the end-users have a rather
limited chance to influence on the whole system.

The prototyping on Level 3 is very much recommended, because
by using this method the end-users get almost a real impression
about the system and a part of training is also taken care of.

Level 4 is very often forgotten. Yet it is very important to
collect feedback about the system from the end-users, because they
are the everyday users and they know best the advantages and
disadvantages of the system.

SOME REQUIREMENTS FOR A GOOD DESIGN METHOD

It is vitally important to get the end-users to take part in
the system design, but how to cross the communication gap between
them and the systems people? If the end-users and the systems people
cannot use exactly the same language about the problems they are
solving, it is not possible to get satisfactory results.

There are many nice ways to define a system very precisely
but for an end-user it is very often difficult to understand the
formulas and other abstract symbols which are used in these methods.
Still, most of these methods are not suitable for team work, which
is essential in designing systems.

Let's take a short look at the methods which are used in
other fields that require making design and various kinds of
descriptions.

When an architect makes the plans of a house, he makes
drawings about it from different angles. In these drawings he also
puts trees, people, machines etc. in order to get the drawing as
real as possible. A miniature model about a house is also often made
and that model can even be taken apart to get an idea about the
inner constructions of the house. In industry a prototype is made
about a new product and this prototype is then tested in as truthful
conditions as possible in order to find out all the weaknesses.
These are then corrected before the product is put on the product
line.

In these two examples the keywords are visuality and
truthfulness. the visuality helps to compare the design to the real
world and to find out the drawbacks of the plan. If the design is
concrete enough, it is possible to test various alternatives of
activities against that design and to get new ideas also to the real
life. Still, a truthfull design method gives a good basis for
communication, because the conceptions and the language are of
reality, not some gibberish that only trained professionals
understand. It is possible to start working immediately without
wasting time to clarify various kinds of conceptions. And last but
not least, the visuality activates imagination. The word imagination
gives an idea of seeing imagines. The visual images, pictures, help
the individual or the team to look for and to find out new and
better solutions.

Despite of being visual and truthful! the design method must
be exact, it has to keep the general view about the system clear, it
must be suitable for team work, the conceptions must be clear
throughout the entire system and the pictures must be easily
modifiable. Still, a good design method should be easy to learn and
easy to use.

339

340

THE WALL METHOD

The Wall Method has been developed in Finland in 1981 in
three application system developmen projects. The developer is Kari
Saaren-Seppala. In the years 1981-1984 over 100 seminars have been
held about this method. In Finland it has been taken very widely in
use, e.g. 9 of the 10 biggest industrial companies use The Wall
Method. Many software houses have adopted this method as a part of
their own design. methods. Also a book has been published and an
English version of that book will be published soon.

The Wall Method is not a licensed product but it is an open
method that is available to anyone.

HOW TO USE THE WALL METHOD?

The design of a new system can be divided into six phases as
follows:
1 Survey of the system area
2 Description of the existing system
3 Survey of the changes
4 Definition of the data
5 Definition of the adp-tasks
6 Testing.

This list of phases is not an exact order of working but the
three first phases can all be done simultaneously.

The next chapters present each of these six phases shortly
and also a list of techniques, that can be used in each phase, will
be presented. The more accurate descriptions of the techniques will
be presented a few pages later.

SURVEY OF THE SYSTEM AREA

The description consists of all the factors that the system
possibly will handle (e.g. the divisions and the departments of the
company, the authorities, etc.).

All the factors are first collected together in any order.
When this is done, these factors are then grouped in two groups,
those which will be included in the system (marked with "+") and
those which will not (marked with "-"). This process is iterative
and new groups are formed and some groups are included and some not.
Finally we have the group of factors that will belong to the system
area.

The techniques that can be used are
"the glass house"
horizontal projection
data flowchart
organization picture
large-scale picture.

DESCRIPTION OF THE EXISTING SYSTEM

The purpose of this description is to give to the members of
the project and the teams a realistic and similar image of the
starting point. This helps the further communication, because the
conceptions are clear and the language is same.

The company and its functions are described so that it is
possible to see it as a whole and the situation of the new system in
this wholeness.

The description includes for instance the functions, the
jobs, the material-streams, the equipment and the accommodation of
the company. The end-users and their current tasks and the current
data-processing will be described, too.

The real material, reports, file-descriptions, card files
etc. is included, also, in this description.

After the completion of this phase all the problems of the
existing system must be found.

The techniques are the same as in the preceding phase.

SURVEY OF THE CHANGES

If there is no need for changes in the existing system,
there also is no necessity to make a new system. A need for changes
that is strong enough, is usually the activating reason to start a
system project.

many ways to collect the
arranged where participants

lists about their need etc.
the existing system is a good

There are
Meetings can be
end-users write
description of
changes.

needs for changes.
tell their needs,
To go through the
way of finding out

The material is then analysed and the working teams go the
results through and divide the changes in two groups, those which
will belong to the system and others which do not. The changes that
were chosen to the system, will be a part of the test material.

DEFINITION OF THE DATA

In this phase the data and the logical structure of the data
will be described.

First a conceptual schema will be used. The sure conceptions
of the existing system form a basis of the schema and this schema is
then completed by the new conceptions, that the changes possibly
have created. The result will be a conceptual model which then can
be completed by the data-items of each conception.

The final result will be the logical conceptual schema and
the lists of data-items completed with the details, such as the
length and the mode of the data-item, volume-numbers of data-sets,
is a data-item a primary or a secondary key etc. This description is
the basis for the final data-base.

The techniques are:
conception schema
data-item list.

DEFINITION OF THE ADP-TASKS

The data-processing of all the work stations is divided into
adp-tasks. A task may be updating a data set, making a report,
entering an inquiry to the data-base etc.

Of each task a number of things must be described:
how the data is accessed
the checkings and defauls of data-items
calculations
display lay-outs
report lay-outs
security
menus and display-paths
etc.

341

342

The result of this phase is
future adp-system. The end-users are
the real material.

a final manual model of the
able to test the system with

It is very useful to use prototyping in the critical or
otherwise important tasks in order to give a more realistic
impression of the system to the end-user. Using a prototype is also
very good training for the future users.

TESTING

The techniques are:
prototyping
cross-references
lists of the tasks in a work station.

The end-users use their own real material as the test
material. The list of changes is a part of that material.

The testing with real material and look-alike manual system
will reveal weaknesses and defects of the system. Yet, it is easy to
make corrections and improvements. The adp-professionals, who will
do the final programming, should be present at all the testing
occasions in order to get a precise and realistic image about the
system.

The testing phase may last for weeks, but it is worth using
enough time so that all the end-user groups are able to test the
system definition and get assured that their needs will be fulfilled.

HOW TO ORGANIZE A SYSTEM DESIGN PROJECT?

In order to guarantee enough special experience to the
project group it is recommended that at least the following skills
can be found from the group:

project mdnagement
knowledge of the system design methods
adp-knowJPdge
knowledge about the system-area from the end-user's
point-of-view
knowledge about a working method, which is systematic and
creative.
It is not necessary to get the representatives of all the

end-user groups to the project group. Depending on the part of the
system which is to be described a team of end-users is collected to
do that description with the project group.

The first three phases of system design do not necessarily
require the presence of adp-professionals but after that it is
essential that also analysts and programmers are present.

ABOUT THE TECHNIQUES USED IN THE WALL METHOD

Since The Wall Method is based on large and
pictures on the wall, there can't be an exact technique
make these pictures. Yet, some techniques and materials
out to be useful and easy to use and they can be
"standards" in The wall Method.

colourful
or way to

have shown
called as

Below short descriptions of some of these "standards" are
presented.

"THE GLASS HOUSE"

This technique is based on the facade pictures of buildinqs.
The walls of the buildings are transparent, made of glass. 'J'he
figures and functions that are to be described, are situated this
house on their own places.

With this picture it is easy to show functions of the
company. The material and dataflows can be situated in their riqht
places, the work stations, computers etc. are all visible and the
connections to the outer world can also be described in this picture.

Figure 1. The Glass House.

HORIZONTAL PROJECTION

----- - ~-I

-- - -+
~Au:1.>""()f'f1Ui

iil.'TirR\o\tUAt.S

''-,~

ht f'W::>o~
C..tJHPOfGQ.'i,,
'-lbt.1<.~ Oet.4v

This picture is a horizontal projection about the building.
It is used like "The Glass House".

343

344

llftllOllL FU .. E\ . ~
JIRUliVe-~

111111. ... ~~(..
J. f'R1UT1i~'

Figure 2. Horizontal projection.

DATA FLOWCHART

llUl>u~I)~

:~:!~~
.t 'TtiRt1.&.llh.~

This picture is a reduced picture about "The Glass House" or
the horizontal proicction. Only the data or material flows are left.

It is also possible to make a flowchart that is combined of
different types of pictures, "The Glass Houses", horizontal pictures
etc. The pictures are connected to each other by arrows, which show
the direction of th" flow.

LARGE SCALE PICTURE

This picture is a combination of all the pictures which are
already mentioned.

The large :>cale picture gives a general overview about the
system when it is looked at from a far distance. When the observer
steps closer, smaller and smaller details appear.

ORGANIZATION PICTURE

This picture describes those parts of the organization which
will use the system.

It is useful to combine to this a cross-reference, which
describes the responsib~lities of the data administration.

OR GA 1.J / ZAii o IJ

\~

Figure 4. Organization picture.

CONCEPTUAL SCHEMA

This picture describes the logical structure of the data.
When the lists of data-items are combined to this picture, there is
a basis for creating the data-base.

The logical data groups of the system are at first grouped
into data conceptions and then the relationships are defined between
those conceptions. This is the logical structure of the data. The
data-items of each data conception are then listed and the necessary
information about each item is added.

345

346

ORDER ~US'tl>MER

-.,.>--!

l
l'-'--1 I OROIR~+--ic·1-,-e ,,;,;o-,-

1 ~ •• .,o wa.
riJl OROfR•tJO)((,, -, &-,-" 0-1

. C.INE•a.10 Alt~~~-
: rl __ {PIOO·No xt1 l(~)'f AIC."

PROD•UAME ~6 ,TAPe·Re~
------ ,---~"·!~' -

AMOUtJT Alf j S"
-------······- ·-·- ----·-- -·--

PR.IC.! alt.a j lOll.10

---;.;1:p;t,tE ~1.a '~';-~~~;~' ·
IE\T-1>tt.·D~lC" i '('(MkDD

' 9C.O\f ''"'

Figure 5. Conceptual schema.

MATERIALS

used:
When using The Wall Method, the following materials can be

a lot of empty wall space
black felt tip pens (various gauges)
pencils
tape
a kind of adhesive for fastening the cartons and papers
large papers

white paper
white squared flip-paper, square 5 x 5 cm

coloured cartons (about ten light colours)
tools

scissors
photographic cutter for cutting cartons
ruler for cutting paper

HOW TO USE COLOURS?

The coloured cartons must be used throughout the system so
that one colour always means the same thing.

The nex recommendation has shown out to be good:
light blue: an end-user, a group of end-users, a

department
light green: a task of an end-user
yellow: a data, a conception, a data-base,

anything that accompanies to the data
bright green: raw materials, products, all material
gray: display lay-outs
all red colours are alarm colours

HOW TO DOCUMENT?

The system description which is made by using The Wall
Method, can't be moved from one place to another as easily as a
description in the covers. So its is important that the room in
which the work is to be done, is reserved for that use long enough.
It is also recommendable that the room can be locked in order to
prevent unauthorized persons from seeing the description.

The back-up copies can be made by photographing the wall
from time to time. If a video-tape camera and recorder are available
the walls can be taped and that tape can be used in training the
end-users.

SUMMARY

The Wal 1 Method got started, when it was realized that in
system design the concrete pictures are better understood than the
abstract figures and formulas. Such materials are for instance the
real reports, forms, photographs, etc. When this material was used,
the pictures became large and it was natural to take the empty wall
space in use.

The big size of the wall pictures requires an own room for
the project. So it is natural, that the members of the project
gather in one team to work together in that room. The work becomes
effective and creative when the result is continuously visible to
everyone. Since the pictures are easy to modify, all kinds of
experiments are possible and new solutions are easily tested.

The training of the end-users actually takes place while
making and testing the description.

THE ADVANTAGES AND DISADVANTAGES

Like any method The Wall Method is especially strong in some
cases, neutral in others and it also has some weaknesses.

Advantages are:
+ efficient common language for the end-users and systems

people, it is possible to talk about the problem itself, nnt
about the technique

+ the method is easily learnt
+ the whole system can be seen as a whole
+ the state of readiness of the system can be seen all the time
+ the testing is easy
+ suitable for team work
+ cheap and easy to use because all the equipment and

materials can be bought from the nearest stationer's
+ since the method is based on various degrees of accurar·y,

the system can be presented to the management from dif1r·r1 nt
levels of the organization.
Disadvantages are:
part of the pictures must be transferred into ordinary l'"fl"r
documents
security may be difficult to arrange
the room must be reserved for the project for a long tim".
Finally, if you are satisfied with your present !;y!;t-<'!11

design method, use it by all means, but if you feel that Thr' W•il l
Method might give you something new, try it first in a minor !>coll'
as a part of your present method. It may not be wise to abandon a
method that you may have used for years but to take a new method in
use as an alternative and having got some experience you can make
the choice.

347

348

The preceding chapters have described The Wall Method only
as a system design method but the method can be used in many other
cas6, too. All kinds of descriptions can be made by using The Wall
Method and some pictures of the system description can be used also
for other purpose than system design. Since the method gives a
concrete view about the things, it can be used anywhere, where it is
necessary to show or demonstrate various cases.

THANKS

I want to thank Kari Saaren-Seppala for the valuable advise
he gave to me while I was doing this presentation. I also used his
book as literary sources.

BIOGRAPHY

Matti Jamback has been in adp-business for over 13 years as
an analyst, project manager and system manager. His current position
is in Kemira Oy, Fertilizer Division, Helsinki, Finland. He is
System Manager, with responsibility for coordinating and designing
systems for that division. He has been using The Wall Method
starting from the first projects, where it was developed.

INFORMATION SYSTEMS PROTOTYPING

Orland Larson
Hewlett-Packard Company, Cupertino,California, USA

One of the most imaginative and successful
user interfaces and generally improving
effectiveness of application development
INFORMATION SYSTEMS PROTOTYPING.

techniques for clarifying
the productivity and

is a methodology called

With waiting time for new applications running into several years and
those applications failing to meet the users needs, managers as well as
users have been searching for more efficient and effective approaches
to systems development.

Prototyping, as an application
methodology, has evolved into
professional and the user.

system
a real

design
option

and development
for both the MIS

This paper reports on the growing body of knowledge about prototyping.
It begins by reviewing the changing role of data processing, the
challenges facing the MIS organization, and the traditional approach to
application development. It then defines prototyping followed by the
step-by-step prototype development process. The advantages and
disadvantages, as well as the cost and efficiency of prototyping, will
be discussed followed by the essential resources neccessary to
effectively prototype applications. In conclusion, to illustrate the
benefits of prototyping, the speaker will present success stories of
systems developed using the prototyping approach.

INTRODUCTION

The Changing Role of Data Processing

The data processing department has changed dramatically since the
1960s, when application development as well as production jobs were
usually run in a batch environment with long turnaround times and out­
of-date results.

The 1970s were a period of tremendous improvement for the data
processing environment. One of the key developments of that period was
the development and use of Data Base Management Systems (DBMS). This
provided the basis for on-line, interactive applications. In addition,
computers and operating systems provided programmers the capability of
developing application programs on-line, while sitting at a terminal
and interactively developing, compiling, and testing these
applications. The end user was also provided with easy-to-use, on-line
inquiry facilities to allow them to access and report on data residing
in their data bases. This took some of the load off the programmers
and allowed them to concentrate on more complex problems.

351

352

During the 1980s, the data base administrator and MIS manager will see
increased importance and use of centralized data dictionaries or
"centralized repositories of information about the corporate data
resources. Simpler and more powerful report writers will be used by
the end user and business professional. The programmer will see the
trend towards the use of high-level, transaction processing languages,
also known as fourth generation languages, to reduce the amount of code
required to develop applications. Finally, the tools have been
developed to effectively do application prototyping, which will provide
benefits to the end user as well as the application programmer and
analyst.

Throughout the 70s and 80s, information has become more accurate,
reliable, and available, and the end user or business professional is
becoming more actively involved in the application development process.

Challenges Facing MIS

One of the MIS manager's major problems is the shortage of EDP
specialists. A recent Computerworld article predicted that by 1990
there will be 1/3 of a programmer available for each computer delivered
in this country. Software costs are also increasing because people
costs are going up and because of the shortage of skilled EDP
specialists. The typical MIS manager is experiencing an average of two
to five years of application backlog. This doesn't include the
"invisible backlog," the needed applications which aren't even
requested because of the current known backlog. In addition, another
problem facing MIS management is the limited centralized control of
information resources.

The programmer/analyst is frustrated by the changeability of users'
application requirements (typically, the only thing constant in a user
environment is change). A significant amount of programmers' time is
spent changing and maintaining users' applications (as much as 60 to 80
percent of their time). Much of the code the programmer generates
includes the same type of routines such as error checking, formatting
reports, reading files, checking error conditions, data validation,
etc. This can become very monotonous or counterproductive for the
programmer.

The end user or business professional is frustrated by the limited
access to information needed to effectively do his/her day-to-day job.
This is especially true for those users who know their company has
spent a great deal of money on computer resources and haven't
experienced the benefits. The users' business environment is changing
dynamically and they feel MIS should keep up with these changes. MIS,
on the other hand, is having a difficult time keeping up with these
requests for application maintenance because of the backlog of
applications and the shortage of EDP specialists. Once the user has
"signed off" on an application, he is expected to live with it for
a while. He is frustrated when he requests what he thinks is a "simple
change" and MIS takes weeks or months to make that change.

Traditional Approach to Application Development

There are some myths concerning traditional application development:

- Users know exactly what they want
- Users can effectively communicate their needs to MIS
- Users needs never change.

The traditional approach to application development has serious
limitations when applied to on-line, interactive information systems
that are in a state of constant change and growth. Communications
among the user, analyst, programmer, and manager tend to be imprecise,
a detailed analysis prolongs the process to the annoyance of the user,
and specifications are either ambiguous or too voluminous to read. To
compound this problem, the user is often requested to "freeze" his
requirements, and subsequent attempts at change are resisted.

Let's review the traditional approach to application development.

TRADITIONAL APPROACH
TO APPLICATION DEVELOPMENT

USER

REQUEST FOR
APPLICATION

TRY
APPLICATION

USE THE
APPLICATION

IDENTIFY
ADDrnONAL

ENHANCEMENTS

DOCUMENT

DEVELOP
MAINTENANCE

SPECIFICATIONS

MONTrtS

MONTrtS

MONTrtS/
YEARS

WEEKS/
MONTrtS

ft"3 HEWLffi
~--------------------~fl! PACKARD

- The user first requests an application and then an analyst or
programmer is assigned to the application.

- The analyst or programmer takes the oftentimes sketchy user's
specifications and designs more complete specifications.

The user then reviews the analyst's interpretations of his
specifications and probably makes additional changes.

- The analyst redesigns his specifications to adapt to these
changes. (By this time, several days, weeks or months have gone
by.)

353

354

- The user finally approves
analysts and programmers
document the application.

the specifications, and a team of
are assigned to develop, test and

- The user finally tries the application. Months or years may
have gone by before the user gets his first look at the actual
working application.

- The user, of course, will most likely want additional changes or
enhancements made to the application. This is called adjusting
the application to the "real world".

- Depending on the extent of these changes, additional maintenance
specifications may have to be written and these program changes
coded, tested and documented.

- The total application development process may take
years, and the maintenance of these applications
forever.

months or
may go on

In summary, the traditional approach to application development results
in long development times, excessive time spent on maintenance, a
multi-year backlog of applications, limited control and access to
information, and applications that lack functionality and flexibility
and are very difficult to change. The question is: "Can we afford to
continue using this approach to application development?"

PrototyPe Defined

According to Webster's Dictionary, the term prototype has three
possible meanings:

1) It is an original or model on which something is patterned:
an archetype.

2) A thing that exhibits the essential features of a later type.
3) A standard or typical example.

J. David Naumann and A. Milton Jenkins in a paper on software
prototyping (see reference 7) believe that all three descriptions apply
to systems development. Systems are developed as patterns or
archetypes and are modified or enhanced for later distribution to
multiple users. "A thing that exhibits the essential features of a
later type" is the most appropriate definition because such prototypes
are a first attempt at a design which generally is then extended and
enhanced.

Roles in the Prototyping Process

There are two roles to be filled in prototyping the user/designer
and the systems/builder. These roles are very different from the
traditional user and analyst/programmer roles under the traditional
approach. The terms "user/designer" and "systems/builder" emphasize
these differences and denote the functions of each participant under
the prototyping methodology. Remember it is the user who is the
designer of the application system and the systems professional who is
the builder.

The user/designer initiates the process when he/she conceives of a
problem or opportunity that may be solved or exploited by the use of an
information system. The user/designer typically must be competent in
his/her functional area (many times he/she is a manager) and usually
has an overall perspective of the problem and can choose among
alternative solutions. However, he/she requires assistance from the
MIS organization.

The systems/builder is assigned by the
the user/designer and is competent
prototyping tools and knowledgeable
resources.

Prototyping Process

MIS organization to work with
in the use of the available
about the organizations data

The process of application prototyping is a quick and relatively
inexpensive process of developing and testing an application system.
It involves the user/designer and the systems/builder working closely
to develop the application. It is a live, working system; it is not
just an idea on paper. It performs actual work; it does not just
simulate that work. It can be used to test assumptions about
users' requirements, system design, or perhaps even the logic of a
program.

Prototyping is an iterative process. It begi .. s with a simple prototype
that performs only a few of the basic functions of a system. It is a
trial and error process - build a version of the prototype, use it,
evaluate it, then revise it or start over on a new version, and so on.
Each version performs more of the desired functions and in an
increasingly efficient manner. It may, in fact, become the actual
production system. It is a technique that minimizes the dangers of a
long formal analysis and increases the likelihood of a successful
implementation.

Prototyping Methodology/Model

The prototyping methodology in general, is based on the following
proposition: "People can tell you what they don't like about an
existing application easier than they can tell you what they think they
would like in a future application."

Prototyping an information system can be viewed as a four -step
procedure.

355

356

PROTOTYPING APPROACH
TO APPIJCATION DEVELOPMENT

USER/DESIGNER SYSTBllS/'.BUILDER

Step 1. User/designer identifies the basic information requirements:

- Write a brief, skeleton-like statement that captures the essential
features of the information requirements.

- User/designer and systems/builder work closely together.
- Concentrate on users' most basic and essential requirements.
- Define data requirements, report formats, screens, and menus.
- Need not involve lengthy written specifications.
- For larger systems, a design team may need to spend a few weeks

preparing a first-effort requirements document.

Step 2. Systems/builder develops the initial prototype:

- Systems/builder takes the notes developed in the user discussions
and quickly builds the menus and dialogs.

- A data dictionary would be useful at this time.
- Design and/or define data base and load subset of data.
- Make use of defaults and standard report formats.
- Write required application modules using a fourth generation language.
- Prototype performs only the most important, identified functions.

Step 3. Users implement and use the prototype to refine requirements:

- Systems/builder demonstrates prototype to small group of users.
- Users gain hands-on experience with application.
- Users are encouraged to make notes of changes they would like made.
- Users discuss and prioritize desired changes.

Step 4. Systems/builder revises and enhances the prototype:

- Systems/builder modifies the prototype to correct undesirable or
missing features.

- May require modification or redesign of data base, changes to
existing programs and/or additional program modules.

- Deliver back to users quickly.

NOTE: Steps 3 and 4 are repeated until the system achieves the
requirements of this small group of users. Then either
introduce it to a larger group of users for additional
requirements or if enough users are satisfied, demo it to
management to gain approval for the production system.

When to Use Prototyping

1. To clarify user requirements:

- Written specs are often incomplete, confusing, and take a static
view of requirements.

- It is difficult for an end user to visualize the eventual system,
or to describe his/her current requirements.

- It is easier to evaluate a prototype than written specifications.
- Prototyping allows, even encourages, users to change their minds.
- It shortens the development cycle and eliminates most design errors.
- It results in less enhancement maintenance and can be used to test

the effects of future changes and enhancements.

2. To verify the feasibility of design:

- The performance of the application can be determined more easily.
- The prototype can be used to verify results of a production system.
- The prototype can be created on a minicomputer and then that software

prototype may become the specifications for that application which
may be developed on a larger mainframe computer.

3. To create a final system:

Part (or all) of the final version of the prototype may become
the production version.

- It is easier to make enhancements, and some parts may be recoded
in another language to improve efficiency or functionality.

When Not to Use Prototyping

1. When an application requires a standard solution that already exists
and is available at a reasonable cost from a software supplier.

2. When you don't have a good understanding of the tools available
to prototype.

3. When the organization's data and software resources are not well
organized and managed.

4. When MIS management is unwilling to develop a staff of professional
systems/builders.

5. When the user/designer is unwilling to invest his/her time in the
development of the application system.

357

358

Potential Problems

One of the initial problems typically encountered is the acceptance of
the prototyping methodology by the systems people. This is due to the
fact that people naturally tend to resist change. It may also
encourage the glossing over of the systems analysis portion of a
project. It is not always clear how a large complex system can be
divided and then integrated. Initially, it could be difficult to plan
the resources required to prototype (people, hardware and software).
It may be difficult to keep the systems staff and users abreast of each
version of the system. Programmers may tend to become bored after the
nth iteration of the prototype. Testing may not be as thorough as
desired. It might be difficult to keep documentation on the
application up to date because it is so easy to change.

Even with these concerns, prototyping provides a
working relationship for the users and the builders.
all data processing management to learn to use this
creatively and to manage it effectively.

very productive
So it behooves
powerful tool

THE ADVANTAGES OF PROTOTYPING GREATLY OUTWEIGH THE PROBLEMS!

Advantages of Prototyping

One of the main advantages of application prototyping is that this
methodology provides a capability to quickly respond to a wide variety
of user requests. It provides a live, functioning system for user
experimentation and accommodates changes in a dynamic user environment.
One interesting aspect of this approach is that users are allowed and
even encouraged to change their minds about an application's interfaces
and reports, which is a very rare occurrence during the traditional
approach. Maintenance is viewed right from the beginning as a
continuation of the design process. Finally, prototyping provides an
effective use of scarce systems/builders. One or a limited number of
systems/builders will be required for each prototyping project; and
while users are testing one prototype, the systems/builder can be
working on another.

Cost and Efficiency

It has been found that there is an order of magnitude decrease in both
development cost and time with the prototyping methodology.

It is often difficult to estimate the cost of prototyping an
application system because the total costs of development, including
maintenance, are usually lumped together. The cost of implementing the
initial system is much lower than the traditional approach (typically
less than 253).

However, software prototyping could be expensive in the following ways:

It requires the use of advanced hardware and software.
It requires the time of high-level users arid experienced systems
staff.
It requires training of the systems staff in the use of prototyping
and the associated tools.
Application run-time efficiency may be compromised.

The main thing to remember is that the main focus of prototyping is not
so much efficiency but effectiveness.

PROTOTYPING VS TRADITIONAL
APPROACH

--- Analysis/Design ~·····Traditional
-·- Development /""' Approach

$
----· Test/Implementation (/\
- p,.oduetion/Mo.1nt• "~e. +----~ser first sees system

,_-·

Cumulative
Investment

/
/

/
/

,//
/

~(,. - Prototype

/ .. f•"' Approach

/:{&, //
,,. / · user begins working with prototype

.,,"'
~~ -

Essential Resources

The following are the essential resources to effectively do application
prototyping:

1. Interactive Systems

Hardware and Operating System When doing application
prototyping, both the builder and the system must respond
rapidly to the user's needs. Batch systems do not permit
interaction and revision at a human pace. Hardware and
associated operating systems tailored to on-line interactive
development are ideal for software prototyping.

2. Data Management Systems

A Data Base Management System provides
creating, retrieving, manipulating,
information resources. Prototyping
inconceivable!

the tools for defining,
and controlling the

without ! DBMS is

359

~o

3. Data Dictionary

A Data Dictionary provides standardization of data and file
locations and definitions, a cross reference of application
programs, and a built-in documentation capability. These are
essential to managing the corporate resources and extremely
useful when prototyping.

4. Generalized Input and Output Software

Easy to use data entry, data editing, and screen formatting
software are extremely helpful in the application prototyping
process to allow the programmer to sit down at a terminal with
a user and interactively create the user's screens or menus.

Powerful, easy-to-use report writer and query languages provide
a quick and effective way of retrieving and reporting on data
in the system. A report writer that uses default formats from
very brief specifications is most useful in the initial
prototype.

A powerful graphics capability can be extremely useful for the
display of data in a more meaningful graphical format.

5. Very High Level (Fourth Generation) Languages

Traditional application development languages such as COBOL may
not be well suited for software prototyping because of the
amount of code that has to be written before the user sees any
results.

Very powerful fourth generation languages
directly to a data dictionary for their data
ideal. One statement in this high level
realistically replace 20-50 COBOL statements.
amount of code a programmer has to write
speeds up the development process.

6. Documentation Aids

that interface
definitions are

language could
This reduces the

and maintain and

Tools to aid in the maintenance of programs written in a 4GL.

Tools to aid in maintaining user documentation on-line.

7. Libraries of Reuseable Code

A library of reusable code to reduce the amount of redundant
code a programmer has to write is an important prototyping
resource.

This code could represent commonly used routines made available
to programmers.

Hewlett-Packard's Tools for Prototyping

Hewlett-Packard is one of the few vendors that supplies the majority of the
tools needed to effectively do software prototyping.

* Interactive Systems

- HP 3000 Family of Computers
- MPE Operating System

* Data Management Systems

- IMAGE/3000
- KSAM/3000
- MPE files
- HP Silhouette/3000
- HP Access Central, HP Access

* Data Dictionary

- Dictionary/3000

* Generalized Input/Output Software

- VPLUS/3000
- QUERY/3000
- REPORT/3000
- INFORM/3000
- HPEASYCHART
- DSG/3000

* Very High Level Languages

- TRANSACT/3000

* Documentation Aids

- EDITOR/3000
- HPSLATE
- HPWORD
- TDP/3000

361

362

Additional Prototyping Tools Available from HP Third-Party Vendors

*

*

*

..

Data Management Systems and Associated Utilities

- ADAGER
- CARESS, INTACT, SILHOUETTE/3000
- DBACE
- DBAUDIT, SUPRTOOL
- DB GENERAL
- DBMGR, IMSAM, OMNIDEX, CAPCHG
- DBTUNE (Europe Only)
- HSC-COPYDB
- IMAGINE
- MINISIS
- MIRAGE (HP 150)
- PC/IMAGE (HP 150)
- RELATE/3000
- SPEEDEX, SPEEDBASE (HP 150)

Generalized Input/Output Software

- DATADEX/3000
- EASYREPORTER
- ENVY, HELPER
- INDEX PLUS
- MONITOR, MISTRAL (HP 150)
- PAL DATA REPORTER
- PRESENTATION GRAPHICS
- PRW/3000
- QUIZ, THE EXPERT, GRAPHICS
- RELATIONAL QUERY/3000
- SCREEN/3000
- WHAT-IF
- THE WRITE STUFF

Adager
Carolian Systems International, Inc
Snodgrass Consulting
Robelle Consulting Ltd.
Bradmark Computer Systems
Dynamic Information Systems, Corp.
HI-COMP
Hawaiian Software Company
Technalysis Corporation
Systemhouse Ltd.
Datasoft International
Advanced Data Services
CRI, INC.
Inf ocentre

Dynamic Information Systems, Corp.
Info centre
System Works, Inc.
Spectrum Solutions
Datasoft International
Gentry
ARENS
Infotek Systems
COGNOS
Upland Software
RMS Business Systems
CIBAR, Inc.
PROTOS Software Company

Fourth Generation Languages and Utilities

- ARTESSA/3000 (Europe only) RAET Software Products
- CBAS/3000 Comprehensive Systems, Inc.
- FASTRAN (TRANSACT Compiler) Performance Software Group
- FLEXIBLE Sages American Group
- INSIGHT II Computing Capabilities Corp.
- LL'SPIRIT Singapore Computer Systems, PTE.LTD.
- PAL FAMILY GENTRY
- POWERHOUSE (QUICK) COGNOS
- PROGSPEC/3000 (COBOL Gen.) Productive Systems
- PROTOS (COBOL Generator) PROTOS Software Company
- Q-PLUS Los Altos Software
- RELATE/3000 APPLICATION BUILDER CR!
- SPEEDWARE, MICROSPEEDWARE Infocentre
- THE SYNERGIST Gateway Systems Corp .

Documentation Aids

- DOCUMENTOR (Part of SPEEDWARE)
- LARC
- QEDIT
- ROBOT/3000
- $/COMPARE
- SPEEDDOC, SPEEDEDIT
- TESS/AIDE

Infocentre
LARC Computing
Robelle Consulting Ltd.
Productive Software Systems, Inc.
Aldon Computer Group
Bradford Business Systems, Inc.
Computer Consultants and Serv. Center

The preceding lists of HP third-party software are not 100% complete.
The majority of the listed software was derived from ads placed in
SuperGroup Association Magazine, Interact Magazine and The Chronicle.
Please consult the Hewlett-Packard Business Systems Software Solutions
catalog (Part # 30000-90251) for additional information.

Prototyping is
applications.

truly a "state-of-the-art" way of developing

Software prototyping promotes an interactive dialogue between
the users and the programmer, which results in a system being
developed ~ quickl.y, and results in an interactive
development approach which is friendlier for the end user.

The prototype provides a live working system for the users to
experiment with instead of looking at lengthy specifications.

The users are provided with an earl.y visualization of the
system which allows them to immediately use it.

The users are allowed and ~ encouraged to change their minds
about user interfaces and reports.

Maintenance is viewed right from the beginning as a continuous
process and because the prototype is usually written in a very
high-level language, changes are faster to locate and easier to
make.

Software prototyping results in:

Biography

* Users who are much more satisfied and involved in the
development process.

* Systems that meet the user's requirements and are much more
effective and useful.

* Improved productivity for all those involved in software
prototyping: the user/designers and the systems/builders.

Orland Larson
is currently Information Resource Management Specialist for Hewlett­
Packard. As the data base and application development specialist for
the Information Systems Tactical Marketing Center he develops and
presents seminars worldwide on data base management, information
systems prototyping and productivity tools for information resource
management. He is a regular speaker at Hewlett-Packard's Productivity
Shows and Users Group meetings and also participates in various
National Data Base and 4th Generation Language Symposiums. Previously
he was the Product Manager for IMAGE/3000, Hewlett-Packard's award
winning data base management system.

Before joining HP he worked as a Senior Analyst in the MIS Department
of a large California-based insurance company and prior to that as a
Programmer/Analyst for various software companies. Mr. Larson has
been with Hewlett-Packard since 1972.

363

364

Bibliography

Boar, Bernard H., Application Prototyping: A Requirements Definition
For The SO's, John Wiley & Sons, New York, New York, 1984.

·Canning, Richard G., "Developing Systems By Prototyping," EDP Analyzer (19:9)
Canning Publications, Inc., September 1981.

Jenkins, A. Milton, "Prototyping: A Methodology For The Design and Development
of Application Systems," Division of Research, School of Business, Indiana
University Discussion Paper #227, April 1983, (41 pages) •

.Jenkins, A. Milton and Lauer, W. Thomas, "An Annotated Bibliography on Proto­
typing," Division of Research, School of Business, Indiana University Dis­
cussion Paper #228, April 1983, (25 pages).

Larson, Orland J.,"Software Prototyping - Today's Approach to Application
Systems Design and Development," Proceedings 1984 International Meeting
HP 3000 IUG, Anaheim, California, February 26 - March 2.

'Martin, James, Application Development Without Programmers, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

·Naumann, Justus D. and Jenkins, A. Milton, "Prototyping: The New Paradigm
for Systems Development," MIS Quarterly, Vol. 6, No. 3, September 1982.

Naumann, Justus D., and Galletta, Dennis F., "Annotated Bibliography of Proto­
typing for Information Systems Development," Mana ement Information
S stems Research Center Workin Pa er MISRC-WP- 2-12 , September 1982.

Podolsky, Joseph L., "Horace Builds a Cycle," Datamation, November 1977,
pp.162-186.

Wetherbe, James C., "Systems Development: Heuristic or Prototyping," Computer­
world, Vol. 16, No. 7, April 26, 1982.

A DATA DICTIONARY ARCHITECTURE FOR THE YEAR 2001

Leon Leong

Hewlett Packard

Information Networks Division

Cupertino, California USA

Summary

Data dictionaries will be a critical service in managing
a company's information network. Data dictionaries are being
applied in many areas: fourth generation languages, report
writers, query tools, network directories and transparent network
access products. Thus choosing a data dictionary with an
appropiate feature set can be the key to a well managed information
network. This paper gives an overview of several features that
have been included in Hewlett Packard's new dictionary product,
System Dictionary, how they function, and what the features can
be used for.

Introduction

A data dictionary is a central repository of information
about the data and resources that a company has on its computer
systems and network. Dictionaries are used to store, manage and
organize this information. The information about the data and
resources that a company creates and uses is called "metadata";
metadata means data about data. Metadata can include information
about the name, size, structure, use, ownership, location and
other attributes of a company's data and resources.

Typical objects that are documented in a company's information
environment include:

- data base schemas,
- file and record layouts,
- data element descriptions and their use,
- computer nodes and device configurations,
- network topology,
- users an their security information.

A dictionary does not contain the actual object; just a
description of the object. For example, a company may have a
field in a file called "PART-NUMBER". A data dictionary would
contain information such as,

- size (10 bytes),
- data type (ascii characters),
- display length (10 characters) ,
- owner (manufacturing) ,

whereas the file would contain the actual part numbers, for
example 3225490001.

367

368

Subsystems which have objects being described in a data
dictionary may have their own method for describing its structure
and usage. For example, a data base has a schema, a network has
a directory. These other methods, however, are very specialized
for the particular subsystem; for example, it is not possible
to describe the network topology in a data base schema, or vice
versa. A data dictionary provides users a common format for
describing metadata, such that it can be shared, and not redefined
for every subsystem.

At first impression, one would guess that the users of a data
dictionary would be individuals such as data base administrators,
system analysts and programmers. However, there are many different
types of products which can also be called "users" of a data
dictionary:

- Fourth Generation Languages

A fourth generation language (4GL) can use a data dictionary
to resolve data definitions at compile/load time. A 4GL
programmer only needs to know the name of the files, data
bases or data elements that they want to use; the 4GL then
retrieves from the dictionary the data type and structure
information when the program is compiled. Inconsistencies
between programs are reduced because there is a single
source of definitions - the data dictionary.

- Ad Hoc Query Tools and Report Writers

An ad hoc query tool/report writer will use a data dictionary
to display to a user possible data to report on. For example,
the query tool will, based on a user id, determine from the
data dictionary what that user is allowed to access. The
query tool will then retrieve from the dictionary the files,
data bases and data elements and display them to the user.
The user will then choose what to report on. The query
tool then uses the metadata in the dictionary to determine
the optimal access path.

- Application Customization

Many applications tend to be very specific to an organization's
operation. However, if an application were to utilize the
metadata in the dictionary, then the dictionary can become a
customization tool for the application. For example, if all
headers and screen field names were stored in a data dictionary
then a subsidary of a company in a different country could
change the application to their native language, just by
changing the metadata in the dictionary.

- Networks and Transparent Access

A dictionary can be used to describe the location of nodes,
and the topology of a company's computer network. In addition,
a node's device configuration could also be included. This
has potential uses for network configuration and management.
By combining the network information with data structure
information, applications can implement transparent network
access for their end users.

The uses of a data dictionary are many, and is only limited
by the imagination of the people using it. But what of the features
needed of a data dictionary, to make it usable for all these
applications? Loading a dictionary can be an expensive operation;
a dictionary should be evaluated for its feature set before being
used as a central part of an information network. This paper
describes some specific dictionary features which have been put
into Hewlett Packard's new data dictionary product, System Dictionary
and some the uses and benefits of those features.

Entity Relationship Model

System Dictionary is based on the Entity-Relationship model.
The Entity-Relationship model is composed of entities, relationships
and attributes. Entities are objects in a company's information
network. Every entity will belong to an entity type. An entity
type is a template which describes the attributes associated with
an entity. Relationships describe logical associations between
entites. Attributes are pieces of information about either entities
or relationships. Similarly, every relationship belongs to a
relationship type; a relationship type is a template which describes
the attributes associated with a relationship.

,---------------
! ,------------- I
I I I I
I I _--.;.-ooa_ I I
I I I I
I I I I
I I Entity Tp Allrilut!IS Entity TjllO Attri>ut!IS I I
i L _____ -~TY_!!_ _____ I I
I I I
I r __ _J_ ___ -. I --p Typo Attolbuloo __J I I -----
L _______________ I

As an example, suppose a company has an Inventory Image database.
The database is composed of three datasets: manual masters Parts
and Suppliers, and a detail Stock. In the Entity-Relationship model,
Image-Database and Image-Dataset will be entity types. Inventory
is an entity of the entity type Image-Database. Parts, Suppliers
and Stock are entites of the entity type Image-Dataset. The
r€lationship type Image-Database Contains Image-Dataset, has three
relationships in this example: Inventory contains Parts, Inventory
contains Suppliers, and Inventory contains Stock. An attribute for
the entity type Image-Dataset would be Image-Dataset-Type; for the
entities Parts and Suppliers, the attribute would have a value of
"manual", and for the entity Stock, the attribute value would be
"detail".

369

370

lmage-0..tabase-Type: Turbo

Conlllne Contm. Contains

System Dictionary allows more than one relationship type to be
established between entity types. For example, a code module may
process another code module, or a code module may ccntain another
code module. In order to allow for more than one relationship
between entity types, System Dictionary includes, as part of the
definition of a relationship ·type, an additional descriptor known
as a relationship class. In the Image example, only one relationship
type exists between the entity types Image-Database and Image-Dataset:
Image-Database Contains Image-Dataset. Two relationship types exist
between Modules: Module COntains Module, and Module Processes Module.
The relationship classes are: Contains, and Processes.

Contains

Processes

Example of multiple relationship types
between entity types

Most relationship types will involve only two entity types.
However there are cases in data modeling where, for integrity and
consistency purposes, three or more entity types are needed in a
single relationship type. System Dictionary allows a user to have
up to six entity types in a relationship type.

Extensibility

System Dictionary comes with a predefined set of entity types,
relationship types and attributes; this predefined set is also
known as the "core set". Thre core set of System Dictionary is
extensive enough to cover the basic subsystems on the HP 3000. The
core set includes structures which cover:

- MPE file system,
- KSAM files,
- Image/3000 data base management system,
- Network node locations,
- Code modules,
- MPE accounting structure,
- Cobol data structures.

The core set provides a stadard structure for most customers
to work within. However, every customer's information model will
be a superset of the core set; in addition, probably no two
customer's information model will be exactly the same. Consequently,
as customers adapt System Dictionary for greater use in their
information network, they will want to extend the dictionary with
their own entity types, relationship types and attributes to match
their data model. In order to support this, System Dictionary allows
a customer to create new entity types, relationship types and
attributes. In addition, System Dictionary will allow relationship
types to be established between existing core set entity types and
customer entity types, and for customer defined attributes to be
added to core set entity types and relationship types.

As another part of the extensibility feature, System Dictionary
allows customers to specify default values for attributes, and also
allows the specification of edit values for attributes. This
capability provieds a form of integrity checking on attribute values
entered. For example, the core set attribute Image-Dataset-Type
will have the edit values "Manual", "Automatic" and "Detail" as
its edit values. If any other value is entered for this attribute,
an error will be returned. Customers can modify the edit values
on core set attributes if they desire.

371

System Dictionary cannot anticipate every future use of the
product today, let alone the uses by the year 2001. Extensibility
allows the customer to grow their dictionary to meet their needs
today and in the future, as they make more and more of their
applications dictionary based.

Naming

Naming is an important part of the System Dictionary architecture.
The most basic function of System Dictionary is as a name server.
Users supply a name to the data dictionary system, and the dictionary
system returns a set of attribute values for that name. Every entity
in System Dictionary has a primary name; that is the name that
it was created with.

System Dictionary supports "synonym" names for entities.
Customers will often have situations where they have multiple
names for an entity, and they would like to search the dictionary
based on any one of the names. When a user gives a synonym name
for an entity, the attribute values returned are the same as if
the entity's primary name were used. For example, a customer may
have a data element named "Ship-Date" in one application; in another
application, the data element may be known as "Bill-Date". Since
the name Bill-Date refers to the same data element, it should be
created as a synonym for the data element Ship-Date. In System
Dictionary, a user can create synonyms for any entity that they
own; when the original entity is deleted, all the synonyms are
also deleted.

eyte-Len\ltlt: 6, Element-Type: Char ••

System Dictionary also provides for "alias" names for entities.
Alias names are different than synonyms, in that aliases are not
used as keys into the dictionary. Aliases are attributes of an
entity. Aliases are most useful when an entity's primary name is
chunqcd, due to naming conflicts. In the case of a naming conflict,
an entity may be renamed, with the original name being assigned
as un ulias to the entity.

System Dictionary provides another naming feature: internal
and external names. Customers will often have operations which
span many countries. Each country will have its own language and
terms that they use. A local data administrator may customize an
application by modifying the names in the dictionary. However
this can lead to problems when the originator of the application
wants to make some modifications or develop utility programs which
operate from the dictionary. System Dictionary provides two open
modes to solve this problem: internal and external name mode.

372

When a user creates a dictionary object, such as an entity, both
an external and internal name can be supplied. If no internal name
is supplied, then it defaults to the external name. External names
can be modified to conform to the native language of the user;
internal names can never be modified. Retrieval from the dictionary
will be via the name open mode. Thus application developers which
develop softwarebased on names in the dictionary can always use
internal names, while the end users can use the external names.

Domains

Domains are separate name spaces in the data dictionary. Domains
are useful for partitioning the dictionary by application system.
Customers will often have many different application systems already
in existence before purchasing a dictionary, or will have several
application systems in development concurrently. Domains aid in
migrating multiple applications to System Dictionary. These
application systems will usually have conflicting names and definitions
For example, an inventory application may have a data element
"P-NUMBER", which is used to represent the object Part-Number.
A human resources application may also have a data element "P-NUMBER",
which in its context is used to represent the object "Personnel-Number".
A third application, such as an Accounts Payable system may have
a data element "Part-No"; Part-No refers to the same data element
in the Inventory application known as "P-NUMBER".

These three application systems may already coexist when a
dictionary is purchased to manage the overall information environment.
Attempts to load the data definitions for the three application
systems in the same domain lead to a variety of name conflicts.
This would force the resolution of the name conflicts before the
dictionary could be utilized, and it would also require changes
on two the application systems. Domains are a useful feature to
solve this problem. An INVENTORY domain could be created for the
Inventory application, a HUMAN-RESOURCES domain for the human
resources application, and an ACCOUNTS-PAYABLE domain for the
accounting application. Since each domain is a separate name space,
no conflicts would occur.

In order to promote the sharinq of data definitions, however,
a "common" domain needs to exist in the data dictionary. Users
are allowed to link entities and relationships in the common domain.
This linking allows the attribute definitions to be shared, yet it
also allows each application system to keep its own name for entities.
Local and common domain entities and relationships can be linked
over time, and application system names adjusted over time as the
application systems evolve. When an application system is moved
to another node in the network, its definitions are separated out
nicely by domain.

373

374

Unklng definltlone between domelne

Version Control

Application systems are "living" systems. Application systems
change, as a normal part of user feedback, growth, changing business
environments and perhaps governmental regulation. A data dictionary
should support the application system life cycle by having a version
control feature. Version control as the name implies, allows entities
and relationships to have multiple versions of values for attributes.
For example, in version A, the element "Zip-Code" may have a length
of five digits, while in version B of an application, the element
may have a length of nine digits.

System Dictionary supports the concepts of version control.
Every domain may have more than one version of entity and relationship
definitions. Each version in a domain has a status: test, production,
or archival. Within a domain, there may be as many test or archival
versions as a user may want, but only one version may have its status
set to production. Definitions in test versions may be modified,
while a version which is set to a production or archival status
becomes "read-only".

Version A.00.01
Attributes

Version A.00.02

Version A.00.03
Attributes

When a user wishes to access definitions in System Dictionary,
the user must first open System Dictionary. The System Dictionary
open operation requires the specification of a version in a domain,

to retrieve the defintions from. The version can be specified by
one of two methods: one method would be to specify the name of the
version; the other method is to specify a version status. System
Dictionary will look for the version which was last set to the
specified status to retrieve definitions. A dictionary without
version control requires all applications to upgrade to a given
version at the same time. System Dictionary's version control
feature allows each application to upgrade to the version at a
time which best suits the user.

Dictionary Security

System Dictionary's security system is based on the ownership
and capability. A user of the System Dictionary is known as a
"scope". Every entity and relationship decides what level of
access, also known as sensitivity, that other scopes may have.
There are three sensitivity levels: public read, which allows any
other scope read access; public modify, which allows any other
scope read and modify access; and private, which does not allow
any other scope access. In the case of private sensitivity, System
Dictionary allows the owner of an entity or relationship to
explicitly assign on a scope by scope basis, read or modify access.

Domains have two sensitivity levels: public modify and private.
In the case of public modify, any scope has access to the domain;
in the case of private sensitivity, only the owner scope may access
the contents of the domain.

Every scope is assigned a set of capabilities. These include:

- Customization, which allows a scope the ability to create,
modify and delete entity types, relationship types, attributes
and relationship classes,

- Domain, which allows the creation and deletion of domains,

- Version Control, which allows the creation and neletion of
versions,

- Security, which allows the ability to create and delete
scopes,

- Create, which allows the ability to create, 2mod:i;ry~.and delete
relationships and entities,

- Read, which allows the ability to read entity and relationships.

System Dictionary has one "superscope", known as the dictionary
administrator (DA) scope. The dictionary administrator scope has
full control over System Dictionary; this scope can perform any
type of access on any domain, version, entity type, relationship type,
attribute, relationship class, entity or relationship regardless of
who the owner is.

Programmatic Access

An important feature of System Dictionary is that the product
provides a standard, stable, and supported set of library routines,
known as System Dictionary intrinsics. System Dictionary intrinsics
provide independent software vendors and programmers the capability

375

376

of accessing the dictionary contents without having to know how
System Dictionary's internal structures are organized. By using
the intrinsics, ISV's are protected from chang~s in the internal
structures which may occur as data management technology improves,
and System Dictionary takes advantage of those improvements.

Syatem Dictionary
Use- Interface

Appication
Development Tool•

System Dictionary

Appicationa
Systems

Intrinsics provide a method for integrating applications with the
dictionary and thus provide a more active environment, whereby
changes in the dictionary can be reflected immediately in the
applications. Active dictionary environments will be commonplace
as customers evolve their information networks to the year 2001;
intrinsics are a method for implementing it.

Summary

This paper has touched upon several of the features incorporated
in Hewlett Packard's new dictionary product, System Dictionary, and
what benefits the customer derives from the features: flexibility,
migration, and growth to an active dictionary environment.

Biography

Leon Leong has been with Hewlett Packard for past seven years. He
is the R & D project manager for the System Dictionary project.

MICROCOMPUTER WORKSTATIONS.
THE PATH TO FULL INTEGRATION.

Richard Linnett
Cognos Inc. Ottawa Ontario Canada.

Summary.

With the entry into the market by major computer
manufacturers, microcomputers came out of the hobbyists den
and became a legitimate tool in the office environment. A
large number of microcomputers have been installed to handle
small applications within an office - word processing and
spreadsheet type applications. To a large extent these
microcomputers are completely self contained, any data
required from existing minicomputer systems being promoted
into the system manually.

Many microcomputers are now being used not only for
standalone wordprocessing, but also as replacements for
terminals connected to central minicomputers or mainframes.

Exchange of data between minicomputer and microcomputer is
becoming a major requirement - whether it is the extract of
data from the corporate database for inclusion in a
wordprocessor report, or the transfer of files between the
two environments.

We are now seeing tools on the market that address the data
transfer requirements. Within the next few years we should
expect to see application development tools on the market
that go far beyond file transfer to full integration.

This paper looks at the state of microcomputer
and paints a broad scenario of how we can
situation to change over the next few years
towards true integration.

integration,
expect the

as we move

379

380

What is Microcomputer Integration?

Much attention is being paid to the integration of software
packages on the microcomputer, and we now have a number of
integrated wordprocessor, spreatlsheet and communications
products available. These prctlucts, despite the criticisms,
have made a step in the direction of integration on the
microcomputer. However, the integration stops at the
microcomputer, there is no real integration into the
minicomputer world.

Integration of microcomputers into an office minicomputer
environment entails far more than an easy to use front end,
a full distributed environment is needed where-:

The minicomputer and Microcomputer work together in
processing an application. A micro can typically
support far better end user interaction than a
minicomputer. A minicomputer can support larger
databases and cah control sharing of data across
multiple users far better than a microcomputer. To be
fully integrated, these capabilities must be used to
the best ability.

Load sharing between minicomputar and microcomputer has
to be intelligent - load sharing should be self
balancing depending on the load of the systams at the
time of processing.

There will always be a number of dumb terminals in use,
or times whan the central minicomputer system is
unavailable. An integrated mini I micro environment
must also be able to adapt to this.

Data exchange between microcomputer and minicomputer
will not be on a "batch" basis as with file transfer,
but will be on a transaction basis•

Data in the environment has to be available using
terminology that the -user understands. A data
dictionary will have to be powerful enough to shield
the user from the intricaci•s of Image databa­
structure, allowing dynamic user views of data to be
developed independantly of where or how data is stored.

Much of this could be achieved now with extensive coding at
both mini and micro to develop an integrated application,
but the magnitude of the work required pracludas it. Future
developments in application development software will make
this intelligent use of all resources available to all
users.

Where Are we coming from?

Microcomputers and minicomputers cannot really be considered
as being integrated now. The uses of both environments is to
all intents, completely divergent.

We have a very traditional environment in the minicomputer
world:

There is still has much faith in COBOL, structured
programming techniques and complex databases.

The minicomputer DP department suffers from the same
problems as a large mainframe department large
maintenance loads and long backlogs of work requests
are making the department appear very unresponsive to
user demands.

These backlogs are causing the DP department to move
from COBOL to products that can aid productivity. But
even with the increased turnover in development, the
backlog is not being reduced because more and more
requests are being added to the backlog.

Many DP departments are experimenting with, or actively
encouraging users to develop their own ad hoc requests
using the same development tools as the DP are now
using. However, with data in the corporate database
normalised in a way that makes for efficient
processing, it is not readily meaningful to the user.

The microcomputer environment is very much at odds with the
structured minicomputer world.

Small spreadsheets or Basic programs are developed as
needed and thrown away just as quickly.

A knowledgeable spreadsheet user can build very complex
models that reflect an entire operation, and that model
can be adjusted quickly to incorporate any operational
changes that occur.

As long as these two worlds stay apart, the different
methodologies can co-exist, the distain of the professional
DP professional for the ignorant microcomputer user balanced
by the distain of the microcomputer user for the DP
department that never gets anything done.

381

382

Where are we now?

With few exceptions the level of integration between
microcomputer and minicomputer is now limited to the
downloading of data from the minicomputer for processing in
a microcomputer application. Typically this involves:

A mini program - COBOL or possibly a report writer
extracts data from the corporate database and build a
file on the minicomputer.

Transformation of data into the optimal format for use
by the microcomputer is not always attempted. Flat
ASCII or DIF files are the common transfer medium.

Actual data transfer is managed using a terminal
emulation package. The microcomputer, which may be
capable of 750,000 instructions per second does no more
than wait on a terminal port and transfer the
occasional character to a disk file.

The spreadsheet user then has the data available for
use.

There are many problems with this situation:

A program needs to be written on the minicomputer to
extract the data. That requires knowledge of the host
system and frequently scheduling of work by DP staff to
write the programs.

Communications is a
configure a terminal
protocols used by the
that most users do not

black box to most people. To
emulation package to match the
host system requires knowledge
have and do not care to have.

Transformation of the data to ASCII or DIF formats
looses format information. When loaded into the
destination spreadsheet, the user frequently sees
misaligned columns and truncated values.

Very few sites look at the uploading of data back to the
minicomputer as a viable option. Considerable problems exist
with data integrity if significant portions of a database
are offloaded from the host to distributed microcomputers.

