
• •

INFORMATION
CROSSROADS
OF THE 80s

~E~T~~~~~111111111NTEREX
HOSTED BY BAL Tl MORE/WASHINGTON RUG

INTEREX
the International Association of

Hewlett-Packard Computer Users

of the

at

D.C.
Hosted by the

Ba!timore--Washington Regional
Users Group

1---·-·-------·----····----

P ape t~ s for the

~-i p ,3000
I a 1~1cj

ll Series 1 00 I
___ , ______ ~ ___ _J

VOLUME II
PAPER 3043-3091

Sam Inks, Editor

vi..

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

VOLUME II

Introduction

This volume of the Proceedings of the INTEREX 1985 North American
Conference was printed from machine readable text supplied by the
authors (with a few exceptions). Each paper was formatted in TDP
and printed on an HP2680A Laser Printer.

Thanks go to the authors who sent their papers in on time and in
the requested formats. Special thanks to the Review Committee for
all of their time, efforts and suggestions.

A special thanks also to those who have helped me keep my sanity,
typed the non-machine readable papers, held meetings at their
house or in some other manner lent their own time and support to
the publishing of these proceedings.

REVIEW COMMITTEE

Nick Demos
Sam Inks
Suzanne Perez
Joan Peters
Kevin Rhea
Chris Seiger

SPECIAL PEOPLE

Dean Gabersek
Millie Gabersek
John Grether
Dorothy Inks
Lee Mauck
Mary Moorer
Nancy Murray
Ron Smirlock

I would also like to offer special thanks to Jim Cummins, my
boss, and to Atlantic Research Corporation for allowing me the
time to participate in this undertaking and for the use of the HP
Computer systems.

My thanks also to F. Stephen Gauss of the HP1000 group for his
help and support.

a
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

fodex by Author Vol.

Beasley, Dave fiewlett-Packard
How Dispatching Queues Really Work 3065 II

Bircher, Carolyn Hewlett-Packard
Writing Efficient Programs in Fortran 77 3076 I 1

Boles, Sam Hewlett-Packard
Unix Thru The Eyes of MPE 3083 ll

Boles, Sam Hewlett-Packard
A Blend of HP3000/HP9000 For Computer Graphics ...•.. 3066 ti

Bowers, Keith & Beauchemin, Denys Northern Telcom
Things That Go Bump in The HP3000•.... 3018 1

Boyd, Larry Dallas Times Herald
The Seg'Tienter .•...........................••...•.... 3005

Butler, Stephen M. Weyerhaeuser
Dictionary/3000--Extended Tour ..•................... 3006

Carroll, Bryan Hewlett-Packard
MPE Disc Caching 3068 t l

Casteel, Michael Computing Capabilities Corp
Anatomy of a True Distributed Processing
Application , .3029

Chang, Wanyen Longs Drugs
The Sorted File Access Method , 3036

Clark, Brice Hewlett-Packard
Positioning Local Area Networks•...... 3092 t t

Clemons, Brett Consultant
Using Intrinsics in COBOL Programs 3027

Clifton, Roy Hewlett-Packard
North American Response Center 3054 It

Cornford, M. G. Northrop Corporation
There's Got To Be A Pony Here, Somewhere 3024

Depp, James A. UPTIME
Recovery by Design ,,3053 11

Duncombe, Brian Carolian Systems Inc.
Performance Self Analysis 3025

East, Ellie Media General
Training: The Key To Success With Personal
Computers ... 3011

East, Ellie Media General
Information Center: Implementation Using HP3000
and HP150 ... 3026

Engberg, Tony Hewlett-Packard
Response Time: Speeding Up the Man/Machine
Interface ... 3060 t 1

Fisher, Eric S, Wellington Management r.o.
You Said You Have a Bunch of Micros Linked
To Your HP3000? Great!! Now What? 3035

Floyd, Terry H. ASK Computer Systems
CIM Is Not A SoftDare Package or a Magic Wire 3010

Fochtman, Jerry Exxon Chemical Americas
Emulating A Real 'l'i.rne, Multi-Tasking Application
System on the HP3000 3038

b
WASHINGTON. D. C.

BAL TIM ORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Franklin, Bill Hewlett-Packard
Software Technology for the 80's (Understanding
Key Current and Future Technologies) 3009

Gerstenhaber, Peter CMS Ltd.
Cooperating Processes in an Information Network 3051

Grim, Jelle Holland House
The Twilight Zone, Between MPE Capabilities , ... 3045

Gross, Gail Hewlett-Packard
Training and Supporting Office Systems Users 3019

Hirsh, Scott RCM
Change Management: An Operations Perspective 3084

Hoeft, Mark L. Hewlett-Packard
Developing Cost Effective Utilities and
Applications Using Business Basic/3000.,•....... 3067

Holt, Wayne Union College
Communicating in a Mixed Vendor Environment 3031

Idema, Tom Westinghouse Furniture Systems
The Role of The System Manager 3071

!sloor, Srekaanth Cognos
The Ultimate Challenge in Application Design:
Managing Data Integration , , . , , ... , . , ...•..•... 3074

Kaminski, Thomas J. Singer
Migrating Information Between HP3000 Data Bases,
Electronic Spreadsheets and Microcomputer
Data Bases ...• 3042

Kane, Peter Hewlett-Packard
Turbo IMAGE Run Time Options 3039

Karlin, Robert Consultant
Auditability: or What's a Nice Byte Like You
Doing in a Base Like This?•..... 3061

Kopecky, Jerry Illinois Criminal Justice Authority
Operational Considerations for Police Networks 3077

Korb, John P. Innovative Software Solutions
Store-and-Forward Data Transmission in a
Multi-System Network , , 3046

Larson, Orland Hewlett-Packard
Application Prototyping: A Proven Approach to
Information Systems Design and Development•. 3081

Lawsun, Roger Proactive Systems
The Use of IMAGE Transaction Logging in a
Multi Data Base, Multi Machine Configuration to
Achieve A Non-Stop, Fault Tolerant HP3000 System .•.. 3023

Lewis, Donn Allegheny Beverage Corp.
Building Your Own X.25 Data Network 3040

Mattson, Robert R. WIDCO
Why Software Projects Don't Quite Succeed ...•....... 3034

McDermott, James T. Consultant
Rational Structuring Techniques for COBOLII/3000
Maintainabli ty••.......... , , • 3012

McGinn, Dennis Hewlett-Packard
An OSI Networking Architecture for Multi-Vendor
Networking ..•. 3007

c

l I

11

11

I I

11

11

II

I I

It

If

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

Miller, Marv Hewlett-Packard
The Application Development Environment
ofthe80's••.••••••.... 3052 II

Naber, Lance L.J. Naber & Associates
Ergonomics and VPLUS/3000 Screen Design ...•••..•••.. 3020

Neilson, Tom Hewlett-Packard
Simple Steps to Optimize Transact/3000
Applications•............••.•••.•..••••. 3043 I I

Neuhaus, Peter Hewlett-Packard
Techniques for Developing Device Independent
Graphics Software .•......•...•..•.•.......•.•••••••. 3090 11

Olsen, Roger Productive Software Systems
A Guide to Software Evaluation and Selection ..•.•.•. 3017

Olson, Tad Hewlett-Packard
The Effectiveness and Shortcomings of Using
Programming Tools•.....•..•••.•. 3037

Overman, James S. EXXON
Manufacturing Application Experiences Implementing
HP's Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and
HPFA ,••.........•.....•....•. 3001

Porter, Steve DP Systems
Turbo Pascal and AGIOS on the HP150 .••.•.••.••.•••.. 3050 I I

Rego, Alfredo Adager
Natural Data Base Normalizing ...•.••••.••••.•••.•.•. 3075 II

Rego, Alfredo Adager
The Drama Behind The System Status Bulletin (SSB) ... 3082 It

Remillard, Robert Infocentre, Ltd.
Opportunities and Dangers of 4GL's .••.••.••••..••... 3004

Rodriguez, Julia Hewlett-Packard
The New COBOL Standard: "What's in it for You" •••••. 3003

Scheil, Dennis Base 8 Systems Inc.
KSAM Survival Techniques 3049 11

Schulz, Duane Hewlett-Packard
Fitting Printer Technologies with Personal
Computer and Office Applications .•.•..•...•••••.•••. 3073 !I

Scott, George B. ELDEC
Using Process Handling to Optimize Throughput
in a Transaction Oriented System .•••..••.•...••••••. 3058 11

Scroggs, Ross Telemon
Everything You Wanted to Know About Interfacing
to the HP3000: The Inside Story .•.. , •......•...••... 3055 11

Setian, Kathy Hewlett-Packard
Personal or Powerful••.••••.•.•.••...... 3002

Shoemaker, Victoria Mitchell Humphrey
Software Design: Building Flexibility .•••••••.•••••. 3044 11

Simmons, E. R., Ph. D
Information and Humanity ..••••••.••.••••.•••••.•••.• 3059 11

Skrabak, John T Baltimore AircoH
HP3000--Gateway To Success ..•..•••••••••.•••••••••.. 3022

Snesrud, Wallace M. General Mills
l1GL and Reality•....•.••• , .•..••.•. , .••••. 3021

Solland, Leigh Cognos
How to Design for the Fourth Generation ...••.•.••••. 3013

d
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Stewart, Dwight Hewlett-Packard
Spoolfile Recovery Withou~ a Warmstart 3091 11

Sullivan, Charles Pacific Cea.st Building Products
The HP3000: A Data Base Engine 3030

Tabak, Bruce Consultant
Performance Optimization in COBOL 3057 11

Van Geesbergen, Rene' Holland House
The Poor Man's DS, Fact or Fiction• : 3016

Volokh, Eugene VESOFT
Secrets of System Tables .. Revealed•............. 3014

Wallace, Mark Robinson, Wallace & Co.
4GL' s: Use and Abuse 3085 11

Whitehurst, Otis Vermont Housing Finance Agency
Writing Intelligent Software 3028

Wilhelm, Lisa & Lukoff, Stan E.I. DuPont
Transact & 3rd Party Software Tools Used in a
Large On~Line Environment•.........•........... 3069 II

e
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Index by Title VoT,

4GL and Reality .•••••••...•••••••••••..•.•.........•.••.. 3021
Snesrud, Wallace M. General Mills

4GL 's: Use and Abuse .•........•••.........•••••..•••• , •.. 3085 11
Wallace, Mark Robinson, Wallace & Co.

A Guide to Software Evaluation and Selection ...•.••••••.. 3017
Olsen, Roger Productive Software Systems

Anatomy of a True Distributed Processing
Application .•...••..•.•••..•.•....... , ••••••••••••.. 3029
Casteel, Michael Computing Capabilities Corp

Application Prototyping: A Proven Approach to
Information Systems Design and Development ..•••••... 3081 II
Larson, Orland Hewlett-Packard

Auditability: or What's a Nice Byte Like You
Doing in a Base Like This? 3061 11
Karlin, Robert Consultant

A Blend of HP3000/HP9000 For Computer Graphics ..•••••••.. 3066 11
Boles, Sam Hewlett-Packard

An OSI Networking Architecture for Multi-Vendor
Networking ...••.•.........•.........•... , ..•..•• , ... 3007
McGinn, Dennis Hewlett-Packard

Building Your Own X.25 Data Network•.•.••••••••.. 3040
Lewis, Donn Allegheny Beverage Corp.

CIM Is Not A Software Package or a Magic Wire ..••.•••••.. 3010
Floyd, Terry H. ASK Computer Systems

Change Management: An Operations Perspective ...••••••••.. 3084 II
Hirsh, Scott RCM

Communicating in a Mixed Vendor Environment .••••••• , ••••. 3031
Holt, Wayne Union College

Cooperating Processes in an Information Network .••••••••. 3051 II
Gerstenhaber, Peter CMS Ltd.

Developing Cost Effective Utilities and
Applications Using Business Basic/3000 ..•.••••••••.. 3067 II
Hoeft, Mark L. Hewlett~Packard

Dictionary/3000--Extended Tour•...•••••••••••••••••.. 3006
Butler, Stephen M. Weyerhaeuser

Emulating A Real Time, Multi-Tasking Application
System on the HP3000 ..•••......•.....•.•..•..•••••.. 3038
Fochtman, Jerry Exxon Chemical Americas

Ergonomics and VPLUS/3000 Screen Design ...•••...•••••••.. 3020
Naber, Lance L.J. Naber & Associates

Everything You Wanted to Know About Interfacing
to the HP3000: The Inside Story••...•••••••.. 3055 II
Scroggs, Ross Telemon

Fitting Printer Technologies with Personal
Computer and Office Applications ..•..••••.••••••••.. 3073 II
Schulz, Duane Hewlett-Packard

HP3000--Gateway To Success••.•••••••.••••.••••••.. 3022
Skrabak, John T Baltimore Aircoil

How Dispatching Queues Really Work•..•.•.••••••••... 3065 II
Beasley, Dave Hewlett-Packard

How to Design for the Fourth Generation ..•...•••••.••••.. 3013
Solland, Leigh Cognos

f
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Information Center: Implementation Using HP3000
and HP150 , ••.••.••.•••......•..•.• , •••••........ 3026
East, Ellie Media General

Information and Humanity•.•••...•.•.•.••.•••..•..... 3059
Simmons, E. R., Ph. D

KSAM Survival Techniques .••••..•••.•••.•••.•••••••••.•.•. 3049
Scheil, Dennis Base 8 Systems Inc.

Manufacturing Application Experiences Implementing
HP's Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and
HPFA ..•.••••. ,., .•.. , .. ,., .• ,,., .. ,.,, ••...••.• ,, •.. 3001
Overman, James S. EXXON

MPE Disc Caching .•.••• , , ..•.•.•.••••. , , ••••..•.•. , , •••... 3068
Carroll, Bryan Hewlett-Packard

Migrating Information Between HP3000 Data Bases~
Electronic Spreadsheets and Microcomputer
Data Bases , , , , ... , , , , 3042
Kaminski, Thomas J. Singer

Natural Data Base Normalizing ..••••.•••••••••••••.••••••. 3075
Rego, Alfredo Adager

North American Response Center .••..•••.•••••••••••..•••.. 3054
Clifton, Roy Hewlett-Packard

Operational Considerations for Police Networks ..••..••... 3077
Kopecky, Jerry Illinois Criminal Justice Authority

Opportunities and Dangers of 4GL's••.•••••.••••.•.•.. 3004
Remillard, Robert Infocentre, Ltd.

Performance Self Analysis ...•........•.....••••••••.•••.. 3025
Duncombe, Brian Carolian Systems Inc.

Performance Optimization in COBOL••••••.••••••••••••. 3057
Tobak, Bruce Consultant

Personal or Powerful .••••......•.•....••••.•••••••.•••..• 3002
Setian, Kathy Hewlett-Packard

Positioning Local Area Networks .••.•.••.•••••.•••••••••.. 3092
Clark, Brice Hewlett-Packard

Rational Structuring Techniques for COBOLII/3000
Maintainabli ty ...••..•••.•..•.•.••••••••••••.••••... 3012
McDermott, James T. Consultant

Recovery by Design , , , .. , , . , . , . , . , . , ... 3053
Depp, James A. UPTIME

Response Time: Speeding Up the Man/Machine
Interface , .. , , , . , .. , 3060
Engberg, Tony Hewlett-Packard

Secrets of System Tables .. Revealed ..••••.•••••••••••••••. 3014
Volokh, Eugene VESOFT

Simple Steps to Optimize Transact/3000
Applications ...•.•••...•.....•...•..••••••.•••...... 3043
Neilson, Tom Hewlett-Packard

II

ll

II

II

II

II

II

II

II

II

II

g
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAl USERS GROUP tNTEREX85

Software Design: Building Flexibility 3044
Shoemaker, Victoria Mitchell Humphrey

Software Technology for the 80's (Understanding
Key Current and Future Technologies) 3009
Franklin, Bill Hewlett-Packard

Spoolfile Recovery Without a Warmstart 3091
Stewart, Dwight Hewlett-Packard

Store-and-Forward Data Transmission in a
Multi-System Network•............... 3046
Korb, John P. Innovative Software Solutions

Techniques for Developing Device Independent
Graphics Software 3090
Neuhaus, Peter Hewlett-Packard

The Application Development Environment
of the So's ... 3052
Miller, Marv Hewlett-Packard

The Drama Behind The System Status Bulletin (SSB) 3082
Rego, Alfredo Adager

The HP3000: A Data Base Engine 3030
Sullivan, Charles Pacific Coast Building Products

The New COBOL Standard: "What's in it for You" ,3003
Rodriguez, Julia Hewlett-Packard

The Poor Man's DS, Fact or Fiction 3016
Van Geesbergen, Rene' Holland House

The Role of The System Manager•.... 3071
Idema, Tom Westinghouse Furniture Systems

The Segmenter•.................................... 3005
Boyd, Larry Dallas Times Herald

The Sorted File Access Method•........ 3036
Chang, Wanyen Longs Drugs

The Twilight Zone, Between MPE Capabilities 3045
Grim, Jelle Holland House

The Effectiveness and Shortcomings of Using
Programming Tools 3037
Olson, Tad Hewlett-Packard

The Use of IMAGE Transaction Logging in a
Multi Data Base, Multi Machine Configuration to
Achieve A Non-Stop, Fault Tolerant HP3000 System 3023
Lawson, Roger Proactive Systems

There's Got To Be A Pony Here, Somewhere•.....•.•.. 3024
Cornford, M. G. Northrop Corporation

Things That Go Bump in The HP3000•.... 3018
Bowers, Keith & Beauchemin, Denys Northern Telcom

Training and Supporting Office Systems Users 3019
Gross, Gail Hewlett-Packard

Training: The Key To Success With Personal
Computers .••..........................•............. 3011
East, Ellie Media General

Transact & 3rd Party Software Tools Used in a
Large On-Line Environment 3069
Wilhelm, Lisa & Lukoff, Stan E.I. DuPont

Turbo Pascal and AGIOS on the HP150 3050
Porter, Steve DP Systems

TurboIMAGE Run Time Options 3039

h

11

11

11

11

11

11

II

11

II

11

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAl. USERS GROUP INTEREX85

Kane, Peter Hewlett-Packard
The Ultimate Challenge in Application Design:

Managing Data Integration 3074 t I
Isloor, Srekaanth Cognos

Unix Thru The Eyes of MPE 3083 1 f
Boles, Sam Hewlett-Packard

Using Process Handling to Optimize Throughput
in a Transaction Oriented System•.. 3058 11
Scott, George B. ELDEC

Using Intrinsics in COBOL Programs 3027
Clemons, Brett Consultant

Why Software Projects Don't Quite Succeed 3034
Mattson, Robert R. WIDCO

Writing Efficient Programs in Fortran 77•.......•. 3076 11
Bircher, Carolyn Hewlett-Packard

Writing Intelligent Software• 3028
Whitehurst, Otis Vermont Housing Finance Agency

You Said You Have a Bunch of Micros Linked
To Your HP3000? Great!! Now What? 3035
Fisher, Eric S. Wellington Management Co.

i
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3043. SIMPLE STEPS TO OPTIMIZE TRANSACT/3000 APPLICATIONS

TOM NIELSEN
MWC ATC

HP-NAPERVILLE

The trend towards higher labor costs and lower hardware costs in today's
economy has led to a rapid increase in the use of a class of computer
productivity tools called "Fourth Generation Languages (4GL's)." 4GL's
are designed to relieve the programmer of much of the tedious coding
required by many traditional languages, allowing the programmer to code
at a much higher, and productive level. This reduction in programmer
effort results in the inherent tradeoff that the computer is now faced
with the task of doing more of the work in order to make the application
run. This increased burden on the computer resources invariably causes
the topic of performance ramifications to be brought up in nearly every
discussion of 4GL's. While 4GL's inherently use more computer resources
than conventional languages, there are many techniques the programmer
can use to attempt to minimize thiR difference.

The following paper attempts to outline numerous techniques that are
avaliable to programmers creating TRANSACT/3000 (Hewlett Packard's
version of a 4GL) applications which will improve their program's
efficiency significantly with minimal effort. The format will be to
first discuss the generalities of each performance optimizing technique
in light of TRANSACT/3000's methodology. This general discussion will
then be substantiated with short test programs designed to highlight the
performance ramifications of various techniques.

Since many of the test programs utilize an IMAGE data base, a
familiarity with that data base may be helpful in the analysis of
certain portions of code. For this reason, a schema listing of the
IMAGE data base TESTB has been included as APPENDIX B. Listings of the
test programs and their results are also included in APPENDIX B.
APPENDIX A includes an explanation of the testing procedures used.

Paper 3043 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP rNTEREX85

I. MINIMIZE DATA ACCESSED FROM IMAGE DATA BASE FILES

This statement goes beyond the obvious of advising against unnecessary
accesses to a data file and stresses the optimization of each data
access verb (ie. GET, FIND, OUTPUT, PUT). Since TRANSACT data access
verbs actually call IMAGE intrinsics directly, this point can be used to
improve performance for programs coded in any language.

When a program accesses a data item, the IMAGE intrinsic must first
determine that item's data base relative item number from the data base
root file. The security matrix (also in the IMAGE root file) must then
be checked to verify that the password used to open the data base grants
the appropriate access to that item. These two overhead operations must
be performed for each item requested by the program for each access.
Understandably, then, the fewer items the program attempts to access,
the less time it will take for the IMAGE intrinsics to transfer the data
to/from the program's DATA register.

Unfortunately, this relatively simple step is often bypassed by many
programmers. Reasons seem to vary from ignorance of the functions of
the LIST= option to the philosophy that it's just easier to retrieve all
the data so that whatever the program may need down the road will be
available in the DATA register. The former could be resolved with
adequate training and experience, and the latter could be resolved with
good initial program design.

The TRANSACT Reference Manual makes it very clear that the only items
absolutely required in the LIST= option are those items that are being
used as MATCH criteria in selecting specific records. Perhaps the
biggest misconception is that key or search items must be included in
the LIST= option of retrieval verbs. This is entirely false using
TRANSACT, and differs from the rules present when calling the IMAGE
intrinsics directly from ordinary languages. In fact, for most keyed
access retrievals, the program already has the desired value (we had to
use it to set up the Key and Argument registers). Who knows how many
millions of unnecessary item retrievals are being done on search items
alone.

Programs Tl and T2 highlight the performance implications of retrieving
unnecessary data from an IMAGE data set. Both programs center around a
FIND(SERIAL) command which retrieves 150 detail records. The only
difference between the two is.that Tl retrieves values for all six items
in the data set, while T2 retrieves values for only one item. An
initial GET is inserted to remove the irrelevant overhead of opening the
dataset from the timed loop. The PERFORM= paragraph performs a data base
access to eliminate any optimization of the list parameter that either
TRANSACT or IMAGE may attempt on the iterative FIND verb.

Paper 3043 2
WASHINGTON, 0. C.

BAL Tl MORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PROGRAM fl OF ITEMS RELEVANT
NAME RETRIEVED ELAPSED

TIME
************ ********** ********
Tl 6 2999
T2 1 2516

Paper 3043 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

II. STRUCTURE THE LIST= OPTION TO OPTIMIZE PERFORMANCE

Performance optimization suggestion I dealt with the idea of minimizing
the number of items which are accessed from an IMAGE data base. Once
the programmer has decided on the items which must be accessed, however,
there are further simple steps which can be taken to improve
performance. These steps deal with the structuring of the LIST= option
of data access verbs.

As the TRANSACT Reference Manual indicates, there are numerous methods
to indicate which items are to be accessed. The most common of these
seem to be:

1. LIST=(iteml:itemn) requests retrieval of values for all
items in the LIST register between
iteml and itemn, inclusive.

2. LIST=(iteml, .• ,itemn) requests retrieval of values for
the specific items listed.

3. LIST=(@) a feature as of A.02.02 which
specifies all items in the data
set.

While the second option is often simpler to implement, as it does not
require any strategic management of the LIST register, it is also less
efficient as far as program execution. Specifying the LIST= option as
an item range (as in example #1), on the other hand, will result in
faster execution, but is more difficult to manage the LIST register, as
the programmer must attempt to put items that are accessed at the same
time contiguously in the LIST register. The idea of different data
access verbs requesting a different combination of items leads to
complication of this process. Performance tests indicate that specifying
LIST=(@) is identical to specifying all items via an item range,
assuming that range includes all items.

Many programmers agonize over how to build the program's LIST register
so that they may always use the more efficient item range construct. It
should be noted that minimization of data access should take precedence
over this concern and thus the LIST register should be constructed to
allow the item range construct to be used in the most frequent data
access verbs (use test modes or temporary DISPLAY statements to
determine the most frequent verbs). The remainder of the data access
verbs, then, should simply use an item list construct. To attempt to
manipulate the LIST register to allow item ranges for all verbs would be
quite laborious, probably end up slowing execution, and would cause many
debugging nightmares.

Programs T9, T3, and T4 highlight the performance ramifications of
different LIST= constructs. Program T9 uses an item range, T3 uses an
item list, and T4 uses a variation on the item range that is even a
little faster than the traditional iteml:itemn construct. T4 uses the
itemn construct which specifies retrieval values for all items in the
LIST register from the bottom of the LIST register through itemn. This
technique turns out to be a little more efficient because of reduced
search time of the linked list (see performance suggestion III). It

4 Paper 3043
WASHINGTON, D. C.

. BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

should be noted here that while the performance difference may be small
in the test programs supplied, these programs only reference six (6)
items. The performance ramifications would obviously become more
substantial as the number of items accessed increased •

••
PROGRAM LIST== RELEVANT

NAME CONSTRUCT ELAPSED
TIME

******** ••••••••• *******
T9 (ITEMl : ITEMN) 2665
T3 (ITEM1,ITEM2, .•• ,ITEMN) 2863
T4 (: ITEMN) 2659

**************•••···

Paper 3043 5
WASHINGTON, 0. C.

BAL TIMOflE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

III. PLACE FREQUENTLY USED ITEMS NEAR THE TOP OF THE LIST REGISTER

Every time a program references a data item's value, TRANSACT must first
locate the corresponding item name in the LIST register, which then maps
to the appropriate location in the DATA register. Since TRANSACT allows
multiple occurrences of the same item name in the LIST register,
TRANSACT can not use a direct, or hashed, search method to locate the
item in the LIST register. Instead, TRANSACT maintains the items in the
LIST register as a linked list which is searched whenever a data item
name is referenced. The search will continue down the linked list until
one of two conditions occur:

1. The item name being searched for is found, providing a map
into the DATA register.

2. The linked list is exhausted without finding the item name
being searched for, in which case the run-time error
"ITEM NOT FOUND IN LIST REGISTER" will occur.

Obviously, we are more interested in case #1, as case #2 is merely a
programming error which must be corrected.

Understanding the direction of the search is crucial to optimizing a
program's performance. If the programmer can minimize the time taken by
each search (which, remember, occurs every time a data item is
referenced} the program will, as a direct result, take less time to
execute. As it turns out, the search starts out at the top of the LIST
register (ie. it starts with the item most recently put into the LIST
register) and works its way to the beginning (or bottom} of the LIST
register. In order to minimize search times, then, frequently accessed
items should be added to the LIST register last. This optimization
technique is even more crucial for applications using a large number of
data items, as search times can become significant.

Programs T5 and T6 point out the performance implications of putting
frequently used items near the top of the LIST register. Both programs
have a relatively large LIST register (129 items). Program T5 accesses
an item near the top of the LIST register 200 times while T6 accesses an
item at the bottom of the LIST register. Note the significant
difference in execution time between the two otherwise identical
programs.

PROGRAM POSITION OF NUMBER OF RELEVANT
NAME ITEM IN LIST ACCESSES ELAPSED

TIME
******* ************* ********* *******
T5 TOP (#128) 200 1490
T6 BOTTOM (#1) 200 1827

Paper 3043 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

IV. REDUCE TRANSACT'S MANAGEMENT OF THE WORK AREA

This performance optimizing suggestion is perhaps the least frequently
thought of by TRANSACT programmers. With each TRANSACT application
comes an area called the WORK AREA, which is a temporary work area
containing the MATCH, UPDATE, and INPUT registers. Every time the
program utilizes these special registers, an entry is put into this work
area, which is implemented as a linked list. Whenever an entry is
deleted from these registers (ie. via RESET(OPTION)), TRANSACT merely
flags the entry in the linked list as deleted, but does not return that
space to the reusable state. With repeated use of these registers,
then, the WORK AREA, which has a user specified size (via the
WORK=option on the SYSTEM statement), will soon become full of "deleted"
entries. When this occurs, TRANSACT will automatically call a routine
called REWORK, which will actually delete the previously flagged entries
and return that space to the available list.

In order to improve program performance, the programmer should attempt
to minimize the number of times REWORK must be called. This can be
achieved by increasing the size of the WORK AREA via the WORK= option of
the SYSTEM statement. Increasing the WORK AREA, however, will increase
stack usage at run time, so it must be done with care. Perhaps a
realistic approach is to attempt to minimize the calling of REWORK •
while at the same time monitoring stack usage to keep it appropriate for
your specific system.

Test modes 102 and 123 should be used in making these adjustments to the
WORK AREA. Test mode 102 reports statistics on WORK AREA usage during
execution, while test mode 123 prints a warning message to TRANOUT
everytime REWORK is called.

Programs T7 and T8 highlight the difference in program execution time
when we minimize reorganization of the WORK AREA by increasing its size.
T7 has a small work area and requires 124 reorganizations of the WORK
AREA, while T8 only requires 6, hence exectution time is decreased.

**

PROGRAM WORK AREA REWORK RELEVANT
NAME SIZE CALLED ELAPSED

TIME
******* ********* ******* *********
T7 15 WORDS 124 2181
T8 255 WORDS 6 2151

**

Paper 3043 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

V. OPl'IMIZE NUMERIC CALCULATIONS

TRANSACT was intended as a transaction processing tool as well as a
prototyping tool. Unfortunately, TRANSACT is not terribly efficient
when it comes to things like number crunching, because of some data type
conversion operations performed. A few simple techniques, however, can
at least make any necessary numeric calculations a little less time
consuming.

Perhaps the most common suggestion for streamlining TRANSACT number
crunching is to have the TRANSACT application invoke (via the PROC verb)
some external routine written in a more efficient language to do the
calculations for TRANSACT. This suggestion, however, does have a couple
of weaknesses. It first assumes that another programming language is
available on the system, and second it assumes that all number crunching
is done at one time in the program. It does not take into account the
idea of "sporadic" calculations done throughout the TRANSACT
application. The suggestions presented below will help optimize
TRANSACT applications in both of these instances.

The first suggestion is to choose an appropriate data type for elements
that will be involved in numeric calculations. The chart below
indicates Real (R)and Integer (I) are the most efficient data types for
numeric calculations, while Zone Decimal type (Z) is the worst. If your
application permits then, attempt to make all variables that will be
used extensively in calculations type R or I. Counter items are an
excellent example of items which should be streamlined.

The second suggestion to minimize the amount of overhead incurred by
TRANSACT numeric calculations is to make all elements involved the same
type and decimal scale if possible. This will reduce the amount of type
conversion that TRANSACT must do before the calculations (done by a
procedure called CALCULATE). An example is programs TlO, T15, and T16.
TlO crunches two I(5,0,2) elements in 1446 relative CPU seconds; T15
crunches two R(6,0,4) fields in 1446 relative CPU seconds. But when we
crunch one item of I(5,0,2) and one of R(6,0,4) together as we do in
T16, note the increase to 2332, which is higher than the calculation
using two of the less efficient Z type variables.

The chart below, then, depicts nine programs which do 100 relevant
numeric calculations with the only difference being the type and decimal
scale of variables used.

Paper 3043 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

**

PROGRAM VARIABLE VARIABLE MAXIMUM RELEVANT
NAME #1 #2 OPERAND ELAPSED

VALUE TIME
***** ******** •******* ******** •••*****
TlO 1(5,0,2) SAME AS #1 32,767 1446
Tll 1(10,0,4) SAME AS #1 2,147,483,648 1446
T12 Z(4,0,4) SAME AS #1 9,999 2171
T13 Z(8,0,8) SAME AS #1 99,999,999 2187
T14 P(7,0,4) SAME AS #1 9,999,999 1491
T15 R(6,0,4) SAME AS #1 999,999 1446
Tl6 1(5,0,2) R(6,0,4) 2332
T17 1(10,0,4) 1(7,2,4) 2455
T18 P(7,0,4) P(7,2,4) 1511

Paper 3043 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

VI. OPTIMIZE INTERNAL DATA TRANSFERS

Transact offers two verbs to be used in transferring values from one
data item to another. Unfortunately, many people seem to be unclear, or
misinformed, about the difference between these two verbs and in which
situations to use either. The following discussion should clear up
these misconceptions of TRANSACT's MOVE and LET verbs, and points out
how the appropriate use of the MOVE verb can improve performance.

TRANSACT's MOVE verb is specifically designed for straight data transfer'
from one location in the DATA register to another and for alphanumeric
operations. Unfortunately. the TRANSACT reference manual's discussion
almost leads you to believe that the MOVE verb can only be used when
manipulating (transf~rring or concatenating) alphanumeric values. To
many people's surprise, however, the MOVE verb can also be used to
transfer numeric values. There are, however, certain limitations
inherent in the MOVE verb:

l. No numeric calculations can be done with the MOVE verb.

2. The MOVE verb does not do data type conversions, so both source
and destination variables should be the same type.

Secause ot the fact that MOVE does no data type conversions, it is a
relatively fast verb for data transfer. Programmers should thus use the
MOVE verb for both alphanumeric and numeric data transfer operations
between like type data elements. Only for those operations involving
incompatible data elements and/or numeric calculations should the LET
verb be used.

Programs T20 and T21 point out a very simple example of the increased
performance of using MOVE over LET. T20 performs 100 MOVE operations,
moving an !(9) value to another !{9) field. T21 uses the LET verb
instead of the MOVE.

PROGRAM VERB RELEVANT
NAME USED ELAPSED

TIME
******** **** ********
T20 MOVE 759
T21 LET 800

r***

Paper 3043 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

VII. USE FILE VERB FOR MPE FILE OPERATIONS

Transact offers two methods for reading, writing, updating, and sorting
MPE files. Unfortunately, because of the fact that most programmers are
more familiar with the data management verbs (ie. PUT, GET etc) used
with IMAGE files, they use these less efficient verbs when interacting
with MPE files as well. Because of the fact that these verbs were
designed to work with the more complex data base files, as well as to be
generic enough to work with all types of files, they incur much overhead
which is not necessary in working with MPE files.

The more efficient method for interacting with MPE files is the FILE
verb. This verb has modifiers which allow programmers to read, write,
update, or sort MPE files. As the sample program indicates below, the
FILE verb is much more efficient than the data management verbs.
Unfortunately, the FILE verb does not utilize TRANSACT's special
registers, so its uses are limited to operations such as a straight
serial read or simple additions to the file.

**

PROGRAM VERB FREQUENCY RELEVANT
NAME USED ELAPSED

TIME
******** ****** ********* *********
T22 GET(SERIAL) 200 4385
T23 FILE(READ) 200 3451
T24 PUT 200 5144
T25 FILE(WRITE) 200 4277

Paper 3043 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX81S

SUMMARY

The seven techniques outline~ aboved, then, are presented·in order to
help programmers who are developing TRANSACT applications to better
understand TRANSACT's methodology in certain operations. The intent was
to present these ideas in a way that would allow programmers to weigh
alternatives available to them in order to maximize their application's
performance. It should be noted that the list is by no means exhaustive
in presenting methods of improving performance. Additional
considerations are outlined in Appendix E of the TRANSACT Reference
Manual. In addition to the techniques presented here, as well as those
outlined in Appendix E, the programmer should keep in mind the ordinary
techniques in program design, in attempting to design an optimal
application.

12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

APPENDIX A

The test programs presented in this paper were all created by the
author. The attempt was made to make the programs as simple as possible
while still allowing the point to be made, and may thus often seem very
trivial at first glance. That was the intention. Attempts were made
programmatically to insure a "clean" compare between multiple test
programs (ie. beginning many programs with an initial disc access to
insure initial disc head placement etc.). Most of these techniques are
discussed directly in the paper where appropriate.

The methodology selected in determining performance implications was one
of at least two methods which could have been used. The reader will
note that most programs initially place an item labelled TIMESTART into
the LIST register, initializing it to PROCTIME. The code which follows,
then, is the code that is being compared between programs, followed
immediately by the placement of a second item, labelled TIMESTOP, into
the LIST register, again initializing it to PROCTIME. The difference
between TIMESTART and TIMESTOP, then, is the amount of CPU milliseconds
within the loop, and is reported as ELAPTIME. This ELAPTIME value,
then, can be used for comparison purposes.

A second method of determining performance ramifications would be to use
TRANSACT's test mode 4 to determine actual instruction timings. This
method seems to result in the same performance guidelines being agreed
upon, while the testing procedure is much more laborious, hence the
first method was selected for use with this paper.

The test programs were run on a dedicated HP3000 Series 48 with disc
caching enabled.

Paper 3043 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

BEGIN DATA BASE TESTB;

PASSWORDS:

ITEMS:

SETS:

El,
E2,
E3,
E4,
E5,
E6,
E7,
Kl,

NAME: MASTERSET,
ENTRY: Kl
CAPACITY: 50;

NAME: DETAILSET,
ENTRY: Kl

El,
E2,
E3,
E4,
E5,
E6,
E7;

CAPACITY: 150;

END.

Paper 3043

APPENDIX B

DATA BASE SCHEMA FOR TESTB

X2
X2
X2
Z4
Z4
Z8
I1
X2

MANUAL
(1);

DETAIL
(MASTERSET

14

) .

INTEREX85

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM Tl

COMPILING WITH OPTIONS: L!ST,CODE,DICT,ERRS

1.000 SYSTEM Tl,BASE=TESTB(";",l);
2.000 0000
3.000 0000
7.000 0002
9.000 0012

<< LOOP THROUGH DETAIL WITH ALL !TEMS RETR!EVED >>

DISPLAY "ALL ITEMS BEING RETRIEVED";
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME;

L!ST TIMESTART,PROCTIME; 10.000 0012
11. 000 0015 FIND(SERIAL) DETAILSET,LIST=(Kl,E2,E3,E4,E5,E6),

PERFORM=A;
LIST TIMESTOP,PROCTIME; 12.000 0026

13.000 0029
14.ooo 0029
15.000 0031
16.ooo 0033
17.000 0034
18.000 0034
19.000 0034
20.000 0040

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

END;

A:
GET(SERIAL) DETA!LSET,LIST=(E2,E3);
RETURN;

CODE F!LE STATUS: REPLACED

0 COMP!LAT!ON ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:04

TRANSACT/3000 HP32247A.Ol.07 ~ {C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
3030

EXIT/REST&qT(E/R)?>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
2999

EXIT/RESTART(E/R)?>

Paper 3043 15
WASHtNGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T2

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000 0000
3.000 0000
7.000 0002
9.000 0012

10.000 0012
11.000 0015
12.000 0019
13.000 0022
14.000 0022
15.000 0024
16.ooo 0026
17.000 0027
18.000 0027
19.000 0027
20.000 0033

SYSTEM T2,BASE=TESTB(";",l);
<< LOOP THROUGH DETAIL RETRIEVING ONE ITEM >>
DISPLAY "ONE ITEM RETRIEVED";
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME;
FIND(SERIAL) DETAILSET,LIST=(E2),PERFORM=A;
LIST TIMESTOP,PROCTIME;

LET {ELAPTIME)={TIMESTOP)-(TIMESTART);
DISPLAY (ELAPTIME);

END;

A:
GET(SERIAL) DETAILSET,LIST=(E2,E3);
RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT/3000 HP32247A.01.07 • (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ONE ITEM RETRIEVED

ELAPSED TIME
2570

EXIT/RESTART(E/R)?>
ONE ITEM RETRIEVED

ELAPSED TIME
2516

EXIT/RESTART(E/R)?>

Paper 3043 16
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T3

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
3.000
7.000
9.000

SYSTEM T3,BASE=TESTB(";",1);
DISPLAY "ITEM LIST BEING RETRIEVED";
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME; 10.000
11.000
11.500
12.000
13.000
14.ooo
15.000
16.000
17.000
18.000
19.000

0000
0002
0012
0012
0015 FIND(SERIAL) DETAILSET, LIST=(Kl,E2,E3,E4,E5,E6),

PERFORM=A;
LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

0026
0029
0029
0031
0033
0034
0034
0037

END;
A:

GET(SERIAL) DETAILSET,LIST=(E2);
RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:04

TRANSACT/3000 HP32247A.01.07 • (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ITEM LIST BEING RETRIEVED

ELAPSED TIME
2894

EXIT/RESTART(E/R)?>
ITEM LIST BEING RETRIEVED

ELAPSED TIME
2863

EXIT/RESTART(E/R)?>

Paper 3043 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T4

COMPILING WITH OPTIONS: LIST,CODE,OICT,ERRS

1.000
3.000 0000
7.000 0002
9.000 0012

SYSTEM T4,BASE=TESTB{";",1);
DISPLAY "IMPLIED ITEM RANGE SPECIFIED";
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME; 10.000 0012
11.000 0015
12.000 0019
13.000 0022
14.ooo 0022
15.000 0024
16.000 0026
17.000 0027
18.000 0027
19.000 0030

FIND(SERIAL) DETAILSET,LIST=(:E6),PERFORM=A;
LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)·(TIMESTART);
DISPLAY ELAPTIME;

END;
A:

GET(SERIAL) DETAILSET,LIST=(E2);
RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:07

**

TRANSACT/3000 HP32247A.Ol.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
IMPLIED ITEM RANGE SPECIFIED

ELAPSED TIME
2691

EXIT/RESTART(E/R)?>
IMPLIED ITEM RANGE SPECIFIED

ELAPSED TIME
2659

EXIT/RESTART(E/R)?>

Paper 3043 18
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREJ1:8&

COMPILED LISTING AND RUN RESULTS OF PROGRAM T5

COMPILING WITH OPTIONS~ tIST,CODE,DICT,ERRS

1.000
2.000 0000
3.000 0002
4.000 0002
5.000 0003
6.000 0004
7.000 0005
8.000 0006
9.000 0007

10.000 0008
11.000 0009
12.000 0010
13.000 0011
14.ooo 0012
15.000 0013
16.000 0014
17.000 0015
18.000 0016
19.000 0017
20.000 0018
21.000 0019
22.000 0020
23.000 0021
24.ooo 0022
25.000 0023
26.000 0024
27.000 0025
28.000 0026
29.000 0027
30.000 0028
31.000 0029
32.000 0030
33.000 0031
34.000 0032
35.000 0033
36.000 0034
37.000 0035
38.000 0036
39.000 0037
40.000 0038
41.000 0039
42.000 0040
43.000 0041
44.ooo 0042
45.000 0043
46.ooo 0044

Paper 3043

SYSTEM T5,DATA~2046,300;
DISPLAY "PROG TO ACCESS ITEM ON TOP OF LIST REG~~
DEFINE(ITEM) COUNT I(4);
LIST E2:

ELAPTIME:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

19
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

li7.000 0045
48.000 0046
49.000 0047
50.000 0048
51.000 0049
52.000 0050

53.000 0051
54.ooo 0052
55.000 0053
56.000 0054
57.000 0055
58.000 0056
59.000 0057
60.000 0058
61.000 0059
62.000 0060
63.000 0061
64.ooo 0062
65.000 0063
66.ooo 0064
67.000 0065
68.000 0066
69.000 0067
70.000 0068
71.000 0069
72.000 0070
73.000 0071
74.ooo 0072
75.000 0073
76.000 0074
77.000 0075
78.000 0076
79.000 0077
80.000 0078
81.000 0079
82.000 0080
83.000 0081
84.ooo 0082
85.000 0083
86.ooo 0084
87.000 0085
88.000 0086
89.000 0087
90.000 0088
91.000 0089
92.000 0090
93.000 0091
94.ooo 0092
95.000 0093
96.000 0094
97.000 0095

Paper 3043

El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

20

INTEREX85

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

98.000 0096
99.000 0097

100.000 0098
101.000 0099
102.000 0100
103.000 0101
104.ooo 0102
105.000 0103
106.000 0104
107.000 0105

108.000 0106
109.000 0107
110.000 0108
111.000 0109
112.000 0110
113.000 0111
114.ooo 0112
115.000 0113
116.ooo 0114
117.000 0115
118.000 0116
119.000 0117
120.000 0118
121.000 0119
122.000 0120
123.000 0121
124.ooo 0122
125.000 01.23
126.ooo 0124
127.000 0125
128.000 0126
129.000 0127
130.000 0128
131. 000 0129
132.000 0130

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El;

133.000 0130 LIST COUNT,INIT:TIMESTART,PROCTIME;
134.ooo 0135
135.000 0135 REPEAT
136.000 0135 1 MOVE (El)="AB"; << ACCESS ITEM AT TOP OF
137.000 0137 1 LET (COUNT)=(COUNT)+l;
138.000 0140 1 UNTIL (COUNT)=200;
139.000 0143 LIST TIMESTOP,PROCTIME;
140.000 0146 LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
141.000 0148 DISPLAY ELAPTIME;
142.000 0150 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=OO:OQ:07

ELAPSED TIME=00:00:09

Paper 3043 21

LIST »

WASHINGTON, D. C.