Although these integrity problems preclude file transfer as
a viable basis for distributed processing, there will be
instances where the nature of the data allows for file
transfer. As an example, a corporate budget file could be
safely distributed across the individual cost centres
assuming that a cost centre could only update that cost
centres budget.

The first integrated packages

By limiting the process to data download only, many of the
problems of data integrity can be avoided. For that reason,
the first products that we can expect to see appear on the
path to shared processing will appear in the guise of more
efficient extract programs than available now.

As previously, mentioned, a microcomputer acting in terminal
mode wastes a large amount of processing power. The more
powerful microcomputers that have become available during
the last year, and microcomputens based on announced but not
yet available processors will have even 1110re spare
proc-sirn; power during what is basically terminal mode.

By moving to
systems, the
program into

multitasking (if not multiuser>
option will be there to move a file
the background:

operating
transfer

This will allow the user to continue with micro based
work during the time transfer takes.

By hiding the file transfer inside such an environment,
probably with an attractive windows interface, the
microcomputer will become more effectively used thaA
now. This is however very much a dead end.

Nothing is
host, and
addressed.

done using this approach to offload
the problems of currency control are

the
not

The alternate, and preferable approach to using the spare
microcomputer power is to offload the host system as much as
possible.

Definition of the extract request will be offloaded
completely from the host system. By formatting and
editing the request on the microcomputer, considerable
savings in host resources can be made while improving
the user interaction.

There is no need for the host proclHisor to use valuable
cycles to reformat the data into a microcomputer
format. That work can adequately be managed during the
time that the microcomputer is waiting for input.

Together, the two approaches provide a major advance in what
is available now.

383

384

Concurrent with
look towards
microcomputers

the improved data extract packages we can
intelligent terminal emulation for

that do more than simple terminal emulation.

Many users are now using microcomputer terminal emulation
products to provide an easy to use front end to the HP3000.
The command language being used to control access to the
host, providing autologon facilities and navigation through
the available applications by a series of menus.

We should be looking for combined minicomputer I
microcomputer programs that take this menu driven approach a
step further. As microcomputer users begin to require more
access to the minicomputer, some integration of minicomputer
and microcomputer operating system commands is needed. This
could take the form of:

a menu driven option to MPE commands, much along the
lines of PAM on the HP150.

menu driven equivalents to utilities such as FCOPY.

Beyond such an enhanced terminal emulation feature, we
should be looking for intelligence being distributed to the
microcomputer during application processing. With such a
front end, it will be possible to make significant
reductions in host processing and improve the user interface
dramatically. It is possible to offload the following:

Screen formatting - boxes, windows etc require a
considerable amount of communications traffic in
addition to the host processor time. Major impr·ovements
in turnaround could be managed by this process.

Data entry editing. If a field is known to be numeric
and ~ithin a certain range, it would be reasonable to
make such checks on the microcomputer before
transmitting the data to the host. By keeping the
processing local until database access is required,
the microcomputer can be used to its best, providing a
fast effective front end to the host database machine.

Even with all data remaining on the host system, a
significant housekeeping process is implied, as meaningful
savings require screen formats and editing rules to be
downloaded to the microcomputer. Changes in the central
system would need to be propogated to all microcomputers
when they use the system.

It is likely that a fourth generation product will be
enhanced to provide this level of integration in a fairly
automated manner.

These product initiatives would seem to be fairly simple at
a first glance, they can be implemented using existing
technology. They do however, provide a major improvement in
the utilisation of microcomputers in the minicompter
environment and set the basis fer further product
developments.

Further advances require developments in the following
areas:

A Data dictionary will need to be available
environment that goes beyond the simple file and
descriptions that are in use now:

to the
element

The data dictionary is going to need to be far mare
active than now. All data access will need to be routed
through the dictionary if dynamic data formats, as
required by the microcomputer user are to be supported.

The data dictionary will need to support distributed
data, and the dictionary itself will need to be
distributed and replicated across several systems.

If central data stora9e is to remain in complex data
base formats such as IMAGE, the dictionary is going to
need to hold information necessary to navigate across
the database.

User views of data, based an multiple file acc-s and
selection criteria will need to be available.

Database security and integrity are major requirements
of the DP department. Str·ong controls wi 11 need to be
available in the dictionary.

The same application
become available on
microcomputer.

development language will
both the minicomputer

need
and

to
the

This may not necessarily entail mirror images of the
language being available on both systems. There are
many f-tures required of a language by a DP guru that
are not at all relevant to the microcomputer user.
Within limits, the fine tuning commands that the guru
needs only lead to confusion and rejection of the
language by a no DP user.

Despite the question about how exactly a microcomputer
language duplicates the minicomputer language, there is
a strong need for the ability to develop and run the
same application on both mini and micro. Many small
applications would benefit from being transfered to a
microcomputer, with the ensuing release of minicomputer
resources.

385

386

Application development is frequently a resource hog,
and the availability of a microcomputer development
environm~•t is a good way to reduce the mini load.

A question does remain about the power of microcomputers
being sufficient to fully support a development language
that was based on the size and capabilites of a virtual
memory minicomputer.

Communications is an area that requires some change before
the true integrated environment can develop1

Standards in data communications are needed if the
integrated environment is to be available freely. This
is happening now with the OSI layered protocol being
supported in more and more products. The IBM LU 6.2
peer to peer protocol will also drive more
standardisation into the communications world.

Packet switch networks need to become more widespread.
The cost reductions for long distance connections and
data int•;rity availabl• through an error checking link
are necessary.

Error checking and handling need to become more a part
of the communications environment, allowing some
reliance on data transmission. X25 networks and the
newer error checking modems are beginning to provide
this integrity.

The current mess of inter microcomputer communications
needs to settle before much progress can be made. Few
software developers can make significant progress in
development of network software until some
standardisation happens, and until the software
developers begin to adapt to the networks real
multiuser versions of microcomputer software will not
be available.

The Fully Integrated Workstation.

Given the required enhancements in the data dictionary, the
"universal language", strong communications and
microcomputer power we can look for applications software
that will allow the power of the microcomputer to be
integrated with the power of the minicomputer. We will then
have a truly integrated microcomputer workstation1

Applications will be developed using a common language.
It may be that the microcomputer user has a series of
screen painters and application generators while the DP
expert has a concise syntax that allows for very exact
specifications, but the base syntax will be the same.

Once developed, the application will be able to run on
either microcomputer or minicomputer, depending on the
data volumes and the scope of the application.

If an i!~lplication is implemented on the microcomputer,
it will be possible to port the application to the
minicomputer as data volumes grow.

If an application is run on the minicomputer, the
microcomputer terminal will offload as much of the
terminal management as reasonable. The same application
will be run side by side on a terminal and a micro, yet
the microcomputer will provide much faster response
times, and an easier interface than the pure terminal.

Truly distributed processing will be possible, with
data available locally on the microcomputer, from a
departmental minicomputer, or even through the local
minicomputer to the central corporate mainframe
database.

With standardisation of communications links, and
program to program communications across a link, it
will become possible for programs from different
vendors to be integrated to a level only dreamed of
today.

Microcomputer software such as a spreadsheet or a word
processing package will be able to access data from the
central host system easily and without need for host
system knowledge. Just as it is possible to move data
from the word processor part of an integrated
microcomputer package into the spreadsheet component,
it will be possible to extract from the host database
into the word processor and spreadsheet.

The two components,
connected through
and that link will
the two.

microcomputer and minicomputer will be
a very strong data communications link,
provide an intelligent highway between

387

388

Biography.

Richard Linnett has a wide background in the technical
aspects of Data Processing, gained over eighteen years of
practical expl!f'"ience with a number of orgaAisat.ions.

Richard Linnett has been with Cognos Inc for four years.
During this time he has been responsible for the
implementation of a number of projects to integrate
different hardware and software environments for clients
with mainframe, minicomputer and microcomputer applications.

He is now a Project Manager in the HP Marketing and
Development Division of Cognos.

FROM DATA ANALYSIS TO TurboIMAGE DESIGN

Jos Witteveen, Glenn Pereira
Database Consultants europe BV.
Amsterdam, Netherlands

ABSTRACT

Because information is one of the company's most valuable assets in any
organisation and the availability of information one of the highest
priorities, good Data Analysis and proper Database Design have become
critical success factors in the system development environment today.
This paper will describe how Data Analysis, Conceptual Access Path Analysis
and Logical TurboIMAGE Database Design should be carried out in order to
meet the information requirements of an organisation.

INTRODUCTION

TurboIMAGE/3000 has been developed to replace IMAGE/3000 in order to
provide increased performance and functionality.
The database architecture remains as a two-level network structure with
data set relationships between owners and members. It enables the HP/3000
DP professional, working in an environment in which data is shared across
many people, departments and applications, to develop databases which can
offer a number of significant advantages, such as :

Data integrity in an online environment
Central control of data
Scope for future development
Recovery facilities
Easy-to-use application development tools

These advantages, however, can only be realised if the database design is
carried out correctly with due regard to the natural structure of the data
and the way it has to be accessed and maintained. The risk of getting it
wrong is high and the costs of putting it right afterwards can be enormous.

ENVIRONMENT

A DATABASE is simply defined as a 'COMMON POOL OF SHARED DATA'.
Recognition of the fact that the organisation exists in a shared-data
environment is the pre-requisite for building a database. In a shared-data
environment the following principles apply:

1. Data exists in its own right and has relationships with other data.
2. Data is not exclusively owned by any department or application area, it

must be available to any authorised person or function within the
organisation.

3. Data has to be organised within the computer in a manner that reflects
its real-world existence.

4. The objective is to hold each piece of data only once in the database
files with exceptions allowed only for good reason and subject to
appropriate control.

391

392

S. Applications are built with due regard to the need for control and
synchronisation of data.

Figure 1 shows the System Development Cycle required in a Shared-Data,
Interactive environment. The right side of the diagram shows the steps
which are commonly used in Computer System Development ie. Activity
Analysis, Application System Design and Structured Program Design. The
left side shows a similar cycle of events for analysing the data (Data
Analysis), designing the data structure within the limitations of the DBMS
structuring rules (Logical Database Design) and the final physical design
of the database (Physical Database Design). The centre of the diagram
demonstrates the steps required to analyse how the activities (and eventual
computer processes) need to use the data.

All design begins with proper and thorough analysis. It is necessary to
collect the information using structured analysis techniques and feed the
results into a structured, systematic design procedure. Before database
design we are concerned with:

the structure of the data, Data Analysis
the way this data is used, Access Path Analysis.

DATA ANALYSIS

Trying to understand the structure and the characteristics of data has
become a science in itself. It is widely practised today using a number
of different techniques such as Data Analysis, Information Engineering and
Normalisation, thP latter being, perhaps, the best known.

In essence, analysis of data consists of recognising all the entities and
attributes that exist within the scope of your project and, subsequently,
the relationships that exist between entities.

An ENTITY is defj ned as anything of interest and about which data can be
kept. Typically, an entity can be an object (building), person (employee),
place (country) or event (flight).

An ATTRIBUTE is defined as an element that helps to describe the
occurrences of one or more entities. Typically, attributes can be codes,
names, amounts, prices etc.

A RELATIONSHIP is defined as an association between entities.
Whereas many types of relationship can exist, the two most common are the
'one-to-many' relationship and the 'many-to-many' relationship. Each
relationship is drawn as a straight line between two entities with some
symbol (arrow, crows-foot or trident) to show the 'many' of a relationship.

FIGURE 1 - The Systems Development Cycle in a Shared-Data,
Interactive Environment.

393

394

If, for example, a customer can have many orders, but one order can be
associated with only one customer, it may be represented as shown in Figure
2 below:

.___c_u_s_T_O_M_ER_:-----H~ WDER

Figure 2 - The one-to-many relationship

If it was required to show a relationship between Supplier and Product
where one supplier can supply many products and one product can be supplied
by many suppliers, it may be represent~d as shown in Figure 3 below:

~-su_P_P_L_I-ER----'~H~-~~~-Hi~_P_R_O_D_uc_T _ __.

Figure 3 - The many-to-many relationship

A variation, which is commonly used, is the optional relationship. This
shows that a relationship may hold in some cases, but not al]. If, for
example, a product may or may not be supplied by a supplier (ie. some
products may be manufactured internally), the above straight line would be
dotted at the product end, as shown in Figure 4 below:

SUPPLIER~ H------EJ
Figure 4 - Optional relationship

By identifying all the entities and relationships within the scope of your
project, it is possible to build up a picture of the data in that area.
This picture, which is normally called a Data Model, is a conceptual
representation of the data - the real world - and it contains all natural
associations. In addition to building the Data Model, all entities,
attributes and relationships should be documented. This documentation,
would contain precise descriptions, volumes, characteristics, special

conditions etc. The attribute documentation should become, essentially,
the Data Dictionary and should comply with any previous dictionaries set up
within the organisation.

Figure 5 shows a Data Model for the Order Processing System.

deals with
CUSTOMER f3:...._. ------<

is responsible
for

comes
from

sends

SALESMAN

contains works
for

ORDER

is in contains

ORDER
LINE

SUPPLIER ~

is for

is on

supplied

PRODUCT

~
supplies I is

I held
I as
I
I
I
I

~ by

Figure 5 - Data Model.

ACCESS PATH ANALYSIS

uses

~---~~~~--~
assigned L.:__j

to

REGION j
lies is

in responsible
for

_m

WAREHOUSE

is
held holds

in

STOCK l
.J

Access Path Analysis is a technique used to identify how the data is accessed.
It is carried out by drawing Access Profiles for all processes identified during
the Activity (or functional) analysis.
Processes can be categorised as follows:

RETRIEVAL Processes which, by definition, need to access data.

395

396

MAINTENANCE Processes which need to insert, modify or delete data but,
in doing so, would normally need also to access data (eg. validate that
customer exists and credit status is OK before inserting an order).

The essential information required for logical database design is the access
requirements ie. the ENTRY POINTS into the data structure and the NAVIGATION
PATHS around the data structure. The overhead of updating the database is
considered during Physical Design, when update performance will be evaluated.

An ENTRY POINT represents an initial entry into the data structure. It can
consist of a search for one occurrence of an entity (normally using the unique
identifier, eg. Customer Code) or a search for several occurrences (eg. al 1
customers called Smith). In the latter case, the occurrences may be required in
a particular sequence (eg. all customers called Smith in customer code sequence).
Figure 6, 7 and 8 below, show how initial entry can be represented on an Access
Profile. The single arrow indicates that one occurrence is accessed and the
double arrow indicates that many occurrences are accessed. An 'S' next to the
double arrow shows that the occurrences are accessed in sorted sequence:

\"\1

customer
code

CUSTOMER

Figure 6:
Single Record
Access

customer
I name
!

CUSTOMER

Figure 7:
Multiple Record
Access

customer
(s)fll name

CUSTOMER

Figure 8:
Multiple Record
Access in Sorted
Sequence

A NAVIGATION PATH consists of one or more relationships that need to be used, by
a process, to obtain all the data that it requires. Figure 9 shows the
navigation path for a process that needs to enquire on orders, by customer, and
display all the order lines in sequence.

Customer
Code

(IJ

CUSTOMER ORDER

[> [>
(s)

Figure 9 - Access Profile for Order Enquiry

ORDER LINE

In addition to drawing the access profiles, documentation forms should be
completed for each process showing frequencies, volumes of data accessed,

specific attribute usage within an entity, whether it is run in batch or on-line
(if known at that stage), response time or run time constraints etc.

From this documentation it is necessary to compile a number of statistics and
matrices which show the essential information required. Typically, these are as
follows:

Usage Statistics -

Usage Matrices

Attribute Usage
Matrix

Summary of
Retrieval Access
Requirements

showing how frequently entities and relationships are
used.

showing in which processes the entities and relationships
are used and/or created.

per entity, showing where attributes are used and/or
created.

showing all access paths required into and around the
data structure.

LOGICAL DATABASE DESIGN

In order to separate the functional and structural design decisions from the
physical design decisions, it is necessary to conduct an initial logical database
design which produces a logical data structure that:

1. Is built in accordance with the TurboIMAGE structuring rules.
2. Contains all needed data.
3. Supports all access requirements.
4. Will be used as the input for physical database design.

Logical database design is carried out in two steps:

I - Refining the data model
II - Mapping to TurboIMAGE

REFINING THE DATA MODEL

The main objective of the refining process is to determine what is required
of the data model, using the results of conceptual access path analysis.

During Data Analysis all relevant information is collected with regard to
the entities, attributes and relationships defined within the scope of the
analysis. The resultant data model should be reasonably close to the structure
that needs to be mapped on to the database but would, normally, need to be
refined in a number of ways as follows:

1. Eliminate many-to-many relationships from the data structure because
TurboIMAGE does not support them. (In fact, very few Database Management
Systems do).

They are eliminated by the introduction of a new "in-between" entity
(sometimes called a junction entity) and the creation of two one-to-many
relationships in place of the many-to-many.

397

398

Figure 10 below, shows how the many-to-many relationships between Product and
Supplier is expressed as two one-to-many relationships:

SUPPLIER r ... ------B
becomes

suwcm I ~ __ s_~_i~-~-Y_·__.f-- ---B
Figure 10 - Resolving Many-to-Many Relationships

Note:
The Access Paths for supplier - product need to be re-analysed.

2. Eliminate any entities, attributes and relationships which, although they
belong to the conceptual Data Model, are not required for use by the computer
application(s). This decision has to be made carefully, taking into
consideration the following points:

all entities, attributes and relationships that are put into the database
are likely to need maintenance to some degree.

due consideration must be given to future application development plans
(say, next two years) and possible information requirements (new reports,
ad-hoc enquiries etc.) that are not fully covered by the Terms of Reference
for the application(s) currently being developed.

3. Add new relationships to the data structure if the access path analysis
shows traversal between entities that are not directly related.

For example, in the Data Model (Figure 5) there is no direct relationship
between SALESMAN and ORDER (only an indirect relationship via CUSTOMER) but
should there be a requirement to access ORDER from SALESMAN a new relationship
could be added between SALESMAN and ORDER.

4. lt may be possible to combine entities. Some judgement, based on experience,
is required but two rules of thumb would be as follows:

where two entities are normally accessed together and their relationship,
although one-to-many, is nearly one-to-one. This, typically, occurs where
an order (or invoice) could have many lines or a customer could have many
debtor numbers but, in practice, they almost always have one.

where two entities are very similar in terms of their attributes and
they have the same relationships. For example, in our Data Model, Car and
Van could be combined into one entity called Vehicle.

1 icence

salesman-id ~8
licence no.

I> -<JI VAN I

REG ION

warehouse-ill

'V

STOCK

stock-date

Figure 11 - Summary of Retrieval Access Requirements

"" ~

cu st-id salesman-id

_r~:

~---t::J SALF:SMAN

1:::.1V

ORDf:R

'V I Isl

ORDF.R
LINE

Isl'\/

SUPPLIER
Llf.T l:l--------'

11

stock-date

supplier-id

Figure 12 - Refined Data Model +
Summary of Access Requirements

400

In order to carry out the steps, outlined above, the information from the
Data and Access Path Analysis is required.

Fjgure 11 srows a Summary of Retrieval Access Requirements for the Order
Processing Data Model.

Figure 12 shows the Refined Data Model which has resulted from applying the
above steps.

The Supplier/Product relationship has been expanded into two one-to-many
relationships.
The Region entity has been eliminated.
The relationships Region/Salesman, Customer/Salesman and Region/Warehouse
have been eliminated.
The relationship Salesman/Order has been added.
The entities Car and Van have been combined to give a new entity called
Vehicle.

MAPPING TO TurboIMAGE

The objectives of mapping are:

1. To translate the refined data model into a logical data structure that
complies with the TurboIMAGE structuring rules.

2. To implement the access requirements into the logical data structure using the
TurboIMAGE options.

Before the mapping is performed, it is essential to understand, very clearly, the
structuring rules for TurboIMAGE.

1. STRUCTURING RULES

Within TurboIMAGE, two types of data sets can be supported, master and
detail.
ReTationships are supported between master and detail data sets.

A data set is a collection of records with the same record format. It is
equivalent to what, in conventional terms, would be called a file with
one type of record.

l. I. Master

l. I. l.

A master data set must have a unique data field, the search field.
TurboIMAGE supports calculated (hashed) access to a master data set
using the value of the search field. A master data set may be linked to up
to 16 detail data sets.
Two types of master data sets are supported, the manual master set and the
automatic master set.

Manual
The manual master may contain more data fields in addition to the
search field. A manual master set must be maintained by the application.
If an entry needs to be added to an associated detail data set using a
value of the search field that does not exist in the manual master,
then the master record must first be created. Deletion of all detail
entries will not cause the removal of the manual master entry.

1.1.2. Automatic
The automatic master set may only contain one data field, the search
field. An automatic master is maintained by TurboIMAGE. When a data
record is added to an associated detail data set using a value of the
search field that does not exist in the automatic master, TurboIMAGE
automatically creates a new entry in the automatic master for that
value. Similarly when detail entries are deleted TurboIMAGE
automatically removes corresponding entries from the automatic master.
Typically, an automatic master set would be created to allow more
efficient access to a detail data set for a particular search field eg.
ORDER-DATE.

1.2. Detail
The detail data set can contain several data fields. A detail data set can
be linked to a maximum of 16 master sets.

1.3. Relationships
A relationship or path is a means of connecting records, within the
TurboIMAGE database, which relate to each other. A relationship can only
exist between a master and a detail data set. One of the data fields
within the record format of a master data set, the search field, must be
included in the associated detail data set record format. The value of the
search field must be unique within the master data set, but that value can
be present in several record occurrences in the detail data set.
TurboIMAGE will maintain a chain of pointers embedded within the data
records for all entries which contain the same search field value.
This will enable access to all related data records of the detail data set
for an occurrence of a data record of the master data set. The particular
master and associated detail data records are referred to as a chain. The
detail records in a chain may be sorted by a data field.

2. TurboIMAGE ACCESS METHODS

Although several access methods are supported by TurboIMAGE (TurboIMAGE ref.
manual 32215-90050), the principal ones to consider, during the Logical
Design stage, are as follows

Access on master sets : I serial, in the sequence in which they are
physically stored.

Access on detail sets

II - calculated, using a search field value to find a
unique record.

I serial, in the sequence in which they are
physically stored.

II - chained, all detail entries for one master
record.
The sequence of the detail records in a chain
may be controlled by defining a sort field for
the chain.

401

402

·i. TurboIMAGE SPECIFICATIONS

These specifications have been copied from the DATA MANAGEMENT specifications
guide (32215-95002) :

- max. data item names per database : 1023
- max. data items per data entry (record) : 255
- max. data sets per database : 199
- max. detail data sets per master set : 16
- max. master sets per detail data set : 16
- max. search items per detail data set : 16
- max. entry size : 4094 bytes
- max. entries per data set : 2 billion (blk. factor 255)
- max. entries per chain : 2 billion

max. characters per database name 6
- max. characters per password : 8
- max. characters per data set name 16
- max. characters per data item name : 16

The logical design stage is concerned with the facilities offered by the DBMS
physical limitations (eg. CPU, disc-I/0 etc.) will be taken into account
during physical database design.
On-line access is the most important criterium when we have to consider
alternative ways of implementing access possibilities.

4. MAPPING GUIDELINES

1 - Select all entities from the refined data model that only have 1:1
or l:M (many) relationships with other entities and map them to a
manual master data set.

2 - For each manual master select the search field.

3 - Map all remaining entities to detail data sets.

4 For every detail set, implement the M:l relationship that exists
in the refined data model with the entities that were mapped to manual
masters in step 1 and include the search field in the detail data
record.

5 - Select all entities that were mapped to detail data sets in step 3
but have 1:1 or l:M (many) relationships with other entities in the
refined data model. Choose a suitable search field for these entities.

6 - Create automatic masters containing the selected search field for the
detail data sets selected in step 5.

7 - Implement the l:M relationships that exist in the refined data model
between two entities that were mapped to detail data sets by relating
them to the automatic masters created in step 6. Include the search
field in the detail data record.

8 - Implement a relationship between manual master sets (1:1 relationship in

refined data model) by creating a detail data set containing only the
search items of the manual masters.

9 - Consider extra automatic masters for details on which direct entry
is required or access via the existing master sets is clumsy.

10 - Remove all relationships (not the search fields) when the access
profiles show that you only go from detail to master and never from
master to detail.

11 - If more than one search item on a master set is required, consider
mapping the master to a detail data set with automatic masters for
the needed extra search fields, The original manual master will remain
with only one field, the search field.

12 - Determine which master to detail paths should be sorted.

NOTES

If a detail data set has an optional relationship with an associated master,
prepare a dummy (empty) master entry including a value for the search item
because TurboIMAGE will not allow non-owned detail entries.

The logical data structure shown in Figure 13 was produced by applying the
mapping guidelines on the refined data model and summary of access requirements
in Figure 12. For each data set and relationship the appropriate guideline,
that led to its determination, is indicated.

WHAT COMES NEXT ?

The logical data structure will subsequently be input to the physical database
design process which is outside the scope of this paper. However, in summary,
the physical design will be concerned with :

- performance optimisation
- considerations with regard to· the environment (eg. CPU, disc-I/0, disc

space)
- user design constraints (eg. response time, run time)

~

SUPPLIER

I

VEHICLE SALESMAN CUSTOMER A-ORDER PRODUCT WAREHOUSE A-STOCK-DATE

6 '\? y ~
I

} 7-

8 8/ \ ' - ' I I I (s),2. /4 {o
\ I "Z \ 14 I

I
r-

ORDER SUPPLIER
LINE LIST

• ~ I 3 L_J -e-

Figure 13 - Logical Data Structure for Turbo!MAGE

JOS WITTEVEEN

Jos Witteveen has been working with database systems for the last six years,
mainly on mini-computers. During the last three years, while working as a
consultant for Database Consultants europe BV, he has been applying structured
analysis and design techniques, particulary in the area of mapping conceptual
data structures to a logical database design. His hardware/software experience
includes Hewlett-Packard 3000 series and Digital VAX. With his previous employer
he worked as a system manager providing technical consultancy and training to
Hewlett-Packard installations.

GLENN PEREIRA

Glenn Pereira started working within EDP twelve years ago. During the last four
years he has been applying structured analysis and design techniques in
developing database systems.
His knowledge and experience includes; IMS/DLl, IDMS, IMAGE/3000, IBM/38 and
VAX-11 DBMS.

BIBLIOGRAPHY

[Wierenga 1984] Wierenga, Hans, Physical Database Design, Amsterdam, Proceedings
Decus, 1984.

[Pereira 1984] Pereira, Glenn, Logical Database Design, Amsterdam, Proceedings
Decus, 1984.

[Green 1984] Green, Rego, White, Greer, Heidner, The IMAGE/3000 Handbook,
Wordware, 1894 ISBN 0-914243-00-4

[Atre 1980] Atre, S., Database, Structured Techniques for Design, Performance and
Management, Wiley, 1980

[Martin 1976] Martin, James, Principles of Database Management, Prentice-Hall
Inc., ISBN 0-13-708917-1

405

DISASTER RECOVERY PLAtlNHIG - lJHAT? llHY? and HOil?

nryan D. Clapper
HEl/LETT PACIU1RD Cor.1pany, Santa Clara, CALI FORrlIA, USA

ItlTRODUCTI Oii

Inforuation is a r.1ajor asset for all Corporations, f·lore and more cor.1panies
are relying on computers to store and manage this vast asset. In some
industries, nait.taining a cor.1petitive edge over cor.1petition requires this
information ·i.o i;e on-1 ine and reac'ily accessible. This in turn, requires
Daxinur.1 systeu availability.

Da·i;a Center disas·~ers can render this information inaccessible. Disas·.:ers
can result from natural threats such as a fire, flood, or earthquake, to
intentional acts ~Y disgruntled employees such as theft or arson. But
disas~crs don't have to be G:OO o'clock headliners, they can result from
opera ti 0:1a l r.1i shaps or pol/er outanes or faulty equipment.

A dis&ster can cripple a company's access to accurate up-to-date inforr.~tion
necessary for sound business decisions. In addition, disasters can hinder
<· cor.;pany's ability ·;;o conduct normal business activities sucli as i;iakinr./
recei Vin!] payments, meeting r;1anufacturi nq scl1edul es, broki nq orders, cutti nq
purchase or~ers, and invoicing customers. Therefore, companies i;iust be
prepured to react quickly in the event of a disaster co minimize the impact
to norr.~l business operations.

Conpanies can acilieve this protection by developing " Disaster Recovery
Plan (DRP). Such a plan 110uld ensure the continuation of norr.1al business
activity by restorinr] necessary data processinri functions in a timely
fasJ,-Jon. This paper focuses on llHAT a DRP is, lfHY it is necessary, and
HOU to develop one.

HHAT IS A DRP

r, IJl(P is a cor.1prehensive docur.1ent containing the actions required to restore
data processing activities in the most timely and effective manner. It is
intended to reduce the confusion created as a result of the disaster uy
clearly defining a course of action. Below is a brief description of the
sections contained in a Disaster Recovery Plan.

* Scope and Objectives
* Ir.1mediate actions/Disaster notification
* Reovery team - Roles and Responsibilities
* Accessing the Damage
* Recovery Procedures
*Application Requirements
*Checklists
* DRP f.Ja i ntenance Procedure
* DRP Test Plan

407

408

SCOPE and OBJECTIVES

!Jill this plan ensure a "total" or "limited" return to normal data
processing activities? The answer to this question will provide the SCOPE
of the DRP. It will be determined by a clear understanding of what
applications are critical to the company's success and how lonR the
company can survive before data processing activities must be restored.

The objective of every DRP is to ensure the restoration of data processing
activity in a timely and effective manner. "Timely" and "effective" are
loose terms, however, that may need to be qualified. For example, the
objective may be to restore ALL data processing activity in 24 hours with
no major problems.

Iflf1EDIATE ACTIONS/DISASTER NOTIFICATION

Confusion can overcome individuals not trained on what to do in the event
of a disaster. This confusion could compromise the safety of company
personnel and/or result in unnecessary property loss. Thefore, it is
extremely important to define and train all individuals on the immediate
actions to take during a disaster. This would include procedures to ensure
above all else, personal safety. In addition, it would offer procedures
for shutting do1m the computer(s), securing the data center, notifying the
proper authorities and contacting the Recovery Team.

RECOVERY TEA~ - Roles and Responsibilities

This section 11ould identify all of the individuals on the Disaster Recovery
Tear.1. These individuals 110uld be divided into groups and given very specific
responsibilities to execute during the recovery process.

Below is a chart proposin~ such groups and their associated responsibilities.
The number and/or names of the groups is unimportant. Hhat is important,
ho11ever, are the FUNCTIOrJs they are responsible for performing.

1. Facilities

2. Consumables

3. Operations

4. Software

RESPOtJS Ill IL !TY

*Assess damage to the computer facility
* Estimate the time to repair/reconstruct

the facility
* ~anage the replacement and/or repair

of the facility

*Assess the damage to all consumeables
(paper, forms, tapes, etc.)

* Ensure timely replacement of required
consumeables

* Determine consumable requirements
(specified in the DRP)

* Recovery salvageable consumables

* Ensure successful operations at backup
recovery site

* Retrieve necessities from off-site
storage (backups, documentation, etc.)

*Assess software and application
requirements for recovery

5. Hardware

* Coordinate transfer of data and
applications to the backup site

* Install all software (OPSYS and
applications) at the recovery site

* Estimate damage sustained by hardware
* Ensure the replacement and/or repair

of hardware
* Recovery Salvageable hardware
* Coordinate transfer of useable and/or

required hardware to backup site
* Install (user installable) hardware

at recovery site

6. Communications * Assess damage .to datacomm equipment
* Ensure the repair/replacement of

datacomm equipment

7. Logistics

ASSESSING THE DAMAGE

* Recover salvageable equipment
* Coordinate the transfer of useable

and required equipment to backup site
* Establish network at backup site

* Coordinate the transfer of hardware,
software, consumables, data, and
personnel to the backup site

* Provide transportation for all
resources to and from backup site

After a disaster has occurred, it is very important to assess the extent of
damage sustained by the data center. This will be important in determining
the appropriate recovery actions necessary to restore data processing activities.
Based on the extent of damage, the recovery team will decide whether to continue
processing on-site or relocate processing activities (all or part) to the backup
site. Based on this decision, the appropriate recovery actions will be initiated.

RECOVERY PROCEDURES

This section will contain all procedures necessary to successfully restore
data processing either on-site or at the backup site. In addition, it will
identify what group(s) are responsible for the defined actions. Finally,
this section will contain a procedure for returning from the sackup facility.
Below is a list of procedures to consider for this section.

* Notifying the backup site
* Identify applications to be recovered first
* Identify off-site storage retrieval requirements

(consumables, documentation, data, software, etc.)
* Transporting resources to the backup site

409

410

* Configuration of the backup site
* Installing the operating system
* Installing the applications
*Scheduling applications/jobs
*Establishing datacomm links
* Instating security measures
* Restarting operations

8PPLICATIONS REQUIREf·1ENTS

This section defines and prioritizes those applications which are critical
to the success of the company. Also, it defines all rPsources required by
the applications including disc space, printers, paper, mag tape and datacomm
equipment. Finally, it specifies the maximum amount of time the application
can be "out of commission".

CHECKLISTS

Checklists are used as a reference guide by defining what resources are used
and where they reside. For example, the consumables checklist would identify
all consumables used in the data processing environment. In addition, it
specifies the suppliers of these consumables, ordering lead time, availability
and maybe even cost information. Listed below are the checklists maintained
in this section.

* Consumables
* Off-Site Storage
* Hard1"1are (CPU's, f·lemory, Terminals, Discs)
* Software (Operating system, utilities, applications)
* Data com Equipment (llo,1ems, PBX' s, Leased Lines)
* Documentation

DRP llAINTENANCE PROCEDURE

As companies grow, their data processing requirements and priorities change.
These changes need to be reflected in the DRP as soon as possible. Therefore,
a procedure for maintaining the DRP must be created and adhered to. DRP's
that don't accurately reflect a company's business requirements are useless.

DRP TEST PL/IN

DRP's, like software, must be tested for accuracy and effectiveness. Testing
is designed to catch oversights which might prevent the Recovery from being
successful. This section 11ould contain such il. test procedure.

UHY DEVELOP A DRP

Disaster Recovery Plans are required to recover frora a disaster r.1inimizing
the irapact to continued business. Justification for developing a DRP is
found in understanding the costs associated with computer downtime. Some
costs are quite easy to quantify while others are not.

For example, productivity losses in terr.is of salary for idle employees can
be easily calculated. Assume, for instance, a company has an average of
60 on-line computer users per day and each user is active on the system
an average of 5 hours/day. If the average salary for these employees is
$10 dollars per hour and the computer were down for 1 day, salary costs \Jould
ar.10unt to $3000. If the system ~1ere do1·m for one week that a1,1ount jumps
to $15K and for a raonth $60K. Include in this raodel the cost for additional
manual labor (manua 11 y tracking iter,1s through manufacturing, r.1anua l ly cut't i ng
invoices, manually writing checks for accounts payable etc.). Then add
in the cost of interest expense for late payments to suppliers and the loss
of valuable discounts for early payment. In addition, filter in the impact
for delays of invoicing customers for products and/or services delivered.
These delays in realizing income could greatly impact a company's cash flow
position.

Intangible costs also need to be considered. Computer down time will directly
affect the manufacturing and delivery of products. Delays in this area may
destroy valuable relationships 11ith customers and directly impact current and
FUTURE business.

When the full impact of computer downtime is realized and costs are applied
to the dama9es, the numbers can be staggering. It is then that the value
of a disaster recovery plan is realized.

HO\'! TO DEVELOP A DRP

The development of a DRP requires the commitment of upper level management.
This ensures that the appropriate (required) resources are available to develop,
maintain, test and implement the DRP. The following steps are required in
developing a DRP and are described below.

1. Assemble a Disaster Recovery Team
2. Define Company's business requirements
3. Define the DRP's scope and objectives
4. Develop the recovery plan.

a. Identify critical applications
b. Establish priorities for critical apps
c. Define the resource requirements to run

the applications
ci. Define the recovery alternatives (backup site)
e. Develop damage assessment procedures
f. Develop the recovery procedures for each

alternative
5. Develop DRP maintenance plan
6. Develop DRP test plan

411

412

ASSEf.lBLING A DRP TEAf.l

The teara should consist of representatives from f.lanageraent, MIS, Facilities,
and the various user communities. Including these groups in the development
process adds viability to the plan. f.lanaget:~nt can relate busin~;;s priorities
and requirements which could directly affect the content of the plan. Users,
for example, could bring information about their priorities, needs and concerns.
In addition, these participants may be exposed to areas where their departraents
are vulnerable to disaster allowing corrective action to be taken beforehand.

DEFINING the COf.lPANY'S BUSINESS REQUIREMENTS

This step is necessary to determine what applications are most critical to
the success of the company. Critical applications are those that directly
impact cash flow. For instance, if an invoicing system is disabled, customer
billing \'1ill be late and consequently payments for products and/or services
will be late. This could adversely affect a company's cash flow position.

It is important to define for each application what costs (productivity,
loss of business etc.) are incurred if down for 1 day, 1 week, or 1 month.
This analysis will determine how long a company can survive without computer
services.

DEFINING the SCOPE and OBJECTIVES of the DRP

Based on the company's business requirements, the SCOPE and OBJECTIVES of the
DRP will need to be sufficient to ensure the company can operate (hopefully
at a profit) in the event of a disaster. If it is determined, for instance,
that the company must be fully operational (i.e. recover all applications)
within 48 hours of a disaster, then the SCOPE of the DRP is to recover all
applications and the objectives would be defined to meet the 48 hour
requ i rer.1ents.

Once defined, the development team must review the scope and objectives with
management and get approval to continue the development of the DRP.

DHELOPING the RECOVERY PLAN

A tremendous amount of data needs to be gathered and analyzed in this step.
For example, all critical applications need to be defined and prioritized.
This includes disc space requirements, printing requirements, consumable
requirements and datacomm requirements. Once the requirements are defined,
a backup site to meet these requirements must be located. Some alternates
to consider include mutual aid agreements, hot sites, cold sites and shells.
Procedures must be developed to cover all pre and post recovery actions.
And finally, a DRP maintenance and testing procedure needs to be developed.

llAINTAifHf~G the PLMJ

Again, the DRP is not a static document. This plan must be kept updated
to reflect the changing business requirements and changes to the data
processing environment. The minute new equipment is added to the data
center, the DRP becomes outdated. Ample consideration needs to be given
to HOW and WHO will maintain the DRP.

One way to ensure the accuracy of the plan is to make members of the
Recovery team responsible for a particular portion of the plan. Meetings
could be held quarterly to incorporate/discuss any changes to the plan.

TESTING the PLAN

Finally, the plan must be tested to ensure completeness and accuracy.
~inimally, the plan should be tested on a yearly basis. Theoretically,
ho11ever, once a ch.ange has been made the plan should be re-tested. This quite
probably 110uld prove to be too costly and time consuming. Therefore, criteria
will need to be set which 11ill determine when the plan should be tested.

BIOGRAPHY

Bryan Clapper has been 1vith HEWLETT-PACKARD for 6 years. His first 4
years 11itl1 HP t1as spent as a Soft11are Development Engineer designing
and developing Sales and Field Service applications. The last 2 years
have been spent as a Commercial Systems Engineer supporting HP customers
in the Santa Clara, California sales office.

413

VARIATIONS ON A TUNE - ANOTHER LOOK AT THE NEVER-ENDING

STRUGGLE TOWARDS OPTIMAL PERFORMANCE

Steven M. Cooper

Allegro Consultants, Inc.

Redwood City, CA, USA

Research sponsored by

ADAGER, Antigua GUATEMALA

Introduction

Back in the Dark Ages (seven or eight years ago), we had

no choice but to grope in the dark in terms of tuning our

computers and databases for maximum performance; monitoring

tools did not exist and the general guidelines that have be­

come common knowledge had not yet been discovered and pub­

lished. Relief began to come shortly thereafter, though, as

articles on performance and tuning, many now considered

classics, were written, providing us with a set of guide­

lines to follow.

Once the articles were written and the information dis­

seminated, nobody seemed to give it much thought, considering

the topic adequately covered. However, a lot has happened in

the past three or four years in the HP3000 world and perhaps

we ought to take another look at some of these issues. Com­

paring a Series III with one half megabyte of memory to a

largish Series 68 running MPE V, the newer machine has a CPU

that is five times faster, has up to 16 times more memory,

and is capable of five or six times the effective disc I/Os

per second (assuming caching). Most systems will also sup­

port four times the number of users. Given that we now have

a much larger and differently shaped beast to deal with,

some of the assumptions of those original articles must have

changed, and therefore, so must the guidelines.

415

416

Unfortunately, we must all suffer through a period of

semi-darkness again as we experiment with caching and its

parameters, and learn by trial and error what is good or bad

for these new machines. In an effort to encourage the re­

opening of these topics, this article presents some observa­

tions and results of experiments done to date. I do not have

all of the answers, and can't even explain all of the results

that I've gotten, but perhaps combined with your own experi­

mentation, we can continue to evolve these guidelines to keep

pace with the maturing world of the HP3000.

CACHECONTROL

Caching is a wonderful thing if you've got the extra

memory and are I/0-bound. The designers of caching left us

with two dials and a switch to play with, so it is our duty as

system managers and system tuners to turn and flick and see

what happens. The "dials" are the RANDOM and SEQUENTIAL

options of the CACHECONTROL command. They control how much

is actually read from disc into a cache domain when we issue

a read from a cached disc. (This is a simplification. We

will discuss some of the complications later.) The RANDOM

value tells how many sectors should be read when we do an

FREADDIR call. (In COBOL, this happens for files with

ACCESS IS RANDOM clauses.) The SEQUENTIAL value corresponds

to FREAD calls. (In COBOL, ACCESS IS SEQUENTIAL.) Both

parameters can be set to values between 1 and 96 sectors,

indicating cache domains between 256 bytes and 24,576 bytes.

By default, the system initializes RANDOM to 16 and

SEQUENTIAL to 96.

It is important to note that no matter what type of

DBGET or DBanything we do, IMAGE always issues FREADDIRs and

FWRITEDIRs. (This is also true for KSAM files.) So for the

typical lMAGE-based system, the vast majority of I/Os will be

affected by the RANDOM value and not at all by the SEQUENTIAL

value.

The MPE folks at HP chose the default RANDOM value of 16

because the HP7933 and HP7935 disc drives have a buffer size

of 16 sectors. But you will need an HP7933/5 on the same

GIC as another in-use device before you will ever use this

buffer. In actuality, this buffer doesn't seem to have much

affect unless you have two or more HP7933/5s on a GIC, these

discs have firmware revision levels of 5.1 or greater, you

have a version of MPE that supports rotational position sen­

sing (most releases after and including MPE V/E), and you

RPS is enabled on all of those drives. If you meet all of

these requirements, a RANDOM value of 16 is probably the

right value for your system.

However, if you don't meet all of these requirements,

chances are that your system will perform better with a

higher value for RANDOM. The bigger the value, the more

will be read each time, and, assuming there is locality to

your reads, the less you will have to actually go to disc.

Furthermore, if we leave the value at 16, the number of

domains tends to get very large, often over 2500. This

causes extra work for the cache manager, since every time

someone does a read, the manager must first see if the

record is already in one of the 2500 domains. This suggests

that the RANDOM value be increased, perhaps to 32, 64, or

even 96.

417

418

But life is never that simple. Another thing to consid­

er is the setting of BLOCKONWRITE. Let's assume that

BLOCKONWRITE, the "switch" next to the two "dials", is set

to NO. In this mode, when we issue an FWRITE or an

FWRITEDIR, control returns to our program when the cache

domain is updated, not when the actual disc I/O completes.

The cache manager does, however, request an I/O at that time

to flush that cache domain to disc. If we attempt to write

to that same cache domain again before the I/O to disc

actually completes, we will then get blocked and control

will not return to our program until the following occur:

the first I/O completes, our process gets launched again,

and the cache domain is updated with our write request. (It

is for this reason that some people say that we want to mini­

mize the WRITE HIT statistic. This· is only partially true;

we want to minimize write hits to domains that are being

written out at that moment. Write hits to "clean" domains

are a good thing. Unfortunately, the cache statistics do

not separate the good hits from the bad.)

Anyway, this seems to suggest that in order to minimize

write hits to "dirty" cache domains, the RANDOM value should

be set low, so only a smaller chunk of the file is "dirty"

at any time. This directly conflicts with the advice of the

first suggestion. "What now?", you ask? Well, this time we

are in luck. The SHOWCACHE command tells us how effective

caching is being and the CACHECONTROL command lets us tweak

these parameters while the system is up and running. What we

can do is STOPCACHE and STARTCACHE to zero out all of the

statistics, issue our CACHECONTROL commands to adjust

RANDOM, SEQUENTIAL, and BLOCKONWRITE, wait an hour or so, and

then issue a SHOWCACHE command to see how we did. Try to

find values that maximize "percent of user I/Os eliminated"

and after that, minimize the "data overhead".

Let's focus on the BLOCKONWRITE parameter a bit more.

If it is OFF, the system allegedly will run faster since our

application programs will not have to wait for the disc out­

puts to complete. But we pay a price: unless we have asked

for the file system to use the Serial Write Queue for the

file, we will not know in which order our outputs will be

flushed to disc. If the system should fail before all of

the "dirty" cache domains have been flushed, we would have a

higher likelihood of database corruption than we would have

had with caching off or BLOCKONWRITE ON, assuming that we

are not using the Serial Write Queue. How do you ask the

file system to use the Serial Write Queue? For normal

files, issue a call to FSETMODE. But for databases, there

is no direct way to do this. IMAGE will issue the FSETMODE

if and only if you are using Intrinsic Level Recovery (!LR)

or Transaction Logging. If you use neither and have

BLOCKONWRITE OFF, be aware of this new vulnerability.

It might be interesting to note some results we obtained

on a machine with five megabytes. We ran ADAGER's DETPACK

program in a stand-alone environment over and over, varying

these parameters each time. This program runs through

several IMAGE datasets and updates just about every record

it looks at. Although this is a very different environment

to one with 80 on-line users, it is similar to many shops'

nighttime runs, with single-threaded report and update

programs running. We found that the higher the value for

RANDOM, the shorter the run times. And, much to our

surprise, we had shorter run times with BLOCKONWRITE set to

YES! This was probably due to the frequency of writing to

"dirty" cache domains as described above. Hence, our best

times were obtained with RANDOM = 96 and BLOCKONWRITE = ON.

These were about 10% faster than with RANDOM= 8 and

BLOCKONWRITE = OFF.

419

420

Extents ----
When we build a normal file, we can specify how many

separate areas of disc we would like the file to be broken up

into. We can also ask for these areas to be initially

allocated or allocated the first time that a record in that

area is referenced. IMAGE still uses its original algorithm

for determining the number of extents that datasets should

use. The algorithm always asks for the largest number of

extents, 32, for medium size datasets or larger, and all

extents are always initially allocated. This was fine in

the old days; the larger the number of extents, the smaller

each extent will need to be, and the easier it will be to

find areas of disc that are the proper size.

But since the advent of caching, the number of extents

can have a more important impact. (Now come the complica­

tions promised above.) When we do a random read to disc,

the caching manager will read into a cache domain a chunk of

the file as large as the larger of the RANDOM value and the

number of words we requested, but not past the end of the

extent. Hence, if a file has 32 extents in it, there are 31

brick walls built into the file, around which caching must

work. We can improve the caching efficiency of non!MAGE

files, therefore, by lowering the number of extents in a

file, to as low as one if enough contiguous free disc space

is available. Larger numbers of extents are only justified

when the file will grow over time and we want to minimize

wasted disc space, or when disc is fragmented so that we

cannot obtain large enough extents. (As an extra bonus, on

tape drives newer than the HP7970, the fewer the number of

extents that a file has, the quicker that file will STORE.)

For IMAGE datasets there is not much we can do until the

algorithm used by IMAGE to build datasets is changed. One

option, though, is to use ADAGER to create the datasets.

Whenever an ADAGER function needs to create a new dataset, it

uses an algorithm that will attempt to lower the number of

extents in the dataset, without producing extents that are

too large.

BLOCKMAX and BUFFSPECS

These are two tuning parameters that IMAGE allows us to

set that are often ignored. Here again, it was safe to

ignore them in the past, since the defaults were good values

for the smaller system. But if we leave things alone now,

we may not be happy with the results. For example, if you

have a report program that runs stand-alone for three hours

every night, IMAGE will be polite and use only 8,000 bytes

of memory by default, even though megabytes are sitting

unused. Caching minimizes this effect, since it will use

all the extra memory it can find, but we would still be

better off instructing IMAGE to be more aggressive in its

use of memory resources.

The BLOCKMAX parameter is specified in the Schema. This

specifies the largest size that we will accept for the block

size for this database. Remember, IMAGE will decide what the

blocking factor for each dataset will be. Then, the largest

block size among all of the datasets will become the size of

all of the buffers whenever the database is accessed. The

default value is 512 words. We can increase this number up

to 2048 words.

421

422

Look closely at the blocking factor for each dataset at

the bottom of the DBSCHEMA listing. Sometimes IMAGE has a

choice of' a blocking factor that saves a bit of disc space,

but does not pack as many entries into each block as will

fit. IMAGE will let us override this choice. We can

specify our own blocking factor for a dataset by putting the

desired number in parentheses between the capacity and the

semicolon in the schema. E.g.

Capacity: 40000 (20);

would request a capacity of 40,000 entries and 20 entries per

block.

The BUFFSPECS for a database can be interrogated by

using the SHOW command in DBUTIL. The number of buffers is

dependent upon the number of times the database is opened.

The default BUFFSPECS are:

BUFFSPECS 8(1/2),9(3/4),10(5/6) ••• 17(19/120)

which means that with one or two users in the database, 8

buffers will be allocated, three or four users will get 9

buffers, and so on until 19 or more users open the database,

at which time 17 buffers will get allocated. To go back to

our example, that stand-alone report program would run with

eight buffers, since when it runs, it runs alone.

If you have many databases on your system, then all of

this may be all right. But if you have one or two central

databases, you might be better off giving more memory to

these database to work with.

BLOCKMAX and the BUFFSPECS.

In other words, change the

If you have ADAGER, -the best

way to change the BLOCKMAX is with the REBLOCK function.

This program will help you select a proper value, giving you

a little lesson on the complexities of blocking factors

along the way, and then will reblock your database. Choose

a large value for a central database. It is bad enough that

all users and all datasets must share the same set of

buffers. The least we can do is make these buffers as large

and as plentiful as is reasonable.

Now that we've adjusted the size of each buffer, we need

to decide how many buffers we want to allocate. A good rule

seems to be that the number of buffers should not be depen­

dent upon the number of users. The number should be set to

nine plus the iargest number of paths going to any one

detail dataset. If a detail dataset has five paths from

master datasets, for example, set the BUFFSPECS as follows:

BUFFSPECS 14(1 /120)

To do this, use the SET command of DBUTIL when no one has the

database opened.

Larger machines with two or three IMBs (InterModule Bus)

and four or more GICs (General Interface Channel) can be

cabled in many different ways. How things are cabled can

have a greater impact on performance than just about any

other factor. Do not assume that HP cabled you up optimal­

ly! Your discs should be spread over all of the IMBs and

GICs that they can. If the system is accessing two files,

performance will be best if the files reside on discs hooked

to two different IMBs, next best if they are on two differ-

423

424

ent GICs on the same IMB, next if they are on two different

master drives on the same GIC, next if they are on a slave

drive and its corresponding master drive, and worst if they

are on the same disc.

Review your own IMB/GIC/disc drive configuration and fix

things if they are not optimal. Then, with a tool such as

FILERPT in the Contributed Library, identify the ten or so

most used files. (We have contributed an updated version of

FILERPT to the Contributed Library that will support both MPE

IV and MPE V log formats.) Spread these files out among the

discs according to the rules of the previous paragraph. We

have found that disc file placement can have a major impact

on performance, as long as we are concerned with the place­

ment of the correct files.

Data Distribution

As databases get larger and larger, the way in which the

entries are loaded in the database becomes ever more impor­

tant in terms of performance. But since these large data­

bases take so long to reload, many sites cannot afford the

time it takes to reorganize their databases, This can have

a dramatic affect on performance though. For example, a

detail dataset with a blocking factor of ten has had so many

puts and deletes over time, that its free entry chain points

all over the place. When ten line items are placed on the

same chain into this detail, they end up in ten different

blocks. If this detail were packed along this path, all ten

entries could reside in the same block. Instead of ten I/Os

to read the chain, it will then just take one! A major

improvement.

Programs such as DBLOADNG in the Contributed Library or

HowMessy from Robelle Consulting will tell how badly your

datasets need repacking. Then if called for, we can either

take the time to reload them or use ADAGER's DETPACK and

MASTPACK.

Conclusion

Just when we think we understand the rules and get our

systems tuned accordingly, something comes along that changes

the rules. Ignoring the changes can waste time and money.

Tuning is a never-ending process that usually pays for itself

over and over again. Give some thought to these guidelines,

take a look at your system, and experiment. And when you

discover something, share it!

Biography

Steve Cooper is a member of the Adager Research and

Development Laboratory. He has had nine years of experience

on the HP3000. He holds a BA degree in Computer Science from

the University of California, San Diego and an MBA degree

from the University of California, Los Angeles.

425

Gregory Stephens
Hewlett-Packard Cupertino
U.S.A.

NOTE1 See page 653.

427

MESSAGE C'ATALOOSAND NATIVE LANGUAOE SUPPORT

Glenn CA:Jle
CA:Jnsu ltant

Fairfax, Virginia USA

One of the least - usa:I features of the HP 3000 is the Message Cata lc.;i foci li ty and the
more-recent Native L1111guage Support The message catalc.;i is intended to be usa:I in applications
where there is a non-trivial number of (error) messages to the user. The classic application of
this is MPE.

The other intended area of use is where the same application program is usa:I by different
people who understand different languages. In this case, only the messages need to be changed -
modifying and recompiling the application is not necessary.

The message focility is easy to use, has minimal overhead, and may save substantial data stack
area. This paper highlights a case history where use of this focllity was virtually required, and
then details the relatively painless way in which it was implemented. Afterwards, a comparison is
given between the origifl8l 11essiige C8talc.;i fiK:ilily of MPE and the similar feature within Native
Language Support.

429

430

I ntrcxluction

The Message Catalog focility provides a means of programmatically occessing messages
contained within a specially-formatted file by using standard MPE file system intrinsics.
Parameter substitution ls allowed, 8lld messages may be routed directly to the list device, retrieved
for use by the application program, or both. This focility is provided by Hewlett-Pockard as part
or the Fundamental Operating System (FOS), and thus is available under all versions of MPE on all
HP 3000 computer systems at no extra cost.

The Case: (Part I - The Problem)

At the lime (late 1983). I was empkryed by a major Moving & Storege company as a
Programmer/Analyst, working on a team developing an on-line Dispatch System. It was designed so
that when a truck driver called his location in to a dispatcher, the dispatcher could see where the
trucl: was gJing, update its current location, and pass along any messages to the driver. The
Dispatch System also kept a history of eoch shipment that could be brought up at any time, along
with any comments recorded by another dispatcher during handling of the shipment.

The Dispatch System used VIEW and IMAGE extensively, and was written in COBOL II running
on a Series 64 under the Q-MIT release of MPE IV. It was a menu driven system with ¥iamic
subprograms. Most or these subprograms used 'fff\"' screens as well. Some of these subprograms
could call other subprograms. The "longest path" was 6boul 4 levels deep, not counting the main
menu. Most of the subprograms in this path hed many messages to retain - the averege was about
40 messages of 80 charocters eoch. These were kept in WORKING-STORAGE along with the other
data requirements of the subprogram. Each time a subprogram was called, its WORKING-STORAGE
SECTION - that is, the data area of the program - was in:ted to the data stock. The end result was
that when this "longest path" was used, it resulted in a STACK OVERFLOW and the program aborted.

This was not !Jlod news. The target elate for implementation was approaching rapidly. Not
only did we need a solution, but we neOOed one that could be implemented fairly qu1Cl:ly, that would
not compromise the design set forth by the 81l81ysts, and that would work.

The Case: (Part 2 - A Solution)

The stege was set. I knew of the existence of message catalogs by virtue of reading the System
Intrinsics Manual. However, I hed never used this focility, nor hEKI I ever seen an application that
did. None of the other programmers knew anything 8bout message catalogs either.

I happen to like the 00cumentation provided for the HP3000. Sometimes it is difficult to find
the desired information. Sometimes the information, once found, is neither entirely accurate nor
complete. (Fortunately, on the occasion when It Is Incorrect, it usually says "This cannot be done"
when in foct It can, instead of the other way around.)

In this Cllse, the documentation seemed quite clear, and it appe8l"ed that a solution was at hand.
First, I set up a small test program to verify that I understood both the concepts 8lld the mechanics
of Message Catalogs.

The concepts are rather simple and straightforward. A message catalog (Figure I) is created
initially as a standard MPE flat file, and consists of from I to 62 "sets," eoch containing up to
3276 7 messages. Sets are Indicated by "$SET n· beginning in column I , where ·n· is the set
number (I - 62). The sets should be in ascending sequence by set number, but the numbers need

$SET 1 *** SYSTEM MESSAGES ***
$ AThe above comment begine HERE (2nd epaoe)
$This comment I ine is IHUALIO (no space after "$")
1 LOEU • ! I H USE BY FI LE SYSTEM
05 IS "!"OH LOEU •! (Y/H)?
$ Hote: (1) Humbers need not be COHSECUTIUE
$ (2) Leading zeros are al lowed
$ (3) Comments may be inserted between msgs
9 ANOTHER MESSAGE (NOCIERROR)
$SET 3 *** Hon-Consecutiue Set Humber
10 This message is &
continued.
$The aboue prints "This message iscont inued." (Why?)

Figure 1 - Sample Message Catalog

not be consecutive. (For example, a message catalog with only 3 sets - numbered 2, 7, and 15 - is
perfectly valid.) The remainder of the line following the space after the set number may be used as
a free-form comment (e.g., "$SET I *** System Messages"). Other comments may be included by
entering a "miler-sign space" ($) beginning In column I, with the remainder of the line
(columns 3 thru 72) used for the comment.

Each message in the file is uniquely identified by its set number (described above) and by its
message number (I - 32767). Thus, message number 100 In set I may be completely unrelated
to message number I 00 in set 2. Messages are entered under the appropriate $SET heeding with
the message number beginning in column I , followed by a single space, followed by the text of the
message. Note that the message numbers within a set must be in ascending sequence, though they
need not be consecutive. (Please review Figure I.)

There are three (3) spa:lal-purpose chara::ters that may be Included in the message text.
These include the continuation chara::ters "ampersand"(&) and "percent" (ig), and the parameter
substitution chara::ter "exclamation mark" (!). When a continuation chara::ter is entered as the
last non-bl1111k chara::ter on a line, it indicates that the next line is to be included as part of the
current message. It is important to note that all bl1111ks immediately preceding the continuation
charir:ter are IGNORED. Thus, there is some latitude as to where the continuation cherir:ter may be
pltr:ed. More importantly, this mellllS that the following line probably should begin withe spm:e.

Now, recall that the application program may elect to have the message routed directly to the
user's terminal. This is where the two continuation chera::ters differ. If the "percent" symbol
(ig) is used, then a carriage return and line feed are printed before continuing with the next line.
The "ampersand" (&) , however, indicates that the continuation line should be printed WITHOUT
first printing a carriage return and line feed. In this case, the continuation line will be printed
adj!K:ellt to the current line. These symbols correspornl roughly tot.he SPACE (140) and 1320
carr~,ie control chara::ters.

Each message may contain up to five (5) exclamation marks (!)for parameter substitution.

431

432

E~ passed parameter is 1nserted in the message where the corresponding exclemetion mark
occurs, with the first parameter replacing the first excllllnetion mark, the second paremet.er
replacing the second exclamation mark, end so on, until ell parameters ere included. (Plellse
review Figure I egain. See- e picture reelly IS worthethousllndwordsl)

The mechanics of using e message cetelog ere almost es simple es understanding the concepts
given ebove. Before en application cen use e message cetelog, it (the cetelog) must first be
prepared for use (Figure 2). Remember, the messegesereentered with EDITOR (for example) 8l'ld
kept es one would keep FORTRAN or SPL source code, thet is, es e numbered file with 80-byte
fixed- length records.

: ED I TOR
<<Banner I ine displayed here>> I
/ADO

I $SET I *** System Messages ***
2 I Sy st em Msg • 1 This CREATES
3 // lthe initial

/KEEP MSGFILE
/EXIT
EHD OF PROGRAM

:FILE IHPUT=MSGFILE }
:RUN MAKECAT.PUB.SVS
** UALIO MESSAGE CATALOG
EHD OF PROGRAM

:SAUE CATALOG
:PURGE MSGFILE
:RENAME CATALOG,MSGFILE }

message f i I e.

I

This CONVERTS the file
to a form understandable
by the message system.

This SAUES the converted
catalog as a permanent
file, which may sti II be
used by EDITOR.

Figure 2 - Preparing the Message Catalog for Use

The next step in preparing this catalog for use involves running the system utility program
MAKErAT to install e "directory" on the file es a single user label. This utility reeds the deta from
formal file desl!Jlillor INPUT and builds a temporary file called rATALOO. AJ'fo/ existing temporary
file nmned rATALOO is renamed to rATnn, where "nn· is the first available number. (Note thet the
first file is renamed to rAT I , ml rATO I , and so on.) A short (perhaps a-yptic) error message is
displayed for em:h line believed to be In error. If this happens, then the rATAl.00 file is not built.

Return to the EDITOR, text the file, fix the error, end try again.
Once velid8ted, the messege "** VALID MESS'.GE CATALOG" is displayed end the CATALOO file

is built. At this point, yoO mey :~VE CATALOO end then :RENAME CATALOG,myfile. (Of course, ifll
file nemed CATALOG alremty exists, you mey heve to use the :RENAME C\TALOG,myfile,TEMP
commend end then :~VE myf11e.) Once this h8s been 1m1111plished, the messege cetelo;i is re8ltf for
use. (Please review Figure 2.) Note that you cen still modify the message cetalog by returning to
the EDITOR, texting the file, male ing the desired changes, keeping the file either urd!r the same
neme or urd!r some other neme, end running MAKEQ\ T again.

In order for the applicetion progrem to access the messege cetalo;i, the file must first be
opened. This is mne with the stendl!rd FOPEN intrinsic. The important things here are the
FOPTIONS end AOPTIONS parameters. FOPTIONS (file options) should include Old, Permanent, end
ASCII (ll5). AOPTIONS (access options) should Include Multi-Record end Nobuf (ll120).

The intrinsic GENMESS'.GE is the key to the whole operation. A (brief) description of this
intrinsic is given in Figure 3. Recall that the target applicetion that I WllS mncerned with used
VIEW screens. This meent that the messege could not be sent dira:tly to the terminol; the
applicetion had to use a buffer and then show the messege using the appropriate VIEW cells.

The small test progrem that I used to verify I understood all of this worked fine. The
questions now were: How cen this be integrated into the Dispatch System? Should mi subprogram
cell GENMESSAGE explicitly? Will the savings In deta stack erea be sufficient to allow the pr!l'Tam
to run without the STACK OVERFLOW?

If the subprograms celled GENMESSAGE explicitly, then they would heve to know the file
number (returned by FOPEN) of the messege cetalog. This means that the routine performing the
FOPEN would heve to pass the file number to the other subprograms, which meant modifying the
perameter list both in the celling routine end in the celled routine. (The other elternetive - m:h
subprogram FOPENing the message cetalog when beginning, end FCLOSEing it when leaving- could
not be considered seriously because of the tremendous overhead the FOPENs end FCLOSEs would
ceuse.) This seemed to heve too much chance of progremmer error.

There was still another 11lternetive, one that appeeled to me from the start, end which seemed
to involve the least progrem modifit11tion. R8Cllll that when e DYNAMIC subprogrem is t11lled, it
gets en "originol" copy of its WORKING-STORAGE section. That is, the veriebles in
WORKING-STORAGE are re-initi11li2ed to the values defined when the subprogram was compiled.
However, fore subprogrem thet is NOT declared es DYNAMIC, the veriebles in WORKING-STORAGE
ere NOT re-initielized. For exemple, let us imegine 11 non-DYNAMIC subprogram withe verieble
nemed COUNT described initi11lly with a value of zero (0). Let us also imegine that during the
course of this subprogrem, COUNT is incremented by one (I). Now, for the first execution of this
subprogram, COUNT will be zero (0) upon entry, !Ind one (I) upon exit. However, the second time
through, since COUNT is not re-initieli2ed to zero, COUNT will be one (I , the previous value) upon
entry end two (2) upon exit.

My idea, then, was to heve a single subprogrem that would do both the FOPEN end the
OENMESSAGE cells. The subprogram would define the file number initi11lly with e velue of zero
(0). This value would be checked end the subprogrem execute the FOPEN only when the file number
was zero, i.e., on the very first Cllll. A successful FOPEN would change the file number to 11
non-zero v11lue, so sub5e(JJ811t C111ls would not execute the FOPEN. (Note, however, that this
approach meant that the message cellllog would be closed implicitly by the file system when the
application terminated, insteed of being closed explicitly by the application.)

433

434

IV IV IV
msglen := GENMESSAGE (fllenum, setnum,msgnum,

BA IV
buff, buff size,

LV LV LV
parmask, pa rm 1, ... , parrn5,

IV 0-V
msgdest, errnum);

buff A byte array to which the message is returned
buff size: Lengt!1, in bytes, of "buff"; ~1assed TO intrinsic

parmask: 16-bit Logical mask describing parms 1 thru 5
Bit {0:1) = 1. Ignore rest of word& parms 1thru5

= 0. Rest of word, in 3-bit groups, defines
parm types for parms 1 thru 5

Bits (1 :3) = (Parm 1 type)
0 - byte address of string

(string terminated by ASCII "null")
1 - integer
2 - word address of "double" identifier
3 - ignore this parm

Bits (43) =(Parm 2 type; same values as Parm 1)
Bits (7:3) = (Parm 3 type; same values as Parm 1)
(etc.)

msgdest: destination of assemblect·message;
0=$STDLIST; >2=File number of destination file

Figure 3 - The GENMESSAGE Intrinsic

The other subprograms did not need the full flexibility available with GENME&'W3E, so lllkling
a few limitations to keep things simple would not be critical. For example, no routine in the
Dispatch System needed to substitute more then three {3) parameters in a message, and these
values were ll8Y8I' more then ei!#rt {8) bytes long. Thus, it seemed feasible to axle the details of the

message retrieval into a single subprogram. M. an IDied benefit, this meant that the technique could
be modified at some point in the future without having to modify the other subprograms. The
remainder of this paper refers to this user-written message retrieval subprogram as OETMS6.
(Appendix A shows the FORTRAN source code for OETMSO. The actual implemantation was written
in COBOL, but FORTRAN is more compact Either language wn 1 suffice.)

Replacing the hard-axled messages in the subprograms with calls to OETMSO was not very
difficult. Fortunately, it wm not very time-consuming either. Since the immediate worry wm the
"longest path" within the Dispatch System, these subprograms were modified first. After all, if
this "solution" did not wi:rk, then it was not a solution at all, and the effort expended thus far was
merely educational at best.

The subprograms hOO to know. what Set Number and Message Numbers to use, since these were
the main Input parameters for OETMSG. These were assllJled somewhat arbitrarily, b8SOO on the
number of messages used by a given subpro;ram. (I think all four subpro;rams were assigned Set
Number 1, and the Message Numbers assigned were 1-100, 101-200, etc. This gave plenty of
room for future !J'OWth.)

The subprograms hOO been cOOed with the messages grouped together in WORKING-STORAOE.
When m:h subprogram was text into the editor. this range of lines was kept in a separate file.
(This 8UXiliary file was modified later so that it could be included as part of the message file. This
meant that the s:tual messages did not have to be re-entered.) In the subprogram, the variable
names assigned to the messages remained the same. However, m:h description was ch8nged from
PIC X(40) to PIC S9(4) COMP, and a VALUE equal to the Message Number was assigned. The
Message Numbers were assigned in sequence, with the first message getting the lowest Message
Number assigned to the subprogram. (Please see Figure 4 for a "before" and "after" look at this
area.) Fields were also IDied to hold the Set Number, the generic Message Number, the retrieved
Message, and three (3) 8-byte plll"ameters for substitution (whether needed or not).

The PROCEDURE DIVISION was then searched for all moves to the VIEW window area. Each of
these MOVE statements was rep laced by two (2) other statements: A MOVE of the desired Message
Number to a holding area, and a PERFORM of the utility routine (as yet unwritten) that would
retrieve the desired message. (The Set Number did not have to be moved, since it remained aJnStant
throughout the subprogram.) Note that if Pl!f&meler substitution was required for the desired
message, the necessary value(s) would also have to be moved prior to the PERFORM.

The utility routine PERFORMed was quite simple, but I felt it was worthy of its own
Plll"ll!ll"BPh. It consisted only of a rALL to OETMSG, folhr#ed by a MOVE of the returned message to
the VIEW window area. Note that if an error occurred in OETMSG (e.g., a missing Set
Number/Message Number· combination). this was indicated by the returned message.

The data area S8Ved was tremermus, and the "longest path" worked, so this was indeed a
solution. Perhaps just as significant is the fact that it took just two (2) d8ys to research and
implement It. There was very little new coding involved, and the technique was relatively simple
and straight- forward.

435

436

01 PROGRAM-MESSAGE-AREAS,
05 PM-NO-SUCH-ENTRY PIC X(10) UALUE

"** Ho such entry; please try again.
05 PM-DUPLICATE-TRAILER PIC X(10) UALUE

"**That Trailer already exists!

Working-Storage before GETMSG

01 PROGRAM-MESSAGE-AREAS.
05 PM-NO-SUCH-ENTRY PIC S9(1) COMP UALUE 101.
05 PM-DUPLICATE-TRAILER PIC 59(1) COMP UALUE 102.

01 GETMSG-PARMS.
05 GP-SET-NUMBER
05 GP-MSG-NUMBER
05 GP-PARM-I
05 GP-PARM-2
05 GP-PARM-3
05 GP-MESSAGE

PIC S9(1) COMP.
PIC S9(1) COMP.
PI C X(08).
PIC X(08).
PIC X(08).
PIC X(80).

Working-Storage after GETMSG

Figure 4 - Working-Storage before and after GETMSG.

A.notl!er Alternative; Native Lmu S!Jooort

In the time since GETMSG was implemented, Hewlett-Packard has Introduced Native Language
SUpport (NLS). As with the stend8rd MPE message catalog facility, this is included as part of the
F undllmental Operating System; however, I believe you must be running under some version of
MPE V. Native L8IOl8ae Support is an excellent idee, lllld it emblxlies fer more thlln 111 improved
version of message catalogs (now called the "application message facility" under NLS). However,
only the application message facility is discussed below; most of NLS ps beyond the scope of this
paper. (The manual is very reedllble; I stronQly encourage you to read tllrol.Ql it.)

A chert aim paring MPE message catalogs with NLS is slvlwn in Figure 5. Note that the two
ere very aimpatible. In fact, the GETMSG routine described earlier can be re-written to use NLS
without modifying llflY other subpf'OITam!

r -------+---t·l_F'E ___ -+ ___ N_L_S __ _
L 11r1il. ~'

Set #'s: 1 - 62
Message #'s: 1 - 32"767

User Labelc':

Data
Cornpre~;si on?

NO

1 - 32766
1 - 32767

0

I VES (see text)

F'hysi cal
Characteri ~'ti cs

REC=40. 16.F,BINARV; REC:: 126, 1,F,BINAR\I:

Formatting
F'rograrn:

tntrinsics
Used:

Order of
F'cirarneter
~;utist it ut ion:

CODE=O CODE=MGCAT

FOPEN, FCLO~;E,
GENt1E::;::;AGE

Determined t1y
calling sequence.

GEN CAT .PUB.SVS

CATOPEN .. CATCLOSE,
CA TREAD

May be forced by
message. If not,
then determined by
calling sequence.

Figure 5 - f'1PE nessage Catalog vs NLS

There are a few things worth noting that are not mentioned in the chart. first, the only data
compression used by NLS is based on the blank space between the last non-blank character of M:t1
line and the logical ~of-record. (Remember, the Editor's line number is actually in the Inst
eight (8) bytes of M:t1 record. The logical end-of-record mentioned above refers to the position
just before this.) Thus, the worst pl8:8 for the continuation character (in terms Of data
compression) is in the Inst position of the record. The 81Tlount of disc space consumed by this file
comllllf'ed to that of a standard MPE message catalog appears to be directly proportional to the
average message length. Thus, a file whose average message takes up one-half of the record
consumes about one-half of the disc space of the equivalent MPE message catalog. (As an example,
the system message catalog takes up about 401 less sps:e when formatted for NLS.)

Regarding physical disc I/O's: a brief stucty of the file Close records in the system log file
shows that while the number of RECORDS processed remains the same whether or not NLS is used,
the number Of BLOCKS processed is reduced anywhere from three (3) to over ten (IO) times. That
is, NLS may require less than one-tenth of the disc I/O's of an equivalent MPE message catalog.

437

438

Note also that the blocks ere smeller under NLS - 128 x 1 = 128 words for NLS versus 40 x 16 =
640 words for MPE.

Conclusion

In conclusion, I would like to encourage you to look into message catalogs. They ere easy to
use, easy tocustomize,and in some cases, they may prove critical to the success of an application. I
would also like to encourage you to look into Native Language Support. The reference manual is
very reedeble. Among other things not mentioned in this paper, it explains how a single application
can eesily reference different message catalogs geared toward different Jengueges. Hewlett-Packard
hes put considerable lime, thought, and effort into this, and hes mo these tools eveileble to us et
no extra cost.

81!!!1'!!1lhy

Glenn Cole hes e B.S. in Mathematics from James Medison University, Harrisonburg, VA. He
hes been using the HP 3000 since 1978, and is now an HP 3000 consultant in northern Virginie
(USA).

Appendix A. FORTRAN source for GETMSG.

c

c

c

c

c

SUBROUTINE GETMSG (ISET, IMSG, CPARM 1, CPARM2, CPARM3, CMSG)

CHARACTER*08 CPARM 1 , CPARM2, CPARM3
CHARACTER*80 CMSG

INTEGER IMS6LEN
CHARACTER*28 CCATNAME
CHARACTER* 10 CPARML (3)
LOGICAL LPARM 1 , LPARM2, LPARM3
EQUIVALENCE (LPARM 1 , CPARML (1))
EQUIVALENCE (LPARM2, CPARML (2))
EQUIVALENCE (LPARM3, CPARML (3))

DATA IFILE/O/, IMAXLEN /80/, CCATNAME /"CATFILE.PUB.PROO "I

SYSTEM INTRINSIC FOPEN, GENMESSAGE

c ---
c Open message catalog if not open alre81y.
c

IF (IFILE .NE. 0) 00 TO 10
IFILE = FOPEN (CCATNAME, ISL, 1420L)
IF (.CC.) 5, 9, 5

5 CMSG = "** Message catalog not open. Cell M.l.S."
001099

9 CONTINUE
10 CONTINUE
c
c ---
c lnitperms(ASCll NUL (IO)atendofll!l1lstr1ng).
c

CPARML (1) = CPARM 1
CPARML (2) = CPARM2
CPARML (3) = CPARM3
0020 I= 1,3

CPARML (I) (9:2] =" "
CPARML (I) [INDEX(CPARML(I)," ") :1] = IOC

20 CONTINUE
c
c ---
c Actual message retrieval; 10 indicates ell perms ere STRINGS
c

IMSGLEN = GENMESSAGE (IFILE, ISET, IMSG, CMSG, IMAXLEN,
+ 10, LPARM 1, LPARM2, LPARM3.,.,IERROR)

c
If (I ERROR .EQ. 0) 00 TO 99

c

439

CMSG = "** Message retrieval failed. Cell M.l .S. •
c
c ---c Wrap up
c
99 RETURN

EXIT

440

Summary

DATE HANDLING BEYOND THE YEAR "99"

by

Kevin Cooper

Hewlett-Packard company
Pleasanton, California, U.S.A.

Most computer software that handles dates uses only two
digits to represent the year. With the twenty-first century
rapidly approaching, we must begin to think about how we will
manage daLes beyond the year "99". This paper focuses on three
issues relaLed to the handling and formatting of dates. What are
the best ways to convert software that was written with the
two-digit year limitation? What techniques should be used to
design and code new programs that will avoid these pitfalls
before the year 2000 arrives? And how can future productivity
tools make all of this invisible to both software developers and
users?

Introduction

Imagine these scenarios:

January, 2000 - You arrive at the office on Monday morning,
January 3, ready to begin the new year. One of your users
calls with a problem, and you promise to have it investigated
immed i a i:.ely. When sever al more callers have similar problems
within the next hour, you begin to wonder if someone has tampered
with your compuLer system. Before noon you realize that you have
a serious problem on your hands involving all your programs which
handle dates.

June, 1995 - Your company has a business forecasting program
which projects out five years. It worked just fine the last time
you ran it, which was in December, 1994. But now in 1995 strange
things seem to be happening with the program. Figures for the
fifth year are showing up in the first column, and all the other
year~ are shifted out one column. What could be causing this?

March, 1986 - I go to the bank to start a long-range savings
program for my son's college education. I invest in a long-term
note scheduled to mature in 2002, the year he will start college.

443

444

The computer printout from the financial institution thanks me
for my business, tells me I will receive annual statements of
interest earned, and concludes by promising to send me a reminder
notice upon maturity - in March, 1902. Something makes me think
I should have take~ my money elsewhere.

The impending arrival of the year 2000 will force everyone
associated with the data processing profession to take a good,
hard look at the way computers handle dates. Most software that
deµends on dat.e-related information today uses a six-digit date
with a two-digit year, based on the assumption that the most
significant digits of the year will always be "19". The dawning
of the twenty-first century will change that sooner than many
might think, and the programming staff will not be able to use
the excuse that they were not given enough notice! Sort routines
will place dates in the year "OO" (2000) before dates in the year
"99" (1999). And what about the potential cpnfusion when the
date 03/02/01 appears on a report? Is this March 2, 2001?
February 3, 2001? February 1, 2003?

Before we look further at these problems, let's look back at
a little bit of computer history.

Background

How did computers start using six-digit dates in the first
place'/ The normal way people write dates is with six digits
separated by slashes. Two people who communicate using the date
03103186 both understand this to mean March 3, 1986. (Note that
this example avoids the confusion caused because Americans write
dai;,es with the month first while Europeans place the day first;
we will discuss that later.) When the computer was first being
used for data processing, data storage space was at a premium, so
the early programmers had no reason to waste two extra bytes of
storage space on every date just so they could cover the arrival
of 2000. I think they were quite justified in making that
choice.

That leaves us in the late twentieth century to solve the
problems associai;,ed with the six-digit date, or more
specifically, the two-digit year. As shown by the earlier
examples, this will impact the computer world long before we
aci;,ually reach the year 2000. It has already affected some
ori!,anizations, such as financial institutions, who must handle
not.es and loans due to mature 15 or more years from now. The
rest of us will become more aware of its consequences as the time
draws nearer.

My first introduction to this whole problem came when I was a
novice COBOL programmer working for Hewlett-Packard fresh out of
college. I needed to program a six-digit date-editing routine to
check whether February 29 was a valid date in a given year, which

is really a test for leap years. I am not recommending the
technique I chose, but I wrote the code to find leap years after
1977 like this:

IF YEAR = 80 OR 84 OR 88 OR 92 OR 96

Then I stopped and pondered. What will happen when YEAR
becomes "OO"? I was appalled as I considered the impact that the
turn of the cencury would have on the application I was writing.
Sorts, edits, and countless lines of code which compared two
dat:.es would cease to function properly. This first encounter
with the problems we will face when the year 2000 arrives made me
realize that. one of two things must happen before then:

1) I muse try to find ways to solve this problem and get
the word out so we don't face a computer crisis come
January 1, 2000; or

2) I must get out of the data processing field altogether
and seek a new career.

This paper represents my attempt at the first alternative.
Hopefully, this means we can all avoid the second option.

By the way, one of the interesting sidelights about the year
2000 is determining whether or not it is a leap year. The
general rule is that years divisible by four are leap years;
based on this rule, 2000 should qualify. However, this rule has
an exception. If a year is divisible by 100, then it is not a
leap year. That seems to indicate that February, 2000, will only
have 28 days, right? Well, no; there is another exception to the
first exception. Years divisible by 400 are leap years. I had
never heard of this 400-year rule until I saw it coded in someone
else• s dat:.e-edi ting rout:.ine, so I checked my almanac and found
that the year 2000 truly is a leap year, with February 29 falling
on a Tuesday. This means that leap year tests which ignore the
exceptions and just check if the year is divisible by four will
work until 2100 arrives. That is long beyond the expected life
span of any computer program in existence today.

Conversion Met.hods

The first. issue for discussion is the conversion of software
that was designed with the limitation of a two-digit year. This
problem may seem like it is a long way off, but we cannot avoid
the issue for many more years. We have already seen that
programs which project out to future years will have problems
well before the twenty-first century arrives. Even if we assume
that the majority of date handling programs will only have errors
when we actually reach the year 2000, we are left with less than
14 years to completely eradicate the problem.

445

446

So what software should we be concerned about converting? To
answer this quesi:.ion, we must try to. figure out what software
will still be around in the year 2000. One possible gauge of
that is to look back 14 years and see what software from 1972 is
still around today. Two obvious examples in the HP 3000 arena
are the MPE operating system and the IMAGE date base management
system. Whi.le most of their code has been rewritten over this
time span, much of the original designs remain, such as the
six-digit daLe used at system startup by MPE. There is no way to
know whether these designs will still be around in the year 2000,
buL we can see from these examples that some of the software
being developed today will in all likelihood survive the 14 years
left until we reach the year 2000. Unless these new programs are
designed and coded using some of the techniques to be discussed
laLer, they will be the ones which require converting as the next
century approaches.

Given the high probability that some software will need to be
converted, when should all the necessary changes take place? Do
we need to start converting our entire collection of existing
software right away? No, I don't think so. Based on a typical
life span of five to ten years, most of the computer programs in
existence today should be obsolete by 2000 (although that is not
the same thing as being completely out of use!). The time to
evaluate this type of conversion will be a year or two before
each software system begins to malfunction. For most software
that means the late 1990' s, which certainly gives us plenty of
time to prepare!

Even so, I predict that the upcoming arrival of a new
millennium will catch many of those in the data processing
profession by surprise. Conversion will be a big issue because
organizations will not realize the magnitude of the effort ahead
of them. I would like to present three possible conversion
methods to help you estimate the effort that will be required
when the time comes.

1) Full Upgrade. This technique requires converting~ and
programs to use a four-digit year. This is the most direct
approach because it is a complete conversion that involves no
gimmicks. BuL it may require a massive effort to find every
occurrence of a date field, change it, recompile every program
which references it, and test it all thoroughly. The source code
for every program must be available, and the current compilers of
the day must be able to successfully recompile that code. The
amount of time for testing should not be underestimated, even
though this seems like such a straightforward approach. Because
of the extra data space required, the possibilities for stack
overflows and inefficient blocking factors (or whatever errors
fuLure computer architectures give us) are endless. Reports may
noL be able to accommodate two extra columns of data, so
conversion routines will probably need to be written to print the

date with a two-digit year.
they see 11 60 11 as the year
computers!

People will
after "99"

have no trouble when
that only confuses

2) Logic Upgrade. This technique leaves data as it is but
implements some additional logic to handle dates properly. For
example, it may be reasonable to assume that years above "50"
belong to the 1900's while the rest belong to the 2000's. This
method makes sense for programs which frequently use dates with
two-digit years but do few comparisons (such as determining which
year is greater). In these cases, the cost of a full upgrade as
described above may be too high to justify. These new date
comparisons could be implemented as common routines which could
be called by many different programs. While this is less costly
than a full upgrade, we must still be able to locate and
recompile the source code. The effort to test should be less
than that required for a full upgrade because fewer changes are
being made, but again this should never be underestimated.

3) Data Upgrade. If source code does not exist or cannot be
recompiled successfully, the only option besides a total rewrite
is to attempt a data conversion of some kind. This can get
tricky, but it just may work. If dates are stored in character
format (rather than packed or integer), the ASCII collating
sequence contains several special characters which have an
internal value less than the value of the character "O" (zero).
At the time when year "00" is about to be introduced to the
system, all the two-digit years beginning with "9" can be updated
to start with a special character such as blank or asterisk (*).
This will force dates with year "OO" to sort after dates with
year " 9" or "*9". Users will see years of" 9" or "*9" on their
screens and reports whenever they access the old data, but people
can be educated in advance about the change. This will work best
in instances when the older dates will be aged off the data base
soon after the conversion. There is some risk here that the
strange-looking dates will fail a logic edit or cause other
problems, but this technique can be viewed as an acceptable
work-around when the only other choice may be to scrap the
programs entirely. A similar approach would use characters like
"AO" to represent the year 2000, since they will sort after "99";
but such dates would be harder to work with and would remain in
our data for a longer time. As with the other methods, any
changes must be thoroughly tested in each environment before they
can be considered successful.

New Design Techniques

As we have already stated, the best way to avoid the problems
associated with conversion is to design and code new programs
today in a way that eliminates the basic problem. It is not too
early to begin using this strategy. Most of the softwai='E!that
will cross over into the twenty-first century has not yet been

447

448

created. Unless we adopt some new design techniques, we will be
building time bombs into all of this new software, set to blow up
at some time around the turn of the century. If everyone in the
computer world begins to adopt these techniques over the next few
years, there will be no need to worry about the conversion
methods already discussed.

The first technique is so obvious that it hardly seems to be
worth mentioning, but it is the key to solving the whole problem.
We must begin to use four-digit years! The cost is two bytes per
date, a small price to pay for extra storage when compared to the
cost of converting software. Sometimes these two bytes can fit
in~o wasted space at the end of a block of records, requiring no
additional storage. Even when that does not work, it will take a
half million dates to use up an additional megabyte of disc
space, with a thousand dates fitting into the same space as a
25-line editor text file. Most importantly, the amount of effort
required to begin coding in this manner is very small.

The second technique involves adopting formats that will
represent dates unambiguously. This brings us back to one of the
more subtle problems associated with date handling even today,
which comes up occasionally at an jnternational conference such
as this one. Computers aside, those of us from the United States
are used to writing our dates in the format Month/Day/Year. In
many other parts of the world, a different order is used:
Day/Month/Year. This can lead to confusion about the meaning of
a numeric date on correspondence. Introduce computers and the
many organizations that use them across international boundaries,
and we are certain to have confusion when a date such as 03/02/86
appears on a report. Is this March 2 or February 3? There are
132 days each year when this problem occurs (12 months times the
first 12 days of every month, less one day per month when both
month and day are iden~ical, such as 03/03). Each of these dates
has two possible interpretations, but at least there is no
confusion about the year since there is no month or day numbered
86. In fact, at no time since the invention of the computer has
it been possible to confuse the current year with any month or
day.

Now let's introduce the twenty-first century, which actually
be~ins with 2001. This is about the only area where a two-digit
representation for the year 2000 will not give us grief, since
year "DO" (2000) does not conflict with any month or day. But
the year 2001 will cause a whole new round of confusion if it is
displayed with only two digits. Sometimes computers use not only
the two formats discussed above (Month/Day/Year and
Day/Month/Year) but also Year/Month/Day, the order in which dates
are often stored internally for sorting purposes. So how do we
interpret 03/02/01? As March 2, 2001 (Month/Day/Year)? February
3, 2001 (Day/Month/Year)? Or February 1, 2003 (Year/Month/Day)?
The number of ways to confuse dates increases significantly

during the first 12 years of the new century, since the values
11 01 11 through "12" can now represent the month, day or year.
There are 1716 dates where this confusion can occur during these
twelve years (12 months times the first 12 days of each month
times 12 years, less one day per year when all three are
identical, such as 01/01/01). Each of these dates now has up to
three possible interpretations.

This problem should be taken care of now by choosing
unambiguous formats for displaying dates. First of all, the year
should be displayed using all four digits, such as "2001". This
can be phased in gradually between now and the turn of the
century, since the two-digit year does not confuse us yet. Then
we must find a way to distinguish the month from the day. One
method would be to use ordinal numbers, such as 1st, 2nd, 3rd,
to represent the day of month. These representations often
differ across languages, so this does not solve the international
problem. Since people rarely use them in correspondence, they
might be awkward to computer users, and they could still possibly
be interpreted as months. Another approach is to use alphabetic
representations for the months, such as Jan, Feb, Mar. These are
more familiar to people, and they cannot be confused with the
year or the day. The problem of language di ff er enc es still
exists, but these abbreviations could be translated into the
local language for displaying. A common set of routines, similar
in concep~ to HP 3000 Native Language Support, could be
implemented to take care of this localization.

The resulting dates have a format like "MAR 02, 2001" or
11 02/MAR/2001", which are both much clearer than 03/02/01. The
important point is not what format we choose, but that every user
understands exactly which date we are representing.

The third technique that will greatly aid our system design
is the use of a productivity tool called the data dictionary.
While dictionaries do not represent a new concept, many software
applications are still being developed without them. A data
dictionary maintains information about all our data elements,
including which programs and data sets refer to each element. If
we must expand a six-digit date by two digits to accommodate the
year, the dictionary simplifies the conversion process by
locating all the places where changes must be made. I predict
that its value as a productivity tool will continue to be
demonstrated by increasing popularity over the next few years.

Future Productivity Tools

The data processing world needs a whole new way to look at
date-related information. Currently, dates are usually treated
like any other piece of data containing six numeric characters,
but in reality they have several unique properties:

449

450

1) Dates are rarely printed in the same format as they are
stored. Slashes are often added, requiring program logic or an
edit mask for every date field.

2) Dates must pe stored in Year/Month/Day order for ease of
use in sorting and comparisons. Since this is not how most users
prefer to view their data, editing logic of some kind must be
coded to rearrange the order.

3) There can be ambiguity about what a date field represents,
depending on the order in which it is presented. As we have
already seen, this ambiguity will be even greater in the next
century when two-digit years such as 11 01 11 can be confused with
the numbers representing months or days.

I propose that all future programmer productivity tools
incorporate a special data type for dates. This data type will
be handled within a data dictionary just like integer or
character data is today. Every other tool that accesses dates,
such as screen handlers, programming languages, code generators,
and report writers, will be based on the data dictionary. Since
all these tools will understand the meaning of the type called
"date", they will all handle dates in exactly the same way.

The key here is that the internal storage technique can be
completely isolated from the way users see dates. There will
only be one way dates are stored internally, and every tool which
accesses dates will understand that storage method. The
technique must allow for the turn of the century and beyond,
implying the ability to handle four-digit years, and for easy
comparison between dates, implying an .ascending order. One
example of such a technique would use 32 bits as follows:

High-order 16 bits:
Next 8 bits:
Low-order 8 bits:

Year
Month
Day

0 to 9999
1 to 12
1 to 31

Another example would start counting at some set date in
history and add one for every day. We could also use eight ASCII
bytes. While techniques like these are not new, the problem up
until now has been that programmers needed to know the internal
representation. This will ·no longer be true with our proposed
productivity tools! No one accessing a date field will need to
understand the internal storage method; the outer layer of tools
will manage that for us. Some languages today automatically
convert numeric data to a readable format for displaying; dates
need to be treated the same way.

For this to work, all access to these date fields must be
handled by the tools associated with the data dictionary. One
objection to this technique has been that generic tools (such as
QUERY/3000) do not understand the special meaning associated with

these fields. In the future, generic tools must know what type
of data they are accessing, beyond just character or integer. To
accomplish this, all tools will need to use data dictionaries for
their description of data elements.

The end result of providing these tools is that programmers
will not need to worry about handling dates at all. Once a data
element has been defined with a type of "date", the computer will
take over with a set of common routines that understand both the
internal storage technique and the default display formats for
dates. The software developer or end user only needs to refer to
the data element, and the computer will handle:

Sorting and comparisons
Editing (for valid dates)
Range checking (such as dates between March 1, 1986

and March 31, 1986)
Displaying in the proper format

This represeni:;s another step toward making computers friendlier
to everyone who uses them.

Conclusion

Although we still have plenty of time to implement all of
this by the year 2000, the years will go by faster than we
realize. We must start thinking along these lines now. Those
who develop productivity tools should begin to plan how their
software will handle the arrival of the twenty-first century.
And those who create software using these tools should begin to
ask about plans for the future. It is not yet too late by any
means, but as the British poet Andrew Marvell once -said,

"At my back I always hear
Time's winged chariot hurrying near."

The time will creep up on us sooner than we think. So let's be
ready, because on Monday morning, January 3, 2000, no one in data
processing will be able to say that they were not given enough
notice to solve these problems!

Biography

Kevin Cooper is currently a Software Engineer (SE) with
Hewlett-Packard Company, Neely Sales Region, supporting HP3000
installations in the San Francisco Bay Area. Prior to this he
worked for eight years as a programmer/analyst and project leader
in Hewlett-Packard's internal Information Systems organization.
He holds a bachelor's degree in Computer Science from the
University of California, Berkeley.

451

INTERACTIVE SYSTEMS: INTERFACING WITH THE HP3000

Antonia Stacy Jolles
SofTech, Inc. Oakland, California U.S.A.

Summary

The interactive system, interfacing large-scale and small-scale
computers in the office environment, is in its infancy of
development today, but is rapidly shaping the direction of future
development. Research concerning interfacing and networking PC's
and large systems is at the forefront of today's state-of-the-art
designing. Our current methods of information management are
inadequate for maintaining efficient and compatible interactive
systems. A management scheme that considers the time line of
technological advancement as well as the abilities and techniques
of management practices must be developed now to insure the suc­
cessful future of the interactive system environment.

The introduction of the personal computer into the office
environment is changing our methods of information processing and
information management. The relationship between personal com­
puters and the larger systems they must interact with affects our
strategies for information systems management, our utilization of
hardware and software technology, as well as the directions of
future development. The office of the future will be a haphaza,d
collection of non-interactive systems unless we strategize for
the implementation and management of successful interactive
systems.

The interactive systems environment, resulting in offices
with a distributed data base, presents many advantages that have
influenced its popularity in the corporation. The use of per­
sonal computers presents a cost efficient method of providing
additional intelligent terminals to tap into the large-scale sys­
tem, either a mini or mainframe. The personal computer, less
expensive than most intelligent terminals, provides an additional
data input station to share the costs of utilizing the expensive
peripherals already available as part of the mini or mainframe
system. In most cases, for about one-quarter of the cost of an
intelligent terminal, a personal computer can be used to inter­
face with the office's large-scale system, either directly
through a port, utilizing terminal emulation, or using a modem
and telephone line.

The advantages of using a PC in the off ice environment are
not limited to its role as an effective intelligent terminal com­
municating directly with the office mainframe. The personal com­
puter provides the added advantage of acting as a stand-alone

453

454

work station. Processing on a personal computer can provide the
user with a less intimidating situation in which to develop com­
puter skills. Applications programs written for the PC accom­
plish complicated tasks with a user-friendly approach. The user
has a direct line communication with a personal computer, knowing
that the computer is functioning for them alone.

The personal computer provides the flexibility of a mobile
work station. Access to computing power may be sought from dif­
ferent locations, most often the office, but also from home and
during business travel. The personal computer and the more por­
table lap computer provide a work station with enough mobility to
carry on processing away from the office desk.

Numerous software packages have been written specifically
for the personal computer. These are not packages that were
first developed for large systems, and then scaled down for use
on the PC. Rather, the software has been designed directly for
the PC, taking advantage of the PC's dedicated processing, while
at the same time freeing the large-scale system for the tasks
best conducted on a large computer. Throughput time is increased
on the large-scale system as more and more applications and tasks
are run at the corporation's stand-alone work stations. Huge
data base processing requiring the resources of a large system
can be run without the added CPU burden of maintaining several
other smaller tasks simultaneously. The large system is freed up
to process exactly the kind of large-scale computing tasks it was
designed to conduct.

The more sophisticated software development becomes, as it
already has developed today, the simpler the system can appear to
the end user. With the proliferation of the home computer and
the recent introduction of the personal computer into the office
environment, microcomputer software applications programs have
been developed with the ability to conduct almost any complicated
task previously reserved for the computing power of the larger
systems. The inexperienced personal computer user is able to
find user-friendly software to assist in the most sophisticated
of tasks. These complex applications programs designed for the
PC are increasingly requiring less computing knowledge on the
part of the user, while at the same time performing more sophis­
ticated functions.

The personal computer brings computing power to a wider au­
dience. The easy-to-use applications available for the microcom­
puter have brought computer tools closer to the user so that the
user has immediate access and control over their work. In addi­
tion, users are able to customize their tools. The PC as a
stand-alone system allows the user to develop custom software to
conduct any specialized tasks.

But the personal computer goes beyond functioning as a
stand-alone work station. Interfacing to the larger systems has
introduced recent computer users to the power of the mini and

mainframe as well. The personal computer in the office environ­
ment, networked to the larger systems, has provided the missing
link necessary to successfully introduce the inexperienced user
to the large-scale computer. The relatively new user is now able
to tap into the complex resources available on the mini or
mainframe, but perhaps with the disability of not possessing the
more sophisticated computing knowledge required in the mini or
mainframe environment.

Further advantages are gained with the introduction of the
personal computer into the larger context of the corporate com­
puting environment. Off-site stations are able to perform com­
puting tasks using a personal computer and then uploading the
data via modem to the main site's mini or mainframe. The idea of
the distributed data processing system becomes expanded when the
stand-alone work station, away from the corporate large-scale
computer system, can interface from absolutely anywhere a tele­
phone line can be installed. Corporate branches can share the
master data base of the main branch while still conducting their
computing tasks at the local level.

Experience tells us that problems arise with the introduc­
tion of any technological information processing advancement into
the work environment. Problems with information management occur
from the end user's point of view as well as from the vantage
point of system management.

From the end user's standpoint, data downloaded from the
large-scale system and manipulated on the PC may be obsolete be­
fore the user has an opportunity to upload the processed informa­
tion back to the main system. As the PC user is manipulating
information at the stand-alone work station, others may be con­
ducting further processing on that same data, with none of the
parties aware of the other's actions. Not only does this waste
the computing time of the users involved, but data rapidly be­
comes obsolete and incompatible. We have quickly lost all the
advantages gained by the technology of a shared large-scale sys­
tem. The possibility occurs of having the same or similar data
maintained and updated in several different locations with no
method to insure its logical coordination.

Hardware and software problems exist that effect the ef­
ficiency at both the end user and the management level. With the
introduction of more and more personal computers into the office,
problems of hardware and software compatibility arise. In the
past, purchasing hardware or software within the confines of a
single large-scale system necessitated the purchasing of com­
patible equipment. New acquisitions had to be compatible with
the existing large-scale system. But the purchasing of personal
computers in the office environment can be done without regard
for the compatibility with the large-scale system, until the time
comes to network and interface. Then the problem becomes a cru­
cial one. Software packages developed for use on PC's are some­
times incompatible with their counterparts on the larger system.

455

456

Files developed at the stand-alone work station simply may not be
able to be uploaded to the larger system. But we are still left
with slow processing time and multiple steps involved in using
these software programs.

Emulation and conversion software is most often complicated
and time consuming to use. Emulation software considerably re­
duces the response time on each process. In many cases, the
emulation software itself requires a fairly knowledgeable user to
conduct the several keystroke steps involved. Conversion soft­
ware often requires several phases of conversion before the data
is actually ready for transmission. Emulation and data conver­
sion work, but within the confines of current software's
capabilities.

Problems of hardware compatibility also occur. If a modem
is not the networking tool, then the personal computer must be
networked directly to the larger system. More and more personal
computers bought for the office environment are being purchased
with emulation boards already installed. Selecting the network­
ing protocol must consider the compatibility of all the system's
hardware and software involved. The definition of "the system"
is expanded to include not only the mini or mainframe and its
peripherals, but all the different designs of personal computers
networked to the large-scale computer.

Many more problems are cropping up with the introduction of
personal computers into the office environment. Management In­
formation System (MIS) departments throughout companies are
having to reassess their approaches to system management. The
function of MIS, to manage the hardware and software of the cor­
poration's mini or mainframe, and maintain an accurate data base,
has become further complicated with the introduction of the per­
sonal computer. MIS functions have expanded from maintaining one
large-scale system, to maintaining the large-scale system and the
many stand-alone stations accessing the larger system. MIS is no
longer managing a single centralized system, but is now trying to
grab the tail of a decentralized computer network before the
technology takes off beyond management's ability to regulate it.

Up until the introduction of the personal computer into the
mainframe environment, MIS was able to control the flow of infor­
mation in the large-scale system. The available technology pro­
vided adequate methods of regulating access to data through
security measures activated by software. With the introduction
of the PC networked to the larger system, MIS departments are
losing control of the flow of information between the large-scale
system and the PC user. A PC user networked to the company's
mini or mainframe can download any information available at his
security level from the large system down to the PC. Once this
information resides on the PC, MIS has lost control over regulat­
ing the security of the data. Any other user can come along and
access the data directly off of this same PC, or via a network,
the information can move from PC to PC.

In addition, PC users can develop their own programs. Data
originally downloaded from the large-scale system can be manipu­
lated at the stand-alone station using custom designed programs
without the supervision and control of the MIS department. This
data can then be uploaded back to the mini or mainframe, thus
corrupting the integrity of the data base of the large-scale sys­
tem. The flow of information is out of the hands of a regulating
MIS department, and cast into the hands of end users who lack the
experience and the coordination to successfully regulate the flow
of data.

The advent of hardware and software able to interactively
network large-scale and small-scale systems has introduced the
personal computer into the office environment at an exponential
rate. Specific hardware and software problems had hardly been
addressed before the personal computer began taking its strong­
hold in the corporate environment. The relatively inexperienced
PC user has found himself having to learn a variety of applica­
tions packages specific to the personal computer quickly, and in
most cases, on his own. In addition, networking the PC to the
company's large-scale system, has forced this same PC user to
learn emulation programs, networking software, communications
packages, and conversion programs. Overnight, the office PC user
has been forced to learn a vast amount of software packages with
very little, if any, training assistance.

In addition, the PC user is finding that these software
packages are more complex. Emulation programs generally take the
user through a series of ten to twenty steps in order to begin
passing data back and forth between the personal computer and the
mini or mainframe. Users are finding, sometimes by hit and miss,
that files created at their stand-alone work stations are incom­
patible with the larger system. In some instances, this means a
complete duplication of work, or seeking out conversion programs
that can handle the task.

Networking interactive small-scale and large-scale systems
together is in its infancy of development. The software and com­
patible hardware necessary to insure successful interactive net­
works is slowly appearing on the market now. Many successful
integrations of personal computers with the HP3000 are currently
in use in many corporations. IMAGE/3000 data base extraction
techniques are used to download data to a spreadsheet package on
a PC for "what-if" analysis. Data can be extracted from personal
computer data base applications and uploaded to the HP3000 for
input to IMAGE/3000 based applications.

The Data Interchange Format (DIF) allows various unrelated
applications to exchange data. Output from one application is
formatted so that it may be processed and utilized by another
applications program.

Command features of DSN/LINK can be used to set up a variety
of time and keystroke saving routines. These routines can then

457

458

be used for data transfer without user interaction. This elimi­
nates the complex strings of commands sometimes necessary during
data transfer applications between nodes in a network.

Development is still underway for future packages that will
provide simple solutions to incompatibility and emulation prob­
lems. Future software for interactive systems must be able to
link small-scale and large-scale systems regardless of the struc­
ture of the DBMS. Centralized batch data entry can be elimi­
nated. We must be able to interchange data simply and efficient­
ly between applications packages. Current networking and soft­
ware emulation limitations must be overcome. But we are still
looking to the future for technology to catch up with the complex
of interactive networked systems already existing in many office
environments.

Networking and interfacing technology has quickly advanced
beyond the ability of our managerial skills to deal with issues
of system compatibility, data base integrity and security. Fu­
ture technology is not catching up soon enough with tools for
regulating the security and compatibility of data on complexes of
networked systems. Problems of data security, system management,
and system compatibility must be solved, during the interim,
while the technological tools catch up to our present day needs.
MIS departments are at risk having to invent security measures
for regulating their data bases and maintaining security on the
growing network of systems, or risk losing their reign over the
computer system.

From the viewpoint of the end user, the advantages of per­
sonal computers in the office environment far out weigh any dis­
advantages. The personal computer within the context of a net­
worked system has taken hold within the corporation. The issue
is not whether or not the personal computer can successfully
integrate into the mini or mainframe environment. The issue is
whether or not the mini or mainframe can adapt to the growing PC
environment of the office.

MIS departments must catch up with the technology and begin
strategies for information management within the context of net­
worked systems, stand-alone work stations and distributed data
bases. The first issue that must be addressed is providing
training to the growing number of users tapping into the more
easily accessible computing network. The introduction of per­
sonal computers into the office environment has brought many new
and less experienced users on-line with the larger systems. Per­
sonal computer users are frantically trying to keep up with the
latest in emulation, networking and communications software, as
well as the myriad of applications packages available for the
stand-alone work station.

In response to this growing need, information centers, sup­
port centers, or training centers are appearing in many corpora­
tions. In the broadest sense, the role of these centers in the

office context is to insure the user's involvement in the cor­
porations larger data processing environment. The proliferation
of stand-alone work stations creates a situation in which the end
user is able to isolate from the larger data processing environ­
ment. There is less communication between users within a cor­
poration. The one time hope of computers eliminating the
duplication of work between divisions within a corporations is
lost as the information becomes isolated on the personal com­
puter. The end user must still be involved with the larger sys­
tem to insure communication between personal computers within a
corporation and between PC's and the large-scale office computer.

The functions of an information center within a corporation
can vary greatly. Essentially, the information center must pro­
vide a sharing of data processing skills. Foremost of these is
acquainting the user with issues and methods of data security.
With the growing number of personal computers in the office, ac­
quainting the user with issues of data security becomes even more
pressing. Users must be encouraged to maintain good habits of
information management themselves. Issues that were once the
realm of MIS departments are now spread to the user who becomes
his own small-scale version of an MIS department managing the
security of data on the personal computer.

The PC user is required to conduct his own daily or weekly
backup of files. In the large-scale system environment, the MIS
department conducts a disk to tape backup on a regular basis to
insure the safety of files against gliches, or hardware failures.
The PC user must be trained to conduct his own backups, either to
a floppy disk, a tape backup or to the larger system itself. The
latest version of the 2622 emulator allows the PC user to inter­
face with the HP3000 to upload an entire disk for backup. The PC
data backup process is directly linked to the larger system. In­
formation Centers should encourage good data management practices
and provide the necessary training to PC users.

These Information or Support Centers often provide training
for the office's personal computer users on a drop-in basis. The
personal computer user, exposed to the vast marketplace of PC
applications programs needs guidance on issues of purchasing,
compatibility, as well as training. Users can work with the In­
formation Center staff to identify the most efficient and com­
patible applications, with consideration given to cost factors.

The growing concern of company's starting up their own in­
formation centers is under who's authority should they reside.
There are arguments urging that the information center is neces­
sarily a part of MIS. There are just as convincing a set of ar­
guments on the other side that insist the information center
should be independent of MIS. The question should really begin
with an understanding of the role of the personal computer in the
office environment. Is it something that can come under MIS con­
trol at all. Our traditional methods of information management
would insist that it does. But the personal computer assumes a

459

460

different role entirely in the office than does the large-scale
system.

MIS and the users need to define the role of the personal
computer in the large-scale system environment. Areas of great
security risk are best left on the mini or mainframe. There are
areas of data processing that are best suited for application on
the personal computer. Some accounting tasks are more efficient­
ly performed on the PC, rather than the company mini or
mainframe. Spreadsheet applications requiring large amounts of
memory to load are best used on the PC where processing is dedi­
cated and• the mini or mainframe is unburdened. Spreadsheet
packages are CPU intensive, slowing down the entire system in
performing other tasks simultaneously. Spreadsheet analysis is
best conducted on a PC using the dedicated processor, relinquish­
ing the mini or mainframe processor to conduct other activities.

Custom programs geared to the specific needs of a user can
be made available at the PC level for individuals, as long as
these programs are catalogued and maintained by the Information
Center. The cataloguing of custom as well as standard applica­
tions programs should be maintained by the Information Center,
thus insuring the legal handling of software duplication as well
as software maintenance.

The personal computer is an element in current data process­
ing that defies our previous management definitions and abili­
ties. In order for the Information Center to keep a handle on
their job, the role of PC's in the office environment must be
defined. The Information Center must keep the presence of dif­
ferent manufacturers of personal computers in the office to a
minimum. By restricting the variety of models and the applica­
tions programs used, the Information Center can maximize the
sharing of information between users on the PC network. This
reduces the strain on the Information Center's resources.

With a strategic plan to guide the manager of the office
computer network, fewer purchases of "state-of-the-art" software
and hardware will occur. Implementation of a strategic interac­
tive systems management plan would actively direct the purchase
of only those technologically advanced tools that are in keeping
with the direction of the office's future development. The of­
fice system network will begin to take on a cohesive and planned
direction. It is up to management to redefine its role as infor­
mation managers, and develop new methods of information manage­
ment to include the role of the personal computer in the office.

Antonia Stacy Jolles has been with SofTech, Inc. for one year.
She has been a Technical Writer involved in the computer industry
for the past three years. Currently, she is working on an HP3000
network designing and writing the documentation and graphics that

accompany the custom software SofTech develops for the San Fran­
cisco Department of Energy. In the past, Ms. Jolles has worked
extensively with personal computers and multi-user microcomputers
documenting both engineering and end-user manuals. In addition,
Ms. Jolles teaches Hewlett-Packard word processing skills and
designs and teaches courses in Technical Writing and Graphics
Production to university level students.

461

Winston Prather
Hewlett-Packard Cupertino
U.S.A.

NOTE: See page 647.

463

Summary

How to Compute Master Data Set Capacities

by

Kurt Sager

SWS SoftWare Systems AG
Schiinauweg 8
CH-3007 Bern

Switzerland

Defining optimal capacities for IMAGE master data sets is not just a matter of getting a
number from a prime number table. Many other factors influence the access performan~e
of master data sets. A high percentage of synonyms not always means long DBPUT
transaction times, 0.1% synonyms however may indicate severe performance degradation if
other conditions are met. A method is presented which allows to compute master set
capacities such that perfect hashing (no synonyms at all) is achieved in many practical cases.

References:

[!] IMAGE Data Base Management System Reference Manual HP-32215-90003

[2] The IMAGE/3000 Handbook / R.M. Green, F.A. Rego, F. White, D.J. Greer,
D.L. Heidner. - Seattle: WORDWARE, 1984. - ISBN 0-914243-00-4

(3] IMAGE: An Empirical Study / B.D. Cathwell. - Proceedings HP3000
IUG 1984 Anaheim Conference. - p. 4-1 to 4-5

465

466

How to Compute Master Data Set Capacities

Introduction

In appendix C of HP's IMAGE Reference Manual [I], the following statement is written:

"A master data set capacity equal to a prime number or the product of two
or three primes generally yields fewer synonyms than a master data set
capacity of many prime factors."

The appendix in the same manual shows a table of selected prime numbers from 101 to
over 8 million.

Participants of IMAGE training classes are told to use prime numbers where possible to
reduce the number of synonyms in master data sets.

ADAGER, the well-known data base utility package, refuses any number but a prime
number as a master data set capacity to be changed. And other IMAGE utilities make
similar propositions.

These statements and practices may raise the questions below:

Where is the mathematical proof which demonstrates the superiority of
prime numbers for master data set capacities?

What is the real impact of synonyms on system performance?

If system throughput and response times suffer from synonyms, how
should the capacity be changed to cure the problem?

Are prime capacities really the solution?

Findings from practical experience

Ten years of practical experiences with many IMAGE data bases prove that best
performance is not guaranteed by just using prime numbers as master data set capacities.

Other factors have much more influence on the number of synonyms and possible
performance degradation. It is generally known, that the load factor (the ratio of the actual
number of entries over the capacity) of master sets should not exceed 70 to 80 percent.
Although IMAGE allows master sets to be filled up to 100% severe performance
degradation can be observed if entries are added to a master set already more than 80 to
90% full.

But in many cases adding entries to a nearly full master set shows no performance
degradation. Sometimes however terminal response times become inacceptable due to
synonym problems with master sets less than 50% loaded. Why?

How to Compute Master Data Set Capacities

It seems that the key item value distribution, or perhaps some specific value patterns, are
much more important whether or not a significant amount of synonyms is generated, rather
than choosing a prime or non-prime as capacity.

How Hashing Works

A very common task in today's data processing applications is to store an information entity
on a secondary mass storage device (disc) for later retrieval. Each information block shall
be identified by a unique key item value.