BAL TJMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

TRANSACT/3000 HP32247A.01.07 - (C} Hewlett-Packard Co. 1983

SYSTEM NAME>
PROG TO ACCESS ITEM ON TOP OF LIST REG

ELAPSED TIME
1490

EXIT/RESTART(E/R)?>
PROG TO ACCESS ITEM ON TOP OF LIST REG

ELAPSED TIME
1490

EXIT/RESTART(E/R)?>

Paper 3043
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T6

COMPILING WITH OPTIONS: LIST,CODE,D!CT,ERRS

1.000 SYSTEM T6,DATA=2048,300;
2.000 0000 DISPLAY "PROG TO ACCESS ITEM ON BOTTOM OF LIST REG";
3.000 0002 DEFINE(ITEM) COUNT I(4);
4.000 0002 LIST E2:
5.000 0003 ELAPTIMEI
6.000 0004 El:
7.000 0005 El:
8.000 0006 El:
9.000 0007 El:

10.000 0008 El:
11.000 0009 El:
12.000 0010 El:
13.000 0011 El:
14.ooo 0012 El:
15.000 0013 El:
16.000 0014 El:
17.000 0015 El:
18.000 0016 El:
19.000 0017 El:
20.000 0018 El:
21.000 0019 El:
22.000 0020 El:
23.000 0021 El:
24.ooo 0022 El:
25.000 0023 El:
26.000 0024 El:
27.000 0025 El:
28.000 0026 El:
29.000 0027 El:
30.000 0028 El:
31.000 0029 El:
32.000 0030 El:
33.000 0031 El:
34.ooo 0032 El:
35.000 0033 El:
36.000 0034 El:
37.000 0035 El:
38.000 0036 El:
39.000 0037 El:
40.000 0038 El:
41.000 0039 El:
42.000 0040 El:
43.000 0041 El:
44.ooo 0042 El:
45.000 0043 El:

Paper 3043 23
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

46.ooo 0044
47.000 0045
48.ooo 0046
49.000 0047
50.000 0048
51.000 0049
52.000 0050

53.000 0051
54.ooo 0052
55.000 0053
56.000 0054
57.000 0055
58.000 0056
59.000 0057
60.000 0058
61.000 0059
62.000 0060
63.000 0061
64.ooo 0062
65.000 0063
66.ooo 0064
67.000 0065
68.000 0066
69.000 0067
70.000 0068
71.000 0069
72.000 0070
73.000 0071
74.ooo 0072
75.000 0073
76.000 0074
77.000 0075
78.000 0076
79.000 0077
80.000 0078
81.000 0079
82.000 0080
83.000 0081
84.ooo 0082
85.000 0083
86.ooo 0084
87.000 0085
88.000 0086
89.000 0087
90.000 0088
91.000 0089
92.000 0090
93.000 0091
94.ooo 0092
95.000 0093
96.000 0094

Paper 3043

El:
El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

24

INTEREX85

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

97.000 0095
98.000 0096
99.000 0097

100.000 0098
101.000 0099
102.000 0100
103.000 0101
104.ooo 0102
105.000 0103
106.000 0104
107.000 0105

108.000 0106
109.000 0107
110.000 0108
111. 000 0109
112.000 0110
113.000 0111
114.ooo 0112
115.000 0113
116.ooo 0114
117.000 0115
118.000 0116
119.000 0117
120.000 0118
121.000 0119
122.000 0120
123.000 0121
124.ooo 0122
125.000 0123
126.ooo 0124
127.000 0125
128.000 0126
129.000 0127
130.000 0128
131.000 0129
132.000 0130
133.000 0130
134.ooo 0135
135.000 0135
136.ooo 00135 1
137.000 0137 1
138.000 0140 1
139.000 0143
140.000 0146
141.000 0148
142.000 0150

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El;

LIST COUNT,INIT:TIMESTART,PROCTIME;

REPEAT
MOVE (E2)="AB"; «ACCESS ITEM AT BO'ITOM OF LIST >>
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=200;
LIST TIMESTOP,PROCTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPT!ME;
END;

CODE FILE STATUS: REPLACED

Paper 3043 25
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:07

ELAPSED TIME=00:00:08

INTEREX85

TRANSACT/3000 HP32247A.01.07 A {C) Hewlett-Packard Co. 1983

SYSTEM NAME>
PROG TO ACCESS ITEM ON BOTTOM OF LIST REG

ELAPSED TIME
1856

EXIT/RESTART(E/R)?>
PROG TO ACCESS ITEM ON BOTTOM OF LIST REG

ELAPSED TIME
1827

EXIT/RESTART(E/R)?>

Paper 3043 26
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T7

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

l.000
2.000 0000
3.000 0000
3.100 0000
4.ooo 0000
5.000 0000
6.000 0008
7.000 0010
7.100 0012
8.000 0015
9.000 0015

10.000 0015 1
10.100 0020 1
11.000 0021 1
12.000 0024 1
13.000 0026
14.ooo 0029
15.000 0031
16.000 0033

SYSTEM T7,BASE=TESTB(";",1),WORK=15;
DEFINE(ITEM) TIMESTART I(9):

TIMESTOP I (9) :
COUNT I(4):
ELAPTIME I(9);

LIST Kl:E2:E3:E4:E5:E6:ELAPTIME:COUNT;
MOVE (E2)="AA";
LET (COUNT)=l;
LIST TIMESTART,PROCTIME;
WHILE (COUNT) <250
DO

SET(MATCH) LIST(E2);
RESET(OPTION) MATCH;
LET (COUNT)=(COUNT)+l;

DOEND;
LIST TIMESTOP,PROCTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:04

**********************•**

TRANSACT/3000 HP32247A.Ol.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>

ELAPTIME:
2185

EXIT/RESTART(E/R)?>

ELAPTIME:
2181

EXIT/RESTART(E/R)?>

Paper 3043 27
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T8

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000 0000
3.000 0000
3.100 0000
4.000 0000
5.000 0000
6.000 0008
7.000 0010
7.100 0012
8.000 0015
9.000 0015

10.000 0015 1
10.100 0020 1
·11.000 0021 1
12.000 0024 1
13.000 0026
14.ooo 0029
15.000 0031
16.000 0033

SYSTEM T8,BASE=TESTB(";",1),WORK=255;
DEFINE(ITEM) TIMESTART I(9):

TIMESTOP I(9):
COUNT I(4):

ELAPTIME 1(9);
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME:COUNT;
MOVE (E2)="AA";
LET (COUNT)=l;
LIST TIMESTART,PROCTIME;
WHILE (COUNT) <250
DO

SET{MATCH) LIST{E2);
RESET(OPTION) MATCH;
LET (COUNT)=(COUNT)+l;

DOEND;
LIST TIMESTOP,PROCTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME; .
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:05

TRANSACT/3000 HP32247A.Ol.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>

ELAPTIME:
2156

EXIT/RESTART(E/R)?>

ELAPTIME:
2151

EXIT/RESTART(E/R)?>

Paper 3043 28
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED L!STING AND RUN RESULTS OF PROGRAM T9

COMPILING W!TH OPTIONS: LIST,CODE,DICT,ERRS

1.000
3.000 0000
7.000 0002
9.000 0012

SYSTEM T9,BASE=TESTB{";",1);
DISPLAY "ALL ITEMS BEING RETRIEVED";
LIST Kl:E2:E3:E4:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME; 10.000 0012
11. 000 0015
12.000 0020
13.000 0023
14.000 0023
15.000 0025
16.000 0027
17.000 0028
18.000 0028
19.000 0031

FIND(SERIAL) DETAILSET,LIST={Kl:E6),PERFORM=A;
LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)-{TIMESTART);
DISPLAY ELAPTIME;

END;
A:

GET(SER!AL} DETA!LSET,LIST=(E2);
RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT /3000 HP32247A.01.07 - (C) Hewlett·Packard Co. 1983

SYSTEM NAME>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
2693

EXIT/RESTART(E/R)?>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
2665

EXIT/RESTART(E/R)?>

Paper 3043 29
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM TlO

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM TlO;
DISPLAY "INTEGER ARITHMETIC"; 2.000 0000

3.000 0002
3.100 0002
5.000 0008
6.000 0011
7.000 0011
8.000 0013 1
9.000 0016 l

DEFINE(ITEM) COUNT I(9):Il I(5,0,2):!2 1(5,0,2);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

**

TRANSACT/3000 HP32247A.01.09 a (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
INTEGER ARITHMETIC

ELAPSED TIME
1446

Paper 3043 30
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM Tll

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM Tll;
2.000 0000
3.000 0002
3.100 0002
5.000 0008
6.ooo 0011
7.000 0011
8.000 0013 1
9.000 0016 1

DISPLAY "DOUBLE WORD INTEGER ARITHMETIC";
DEFINE(ITEM) COUNT I(9):Il I(10,0,4):I2 1(10,0,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11. 000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

**

TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
DOUBLE WORD INTEGER ARITHMETIC

ELAPSED TIME
1446

Paper 3043 31
WASHINGTON, D. C.

0AL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T12

COMP!LI!fG WITtl OPTIONS: L!ST,CODE,DICT,ERRS

1.000 SYSTEM T12;
DISPLAY "ZONED ARITHMETIC"; 2.000 0000

3.000 0002
3.100 0002
5.000 0008
6.ooo 0011
1.000 0011
8.ooo 0013 1
9.000 0016 1

DEFINE(ITEM) COUNT I(9):Il Z(4,0,4):!2 Z(4,0,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP}-{TIMESTART);
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>
ZONED ARITHMETIC

ELAPSED TIME
2171

Paper 3043

HP32247A.01.09 - (C) HeNlett-Packard Co. 1983

32
WASHINGTON, 0. C.

BAL. TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T13

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T13;
DISPLAY "ZONED ARITHMETIC''; 2.000 0000

3.000 0002
3.100 0002
5.000 0008
6.ooo 0011
7.000 0011
8.000 0013 1
9.000 0016 1

DEFINE(ITEM) COUNT I(9):Il Z(8,0,8):Il Z(8,0,8};
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11. 000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT}+l;
UNTIL (COUNT}=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART};
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>
ZONED ARITHMETIC

ELAPSED TIME
2187

Paper 3043

HP32247A.01.09 - {C) Hewlett-Packard Co. 1983

33
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T14

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T14;
DISPLAY "PACKED ARITHMETIC"; 2.000 0000

3.000 0002
3.100 0002
5.000 0008
6.ooo 0011
7.000 0011
8.ooo 0013 1
9.000 0016 1

DEFINE(ITEM) COUNT I(9):Il P(7,0,4):I2 P(7,0,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>
PACKED ARITHMETIC

ELAPSED TIME
1492

Paper 3043

HP32247A.Ol.09 ~ (C) Hewlett-Packard Co. 1983

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T15

COMPILING WITH OPI'IONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM Tl5;
DISPLAY "REAL ARITHMETIC"; 2.000 0000

3.000 0002
3.100 0002
5.000 0008
6.000 0011
7.000 0011
8.000 0013 1
9.000 0016 1

DEFINE(ITEM) COUNT I(9):Il (6,0,4):!2 R(6,0,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPI'IME;
LET (ELAPI'IME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPI'IME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>
REAL ARITHMETIC

ELAPSED TIME
1446

Paper 3043

HP32247A.01.09 A (C) Hewlett-Packard Co. 1983

35
WASHINGTON, 0. C.

BALTIMORE W ASHINGTOfll REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T16

COMPILING WITH OPl'IONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T16;
2.000 0000
3.000 0002
3.100 0002
5.000 0008
6.000 0011
7.000 0011
8.000 0013 l
9.000 0016 1

DISPLAY "INTEGER AND REAL ARITHMETIC";
DEFINE(ITEM) COUNT I(9):Il (5,0,2):I2 R(6,0,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.000 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:04

TRANSACT/3000 HP32247A.Ol.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
INTEGER AND REAL ARITHMETIC

ELAPSED TIME
2332

Paper 3043 36
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T17

COMPILING WITH OPI'IONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T17;
2.000 0000 DISPLAY "DIFFERENT SCALE INTEGER DECIMAL

ARITHMETIC";
3.000 0002
3.100 0002

DEFINE(ITEM) COUNT I(9):Il I(5,0,2):I2 I(7,2,4);
LIST COUNT,INIT:Il,INIT:I2,INIT;

5.000 0008
6.000 0011
7.000 0011
8.000 0013 1
9.000 0016 1

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPI'IME;
LET (ELAPI'IME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPI'IME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:05

**

TRANSACT/3000 HP32247A.Ol.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
DIFFERENT SCALE INTEGER DECIMAL ARITHMETIC

ELAPSED TIME
2454

Paper 3043 37
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

COMPILE LISTING AND RUN RESULTS OF PROGRAM T18

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T18;
2.000 0000
3.000 0002
3.100 0002
5.000 0008
6.ooo 0011
7.000 0011
8.000 0013 1
9.000 0016 1

DISPLAY "DIFFERENT SCALE PACKED ARITHMETIC";
DEFINE(lTEM) COUNT I(9):Il P(7,0,4):I2 P(7,2,4);
LIST COUNT,INIT:I1,INIT:l2,INIT;

10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.ooo 0027
15.000 0029

LIST TIMESTART,PROCTIME;
REPEAT
LET (Il)=(Il)+(I2);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LIST ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-{TIMESTART)•
DISPLAY ELAPTIME;
SET(COMMAND) INITIALIZE;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:03

****''***

TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard.Co. 1983

SYSTEM NAME>
DIFFERENT SCALE PACKED ARITHMETIC

ELAPSED TIME
1511

Paper 3043 38
WASHINGTON. 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX85

COMPILE LISTING AND .RUN RESULTS OF PROGRAM T20

COMPILING WITH OPTIONS: LIST,CODE,D!CT,ERRS

1.000 SYSTEM T20;
1.100
2.000

0000
0000

<< PROGRAM TO COMPARE MOVE AND LET STATEMENTS >>

DEFINE(ITEM) Il !(9):!2 I(9);
3.000
4.000

0000
0008

LIST Il,INIT:I2,INIT:ELAPTIME,INIT:COUNT,INIT;
LIST TIMESTART,PROCTIME;

4.100 0011
5.000 0011
5.010 0013 1
5.020 0016 1
5.100 0019
5.200 0022
5.300 0024
1.000 0026

REPEAT
MOVE (!2):(!1);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LET (ELAPTIME)=(TIMEST0P)-(TIMESTART);
DISPLAY ELAPTIME;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:04

TRANSACT/3000

SYSTE~ NAME>

ELAPSED TIME
759

Paper 3043

HP32247A.01.09 ~ (C) Hewlett-Packard Co. 1983

39
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T21

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T21;
1.100 0000
2.000 0000
3.000 0000
4.000 0008
4.100 0011
5.000 0011
5.010 0013 1
5.020 0016 1
5.100 0019
5.200 0022
5.300 0024
7.000 0026

« PROGRAM TO COMPARE MOVE AND LET STATEMENTS >>
DEFINE(ITEM) Il I(9):I2 I(9);
LIST Il,INIT:I2,INIT:ELAPTIME,INIT:COUNT,INIT;
LIST TIMESTART,PROCTIME;
REPEAT
LET (I2)=(Il);
LET (COUNT)=(COUNT)+l;
UNTIL (COUNT)=lOO;
LIST TIMESTOP,PROCTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;
END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>

ELAPSED TIME
800

HP32247A.Ol.09 • (C) Hewlett-Packard Co. 1983

EXIT/RESTART(E/R)?>

Paper 3043 40
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF T22

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000 0000

system T22,file=MPEFILE(READ(OLD));
<< PROGRAM TO TRAVERSE THROUGH MPE FILE

WITH DATA MGMT VERB

DEFINE(ITEM) COUNT I(9,0,4);
LIST COUNT,INIT;
LIST RECORD,INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200

DO

3.000 0000
3.100 0000
3.200 0000
4.ooo 0002
5.000 0007
6.ooo 0007
7.000 0007 1 GET(SERIAL) MPEFILE,LIST=(RECORD),STATUS,

NOMATCH;
LET (COUNT)=(COUNT)+l;
DOEND;

8.000 0013 1
9.000 0016 1

10.000 0018
11.000 0022
12.000 0024

LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

**

TRANSACT/3000

SYSTEM NAME>

ELAPSED TIME
4615

HP32247A.02.02 • (C) Hewlett-Packard Co. 1984

EXIT/RESTART(E/R)?>

Paper 3043 41
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T23

COMPILING WITH OPI'IONS: LIST,CODE,DICT,ERRS

1.000
2.000 0000

3.000 0000
3.100 0000
3.200 0000
4.000 0002
5.000 0007
6.000 0007
7.000 0007 1
8.000 0014 1
9.000 0017 1

10.000 0019
11.000 0023
12.000 0025

SYSTEM T23,file=MPEFILE(READ(OLD));
<< PROGRAM TO TRAVERSE THROUGH MPE FILE

WITH FILE VERBS>>

OEFINE(ITEM) COUNT I(9,0,4);
LIST COUNT,INIT;
LIST RECORD,INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200

DO
FILE(READ) MPEFILE,LIST=(RECORD);
LET (COUNT)=(COUNT)+l;
DOEND;

LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT/3000 HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

SYSTEM NAME>

ELAPSED TIME
3715

EXIT/RESTART(E/R)?'

Paper 3043 42
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T24

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1. 000 SYSTEM T24,file=MPEFILE(R/W(OLD));
2.000 0000 << PROGRAM TO PUT INTO MPE FILE WITH DATA

MGMT VERBS>>
3.000 0000
3.100 0000
3.200 0000
4.000 0002
5.000 0007
6.000 0007
7.000 0007 1
8.000 0013 1
9.000 0016 1

10.000 0018
11.000 0022
12.000 0024

DEFINE(ITEM) COUNT I(9,0,4);
LIST COUNT,INIT;
LIST RECORD,INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200

DO
PUT MPEFILE,LIST=(RECORD);
LET (COUNT)=(COUNT)+l;
DOEND;

LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
bISPLAY ELAPTIME;

CODE F!LE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03

ELAPSED TIME=00:00:03

TRANSACT/3000 HP32247A.02.02 • (C) Hewlett·Packard Co. 1984

SYSTEM NAME>

ELAPSED TIME
5139

EXIT/RESTART(E/R)?>

Paper 3043 43
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T25

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T25,file=MPEFILE(R/W(OLD));
2.000 0000
3.000 0000
3.100 0000
3.200 0000
4.000 0002
5.000 0007
6.000 0007
1.000 0007 1
8.000 0014 1
9.000 0017 1

<< PROGRAM TO PUT INTO MPE FILE WITH FILE VERBS>>

10.000 0019
11.000 0023
12.000 0025

DEFINE(ITEM) COUNT I{9,0,4);
LIST COUNT,INIT;
LIST RECORD,INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200

DO
FILE(WRITE) MPEFILE,LIST=(RECORD);
LET (COUNT)=(COUNT)+l;
DOEND;

LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04

ELAPSED TIME=00:00:03

TRANSACT/3000

SYSTEM NAME>

ELAPSED TIME
4220

HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

EXIT/RESTART(E/R)?>

Paper 3043 44
WASHINGTON. 0, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXS 5

3044. Software Design: Building Flexibility

1. Introduction

Victoria A. Shoemaker
Michell Humphrey

2029 Woodland Parkway
St. Louis, Missouri 63146

Three years ago, ! was reading through a scope and evaluation report
for a computer solution to the age old problem of tracking data through
the corporate maze and came to the 'solution' statement which read
something like this, 'It is apparent that this company needs a total
intergrated interactive system to track '. Wow! I was sure that I
wanted to get involved in that project. How could I pass up the
opportunity to get involved in a TOTAL INTERGRATED INTERACTIVE
computer solution? Well, fortunately or unfortunately, I did get involved
in this project. For those of you still in a haze of what the 'real'
problem and solution was, let me explain.

The company had a need to record and report financial data through five
different organizations. The data, once recorded, needed to be reported
differently for each organization, as well as reported in some consistent
format for company level reporting. Designing a system which would
satisfy all of the requirements would be difficult and expensive, if
not impossible.

In this paper, I would like to share some of the solutions that the project
team came up with and some solutions that I have thought of via that useful
design tool, hindsight.

11. Problem Statement

A discussion of the real problems and the situations which molded the
requirements for the solutions may be helpful prior to getting into the
technical merits and implementations of the solutions.

o Client Organization

The client was organized along product and functional lines. Within
each functional area there were teams assigned to handling the needs of
a particular product line. Budgeting, recording and reporting were done on
both the functional and product level.

o Basic Reporting Needs

The client needed to provide summary reports for the enti'.re company on
both the product level and organizational level. Therefore, it was
imperative that all organization collect and report a core of information
to make this task feasible. In addition, each organization need to
report summary information on the different projects for the
management to evaluate the success or failure of each project separately.

o System Interfaces

Paper 3044 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The system needed to interface with a larger corporate financial system,
thus reporting the financial activities of this major aggregate. The
system that we were to interface had a fixed format and included many
pieces of information that were not actively used by the client.

o Miscellaneous Headaches

The client, as a company, was a young and changing company. Their
management members changed frequently, as did their procedures. There
were many charismatic management members which provided the project with
a great deal of energy, not all of which was directed in the same
direction. All of the needs of the charismatic management needed
to be met. To put it bluntly, not only did the system need to be able to
stand the test of time, but acts of gods and demi-gods. It was evident,
that if a successful system was possible at all, the key to its success
would be flexibility.

III. Design Methodology

The project team was a little baffled as to where to start with this
system. All of our 'normal' design methodology did not seem able to
cope with the need to record the needs of and design a system which
satified all of the needs of our client. It seemed to the project team
that we may be dealing with five systems, not one. The needs seemed, at
first, second and third glance, to be too different to try and
integrate into one system. The major design problem became how does one
intergrate five different coding methods, five different and
changing reporting needs, and still meet the overall reporting requirements
of integrate reporting on the company level, as well as be able
to interface with the corporate financial system.

We elected to proceed through requirements definition as though we were
collecting requirements for five different systems. This allowed us
the flexibility of listening to each of the organization's needs
without the pressure of trying to fo:rce fit their needs into an
overall system definition. The results were fantastic. Each of the
organizations felt as though they were the driving force behind the
project and that we understood their needs the best. The ability to record
all of their needs as though they were the only needs, allowed the
client to organize their priori ties prior to having to consolidate
the overall project priorities. When it did come time to eliminate
certain facets of their requirements, they had already gone through the
distillation process of what is important and necessary and what is
fantasy better left for another project. The consolidation process of
overall project requirements went fairly well because everyone knew what
they were willing to let go during the bargaining process and what they
were not willing to sacrafice.

During the requirements definition process, just to give you a feel for
the magnitude of needs of the different organizations, we collected
150 report definitions, 300 different data requirements, and 5 different
views of system flow. The reporting requirements were all different, yet
you could feel a commonality of purpose, but only at a general
level- nothing that would keep you from writing 150 reports. It was

Paper 3044 2
WASHINGTON, 0 C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

at this point that we started investigating tools that would allow us
to develop one system that would satisfy all of these different needs.

At the end of requirements definition, it became clear that we were
developing a core system that satisfied the common data
requirements, corporate interface and company-wide reporting needs. In
addition to the core system, we needed to devise some
customization techniques to satisfy the unique requirements of each
organization. A quick review of the requirements of each of the parts
of the system might be helpful. The core system needed to provide the
following:

o interface to the corporate system
o the ability to summarize, for the entire company, all

financial information from each of the organizations
o satisfy the reporting requirements at the company level.

The customization features would have to fulfill the following
requirements:

o Data collection
- ability to collect organizational specific data
- ability to change coding structures as needs changed

o Data entry
- coding of data
- error messages
- on-line help screens

o Reporting
- ability to format and report their own customized data

and common system data
o Training Needs

ability to 'design' their own training session with the
use of on-line training facilities

- ability to have customized help screens during data entry
- ability to have customized error and informational

messages.

o General Design

Our overall approach of developing a core system with customization
facilities was presented to the user and accepted. We then
proceeded with the aurdous task of designing the major components of the
system; namely, data collection, reporting needs, and training needs
of the core system and customized features.

Data Collection

We used the data required by the corporate system and common data between
the organizations as the data we would collect in our main data base. This
data was to be put in a single data base with common data entry
screens. The coding structures needs would be contained in a central
control data base and read into the programs for the purposes of
editing and reformating the account number. This scheme allowed the
seperate coding structures without the need for seperate data entry
screens. The codes were to be entered into a free form block, big enough

Paper 3044 3
WASHINGTON, D. C.

BALTIMORE WASHING TON REGIONAL USERS GROUP INTEREX65

to accommodate the largest coding structure, and then converted to the
proper corporate format. The conversion process was to be parameter
driven and totally independent of the code of the screens.

The other data that was special to each organization would be kept in a
set of free format tables and would be defined via a data dictionary for
each organization. If the data needs of the organization would
change then one could merely change the dictionary to reflect these
changes. The data could therefore be independent of any physical
structure through the use of a dictionary.

Reporting Needs

The only formal reports that would be developed would be
level reports. They would be provided with the system.
reports would be written via a simple user report writer
dictionary as its mean of pulling both custom and common data.
would be provided in writing these reports, but the burden
most of reports would fall upon the user. Because of this
reporting needs, it became apparent that there was a
need for adequate and flexible training.

Training Needs

the company
All other

using the
Assistance

of writing
approach to
great need

The problems of developing a training methodology which took into account
the changing personnel as well as the customized features were numerous.
The normal approach of developing an operator manual was not
satisfactory. The other approach of custom training sessions seemed too
time consuming and not very practical. It was decided that the system
would have to be 'self-documenting'. I know, every system is
self-documenting. But, alas we were truely faced with developing the
first, and maybe only, self-documenting system. The approach we elected,
was the use of help screens, developed by the user, and a simple
tutorial program. The tutorial program presented small amounts of factual
information and then quizzed the user about the material.

IV. Design Tools

Now that the requirements and general system approach are
discussion of the techniques used to accomplish the overall
appropriate. The techniques that we used are technically
and the implementation of them is not difficult.

Modular Code

clear, a
design is
simplistic

I know that we all conceptually know that developing code in small, well
defined modules is correct, yet we all seem to develop code which
satisfies the initial requirements, but is not as easy to maintain as
one would like. These sacrafices are normally done in the interest of
saving time. Well, I too have fallen into this evil temptation, but
now that I am working for a software house, I have seen the error of my
ways. If there was any one area that we could have improved upon, it
would have been this area. We succumbed to pressure and developed
code which later became difficult to change without some significant

Paper 3044 4
WASHINGTON, D C.

;. BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

structural changes. Please listen a.nd repent~ write code in small, well
defined modules and you t.7ill be saved the software god's wrath and
punishment of spending late evenings doing rewrites.

Data Dictionary

The data dictionary allowed multiple views of the common data and the
definition of data specific to a particular organization. Being that
all of the reports were driven by the dictionary, commonality of
reporting methods were maintained. The dictionary, in addition to
providing fixed view of the common data, allowed the user to merge their
specific data with the common data. The dictionary chosen was easy
to modify and provided simplistic security features. These security
features ensured the client of their data privacy.

Customized Tables

This tool, together with the data dictionary, allowed us to meet the
customization requirements. The technique we used was very simple. We
developed a data base that contain tables of various lengths. The keys
to these tables were the table name and the key value. The users used the
dictionary to define the contents of each of table. As the user's data
needs changed, they could change the definition of the tables in the
dictionary.

Message Catalogs

As of MPE IV, message catalogs became available to the common user. A
message catalog is a collection of messages keyed by a message number.
These catalogs are built via the MAKECAT program available in PUB.SYS.
The obvious advantage of using a message catalog is not having to hard
code each of the messages in your program. It also allows you to
customize your messages for each client, including writing the messages
in different languages. Another advantage of message catalogs is
that they are allocated to a system extra data segment which provides
access to your message at a speed akin to greased lightning. We set up a
message catalog for each of users, which they were able to customize to
their needs. This customization required little or no effort on
the data processing staff, The catalogs could be changed at any time and
as often as the user required.

Help Facility

This facility at first seemed like the hardest to develop. What we ended
up with is an elegantly, simple approach. We developed a data base
that was keyed by userid and screen id. The only data in the data set was
a name of' a file which contain helpful hints written by the user.
When the user hit the help button, the program would fetch the file name
from the data base. The program would then take the terminal out of
block mode and display the text. When the user was 'finished', the
terminal would be placed back into block mode and the screen
redisplayed. I was surprized by what the user put into these files. The
files contained common codes, examples of reports, people to contact in
case of problems, and manual/automatic procedures.

Paper 3044 5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Tutorial System

This tutorial system was another simple solution to our training
problem. What we wanted to get around was having to write a
training system for each organization's customized subsystem. What was
developed was a data base with two types of data; text or factual
information and the question and answer data. The text data was keyed
by topic and organization. The question and answer data was keyed by
topic. There were a number of questions. The questions were randomly
selected and the answers were randomly displayed. The answer correct
answer was always displayed. When the user selected the correct
answer, he was given an appropriate message of praise. If an incorrect
answer was chosen, he was prompted again for the answer. Score was
kept and displayed to the user at the end of their session. The users
developed both the factual information and the question and answer
information. The little subsystem was later used in other systems.

Control Database

The control data base was our answer to the
structures. The data base contained a 'key'
structure. The 'key' is read in by the program, as
data requirements. The users had the option of
tables to edit these codes or wait until they were
corporate system.

Profileable Processing

different coding
to their coding

its guide to the
using their custom
edited against the

This is one of those tools developed via that useful design tool called
hindsight. In the original design, all of the conversion that took
place between the organization's code structure and the corporates, took
place in a custom program. This program converted each organization's data
and output a file to corporate system. It has occurred to me that these
conversion routines could have been written in the report writer
using custom tables for the conversion. This would allow the user to
change his profile as he desired.

It has also occurred to me that the data dictionary could have had more
'profileable' options for editing on the screens. The
organization's 'profile' could be read into the data entry screen program
at the beginning and could control what processing went on. My feeling
about this particular feature is that, although feasible, it may
not have been easily justified for a single purpose system.

V. Conclusions

It is in the conclusion of the paper that one tries to drive the the
point home in a clear and concise format. If I were to try to make one
point via this paper it would be, it is possible to design a flexible,
yet simple system that does similiar processing. Although this type
of system is feasible, it will only be cost worthy if you decide
upon this approach from the beginning of the design process. It will allow
you to develop a system which is easy to maintain and enhance. It will
save you from going back and having to retrofit a system to a 'new'

Paper 3044 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

organization's needs. The key points of the approach we have discussed
are:

o Pre-planning
Determine what features that you would like to implement. Know
what is going to be included in your core system and what features
are going to be customizable.

o User Support
It was obvious that the burden of a heavily customized system
is on the user. If your user is not very sophisticated or
active in the design process, then stay away from this approach.
A customized system will only work if the user is active and
comfortable with the tools that you are going to provide them.
This approach is not for a user who does not know what a computer
is, much less how to logon.

o Do not build Rome in one day
It is not humanly possible, regardless of what kind of superstar
you are, to implement all of the features, both custom and core,
in one day. Implement your features in modules. Bring one
module on at a time. Let the dust settle before attempting to
implement another module.

o Carefully determine what your core system will be.
It is real easy to include things in your core system which are not
truely shared by all your users. If your core is not pure, you
find that implementing your customized features will become
difficult. If you find that your core is very small, then maybe
you do not have a system that will fit this approach. You may
have to finally admit that you are really dealing with five
different systems.

o Choose your development tools carefully
There are a number of data dictionaries and fourth generation
languages on the market. Many of these packages are excellent, but
alas there are a number which are cumbersome and may not fit your
overall objective of flexibility and ease. Evaluate the tools
you plan to use and make sure they do not make more work than they
save.

o Modular Code
I know I have harped on this before, but this could be a
universal truth and I don't want it to slip past. In any system,
the more compact and modular your code is, the easier it is to
maintain. I don't remember the numbers exactly, but I do remember
that the majority of software dollars is spent in maintenance of
existing systems. Make it easy on yourself or those that will
end up supporting your code, write modular code. It is easier
to debug when there are problems and easier to enhance when the
need arises.

o Message Catalogs/Help Facilities
Since the design of this system, MPE has allowed users the ability
to add to the help facility that is part of MPE. This facility
provides you, the analyst, with a very inexpensive help system.
Take advantage of it. Its a freebie. They don't come around very
often.

Paper 3044 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

As ~ith all system design methodologies, this methodology does not
fit every business problem. This technique has been helpful for me
for business problems which span multiple organizations, yet do
essentially the same processing. The technique has some real
disadvantages that one needs to be aware of namely:

o Need for user support
This approach will not work at all if the user is not
behind the concept in more than verbal consent. The user
plays a significant role in making the customization
features work.

o Need to decide on this approach from the beginning.
If you do not elect to use this approach from the
beginning you will find it next to impossible to
retrofit once the design process has progressed significantly.

I hope this discussion of an approach to handling the problem I
discussed, as well as a description of the techniques used, has been
helpful to you. I would like to thank those people who have helped
me put this paper together; Richard Diehl, Ed McLaughlin, Jim
Kramer, and Mitchell Humphrey.

Paper 3044 a
WASHtNGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

304). The Twilight Zone Setween MPE Capabilities.

Abstract.

Jelle Grim
Holland House

AALST, Holland.

Within the MPE Operating System a number of so·called
Capabilities are recognized which define the actions a user (or a
program) ca.it ~erform on the HPJOOO system. These capabilities can
be used to i~ylement and maintain the security and the integrity
of the system. The most critical capabilities are SM (System
Manager), OP (Operator/Supervisor) and PM (Privileged Mode).

The traditional HP3000 systems always had assigned to them a
System Manager who, by means of his so·called Capability Set, had
access to all resources of the system. However, with the
introduction of the lower-cost HPJOOO systems and the ongoing
hardware decentralization, it will not always be desirable and/or
feasible to let a full-time user of a decentralized system have
all the capabilities. In other words : These systems will not
have a full·time system manager and/or console operator.

This paper will describe a method, that can be used to assign
capabilities to certain users dynamically instead of statically,
i.e. only those capabilities and only for so long as is
necessary to perform a specific task. Needless to say that this
must be accomplished while retaining security and including all
required measures to avoid undesirable adventures. As the
"carrier" of this method a menu processor can be used, whilst
also some intrinsic substitution will have to take place. These
items will be discussed also.

Contents.

1. Introduction.

2. Design Considerations.

3. DCAPS, the Dynamic Capability Switch.

4. RESCOM, the Restrictive Command !ntrinsic.

5. MENUPROC, the Alternative Command !nterpreter.

6. Tying it All Together.

1. Introduction.

This presentation will deal with the requirements for a more
dynamic definition of the so-called "capabilities", that are
recognized within the MPE operating system of the HPJOOO series
of computers. Currently these capabilities are supported in a

Paper 3045 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

(too) static way. If we go back in the history of the HP3000
series of computers, we will find the cause of this situation.

When the first types of computers (the CX, the II, III, 44 and
64) of the HP3000 series were introduced and sold, the investment
for a complete installation normally exceeded $150.000. The
machines were used in a data processing environment, whereby a
number of special functions were recognized. In connection with
the HP3000 machines the function of System Manager, Operator and
often also Account Manager were special and mostly required some
extra training or the hiring of specialized personnel. In
comparison with the investments in hardware and system software
these specializations were justified.

The MPE operating system also recognizes these special functions
by defining special capabilities that were assigned to these
functions, enabling them to perform their specific, specialized
tasks. The capabilities referred here are SM, OP and AM. Within
the MPE security these capabilities give the user a number of
special commands, like ALTACCT (SM only), ALLOCATE (OP only) and
ALTUSER (AM or SM), and widen the scope of a number of other
commands, like REPORT (especially SM and AM) and STORE
(especially OP) .

Lately Hewlett-Packard has introduced more and more low cost
HP3000 systems, like the 39 and recently the 37. Currently it is
possible to acquire a complete HP3000 system for less than
$30. 000. Now the picture changes, because it is no longer
feasible to appoint expensive System Managers and/or operators
full time for these small installations. In the best case, if
these small installations are part of a multi-machine user, a
specialist of the central DP department will dedicate some time
to these mini-mini's now and then, thereby acting as a part-time
or ad hoc System Manager.

However, some tasks involving special capabilities have to be
done on a regular basis or have to be done on an ad hoc basis,
when a specialist is not available. This can be solved by
assigning one or more of these special capabilities to one or
more of the regular users of these little systems. Now here's the
catch. The special capabilities OP and even to a greater extend
SM give the user, who has these capabilities assigned to him,
almost unlimited power within the MP"'~ operating system and its
security. Obviously this situation is not very nice, either
because of educational reasons (playing system manager or
operator just requires some specialist knowledge), or because of
security reasons (often it is not advisable to let a "regular"
user have access to all information stored within a machine).

Currently there is no "in-betwe~n", i.e. there is no such thing
as a sort-of System Manager or a partly Operator or a pseudo
Account Manager, in other words :

There is no twilight zone between MPE capabilities.

Paper 3045 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Thinking of this problem, it seems that a lot of things will be
solved, if we would have a mechanism for dynamic capability
switching. Dynamic Capability Switching, in this context, would
mean, that a "normal" user gets a special capability (OP, SM, AM,
etc.) assigned to him for so long a time as he needs it to
perform a certain task. After that task is finished, he has to
return to the status of "normal" user again. Furthermore, once
we would have this mechanism we could also use it for the
following, additional operations that we have been thinking
about, but that were impossible to implement under the standard
MPE operating system :

• A user with temporary AM capabilities could be allowed to
change his own password, to perform some file management
within his own account, BUT he must NOT be allowed to
perform a PURGEUSER or PURGEGROUP command.

• A user with temporary OP capabilities could be allowed to
use commands like ALLOCATE or SWITCHLOG, to alter the
JOBPRI to be able to submit a job to the CS queue, BUT he
must NOT be allowed to perform a STORE command for files
outside the logon group.

And, of course, once the problem of dynamic capability switching
is licked, it will also be applicable to other capabilities like
SF (save files), PH (process handling), DS (extra data segments)
and PM (Privileged Mode !!!).

Although it seems that the only thing, that is needed now, is
some sort of capability switching utility, there is more to this
alteration of the MPE capability principle than meets the eye.

Therefore, this paper will elaborate on a number of design
considerations with regard to the Dynamic Capability Switch, with
rough designs of the components that, together, will form a
complete dynamic capability switching mechanism. The concluding
chapter will describe a way to integrate all components as
described above into one unit, whereby an applications manager
will be the end result.

2. Design Considerations.

In this chapter we will try our hand on describing a number of
features and other assorted items with regard to the design of a
dynamic capability switching system. As with most utility-type
software, it is possible to turn out a quick-and-dirty routine,
that performs the capability switching, without looking at the
implications on system security, system integrity, etc.

However, thinking about the potential of a capability switching
utility, everyone will agree that at least some caution will have
to be applied when designing, building and using this software.
This paper will not try to present an all watertight design for
the capability switch, but it will merely point out a m1mber of

Paper 3045 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

pitfalls, temptations and dangers, that have to be avoided at all
costs.

In the following pages a number of i terns with regard to the
design of the dynamic capability switch will be discussed.

Stand-alone or Routine.

The choice that has to be made here is between supporting the
capability switch as a stand-alone program and supporting the
switch as a routine/procedure. Defining it as a program enables
the usage of the switch from within a UDC. On the other hand,
when the capability switch is designed as a routine, it can also
be used from within programs. If the switch must be used from a
menu processor either method will suffice, because most menu
processors support either the execution of programs, or the
execution of external routines or both.

Simple Operation.

It seems best
possible. The
consist of :

to keep the capability switch as simple as
basic function of the capability switch must

- the ability to switch one or more MPE capabilities on,
- the ability to switch one or more MPE capabilities off,
- the ability to report on the current setting of the MPE

capabilities, and
- any combination of the above.

The actual capability switching will be done on the MPE Job
Information Table (JIT). No additional functions should be
incorporated in the switch. The specification of capabilities
that have to be switched ON or OFF and/or the command needed to
verify the settings can be passed to the program or routine using
a character string.

Usage of Privileged Mode.

It is obvious, that it is necessary for DCAPS, to be able to
perform its feats, to use the much feared Privileged Mode
capability. Although the PM usage for this purpose is no direct
danger to the MPE integrity, indirectly breaches of
integrity I security can occur when the real hackers enter the
game.

The most stringent security measures must therefore be observed
when determining the location of the program, determining who is
going to use the program and how the program will be used.

Access Security I Location.

As the capability switching utility can be a dangerous weapon in
the hands of an end-user, or worse, in the hands of an evil

4 Paper 3045
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

minded end-user a number of precautions must be taken to ensure,
that the capability switch can and will only be used in a
controlled environment. It doesn't do to leave the possibility
open for just anybody to say "please run DCAPS and give me all
capabilities".

Therefore both the location and the access of the software must
be controlled. If the switch will be developed as a program, the
best place for it to reside is within a group with the PM
capability within the SYS account, like PRIV. SYS or UTIL. SYS
Furthermore, the program should be protected by a lockword. If
the switch is developed as a routine in an SL, then this SL must
reside in the same group as the program that calls it, for
instance a menu processor. It could be placed in the system SL,
but that would give too easy an access.

Restricted Usage.

When a user has certain special capabilities assigned to him : t
is no good, to tempt him by letting him have unlimited access to
the MPE operating system. As discussed in the Introduction,
special capabilities will allow the user to use certain special
MPE commands and/or widen the scope of certain other MPE
commands. It is therefore mandatory to use the switch always in
combination with some kind of restrictive user interface like
User Defined Commands (logon UDC's) or a menu processor like
HPMENU, HELL0-3000 or UNIMAN, making it impossible for the user
to abuse the power vested in him by the capability switch.

The Danger of the MPE COMMAND Intrinsic.

Even if a restrictive user interface is used, the structure of
the MPE subsystems sometimes offer the possibility to access MPE
commands in a more indirect way. Subsystems like SPOOK, FCOPY,
EDITOR and also user designed software can offer access to the
MPE commands via the so-called COMMAND Intrinsic. If the user
has some additi·.mal capabilities assigned to him by the
capability swHch at that moment, he can use the MPE commands
belonging to that capability.

A second security enforcer must therefore be implemented in the
form of a rest,rictive command intrinsic, i.e. a custom made
command intrinsic, that captures all calls to the "official" MPE
COMMAND intrinsic and that only transmits commands, that cannot
be used for less legal purposes, to the MPE COMMAND in tr ins ic.
Again, to make the complete capability switching system work, a
restrictive user interface is necessary.

The design considerations as discussed above show, that it is not
good practice to just write a little PM program, that will
perform your capability switching. On the contrary, after some
thought anyone will agree th3.t, to support a real dynamic

Paper 3045 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

capability switching system, the following components are
necessary and should always be user together :

- The actual Dynamic Capability Switch, or DCAPS.

~ The Restrictive Command Intrinsic, or RESCOM.

- The Restrictive User Interface, or MENUPROC.

The following chapters will deal with each of these components in
detail.

3. DCAPS, the Dynamic Capability Switch.

To get the logical placement of DCAPS into perspective, the
diagram below shows how it can help a "special" user to access
the MPE special capabilities.

Three types of users will be recognized

- The standard user, who has normal access to all standard
capabilities of the MPE operating system.

- The special user, who is just a normal user that now and then
gets one or more special capabilities to perform a certain task

- The system management that normally has all capabilities at its
disposal.

Figure 1. DCAPS. the Dynamic Capability Switch. MPE
Standard
Capabilities

Standard

User

MPE
Special
Capabilities

DC A PS

I Special I System
User Mon.

The Dynamic Capability Switch or DCAPS must be capable to perform
at least the following activities :

- Switch one or more of the MPE capabilities ON.
- Switch one or more of the MPE capabilities OFF.

Paper 3045 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

- Report on the current settings of the MPE capabilities
(ON or OFF).

Some observations can be made. If DCAPS is envisaged as a
stand-alone program, the actual capability switching will have to
be performed on the MPE Job Information Table (JIT), which means,
that the capability switch will be valid until it is switched off
again or until the end of the current session/job.

It is therefore of utmost importance to keep track of which
capabilities have been assigned and to switch the capabilities
off when they are not needed anymore. The information required
for the actual capability switching can be transmitted to the
DCAPS program by means of the ;INFO= parameter of the :RUN
command. The following rules can be implemented :

- If a capability is specified in the INFO-string either as it is
or preceded by a plus sign (+) the capability will be switched
ON.

~ If a capability is specified in the INFO-string preceded by a
minus sign the capability will be switched OFF.

- Multiple capabilities specified in the INFO-string must be
separated by commas (,).

- The occurrence of the word VERIFY in the INFO-string, separated
from the other information by commas, will cause DCAPS to
display the status of the capabilities (ON or OFF) after all
capability switches have taken place.

The following examples t.1ould be valid commands to run DCAPS
according to the rules as laid out above :

:RUN DCAPS.PRIV.SYS;INFO="AM,PH"
:RUN DCAPS.PRIV.SYS;INFO="VERIFY"
:RUN DCAPS.PRIV.SYS;INFO="-SM,AM,+OP,+PH,VERIFY"

Another approach is to design DCAPS as a routine, residing in a
privileged SL. For purposes of clarity, this routine will be
viewed as accepting as a parameter one character string with the
same layout as the INFO-strings as described above. A valid call
to the routine would then be :

DECAPS (INFO); or
CALL DCAPS (INFO) or
CALL DCAPS USING INFO

whereby INFO would be a character string with the contents
"AM,PH", "-SM,AM,+OP,+PH,VERIFY", etc.

An advantage of this method of parameter passing is, that to the
us<?r nothing changes in the case that Hewlett~Packard decides to
add a number of new capabilities, change the effect of one or
more capabilities, etc. Only DCAPS must then be changed to
support the new (changed) possibilities.

Paper 3045 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

~. RESCOM, the Restrictive Command Intrinsic.

As can be seen in the diagram below, the RESCOM idea does not
have to be restricted to working together with the DCAPS utility.
RESCOM can also be used to restrict a "normal" users in the MPE
commands, that can be executed programmatically.

How four types of users can be recognized

• The standard user, who has the standard MPE possibilities at
his disposal.

• The restricted user, who can only perform programmatically the
commands, that are accepted by RESCOM.

• The special user, who will now and then get permission to use
one or more special capabilities, but who can only execute
programmatically the commands, that are accepted by RESCOM.

• The System Management that normally has all capabilities at its
disposal.

Figure 2. RESCOM, the Restrictive Command Intrinsic. MPE
Standard
Capabilities

MPE
Special
Capabilities

REspoM

Stand.
User I Restr.

User

DC A PS

I Special I System
User Man.

In order to intercept calls to the MPE command intrinsic, screen
the contents of the call and to decide whether the call should be
rejected or submitted to the MPE command intrinsic, an alternate
command intrinsic, or RESCOM, must reside in the SL, that is
attached to the program calling the MPE command intrinsic.