In computer science several methods are known to store an entity of information to a file
and retrieve it at a later time, based on the value of the chosen key item.

On the HP3000 two techniques have been implemented and are available to programmers as
part of the fundamental operating software package (FOS):

- the B+ Tree technique, used in KSAM files

- the Hashing method, used in IMAGE

The B+ tree technique implements an ordered sequence of the key item values as a tree in
natural order (numerical or alphabetical order). The main advantage of this technique:
processing in key order sequence is easy. The time to insert or to locate a given entity
grows with file size.

With hashing, a defined algorithm computes a relative file address using the search item
value as argument. Insert and retrieval times are independent of the file size. Ordered
sequential processing is not possible, however.

IMAGE uses two different hashing algorithms to compute a file address, depending on the
search item type.

Binary Type Search Items

If the the search item is of type I, J, K, or R (binary type), then a quite simple method is
used:

a:= (v - 1) modulo c + 1

where
v is the search item value
c is the capacity of the data set
a is the computed data set address

and modulo means: "remainder of the division of (v - 1) by c"

467

468

How to Compute Master Data Set Capacities

The few examples below show how this formula works:
computed

search item value capacity address
v c a

----------------- -------- --------
10 1000 10

100 1000 100
777 1000 777

1001 1000 l
1010 1000 10

1234567 1000 567

10 500 10
100 500 100
777 500 277

1001 500 l
1010 500 10

1234567 500 67

The mechanism of this technique can be visualized by mapping the domain of the key item
values to a circle representing the address space of the master data set. Of course, the
circle has a circumference of lenght c, the capacity.

ASCII Type Search Items

If the search item is of type X, U, Z, or P, then a much more complicated algorithm is
used (see the IMAGE Handbook [2] for detail information and example calculation).

Synonyms

Starting from a key item value the hashing algorithm calculates an address between I and
capacity c. The entry is then stored at this address if it is not yet occupied by an earlier
added entry.

Only for a few special cases hashing algorithms perform so well that every (different) key
item value maps to a different address, however. Thus sometimes a key item value
generates the same address as an entry added earlier. This is called a collision. IMAGE
then has to find the next free space to store the new entry. This new entry is called a
synonym to the previous one, and is linked to it by forward and backward pointers. All
different key items values hashing to the same address build-up a so-called synonym chain.

llashing is said to perform well if few synonyms are found in a master data set relative to
the number of entries. A good hashing algorithm spreads the entries as uniformly as
possible into the available address space. As the master data set is filled up, the number of
free locations diminishes, and therefor the probability of collisions will increase.

How to Compute Master Data Set Capacities

The programs DBLOADNG from the Contributed Software Library, and HowMessy, a bonus
program for customers of Robe/le products, show the percentage of synonyms and the
average/maximum synonym chain length of every master set in a data base. HowMessy
runs about 10 times faster as DBLOADNG. It is well documented in the IMAGE Handbook
[2].

Performance considerations

Does a high percentage of synonyms mean bad performance for data base operations?

Not generally, performance depends on many other factors too!

The processing time to read data from a master set by a keyed DBGET is only marginally
dependent on the synonym percentage (see the column Inefficient pointers in the HowMessy
report).

The case of adding entries to a master set is more critical. If IMAGE can find a free entry
in the near vicinity of the collision point, hopefully in the same disc block, then it's just a
matter of pointer settings.

If there is no free space in the same disc block then the next block must be read from disc,
and so on, until a block with free entries is found.

The maximum number of entries per disc block is equal to the blocking factor, the ratio of
block size over entry length.

For data bases with many online accesses the block size should not be increased over the
default 512-word size. The entry size of masters however should be kept as small as
possible. Bad examples are manual master sets with many or big data items, good examples
are manual or automatic master sets containing the key item only.

Therefor: the smaller the entry size the higher the probability of a free entry in the samtl,
disc block.

Many fully occupied blocks side by side, called clusters, are very dangerous if a calculated
hashing address falls in the beginning of this zone. IMAGE then has to read many disc
blocks to find a free entry for this DBPUT. During this sequential reading the whole
computer system is locked for any other processes, including MPE!

In the column Max.Blocks the program HowMessy shows the maximum number of
contiguous completely filled blocks for every master set. If this number is very low, say
zero or one, then even a high percentage of synonyms does no harm, and DBPUT's will
process as fast as ususal.

A large number for Max.Blocks indicates a potential performance problem, which actually
already may occur if there are any synonyms present.

469

470

How to Compute Master Data Set Capacities

Every production data base should be analysed by DBLOADNG or HowMessy at regular
intervals, once per week for example. The resulting output (one line per search item and
per data set) should be checked for possible problem figures, as decribed in the IMAGE
Handbook [2], chapter 23.

Analysing and correcting critical hashing situations

Our experiences show that especially search items of binary type need attention. The
following remarks apply to this type of search items only: the I, J, K and R types.

It is quite frequent that binary serach item values are forming a (nearly) continuous
sequence of integers, such as JO I, I 02, 103, ...

We can say they belong to a (almost) dense interval [a.b}, ~here a is the lower limit, and b
the upper limit.

The corresponding master set capacity is therefor at least c := b - a + 1. Applying the
simple hashing algorithm to this case we easily see, that every search item value maps to a
different master set address. The result is perfect hashing (no synonyms at all), no matter
how full the data set is!

If the search item values belong to two or more intervals, it becomes more complicated to
see what happens. In fact this case is usually the reason for very long response times of
DBPUT's if the intervals are very dense and mapping them to the address space causes
overlapping of the intervals.

To overcome this quite frequent problem, the program MASCAP has been written and
contributed to the Madrid SWAP TAPE.

For search items values belonging to several intervals MASCAP cpmputes master data set
capacities such that perfect hashing will be achieved. The program aks for the lower and
upper limits of every interval, the maximum allowed capacity, and then shows ranges of
perfect hashing capacities.

How to Compute Master Data Set Capacities

The examples below show how MASCAP works (user input is written in italics):

:RUN MASCAP

MASCAP / Version l. O / (C) 19.82 SWS Software systems AG, Bern

MASCAP computes Perfect Hashing Capacities for IMAGE Master
Sets with binary type search items (In,Kn,Jn).
This algorithm assumes that the search item values belong to
several relatively dense intervals.

The program will ask you to enter the number of intervals,
then for each interval the lower and upper limits.

Number of intervals: 2
Limits (min,max) of interval l ? 8400001,11412000
Limits (min,max) of interval 2 ? 8500001.11502000
Minimum capacity allowed: 14000
Minimum capacity: 14000
Maximum capacity: 25000
Perfect Hashing Capacities from 14572 (96.l %) to 14666 (95. 5
Perfect Hashing Capacities from 17000 (82.3 %) to 17600 (79. 5
Perfect Hashing Capacities from 20400 (68.6 %) to 22000 (63. 6

Number of intervals: 3
Limits (min,max) of interval l ? 8400001,8413000
Limits (min,max) of interval 2 ? 8500001,8512000
Limits (min,max) of interval 3 ? 8600001,8602000
Minimum capacity allowed: 27000
Minimum capacity: 27000
Maximum capacity: 50000
Perfect Hashing Capacities from 28858 (93.6 %) to 29000 {93. l
Perfect Hashing Capacities from 37334 (72. 3 %) to 37400 (72.2
Perfect Hashing Capacities from 40400 (66.8 %) to 43500 (62.l

Number of intervals: 0

END OF PROGRAM

The figures above show that per feet hashing can be achieved using even numbers as master
set capacities, for example 17000 from the first case above. When choosing a capacity
outside the reported ranges catastrophical situations may occur.

In a real case observed at a customer site, a capacity of 15013 (a prime number of course!)
and a load factor of about 70% one day produced a sudden jump in response time from 1
second previously to 45 seconds for every DBPUT to this master set. Decreasing the
capacity to 14600 cured the problem!

An other author (see [3]) reports that the benefits of prime capacities are rather a myth
than a miracle!

%)
%)
%)

%)
%)
%)

471

472

How to Compute Master Data Set Capacities

Program MASCAP needs the interval limits as input for each run. Sometimes however the
number and the limits of each interval are not known in advance. To help in such
situations the program MASANAL has been developped. It takes a specified master data set
as input and then reports all relatively dense intervals found. The output can then be used
by the program MASCAP to compute optimal capacities.

Conclusions

To obtain best master data set capacities in specific situations the following rules are
proposed:

If the search item is of binary type and all values are contained in one relatively dense
interval between a (smallest value) and b (largest value) then use a capacity of c := (b - a +
1). The resulting hashing will be perfect (no synonyms) independent of the load factor.

If the search item is of binary type and all valu,es are contained in several relatively dense
intervals then use the program MASCAP to compute perfect hashing capacities. If the
interval limits and their number are not known then the program MASANAL should be
used first to extract these figures from actual search item values stored in the master set.

In both cases the performance of existing data bases can be substantially improved without
any changes in existing application programs.

If the numeric search item values are distributed more or less randomly then use a prime as
master data set capacity and define the search item as binary type. In fact, the theory on
pseudo random number generators explains that prime numbers are important in algorithms
of "modulo type" to obtain good random distributions. Is this the origin of the prime
number myth in IMAGE?

In all other cases define a search item as ASCII type and use any suitable number as master
data set capacity, provided that it is not a power of 2 and that the load factor does not
exceed 70 to 80%.

lnterex H P3000 M"drid Conferem:e, March 1986
1'heme: 'Migratiou to 2001'

... networking heterogeneous em1ironments .•. a commonplace
in 2001 ... with information captured and processed at one

node communicated to other very dissimilar nodes for
perhaps surprising transformations and end uses ...

in the Migration to 2001 .•••

What's a Nice Computer Like the HP3000
Doing in a Place Like CAD/CAM?

Sam Boles, Member Technical Staff

Here's a simplistic mechanism to communicate quickly and briefly the basic concepts
of CAD/CAM (Computer Aided Design, Computer Aided Manufacturing), and the
networking of the diverse technologies Involved.

We start by building an IMAGE database 011 the H P3000 with name and other fields.
We extract names from the database and network them over to the H P9000 where the
ASCII string is sized, scaled, centered vertically and /1orizo11tally and transformed
into tool path geometries for downloading to a 3-D CNC milling machine to produce
name plates.

Then it's back from the HP9000 to the HP3000 for engineering specs documentation to
wrap up this "CAD/CAM In microcosm," with a glimpse of a new methodology that
can Increase productivity by an order of magnitude in product development. •
This unusual heterogeneous network result for an otherwise ordinary IM AGE database
011 the H P3000 can give you an informal i11troduct/o11 to the world of CAD/CAM.

. . . evolutionary perspective:
it wasn't our size, strength
or speed -- but our tools
that put us on this end

of the leash

Of all the animals whose ancestors crawled up
out of the swamp that day, we're not the most
imposing.

Look at our size. Lots of animals are bigger.
Elephants. Whales. Giraffes. To name just a
few .

Look at our strength. Ever arm-wrestle a
gorilla? Ever wonder why Budweiser uses
Clydesdales to pull the wagon instead of a
team of Arnold Schwarzenegger's?

And speed. Do you think dolphins aren't
allowed in the Olympics because they're not
fast enough? How many gold medals do you
think Spitz would've won that year if there'd
been one even average dolphin in the
swimming events? No, it wasn't our size,
strength or speed. It was our tools that made
the difference. That's why the leash is around
our hand and not around our neck.

475

476

Wltat's a Nke Computer Like the Hl'JOOO J)oi11g ill a Place Like CAD/CAM?
Sam Boles, lnterex H 1'3000 Madrid C01tfere11ce, March 1986

Sure, the opposing thumb was handy. And
being able to balance, however precariously at
times, on two feet was a help. But it was our
tools that really made the difference.

Tools meant we could see things that weren't
there. We could look at a tree and see a lever,
a club, an axle, a torch, a spear, a raft, a shovel
handle, even a baseball bat, for those who
would take the world serious

... CAD/CAM as a
transformation of data

from the abstract to
the concrete .. .

a simple case

As the centuries passed our tools got more
refined. One of these tools in the long heritage
is CAD/CAM (Computer Aided Design,
Computer Aided Manufacturing). Let's look at
a simplistic example of CAD/CAM and see
some of the basic principles at work. A
"CAD/CAM in microcosm."

Let's start with an IMAGE database on the
HP3000. It can be a personnel-type database
with people's names in it. Our data capture
can be ordinary, too: thru a terminal where we
touch the key with the letter "A" on it and thru
some magic a nobit-nobit-nobit-bit-nobit-bit
ends up in the memory of the 3000. A binary

group in an NMOS memory array that can be
interpreted thru the ASCII coding scheme as
the letter "A."

Now this is ordinary everyday commercial data
processing on a computer. Nothing particularly
marvelous about that. Well, marvelous, yes -­
but we do it all the time everywhere so we've
gotten used to the marve.I.

Next let's extract some names from the
database and communicate them via an RS232
network to another computer, an HP9000. We
can use QUERY to do the extraction and
formatting and off-the-shelf drivers to send the
name data serially over a twisted pair at 9600
baud to the 9000 running in terminal emulator
mode. This is our CAD engine.

Now let's look at the next node in the network,
that provides the CAM part of this "CAD/CAM
in microcosm."

. •. the CAM node
in the network ...

a 3-D CNC machine
tool with R S232

interface

The specific CNC (Computer Numeric Control)
machine tool we'll focus on here is the Dyna
2400 milling machine.

What's a Nice Computer Like the H P3000 J)oing in a Place Like CAD/CAM?
Sam Roles, 11tterex H 1'3000 Madrid Conference, March 1986

It's made by Dyna Electronics in Santa Clara,
California, and represents some of the more
advanced CAM technology available today.

The machine is designed to mill small,
high-precision parts such as those typical of
the electronics industry. The three step motors
that provide the x-, y- and z-axis movement on
the 2400 have a resolution of 1/10000 of an
inch. The travel is about 6 inches in the x-axis,
5 inches in the y-axis and 4 inches in the
z-axis. The maximum feed rate is about 30
inches a minute with synchronous and
asynchronous control in each axis for full
3-dimensional capabilities, such as machining a
hemisphere. The spindle can be throttled up to
10,000 rpm.

The on-board microprocessor is programmable
in stand-alone mode or may be downloaded
from a host via RS232 interface with line,
subroutine and full-program granularity.

The instruction set includes the common
control and vector move commands, but in
addition is enriched with polar coordinate
commands which simplify programming and
provide powerful 3-D capabilities.

The machine's footprint is about 2 feet by 2
feet, with a height of about 2 feet and weight
around 220 pounds. This gets it close to

"desktop" class and enables comfortable
positioning on a engineer's workbench ·or
some interesting methodology implications as
we'll see later.

... the "CAD"
transformation of

the ASCII symbol into
3-D CNC tool path

geometries

Meanwhile, back at the HP9000, we have our
ASCII symbol: someone's name or similar
data. The data could just as easily be a vertex
list for polygonal graphics or other 2- or
3-dimensional geometric descriptions with
vector and/or polar coordinates. For our
CAD/CAM example, we've chosen an ASCII
symbol to give a simplistic CAD illustration of
transforming an alpha character into a tool-path
geometry. Here's a narrative of what we do:

I. Abstract: This module is the CNC milling machine (Dyna 2400)
stager and driver for name plates to illustrate CAD/CAM
capability via a simplistic example. The process includes the
design implications of transforming text to tool path
geometries with sizing, translation and scaling; the driving
of the milling machine with vector and polar coordinates as
well as other control commands is an example of relatively
sophisticated computer-aided manufacturing.

The module loads external tables of width, key and geometries
for tool path generation, gets a name/string, scales/centers/
gens tool path commands for the machine, downloads the path
program via RS232 link, and graphically simulates the milling
action.

I I. Input
1. External table of subroutine reference key and size
2. Tool path gecmetries in Dyna format
3. Name(s) from HP3000 IMAGE database via terminal emulation

III. Processing

477

478

What's a Nice Compllter Like the H P3000 Doing in a Place Like CAD/CAMP
Sam Boles, lnterex H P3000 Madrid Conference, March 1986

1. Initialize flags, counters
2. Load path, subroutine, sub index and width tables
3. Get name/string, scan, scale, center
4. Gen tool path program for download to CNC
5. Download tool path program from 9DOO file to CNC
6. Scan/parse, simulate tool path with graphics CRT

IV. Output
1. Graphic (CRT) replica of name plate, scaled and centered
2. Temporary disc file ('TEMPPR-OG') of Dyna tool path code
3. RS232 transmission of TEMPPROG to Dyna programmable controller
4. Graphic (CRT) generation of tool path to simulate milling

V. Techniques/Cont rots/Cons i de rations
1. Subroutine/width table (default 'MMTBL')

Format: 123456789
A 67 2.45
A=subject letter; 67:;subroutine #; 2.45=width

2. Tool path table (default 'MMLTR')
Format: 123456789ABCDE FG

851 GR a-180.000
851=Dyna program line number; GR:;:;Go Relative (to

local zero/tool location; a=angte of polar
coordinate;·180.000=angle size in degrees

3. Data structures and ti nkages
Ordinal value of character in string is offset into

I
I·> subrtntbl (0 .. 255 INTEGER)···········--····>I
I program gen, offset set here is used to I
I match subroutine # from pathtbl to build I
I path index I

I I
I·> widthtbl (0 •• 255 REAL) I
I letter width in base mm unit to size for I
I sealing I

I I
I·> pathidx (0 •• 255 INTEGER> <· · · ··· · ··· ········I

index to path table, points to start
I<·· of geometries for a given letter

I
i··>pathtbl (1 .. 16232 CHAR)

tool path commands with variable number
of 16-byte records comprising the sub·
routine for the geometries of a given
letter

For each letter in the alphabet, we design a
scalable, relocatable tool path. For simplicity
we use a Helvetica font style (that is, no serifs
as in a Roman font), which blends aesthetically
with a 1/8 or 1/16 inch ball end mill in the
travel range available. To further enhance the
aesthetics we use relative instead of absolute
positioning at character termination to enable a
proportional Helvetica font.

Here's an example, using the letter "B":

093 SUB 12
094 GO Z· 0.200
095 GR Y 5 .000
096 GR X 1.100
097 ZERO XY
098 ZERO AT
099 y. 1.200

What's a Nice Computer Like the H PJOOO I>oing in a Place Like CAD/CA.Mt
Sam Boles, lnterex H l'JOOO Madrid Conference, March 1986

100 GR a· 180. 000
101 GRcX· 1.100
102 ZERO AT
103 Y· 2.500
104 GR a·180.000
105 GR X • 1 • 1 00
106 Z>C
107 GOfX 1.300
108 SUB RETURN

This shows you in the Dyna CNC vernacular,
some of the mechanics of getting your CAD
design transformed into somelhing tangible like
metal, plastic or wood.

Here's a loose translation:

The SUBroutine is #12 (93). GO absolute to
-0.2 units in the z-axis (94). Note that the
spindle is assumed "ON"; this is done in the
initialization. The tool is assumed "clear" of the
workpiece; see the end of this subroutine for
the convention.

Go Relative (relative to the current tool location)
+5 units in the y-direction (95). Note that the
tool is assumed to be at the lower left corner of
the "cell." This gives the left side of the "B."
Go Relative 1.1 units .in the x-direction (right)
(96). This gives the top of the "B."

Create a local ZERO reference point at the XY
coordinates where the tool is currently located
(97). Create a local ZERO reference point AT a
coordinate -1 .2 units from the current reference
point in the y-direction, but with the
x-coordinate unchanged (98-99). This
establishes the center point for the upper arc in
the "B". The radius is from this point to the
current location of the tool. Go Relative
(relative to the last two points with the radius

IF coodbuf1 = '•' THEN BEGIN

demarked by those two points) in a clockwise
(-)direction for an angle of 180 degrees (100).

Go Relative and come back (c) 1.1 units to the
left in the x-direction (101). Cut the bottom arc
of the "B" (102-104). Go Relative 1.1 units to
the left (-) in the x-direction (105). Move the
tool clear of the work piece in the z-direction
(106). GO fast (f) in the x-direction to positive
absolute 1.3 unils (107). This puts the tool at
"absolute" x of 1.3 wrt the local ref x of 1.1 for
a cell width of 2.4 units. This is the lower right
corner of the cell, since the tool y-location was
at the bottom of the lower arc when last heard
from. RETURN to the next sequential
instruction of the caller (108).

Notice the arbitrary "user unit" of measure.
This is the base for establishing the correct
relativities and proportions. As we'll see later
this enables automated scaling and centering
in the horizontal and vertical for varying size
names and other symbols. This translates Into
simplified and automated set-up.

The convention of starting the the lower left of
the character "cell" and ending at the lower
right enables an aesthetically pleasing
"proportional font" in which the letter "m" is
wider than the letter "i."

One of the powerful features of the Dyna CNC
instruction set is the use of polar coordinates,
as we see in the code for the letter "B" above.
We're able to establish a reference point
without tool movement from which to trace an
arc with the 1/10000 inch resolution step
motors in 3 dimensions. Alternatively we would
have to do something like the segment
fabrication we do in the CRT tool path
simulation routine:

{to simulate the Go Relative polar (angle)
coordinate, build the polygon around a point
rotated clockwise or counterclockwise with
5 degree resolution}

ang l egr: =xyz;
anglesteps: =ABSCTRUNC(ang legr /theta));
FOR q:=O TO anglesteps DO BEGIN

IF anglegr < 0 THEN BEGIN
xpol er: =(xcur- x loc >*costhete+(ycur-yl oc)*s i ntheta;
xpolar: =xpol ar+x loc;
ypolar: =- (xcur- x loc)*s i ntheta+(ycur ·yl oc)*costheta;
ypolar: =ypol er+yloc;

END

479

480

What's a Nice Computer Uke the HPJOOO Doing in a Place Uke CAD/CAM?
Sam Boles, lnterex H PJOOO Madrid Conference, March 1986

Since the names and other symbols can be of
varying lengths, and since we have a physical
limitation of about 6 Inches travel in the x-axis,
we use the HP9000 for CAD scaling of the
name.

We size the name by scanning character by
character, calculating the width in basic "user
units." Then we scale the horizontal as the
ratio of the x-axis travel limit to the calculated
width. To maintain the original aspect ratio, we
scale the y-axis with the same factor.

We are able in our original set-up calibration to
position the spindle in the physical center of
the work piece, so once we have the scaled x­
and y-dimensions of the symbol, we can use
half of the values to compute and execute the
offset for the lower left corner. This way a
simple physical calibration of the x-, y-, z-axis
and spindle clearance can serve multiple runs
on variable-length symbols.

It's beyond the scope of . our ""CAD/CAM in
microcosm," but let's touch on some other
issues you might want to address in more
advanced problems.

You might want to input a material identifier
that your CAD station could use to look up
spindle rpm and tool feed-rate specs to
download to the CNC device. You might want
to programmatically do tool changes to handle
more intricate cuts. You might want to control
the injection of tool lubricant. You might want
to coordinate the action of a loader/unloader
robot. These things are within the capability of
today's CAD/CAM technology.

. . . desktop computing .••
•.• desktop drafting .•.

••• now desktop
machining for a maior gain

in productivity ••.•

In 1968 the HP9100 came to the engineer's
workbench. A programmable calculator. With

the HP9100, engineers no longer had to key in
the algorithm each time they wanted to change
a few variables. Desktop Computing.

This enabled engineers to get their sketch to
the drafting department faster. But that was an
interface. A time-consuming interface. So
personal CAD stations emerged to produce
finished drawings faster. Desktop Drafting.

This enabled engineers to get their finished
drawing to the model shop faster. But that was
an interface. A time-consuming interface. So
computers and CNC machines teamed up to
give engineers CAD/CAM at their fingertips.
Desktop Machining. From "art to part'" in
minutes or hours instead of days or weeks.

. .. CAD /CAM engineering
specs controlled with the

data-words-grap hies
integration power of

the HP3000 ••••

For a professional grade documentation
package that can leverage the investment in
CAD/CAM, the scene can return to its starting
point on the HP3000.

The 3000 has text and document preparation
software such as TOP that can do typesetting
at the quality level you see in this paper .

The graphics database on the HP9000 can be
transformed and networked to the HP3000
where the vector form can be converted to
raster for laser printer compatibility. With
appropriate scaling and composition the
documentation package can have a typeset
"look" while retaining the flexibility of
computer update.

Here's an example of graphics done with an
HP9000 CAD system, ported to the HP3000
and integrated with text:

What's a Ni<e Computer Like the H P:IOOO Doing in a Place Like CAD/CAM1
Sam Boles, lnterex H PJOOO Madrid Conference, March 1986

"' N ...

~I------~.....___ _____ ___.

NLI) loo-----------8.8 -----------

8.51 I ~1 . "f1Ji---I ------i
I.. 1.0 ..l LI) ALL DIMENSIONS IN INCHES

N
..;

Figure 2. Our "CAD/CAM in microcosm" includes Engineering Data Control
and documentation packaging thru a team effort of the HP3000 and HP9000
computers.

481

482

What's a Nice Computer Like the II P.WOO /Joittg in a Place Like CA JJ/CA M!
Sam Doles, /11terex H PJOOO l'ttadrid Co11fere1tce, March 1986

Epilogue

You're accustomed to t/ze tra11sformations and linkages for wrltillg your data
on disc, tape and paper. Here rou've seen tlze transformations and linkages
for writing your data 011 wood, metal and plastic. You'1•e seen an ordlnarr
ASCII strillg in a11 HP.WOO IMAGE database networked to an HP9000
wlzere it was transformed to tool patlz geometries executed by a CNC macliine
tool coupled wit Ii tlze H P9000. And you've seen tlze descriptive geometries of
an HP9000 CAD system illtegrated witlz text 011 tlze HP3000.

Tlzis glimpse of CAD/CAM may lielp your understanding and appreciation
of tlte otlzer marvels we'll be seeing In our M lgratlo11 to 200 I.

A bout tlte A utltor

Sam Boles ls a Member Teclmica/ Staff in tlte Hewlett-Packard
Informatlo11 Software Operation 111 Cupertillo, California. Witlz HP since
1976, liis computer experie11ce started back 111 tlie A UTOCODER days of tlie
1401/ 1410, migrated tltru tlze 360/370 era, and now focuses on
next-ge11eration operatillg system software. Sam received liis MS at UCLA
in Information Sr stems.

sebiug27 2105 27jan86

lntf!rex H PJOOO A-/adrid Co1Jfere1ll.'e, Man.·h 1986
1'/ieme: 'Migratio11 to 2001'

... a picture's worth a thousand words ... and on a
computer can take more processing and storage than

10,000 words ... in the Migration to 2001, if you find
your graphics needs growing, here are some tips on

quality and performance that may help you

A Blend of
HP3000 and HP9000 for Computer Graphics

Sam Boles, Member Technical Staff

We all k11ow tlzat a pictu1·e's ll'ortlz a tlzousa11d words.

A 11d tlzose of us wlzo've drawn pict11res witlz a comp11ter k11ow a picture can
take more processing a11d storage tlza11 10,000 words.

Tlzen once yo11've gotte11 tlze basics u11der your belt, you get harder to please.
You wa11t resolutio11. You want perfor111a11ce. Y 011 wa11t tlzose e11d-polllts to
meet, you want your curves smoother ... you might evp11 wa11t a11l111atlo11 ...
but, for sure, you do11't wa11t to wait.

Tills growing colo11y of computer artists with t/1efr growing appetite for the
artistic call bring a 11. 'titi-user com111e1·cial mac/iine to Its k11ees ... u11less
you resort to second-order Distributed Systems.

You've experie11ced first-order DS wi.'11 your H P3000 talking to others like
It, sharing programs a11d databases. There's a seco11d-order dlstributio11 that
networks illto your HP 3000 the /Jig/J-per(or111a11ce lziglz-resolution graphics
capabilities of tlze H P9000 for data-ll'ords-graplzics bz:egratio11 on your
H P3000 with Its laser prillters a11d other powei-(11/ peripherals.

This description of graphics a11d technical p11bllca!io11 techniques may give
you some productivity ideas for your ow11 installation.

... why graphics? ...
for those who can't

read ...

Once upon a time, there was a magnificent
piece of americana called Life. It came out
once a week. And it cost only a dime. It was
the week that was, in pictures. The glory of
victory, the agony of defeat. The blood, sweat
and tears that started wars and finished wars.
The laughter, the sobs, the bad, beautiful, noble
and ludicrous of the human cond'tion -­
photographed by <iome of the most courageous
men and women in the history of journalism.

485

486

A Blend of H PJOOO and H P9000 for Computer Graphics
Sam Boles, Interex H PJOOO Madrid Conference, March 1986

But not everyone viewed this piece of
americana the same way. A young
undergraduate (an English major) once
remarked,

"Life is for those who can't read ..•

Time, for those who can't think •..• "

Without commentin9 on its validity let's see if
we can leverage this wisdom of a generation
past, and come up with an answer to the
question

Why Graphics?

Graphics is for those who can't read. No, it's
not that they can't read because they can't
read. They can't read because they don't have
time to read.

Let's look at an example out of one of the
HP9000 reference manuals. Read these
numbers:

0.1610 0.1625 0.1625 0.1628 0.1636
0.1631 0.1627 0.1608 0.1610 0.1606
0.1607 0.1617 0.1614 0.1626 0.1634
0.1640 0.1656 0.1660 0.1644 0.1651
0.1635 0.1641 0.1628 0.1619 0.1630
0.1624 0.1627 0.1644 0.1644 0.1657
0.1660 0.1670 0.1672 0.1666 0.1658
0.1662 0.1646 0.1633 0.1634 0.1636
0.1645 0.1652 0.1656 0.1677 0.1689
0.1680 0.1696 0.1680 0.1674 0.1677
0.1669 0.1655 0.1665 0.1662 0.1667
Oc1668 0.1681 0.1688 0.1687 0.1707
0.1716 0.1716 0.1694 0.1698 0.1683
0.1683 0.1671 0.1681 0.1683 0.1684
0.1681 0.1698 0.1705 0.1723 0.1730
0.1734 0.1714 0.1722 0.1716 0.1696
0.1702 0.1699 0.1684 0.1706 0.1696
0.1715 0.1730 0.1737 0.1739 0.1751
0.1732 0.1747 0.1729 0.1717 0.1710
0.1707 0.1706 0.1709 0.1713 0.1720

Did you read them? No, of course you didn't.
You don't have time to read ... really read ...
a hundred numbers. And if you did have time
you wouldn't waste it like that. (Notice how
boring it gets after about the third digit?)

Besides why read a hundred numbers when
today's technology can read them for you and
maybe tell you something you might have
missed -- because it's in between the lines.
Just browsing probably gives you the overall
trend, but how about periodic motions and
number of cycles?

Why Graphic•?
The 100 Numbere You Didn't Read

Better,Eealer,FASTERI

... and for those who
can't think ..• again,

because they don't
have the time .•.

This maybe tells us something else, too:
Graphics is for those who can't think. No, it's
not that they can't think because they can't
think. They can't think because they don't
have time to think.

Sure, they could take a pencil and paper and
calculate the deltas and get the pattern clusters
in a few minutes. But that few minutes has an
opportunity cost. What they could've done.
Like get the corrective action launched. Or the
next step of the design underway. Or whatever
is the real work they could've been doing.

A Hl•nd of H PJOOO and H l"JO()()Jor Computer Graphics
Sam lloles, lnterex H PJOOO Madri Conference, March 1986

..• to save time ...
the Ultimate

Unreplenishable ...
at a rate of a

thousand words per ...

It's the old story of "a picture's worth a
thousand words." You get the message to your
audience better ... faster. You save time.
They save time.

Let's look at this thing called time. It's a
unique commodity. Or maybe it's not a
commodity -- ever try to buy some time?
Anyway, it's unique.

Remember back in the early 70's when we had
to stand in line to get gas? Geologists for years
had been telling us we were burning oil faster
than it was being replenished. Then we finally
got the message: That meant we could run out.
So the oil owners lowered production and
raised the price. And suddenly there we were,
waiting in line for stuff that not long before that
a Gulf station in Los Angeles woulcf sell for 18.9
cents a gallon during a gas war . . . and clean
your windshield while you bought it.

All of that for something relatively
unreplenishable. But look at time. The
Ultimate Unreplenishable.

If oil is slow at replenishing, it's nothing
compared to Time. Time doesn't replenish at
all. You burn it and it's gone. Forever. And
we burn it every second of every minute of
every day. Not just when we drive to work.
And we burn more of it faster all the time. Ask
anyone who's been around awhile about how
much faster you burn it as years go by. And
how much more of it you burn.

The Ultimate Unreplenishable.

Anything that improves performance in time
utilization deserves attention. And graphics is
one of those things.

So much for Why Grap/1/cs? Let's look at the
evolution of the computer graphics artist.

.•• the evolution of the
artist •.. basics under

your belt, you get
harder to please •••

Remember a few years ago when DSG
(Decision Support Graphics) brought charts
right to our terminal on the HP3000? Bar
charts, line charts, pie charts. We could
eavesdrop a plotter on the line and get hard
copy on the spot in minutes. Then there was
HPDRA W to build the text and picture slides to
go with the charts.

We could build our slide presentations quickly
and conveniently. And update with the latest
numbers in a matter of minutes.

The magic of Interface Reduction.

We no longer had to queue up at the graphics
department. And wait for the typesetter. We
reduced these Interfaces to zero. We saved
time and money. A quantum leap in
Productivity thru Interface Reduction.

It was great.

Then as the elation wore off we noticed you
could tell the computer slides from the typeset
slides. It was the letters. Those stick letters.
Like tapioca: good, but not exciting.

We needed better letters. Nice smooth spline
curves, with fill and boundary in different
colors. And a wider range of fonts and sizes.

So DRAW II arrived with really world-class
letters. A quantum leap in professional quality
lettering.

It was great.

Then as the elation wore off we noticed that
next to the beautiful spline letters you really
noticed when the end points in our drawings

487

488

A Blend of H PJOOO and H 1'9000jor Computer Graphics
Sam Boles, lnterex H PJOOO Madri Conference, March 1986

didn't quite meet, and some of the <:letait was a
little ragged.

We needed better resolution, and better and
faster zoom, pan, grid snapping and ...

On top of all that, something was happening in
our work area.

Our colleagues were trying to figure out how
we were able to get such good presentations
so fast and st/II come In under budget. They
saw we were using DSG and DRAW, and they
started to do the same thing.

CPU utilization began to grow. The last 3 days
before quarterly review, response time got
really slow. We upgraded to a 68, and that
helped. But not enough to keep up with the
growing popularity of the tool.

• • • the issues of
resolution, response

ti me and load
balancing ...

As we experienced more and more positive
results from our graphics, we wanted more and
more quantity and quality.

More people were starling to use the tool. And
the positive results from using the tool made
them use it more.

Each iteration made the users more proficient
with the tool, enabling them to do a better job
of the next slide ancf increasing their appetite
for perfection proportionately.

The need for fast-response high-resolution
graphics tools evolved as the degradation of
response time evolved, aggravating the
economic imbalance with a diminishing supply
of CPU cycles, disc I/Os and main memory
being confronted with an increasing demand
for a higher service level by more users.

Compound the situation with a 25 per cent
annual growth rate and you get the scene that

led us into second-order Distributed Systems
for our computer graphics.

We already had our 3000's OS-linked so we
could get at programs and databases on
neighboring machines. And if we had a
heavy-duty cromch that we needed to run we
could off-loaCI this to one of the light-load
nodes.

Bui with the graphics overload we were looking
for more than just CPU cycles. We were
looking for functionality. A richer command
set. A more natural human interface. Higher
resolution. Faster graphics performance in
first-draws, redraws, transformation of
primitives and cells.

We turned to our CAD-CAM family, the
HP9000, and found what we were looking for.

Let's look at where the 9000 was coming from .

.•. the HP9000
genealogy .•. a "PC"
before they invented

the word ..•

If you trace the roots of today's HP9000 family,
you go back to the days when we used words
like "programmable calculator" and "desktop
computer." If you look at the HP9825 (circa
mid-70's) you see the low-cost, small footprint,
portable and Individual work station that
mighl've been called a "PC" if we'd used that
kind of language in the medieval days of 10
years ago.

When we retired its jersey some time back, the
HP9825 had been one of the top unit sellers in
the history of Hewlett-Packard.

The tradition evolved into the HP9000/200 and
/300 with 8-16 Megahertz processors with 3-
and 4-plane color graphics, and the 3-CPU
HP9000/500. The 300 and 500 support 8
planes of color (that's 256 colors from a palette
of 16 million) with a graphics accelerator that
pumps 60,000 vectors a second over a 2
Megabyte bandwidth bus.

A Blend of H PJOOO and H 1'9000 for Computer Graphics
Sam Boles, Interex H PJOOO Madrid Conference, March 1986

What all that bottom-lines
high-performance hiQh-resolution
with a wide range of price points.

to is
graphics

Let's take a look at what even the low-cost
range of this spread can do for your resolution,
performance and load-balancing problems.

... a rich
repertoire of

commands, primitives
and structurism ...

Even in the low-cost HP9000/300 you find a
feature set with a functional richness that puts
you in a new graphics domain.

With tools like EGS (Engineering Graphics
System), you can zoom in on a particular detail
and get the positioning you want, right down to
the whiskers on the face (actually, a whisker's
about 50 microns in diameter and the system
has sub-micron resolution capabilities) ...

Using the cell instantiation, component and
level display selectivity and other functions so
essential to CAD applications such as
integrated circuit layout, you can build a basic
cell one time ...

. . . and scale and package it with a given
instantiation in a given context ...

(j

d

. . . include it in another instantiation with a
different context ...

mirror the same cell for a different
orientation in still another context ...

489

490

A Blend of H PJOOO and H 1'9000 for Computer Graphics
Sam Boles, lnterex HPJOOO Madrid Conference, Mart•h 1986

... build up your hierarchical structure of cellular components with whatever scaling, translation,
rotation, mlrrorinf!, zooming, panning are required, till you have the modules arranged In a
multi-level composite that is your complete circuit ... or whatever it Is you're building ...

d

d

-

----::::~· -~ ~\
::::::-

_./' <.;

~<"
.

A B/e11d of H PJOOO and H 1'9000 for Computer Graphics
Sam Boles, Jnterex H PJOOO Madrid Conference, March 1986

... you can then take your integrated circuit layout or whatever it is you're building, "plot to disc"
so you get an ASCII form of the HPGL commands that normally drive a plotter. You then use a
termlnar emulator (LAN's on its way, so your 9600 baud can move to the multi-megabit range) to
get the vectors from the 9000 to the 3000. Here you've got the full power of TOP, lasers and other
technology (such as EGS2FIG in the Contributed Library) to do your final packaging. Once
established, your components can go into a library to provide a leverage base for future fan-out ...

Epilogue •.•

The odyssey spans computer domains, operating systems, design disciplines.
It glPes you the rich functio11ality of the HP9000 CAD/CAM world, with
it's high resolutio11, lnsta11ta11eous response and 11atural huma11 interface. It
giPes you the powerful data-words-graphics capabilities of the H PJOOO and
the laser pr/11ter. And It smoot/1es your processillg load by spreading it out
across the appropriate nodes to make your general user pop11latio11 a bit
hap pier as their data processing engi11e is a little more responsiPe to their
touch.

491

492

A Blend of HPJOOO and HP9000 for Computer Graphics
Sam Boles, Jnterex H P3000 Madrid Confere,.,,e, March 1986

About the Author

Sam Boles Is a Member Technical Staff In the Hewlett-Packard
Information Software Operation In Cupertino, California. With HP since
1976, his computer experience started back In the AUTOCODER days of the
1401/ 1410, migrated thru the 360/370 era, and now focuses on
next-generation operating system software. Sam received his MS at UCLA
In Information Systems.

sebi ug17 2035 27 j an86

Title: In Search Of The Software Transistor

Authors: David Boskey and Tim Chase

Address: Corporate Computer Systems, Inc.
33 West Main Street
Holmdel, New Jersey 07733
U.S.A.

Telephone: (201)946-3800

Telex: 642672 CCSHOLM

"In the beginning the computer was invented to
solve the problem. What seems to have happened is
that the computer has become the problem. So now
the question is, what can we invent to ... "

- Robert M. Baer
The Digital Villain

In Search Of The Software Transistor

In this paper we will take a brief look at attempts to solve
the problems which have been associated with software
development. The reason we call it the search for "The
Software Transistor" is that it was the development of the
transistor which catapulted computer hardware into the ad­
vanced position which it holds today. In order for software
to join those same lofty ranks, someone must develop the
software equivalent of the transistor. We will, unfor­
tunately, conclude that although some work is promising,
there is still a long way left to go.

About Predicting

The theme of this conference is "Migration to 2001. 11 With
such a theme, it would appear appropriate to take a chance
and make some predictions about what will be happening to
software development at the turn of the century. This is a
dangerous game, especially when the predictions are made
about a year which will (hopefully) be reached by the
authors. If we were to predict for the year 3000 our
reputations for soothsayers would remain unsullied for the
remainder of our lives. Undaunted, we will attempt to

495

496

sketch a brief picture of what we think
mediate corner for software development
programming languages in particular.

is around the im­
in general and

By their vary nature, programmers tend to be optimistic
creatures. This was noted by Frederick Brooks in his, by
now classic, book The Mythical Man-month. Brooks explains
programmer optimism by saying that perhaps there is a
natural selection process by which the frustrations of the
job drive away all but the most optimistic. Whatever the
reason, the trade is populated with optimists who survive
mentally by believing that the project is really 95%
finished or that this bug is the last one in the system.
Predictions by optimists (especially those trying to get
research grants) are bound to be tainted.

Marvin Minsky, a popular M.I.T
telligence was quoted in the
Life Magazine (one of the US'
saying:

researcher, in Artificial In­
November 20th, 1970 issue of
better technical journals) as

"In from three to eight years we will have a
machine with the general intelligence of an
average human being. I mean a machine that will
be able to read Shakespeare, grease a car, play
office politics, tell a joke, have a fight. At
that point the machine will begin to educate it­
self with fantastic speed. In a few months it
will be at genius level and a few months after
that its powers will be incalculable."

Poor Marvin, he committed the double error of being an op­
timistic programmer (a-hem, researcher) and predicting
within his own life span. The point of this all is that
programmers are often the ones who are making predictions
about programming and computer science. This usually means
that things are predicted to be much rosier than they really
are.

What we will offer here is a slightly pessimistic prediction
of the near future, but since we, ourselves, are
programmers, the prediction will actually be somewhat op­
timistic. We hope that the two forces will cancel out and
the result will be realistic.

History teaches .••

Before looking into the future, it is often helpful to look
into the past if only to discover that looking into the past
is not all that helpful. Fortunately, for computer
historians, computer science is quite young. We don't have
to find fossilized printouts in order to get insight into
the dark ages of data processing. Most people refer to
"generations" of computer hardware. Although this is often
just a marketing technique (any given vendor is always
working on the "next generation") it is useful to contem­
plate the generations of computer hardware:

1. Electromechanical/vacuum tube computers. These were the
first. They were large, unreliable, slow and often
doubled as space heaters.

2. Transistorized computers.
first, and some wistfully
sistorized computers.

IBM's 7090 was one of the
think one of the best tran-

3. Integrated circuit computers.
logically larger computers.

Smaller parts made for

4. VLSI (Very Large Scale Integrated) computers.
(less) of the same.

5. Computers from Japan.

More

The fifth generation computers haven't been born yet regard­
less of what vendors are saying. Most American Universities
writing grant proposals feel as if the Japanese are on the
brink of the fifth generation and that the US will lose its
dominance in computer science unless more money is spent for
research.

As luck would have it, there also appears to be 5 genera­
tions of computer software. This is especially obvious to
all those folks selling forth generation languages. There
is little connection between the generations of hardware and
the generations of software other than faster computers can
do more computing. It appears to be a fact that advances in
software always require more computing.

497

498

As we see it, the five language generations are:

1. Ones and zeroes. Really the old days. This is where
Grace Hopper got her start.

2. Assembly language. This includes macro languages,
linkers and the like. It is amazing how many
programmers still feel that there is something noble
about assembly language.

3. So called high level languages. These include FORTRAN,
BASIC, C, PASCAL, PL/1, LISP, COBOL and your favorite.

4. Programming environments. These are integrated
facilities which combine languages, data bases, screen
facilities which attempt to enable programmers to
develop prototype and final applications quickly.

5. What ever Japan, Inc. picks for the fifth generation.
More seriously, the fifth generation appears to be ex­
pert systems with a side order of nonprocedural
programming. This is different than programming
languages in the classical sense, as we shall see.

By looking at this brief history and by observing where we
stand right now we may conclude some interesting things.
The single most interesting conclusion we can make is that
that hardware is far and away outpacing software in terms of
progress. In the world of hardware, significant advances
have been made just about every 10 years. These advances
have led us from computers which filled rooms to computers
which fill thimbles yet perform faster, cheaper, better,
etc. The important thing to note is that there have been
orders of magnitude improvements made in hardware develop­
ment which come at regular intervals and are related to im­
provements in basic technology.

Software, unfortunately, is another story. If you include
FORTRAN in the third generation of software language
development then you find that we entered that generation on
November 10th, 1954! On that date a document titled
PRELIMINARY REPORT, Specifications for the IBM Mathematical
FORmula TRANslating System, FORTRAN was published by the
Programming Research Group, Applied Science Division of IBM.
This is amazing because the first computers had only come
into being around 1948. This means that about six to eight
years after the first generation of computers we were al-

ready into what we now consider the third generation of
programming languages! Couple this with the fact that we
think we are currently in the fourth generation and you have
the basis for a depressing hint of what is to come.

Granted, FORTRAN does not embody all that is true and
beautiful in current modern programming languages. The
point we are making here is not that language development
stopped in 1954, but rather that the changes which have come
to programming have been small and have not even come close
to having the impact on throughput that corresponding
changes in hardware have had. We realize that some readers
will respond violently to these charges; that there is a
favorite feature of a favorite language which is being
maligned here. To this we ask that you stop and consider
the difference between a computer constructed from relays
and a Motorola 68000. No programming language improvement
comes anywhere near that level of change.

Why is there such a difference between hardware and
software?

This is an important question. In order to answer it we
must first begin to insult hardware developers. If you look
at the changes in hardware development you notice one sig­
nificant thing. The software model of computers has not
changed much since the Beginning Of Time. By software model
we mean how the "inside" of the computer is organized; the
part the programmer sees. Again, we expect that there are
some who will argue, but when you get right down to it com­
puters have remained much the same since the beginning.
What has changed with the computer generations is the tech­
nical implementation. Take the venerable IBM 370 as an ex­
ample. It would be possible to implement a 370 in vacuum
tubes. Clearly you might need Niagara Falls to cool it, and
the G.N.P of a medium sized Latin American country to pay
for it, but it could be done. Likewise, a 370 could be
built using transistors and other discrete components.
Finally, a 370 could be built from VLSI parts. In fact, it
probably would only take one VLSI part. What we would see
across the different implementations would be a vast range
of performance with the vacuum tube 370 hopefully at the low
end of the scale and the VLSI at the high end.

These so-called "technology remaps" have been used by com­
puter vendors throughout the years to offer faster computers
which still run the same software. The important point to
remember, then, is that the "stuff" that computers are made

- 5 -

499

500

from has been changing but the design has remained stead­
fastly the same. When a new computer is announced, we all
ask the same questions (how many registers, how many CPU's,
etc) • we are never surprised with the answers because the
architecture is always pretty much as we expected. (It is
interesting to speculate how well a really different com­
puter would sell. Imagine you get the first look at a new
computer design and find it resembles a fish tank filled
with a rose colored jelly with wires sticking out from it
and no one you have working for you has the slightest idea
how to get accounts receivable running on it. How many
would you buy? With economics as the master, perhaps we are
getting exactly what we are asking for.)

So, hardware has the benefit of physics behind it. The
hardware boys are innovative, sure, but they don't have to
find vastly different organizational approaches to improve
their product. A pipe line here, a parallel processor there
and a heavy dose of solid state physics accounts for the
orders of magnitude in hardware improvements.

Now, h~w about software? Well, software is a tough one.
This is because programming is very much akin to thinking.
Programming is problem solving. In a very real sense,
programming is us. The difficulty is that it is hard to do
a technology remap of our own brains. The implementation of
the programming "machine" has remained constant over the
last 40 years. It still remains "liveware. 11 The problems
associated with programming significant programs are
problems which have faced mankind for ages. They are human
organizational problems. How do you organize people so that
they are all working toward a common goal? This is espe­
cially difficult if the goal is getting a computer to do
something.

What is programming and why is it so hard?

One of the ~roblems facing program developers is that
programming is difficult, yet the popular concept of com­
puters (from numerous Charlie Chaplin ads) is that they are
easy to use. It may be true that computers are easy to use,
but it is also true that they are difficult to program.
This difficulty stems from the fact that the physical act of
programming represents only a small part of getting a
program out of a customer's head and into a computer.

Programming is much more than writing FORTRAN statements. A
large portion of any job is spent in planning what the

program will do. Frederick Brooks says that at least one
third of a project is spent in planning and only about one
sixth is spent in actually writing code. our own experience
indicates that this is quite true. Further, as planning
progresses the ultimate customer is often lost by the
result.

The software developer wants to develop functional require­
ments which are detailed so that he knows exactly what is
going to be built. The finished documents are often beyond
the understanding of customers who are forced to sign off on
them in order to begin development. Time allocated to
testing is often used up by development which results from
customers finally getting to try the system. The relation­
ship between developer and consumer is often ruined by mis­
matched anticipation levels. Even with lengthy requirements
documents, the customer often does not get what he wants.

In short, software development is a dirty difficult busi­
ness. Regardless what the data sheets say, it is hard to
write good programs which meet the customer's needs and an­
ticipations. Our conclusions for the current state of com­
puter science is that things have not changed all that much
since the early days of programming. The big changes have
come from the hardware side of the house -- no one has, as
of yet, discovered the software transistor.

What does 2001 hold in store?

Hold on. This is where we start predicting. Software
development has not changed significantly since the
beginning. We don't see big changes in the near future.
What we do predict is that programming computers will not
get easier -- using computers for some, however, will get
much easier.

If things continue as they are now, we see a sort of class
structure developing. In H. G. Wells The Time Machine the
world is peopled with two classes: the Eloi and the Mor­
locks. The Eloi are forever young and beautiful. They live
lives of complete leisure while the Morlocks toil beneath
the ground tending the machines which make the world work so
ideally for the Eloi. Of course, in the end, the hero
discovers that the Eloi are actually raised like cattle for
the Morlocks to eat.

Except for the culinary twist, we see much the same for com­
puters. There will be the Eloi who work with increasingly

501

502

sophisticated packages designed to enable them to use the
computer without a great deal of effort. One of the tech­
nologies which will make this possible will most likely be
what we now term "expert systems". Expert systems are a
form of "declarative" or "nonprocedural" programming brought
to you by the folks in the artificial intelligence labs.
(Remember Marvin Minsky?)

The basic goal of nonprocedural programming is simple: tell
the computer facts about the problem, toss in a few rules
relevant to the solution and the computer does the rest.
The Japanese in their Fifth-Generation project have (ac­
cording to some reports) selected a programming language
called PROLOG as the base for nonprocedural computing.

Nonprocedural programming is a good technique but it is not
without problems. consider the language PROLOG. Most would
agree that PROLOG is a nonprocedural language and for small
programs it does, in fact, appear to do just what is asked
for. PROLOG allows the programmer to enter facts and rules
and then ask questions about the data PROLOG "understands."
The PROLOG system searches the facts and rules to derive an
answer to the programmer's question. For small problems
PROLOG does not need any procedural input from the
programmer. However, for interestingly large programs,
PROLOG grinds to a crawl. This is not too surprising
because declarative languages spend most of their time
searching the solution spaces defined by the facts and
rules. The only way in which they may be speeded up, short
of faster hardware, is to introduce (you guessed it)
procedural programming to encode heuristics in order to trim
the search space down to size.

In fact, we really have our doubts about the whole concept
of nonprocedural programming. As Jean Sammet pointed out
way back in 1969 in her book Programming languages: History
and Fundamentals, the concept of nonproceduralness is really
a very relative term which changes with the state of the
programming art. To an assembly language programmer a
statement such as

X = A + B * C

is nonprocedural. After all, we did not tell the compiler
how to calculate the expression, only that we wanted to cal­
culate it and where we wanted the results to end up. If you
really understand the inner workings of a language like
PROLOG (and you'd better if you're going to write any in-

dustrial-strength applications) then it becomes procedural.
But, of course, it is not a very good procedural language.

If the Eloi use the expert systems who is going to build
thent? The Morlocks are the builders and they are faced with
a double whammey. First, they must code the basic core of
the expert system. To mystify the art, the basic core
program is often called the "inference engine." The bad news
is that the inference engines are "old fashioned" procedural
programs with all of their associated problems (hard to
write). Worse than that, expert systems introduce a new
kind of programming called Knowledge Engineering (KE for
short) . If you think classic programmers have a bad time of
it, wait until you hear what KE's do for a living.

It appears that expert systems are well suited for "consul­
tation" programs. This is where the Eloi user sits down and
chats with the computer to get some advice on what to do in
a given situation. The example everyone sites is always the
MYCIN program developed at Stanford University in the
1970's. Until MYCIN, most expert systems spent their days
trying to beat humans at chess or tic-tac-toe. MYCIN was
the first serious expert system. Its job was to act as a
consultant giving advice on the diagnosis and treatment of
bacterial blood infections (we're not talking pawn to king
four here). Now, you might ask how did MYCIN get its smarts
about blood? The answer lies in the KE. The knowledge
engineer's job is to sit down with experts, to pick their
brains and then to encode the expert's problem solving tech­
niques into a data structure. The resulting "knowledge
base" is the brains behind the expert system. If writing
good programs is kind of hard, then knowledge engineering is
down right difficult! For certain it is not something that
the Eloi are going to be able to do on their days off,

As knowledge bases grow so does the potential complexity of
the computer's responses. It is currently difficult to
fully test and debug conventional computer programs. In the
future it will be even harder to debug expert systems. In
their most gross form expert systems are collections of
facts and rules. Are the rules right? Are there enough of
them? Do some contradict others? If expert systems are
built which approach the complexity some computer scientists
say we can expect in the near future, we should not be sur­
prised at hearing something like the dialog Arthur c. Clark
wrote for 2001: A Space Odyssey. In one scene space man
Dave Bowman is locked out of the spacecraft by HAL the on­
board computer (obviously a PROLOG-based expert system):

503

504

Bowman: Open the pod-bay doors, please, HAL. Hello, HAL,
do you read me?

HAL: Affirmative, Dave. I read you -- This mission is too
important for me to allow you to jeopardize it.

HAL has reasoned that the only way in which he (she?) can
complete his mission in space is by killing the crew. It's
perfectly clear to HAL even if it isn't clear to the crew.
In the end, it is a set of conflicting rules in HAL's
programming which drives the computer into an electronic
psychosis. We predict that large expert systems will be
plagued with the same HAL-like problems well beyond the year
2001.

And what of the Morlocks? They re~p none of the benefits of
the Eloi when it comes to programming ease. This means that
even in 2001 someone will still have to bang the bits. Ex­
pert systems may become great at diagnosing blood diseases,
but ask them to write a conventional program and they'll
call for a urinanalysis. Thus we see programming remaining
a job which will have to be done by humans for some time yet
to come.

The final thing to remember about expert systems is that
there is nothing magic about them. The concept of an expert
system is just another programming technique. It makes some
problems easier to solve, but the results gotten by expert
systems may be obtained by conventional programming tech­
niques. Often those selling expert systems lose track of
this fact.

Well, how about ADA?

If the expert system isn't the software transistor is there
anything around which might be? Sadly, we don't see it.
There is, of course, work being done on programming
languages with one current result being ADA. ADA brings
smiles to the faces of a good number of people. In fact,
just the mention of ADA during a presentation (with an ap­
propriate roll of the eyes to the ceiling) is guaranteed to
get a laugh. Seriously though, ADA does contain some impor­
tant features which will be needed~we are to migrate to
the year 2001.

starting with the worst, ADA's least attractive feature is
its size. This stems primarily from the fact that members

of committees which design languages have never developed an
effective argument against the statement "put the feature in
-- if programmers don't like it, they don't have to use it."
ADA, and its associated environments, are large enough that
there will be local experts in the language. People will be
skilled in ADA task management, but won't be so hot on ADA
I/O. This will be something we'll just have to live with.