This alternate command intrinsic or RESCOM must recognize the
following authorities, possessed by the user calling the
intrinsic :

• The authority to execute all MPE commands.
• No authority to execute any MPE command.
• The authority to execute a number of MPE commands.

Paper 3045 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The first two possibilities will not present any real problems
when designing RESCOM. The last one, however, is more tricky and
it requires at least some kind of list of authorized or
non-authorized commands. The choice must be made by storing these
restrictions either in a file or in an extra data segment. For
performance reasons the extra data segment method will be
preferable.

An ideal situation would be if RESCOM could be used !or both
"normal" MPE commands and programmatically executed MPE commands.
However, this excludes MPE itself (via its UDC structure) as the
user interface. In this case a menu processor like HPMENU,
MenuProcessor or UNIMAN must be used.

Just to illustrate how a menu processor can be used to build an
alternate (restricted) MPE command processor the following will
show a part of a UNIMAN command section doing just that. As the
author is familiar with the UNIMAN menu processor, this package
will be used in all examples pertaining to the menu processor.
See the next chapters for some more information on UNIMAN.

* * EXAMPLE COMMAND INTERPRETER FOR THE WASHINGTON CONFERENCE
*
COMMAND COM06,CONTROLLED
SET UPSHIFT
*
LABEL LOOP
DISPLAY :
ACCEPT MPE
IF PARM MPE EQ BYE

STOP
ENDIF
IF PARM MPE EQ MENU

GOTO END
ENDIF
: !MPE!
IF ERROR

DISPLAY !ERROR!
DISPLAY ENTER "MENU" TO GET BACK TO THE UNIMAN MENU

ENDIF
GOTO LOOP
*
LABEL END
END
*
*
Of course, when executing this file, RESCOM must be activated by
running UNIMAN with the ;LIB= parameter, indicating the SL that
contains the RESCOM routine. Furthermore, RESCOM must have the
information on the commands that are authorized and/or the
commands that are not authorized, at its disposal.

Paper 3045 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

As soon as this part of the UNIMAN designer file is executed, the
screen will be cleared and a normal MPE prompt (:) will be
displayed. From this point onwards, any MPE command entered will
be executed, if it is OK with RESCOM. The BYE command will
terminate the execution of UNIMAN. If UNIMAN is part of a UDC
ending with a BYE command, the user will be logged off
automatically. If the command MENU is entered, control will be
returned to the UNIMAN MENU-section, that called this
COMMAND-section COM06.

Special considerations have to be taken into account when
determining the location of the SL containing the RESCOM
intrinsic. For all accounts outside the SYS account, that have
to run programs to be restricted by RESCOM, the SL containing
RESCOM must reside in the PUB group of that account and the
programs must be run with the ;LIB=G or ;LIB=P parameter.

For programs in the group PUB.SYS, there is a catch, because
PUB.SYS already contains an SL (the system SL). It is therefore
necessary to migrate all programs in SYS, to be restricted by
RESCOM, to a group like, for instance, UTIL.SYS or LIB.SYS. The
SL containing RESCOM must also reside in that group and all
programs must be run with the ;LIB=G parameter.

5. MENUPROC, the Alternative Command Interpreter.

Because DCAPS, the Dynamic Capability Switch, uses some special
capabilities itself (especially the PM capability), it is
mandatory that the regular user or even anybody not being the
System Manager has no access to this program. Also the
possibilities created using DCAPS should be shielded from direct
access by the user. It is therefore, that some form of
alternative command interpreter or menu processor should be used
to restrict the activities of the users outside the application
that they must process.

Enter MENUPROC. For the purpose of this presentation MENUPROC is
not an existing system, but more a name to be given to the idea
of having an intermediate layer between the user and the power of
MPE. MENUPROC can be anything from a shrewd application of the
UDC structure, using logon UDC 's up to a more developed menu
processor like HELL0-3000 or UNIMAN.

Paper 3045 10
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 3. MENUPROC, the Universal Menu Processor MPE MPE

Standard Special

Capabilities Capabilities

RES COM

DCAPS

:

MENUPROC
. .

l Stand. l Restr. I Restr.
User User User I Special I System I

User Mon.

A MENUPROC system to be used for this purpose should be designed
along the following reasonable criteria :

- MENUPROC should guide the user from the moment he logs on to
the machine until he logs off again. It should be impossible
for the user to access MPE directly. The logical way to solve
this one is start MENUPROC from a logon, non-breakable UDC.

- MENUPROC must at least be capable of
Running programs.
Streaming jobs.
Executing MPE commands.
Detecting errors.

~ It would be an advantage if MENUPROC would possess its own
security layer, enabling, for instance, extra passwords for
certain for certain sensitive actions.

- It would be an advantage if MENUPROC would have the possibility
for the conditional execution of certain actions based on,
for instance errors detected, the current logon device, the

time of day, etc. Looking at this list it will be obvious that
rather simple systems such as the MPE UDC's and HPMENU will have
much difficulties in meeting the design criteria for MENUPROC.
However, numerous menu proces·dng systems are on the market or
can even be found on the Interex Contributed Software Library. It
is the responsibility of the system management to select and test
one or more of these systems to be used in combination with DCAPS
and RESCOM. It is not advisable to start building one's own
MENUPROC because the market offers systems for any purpose at
reasonable prices.

Paper 3045 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

In order to see, how the combination of DCAPS, RESCOM and
MENUPROC can work, the UNIMAN package will be used to fulfill the
tasks of MENUPROC. More information on UNIMAN can be found in the
UNIMAN User Manual. For the time being if suffices to say, that
UNIMAN uses a designer file, consisting of MENU sections,
describing screen layouts, the function key labels, and the names
of the COMMAND sections, that have to be executed when a certain
key is pressed, and COMMAND sections, describing the actions to
be performed. The UNIMAN language is rather selfdescribing. In
the following examples detailed explanations will be provided in
those cases that are not directly clear on reading.

*
* DEMONSTRATION UNIMAN DESIGNER FILE FOR WASHINGTON CONFERENCE
*
* INITIALIZATION, UNIMAN PASSWORD CHECK
*
COMMAND INITIAL
CLEAR
DISPLAY AT 1010,PLEASE ENTER YOUR UNIMAN PASSWORD
GETPASS EXPASS,CONSOLE
LOAD DEMOl
END
*
*
*
*
*
* SIMPLIFIED USER MENU DEFINITION
*
MENU DEMOl
DISPLAY AT 1010,DEMONSTRATION MENU 1
DISPLAY AT 1110,====================
KEY 1,CHANGE\PASSWORD,COMOl
KEY 2,TDP\,COM02
KEY 3,FCOPY\,COM03
KEY 4,STREAM\CS QUEUE,COM04
KEY 8,EXIT
END
*
*
* CHANGE USER MPE PASSWORD USING AM CAPABILITY
*
COMMAND COMOl
CLEAR
DISPLAY AT 1010,PLEASE E~ER NEW PASSWORD
ACCEP'r PASSWORD
:RUN DCAPS.PRIV.SYS;tNFO:"+AM"
:ALTUSER !USER!;PASS=!PASSWORD!
:RUN DCAPS.PRIV.SYS;INr'O="-AM"
F.ND

*

l'aper 3045

12

WASHINGTON. 0 C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

* TEXT AND DOCUMENT PROCESSOR USED WITH STANDARD CAPABILITIES
*
COMMAND COM02,CONTROLLED
:RUN TDP.PUB.SYS
IF ERROR

DISPLAY UNABLE TO RUN TDP
DISPLAY !ERROR!

END IF
END
*
* FCOPY USED FOR FILE MANAGEMENT WITH AM CAPABILITIES
* MAKE SURE RESCOM IS ACTIVATED
*
COMMAND COM03,CONTROLLED
:RUN DCAPS.PRIV.SYS;INFO="+AMrl
:RUN FCOPY.UTIL.SYS;LIB=G
:RUN DCAPS.PRIV.SYS;INFO=tt·AM"
END
*
*
* ..
* STREAM A JOB IN THE CS QUEUE USING OP CAPABILITIES
*
COMMAND COM04,CONTROLLED
DISPLAY AT 1010,ENTER NAME OF JOBFILE
ACCEPT JOBFILE
:RUN DCAPS.PRIV.SYS;INFO="+OP"
;JOBPRI CS
:STREAM !JOBFILE!
:JOBPRI DS
:RUN DCAPS. PRIV. SYS ;INFO=''·OP'"
END
*
*
* EXIT UN IMAN, PREFERABLY FOLLOWED BY A BYE IN LOGON tJDC

COMMAND COM08
STOP
END
*
*

Remadi.s.

- 1'he r.r,:r':OLF.: keyword of' the GETPASS statement indicates, that.
all r~ssword violations ~ust be legged onto the syst~m console,
Th0 1'.'c ks lash (\) in the KEY stci tE'men t caus0s the text In the
f1.i-.d;ion key labeJs to be C<>r1to1P.d.

At the location "here a pai.·a.;neter name is enclosed in
~xclarnation marks (!), the value of that parameter is
s11bs ti tutecl.

• The kerr<)rd C(:;rr:wLLF:D (1f the C::GMMliND statement causes an
automatic CL2:11J\ and DI~/lCL8 a.t the start of the section and

13
WASHiNGTON. 0 ~:

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

a REFRESH at the end of the section.
~ The UNIMAN parameter ERROR always contains the last MPE error

encountered, if any.

6. Tying it all together.

The three systems, that are defined so far, and their relations
can be depicted by the following diagram :

14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 4. The Components Needed for the Solution.
MPE MPE
Standard Special

Capabilities Capabilities

RESCOM

DC A PS

:

MENUPROC

I Stand. I Restr. I Restr.
User User User I Special I System I

User Mon.

However, the three systems still are very separate and are just a
number of tools to get to the goal as described in the
introductory chapter. The last step is to integrate DCAPS and
RESCOM into MENUPROC in order to get a real universal
applications manager. The following diagram shows the new
situation as viewed by the designers of the user menus.

Figure 5. The Integrated Applications Manager.

MPE
Standard
Capabilitie:;

MPl
Special
Capabilities

Stand.
User

APPWIMAN

I Special I
User

The thing to decide upon now is how to achieve this integration.
Just combining the three programs and routines into one big
program is not the solution, because that would require the
complete program to run in Privileged Mode. No, the best thing

System

Mon.

Paper 3045 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

to do would be to design a number of commands to add to MENUPROC,
that can describe the designer's requirements and that interface
to the DCAPS and RESCOM subsystems. Every MENUPROC system will
have its own particulars, so this presentation will just limit
itself to additions that will have to be made to UNIMAN in order
to get something like APPLIMAN.

As the UN IMAN designer file must be compiled before it can be
executed, a new compiler command $PM will be introduced. $PM
indicates, that the designer file may contain statements
requiring access to Privileged Mode routines, in this case DCAPS.
Default will be $NOPM and the UNIMAN password file SKPASS will
contain a list of users, authorized to use the $PM compiler
command.

The next command to be added for usage within COMMAND-sections is
SWITCHCAP, that will be used to switch capabilities. SWITCHCAP
accepts a parameter a character string as described in the
chapter on JCAPS with the exception of the VERIFY keyword, so the
following UNIMAN statements are perfectly valid :

SWITCHCAP AM,PH
SWITCHCAP -SM,AM,+OP,+PH

The UNIMAN VERIFY statement will be extended with the keyword CAP
that will cause the display of the status (ON or OFF} of the MPE
capabilities. VERIFY ALL will also include this display.

The integration of the restrictive command interpreter will be
performed using an extra data segment to store all commands with
their ON/OFF indicators. To initialize the status of the
commands, two compiler commands have to be added : $ALLOW to
initialize all commands as being allowed and $DISALLOW to
initialize all commands as being disallowed.

The COMMAND-section statements ALLOW and DISALLOW must be added
to allow or disallow commands on an individual basis. Both
commands accept as a parameter one or more c0mmands, separated by
commas. An ALLOW for a specific command stays in force until it
is disallowed by a DISALLOW command.

The UN!MAN VERIFY statement will be extended with the keyword
ALLOW that will cause the display of the status (ALLOWed or
DISALLOWed) of the MPE commands. VERIFY ALL will also include
this display. The UNIMAN designer file as described in the
chapter on MENUPROC will look like this after the addition of the
new commands : (see next pages)

Using this setup, an extra security measure can be achieved.
Instead of changing the capabilities in the Job Information Table
(JIT), it is now possible to change most capabilities on the
stack of the UNIMAN process. The advantage is that, when UNIMAN
is aborted for whatever reason, the special capabilities will be

16 Paper 3045
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

gone also, so the user can never end up t.tithin MPE with some
special capabilities left.

*
* DEMONSTRATION UNIMAN DESIGNER FILE FOR WASHINGTON CONFERENCE
*
$PM
$DISALLOW
*
* INITIALIZATION, UNIMAN PASSWORD CHECK
*
COMMAND INITIAL
CLEAR
DISPLAY AT 1010,PLEASE ENTER YOUR UNIMAN PASSWORD
GETPASS EXPASS,CONSOLE
*
*
ALLOW BUILD,FILE,HELP,L!STF,PURGE,RELEASE,RENAME,REPORT,RESET
ALLOW RESTORE,SAVE,SECURE,SHOWJOB,SHOWME,SHOWOUT,SHOWTIME,STORE
ALLOW STREAM,TELL,TELLOP
*
*
LOAD DEMOl
END
*
*
* SIMPLIFIED USER MENU DEFINITION
*
MENU DEMOl
DISPLAY AT 1010,DEMONSTRATION MENU 2
DISPLAY AT 1110,====================
KEY 1,CHANGE\PASSWORD,COMOl
KEY 2,TDP\,COM02
KEY 3,FCOPY\,COM03
KEY 4,STREAM\CS QUEUE,COM04
KEY 8,EXIT
END
*
*
* CHANGE USER MPE PASSWORD USING AM CAPABILITY
*
COMMAND COMOl
CLEAR
DISPLAY AT 1010,PLEASE ENTER NEW PASSWORD
ACCEPT PASSWORD
SWITCHCAP +AM
:ALTUSER !USER!;PASS=1PASSWORD!
SWITCHCAP -AM
END
*
*
*
*
* TEXT AND DOCUMENT PROCESSOR USED WITH STANDARD CAPABILITIES

Paper 3045 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

ft

COMMAND COM02,CONTROLLED
:RUN TOP.PUB.SYS
IF ERROR

DISPLAY UNABLE TO RUN TOP
DISPLAY !ERROR!

ENDIF
END
ft

* * FCOPY USED FOR FILE MANAGEMENT WITH AM CAPABILITIES
* MAKE SURE RESCOM IS ACTIVATED
*
COMMAND COM03,CONTROLLED
SWITCHCAP +AM
:RUN FCOPY.UTIL.SYS;LIB=G
SWITCHCAP -AM
END
*
*
* STREAM A JOB IN THE CS QUEUE USING OP CAPABILITIES
*
COMMAND COM04,CONTROLLED
DISPLAY AT 1010,ENTER NAME OF JOBFILE
ACCEPT JOBFILE
SWITCHCAP +OP
:JOBPRI CS
:STREAM !JOBFILE!
:JOBPRI DS
SWITCHCAP -OP
END
*
*

INTEREX85

* EXIT UNIMAN, PREFERABLY FOLLOWED BY A BYE IN LOGON UDC

*
COMMAND COM08
STOP
END
*
*
Biography.

Jelle Grim worked for the same company, the contractor Royal
Boskalis Westminster from 1966 to April 1984. Starting as a civil
engineer in the technical area he almost immediately switched
over to the computer section. The Boskalis automation between
1968 and 1984 changed from in-house IBM S/3, through external
data processing at a CDC service bureau using local Datapoint
mini' s, to in-house HP3000 equipment from 1978 onwards. When
Jelle left Boskalis he was Information Network Manager in charge
of a dual HP3000 network serving approximately 200 terminals and
microcomputers both in Holland and abroad. In April 1984 Jelle
and his partner Rene van Geesbergen together founded Holland

Paper 3045 18
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8~

House, a company specializing in HP3000 system management
consultancy and software products. Jelle is secretary of the
Dutch Users Group HP3000 (DUG) and a member of the Amsterdam 1985
Host Committee.

Paper 3045 19
WASHINGTON, D. C.

tlAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

3046. Store·And-Forward Data Transmission in a Multi·System Network
John P. Korb, CCP

Innovative Software Solutions, Inc.
10705 Colton St.

Fairfax, Virginia 22032

Most of us think of a network of HP 3000s as two or three or maybe even
five to ten HP 3000s connected together with DSN/DS3000. We think of a
network where DSCOPY, the P-to-P intrinsics, Remote File Access (RFA),
or perhaps Remote Database Access are used to pass data between
systems, with job streams, UDCs, and/or path-specific programs
controlling the operations.

In most of these networks, each data path is treated differently, often
because some paths have direct data source to data destination links,
while other paths may have to cross one or two or more intermediate
systems. This path specific "coding" of job streams, UDCs, and/or
programs is acceptable for small networks with few paths, but presents
a "design and maintenance nightmare" when large networks of fifty or
more systems with tens or hundreds of paths are involved.

This paper presents one approach to providing a standardized interface
to the application programmer to be used for transfering data from any
point in a network to any other. point in the same network utilizing a
store-and-forward design philosophy.

Store-and-forward was chosen because of the realities of communicating
between approximately 55 HP 3000 systems in many different time zones
all over the world. With systems in many different time zones, each
operating on local time, there is almost always a "nightly" backup
going on on at least one of the systems. Without a store-and-forward
philosophy, applications would have to be "smart" enough to take into
consideration the time zones of the processors between the local
processor and the data destination processor, the dump times of the
"bridge" processors, etc. and might be confined to limited time windows
for transmission.

Store~and-forward eliminates these worries from the application
programmer/designer. No longer does a whole day's transactions need to
be batched until some 2 hour time window. No longer are there the
panic calls at 6 AM because one on the DS lines along the way was down,
so nothing was transmitted, and no new attempt can be made until the
next transmission window some hours away.

By adopting a store-and-forward network design, applications
programmers can have their progr3.ms write transact ions to the Network
as they occur, and the Network will transmit the transactions as the
necessary DS lines become available. If the transactions need to go to
a central system some four or five DS lines away and one or more of the
systems along the way are unavailable, there is no problem. The
Network transfers the transactions as far as possible, stopping at the
break in connection. When the connection is re-established, the
transactions continue along on their way all without the the
programmer having to worry.

Paper 3046 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

What is the Network?

The Network is a collection of programs, procedures, files, databases,
and job streams which when properly configured provide a data
transportation system with the capability of transporting data from any
point in the Network to any other point in the Network.

What is its Purpose?

The purpose of the Network is to provide a consistent, reliable,
standardized method of transferring data between applications programs
on any HP 3000 CPU in the Network.

What are its Features?

o It can accomodate a configuration of up to 1024 HP 3000 CPUs.
o Each CPU can be configured to contain up to 15 "logical

nodes".
o Each "logical node" is referenced by the application

programmer via a 4 character PSD (Processing System
Designator) code.

o Each "logical node" can have up to 32768 application
"function" codes.

o Each "function" code can have up to 32768 application
"process" codes.

o Up to 32767 pre-defined ciphers can be used for encoding
transmitted data.

o The Network is based on store-and-forward operation, buffering
data to disc when physical communications lines are not
available, and when the application on the receiving end is
not running.

o Each time an application program receives a data packet from
the Network it also receives the "logical node", "function",
and "process" codes of the application which transmitted the
data packet.

o All application program access to the Network is via eight
standard network Procedures.

o Up to 800 words (1600 bytes) may be transferred with one
procedure call (ie. in one data packet).

o An application can provide a data record ''type" parameter to
the receiving application along with but not included within
the data record.

o An application can provide a "heading" and "heading type" to
the receiving application along with but not included within
the data record.

o Depending on configuration, each Network user can be required
to provide a unique Network password.

o When reading from the Network, the receiving application has
the option of being placed on wait indefinitely if there is no
data available, or waiting for an application program
determined interval (1 to 255 seconds) for data, then timing

Paper 3046 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

out and returning a "no data a11ailable .. error to the
application.

The Basic Components of the Network

The Network Software consists of three major modules: 1) The user
interface (the Network Procedures) • 2) The packet switching and
transmission code. 3) The maintenance and utility code. The user
interface provides eight procedures which the applications
programmer uses to write data to or read data from the network.

The packet switching and transmission consists of three programs. The
Traffic Control Supervisor Program (TCSP) • which is run from a batch
job and acts as the creator and controller of the packet switching
program, and the packet transmitting program.

The Traffic Control Progam (TCP) performs the packet switching
function, reading packets from its input queue and writing them to
areas for local NETREADs or to the input queue of a packet transmitting
program if the packet is bound for a remote system.

The Network Message Transmitter Program (NMTP) performs the data
transmission function. One NMTP runs for each DS line configured. The
NMTP opens a DS line to the adjacent system, sets up a file equation to
the input queue of the remote TCP. It then reads packets from its
input queue and writes them to the input queue of the remote TCP. By
having one NMTP per DS line and separate input queues for each NMTP, a
DS line "hanging" or an adjacent system being down or otherwise
unavailable does not affect transmissions to other adjacent systems.

The Network maintenance and utility code consists of a set of programs
used to:

1) Build an initial configuration of the Network on a processor.

2) Provide a means of modifying the configuration of the Network
on a processor.

3) Provide a means of adding to, deleting from, or modifying the
local configuration of the Network pertaining to which users
may access the Network, what passwords they must supply when
opening the Network, etc.

4) Provide reporting on the activity of the Network, including
usage statistics by user.

5) Recover from system failures or other interruptions which
prevent the TCSP and its child processes (TCP and NMT's)
from closing their files, emptying their extra data segments,
etc. and terminating normally.

Paper 3046 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Environmental Requirements

Because of the nature of the software, all of the Network Software is
written is SPL. The code requires PM (Privileged Mode), MR (Multiple
Resource Identification Number), PH (Process Handling), and OS (Extra
Data Segment) capabilities, and to a limited sense is operating system
specific (MPE IV, MPE V/P, and MPE V/E are all supported by one, common
version of the software through specific routines for specific levels
of MPE). The Network Procedures reside in two user-callable privileged
system code segments, allowing the procedures to utilize Privileged
Mode without the application programmer having to have PM or prep the
application programs with PM capability.

User programs wishing to call the Network Procedures must have MR
capability. While only a very small amount of code would be needed to
remove this requirement, it was decided to not "do the user the favor"
of obtaining MR, using it, then giving it up, in order to force the
application programmer to have MR capability, and thus, further
restrict who can access the Network.

How does one use the Network?

The Network is accessed through eight Network Procedures. These
procedures are standardized and are the same on all HP 3000 systems in
the Network. Using these procedures, one opens the Network, then reads
data from or writes data to the Network, and when done, closes the
Network. The Network Procedures set up and maintain the extra data
segments (s), buffers, data base, and files necessary for interaction
with the Network. Please take a moment to briefly scan the procedure
descriptions in appendix A and the glossary before continuing.

The Network Procedures

As mentioned earlier, access to the Network is through the Network
Procedures. These eight procedures perform the functions of opening,
closing, reading from, writing to, controlling, explaining error
messages, and retrieving information about the status of the Network.

Below is a brief description of each of the eight Network Procedures.
For parameter information on the procedures, please see appendix A.

NETO PEN
NETOPEN is used by an application program to gain access to the
Network. Before any data can be written to or read from the Network,
the Network must be opened via NETOPEN. NETOPEN identifies the user to
the Network, sets the source PSD code, SFUNC, and SPROC the Network
will use to identify the source of any data packets transmitted by the
user, and determines the cipher (if any) that will be used to encode
any data packets transmitted by the user.

Paper 3046 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

NETCLOSE
NETCLOSE is used by an application program to terminate access to the
Network. When an application is finished using the Network, it MUST
CALL NETCLOSE to gracefully terminate access to the Network. IF
NETCLOSE IS NOT CALLED BEFORE THE PROGRAM TERMINATES, THE LAST RECORD
RECEIVED FROM THE NETWORK MAY BE REPEATED THE NEXT TIME THE NETWORK IS
OPENED WITH THE SAME PSD, SFUNC, AND SPROC (this depends on the local
Network configuration). Note that NETCLOSE mode 2 gracefully
terminates access to the Network, yet leaves the last record received
in a state where it will be the first record read the next time the
Network is opened (depending upon the local Network configuration).
NETMODE 2 is provided as a means of avoiding the loss of a record which
the application could not process (ex. when reading from the Network
and writing to an output file, the application reaches end-of-file on
the output file, and cannot process the record just read from the
Network).

NETREAD
NETREAD is used by an application program to receive data from the
Network. NETREAD returns: 1) the data record (packet), 2) the PSD
code of the sender, 3) the SFUNC of the sender, 4) the SPROC of the
sender, 5) the record type supplied by the sender, 6) the heading type
supplied by the sender, and 7) the heading data supplied by the sender.

NETWRITE
NETWRITE is used by the application program to transmit data (pass data
to the Network). The application program provides NETWRITE with: 1)
the data record (packet), 2) the PSD code of the destination, 3) the
DFUNC of the receiver at the destination, 4) the DPROC of the receiver
at the destination, 5) the record type of the data record (packet), 6)
any heading data for the data record (packet), and 7) the heading type
for the heading data. The record type of the data record, the heading,
and the heading type are required by the Network to be present, but can
be set to zero if the application has no need for them. The DFUNC and
DPROC are used to determine which application at the destination the
data is to go to. The users of the Network should coordinate between
themselves which values each application will use to avoid conflicts.

NETCONTROL
NETCONTROL allows the application program to change the values used as
the source PSD, SFUNC, SPROC, and CIPHER. NETCONTROL saves the effort
(and overhead) of having to NETCLOSE, then NETOPEN with new parameters.

NETEXPLAIN
NETEXPLAIN is generally called by the application program after an
error has been returned by one of the Network Procedures. NETEXPLAIN
displays an error mPssage, and performs some internal Network cleanup
after an error. The application has the opt ion of having NETEXPLAIN
displ<'y the error message on the $STDLIST device, or returning the
message in a buffer for printing by the application itself.

NET INFO
NETINFO allows the a.pplication to determine which lines are connected

Paper 3046 5
WASHINGTON. 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

and other information about local Network activity. The information
provided by NETINFO is only as recent as the last NETSTATUS call.

NETSTATUS
NETSTATUS provides the application with up-to-the:-minute status
information pertaining to local Network activity.

PSD Codes (Processing System Designator Codes)

PSD codes are used by the Network to determine the source and
destination of message packets. A PSD code is a 4 character code left
justified and right filled with blanks if less. than 4 characters in
length. The PSD code is used only as an interface to the application -
the Network Procedures perform a table look-up on PSD code to obtain
the internal binary address which the Network uses for packet routing.

Because a table look-up is performed to translate the PSD code into a
binary value, switching destination PSD codes frequently (ie. when
sending via NETWRITE) is not advised. Where packets must be sent to
more than one destina~ion, system performance can be markedly improved
by sending with as few destination PSD code changes as possible.

Multiple PSDs are allowed on each CPU. Each PSD code has its own
unique internal binary code, and is addressed separately from the
application program's perspective. PSDs residing on remote CPUs are
addressed exactly as those on the local system, making transmissions
within the local CPU no different from transmissions to remote systems
once, twice, or many systems removed from the local system.

Because PSD codes are external references to the Network's internal
binary addresses, and references to PSDs are table driven, relocating a
PSD to a different CPU in the Network is possible, and in fact,
relatively simple. Only the table references within the Network are
modified - and only to the extent of indicating the new binary Network
address for the PSD. This makes relocating applications across CPU
boundaries a simple procedure that does not require any program
recompilations or other changes.

Ciphers

The Network provides for up to 32767 ciphers. The ciphers are 16 bit
values and are referenced by the application programmer by specifying a
Cipher Number. The Network uses the Cipher Number to retrieve the
Cipher Value from the Network's Cipher Table. This has two important
implications.

First, since the application effectively provides an index into the
Cipher Table, Cipher Values can be changed by the Network Administrator
without requiring that the application software be changed in any way.

Paper 3046 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Second, .since the actual cipher is kept in a table, anytime a cipher is
added, changed, or deleted, every Cipher Table in the Network must be
promptly and almost simultaneously updated to reflect the
addition/change/deletion.

As with PSD codes, because the ciphers are kept in a table, the more
the number of changes of Cipher Number, the more table look-ups the
Network must perform, thereby degrading overall system performance.
Use of a single cipher from NETOPEN through NETCLOSE is recommended.

User Blocking/Deblocking

As with any data transmission network, every packet transmitted
requires a certain amount of "overhead" data. Since this overhead data
is fairly constant in length, data transmission efficiency is maximized
when medium to long packets are transmitted. Short packets result in a
much greater overhead-to-data ratio, and thus, are relatively
inefficient.

If you have multiple records of data to transmit, and each record is
rather short (say 80 bytes), consider buffering up several records at a
time into a block of multiple records, then passing the entire block to
NETWRITE. This markedly improves data communications efficiency by:
1) reducing the amount of overhead that must be transmitted over the
communications lines, and 2) reducing the number of packets which must
be processed by the Network software (and thus, the number of disc I/O
operations). Remember, the Network can handle records of up to 800
words in length (1600 bytes) . If you are sending 80 byte records
one-by-one, 20 packets (and the processing they require) are necessary
to transmit 20 records. If you buffer the records into a block, only
one packet is necessary.

Preliminary performance data suggests that it takes almost 20 times as
long to transmit and receive 20 packets each containing 80 bytes of
data as it takes to transmit 1 packet of 1600 bytes (these figures are
based upon the transmission of a benchmark file of 1,281,360 bytes of
data at 80 bytes per packet, at Boo bytes per packet, and at 1600 bytes
per packet).

Due to the data independence of the "User Record Type", "User Heading
Type", and "User Heading", these fields can easily be used to provide
partial block information.

Long Records (greater than 800 words)

The Network can easily handle records of up to 800 words (1600 bytes)
in length. Records longer than 800 words do present a problem. Below
are some suggestions for handling records of more than 800 words.

If your record length lies in the range 801 to 960 words (1601 to 1920
bytes), you can transmit your record in one packet by utilizing up to
160 words in the "heading data" parameter of NETWRITE and NETREAD (960

Paper 3046 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

~ 800 + 160). To pass a record of between 801 and 960 words, pass part
of your record as "heading data" (the HDATA parameter to NETWRITE), and
the rest the "record data" (the RDATA paramter to NETWRITE).

If this method is used, be sure to pass NETWRITE the correct lengths
for HDATA and RDATA in the HLEN and RLEN, and tag your record either
with a special HTYPE or RTYPE value so the receiving application can
recognize what you have done.

If your record length is greater than 960 words, you will have to split
your record up into sections of 960 words or less. The Network
software provides four (4) flags which you should use when splitting
records. These flags are "Continued", "End-of-Record", "End-of-Block",
and "End-of-File", and are passed in the "FLAGS" parameter of NETWRITE.
THESE FLAGS HAVE NO SIGNIFICANCE TO THE NETWORK. Your application
program on the receiving end must look for and interpret these flags
and determine what operations to undertake.

Keep in mind that at the receiving end there is always the possibility
that if two people were transmitting data to the same destination and
one or both are performing multiple packet writes to the Network, the
packets may be received interleaved. Thus, if you are expecting a lot
of activity at a specific destination address (PSD, DFUNC, DPROC
combination), your application must be able to handle interleaved
transaction/file packets. The SRC, SFUNC, and SPROC parameters
returned by NETREAD identify the source of the packet, and should allow
a receiving application to properly reconstruct multiple interleaved
packets. Additionally, if long, multi-packet transactions are being
transmitted, using the "heading data" area to tag each component packet
with the name of the file or the ID of the transaction might be
employed to further prevent any intermixing of data.

Accessing the Network

Much like an iceberg, most of the Network is hidden from the
application programmer. The application programmer deals only with the
Network Procedures - the user interface to the Network.

The application programmer opens the Network, reads and/or writes
from/to the Network, then closes the Network. To the application
programmer the Network is accessed via Network Procedures, much as a
database is accessed via IMAGE procedures. The parameters passed
to/from the Network Procedures are always passed in the same order,
although some parameters may be omitted from some procedures.

To prevent misrouting of data, only one user at at time may open the
Network with a given PSD, SFUNC, and SPROC combination. Thus, if you
desire to both transmit and receive at the same time, both functions
must be performed by the same program. (Of course, mauy programs may
have the Network open from a given PSD at one time, they just may not
have duplicate SFUNC and SPROC values.)

Paper 3046 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Example. Legal

User A opens the Network with PSD "STAN", SFUNC=O, SPROC=O.
User B opens the Network with PSD "STAN", SFUNC=l, SPROC=O.
User c opens the Network with PSD "STAN", SFUNC=O, SPROC=2.
User D opens the Network with PSD "UCSD", SFUNC=O, SPROC=O.
User E opens the Network with PSD "UCSD", SFUNC=2, SPROC=5.

Illegal

User A opens the Network with PSD "GIT " , SFUNC=O, SPROC=O.
User B opens the Network with PSD "GIT " , SFUNC=O, SPROC=3.
User c opens the Network with PSD "GIT "

' SFUNC=l, SPROC=O.
User D opens the Network with PSD "GIT "

'
SFUNC=O, SPROC=O.

User E opens the Network with PSD "STAN", SFUNC=O, SPROC=O.
User F opens the Network with PSD 11 STAN 11

,, SFUNC=2, SPROC=5.

Users "A" and "D" both attempt to open the Network with the same PSD,
SFUNC, and SPROC values. Only one user can open the Network with a
given combination of values at a time. The first user attempting to
open the Network with a given combination is granted access.
Thereafter, all other users who attempt to open the Network with the
same combination will receive an error message until the first user
"releases" the combination by closing the Network with NETCLOSE, or
uses NETCONTROL to change the combination in effect.

When a program is written to transfer data from one point to another in
the Network, you either:

1) code two programs, one to transmit data, and one to
receive data (the transmitter is used at one end of your
transmission path, the receiver at the other)

2) code one program which both transmits and receives (this
program is used at one or both ends).

If you desire to both transmit and receive at the same time, both
functions must be performed by the same program. If, however, you are
transmitting and receiving batches of records, transmitting a burst,
then receiving a burst, two programs (one transmitting, the other
receiving) may be used, provided that they do not execute at the same
time.

Paper 3046 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

Examples.
Key:

Bidirectional transmission
Unidirectional transmission

> Information flows to right
< Information flows to left
<> Information flows bidirectionally

Washington Network San Diego

1) Transmitter >----->=======>--·--> Receiver

- OR -

Receiver <-----<=======<-----< Transmitter

But Not Both at the same time!!

2) Tranceiver <>===<>=======<~===<> Tranceiver

- OR -

Tranceiver <>===<>=======>-----> Receiver

- OR •

Tranceiver <>===<>=======<····-< Transmitter

But Not More Than One of the Above at One Time!!

INTEREX85

Please also note that the Network is designed with an option called
"non-destructive read" which the Network Administrator can turn on or
off. It is recommended that this option be turned on for all systems
in the Network.

Non-destructive read allows some overlap time between the time the
Network Procedures read a packet, and the time they delete the packet
from Network storage, providing a safeguard against data loss due to
program or system failure.

This feature can be exploited by the application programmer when
handling aborts. How? Well, when the non-destructive read option is
enabled, the last packet read via NETREAD is not deleted until either
the next NETREAD or NETCLOSE.

Thus, if an application program is reading from the Network and copying
to a data base and the IMAGE DBPUT call results in an error (such as
dataset full), if the application program closes the Network with
NETCLOSE mode 2, the last packet read via NETREAD will NOT be lost -
instead, it will be the first packet read when the Network is re-opened
(with the sa.me SRC, SFUNC, and SPROC parameter values) . Again, this
"recovery" ·option (mode 2) on NETCLOSE is only available if
non-destructive read is enabled.

Paper 3046 10
WASHINGTON. D. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

When coding calls to the Network Procedures, it is a good idea to
follow each call to NETOPEN, NETREAD, NETWRITE, NETCONTROL, NETINFO,
NETSTATUS, or NETCLOSE with a check of the first element of the status
array returned by the procedures. If the first element (element 0) is
non-zero, the procedure call resulted in an error or warning condition.
The Network Procedure NETEXPLAIN should then be called to display an
explanatory message.

Because the Network Procedures utilize the status array for internal
Network information, it is important that the status array be
initialized to all zeros prior to calling NETOPEN, and thereafter not
be modified in any way by the application program.

Advanced Applications

While the original intent of the Network was to provide a simple,
standardized method of transfering transaction data from any point in a
multi-system network to any other point in the network, the Network
Software is capable of much more.

Utilizing the various parameters available through NETWRITE and
NETREAD, applications can be written to handle individual transactions
coming from remote points, copy files from point to point, issue MPE
commands, and perhaps run programs - all simultaneously. The Network
Software can accomodate such an application, provided the application
is planned in advance.

To set up the receiving program for such an application, you might do
the following:

1) Define a set of codes which will be used to determine the type
of packet being received (transaction, file transfer, MPE
command, etc.) .

2) Define how the codes will be passed (HTYPE or RTYPE parameter
perhaps?).

3) Define the heading and data formats to be used for transactions.

4) Define the heading and data formats to be used for file transfers.

5) Define the set of commands which will be available
(programmatically executable MPE commands ... and a special
routine for :RUN).

6) Define the heading and data formats to be used for commands.

Below is an example

1) Operation Codes:

1 Application Transaction - store on application database.
2 File Copy - put data in a new file of name and options

Paper 3046 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

specified in HDATA.
3 ~ MPE Command - perform the requested command.

2) Operation Codes will be passed as HTYPE.

3) Application Transactions are passed in dataset image format.

4) All file copy packets will have the complete file name
(including lockword, if any) left justified in the first 36
bytes of HDATA. The first packet of a file transmission
will have the text portion of a BUILD command that can be
used for constructing the new file in the next 120 bytes.

5) The following commands will be available:
1) Any MPE command available through the COMMAND intrinsic.
2) The :RUN command.
Commands will be passed in COMMAND image format (including the
terminating <CR>) in the HDATA parameter.
RDATA and RTYPE will be ignored.
If HLEN is zero, the receiving program is to terminate.

As a practical example, consider the following. By using a scheme
similar to the above, applications on remote processors can gradually
transmit their transactions to the Network as they are generated. The
Network transmits the transactions up to the central system, (for
example) as the connections permit. Because the transactions are
transmitted gradually over an extended period of time rather than as
one large batch at the end of the day, the DS lines between the systems
are not saturated by large volumes of data monopolizing the DS lines,
and lower speed lines may be used. Also, the end of day processing at
the central system can begin shortly after the day closes, as there
most likely are only a few transactions "in transit", most of the
transactions having been transfered during the day, time permitting.

Additionally, using a receiving program similar to that outlined in the
previous example, at the end of the day the application could transmit
an MPE :STREAM command to launch the end of day processing at the
central site automatically after the last transaction i.s received.

Lessons Learned

While the Network does add to the processing load of a system, its
ease-of-use, capabilities, flexibility of configuration, and relatively
low maintenance and recovery requirements make it a very useful and
productive tool for the applications programmer and user community.

The data transmission efficiency is very dependent upon the size of the
data record (or block) passed to the Network. The larger the record
(block) tnrnsmitted, the less processing the Network is required to
perform, and the faster the data is transmitted. Preliminary
performance data suggests that transmitting a file of 80 byte records

Paper 30116 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

one per packet takes almost twenty times as long as transmitting the
same file with twenty 80 byte records in each packet. The point here
is that the limiting factor is the number of packets the Network can
transmit in a given period of time, not the number of bytes in a
packet.

Because the Network Software had to meet the requirement of not loosing
any data due to a system failure, certain processing actions had to be
taken, all of which limit the ultimate performance of the Network
Software.

First, the file labels on all !PC files are updated after every write.
This forces the data to disc and protects it, but a tremendous penalty
is paid in performance on high speed lines (56kb) where the time spent
waiting for the disc I/Os to complete is a performance limiting factor
IN TRANSMISSION.

Second, there is the requirement that some sort of logging be utilized
to retain at least the last 100 packets transmitted for aiding in
recovery after a system failure. This requires MORE disc I/O and
incurs additional delays • but it sure does simplify recovery, and
reduce the chance of lost data.

Third, transmission statistics for volume analysis. While the
statistics the Network keeps on its activity are interesting to say the
least, a great deal of time is spent continuously gathering and
updating those statistics.

Finally, !PC files don't survive system failures very well unless you
force the file label to disc after every write, so many of the above
concerns are a moot po int. In cases where the forced write has been
deliberately disabled (or where the system was running with
BLOCKONWRITE =NO), the chances of recovering (intact) an IPC file have
always turned out to be slim · very slim · say 103 of the time the file
is recoverable.

With the forced writes the !PC files are almost always recovered after
a system failure (there was once a case of an IPC file damaged by a
system failure that would hang the system any time you tried to access
it thereafter), making the Network a safe, reliable, easy-to-use
communication subsystem for the HP 3000.

Appendix A

Procedure: NETCLOSE

Purpose:
Used to properly terminate access to the Network.

Parameters:
STATUS ARRAY

Used to return status information to the application program.
MODE

Paper 3046 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Used to determine how the Network is to be closed - with
a non-destructive read (useful for application aborts),
or normally.

Procedure: NETCONTROL

Purpose:
Used to change the values of certain user attributes only
otherwise changeable by closing and re-opening the Network.

Parameters:
STATUS ARRAY

Used to return status information to the application program.
MODE

Defines which parameters passed to NETOPEN are to be changed.
SRC, SFUNC, SPROC, and CIPHER may be changed.

PASS
Password - to verify the identity of the user to the Network.

SYSTEM
Used when passing a replacement SRC value.

SFUNC
Used when passing a replacement SFUNC value.

SPROC
Used when passing a replacement SPROC value.

CIPHER
Used when passing a replacement CIPHER number.

Procedure: NETEXPLAIN

Purpose:
Displays error and status information. Should be called
after a Network Procedure returns with the first element
of the status array non-zero.

Parameters:
STATUS ARRAY

Used to return status information to the application program.
MODE

Determines whether the error message is to be printed on
the $STDLIST device or returned in the buffer supplied
by the application program.

BUFLEN
The length of the buffer area used (in bytes). A negative
number.

BUFFER
An array to contain the error message returned.

Procedure: NETINFO

Purpose:
Returns information as to the connections, past status
of the Network. Information is returned in the same
format as NETSTATUS, but information is not as up-to-date.

Paper 3046 14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Parameters:
STATUS ARRAY

Returns status information to the application program.
MODE

Indicates the type and volume of information requested.
SYSTEM

Used when specifying a status request for a specific PSD.
BUFLEN

The length in words (positive) of the buffer returned.
BUFFER

Contains the status information returned.

Procedure: NETOPEN

Purpose:
Opens access to the Network. Must be called before any other
Network Procedure.

Parameters:
STATUS ARRAY

Returns status information to the application program.
MODE

Used to tell the Network which "copy" of the Network
to use (the software allows for multiple copies of the
Network Software so that a production version of the
Network can coexist with a test version of the Network).

PASS
User password.

SRC
The source system PSD.

SFUNC
The source function number.

SPROC
The source process number.

CIPHER
The cipher number of the cipher chosen for transmission.

Procedure: NETREAD

Purpose:
Reads packets from the Network.

Parameters:
STATUS ARRAY

Returns the status of the call to the application program.
MODE

SRC

Determines the read mode. Reads may be unconditional (if
no data is available, NETREAD waits until data becomes
available) or timed (NETREAD waits a specific number of
seconds before returning a "No data available" warning).

The source PSD of the packet received.
SFUNC

The source function of the packet received.

Paper 3046 15
WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

SPROC
The source pr~cess of the packet received.

FLAGS
The flags set by the sender.

HTYPE
The heading type as defined by the sender.

HLEN
The length of the heading in words.

RTYPE
The record type as defined by the sender.

RLEN
The record length (in words if positive, in bytes if
negative).

HDATA
The heading data received.

RD AT A
The record data received.

Procedure: NETSTATUS

Purpose:
Returns status information on the lines to the adjacent systems.

Parameters:
STATUS ARRAY

Returns the status of the call to the application program.
MODE

Indicates the type of status request.
SYSTEM

Used to supply the PSD of a system when specifically
requesting information on a system.

BUFLEN
The number of words returned to the buffer area.

BUFFER
The area to which the status information is returned.

Procedure: NETWRITE

Purpose:
Writes data to the Network.

Parameters:
STATUS ARRAY

Returns the status of the call to the application program.
MODE

Must always be 1.
DEST

The PSD of the packet destination.
DFUNC

The function of the destination.
DPROC

The process of the destination.
FLAGS

Describes the options used in transmissions (to be continued,

Paper 3046 16
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

end-of-record, end-of-block, end-of-file, etc.).
HTYPE

The type of the heading transmitted.
HLEN

The length in words of the heading.
RTYPE

The type of record transmitted.
RLEN

The length of the record transmitted (positive if in words,
negative if in bytes).

HDATA
The heading data to be transmitted.

RDATA
The record data to be transmitted.

Glossary of Network Terms

!n the course of reading this paper,a variety of terms will be used
in reference to the Network. Below are some of the most common terms.

Address, Network Address
A multi-field descriptor designating a specific target logical
location within the Network. A Network Address consists of
1) node/subnode code (PSD), 2) function, and 3) process.

Extra Data Segment (XDS)
Extra Data Segments refer to areas of memory which through another
MPE special capability, DS capability, may be created for storing
information, and in some cases, passing information between
processes MPE uses extra data segments for storing system tables
and file buffers, for example.

Forced Write
A method of forcing the disc copy of a file to be current,
including (and most importantly) the label of the file.
It is the file label which contains the EOF (end of file)
information of a file, and which must be up-to-date if you
hope to recover fully from a system failure. A forced
write is performed via the MPE FCONTROL intrinsic.

Function (source or destination)
An identifier used to designate the application system
the data is coming from or going to. The Function is a
positive integer 0 to 32767. The meaning of the different
function values is left up to the user community. Both
the sender and receiver have a "function" defined. The
parameter use,J in the Network Procedures to specify the
sender's function is SFUNC (source function). The
parameter used to specify the receiver's function is
DFUNC (destination function). Function defines a Network
Address in much the same way as street name better defines
a geographic address.

Paper 3046 17
WASHINGTON, D. C.

IPC

Local

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

IPC refers to a specific type of MPE file, referred to as an IPC
(Inter-Process Communication) file or Message file. !PC files
have the unique property of acting as a first-in, first-out (FIFO)
queue, making them very useful in inter-process communication.

The LOCAL system is the system which you first log onto
and which issues the colon " " as the MPE prompt.

Network
A collection of CPU's (nodes) running the Network Software
package, connected together by DS lines. The Network is
divided into nodes, with DS lines running from node to node.
Much as the U.S. is a collection of states, the Network is
a collection of nodes.

Network Procedures

Node

A set of user-callable procedures used for accessing the
Network. The Network Procedures are the applications
programmers' only contact with the Network, and are contained
in the system SL in two Privileged MPE segments.

A single HP 3000 CPU within the Network. A node is connected
to other nodes by DS lines. Each node can be divided into from
1 to 1~ subnodes (one subnode, subnode 0 is required for
for each node and thus is not user-definable). Only one
copy of the Network Software is needed for a Node. Each
subnode within the node shares the same Network Software,
data base, and files. Node helps to define a Network Address
in much the same way state helps to define a geographic
address.

Node/Subnode Code
A four character code assigned to a specific node/subnode
combination. The Node/Subnode Code is used by the applications
programmer when specifying the Network Address of the
destination. The Network takes the four character code
and translates it to a binary value representing an
ordered pair of (node,subnode). The term Node/Subnode
code is used where the physical layout of the Network is
being described.

Non-destructive Read
One of the unique aspects of IPC files. Normally when a
record is read from an IPC file, it is automatically
deleted, so that the IPC file acts as a first-in, first-out
queue of records. When non-destructive read is enabled
(via the FCONTROL intrinsic), the first record of the IPC
file is read, but not deleted. Thus, you can obtain and
process th€ record, then post another read (a destructive
one) to delete the record, overlapping your processing
so that should there be a program or system failure, you

Paper 3046 18
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

may process the same record twice, but you would not
have a record "disappear" into the bit bucket.

Packet
A packet consists of the data the application wishes
transferred by the Network, the address of the sender,
the address of the destination, a packet ID number, a
time stamp, and many other items. The packet is the
unit of information which is passed within the Network.

Process (source or destination)
An identifier used in certain Network Procedures to
designate the program/process within the applications system
specified in "function" that the data is coming from or
going to. "Process" is a positive integer 0 to 32767,
The meaning of the different process values is left up to
the user community. Both the sender and receiver have a
"process" defined. The parameter used in the Network Procedures
to specify the sender's process is SPROC {source process).
The parameter used to specify the receiver's process is
DPROC (destination process). Process defines a Network
Address in much the same way as house number better defines
a geographic address.

Process Handling

PSD

Process Handling refers to an MPE special capability. Process
handling allows a program {process) to create child
processes. These child processes must be activated by the parent
process in order to execute. The parent process may also suspend
the execution of the child process, or kill the child process.
All of these functions are provided to the programmer via several
MPE Intrinsics.

Processing System Designator. A four character code used
by the application programmer to tell the Network which
logical "system" to use as the source or destination.
From the application programmer's perspective, the Network
consists of many different PSD's, each effectively on
its own CPU. Internally, up to 16 PSD's reside on a
single CPU, as the PSD code is translated by the
Network Procedures into a {Node,Subnode) ordered pair.
In fact, PSD codes and Node/Subnode codes are one and
the same - the term PSD is used in logical descriptions
of the Network, and the term Node/Subnode code is used
in physical descriptions of the Network.

Remote
A REMOTE system is one which you access through the LOCAL
system and which issues the pound sign "#" as the MPE prompt.
REMOTE systems are further defined by their distance from the
LOCAL system.

A REMOTE once removed is a REMOTE directly connected to the LOCAL

Paper 3046 19
WASHINGTON. D. C.

RIN

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

system. A REMOTE system directly connected to a REMOTE once
removed is twice removed, etc.

RIN is an acronym for Resource !dentification Number ~ a method
available through MPE Intrinsics of controlling access to a
resource. RINs come in two flavors ~ Global, which can span
job/session boundries, and Local, which can only be shared by
processes within a given job/session.

Subnode
One of 16 logical "addressesH within a node. Subnode is
a required part of a Network Address. Subnode helps to
define a Network Address in much the same way as city or
county better define a geographic address.

Paper 3046 20
WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3049. KSAM Survival Techniques

Dennis Scheil
Base 8 Systems, Inc.

21 Grist Mill Road
Belle Mead, N.J. 08502

(201) 874 - 8887

INTEREX85

The focus of this paper is on KSAM files, how they work and why, sometimes
they do not work. This paper will NOT try to tell you that KSAM flat-out
does not work. lt will not tell you to throw KSAM away and use IMAGE in all
circumstances ... including generic key processing! On the other hand, this
paper will not sell KSAM as the greatest thing since the integrated circuit,
nor will it attempt to convince you to give IMAGE the heave-ho and roll in
the KSAM files. As usual, the truth about KSAM is somewhere in the middle,
between the extremes. This paper will give you some KSAM survival
techniques: first, the information you need to understand KSAM and the File
System; then ways of making KSAM work for you; next some comparisons between
KSAM and IMAGE and finally some 'tricks of the trade' to make life with KSAM
much easier. As a side benefit, should you choose KSAM someday, this paper
may help you justify your selection to your peers and management when they
look at you in askance and say 'WHAT? You used KSAM???'.

First, let's take a look at the structure of a KSAM file. As is well known,
a KSAM file actually consists of TWO separate MPE files. The first, the DATA
file, is simply a standard sequential file; it doesn't even have a special
file code. Records are stored in the data file 'chronologically'; that is,
in the sequence they were written. The only 'nonstandard' feature of this
file is a 'user file label' containing the name of the second file, the KEY
file. The key file, as the name implies, holds the key values for records in
the data file and the record addresses of these data records. It also
contains internal pointers to locate the next and previous key values; these
pointers are used to locate records by key and also for 'sequential' access
to the data. Note that sequential access to a KSAM file is actually a
sequential reading of the KEY file, not the data file. The key entries are
arranged in a structure known as a 'B-tree'; the B-tree consists of levels of
key entries called 'key blocks'. These key blocks will be discussed later in
the paper.

The key file also contains control information such as the data file name,
number of file accesses, create and last access dates, definition of each key
and the KSAM end of file pointers for both files. This information may be
displayed using KSAMUTIL's VERIFY function against a given KSAM file. The
key definitions or 'descriptors' specify the data type for the key, key
length, start position in the data record and a pointer to the 'root' key
block in the B-tree.

The key file has a file code of 1080 (mnemonic KSAMK) and is always a binary
file with 128 word, fixed length records. The file limit of the key file is
established by the File System when the file is created and is not under user
control. The MPE end-of-file pointer is set ut the file limit, as it is with

Paper 3049 1
WASHINGTON, D. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX 8 5

an IMAGE dataset; thus, the entire file is allocated at once. As with IMAGE,
KSAM maintains its own internal EOF for the key file.

Clearly, there are a number of linkages within the key file, and one for each
active data record between the key and data files. When a program accesses a
KSAM file, it is imperative that both files be kept current. The File System
handles the link and pointer maintenance in a special KSAM extra data
segment, or EDS. One KSAM EDS exists for EACH open KSAM file in the system.
The data segment contains a control and key descriptor block, a
working-storage area, the current data block buffer and from one to twenty
key block buffers. The extra data segment may be as large as 32K words, but
from 6 to 8K is typical for a single-key KSAM file. When the EDS is created,
12K of memory is allo- cated; if less space is required, the REAL memory
allocation is reduced while the VIRTUAL remains at 12K. If MORE than 12K are
required, the data segment is 'released' (purged) and a new, larger one
created.

The control block portion of the KSAM EDS contains a copy of the control and
key information from the key file and is updated each time the file is acces­
sed. The key file itself is only updated when the KSAM file is unlocked or
closed.

The data and key buffer blocks are refreshed or written as 1·equired. The
need for a new data buffer, for example, does not force a read of the key
file also. The buffer area is cleared whenever the file is locked, forcing
reads from disc, and changed data are posted to disc whenever the file is
unlocked or closed.

Thus, the important components of a KSAM file are:
1. The data file;
2. The key file - control and key descriptor area;
3, The key file - key blocks; and
4. The extra data segment created whenever a KSAM file is opened.

Let us now turn to the File System to explore the wonders of shared file
access, locking and buffer allocation.

The MPE File System permits three different types of shared access to sequen­
tial and KSAM files: SHR (;NOMULTI], SHR;MULTI and SHR;GMULTI. The 'SHR'
keyword simply permits more than one process to access a file concurrently.
The GMUL'l'I, MULTI and default NOMULTI parameters specify the type of buffer
sharing to be in effect for a given accessor. Under GMULTI access, buffers
and pointers are shared between processes. MULTI access is similar to GMULTI
except that the sharing of buffers is permitted only within one job/session,
mainly useful in 'process handling' environments. NOMULTI access, the
default if neither MULTI nor GMULTI are specified, means that each process
maintains its own set of buffers for each open file. If four processes share
a file, under GMULTI (or MULTI) access, all would share the same buffer and
control block. If NOMULTI access were used, each process would have its own
buffer and control block. If three processe·s specified GMULTI and the fourth
opted for NOMULTI, two buffers would exist for the file; the first three
(GMULTI) processes would share one and the NOMULTI process would own the

Paper 3049 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

second buffer exclusively. Which access method is better, then? Well, it
depends on what the process wishes to do with a file ..

Any time a file is shared and ANY process reads that file sequentially, DO
NOT USE GMULTI ACCESS! Under GMULTI, two programs reading the same file
simul- taneously will get exactly HALF the records each! Assuming both are
reading at the same rate, one program will get the 'odd' records and the
other the 'even' ones. The average system user will not understand what is
going on. The auditors will not be amused. Because GMULTI accessors share
the same control block, the 'current record pointer' in the file is advanced
by BOTH processes, so after program A reads record 1, it advances the pointer
and program B gets record 2. Throw program C into the file doing RANDOM
reads and one suddenly realizes that GMULTI is not going to work here. So,
to save time, effort and lots of perspiration, use NOMULTI access when
reading any MPE or KSAM file sequentially.

The file system permits processes WRITING to a file to share it without any
locking whatsoever. Obviously, all processes must open the file for APPEND
access in this case. Here, GMULTI access is essential, since all processes
MUST know where the current record pointer (EOF I) is and should share a
common buffer to prevent buffer collisions. Unfortunately for.the KSAM user,
this 'unlocked append' access is not available as KSAM forces either
exclusive access or locking before updating a file. The locking requirement,
which likewise assures current pointers and no buffer collisions, virtually
eliminates this need for GMULTI access to KSAM files. There is a way to make
GMULTI access work with simultaneous sequential and random processing,
however and we will geet to it after discussing one of the least understood
aspects of the File System, namely LOCKING.

In order to lock a shared file, it must have been opened with 'dynamic
locking enabled', either by setting bit 10 of the 'aoptions' parameter to
FOPEN or by specifying the ';LOCK' parameter in a file equation for that
file. The COBOLII compiler generates the dynamic locking access option for
file having an EXCLUSIVE statement. Once a file has been opened with locking
enabled, ALL other accessors must do the same. Conversely, if the file has
been opened NOLOCK, then subsequent accessors may not request dynamic
locking. Violators receive FSERR 48, 'INVALID OPERATION DUE TO MULTIPLE FILE
ACCESS' , do not pass GO and do not collect $200. Ahhh. Now the system
analyst (and DP manager) can sleep at nights. Just specify ;LOCK on all
files and SHAZZAM! No more worries. Right? WRONG! The battle has just
begun.

Once a shared file is open, there is NOTHING in the File System to prevent a
'reader' from accessing the file while another accessor has locked it! The
FLOCK intrinsic, the EXCLUSIVE statement, the CKLOCK and BKLOCK KSAM proce­
dures, even the old COBOLLOCK, NONE of these prevent other users from reading
a 'locked' file. The only thing that the FLOCK intrinsic will do is prevent
ANOTHER FLOCK from succeeding! This does NOT mean that a two processes may
update the file simultaneously, since the dynamic lo~king option forces a
lock before an update. It DOES mean that there is no way of preventing a
'reader' from accessing the very same record that another process is updating
UNLESS ALL READERS LOCK BEFORE READING! Why? The answer lies in the way the
File System 'locks' a file.

Paper 3049 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

When the FLOCK intrinsic is called, either implicitly (EXCLUSIVE, CKLOCK) or
explicitly, the File System attempts to lock something called a GLOBAL RIN
(RIN stands for Resource Identification Number), A global RIN is assigned to
any file opened wih dynamic locking enabled. A process trying to lock the
file is actually trying to lock the global RIN assigned to that file, not the
file itself. If two processes attempt to lock the same RIN, the second pro·
cess will be impeded until the first releases the lock, unless CONDITIONAL
locking was specified. In that case, the second lock attempt will fail.
Once the file (RIN) has been locked, other processes wishing also to lock the
file will have to wait until the lock is released by a call to FUNLOCK. But
what happens if a process does not call FLOCK and just tries to read the file
while it is locked? NOTHING! The non-conforming program simply breezes past
the processes waiting patiently for the RIN, barges past the locking process
and waltzes away with an I/O buffer full of records, records which may or may
not be valid. The locked RIN did NOTHING to impede the non-locking process.

Should an application need to update TWO files simultaneously and wish to
lock both of them to ensure that they remain in synch, the usual result is
FSERR 64 USER LACKS MULTI-RIM CAPABILITY. The File System does not want to
lock two files at once and will prevent this from happening unless the
locking program is PREPped with MR (Multi RIN) capability. 'Fine', you say.
'We'll just let all of our programmers have MR capability and let them lock
as they please. Right?' WRONG, unless you are training your operations
staff on shutdown and startup procedures. Multi RIN capability is considered
by HP to be the second most dangerous special capability (right behind that
old devil, Privileged Mode) not because is breeches security or causes system
failures, but because it can create a situation known as 'deadlock', from
which a system shutdown is the only recovery. Actually, consider it a
CONTROLLED SYSTEM FAILURE, controlled because it gives system management time
to tell users to log off but a system failure nonetheless because it forces
you to halt the system. The classic deadlock scenario: Process A has locked
File 1 but is prevented from locking File 2 because Process B has locked File
2 but is prevented from locking File 1 because Process A • • • • • (repeat ad
nauseum).

The first rule of MR capability is: DON'T! unless you absolutely, positively
must. The second rule: If you've gotten this far, read rule 1 again. The
third rule: Well, if you insist, just remember that ALL PROCESSES MUST LOCK
FILES IN E X A C T L Y THE SAME ORDER AND RELEASE THE LOCKS IN THE SAME
ORDER. Usually, installations follow the ASCII collating sequence, locking
file A before B before X. And then one day you hire a new programmer and
forget to tell her the locking sequence and her old employer used REVERSE
collating sequence locking • • • Murphy LOVES 'MR' capability, but the use
of large numbers of KSAM or sequential files often need MR to keep the files
synchronized. Since IMAGE-based systems usually combine a number of files
into one database, they do not require MR as often; if you need to keep three
datasets in synch,. just DBLOCK the whole database (mode 1 or 2). Of course,
if you need to lock two databases, or a database and a KSAM file, MR may be
the only way to go (although IMAGE does not use RINs, it respects the 'one
lock at a time' rule). But, wherever possible, apply The First Rule of MR
and DON'T! To be successful, Multi RIN capability must be very well planned,
executed and controlled.

4 Paper 3049
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Let's sum up the main points to consider in sharing MPE files between
processes:
1. Sharing a file is enabled using the SHR keyword in a file equation

or specifying the 'share' access option to the FOPEN intrinsic;
2. A file may be accessed with SHARED buffers and pointers if it is opened

with GMULTI access. This is NOT advised for sequential readers;
3. Use of NOMULTI access means that each process has its own buffers and

control block for a shared file. This access mode may be dangerous if
processes are updating the file without locking and very questionable
if updates are occurring while other programs are reading the file
without locking it;

4. Locking is controlled not by physical locks to a file but rather by
using RINs (Resource Identification Numbers). When a process 'locks'
a file, it obtains the RIN for that file. Subsequent attempts to lock
the file will fail or be impeded until the lock is released. File
readers who do not lock before reading are NOT impeded; thus the lock
mechanism is not even close to fool-proof; thus

5, To ensure data and report integrity, ALL processes must lock a shared
file before performing ANY operation on that file unless GMULTI access
is used. In this case, extreme care must be taken to ensure data
integrity for the 'reader' processes and locking is required for
sequential reads anyway; and

6. Locking more than one file at a time requires MR (Multi RIN) capability
which can be dangerous. Uncontrolled multi file locking WILL lead to
process deadlocks which require a system shutdown to clear.

It is readily apparent that the File System does not simplify multi-user
access to data files. Add in the complexity of KSAM and one begins to under­
stand the full import of HP's warning on sharing files:

'SHARING A FILE BETWEEN TWO OR MORE PROCESSES
MAY BE HAZARDOUS' (File System manual, p 5-16)

Now, let's take a look at one of the important places where KSAM meets the
File System and examine the implications of GMULTI and NOMULTI access.
Remem- ber that KSAM files require an extra data segment in addition to the
normal set of file buffers and control blocks for the key and data files.
When a SECOND process opens a shared KSAM file and GMULTI access is
specified, both users share the buffers, control blocks AND the KSAM data
segment. If NOMULTI access is requested, a new set of KSAM overhead must be
created. Now we have TWO extra data segments and two sets of buffers and
control blocks. If TEN users share the same file NOMULTI, then TEN data
segments are used. If each of the ten processes shares TWO KSAM files,
TWENTY DATA SEGMENTS ARE REQUIRED! No wonder that HP states: 'KSAM files can
use a lot of memory.' (KSAM manual, p. B-17) The 20 data segments would, if
all were present in memory at the same time, use from lOOK to 240K words of
memory, UP TO ONE-EIGHTH OF THE MAXIMUM AVAILABLE MEMORY ON A SERIES III
MACHINE, and ten users are not an unrealistic mtmber for a Series III. Of
course, all of these segments would probably not be in memory at one time,
which implies a much greater workload for the Memory Manager as segments are
swapped out and rolled back in from disc. A Series III, with its single I/O
channel is now not just I/O bound, it is I/O swamped! Even a 44 can get
shaken up by a big KSAM-imposed workload.

Paper 3049 5
WASHINGTON, D, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The solution may 14'ell be GMULT! access; since there would be only one data
segment per file, much less memory would be used a.nd that segment, shared
between several processes, would probably never be swapped out.
Unfortunately GMULTI doesn't work with sequential access unless the file is
locked for the entire sequential read, or a special LOCK-START-READ-UNLOCK
technique is used. The former, a 'long lock' , would cut dramatically into
other users' response times and is not really viable. The
LOCK-START-READ-UNLOCK will work even with simultaneous sequential and random
processing. It entails some extra programming, but may be worthwhile in the
long run, especially if main memory is a problem and GMULTI access is the
solution.

Instead of' using a simple :READ (or COBOL 'READ ••• NEXT) to retrieve records
sequentially, a sequence of' commands is issued. A LOCK (EXCLUSIVE, CKLOCK or
FLOCK) is issued, followed by a START. The START uses the key of the last
record read and a relative operator of 'greater-than'. This positions the
KSAM logical record pointer at the next sequential record. The READ (or a
series of READ's) is issued next, followed by an UNLOCK to relenquish the
file. If GMULTI access is to be used and a given KSAM file may not be locked
for more than a bufferful of records, this is the only way to access the file
sequentially. If this method is to be used, it is ESSENTIAL that all reader
processes lock the file before reading, as a pointer-moving call between the
LOCK and the READ would cause all kinds of grief. Two additional points to
consider are that after the file open, the key field should be primed with
low-values and that the EOF indication will come from the START, not the
READ. .

A third solution, and probably the best one, is to give sequential processors
NOMULTI access to a file and use GMULTI for random and on-line accessors.
The MULTI/NOMULTI option is mix and match, allowing both types of access to
the same file at the same time, unlike the selection of dynamic locking,
where all accessors must agree. GMULTI file accessors will share a common
buffer amongst themselves and NOMULTI accessors will have individual buffers.

Note that the CKOPENSHR opens a KSAM file for 'SHR;LOCK [;NOMULTI)'.

Another, equally important consideration for sharing KSAM files is the use
and effect of locking. With sequential files, FLOCK doesn't just lock the
file, it also clears the file buffers to force the next read to initiate a
transfer from disc. FUNLOCK flushes the file buffers, ensuring that the disc
has been updated before the next process accesses the file. KSAM files
require one additional step: the ·refreshing of the extra data segment. The
following quotes excerpts from the KSAM manual illustrate this additional
step (and make another strong point for file locking for all accessors):

'When FLOCK is executed, it clears all the buffers and transfers
the latest control information from the KSAM file to the buffers.
This· ensures that any subsequent read of the file retrieves the
latest information from the disc rather than from the buffers.'

(KSAM manual, p 4-39)
'When FUNLOCK is executed, all output written while the file was
locked is transferred to the file [from the buffers) so that
other users have the most recent data.' (KSAM manual, p 4-91)

Paper 3049 6
WASHINGTON, 0, C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

9Because the current pointer position is not in a "common block",
when several programs open the same file, each can alter the key
file structure by adding or deleting records so that pointers set
by other programs may point to the wrong record without those
other programs being aware of it.

'To make sure that the latest pointer position is stored with the
file rather than in the separate extra data segments, programs
that share the same KSAM file must use a locking scheme •..
[E]ach program should lock a KSAM file before executing any pro·
cedure that positions a pointer •.. and not unlock the file until
all procedures that depend on this pointer position have completed
execution.• (KSAM manual, p B-21)

Note that there are two kinds of pointers in an open KSAM file, the internal
key file pointers and the 'current record' pointer. BOTH of these are
critical to the integrity of any application accessing the file in a shared
environment. The meaning of the above excerpts is clear: a locking strategy
MUST be in place for ALL KSAM file accessors. If you are STILL not convinced
of the need to lock, even for read access, let the following sentence from
the KSAM manual and practical example do the job:

'When a key file is searched for a particular record, the root
block and lower level blocks, AS NEEDED are moved to the key
block buffers in the [KSAM] extra data segment. (caps mine)

(KSAM manual, p B-17)

The data and key buffers are refreshed ONLY AS REQUIRED (and FLOCK will force
that requirement). If the file is not locked, the disc is not accessed until
either the key or data buffers do not contain the required record. Then,
ONLY THE BUFFER NEEDING THE DATA will be updated. To illustrate, program A
reads a KSAM file sequentially, displaying each record on a termainal and
pausing until the user indicates she has read the data. Then, the next
record is read and displayed. Program B also reads the file sequentially but
deletes them. Program A does not lock the file, program B locks before each
read and unlocks after the delete. In this example, program A is run and the
user is looking the first record in the file. Now, someone runs program B
and deletes all of the records in the file! What will happen to A when the
user asks to see the

next record? OOOOOOPS! The user GOT the next record, even though program B
had deleted it! In fact, UNTIL THE KEY BUFFERS ARE EXHAUSTED, PROGRAM A WILL
CONTINUE TO READ RECORDS AND DISPLAY THEM AS IF THEY WERE ACTIVE! If the key
buffers hold more entries than the data buffer (a likely occurrence) program
A will charge blithely on, even refreshing its data buffer with deleted
records. There will even be a delete flag in the first two bytes of each
record in subsequent data blocks! This scenario assumes NOMULTI access; had
GMULTI been in effect, program A would have found itself at end-of-file (more
or less correctly so), but program B would have skipped the first record in
the file. Had A requested a record in the middle of B's deleting, it would
have gotten one from somewhere in the middle of the file and B would have
missed that one also! If both programs had used locking before reading (with
either GMULTI or NOMULTI) program A would hav correctly reached EOF on the
second read and B would have deleted all of the records. If A had requested

Paper 3049 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX65

another record before B deleteq all of them, A would have gotten the first
un-deleted record, but B would have been able to delete it afterwards.

This leads us again to the First Rule of KSAM:

ALL ACCESSORS OF A SHARED KSAM FILE SHOULD LOCK THE FILE PRIOR
TO ANY I/O OPERATION, INCLUDING READS!

There is, of course, one exception to this rule; if no updates are being
performed and all users are accessing the file NOMULTI, locking is not
required.

There are two serious complications ar1s1ng from KSAM's stringent locking
requirements. First, if a system is I/O bound before locking, it will be
even more so afterwards. Since FLOCK forces the next read to come from the
disc and FUNLOCK posts any modified buffers back to the disc, the blockfactor
of the data AND key files effectively becomes '1'. KSAM will exacerbate the
situation by requiring at least three I/O's per read or write, two to the key
file and one to the data file. The reason that two I/O's will be required to
update the key file is that the KSAM control information must be updated
also. Sequential file read processes may optimize a bit by reading more than
one record per file lock, but random readers and file update programs can not
be helped by this technique. A secure KSAM system will probably be I/O
bound.

The second problem concerns the co-ordination of locking when more than one
file must be locked. Since KSAM requires the locking of INPUT files, the
need for Multi RIN capability becomes acute, but the problems make its use
very unattractive. One solution may be to combine several KSAM files into
one; this approach would possibly reduce memory requirements also, but it has
the definite drawback of creating a bottleneck for system users. While
throughput suffers less with a bottleneck than with a deadlock, neither
option seems very palatable. Obviously, designing or implementing a
KSAM-based system requires special care and planning, most emphatically so
whenever MR capability will be required to lock more than one file at a time.

At this point, recognizing the flaws of KSAM, one might ask if it is worth
using it at all. IMAGE must be better in all cases, right?

First, it is not entirely KSAM's fault. The design of the MPE File System is
not really satisfactory for the sharing of data between processes, especially
in a dynamic on-line environment. GMULTI access results in pointer ping-pong
but NOMULTI means big trouble if someone is updating at the same time. Still
the biggest problems occur while different types of access are occurring. If
a KSAM file is accessed entirely for update or solely for sequential reads,
no problems occur. Therefore, it is wise to consider some advantages of KSAM
over IMAGE and use it under 'controlled' circumstances.

Typical uses for KSAM are extract files, tables and 'batch files• used to
collect data on-line for subsequent batch database update. In all cases,
processing is well defined and well suited to KSAM. KSAM is much faster than
IMAGE for many types of processing. Slow IMAGE batch programs may be speeded
up significantly by using a utility program such as Robelle's SUPRTOOL to
extract data from an IMAGE database into a KSAM file and then running against

Paper 3049 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 ~

the extract instead. While it seems that much more overhead is involved, run
times may actually be cut in half and this includes the time required to
perform the extract! KSAM is equally well suited for tables systems,
especially those built around generic key processing.

Note that none of these functions involve the 'core' data of a system. KSAM
is NOT a wise choice, especially when several files are required and updates
must be performed against more than one at a time. There are many types of
'peripheral' processing, however, for which KSAM is the logical choice.

Of course, none of this is very comforting to the MIS manager stuck with a
cranky KSAM system. There are steps, however, which may be taken to ensure
better throughput (and better OUTPUT!) without trashing the system and
rewriting it in IMAGE.

First: Make sure that ALL on-line update programs are using GMULTI access
to update the file. Then check the batch programs to make sure that
they are running NOMULTI. Make absolutely sure that any batch job
which may run against KSAM files when there is on-line activity
specifies SHR;LOCK in a file equation. Otherwise, you may not get
very far, either with the batch job or the on-line system.

Second: Check your locking stategies. If locks are being applied for update
only, you may need to restrict batch processing to certain hours of
the day. You may want to try rewriting the I/O routines to make
sure that all locks are being applied correctly. Isolate those
programs which use MR capability and make sure that all locks are
applied in the same order. Make sure that all of these locks are
necessary and get rid of those that aren't. If any batch programs
use MR and run during on-line access hours, change the jobstreams
to create extract files instead and get rid of the multiple locks.

Third: Set up two jobstreams, one called CRASH and the other called CLEAN.
CRASH will use KSAMUTIL's KEYINFO function to check every KSAM file
in the system for structural damage after a system failure. Just
specify 'KEYINFO filename', the RECOVER parameter is not necessary.
Then tell Operations to stream CRASH after EVERY system failure and
not to let anyone sign on until CRASH has finished. CLEAN will use
FCOPY to copy records to a sequential file and then back to the KSAM
file. This operation removes deleted records AND puts the records
back in key sequence. Even if you are reusing deleted record space,
the CLEAN step is necessary to put the records back in order.

Fourth: Keep a close watch on file capacities, ESPECIALLY if you are not
reusing record space. Don't make the files too large, but be
generous.

KSAM may not be perfect, in fact it is very far from that, but there is no
reason to reject it in situations where it will work just fine. Likewise,
unless the application is in very bad shape, a few changes to an existing
KSAM system may make life with KSAM a bit more livable.

Paper 3049 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3050. TURBO PASCAL AND AGIOS ON THE HP150

Steve Porter, CDP
D P Systems

Box 34429
Memphis, Tennessee 28134

WHAT IS TURBO PASCAL

Pascal is the general-purpose high level programming language
originally designed by Niklaus Wirth of the Technical University of
Zurich, Switzerland. He named the language in honor of Blaise Pascal,
the French philosopher and mathematician.

Turbo Pascal is designed to meet the requirements of all
categories of users. It follows the definition of Standard Pascal as
defined by K. Jensen and N. Wirth in the "Pascal User Manual and
Report" quite closely. In addition to the standard, a number of
extensions are provided. Among these are:

* Absolute address variables * Bit/byte manipulation Direct
access to CPU memory and data ports Dynamic strings Free ordering of
sections within declaration part * Full support of operating system
facilities In-line machine code generation * Include files Logical
operations on integers Program Chaining with common variables Random
access data files Structured constants Type conversion functions

These extensions are what makes it relatively easy to access the AGIOS
subsystem.

WHAT IS AGIOS?

AGIOS stands for Alpha-numeric Graphics Input Output System. It
is a layer of software between BIOS (Basic Input/Output System and the
MS-DOS operating system. From MS-DOS AGIOS appears as a device
driver. It is designed to give you, the programmer, total high-speed
control over the HP150 without resorting to direct hardware-specific
calls and addresses. HP has made a commitment to maintain
compatibility in future systems in the series 150 line. The 110 does
not appear to be included in this commitment.

WHY SHOULD I USE AGIOS?

There are two general reasons why you might want to use AGIOS.
The first is speed, and the second is that there are some things that
there is just no other way to accomplish. According to HP specs the
standard console output rate is approximatly 700 characters per
second. AGIOS, on the other hand, allows console output as fast as

Paper 3050 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

qOOO characters per second. For approximately 1/3 of the functions,
AGIOS is the only way you can do that function.

HOW TO ACCESS AG!OS FROM TURBO PASCAL

Because AGIOS is designed as a device driver, the AG!OS functions
are all accessed through MS-DOS calls. Specifically, the 'I/O Control
Write' on the console device. This use of standard MS-DOS calling
conventions allows you to access AGIOS from Turbo Pascal by using the
standard procedure "MsDos". This procedure, which is one of the
extentions provided by Turbo Pascal:

1) allows you to set up a record with all of the data necessary
for an MS-DOS call, and 2) executes an interrupt 21
(function-request) call to MS-DOS.

The format of the record to be used by the procedure is:

REGISTERS = RECORD
INTEGER; DX:
INTEGER; DI :
INTEGER; FLAGS:

AX: INTEGER; BX:
INTEGER; BP:
INTEGER; OS:

INTEGER; END;

INTEGER;
INTEGER;
INTEGER;

ex:
SI:
ES:

The values for the registers are as follows:

AX := $4403; {The 44 tells DOS that this is a '!/O Control Write'
The 03 tells the 'I/O Control Write' that it is to
write ex number of bytes from the buffer pointed to
by the DS:DX pair to the device control channel}

BX := 1; {The Handle of the device, in this case the console}

CX := length {The length of the buffer • see AX}

DX := offset {The offset of the buffer within the segment}

DS := segment {The segment of the buffer}

If there is a MS-DOS problem the carry-flag 'f.l'ill be set and AX
will have a error number in it. The errors are:

1 = invalid function, S = access denied, 6 = invalid handle,
and 13 = invalid data.

It the carry flag is not set and AX = 0 then an AGIOS error has
occurred. Normally the AX will return with the number of bytes
transferred. This covers the mechanics of the MS-DOS calls. Next we
will look at the nuts & bolts of how the buffers are laid out for each
function.

AGIOS - THE NUTS AND BOLTS

Paper 3050 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

All of the AGIOS functions are performed through the same MS-DOS
function. The only difference between the calls is the buffer that is
written to the device driver. Even though the format of the buffers
can vary widely in both layout and size, they all have some parts in
common. The general layout of the buffer is:

FUNCTION BUFFER RECORD FUNCTION SUBTYPE: BYTE;
FUNCTION TYPE: BYTE; the remainder of the buffer is
dependent on the function.

There are two FUNCTION TYPE's. They are "O" for the Alpha/Numeric
functions and "1" for the Graphics functions. There are over 100
FUNCTION SUBTYPE' s distributed between the two function types. The
following is a list of all available functions:

ALPHA/NUMERIC ----------·

Video intrinsics
* DEFINE AREA
* WRITE AREA
* CLEAR AREA
* ENHANCE AREA
* READ AREA
* SHIFT AREA
* WRITE LINE

Control functions
EXECUTE TWO-CHARACTER SEQUENCE
POSITION CURSOR
DEFINE ENHANCEMENTS
CURSOR SENSE ABSOLUTE
CURSOR SENSE RELATIVE

* SET CURSOR TYPE
* READ CURSOR TYPE
* READ TERMINAL CONFIGURATION

Keyboard intercept
* DEFINE KEY CHARACTERISTICS
* GET KEY STATUS
* PUT KEY
* KEYCODE ON/OFF
* KEYCODE STATUS
* READ KEYPAD STATUS

Application softkeys
* UPDATE SOFTKEY LABEL
* READ SOFTKEY LABEL
* DISPLAY SOFTKEY LABELS

Touch screen functions
DEFINE TOUCH FIELD
DEFINE SOFTKEY FIELD
DELETE TOUCH FIELD
SET TOUCH SENSING MODES

* These functions do not have a equivalent escape sequence,
therefore are only available through AGIOS.

Display control
CLEAR GRAPHICS MEMORY
SET GRAPHICS MEMORY
TURN ON/OFF GRAPHICS DISPLAY
TURN ON/OFF ALPHANUMERIC DISPLAY
TURN ON/OFF GRAPHICS CURSOR

Paper 3050 3

GRAPHICS -----------

Graphics plotting
LIFT PEN
VECTOR MOVE ABSOLUTE
VECTOR MOVE INCREMENTAL
VECTOR MOVE RELOCATABLE
LOWER PEN

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

TURN ON/OFF RUBBER BAND LINE
MOVE GRAPHICS CURSOR ABSOLUTE
MOVE GRAPHICS CURSOR RELATIVE
TURN ON/OFF ALPHANUMERIC CURSOR

TURN ON/OFF GRAPHICS TEXT MODE

Vector drawing mode
SELECT DRAWING MODE
SELECT LINE TYPE
DEFINE LINE PATTERN/SCALE
DEFINE AREA FILL PATTERN
FILL RECTANGULAR AREA ABSOLUTE
FILL RECTANGULAR AREA RELOCATABLE
SELECT POLYGONAL FILL PATTERN
SELECT BOUNDARY PEN
NO POLYGON BOUNDARY
SET RELOCATABLE ORIGIN
SET RELOCATABLE ORIGIN TO PEN

POSITION
SET RELOCATABLE ORIGIN TO CURSOR

POSITION
SET GRAPHICS TEXT SIZE
SET GRAPHICS TEXT ORIENTATION

TURN ON/OFF TEXT SLANT
SET GRAPHICS TEXT ORIGIN
GRAPHICS TEXT LABEL

* DEFINE USER CHARACTER SET
* SELECT DEFAULT CHARACTER SET
* OUTPUT SINGLE CHARACTER

SET GRAPHICS DEFAULT
SET PICTURE DEFINITION DEFAULTS
GRAPHICS HARD RESET

VECTOR DRAW ABSOLUTE
VECTOR DRAW INCREMENTAL
VECTOR DRAW RELOCATABLE
SET PEN POSITION
TO CURSOR POSTION
POINT PLOT
SET RELOCATABLE ORIGIN TO PEN

POSITlON
START POLYGONAL AREA FILL
TERMINATE POLYGONAL AREA FILL

* POLYGON MOVE ABSOLUTE
* POLYGON MOVE INCREMENTAL
* POLYGON MOVE RELOCATABLE
* POLYGON DRAW ABSOLUTE
* POLYGON DRAW INCREMENTAL
* POLYGON DRAW RELOCATABLE

LIFT BOUNDARY PEN
LOWER BOUNDARY PEN

Graphics status
READ DEVICE ID
READ PEN POSITION
READ CURSOR POSITION
READ CURSOR POSITION
WAIT FOR KEY
READ DISPLAY SIZE
READ GRAPHICS CAPABILITY
READ GRAPHICS TEXT STATUS
READ ZOOM STATUS
READ RELOCATABLE ORIGIN
READ RESET STATUS
READ AREA SHADING
READ DYNAMICS

* READ EXTENDED SCREEN DIMENSIONS

* These functions do not have a equivalent escape sequence,
therefore are only available through AGIOS.

The folowing program shows how some of the AGIOS functions
may be used. A copy of this program and other routines to
access the AGIOS functions is in the INTEREX contributed
library on CompuServe. The program will draw a 'calendar'
using the Line Drawing Character Set. The program will also
use the ROMAN BOLD Character Set that can only be accessed
through the AGIOS functions. The program demonstrates the
speed of the AGIOS functions by filling the screen, including
enhancements, in less than 1/2 of a second.

PROGRAM TESTINTR;

{***
* This program tests some of the video intrinsics *
***}

Paper 3050 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

{***
* Copyright 1984 by Steve Porter, CDP *
* *
* Permission is granted for anyone to use these programs for private or*
* commercial use provided that the following notice is included: *
*
*
*

'Portions of this program are copyrighted by Steve Porter 1985'
*
*
*

***}

{***
* Some general TYPEs needed by all routines *
***}
TYPE

REGISTERS = RECORD
AX,BX,CX,DX,BP,SI,DI,DS,ES,FLAGS: INTEGER;

END;

******* IO CT ******

{***
* This function does an I/O Control operation and dumps the flags if *
* the operation fails *
***}
PROCEDURE IO_CTL(VAR BUFF; LEN: INTEGER);

VAR
REG PACK REGISTERS;

BEGIN
WITH REG PACK DO BEGIN

AX := $4403; {I/O CONTROL OPERATION}
BX := 1; {CONSOLE HANDLE (ALWAYS 1)}
ex := LEN; {BUFFER LENGTH }
DX : = OFS (BUFF) ;
DS := SEG(BUFF);

END;
MSDOS(REG_PACK);
IF REG PACK.FLAGS AND 1 <> 0 THEN BEGIN

Paper 3050

WRITELN('**');
WRITELN('MSDOS ERROR ');
WRITELN('FLAGS: ', REG_PACK.FLAGS, 'AX: ',REG PACK.AX);
CASE REG PACK.AX OF

6: BEGIN
WRITELN('Invalid Handle ');

END;
1: BEGIN

WRITELN('Invalid Function ');
END;

13: BEGIN
WRITELN('Invalid Data ');

5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

END;

END;
5: BEGIN

WRITELN{ 'Access Denied');
END;

INTEREX85

WRITELN{ '**');
END
ELSE BEGIN

IF REG PACK.AX <> 0 THEN BEGIN
WRITELN(

END;
END;

END;

'**');
WRITELN('AGIOS ERROR ');
WRITELN('FLAGS: ',REG PACK.FLAGS, 'AX: '

REG PACK.AX) ; -
WRITELN(

'**')~

{**
* This routine and its variables are used to control where the *
* Graphics intrinsic output is to go. The Options are as follows *
* 0 - display to screen { default) *
* 1 - display to both screen and plotter *
* 2 - display to plotter only *
**}

VAR
PLT DEVICE:
PLT-MODE:
PLT-ASSIGNED:
PLT SCALE:

TEXT;
INTEGER;
INTEGER;
INTEGER;

PROCEDURE PLOT CONTROL(PLOT TYPE: INTEGER);
BEGIN - -

END;

IF PLT ASSIGNED = 1 THEN BEGIN
CLOSE(PLT DEVICE);

END; -
IF PLOT TYPE <> 0 THEN BEGIN

END;

IF PLT ASSIGNED <> 1 THEN ~EGIN
ASSIGN(PLT_DEVICE, 'PLT:');
PLT ASSIGNED := 1;

END;
REWRITE(PLT DEVICE);
WRITE(PLT_DEVICE, 'IN;');
PLT SCALE := 20;

PLT MODE := PLOT_TYPE;

{***
* Some general TYPEs used by the VIDEO INTRINSICS *
***********************~***}

Paper 3050 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

TYPE
AREA_POINT = REA_DEF;

AREA DEF = RECORD
LR-ROW,
LR-COL,
UL-ROW,
UL-COL: BYTE;

END;-

This is the TYPE returned to shObJ the
previous area }

{**
* This function specifies the area to be operated upon by subsequent
* area update operations.
*
*

INLR ROW & INLR COL Defines the lObJer right corner of the area
INUL=ROW & INUL=COL Defines the upper left corner of the area

* This function returns a buffer of type AREA POINT that has the prev-
* ious coordinates in it. -

"'
"'
"'
*
"'
*

**}

FUNCTION DEFINE AREA(INLR ROW, INLR_COL, INUL_ROW, INUL COL : BYTE }:
AREA_POINT; - -

VAR
OLD AREA : AREA_POINT;

DEFINE AREA BUFFER :
FUNCTION SuBTYPE:
FUNCTION-TYPE
LR COL -
LR-ROW
UL-COL
UL-RC>W
PREv CORDS

END;

BEGIN
NEW(OLD AREA J;

RECORD
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
AREA_POINT;

DEFINE AREA BUFFER.FUNCTION SUBTYPE ·~ 1;
DEFINE-AREA-BUFFER.FUNCTION-TYPE := O;
DEFINE-AREA-BUFFER.LR COL :; INLR COL;
DEFINE-AREA-BUFFER.LR-RC>W ·= INLR-ROW;
DEFINE-AREA-BUFFER.UL-COL := INUL-COL;
DEFINE-AREA-BUFFER.UL-ROW := INUL-RC>W;
DEFINE-AREA-BUFFER.PREv CORDS :=OLD AREA;
IOCTL(DEFlNE AREA BUFFER, 10); -
DEFINE AREA :=-OLD AREA;

END; { DEFINE_AREA }-

{***~****************************

This function writes a single ro~ (or part of a row} in the workspace.
* Unlike Write Area, THIS INTRINSIC IGNORES THE AREA BOUNDS SET BY DEFINE
* AREA. If the position and length of the data are defined such that the

Paper 3050 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

11 t'ight w:rikspace boundary is violated that po:rition of the data exceeding
11 the boundary is igno:ried. No line tn>ap oceu:r>s. 11

11 INROW & INCOL Define the position that the data 111ill be "'1'itten 11

11 BUFF LENGTH Defines the length of each of the folloll1ing buffe:r>s 11

11 EN_BUFFER Is a buffer> 111ith the enhancement data for> each 11

11 display position. The enhancement cha:riacters a:r>e 11

11 same as used in the escape prog:roming i.e. A for> 11

11 blinking, B for> inve:rise video, C for> blinking and 11

11 inverse video, ect. 11

11 CHS BUFFER Is the buffer with the character> set code for display
ii position. The:r>e a:r>e 5 cha:riacter sets. The codes 11

ii a:rie as foll014s: @ .. Norm:il Rormn 11

11 A • Line Drawing 11

11 B "' Bold Face Rormn 11

11 C .. Itallic Rormn 11

II D .. Math II

11 Space .. No Change 11

11 INBUFFER The data to be displayed 11

ililllllllllilllllllilllllllllllllllllllllilllllllllllilllllllililllilllllllllllllllllllllllllilllllllilllllllllllllllllllllllllllilllllilllllllJ

PROCEDURE WRITE LINE(INROW, INCOL, BUFF LENGTH: INTEGER;
- VAR EN_BUFFER, CHS=BUFFER, INBUFFER J;

VAR
WRITE LINE BUFFER

FUNCTION-SUBTYPE
FUNCTION-TYPE
COL
ROW
BUFFER LENGTH
ENH BUFFER OFS
ENH-BUFFER-SEG
CHR-BUFFER-OFS
CHR-BUFFER-SEG
DATA BUFFER OFS
DATA-BUFFER-SEG :

END;

BEGIN

RECORD
BYTE;
BYTE;
BYTE;
BYTE;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

WRITE LINE BUFFER.FUNCTION TYPE :• O;
WRITE-LINE-BUFFER.FUNCTION-SUBTYPE :• 7;
WRITE-LINE-BUFFER.ENH BUFFER SEG := SEG(EN BUFFER);
WRITE-LINE-BUFFER.ENH-BUFFER-OFS := OFS(EN-BUFFER);
WRITE-LINE-BUFFER.CHR-BUFFER-SEG := SEG(CHS BUFFER);
WRITE-LINE-BUFFER.CHR-BUFFER-OFS := OFS(CHS-BUFFER);
WRITE-LINE-BUFFER.DATA BUFFER SEG := SEG(INBUFFER);
WRITE-LINE-BUFFER.DATA-BUFFER-OPS := OFS(INBUFFER);
WRITE-LINE-BUFFER.BUFFER LENGTH := BUFF LENGTH;
WRITE-LINE-BUFFER.ROW :•-INROW; -
WRITE-LINE-BUFFER.COL := INCOL;
IO CTL(WRITE LINE BUFFER, 18);

END;-(WRITE_LINE } -

Paper 3050 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

{***
* This procedure Writes data into the area defined by define area *
* See WRITE LINE *
***}