Better features include the attempt to make a really
portable language. Languages like C have been touted as
being portable, but, in fact, most of the portability found
is C is a result of the cleverness of the programmer. ADA's
portability comes more from within. Portability will be ex­
tremely important in 2001. This is because systems built
for the Eloi will be quite expensive and it will be impor­
tant to amortize that cost over a large number of installa­
tions. To have a package which runs on many machines will
help out.

If language efforts like ADA are making important contribu­
tions to program portability, then they are also making
changes in people portability. People portability? People
portability is being able to get your programmers to easily
migrate from one computer to another. UNIX and c have gone
a long way to make portable people a reality. If software
and programming environments move easily from computer to
computer, then computer systems will tend to look more or
less the same. "If it's UNIX I can make it work" is
something we have heard UNIX programmers say. We will be
hearing more of this in 2001.

Portability will be a good thing for programmers and com­
puter customers of the future, but perhaps not such a good
thing for computer vendors. If everyone has the same
operating system (UNIX?) then computer customers will no
longer be held to a given vendor. Customers will be able to
"shop" for solutions and buy the most bits for the buck.
Vendors will no longer be able to count on the captive
customer for their computer sales. They will have to com­
pete through raw horse power or intangibles like support or
service.

We will be getting a glimpse of this when HP finally starts
selling the Spectrum computer line. The technical computer
version of the Spectrum machine will be a UNIX box. This
will mean that it will compete with all the other UNIX boxes
out there. It will either have to be a barn burner or
potential customers will have to believe in HP service, sup-

505

506

port, etc., etc. This is dangerous for computer manufac­
turers, especially for those who don't make their own chips.

ADA and other la~guage systems, as opposed to compilers,
will also aid in some of the organizational facing
programmers. ADA compilers maintain application data bases
which allow routines to be compiled within the context of a
given intended usage. This enables the compiler to make
more checks to insure that subroutines are called correctly
and that parameters are passed as required.

If all of this sounds like Big Brother, you're right. In
the future, we predict that much of the romance of
programming will be gone. Many of today's software gurus
pride themselves in being nonconformists; working odd hours
and subsisting on peanut butter cheese cracker sandwiches.
"No neckties for me, no sir!" ADA (or at least the intention
of ADA) is the beginning of the end for the happy hirsuit
hacker. Building for the Eloi will require legions of Mor­
locks and legions require order not anarchy. Programming as
a means of self expression will begin to fade as the
programming languages and tools start to insure that you
have to play it by the rules. Hackers may hate this, but
like the Great American cowboy, they will have to make way
for Big Business. Managers need more control over projects
and completed software will have to be easily maintained.
Remember, portability will mean that software will have an
extended life cycle.

Finally, we are beginning to see techniques and tools emerge
which address the design and support phases of software
development. The cobbler's children often run bare foot.
This is true for programmers. It seems as if they are often
the last to benefit from computerization. Work must be done
in software prototyping in order to avoid lengthy prose
descriptions of what systems will be like. Wouldn't it be
much nicer for developers and customers alike if they could
sit down at a computer and watch a prototype of the applica­
tion execute. One terminal session is worth a thousand
pages of typed description.

Software change control systems are in use now. We see im­
provements in them and the integration of program develop­
ment subsystems. Perhaps expert systems will help us stay
on track when managing our time and our work load as
programmers, designers and debuggers. In the past we have
devoted much of our time to the development of the ideal
programming language. Now we are starting to realize that

there may be equally important uses for the computer in
other phases of the program life cycle.

And in conclusion

Users of computers will have a field day by the year 2001.
They will be freed from the nuts and bolts of programming,
even if they are restricted in what they can use the com­
puter for. Well defined applications will be easily per­
formed by expert systems in areas which will likely surprise
us.

There will, however, probably be even more need for classic
programming in the future. For those who choose to do this
work, we just don't see the software transistor waiting
around the corner. The problems of program development are
profound and are inexorably intertwined with being human.
Tools are under development which will make life a little
easier for those who will do "real" programming. Software
portability, programmer portability and Big Brother
programming environments are all steps in the right direc­
tion. We think, though, that that's the best we can hope
for: a slow and steady sequence of steps toward Every
Programmer's dream -- to put himself out of work.

507

NEVER CRY WOLF: THE CHALLENGE OF THE REMOTE TROUBLESHOOTER
OR

Larry Abramovitz
IIU.e»-M.a._~.ll.t.t

•THE CALL OF THE WILD•

Martin Marietta Data Systems, Greenbelt, Maryland USA

In •Never Cry Wolf: The Challenge of the Remote Troubleshooter•, we
describe the thrill of hardware troubleshooting in an international
computer network. Following a detailed description of the network itself,
we discuss our approach - past, present and future. Bow we help our users
today will most certainly influence our future effectiveness, and the
effectiveness of the network. Our solutions to problems - current and
anticipated - can be extrapolated to the industry in general.

I was the newcomer to the company. I arrived with great expectations
of doing •a little bit of everything•: some troubleshooting, some
equipment installation and configuration, and user training. Bright eyed
and eager to learn, I was told that the network would eventually span the
globe and consist of approximately 60 BP3000's, 3500 CRT's, 1500 character
printers, loads of multiplexers and modems, plus miles of cable - all
installed and maintained by Martin Marietta Data Systems (MMDS). The
network was to be used for data capture, database maintenance and update,
and, of course, remote data transmission. For now, there were 11 CPU's,
with 2 more coming fast. The office was buzzing with activity. My first
assignment was in the Maintenance Service Center (MSC). In the MSC, we
serve as the intermediary between system operators or users and the
vendors <the network uses BP and 2 additional vendors>. We screen the
trouble calls and try to resolve them before involving the vendors' field
engineers. Around the clock, we attempt to catch and correct user errors,
mysteriously changed configurations, disconnected keyboards, etc.

I could tell that this challenge would be different from any I had
had before. Bow, with 2 telephones and a bookshelf of technical manuals
<mercifully up to date>, could we provide service to an international
network of BP 3000 users? It seemed a formidable, if not impossible,
task.

This paper presents our solutions and ongoing creativity in meeting
the technical, analytical, and interpersonal challenges presented by
remote troubleshooting1 we describe our approach today and our future
plans for this network which requires support well into the 21st Century.

509

A. Introduction

MMDS supports a worldwide field reporting network for pay and
personnel data. This network was conceived in 1976 when our client
decided to modernize their employee pay and personnel system. Lengthy
turnaround times and increasing errors in their manual system had become
unacceptable. The modernization was to occur in 2 phases - functional
consolidation and automated support.

In the first phase, approximately 3,500 separate pay, personnel and
transportation offices were consolidated into 350 field sites. These
field sites were organized into 25 geographic regions. The field site
offices maintain employee records and provide all pay, personnel,
transportation, and local information services to individual employees.
The field sites also prepare transactions to notify headquarters of pay
and personnel changes, audit transactions, and receive confirmation from
headquarters. Processing Centers (PC's) are the physical locations of
CPU's, where processing for a personnel region takes place. Most
processing centers use more than 1 system (CPU and associated
peripherals). All systems have the ability to communicate in a DS
Distributed Systems Network environment.

The map below shows the personnel regions in the network (regions
outside the continental US are indicated on the lower left).

510

PERSONNEL REGIONS:

•Hawaii
•Far East
• Phillipines
•Guam
• London/Northern Europe
e Naples

The Processing Centers that serve the regions are located in the
following cities:

PROCESSING CENTERS

• PC Hawaii
• PC Yokosuka
• PC Subic Bay
• PC Guam
• PC London
•PC Naples

PC Newport

PC Headquarters
SDSCenlr.I
FEP
PC Washington

The second phase of modernization began in 1984. Applications
software was developed to automate data collection and transmission
procedures, hardware installations began, key personnel were trained, and
the Maintenance Service Center started up.

511

B. The Network

liba.t...-11~.iUW-~~: This world-wide, online network integrates the
automated field reporting and management information system to support the
newly consolidated personnel offices. The network aims to improve pay,
personnel, and transportation support services to the 400,000 employees.
The benefits of setting up such an automated system to streamline these
functions in a large organization cannot be overstated - accurate and
timely collection of personnel and pay information, improved service to
employees, automated input procedures, accountability, information
support, and 2-way telecommunications. The network's 400 sites will
ultimately reside in 50 states and 18 foreign countries.

The people at the field sites collect data on terminals connected to
a host CPU (HP 3000) at the processing center; concurrently, supporting
reports are printed out. The data then travels to one of two front end
processors which exchange information (HP 3000/68's) and then on to the
headquarters mainframes where the two master data bases reside.

FIELD
SITES

PC r----,
I jFHPI:
I I t_ ____ ,_,

+

r------.

/

I t

MAIN I
, __ _H~ FRAME ~

7 1 'FEP11 L-----' t_=:,

Each field site (with the exception of sub-sites> has a site manager,
a system supervisor, and the appropriate complement of terminal end
users. Each processing center •centralizes• hardware trouble calls for
all its field sites. The significance of this will be revealed shortly.

Each processing center has system operators and a system manager in
direct support of the equipment installed. Furthermore, each processing
center has a technical control center where the local multiplexers, modems
and telephone line interfaces are located. The integration of CPU power
and network communication interfacing at a single site is of prime
importance to MSC staff in diagnosing a problem at the processing center
or remote field site. Thus, the major players in support of the network
are 1) the system manager and technical control center staff at the
processing center; 2) the site manager at each field site, and, of course,
3) the MSC staff. Each player in this triad is a central source of
information during any troubleshooting episode.

512

Bgl'l:
Hardware. To better understand the hardware configuration of this

network, it might help to see the levels of communication in a diagram.
Remote users communicate to processing centers. Processing centers
communicate to front end processors which in turn communicate to
headquarters' mainframes. We are concerned with the processing center and
the field site level almost exclusively.