PROCEDURE WRITE AREA(DATA LENGTH: INTEGER;
- VAR ENH_BUFFER, CHS_BUFFER, IN BUFFER);

VAR
WRITE AREA BUFFER

FUNCTION-SUBTYPE
FUNCTION-TYPE
BUFFER LENGTH
ENH BUFFER OFS
ENH-BUFFER-SEG
CHR-BUFFER-OFS
CHR-BUFFER-SEG
DATA BUFFER OFS
DAT[BUFFER-SEG

END;

BEGIN

RECORD
BYTE;
BYTE;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

WRITE AREA BUFFER.FUNCTION TYPE := O;
WRITE-AREA-BUFFER.FUNCTION-SUBTYPE := 2;
WRITE-AREA-BUFFER.BUFFER LENGTH := DATA LENGTH;
WRITE-AREA-BUFFER.ENH BUFFER OFS := OFS(ENH BUFFER J;
WRITE-AREA-BUFFER.ENH-BUFFER-SEG := SEC(ENH-BUFFER J;
WRITE-AREA-BUFFER.CHR-BUFFER-OFS := OFS(CHS-BUFFER J;
WRITE-AREA-BUFFER.CHR-BUFFER-SEG := SEC(CHS-BUFFER J;
WRITE-AREA-BUFFER.DATA BUFFER OFS := OFS(IN-BUFFER J;
WRITE-AREA-BUFFER.DATA-BUFFER-SEC := SEC(IN-BUFFER J;
IOCTL(WRITE AREA BUFFER, 16-J; -

END;-{ WRITE_AREA} -

{***
* This procedure clears the area defined by the last DEFINE AREA *
***}

PROCEDURE CLEAR_AREA;

VAR
CLEAR AREA BUFFER

FUNCTION-SUBTYPE
FUNCTION-TYPE

END; -

BEGIN

RECORD
BYTE;
BYTE;

CLEAR AREA BUFFER.FUNCTION TYPE :• O;
CLEAR-AREA-BUFFER.FUNCTION-SUBTYPE ... 3;
IO CTL(CLEAR AREA BUFFER,-2 J;

END;- - -

Paper 3050 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

{**
* This procedure sets the enhancement for the current area defined by the
* last DEFINE AREA. See WRITE LINE for enhancement types. *
**}

PIDCEDURE ENHANCE_ AREA{ ENHANCE _TYPE: BYTE J;

VAR
ENHANCE AREA BUF

FUNCTlON SUBTYPE
FUNCTION-TYPE
FILL BYTE
ENHANCE BYTE

END; -

BEGIN

RECORD
BYTE;
BYTE;
BYTE;
BYTE;

ENHANCE AREA SUP.FUNCTION TYPE := 0;
ENHANCE-AREA-BUF.FUNCTION-SUBTYPE := 4;
ENHANCE-AREA-BUF.ENHANCE BYTE := ENHANCE TIPE;
IO CTL(-ENHANCE AREA BUF~ 4 J; -

END;- - -

{**
* This procedure is used to input the contents of the area to the *
* program. See WRITE LINE. *
**}

PIDCEDURE READ AREA(DATA LENGTH: INTEGER;
- VAR-ENH~BUFFER, CHS_BUFFER, IN BUFFER J;

VAR
READ AREA BUFFER

FUNCTION SUBTYPE
FUNCTION-TYPE
BUFFER LENGTH
ENH BUFFER OFS
ENH-BUFFER-SEG
CHR-BUFFER-OFS
CHR-BUFFER-SEG
DATA BUFFER OFS
DATA-BUFFERSEG

END; - -

BEGIN

: RECORD
BYTE;
BYTE;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

READ AREA BUFFER.FUNCTION TYPE := O;
READ-AREA-BUFFER.FUNCTION-SUBTYPE := 5;
READ-AREA-BUFFER.BUFFER LENGTH := DATA LENGTH;
READ-AREA-BUFFER.ENH BUFFER OFS :• OFS(ENH BUFFER);
READ-AREA-BUFFER.ENH-BUFFER-SEG := SEG(ENH-BUFFER J;
READ-ARE[BUFFER.CHR-BUFFER-OFS := OFS(CHS-BUFFER J;
READ-ARE[BUFFER.CHR-BUFFER-SEG := SEG(CHS-BUFFER J;
READ-AREA-BUFFER.DATA BUFFER OFS := OFS(IN-BUFFER J;
READ=AREA=BUFFER.DATA-BUFFER=SEG := SEG(IN=BUFFER);

Paper 3050 10
W.ASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

IOCTL(READ AREA BUFFER, 16 J;
END;-{ READ_AREA} -

{**
* This prooedure shifts the data in the pre-defined display area. *
* Enhanoments and oharaoter set are shifted u>ith the ASCII data. Da.ta *
* shifted off an edge of the update area is lost. *
* For DIRECTION the follou>ing is used: 0 = Up *
* l=Down *
* 2 = Left *
* 3 = Right *
* The DISTANCE is the number of RoiJs or Colwrrns to be shifted *
* The BUFFERs are used in the ren11Uining unshifted area. See WRITE LINE
**}

PROCEDURE SHIFT AREA(DIRECTION, DISTANCE, DATA LENGTH: INTEGER;
- VAR ENH_BUFFER, CHS_BUFFER, IN_BUFFER J;

VAR
SHIFT AREA BUFFER

FUNCTION-SUBTYPE
FUNCTION-TYPE
BUFFER LENGTH
ENH BUFFER OPS
ENH-BUFFER-SEG
CHR-BUFFER-OFS
CHR-BUFFER-SEG
DATA BUFFER OPS
DATA-BUFFER-SEC
DIST-
DIRECT

END;

BEGIN

RECORD
BYTE;
BYTE;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BYTE;
BYTE;

SHIFT AREA BUFFER.FUNCTION TYPE := O;
SHIFT-AREA-BUFFER.FUNCTION-SUBTYPE := 6;
SHIFT-AREA-BUFFER.DIST := DISTANCE;
SHIFT-AREA-BUFFER.DIRECT := DIRECTION;
SHIFT-AREA-BUFFER.BUFFER LENGTH :=DATA LENGTH;
SHIFT-AREA-BUFFER.ENH BUFFER OPS := OPS(ENH BUFFER);
SHIFT-AREA-BUFFER.ENH-BUFFER-SEG := SEG(ENH-BUFFER J;
SHIFT-AREA-BUFFER.CHR-BUFFER-OFS :•OPS(CHS-BUFFER J;
SHIFT-AREA-BUFFER.CHR-BUFFER-SEG := SEG(CHS-BUFFER J;
SHIFT-AREA-BUFFER.DATA BUFFER OFS := OFS(IN-BUFFER J;
SHIFT-AREA-BUFFER.DATA-BUFFER-SEC := SEG(IN-BUFFER J;
IO CTL(SHlFT AREA BUFFER, 18-J; -

END;-{ SHIFT_AREA } -

{***
* This prooedure is the equivalent of the 2 Char Esoape Sequenoes *
* Any operation oharaoters are valid exoept for those that return *
* data. For example if you use a INCODE of 'H' the cursor u>ill home *

Paper 3050 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEAEX85

* up. See the 'HP 150 Terminal Users Guide - Appendix A' fo't' a list *
* valid codes. *
***}

PROCEDURE TWO _CHAR _SEQ(INCODE: CHAR) ;

VAR
TWO CHAR SEQ BUFFER: RECORD

FUNCTION SUBTYPE BYTE;
FUNCTION-TYPE : BYTE;
OP CODE : CHAR;

END;-

BEGIN
TWO CHAR SEQ BUFFER.FUNCTION TYPE :• O;
TWO-CHAR-SEQ-BUFFER.FUNCTION-SUBTYPE :• 16;
TWO-CHAR-SEQ-BUFFER.OP CODE := INCODE;
IO CTL(TwO CHAR SEQ BUFFER, 3 J;

END;- - - -

(**
* This p't'ocedU't'e IJJill 't'eturn the absolute CU't'SO't' position *
**}

PROCEDURE CURSOR_SENSE_ABS(VAR CURSJIOW, CURS_COL: INTEGER);

VAR
CURSOR BUFF

FUNCTION SUBTYPE
FUNCTION-TYPE
CURSOR FOS OFS
CURSOR-POS-SEG

END; - -

CURSOR POS
CURSOR COL
CURSOR-ROW

END; -

BEGIN

RECORD
BYTE;
BYTE;
INTEGER;

: INTEGER;

RECORD
INTEGER;

: INTEGER;

CURSOR BUFF.FUNCTION TYPE := O;
CURSOR-BUFF.FUNCTION-SUBTYPE :• 19;
CURSOR-BUFF.CURSOR FOS SEG := SEG(CURSOR POS J;
CURSOR-BUFF.CURSOR-POS-OFS :• OFS(CURSOR-POS J;
IOCTL(CURSOR BUFF, 6-); -
CURs ROW : = CURsOR POS. CURSOR ROW;
CURS-COL := CURSOR-POS.CURSOR-COL;

END; - - -

(**
* This procedU't'e IJJill 't'eturn the relative CU't'sor position *
**}

Paper 3050 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PROCEDURE CURSOR_SENSE_REL(VAR CURS_ROW, CURS_COL: INTEGER J;

VAR
CURSOR BUFF

FUNCTION SUBTYPE
FUNCTION-TYPE
CURSOR ros OFS
CURSOR-POS-SEG

END;

CURSOR POS
CURSOR COL
CURSOR-ROW

END;

BEGIN

RECORD
BYTE;
BYTE;
INTEGER;
INTEGER;

RECORD
INTEGER;
INTEGER;

CURSOR BUFF.FUNCTION TYPE := O;
CURSOR-BUFF.FUNCTION-SUBTYPE := 20;
CURSOR-BUFF. CURSOR ros SEG . = SEG (CURSOR POS) ;
CURSOR-BUFF.CURSOR-POS-OFS := OFS(CURSOR-POS);
IO CTL(CURSOR BUFF, 6-); -
CURs ROW ·= CURsOR POS.CURSOR ROW;
CURS-COL ·= CURSOR=POS.CURSOR=COL;

END;

{**~***

* This procedure is used to set the alpha cursor type. A CURS TYPE *
* of 0 = Underscore and 1 = Inverse Cell. - *
**}

PROCEDURE SET _CURSOR _TYPE(CURS _TYPE: BYTE J;

VAR
SET CURSOR BUFF

FUNCTION-SUBTYPE
FUNCTION-TYPE
CURSOR TYPE
FILL BYTE

END;

BEGIN

RECORD
BYTE;
BYTE;
BYTE;
BYTE;

SET CURSOR BUFF.FUNCTION TYPE := O;
SET-CURSOR-BUFF.FUNCTION-SUBTYPE := 21;
SET-CURSOR-BUFF.CURSOR TYPE := CURS TYPE;
IO CTL(SET CURSOR BUFF, 4 J; -

END;- - -

TYPE CHAR BUFF "' ARRA:J [1 . . 40 J OF CHAR;
TYPE BUILD SCREEN= ARRA:J[0 .. 45] OF CHAR BUFF;
TYPE SCREEN= ARRA:J[O .. 23,0 .. 79] OF CHAR;
TYPE BLOCK= ARRA:J[l .. 3,1 .. 10] OF CHAR;

Paper 3050 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

VAR
CHAR BUFFER:
CHAR-TYPE:
CHAR-ENHANCE:
OLD AREA:
SCREEN AREA:
SCREEN-TYPE:
SCREEN-ENHANCE:
DAY BWcK:
DAY-OF WEEK:
DAY-OF-HJNTH:
WEEK OF HJNTH:
DAY HOLD:
TPOINT:

BUILD SCREEN;
BUILD-SCREEN;
BUILD-SCREEN;
AREA PoINT;
SCREEN ABSOLUTE CHAR BUFFER;
SCREEN ABSOLUTE CHAR-TYPE;
SCREEN ABSOLUTE CHAR-ENHANCE;
BLOCK; -
BYTE;
BYTE;
BYTE;
STRING[2];
BYTE;

PROCEDURE FILL DATE BLOCK(BLOCK ROW, BLOCK COL: BYTE;
- - BLOCK=DATA: BLOCK) ;

VAR X, Y: INTEGER;

BEGIN
FOR X := 1 TO 10 DO BEGIN

FOR Y := 1 TO 3 DO BEGIN
SCREEN AREA{(((BLOCK ROW* 4) - 2) + Y),

- (((BLOCK-COL * 11) - 11) + X)] :=
BLOCK DATA[Y, X];-

END; -
END;

END;

PROCEDURE DISPLAY_DATE_BLOCK(BLOCK_ROW, BLOCK_COL: BYTE J;

BEGIN
WRITE LINE(((BLOCK ROW* 4J - 1J, ((BLOCK_COL * 11} - 10), 10,

SCREEN ENHANCE{((BLOCK ROW* 4) - 1), ((BLOCK COL* 11) - 10)),
SCREEN-TYPE{((BLOCK ROW* 4) - 1), ((BLOCK coL * 11) - 10)),
SCREEN-AREA{((BLOCK-ROW * 4) - 1), ((BLOCK-COL* 11) - 10)));

WRITE LINE((BLOCK ROW* 4), ((BLOCK COL* ll) - 10), 10,
SCREEN ENHANCE{(BLOCK ROW* 4), ({BLOCK COL* 11) - 10)],
SCREEN-TYPE{(BLOCK ROW* 4), ({BLOCK COL* 11) - 10)),
SCREEN-AREA[{BLOCK-ROW * 4), ((BLOCK-COL* 11) - 10)));

WRITE LINE(((BLOCK RoW * 4) + 1), ((BLocK COL* 11) - 10), 10,
SCREEN ENHANCE[({BLOCK ROW* 4) + 1), ((BLOCK COL* 11) - 10)],
SCREEN-TYPE{((BLOCK ROW* 4) + 1), ((BLOCK coL * 11) - 10)),
SCREEN-AREA{((BLOCK-ROW * 4) + 1), ((BLOCK-COL* 11) - 10)));

END; - - -

BEGIN
CHAR BUFFER[O]
CHAR-BUFFER[1] := 'NE
CHAR-ENHANCE[O] :z

JU';
'.
' BBB';

CHAR-ENHANCE[l] ·= 'BBB ';
CHAR=TYPE[O] :• '@@';

14 Paper 3050
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

CHAR TYPE{1] :• '@@';
CHAR-BUFFER{2] :• SUN t«JN TUS WE';
CHAilENHANCE{2] := '@@';
CHAR-TYPE[2} :• 'BB';
CHAR-BUFFER[3) : = 'D THU FRI SAT ';
CHAR-ENHANCE{3) :• '@@';
CHAR-TYPE[3] := 'BB';
CHAR-BUFFER[4) := 'Q;;;;;;;;;;#;;;;;;;;;;#;;;;;;;;;;#;;;;;;';
CHAR-ENHANCE[4] :• '@@';
CHAR-TYPE[4] :•' ';
CHAR-BUFFER[5] :• ';;;;#;;;;;;;;;;#;;;;;;;;;;#;;;;;;;;;;W ';
CHAR-ENHANCE{5] :• '@@';
CHAilTYPE[5} :=' ';
CHAR-BUFFER[6) :• '· ';
CHAR-ENHANCE[6) :• '@@';
CHAR-TYPE[6] :• , A A A A I;
CHAR-BUFFER[7) : = ' • • • : ';
CHAR-ENHANCE[?):• '@@';
CHAR-TYPE[?} :• A A A A ';
CHAR-BUFFER[BJ :• , • I;
CHAilENHANCE[B] :• '@@';
CHAR-TYPE[B} :"''A A A A ';
CHAR-BUFFER[9} : = • • • : I;
CHAR-ENHANCE[9} := '@@';
CHAR-TYPE[9} := A A A A ';
CHAR-BUFFER[10} :• ': • • • ';
CHAilENHANCE{10] := '@@';
CHAR-TYPE[lO] :='A A A A ';
CHAR-BUFFER[11] :• ' , • ~ ';
CHAilENHANCE[11} := '@@';
CHAR-TYPE[11} := A A A A ';
CHAR-BUFFER[12) :• '!,,,,,,,,y,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,';
CHAR-ENHANCE[12] :• '@@';
CHAR-TYPE[12) := ';
CHAR-BUFFER{13] :• ',,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,," ';
CHAR-ENHANCE[13} := '@@';
CHAR-TYPE[13] :• ';
CHAR-BUFFER[14] : "' ' · ';
CHAR-ENHANCE[14] :• '@@';
CHAilTYPE[14] :•'A A A A ';
CHAR-BUFFER[15] : = , • • : ';
CHAR-ENHANCE[15] :• '@@';
CHAR-TYPE[15] :=' A A A A ';
CHAR-BUFFER[16] : = ' • • • • ';
CHAR-ENHANCE[16] :• '@@';
CHAR-TYPE[16] :• 'A A A A ';
CHAR-BUFFER[17] :• : ';
CHAR-ENHANCE[17] := '@@';
CHAR-TYPE[17] :,. A A A A ';
CHAR-BUFFER[18] := ': • . • ';
CHAR-ENHANCE[18] := '@@';
CHAR-TYPE[18] :='A A A A ';
CHAR-BUFFER[19] :• : ';
CHAR=ENHANCE[19] :'" '@@';

Paper 3050 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXS5

CHAR TYPE[19} A A A A ';
CHAR-BUFFER[20} :"' '!,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,';
CHAR-ENHANCE[20} :• '@@';
CHAR-TYPE [20] : • .N'U'UUl~.UU,1111t.tuU!.tU:IJ:USJ'UUltn1<.tuUut11tuU!.tU:IJ:USJ'UUl.n ' ;

CHAR-BUFFER[21 J : * , , , .. , I, , , , , , ' ' ' 'I, , ' , , , , , , , I, , ' , , , , , , ',, ' ;
CHAR-ENHANCE[21} :• '@@';
CHAR-TYPE[21] := ';
CHAR-BUFFER[22) :• '· ';
CHAR-ENHANCE[22] :• !@@';
CHAJiTYPE[22] :• 'A A A A ';
CHAR-BUFFER[23) :• ';
CHAR-ENHANCE[23) :• '@@';
CHAR-TYPE[23) :• A A A A ';
CHAR-BUFFER[24) :• '· ';
CHAR-ENHANCE[24) :• '@@';
CHAR-TYPE[24] := 'A A A A ';
CHAR-BUFFER[25) :•
CHAR-ENHANCE[25) :•
CHAR-TYPE[25] :=

'.
' '@@';

A ' A A A ';
CHAR-BUFFER[26) :• '· ';
CHAR-ENHANCE[26) := '@@';
CHAR-TYPE[26] :• 'A A A A ';
CHAR-BUFFER[27] := ';
CHAR-ENHANCE[27) := '@@';
CHAR-TYPE[27] := ' . A A A A ';
CHAR-BUFFER[28) :• '!,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,';
CHAR-ENHANCE[28) := '@@';
CHAR-TYPE[28]
CHAR-BUFFER[29) :=
CHAR-ENHANCE[29] :=

',,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,,'' ';
'@@';

CHAR-TYPE[29] := ';
CHAR-BUFFER[30) : = ' • ';
CHAR-ENHANCE[30] :• '@@';
CHAR-TYPE[30] := 'A A A A ';
CHAR-BUFFER[31) := ' ';
CHAR-ENHANCE[31) := '@@';
CHAJiTYPE[31] := A A A A ';
CHAR-BUFFER[32) := '· ';
CHAR-ENHANCE[32) := '@@';
CHAR-TYPE[32] :•'A A A A ';
CHAR-BUFFER[33) :• ';
CHAR-ENHANCE[33] :• '@@';
CHAR-TYPE[33] :• A A A A ';
CHAR-BUFFER[34) := '· ';
CHAR-ENHANCE[34) := '@@';
CHAJiTYPE[34] := 'A A A A ';
CHAR-BUFFER[35)
CHAR-ENHANCE[35) :•
CHAR-TYPE[35]
CHAR-BUFFER[36) :•
CHAR-ENHANCE[36] :•
CHAR-TYPE[36]

:=

:=

'.
' '@@';

A A A A ';
'!,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,';
'@@';

CHAR-BUFFER{37] := ',,,,/,,,,,,,,,,/,,,,,,,,,,/,,,,,,,,,," ';
CHAR=ENHANCE{37) :• '@@';

Paper 3050 16
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

CHAR TYPE[3?] ·s

INTEREX85

I•

' CHAR-BUFFER[38] ·= '· ';
CHAR-ENHANCE[38] ·= '@@';
CHAR-TYPE{38] .,. 'A A A A ';
CHAR-BUFFER[39] ·= ';
CHAJ?ENHANCE[39] ·= '@@';
CHAR-TYPE[39] ·= A A A A ';
CHAR-BUFFER[40] ·= '· ';
CHAR-ENHANCE[40] ·= '@@';
CHAR-TYPE[40] ·= 'A A A A ';
CHAR-BUFFER[41] ·= ';
CHAR-ENHANCE[41] ·= '@@';
CHAR-TYPE[41] · = A A A A ';
CHAR-BUFFER[42] ·= '· ';
CHAR-ENHANCE[42] ·= '@@';
CHAR-TYPE[42) ·= 'A A A A ';
CHAR-BUFFER[43] ·= ';
CHAR-ENHANCE[43] ·= '@@';
CHAR-TYPE[43] ·= A A A A ';
CHAR-BUFFER[44] ·= 'A;;;;;;;;;;$;;;;;;;;;;$;;;;;;;;;;$;;;;;;';
CHAR-ENHANCE[44) := '@@';
CHAR-TYPE[44] := ';
CHAR-BUFFER[45] ·= ';;;;$;;;;;;;;;;$;;;;;;;;;;$;;;;;;;;;;S ';
CHAR-ENHANCE[45] := '@@@@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@';
CHAR-TYPE[45] :=
TWO CHAR SEQ(' H' J;
TWO-CHAR-SEQ('J' J;
NEW(OLD-AREA) ;
OLD AREA-:= DEFINE AREA(24, ?9, 0, 0 J;
DAY-BLOCK[1] := T
DAY-BLOCK[2 1 := I

DAY- BLOCK[3 I := I

DAY OF MONTH : = 1;

'.
' , .
' I•

'
FOR-WEEK OF HJNTH :~ 1 TO 5 lXJ BEGIN

FOR DAY OF WEEK := 1 TO ? lXJ BEGIN
STR(DAY-OF MONTH:2, DAY HOLD J;
FOR TPOINT 7= 1 TO 2 lXJ BEGIN

DAY BLOCK[1, TPOINT + 8] :=DAY HOLD[TPOINT];
DD;- -
DAY OF HJNTH : ., DAY OF f.K>NTH + 1;

'.
~

FILL DATE BLOCK (WEEK OF MONTH, DM OF WEEK, DAY BLOCK J;
END; - - - - - - -

END;
WdITE AREA(1840J CHAR ENHANCE, CHAR TYPE, CHAR_BUFFER);
DAY BLoCK[2] :" '**********'; -
DAY-BLOCK[1 1 :" I XX';
FILL DATE BLOCK(2, 3, DAY BLOCK J;
DISPLAY DKrE BLOCK(2, 3 ;;

END. - -

Paper 3050 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3051. Cooperating Processes in an Information Network

OVERVIEW:

Peter Gerstenhaber
Systems Specialist

CMS Ltd.
11 Masad St.

Tel Aviv, Isreal

Traditional system design, and program design techniques are
single threaded. Most programs are designed to accept and
validate data, and then perform the desired request before
accepting the next input. In single machine configurations
this may lead to systems which meet the desired response time
requirements, but suffer when additional users are added. In
larger systems, or those which require more than one machine to
satisfy a user's request this may lead to a poor or unpredictable
response time.

The purpose of this paper is to present a design of a
multi-cpu system which is in use today utilizing the above
mentioned features. This system provides the user with a
uniform response time across many machines with varying
loads. The primary purpose of this choice of design was not
to decrease response time, but to decompose the project into
managable programs which could be worked on independently.
As a by-product, the application provides a high level
interface to data bases spread across multiple machines.

INTRODUCTION:

Trends in system design have typically lagged behind computer
developments by as much as a decade or more. In the 60' s and
70's, system tlesign was mostly dictated by machine architecture.
Early systems were based completely on batch input, where many
batch jobs had the same characteristics. Batch jobs typically
were composed of the edit (verification of data format),
validation (data consistency), update, and reporting phases with
the option of reformatting for the next batch job (since
everything sometime or other gets fed into the general ledger
application). Dependent upon complexity, any of these steps
consisted of any number of programs, each with it's own exception
report(s), and sorting for proper input sequence. The main point
of this description, is to note the sequentiality of the data
flow. Today, we don't work as much with big batches of
transactions, but instead with single transactions performed
on·line, usually by a single program. This program must accept
and edit the data, validate for correctness (existance of
part-number, location-code, etc), update the necessary data
base(s), and report sucess or failure. The same program, or an
additional one usually performs the data reporting function. As
with batch jobs, these events are performed in a sequential
order, without any overlap. Essentially, the outcome is that we

Paper 3051 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

are now performing on-line in the same manner as batch jobs were
performed. The difference being that transactions from different
users must use locking to avoid inconsistencies when updating.

This sequentiality exists in spite of the fact that MPE is a
multi-programming operating system (i.e. that it shares the
system's resources in an orderly fashion among the processes
competing for these functions), and was not the first of this
kind. Concurrency has been built into the operating systems of
many machines, but not much further. There isn't an industry
standard language available which allows concurrent activities
within a single application system, without specifically
imbedding within the application calls to system routines. This
results in many application systems being implemented by large
sequential programs which utilize alot of stack space, open many
files/data bases, and may not exhibit the desired performance or
modularity. This makes program maintance difficult or next to
impossible due to the size of the program, stack limitations,
and/or subsystem data areas. MPE V/E with the micro-code
allowing table expansion overcomes the previous limitations of
program size, but does not address stack limitations in the
least. Programs which use V/PLUS may need an additional 8-lOk
words DL-DB (or more), leaving precious little left for programs
which declare all their variables globally.

THE PROBLEM:

An application problem requires multiple IMAGE data bases, and is
logically distributed accross many systems. The problem is to
design and implement a system to handle multiple data bases, and
multiple CPU's in a consistent fashion with a high level
interface which may be accessed from TRANSACT/3000, COBOLII/3000,
and PASCAL/3000. It is required that one site be designated as
the "central" system, and that there be several "local"
applications which are logically connected. A local system may
only communicate with the central system, while the central
system may communicate with any or all local systems. This is a
typical star topology. Systems may share processors, so that
several "local" application systems may share the same physical
machinery with each other, and/or with the "central" system.
There should not be any restrictions imposed as to the
combination of application systems per physical processor.
DSN/DS and DSN/X.25 will be used for machine interconnection.
The central system is to have a consolidated data base which
consists of the sum of all the data bases of each local system.
This data base is to be kept sychronized, and should be designed
to be fault tolerant (i.e. so that a transaction applied to a
local data base will be applied to the central data base without
regard to system/data communication problems). The central site
is to control all data communications, and allow each local
system access to the central data base. Users at any site may
query either the data base at their local site, or the central
data base. Users may update any data base for which they have

Paper 3051 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

access. There a class of user who may update data at a different
local system then the one they reside on; while a second class
may update data only at their local site. The system should
provide complete auditing information, so that a log file may be
queried by data, date, time, terminal, transaction type, and/or
location.

PROCESS HANDLING, A DIFFERENT PERSPECTIVE:

In designing a large multi-cpu system to solve this problem, we
did not reach any of the MPE limitations. Instead, our first
problem was establishing a locking heirarchy for a multi-data
base environment. This was easily worked out, but was a
precursor of problems which were not anticipated (such as data
consistency in a multi-cpu, multi-data base environment). As the
system was being designed and implemented, it was noticed that
there were transactions which did not meet the severe response
time requirements. Of the entire set of transactions, there were
several which meant massive changes to the data bases, and could
conceivable lock the data bases for minutes (1-3) while they were
being processed. Clearly these transactions had an adverse
effect upon overall system response, and an extremely pronounced
effect on response time for all terminals using this particular
application. With this in mind, it was decided to decouple all
data base updates from the rest of the application. In essence,
the on-line application only performed a reporting function and
data entry. This data entry was written to a transaction file
which was processed by a background process concurrently.

The advantages of implementing a system based on background
updates are numerous. It was meant to decouple terminal response
time from data base updates, and gave on-line users an extremely
fast response. As a by-product, there were several advantages to
this approach. Since each transaction was atomic, there was no
need for IMAGE logging. Each transaction could conceivably
translate into many DBUPDATE/PUT/DELETE's. Auditing was easily
accomplished at the transaction level, and was almost a
by-product of this implementation. Auditing information was
available with user name, terminal, program, form file, and time
with the rest of the transaction. A complete record of all
transactions could be formatted by any or all or the above
criteria. If timing information was included within the
transaction, response time and system utilization could be easily
calculated. This would have the advantage of calculating
application response time (as opposed to system response time)
which is meaningful to any system analyst.

It could be argued that this method serializes all updates to all
data bases envolved unnecessarily. This is true, but on the
other hand since a single transaction is a related piece of
information, it is localized. At the time this application was
written, there was no need for a separate process for each data
base (as in a data base server approach), but this could have

Paper 3051 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

easily been implemented. The data base server approach keeps
intact .data integrity at the transaction level, but allows
transactions which apply to multiple data bas1:1s to proceed in
parallel. This left the on-line program running without any
locking, and therefore without delays due to multi-user access in
an update mode.

Additional benefits were derived from this design methodology
which proved important in a development environment. Since a
program was restricted in scope, it was smaller in size, with a
corresponding smaller stack. There was less overhead since there
was one stack which was performing data base maintance.
Addi t.ionally, in a multi -cpu system, there was one flow of
transactions throughout the entire system as opposed to each
on-line terminal performing remote data base queries and updates.
This feature will be examined in closer detail after a discussion
on the features of MPE which facilitate a distributed
environment. Basically this method of functional decomposition
of a problem is similar to utilizing pipes in UNIX. Unlike UNIX
pipes, however, MPE provides for sychronization of processes
which are not for the same user, or necessarily on the same
machine.

It may be argued that this design methodology has problems with
users performing concurrent updates. In most applications, where
weak locking is used, if two users update the same record, the
user whose updates are performed last is the user whose data
remains in the data base. With the above methodology, this
remains the same. The major drawbacks are that this doesn't
allow for strong locking, and by it's very design this is a
non-deterministic system with respect to time (i.e. the time an
update will take place cannot be determined, but it is guaranteed
to happen). If this is acceptable, then this is possibly a good
design alternative.

THE TOOLS:

The CREATEPROCESS intrinsic is notable mainly because of it's
benefits over the CREATE/ACTIVATE intrinsics. Being able to
create a process and redirect $STDIN/$STDLIST has the advantage
that an application program written in COBOL!!, or PASCAL (or SPL
for that matter) using standard language features as READ and
WRITE can access a file other than the standard input/output
files of the session, and moreover this is performed transparent
to the application. The CREATEPROCESS intrinsic sets up the
environment for a program to be run, complete with it's own data
stack. This program may optionally be scheduled to run at the
same time. When this program is run (ACTIVATEd), it competes for
the CPU and all other resources with all other processes (running
programs) in an asychronous fashion. Asychronous ly means that
this process and all other processes will use the machines
resources in an indeterminate fashion, without being able to
determine the order of completion.

Paper 3051 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

IPC greatly enhances the file system with two file types and many
different types of access possible. Circular (CIR} files are log
files which hold the last N records (where N is at most the file
limit). The behavior of these files is similar to a sequential
file until they reach the end of file. As records are written,
they are appended to the end of the file. When the file is full,
additional records are written, and the oldest records (the ones
at the front of the file) are deleted to make room for these new
records. Note that the beginning of file changes as additional
records are written after the file is full. This is also known
as a "wrap-around" file for this reason. Circular files have the
restriction that they can only be opened for one type of access
at a time (i.e. open for either read access, or write access to
multiple users, but not both).

Interprocess communication (IPC) also includes message (MSG)
files which permits multiple user processes to communicate via
the file system. A message file is a FIFO (first in, first out)
queue of messages (records}. Records are added to the end of the
queue via a WRITE, and received and deleted via a READ. In each
file open to a message file, the process must specify either READ
(the process is identified as a READER) or WRITE access (the
process is identified as a WRITER). This is described in the MPE
INTRINSICS MANUAL as a "unidirectional flow of information". If
a process needs to update a message file, it must open the
message file twice; as both a READER and a WRITER. Any message
which a READER receives is deleted from the file automatically by
the file system. There is a special access allowing the entire
message file to be read without destroying it's contents. This
access is call COPY access, but the process requesting this type
of access needs EXCLUSIVE access to the message file. This is
essential for development when the contents of the file are to be
viewed before processing (or a copy made via FCOPY). Typical
applications for message files are with many producers of
messages (WRITERS) and one consumer (READER), although the file
system allows many combinations dependent upon the access
options. The defaults for a message file allow global
multi-access and exclusive access (one READER, and one WRITER).
If a message file is opened with SEMiexclusive access, only one
READER is allowed, but there may be multiple WRITERS. SHR access
allows any number of READERS and WRITERS at the same time. With
the file open, the allowable structure of READERS/WRITERS is
determined. A message file allows either MULTI or GMULTI access,
with MULTI restricting access to processes within the same
job/session. GMULTI access allows unrelated processes to
communicate with one another only by utilizing the file system.
This implies that for an IPC application with cooperation among
processes, there is no longer a need for process creation and the
restriction that these processes be related. Because of this,
message files are an extremely friendly and easy method of
interprocess communication.

As an added benefit, message files use GMULTI access, which means
that there is one control block and set of buffers for all

Paper 3051 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

accessors. In it's implementation, these buffers are only
written to disc when necessary. When the READER can keep
consuming the messages at the rate they are being produced by the
WRITERS, there is no disc i/o, but inter-data segment memory
transfers. Therefore, the impact on overall performance is
negligable, and with access the extra data segment containing the
control block will remain in memory.

MSG FILE FEATURES:

Message files are by nature variable in record length. This
permits users to send and receive variable length messages via
the file system. into the Unrelated processes are queued
automatically, and therefore sychronized. A READER will wait
when reading an empty message file, as a WRITER will wait when
writing to a full message file. A variable time-out interval may
be set which limits the length of time it may take for a request
to be serviced before it is aborted. With this facility, there
is no need for a process to suspend indefinitely. Note that
checking the end- of-file is not sufficient since in a
multiprogramming environment other processes maybe performing the
same check and then writing, before the first process which
checked the "end-of-file". Non-destructive reads allow a READER
to preview the head of the queue without destroying this message.
Multiple READERS may read the same message non-destructively, but
only one destructive READER will delete the message. Care needs
to be taken with multiple READERs using this feature. This is
the only type of file which permits non-privileged mode nowait
I/O. Nowait I/O allows a process to perform a write (or a read)
and check later within the program for it's completion. Typical
nowait I/O is also unbuffered which implies the need of
privileged mode, but all I/O to a message file uses a sharable
control block and buffers. Because of this, nowai t I/O for
message files does not require the use of privileged mode.
Software interrupts are supported which allow a trap facility to
be invoked upon completion of an event (typically a read). This
allows messages to be received asychronously and handled out of
the main-line code similar to a control-y trap. A trap procedure
is entered when I/O completes and the interrupt is generated.
After the trap routine completes, control transfers to the next
sequential instruction in the mainline code. Nowait I/O and
software interrupts are features available on local message files
only, and cannot be used with remote file access. All other
features are available with both local and remote file access.
Most importantly, message files provide the means of interprocess
communication and sychronization without having to resort to
artifical conventions.

6 Paper 3051
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

THE SOLUTION:

The solution to this problem was quite simple. Once the data
base update program had been written, it needed a small change to
run at the central site, and the local site. With this intact,
there was left the data communications to feed into this system.
This was split into two programs, one to handle operator commands
and responses, and the other for the actual data communications.
Between the two, more than one method of interprocess
communications and sychronization was used.

Data communications was performed completely via the file system.
This program was written in PASCAL/3000 using standard system
intrinsics, and requiring IA,BA,and PH capabilities. This
process has access to only one "local" site, and is run from the
central site. The following description will be a simplification
since the application requires six message files and two sets of
data bases (one for performing application queries, and the
second to determine routing information of other data
communication handlers). The input transaction file could be
either a remote file (the usual case) or a local file (in this
case, the "local" site was on the same physical machine as the
"central" site; locations were to be transparent to this
application). Basically all this program did was to read it's
input transaction, process the request, and then delete the
transaction from the input file. For those interested in
performance with remote file access, the message was deleted by
reading it via FREAD with a zero length. This transaction could
be any one of several types. The usual transaction was reporting
an update which already took place at the local site and needed
to be applied to the central site. In this case, the transaction
was routed to the output message file. This message file was
being written to by each of the data comm handlers, of which
there was one for each location. This is the input file for the
process which updates the central machine's data base. If the
transaction was from a local site requesting that a different
local site's data base be updated, this request was routed to the
data comm handler for the requested site via a write to a message
file. A local user may query the central data base via a
transaction. This query may be qualified with selection
criteria, ranges, and/or boolean operations. In this manner the
query only returns to the local machine those entries which meet
all criteria. If remote queries had been allowed, all data
meeting the search criteria with IMAGE would have to be
transmitted to the local machine, regardless of the selection
criteria. With this method, only males between the ages of 30
and 50, with blue eyes, living in New York City, with the name of
Zacharia Smith would be retrieved across the communications lines
as opposed to all Smiths on the system. Additionally, a request
might ask for all information about the selected entries (i.e.
all detail information directly related to Zacharia Smith's
master entry). A message file is opened up to the process making
this request dynamically, and closed each time a request is
received for a different process. In this fashion, the message

Paper 3051 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAl USERS GROUP INTEREX85

file stays open if a terminal process makes multiple query
requests one after the other (which is the usual case).

A different message file handles requests from the central
machine. Requests in this tile could be from users of the
central machine, or other data comm processes trying to route
information to the local site to which this process is connected.
This information is handled asychronously. Whenever a record is
written to this file, it is immediately transfered to the local
site. This is handled by using soft interrupts, and nowait I/O
on the mes sage file. An example of using soft interrupts on a
message file is included later.

A parent process was used to create and monitor activity to all
locations. This process used a data base which had the necessary
information to create the environment for each data communication
process (specifically file equations, run parm, run info string,
and file redirection). Communications between the control
process and each data comm process was via MAIL intrinsics. This
was chosen because in all cases, only one word of information
needed to be exchanged, and this information could only be made
use of at specific points in the program, so there was no need to
trap, but to check. This alleviated the overhead of the file
system, and substituted memory transfers (of one word) from stack
to PPCT to stack. This process checks for the existance of each
of it's sons, and warns the operator when a son process
terminates abnormally.

8 Paper 3051
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

THE TRANSFER PROCESS IN FULL:

[Console Msgs] [Central OBJ [Config DB] [Transactions]
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I
\ I I I

[Interrupt In] ----------- (Transfer) ---------- [Msg Routing]
I I I\

I I I \
I I I \

I I I \
I I I \

I I I \
I I I \

I I I \
I I I \

I I I \
I I I \

I I I \
I I I \

[Mass Add] [Transactions] [Query Responses]

Of these files, the "Query Response" and "Msg Routing" are files
which are switched dynamically to meet the demands.

Paper 3051 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SYSTEM OVERVIEW:
Central Machine

[Central Data Basel
I I \

I I \
I I \

I I \
I (DB Update) \

I I \
I I \

I I \
I I \

/ [Consolidated Transaction File] \
I I \ \

I I \ \
I I \ \

(Transfer) (Transfer)
I I I \

I I I \
I I I \

[Interrupt In] I I [Interrupt In}
I I
I I
I I

+++++++++++++++++++ Data Communications +++++++++++++++++++

Local
Machine

"A"

[Local DB]
l
I
l
l
I
I
I

I
I
I

[Transaction}
I
I
I

< < < (DB Update)
I
I
I

[Transaction}
I
I
I

(Terminal Server)

(Terminal Server)

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I
I
I

[Transaction]
I
I
I

(DB Update) > > >

I
I
I

[Transaction}
I
I
I

{Terminal

Local
Machine

11B11

[Local DBJ
I
I
I
I
I
I
I

Server)

(Terminal Server)

Note that processes are enclosed in parenthesis, while files and
data bases are enclosed in square brackets. A transfer process is
created per local system, while terminal server processes
communicate with each terminal connected to this application.

Paper 3051 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

EXAMPLE:

Initialization Code:

asych file io := FOpen('file-name');
IF (CCODE ~> good_cc)
THEN

fatal file error(asych_file_io);
FControl (asych file io

,enable soft interrupts
,WADDRESS(soft interrupt handler
) ; - -

IF (CCODE <> good cc)
THEN -

fatal file error(asych file io);

INTEREX8!5

FRead(asy~h file io); (* N~te that this assembles the I/O
request but-does not block us, or transfer any data
even if data is available *)

IF (CCODE <> good_cc)
THEN

fatal_file_error(asych_file io};

Interrupt Routine:

(***)
(* *)
(* Soft_ Interrupt_ Handler *)
(* *)
(* This procedure handles soft interrupts. This is enabled *)
(* for only the Central to Local file. When a record is *)
(* written to this file~ this program will be interrupted *)
(* asychronously (i.e. anywhere it is), and control will be *)
(* transfered to this procedure by the Operating System, *)
(* transparent to the logic of the program. We will then *)
(* read this record, write it to the remote machine, and re- *)
(* establish a no-wait i/o request for this file. *)
(***)

Paper 3051 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PROCEDURE soft interrupt handler{f num: small_integer);
PROCEDURE FintExit(state: BOOLEAN);

EXTERNAL SPL VARIABLE; (* Intrinsic Definition *)
(***)
(* *)
(* Read Write *)
(* *)
(* This procedure handles the I/O for the soft interrupts. *)
(* It is in a seperate procedure so that the variables *)
(* will not be nested if there is a backup on this message *)
(* file (note that the FintExit re-eaables interrupts *)
(* before this procedure can finish. Theoretically, many *)
(* interrupts may be nested and we could stack overflow. *)
(* By moving the variables into this procedure they are *)
(* allocated and deallocated before the FintExit so that *)
(* we will not have a stack overflow. *)
(***)

PROCEDURE read_write(f_num: small_integer);
VAR

io rec: STD REC;
io rec len: small integer;

PROCEDURE IoDontWait; INTRINSIC;
BEGIN (* read write *)

IoDontWait(f num, io rec, io rec_len);
IF (CCODE <>-good_cc)
THEN

fatal file error{f num);
FWrite(remote dbupd fn\lm, io_rec, ·io_rec_len, O);
IF (CCODE <> good cc)
THEN -

fatal file error{remote dbupd fnum);
FRead(f num, i; rec, -SIZEOF(io_rec));

END; (* read write *)

BEGIN {* soft interrupt handler *)
IF (f _num ~> asych_file_io)
THEN

fatal file error(f num);
read write (f n\lm); -
FintExit; -

END; (* soft_interrupt_handler *}

Rote that a nested procedure is used to accept the data into a
dynamic buffer. If this were incorporated into the trap
procedure, there could be a problem with multiple requests
interrupting as soon as the FINTEXIT is executed, and before the
procedure is exited. This problem would be with stack space
being acquired for each activation of this procedure.

Paper 3051 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

SUMMARY:

!PC is a valuable tool which allows the system designer to make
use of "piping", Applications may be functionally decomposed to
allow different processes to perform different functions.

!PC is more powerful than "piping" with the addition of nowait
I/O, and soft interrupt processing. This enables the application
program to have more than one input file, and handle each input
file seperately, without having to check each input file. The
example showed only one file with soft interrupt processing
enabled, but any number of message files can utilize both nowait
I/O and soft interrupt processing.

!PC isn't dependent upon process handling, but can be used in any
environment where process communication and sychronization is
required.

!PC can be used for intermachine data transfers in an easy
manner. There is no 16nger the need for complicated programming
techniques to allow an extremely flexible, and transparent
interconnection. A high degree of data system integrity may be
achieved in a system utilizing multiple data bases across
multiple systems.

!PC is available with any language which supports READs and
WRITEs. This means that RPG, COBOL!!, PASCAL, TRANSACT, etc have
transparent access to IPC.

!PC is an integral facility used in the development and
application of a major distributed system which has been
described in this paper. Without this facility, this project
would have taken more than TEN times the effort to accomplish the
data communications necessary.

Paper 3051 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SUMMARY

3052. Creating Custom Applications On The HP3000

Marv Miller
Computer Systems Divison

Hewlett Packard

One of the most time consuming functions of an application system• s
programming team is program maintenance. Quite often this time is related
to the kinds of activity that can be greatly reduced or even eliminated by
taking full advantage of the integration of Transact/3000 and the
dictionary.

These kinds of changes are those where new input forms are being added,
existing input forms changed or deleted, new data elements are being
added, and other already existing elements are being changed in size or
eliminated.

This paper follows through examples of local bing a program, that is,
making it independent of the screen name and the number of screens that
execute the same code, independent of the screen contents, and providing
user exits for additional processing. The changes are always made to the
dictionary. The changes become effective in the program by simply
recompiling the program in order to pull in the new dictionary
definitions.

INTRODUCTION

An application system can be divided into at least t-uo parts. The first
part is made up of the data that is needed by the system processing logic.
This data or these data elements are critical to the proper functioning of
the system. For example, a manufacturing system no doubt has an element
called PART-NUMBER which is a critical part of practically all system
transactions.

A typical application may have several critical data elements. It is fair
to say that a localizable application can not allow critical fields to be
deleted from the application. Application programs rely upon these fields
to be present in transactions.

However, a localizable application should allow these elements to be
changed in size. It should also allow the physical placement of these
elements within an input form to be changed.

The other part of an application is made up of non-critical elements.
Many of these elements may be supplied as a part of the original
application, if for no other reason than the typical generic application
has these data elements. Other non-critical elements may be added by the
particular user of the application.

Paper 3052 l
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

A localizable appiication should allow non-critical elements to be added,
deleted, changed in size, and changed in physical placement within an
input form.

Also, generic transactions should be localizable. A generic transaction is
defined here to be a transaction that provides a basic function such as
adding a customer or updating a customer. For example, one organization
may be responsible for adding new customers to the database, but several
organizations need to be able to update portions of the customer data.
Each organization should be provided with a form which only accesses the
data they need. The same program logic that provides customer update
capability should be able to handle any number of these variations.

Finally, a localizable application should allow logic to be added to
handle such things as: special field edits for any of the transaction• s
data elements, data calculations, etc.

The following discussion explains how Transact can achieve this level of
localization. The objective is to write an application program such that
if the application is changed as described above, the program is not
modified. The changes need to be recorded in the dictionary, the program
recompiled to make the changes known to it, the VPLUS forms file modified
to reflect the changes, and possibly the database unloaded and reloaded if
its structure has been modified.

A GENERIC TRANSACTION

First, a simple transaction that only applies to one dataset. This
demonstrates all of the concepts to be achieved through localization.
Later an example is given of a generic transaction that applies to several
datasets, in order to demonstrate the general case of how to write generic
code.

The discussion starts with a transaction to update information for a
customer. Breaking this transaction into the two parts discussed above,
the critical element in this transaction is CUST-NO. The non-critical
elements are: NAME, STREET-ADDR, CITY-STATE, and ZIP-CODE.

Paper 3052 2
WASHINGTON, D. C.

BAL Tl MORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The VPLUS form used for this function is VCUSTOMER.

**
*vcustomer customer data *
* *
* number *
* *
* name *
* *
* address *
* *
* city,state *
* *
* zipcode *
* *
**

The CUSTOMER dataset definition is:

FILE: CUSTOMER

ELEMENT

CUST-NO
NAME
STREET-ADDR
CITY-STATE
ZIPCODE

TYPE: MASTER

PROPERTIES:

I+(4,0,2)
x (20,0,20)
x (20,0,20)
x (20,0,20)
x (6,o,6)

The following program illustrates how a transaction to update a customer
might be written without allowing for any localization. This program will
be expanded to illustrate most of the localization concepts.

1 system custfm,base=orders,vpls=formfile;
2 list(auto) customer;
3
4 level;
5 get(form) vcustomer,init;
6
7 set(key) list (cust-no);
8 get customer,list=(@);
9 put(form) vcustomer,window=("update? - fl=yes, f2=no");

10 get(form) vcustomer,fl(autoread)=modify-fl
11 ,f2=modify-f2;
12
13 modify-fl:
14
15 update customer,list=(@);
16
17 modify-f2:
18
19 end;
20
21

Paper 3052 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEAEX85

22 exit:
23
24 exit;

The program uses the same form to initially input the customer to be
updated (line 5), display the current data for the customer (line 9), and
input the new data for the customer (line 10).

REARRANGING THE SCREEN

Perhaps the easiest form of localization is to rearrange the order of
elements on the screen. The program form specification does not include
any element Drdering information. This is controlled thru the dictionary.
Thus, this localization can be accomplished by modifying the form using
FORMSPEC, changing the element sequence on the form definition in the
dictionary, and recompiling the program using TRANCOMP.

The same program could then handle input from a form such as this:

**
*vcustomer customer data *
* *
* *
* name number *
* *
* address *
* *
* city,state *
* *
* zipcode *
* *
* *
**

Changing the screen definition in the dictionary might go something like
this:

:run dictdbm.pub.sys

DICTIONARY/3000 HP32244A.02.01 • (C) Hewlett-Packard Co. 1984

PASSWORD FOR DICT.PUB>

FORMS ENTRY(Y/N)?>

> show file
FILE vcustomer

FILE
VCUSTOMER

Paper 3052

TYPE: RESPONSIBILITY:
FORM

4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

ELEMENT(AL!AS):
CUST-NO
NAME
STREET-ADDR
CITY-STATE
ZIPCODE

> resequence file
FILE vcustomer

ELEMENT name
NEW POSITION cust-no

ELEMENT
~ show file

FILE vcustomer

PROPERTIES:
!+(4,0,2)
x (20,0,20)
x (20,0,20)
x (20,0,20)
x (6,0,6)

FILE
VCUSTOMER

TYPE: RESPONSIBILITY:

ELEMENT(ALIAS):
NAME
CUST-NO
STREET-ADDR
CITY-STATE
ZIPCODE

FORM

PROPERTIES:
x (20,0,20)
I+(4,0,2)
x (20,0,20)
x (20,0,20)
x (6,o,6)

INTEREX85

ELEMENT(PRIMARY):
CUST-NO
NAME
STREET-ADDR
CITY-STATE
ZIPCODE

ELEMENT (PRIMARY) :
NAME
CUST-NO
STREET-ADDR
CITY-STATE
ZIPCODE

SCREEN INDEPENDENCE

The above program can be modified to illustrate
transaction code that can handle multiple screen
could have been written this way to start with.
modification that must be made every time a new form

implementing
formats. The
It is not a
is added.

generic
program
program

The following program provides generic update customer capability and is
form independent. That is, the program has no idea of which data elements
exist on a form, nor does it know how many possible different forms may be
used to update a customer.

**
1 system custup,base=orders
2 ,vpls=formfile
3 , file=formxref;
4 define(item) menuname x(l6):
5 fkey 9(2):
6 screen x(16):
7 last key i (4) ;
8 list menuname:
9 lastkey;

10
11 data menuname; <<to simulate transfer of control to this
12 subroutine>>

Paper 3052 5
WASHINGTON, D. C.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
53
54
55
56

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

C<

Subroutine: to update customer information

input: menuname • contains the name of the screen to be displayed

output: none

>>

level;
list fkey:

screen;
list(auto) customer;
get(form) (menuname),init

,window=(" ")
,fkey=lastkey
,autoread;

if (lastkey) = 0
then perform modify

else
do

set(match) list (menuname);
let (fkey) = (lastkey);
set(match) list (fkey);
get(serial) formxref,list=(menuname,fkey,screen);
reset(option) match;
perform modify;
doend;

end;
modify:

set(key) list (cust-no);
get customer,list=(@);
put(form) (screen) ,window=("update? • fl=yes,
get(form) (screen),fl(autoread)=modify-fl

,f2=modify-f2;

modify-fl:

update customer,list=(@);

modify-f2:

f2=no");

57 end;

It uses Transact•s indirect referencing capability for forms. Notice that
all verbs which reference a screen name do not actually specify the screen
name. Each verb specifies the name of an element which contains the name
of the screen to be referenced.

The program sets up a menu driven customer update capability such as the
following series of screens depict.

6 Paper 3052
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!1

**
*custupdatemm
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

customer update main menu

enter customer number (1

fl - marketing (custupdatel)

f2 • finance (custupdate2)

f3 • accounts payable (custupdate3)

or

enter screen name

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
market- finance* accounts* * * * * exit *
*ing * * payable * * * * * *
**

**
*updatel
*
*
*
*
*
*
*
*

marketing customer update

customer number (1

name [name of customer 1

*
*
*
*
*
*
*
*
*

*update? fl=yes, f2=no *
**

**
*custupdate2 finance customer update *
* *
* *
* customer number (1 *
* *
* zip code [12345 J *
* *
* *
*update? fl=yes, f2=no *
**

Paper 3052 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

**
*custupdate3 accounts payable customer update *
* *
* customer number (1 *
* *
* name [name of customer l *
* *
* address (108 Lincoln Ave. *
* *
* city,state (So. Bend, Ind. *
* *
* 2ipcode [12345 1 *
* *
* *
*update? 4 fl=yes, f2=no *
**

There are many ways to implement a form independent program. The above is
just one illustration. Probably the key to this implementation is the MPE
file called FORMXREF which provides the indirection needed to establish
form independence.

The content of FORMXREF is as followsr

*MENUNAME: FKEY: SCREEN: *
* ----------------------------------*
* CUSTUPDATEMM
* CUSTUPDATEMM
* CUSTUPDATEMM

1
2
3

CUSTUPDATEl*
CUSTUPDATE2*
CUSTUPDATE3*

MENUNAME and FKEY are the index into the file specifying the menu that the
user is currently working with and the function key just pressed by the
user to indicate the next screen to go to. SCREEN contains the name of the
next data entry screen to use.

When this program begins, the element menuname contains the name of the
menu that controls its functionality. Line 11 simulates this by prompting
for the menu name. When prompted for the menu name, CUSTUPDATEMM was
typed in.

The menu allows the user to specify the next screen in either of two ways.
The name of the screen can be entered in the box titled enter screen name.
The <ENTER> key enters this data and lines 30 and 31 detect this and
perform the update routine. Or, the screen can be indicated via a function
key. If this way is chosen, the file FORMXREF is accessed to determine the
screen name to be used by the modify routine. Lines 34 thru 39 accomplish
this.

The cross reference file has a record for each function key of each screen
that defines the name of the screen to use when that function key is
pressed. In our example, if the user presses <fl>, then screen CUSTUPDATEl
is used.

8 Paper 3052
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Another form for updating a customer could now be designed and used by
this program merely by recompiling the program. Of course, the form would
have to be designed in FORMSPEC and defined in the data dictionary first.

ADDING, DELETING, CHANGING ELEMENTS

The following illustrates a major change to the CUSTOMER dataset,
expanding the size of CUST-NO from 4 to 6 digits long, deleting the
ZIPCODE field and adding a new field called AREA. The important point for
Transact is that the program only needs to be recompiled to incorporate
the new structure.

First, the form file is modified, changing all the forms that reference
the customer data.

CUSTUPDATEMM is changed to reflect the 6 digit customer number.

**
*custupdaternm
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

customer update main menu

enter customer number

fl ~ marketing (custupdatel)

f2 - finance (custupdate2)

f3 - accounts payable (custupdate3)

or

enter screen name

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
market- finance* accounts* * * * * exit *
*ing * * payable * * * * * *
**

CUSTUPDATEl is changed to reflect the 6 digit customer number.

Paper 3052 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

**
*custupdatel
*
*
*
*
*
*
*
*
*

marketing customer update

customer number

name

*
*
*
*
*
*
*
*
*
*

**

CUSTUPDATE2 is changed to reflect the 6 digit customer number, delete of
ZIPCODE, and addition of AREA, because finance needs to be able to update
this new code.

**
*custupdate2 finance customer update *
* *
* *
* customer number *
* *
* area *
* *
* *
* *
**

CUSTUPDATE3 is changed to reflect the 6 digit customer number, delete of
ZIPCODE, and addition of AREA, because accounts payable needs to be able
to update all fields.

**
*custupdate3 accounts payable customer update *
* *
* customer number *
* *
* name *
* *
* address *
* *
* city,state *
* *
* area *
* *
* *
* *
**

These changes as well as the database changes are recorded in the
dictionary using DICTDBM.

Paper 3052 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTE.REX8 5

**************************************~******************************

:run dictdbm.pub.sys
DICTIONARY/3000 HP32244A.02.0l - (C) Hewlett-Packard Co. 1984

PASSWORD FOR DICT.PUB>
FORMS ENTRY(Y/N)?>

> modify element
ELEMENT cust-no

EDIT DESCRIPTION(Y/N)?> n
ELEMENT TYPE: SIZE: DEC: LENGTH: COUNT:

CUST-NO i+ 4 0 4 1
LONG NAME:

HEADING TEXT:
ENTRY TEXT:

EDIT MASK:
MEASUREMENT UNITS:

BLANK WHEN ZERO: NO

TYPE i+
SIZE 6

DECIMAL

> create element
ELEMENT area

LONG NAME
TYPE x
SIZE 6

STORAGE LENGTH(6)

> delete file
FILE custupdate3

ELEMENT zipcode
ENTRY DELETED

ELEMENT

> add file
FILE custupdate3

ELEMENT area
ELEMENT ALIAS

FIELD NUMBER
DESCRIPI'ION

ELEMENT

> delete file
FILE custupdate2

ELEMENT zipcode
ENTRY DELETED

ELEMENT

> add file
FILE custupdate2

ELEMENT area
ELEMENT ALIAS

FIELD NUMBER

Paper 3052 11

RESPONSIBILITY:

WASHINGTON, D. C.

BALTIMORE WASHING TON REGIONAL USERS GROUP

DESCRIPTION
ELEMENT

> delete file
FILE customer

ELEMENT z1pcode
ENTRY DELETED

ELEMENT

> add file

> exit

FILE customer
ELEMENT area

ELEMENT ALIAS
DESCRIPTION

ELEMENT

END OF PROGRAM

INTEREX 8 5

*********·***

Next the database is unloaded using DICTDBU.

**
run dictdbu.pub.sys
DICTIONARY/3000 DB UNLOADER
STORE FILE> mpestore

HP32244A.02.0l • (C) Hewlett-Packard

LIST FILE>
BASE> orders
BASE PASSWORD>
MODE> 1
UNLOAD AUTOMATIC MASTER SETS(N/Y)?>
UNLOAD DETAIL SETS BY CHAIN(Y/N)?>
UNLOAD EDIT(N/Y)?>
PROCESSING SETS
CUSTOMER M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC
PARTS M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC
ORDER A:2/100

AUTO NOT UNLOADED
INVENTORY D:3/108

3 ENTRIES UNLOADED IN <1 CPU-SEC
ORDERHEAD D:2/112

2 ENTRIES UNLOADED IN <1 CPU-SEC
ORDERLINE D:3/100

3 ENTRIES UNLOADED IN <1 CPU-SEC
UNLOAD COMPLETED
END OF PROGRAM

Then the current database is purged using DBUTIL.

Paper 3052 12
WASHINGTON. D. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

**
run dbutil.pub.sys
HP32215B.04.61 IMAGE/3000: DBUTIL (C) COPYRIGHT HEWLETI'-PACKARD
>>pur orders
Data base has been PURGED.

>>exit

END OF PROGRAM

**

Then the new database root file is created using DICTDBC.

**
run dictdbc.pub.sys
DICTIONARY/3000 DB CREATOR
DICTIONARY PASSWORD>
BASE> orders
CONTROL LINE>
SCHEMA FILE>
LISTING FILE>

HP32244A.02.01 - (C) Hewlett-Packard

APPLY SECURITY JUST TO SET LEVEL(N/Y)?>
SCHEMA GENERATION
DBSCHEMA PROCESSOR
PAGE 1 HEWLETI'-PACKARD 32215B.04.50 IMAGE/3000: DBSCHEMA

TUE, MAY 14, 1985, 9:21 AM (C) HEWLETI'-PACKARD CO. 1978
BEGIN DATA BASE ORDERS;
PASSWORDS:
ITEMS:

AREA,
CITY-STATE,
CUST-NO,
DESCRIPTION,
LINE-NO,
LOCATION,
NAME,
ORDER-DATE,
ORDER-NO,
ORDER-STATUS,
PART-NUMBER,
QUANTITY,
STREET-ADDR,

SETS:
NAME: CUSTOMER,
ENTRY: CUST-NO

NAME,
STREET-ADDR,
CITY-STATE,
AREA;

CAPACITY: 100;
NAME: PARTS,
ENTRY: PART-NUMBER

DESCRIPTION;
CAPACITY: 100;

Paper 3052

X6
X20
I2
X20
X2
X4
X20
X6
X8
X2
X8
I2
X20

MANUAL
(1) '

MANUAL
(2) •

13
WASHINGTON, D. C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP

NAME : ORDER,
ENTRY: ORDER-NO
CAPACITY: 100;
NAME: INVENTORY,
ENTRY: PART-NUMBER

LOCATION,
QUANTITY;

CAPACITY: 100;
NAME : ORDERHEAD,
ENTRY: ORDER-NO

CUST-NO
ORDER-STATUS,
ORDER-DATE;

CAPACITY: 100;
NAME: ORDERLINE,
ENTRY: ORDER-NO

LINE-NO,
PART-NUMBER
QUANTITY;

CAPACITY: 100;
END.

AUTOMATIC
(2);

DETAIL
(PARTS

DETAIL
(ORDER

(CUSTOMER

DETAIL
(ORDER

(PARTS

) '

) '
) '

) '

) '

DATA SET TYPE FLD PT ENTR MED CAPACITY BLK
NAME CNT CT LGTH REC FAC

CUSTOMER M 5 1 36 46 100 11
PARTS M 2 2 14 29 100 13
ORDER A 1 2 4 19 100 20
INVENTORY D 3 1 8 12 120 40
ORDERHEAD D 4 2 11 19 100 20
ORDERLINE D 4 2 11 19 100 20

TOTAL DISC SECTORS INCLUDING
NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 13 DATA SET COUNT: 6

INTEREX85

BLK DISC
LGTH SPACE

507 44
378 27
382 18
483 16
382 18
382 18

ROOT: 152

ROOT LENGTH: 587 BUFFER LENGTH: 507 TRAILER LENGTH: 256
ROOT FILE ORDERS CREATED.
END OF PROGRAM

**

The new database is created using DBUTIL.

**
run dbutil.pub.sys
HP32215B.04.61 IMAGE/3000: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD
>>ere orders

Data base ORDERS has been CREATED.
>>exit
END OF PROGRAM

** i

The database is reloaded using DICTDBL.

**
run dictdbl.pub.sys

14 Paper 3052
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP IN TEREX 8 5

DICTIONARY/3000 DB LOADER
STORE FILE> mpestore

HP32244A.02.01 - (C) Hewlett-Packard

LIST FILE>
BASE: ORDERS.CUSTOMIZ.MILLER

RUN MODE(LOAD/EDIT/SHOW/EXIT)>
NEW BASE NAME>
BASE PASSWORD>
MODE>
FAST I/O(Y/N)?>
CUSTOMER M 2/100
ZIPCODE ITEM NOT FOUND, NEW ITEM NAME>

2 ENTRIES LOADED IN <1 CPU-SEC
PARTS M 2/100

2 ENTRIES LOADED IN <1 CPU-SEC
INVENTORY D 3/120
3 ENTRIES LOADED IN <1 CPU-SEC

ORDERHEAD D 2/100
2 ENTRIES LOADED IN <1 CPU-SEC

ORDERLINE D 3/100
3 ENTRIES LOADED IN <1 CPU~SEC

LOAD COMPLETED
END OF PROGRAM

<er> not reloaded

**

Finally, the Transact program is recompiled and the new application is
implemented.

**
run trancomp.pub.sys
TRANSACT/3000 COMPILER HP32247A.02.02 - (CJ Hewlett-Packard Co. 1984
SOURCE FILE> custup
LIST FILE>
CONTROL> nolist
TRANSACT/3000 COMPILER A.02.02 : TUE,

OF FILE CUSTUP.CUSTOMIZ.MILLER
COMPILING WITH OPTIONS: CODE,DICT,ERRS
CODE FILE STATUS: REPLACED
0 COMPILATION ERRORS
PROCESSOR TIME=00:00:08
END OF PROGRAM

MAY 14, 1985,
PAGE 1

9:32 AM COMPILED L

**

DICTDBU and DICTDBL can not handle all types of element changes. For
example, numeric ascii will not be converted correctly by these utilities.
This is because IMAGE does not have a data type corresponding to numeric
asc11. DICTDBC creates an element defined as numeric ascii as an
alphanumeric element of type X. Thus, if CUST~NO were being changed from
9(4) to 9(6), DICTDBU would unload it as X(4). DICTDBL would reload it as
X(6) causing the new field to be left justified with two spaces inserted
on the right. Transact would no longer be able to interpret the field as
numeric.

Paper 3052 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

Thus,when writing a custom application, avoid using data type 9 or write a
utility to convert data after DICTDBU has run and before DICTDBL has run.

USER EXITS

In general, there are two types of application development environments.
First there are application software companies who build application
solutions to sell to other companies. Second, there are companies who
build application solutions for use internally. Localization is attractive
to both environments. Ignoring the fact that the software is sold in one
case, both types of environments have a similar structure. There is a
central group responsible for maintaining and enhancing the core system.
There are one or more user organizations who accept the basic system
functionality, but who have unique needs from the other users. Until these
needs become the common needs of the majority of the system users, the
central group typically resists adding the functionality to the core
system.

If, however, the central group provides ways in which the individual users
can modify the system to include the functionality they need without
destroying the functionality of the core system, then both groups become
winners.

The concepts discussed earlier, plus the concept of user exits provide
this capability.

It is probably much easier for the software engineers developing software
to sell to build in user exits, since they are acutely aware of the many
unique demands their customers make.

It is no doubt much more difficult for a software engineer building
internal software to distinguish between capabilities that should be a
part of the core system versus capabilities that should be extensions or
localization of the core system, since his users are also internal.

Providing the capability for user exits and when to provide the capability
for user exits is up to the designer of the core system. For example, a
designer may only want to allow user intervention after data has been
entered. Another designer may want to allow user intervention before and
after data entry, as well as before and after database update.

Naturally, the more a designer provides this capability, the better the
possibility that the user can solve his unique problem outside of the core
system.

The example below illustrates one way to implement user exits within
Transact. It implements a structure that allows the user to do some
processing just after data has been entered.

**
1 system custex,base=orders
2 ,vpls=formfile
3 ,file=formxref,exitxref;

Paper 3052 16
WASHINGTON, D. C.

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

BALTIMORE WASHINGTON REGIONAL USERS GROUP

define(item) menuname x(l6):
fkey 9(2):
screen x (16):
lastkey i(4):
userexit-prog x(6):
userexit-marker @;

list menuname:
lastkey:
userexit-prog;

INTEREX85

data menuname; <<to simulate transfer of control to this
subroutine>>

<<

Subroutine: to update customer information

input: menuname • contains the name of the screen to be displayed

output: none

>>
list fkey:

screen;
list userexit-marker;
list(auto) custupd-global;
let (yes) = 1;
let (no) = O;
let (error) = (no);
level;
list(auto) customer;
if (error) = (no)

then
get(form) (menuname),init

,window=(" ")
,fkey=lastkey
,autoread

else
get(form) (menuname)

,fkey=lastkey
,autoread;

if (lastkey) = 8
then exit;

set(match) list (menuname);
get(serial) exitxref,list=(menuname,userexit-prog);
call (userexit-prog),data=userexit-marker;
if (error) = (yes)

then end;
if (lastkey) = 0

then perform modify
else

do
set(match) list (menuname);
let (fkey) = (lastkey);
set(match) list (fkey);

Paper 3052 17
WASHINGTON, 0. C.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

get(serial) formxref,list=(menuname,fkey,screen);
reset(option) match;
perform modify;
doend;

end;

modify:

set(key) list (cust-no);
get customer,list=(@);
put (form) (screen), window= ("update? ~ fl=yes,
get(form) (screen),fl(autoread)=modify-fl

,f2=modify-f2;

modify-fl:

update customer,list=(@);

modify-f2:

f2=no");

78 end;
**

The user exit is established in a way similar to that used to achieve
screen independence. A cross reference file is set up to contain the name
of the sub-program to be called based upon the name of the screen that the
program is currently processing.

The content of this cross-reference file is:

MENUNAME: USEREXIT-PROG:
-------------------------~-----
* CUSTUPDATEMM CUl *

MENUNAME is the index into the program specifying the current menu or
form. USEREXIT-PROG contains the name of the Transact sub-program to be
called.

As this program illustrates, there can be some data defined within the
program for its own use (lines 10 thru 26). This data could also be
defined in the dictionary. There can also be global data that is of
importance to both the program and the user exit program (lines 28 thru
31). This data should be defined in the dictionary in order to make coding
of the user exit program easier. Included in this data are elements for
handling screen data input errors (validation) and the data the user wants
to add to the transaction. Finally, there is the dataset definition needed
specifically for this generic transaction, also defined in the dictionary
(line 33). The dictionary description of custupd-global and customer is
as follows:

FILE

CUSTUPD-GLOBAL

Paper 3052

TYPE: RESPONSIBILITY:
FORM

18
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

ELEMENT(ALIAS):
PASSWORD
ERROR
YES
NO

PROPERTIES:
x (8,0,8)
I (4,0,2)
I (4,0,2)
I (4,0,2)

FILE
CUSTOMER

TYPE: RESPONSIBILITY:
MAST

ELEMENT(AL!AS):
CUST-NO
NAME
STREET-ADDR
CITY-STATE
AREA

PROPERTIES:
I+(6,0,4)
x (20,0,20)
x (20,0,20)
x (20,0,20)
x (6,0,6)

INTEREX85

ELEMENT (PRIMARY) :
PASSWORD
ERROR
YES
NO

ELEMENT{PRIMARY):
CUST-NO
NAME
STREET-ADDR
CITY-STATE
AREA

Note that the user of the system has added the element PASSWORD to the
CUSTUPD-GLOBAL list. This element is not a part of the core application.

The program depends upon the existence of ERROR, YES, and NO as the way in
which the sub-program indicates to the main program that an error has been
detected. The main program initializes these variables in lines 29 to 31.

The program sets up a marker element which it uses to denote the point in
the LIST register that the sub-program has access to (line 27 and 48).

The screen is displayed without erasing the information, if the user exit
program detected an error. Otherwise an initialized screen is displayed.
Lines 34 to 45 handle this.

Lines 46 to 48 implement the user exit by searching for a match on screen
name in the cross-reference file. This code and file could be expanded to
provide for multiple user exits during the same transaction and to make a
user exit optional.

The user exit program follows. The user has decided to add a password to
the customer update menu and has added the logic to his sub-program to
validate the password.

**
1 system cul,vpls=formfile;
2 list(auto) custupd-global;
3 list(auto) customer;
4 let (error) = (no);
5 if (password) <> "OKAY"
6 then
7 do
8 set (form) *,window= (password, "invalid password");
9 let (error) = (yes);

10 doend;
11 exit;
**

Paper 3052 19
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Note that the user exit program must contain the LIST definition
corresponding to the main program definition that occurs after the marker
i tern. Standardized procedures for communicating error conditions, etc.
must also exist.

The modified user version of the screen CUSTUPDATEMM and the dictionary
description of this screen follows:

**
*custupdatemm
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

customer update main menu

enter customer number

(custupdatel)

(custupdate2)

f3 - accounts payable (custupdate3)

fl - marketing

f2 - finance

or

enter screen name

password r

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
market- finance* accounts* * * * * exit *
* ing * * payable * * * * * *
**

FILE

CUSTUPDATEMM
TYPE: RESPONSIBILITY:

ELEMENT(ALIAS):
COST-NO
SCREEN
PASSWORD

FORM

PROPERTIES:
I+(6,0,4)
x (16,0,16)
x (8,0,8)

ELEMENT(PRIMARY):
COST-NO
SCREEN
PASSWORD

TRANSACTIONS ACROSS MULTIPLE DATASETS

All of the above concepts are still valid even if the transaction affects
multiple datasets. The following program illustrates a way to write
generic code that accesses more than one dataset. This code could be
expanded to include the topics previously discussed to provide form
independence, user exits, etc.

Paper 3052 20
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

**
l system addprt,base=orders
2 ,vpls=formfile;
3 list(auto) addpart-global;
4 level;
5 list(auto) partvendors;
6 level;
7 list(auto) inventory;
8 level;
9 list(auto) parts;

10 get(form) addpart,init;
11 put parts,list=(@);
12 move (global-part) = (part-number);
13 end(level);
14 move (part-number) ~ (global-part);
15 put inventory,list=(@);
16 end(level);
17 move (part-number) = (global-part);
18 put partvendors,list=(@);
19 end;
**

The generic transaction adds a new record to the parts dataset, which is
the master dataset. It then adds a record to each of two detail sets,
inventory and partvendors. PART-NUMBER is a critical element and is common
to all three sets.

The dictionary description of the lists used by the program are as
follows:

FILE

ADDPART
TYPE: RESPONSIBILITY:

FORM

ELEMENT(ALIAS):
PART-NUMBER
DESCRIPTION
LOCATION
QUANTITY
VENDOR-CODE
VENDOR-NAME

PROPERTIES:
x (8,0,8)
x (20,0,20)
x (4,0,4)
I (6,0,4)
x (6,0,6)
x (20,0,20)

FILE
ADDPART-GLOBAL

TYPE~ RESPONSIBILITY:
FORM

ELEMENT(ALIAS):
GLOBAL-PART

PROPERTIES:
x (8,0,8)

FILE
INVENTORY

TYPE: RESPONSIBILITY:
DETL

ELEMENT(ALIAS):
PART-NUMBER

Paper 3052

*
PROPERTIES:
x (8,0,8)

CHAIN MASTER SET: PARTS

21

ELEMENT(PRIMARY):
PART-NUMBER
DESCRIPTION
LOCATION
QUANTITY
VENDOR-CODE
VENDOR-NAME

ELEMENT(PRIMARY):
GLOBAL-PART

ELEMENT(PRIMARY):
PART-NUMBER

WASHINGTON, 0. C.

FILE
PARTS

BALTIMORE WASHINGTON REGIONAL USERS GROUP

LOCATION
QUANTITY

x (4,0,4)
I (6,0,4)

TYPE: RESPONSIBILITY:
MAST

ELEMENT(ALIAS):
PART-NUMBER
DESCRIPTION

*
PROPERTIES:
x (8,0,8)
x (20,0,20)

FILE
PARTVENDORS

TYPE: RESPONSI'BILITY:
DETL

ELEMENT(ALIAS):
PART-NUMBER *

PROPERTIES:
x (8,0,8)

CHAIN MASTER SET: PARTS

INTEREX85

LOCATION
QUANTITY

ELEMENT(PRIMARY):
PART-NUMBER
DESCRIPTION

ELEMENT(PRIMARY}:
PART-NUMBER

VENDOR-CODE X (6, 0, 6) VENDOR-CODE
VENDOR-NAME X (20,0,20) VENDOR-NAME

Note that the global definitions for this transaction include an element
called GLOBAL-PART. This element is used to store the value of PART-NUMBER
between dataset updates as explained below.

The form ADDPART looks like this:

**
*addpart add a part *
* *
* *
* part number *
* *
* description *
* *
* location *
* *
* quantity *
* *
* vendor code *
* *
* vendor name *
* *
* *
* *
**

The key to understanding how to !ol'rite generic code is to understand how
the VPLUS and IMAGE interface work with the LIST register.

The first thing to understand is that the LIST register can have as many
definitions of an element on it as wanted. However, Transact always
references the latest definition. Thus, the LIST(AUTO) for each dataset
that the transaction is to access, causes three definitions of PART-NUMBER
to be added to the LIST register.

Paper 3052 22
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The VPLUS interface with the dictionary does not require use of the LIST=
option. If this is left off, Transact matches the elements that are a part
of the form with the current contents of the LIST register. These elements
can occur anywhere physically in the LIST register. Elements are resolved
by starting at the end (most recent change) of the LIST register, and
working back until the element definition is found (line 10).

The IMAGE interface through the LIST=(@), requires the element list to be
contiguous. Individual elements can not be listed, since this would defeat
the idea of creating custom code. Thus after updating the PARTS dataset
(line 11), the value of PART-NUMBER is saved (line 12), then all of the
PARTS dataset elements are removed (line 13), then the value of
PART-NUMBER is restored, which is now the PART-NUMBER defined for dataset
INVENTORY (line 14). A record is then added to the INVENTORY dataset.

Since PART-NUMBER has already been saved, it need not be saved again. All
of the elements that belong to the INVENTORY set are removed from the LIST
and then PART-NUMBER is restored, which now becomes the PART-NUMBER for
the PARTVENDORS set.

This same logic can be repeated any number of times. Similar logic also
handles data retrieval from different sets.

Paper 3052 23
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3053. RECOVERY BY DESIGN f Surviving a Disaster

James A. Depp
UPTIME

4131-A Power Inn Road
Sacramento, California 95826

Overview of the Presentation:

A.) Do I really need protection/planning? Do disasters really
occur? Can it happen to me?

- Anecdotes and experiences -
B.) Why bother? How is it going to benefit me? How do I sell

the boss? Is there a payout?
C.) OK· how do I do it? What's the blueprint?
D.) Perspective - tasks/program and design considerations

1) Resources and difficulty in replacing
2) Equipment/Facility

a) Options
b) Agreements
c) Recovery considerations
d) Design considerations

3) Data and Software
a) Recovery considerations
b) Design considerations

4) People
5) Communications

a) Human
b) Data

6) Supplies
E.) Question and Answer

CONTINGENCY PLANNING • WHY BOTHE~ • WHAT ARE THE BENEFITS?

The auditors insist on it, the user asks what happens to my operation
if the computer fails; the staff doesn't like to think about it - a
dreaded event, not often acknowledged, but always a concern,
uncertainty, fear.

HOW DO I SELL THE BOSS? - the more tangible reasons for planning; the
ones that lead to top management commitment, and action?

1) Protect your business - experience shows small to medium size
companies dependent on computer records may be bankrupt in
one to two weeks if they can't access their information. At
best they will be crippled for months.

2) Protect the company's market position and stock price since
improperly communicating the loss of computing resources
could cause loss of customers or adverse market reaction.

3) Reduced insurance - business failure insurance is carried by
many companies - protection of the business reduces the risk
and potentially the premiums.

4) Protection from legal redress - current legislation and

Paper 3053 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

precedent allow stockholders to take civil action against
management for failure to properly protect the business from
potential threat.

5) Increased productivity and performance - close examination of
any operation from a different vantage point can result in
improvement. Recovery planning has resulted in reduced data
base size and content, improving response time. Data
communications have been reevaluated and streamlined causing
less frequent attention. Operations have been improved as
options were presented by the in depth survey.

6) Staff training opportunities are presented both in
preparation of the recovery stategy and in performing the
annual test. One operations supervisor and the operator who
brought their backup tapes for a test said this was more
valuable than HP coursework because they had full use and
control of the system, and had to set up and check all
aspects.

On a broader scale, contingency planning involves not only the data
processing arena. You will find that user support and the entire
business plans will follow more easily if the critical data is
available on a backup computer system.

Additionally, there are on-going benefits to the information systems
staff as well - briefly:

1) streamlined data center operations
2) streamlined business because it is examined
3) smooth, accurate response to minor failures
4) enhanced image within business organization
5) increased DP job satisfaction - reduced turnover

THE DISASTER RECOVERY PROGRAM •

Not just a written plan, recovery is a program which is begun at a
point in time, and which continues actively into the future. The
program objectives are:

1) Reduce potential losses to a level which the company
can absorb without endangering the business.

2) Create a plan immune to company change and growth.
3) Balance resources between program needs and other

competing development, operational and business needs.

A key part of the program is assessing the VALUE of the processing
rather than the cost, and to support and protect the people who will
be directly and indirectly involved in recovery.

DISASTER PLANNING: The strategy for reestablishing information
processing.

Disaster planning is an audit of the present to assess what will be
critically needed if disaster strikes - and to provide those things.
It is a list of tasks - strategic and tactical - using the resources

Paper 3053 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

protected and available to recreate the processing environment. It is
organization of the 'significant few' with others assisting so that
the recovery is smoothly and effectively executed as quickly as
possible. It is the testing of itself, routinely, to be certain that
the plan is always viable.

HOW IS IT DONE? • BLUEPRINTS

Steps to building a plan:

1} Top management commitment
2) Define critical applications with the users and gain

commitment.
3} Estimate the business value of the processing = cost of lost

processing.
4) Determine how long an outage is tolerable
5} Determine the restoration period
6} Document requirements/assumptions with user concurrence.

Preparation:

1} Allocate staff to the planning process. You may, due to
limited internal resources, seek consulting assistance. But
be certain that the resulting strategy is specific to your
organization and not just a document.

2) Secure storage of vital records and resources. You may
already store your backup tapes offsite. There may be other
items to store, including a copy of the plan.

3) Confirm that your insurance coverage is sufficient and that
payment of the claim will be speedy. Also discuss the
insurance company's actions if there is a disaster. In some
cases a partially damaged computer system was unavailable for
several days because the insurance company had not completed
their assessment.

4) Assess your documentation in its current form. Are the
routine operational activities in written form? Is the
source code organized and well commented? The desire here is
to utilize as much of the existing material as possible in
the plan formation, and vice versa. The impact of staff
turnover can also be minimized through this planning effort.

5) Itemize the services that will need to be supported for the
applications determined to be critical. These may be specific
data required, data communications, people, reports, etc.

6) Itemize the supplies which will be needed as forms, labels,
etc. and don't forget such related equipment as bursters,
signature writers, and the like. You may later decide not to
provide some of these, but do so consciously.

Plan Elements:

Now is the time to begin the actual plan creation with its decision
making and refinement activity.

Paper 3053 3
WASHINGTON. D C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

1) What is required? State the requirements as already
determined.

2) Where will the processing be done, and how?
3) Who will be responsible for recovery, and what aspects will

they perform? What are the limits to their activity?
4) Write the plan and the documentation.
5) Monitor the plan effectiveness and people availability at

least annually, revising the plan as required. For some
organizations, more frequent tests will be required.

PERSPECTIVE - nuts and bolts

Effective operational procedures and advance enlistment of assistance
can ensure the resource availability. Routine system backups will
place the software and data offsite, safe from the disaster which
destroys the processing base. Procedures for use of the tapes when
they return from storage protects these resources from loss,
particularly in a time of confusion. The successful recovery is
dependent upon people, data, equipment, site, communications, and
supplies availability. The discuss ion of these specifics will begin
1o1i th equipment and facility because the availability of these so
directly affects the others.

HARDWARE -

We recogize that equipment must be available, but where? Options
include the HP office, HP quick replacement, a reciprocal, a captive
hotsi te, third party vendors, additional systems within the company
which are underutilized routinely. -OR- you might join a recovery
service which provides equipment, data center, staff, and testing -
the advantage is cost and availability - a system that can be reloaded
now, which is known available and has been tested, and which is
located near your people, regardless of where you have to put them .
.And extra trained hands which don't exist routinely can be made
available, as well.

Recovery Options might be ranked as follows:

-Dedicated/ct.med hotsite
-Mobilized hotsite service
-Stationary recovery service hotsite
-HP Rush Replacement
-Third party hardware source
-Shell site
-Reciprocal agreements
-Service Bureaus
-Do Nothing

PRIOR J\.GREEMENTS:

Effectiveness
Excellent
Excellent

Good
Varies
Varies
Varies

Marginal
Poor

?

Cost
Very High
Affordable
Affordable

Varies
Varies
Varies

Low
Varies

0

P1·ior agreements are the only method for making hardware available
because capacity must be available, or paperwork completed in order to
have equipment delivered or made accessible now, rather than days
later. A..r,.y other business or organization with which you deal will

4 Paper 3053
V'/ASHl~lGTON. 0 C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

have their own contrary objectives when you need the system.
Agreements include:

1) contracts and frequent tests of reciprocals • remember
that both parties are developing and could cause the
change which would interfere with recovery.

2) pre-executed purchase orders with hardware suppliers.
3) written statements, frequently reviewed, saying what

service could be provided on short notice by HP or other
of your own divisions.

4) Commitment of all involved to spend the money to test
regularly, which means not only the cost to go test, but
for the receiving facility to shrink and prepare for the
test. How many of you have run a test at the local HP
office of the commitment to make the machine available,
let alone actually bringing your system up there? What
about the local service bureau? Your reciprocal partner?
Why not?

HARDWARE DESIGN CONSIDERATIONS:

In general, standardize or document carefully. HP hardware is
generally well understood in interfacing, use, capability. There is
nothing wrong with using foreign equipment, but the interfacing may be
unusual, so be sure it is documented. It will not be in the standard
HP manuals. And where specific hardware dependent patches to the
operating system or programming are required, put these in job
streams.

Examples include cabling to multiplexors/modems, the non-HP equipment
such as microcomputers and wordprocessors where pins 4,5,6 and 8 are
jumped to 20. Multipoint printers over modems/multiplexors may
require pin 6 to be jumped.

Selection of peripherals, particularly for data communications, should
include the recovery consideration. Consider the ramifications of
antique, unique, or ultra·new hardware. If the computer is to autodial
the modem, and interrogate a remote source of data, it might be
preferable to use equipment with the 'AT' type command structure,
since these modems are readily available, even in microcomputer
stores. Where multiplexors and high speed equipment is needed, choose
the company which has in place a 24 hour emergency replacement
strategy - we've only located one, so far.

FACILITY:

To have ready access to hardware is only part of the successful
recovery. How much planning was required when your own data center
was designed <i.nd built? The equipment needs specific electrical
characteristics, air conditioning, static protection, data
communications connections. Your staff will need work space,
lighting, water, rest room facilities, etc. It is well enough to say
that the equiprnent can be had reasonably quickly, but will the
facility be available to make the equipment usable?

Paper 3053 5
WASHINGTON. D. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FACILITY DESIGN CONSIDERATIONS:

When installing terminal i.tiring it would be preferable to terminate
individual terminal wiring remote to the computer room, and to bring
multiconductor cables into the machine. This is neater,and it gives a
remote tie-in location, carefully marked for clarity. Likewise,
modems can be installed 50' from the computer, giving the possibility
that they might survive destruction of the system.

Power and power conditioning can likewise be protected and marked, as
well as having alternate sources of power identified and marked.

SOFTWARE AND DATA -

Data must be protected both against loss and inaccessibility. It is
the companion of software, which can be similarly protected.
Protection hinges on data and software storage. Options include:

Dump strategy and Offsite storage
enhanced by:

Remote data logging and Shadowing

DATA DESIGN CONSIDERATIONS:

The dump strategy includes full, partial, and selective dumps.
In each case there are a few watchouts:

Do you label dump tapes? If so, stop immediately, since
these cannot be read.

• Do you read the output listing to note errors, problems, and
skipped files? This is not just the beginning or end of the
listi.ng.
Do you store the dump tapes securely while they await offsite
courier pickup?
Are all files included such that program changes will
necessarily be dumped without communication to an operator
.or special handling? This is particularly crucial if fourth
generation languages are in the hands of users.

• Are all segmented library based changes made though job
streams so that recovery of the system SL is reliable?

SOFTWARE DESIGN CONSIDERATIONS:

Consideration should be given to recovery when software strategies
are developed. This is not to say that anything is taboo, only that
the full impact be realized, and steps ta.ken to prepare :t\>t' d i.:3d.St..,r.

For exa.mple, if the system segmented library is used, the Cc...miminds to
place the application in the library should be in a dearly
documented, obviously located job stream so that the :.;..idi.tifn of the
rout in es can be done by anyone. Consider a group ST .JOBS. SYS. If
specific peripherals are accessed, identify them by class name, so
that the recovery sy.; tern does not have to l'lX:l<:t ly match the regular
system, and also in·ugni.m the option of what tc> do if th.~ device is not
the one identified.

6 Pape1· 30') 3
WASHINGTON. D C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The accounting structure is critical to recovery • MPE V/E will build
the stt·ucture as files are restored - but what of the user defined
commands (UDCs)? We continue to recommend the use of the account
building (BULDACCT) routines • and apparently others do as well, since
the MPE V/E versions are available.

PEOPLE:

No matter how automated, or how labor intensive the business it will,
eventually, resolve itself to people. To a greater or lesser extent,
your users are dependent upon your skills and forethought to provide
the computer tool to them. You, the significant few, provide, support
and develop computer resources.

ORCHESTRATING AND PROTECTING THE PEOPLE •

We place significant emphasis upon four aspects of the people and
their organization:

1) Have enough people -· identify in advance the people outside
of the 'significant few' who have skills, interest, and
availability to help through the days and weeks of a
disaster. These may be purchasing, vendors, HP staff, other
administrative types, consultants, etc. Recovery services
should provide staff as well as the recovery hardware.

2) !)pfine the roles, interrelationships, and training so that
these people can all work together. Clear procedures are
essential since some staff members may not be available.

3) Provide for the personal and family needs of these people so
that if the same disaster disrupts their home and the
business they are quickly available to the business. This
means that key insurance, construction, legal, financia\
resources be made available to them.

11) Write it all down, so no one is uninformed, and provide the
plan to all involved for review at each annual or more
frequent test, as well as when it is initially put into
service.

COMMUNICATIONS

Of the Human sort:

Dudng "' dis;.lster is not the time to
company t.o outside parties. Nor is it
th<? intc't'n<.11 communication with users.
f i.l L such roles, and then direct all
d i:oas ter.

Of the data sort:

establish who speaks for the
the time to ti-y to handle all
Establish people in advance to
inquiries to them during the

Whereas in normal operation it is common that all users have access at
any time to the system, this might not be true during a disaster. If
mu l tip L•?xor /moderns are a key part of the network, it may be

hper 3051 7
WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

economically best to time slice a single communications link during a
disaster, with the East Coast connected in the morning, the West Coast
in the afternoon, or two hour rotations, etc. People are able to
adjust for a reasonable length of time in a disaster.

Paper 3053 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SUPPLIES

Supply bottlenecks can be audited with every routine order, and the
supplier contacted to identify and perhaps work out delays. The
delays which cannot be avoided point to supplies which should be
stored offsite in appropriate quantity.

Offsite storage of supplies may be possible with the supplier, which
also provides inventory rotation. Movers and other storage companies
often provide such service. Data storage firms are routinely
providing secure storage of supplies as well as tapes.

A consideration in forms design and programming might be to provide a
method of printing on blank paper particular information normally
provided by the form, such as your company name and address on
invoices. This would permit the emergency use of blank paper if
required.

Summary:

In all of the areas noted, we can give many examples and options. The
intent of this presentation is to spark interest in:

1) Evaluating the value of the processing for which you are
responsible

2) Reviewing the advantages - protecting the business, the
market and stock positions, management from legal actions -
improvements in productivity, system performance, and staff
capabilities.

3) Identifying and supporting the people who are the key to a
successful recovery.

You have created a data processing resource to your company which is a
valuable resource, and the effort expended deserves the protection
provided by effective, well thought out contingency plans. The
profitability and, perhaps, the survival of the company depend upon
it.

Other reading:

(1) Heidner, Dennis, "Disaster Planning and Recovery",
Proceedings 1984 International Meeting HP3000 IUG, Anaheim,
California,February 26-March 2, 1984

(2) Savaiano, Richard A. "Disaster Recovery - Planning for the
Unplanned", Proceedings 1984 International Meeting HP3000
IUG, Anaheim, California,February 26-March 2, 1984

(3) Lord, Kenniston W., Jr., The Data Center Disaster
Consultant,Prentice Hall,Englewood Cliffs,New Jersey

(4) Disaster Recovery Planning Tools,UP TIME, Sacramento,
California, 916-454-4171

Paper 3053 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

About the author:

James A. Depp joined California On-Line Computer Services in 1984
after 13 years as a manager at Procter & Gamble, He is directly
involved in the development and expansion of UP TIME, the premier
disaster recovery service for the HP3000, providing dedicated
hotsite service, either mobile to the customer's location or at the
static site.