COMMUNICATION LEVELS

Heedquarlers
Level Proce11lng

He..tquarlen
Level ProeeHlng

Field

MAINFRAME

Level
Processing

PC Supporting Personnel Region

Mainframe

HP

Level 3
Backbone Network

MAINFRAME

PC Supporting Personnel
Region

Levell

Field Site Field Site

~~~ 

513 



Processing centers are the operational data processing facilities in 
the network. Processing center equipment typically includes an HP 3000, 
tape and disc drives, high speed line printers, operator consoles with 
associated printers, and communications equipment. Processing centers 
often contain more than one CPU and associated peripherals. 

Processing Center Equipment: 

HP 

HP 

HP 

HP 

HP 
HP 
RM 
RM 
BE 
RM 
AR 

3000/68 
/48 
/42 

7933H 
7935H 
7976A 
7978A 
2647F; HP150 
2392A 
2671A 
2608S; 2563A 
OMNIMODE 96 
OMNIMODE 48 
Bell 
OMNIMUX 320 
Atlantic Research 

CPU (8 Meg) 
(4 Meg) 
(2 Meg) 

Disc (404 Meg; Fixed) 
(404 Meg; Removable) 

Mag Tape (1600/6250 bpi1 auto-load) 
(1600/6250 bpi) 

System Console (/68) 
(/48, /42) 

Console Printer(/68) 
Line Printer(400,300 lpm) 
Modem 
Modem 
Dialup/Autodial Modem 
Multiplexer 
Patch Panels 
Data scope 

The processing environment for a typical processing center is shown 
below. 

514 

PROCESSl·NG ENVIRONMENT 
FOR TYPICAL PC 

CPU 

Headquarters 
FEP 

CPU 



The processing environment for all field sites is essentially the 
same. There are significant differences, however, in the volume of work 
at various sites. Field sites have terminals, character printers, and 
high speed line printers and, of course, the requisite data communications 
equipment. Most field sites are supported by modems and multiplexers in a 
point-to-point configuration. Sub-sites are supported by MTS software and 
4800 or 9600 baud modems in a multipoint/multidrop configuration. 

FIELD SITE EQUIPMENT: 

HP 2624B CRT 

BB PSl-4A Print Switch 

BB PIA-60 Print Spooler 

HP 2934A CP (Companion Printer) 

HP 2934A WPP (Word Processing 
Printer) 

HP 2563A HSLP (Line Pr!:it.:1) 

RM OMNIMODE96 Modem 

RM OMNIMODE 48 Modem 

RM OMNIMUX320 Multiplexer 

HP 2333A Cluster Controller 

TYPICAL FIELD SITE LAYOUT - POINT TO POINT: 

515 



TYPICAL FIELD SITE LAYOUT - MULTIPOINT 

Databases. The network we are describing is essentially a data 
capture system for payroll and personnel data. After collection, the data 
is transmitted to the headquarters level where one of two front end 
processors (HP 3000/68) submits the data to the mainframe and also passes 
the data to the other front end processor, as you've already seen on the 
•Levels of Communication• diagram. The two data bases are geographically 
distant. 

Communications Software. The systems in the network •talk• to each 
other via DS/DSN and a communications software system which uses a 
store/forward methodology to accollllliodate the different time zones. Data 
is transmitted from the processing centers to the front end processors 
using this customized networking software. 

Systems Software. All HP 3000's in the network use HP FOS (MPE, 
FCOPY, EDIT/3000, Sort/Merge, IMAGE, QUERY and VPLUS). Other tools 
include TDP, MTS, DS/DSN, and special utilities designed to provide user 
logging and monitoring. Other than development personnel at headquarters, 
there are no programmers in the field. Compilers are not standard on the 
processing center CPU's. 

516 



111>.en: The system was conceived in 1976. Equipment installation at 
processing centers and field sites began in July 1984. The Maintenance 
Service Center began operations in 1984 and will continue for 10 years. 
Prior to the first installation, key personnel attended training courses. 
Additional training is conducted at each field site following 
installation. 

The current system implementation schedule is shown below. 

IMPLEMENTATION SCHEDULE 

H•waii - 11 /86 
Far East - 8/88 
Phillipines - .,,IVS 
Guam - 10/88 
London/Northern Europe - 12188 
N•ples - 11188 

Washington O.C . ., .. 
Norfolk 
12/85 
Outside Continental US 
5/88 

517 



We perform 3 main functionc for the client's networks 1) hardware 
and systems software installation and activation (bringing a new system 
up>1 2) user training1 and 3) systems software/hardware maintenance. We 
coordinate and provide these services from our main office in Greenbelt, 
Maryland. Installation, while coordinated in Greenbelt, occurs 
(naturally) at the processing centers and field sites. We provide 3 
phases of training: 1) for headquarters' staff personnel (given at MMDS' 
offices>, 2) on-site training at each newly-installed processing center, 
and 3) follow-on training at MMDS in years 4-10 of the project. 

The staff at MMDS rotates in and out of the varied tasks - a trainer 
one week, a cable layer the next, a troubleshooter the next. Installation 
typically is divided into 2 phases of 3 weeks duration each. Phase 1 is 
the DCB installation1 phase 2 is the DTE. Training occurs 3 to 5 weeks 
after the installation and lasts for 2 weeks. Troubleshooting in the 
Maintenance Service Center continues 24 hours a day, 7 days a week. 

Terminals, data communications equipment, CPU's and peripherals are 
installed by teams of MMDS employees. Each team consists of 3 people. 
One of the three is a designated team leader responsible for signing off 
on a site after verifying that all equipment is installed, working, and 
that all serial numbers have been recorded. After installation, training 
is conducted at that site for key personnel. We follow this routine for 
each installation. As of February 1986, we have installed 11 systems, 
representing 5 personnel regions with a total of 33 field sites. 

During installation and activation of a site, maintenance is 
immediately available. We have noticed a number of distinct maintenance 
stages emerging in the process: 1) an install/burn-in time of 
approximately 1 month, followed by 2) startup/coming live when the users 
really begin processing, followed by 3) the ongoing, day-to-day use of 
the system, and 4) occasions when hardware and systems software are 
upgraded. 

The focus of this paper is, of course, the maintenance function. 

518 



IV. THE MAINTENANCE FUNCTION 

After rounds of negotiations, a centralized Maintenance Service 
Center (MSC) was selected as the approach. This MSC would be staffed by 
MMDS people who could remotely diagnose problems and call in vendors as 
needed. The Center provides 24-hour a day hot-line support to the 
network. Calls are placed by a designated person for each personnel 
region. Thus, the MSC serves as the central repository of all trouble 
calls reported by on-site users, and coordinated through the client's 
technical control center. This was preferred over having an alarming 
number of troubled users calling either MMDS or the vendors. 

A. The Maintenance Service Center 

lJlt.xg~J.Dn. The Maintenance Service Center (MSC) was designed to 
provide maintenance in a centralized, controlled way. Lines of 
communication between the client and our staff are set up in the following 
manner: the user reports any problems encountered to the region's 
technical control center, located at that region's processing center. The 
person receiving the call contacts our troubleshooter on the MMDS hot 
line. We, in turn, call the •troubled• user and try to determine the 
exact nature of the problem. When necessary, we dispatch the vendor to 
the site. Upon successful resolution of the problem, all parties involved 
are notified as to the time and nature of the resolution. 

Initially, for a period of 4 months, we provided service through the 
MSC 5 days a week, from 8 am to 5 pm; then, for 6 months, from 7 am to 11 
pm. In November of 1985, we expanded service to 24-hours, 7 days a week 
and began an earnest search for more troubleshooters. 

~!i.o.g~~dlil.WU-~.bJ..fta. The expansion to 24 hours was 
dictated by an increase in equipmept and contractual requirements. To 
accommodate the staffing needs of the project and the specific needs of 
the MSC, a schedule of 12-hour shifts was devised. This allows MSC staff 
a consistent schedule for 8-week periods while also permitting people to 
rotate in and out of various other project functions. One advantage to 
this kind of schedule is predictability: for 8 weeks at a time, we work 
the same shift. In addition, 3-4 days off every week (inherent in this 
approach) is compensation for the disruption to a •normal• work week. 

The person on graveyard shift (8 pm to 8 am) has one disadvantage in 
that he/she works alone. Phone traffic is currently very low during this 
shift and boredom could become a factor. However, with the installation 
of a major site in San Diego and other planned installations, this is 
expected to change due to time zones and extended work hours. 

Our scheduling (2 12-hour shifts per day) grew out of necessity more 
than anything else but has proven nonetheless to be quite workable. The 
people involved think so, and they seem to enjoy the usable chunks of time 
off every week. 

One very important challenge we face is the problem of isolation. 
For 2 months at a time, 2 staff members work virtually alone - somewhat 
analogous to the bored shepherd boy on the hilltop who cried wolf. For 
some people, this is desirable; for others, it can be quite tedious. In 
any case, it requires self-motivation and determination. 

519 



How do we attract and keep good people? Routine rotation to other 
areas of the project provides a needed change of pace, and the added value 
of gaining professional experience. Our troubleshooters have installed, 
configured, and used all the equipment we maintain. Many of them have met 
and worked with the users at the field sites during installation, and some 
have instructed the •troubled• user in an on-site training phase. These 
factors contribute to a high level of technical expertise and staff 
morale. Our troubleshooters are kept aware of activities of the local HP 
users' group, data communications conferences, vendor tutorials, and a 
variety of professional activities. On a regular basis, staff members 
attend HP training courses in different subjects (System Manager, 
Programmer's Introduction, Query, Data Communications, etc.). 

The people who staff our MSC represent a variety of disciplines -
hardware specialists, software people, data communications people, and 
people with training experience. This mix of disciplines has proven very 
useful, and the resulting exchange of information and experience has 
broadened everyone's awareness. 

BQli_i!!e~.e..AI.e~l To date, our success rate has been very good. 
A system of penalties is in effect (can you think of any better way to say 
that?) and our. client rates us in a number of different categories 
including component down time, system down time, site down time, and 
excess response time. We are also motivated by some immediate 
requirements. For example, our vendors are given the same amount of time 
to have the engineer on site as we are (usually 4 hours1 at some major 
sites, 2 hours>. However, our clock begins to run after we receive the 
initial trouble call, while theirs begins after we have contacted the 
site, done our own troubleshooting, and then called them. Therefore, our 
own troubleshooting must be completed in a minimal amount of time. We are 
thus compelled to think and act quickly - and with good judgement. 

Depending on our past experience with a particular caller and our own 
assessment of a situation, we will occasionally place a call to the vendor 
immediately, then contact the user. There are advantages and 
disadvantages to this. If we cry wolf too many times, eventually no one 
will listen. But taking a half-hour or so to diagnose a problem first 
could indeed save the vendor an unnecessary trip to the site. But then 
again, this could cause a "late• response time. This is the crux of our 
dilemma - and the core of the challenge we face. In spite of our good 
intentions and expertise, we sometimes place a wrong call to a vendor. 
More than once, we have mis-diagnosed a modem or multiplexer when the 
communications line was faulty. we have learned since then to harbor a 
healthy suspicion of phone lines •reputed• to be good. 

Our effectiveness depends to a large extent on that delicate mix of 
technical, analytical, and interpersonal skills. 

520 



Illil_B~~Dui~~~. The Maintenance Service Center was developed, 
literally, from scratch. Starting with nothing has certain advantages. 
The usefulness of resources can be tested and determined empirically. In 
the course of our experience, we have established a very reliable set of 
tools for use during a troubleshooting episode. 

The mainstay of our toolset is the Troubleshooting Guide, developed 
by the staff of the MSC. It provides a step-by-step diagnostic procedure 
for each piece of equipment, with cross-references to other connected 
hardware and manuals where appropriate. This guide leads the user through 
a series of questions and specific tests for verifying problems. The 
guide was set up as a complete 0 How To" manual. Due to the longevity of 
the project, we felt it was necessary to address the issue that new 
employees would be joining the MSC. Also, periods of time would elapse 
when an employee doesn't work the hot-line but is expected to be up to par 
following a prolonged absence. This guide assumes only a minimal 
familiarity with our equipment and configurations. It makes use of the 
Socratic method to determine the exact nature of the problem. In many 
cases, the dialogue between user and troubleshooter elucidates and even 
resolves the problem. Tests are done during this dialogue, such as hard 
and soft resets, data communication loopback tests, swapping out suspect 
equipment, etc. This method has resolved many trouble calls since the MSC 
began. 

One important factor in keeping vendors in line with our objectives 
is to minimize false alarms. This ensures that when a vendor receives a 
call from MMDS, he can be reasonably assured that a failure exists and 
requires repair. Furthermore, we often can give them a clue as to the 
exact nature of the problem. They therefore arrive at the site better 
prepared. Never crying wolf further increases the probability that our 
needs are met when contention for a vendor's resources occurs. Naturally, 
a higher level of priority exists when we sound the alarm to our 
maintenance vendors than would exist if we habitually dispatched without 
due cause. 

Equipment lists are another essential component of our library. It 
has proven absolutely necessary to keep accurate records of equipment by 
location and seri~l number. Since all of our vendors perform maintenance 
by serial number, these lists must be kept up to date at all times. 
Periods of warranty, renewed maintenance contract dates, terms of 
maintenance, points of contact, phone numbers - all this information must 
be accurate and accessible to our inveterate troubleshooters. 

The maintenance function, as well as the installation function, makes 
use of the MMDS Installation Manual. This manual provides a complete 
snapshot of an installation. rt contains a chapter on each piece of 
equipment, including procedures for installing, configuration parameters 
where applicable, cabling diagrams, user points of contact, site addresses 
and phone numbers. 

Keeping accurate records to the extent necessary has proven to be a 
formidable administrative chore. To alleviate the tediousness, and to 
increase our overall effectiveness in troubleshooting, we ordered an 
in-house system. This system is comprised of an HP 3000/42, terminals (HP 
2392A), a printer (HP 2934), and a modem (VA 212). We plan to use this 
system to tap into our users' systems when diagnosing certain problems. 
Our in-house system will also be used to provide the staff with hands-on 
experience. Eventually, we plan to do all our record keeping and forms 
processing on this system using IMAGE, VPLUS, TDP, etc. 

521 



Prior to and during an installation, data terminal and data 
communications equipment diagrams are created. For each installation we 
create a full set of diagrams by processing center and field site. Serial 
numbers, model numbers, and connectivity are illustrated. 

In addition to the reference tools listed above, all of which are 
created and updated by MMDS, the MSC maintains a library of technical 
reference manuals provided by our vendors. Complete manuals for each 
piece of equipment are kept, as well as manuals of general interest (HP 
software products, AdvanceNet, Communications Handbook, etc.). Our 
troubleshooters are encouraged to delve into topics of interest on a 
particular piece of equipment or software product. 

In order to provide around-the-clock coverage, we had a toll free 
number installed. Users can call any time of the day or night. If our 
troubleshooter has stepped out for a minute (calls of nature and the 
like), an answering machine records the caller's message. We also carry a 
beeper whenever we are to be out of the off ice for more than a few 
minutes. 

Crucial to our dealing with specific trouble calls, a "Malfunction 
Report" was developed. This report provides a framework for the 
collection of pertinent information and the appropriate and timely 
response to problems. When a call comes in, a case number is assigned to 
it. The first 6 digits of the case number identify the site; the 
remaining digits refer to the year, month, and a sequential number that 
resets to 001 at the beginning of each month. This form becomes our 
official report for a specific call. At each crucial step in the process 
of resolution, detailed notes are made (e.g., called HP; HP arrived on 
site; HP cleaned end of tape sensor, etc.). 

Frequently a trouble call remains "open" from one shift to the next. 
This occurs most often if a problem develops late in the day, and vendor 
maintenance coverage doesn't begin until 8 the next morning. To ensure 
that all open calls are followed up during the next shift, we devised a 
turnover log. The simple ritual of signing the turnover log guarantees 
that nothing falls through the cracks. 

At monthly intervals, all calls are summarized and sorted by type of 
equipment and site. Interpreting the monthly summaries can be useful to 
track recurring problems or to spot emerging trends. Summary sheets also 
maintain crucial information as to down time and response time over the 
course of the month. This information has proven useful in certain 
geographic areas, for example, where vendors are underrepresented or where 
parts are in low supply. 

H.lw-~e-He_Belplngl A profile of our users is helpful in 
understanding our approach to troubleshooting. Our client has a policy of 
hiring from within. As a result, many of our users, while proficient in 
the functional aspect of the network, are novices in the area of HP 
computer systems and often computers in general. They understand what the 
system is to be used for, but are learning how the pieces of the system 
work. We developed training courses to train our users in a variety of 
disciplines. Training encompasses a general orientation to the project, 
down to the level of detailed networking concepts and procedural software 
products CVPLUS, TDP, COBOL, etc.). In short, training was devised to be 
specific to the customers' uses of the product in this network. This kept 
the training courses of particular interest to the user and minimized 
questions of how this "fit" a user's specific needs. Better students make 
better end users who are more qualified to assist us when a problem 
arises. As you can see, doing a good job in one area can also help in 
another. 

522 



Our users are organized into the following categories: site 
managers, responsible for system operations; supervisors, responsible 
for supervision of operations; operators, responsible for data 
entry/retrieval and printing of hardcopy; and associate data base 
administrators, points of contact responsible for administrative 
support of field sites. 

B. The Vendors 

The vendors are, in effect, sub-contractors to MMDS. We maintain 
contracts with them to provide maintenance, and it is vital to our 
success to promote and maintain good relations with them. In the MSC, 
we not only deal regularly with users but also with vendors. We are 
the ones who send them to the far reaches of the globe; we are the 
ones who describe the problem at hand; we are the ones who are 
penalized if they don't meet the agreed-upon response time; we are the 
ones responsible for coordinating and following up calls; we are the 
ones who pass the on-site contact information on to the vendor. It is 
crucial to our effectiveness to maintain a good rapport -- to never cry 
wolf and only cry out when they fail to meet the customers' needs. 

A specific example of our need for good rapport with the vendor 
occurred when a part flown in to repair a CPU arrived at the airport of 
a major u.s. city. The customer engineer drove to the airport late 
that night to pick it up, only to discover that the airport was 
closed. This could have been a very sticky situation; luckily for us 
it wasn't. 

In addition to maintaining good professional rapport, we have 
found it necessary to keep our own accurate records of serial numbers, 
response times, maintenance terms, warranty periods, etc. The better 
our substantiating documentation is, the more weight our word carries 
with the local dispatcher. It has happened more than once that a piece 
of equipment - newly installed - required service before the vendor had 
entered the data in the warranty data base. With a response time of 2 
hours, our facts must be correct. And in some cases, our facts are the 
only ones in town. 

It has been to our advantage to get to know the dispatchers, 
supervisors, and customer engineers. In the same way that getting to 
know our users has proved helpful, knowing our vendors has smoothed the 
way to better service more than once. 

C. How Are We Doing Now? 

In the cold light of statistical evidence, we seem to be doing 
superbly well. Over the last 6 months, 250 trouble calls have made 
their way to the MSC. All of these have been successfully resolved 
either by MMDS on the phone or by vendor on-site support. System 
down-time has been kept to a minimum and many times exceeds the 
requirements of the customer. Vendor response to the customer has met 
customer expectations and is directly related to our ability to resolve 
a problem quickly. Even with new, large installations being performed 
every 2-3 months, we have maintained our success rate. As our 
troubleshooters gain experience, we are hiring and training new ones, 
and our MSC is functioning smoothly around the clock. 

523 



o. Where Are We Going? 

As mentioned earlier, we are installing a system in-house. This will 
give us the resources to further automate our internal record-keeping 
processes. It will also provide our troubleshooters with continuous 
hands-on experience. 

Beginning in 1987, we will commence overseas installations. 
Maintenance for overseas sites creates a new opportunity for us. In areas 
of the world where no HP customer engineers reside, we will train and 
relocate our own technicians. 

Eventually, the MSC prime and graveyard shifts will be staffed by 2 
troubleshooters. This will require further hiring and training of new 
people. 

The physical environment of the MSC gained importance when the 
increase to 24-hour coverage took place. With people inhabiting one 
physical space around the clock, unique requirements surfaced. Security, 
kitchen facilities, and a "comfortable" environment are currently being 
addressed. 

We previously touched on the unique scheduling requirements of 
running a 24-hour service. There is a human element we continually face 
in the process of shifting people from day to night, from the beginning 
to the end of the week, the loss of holidays, and the general disruption 
to personal lives. All of these things require a flexibility by staff and 
managers so that all needs are met - the needs of the people and the needs 
of the network. 

The future will inevitably bring vendor hardware and software 
upgrades. This is a fact of the industry. Our resources (manuals, 
equipment lists, installation procedures, etc.) must be as easily upgraded 
as the hardware and software they represent. Areas of potential upgrade 
include Spectrum, new multiplexer models, new fixed disc drives, etc. And 
as technology moves hardware networking into the realms of the 21st 
Century, we expect to continue upgrading our basic procedures and 
techniques, so that we are well prepared to handle the new challenges that 
this technology will bring to the end-user and ultimately to us. 

524 



V. lJLt.an.s;.l.w;.i.QD 

Our experience troubleshooting this network has led us to make some 
brazen generalizations. We have distilled into a few pertinent 
commandments, if you will, what we think works best. 

1. As in all things, a healthy dose of common sense works wonders. 

2. Analytical ability is at least as important as technical expertise and 
ranks as high as attitude in performing well. 

3. Use everything that happens as a learning experience. This attitude 
has proven invaluable. Learning can take many different forms. 

4. Maintain an even temper. Grace under pressure cannot be overrated. 

s. Don't be afraid to get other people involved. Ask questions. 
Brainstorm. Use HP's Response Center. 

6. Accept the fact that you will make mistakes. Don't take things too 
personally. (See 13 above.) 

7. Try to understand the big picture. Why does this network exist? Who 
uses it? What does it do? 

8. Keep good notes. This is extremely important during a trouble call. 
Times, names, significant events - keeping records of these helps clear up 
questions later on if there is a problem or discrepancy. Also, there can 
be historical significance to specific trouble calls that may only surface 
much later, when memories fade. 

9. Practice your Socratic method on the user. (What did you do? What do 
you think you did? What happened next? What does the screen ~a~? 
Practice asking questions in a non-judgemental way, without insulting 
anyone's intelligence. 

in your thinking. The ability to change direction 10. Remain flexible 
can be very useful. 
relinquish a certain 
is always an element 

As in software debugging, you have to know when to 
avenue of investigation in favor of a new one. There 
of gambling involved. 

11. Trust your instincts. Sometimes split second decisions must be 
made. The best private detectives trust their instincts. There is, 
however, no substitute for k.l~.ill: thinking.) 

12. Finally, Never Cry Wolf! 

Larry Abramovitz is a Senior Technical Services Representative for 
Martin Marietta Data Systems. He has a B.S.in Decision Science and in 
Management from the Wharton School of the University of Pennsylvania. His 
experience in data processing includes instructing technical and 
managerial ADP users, troubleshooting, and installation. 

Karen M. Devitt is a Principal Computer Systems Designer for Martin 
Marietta Data Systems. She has a B.A. in English Literature from the 
College of William.and Mary. Her experience in data processing covers a 
wide range of activities: marketing support, technical writing, 
applications programming, system analysis and design, and most recently, 
remote troubleshooting. 

525 





DISTRIBUTED DATA ACQUISITION AND CONTROL FOR NUCLEAR PHYSICS EXPERIMENTS 

Bjorn Dreher 
Institut ftir Kernphysik, Universit~t Mainz, Mainz, F. R. Germany 

Summary 

A distributed system of one HP3000/68, three HPlOOO systems, one 
HP9000-500 and one Perkin-Elmer PE3220 system is being used at the 
Institute for Nuclear Physics at the University of Mainz in West-Germany 
for the data acquisition during nuclear physics experiments at the 180 
MeV Microtron. The microtron itself is controlled by two of the HPlOOO 
systems. The backbone of the entire system is the distributed systems 
software, which has been developed in-house. It is using a packet 
switched message system to exchange data between processes on the vari­
ous computers and can be used for local processes as well. The system is 
in operation since 1981. The HP3000/68 is the central node of the star 
topology system. Details about the data acquisition system with on-line 
analysis of the data on the HP3000/68 will be given as well as an gene­
ral discussion of the control system of the microtron. Future develop­
ments of the communications software will include the usage of IEEE 
802.3 LANs as hardware vehicle for the message transfer as well as the 
inclusion of other vendors MC68000 based VMEbus systems in the network. 

Introduction 

At the Institute for Nuclear Physics of the Johannes Gutenberg Uni­
versity at Mainz, West Germany, basic nuclear physics research is done 
in the field of medium energy physics with electromagnetic interaction 
using two different electron accelerators. The older linear accelerator 
produces a pulsed electron beam with a maximum energy of up to 400 MeV 
(million electron volts). The new racetrack microtron MAMI (MAinzer 
Mikrotron) yields in its current second stage a maximum energy of 180 
MeV of c.w. electron current. The third stage, which is currently under 
construction, will deliver a continous electron beam of up to 800 MeV. 
Already for use during the experiments using the old linear accelerator 
a hierarchical distributed computer system was developed to be used for 
data acquisition and control Ill. In addition, the calculations needrd 
during the preparation of the experiments and the time-consuming analy­
sis of the measured data should be done with this system. Fig. 1 shows 
the current configuration. The network consists of three HPlOOOs, 0111· 

HP9000 series 550, one Perkin-Elmer 3220, and one HP3000/68. 

527 



MAMI-System Computer Center Experiment 
lrficrotron Control Data Acquisition 

HPlOOO-M HP3000/68 HPlOOO-M 

Ml Hl 
CE 

HPIOOO-E PE3220 
HP9000-500 PE M2 

Wl:IRllUlllJ)Elt14.1.81 

Fig. 1: Distributed Computer System 

The HP3000/68 under MPE-V/E serves two major purposes. First, it is 
used as the main system in the institute's computer center for technical 
and scientific calculations. Second, it is the central node of the 
distributed computer system, which has essentially a star topology. Be­
cause the HP3000 is still a 16 bit computer system, the HP9000 system 
has been added to provide true 32 bit capabilities under the HP-UX ope­
rating system. 

The next level in the hierarchy consists of somewhat smaller mini­
computer systems with true real-time capabilities. They serve for data 
acquisition and for various process control purposes. The PE and Hl 
systems are used for fast data acquisition during nuclear physics expe­
riments (more than 10 kbytes/sec). The loosely coupled Ml and M2 compu­
ters are being used for the control of the MAMI microtron. The HPlOOO 
systems run under RTE-IVB, the PE3220 under Unix. 

Th_e HP3000/68 syst_~.!!! 

The central HP3000/68 has 72 ATP ports for terminals and other RS232 
peripherals, e.g. letter quality and graphics printer and plotter. Two 
IIP7925 and one HP7933 disk drives serve as on-line mass storage, four 
magnetic tape drives (two HP7970, two HP7978) are used two archive the 

528 



experimental data. The HP3000 system is used during the preparation of 
the experiments which are being performed at the institute, for the ana­
lysis of the experimental data, either on-line during the experiment or 
off-line after the experiment has been finished, and for various techni­
cal and scientific calculations, which stretch from complicated solu­
tions of problems from theoretical physics to the calculation of the 
spatial distribution of the magnetic field strength of the main magnets 
of the microtron and its graphical representation in the form of contour 
lines. Secondly, the resources of the central computer are being used by 
the front-end minicomputers via the network. This can be part of the 
central computer's processing power, e.g. during the data acquisition 
and on-line analysis of the measured data, or the transparent access of 
peripherals, e.g. line printer, magtapes, file system, etc., by the 
smaller computers. 

The Interprocess Communications System 

Backbone of the entire system is the communications software, which has 
been developed in-house. When the first implementation was begun in 
1977, Hewlett-Packard could not deliver a system with all the capabili­
ties required for our purposes. Today, only the new NS/3000 software has 
similar features as our own software. In the future, we plan to adopt at 
least the low level protocol layers (according to the ISO OSI standard) 
so that we can use standard hardware components as defined in the IEEE 
802.3 standard. 

POOL 

Table Area 

1/0 
Processor 

IP 
Interrupt 
Processor 

Device 
Controller 

2 

USER 
LEVEL 

!PC 
LEVEL 

l/O 
LEVEL 

~-0.-vi-.c-.~ HARDWARE 
Controller LEVEL 

3 

Fig. 2: Interprocess Communications System 

529 



Currently our Interprocess Communications System (IPC, not to be con­
fused with HP's MPE IPCl) is implemented as a store-and-foreward packet 
switching network (Fig. 2). Information is being exchanged in the form 
of messages which are packed into one or more packets. They are sent 
from a sender to a receiver. It is relatively unimportant whether both 
reside on the same system or whether they are processes of different 
computers. If the data exceed the length of 2046 bytes, the message is 
split into two or more packets. Packets are the smallest entities that 
are transmitted between different computers. They consist of a header 
portion, which contains essentially address information in the form of 
symbolic names and the data area. 

The main software interfaces for the programmer are two procedure 
calls: SEND and RECEIVE. Parameters are the symbolic names of the sender 
and of the receiver, a buffer with the data, and the amount of data to 
be transmitted. The communications software decides if this is a local 
communication (between processes at the same system), or if the packets 
have to be transmitted to another computer in the network via an appro­
priate I/0 channel. 

Since all packets are always buffered in a global data area before 
they are delivered to the receiver (packet pool), it was very easy to 
implement a store-and-foreward function. Therefore, if a packet comes in 
at the CE computer from e.g. the Hl system and the final destination is 
the Ml computer, it is simply put on the outgoing queue to the Ml compu­
ter and then eventually transmitted via the corresponding I/0 channel. 

The communications hardware is currently still a 16 bit parallel 
.interface, which originates from the "Programmable Controller" product 
that was offered many years ago by HP for the HP3000-II. When we upgra­
ded our Series III to the HP3000/64 we had to build a converter from the 
HP-IB (the internal I/0 bus of the HP3000/64) to the old parallel inter­
face. Therefore we had not to change anything at the side of the front­
end computers. The maximum hardware data rate can be up to 1 MByte/sec. 
As an effective transfer rate we achieve 90 kBytes/sec if we transfer 
large blocks of 16 kBytes. 

A general server program on the HP3000 and on the HPlOOO systems 
allows the use of their file system and their peripherals by the other 
members of the network. As an example, the HP3000 serves very well as a 
remote spooling system for printer output of the smaller systems. 

Data Acquisition and On-line Analysis in a Distributed Computer System 

The systems Hl and PE are both being used for fast data acquisition 
during experiments. As the interface to the experimental set-up we use 
CAMAC, which is a very popular interface standard in nuclear and high­
energy physics. It allows to transmit 16 to 24 bit words in parallel 
with a rate of up to 1 M words/sec. 

During a typical experiment high energy electrons hit a piece of 

530 



material that is to be investigated (target). A certain physical process 
happens at the point of interaction between the electron and the atomic 
nucleus. During that process the electron looses some amount of energy 
and changes its direction of flight (scattering). It may happen that the 
electron is absorbed by the nucleus and/or other elementary particles 
are produced and emitted out of the volume of interaction. All particles 
coming out of the target have to be detected in appropriate detector 
systems and their characteristic data, such as energy, angle of flight, 
and exact time of detection, are measured. With the help of Analog-to­
Digital and Time-to-Digital converters (ADCs, TDCs) the data are trans­
formed into digital computer readable data. These data are supposed to 
describe the physical process under investigation as completely as pos­
sible. They are read out via the CAMAC system and written in compressed 
form on disk or for archival purposes - on magnetic tape. Like a 
transaction logging file they contain an exact history of the experiment 
being performed. Later, after the experiment has been finished, the 
experiment can be replayed on the computer simply by reading the magne­
tic tape. 
This method of using a 
uses the small computer 
dependent tasks that 

distributed computer system for data acquisition 
system with real-time capabilities for the time­
need fast real-time responses. The data is then 

sent on-line to the central computer, where it is archived on mass sto­
rage and where there is enough computing power to do a first on-line 
analysis of the data. 

This is accomplished by the receiving process on the HP3000 by not 
only writing the data to magnetic tape or disk but by writing the data 

Other Data 
Sources: 
Mn9tape 
Disc File 

HPIOOO / PE3220 

Meaaaa:e-File 
(Pipe, FIFO) 

Magtape 

Global Data 
Area for 
Spectra 

(ADCs, TDC a, etc.) 
Com e11 

Specl<a 

Specka 

Graph Graphical Representation 
( 1 - und more-dimensional) 

Fig. 3: On-line Data Analysis 

531 



to an MPE message file as well. At the other end of the message file the 
data analysis process reads the data for on-line evaluation (see fig. 
3). This process acquires several large Extra Data Segments and sorts 
the data from the various sources (ADCs, TDCs) into one- or two-dimen­
sional histograms. These spectra can then be displayed graphically by 
another process which has access to the same Extra Data Segments. There­
fore already during the running experiment the experimentalist is able 
to analyze the incoming data. This is absolutely necessary for an effi­
cient usage of the sparse and expensive beamtime. In fact, the same ana­
lysis program is used for the thorough off-line analysis as well. There­
fore all the capabilities of the off-line evaluation are available on­
line already. 

The MAMI Control System 

The Ml and M2 systems are used to control the MAMI accelerator. Figure 4 
shows an overview of the MAMI control system. The two computers are 
coupled through the IPC message system and in addition by accessing a 
common file system on a shared HP7925 disk drive. In fact, our inter­
process communications system as it exists today was originally designed 
for use in the MAMI control system and only later it was also implemen­
ted on the other systems. Particularly for the MAMI control system it 
turned out to be indispensable. 

Here again the connections between the computers and the external 
process peripherals (operator desk and individual components of the 

532 

HP 1000-E 

M2 

Operating of 
the Microtron 

·--

Control of 
Components 

HP 1000-M 

Ml 

/PC 
HP300D 

~14.1M 

Fig. 4: The MAMI Control System 



microtron) is through CAMAC. The communications tasks between the opera­
tor and the microtron run mostly on the Ml system while the M2 system is 
mainly used for the actual control and automatic optimization of the 
accelerator. 
individual 
over the 

The entire control software is, according to the necessary 
task, split into many small processes that are distributed 

two computers. The processes communicate through the message 
system. 
Each component of the microtron that has to be controlled, or each class 
of similar components, has a special "service routine" assigned to it 
(Fig. 5). This service routine has the detailed knowledge of the hard­
ware that is to be controlled (similar to an I/0 driver in an operating 
system, but this is a regular user program). Characteristic data of the 
individual components, like hardware addresses, nominal values, limits, 
etc., are kept in a data base. They can be read or, if necessary, modi­
fied by the processes of the control system. In particular, the data 
base contains at any time a complete image of the actual status of the 
microtron (as far as the values are known to the computer). On a touch 
of a button this image can be stored in a file. Later, the data from 
that file can be loaded again into the actual data base. Thus on the 
basis of these values the microtron is brought into the same operating 
state as before. 

The operating of the accelerator is done through three "touch 
panels", which function very similar to the HP150 touch terminal. Our 
touch panels have 16 fixed touch-sensitive areas which can be written 
through CAMAC (which is much faster than via RS232). By touching only 
few fields the operator is able to find in a tree-structured way the 

PraceN 
OPTI 

MAM! Software Structure 
R.,.........fion 

., .............. Stafe 

Proo••• 
RE PRO 

Commu.nica.t\ons Syatem 

Touchpanel Knob 

Fig. 5: MAM! Software Structure 

llWJRll!l.ll.DEllOlllMll:l4.1.IM 

533 



final position, where he can for instance switch on or off an individual 
component of the microtron. To change analog values, e.g. the current of 
~ magnet, manually, an incremental knob is logically connected (upon a 
touch> to that magnet. This knob has an alphanumeric display field where 
the computer displays the MAM! name of the magnet and the digital value 
of the actual current. A turn of the knob is converted to a digital sig­
nal which is sent to the corresponding service routine. If the requested 
value is legal, the service routine will adjust the magnet current ac­
cordingly. All this happens so fast that the operator has the feeling of 
using an analog potentiometer. 

The global status of the entire microtron is displayed in graphical 
form on a high-resolution graphics display (HP2700). Its real zoom func­
tion allows the display of finest details. 

Conclusion 

The design and implementation of a distributed computer system for 
data acquisition, process control, and scientific calculations, was a 
great success for our institute. Many applications were only possible by 
features such as distributing different functions to the most adequate 
computers and then being able to communicate easily between the indivi­
dual processes. Tranparent access from the front-end computers to the 
powerful peripherals of the central computer is a very economical solu­
tion for providing to all members of the network the access to those 
peripherals. Given the fact that the new DS products from HP, such as 
NS/3000, provide very similar functions as our system, many ideas of our 
.design can probably very be easily adapted to all HP systems with the 
new software. 

We ourselves will use in the future the hardware provided by these 
new products (IEEE 802.3 LAN) as a replacement for our old parallel link 
to connect the HP3000/68 or new upcoming products to other computer 
systems with a compatible LAN interface. Hopefully Hewlett-Packard will 
provide us with an appropriate software interface to the LAN at a level 
that is low enough to enable us to adapt our existing system to the new 
hardware. The LLA (Link Level Access) that is available in HP-UX for the 
HP9000 Series 500 is a good example for that. 

Biography 

Bjorn Dreher 
is head of computing at the Institute for Nuclear Physics of the Johan­
nes Gutenberg University at Mainz, F.R. Germany. He got his first compu­
ter experience with a Control Data 1700 minicomputer in the late 60s, 
The first Hewlett-Packard computer he worked with was an HP21MX in 1974, 
today known as the HP1000-M. In 1976 it was decided, that a distributed 

534 



computer system should be set-up at the institute using HP computers. 
Late 1976 a HP3000-II was installed together with two more HPlOOO 
systems. Today the HP3000-II has grown to a HP3000/68 and the institute 
is anxiously waiting for the availability of the first member of the 
Spectrum computer family. 

Ill Proceedings of the 1981 Berlin International Meeting of the HP3000 
International Users Group, paper I.4 

535 





Siv Hermansson 
PaBis ab 
Belgium 

"MPE Compared to HP-DX". 

NOTE: Because of reasons out of the hand of the Host Committee, this 
paper will not be published in the Conference Proceedings. 

537 





HOSPITAL INFORMATION SYSTEMS: TODAY, TOMORROW AND AFTER. 

George T. Horne 
The Hospital for Sick Children, Toronto, Ontario, CANADA. 

Summary: 

Hospital Information Systems evolved in the wake of changes in the 
health care field. In-house development of an integrated system at 
the Hospital for Sick Children in Toronto resulted in a flexible net­
work on three HP 3000/63 mainframes. Conversion of the system to a ge­
neralized bus structure with distributed intelligent workstations is 
under development. Future criteria and technical perspectives for the 
next decade are being investigated. 

Out of the past ••• 

As they have in almost all other areas of modern human endeavor 
computers have established themselves in health care, particularly 
in hospitals, and are showing every sign of being there to stay. 

Contrary to the optimistic believes of the early sixties it has 
not been an ·easy walk. Indeed, few other fields are so full of 
pittfalls, beartraps and crocodile swamps as this particular one. 

It has been said that those who don't learn from history are 
destined to re-live it. In order to investigate the - hopefully -
successfull future of hospital systems, let us first look at the 
difficult past and the not allways glorious present. 

Medicine is a very old profession. However the last 50-80 years 
brought more change to health care than all the previous centuries. 
As recently as in the first decade of this century there was, beside 
surgery, very little a physician could really do to cure a patient. 
Doctors were brilliant diagnosticians and could predict the course of 
an illness, there was a rather small number of drugs and techniques to 
alleviate pain and remove problems. Hospitals provided the necessary 
restful environment. There was little technology and only a few 
laboratory tests, most of which did not require complex equipment. 
The hospital was an extension of the family physician's field of 
action. It was controlled by doctors and control, being based mainly 
on the medical needs of patients, was relatively simple. 

All this changed in the third and fourth decade: new tools, 
pharmaceuticals, particularly antibiotics, and the ever increasing 
use of complex technology made actual treatment and cure of illnesses 
an every-day practice. The costs and special skills needed to use 
these tools focused care more and more on hospitals, which in turn 
became complex entities not dissimilar to industrial plants. 

Financial/social issues, e.g. availability of care, health 
insurance, etc. and the ever increasing costs also started to 
complicate the financial management of institutions, and their 
management became more and more the job professional managers -
administrators. 

As soon as usable computers appeared on the scene, enthusiasts 
believed that medicine was just the perfect place for their use. 

639 



540 

So, in the early sixties we saw a group of physicians and engineers 
actually specifying, in a round table discussion, a suitable 
machine. The result was, as we know, the LINC - 8, which in turn 
became the PDP-8, and the rest is (non-medical) history. 

Two areas of applications emerged: a) analysis of diagnostic 
measurements, typically ECG's, heroic patient monitoring, etc and b) 
processing of hospital/patient data, aimed at - hopefully - better 
management of information and resources. 

Some major computer vendors (particulary one, associated somehow 
with a blue colouring) spent considerable sums in both areas, with 
relatively limited success - probably to their great surprise. 

There was a number of reasons for this: analysts and 
programmers started out with their pre-conceived ideas about medical 
practice; diagnostic models proved to be just that, models that did 
not necessarily apply; the process by which a physician arrives at a 
diagnosis is more synthesis than anlysis; and human physiology stub­
bornly refuses to comply with computer logic. 

On the management and information handling front it didn't look 
much better: most honest attempts to cost-justify computerization 
failed. Many companies are still at it and still find it difficult. 

In spite of initial difficulties, hospital systems have gained 
wide acceptance in the last 10 years, have become imperative for mo­
dern health care and represent a substantial market. 

It is interesting to note that to this day no computer hardware 
vendor has been extremely successfull in hospital information 
systems. Most of the existing, functional systems come from 
specialized software suppliers. I do not believe that we will see 
any major changes in this respect. 

As we look at today's scene we have to start differentiating 
between the various major components of hospital systems. To simpli­
fy matters for the purposes of this paper we may safely state that 
most modern, at least medium-sized hospitals have at least some of 
their business functions (accounts, payroll, etc.) computerized. 
Basically these functions do not differ from similar applications in 
other industries, hence we shall not dwell on them. 

At the other end of the scale we have the rapidly growing family 
of specialized medical instruments using computer technology as part 
of their basic function: computerized axial tomography (CAT), 
digital x-ray, ultrasonography and many more. They are now in the 
realm of companies marketing the instruments and DP professionals in 
hospitals are involved only marginally. 

Let us concentrate on the middle field, known under the catch-all 
name of HIS - Hospital Information Systems. 

We shall use the example of one hospital, the Hospital for Sick 
Children in Toronto, look at our present system, plans for tomorrow 
3nd dreams for the next decade. 

The HSC System. 

Our hospital is a 680-bed paediatric facility, aimed at all 
levels of care, with emphasis on tertiary care. 

The first attempt for computerization was launched by the 
hospital in 1968 with the usual business systems and a rather 
~randiose plan for a "total" HIS. Part of this materialized in the 
form of an on-line Patient Admission/Discharge system as well as bat~h 
systems for laboratory test result, Medical Records and a number of 
other minor applications. The generally successful!, if expensive 



project, initially supported by Big Blue, ended in a major disaster 
in 1974 when, based on a consultants recommendation, an attempt was 
made to move to a remote data centre and to support a total of 10 
teaching hospitals in Toronto. Result: nothing worked and the costs 
were astronomical. 

In 1975 a small 4-member team proposed to start again, on an 
in-house basis. None of the commercially available packages were 
found satisfactory for our environment and we decided to develop our 
own customized system. There were severe, "post-disaster" financial 
constraints. 

We started out with an HP 3000 CX, with 128 K and two 15 Mb disks. 
We decided to use SPL (for efficiency) and IMAGE only. 

We wrote our own Screen Handler/Run Executive. It still stands up 
and so far we could see no advantage in using V-3000, or similar. 

The lack of funds forced us into a design that is now the main 
virtue of the system. We could not start out, as most traditional HIS 
systems do, with one all-encompassing database. Each sub-system was 
to have its own database and had to be able to talk to the others. 
We wrote a communication file handler. To our great relief HP later 
invented IPC ; our purpose in life is not the development of system 
software, but rather of applications. 
An A/D/T system, laboratory result reporting and a Medical Records 
systems were implemented within a year. Database space was obviously 
quite restricted and later grew as several 120 Mb drives came on 
stream. In 1978 we upgraded to a Series III. 

It became very rapidly obvious that the machine would not be able to 
handle the volume of transactions and simultaneous on-line applicati­
ons for more than a handfull of terminals with anything resembling 
reasonable response time. We upgraded to a 3000/64 and two years la­
ter added a second 64. This set-up enabled us to implement most of 
the basic applications that form a hospital system as it is perceived 
today. Disc space grew to 4000 Mb. 

The Central Patient Index, which is, and will be the cornerstone 
of all patient systems holds demographic, and some additional in­
formation on almost a million patients. A Soundex program enables 
search on name and partial name if an ID number is not available. 

All Registration functions ( Emergency, Outpatients, Surgery,etc.) 
with their respective databases work through the CPR. Plastic ID pla­
tes and all necessary documents are produced on-line. 

Laboratory sub-systems, with their databases, support laboratory 
test processing which includes on-line instrumentation and reorting 
of test results to the Nursing Stations, cumulative reports and 
laboratory statistics. 

Introduction of terminals in the Nursing Stations represented a mn­
jor challenge. We had to have a reasonably flexible communication net­
work, that would serve us for some time into the future. We opted for 
the use of the hospital's telephone PBX and in addition to it we are 
using a second, voice-over-data network also on the standard telephon~ 
wires. This provides us with the capability for two data channels anJ 
one voice line at any location, as well as dial-up, modem sharing, 
etc., capabilities at all locations. 

The machines were upgraded to mod.68's. A third, mod.48 machine 
was added for accounting & other functions. Down-time, planned (bacl<­
up) or otherwise became crucial. Hospitals just refuse to conform wLLl1 
System Supervisor manuals. 

It became necessary to mirror-write our databases to ensure fun~ti­
onality and data integrity - after learning some bitter lessons from 

541 



hot-site situations and system crashes. We developed double-write capa­
bilities, using IPC files and DS as well as our own logging system. 

Later-on, when "Shadow/Silhouette" became available, we switched to 
this product, mainly for maintenance reasons. 

As opposed to most computer vendors ( and systems people) we were 
aware of the fact that nurses dislike typing - and most of the time 
hnve other things to do. We looked for ways to minimize typing. As we 
are using block mode, at least we didn't have to wory about the line­
by line entry imposed by most other systems and 4GL's. Although we 
believe that a touch-screen would be an excellent tool, we found the 
resolution and handling of the HP 150 disappointing (and the cost pro­
hibitive) and opted for a no-typing approach using inverse video 
light-bars operated by four function keys. 

The use of separate databases for application systems in conjunction 
with Message Files has the great advantage that we can develop whole 
sub-systems, debug, test, and subsequently implement by just opening 
the "tube" while keeping the system oper•tional for the users. This 
approach is also used for interfacing externaly purchased application 
packages, e.g. a Pharmacy system. 

Fig.1 shows the evolution of various applications as it stood in 
1985. The system is well received by the users - particularly since 
we did away with the need for signing on. By mid-'85 we approached an 
average 6-8 thousand transactions per hour on some 180 terminals and 
began to have serious response problems. A performance analysis showed 
that we are simply out of CPU cycles on our "production" machine. We 
had to spread the on-line load over two machines and lost valuable 
redundancy. An upgrade of our 48 to a 68 will give us another year of 
expansion - and time to think and plan. 

Future development ~ plans. 

The Hospital has launched a re-building program and by 1991 all pa­
tient Wards will be moved to the new wing. All rooms will be private. 
We have the rare opportunity to use the next five years for testing 
techniques and concepts that will take our hospital into the 21st cen­
tury. Fortunately it seems that hospital organization and management 
is unlikely to change drastically. What we can expect is even more 
emphasis on management information needs, aimed at cost control and 
containment. However, in the areas of information handling, control 
and manipulation we will see drastic changes and growth as medicine 
is entering the computer age with a vengeance. 

As we look at our present HIS, it does not substantially differ 
from a number of commercial packages - it is certainly more flexible, 
well integrated and has a higher level of data security, etc. but it 
still leaves us with a number of problems, unresolved ~uestions and 
open philosophical as well as technological approaches. Some of these, 
in no particular order, are: 

- How do we stem the river of paper ? 
- Data entry vs. information retrieval; where, why, how? 
- We do have plenty of data; how can we provide information? 
- The storage problem; where do we put it all? 
- The terminal problem; how to avoid typing. 
- The signature problem; how to be safe and stay practical. 
- The flexibility problem: ease of use/user control vis-a-vis data 

quality & integrity. 

542 



- Vendor independence, or Can you put your eggs in several baskets? 
- Response: how to improve it and how fast is fast enough? 
- Survival: as dependency on the system grows, how do we keep vital 

functions if a machine dies? 
At first glance these questions do not differ from similar ones 

appearing in other fields, like industry and business. But in the hos­
pital environment we usually find some circumstances making the ans­
wers less than obvious. 

We do not pretend to have all the answers; we have some, some are 
very obviously motherhood issues and some are intended to present a 
challenge to the industry and a look into a still rather cloudy 
crystal ball. It has to be emphasized that in the medical field we 
should have preferably both feet planted on the ground; this author 
at least would not cherish the idea of making repairs to parts of his 
anatomy dependent on a system that has just gone "hot" and is being 
patched by the Response Centre. 

First of all, there isn't the slightest hope for stemming the 
proverbial river of paper unless the HIS becomes a part of a compre­
hensive communication network in the hospital. The network has to in­
clude all aspects of communication: voice, data, graphics, image and 
video. It is also mandatory that future workstations in active areas 
of medical care be able to have access to all these media. 

It should be possible for a physician to e.g. dictate diagnostic 
findings into a digitizing voice storage system accessible to other 
doctors via telephone; after a period of time important data from such 
findings should find their way into the relevant databases and even­
tually end up in the patient's medical record stored on optical disc 
for random recall. 

Most existing hospital system have set as their main goal the entry 
of orders and retrieval of results,etc. at the Nursing Station. This 
seems to be a remnant of a programmer's understanding of hospital pro­
cedure. It should be stated that unless data is entered at source, 
we defeat the purpose of the system. The place for order entry and 
entry of patient and nursing data should be the bedside. 

Conversely, opposite to general belief the bedside is usually not 
where medical and other decisions are made, but rather at the Nursing 
Station, the doctor's lounge or diagnostic areas such as X-Ray, etc. 

These are the places where we need Information rather than just 
data. The users should be able to control extensively the form and 
format of such information, without having to rely on computer experts 
to do it for them. 

Having stated the above, let us investigate how our system can evo­
lve in the stated direction. Just throwing in more CPU power is cle­
arly not enough. We have allready experienced system overload, mainly 
because we are forcing the machine to do both data management and ter­
minal control. 

We intend to make one machine into a "database engine" or archival 
machine, performing most of the database writing in the network and, 
under normal circumstances, virtually no terminal transactions. 
Several "terminal servers" would have copies of the databases. As ac­
cess would be mainly for reading, we can take advantage of multithrea­
ding (Turbo-Image) and cacheing. Should a server machine fail, termi­
nals can be temporarily switched to the archive machine, sacrificing 
speed but keeping operational; should the archival machine fail, exis­
ting data would still be available till alternative rescue is perfor­
med. 

There are two pre-requisites for this: Software to perform the 
necessary file transfers between the machines and a fast enough commu­
nication system to make it work. Fortunately both are in existence in 

~3 



544 

the form of Silhouette/Caress and HP-LAN respectively. We intend to 
test this arrangement in 1986/87, with a view to introduce a Spectrum 
machine into the network, probably in 1988. Our aim is to be able to 
support, by 1990, up to 500 terminals. 

The other important step is to give users of information substanti­
al independence, while improving visible response time. We see a viable 
solution in introducing intelligent workstations instead of terminals. 

On the Nursing Station level this would be represented by a "Super­
micro", e.g. HP 9000, Micro-VAX, Micro-EAGLE. The common,required cha­
racteristics are specified as: UNIX Operating System, a relational DB 
tool common to UNIX users rather than machines (e.g. MISTRESS) and 
the use of "C", Pascal, or a qGL common to the 3000/Spectrum and the 
Workstation. Databases would be down-loaded to the workstations; this 
is transparent to the user. The users gain substantial independence 
and at the same time better response; the average number of patients 
per Nursing Station is only about 30 and hence the databases are small. 

Also, the number of applications used is restricted, depending on 
the clinical speciality of the particular Ward. 

With the increasing capabilities of Supermicros we may also expect 
to use them as local servers for terminals in patient rooms. 

By adhering to some broad standards we may also achieve a measure 
of vendor independence on this semi-peripheral level. 

Based on these philosophies we have stated our aims for the next 
five years as: 

Gradual conversion of the system into a bus-structure Informa­
tion Network, encompassing voice and data communication, Work­
stations and graphics capabilities. 

Central archival database machine(s) and terminal servers. 
Workstations with read-only databases (relational) for user 
independence. 

Capability to support 500 - 700 terminal devices with adequate 
response and very high system reliability by 1990. 
Full redundancy of main databases. 
Major computer mainframe upgrade ("Spectrum") approx. 1987/88. 

Data entry at source, i.e. at patient level, for Orders, Nur­
sing Notes, Q.A., bedside Test Instruments, etc., where appro­
priate. 

Information retrieval with maximum flexibility and under user 
control at Nursing Station/Ward level. Computerized Patient 
Chart. Potential access do digitally stored (Optical Disc) Medi­
cal Record. 
Similar capabilities at Clinics. 

Inclusion of additional Diagnostic and other services into the 
Network. 

Vendor-independent Operating System and language support at 
Workstation/Peripheral processor level. 

Common qth Generation Languages for Micro- and Mainframe sys­
tems. 
Transition to "C" and Pascal as preferred languages on mainframes. 

Introduction of Optical Mass Storage, Voice Input/Control and 
other advanced technologies. 

New Technologies: 

It is the last point of our objectives that focuses our attention 
on what will be necessary and desireable in the future hospital envi­
ronment. Let us now take our crystal ball and list some of the expected 



areas of interest, equipment, and, of course, associated problems 
that have to be resolved. 

Mass Document Storage. 
For every patient and every stay or encounter, the hospital amasses 

a very large amount of various data, most of it in the form of printed 
or written documents, but also graphic (ECG) material and x-rays. 
Warehouses are being filled with medical records, that have to be 
kept for many years. Records are being requested,sent out, searched 
and researched and frequently lost. There is now hope in the form of 
optical disc storage. One platter will typically store 1 Gigabyte, a 
"jukebox" device can handle 1-2 hundred platters. Documents can be sto­
red via a digitizing scanning device and random retrieval in about 15 
seconds seems to be feasible. A substantial effort would be needed to 
convert existing records. However, beside the obvious savings for 
storage space we can also see a very important qualitative change. 
We may stop shipping paper: for the first time it may be possible to 
retrieve parts of a patient record via remote terminals. 

Problems to be resolved: Legal aspects, privacy & access security, 
combination of documents and computer generated data, and periodic 
housekeeping problems as arecord may be spread over more discs. 

On a smaller scale, there is CD-ROM and WORM-type disc systems, 
that show great promise for e.g. Nursing Manuals, teaching systems, 
and infrequently updated lists like drug interactions etc. 

Bedside input devices: 
As we move data entry clos,=r to its source, the patient, it is fair­

ly obvious that the old-fashioned terminal just won't do. Nurses and 
doctors are not typists, we want to free them from clerical work,not 
add to it. The ideal device would be flat and could hang on the wall; 
it would have colour and graphic capabilities for chart retrieval; it 
it would be icon-driven and controlled by touch and/or voice. It has 
to be able to accept some form of signature. It should also be part 
of the voice communication system. 
Problems: price, selective access security. 
It is hardly surprising that major communication companies are invol­
ved in the development of such devices; they are also increasingly 
involved in Hospital Systems. We can probably expect more from them 
then from the notoriously introvert computer manufacturers, as their 
livelihood depends on communications. They will eventually make termi­
nal protocols transparent and make our lives a lot easier. 

We can expect that in the forseeable future 30-403 of routine labo­
ratory tests will be performed on-line, at the bedside. This implies 
a plethora of quality control and interfacing problems. One more rea­
son for protocol standards across the industry. 

Expert Systems and AI: 
----rf!emedical profession is by its nature conservative and cautious. 
It will take some time until any, even well functioning diagnostic 
tools will earn acceptance. The sheer notion of AI is anathema to many 
doctors. There is however room, in the next decade, for a variety of 
uses of AI systems in combination with diagnostic instruments, quali­
ty assurance, quality control in laboratories and other bio-technical 
areas. A broad application field for expert systems is in training, 
education and clinical modelling. We are presently investigating somP 
attempts in modelling the treatment of post-operative patients. 

We do expect successful use of Expert Systems in the area of labor~­
tory order processing and Pharmacy, as warning systems (potentially 
diagnosis dependent) for drug/test interactions. 

545 



546 

Image processing: 
----i:ITgital lm3ge processing has revolutionized the diagnostic field. 

It is quite conceivable that we shall soon see the demise of x-ray 
films, although there are still numerous details to be worked out 
concerning the understanding of human vision, relative resolution, 
and also acceptance by physicians. From a storage point of view, we 
are faced with a major problem, waiting for appropriate technology. 
For example, the average daily output of x-rays at HSC, assuming a 
reasonable resolution, would require close to 6 Gigabytes of perma­
nent storage. 

AR:HIVE MACHIIE 

Mirror Of Al.l. hoap1tel d9ta 
~r!~r~~~~~°'i:1l,mws c~· 
Next generation at tfJ Mlintrams OU:s;> 
'Turbo-Inigo', 'Sllt'K>Uetto', ond 'Clruo' 

HIGN Sl'EEil DATA llJS 

''"""' "" 

tf'-UN Booed Higo Speed Doto Bua 

IDf<INAL SERVER 

~~--:~~e ~ c~ Archive Machine 
Tenunel control ond editting ... .,, ... 

Evolution of the HSC Infol'llltl.on Sy•tell 

"""" ArchiV•Mllchlntt 
TCNlin.lS.r~M"I 

1985 

l«H< STATil»I 

F~~25 terainel• 

~;1 or=t:OOon~~;:!1.ctt1ne 
Nord operotlon fro11 tho bedside 

1990 

J 



Biography 

George T. Horne 
has been with the Hospital for Sick Children in Toronto for 16 years, 
for the last 11 as Director, Computer Systems. Prior to coming to 
HSC he worked in medical computing at the Royal College of Surgeons 
of England and in continental Europe. His background and education 
includes Engineering (electronics) and Medicine. 

547 





SERIES 58 PERFORMANCE 

Jim Kramer 
Hewlett-Packard Company, San Diego California, USA 

Summary 

The Series 58 is the new mid-range system in the HP 3000 line of 
computers. It has a more powerful processor than its 
predecessor, the Series 48, and its maximum main memory 
configuration is twice as large. 

In this paper I will discuss the hardware characteristics which 
result in the improved performance of the Series 58, and will 
report the results of performance tests. For those system owners 
who might be considering an upgrade, I will present some 
guidelines to aid in determining whether an upgrade is likely to 
result in a significant performance improvement. 

Series 2.§. System Description 

The Series 58 introduces new processor, memory, and memory 
controller boards. Otherwise the system hardware is virtually 
identical to that of the Series 48, except that 1/4 megabyte 
memory boards will not work on the Series 58. 

An upgrade to a Series 58 from a Series 44 or 48 replaces the CPU 
(two boards replace two or three), Control and Maintenance 
Processor board, and memory controller board. It also adds t'wo 
megabytes of memory on a single board. A similar upgrade is 
available for a Series 39, 40 or 42, and the upgraded system is 
designated the 42 XP. 

Supported memory sizes start at 2 megabytes and extend to 6 
megabytes for the Series 42 XP and 8 megabytes for the Series 58. 
(The 2 megabyte minimums are possible if the system being 
upgraded has only 1/4 megabyte boards.) A new Series 58 will 
have 4 megabytes or more, and a "new" 42 XP (Series 42 XP upgrade 
purchased with a Series 42) will have at least 3 megabytes; note 
that these minimums are maximums for the 48 and 42 respectively. 

The new hardware has been designed to run existing software; the 
processor identifies itself as a Series 48 processor in order to 
eliminate the need for changes. (A new machine instruction is 
available to distinguish the Series 58 processor from its 
predecessor, if that should be necessary. Since it will cause an 

549 



550 

illegal instruction trap on HP 3000's other than the Series 58, 
it cannot be used until MPE recognizes and emulates it). 
Supported software has been restricted to T-MIT and its 
successors to minimize system testing requirements. 

The Series 58 and 42 XP, like the Series 42, 48 and 68, are 
always cached systems. 

Performance Considerations 

In the following discussion of performance considerations, 
comments about the Series 58 apply to the 42 XP as well (unless 7 
or 8 megabytes of memory is being used). 

The performance significance of the Series 58 compared to the 48 
is its faster processor and the doubling of the maximum memory 
size. The processor provides substantially greater throughput 
than the Series 48 processor, as shown by the test results 
presented later in this paper. 

For upgrade customers, the addition of caching to non-cached 
systems, and the addition of 2 megabytes of memory are also 
significant. 

One thing to note about the new machines is that they are certain 
to match or outperform their predecessors. The processor is more 
powerful, their minimum memory configurations were maximums on 
the predecessors, and caching is available. The same claim could 
not be made about some prior upgrades: sometimes a Series 44 (if 
it only had one disc controller) performed worse than the Series 
III it replaced, and sometimes a 48 with caching turned on 
performed worse than the 44 it replaced. 

The new systems address the three major performance bottlenecks: 
processor, memory, and disc I/O. The processor and memory 
bottlenecks are addressed directly with additional capacity; the 
disc I/0 bottleneck is addressed with caching. Customers who 
already have caching are almost certainly CPU-limited, and will 
be helped by the additional processor power. 

One can try to imagine a load on a 44 that would not run faster 
on a 58. It would be disc I/O limited, and the disc I/O would be 
so nonlocal that caching (and the additional processor and memory 
to support it) would not help. This situation is unlikely, 
however. Our experience is that caching does help when the 
necessary extra CPU and memory capacity are there, because MPE 
and most applications exhibit significant locality in their disc 
access patterns. 

Please notice how much growth capability has been provided the 
Series 39, 40 and 42 in the last year. ATP's allow connection of 
as many as 60 point-to-point terminals. And the 42 XP upgrade 



provides a maximum memory size 50~ greater than that of the 
Series 48, and greater processor power. 

The Series .5..!! Processor 

As mentioned earlier, the significant performance gains from the 
new systems are provided by the Series 58 processor and increased 
memory sizes permitted. Disc caching may also provide 
performance gains for customers upgrading from uncached systems. 

The Series 58 processor contains a 32 Kbyte high-speed memory 
cache for buffering both instructions and data being read from 
memory. (Be careful not to confuse the memory cache with MPE's 
disc caching.) If a required word is in the cache, it is 
obtained in a single machine cycle. Six cycles are required by 
the Series 44 processor to retrieve a word from memory. 

To take full advantage of the cache speed, hardware was added to 
speed up functions that in the Series 44 were performed while 
waiting for data to be read from memory. Microcode of the most 
frequently used machine instructions was rewritten to make use of 
the new hardware. 

For performance, our main concern is that the processor speedup 
was achieved mainly through the provision of a memory cache, not 
through a processor clock speedup. 

Initial performance testing concentrated on the new processor. 
Less emphasis was placed on the effects or additional memory and 
disc caching. 

Performance Test Results 

We will begin our summary of performance test results with some 
tests that do no I/0, and therefore isolate processor 
performance. It is important to note that these tests are 
timings of small programs that repetitively execute code within a 
loop. They therefore make excellent use of the memory cache, and 
show the series 58 processor to good advantage. 

The Sieve of Eratosthenes is a prime number calculation routine 
that has been coded in many languages and run on many machines. 
It tests looping, array indexing, and integer arithmetic. The 
following table shows results on the 48 and 58 processors for 
four languages. The timings are in seconds required to execute 
ten loops, each of which calculates 1899 prime numbers. 

551 



552 

Fortran 
SPL 
Basic 
COBOL-II 

Series 48 

2.71 
2.75 
2.20 

17.30 

Series 58 

1.56 
1.59 
2.00 

10.18 

48/58 

1. 74 
1. 73 
1.60 
1. 70 

The column labeled 48/58 is the Series 48 timing divided by the 
Series 58 timing. This is the throughput ratio. The number 1.74 
tor Fortran indicates that the Series 58 can perform 74% more 
work or this type in a given time than the 48. (The "response 
time" improvement is 42% -- (2.71-1.56)/2.71. The response time 
improvement tor a stand-alone task is always less than the 
throughput time improvement.) 

The Whetstone benchmark tests floating point computations. It 
was done tor both single and double precision. 

Single 
Double 

Series 48 

9.31 
26.14 

Series 58 

7.02 
22.57 

48/58 

1.33 
1.16 

The throughput improvement is less than tor the Sieve, because 
floating point instructions do extensive calculations on the data 
extracted from memory, so that the cache provides less help. The 
floating point and packed decimal instructions were not re­
microcoded. Most applications do not use them as intensively as 
this benchmark. 

An extensive set or tests was done testing various language 
constructs. The timings were obtained by executing a loop with 
and without the construct, and taking the difference. Below is a 
small sampling. The times are given in microseconds. 

Series 48 Series 58 48/58 
---------------------------------------------------------SPL integer move 2.8 1.2 2.3 
SPL real move 4.4 2.5 1.8 
SPL long move 8.9 4.9 1.8 
COBOL II S9(7) COMP-3 move 41. 34. 1.2 
SPL move 80 bytes 62. 46. 1.4 
SPL integer add 4.2 2.0 2.1 
SPL real add 11. 8.0 1.4 
COBOL II S9(7) COMP-3 add 160. 130. 1.2 
SPL integer multiply 7.3 5.0 1.5 
SPL real multiply 16.0 12.0 1.3 
COBOL II S9(7) COMP-3 mult. 220. 190.0 1.2 
SPL call/return, no parms 23. 16. 1.4 
FWRITE 80 bytes, large BF 2300. 1600. 1.4 



The pattern holds that speedups are greatest for the simpler 
operations which can make good use of the memory cache. The 2.3 
speedup (1303) for the SPL integer move (LOAD, STORE) is the 
current series 58 speed record. 

Now we have some tests which are much more representative of 
actual system usage. Descriptions of the tests come first, 
followed by a table of the results. 

Compilation 

1. COBOL Compile This test generated 32K lines of output. 
There were a few include files. 

2. Pascal Compile -- A 3500 line program was compiled, no 
include files, and the output was sent to $NULL. 

3. SPL2 Compile -- SPL2 is not available to customers, but some 
HP software is written in it. The program source was 5000+ 
lines, no include files, and the output was routed to $NULL. 

TDP Operations 

4. 

5. 

6. 

7. 

TOP Final 1 -- A 1515 line document was formatted to produce 
2281 lines-of output. There were 160 includes (each 
requiring a file open, read and close). 

TOP Final 2 -- This test is the same as TDP Final 1 without 
the includes. 

TOP Text and Keep -- A 10,000 line file was texted, a global 
change was made which modified and displayed 1136 lines, and 
the result was kept. 

ED Text and Keep -- This is the same as the TDP test, but 
used an unsupported editor (similar to Unix's XED). 

Data Base Access 