A user of H-P computers since 1971, Mr. Depp justified and
installed one of the early HP3000 's in Procter & Gamble's
manufacturing facilities, and managed the operations and software
development for that site. He has worked with the HP3000 for six
years.

Responsibilities at UP TIME include the design and contruction of the
mobile recovery vehicle, development of recovery planning tools,
development of customer's recovery strategies, and marketing and
sales.

Paper 3053 10
WASHINGTON, D. C.

BAL. TIMORE WASHINGTON REGIONAL USERS GROUP

3059. Information and Humanity
E. R. Simmons, Ph.D.

300 West Fifth, Suite 935
Austin, Texas 78701

INTEREX85

A few years ago, before the advent of the smallcar craze in the
United States and when the auto makers were trying to satisfy the
desire of the American public for bigger and more powerful cars,
one enterprising advertising adgency came up with a real gem to
describe the power of their particular car. "More horsepower
than you will ever need" was the message they declared to a
public willing to buy anything in an amount more than they could
possibly need.

I though that approach rather ludicrous at the time. Now, as I
observe the love affair with information that has resulted from
the ability of the computer to store, manipulate and access data
in an unbelievably short time, I am aware of how vulnerable human
beings are to any excess that happens across their pathway.

Information gathering in the United States has become a disease
reaching epidemic proportions. We are not alone. Throughout the
Western World of industrializd capitalistic systems, the same
disease prevails to the extent that the epidemic has become
pandemic. We insist on gathering more information about every
subject known to mankind. It matters not that the topic may not
be worthy of consideration in the first place or that the
information we dredge up is not worth the cost of printing
required to make it available to the public.

Information gathering has become an end in itself. Some appar·
ently feel you can never have too much of it. Let's gather it,
stack it, sort it, compile it, collate it, order it, syste·
matize it and display it in a variety of ways and it will
certainly be useful to somebody ssometime somewhere. It is
accorded the same status as pure research in the Sciences. One
never knows when the results of pure research are going provide
the key to solutions related to mankind's well-being.

The contention here is that it is possible to have more
information than you could ever want, much less need.
Journalists have coined a phrase, "in-depth" reporting, to give
this phenomenon the mantle of legitimacy. Frankly, it is still
"more horsepower than you will ever need".

Our frantic search for more and more information and our deter·
mination to make it public appears to be nothing but an effort to
capitalize on the weakness of human beings. We are always
wanting more of nearly anything than is good for us, or even
needful.

It is this writer's contention that pandering to human frailty is
not a noble endeavot. Most of us will line up and do whatever
anyone else is doing because we have been conditioned to that

Paper 3059 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

kind of behavior. Witness the great run on the purchase of
personal computers. It is the new way of keeping up with the
Joneses. We seem to enjoy being a "nation of sheep". Sometimes,
we fall into line when we don't know what the line is for.
Somehow, we have got the idea that there is something inherently
American about following the lead of others

On the other hand, we must acknowledge the legitimate informa·
t ion explosion of our time, the result of advanced research
techniques and technical processing and record-keeping systems.
This is important to us as individuals and as a nation. The The
problem is that everyone wnats to get in on the act and foist off
on the public any notion of information they may have.

Information, as defined by one dictionary, is communication of
knowledge, or knowledge derived from study, experience or
instruction. In other words, one is gleaning something new from
reading, listening or observing. Most of the time what is passed
off as information provides nothing new. Quite often, it is
justified by saying it is being presented in a new and more
meaningful way. There is some doubt in the mind of the writer
that presenting meaningless material in a "meaningful" way makes
the content any more valuable.

While the scientific wizards and technical experts continue their
adventures in the realms of electro-mechanics and the
transmission of data, I think it is incumbent upon those of us
who are concerned with human behavior and mental hygiene to point
out the hazards of this unhealthy emphasis on information
gathering. While we are looking for more and better ways to
collect, process and present data, we need to look at the human
side of the issue. The problems encountered by human beings in
relation to the information explosion may be classified in two
groups: (1) Physiological (2) Psychological

The first group have to do with the sensory system of the human
being and its capacity for handling stimulation. The second
group have to do with human reactions to pressures imposed by the
situation. Several points need to be addressed relative to each.

In order to understand what happens to the human being physic·
logically, it might be good to look at the physical side for some
examples from which we can make observations about the
ccharacteristics of an individual physiologically.

From the standpoint of learning and making use of information,
the human is a sensory system or sensory being. It is through
use of the sensory systems that one learns about the environment
and how to deal with it. Physically speaking, all systems in the
human body have limitations. They are inherent in the structure.
For example, there is a limit to the strnegth an individual has
available for accomplishing work. The strength is related to the
general condition, or health of the body. This, in turn , is

Paper 3059 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

determined by genetic heritage, care of the body in terms of
nutrition, exercise, rest and freedom from disease.

Obviously, a person who is suffering from a debilitating disease
will not be able to perform feats of strength that might be
within his power when his health is sound. Neither can a person
perform feats of strength that require extra xertion when he is
already weakened due to long periods of exertion. These
statements are easily understood and accepted. What is not so
easy to understand and accept is that human beings have
limitations intellectually and physiologically when it comes to
handling information.

The point it that human beings can be incapacitated by being
exposed to too much information.

It has been well established that the average person in his youth
can learn only so much about a given topic in a given period of
time. This is the very essence of the concept of curriculum
development. We know how many repititions are required for a
child to learn to count. We know how long it takes an average
child to learn the multiplication tables. We take these bits of
information along with other knowledge about the principles of
learning and plan curricula accordingly. When we become adults,
we forget the limitations we have and ignore general principles
of learning and expect to accomplish the impossible.

If we present too many items for learning, the flow of informa­
tion given interferes with the learning process and inhibits
learning. If we present too many unrelated items for learning in
a compressed period of time, negative interference may keep any
learning from taking place.

So it is with the handling of information. If we overload a
person with too much information, his ability to absorb it,
digest it, file it away for future reference and recall it when
the occasion demands will be hampered.

Another physiological problem arises when we assume that all
people learn equally well through the same channels. Some of us,
for exai:ple, are auditory learners. We tend to remember a great
deal of what we hear. Others are visual learners. We tend to
rememb.:1· better the things we read or see. In many cases, it
seems those who are responsible for the education of adults in
job situations make no allowances for these differences in human
beings.

We need to keep in mind also that the human mind has limitations
as to the amount of input it can handle with dispatch. It has to
develop its own filing system and methods of retrieval. It has
to relate information received in such ways as to make sense of
the total storehouse and organize it so as to have a useful body
of knowledge.

Paper 3059 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Not all of man's information handling responsibilities can be
turned over to machines and electronic systems. In fact, there
is grave concern on the part of some educators that "real" educa­
tion is being neglected in order to teach computer literacy and
usage. It is as though some hope to substitute the computer for
the mind. Why learn how to handle numbers if the computer can
handle them ·for you? You don't really need to learn about
algorithms and functions because the time is coming when we will
not be re- quired to think at all. Just get the facts, ma'm, and
feed them into the computer. Presto, the answer is there. It
will not be as simple as that.

The computer is a tool to be used by a thinking mind, not one
that has been taught that it doesn't need to think.

The final point to be made about the physiological aspects of the
human mind in relation to the barrage of information thrown its
way has to do with confusion that results.

It is well known and well accepted that the human sensory system
can be rendered inoperational by being deprived of stimulation.
can be rendered inoperational by being deprived of stimulation.
What is not so well known is that it can be rendered inopera­
tional by being bombarded by too many stimuli. In the former
case, many studies have been done showing that disorientation
takes place in a person when he is placed in a vacuum where there
is no light or sound and where he does not feel any pressure or
sense of cold or heat.

The human being depends on sensory stimulation to guide him into
activity and help him determine his course of action. When he
has no feedback from his environment, he does not know what to do
with his limbs. If your eyes don't see and your ears don't hear
and you get no clues as to whether you are in a friendly or
unfriendly atmosphere, your mind becomes confused and does not
know what to do.

Conversely, a mind,that is beset with too many stimuli becomes
confused and searches for assistance. The mind apparently can
handle this up to a point. It can ignore some of the stimuli,
but if there are too many to ignore or they are too intense, the
mind becomes disoriented and leaves the field, so to speak.
Sometimes, however, even though it attempts to leave the field,
it takes the impressions and continuing onslaught of stimuli with
it and becomes totally confused and develops irrational responses
to all stimuli. Then, we have on our hands a person who is emo­
tionally and/or mentally unstable and must be cared for by some­
one else.

It should be obvious to any thinking person that the implications
for mental health from the standpoint of physiological well-being
are too great to ignore. That brings us to the psychological
problems. These are what ~ive us so much trouble individually in
our day-to-day activities. It goes without saying that we have a

Paper 3059 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

great need for information for a number of reasons. We have
decisions to make every day, in business and in personal matters.
No one wants to make decisions without facts to support them. On
the other hand, we can have too much information for our own
good. There are several areas of cncern for the person who is
interested in mental health. We will look at them in the
following order:

(1) Fear of having too little information (2) Fear of
expressing one's self creatively (3) Fear of falling behind in
one's profession (4) Fear of being ill-informed.

First, the fear of having too little information. This seems to
be somewhat of a paradox on the face of it. We have been talking
abbut having too much information to deal with and now we are
saying this causes us to fear having too little.

A closer look will show why this happens. The very fact that
there is so much information available today can make us feel
that we do not have enough. We can get to the point where we
feel that if we wait one more day or read one more journal, we
will know enough to act. Meanwhile, we become paralyzed into
inaction. We become fearful about making a decision. We never
have enough information. Something is bound to be revealed
tomorrow that makes what we now know obsolete. This can be
dangerous to an individual in a business for obvious reasons.
One is expected to stay up with what is going on and one is
expected to make decisions readily and rapidly in business
situations. To be rendered unable to make decisions is the worst
thing that can happen to a person who is in a decision- making
position or just has to make decisions concerning his own job
from day to day.

Second, it can interfere with one's creative activity. We can
become fearful of introducing new ideas simply because we are
afraid what we have to say would not be consistent with today•s
level of knowledge about the subject. People who are in a high
tech field are there usually because they are creative people.
They are able to make contributions to a business other than just
filling a job and doing what they are told. When they lose this
ability, or willingness to explore new ideas out of far they will
be ridiculed, they are not worth as much to their company. This,
of course, effectively limits their usefulness and weakens their
position with the company as far as advancement is concerned.

Third, the plethora of information that besieges us today can
cause an employee to become so fearful that he will not be able
to keep up in his profession that he may become constrained to
try something different, giving up all of his training and
leaving a job he may be doing very well, simply because he feels
he is falling behind others with whom he works. He may not be
able to see that he is not falling behind, that all are bothered
by the same feelings. In such cases, it doesn't matter that he

Paper 3059 5 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

isn't falling behind. What seems to matter is the way he feels
about it. And human beings quite often sell themselves short.

Finally, a person may come to feel so ill-informed that he
becomes uncomfortable in any situation that involves other
people, whether it is in his business life or in social
situations. This does not have to do with thinking he is wrong
about certain things, necessarily; but rather that he simply does
not know enough. It may cause him to spend an inordinate amount
of time trying to be a well-informed person, even to the
detriment of his personal, social and business life. The time
that he should be spending interacting with others is spent in
isolation trying to overcome what he perceives to be his
shortcomings.

Hopefully, these words of caution to those caught in the
information deluge will suffice to make them take a realistic
look at how they stand. If changes in thinking seem to be in
order, it is hoped that readers will take corrective action.

Paper 3059 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3060. Response Time: Speeding Up The Man-Machine !nterface

!. Introduction

Tony Engberg
R&D Section Manager

ITG Performance Technology Center
Hewlett Packard Company
Cupertino, California

Late in the fall of 1983, a small group of engineers was gathered
together at HP Laboratories for the express purpose of characterizing
the utilization and performance profiles of HP 3000 systems throughout
the world. Using an automated data collection package (about which you
will be hearing more in the coming months), and a set of survey forms
designed to collect information of a qualitative nature , this team
amassed a sizable cllection of data which profiles, quite clearly, the
uses which our customers make of our systems, and the manner in which
our systems reponds to those uses. The results of the study have been
far-reaching; they have affected the design of future HP systems, they
have provided the basis for new tools for customers and HP engineers,
and they have determined the directions being taken by many of our
product lines. Most importantly, however, they have shown what is, and
is not, of importance to our costomers when purchasing and using our
systems and system components. One of the study's findings, for example
was that, when it comes to assessing system performance, the metric
most users consider important is response time. This paper will discuss
response time in a manner which will allow the reader to fully
understand the many factors which have an impact upon it, and which
will guide those concerned with improving response time characteristics
in applying their efforts most effectively.

II. Definitions

Although it is often possible to carry on a discussion of some concept
without providing a rigid definition of the subject at hand, this is
not one of those times. Actually, this is and is not one of those
times, but you'll have to bear with me in order to see what I mean. So,
before proceeding on, answer the following question:

"What is the definition of response time?"

Now, consider the following answers to the proceeding question:

1. Resonse time is the time it takes the system to respond to a user's
request.

2. Response time is a measured interval which begins when an
interactive user transmits a record to the system (by striking the
carriage return key, or ENTER key, or what-have-you), and which ends

Paper 3060 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

when the system sends the first character back in response to the
user.

3. Response time is a measured interval which begins when an
interactive user transmits a record to the system (by striking the
carriage return key, or ENTER key, or what-have-you), and which ends
when the system is again ready to receive more data from the user.
These three definitions represent those most frequently given by
designers, programmers, and end-users whom I have queried about
response time. Let's examine them in an effort to distill a single
definition of this important metric.

"Response time is the time it takes the system to respond to a user's
request." While intuitively appealing, this definition leaves much to
desired. It is ambiguous. What are the bounds which define the "time"
it takes a system to respond? What is a "user request"? What
constitutes a response from the system?

I can here the grumbling already. Most people who provide this
definition assume that there is a mutual understanding of the bounds
upon the time interval, and that a "user request" is always understood
to be an interactive transaction, and that system responseis always
clearly delineated. Believe me, this is not the case. The second and
third definitions provide but two of the myriad ways in which the
response time interval can be, and is, quantified. A "user request", in
many dicussions, includes the submission of a batch job to the system.
The second and third definitions also indicate two differing views of
what constitutes a response from the system (i.e., first character or
ability to continue). Our ability to improve response time will depend
heavily upon our ability to unambiguously define that concept in a
matter which will permit measurement. If we cannot measure response
time we cannot discuss optimization, except in the most qualitative
sense. Let's move on, and examine the second definition.

"Response time is a measured interval which begins when an interactive
user transmits a record to the system (by striking the carriage return
key, or ENTER key, or what-have-you), and which ends when the system
sends the first character back in response to the user." Is this
definition, known as the "transmit-to-first-response" definition for
response time, better than the first? It certainly removes much of the
ambiguity. The time interval is clearly defined; it could be measured
with a stopwatch. "User request" has been limited to an interactive
transaction. The transmission of a character back from the system to
the terminal has been selected as the delimiter for system response.
What more could one ask?

Quite a bit, I'm afraid. Consider the system designer who has taken
into account the qualitative nature of response time by incorporating a
message intended to sooth the impatient user into the processing
stream. This is a common tactic. The computer onboard the fictitious
starship Enterprise used it ("Working ... "), the HP2647 games tape used
it ("CRUNCH*CRUNCH*CRUNCH"), and many user programs use it. Should we
consider system responsiveness to be delimited by the printing of such
a message? Clearly not.

Paper 3060 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTERE X 8 5

"Wait a minute .. , I hear you grumbling again, "that's easily handled.
Simply use the first character following completion of processing as
the delimiter." Good suggestion, but this still leaves a problem. What
if the system has insufficient resources (CPU, memory, 1/0, or others)
to display the entire response quickly. Think of the times you have
seen a screen or so of data come up, then waited as the system went off
and did other thingsbefore finishing with your output. Think of the
stories you've heard about cursors pausing in mid-screen, then moving
on. It is reasonable to measure the response time interval up to only
the display of the first character in such cases? I doubt if most entry
clerks would think so. Let's ti·y the third definition and see if we can
find a better means of describing response time.

"Response time is a measured interval which (·gins when an interactive
user transmits a rcord to the system (by striking the carriage return
key, or ENTER key, or what-have-you), and which ends when the system is
ready to receive more data from the user." This is the
"transmit-to-read" definition of response time, and it was formulated
to overcome many of the objections raised to the preceeding two
definitions. It is less nebulous in phrasing than the first definition,
and it gets around the "intermediate output" and "delayed response
Shortcomings of the second definition. So, at last, we have a usable,
working definition of response time.

Well, not quite. This last definition has some pitfalls of its own. To
begin with, it is v~ry much dependent upon variables introduced by the
designer and programmer, and by the terminal equipment used. Consider,
for example, the implementaion of an application using fairly verbose
data entry screens. Should the time required to paint a screen be
included in the sytem response time? Many users would say yes, while
many others (interested only in how fast the system actually took to
handle the last request) would say no. For purposes of comparison it
is often preferable to measure only the time spent by the system,
excluding the terminal I/O time, processing the request.

Now, your probably wondering what this ci:mtinual refutation of
definitions is all about, and wishing that I would just come out and
tell you what response time is. Well, I can't. I'll pause while the
grumbling subsides to a dull roar. You see, response time is really a
qualitative concept which can only be quantified in the light of a
specific application or environment. That is to say, it's definition
must vary with the application, user needs, and system. At its root,
response time is a perception (hence the tricks mentioned above for
stalling the user). Only you can decide what sould be measured and
called "response time" in your environment. Let me give you some
further examples of the diversity for which you must account.

l. You are running a shop in which data entry clerks are using the
system to key in short records which the sytem then validates before
allowing further entry. Response time is characterized as the amount
of time the entry clerk must wait before being able to proceed with
the next record, that is, transmit-to-read.

Paper 3060 3
WASHINGTON. D C

BAL TtMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

2. Your system has an on-line document look-up system. Those needing to
see a particular work enter a few key words, hit carrige return, and
wait until the document is found and displayed before them. They
peruse the located text, determine its applicability to their task,
then print it if they need a copy. Response time is measured from
the point at which the carrige return key is struck until the system
starts to print out the document (i.e.,transmit-to-first-response).

3. You tag shipments with special weight and handling stickers produced
by the system. A crate rolls up to an entry station, its contents is
read in by a clerk who runs a wand over a label on the crate, it is
weighed, and special handling instructions are keyed into the
system. The system takes these inputs and generates a tag which is
taken from a local printer and applied to the crate immediately.
Response time is measured as the interval extending from
transmission of the descriptive data to. completion of the printing
of the lable.

It must be pointed out at this juncture that, while you are defining
response time in your environment, you must consider not only what
interval to measure, but what tolerance you can allow (how much
variance around the average, if you will). Why is this important?
Consider the data entry shop described above in the first example.
Let's say that the average response time is 1. 5 seconds. We got this
average by measuring ten separate transactions; the times recorded
ranged from .1 seconds out to 4 seconds. Al though the average may be
quite adequate for the type of work being done, the variance may be
totally unacceptable. Data entry clerks are slowed, in many cases, when
they can not establish a rhythm. Reporting response time as an average
is all well and good, but pay attention to the other details of import.
In short, realize that you are dealing "Ioli th perceptions, and decide
what, and how, to measure accordingly. Now, before proceeding, think
about your shop, your applications, and work out the points you would
choose to delimit response time if you had to measure it. Also, before
proceeding, analyze the amount of variability which your applications
can tolerate in response time. This last challenge can be met, in a
somewhat rough way, by simply estimating what an acceptable response
time would be, and what an unacceptable deviation from that response
time would be. Once you've worked this out, proceed.

III. Components

No matter how you have chosen to define response time, the following
formula can be employed in any effort to optimize it, since the
parameters within the formula can be defined to include only those
items which fall within your response time definition:

RT = the time that a request spends in the system,

therefore,

RT = Tc + Ti/o + Tm + Tl - Tovl

where:

Paper 3060
WASHINGTON, 0. C.

SAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

RT = response time
Tc = time spent at the CPU
Ti/o = time spent in the I/O system
Tm = time spent waiting on memory management
Tl = time spent waiting for lock and latches
Tovl = time spent overlapping functions (such as CPU & I/O)

Note that the above times can be broken down even further, as folows1

Tc = Tc(q) + Tc(s)
Tc(q) = time spent waiting for the CPU
Tc(s) = time spent being serviced by the CPU

Ti/o = Ti/o(q) + Ti/o(s)
Ti/o(q) = time spent waiting for the I/O system
Ti/o(s) ::: time spent being serviced by the I/O system

Tm = Tm(q)
Tm(q) ::: time spent waiting for memory

Tl = Tl(q)
Tl(q) = time spent waiting for locks and latches

Once response time has been broken down into its component parts,
as above, analysis and optimization become easier. Observe that
each component is affected by system loading. Thus, the time spent
at a particular terminal waiting for the CPU will be a function
of what other processes in the system are contending for the CPU,
what their resource consumption profiles look like (e.g., how much
CPU do they consume at a time), and their priorities relative to
that of the process corresponding to the terminal in question. It is
not my intent here to provide a full description of all the items
which affect each component, but merely to describe those which have
the greatest impact on response time and to suggest those things you
ought to be thinking about when considering ways to minimize this
impact.

IV. Tc{q)

CPU time can, as we have seen, be described in terms of two
components: queueing time, Tc(q), and serving time, Tc(s), The
time spent queued for the CPU will depend upon a number of
things, most important of which are the priority of the process
waiting for the CPU, the lenth of the queue of processes of equal
or higher priority, the u0cvice times attached to those processes
ahead of you in the queue, and the rate at which higher priority
processes are arriving at the CPU. Let's look at each of these
in turn.

First, the priority of yo•1r pr·ocess will determine where in the
dispatch queue (the line of processes waiting for the CPU) your
process "gets in line". An excellent discussion of how your
priority is set, and the impacts of other processes upon your
ability to compete for the CPU, is' provided in a paper on this
subject being delivered· at these same proceedings by Dave Beasley.
Let it suffice here to simply realize that:

Paper 3060 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

1. In order to reduce queueing delay, you should be at the highest
possible priority. As you compete with process of equal or
or higher priority, your time spent in the dispatch queue will
lengthen, and so will your response time.

2. As you compete with processes of equal or higher priority,
your response time will, most likely, increase in variance.
This increase is due to the lack of similarity in resource
consumption profiles. 'In short, the more processes, the more
likely there is to be variability in the amount of CPU time each
demands.

If response time for a particular application is critical, that
application should be favored when entered in the dispatch queue.
This can be done in several ways, including manipulation of the
queueing structure (via the TUNE command) or programatically
(through such mechanisms as the GETPRIORITY intrinsic). The latter
will also reduce the variance in response time in most cases.
REMEMBER, however, that FAVORING ONE PROCESS (or process set)
WILL IMPACT OTHERS. The MPE operating system has been designed
to treat all interactive activity equally, and to permit the user
to decide how much to favor CPU-bound processes (again, via the
TUNE command). In an environment in which the object is to optimize
response time for all processes, and in which multiple applications
are running concurrently, tricks such as priority adjustments are
not the answer.

The second item to be considered was the length of the queue of
process of equal or higher priority waiting for the CPU. We've
already discussed one way to shorten the line in front of you,
and mentioned the problems which this can cause. You should realize,
however, that applications which don't need priority treatment
can interfere with those that do. For example, batch jobs which
are sharing a resource with interact~ve process can (and often do)
reach prioritylevels which allow them to line up high in the
dispatch queue. Again, I refer you to Dave Beasley's paper for a
discussion of this phenomenon. I recommend strongly that, in an
environment in which response time is crucial, you fully
evaluate the work which is being done on the system and the manner
in which processes interact.

The next item, service times of processes ahead of you in the
dispatch queue, is one over which you have little control.
Techniques and tools exist for measuring these times, but these
are not currently available to the user community. The best you can
hope for is that each process ahead of you has been coded by
someone who has optimized for Tc(s) (see below), so that they get
in and out as quickly, and efficiently, as possible.

Finally, the arrival rates of processes at a higher priority
than yours to the dispatch queue will directly impact the value
of Tc(q) for your process. In most cases this should not be a
problem, pcovided that you understand the use of the TUNE
command, and set your queue size, queue overlap, and the average

Paper 30Co 6
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX85

short transaction time intelligently (and don't have someone else
calling GETPRIORITY).

V. Tc(s)

Once you've done all you can to reduce the amount of time you
spend waiting in the dispatch queue, the next item of interest
is the amount of time you spend actually using the CPU. The
key concern here is pathlength; you don't want to waste any time
when you are in CPU. Remember, the Tc(q) of other persons on the
system is dependent upon how long you hold this resource.

How do you go about reducing Tc(s)? The answer is, of course, to
code efficiently from the start. The answer is, also, to isolate
those portions of your code in which you spend the most time, and
to make these sections as efficient as possible. The best way to
do this is through the use of a tool such as APS/3000 (often called
"SAMPLER"), which will provide execution traces of your programs
which show the fequency of time spent executing within specific
ranges of instructions. This will enable you to isolate the
most heavily used sections of your code and optimize the algorithms
which you use in these sections.

VI. Ti/o(q)

Let's move out of the CPU now, and over to the I/O system. The
amount of time you spent queued for I/O depends upon a number
of things, most important of which are the priority of your I/O
request (for disc I/O), the length of the queue in which you are
waiting (which, in turn, depends upon the arrival rate to the
queue), and the Ti/o(s)'s of the requests ahead of you. For the
purposes of this discussion I will use disc as the I/O device for
which you are waiting. Disc is the most complex case (since it is
shared and prioritized); other devices can be understood fairly
quickly once discs have been grasped.

Your place in the queue for disc I/O depends upon the priority
at which your process is running. This really is a priority-based
system, and you have to be concerned about where you are running.
Section IV has already covered this area.

The length of the queue in which you are waiting will depend upon
the number of I/O requests which have been directed to the device
upon which you are queue, and the time required to service those
requests. This means two things. First, it is
imperative that you spread your I/O across multiple drives, since
the more requests you direct to a single disc the longer the queue
on that drive will become. Second, you should attempt to localize
your I/O (reducing seek time) as much as possible on a
drive-by-drive basis. How do you do all this? You ballance your
discs by splitting files which see heavy access across multiple
drives (particularly file which tend to be accessed in sets). You
localize your I/O by placing the most heavily accessed files in
close proximity upon your drives (preferably centered on the disc).

Paper 3060 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

t realize that this latter activity is an extremely painful one
to undertake, since it requires successive partial RESTORE's to
specific devices. It is, nonetheless, one means of reducing seek
time. The service time of requests ahead of you in the queue is,
as with Tc(s), something over which you have little control. The
next section will discuss this topic.

VII. Ti/o(s)

Ho~ long you spend receiving service from the I/O system is a
function of the speed of the device which you are utilizing, the
size of the request you are making, the efficiency of your request,
and whether (in the case of disc) your request can be resolved
in cache. The speed of the device is a given; it can be reduced
only by substituting a faster device (although the efficiency of
your I/O request is related to the device's physical characteristics).
Those with critical response time concerns might review their
hard~re configuration in this area, since such items as transmission
speeds can have a very strong effect upon response time (depending
upon how you've defined it).

The si:ze of a given I/O request within a transaction, and the
efficiency
of that request, will have a definite impact upon service time.
Specific disc drives, for example, can retrieve and transmit data
much more efficiently within given size limitations. The file
system (which most end-users would consider part of the I/O chain)
will respond much more quickly to certain types of I/O requests
than others (e.g. , unblocked, NOBUF transfers vs. blocked, buffered) .
The trick here is to examine the I/O which you are doing, and don't
assume that defaults are always the best way to go. Again, try to
spread your access across drives, and localize the targets of
your accesses.

Resolution of read requests in memory-based cache obviously shortens
the I/O service time considerably. Realize, however, that write request
must, of necessity, cause cache domains to be flushed. One way,
in some cases, to reduce time spent in the I/O system is to
localize your write-intensive files on specific drives, and to turn
cache off on those drives. This requires experiment, but it is
worth looking into if you have a sufficient number of discs to
to allow it (remembering the impact of long queue lengths for any
device). A side benifit may be a reduction in the amount of CPU
resource expended to manage the cache (reducing, possibly, Tc(q).

VIII. Tm(q)

The amount of time you spend queue for memory will depend on your
priority (of course) and the amount of time required to find
memory space for your process.

When the dispatcher selects your process to run (based upon
your priority) a check is made to see that you have everything
required by your process to run in memory (e.g., stack and code

8 Paper 3060
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

segment). If you do not, your process must wait while the memory
manager attempts to make space available. Thus, your priority
determines when the system begins to look for space for you. Once
the search has begun, however, other factors come into play.

The memory manager will read down a list which contains those
segments which you need in order to execute. Each time it finds
one which is not in memory it will check the size of the absent
segment, and attempt to find an available slot in memory into
which it can fit that segment. If no such place exists, the
memory manager will begin a trip through memory aimed at making
such space available. The mechanics of this trip are not important
here (although they are worth knowing). What is of import is the
things which extend the length of time this trip takes, specifically:

1. Segment size. If the segment which the system is trying to bring
in is larger than the segments which are currently in
memory, it will take longer to find space and, in all
probability, will result in multiple processes losing segments
(meaning more memory manager overhead later).

2. Memory size. The less memory, the longer it will take the
memory manager (on a busy system) to come up with an available
chunk of memory. Also the less memory, the more likely it is
that that chunk of "available" memory actually belonged to
someone who will need it again shortly.

The best answer, of course, is to avoid the memory manager
altogether. This is not an easy trick, but you can enhance your
chances to avoid being swapped out by observing the old
recommendations that suggest:

1. Stay in a segment for as long as possible. When you leave, stay
out for as long as possible.

2. Share code where possible (the argument being that the more
processes sharing a piece of code, the more likely it is to be
referenced and, therefore, maintained in memory).

IX. Tl(q)

The time spent waiting around for locks and latches can be
significant, and the avoidance of this delay is often much easier
than one would think. First let me point out that you should NEVER
ignore a lock unless you are certain of the consequences. Given
that caveat, let me go on to recommend the following:

1. Don't use locks unless you need them. Don't, for example,
lock around reads unless there are data integrity problems
caused by concurrent writes.

2. Don't hold locks of any kind longer than absolutely necessary.
Batch jobs which hold locks required by interactive processes
will cause all kinds of havoc.

Paper 3060 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3. Be aware of the fact that many operations cause serialization
on lock or latches over which you have no control (other than
to avoid whatever the operation was that drove you to hold
that lock or latch). Examples include purging items in the
system directory (requires a system lock, called a System Internal
Resource), data base accesses (serialize around the Data Base
Controll Block), and some sub system lookups (which lock, but
don't tell you).

X. Tovl

There is one parameter in the response time equation which is
subtracted out rather than added in: overlap time. Anytime that
you can overlap I/O operations with other times, by utilizing
NOWAIT I/O, you are reducing your overall response time (assuming
that you take the care to implement this efficiently). I advise
caution in doing this; time should be spent studying the proper
use of NOWAIT I/O and the trouble which you can get yourself
into if it is mishandled. Used properly, however, it is an
effective weapon in reducing response time.

XI. Summary

The purpose of this paper has been to introduce the idea of response
time as an application and environment dependent cocept, whose
definition must take place within bounds imposed by the end user.
Further, I have attempted here to provide a description of
response time in terms of the components.

It would take a book to fully describe the mechanisms which go
into determining the queueing delays and service times encountered
by any process at each of the components delineated. I would
encourage those who are serious about optimizing response time on
their system to consider carefully the paradigm provided here, and
to then expand their understanding of the various components through
such vehicles as courses (particularly on MPE system internals),
manuals (especially the MPE System Tables manual), papers and
articles, and books. I will be more than happy to correspond
with those interested in pursuing this subject in greater depth
(since we have only scratched the surface here).

Paper 3060 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3061. AUDITABILITY
or

INTEREX8 5

WHAT'S A NICE BYTE LIKE YOU DOING IN A BASE LIKE THIS

Robert A. Karlin
7628 Van Noord Ave,

N. Hollywood, California 91605

Friday. 3:45pm. The sun shines through your office window
filled with the promise of a grand and glorious weekend.
Tomorrow's picnic vies with the tickets to Sunday's game in their
efforts to banish the code in front of you from your mind. As
the idea of packing it in early begins to slowly insinuate itself
into your consciousness, you hear an embarrassed cough, followed
by a knock on your door.

"Yes?".

"There seems to be a slight problem i.tith GL.",

"Well, the weekly doesn't balance to figure:! that
accounting gave us.".

"How much are we out?".

"About fifteen dollars and some small change.~.

You breathe a sigh of relief. Visions of thunderclouds
recede from your imagination. Glancing at the clock, you muse
that at least you will have something to keep you busy until it
is time to check out.

* * *

9:30pm. You knoi.t, it wouldn't have been this bad if the
operator had warned the users that you were taking the system
down at four to research the problem. As it was, the system was
in the middle of a chained delete, and you think that the
pointers are totally gone. Well, this is what they pay you for.

* * *

11:30pm. The dump of the data base should be about
finished. You never realized that 400 lines per minute was so
slow. You contemplate making a fourth pot of coffee, and then
turn back to the list of daily transactions, checking them off,
one by one from last weeks Open Item to this weeks Open Item.

Pa.per 3061 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

* * *

3:15am. The numbers in front of you blur as you attempt to
reconcile the figures in front of you with what you know should
be on last weeks backup. Both errors that you have found so far
have increased the total figure that you are out by about three
thousand dollars. The couch in the hall begins to look very
good. They really don't pay you that well, do they?

* * *

Saturday 2:30pm. The tape drives have got to go. Really,
is it too much to expect that out of three backups, one would be
good? Somebody should have noticed last week that the tape that
was restored was missing the last part of the account file.

* * *

Saturday 4:30pm. The operators have got to go. It wouldn't
have been as bad as all that, but you've been running for five
hours using the wrong input tapes. Can't those guys tell a 1
from a 7?

* * *

Sunday 5:00pm. The game didn't sound too interesting on the
radio, maybe it's best you missed it. The data base is finally
correct (thanks to some fiddling with DISKED2) and all you want
to do is go home and relax. You finish your instructions to the
operator to back up the system tonight when he gets in and leave
for home.

* * *

Monday l:OOam. Rrring ... Rrring ... Click "Hello? Sir? We're
getting WCS parity errors and the CE thinks we've bombed our data
pack. Which file should we reload from?",

* * *

The above represents the classic Data Processing nightmare.
Anyone who has been in the field of Data Processing for more than
a few years has seen similar occurrences. Our hardware is not
perfect, and our software will have bugs. No large system will
be completely free of them. Our task as DP professionals is to
minimize the effect of bugs and crashes. This includes having
our hardware PMed regularly, buying good tapes and certifying
them after they have been used for a while, adequately testing
our programs before implementation, and insuring that the system
is auditable. The last of these is the scope of this paper.

Paper 3061 2
WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

AUDITABILITY

Auditability. From the word AUDIT, from the latin 'audire'
meaning 'to hear'. In order for you to 'hear' your system, it
must say something. In order for the things your system says to
be useful to you, you must listen to it. Auditability is
comprised of these two halves. The first half cons is ts of the
techniques of coding and design that we will discuss in this
paper. The second half consists of the departmental procedures
(including adequate staffing of a production control department,
user and operator training, etc) to balance and check the output
of the first half. Without the second half, the first is
worthless. One particular system that I am aware of was doomed
to failure because the weekly reports sat on a clerk's desk for
six weeks before an attempt was made to balance them. By that
time, the system was so out of balance that it was impossible to
trace the reasons.

There are three basic areas that we will cover in this
paper. The first of these is DATA INTEGRITY. How do you design
early warning signs to detect when your data has been corrupted.
The second is the AUDIT TRAIL. How do you find when and where
your data has become corrupt, in order to isolate the error and
prevent the problem from reoccurring. The third is PROBLEM
RESOLUTION. When you discover where the error is, how do you fix
it while still maintaining auditability.

Paper 3061 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

DATA INTEGRITY

Insuring Data Integrity can be difficult. Aside from your
massive crashes, you still must deal with program and data entry
errors. If your system is a mailing list for a mass mailing
house, dropped records are probably not one of the great
disasters of modern time. On the other hand, if you are a major
bank, dropped records can be the company's death bell. Most of
the techniques we will discuss involve some overhead. The method
or methods that you choose must be comensurate with the risk
involved to your company by the failure of your system. Some of
the techniques build on others that we discuss, but there is a
way of implementing each independently.

THE FLAG FILE

The first techniques we will discuss concern system failure.
Many data bases are large enough to preclude restoring the data
base in the event of system failure, if at all possible. One
very simple technique of assuring the integrity of your data base
is the Flag File. In its simplest form, it consists of an
unblocked file with one record for every possible terminal on
your system. Each record is set to true if the user working on
that terminal is in the process of updating your data base. If,
after a system crash, you find that no records are set to true,
you can bring up your application with no worries. If you find
that one or more flag records are set to true, you can check with
the user on that terminal to find out what he has been doing.
Interrogating the data base with QUERY, INFORM, or an application
maintenance tool, should allow you ~o determine the actual state
of the transaction. All printout should then be kept to document
the state of the data base after the crash. Weeks later, it could
be extremely important to note that a particular problem did or
did not arise as the result of a system crash.

To establish your flag file, build a 1024 record unblocked
MPE file. The record length is not important, but the best
length is 256 or less. The index into this file is your Terminal
logical device number (LDEV). When you are about to add to or
update your data base (Image, Ksam, Flat file, etc) you issue a
write direct to the file setting the first word of your record to
true (or - 1). Then you must insure that the flag record has been
written to disk (by issuing an FCONTROL 2 to flush the buffer).
Now you are ready to do your updates. After your transaction is
complete, issue another write direct to your file, setting the
first word of your record to false (or 0). A program to print
out the LDEV of every record that has its first word set to true
is trivial.

THE SCRATCH FILE

Another technique is the Scratch File. The scratch file is
used to complete any outstanding transactions when the system is

Paper 3061 4
WASHINGTON, O, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

brought back up after a failure. The technique makes use of the
capabilities of MPE message files. When processing the data for
an update to a series of records in your data base, instead of
processing the updates at that time, they are written to a
message file and then read back into the program and processed.
If the system crashes during the update, the unfinished portion
of the update is still stored safely on disk.

The scratch file is a permanent file whose record length is
equal to the largest update record of the system, whose filesize
is greater than the largest number of separate records in any one
update, and whose name contains your terminal id, or some other
unique identification. After the updates have been completely
written to the message file, we write a 'bracket' record that
will be identifiable as the last record in the file and tell MPE
to update the end of file pointer (by issuing an FCONTROL 6
(write eof)). If we are using a flag file we now set the
critical flag, and the message file is now read and processed.
Before each read, we tell MPE that we wish to read the current
record from the message file without destroying it (by issuing an
FCONTROL 47). We then process the update. Then we issue another
read, this time without preceding it with the FCONTROL. This
will 'pop' it off the message file. We continue until we have
reached the last record of the file. If the system fails during
the process, the update can be finished when the system is
brought back up. During the system design, you must decide
whether a program should be written to finish applying the
update, or the application should finish applying the update on
initialization. Since the records are processed before being
destroyed, the only problem to be coded for is duplication of the
record that was being processed at the time of the failure.

RECORD COUNTS

The most important rule of audi tability is: Count
Everything. All transactions that affect the data base should be
tallied somewhere. The easiest early warning sign to recognize
is record counts that do not match. The number of records in
yesterday's data base plus the number of records added today,
minus the number of records deleted today must equal the number
of records in today's data base. If not, we have a problem.
Count everything. In fact, all transactions should be counted
twice. We will discuss this point in greater depth when we
discuss audit trails. For now, we need a place to store all of
these counts we are generating. The best place to store them is
in our flag record. Because of the way HP treats unblocked
files, we already have 255 spare bytes per flag record that HP
will reserve for us whether we use them or not. So we may as
well store our counts here. Every transaction type should have
its own counter. Every record that is written or read should
also have its own counter.

Paper 3061 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

There are many side benefits to this scheme. Primarily, you
can use this to determine if you have too many terminals attached
to your system. If you discover that certain terminals are used
maybe once a month, you can certainly ask your user to justify
the expense of tying up those terminals. You can also see at a
glance what transactions are being heavily used, and which ones
are lightly used. When response time problems arise, this
information can be used to determine which modules should be
looked at in your drive for more efficient use of resources.
Even if you do not code the software to interpret the counts,
design your system to write them out. It is usually three to
five lines of code per program to add these routines. This is
miniscule when coding the original program, but is a tremendous
task to retrofit counts into a system of seventy or eighty
separate modules.

THE HASH TOTAL

Another technique that can be widely used is the hash total.
The hash total is so called because, like corn beef hash, it
doesn't matter what goes into it, and what comes out looks
nothing like what went in. The hash total is a simple way of
verifying that what went into one's data base is what is still
there. The hash total involves either taking the whole record,
or just the more important fields, redefining them as an integer,
then adding them all up into a hash total. If you hash every add
or update to your data base, and keep track of the result, you
can verify the total by reading your base sequentially and
checking the tally against your total. This technique is very
useful for spotting unauthorized updates to the data base (such
as with QUERY). The best place to keep your hash total is in the
data base itself, in a data set that has been created for that
purpose. This will certify that the hash totals that are to
match this particular data base are stored with it. Every
program that sequentially reads a file or set that has a hash
total associated with it should hash the file and print the
result. This can be easily checked against the data base to
verify the integrity of that file.

Paper 3061 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 6 5

THE AUDIT TRAIL

When ! first entered Data Processing, I heard the term Audit
Trail and thought of a dusty dirt pathway through the California
scrub brush, where herds of cattle were driven to market. As I
became aware of what an audit trail was, and had to live with
interpreting them, I realized that my first impression had not
been far from wrong. An audit trail has many of the same
characteristics of a cattle trail. It should be easy to follow,
and no:t twist and turn at every step. It should be plainly
marked, and should not intersect other trails, or fork into two
undifferentiable roads. And it should have clearly marked
termini.

There are many ways of marking an audit trail. You can set
signposts, and you can set toll gates. You can set guards to
allow only those with the correct passwords to pass. You can
even create detailed maps of the terrain. But you must at least
have some way of knowing all who have passed.

The entire purpose for an audit trail is to provide a means
for verifying the source of all data in your data base. Your
audit trail must provide you with an easy means for tracking down
any datum that you may consider spurious to determine how it got
into your data base. It must also provide a means for verifying
the exact sequence in which events happened.

THE AUDIT LISTING

The most important consideration in designing your audit
trail is that absolutely every change to your data base must be
recorded at the detail level. Image logging is an alternative to
writing your own log file, but, if you elect to use it, you must
write a transaction formatting program to interpret it. You must
also include additional information, using either DBMEMO or
including extra fields on your update list, since Image only logs
the record number for deletes, and the affected fields for
update. In researching a problem recently using an image log
tape, it was disconcerting to try and trace a series of
transactions that consisted of only a bunch of records,
somewhere, that had a field called DELETE-FLAG updated to a 'Y'.

If you elect to use your own audit trail, you must be
consistant. First, and foremost, you must disable QUERY and any
other program that does not write to your audit file from
updating your data base. Second, no application fix can be
allowed to be written that does not write to the audit trail.
Third, and this applies if you use image logging as well, your
audit trail must be able to be printed in at least two sequences;
that is, in absolute time order, as the transact ions happened,
and in the sequence of either your detail trial balance, detail
open item report, or other detail data base listing. And, of the
two, the second sequence is the most important, since the first
can be simulated by dumping the transactions in hex format to the

Paper 3061 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REG16NAL USERS GROUP JNTEREX85

printer. This report should also contain the same totals as the
report it will be checked against. If your bottom lines do not
balance, it should be a relatively easy task to add your audit
report to your last open i tern, at the group level, to pinpoint
the source of your out of balance condition.

SECURITY LOO

The security log actually has less to do with security than
with auditability. The security log consists of sequential time
stamped records created when a program or transaction starts or
ends. The best way of implementing the log is through a separate
subprogram 1 compiled into an account SL, that is called by every
program that accesses the data base. The parameters passed vary
with the application, but should at least include the program
name and an action code. Large menu driven applications can
write records to the security log at every menu step, or at the
entry to a particular fun ct ion. The log should be detailed
enough to identify what transactions were accessing the data base
at any particular time. The log can be used to track down
problems that occur due to improper locking strategies or other
timing problems. It also records the fact that a particular user
actually did enter a particular program at a particular time.

PROGRAM VERSION CONTROL

One particularly nasty problem in tracking down problems is
~erifying the particular version of the program in production.
This can be especially acute when the problem occurred weeks in
the past. There are two techniques for establishing version
control over your programs .. First, you can store the date of the
last modification and a version number within your program. This
information should be printed in the heading of all reports, and
can be stored in the security log and audit file during program
initialization. This technique involves strict programming
standards, and must be followed for every program change, however
minor. Second, you can write a subroutine to open the program
file itself, and return the creation date of the file. This
should also be printed in your report headings and stored in the
security log, and audit file. If you use this technique, be
certain that all MPE restores done for your system use the
OLDDATE parameter to prevent the destruction of the creation date
of the file.

RECORD COUNTS

We have seen previously that record counts can be a superb
tool for detecting data integrity problems. Record counts are
also very necessary for a complete audit trail. Every program
that alters the data base in any way should store the number of
records affected in two separate places. First, we should store

Paper 3061 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

our counts in our flag record or in another cumulative place.
This is an overall view of what this particular user or terminal
is responsible for. Second, every program should log its record
counts at termination to either the audit file in special count
records, another sequential file, or the security log in the
logoff record. Every batch program should, as well, count all
input and output transactions. Counting records should become so
completely ingrained in the mind of a programmer that he could
not conceive of an input or output routine without adding to a
counter. These counts can be invaluble in determining where
things may have gone out of kilter and, more important, where
they didn't go out of kilter, by verifying the proper sequence of
steps, and certifying the correctness of the input data.