8. ORBIT -- This is a production job from the MIS group of HP's 
Computer Systems Division. It reads, sorts and processes 
Image data. The sorting is done by Robelle's SUPRTOOL. 

9. NEWJIT MRP -- This is HP application software that runs 
against an Image data base, and produces output files 
totalling more than 16K sectors. 

553 



554 

All of the tests were run stand-alone on a 4 megabyte system with 
caching enabled. 

Series 48 Series 58 
CPU Wall CPU Wall 48/58 

Test (sec) (min) (sec) (min) CPU Wall 
-------------------------------------------------------------
1 COBOL 1113 22 860 18 1.29 1.22 
2 Pascal 169 4 122 3 1.39 N/A 
3 SPL2 297 7 222 5 1. 34 N/A 
4 TOP Final 1 98 2 72 2 1. 36 N/A 
5 TOP Final 2 45 1 32 1 1.41 N/A 
6 TOP Text/Keep 197 4 152 4 1.30 N/A 
7 ED Text/Keep 120 3 84 2 1.43 N/A 
8 ORBIT 2197 42 1801 33 1.22 1.27 
9 MRP 10206 174 7214 123 1.41 1.41 

Totals 14442 259 10559 191 1.37 1.36 

The CPU throughput improvement of 1.37 is obtained from the CPU 
totals, and thus is a weighted average of the CPU throughput 
improvements for the 9 tests. A straight average yields 1.36. 

A TEPE test was run of HPAccess, the new PC Central product which 
can extract data from the HP 3000 for use on personal computers. 

The tests emulated five terminals performing such operations as 
project, join, select, sort, summarize and output. Two tests 
were run on both the Series 48 and Series 58. The tests differed 
only in the amount of data handled. 

The following test results were taken from the emulator report. 
The response times are averages over all transactions for all 
terminals. 

Test 1 
Test 2 

Series 48 
Avg 

Wall Resp 
(min) (sec) 

142 
574 

70.93 
392.74 

Series 58 
Avg 

Wall Resp 
(min) (sec) 

110 
433 

49.81 
290.37 

48/58 
Wall 

(min) 

1.29 
1.33 

Resp 
Reduct 

30% 
26% 

Since the machines were almost never idle during the testing, 
especially for Test 2 (about 1% idle), the ratio of wall times 
can be taken as a good indicator of CPU throughput increases. 
The last column is the response time improvement. 

The venerable EDP benchmark, which has been used to test the 



entire product line, was also run. Briefly described, the test 
comprises multiple terminals doing transaction processing with 
VPLUS and Image, and additional terminals doing program 
development. There are also batch COBOL compiles in the 
background. 

For details of the test environment, consult the published 
performance guide, part # 5954-0401. 

The following table shows throughput increases achieved by the 
Series 58, determined by comparing transaction execution rates at 
specified response times. The data provided by the tests gives 
transaction rates and response times for various numbers of 
terminals. To obtain transaction rates for the specific response 
times listed below, it was necessary to interpolate (linearly) 
between the provided points. 

Response Series 48 Series 58/4mb Series 58/6mb 
Time Trans Trans Trans 

(secs) (/hour) (/hour) Increase (/hour) Increase 
---------------------------------------------------------------

.5 4486 13428 2.99 13793 3.07 
1.0 10879 20753 1.91 22100 2.03 
1.5 16057 22147 1.38 24061 1. 50 
2.0 19253 23541 1.23 26022 1.35 
2.5 20447 24935 1.22 26362 1.29 

As the systems start to become saturated (2.5 second response), 
the Series 58 at 4 megabytes provides a 22% throughput increase. 
Additional memory is shown to help performance throughout, and 
near saturation the Series 58 with 6 megabytes provides a 29% 
throughput increase over the Series 48. 

The next table shows response time reductions at specified 
transaction rates. 

Series 48 Series 58/4mb Series 58/6mb 
Trans Response Response Response 

(/hour) (sec) (sec) Reduction (sec) Reduction 
------------------------------------------------------ --------

10000 ,93 .38 58% ,37 60% 
14000 1. 24 .52 58% .51 59% 
18000 1.80 . 76 58% .66 63% 
22000 4.37 1.45 67% .84 81% 

The response time reductions are substantial at all transaction 
rates. Again the extra memory is shown to be helpful as the 
system becomes busier. 

555 



556 

Who Should Upgrade? 

There are two good reasons to upgrade to a Series 58 (or a 42XP): 
to improve on-line response times, and to improve batch job 
turnaround times. The case of batch jobs is the easiest to 
consider: the Series 58 can be depended on to run them 
significantly faster. If the system being upgraded is uncached 
and the job is I/0 intensive, caching should provide further 
help. However if the objective of the upgrade is to speed up 
just one or two critical jobs, it is definitely worthwhile to run 
them on someone else's Series 58 prior to upgrading to be sure 
that the hoped-for improvement will be achieved. I say this 
because a test completed very recently showed only a 
disappointing 10~ speedup for a set of Image reporting jobs 
running concurrently. 

The impact of a Series 58 upgrade on on-line response times is 
more difficult to predict. Improvements can range from dramatic 
to barely noticeable. 

The dramatic improvements are seen when the poor response is 
caused by a shortage of a critical performance resource (CPU, 
disc I/O, memory). When one of these resources is near 
exhaustion, a small additional demand for it can make response 
times dramatically worse. Similarly even a small additional 
supply can make response dramatically better. 

The chances for dramatic improvement are even better if the 
resource in short supply is memory, or if it is disc I/O on an 
uncached system. Here the benefits of the extra memory and 
caching add to the benefits of the faster processor. 

The barely noticeable improvements, conversely, come when 
performance resources are adequate but the transactions are 
inherently long ones. The Series 58 will speed up such 
transactions, but reducing response time from 10 seconds to 7 or 
8 seconds may not be all that was hoped for. The solution in 
such cases is, unfortunately, reworking the application or 
upgrading to an even more powerful machine than the Series 58. 

How can you tell if poor response is due to a resource shortage 
or to long transactions? An easy way is to observe the response 
time for a single user running the problem application. If 
response for a single user is good, then poor response for many 
is due to a resource shortage. If response for a single user is 
poor, then the problem is long transactions. If you can say 
"Response used to be good, but has gradually gotten worse as we 
added more and more users," then an upgrade is almost certainly 
called for. 

Another way to tell is by measurement. Tools such as OPT or 
Surveyor (in the TELESUP account) provide extensive information 



about system resource usage. However there are pitfalls to this 
approach that even experienced performance SE's have fallen into. 
For instance it is not enough to run OPT, observe that CPU usage 
is at 100%, and conclude that there is a resource shortage. This 
is because a significant amount of CPU used by batch activities 
(including such things as online compiles) really signifies the 
availability of CPU for short transactions, because of MPE's 
process priority structure. It is not enough to measure system 
resource usage; it is also necessary to determine which processes 
are using the resources. 

Conclusion 

The Series 58 and Series 42 XP provide help where it is needed in 
this era of disc caching: CPU and memory capacity. The 
processor performance increase, coupled with whatever help memory 
and caching provide, should give a significant boost to the 
current midrange machines. 

Please join me in welcoming these new arrivals to the HP 3000 
product line. 

Biography 

Jim Kramer has been an HP3000 Systems Engineer and Performance 
Specialist with Hewlett-Packard for eight years, and works in the 
San Diego, California, field sales office. 

557 





HP-2680A: THE MYSTICAL PRINTER 

Richard Oxford 
MCI Digital Information Services Corporation, 
Washington D.C., USA 

SUMMARY 

This paper aims to more intimately acquaint the HP user with laser 
printers. This acquaintance is brought about through: 

1. an explanation of technically what goes on in the box, 

2. a description of the capabilities that are available to 
the user, and how to exploit them 

3. and, an explanation of the data structures used in 
graphic data. 

INTRODUCTION 

Graphics are becoming an increasingly important part of computer inf or­
ma tion systems. Computer generated graphics range from simple bar charts, 
to multiple color presentation graphics, to very sophisticated solid 
modeling. With the advances in technology, and decreasing prices of 
hardware, graphic capable peripherals are becoming more affordable by the 
general public. They are no longer limited to large businesses with multi­
million dollar DP budgets. 

The decrease in price of laser printers, in particular, have made high 
speed printing and graphics more accessible. The need to generate graphics 
for the laser printer is increasing, but there seems to be only a small 
amount of effort being directed in this area. Here is a device capable of 
generating forms, logos, and signatures, as well as graphics, but yet it 
is quite frequently used only for high speed printing and forms genera­
tion. These printers have a lot of capability going unused, except for 
some packages developed by HP (TOP, HPDRAW, etc.). This "lack of use" can 
be attributed mostly to a "lack of knowledge" of how the laser printer ac­
tually works, and how to use it. 

MCI DISC has been using many features of the 2680A laser printer for 
over 2 1/2 years. Many different logos, graphics, and signatures arP 
printed during a typical job. Signatures and graphics are programmatically 
positioned on a page. All of this is done independent of an environment 
file! Most users are unaware of the ability to programmatically place 
graphic data, as well as text data, anywhere on the printable page. All 
functions performed by TOP are available to any programmer through in­
trinsic calls. One only needs to be familiar with the basic operation of 
the laser printer, as well as some additional data formats, to be able to 
take full advantage of the printer's capabilities. 

Since we, at MCI DISC, are currently using 2680A laser printers in our 
applications, most information given will be in reference to this printer, 
but the same basic principles apply to other HP laser printers. Since thP 
most popular print format is 8 1/2 x 11 inches, this will be used in Uw 
examples. 

Basic Laser Operation 

The old saying "It's all done with mirrors" really applies to the 2680A 
laser printer. Although it is not necessary to know how all of the mirrors 
function, it is beneficial to have a basic understanding of how the laser 

559 



printer works. It will then be easier to understand data structures 
referring to raster scan lines and dot-bit images. 

The generation of a printed image by the laser printer is a rather com­
plex procedure. The description given here is a very simplified explana­
tion of how the image is produced, slightly modified to be more easily un­
derstood. The generation of an image in the laser printer is accomplished 
through a process known as electrophotography. An image is produced on 
paper in three basic steps: 

1. Generation of the image on the drum. 

2. Transfer of the image to the paper. 

3. Fixing of the image on the paper. 

!'USER 
SECT.ION 

rnfra-red 
Light source 

""a 
Pre-heater -- - - - -

Stacker 

BASrc LASER PRDITER OPERATrON 

Transfer ~-n 
Corona -i._J 

Paper 

Figure l 

Primary 

Developer 
station 

corona Laser 
-5" Beam 

..S-Laser 

Figure 1 shows the basic layout of the 2680A laser printer. 

Image Generation 

The physical page on the 2680A is .8 1/2 x 11 inches and consists of a 
dot matrix of 2048 dot positions along the 11-inch axis and 1536 dot posi­
tions along the shorter axis, although the printable area is slightly 
smaller. The laser printer can handle a physical page size of 17 x 11 in­
ches, but the 8 1/2 x 11 inch size is used for discussion. The laser beam 
scans from left to right, along the 11 inch axis, as the drum turns. Each 
page therefore, is composed of 1536 scan lines of 2048 dots each. A spe­
cial device, called an acoustoopic modulator, receives data from the print 
control electronics and allows the laser beam to strike the drum when a 
dot is to be printed. The effect of the beam striking the drum, in con­
junction with drum charging devices called coronas, results in a negative 
charge on the drum for every dot to be printed. 

As the drum continues to turn, it passes by the developing station. By 
means of a •magnetic brush•, toner is applied to the drum. The developer 
mixture used consists of iron filings called carrier, and tiny plastic 
balls referred to as toner. The toner is statically charged and attracted 
to the negative charge locations on the drum. The iron filings are used by 
the "magnetic brush• to help move the toner to the drum. When the drum has 
moved past the development station, it contains the final image to be 
printed. 

560 



Image transfer 

Once the image is on the drum, it must be transferred to the paper. As 
the drum turns, the paper moves at the same speed as the drum, and passes 
between the drum and the transfer corona. The transfer corona imparts a 
high negative charge to the paper, which pulls the toner off the drum and 
onto the paper. The final image is now present on the paper. 

Fixing the Image 

As in most photographic processes, the final image must be •fixed• to 
prevent it from changing. At this point, before fixing, the image is noth­
ing more than tiny plastic balls which can easily be smeared or brushed 
off the page. To fix the image, the paper passes through the final step in 
the fuser section of the printer. The fuser section consists of a pre­
heater which heats the paper, and an infra-red light source that 'melts' 
the toner. The end result is that the toner is actually melted, or fused, 
into the paper. 

SPOOLER RECORD LAYOUT 

llSB LSB 

word I O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 
I -- -- - ----------- - - - -- ----- ------ -- - - ---1 

O I L09ical Record Length in bytes +8 I 
I - - - - -- ----- -- -- ---- - --- ----- -- -- -- - - -- - I 

1 I Number of data bytes (including nulls )I 
I - --- --------- - -- -- --- -- - -- - -- --- --- -- --1 
I Function code I 
I - -- --- -- -------- - -- --- - - ---- -- ------ -- - I 
I .Paraml I 
I - --- ------- -- - - --- - - - - ---- -- - --- --- ----1 
I Param2 I 
I - - - -- - -- -- ---- -- ----- - -- - ----- ---- -- ---1 
I 1st data byte 2nd data byte I 
I - --• -- -- ----- - - --- - - - - - - --- -------- ----1 

6 I 3rd data byte 4th data byte I 
I ---- --- --- -- -- -- - -- -- - - --- -- - - - - -- -- - --1 
I nth data byte null * I 
I - -- --- ------- - ---- - - - - - - -- -- ---- -- - - -- - I 
I I 
I Next logical record I 
I I 
I - - - --- -- -- - -- - --- - -- - - - - - --- -- ---- -----1 
I I 
I nth logical record I 
I I 
I - -- --- ----- - - - - - --- ------ - -- --- - -- - -- --1 
I -1 (all ones) End of valid data I 
I - - ------ - - -- -- - - - -- - - - - - -- - -- --- -- ---- - I 
I I 
I non-valid data area I 
I I 
I - - -------- -- --- - - -- --- - --- - --- --- - --- --1 

509 I I 
I This area reserved for I 

510 I Spooler I 
I I 

511 I I 

\ 
\ 
\ 

one 
logical 
record 

I 
I 

I 

* all 109ica1 records must end on a word boundary. If they do not, 
a null is inserted, and included. in the record length 

Figure 2 

COMMUNICATING WITH THE LASER 

The next step in understanding how the laser printer works is to know 
how to get the image information from the HP-3000 to the laser printer. In 
order to maximize the throughput of the HPIB bus when communicating to the 

561 



laser, data is sent to the laser in blocks of 512 words. The basic layout 
of these blocks is shown in figure 2. Each block can contain more than one 
logical record, with each logical record being a single function for the 
laser. Note that each logical record contains 2 byte counts, a function 
code, and 2 parameters, as well as any data being sent. The last 3 words 
in the block are used by the spooler. Although the block size for data 
transfer is 512 words, actual blocking is handled by the spooler and a 
buffer of any reasonable size can be written. 

Most users have no problem sending files to the laser, or using TOP to 
communicate to the laser, but are limited to the constraints of those 
packages. Those who have used the LPS interpreter, or have written 
programs using 'P'intrinsics (IFS/3000 Programmatic intrinsics), have a 
better understanding of laser operation. If we look one step deeper, we 
find that the basic method used to communicate to the laser printer is via 
a single callable intrinsic, FDEVICECONTROL. This is a little known, even 
less understood intrinsic. This intrinsic gives us the ability to change 
character fonts, change logical pages, position text, download pictures or 
graphics, and much more. Table 1 gives a summary of the control codes used 
with the FDEVICECONTROL intrinsic and definition of each. (All of the con­
trol codes, with the exception of 139 and 144, have the parml and parm2 
values shown in the MPE Intrinsics reference manual. The parameter defini­
tion for control codes 139 and 144 are given at the bottom of table 1.) 
Several of the control codes are used to set up or alter the current 
printing environment, load character sets and forms, or load Vertical 
Forms Control data. There are also codes for setting the physical page, 
loading logical page tables, and controlling the job. Since most of these 
functions are handled by the spooler when using an environment file, these 
functions will not be discussed here, but it is possible to have total 
control over the print environment even if no environment was specified 
for the job. 

One very important concept is that of logical pages. The physical page, 
typically 8 1/2 x 11, can be divided into as many as 32 logical pages. A 
logical page is nothing more than a portion of, or a window on, the physi­
cal page.· Each logical page carries its own set of specifications. They 
can be oriented in different directions. They can each have a different 
form associated with them. They can even have different character sets as 
their base set. Logical pages can also overlap. By simply having 4 logical 
pages all the same size as the physical page, but all with different 
orientations, you have the ability to write text on the physical page in 
any of the 4 possible orientations. 

Now that all of the basic information has been given, let's discuss 
some of the function codes. 

Contrary to popular belief, the laser can only have 2 character sets 
available at any given time. Everything else is done with slight of soft­
ware. The character sets for use are selected with a control code of 128. 
Paraml and param2 bits 8-15, are used to define the primary and secondary 
character sets. Paraml holds the ID for the primary character set, while 
param2 holds the ID for the secondary character set. The IDs for the 
character sets are the font numbers as described in the environment file. 
The SO (%16) and SI (%17) ASCII control codes are used to switch to and 
from the secondary character set. (An important note: If you were using 
the secondary character set before execution of a control code 128, you 
will still be using the secondary character set after the execution, even 
if the secondary character set was changed.) 

A control code of 129 allows the activation and deactivation of logical 
pages. Param2 is divided in half. The upper byte holds the logical page 
number to be deactivated, while the lower byte holds the logical page num­
ber to be activated. Paraml bit O indicates deactivate the logical page 
specified in the upper byte of param2, while bit 1 indicates .activate the 
logical page specified in the lower byte of param2. Therefore it is 
possible to activate a logical page and deactivate a logical page at the 

562 



Con'trol Code 
(in decimal) 

l 
2 
3 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 

FDEVICECONTROL control code summary 

Definition 

Print Data 
File control 
File Open 
File Close 
Primary, Secondary Font Selection 
Select/De-select Logical Pages 
Move Pen Re la ti ve 
Move Pen Absolute 
Define Job Characteristics 
Define Physical Page 
Download/Delete Character Set 
Download/Delete Fom 
Download Logical Page Table 
Download Multi-copy Form overlay Table 
Download/Delete VFC 
Download/Delete Picture 
Page Control 
Clear Portions of the Environment 
Job Open 
Load Default Environment 
Print a Picture 

Con'trolcode = 139 Download/Delete Picture 

paraml (O•l) O - Load a Picture 
1 - Delete a Picture 

parc.m2 (0: 1) O - First record of a load 
l - Continuation record of a load 

( 8' 8) Picture identifier ( 0- 31 ) 

Con'trolcode • 144 Picture Print 

paraml (O•l) 0 
l 

(l•l) 

l 

param2 (O:l) 

Temporary Picture 
- Addrt:!ssable Permanent Picture 

- Co-ordinates X and Y are relative 
to cu:rrent pen position 

- Co-ordinates X and Y are absolute 
pen positions on the logical page 

- First record of a temporary picture 
load 

- Continuation record of a temporary 
picture load 

(8: 8) Picture identifier ( 0-31 ) 

Table 1 

same time with the same command. Further, all 32 logical pages can be 
active simultaneously. One logical page must be active at all times. 
Switching between active logical pages will be described later. 

The command more frequently used to move between logical pages, without 
having to worry which ones are active, is the control code of 140. This is 
the page control function. It allows for a physical page eject and/or a 
change of logical pages. If paraml is set to a 1, a physical page eject 
occurs. If it is set to a 0, no page eject occurs. Bits 8-15 of param2 are 
used to specify the next logical page to be used. It can be the current 
logical page, or it can be a new logical page. Whichever logical page is 
specified in this parameter becomes the active logical page upon comple­
tion of the intrinsic call. 

There are two pen movement commands. These are important for the 
positioning of data and graphics on a page. For those that are familiar 

563 



with plotters, the first thing you look for is a pen up/down command. 
Well, there is none for the laser. The laser printer is not a plotter, and 
the pen command is only used to position information on the page. A con­
trol code of 130 moves the pen relative to its current position, while a 
control code of 131 moves the pen absolute with reference to the upper 
left hand corner of the logical page. The laser printer always views the 
logical page in its readable direction, so rotating the logical page moves 
its upper left hand corner (See Figure 3). The logical page is referenced 
in a logical page co-ordinate system with the upper left hand corner 
being 0,0. The X axis runs across the top of the logical page, increasing 
in value as you move to. the right of the upper left corner, or to the 
right of the current pen position in a relative move. The Y axis runs down 
the side of the logical page. Its value increases as you move down from 
the upper left corner, or down from the current pen position in a relative 
move. The co-ordinates actually represent dots, so an X co-ordinate of 12 
is actually the 13th dot along the X axis. It is the 13th dot because the 
co-ordinate system starts at O. The same applies to the Y axis. 

LOGICAL PAGE ORIENTATION 

x- I 
_,.. i 

Y~o a .o .. , 
1 

I ..... 0 

1: I . "' 
LP 2 I t:"' 

I 0 
rot. 

I I 
0 90 oa: ·:a,o.I 

l l ~ ... I I .. " I t d"l I ... e I 

.. 0 ,__: o'o 1i. I 

-x I ,.,_ 
I I 

-----Paper Motion 

Figure J 

In the pen commands, paraml is the X axis co-ordinate or offset, while 
param2 is the Y co-ordinate or offset. These co-ordinates are expressed in 
16 bit signed radixed integers. The radix point falls between bit 13 and 
14 of the word. Since we cannot move the pen in increments of less than a 
single dot, bits 14 and 15 will always be O. To try and cut through the 
fog, if you wanted to move one inch, at 180 dots per inch, the parameter 
would be set to 180 x 4 or 720. 

Now we can see how to select a logical page, select a character set, and 
position the pen to any point on the logical page. To print text, you sim­
ply use the FWRITE intrinsic. The text will be printed on the page start­
ing at the current pen position. The current pen position is the lower 
left hand corner of the first character. Typically, a file is opened to 
the laser with carriage control. This allows the use of the control param­
eter in the FWRITE intrinsic. If mostly text positioning is being done, a 
code of %320 is used. If only text is being printed, any of the carriage 
control codes defined with the FWRITE can be used to control text 
positioning. 

When sending a page eject to the laser printer, using the FWRITE intrin­
sic with a control code of %61, it actually performs a logical page eject. 
Whether a physical page eject also occurs is dependent upon what logical 
page you are currently on, and how many logical pages are active. We have 
seen that you can activate and deactivate logical pages on command. We 
also know that all 32 logical pages, if defined, could be active at the 
same time. Logical page information is held in the laser printer in a 
Logical Page Table (LPT). The table has 32 entries, one for each possible 
logical page. When a page eject is received by the laser, it starts scan­
ning the LPT from the current entry, looking for an active logical page. 
If it gets to the end of the LPT without finding one, it performs a 
physical page eject, and starts scanning the LPT entries from the 
beginning. When it finds an active LPT entry, it sets the current logical 

564 



page to that entry and positions the pen to the upper left hand corner of 
the logical page. Of course, using the FDEVICECONTROL intrinsic with a 
control code of 140 insures that a physical page eject will occur. 

Another method of printing data is to use the FDEVICECONTROL intrinsic 
with a control code of 1. This code works much the same as the standard 
FWRITE. When using this control code, paraml, bits 8-15 are used to deter­
mine the vertical format for printing. The codes used here are the same as 
%0 - %377 for a standard FWRITE with the following exceptions: 

Code 
%1 
%61 
%62 
%63 

Meaning 
Use the first data byte of the record for VFC 
Conditional logical page eject 
Physical page eject 
Unconditional logical page eject 

Param2 bit 14 is used for Autoeject mode. A 0 indicates set Autoeject, 
while a 1 indicates reset Autoeject. When Autoeject is set, if carriage 
control causes the pen to move off the logical page, a logical page eject 
is automatically done and the text is printed on the next logical page. If 
Autoeject is not active, no text is printed and an error is written to in­
dicate that the pen movement was off the logical page. Bit 15 is used to 
determine what the spacing mode will be. A 0 indicates postspacing while a 
1 indicates prespacing. Prespacing causes the carriage return line feed to 
occur before the printing of the text, while postspacing causes it to oc­
cur after the text is printed. 

The final topic to be covered is the formatting, downloading and print­
ing of graphic data. In order to work with graphics on the 2680A, you must 
understand the formats of dot-bit memory words and triplets. 

DOT-BIT Memory images 

A dot-bit memory image is just what the name implies, a bit map of the 
image to be printed. Each bit of the dot-bit image represents one dot of 
the actual figure to be represented. Figure 4 shows an image that is 6 
dots by 7 dots. In a dot-bit image, a 1 represents no dot, and a 0 
represents a black dot. This means that the dot-bit image of the graphic 
in figure 4 would consist of 42 bits. Since data is stored in the HP-3000 
in 16 bit words, this image is packed into 16 bits per word, with any 
remaining bits being a 1. Looking at the dot-bit map in figure 4, this can 
be seen. Word O bits 0-5 contain the dots for row 1 of the image. Bits 
6-11 contain the dots for row 2 of the image. Word 0 bits 12-15 are the 
first 4 dots for row 3, while Word 1 bits 0-1 contain the last 2 dots for 
row 3. The dot image continues with Word 2 bits 4-9 being the dots for the 
last row of the image. Bits 10-15 of Word 2 are set to one to fill out the 
word. These bits will not be used by the laser printer. 

--
DOT-BIT MAPPING 

word Dot-bit Image 

0 1111111100111011 
1 0110110110110111 
2 0011111111111111 

Figure 4 

\017747 
\066667 
\037777 

This method of image representation is referred to as a "Bit Raster", 
or simply a Raster, image. Since the laser resolution is 180 dots per in­
ch, an 8 1/2 by 11 image would require a bit map of (8.5*180) * (11*180) 
or approximately 4 million dots. That would require 1/2 megabyte of memory 
for storage of a single graphic. Since the 2680A uses memory to store all 
character fonts, logical pages, and other process information, 1/2 

565 



megabyte storage for a single graphic is unacceptable. To download 32 
graphics would require 16 megabytes of memory for storage alone. 

Consider an 8 1/2 by 11 page with a single line bordering all sides. 
If a dot-bit map were generated for this graphic, we would see that over 
99\ of the dot-bit map was describing white space where no image was to be 
printed! Now that is a real waste of memory. In order to overcome this 
deficiency, •partitioned Raster• dot-bit maps were developed. In a 
Partitioned Raster Dot-bit map, only those dots required to define the im­
age are used. 

Partitioned Raster Dot-bit images 

Figure SA shows a graphic that is 19 dots wide by 14 dots high. In 
standard raster format, this would require 266 bits, or 17 words. Figure 
SB shows the same image broken into 3 pieces that can be used to describe 
the entire image. Piece 1 requires 24 bits, piece 2 requires 10 bits, and 
piece 3 requires 60 bits. The •partitioned• dot-bit map in figure SC 
shows word 0 bit 0 thru word 1 bit 7 hold the image for part one. Bits 8 
thru lS are padded with ones to fill out the word. Each part of the image 
is treated as a single image, and the dot-bit memory image must be 
represented in full words. Word 2 bits O thru 9 hold the image for part 
2, and word 3 bit 0 thru word 6 bit 11 hold the image for part 3. The en­
tire image now requires only 7 words for storage instead of lS. That is 
less than half that required for a standard •Raster• dot-bit image. 

0 
l 
2 

PARTITIOllll!D DO'l'·BIT MAPPING I-piece 1 

- •

-piece3 

I 
piece 2 

A B 

Printer Image woul.d appear as "' 

piece l 
\176414 
\000000 
\000020 

word Dot-Bit Image 

0 0000000000000000 
1 0000000011111111 
2 0000000000111111 
3 1110011111110000 
4 1111100110011100 
5 1111001101111110 
6 0111111111001111 

c 

Triplet Words 

piece 2 
\175002 
\000002 
\000060 

D 

Figure 5 

\000000 
\000377 
\000077 
\163760 
\174634 
\171576 
\077717 

piece 3 
\172406 
\000003 
\000200 

Now we have a much smaller dot-bit image of our graphic, but we need a 
way to tell the laser printer how to put the •pieces• together on the 
page. This is done by using what is known as •triplets•. A triplet is a 

566 



TRIPLET WORD LAYOUT 

llSB LSB 

word I o l. 2 3 4 5 6 7 8 9 l.O ll. l.2 l.3 14 15 I 
I - - - - - - -- - - -- - - - - - - - - - - - - - - - -- - -- - - - -- - - I 

O I - Hor Dot cnt. I Vertical. dot count I 
1- - ----- - - - - - - - -- - -- - - - -- - - -- - -- - - - - --- - I 

l. I LSB Dot-bit memory pointer I 
!--------------------------- I 
I X Coordinate of left edge I llSB I 

Figure 6 

group of three words describing each "piece• of the graphic. Figure 6 
shows the layout of a triplet. Word 0 bits 0-7 are used to indicate the 
number of dots there are horizontally in this piece of the graphic. This 
number is the l's complement of the count. Word 0 bits 8-lS indicate the 
number of dots vertically in this piece of the image. We can now see that 
one restriction of a partitioned raster format is that each piece of the 
graphic cannot be any greater than 2SS by 2SS dots. Word l contains the lS 
least significant bits of the memory pointer and word 2 bits 12-lS contain 
the 4 most significant bits of the memory pointer. The memory pointer is 
used to indicate which word, starting from o, in the partitioned dot-bit 
map that the image for this piece of the graphic begins. This pointer is 
20 bits long, because dot-bit maps for large graphics can exceed 6S,OOO 
words. This 20 bit pointer allows us to have a graphic that requires over 
a million words to represent. Word l bits 0-11 are used to indicate the 
position along the X axis of the entire graphic, starting from O, that 
this piece of this image is to be placed. 

Figure SC shows the 3 triplets that would be used to describe the image 
shown in Figure SB. Piece l has a horizontal count of -2 (one's comple­
ment), a vertical count of 10, the first bit describing this part of the 
image starts at word 0 in the bit map, and this piece of the image starts 
at dot l on the x axis of the graphic. Looking at the triplet for piece 3 
of the image, its horizontal count is -10, the vertical count is 6, it 
starts at word 3 in the bit map, and its x coordinate is 8. 

DOWNLOADING OF GRAPHIC DATA 

Now that the pieces to the graphic are formatted, they need to be 
downloaded to the laser printer. An FDEVICECONTROL with a control code of 
139 is used. This is the download/delete picture function. Paraml bit 0 is 
set to a 0 to delete a picture, or set to a l to download a picture. 
Param2 bits 8-lS are the picture identifier. This can be an integer number 
between 0 and 31, since the laser can hold 32 pictures. When downloading a 
picture, if a picture currently exists with the same id, it is deleted, 
and replaced with the one being loaded. Since picture data can span more 
than one record, it is necessary to be able to indicate continuation 
records for download. Param2 bit 0 is used to indicate if the current 
record is the first record of this picture, or if it is a continuation 
record for a picture in the process of being downloaded. Bit 0 is set to a 
0 for the first record and set to a l for all subsequent records. All 
records for a picture must be downloaded without interruption. There can­
not be any other commands sent to the laser printer until all of the pic­
ture has been downloaded. 

Figure 7 shows the layout of picture download data. The data is divided 
into 3 functional parts: 

1. Picture Descriptor Block 
2. Triplet data information 
3. Dot-bit map data 

567 



I 
I 

I 

All. 
tripl.et 
data 

infomation 

\ 
\ 
\ 

PICTURE LOAD Rl!COllD LAYOUT 

I 
I Picture Descriptor Bl.ock 
I I 
1----- ------ -------- --------------- ---- -I 
I Raster Line NWnber I 
I - - -- - - - -- - ---- - - -- -- - -- --- ---- - - - -- - - - - I 
I NWnber of tripl.et words in scan J.ine I 
I - - -- -- - - --- "-- - - - --- -- - - - - -- --- - -- - - -- - I 
I All. triplets for this I 
I Scan Line I 
1---------------------------------------1 
I Next Raster Line NWnber I 
I - - --- - - - - ---- - ---- - - - - - - - - ----- --- - - ---1 
I 11\lmber of tripl.et words in scan line I 
I --- - - -- - - - - - - ---- - --- - - - - - ----- - - - -- - - - I 
I All. tripJ.ets for this I 
I Scan Line I 
1---------------------------------------1 
I All l's (-1) Data separator I 
I -- - ---- - --- - - -- - ---- - -------- - - --- - --- - I 
I Dot-Bit Memory I 
I information I 
I -- - - - -- - -- - - - -- -- --- - -- -- -- -- - - ---- --- - I 
I All l's ( -1) End of val.id data • I 

*added by the spooler 

Figure 7 

\ 
\ 

tripl.et 
group 1 

I 
I 

\ 
\ 

triplet 
group n 

I 
I 

The first part encountered is the picture descriptor block. This data 
block is used to describe the characteristics of the picture being 
loaded. This will be covered in detail later. The next part contains all 
of the triplets, in groups, that are needed to describe all pieces of the 
picture. Triplets are grouped together according to their starting loca­
tion in the picture. The first word in a triplet group represents the 
raster scan line where the following triplets will begin. Recall, that 
when the picture was broken into pieces, each piece had a triplet describ­
ing it. The triplet described the size of the picture piece, horizontally 
and vertically, where the data for that piece could be found in the dot­
bit map, and the X co-ordinate of the left edge of that piece in the en­
tire picture. The only thing missing that would be needed for proper 
placement of the piece in the entire picture was the Y co-ordinate. The Y 
co-ordinate is referred to by raster scan line number, so the raster scan 
line number for a particular triplet would be the Y co-ordinate, starting 
from O, of the top line of this piece in the picture. The next word in the 
triplet group indicates how many triplet words there are for this scan 
line. If there are 2 triplets for picture pieces starting on this scan 
line, then this number will be 6 (3 words per triplet, 2 triplets). 
Following this are all of the triplets that start on this scan line. Due 
to limitations of the laser printer, the maximum number of triplets, or 
pieces of the picture, that can start on a single scan line is 255. 

Following this triplet group would be another triplet group for the 
next raster scan line. The triplet groups are loaded in order by ascending 
Y co-ordinate (raster scan line number), starting from the top of the pic­
ture. Since the Y co-ordinate starts at O at the top of the picture, and 
goes thru some Y co-ordinate N, the triplet group for raster scan line O 
will be the first group and the group for raster scan line N will be the 
last group. If there are no pieces of the picture that start on a given 
raster scan line, then there is no triplet group required for that scan 
line. After the triplet data information there is a -1 (all ones) data 
separator. This is used to signify the end of the picture description, and 
the beginning of the dot-bit memory map for the picture. Following this 
data separator, is the dot-bit memory map for the entire picture. 

568 



PICTURE DESCRIPTOR BLOCK LAYOUT 

MSB LSB 

word I O l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I 
I - - --- ---- ----- - -- - -- - ---- - -- --- --- ---- - I 

O I not used I MSB I 
1--------------------------- I 
I Number of Triplet words in Picture I 
I - - - -- - --- ---- - ---- - - -- ------- - ---- -- ---1 
I not used I MSB I 
1--------------------------- I 
I Number of Dot-bit memory words I 
I - - --- ---- ---- - - --- - ------ - - - -- -- ---- - - - I 
I Offset to left edge of Picture I 
I --- - -- - -- ---- - - -- - - -- ---- - - ------------1 
I Offset to right edge of Picture I 
I -- - -- -- -- - --- - --- - --- ----- - --- -- -------1 

6 I Offset to top edge of Picture I 
I -- - - -- - ------ - ---- - - -- ---- --- --- -------1 
I Offset to bottom edge of Picture I 

Figure 8 

The picture descriptor block is 8 words long and is used to describe 
overall information about the picture being downloaded. Figure 8 shows 
the layout of the picture descriptor block. Word 0 bit 12 thru word 1 bit 
15 is a 20 bit integer which indicate the total number of triplet data in­
formation words in the download record. This includes all triplets, all 
scan line numbers, and also the data separator as shown in Figure 7. Word 
2 bit 12 thru word 3 bit 15 is a 20 bit integer indicating the number of 
dot-bit memory map word used for this entire picture. Words 4 thru 7 are 
used to describe the location of the picture origin. The picture origin is 
used to determine where to place the picture on a page. When a picture is 
printed on the laser printer, it is positioned with the origin at the cur­
rent pen position. In most cases, the origin is placed in the upper left 
hand corner of the picture. This allows the corner of the picture to fall 
at the current pen position. 

Figure 9 shows the data buff er that would be used to download the 
graphic shown in figure SA. This image would be downloaded using the 
FDEVICECONTROL command with a control code of 139, paraml set to a 0, and 
param2 set to a 2. Buffer length for the download is 29 words. At the com­
pletion of the command, this picture would be stored as picture 2 in the 
laser printer. 

To print the picture, an FDEVICECONTROL command with a control code of 
144 is used. Paraml bit O is used set to a 1 to indicate an addressable 
picture, or set to a 0 to indicate a temporary picture. An addressable 
picture is one which is downloaded with a control code of 139. A temporary 
picture is one which is downloaded with this command, is printed, and then 
deleted from memory. Temporary pictures will be covered later. Paraml bit 
1 is set to a 0 to indicate that the picture is to be printed with its 
origin at the current pen position. It is set to a 1 to indicate that the 
origin is relative to position 0,0 on the logical page. Param2 bit 0 is a 
0 for permanent pictures, and bits 8-15 are used to identify the picture. 
If we wanted to print the picture just loaded at the current pen position, 
then parameters 1 and 2 would be %100000 and %000002 respectively. 

TEMPORARY PICTURES 

When a picture is to be printed only once, it is better to download the 
image as a temporary picture. This prevents the memory in the laser print­
er from being used to hold images that are printed only once. It also 

569 



PICTURE DOWNLOAD RECORD for 
PICTURE in FIGURE SA 

(Permanent Addressable) 

word buffer data 

0 \000000 I triplets 
I l \000016 in description 

I 
I \000000 # dot-bit memory 

Picture 3 \000007 map words 
descriptor 

block 4 \000000 offset to left 
\ 5 \000016 offset to right 
\ 6 \000000 offset to top 

7 \000023 offset to bottom 

8 \000001 scan line l 
I 9 \000006 6 triplet words \ 

I 10 \176414 \ 
triplet ll \000000 triplet l \ 
group l 12 \000020 \ 

\ 13 \175002 
\ 14 \000002 triplet 2 triplet 

15 \000040 data 
inf or-

16 \000006 scan line 6 mation 
I 17 \000003 3 triplet words 

triplet 18 \172406 I 
group 2 19 \000003 triplet word 3 I 

20 \000200 I 
I 

21 \177777 data seperator ----

22 %000000 
23 \000377 
24 \000077 dot-bit memory 
25 \163760 map 
26 \174634 
27 \171576 
28 \077717 

Figure 9 

keeps the laser printer memory free to hold 31 permanent images. (One of 
the 32 image ids must remain free for the download of the temporary 
picture, but the picture is deleted after printing.) This means, that if 
many images are to be used only once, there is no limit to the number of 
pictures that can be printed during a logical job. A temporary picture is 
actually downloaded with the print picture command, control code 144. When 
downloading a temporary picture, the buffer is formatted the same as with 
a permanent picture except the picture descriptor block is preceded by 2 
extra words, as shown in Figure 10. The first word is an X co-ordinate, 
and the second word is a Y co-ordinate for placement of the temporary pic­
ture. The co-ordinates are expressed in radixed integer format, the same 
as those used for pen movement. When downloading a temporary picture with 
a control code of 144, paraml bit 1 is used to indicate whether the X and 
Y co-ordinates preceding the picture are absolute pen positions on the 
logical page or relative to the current pen position. A 0 indicates they 
are relative, while a 1 indicates that they are absolute pen positions. As 
with the download picture command, control code 139, download information 
can span more that one record. Param2 bit O is used to indicate the con­
tinuation of a picture download, just as it was with the control code 
of 139. 

570 



PICTURE DOWNLOAD RECORD for 
PICTURE in FIGURE SA 

(Temporary) 

word buffer data 

0 \000100 X coordinate (radixed) 

l \000100 Y coordinate (radixed) 

\000000 # triplets 
I 3 \000016 in description 

I 
I 4 \000000 # dot-bit memory 

Picture 5 \000007 map words 
descriptor 

block 6 \000000 offset to left 
\ 7 \000016 offset to right 

\ 8 \000000 offset to top 
9 \000023 offset to bottom 

10 \000001 scan line l 
I 11 \000006 6 triplet words \ 

I 12 %176414 \ 
triplet 13 \000000 triplet 1 \ 
group 1 14 \000020 \ 

\ 15 \175002 
\ 16 %000002 triplet triplet 

17 %000040 data 
inf or-

18 %000006 scan line 6 mation 
I 19 %000003 3 triplet words 

triplet 20 \172406 I 
group 2 21 \000003 triplet word 3 I 

22 \000200 I 
I 

23 \177777 data separator 

24 \000000 
25 \000377 
26 \000077 dot-bit memory 
27 \163760 map 
28 \174634 
29 \171576 
30 \077717 

Figure 10 

EXAMPLE 
Figure 11 shows a sample program, written in pseudocode, to download 

the picture described in figure 5. It is downloaded using a pictue ID of 
2, the pen is positioned and the picture is then printed. Next, a tem­
porary copy of the same picture is printed. Notice that a picture ID is 
used to download the temporary picture. If a picture was currently using 
that picture ID, it is first deleted, and then the temporary picture is 
downloaded. Once the picture is downloaded, it is printed and deleted. It 
is important to note that the temporary picture is not truly deleted until 
a physical page eject occurs. Therefore, if more than one temporary pic­
ture is to be downloaded on a physical page, they must all have different 
picture IDs. Once a physical page eject occurs, the picture IDs of all the 
temporary pictures may be reused. Figure 12 shows the resulting output 
from the program. For clarity, the size of the image was increased. The 
text at the bottom of the second picture was printed using the 
FDEVICECONTROL 131 and FWRITE intrinsics. 

671 



EXAMPLE of PICTURE 
DOWNLOAD and PRINT 

The fo1lowing is a pseudocode exmnpl.e of how to download and 
print the image shown in Figure SA. All buffer offsets start at 
1. This exampl.e shows both a temporary and permanent addressabl.a 
picture load aad prii>t. 

Buffert • Logica1 31 word buffer ini tia11y loaded with the 
temporary picture data in Figure 10 

Bufferp • Legica1 29 word buffer equated to Buffert ( 3) , which 
would make it the same as the buffer in Figure 9 

Textbuffer • a l.09ical ·buffer used for text data 

Laser • •*Laser • 

open the spool.file to the laser as ASCir ,NEW, CCTL, WRITE ONLY 
Laserout • FOPEN(Laser,\404,\1) 

***"'* Download the permanent picture with ID 2 
FDEllICECONTROL (Laserout ,Bufferp' 29' 139' \0 '\2) 

***** If there was a continuation record, the bUffer and count would be 
••*** changed and param2 would be set to \100002 

Move the pen to an absolute location 
x • \002640 •••• 2 inches (180 dots per inch) radixed. 
y • \001320 •••• l inch (180 dots per inch) radixed 
FDEVICECONTROL (Laserout,Notused ,Notused, 131, X, Y) 

Print the permanent picture at the currant pen position 

FDEllICECONTROL ( Laserout, Notused, Notused, 144 , \l.00000, \2) 
The picture is now printed with the origin at X 11 2 inches 
and Y • l inch. 

Now print the picture as a temporary picture using the 
X and Y in the download file to position the orgin at 
absolute X • 4 inches and Y • 4 inches 
Buffert ( l) •\005500 
Buffert ( 2) •\005500 
FDEllICECONTROL (Laserout ,Buffert' 31, 144 '\040000 '\3) 

***** 'I1l.• laser will temporarily use Picture ID 3 to download 
and print the picture. once the picture is printed, it 
is deleted. 

Move the pen under the picture and print text 

Mova 11 This is the figure title• to 'l'extbuffer 
FDEVICECONTROL (Laserout 'Notused 'Notused' 131, \ 5500 '\5 764 ) 

***** The pen is now 1 inch under the origin of the tempory picture 

FWRI'l'IC (Laserout, textbuffer, -24, \320) 

FCLOSE (Laserout, l, 0) 

END of pseud.ocode 

Figure ll 

CONDENSING DOT-BIT-MAPS 
Since triplets are used to point to a location in the dot-bit map where 

a portion of a picture begins, if there are several parts of the picture 
with identical data, the same locations in the dot-bit map can be used. A 
very good example is shown in Figure 13. All pieces of the graphic can be 
described as an all black image. If we describe the largest black area in 
the image, in this case piece 2, we see that it takes 32 bits to describe. 
All of the other pieces of the image are smaller, and can be described 
using the same dot-bit map area. All of the triplets in figure 13 point to 
word 0 for the dot-bit map data. The only difference is the horizontal and 
vertical counts, as well as the X coordinate. 

572 



BIOGRAPHY 

0 
l 

Examp1e Program Results 

Please note that the picture size has been increased for clarity 

.Pemanem: I' icture printed 
~with orJ4in at X•2" and Y•l" 

T 

l 
\176414 
\000000 
\000020 

Temporarf1 Picture printed 
wi'tb origin a't X•4" and Y•4" 

~ 
This is the figure tit1e 

Figure 12 

CONSERVING DO'r-Brr MAP SPACE 

word Dot-Bit :rmage 

0 0 0 0 0 0 0 0 0 0 0 0 0 o; 0 0 0 
l 0000000000000000 

2 
\175002 
\000000 
\000-060 

Triplet Words 

3 
\176405 
\000000 
\000220 

Figure 13 

4 
\176405 
\000000 
\000420 

\000000 
\000000 

5 
\172403 
\000000 
\000220 

T 

Richard Oxford has been involved with computer hardware and software 
for the past eleven years. His experience includes teaching computer 
hardware, developing software, and maintenance of hardware and software on 
various computer systems. He has worked with HP computers for the past 
seven years, and with the 2680A laser for four years. Presently he is 
with MCI Digital Information Services as system manager for their network 
of HP-3000s and laser printers. 

573 





"' ...., 
"' 

DBC0112 

DORIS CHEN 
HEWLETT-PACKARD 

TurbolMAGE OBchange 

A restructuring utility for TurbolMAGE databases 

Copyright 01985 [h~= 



lJ1 ...., 
°' 

OBchange 

DBC0106 

~ 
0 

DBchange 

~ t:f> current data base~ 

c=::> 0 c==> 
change file 

Copyright G) 1985 

DBalter 

0 
e::J 

new data base 

~~= 



"' " " 

DBchange 

~ 
Original Database 

Original Database 

D 
Change File 

~ 
Restructured 

Database 

* DBCHANGE creates a change file containing all database modifications 
* DBALTER actually does the restructuring 
* DBALTER can either be invoked through DBCHANGE or run separately 

DB'.:0102 Copyright G) 1985 ~~= 



IJ1 ..... 
00 

DBchange: 
ADD . 

Passwords 
Data Items 
Data Sets 
Paths 
Data Set Fields 
Sort Items 

DBC0103 

Capabilities 

CHANGE DELETE 

Passwords Passwords 
Data Items Data Items 
Data Sets Data Sets 
Paths Paths 
Data Set Field Order Data Set Fields 
Sort Items Sort Items 
Data Set & Item Access 
Data Item Schema Order 
Data Set Schema Order 
Capacity 
Blocking Factor 
Device Class 
Data base, Set, Item Names 

Copyright {!)1985 [/pJ]:!: 



\.., 

" "' 

DBchange: 

DBC0104 

REVIEW 

Data Sets 
Data Items 
Paths 
Data Set Fields 

Capabilities (Continued) 

COPY PRINT 

Data Bases Schemas 

Copyright 01985 ~ai~= 



l.n 
00 
0 

DBchange: Copy a data base 

~ 
~ ~ 

~ 
~ 

Copy data base 

Creator (DORIS.ADM,PAYDEPT) 

* Run DBChange to grant copy 
access to BOSS.COMPANY.PLANNING 

* Release the change file 

* Release the data base 

DBC0107 Copyright {!) 1985 

Copier (BOSS.COMPANY.PLANNING) 

* Run DBalter to copy 
the data base 

~JI= 



'-" 
00 
J--' 

DBchange: Item Type Conversion 

t 11, 12, J1, J2, Kt P, Z c::::::::> u.x 

2. 11, 12, J1, J2, K1 0 ;) P, Z, R2 
11, 12, J1, J2, K1 

3. x c::::::::> u 

5. u c::::::::> x 

OOC0117 Copyright G) 1985 l0~= 





AN INTRODUCTION TO HEWLETT-PACKARD'S IMPLEMENTATION OF SQL 

Lynn Barnes 
Hewlett-Packard Company, Rockville Maryland, USA 

Summary 

SQL is the language used for database operations with Hewlett-Packard's new 

relational database, HPSQL. This paper describes what SQL is and its capabilities with 

particular emphasis on data manipulation and data definition. Topics covered include: 

* Definition of relational terms 

* Who uses SQL 
* How SQL is used (including examples) 

* SQL capabilities 
- data retrieval operations 

- data change operations 

- multiple-row manipulation 
- transaction management 

- data definition 

- authorization definition 

- database maintenance and management 

- application programming 

583 



584 

Introduction 

Throughout the computer industry, there are several relational database management 
systems (DBMS), each with its own language for database definition and access. SQL 

(Structured Query Language) is the language that is emerging as the de facto industry 

standard for relational data bases. 

Hewlett-Packard Company has chosen SQL as the language to be used for database 
operations with its relational database management system called HPSQL. HP's 

implementation of SQL is similar to other implementations in the industry, and HP is 

currently represented on the committee that is defining an ANSI standard for SQL. 

SQL is an easy-to-learn, English-like language that may be used both interactively or 

programmatically. SQL is completely command-driven and performs a broad range of 
functions from data access to data definition to database maintenance. For these 

reasons, the same language is used by programmers, DBA (database administrator), and 

ad hoc query users. 

An HPSQL database logically consists of tables which appear to be like flat MPE files, 

but actually are logical views of the available data. The INVENTORY database 

illustrated in Figure 1 is the sample database which will be used throughout this paper. 

This database consists of three tables: VENDOR, PARTS, and ORDERS. All access to 

the information in this database is done through these tables or through views (filters) 

which are derived from these tables. 



INVENTORY DATABASE 
VENDOR 
.~N~AM~· -.ie~OC!RNO -~~coiic!1~ 

O&rwei Carner• 9012 ,.,,_ 
AC/111tVldeo 5'4'Plin 9682 W.shin;tonD.C. 

John10n'1 Video 0602 ""''"' 
Morg111 EIK1rDr'llCI lil315 1ampa 

PARTS 
. ?AffiNci ·~ABr~A~t.·· ~liix)FiNQ UN1Wf..cE arv0~"'N~ 
123-ABC 'l/ldoaCl-1 9012 523.00 21 

ft4-GHI 'video Alcader 9602 419.00 53 

152-XYZ Romata Control 9602 75.50 41 

436-MNI 'l/ldeo Tepe 9882 9.95 82 

691-TSO Oloplay 9012 210.00 18 

ORDERS 

P0-4321 123-ABC 851205 4 

P0-4399 123-ABC 6 860113 

P0-4375 152-XYZ 10 851205 

P0-4321 114-GHI 851205 

P0-4321 152-XYZ 851205 3 

P0-4399 691-TSO 6 860113 2 

P0-4369 436-MNI 35 860106 

P0-4399 436-MIN 20 860113 

P0-4373 436-MNI 10 860103 

Figure 1. 

585 



586 

Since all access to data is through these "logical" tables, there is no need for the user to 
actually know how the data is physically stored on disc. Instead of intrinsic calls, the 
programmer and interactive user use SQL commands to retrieve and manipulate data. 
The SQL commands allow the user to specify what data he or she wants and not how to 
get it. The actual data access is done on the user's behalf by the DBMS. 

SQL commands may be entered programmatically by embedding the SQL commands in 
a COBOL or Pascal program. Before compiling the program, the source is run through 
an HPSQL preprocessor which checks the syntax of SQL commands, comments them 
out, and inserts procedure calls. The modified source can then be compiled and 
prepared using the standard COBOL or Pascal compiler and segmenter. 

These same commands, with the exception of a few application program dependent 
commands, may also be entered interactively using the program ISQL. ISQL is a utility 
program which comes standard with HPSQL. It accepts SQL commands from a user at 
a terminal and executes the commands on the user's behalf. ISQL is particularly useful 
for ad hoc queries, database maintenance and management, and program development 
and debugging. 

As shown in Figure 2, all SQL commands, regardless of their origin, are processed by 
HPSQLCORE. HPSQLCORE checks command syntax and performs functions related 
to accessing and safeguarding data. The actual database access is done by DBCORE. 



SOL OVERVIEW 

DATABASE 
ENVIRONMENT 

Figure 2. 

As previously mentioned, SQL is a multifunctional language. There are commands for 
data retrieval operations, data change operations, data definition, authorization 
definition, database maintenance and management, and some special commands for 
application programming. 

587 



588 

Data Retrieval Operations 

Data retrieval operations can be broken into three primary operations: selection. 

projection, and join. All three of the above operations are accomplished with the 
SELECT command. The user of this command must have SELECT authority on the 

table or view from which the data is to be extracted. 

A selection is the simplest of all retrieval operations. It is the retrieval of a subset of 
rows that satisfy certain criteria. For example, in the INVENTORY database, if we 
want to see all rows in the PARTS table whose vendor number equals "9012", we would 

use the following SELECT command: 

SELECT* 
FROM PARTS 
WHERE VENDORNO = '9012' 

The output from this selection is the result table shown below. 

PARTS Result Table 

·.PAftitio.·. . P<'d'i-iNAME 
123-ABC Video C.mera 

691-T&D Dllplay 

691-T&O Display 9012 m.oo 

Figure 3. 

'iet<DciAM:i :uN11"PAlCE .oTvON.HAND 

9012 523.00 21 

9012 210.00 18 

In the above example, we were able to choose which rows in the PARTS table we 
wanted to see. If, on the other hand, we wanted to retrieve all the rows in a table but 
only wanted to see certain columns, the operation would be a projection and might look 

like the following: 



SELECT VENDORNAME, VENDORNO 

FROM VENDOR 

Here we are asking to retrieve only the vendor name and city for all rows in the 

VENDOR table. The result table for this command is shown below. 

VENDOR Result Table 
·. VENOOANAME . VENDOANO VENDOR¢1rY 

VENDdRNAME VENOORNO 

Denver Camera 9012 Denver ' 9012 ~ Denver camera 

Acme Video &Jpplies 9682 Washington D.C. 
_::::,. 
/ Acme Video Supplies 9882 

Johnson's Video 
_::::,. 

9602 9602 Boston / Jot'nson's Video 

Morgan Electronics 9315 Tampa ~ Morgt.n Electronics 9315 

Figure 4. 

By combining the selection and projection, we can further narrow down our window of 

selected data. 

SELECT LINENO, PARTNO, QTYORDERED 

FROM ORDERS 

WHERE ORDERNO = 'P0-4321' 

ORDERED BY LINENO ASC 

In this example, we are asking only for the columns containing line number, part 

number, and quantity ordered from the ORDERS table whose order number equals 

'P0-43 21 '. In addition, we are asking for the data to be returned to us in ascending 
order by line number. The following is the result table for the above command: 

589 



590 

ORDERS Result Table 

~ PA:in:ip QT~eD DA"!&. UNENO LIN~l'.:i PAA~ F""'OO;~o 
P0-4321 123-ABC 1 ·~"" 4 

~ 
2 114-0HI 1 

P0-4399 123-ABC 6 ''"'" 1 3 152-XVZ 1 

P0-437!; 152-XYZ 10 '~"" 1 4 123-ABC 1 

P0-4321 114-GHI 1 ·~"" 2 

P0-4321 152-XYZ 1 '""" 3 

P0-4399 691-TSO 6 ""'" 2 

P0-4369 436-MNI 35 ''""" 1 

P0-4399 436-MIN 20 """' 3 

P0-4373 436-MNI 10 060103 1 

Figure 5. 

The previous examples illustrated data retrieval from a single table. It is very likely, 

however, that it would be desirable to retrieve data from more than one table with one 

SQL command. This type of retrieval is call a join. An example of a join is shown 

below. 

SELECT ORDERNO, PARTNAME, QTYORDERED*UNITPRICE 

FROM PARTS, ORDERS 

WHERE QTYORDERED >= 10 

AND ORDERS.PARTNO = PARTS.PARTNO 

In the above example, we are asking for the order number from the ORDERS table, the 

part name from the PARTS table, and we are asking that the total cost be calculated 

for us by multiplying the quantity ordered from the ORDERS table by the unit price 

in the PARTS table. Part number, which is common to both the PARTS and ORDERS 

tables, is used as the link to determine which rows in the respective tables will be used 

together. Figure 6 illustrates the result from this join. 



PARTS ORDERS 

· PliRT"IO PAATNAME "'"°"""" ,l,tjlTPRICf: Q:fYQNHANO QRDiR~ · PAl'.\1~ ont:A.oE111~0 '""' 
,,.,., 

123-ABC V~o Camera 9012 523.00 2' P0-4321 123-ABC ' """ 4 

114-GHI Video Recoroei '602 419.00 53 P0-4399 123-ABC 6 ""'tl 1 

152-XYZ Remoie Contr~ '60? 75.50 P0-4375 152-XYZ 10 """ 1 

-436-MNI Video T11pe '882 9.'6 " P0-4321 114-GHI 1 '""' 2 

691-TSO [)9pley 9012 210.00 " P0-4321 152-XYZ ' """ 3 

P0-4399 £:>91-TSD 6 '"''" 2 

P0-4369 436-MNI 35 """' 1 

P0-4399 436-MIN 20 ''''" 3 

P0-4373 436-MNI 10 """' 1 

QRDERNO PARTNAME IEXPfil 

P0-4375 REMOTE CONTROL 755.00 

P0-4369 VIDEO TAPE 348.25 

P0-4399 VIDEO TAPE 199.00 

P0-4373 VIDEO TAPE 99.50 

Figure 6. 

As shown in Figure 6, SQL can do calculations on data retrieved. In addition to 

evaluating an arithmetic expression during data retrieval, SQL also allows the user to 
request that an aggregate function be performed against the data selected. The 

built-in aggregate functions are: 

AVG - calculate the average 

MAX - display the maximum value 

MIN - display the minimum value 

SUM - calculate the sum 

COUNT - count the number of occurrences 

In all the examples shown so far, the search condition was based on a comparison, e.g., 

WHERE QTYORDERED >= 1 0. In addition to comparisons, the search condition may 

include a BETWEEN condition where only the rows which have a value between two 

given values will be selected. The search condition may also include a LIKE condition 

591 



592 

which will cause a partial match to be done on the specified column. Or the search 

condition may be for only those rows which have a NULL value in a particular column 

or NOT NULL (column must contain data). 

Data Change Operations 

SQL has three commands which accomplish data change operations: INSERT, DELETE, 

and UPDATE. As with the SELECT command, the user must have INSERT, DELETE, 
and UPDATE authority respectively to execute the aforementioned commands. 

The INSERT command is used to add a new row into a single table. The user specifies 

the columns in the row and their values. Note in the example below that all columns 

need not be included in the command; any column defined as NOT NULL, however, 

must be included in the list. 

INSERT INTO VENDOR(VENDORNAME, VENDORNO) 

VALUES ('WATSON WIDGETS', '9504') 

In this example, we are inserting a row into the VENDOR table with vendor name = 
WATSON WIDGETS and vendor number = 9504. Figure 7 shows VENDOR table 

before and after the INSERT. 

VENDOR (Before) VENDOR (After) 
· .. ·.~·. ··.vEN~. vEtioOFK:ITY·.·. 

DenverC.-a 9012 llel'Ner °"""'"Camera 9012 Derwer 

Acme Vldao Su1>11ln 9882 WUhlngton D.C. Acme Vodao &Jppiiea !1882 Wallington D.C. 

Johnolon'a Vodao !l602 Boston Johnaon'• Video 9602 Bolton 

Morgan Electronco 9315 Tampa Morgan Electronics 9315 Tampa 

~ Watson Widgets 9504 

Figure 7. 



To delete one or more rows from a table, the DELETE command is used. This 
command will delete all rows in the table which meet the search condition. 

DELETE FROM ORDERS 

WHERE ORDERNO = 'P0-4321' 

In the sample database, the above command would delete three rows as indicated in 

Figure 8. 

ORDERS <Blllorel ORDERS lAlterl 

""""""' 
P~~D ~ly~~ED . DAfli·. · UN.En?· ·.~!:!-- .• -~-NO_· . ~-~~~E~ -.~r:.· -~EHQ· 

P0-4321 12hlllC ..,,.. ~ 
P0-4399 12J-AllC 6 """" P0-4399 123-ABC ''""' 
P0-4Jr.I 1112-XVZ 10 8'1206 P0-4375 152-XYZ 10 8:11204 

P0-4321 114-GHI "'"" ~ P0-4321 152-XVZ '"205 
P0-4399 691-TSD I '''""' P0-4399 691-TSO _, 
P0-4319 ~NI 36 """" P0-4369 436-MNI 35 ll60Kl6 

P0-4399 ~IN 20 """' 
P0-4399 436-MIN 20 860113 

P0-4373 ~NI 10 """'' 
P0-4373 436-MNI 10 "'""' 

Figure 8. 

The INSERT and DELETE commands are used to insert and delete entire rows in a 
single table. To change the values of columns in existing rows in a single table, the 
UPDATE command is used. There are no restrictions as to which columns may be 

updated, i.e., even if a column is used as a key it may still be updated with the 
UPDATE command. In the following example, we wish to lower the unit price by 25% 
for all parts in the PARTS table which have a quantity on hand between the values of 
20 and SO. 

593 



594 

UPDATE PARTS 
SET UNITPRICE = UNITPRICE * .75 
WHERE QTYONHAND BETWEEN 20 AND 50 

The new table is shown to the right: 

PARTS (Before) PARTS (After) 

.~ .. ·:p~friN~E ~r.oO;i.& Ut.-,e;,;C£ ~Tvii~~ii ~PAA~· 
.. ~""""'""' · t-e•PoR"° u~PAic::~ OTYe~OO 

123-ASC \lidootomora 9()12 523.00 21 ~ 12J·A8C -ca-· 'l012 :m.25 21 

11-HlHI llidooAoco• 960:! 419.00 63 114-GHI -Aooordtr 9602 419.00 53 

152-XYZ 1R->•eontn11 960:! 76.&0 41 ~ t52·XYZ AnolaConllol 9602 96.113 41 

436-MNI 'lldoo Tape 91182 9.9S 82 436-MNI -Tape 911112 9.96 82 

691-T&O joioPlor 9012 210.00 18 691-TSO ~ 'l012 2IO.oo t8 

Figure 9, 

Multiple-Row Manipulations 

Programmatic data manipulation can only operate on a single row at a time unless a 
cursor or the BULK option is used. That is, data retrieval and insertion by a program 
can only occur a row at a time unless one of the above options is used (DELETE and 

UPDATE can be applied to multiple rows without any special options). 

A cursor is a pointer that allows you to advance one row at a time through a set of 
rows retrieved with a SELECT command. A cursor is declared and associated with a 
SELECT command. Once the rows are selected, the FETCH command is used to 

retrieve the current row pointed to by the cursor. 

The BULK option is used to retrieve or insert multiple rows with a single execution of 

the SELECT, FETCH, or INSERT commands. When using the BULK option, an array 
must be used to hold the rows to be retrieved or inserted. Using BULK access improves 
performance by reducing disc 1/0 and access time. 



Transaction Management 

A transaction can be defined as a unit of meaningful work. There are several SQL 

commands which may be used for transaction management. With SQL, a transaction is 

delimited by BEGIN WORK and COMMIT WORK commands. 

All database changes are logged to a log file until a COMMIT WORK command is 

issued. At that time, all changes made since the last BEGIN WORK are posted against 
the database. Up to this point, a user may use the ROLLBACK WORK command to 

undo changes that have not yet been committed. 

The SAVEPOINT command may be used to define save points within a transaction and 

can be used with the ROLLBACK WORK command to undo part of a transaction. The 
following is an example of transaction management: 

BEGIN WORK 

SQL Command 1 

SQL Command 2 

SAVEPOINT 

save point number is 1 

SQL Command 3 

SQL Command 4 

SQL Command 5 

SAVEPOINT 

save point number is 2 

SQL Command 6 

IF error THEN ROLLBACK WORK TO 1 

COMMIT WORK 

In this example, if an error occurs, only SQL Command 1 and SQL Command 2 will be 

posted against the database. If no error occurs, then all six SQL commands will be 

posted against the data base. 

595 



596 

Data Definition 

Data definition for a database is also accomplished using SQL commands. The 
CREA TE and DROP commands can be used to add and delete tables, views, and indexes 

in the database. In addition, the ADD command can be used to add columns to the end 
of a row in a table. All three of these commands ( CREA TE, DROP, and ADD) can be 

issued while users are accessing the database. 

The following command was used to create the PARTS table: 

CREATE TABLE PARTS 
(PARTNO CHAR(lO) NOT NULL, 
PARTNAME VARCHAR(30), 
VENDORNO CHAR(4), 
UNITPRICE DECIMAL(8,1), 
QTYONHAND SMALLINT) 

For security reasons or for convenience, we might want to create a view derived from 
columns from the PARTS and ORDERS tables. An example of the command to create 
such a view follows: 

CREATE VIEW ORDERINFO(ORDNO, PARTNM, COST) 
AS SELECT ORDERNO, PARTNAME, QTYORDERED*UNITPRICE 

FROM ORDERS, PARTS 
WHERE ORDERS.PARTNO = PARTS.PARTNO 



The following shows the resulting view: 

ORDERINFO 
Q~· PAf!TMi.I post.· 

P0-4321 llldeoC.-a 523.00 
P0-4399 Video c.m.a 3138.00 
P0-4375 Remote Cantrel 755.00 
P0-4321 I/Idea Rleordlr 419.00 
P0-4321 Remohl Cantrel 75.50 
P0-4399 Dioplay 1260.00 
P0-4369 I/Idea TIP9 348.25 
P0-4399 I/Idea r..,. 199.00 
P0-4373 Video r..,. 99.50 

Figure 10. 

Indexes may also be added to a table to improve performance. The CREA TE INDEX 
command can be used to create an index that contains a B-tree type structure of key 
values and pointers to rows in a data table. Up to 15 columns may be concatenated to 
create one index. Below is an example of adding an index for part number in the 
PAR TS table: 

CREATE INDEX PARTINDEX 
ON PARTS(PARTNO) 

As with the data manipulation commands, data definition commands require the 
proper authorization to be issued. 

Authorization Definition 

Most SQL commands require users to have some type of authority granted to them 
before they can execute the commands successfully. The different types of authority 
are: 

select - authority to retrieve data 
insert - authority to insert rows 
delete - authority to delete rows 
update - authority to change data in existing rows 

597 



598 

alter - authority to add new columns to a table 
index - authority to create and drop indexes on a table 
run - authority to execute a specified SQL module 
connect - authority to start a session in a database environment 
resource - authority to create tables and authorization groups 
DBA - authority to use any valid SQL command 
owner - owning a table, view, module, or authorization group 

Authorities may be granted to individual users or authorization groups. An 
authorization group is a named collection of users or other groups. For instance, all the 
users in the accounting department could be added to an authorization group called 
Accounting. Authority can be granted to the group Accounting with one GRANT 
command giving all members of the group the specified authority. 

There are SQL commands available to GRANT and REVOKE authorities, TRANSFER 
OWNERSHIP of a database object (table, view, etc.), and CREA TE and maintain 
authorization group. All of these commands require DBA, owner, or resource authority. 

Database Maintenance and Management 

Database maintenance and management are usually jobs for the DBA. SQL provides a 
variety of commands to allow the OBA to accomplish these tasks. 

It is the job of the OBA to control access to the database environment. With the 
START DBE NEW command, the OBA can define the start-up parameters for the 
database environment, such as multi-user mode or single-user mode, maximum number 
of concurrent transactions, logging information, etc. In addition to the ST ART DBE 
NEW command, the OBA can use the GRANT command to control what users are 
allowed to CONNECT to o.r use the environment. 

The OBA is also responsible for creating and controlling the physical database 
environment. Physically, the database envi.ronment is made up of OBEFILES (MPE 
files) assigned-to OBEFILESETS in the OBENVIRONMENT. It is up to the OBA to 
create these entities and allocate the OBEFILES to the appropriate OBEFILESET. 



Logging is always activated and maintained by HPSQL when an HPSQL database is in 

use. The DBA can, however, control the size of the log buffers, whether dual logging is 

to take place, the names of the log files, and whether HPSQL should do rollforward or 

rollbackward logging. If rollforward logging is used, there are additional SQL 

commands for the recovery process. 

Statistics are maintained by HPSQL which contain up-to-date information on the 

database environment, structure, and database use. SQL provides the DBA with 

commands to update these statistics and reset set them when desired. 

Application Programming 

As previously mentioned, there are certain SQL commands that are only appropriate 

for application programs. These commands include commands for BULK access and 

cursor management, preprocessor directives, and dynamic preprocessing. 

Dynamic preprocessing allows an application program to preprocess and execute SQL 

commands at run time that are not known at programming time. The application 
program accepts the command at run time and stores it in a program variable. With 

the use of SQL dynamic preprocessing commands, the stored command is processed and 

stored as a module, executed, and erased after execution. 

Conclusion 

As we have seen from the examples, SQL is an easy-to-use language. Its English-like 

structure allows users to specify what they want and not how to get it. Because there 

are identical commands for programmatic and interactive access, the same language 

can be used by programmers, DBA, and ad hoc query users. 

With the easy-to-use language and the interactive facility for testing and debugging 

programs, programmer productivity is increased. The implementation of new systems 

will be much faster, making SQL a cost-effective and powerful solution for your 

database needs. 

599 



600 

Biography 

Lynn Barnes has been with Hewlett-Packard Company for 12 years. She began her 
career with HP as a programmer, writing COBOL application programs for the Region 
Information System Group. After three years as a programmer, she moved into the 
Systems Engineering Organization as a systems engineer for the HP 3000. For 6 years, 
her duties included teaching a variety of customer and HP mternal training courses; 
customer consulting, both on site and over the phone; acting as the local software 
update and patch coordinator; providing customer account management functions; and 
serving as an area resource in the fields of data management, performance, and MPE 
internals. For the past 3 years, Lynn has been a system specialist, working on 
benchmarks, consulting, .and special projects. 



MAPPING IMAGE DAT ABASES TO A RELATIONAL ENVIRONMENT 

Michele Dingerson Hewlett-Packard Company, Cupertino California, U.S.A. 

Summary 

With the introduction of Hewlett-PacKard's relational database product, HPSQL, many existing 
IMAGE/3000 users may want to study the issue of mapping their IMAGE/3000 databases to HPSQL 
databases. Mapping an IMAGE/3000 database to a relational database system is a relatively easy task. 

It is important first to understand the differences in terminology. For example, relational databases have 
tables and views, whereas IMAGE/3000 has datasets. It is also important to consider which types of 
applications are better suited for a relational environment than a nonrelational environment. Stable 
applications with well-defined data structures are well-suited to a nonrelational system. 

The differences in naming conventions, and item type and length must also be studied. It is then relatively 
easy to map each master and detail dataset to relational structures. You must take into consideration sort 
items, maximum record size, ca,pacities, and security. 

Introduction 

Since the 1970s when the first database management systems were developed, their use has become 
widespread. Initially, database management systems were either network or hierarchical. In more recent 
years relational databases have entered the arena. Both network and hierarchical technologies require 
data access to be defined when data structures are defined. Relational technology removes that major 
limitation. Data relationships in the relational model are determined solely by the data, not by pointers 
or other connectors. This means the user does not need to specify how to access data, rather what data is 
desired. 

601 



A relational database is composed of one or more tables. All tables are made up of columns and rows 
(sometimes called attributes and tuples, respectively). The intersection of a column and a row is called a 
data value, or field. 

Sample Table 

Table name Sample Table 
Column1 Column2 Column3 

Row { 
data 
value 

~ 
Column 

Relationships between data are defined using data values when you access the data. For this reason, the 
order in which rows are physically stored is not important. Likewise the order of the columns is 
unimportant. 

There are special tables in the relational model called views. A view is a subset of one or more tables 
called base tables. Data is not stored in a view. Only the definition of the view is stored. The data is 
retrieved from the base tables when you use the view. Views are useful for limiting the visibility of data 
or for combining data from several tables. 

602 



Both relational and nonrelational models have distinct benefits. Most applications could be implemented 
on either relational or nonrelational systems. However, certain characteristics of applications make them 
more suitable for one model than another. 

Let's look at the characteristics that make an application more appropriate for relational technology. 

• Applications that require a high degree of data access flexibility are better suited for a 
relational system. 

• Applications in which the data structures themselves will change are well-suited to a 
relational system. A relational system allows tables and views to be added or removed from 
the database at any time. New columns may be added to existing tables at any time. 

• Applications with data access requirements that are unknown at the time of database design 
are also well-suited for a relational system. 

The characteristics of applications that are better served by nonrelational systems are generally related to 
stability and well-defined structures. If access methods are very predictable at database design time, a 
nonrelational model would serve the application well. In addition, applications with a high volume of 
transactions that access a single data record are typically better candidates for a nonrelational system. 

IMAGE Environment Versus Relational Environment 

The remainder of this paper explores the mapping of an IMAGE/3000 database (referred to as an IMAGE 
database in the remainder of this paper) to a relational system. For the purpose of illustrating this 
concept, one specific implementation of relational technology is used, Hewlett Packard's HPSQL. Prior to 
reviewing the actual.mapping process, let's review some key differences between IMAGE and a relational 
system. 

603 



IMAGE stores data in data sets. In a relational system, all data is stored in two-dimensional tables. A 
data set maps to a table. Records in IMAGE are known as entries. In a relational system a record is 
known as a row or tuple. In IMAGE terminology, a field of a record is called an item. In relational 
terminology, this field is called a column or attribute. 

604 

IMAGE vs. Relational Terminology 

IMAGE 

Data Set 

Entry 

Item 

Relational 

Table 

Row 

Column 



When an IMAGE data item is defined, its definition contains four parts: name, type, count, and length. 
The figure below shows the differences in naming conventions between IMAGE and HPSQL. 

Naming Conventions 

{ 
Up to 16 alphanumeric characters 

IMAGE 
Special characters + - * I ? ' % & # @ 

{ 
Up to 20 alphanumeric characters 

HPSQL Special characters#@$ _ 

Any characters in double quotes 

Example: 
Account-Id 

Account Id 
=> Accountid 

"Account-rd· 

HPSQL allows names to be longer than IMAGE; therefore, length is not really an issue when mapping 
IMAGE data item names to HPSQL names. 

The figure shows an example of mapping a data item name, Account-ID, to an HPSQL column name. 
Since a dash(-) is not a supported special character in HPSQL, it can be translated to an underscore<~), it 
could be dropped, as in the second example, or it could be retained by enclosing the name in double quotes, 
as in the third example. 

605 



606 

Not all data types that are allowed in IMAGE are allowed in HPSQL. The figure below shows the 
supported IMAGE data type and the HPSQL data types .that are most closely equivalent. 

Item Type and Length 

IMAGE tj'.~ HPSQL eguivalent data tj'.l!e 

Un CHAR(n) or VARCHAR(n) 
Xn CHAR(n) or VARCHAR(n) 
I SMAW NT 
12 INTEGER 
14 N.A. can use DECIMAL (15) 

J SMAW NT 
J2 INTEGER 
J4 N.A. can use DECIMAL (15) 

Pn DECIMAL (n) 
Zn N.A. can use DECIMAL (n) 
R2 N.A. can use FLOAT 
R4 FLOAT 
Kn N.A. can use DECIMAL (4*nl 

When mapping item types from IMAGE to HPSQL, the following points need to be considered: 

• There can be a loss of accuracy in mapping 14 to DECIMAL, since 14 handles as many as 19 
digits and DECIMAL handles as many as 15 digits. 

• Mapping J4 to DECIMAL or Zn to DECIMAL does not result in any loss of accuracy. 

• Mapping R2 to float results in a gain in accuracy from 7 significant digits to 15 significant 
digits. 

• Mapping Zn to DECIMAL means that you will need to use DECIMAL in any COBOL 
applications. 

• To map Kn to DECIMAL, multiply n by 4. For example, a K2 item can be represented as a 
DECIMAL (8,0). 

IMAGE allows you to create compound data items using item count. This cannot be directly mapped in 
Hewlett-Packard's relational system. You can create the same effect as a compound data item in one of 
two ways. You may create a different column for each occurrence of the field; for example, a data item 
defined as Semester, 2X6 could be mapped to two columns defined as Semester! Char(6) and Semester2 



Char(6). You can also map a compound data item to a table with a row for each occurrence of the field. 
An index could be defined on the table for easy access. 

Mapping IMAGE to a Relational Database 

The process of mapping an IMAGE database to a relational environment is a relatively easy task. This 
section shows a method to accomplish this process. For a further example of this process, please refer to 
the appendices of this paper: Appendix A contains a schema listing for the IMAGE Orders database that 
is used in the IMAGE documentation. Appendix B contains the "schema" for that database after it has 
been mapped to a relational system, HPSQL. 

HPSQL tables, views, and indexes are grouped into logical databases. Databases are grouped into database 
environments (DBEnvironments). A DBEnvironment consists of one or more databases, a system catalog, a 
DBECon file, and one or two log files. The system catalog is a set of tables used by HPSQL to store the 
structure of the databases and to access the data. The DBECon file contains global parameters for the 
DBEnvironment. The log file(s) are used to maintain the physical and logical integrity of the 
DBEnvironment. 

Structure of an H PSQL DB Environment 

DBEnvironment 

DBECon 

607 



When HPSQL tables are defined, they are assigned to a DBEFileSet. A DBEFileSet is a logical grouping of 
space. It is a collection of DBEFiles. A DBEFile is an actual system file. To allocate space to a 
DBEFileSet, a user simply adds DBEFiles. By allocating space in this manner, users can expand tables at 
any time by adding another DBEFile to a DBEFileSet. 

DBEnvironment FileSets 

j0sEF1leSetX - - - - -I I DBEFlle&;t"v- - - - -, 

I I c=l DBEFile3 I DBEFile1 

11 ~ I 

I I I 
I I I 
I I I TableEI I 
I I I 

I TableB I 

TableA 

I I I 
I I I I 

I I I 
I TableC I 

DBEFile2 l ________ _J L _______ _ 

In IMAGE, a dataset is associated directly with one system file that can be moved at will to a specific disc 
device. In HPSQL, more than one table can be associated directly with one DBEFileSet to which DBEFiles 
can be added. DBEFiles can be moved at will to specific disc devices. However, when more than one 
table resides in a DBEFileSet, it is not possible to move only one table to a specified device. To obtain an 
effect similar to IMAGE in HPSQL, it is possible to create only one table in a DBEFileSet. Any DBEFiles 
added to the DBEFileSet will house data for that particular table only. This will make it possible to move 
DBEFiles to a particular device guaranteeing that only one table is moved. 

608 



IMAGE datasets contain entries that are of fixed length. Therefore, they can be mapped directly to 
tables. In a relational system, indexes can be defined on any column or columns in a table. These indexes 
allow data to be accessed more quickly. Key and search items in IMAGE datasets can be defined as 
indexes in a relational system. 

A manual master dataset can be mapped directly to a table with a UNIQUE index defined on the column 
corresponding to the key field. A UNIQUE index, like a key value, allows only one data item of a 
particular value. To preserve a higher degree of compatibility, the key column can be defined as NOT 
NULL. The NOT NULL clause requires the column to always contain a data value. 

Automatic master datasets can be mapped by creating an index on the table that corresponds to the 
associated detail dataset(s). For example, when mapping an automatic master consisting of a date field 
with a path into a Sales detail dataset, create an index on the PurchaseDate column of the Sales table. 

Mapping A Master Datasets 

Date-Master 

\l 
\ Purch-Da te 

Sales ~ 

\ I => 

/
'ndex 

Sales 
Purchase 
Date 

609 



Relational systems draw no distinction between master and detail datasets. All tables are treated at the 
same level. To map a detail dataset to a relational system you need to consider the paths into the dataset. 
Detail datasets can be mapped to tables by converting the search items to indexes. The primary path must 
be defined as a clustering index. A clustering index will place the data physically close whenever possible. 
Since only one clustering index may be defined on a table, any other search items must be specified as 
non -clustering. 

IMAGE 

HPSQL 

Mapping Detail Datasets 

~ y 
\ 7 

Clustered 
Index Index 

I 11 I I I I I 
Primar path transforms to clustered Index 

In IMAGE, binary zeros are stored for items that are not listed in the DBPUT intrinsic. HPSQL does not 
store anything for columns that are not listed in an INSERT command. HPSQL uses an indicator to 
specify that a given column does not have a value specified for it. In other words, that column is NULL. 

610 



IMAGE allows sort items to be specified in detail datasets to maintain sorted data chains on search items. 
Search items can be defined as indexes in HPSQL which maintains the index in both ascending and 
descending order. The rows that are being selected can be ordered in ascending or descending fashion, 
with minor sort columns specified in any order. In IMAGE, items that have default values sort low. In 
HPSQL, columns that are null sort high. 

Mapping Sort Items 

IMAGE Sort item can be designated in detail data sets. 

\lllTI V 
HP SOL Index maintains ascending/descending order 

Index 

I I I I I I I I 
plus, data can be requested sorted by any columns. 

IMAGE allows for integrity checking of values. This is accomplished within manual masters; an entry 
without a key or duplicate key value is prevented from being added to the dataset. To do this in HPSQL, 
create UNIQUE indexes on critical columns and disallow null values. 

Another way of preserving integrity of data in IMAGE is provided by detail datasets. An entry in a 
detail dataset cannot be added if the associated manual master datasets do not contain the key value. This 
type of integrity checking is not part of HPSQL's feature set. The integrity checking has to be performed 
programmatically. 

611 



In IMAGE, the data entry size depends on the number of paths defined on the dataset and whether the 
dataset i8 a master dataset or a detail dataset. The size of a data entry decreases when the number of 
paths increases. For example, the maximum data entry size is achieved in IMAGE when there are no 
paths defined. The minimum data entry size is achieved when the maximum number of paths is defined. 

Maximum Record Lengths 

IMAGE - depends on the number of paths. 

~ s Detail Master 

0 4094 4088 

16 3966 3892 

HPSQL - depends on Number of Columns (NC) 
3998 bytes - (2 * NC) 

#Columns RowSize 

1 3996 
64 3870 

Note: All sizes are in b tes. 

As the illustration above shows, the maximum entry size of a detail dataset with no paths is 4094 bytes. 
For a standalone master dataset, the maximum entry size is 4088 bytes. For a detail dataset with 16 
paths defined, the maximum entry size is 3966 bytes. For a master dataset with 16 paths, the maximum 
entry size is 3892 bytes. The discrepancy in size for detail datasets and master data sets is due to the fact 
that the data chains and bit maps are stored with the data. 

In HPSQL, the data pointers are stored separately from the data. The number of columns in a table (NC) 
is the decisive factor in determining the actual maximum row size. The illustration.shows the formula for 
calculating the size of a row in HPSQL. This formula yields a maximum row size of 3996 bytes for a 
one-column table and a maximum row size of 3870 bytes for a 64-column table. 

Some measures that can be taken to decrease the column size are: 

• truncate some columns to reduce the overall size 

• combine some columns to reduce the total number of columns in the table. 

612 



The capacity of IMAGE datasets must be specified at creation time. The maximum size that can be 
specified for a dataset is 223 minus one. HPSQL does not require capacities to be specified for tables. 
Instead, storage structures, DBEFiles, can be created and added any time more storage space is needed. 
The maximum size a table in HPSQL is (327672 * 3996) bytes. 

In IMAGE, passwords are the basis for establishing security within a database. Passwords are given 
different types of access to the database. To access the data, the user need only know the password. 
HPSQL offers an extensive security system that is maintained by the database administrator (OBA). In 
HPSQL, the same effect as an IMAGE password can be achieved by creating an object known as an 
authorization _group with the same name as the password and granting all of the authorities necessary to 
accomplish the same tasks as an IMAGE password. An authorization group is a named collection of users 
who all have the same authorities. 

IMAGE security can be specified for read access and/or write access. Security is specified both at the 
dataset level and at the data item level. To convert IMAGE security to HPSQL, it is necessary to look at 
the read and write class lists specified for the items and datasets. 

613 



Write access at the dataset level overrides any security specified at the item level and implies read access 
on all of the items within the dataset. Write access at the dataset level means that the dataset can be 
modified by the user with that particular password. Data set modification means that the user can GET, 
PUT, UPDATE, and DELETE in IMAGE terms. In HPSQL terms, the user can SELECT, INSERT, 
UPDATE, and DELETE. The illustration below shows how an IMAGE write class list would be converted 
to HPSQL. 

614 

Converting Write Class Lists 

IMAGE 

Write access at data set level 

HPSOL 

GRANT SELECT, INSERT, UPDATE, DELETE 
ON TableName 
TO AvtllorizationGrovpName; 



Converting the read class list at the set level is somewhat more intricate since read access at the dataset 
level does NOT override the item level specifications of security. Instead, read access at the dataset level 
implies that item level security should be combined with the dataset security to obtain final access to the 
item. IMAGE security specifies that whenever a password appears only on the read class list at the set 
level, the item level security is also used to obtain the final access. There are several combinations of 
security when read access is allowed at the set level that can be summarized as shown in the table below. 

Read Access At Set Level 

Item Level Access Ana/Access 

Null list at item level specified No access 
Absent list or no list specified Read access 
Password specified in read list Read access 
Password specified in write list Update access 

615 



Whenever a password has read access to all of the items in a dataset, it is sufficient to grant SELECT 
authority on the corresponding table to that particular authorization group. However, if a password does 
not have read or update access to all of the items in the dataset, a view must be created with only those 
columns that can be accessed; then SELECT and/or UPDATE authorization must be granted on that view 
to the appropriate authorization groups. This is summarized in the table below. 

Read Class List Mapping Summary 

IMAGE 

Read access to ALL items. 
Update access to any or 
none of the items in set. 

Read access to SOME items. 
Update access to any or 
none of the items in set. 

HPSQL 

Grant SELECT and UPDATE 
to the corresponding 
Authorization group. 

Create View with such 
columns and Grant SELECT 
and UPDATE on the view. 

In IMAGE, user class 0 (zero) is a special class that is not allowed a password and can be specified in the 
read and write class list of an item or a dataset. This user class can be used to allow read and/or write 
access to nonrestricted portions of the database to any user. The equivalent to this user class in HPSQL is 
the special designation PUBLIC. In HPSQL, authorities can be granted to PUBLIC in the same manner 
that user class zero is given read/write access. 

Conclusion 

The task of mapping an IMAGE schema to HPSQL data definition commands is fairly simple as was 
shown. However, the user performing the task must be well aware of the differences described in this 
paper. It should be kept in mind that many IMAGE applications are well suited to a nonrelational 
environment and should not converted to a relational environment. For those users who do decide to map 
their IMAGE applications to HPSQL, the steps are summarized below: 

• Create a DBEnvironment 

616 



• Transform the IMAGE database(s) 

• Create authorization groups 

• Create DBEFileSets 

• Create DBEFiles 

• Create ta hies 

• Create views 

• Create indexes 

Biography 

Michele Dingerson is currently a Marketing Engineer for Hewlett-Packard working in the Data 
Management Support Group of Information Technology Group's Technical Marketing Department. As a 
member of the documentation and training team for Hewlett-Packard's new relational database product, 
HPSQL, she has developed a customer training course for database administrators and participated in 
training systems engineers on HPSQL. 

Prior to her current position, Michele worked as a Financial Systems Analyst for a large California-based 
telecommunications firm. Prior to that position, she worked as a Programmer/ Analyst at the Corporate 
Headquarters of Hewlett-Packard in Palo Alto California. Ms. Dingerson initially joined 
Hewlett-Packard in 1980, and most recently has been with Hewlett-Packard since 1984. 

617 



$CONTROL TABLE, NOROOT 

BEGIN DATA BASE ORDERS; 

PASSWORDS: 
14 CLERK; 
12 BUYER; 
11 CREDIT; 
73 SHIP-REC; 
1B DO-ALL; 

ITEMS: 

618 

ACCOUNT, 
BINNUM, 
CITY, 
CREDIT-RATING, 
DATE, 
DELIV-DATE, 
DESCRIPTION, 
FIRST-NAME, 
INITIAL, 
LAST-NAME, 
LASTSHIPDATE, 
ONHANDQTY, 
PRICE, 
PURCH-DATE, 
QUANTITY, 
STATE, 
STOCK#, 
STREET-ADD, 
SUPPLIER, 
TAX, 
TOTAL, 
UNIT-COST, 
ZIP, 

« SALES CLERK » 
« BUYER - RESPONSIBLE FOR PARTS INVENTORY » 
<< CUSTOMER CREDIT OFFICE >> 
<< WAREHOUSE - SHIPPING AND RECEIVING >> 
<< FOR US£ BY DB MGMT >> 

<< IN ALPHABETICAL ORDER FOR CONVENIENCE >> 
J02 ; « CUSTOMER ACCOUNT NUMBER 
Z02 (/13); << STORAGE LOCATION OF PROD 
X12 (12,13,14/11); << CITY 
R02 (/14); << CUSTOMER CREDIT RATING 
X06 ; << DAT£ (YYMMDD) 
X06 (/14); << DELIVERY DAT£ (YYMMDDJ 
X20; << PRODUCT DESCRIPTION 
X10 (14/11); « CUSTOMER GIVEN NAME 
U02 (14/11); << CUSTOMER MIDDLE INITIAL 
X16 (14/11); « CUSTOMER SURNAME 
X06 ( 12/ ) ; « DAT£ LAST REC D(YYMMDD) 
J02 (14/12); << TOTAL PRODUCT INVENTORY 
J02 (14/); << SELLING PRICE (PENNIES) 
X06 (11/14); << PURCHASE DAT£ (YYMMDD) 
I (/14); << SALES PURCHASE QUANTITY 
X02 (12,13,14/11); << STAT£ -- 2 LETTER ABB. 
UOB ; << PRODUCT STOCK NUMBER 
X26 (12,13,14/11); <<NUMBER AND STREET ADD 
X16 (12,13/); << SUPPLYING COMPANY NAM£ 
J02 (14/J; « SALES TAX 
J02 (11,14/); << TOTAL AMOUNT OF SAL£ 
POB (/12); <<UNIT COST OF PRODUCT 
X06 (12,13,14/11); «ZIP COD£ 

>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 
>> 



SETS: 

NAME: 
ENTRY: 

CAPACITY: 

NAME: 
ENTRY: 
CAPACITY: 

CUSTOM£R,MANUAL{74/77,78); <<CUSTOMER MASTER INFO>> 
ACCOUNT{ I), 
LAST-NAME, 
FIRST-NAME, 
INITIAL, 
STREET-ADD, 
CITY, 
STATE, 
ZIP, 
CREDIT-RATING; 
200; 

DATE-MASTER,AUTOMATIC; <<DATE INDEX>> 
DATE{3); 
2 7 1; 

NAME: PRODUCT,MANUAL{74,13/12,7B);<<PRODUCT INDEXT>> 
ENTRY: STOCK#{2), 

DESCRIPTION; 
CAPACITY: 300; 

NAME: SAL£S,D£TAIL{11/14,78); <<CREDIT PURCHASE INFO>> 
ENTRY: ACCOUNT{CUSTOM£R{PURCH-DAT£)), 

STOCK#{PRODUCT), 
QUANTITY, 
PRICE, 
TAX, 
TOTAL, 
PURCH-DAT£(DAT£-MAST£R), 
DELIV-DATE{DATE-MASTERJ; 

CAPACITY: 500; 

NAME: SUP-MASTER,MANUAL{73/12,18);<<SUPP MASTER INFO>> 
ENTRY: SUPPL1£R(7), 

STREET-ADD, 
CITY, 
STATE, 
ZIP; 

CAPACITY: 200; 

619 



NAME: INVENTORY,DETAIL(12,14/13,18);<<PROD SUPPLY INFO>> 
ENTRY: STOCK#(PRODUCT), 

ONHANDQTY, 
SUPPLIER( !SUP-MASTER), «PRIMARY PATH» 
UNIT-COST, 
LASTSHIPDATE(DATE-MASTER), 
BINNUM; 

CAPACITY: 450; 

END. 

DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC 
NAME CNT CT LGTH REC FAC LGTH SPACE 

CUSTOMER M 9 1 41 51 200 10 511 84 
DATE-MASTER A 1 3 3 23 211 22 508 44 
PRODUCT M 2 2 14 29 300 13 378 75 
SALES D 8 4 19 35 504 14 491 148 
SUP-MASTER M 5 1 31 41 200 12 493 72 
INVENTORY D 6 3 20 32 450 15 481 124 

TOTAL DISC SECTORS INCLUDING ROOT: 560 

NUMBER OF ERROR MESSAGES: 0 
ITEM NAME COUNT: 23 DATA SET COUNT: 6 
ROOT LENGTH: 729 BUFFER LENGTH: 511 TRAILER LENGTH: 256 

620 



/* **************************************************************** */; 
/* Converted IMAGE scherm. to HPSQL {from ORDERSSC) */; 
/* **************************************************************** */; 

START DBE 'OrderDBE' MULTI NEW 
DBEFILEO DBEFILE OrdersRoot 

WITH PAGES = 50, 
NAME= 'Orders', 

LOG DBEFILE OrdersLog1 
WITH PAGES = 200, 
NAME= 'OrderLog'; 

CREATE GROUP Order.Clerks; 
CREATE GROUP Order.Buyers; 
CREATE GROUP Order.Credit; 
CREATE GROUP Order.ShipReceive; 
CREATE GROUP Order.DoAll; 

GRANT CONNECT TO 
Clerks, Buyers, Credit, 
ShipReceive, DoALL; 

621 



622 

/* **************************************************************** */; 
/* CUSTOMER TABLE */; 
/* **************************************************************** */; 

CREATE DBEFILESET OrdersSet; 
CREATE DBEFILE OrdersDataOT 

WITH PAGES= 50, NAME• 'OrdersDT', TYPE TABLE; 
CREATE DBEFILE OrdersindxOT 

WITH PAGES= 50, NAME= 'OrdersXT', TYPE INDEX; 
ADD DBEFILE OrdersData01 TO DBEFILESET OrdersSet; 
ADD DBEFILE OrdersindxOT TO DBEFILESET OrdersSet; 

CREATE PUBLIC TABLE Order.Customer 
(Account INTEGER NOT NULL, 
LastName CHAR( 16), 
FirstName CHAR( 70), 
Initial CHAR(02), 
StreetAddress CHAR(26), 
City CHAR(12), 
State CHAR( 02), 
Zip CHAR(06), 
CreditRating FLOAT ) 

IN OrdersSet; 
REVOKE ALL 

ON Order.Customer 
FROM PUBLIC; 

CREATE UNIQUE INDEX CustomerAccount 
ON Order.Customer (Account); 

GRANT SELECT, 
UPDATE (CreditRating) 
ON Order.Customer TO Clerks; 

GRANT SELECT, INSERT, UPDATE, DELETE 
ON Order.Customer TO Credit, DoAll; 



/* **************************************************************** */; 
/* PRODUCT TABLE */; 
/* **************************************************************** */; 

CREATE DBEFILESET ProductSet; 

CREATE DBEFILE ProductData01 
WITH PAGES = 50, NAME 

CREATE DBEFILE Productindx01 
WITH PAGES = 50, NAME 

'ProdD1', TYPE TABLE; 

'ProdX1', TYPE INDEX; 

ADD DBEFILE ProductData01 
TO DBEFILESET ProductSet; 

ADD DBEFILE Productindx01 
TO DBEFILESET ProductSet; 

CREATE PUBLIC TABLE Order.Product 
(StockNum CHAR( OB) 
Description CHAR(20) 

IN ProductSet; 

REVOKE ALL 
ON Order. Product 
FROM PUBLIC; 

CREATE UNIQUE INDEX ProductStockNum 
ON Order.Product (StockNum); 

GRANT SELECT 
ON Order.Product 
TO Clerk, ShipReceive; 

GRANT SELECT, 
INSERT, 
UPDATE, 
DELETE 
ON Order.Product 
TO Buyer, DoAll; 

NOT NULL, 
NOT NULL) 

623 



624 

/* **************************************************************** */; 
/* SALES TABLE */; 
/* **************************************************************** */; 

CREATE DBEFILESET SalesSet; 

CREATE DBEFILE SalesData01 
WITH PAGES= 50, NAME= 'SalesD1', TYPE= TABLE; 

CREATE DBEFILE Salesindx01 
WITH PAGES= 50, NAME= 'SalesX1', TYPE• INDEX; 

ADD DBEFILE SalesData01 TO DBEFILESET SalesSet; 
ADD DBEFILE Salesindx01 TO DBEFILESET SalesSet; 

CREATE PUBLIC TABLE Order.Sales 
(Account" 
StockNumber 
Quantity 
Price 
Tax 
Total 
PurchaseDate 
DeliveryDate 

IN SalesSet; 

REVOKE ALL 

INTEGER 
CHAR(08) 
SMALLINT 
INTEGER 
INTEGER 
INTEGER 
CHAR(06) 
CHAR(06) 

ON Order.Sales 
FROM PUBLIC; 

CREATE INDEX SalesAccount 
ON Order.Sales (Account); 

CREATE CLUSTERING INDEX SalesStockNum 
ON Order.Sales (StockNumber); 

CREATE INDEX SalesPurchaseDate 
ON Order.Sales (PurchaseDate); 

CREATE INDEX SalesDeliveryDate 
ON Order.Sales (DeliveryDate); 

GRANT SELECT, 
INSERT, 
UPDATE, 
DELETE 
ON Order.Sales 
TO Clerk, DoAll; 

CREATE VIEW Order.SalesCredit 

NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL) 

AS SELECT Account, StockNumber, Total, PurchaseDate 
FROM Order.Sales; 

GRANT SELECT 
ON Order.SalesCredit 
TO Credit; 



/* ******************************.********************** ************ *I; 
/* SUPPLY TABLE */; 
/* **************************************************************** */; 

CREATE DBEFILESET SupplySet; 

CREATE DBEFILE SupplyData01 
WITH PAGES= 50, NAME= 'SupplyDI', TYPE s TABLE; 

CREATE DBEFILE Supplylndx01 
WITH PAGES= 50, NAME= 'SupplyXI', TYPE= INDEX; 

ADD DBEFILE SupplyData01 
TO DBEFILESET SupplySet; 

ADD DBEFILE Supplyindx01 
TO DBEFILESET SupplySet; 

CREATE PUBLIC TABLE Order.SupplyMaster 
(Supplier CHAR( 16) 
StreetAddress CHAR(26) 
City CHAR(12) 
State CHAR(02) 
Zip CHAR(06) 

IN SupplySet; 

REVOKE ALL 
ON Order.SupplyMaster 
FROM PUBLIC; 

CREATE UNIQUE INDEX SupplyMasterSupplier 
ON Order.SupplyMaster (Supplier); 

GRANT SELECT 
ON Orde~.SupplyMaster 
TO Shi,f;'Reoeive; 

{;RANT SELECT, 
INSERT, 
UPDATE, 
DELETE 
ON Order.SupplyMaster 
TO Buyer, DoAll; 

NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL) 

625 



/* **************************************************************** */; 
/* INVENTORY TABLE */; 
/* **************************************************************** */; 

CREATE DBEFILESET InventorySet; 

CREATE DBEFILE InventoryData01 
WITH PAGES = 50, NAME = 'InventD1', TYPE = TABLE; 

CREATE DBEFILE InventoryindxOT 
WITH PAGES= 50, NAME= 'InventX1', TYPE= INDEX; 

ADD DBEFILE InventoryData01 
TO DBEFILESET InventorySet; 

ADD DBEFILE Inventoryindx01 
TO DBEFILESET InventorySet; 

CREATE PUBLIC TABLE Order.Inventory 
(StockNumber CHAR( OB) 
OnHandQty INTEGER 
Supplier CHAR( 16) 
UnitCost INTEGER 
lastShipDate CHAR(06) 
BinNumber SMALLINT 

IN InventorySet; 
REVOKE All 

ON Order.Inventory 
FROM PUBLIC; 

CREATE INDEX InventoryStockNum 
ON Order.Inventory (StockNumber); 

CREATE CLUSTERING INDEX InventorySupplier 
ON Order.Inventory (Supplier); 

CREATE INDEX InventorlastShipDate 
ON Order.Inventory (lastShipDate); 

GRANT SELECT, INSERT, UPDATE, DELETE 
ON Order.Inventory 
TO ShipReceive, DoAll; 

CREATE VIEW Order.InventoryBuyer 

NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL, 
NOT NULL) 

AS SELECT StockNumber, OnHandQty, Supplier, UnitCost 
FROM Order.Inventory; 

GRANT SELECT, 
UPDATE (OnHandQty, UnitCost) 
ON Order.InventoryBuyer TO Buyer; 

CREATE VIEW Order.InventoryClerk 
AS SELECT StockNumber, OnHandQty 
FROM Order.Inventory; 

GRANT SELECT 

626 

ON Order.InventoryClerk 
TO Clerks; 



SOL The Defacto Standard for Relational Databases. 

This paper addresses the features of the SQL as a DBMS, and why its popularity is 
making it an industry standard. To address this topic the features of SQL, 
specifically HP's implementation, HPSQL, are discussed in detail. 

HPSQL Features and Benefits 

HPSQL is a fully relational database management system that is based on SOL. SOL 
is an acronym for Structured Query Language. This language is rapidly 
becoming the industry standard for relational databases. A true standard for 
SQL does not yet exist in the industry. However, an ANSI standard committee 
formed by representatives of different computer companies, including HP, is 
considering approving a set of standards for SOL. A description of the major 
features offered by HPSQL follows. The remaining of this paper goes on to 
explore the applicability of these features in more detail. 

Relational Structure 

HPSQL supports a relational data structure that is easy to visualize and 
understand, making it possible for users to start using this product at once. 
Conceptually the database is composed of flat files or 'tables'. A table 
basically consists of data records which are known as 'rows'. Each row contains a 
number of data fields or 'columns'. The tables do not contain any predefined 
relationships. Instead relationships between tables are established at the time 
of inquiry, by comparing values in columns common to the tables. These simple 
concepts are the nucleus of the relational database. 

Structured Query Language (SQL) 

The Structured Query Language (SOL) supported by HPSQL consists of a simple set 
of commands for data definition and data manipulation. That means that both 
functions are provided through a common language interface which is easy to 
understand and learn. Additionally, the basic SOL command set has been extended 
to support such functions as database administration and maintenance. 

Database Security 

A database security system, more extensive than ever before offered by an HP data 
management product, is available with HPSQL. Data security can be so fine- tuned 
that access can be restricted to only certain rows within a table or to only 
certain programs that manipulate data within the DBEnvironment. The 
database administrator (OBA) is the person responsible for establishing security 
within the DBEnvironment. A OBA can designate alternate DBA's to help with the 
task of managing security. 

Transaction Management and Recovery 

HPSQL is a transaction oriented database management system where the transaction 
is handled as a complete unit of work. The user is responsible for defining the 
beginning and end of a transaction and HPSQL ensures that a transaction is never 
partially executed; either all or none of it is made permanent. Thus, the 
DBEnvironment is always in a logically consistent state. HPSQL also maintains 
the physical integrity of the DBEnvironment in a consistent state at all times 
regardless of the type of failure that may occur to the system. The logical and 
physical integrity is maintained by a log file which is part of the 
DBEnvironment. To achieve an even greater degree of integrity, HPSQL also 
supports an optional dual log file in a separate disc from the first log file. 
When dual logging is enabled HPSQL writes identical log records to both log 
files. Multiuser access is accomplished by a sophisticated algorithm that 

627 



handles all locking automatically, at the same time resolving deadlocks. 
Explicit locking can also be performed for those applications that require it. 

Interactive Interface 

Included in the HPSOL product is an interactive interface, !SOL, which is an 
acronym for Interactive SOL. ISOL is a multifunction program that supports all of 
the SOL command set along with commands of its own. Also supported in !SOL are a 
number of facilities to ease command entry and execution. A friendly help 
facility along with redo functions, make ISOL very easy to learn and use. 

Programmatic Interface 

HPSOL also has a programmatic interface which allows application programmers to 
insert SOL commands in programs. As soon as the users learn SOL, they are ready 
to start programming with it, without having to learn a secondary method to access 
the DBEnvironment programmatically. Every clause and parameter variation allowed 
in an SOL command is also allowed programmatically. This approach to programming 
allows users to start accessing DBEnvironments programmatically in a very short 
time. Embedding SOL commands in source programs reduces the size of the source 
programs while at the same time increasing its maintainability. 

HPSQL Components 

As mentioned earlier HPSOL is the relational interface of DBCore. This section 
describes the different objects and components of an HPSOL DBEnvironment. 
Subjects that will be covered include tables, data types, views, indexes, 
DBEnvironment, DBEFilesets and DBEFiles. 

Table 

A table is the basic object in a relational database. Data is represented to the 
user as being contained in a table, also said to be a flat file, which consists of 
records (called 'rows') and fields (called 'columns'). Each row in a table 
contains the same number of columns. That does not necessarily imply that each 
row is of the same size since columns can be of variable length. 

Data Types 

The data types allowed for column attributes are sufficient for any kind of 
applications that are developed using HPSOL. 

A list of types with a short description of them follows: 

628 

Decimal - This numeric data type is typically used in commercial 
applications. It has a range of 15 digits plus a sign; optionally, the 
number of digits to the right of the decimal period can also be specified. 

Character - This alphanumeric data type stores any ASCII character type 
data of fixed length. 

VariableCharacter - This alphanumeric data type is the first of its kind 
offered in HP's data management products. It allows storage of data 
that is usually variable in length, such as an address or comments. The 
main feature of this data type is that saves disc space storage since only 
the actual length of data is stored. 

Smalllnteger - This numeric data type is a 16 bit signed integer with a 
range of ·32,768 to 32,767. 



Views 

Integer - This numeric data type is a 32 bit signed integer with a range of 
-2,147,483,647 to 2,147,483,647 or just over 2 billion. 

Float - This numeric data type is a double precision real value with 16.9 
digits of precision that is most useful in scientific applications. 

Views are table projections used to filter data for user access. Figure 1 shows 
a view used to filter out one column of an underlying table. The 
underlying table is known as a 'base table'. In this case, a view is used to 
prohibit access to the Salary column. The user accesses the view as if it were 
the actual table. The view itself does NOT cause the data to be stored twice, 
but acts merely as a filter for the base table. Thus a view is another way to 
describe the data that resides in storage. 

Table 

Emp E:mp Oept MQr: Slllitry. 
Num Name 
238 Joe GSD 240 30000 
239 Sid GSD 240 32000 
240 Art GSD 911 47000 
123 Ted RFA 565 29000 
129 Bert RFA 911 48000 
180 Mark RFA g_9 31000 
451 Joan GSD 911 26000 
483 Alan ABM 129 12000 

Vertical Projection 

Figure 1. Vertical Projection 

Another feature of views is horizontal projections from a base table. Consider, 
for example, a table that contains employee information for the entire company 
with users from different departments accessing this data. Users from one 
department are not allowed to access employee data from a department other than 
their own. To solve this situation and still have all of the employee data in one 
table, a view can be created for each department, allowing access only to data in 
a single department. Figure 2 shows an example of using a view to allow access to 
certain parts of a table. This is a very useful feature since it allows the same 
set of data to be accessed by many different users with different needs. This 
use of views minimizes data storage requirements since the data is only stored 
once. 

629 



Da~abase Olbj®cts 
Table 

Emo Emp Dept Mgr Salary 
Num Name 
238 Joe GSD 240 30000 

View 
239 Sid GSD 240 32000 
240 Art GSD 911 47000 
123 Ted RFA 565 29000 
129 Bert RFA 911 48000 
180 Mark RFA 129 31000 
451 Joan GSD 911 26000 
483 Alan ABM 129 12000 
127 Dave GSD 911 24000 
216 Dina GSD 911 26000 
708 Rich BSD 311 29000 
711 Jay GSD ]240 45000 

Horizontal Projection 

Figure 2. Horizontal Projection 

Views can also be .created by joining rows and columns from other tables and views. 
This capability makes the usefulness of views one of the most important features 
in a relational database. A view derived in this form comes in useful in 
situations where reports are to be produced by joining rows from multiple tables. 
Figure 3 depicts this concept. 

Indexes 

Multitable VIEW 

•••• 
,. 'T ..,- - ., - - ., r.,,--..,--, 
c1:,:::•::J 
L.L..l .... .J .... .J 
.......... - -4 - - ... ... ... ., .... .., -- ., 
r'T-i---.--, 
c1:1:::!::J 
L J. .J .... .J .... .J 

-r:, .. ·.T; .. .. ;:·.,.,~>· 
~1 i- r1- -,- i .. 
... ,... , - r1- - r , .. 
r-ri-ii--ri"' 
.-.-j-7,--1; 1 

~::1:±:::E~~ 
.. \., J .. .LI .... L J 1 

[ ~ ~: !:: : ~ ~ J 
L,... ....... , .... ~,.,.! 
... _. __ .... _ .. _._1 

Join multiple tables and/or views 

Figure 3. Multitable View 

To access the data rapidly, indexes can be defined for any column in a table. An 
index can be defined as containing one or more columns. For instance an index can 
consist of the concatenation of several columns in any order. Also, an index can 
be defined as unique or clustered. When an index is defined as unique, rows with 
duplicate key values cannot be inserted into the table. This index property is 
useful in tables that contain data such as social security numbers or employee 
numbers. 

On the other hand, when an index is defined as being clustered, HPSQL inserts 
new rows with similar key values in storage locations that are close to each 

630 



other whenever possible. This permits faster access of data at the time of 
inqui1·y. HPSQL also allows creation of indexes with both properties, unique and 
clustered. The indexing mechanism used is a modified 8-tree structure. This 8-
tree is characterized by having doubly linked leaves to speed up sequential 
access in both ascending and descending order. 

Database Environment 

HPSQL objects and components reside in what is known as DBEnv i ronment. Figure 4 
illustrates an HPSQL DBEnvironment. The D8Environment contains a System Catalog, 
a D8ECon file, a log file or optionally, a dual log file. The System Catalog is a 
set of tables used by HPSQLCore to store the structure and location of the 
databases. The D8ECon file contains global configuration parameters for the 
DBEnv i ronment. The log file and the opt ion a 1 dua 1 log file a r·e used to maintain 
the physical and logical integrity of the D8Environment. Details on the use of 
the log file(s) are given in the HPSQL Transaction Management part of this paper. 

Log 
File(s) 

DBE Con 
File 

System 

Catalog 

Database(s) 

1 
I 
I 
I 
I 
I 
I 

------' 
A DBEnvironment is conceptualized as a single unit. 

Figure 4. HPSQL DBEnvironment Conceptual Overview 

DBEnvironment DBEFileSets 

In HPSQL tables are defined to reside in what is known as 'DBEFileSets'. A 
DBEFileSet is a logical definition of space where a table can reside. This is 
shown in Figure 5. To obtain actual disc space a 'DBEFile' is added to the 
D8EFileSet. A DBEFile corresponds to an actual MPE file. Allocating space in 
this manner users can expand tables in size at any time that space is required 
by simply adding a D8EFile to the D8EFileSet, ultimately making the table of 
infinite size. 

A DBEFileSet can also be used to Cluster data from tables. For instance when 
two or more tables are accessed together it is possible to assign them to the 
same DBEFileSet. Tables that reside in the same DBEFileSet share the same 
D8EFiles causing the data from those tables to be stored physically close to 
each other This physical proximity allows for faster access whenever the data 
from those tables is accessed. 

A feature of DBEFiles is that they can be defined to contain data for tables, 
indexes or to contain mixed data for both. This feature allows for versatile 
placement of indexes and data from tables since a D8EFile can be moved to a 
specific disc device. 

631 



DBEFileSets distribute data efficiently. 

Figure 5. DBEFileSet 

Structured Query Language (SOL) 

SOL is an all purpose language that can be used to perform the functions of data 
definition, data manipulation and database administration. Data definition 
commands can be used to create DBEnvironment objects and components such as 
tables, views, indexes, columns within tables, etc. Data manipulation commands 
are used to modify data in tables, such as adding new rows, deleting rows, 
updating column values and retrieving data from tables. Data administration 
commands are used to maintain the DBEnvironment and administer security. 
Examples on the use of data definition and data manipulation commands are given 
below, data administration commands will be considered beyond the scope of this 
paper. 

Data Definition 

Data Definition commands allow the user to 
DBEnvironment objects such as: tables, views, 
DBEFiles, DBEFileSets and Modules. 

create all of the different 
authorization groups, indexes, 

Figure 6 shows an example of an actual data definition command. 
creates a definition for a table named "PartsTable" with 3 columns. 

Data Definition 

CREATE TABLE PartsTable 
CPartNu•ber a-<AR ( 16) NOT 1'1..LL, PartsTob~ 
PartN8"e VARCHAR (30). PartN\lnbeo' PartNa1118 UstPrico 
Ustpr!ce DECIMAL (10,2l I: 

Figure 6. Data Definition 

632 

This command 



The first column is named "PartNumber" and consists of 16 alphanumeric 
characters. The ~OT NULL designation forces a value to be specified for this 
column when new rows are added. The second column is named "PartName" and is 
defined as a variable character type column of up to 30 characters. This data 
type, as described in the previous section, means that for every PartName 
containing less than 30 characters space will be saved. The third and last 
column is named "ustPrice" and can contain up to 10 digits with the last two 
digits being to the right of the decimal point. Any arithmetic operations 
performed with SOL commands will maintain the decimal period in the correct 
place. 

Dynamic Restructuring 

Data definition commands can also be used to 
DBEnvironment at the time it is being accessed by 
dynamic restructuring operations can be performed: 
table; tables and views can be defined or dropped; 
dropped. When an index is added dynamically, it is 
it is created. 

Data Manipulation 

dynamically 
other users. 
columns can 
and indexes 

restructure a 
The following 

be added to any 
can be added or 

available for use as soon as 

Data Manipulation commands are non-procedural commands which allow the user to 
access data in tables or views. Non-procedural means the user does not have to 
specify HOW the data access is to be performed. All the user needs to specify is 
WHAT data needs to be accessed and HPSQL optimizes the data access. Data 
manipulation is categorized in four different operations that are implemented via 
four different commands: SELECT, INSERT, UPDATE and DELETE. The SELECT command 
is used to retrieve partial data rows, entire data rows or rows combined from 
multiple tables (join operation), the INSERT command is used to add data rows, the 
UPDATE command is used to change column values in rows, and the DELETE command is 
used to remove data rows. 

Each of these commands is described below in some detail. 

SELECT Command 

The SELECT command is the basic command for data access. Its simplest form is 

SELECT columns 
FROM tables/views 

The user only specifies which columns are to be retrieved from which tables or 
views. The simplest form of the command shown above retrieves only the columns 
specified and all of the rows that belong to the specified tables/views. The 
user can also to retrieve only some of the rows by adding a WHERE clause. The 
order in which the desired rows are to be retrieved can be specified in the SELECT 
command by adding an ORDER clause. An example using these clauses follows. 

The objective is to obtain an alphabetical listing of the parts and their prices 
for those parts which cost $10,000 or less. 

The SELECT command is: 

SELECT PartName, ListPrice 
FROM PartsTable 
WHERE ListPrice <= 10000 
ORDER BY PartName ASCENDING 

In this example the requested data (PartName and ListPrice) is returned in 
alphabetical order as specified by the ORDER BY clause. The qualification of rows 

633 



is given by the WHERE clause, which specifies only those rows that have a 
ListPrice less than or equal to $10,000. 

Qualification operators that can be specified in the WHERE clause are classified 
as follows: 

Comparison: 

<= >= <> 

Logical: 

NOT, AND, OR 

Arithmetic: 

+ I * () 

Aggregate Functions 

Functions that perform calculations on a column, such as obtaining an average 
value, are also supported by HPSQL. -These are known as Aggregate Functions. A 
list of these functions along with a short description of them follows: 

SUM - Obtains the sum of the rows selected. 

COUNT - Obtains the count of the number of rows selected. 

AVG - Obtains the average value for a specified column. 

MAX - Obtains the maximum value for a specified column. 

MIN - Obtains the minimum value for a specified column. 

Other Clauses 

Other clauses allowed in SQL commands are: 

DISTINCT - This clause eliminates any duplicate rows from the resulting 
table. 

ALL - This clause prevents the elimination of any duplicate rows. It is 
the default; however, it can be included for documentation purposes. 

GROUP BY - This clause allows the grouping of rows. It can be used to 
apply aggregate functions per department, date, etc. 

HAVING - This clause is used in conjunction with the GROUP BY clause; it 
further discriminates the resulting rows after grouping. 

An example of using GROUP BY and HAVING clauses is shown in Figure 7. 

634 



Speda~ Ciai1U1s<es 
GROUP BY & HAVING 

SU~rLce 
SELECT Pert~mber, MrNIUnitPrlce) PartNumber Uni tpr ice VendorNumber 

FROM suooiyPr lee 1123-P-01 500 .00 
1123-P-01 450.00 
1123-P-01 100.00 
1133-P-01 180.00 

GROUP BY PartNuinber 

HAVIN3 M[Nll.>iltPrlcel < 400.00 1133-P-01 185.00 

Joining Tables 

1133-P-0). 250.()Q 

GROUP BY ==:> 

Part..f\lumber <Expr> 
HAV[NG ==:> 1133-P-01 180.00 

Figure 7. Special Clauses 

9001 
9002 
9003 
9002 
9001 
9003 
--

The SELECT command can also be used to join rows from multiple tables. Table 
joins are easily accomplished using the same syntax shown earlier. As in a simple 
SELECT, the user specifies which columns are to be retrieved; the FROM clause 
lists the tables involved; and the WHERE clause specifies which column values from 
one table are to match column values from other tables for the join criteria. An 
example is shown in Figure 8. 

'Get the part name, part number, and price for order number 123ABC' 

Orders 
I"' - --- - -- _wP"1t¥'!.'4!l,_ -- - --- - -1 

Parts ,,, 
_ili-_der# 

. 
Pad#...0.at..e Pric.e_ ~r:..t.# P.ar_tN..a.rn.e_ 

124ABX 2600 021685 1900.00 2600 Gear 
123ABC 7580 012785 20000.00 7580 En_g_ine-X 
123ABC 2647 012785 6500.00 2647 Scope-L 
125XML 4942 032185 4000.00 4942 Robot 
125XML 2600 032185 2000.00 

,' 
/, 

123ABC 20000.00 
123ABC 6500.00 

Figure 8. Table Join 

In this example ttoe required data exists in two tables. The table Orders and 
the table Parts need to be joined to obtain a resulting table. The common join 
column is PartNum (shown as Part# in Figure 8). This column can be used in the 
WHERE clause of the SELECT command to satisfy the join criteria. 

635 



The SELECT command for this query is: 

SELECT OrderNum, Price, Parts.PartNum, PartName 
FROM Orders, Parts 
WHERE Orders.PartNum = Parts.PartNum 

In this example the table name is also used in the column list to further 
eliminate any ambiguity because the PartNum column is found in both tables. 

INSERT Command 

The INSERT command is used to add rows to tables. This comm~nd permits the user 
to specify the columns for which values are to be added to the table. It also 
allows specification of null values for any column that accepts them. This 
command is also used to add rows to views that are derived from one table. The 
simplified syntax of this command is: 

(BULK] INSERT INTO Table/View 
[ColumnName1, ColumnName2, .•. ] 
VALUES {ColumnValues I BulkValues} 

The syntax for this command allows for bulk insertion of rows. This capability, 
allowed only programmatically, is discussed in more detail in the programmatic 
access section of this guide. 

DELETE Command 

The DELETE command is utilized to remove rows from a table. Once a row has been 
deleted, the space that it was using is released and used by other rows being 
inserted. The simplified syntax of this command is: 

DELETE FROM Table/View 
[WHERE SearchCondition] 

Note that this command contains an optional WHERE clause to specify which rows are 
to be deleted from the table/view. 

UPDATE Command 

This command is utilized to change column values. The simplified syntax is: 

UPDATE Table/View 
SET ColumnName1 ={Expression I NULL}, ..• 
[WHERE SearchCondition] 

Note that, as the syntax shows, column values can be set to a value of an 
expression or to NULL. The WHERE clause can be used to specify which rows in the 
table/view are to be updated. The absence of the WHERE clause implies that all 
rows should be updated. 

HPSQL Security 

HPSQL has one of the most comprehensive security schemes ever offered by any of 
HP's data management products. 

Security Overview 

HPSQL security is seen in terms of 'authorities'. An authority is a right to 
access a given DBEnvironment or DBEnvironment object in a specific way. To read 
or modify a given object, the user must first be 'granted' the authority to do so. 
In other words, a user cannot perform any functions on the database until 

636 



permission is given to do so. Authorities to a user can also be taken away, or 
'revoked.' 

DBEUserlDs and Authorization Groups 

Within HPSQL each system user has a corresponding 'DBEUserID' which is derived 
from the logon id assigned to them. The DBA can assign authorities to each user 
on individual basis or through 'Authorization Groups' which are logical groupings 
of users. Desired authorities can be granted to the authorization group and any 
users that are members of the group will receive them automatically. Any new 
DBEnvironment users can be added to the authorization groups to obtain the 
required authorities. Conversely, when authorities are dropped from the 
authorization group, the users belonging to the group loose the corresponding 
authorities 

Types of Authorities 

There are four types of authorities that can be granted in HPSQL: 

* Special Authorities: DBA, CONNECT, RESOURCE 

* RUN Authority 

* Owner Authority 

* Table/View Authorities: SELECT, INSERT, UPDATE, DELETE, ALTER & INDEX 

A detailed description of each of these authorities follows. 

Special Authorities 

These authorities allow the user to perform a variety of functions within the 
DBEnvironment, from accessing it to performing database administration tasks. 
There are three special authorities: DBA Authority, Connect Authority and Resource 
Authority. DBA Authority (database administrator authority) is given 
automatically by HPSQL to the user that configures the DBEnvironment. Having this 
authority means that a user can perform the tasks of resource management 
(allocating disc space), archival and recovery, security management, as well as 
enable the DBEnvironment for single or multiuser access. This authority can be 
granted to other users to share the database administration functions and 
responsibilities. 

Connect Authority is required for any user that needs to access the DBEnvironment. 
The DBA can revoke th is authority from any user or users to prevent them from 
accessing the DBEnvironment without having to revoke their other authorities. 
Having connect authority does not imply any other authorities. The user still has 
to be granted other authorities to perform any functions in the DBEnvironment. 

Resource Authority allows a user to create database objects such as tables, views 
and authorization groups. This authority can be granted to users to help the DBA 
with the task of defining the databases in the DBEnvironment. 

Run Authority 

This authority is utilized to control the access to the application programs that 
access the DBEnvironment. With this authority the DBA or the owner of the program 
can specify which users can run which application programs. Having run authority 
for a specific program allows a user to run the program. The user running the 
progr~m can perform any of the functions that the program is allowed to do, but 
only through the program. 

637 



Table/View Authorities 

These authorities can be grouped into two categories. The first category consists 
of authorities that allow the user to modify data in a table or view; the second 
category consists of those authorities that modify the table itself. In the first 
category the authorities are: insert, select, update and delete. These 
authorities are independent of each other, which means that select authority only 
allows the user to select data, insert authority only allows data insertions, etc. 
The users must be granted each authority explicitly, since having one authority 
does not imply other authorities. In the second category, authorities which 
modify the table itself, there are two authorities that qualify: Alter and Index. 
Alter authority allows the user to add columns to a given table; Index authority 
allows the user to create or drop an index from a table. 

Owner Authority 

Owner authority is not an authority that is granted to users as are the other 
authorities. A user becomes the owner of an object at the time the object is 
created. For the owner of an object certain authorities are implied 
automatically. Those authorities are: select, insert, update, delete, alter and 
index. Another way of obtaining ownership of an object is by having it 
transferred explicitly via an SOL command. Only the owner of the object or the 
OBA can transfer object ownerships. 

Object Ownership 

Ownership of an object is an important concept in HPSOL since the owner can grant 
access privileges on the object itself. In HPSOL, object ownership can be 
established in such a way that multiple users or just the OBA can own any object 
in the OBEnvironment. 

Transaction Management 

As in any information system one of the most important concerns is that of data 
integrity. HPSOL offers a very comprehensive scheme to ensure data can be 
recovered from any type of catastrophe that may occur. A transaction in HPSOL is 
considered a user defined unit of work that is indivisible, meaning that either 
the entire transaction or none of it occurs. 

Transaction Definition 

A transaction in HPSOL basically consists of a number of SOL commands delineated 
by a 'BEGIN WORK' and a 'COMMIT WORK' pair of commands. Refer to Figure 9. The 
BEGIN WORK command specifies the beginning of the transaction and the COMMIT WORK 
specifies the end. If the user forgets or does not specify a BEGIN WORK command, 
one will be issued automatically, thus ensuring that all work is defined as 
transactions within HPSOL. 

638 



Committing Transactions 

11'ransaction 

BEGrN 
Query1 
Ouery2 

COMMIT 
Ouery3 
Ouery4 
Ouery5 

COMMIT 

Transaction 

: Transaction 

.T 

Automatic transaction definition. 

Figure 9. Transaction Definition 

As stated earlier, a COMMIT WORK command specifies the end of a transaction. 
Once a transaction has ended, HPSQL ensures that it becomes permanent in the 
DBEnvironment by flushing all of the modifications to the log file. If the 
transaction does not end with a COMMIT WORK (due to a failure) none of the 
transaction is recorded in the DBEnvironment. 

Transaction Rollback 

The modifications made by a transaction in progress can be undone before it is 
committed. This is known as 'transaction rollback'. This feature comes in handy 
when certain conditions occur in the course of a transaction that invalidate any 
of the modifications that have occurred. When a transaction rollback occurs, all 
of the modifications that occurred during it are taken out, leaving the data in 
the same condition that it was in before the transaction started. Thus the 
DBEnvironment remains in a perfectly consistent state. 

Transaction Savepoints 

HPSQL also supports partial transaction rollback by allowing the user to issue 
savepoints within the transaction. Refer to Figure 10. The user can rollback the 
transaction to any savepoint previously established in that transaction. The 
feature is helpful in situations when only part of a transaction needs to be 
undone. In the event of a system crash, DBCore rolls back to the beginning of the 
transact ion, regard less of any savepoints, to ensure log ica 1 consistency of the 
dat.a. 

Transaction Locking 

HPSQL supports Implicit or Explicit locking. Implicit locking is 
accomplished via the actual data manipulation command issued. The command 
directs DBCore to lock the pages of data that are being accessed, allowing 
multiple users to read the data but only one user to modify it at a time. 
Explicit locking can be accomplished by issuing an SQL lock command to lock any 
table that will be used in exclusive mode. All data locked by either of these 
two methods gets unlocked automatically at the time the transaction ends, by 
either being committed to disc or rolled back. 

639 



Deadlock Protection 

In any system that provides automatic locking, some deadlocks are bound to occur. 
HPSQL provides .a mechanism to resolve this situation. Since HPSQL performs all 
locking automatically, it first verifies that no deadlocks would occur. If any 
potential deadlock situations are detected, HPSQL utilizes a mechanism to isolate 
the offending transaction and rolls it back. This frees up the resources and 
allows the processes involved to continue their transaction. 

Transaction Savepoints 
BEGIN 

Query 1 ••. 

· • SAVEPOONT 1 
Query A. .. 

· · · • SAVEPOINT 2 
Query n ... 

COMMIT 

Savepoints allow partial transaction roll-back. 

Figure 10. Transaction Savepoint 

Transaction Recovery 

HPSQL also offers a mechanism which permits recovery of the DBEnvironment from any 
type of failure. The failures that HPSQL can recover from are categorized as soft 
and hard. A soft failure is any software failure causes an HPSQL abnormal 
termination such as program aborts, operating system failures and extended power 
blackouts that drain the reserve battery. A hard fa.ilure is one that causes 
permanent loss of data, such as disc head crashes. 

Transaction Logging 

HPSQL ut i 1 izes a permanent log file to perform transact ion recovery. Th is log 
file can be placed on a device different from the device or devices where the 
databases reside to improve transact ion th rough put. To further ensure recovery, 
an optional dual log file can also be specified for the DBEnvironment. The second 
log file should be placed on a different disc device from the first log file. ·The 
dual log file, when enabled, is utilized automatically by HPSQL to recover the 
DBEnvironment in the case that the first log file becomes damaged. 

Soft Failure Recovery 

Recovery from soft failure is simply accomplished. Recovery from program aborts 
occurs automaticaliy by a special HPSQL process that rolls back the transaction in 
progress. All the user needs to do to recover from system failures and power 
blackouts is access the DBEnvironment. Recovery is performed automatically by 
HPSQL by rolling back all of the transactions that were in progress at the time of 
the failure. 

640 

Hard Failure Recovery 

Recovery from a hard failure is still simple but requires manual intervention. 
This type of recovery requires a DBEnvironment backup or 'archive' and log file 
backups. The log file or dual log files being used at the time of the failure can 



also be utilized for recovery if they were not damaged. Using all of these files 
for recovery restores the DBEnvironment to the last logical and physical 
consistent state it was before the failure. Figure 11 depicts the different files 
that can be used for recovery. 

' 

,. 
' 

Recovery 
Hard Failure 

_,,, 

if\ 

r::_ Database) 

Restore Archive & Rollforward 

Figure 11. Hard Failure Recovery 

ISQL Interactive Interface 

HPSQL also offers an interactive interface named ISQL. This interface is designed 
to allow the user to perform multiple functions in one program. ISQL can execute 
all of the SQL commands (with the exception of those commands that are allowed 
programmatically only), plus some commands of its own for utility and maintenance 
functions. With this interface program all of the data definition, data 
manipulation and database administration functions can be performed via an 
easy-to-use command-driven interface. 

Help Facility 

ISQL has a friendly help facility which provides information on the use of 
commands along with syntax and examples. This help facility is similar to help 
facilities offered in other HP software products. 

Profile File 

ISQL also supports the use of profile files. These files contain commands to set 
up the ISQL session such as the subsystem prompt, the output line width and 
others. A Profile file can also be set up in a way that will automatically 
connect ISQL to a predefined DBEnvironment, thus permitting more control over the 
users. 

Prompting Mode 

One of the most helpful features of ISQL is that it provides a prompting mode for 
ISQL commands. The prompting works as follows: whenever an ISQL command is left 
unfinished, ISQL shows the different options for the user to choose. At this time 
the user can type the desired option or cancel the command. The user can proceed 
in this way until the options for all of the parameters for the entire command are 
entered or canceled. This allows the user to quickly start using ISQL without 
spending time memorizing commands or thinking about command syntax. 

641 



Command Files 

The use of command files is also supported by ISQL. A command file is a file 
containing either ISQL or SQL commands. These files can be used to store command 
sequences which are used often. This saves the user from having to type the same 
commands every time. 

Command History Buffer 

Another attractive feature of ISQL is the fact that it holds the last five 
commands that have been issued in a Command History Buffer. These commands can be 
listed, edited and reissued if desired. The facility for editing commands is very 
similar to the MPE V REDO command, but with several enhancements. 

Synonym Files 

Another type of file supported in ISQL is a synonym file. This type of file can 
be used to designate alternate names for SQL and ISQL commands. This means that 
any command can be known to ISQL by more than one name. This allows users to 
utilize terminology that is familiar to them, speeding up the time that it takes 
to use ISQL. An inherent feature that results from the use of this file is that 
certain commands can be disabled for some users of the DBEnvironment, permitting 
tighter security. 

Data Loading/Unloading 

ISQL also has a facility for loading and unloading data to or from the 
DBEnvironment. This facility supports two file formats, internal and external. 
Internal format files are specially formatted files that are managed by ISQL only 
and can be utilized to perform maintenance functions in the DBEnvironment. Such 
as unloading and loading a table to achieve a higher degree of clustering, thus 
speeding up data access. Externally formatted files are ASCII files that can be 
managed by users and ISQL. This type of file can also be used to load tables. 
The load command allows the user to specify the relative position of each column 
within the external data file, permitting the use of data that is not in the same 
order as the table being loaded. Data can be easily unloaded from any table or 
view or by optionally specifying a tailored SELECT command with any of the options 
that were discussed earlier. The load/unload facility of ISQL permits the user to 
perform many maintenance functions in the DBEnvironment without the need for 
writing application programs. 

HPSQL Programmatic Interface (Preprocessors) 

The programmatic interface of HPSQL features a simple interface that involves the 
use of preprocessors. The user does not have to learn a separate set of 
procedures to access an HPSQL DBEnvironment programmatically. Programmatic 
database access and manipulation of data can be performed using the same easily 
mastered SQL language which is used for interactive access. 

Preprocessors Overview 

As mentioned above, the programmatic interface uses preprocessors. The user 
embeds SQL statements in source programs. The source programs are then submitted 
to a preprocessor which reads the source and produces a modified source program. 
The modified program still contains the SQL statements in comment form. following 
these comments, the preprocessor inserts new statements which consist of actual 
procedure calls to perform the functions that the SQL statements were requesting. 
Additional compiler include files are also generated containing ancillary 
parameters supporting the newly created procedure calls. Figure 12 illustrates 
this process. 

642 



HIPSQl PreProcessors 
Overview 

Compiler 

* Modified Source Program 

Figure 12. HPSQL Preprocessor Overview 

Embedded SQL 

The embedded SQL statements in the source program are written in the same 
easy-to-learn language that was described earlier, with a few elements added. 
Consider for example the following SQL statement: 

SELECT PartName 
FROM Parts 
WHERE PartNum = '123ABC' 

This statement, to be used programmatically, requires that a buffer be specified 
to receive the information that is being selected (PartName in this case). The 
buffer parameter is specified via a program variable (also known as host variable) 
in the special INTO clause of the SELECT command as follows: 

SELECT PartName 
INTO :PartBuff 
FROM Parts 
WHERE PartNum = '123ABC' 

The only difference between this command and the previous shown is the addition of 
the INTO clause with a buffer designation of :PartBuff to indicate where the 
requested data is to be returned. While this SQL statement returns the PartName 
for PartNum = '123ABC' only, it is possible to request information for other 
PartNames. The value setting for PartNum can also be substituted for a host 
variable to be able to request information for any PartNum other then ' 123ABC'. 
The SELECT statement with a host variable will now look like this: 

SELECT PartName 
INTO : Part Buff 
FROM Parts 
WHERE PartNum = :PartNoBuff 

As this example indicates, the same basic SQL statements that are used 
interactively can be embedded in source prog "ms. Thus, the user needs only one 
language to accomplish both types of access. 

643 



HPSQL Optimizer 

IEmbeddled SQl S~a~ements 

SourceFile 

SELECT PartNeme 
INTO • partBµff 

FROM Parts 
WI-ERE PartNum = :PartNoBuff 

SELECT PartName 
FROM Parts 
WHERE PartNum = '12.'.lABC'; 

Single user interface. 

Figure 13. Embedded SQL 

The HPSQL preprocessors perform several tasks during the preprocessing phase. One 
task is that of parsing the embedded SQL statements and verifying that no syntax 
errors are present. Another task performed by the preprocessor is to optimize the 
data access to speed up data manipulation. The preprocessor accomplishes this 
task by calling a query optimizer which is a component of HPSQL. This is shown in 
figure 14. The optimizer calculates a cost function for the different ways to 
access the data, taking into account the indexes defined on the tables being 
accessed th rough the query. After cal cu la ting the best cost fun ct ion, a data 
access module known as a section is stored in the System Catalog. The 
preprocessor generates the code in the modified source program to utilize the 
stored sect ions at run time. HPSQL makes sure that any changes made to the 
structure of the data -- whether indexes are added, dropped. o·r security is changed 
-- are reflected in the stored sections to maintain the optimum access module at 
all times. 

644 

HIPSQlb Optimizer 

PreProcessor 

' 

lsaL Optimizer!~ __ _ 

' System 
Catalog 

Optimized queries stored in catalog. 

Figure 14. HPSQL Optimizer 



Bulk Access 

Another programmatic function provided by HPSQL is that of 'Bulk Access.' This 
type of access can be used for data input or output. To perform bulk access, the 
user defines an array {also known as Row Buffer) in the data area {or stack) of 
the program. Through this row buffer the user can request to SELECT or INSERT 
multiple rows at the same time, thus minimizing disc access. Figure 15 summarizes 
this type of access. 

!Prngra.m11111a.froc Bulk Access 

0 
k 

Bulk access optimizes disc 1/0 

Figure 15. Bulk Access 

Summary 

The capabilities offered by HPSQL can be summarized as follows: 

* Database environment {DBEnvironment) that supports multitable views with 
built-in logging and is treated as a unit. 

* Powerful multipurpose language that can be used dynamically in 
interactive or programmatic modes. 

* Comprehensive security mechanism that assures that only authorized user 
are allowed to access the DBEnvironment. 

* Transaction management mechanism that ensures physical and logical 
integrity. 

* Multifunction interactive interface (ISQL) that facilitates tasks of 
database administration, maintenance as well as satisfying ad-hoc query 
use. 

* Programmatic interface that improves programmer productivity with a 
built-in optimizer. 

HPSQL is a versatile DBMS that offers a set of features that are suitable for 
information systems that are very dynamic in nature. 

645 





Memory Mapped File Access on the HP3000 900 Series 
Exploiting HP Precision Architecture 

by 
Winston Prather 
Hewlett Packard 

Information Technology Group 

Abstract 

The MPE XL File System was designed to provide high speed file 
access with 1 ow overhead. These goa 1 s are achieved by taking 
advantage of design features of the HP Precision Architecture. 
This presentation wi 11 address the methods used by the new file 
system to maximize performance while maintaining source and 
object code compatibility with MPE V. A new file access method, 
known as User Mapped File Access, will also be discussed. 

647 



Memory Mapped File Access on the HP3000 900 Series 
Exploiting HP Precision Architecture 

by 
Winston Prather 
Hewlett Packard 

Information Technology Group 

Presentation Overview 

The MPE XL File System was designed to take full advantage of the 
HP Precision Architecture and (at the same time) ensure source 
and object code compatibility with previous versions of MPE by 
supporting the MPE V intrinsic interface. The new file system 
also provides an additional file access method known as User 
Mapped File Access. This access method, which also exploits the 
HP Precision Architecture, eliminates file system overhead to 
increase file access speed. 

HP Precision Architecture 

Before understanding how the file system max1m1zes rierformance it 
is necessary to become familiar with some basic features rirovided 
by HP Precision Architecture. Specifically, an understanding of 
the large address space and how it is utilized must be achieved. 
The architectural features mentioned in this presentation are 
only a small subset of the total architectural design. 

First implementations will provide for a 48 bit virtual add1·ess. 
This allows 256 trillion bytes of information to be assigned 
virtual addresses (mapped into the virtual address space). Once 
this mapping has occurred, the data can be accessed directly by 
memory LOAD and STORE instructions. This means the LOAD and 
STORE instructions use a virtual address as the source or tar~1et 
of the operation. 

648 



Obviously the machine does not have 256 trillion bytes of 
physical memory. Therefore, a mechanism must be provided to 
manage the swapping of data between virtual and physical memory. 
Virtual memory is defined as all code and data that has been 
mapped into the virtual address space. 

In the HP Precision Architecture, physical memory is allocated on 
a demand basis. This means that when a LOAD or STORE instruction 
executes, the hardware determines if the requested data is in 
physical memory. If the data is not present, it is moved into 
physical memory (via disc I/O) and the instruction is restarted. 

In order to facilitate the swapping of data between physical and 
virtual memory, both the virtual address space and physical 
memory are logically divided into 2Kb sections called pages. 
When a reference is made to a virtual address, the entire page 
that contains the referenced data is brought into physical 
memory. This type of virtual memory management system is known 
as demand paging. Disc each i ng is inherent in this type of 
architecture. 

MPE XL File System Exploits the HP Precision Architecture 

Having explained a few of the fundamental concepts upon which the 
HP Precision Architecture is based, techniques used by the MPE XL 
file system to to increase file access speed can now be examined. 

The MPE XL File System exploits the large address space and 
virtual addressing of the new architecture by mapping all open 
disc files into this virtual address space. Once this mapping 
has occurred, the file system uses machine LOAD and STORE 
instructions to access the file. No explicit buffer management 
is necessary. The overhead involved in file access is 
substantially less, in most cases, than that of MPE V. 

The first time a reference is made to a page within a file, a 
page fault (absence of a page) will occur. The Virtual Memory 
Management System will move the correct virtual page into 
physical memory. Processing can then continue. The next time a 
reference is made to the same file page the data will already be 
present in physical memory. No subsequent I/O will be needed. 

An example can be used to illustrate this. Consider a program 
that opens a file using FOPEN, reads the first record using 
FREAD, updates record 10 using FWRITEDIR, and then closes the 
file with FCLOSE. How the file system handles each of these 
intrinsic calls can now be examined. 

First, FOPEN is called. As usual the file system validates 
parameters, checks security, etc. In addition, FOPEN will 
request the Virtual Memory Management System to map the file into 
the virtual address space (assign every byte of data in the file 
a unique virtual address). The file system will retain the 

649 



starting virtual address of the file for use by later intrinsic 
ca 11 s. 

Next, the user calls FREAD to read the first record of the file. 
Again, the file system validates parameters, etc. At this point, 
in a traditional architecture, the file system would ask the I/O 
system to read the data from the file into a local file system 
buffer. This is not the case in a virtual memory demand paging 
environment. In this environment, the file system will calculate 
(using the current record pointer, record structure, and starting 
virtual address) the virtual address of the requested record. 
The file system will then do LOADs from this calculated virtual 
address and STOREs to the virtual address of the target buffer 
passed to FREAD. 

A call to FWRITEDIR works similarly. The target address is 
calculated by multiplying the record number by the record length 
and then adding this value to the starting virtual address of the 
file. LOADs are then performed from the virtual address of the 
source buffer, passed to FWRITEDIR, and STOREs are performed to 
the calculated virtual address within the file. Page faulting 
could occur during these LOADs and STOREs and would be handled by 
the Virtual Memory Management System. 

Lastly, a call to the FCLOSE intrinsic would ensure all file 
pages currently in physical memory were posted to disc and 
request the Virtual Memory Management System to un-map the file 
from the virtual address space. The address space that was used 
for the file is now free to be used for other files, data 
structures, etc. 

Prefetching 

The MPE XL File System further increases file access speed by 
prefetching file pages into physical memory prior to their actual 
reference. This is accomplished by determining if a future LOAD 
or STORE to the file is going to cause a page fault. If a page 
fault is inevitable, the file system will notify the Virtual 
Memory Management System that a needed page is not present in 
physical memory. The file system then treats this as an 
opportunity to request additional file pages. For example, if a 
file is being accessed in a sequential manner (FREAD), it is 
likely that accesses to file pages directly following the current 
file page will occur. If the operating system brings not only 
the currently needed page into memory, but al so the next few 
pages, the time waiting for absent pages will be reduced thus 
increasing the- program execution speed. 

Not only does the new file system decrease file access time with 
this technique, but also adjusts to the programs demand via 
heuristics. For example, if a program is consuming a file at a 
high rate of speed, a larger pref etch wi 11 be done. Pre fetching 

650 



is adjusted based on application demand, system loading, and 
available cpu. 

User Mapped File Access 

A new file access method, known as User Mapped File Access, will 
be available to users of the MPE XL operating system. This 
method builds on the demand virtual memory environment discussed 
previously, but eliminates file system overhead. User Mapped 
File Access does not use intrinsics to access files. Instead, 
FREADs and FWRITEs are replaced by high level language assignment 
statements for which compilers generate machine LOAOs and STOREs. 
Additionally, this new access method also allows programs to 
treat files as shared virtual memory, providing an extremely 
flexible migration path for extra data segments. With User 
Mapped File Access programmers will be able to define multiple 
views of the data in fi 1 es with no concern for the phys i ca 1 file 
structure. 

Examples of this technique will be shown in the presentation. 

MPE XL File System 

The MPE XL File System takes maximum advantage of the foundation 
laid by HP Precision Architecture to provide high speed file 
access. Inherent caching, along with the elimination of explicit 
buffer management decrease the overhead involved in file access. 
Pre fetching and heuristics provide the abil ity to maintain the 
optimum number of file pages in physical memory. These features, 
combined with the new file access method, User Mapped File 
Access, provide high performance and extreme flexibility of file 
access and management for users of the MPE XL operating system. 

651 





Abstract 

HP 3000 Object Code Compatibility 
on Future HP 3000 Systems 

by 

R. Gregory Stephens 
Hewlett-Packard 

Information Technology Group 

With the introduction of HP Precision Architecture based HP 3000 
systems the question of Object Code Compatibility between HP 3000 
systems based on differing architectures arises. This lecture 
addresses this topic by presenting an overview of the technology 
developed to provide compatibility between these systems at the 
object code level. 

As a foundation for addressing this topic the lecture will 
provide a technical definition of Compatibility Mode and Native 
Mode followed by a description of the technology itself. The 
technology consists of an Emulator and Object Code Translator 
which will be discussed in detail. 

653 



HP 3000 Object Code Compatibility 
on Future HP 3000 Systems 

by 

R. Gregory Stephens 
Hewlett-Packard 

Information Technology Group 

SYNOPSIS 

MPE V Programs on MPE XL 

To provide compatibility between MPE V based systems and MPE XL 
based Precision Architecture systems Hewlett-Packard has invested 
a significant amount of effort in providing a Compatibility Mode 
environment that allows programs written on MPE V based systems 
to run without changes. It is this Compatibility Mode 
environment that will allow Customers, Third Party Software 
Developers, and Hewlett-Packard itself, the ability to execute 
applications without changes. (Note: In order to distinguish 
between the two different architectures that now make up the HP 
3000 line of computers I will use the term "Stack 3000" to refer 
to that series of machines 37-70 using the stack architecture and 
the term "Register 3000" to refer to the 900 Series of machines 
using the HP Precision Architecture.) Turbo Image and SPL are 
two examples of HP software which take advantage of Compatibility 
Mode. 

In contrast to Compatibility Mode, Native Mode allows users the 
abi 1 ity to take advantage of many of the new features the HP 
Precision Architecture affords including 32 and 64 bit addressing 
and mapped files as well as providing the best performance with 
source code compatibility. By re-compiling source code with the 
MPE XL version of the compilers user can take advantage of Native 
Mode features and performance. ALLBASE and the majority of the 
MPE XL Operating Sys tern are examples of HP software which take 
advantage of Native Mode. 

Programs executing in Native Mode can also call procedures which 
reside in Compatibility Mode SLs via the MPE XL Switch Subsystem. 
The Switch Subsystem also provides the ability for Compatibility 
Mode programs to call procedures which reside in Native Mode 
Libraries. ALL BASE' TurboWi ndow and the MPE XL File System are 
examples of HP software that takes advantage of the MPE XL Switch 
Subsystem to perform dual mode execution. 

654 



To achieve the high degree of compatibility that MPE XL provides, 
the 16 bit stack with DL, DB, Q, S, and Z pointers is created for 
use by MPE V programs executing in Compatibility Mode. The MPE V 
program structure is also maintained including use of the P, PB, 
and PL registers as well as the structure of the STT. 

Emulator 

The first method of supporting the Stack 3000 instruction set on 
the Register 3000 machines is the Emulator. When MPE V programs 
are restored on MPE XL based systems the user types the : RUN 
command at the MPE prompt and the program wi 11 run under the 
Emulator, transparent to the user. 

The Emulator interprets the Stack 3000 instructions at run time 
in a manner similar to what the microcode of a Stack 3000 does. 
A detailed discussion of how the Emulator interprets MPE V 
programs will be presented in the lecture. 

Object Code Translator 

The second method of supporting the Stack 3000 instruction set is 
via the Object Code Translator (OCT). Just as the Emulator was 
analogous to an interpreter, the Object Code Translator is 
analogous to a compiler. Inherent in this approach is the 
requirement of a translation step just as a compiler requires an 
initial compilation step before execution of the program. 

The Object Code Translator will accept as input an MPE V program, 
it creates a duplicate of this MPE V program, translates the 
Stack 3000 instructions in the input file into Register 3000 
instructions and appends the output of the translation to the 
output MPE V program. 

When the translated program is run, it still operates in 
Compatibility Mode with the familiar 16 bit stack but the 
translated code which was appended to the program file is 
executed. This approach saves the decoding and interpreting of 
the Stack 3000 instructions at run time, as the Emulator does, 
plus it allows optimizations to be made, all of which results in 
significantly better performance 

A detailed discussion of the Object Code Translator will be 
presented in the lecture. 

655 