THE RACN NUMBER

RACN is an acronym for Run Activity Control Number. The
purpose of the RACN number is to identify a particular version of
a data base. The RACN is an integer that is incremented every
time the data base is opened for update and every time it is
closed after being opened for update. Its primary purpose is to
identify the exact version of the data base used for a particular
report, or as input to a particular batch update. The RACN
should never be odd when the data base is closed. The RACN
should be printed on every batch report and batch update. It
should also be recorded at the end of the processing day either
when backups are started, or when the log file or transaction
file is closed, and entered both in a control log and on the tape
label. The RACN serves to sequence batch reports in time order,
allowing you to be certain that time dependent reports were run
in the appropriate sequence. The RACN can be recorded in the
security log to pinpoint the sequence of logons and logoffs
accurately, and serves as a unique identifier for a particular
session that can be used in your audit file or in the actual data
base record.

Paper 3061 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PROBLEM RESOLUTION

'l'he scope of this paper is not to teach you how to recover
from an error in balancing or from a head crash. That would be
another paper in itself. The purpose of this section is to
present ideas on how to correct errors without destroying your
audit trail. In general, all corrections must follow the
techniques we have discussed so far. There is no excuse for
bending the rules because this is a programmer correction and not
a user transaction. If possible, the actual changes to your data
base should be made by a production support person, or, if the
shop is to small for that position, the manager of the Operations
department. The programmers, if they are involved at all, should
be on a strictly advisory nature.

QUERY ET AL

The most important rule while using QUERY or any other
generic data base manipulation program to correct your data base
is DON'T. QUERY is an easy method for correcting the out of
balance conditions without regard to the internal integrity of
your data base. More problems have been caused because of
improper use of QUERY to fix a data base than any one factor that
I have come across. MPE allows you to restrict QUERY access to a
data base to read only using DBUTIL. Enabling this feature will
save your shop from days of attempting to discover what went
wrong with a program, when the culprit was a fumble fingered
programmer in QUERY.

THE MAINTENANCE PROGRAM

"If' I can't use QUERY, what can I use"? The specs for any
project should include a program that reads, writes, and updates
your data base on a set by set basis. This program should verify
that all fields are logically correct as well as physically
correct (i.e. that if your invoice header says that there are ten
line items, there are ten line items). The program should also
update the audit file during these updates. There should also be
an option to create special journal type entries to your audit
file, to allow you to bring your audit file into balance if
necessary. These records should be easily identifiable on any
report as additional records not related to the main user
programs. The maintenance program probably should be the first
program that you write in your system, and should be maintained
carefully when the data base changes.

DOS AND DON'TS OF PROBLEM RESOLUTION

DON'T modify any record on your audit file. Always add an
offsetting entry if you need to make an adjustment.

DON'T add to or update your data base without adding an
entry to the audit file. If it is necessary that the numbers not

Paper 3061 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

be added to the bottom line of your audit file, add an offsetting
entry.

DON'T use QUERY, or any other update program that does not
add to your audit file, and does not check logical relationships.

DO record every step that you take, and file them in a
convenient place.

DO keep a listing of 'before' and 'after' with your problem
documentation.

DO keep a log of production problems, and their solutions,
filed by problem type, to allow quicker problem resolution.

DON'T let programmers modify your production files. If they
are the only ones who know how, have them write a procedure for
Operations personnel to follow.

IN CONCLUSION

FRIDAY. 3:45pm. The sun shines through your office window.
This weekend you are going to leave on time if it kills you. It
has taken all week to recreate the work you had done over the
weekend. It probably would have been easier, but the user had
thrown away all of his past week's reports, and you had to
compare the current open i tern with the data base on a line by
line basis, and there were 450,000 lines. Well, it's over now,
and the weekend looms ahead. But as you take your feet from the
desk and push your listings into a neat pile, you hear a knock on
the door ...

Paper 3061 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

George B. Scott
Eldec Corporation
16700 13th Ave. W.

Lynnwood, WA 98046-0100
206-743-8227

I. WHY

One might ask "Why use process handling?". Our reasons were (1) to
eliminate the need for user knowledge of MPE syntax, (2) to facilitate
management of a number of user terminals in a multi-CPU environment
and (3) to optimize performance by sharing certain overhead and
resources.

This paper presents the requirements (Section II) which led to the
selection of process handling as an alternative, the
environment/configuration (Section III) of the system, the process
tree and function of each process type (Section IV), a detailed
description of each process (Section V), special performance
considerations/observations (Section VI), and summary comments
{Section VII).

Early in the use of this system, the performance, ease of system
management, and user friendliness were appreciated as major
accomplishments and of significant value to the corporation. As time
has progessed, another aspect has become apparent as perhaps even more
valuable: the ability to use a single system design to control an
application system regardless of the growth of the system. The design
presented herein is effective whether used on a single application, a
set of integrated applications, or all corporate applications. The
initial investment in design has saved the corporation tens of
thousands of dollars by preventing subsystem interfacing problems and
hundreds of thousands of dollars because of performance/throughput
characteristics.

The use of a single, common mechanism to interface the user with the
application modules has expedited our ability to introduce new
applications. At this point our users are familiar with the system
since all applications use the same conventions and techniques. This
in turn minimizes training costs and promotes greater accuracy in the
information being input to the system.

So, if you are developing application systems and are interested in
any of the above results, venture forth to Section II.

Paper 3058 Page 01 WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAi. USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

I I. REQUIREMENTS
~===============

The decision to consider process handling as a technique to help us
achieve our goal is more understandable when one considers the
specific requirements and environment preceding our decision.
Approximately five years ago, the decision was made to convert a 1arge
scale on-line manufacturing/accounting system to use HP3000 computers.
The requirements are summarized as follows:

1. No user MPE knowledge required.
2. Data would be divisionalized on multi-CPU's.
3. Five second or less median response time.
4. Application scope, extensive and expandable.
5, On-line inquiry/update.
6. Audit/Security provisions.
7. Not menu driven.
8. Logical transaction recovery capability.
9. Data must use a DBMS (IMAGE/3000)

10. Terminals must be block mode.

Of the aforementioned ten requirements, only the first four were
significant in our decision to use process handling. See Appendix 1
for additional information on the related requirements 5 through 10.
The first four are described as follows:

Paper 3058 Page 02 WASHINGTON. 0 C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIM!ZE SYSTEM PERFORMANCE

Requirement 1 -- No User MPE Knowledge Required

One objective was that users would not be required to learn any aspect
of MPE, e.g., how to sign on, build files, use sort, run programs,
know JCL or any other fun trivia that can only diminish your profit
sharing check. Users are trained on how to used the application
commands (screens) associated with the functional requirements of
their job.

With this as a requirement, one could either have one process handling
all terminals (Would you bet your job that this would not produce a
bottleneck?) or one process associated with each terminal. We chose
the latter. Hereafter, the process associated with each terminal is
called the "On-Line" process and the parent for all of these ''On-Line"
processes is hereafter called the "Controller" process. Thus, with
this single requirement, process handling became a strong candidate
for the fundamental processing design.

Requirement 2 -- Multi-Divisional/Multi-CPU Data
==
Shortly prior to conversion, the corporation had divisionalized into
three manufacturing divisions with a central manufacturing support
organization and corporate accounting/personnel functions. A
corporate objective was to provide the capability for each division to
independently control their data processing function while using a
common set of software. The potential for each business unit
(division) to do its processing on an independent CPU was considered
desirable {mandatory by some).

A self-imposed r~quirement considered imperative by Data Processing
was that data would not be added, changed or deleted by a process on a
remote CPU. Using process handling, a mechanism was designed to
transfer a user from one CPU to a second, if necessary, without the
user having to understand network communications or any other aspect
of inter-CPU communications. This process, hereafter referred to as
the "Switching" process, requires that the user only needs to
understand the application and determine which division's data is to
be reviewed or changed. The multi-CPU environment becomes totally
transparent to the user.

A second aspect of a multi-CPU environment was the desirability of
being able to process on any CPU even if access to a remote CPU was
unavailable. This leads one to consider what data, if any, should be
redundant in a distributed or multi-CPU environment. Once it was
decided to maintain copies of customer and vendor data on each CPU,
the problem of selecting a mechanism to maintain concurrancy on the
redvndant copies had to be addressed. Our answer was to design a
process, hereafter referred to as the "Pickup" process, which would
pick up a copy of the original transaction from the originating remote
CPU and pass it to a process, hereafter called the "Background"

Paper 3058 Page 03 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP 1NTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

process, for processing. The "Background" process has the total
capability of an "On-Line" process, except no terminal is associated
with the process.

The parent process for "Switching". "Pickup" and "Background" is the
"Controller",

Requirement 3 -- Five Second Response Time
~===

Of all the requirements, the requirement to have a median response
time of less than five seconds was the requirement of greatest
concern. Response time was defined as the elapsed time between the
user pressing the "ENTER" key and the next screen being displayed
(returned) to the user.

Previous experience had shown that actions such as creating processes,
opening/closing data bases and using mail for inter-process
communication were expensive in resource utilization and were time
consuming. Thus, our original design minimized these actions.

The next decision was to provide a mechanism by which control of the
terminal could be returned to the user for entry of the next command
while the previous command was being processed. To enable this
approach to work, one must do all editing prior to passing the data to
the "Background" process for updating. Background processing is also
only utilized when the updating portion of the processing is
significantly more extensive than the editing portion. Todate, only 38
of 900 commands pass data to be processed in the background mode;
however, the CPU and wall time for these transactions account for 403
of the total CPU and wall time.

Paper 3058 Page 04 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Requirement 4 -- Application Scope, Extensive & Expandable

As can be seen in Figure 1, which shows the current application scope,
the major business and accounting applications associated with a
manufacturing organization are included within the system. The data
for these functions are included within a set of integrated data
bases shown in Figure 2. No data is redundant among the application
areas. From the list of applications, it is readily apparent that
this is a mature system. However, it is still growing and the system
design provides for the expansion of current application areas as well
as integration with new applications!

Accounts Payable
Accounts Receivable
Air Traffic Association
Bill-of-Material
Document Inventory
Engineering Change Orders
Inventory Control
Marketing
Material Requirements (MRP)
Master Scheduling
Order Entry
Payroll
Personnel

Purchasing
Provisioning
Receiving
Sales Analysis
Sales Order Management
Security (DP)
Shipping
Shop Floor Dispatch
Spares Pricing
Standard Cost
User Documentation (DP)
Work-in-Process
Work Order Release
Wirelists

Figure 1 •• Scope: Applications & Subsystems

Paper 3058 Page 05 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPI'!MIZE SYSTEM PERFORMANCE

Each Division:
DBAP
DBAR
DBENG
DBENGX
DBHIST
DBMKT
DBMRP
DBOR
DBPO
DB.kCP
DBWIP

Each CPU:
DBCPlJ
DBCU
DBDOC
DBEM
DBSEC
DBTBL
DBVN

Accounts Payable
Accounts Receivable
Part Data, Part Lists, Routings, Notes, Documents
Engineering Change Orders, Equipment Data
Historical Order Data
Marketing Data
Material Requirements Planning
Sales Orders, Forecast Orders, Manufacturing Orders
Purch9.sing
DP Batch Processing Flags
Shop Orders, Work-in-Process, Work Centers, etc.

DP Configuration Constants
Customer Data
DP Documentation
Payroll/Personnel
Security for DP System
Application Tables
Vendor Data

Special Divisional Data:
DBATA Air Traffic Association Data
DBPROV Provisioning
DBWIRE Wire List Data

Figure 2 -- Scope: Major Data Bases

Paper 3058 Page 06 WASHINGTON. 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

III. ENVIRONMENT/CONFIGURATION
==============================

The environment of the current system is shown in Figure 3. The three
CPU's (A, B and C) are Series 48's with 4 Mb of memory each with
approximately 50 terminals each. A division resides on each of these.
Sytem B also contains some corporate functions and central
manufacturing services. System D is an HP3000 Series 42 with 3Mb of
memory and approximately 20 terminals. It is allocated for
development, testing and special user functions.

All computers are linked using DS3000 X.25 through a Memotec MPAC2500
switch. System C is connected to the switch using a 9600 baud
telephone line with systems A, B and D being hardwired. Systems A and
B are also hardwired using a 56Kb line. Twelve 7933 disc drives
(404Mb each) are distributed among the CPU's. Each system uses a high
speed tape drive for backup. A mixture of printers, micra's,
plotters and other peripherals are attached to the various CPU's.

Paper 3058 Page 07 WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPI'IMIZE SYSTEM PERFORMANCE

1--------,
I o I
I I
I ~ I
I o I
I ~ I
I ffi
L_ _______ ,

I
I <C
I (.!)

lz
lg
I =>
I CD

l _______ _J

,-------,
CD I
(.!) I
ZI
g,
=> I
CD I

-------'

z
0

~
::>
CJ -IL
z
8
.......
1-z w :.e z
0
a: -> z
w
I

(W)

w
a:
::>
CJ -IL

Paper 3058 Page 08 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

IV. THE PROCESS TREE (BAP)

From 7AM until 7PM, the process tree shown in Figure 4 is run on each
of the primary CPU's (systems A,B and C). These business application
processors, which are collectively referred to as "BAP", handle the
on-line inquiry and updates for all the applications which are shown
in Figure 1. A detailed description of each process is in Section IV
of this paper. A brief summary of each process is as follows:

C-I Process: The BAP Command Interpreter accepts commands from a
terminal called the BAP Console. Commands are typically to start,
terminate or show the status of grandchildren processes. The process
classes are: "On-Line", "Background", "Pickup" and "Switching", The
"Controller" process is started automatically by the BAP "c-I", All
other processes are created by the "Controller". The "C-I"
communicates with the "Controller" via an extra data segment "COMSEG",
which is described in Appendix 2.

Controller Process: The "Controller" is created by the BAP "C-I". It
reads an extra data segment, "COMSEG", to determine what if any
actions it is to perform. Typically, its functions are to create or
terminate son processes. It may also send messages to the BAP "C-I".

On-Line Process: The "On-Line" process is creat~d by the
"Controller". It opens a terminal for use and posts a timed read
against it. If data is read, it calls the appropriate application
module after certain edits. When the transaction is completed, it logs
the transaction, checks and updates "COMSEG" and posts another timed
read. If no data is read, it checks "COMSEG" and then returns to a
timed terminal read. If the user has not entered any data after a
certain number of timeouts, the user is signed off. The process then
initializes to a signon state.

Background Process: The "Background" process is created by the
"Controller". It performs the same as the "On-Line" process except
that it reads an IPC file for log record numbers to be processed.

Pickup Process: The "Pickup" process is created by the "Controller".
It checks a remote file to see if data is present. If so, it reads
the remote data, logs it to an input file for "Background" and posts
the record number to the IPC file which the "Background" process
reads.

Switching Process: The "Switching" process is created by the
"Controller". It posts a timed read on an IPC file. If data is read,
it modifies "COMSEG" and awakens the "Controller" which will create
the process. It also checks "COMSEG" to see if any special action
exists to be done such as terminating itself.

Paper 3058 Page 09 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Ill
Ill a:
• • Ill
()
0 a:

~i
a.
a.

= I
I ..

Ill a:
:::»

" -IL

Paper S058 Page 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

V. BAP PROCESSES
=================

C-I Process
===========
The function of the "C-I" is to accept commands from the BAP console.
The BAP console is merely the terminal on which the "C-I" process is
run. For each CPU, only one "c-I" process is run. It has the
capability to control all activity in the BAP process tree. The
principal functions of the "C-I" are to initialize files, startup
processes, report status information and provide a clean shutdown.
Auxiliary functions include sending messages to "On-Line" users and
establish a new user signon welcome message.

The "C-I" process, shown graphically in Figure 5, performs the
following specific functions:

1. Initializes logfiles.
2. Opens OS lines to remote CPU's
3. Creates extra data segment "COMSEG"
4. Opens background !PC file.
5. Creates "Controller" process.
6. Initializes welcome message to be used on "On-Line" signon.
7. Cycles on read terminal until exit. The following actions

are fully described in Appendix 3: create, terminate,
tell, welcome, status, kill, exit, pause.

Paper 3058 Page 11 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

EDS
'COMSEG'

BAP

CONSOLE

REMOTE CPU

REMOTE CPU

FIGURE 5 -- BAP C-1

Paper 3058 Page 12 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROU? INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Controller Process
==================
When activated by either its parent, the "C-I", or by one or its
children, the "Controller", shown in Figure 6, reads the extra data
segment "COMSEG". See Appendix 2 for a description of "COMSEG". Once
awakened, the "Controller" will perform all required actions indicated
in "COMSEG" and then suspend itself. Actions include the following:
create a process, kill a process, send a message to the BAP console,
and update "COMSEG" appropriately.

Paper 3058 Page 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

• • w
()
0 a:

/ A. ,/

/ a: ,/
/

~ l ~

"
..- ..- 0

DI
"..- ..- a: .

.....
~- z 0 ..
.. () ,,
' I ' \ I

' ' co
' w

a:
:::»
CJ -LL.

Paper 3058 Page 14 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

On-Line Process
===============
The "On-Line"
"Controller".

process, as shown in Figure
It then performs as follows:

7, is created by the

1. Initializes global data and data to be shared with called
application modules.

2. Initializes data base file count.
3, Initializes log record.
4. Opens diagnostic file for error messages, fatal error dump

information.
5. Opens message catalog.
6. Fetches global constants.
7. Sets read timeout.
8. Opens security database.
9. Opens user terminal in block mode.
10. Fetches formfile names.
11. Opens logfiles (See Appendix 4 for log record layout)
12. Opens background IPC file.
13. Opens background !PC record available file.
14. Cycles on terminal read until "EXIT".

a. If first pass, displays signon screen.
b. Checks "COMSEG" and performs appropriately.
c. If "BYE", signs off user and displays signon screen.
d. If "EXIT", closes terminal and terminates process.
e. Validates command-id.
f, Checks user security.
g. If security fails, falls through to step 14.o
h. Logs transaction starting.
i. Calls application module (PCAL)
j. Logs transaction completing.
k. If partial update, terminates this process.
1. If major error, flags comseg to terminate all processes.
n. ·If multi-CPU, posts to all CPU's.
o. Posts timed read on user terminal.

15. If no data was read but timeout occurred, checks
timeout provisions. If necessary, signs off user and
returns to 14-a.

16. If user signed on to remote CPU, updates "COMSEG", activates
the controller and terminates this process.

Paper 3058 Page 15 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPI'IMIZE SYSTEM PERFORMANCE

... i ~

~
a ~ '< z

I I Ill

i a a ~ ~ en z z I
re

I I § en w u
0

~
a:
D.

~ w ~
a: z
w -~

I z
0
I
I

.-..
w a:

!
:>

I CJ w -
~ ! 0) IL

~I § i ~

~ I CJ a
0) Ill
2 0)

Paper 3058 Page 16 WASHINGTON. 0 C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Background Process

The "Background" process, as shown in Figure 8, is created by the
"Controller". It then performs as follows:

1. Initializes global data and data to be shared with called
application modules.

2. Initializes data base file count.
3. Opens diagnostic file for error messages, fatal error dump

information.
4. Opens message catalog.
5. Fetches global constants.
6. Opens security database.
7, Opens logfiles (start & end).
8. Opens IPC file for log record number to be processed.
9. Opens IPC file for reusable log record numbers.
10. Cycles on timed read of IPC file of log records to be processed.

a. Checks "COMSEG" and performs appropriately.
b. Reads record to be processed from LOGFILEl.
c. Validates command-id.
d. Logs transaction starting.
e. Calls application module.
f. Logs transaction completing.
g. If partial update, terminates this process.
h. If major error, flags comseg to terminate all processes.
i. If multi-CPU, posts to all CPU's.
j. Updates !PC file for reusable log record numbers.
k. Posts timed read on IPC file of log records to be

processed.
11. When terminate flag is set in "COMSEG", process terminates

itself.

Paper 3058 Page 17 WASHINGTON. 0 C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

I i i G iC i5 I I • • I I i I Ill
()
0 a: a.
a z
:::»
0 a:
~
~
Ill
I
I

CD

B
Ill

I
a:

w

I
:::»

! eJ

i -IL
~

I I

Paper 3058 Page 18 WASHINGTON, 0. C.

BAL TrMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Pickup Process

The function of the "Pickup" process is to read records posted to
files on remote systems and to pass the transactions to "Background"
to be processed. A "Pickup" process is created by the "Controller"
for each remote CPU. Another approach would be to have a single
process service all remote pickup files. The "Pickup" process, shown
in Figure 9, performs as follows:

1. Initializes global data.
2. Opens diagnostic file for error messages, fatal error dump

information.
3. Opens message catalog.
4. Fetches global constants.
5. Opens security data base.
6. Opens logfiles.
7. Opens background IPC file.
8. Opens background IPC record available file.
9. Issues file equations for remote pickup files.
10. Opens remote pickup files.
11. Cycles on checking "COMSEG".

a. Determines if any records exist to be picked up.
b. If records exist, does the following:

i. Reads record.
ii. Passes record to "Background".
iii. Goes to 11-a.

c. Pauses global pause time.
d. Checks "COMSEG".

12. When terminate status in "COMSEG" is set, process
terminates itself.

Paper 3058 Page 19 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP IN TEREX 8 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

]~
f i i ' ! I I
I I

I

~

s

!
w

Paper 3058 Page 20

en
en w
()
0
a: a.
A.
!:)
~
() -A.

I
I

m
w
a:
!:)

c:J -IL

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Switching Process

The "Switching" process is created by the "Controller". The function
of switching is to terminate a user's process on the current CPU and
initiate an "On-Line" process on a different CPU. This is required
whenever a user is signing on to a division which is not on the
current CPU. The transfer routing is controlled by a directory so
that the user has no requirements other than specifying the
destination division. The "Switching" process, shown graphically in
Figure 10, performs the following specific functions:

1. Initializes global data.
2. Opens diagnostic file for error messages, fatal error data.
3. Opens message catalog.
4. Fetches global constants
5. Opens transfer request IPC file.
6. Cycles on timed read of transfer request file.

a. Checks "COMSEG" and perform appropriately.
b. Builds a "COMSEG" device entry record.
c. Pauses to let process which issued request terminate itself.
d. Puts device entry in "COMSEG"
e. Displays message to "C-I".
f. Activates "Controller" who will create the process.
g. Issues timed read on transfer request file.

7. When terminate flag is set in "COMSEG", process terminates
its elf.

To better understand the "Switching" process, Figure 11 contains a
step by step diagram which is described as follows:

Step 1 -- User signs on to division which is not on current CPU. The
"On-Line" process determines which CPU is the correct one
and posts a record in the switch data file.

Step 2 "On-Line" driver sets termination flag in "COMSEG",

Step 3 ''On-Line" driver activates the "Controller".

Step 4 "Controller" terminates "On-Line" process.

Step 5 --"Switching" process on remote CPU reads switch data file.

Step 6 --"Switching" process posts data to "COMSEG".

Step 7 --"Switching" process activates remote "Controller",

Step 8 -- Remote "Controller" creates issues a file equation for the
user terminal and creates an "On-Line" process.

Step 9 -- The remote "On-Line" process displays the next screen.

Paper 3058 Page 21 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

MSG CATALOG

REMOTE SWITCH FILE

FIGURE 10 -- SWITCHING PROCESS

Paper 3058 Page 22 WASHINGTON, D. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

~
::::>
rs

CJ g !
w

~ (I)

w § I Ii:

:I
0
IC
IL e e
::::>
A.
(.)

e

Paper 3058

@

@ fa
!
~ w

@

e

Page 23

'0 a. w
~

" z -:I:
~ -
~
"' "' w
0
0
a:
D..
I
I

w
a:
::>

" -LL

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPl'IMIZE SYSTEM PERFORMANCE

V. PERFORMANCE CONSIDERATIONS
==============================

The first principle used in our design was to minimize the number of
entities the system (MPE) has to keep track of. For example, the use
of a process tree enables one session to handle many terminals. In
our environment, it is common for thirty-five "On-Line" processes to
be in the process tree at any one time. Thus, MPE has to only keep
track of one session, not 35.

Another entity is the use of DS lines for communication with the
remote CPU's. By having a process tree, these lines are opened only
once and only one remote session is established per CPU.

The other side of this coin is that a bottleneck can be established.
The reply to this is that process handling provides for any number of
lines to be opened. In fact, it is possible to design load leveling
algorithms to select the currently unused entity. The point is that
the decision of how many copies of an entity are active is left to the
descretion of the system designer/manager.

The second priciple used was to minimize actions, e.g., opening files,
opening data bases, fetching certain data, etc. This provides a
significant improvement in system response.

The third principle was to provide a large library of callable
routines in segmented libraries (SL's) so that the system would have
less code to manage and would use less memory for the application
code. This is not directly related to process handling, but if you're
still reading at this point, you probably need all the help you can
get.

The fourth priciple was to return control of the terminal to the user
as soon as the transaction was assured of being able to complete. To
use this concept, all edits must be done prior to any update. From
this priciple, the concept of a background process was developed. To
be effective, the amount of work to be done after edits has to be
significantly large. For example, a transaction which only updates a
single record would not be considered for background processing,
whereas a transaction which causes fifty records to be updated would
be. In other words, the reduction in user wait time should be
significant since additional overhead is being incurred by submitting
a transaction for background processing.

Paper 3058 Page 24 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

VI. SUMMARY

The use of process handling to drive our application code has
fulfilled all of our requirements and surpassed our expectations in
being adaptable to growth. By possessing such a cJmmonality in
approach, implementation of new applications has been expedited and
training minimized. The consistancy in approach has also improved the
accuracy of information entering the system.

The particular design presented in this paper is just one way of using
process handling to optimize system management and system throughput
based on a particular set of specific requirements. This design could
easily be modified to accomodate special situations or unique load
requirements. Alternative designs could just as easily be developed.

The use of process handling allows the system designer to provide for
unique situations, which frequently only become apparent after
significant growth, without having to modify each program in the
system. Thus, for any installation which is developing a significant
amount of code, or is anticipating development over an extended time
period, I would recommend that careful consideration be given to the
use of process handling as a design approach.

Paper 3058 Page 25 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 1

REQUIREMENTS ASSOCIATED WITH THE SYSTEM
=======================================

Requirement 5 A~ On-Line Inquiry/Update
:======================================

The system prior to conversion processed data inquiries, updates,
additions and deletions on-line. Although the system also processed a
significant nightly batch which did both reporting and updating, the
long range objective was to eliminate batch and do all updating
on-line. Thus the anticipated load was expected to increase
significantly during the day, even without increased business activity
or expanded applications.

Requirement 6 -- Audit/Security Provisions
==

Security
level.
update

was a requirement at the employee, division, and command
For example, an employee might be authorized to execute an

command in his own divsion, review similiar data in a second
division and do neither in a third division. The security is
controlled by division/corporate controllers.

The audit requirements were that each logical transaction was to be
tagged with the user-id , time of transaction and terminal number.
Each record in the data base is timed stamped such that the last user
to change the data can be identified. Each logical transaction is
logged to a permanent file from which performance and usage statistics
are generated.

Requirement 7 -~ Not Menu Driven
================================

Although on-line help and documentation were desired, it was
considered a critical requirement that a user could execute any
authorized command in any sequence without having to meander through a
series of menus or specific sequence of screens just to get to the
screen the user desired to use. Considering that close to 900
commands exist today (backed by 1.2 million lines of source code and
over 2Mb of on-line executable code), this requirement played a major
role in the design of our process handling system. Note that a large
amount of application code had to be accessible from any "On-Line"
process with no observable access time difference between commands.
Access also had to be quick enough to also meet the minimum
transaction time requirement.

f'aper 3058 Page 26 WASHINGTON. 0 C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX l -- Continued

Requirement 8 -- Logical transaction recovery capability
==
In the previous system, each screen transmitted from the user·s
terminal contained a command-id and associated data. Each of these
transactions contained all the data necessary for processing; i.e.,
each transaction stands alone. In the event of the necessity of
having to run recovery (Have you ever had a head crash?), the
transactions which completed successfully were reprocessed.
Obviously, much more could be said about backup, recovery approaches,
logging and related subjects, but this paper is about process
handling.

Requirement 9 -- Data Must Use a DBMS (IMAGE/3000)
==

The previous system was based upon an integrated set of linked files.
To facilitate system change, growth and user inquiry using fourth
generation tools, all data is contained within IMAGE/3000 data bases.

Requirement 10 -- Terminals Must Be Block Mode
==

The previous system was based on a block mode terminal. V/3000 was
selected for all screen handling but no editing. Why not?

Paper 3058 Page 27 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 2

COMSEG

COMSEG, an extra data segment, is a means by which the BAP processes
on one CPU can share data. It consists of a header, a device table, a
message table, and the WELCOME message.

Header Format

Word # Data Type

0 • 1
2 • 3
4
5
6
7
8
9
10
11

double
double

integer
integer
integer
integer
integer
integer
integer

Paper 3058

header
device entry #0 }
device entry #l }

}
} device table
} (one entry for each
} UT020P son process)

device entry #n

message entry #0

message entry #9
WELCOME message

Contents

log record number
log file size

}

}
}
} message table
}
}
}

address of device table
device entry size (words)
device table size (entries)
address of message table
message entry size (words)
message table size (entries) maximum ~ 10
address of WELCOME messages

Page 28 WASHINGTON, 0. C.

BAL TIMOHE WASHINGTON REGIONAL USERS GROUP tNTEREX 8 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 2 -· Continued

Device Entry Format
==================:

Word # Data Type Contents

0 integer

1 logical
2 - 4 ASCII
5 - 6 ASCII
7 - 9 ASCII
l0(1:15)integer

10. (0:1)

11 integer
12 - 21 integer
22 logical

logical device number of forms terminal
(0 if.this entry is empty)

true if DEBUG to be used, otherwise false
current user ID (blank if no one signed on)
current ORG-ID
current transaction
current user process status (UPSTATUS)

0 - create pending interpreter
1 - created, active pending
2 - active
3 - terminate pending
4 - terminated
5 - disable pending
6 - disabled
7 - enable pending
8 - enabled
9 - abort pending

10 ·· aborted
11 • transferred (to another CPU)
13 - kill pending
on if message not yet sent to operator
indicating change of status
PIN for this process
message indices (-1 for none)
origin (0 - command interpreter

>O - another process structure)
terminal's home CPU-ID 23 - 26 ASCII

27 - 30 ASCII
31 - 36 ASCII
37 - 38 ASCII

name of CPU this terminal is transferring to
user ID and password (transfer signon info)
ORG-ID (transfer signon info)

Message Entry Format
====================
Word # Data Type Contents

0 integer usage (# users yet to receive this message)

1 • 39 ASCII message

Paper 3058 Page 29 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPI'IMIZE SYSTEM PERFORMANCE

APPENDIX 2 -- Continued

Welcome Message Format
======================

Word # Data Type Contents

0 • 38 ASCII line 0 of welcome message

line 19 of welcome message

Paper 3058 Page 30 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 6 5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 3

C-I COMMANDS
============

CREATE list [;DEBUG]
====================
Puts a device entry into "COMSEG" and activates the "Controller", The
"Debug" option causes the process to be created with Debug.

TERMINATE {list} [;CPU'ID]
{ALL }

==========================
Sets the status flag in each device entry in the list and activates
the "Controller". The "ALL" option sets the flag in all device
entries. The "CPU'ID" option sets the flag in the device on the
specified CPU. Note that in multiple CPU environments, more than one
device entry could have the same logical device number; thus, for
remote devices, the CPU'ID is also given.

KILL {list} [;CPU'ID]
{ALL }

=====================
Sets the status flag in specified device(s) to kill pending and
activiates the "Controller",

EXIT

Terminates the "c-I" which causes all descendent process to be
terminated.

STATUS {list} [;CPU'ID]
{ALL }

:======================
Read each device entry in "COMSEG" and prints a line of information on
the BAP console. Also shows the remaining number of background
transactions.

Paper 3058 Page 31 WASHINGTON, D. C.

BAI. TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 3 -- Continued

PAUSE {number'of'minutes}
=========================
Calls the PAUSE intrinsic for the specified number of minutes. Used
in conjunction of running a process in DEBUG.

TELL {list} {;CPU'IDJ
{ALL }

=====================
Send a message to the device(s) in the list.
of messages from the BAP console user.
message table of "COMSEG". Each "On-Line"
transaction or time-out to see it messages
the message to the "on-Line" user terminal.

WELCOME
=======

Requests up to ten lines
Puts this message in the
process checks after each
exist. If so, it displays

Updates the welcome message in "COMSEG" from a standard file. This
message is displayed on the "SIGNON" screen.

Paper 3058 Page 32 WASHINGTON, 0. C.

BAl TIMORE WASHINGTON REGIONAl USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Chara.ct er

0-1
2-3
4-5
6-7
8-9

10-11
12

13-15
16-20
21-25

26-31

32-35

36-37

38-41
42-43

44-45

46-51

52
53

54-57

58-59
60-65

66-1987

1988-2047

Paper 3058

Data Type

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII

ASCII

Double

ASCII

ASCII
ASCII

Integer

ASCII

ASCII

ASCII

ASCII

ASCII

APPEND!X 4

LOGF!LE FORMAT
===============

Description

Year
Month
Day
Hour
Minute
Second
Forms terminal CPU }
Forms terminal ldev# }orgntr
User-id }
CPU time for this transaction
(tenths of a second)
Wall time for this transaction
(tenths of a second)
Lock stamp
(milliseconds)
Recovery code
nQ" '11stt' tlplt '"Nu' "ttctf 'ftit1 'UL u
ORG-ID
Error code (UXECODE
value or 4 if edit
error detected)
Transa.ction length
(bytes)
Current form name
(prior to calling application)
This CPU-ID
"B"=executed in
background,
space = normal
Originating org
(indicates redundant
request if not blank)
Unused
Transaction command-id
(1st 6 char of transaction}
Transaction data
(Variable length)
Unused

Page 33 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3055. Everything You Wanted to Know about Interfacing
to the HP-3000

The Latest Inside Story

Ross Scroggs
Telamon, Inc.

1615 Broadway, 11th Floor
Oakland, CA 94612

(415) 835-5603

INTRODUCTION

The subject ot terminal interfacing to the HP-3000 contains
no facts. None. Everything I say and you observe is an illusion
supported by a lack of information and the general perversity of
the universe. Maybe terminal interfacing is the fourth
dimension, moving through it is certainly stranger than anything
you have ever experienced before. But the universe is becoming
stable, and the strangeness is beginning to abate, or I've
finally become immune to change.

I have included a list of references at the end of this
paper from which I have obtained some of the information included
here. If you desire to make all of your terminal attachments
successful, obtain all of the references and read them. The most
important piece of information I can give you is to start
planning early when attaching terminals to the HP-3000 and don't
believe anything you read, including this paper. If you haven't
seen it work yourself, plan on having to solve a few problems.
This paper, derived from eleven years of HP-3000 experience, is a
guide to solving those problems, but it won't solve them for you.

Asynchronous terminals are attached to the HP-3000 Series I,
II, and III through the Asynchronous Terminal Controller (ATC);
to the Series 30/33/39 and 40/42/44/48 through the Asynchronous
Data Communications Controller (ADCC); and to the Series 42/44/48
(optional), Series 37 and 64/68 through the Advanced Terminal
Processor (ATP). This paper addresses issues involved in making
a successful connection to one of these three devices.

The experiments in this paper were conducted on a Series III
with ATCs, a Series 42 with ADCCs running T Delta 1, and a Series
37 with ATPs running T Delta 1. You should expect that your
results will differ when using different machines and operating
system releases.

RS-232 and RS-422 are standards which describe an interface
specification. They describe the electrical characteristics and
control ~ignalling conventions used by devices conforming to the
standard. They do not guarantee that two RS-232 devices can
communicate with each other. It is the user's responsibility to
ensure compatibility of devices at the data level. The principal

Paper 3055 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

focus or this paper is the description on the factors that the
user must control.

Terminals attached to the HP-3000 are accessed in two ways:
as a session device or as a programmatically controlled device.
A session device is one on which a user logs on with the HELLO or
() commands and accesses the HP-3000 through MPE commands. A
programmatic device is one which is controlled by an application
program that is run independently from the device. These two
access methods are not mutually exclusive; a session device can
be accessed programmatically and many MPE commands can be
executed on behalf of a user who is accessing the system
programmatically.

SESSION DEVICES

Attaching a terminal as a session device is typically the
easier of the two methods. You must set the terminal speed,
parity, subtype, and termtype correctly and provide the proper
cable to complete the hookup.

Terminal Speed

The speeds supported by the ATC are: 110, 150, 300, 600,
1200, and 2400 baud. The speeds supported by the ADCC are those
of the ATC plus 4800, 7200, and 9600 baud. The ATP additionally
supports 19200 baud, but deletes 150 baud. Ports are either
speed sensing or speed specified. Speed sensing ports
automatically adjust the baud rate based upon the initial
carriage return received. Speed specified ports require that the
initial carriage return be received at the specified speed.
Speed specified is in a state of limbo on ADCCs. HP is trying to
eliminate it, as it is no longer required, but bugs in the speed
sensing algorithm have kept it around. The ATP does not support
speed specified ports; but this presents no problem as speed
sensing works at all speeds.

Terminal Parity

The format of characters processed by the HP-3000 is: a
single start bit, seven data bits, a parity bit, and one stop bit
(two at 110 baud). The parity bit is: always zero (called space
parity), always one (called mark parity), computed for odd
parity, or computed for even parity. A character with eight data
bits must have no parity bit to be compatible with the HP-3000.
In this case, the eighth data bit must be set to a zero, as the
HP-3000 will try to interpret it as parity even though the
terminal considers it data.

Paper 3055 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

Choosing the proper parity setting has been complicated by
differences between the ATC and lillCC/ATP. The ATC inspects the
parity bit of the initial carriage return received from the
terminal and sets parity based on that bit. If the bit is a
zero, the ATC genero.tes odd parity on output. If it is a one,
the ATC generates even parity on output. In either case the
parity of incoming data is ignored and the parity bit is always
set to zero before the data is passed to the data buffer. The
lillCC and ATP also set parity based on the parity bit of the
initial carriage return, but they do so with a slight, nasty
twist. If the bit is a zero, the lillCC/ ATP pass-through the
parity bit supplied by the application program on output. If the
initial parity bit is a one, the lillCC/ATP generate even parity on
output. If pass-through parity was selected, the parity bit of
the incoming data is passed through to the data buffer. If even
parity was selected, the input data is checked for proper even
parity and the parity bit is set to zero before the data is
passed to the buffer. Thus, you can not use odd or mark parity
on the lillCC/ATP. The odd parity will be interpreted as
pass-through and the parity bits will wind up in your data
buffer, wreaking havoc. Mark parity will be interpreted as even
and all input will cause parity errors.

Subtype

Subtype specifies the type of connection between the terminal
and the HP-3000. The principal choices are: direct connect, full
duplex modem connect, and half duplex modem connect. The subtype
also specifies if a terminal is to be speed sensed, or speed
specified. The ATC supports subtypes 0 through 7, the lillCC
supports subtypes 0 through 5; the ATP supports subtypes 0 and 1.
Subtype 0 is used for directly connected terminals, no modem is
used. Note that terminals that are attached to multiplexors can
fit in this category, the modem involved is managed by the
multiplexor, not the HP-3000. Subtype 1 is used for terminals
connected through full duplex modems such as Bell 103, 212 and
Vadic 34xx. Subtype 2 and 3 are used for terminals connected
through half duplex modems such as the Bell 202S. Subtypes 0
through 3 speed sense on the initial carriage return. Subtypes 4
through 7 correspond to 0 through 3 with the difference that
terminals using these subtypes will not be speed sensed; they
will run at a specified speed that is set at configuration time.
This subtype is often used to prevent the HP-3000 from trying to
speed sense garbage which sometimes occurs when using short-haul
modems (line-drivers) that do not have a terminal attached to the
other end. The ATC can lock out ports when this problem occurs.

Termtype

Termtype specifies the characteristics of the terminal to be
attached to the HP-3000. Most termtypes were derived from
specific models of terminals that were attached to the HP in the

Paper 3055 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

old days, early 1970's. HP is changing this term to port
protocol type. The ATC supports termtypes: 0-6, 9-13, 15, 16,
18, 19, and 31. The ADCC supports termtypes: 4, 6, 9, 10, 12,
13, 15, 16, 18 and 19/20/21/22. The ATP supports termtypes: 6,
9, 10, 12, 13, 15, 16, 18, and 19/20/21/22.

Termtype 4 is for Datapoint 3300 terminals, it outputs a DC3
at the end of each output line and responds to backspace with a
control-y. Termtype 4 on the ADCC does not output DC3s at the
end of each line.

Termtype 6 is the general non-HP hardcopy terminal type. It
outputs a DC3 at the end of each line but responds to a backspace
with a linefeed. The linefeed is on the first backspace of a
series, this allows you to type corrections under the incorrect
characters.

Termtype 9 is the general non-HP CRT terminal type. No DC3s
are output at the end of the line and nothing strange happens on
backspace, the cursor backs up just as you would expect. (The
ATC strips out some escape sequences from the input stream that
were generated by the CRT on which termtype 9 was patterned.)

Termtype 10 is the general HP CRT terminal type.
characterized by the ENQ/ACK flow control protocol.

It is

Termtype 13 is typically for those terminals at a great
distance from the HP-3000 for which some local intelligence echos
characters and the 3000 should not. (Telenet and Tymnet charge
you for those echoed characters, that's reason enough not to have
the HP-3000 echo them.)

Termtypes 15 and 16 are for HP-263x printers. Like termtype
10, the ENQ/ACK flow control protocol is used. When the HP-3000
sends the ENQ character and no ACK is received within a few
seconds, another ENQ is sent. This repeats until an ACK is
received. This mechanism ensures that no data is sent to a
non-responding printer. Non-HP printers that support an
answerback capability can make use of this feature. Configure
them to return an ACK when an ENQ is received and the problem of
output being sent to powered-off printers is eliminated.

Termtype 18 is just like termtype 13 except that no DC1 is
issued on a terminal read.

Termtypes 19/20/21/22 are for spooled 2361B printers.

Certain termtypes less than 10 specify a delay after carriage
control characters are output to the terminal. The ATC and ATP
handle this by delaying for a certain of character times but do
not output any characters. The ADCC actually outputs null
characters. The most extreme case is termtype 6 which causes 45
nulls to be output after a CR/LF at 240 cps.

Paper 3055 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

There is a new product from HP (and a contributed program)
that allows ADCC/ ATP users to construct custom terminal types.
The Workstation Configurator allows a terminal type to be
constructed that should match almost any specific terminal. The
configuration is stored in a "termtype" file and HP supplies the
default files. (Listf TT@.PUB.SYS to list them.) There are
additional capabilities provided that have not been supported
previously. For example, multiple line terminators can be
defined to be equivalent to carriage return. A termtype could be
set up to specify tab as a line terminator which would enhance
the use of the ten-key pad on HP terminals for data entry
operators.

Cable

Directly connected terminals (subtypes 0 and 4) use only
three signals in the cable: pin 2 (Transmit Data), pin 3 (Receive
Data), and pin 7 (Signal Ground). Note that all signal names are
given from the point of view of the terminal, not the modem or
the HP-3000, which acts like a modem. Typically the cable will
connect: pin 2 at the terminal to pin 2 at the HP-3000, pin 3 at
the terminal to pin 3 at the HP-3000, and pin 7 at the terminal
to pin 7 at the HP-3000. This is not to say that your terminal
does not require other signals, it just says that the HP-3000 is
not going to provide them for you. If your terminal requires
signals like Data Set Ready, Data Carrier Detect, or Clear To
Send, you can usually supply these signals to the terminal with a
simple cable patch. Jumper pin 4 (Request To Send) to pin 5
(Clear To Send). Jumper pin 20 (Data Terminal Ready) to pin 6
(Data Set Ready) and pin 8 (Data Carrier Detect). These two
jumpers cause the terminal to supply its required signals to
itself.

Modem connected terminals (subtypes 1 and 5) use seven
signals ir:. the cable: pin 2 {Transmit Data), pin 3 (Receive
Data), pin 4 {Request To Send), pin 6 (Data Set Ready), pin 7
(Signal Ground), pin 8 (Data Carrier Detect), and pin 20 (Data
Terminal Ready). Naming the signals gets complicated since the
HP-3000 is acting like a modem and it is being attached to a
modem. Typically, the cable that connects the HP-3000 to the
modem will connect: pin 2 at the modem to pin 3 at the HP-3000,
pin 3 at the modem to pin 2 at the HP-3000, pin 4 at the modem to
pin 8 at the HP-3000, pin 6 at the modem to pin 20 at the
HP-3000, pin 7 at the modem to pin 7 at the HP~3000, pin 8 at at
the modem to pin 4 at the HP-3000, and pin 20 at the modem to pin
6 at the HP-3000.

You should note an important characteristic of the cable
descriptions given above. The terminal to HP cable is
"straight-through," with like-numbered pins connected together.
The modem to HP cable is a "cross-over," 1'tith pairs of pins
cross-connected. Why the difference? The explanation is that
the world is divided into Data Terminal Equipment (DTE) and Data
Communication Equipment (DCE). A DTE is a terminal or something

Paper 3055 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

like it which sits at the end of a data communication line. A
DCE is a modem or something like it which is part of the data
communication line. The distinction is not rigid as the HP-3000
acts like a DCE. A multiplexor may look like a DCE to the
terminals attached to it, and like a DTE to the modem to which it
is attached. The cabling principle is that a DTE to DCE
connection uses a straight through cable and a DTE to DTE or DCE
to DCE connection uses a cross over cable.

The cable that attaches your terminal to a modem should be
specified in your terminal owners manual, consult it for proper
connections.

Flow Control

Flow control is the mechanism by which the rate of data flow
between the HP-3000 and the terminal is controlled. The HP-3000
supports two output flow control methods, ENQ/ACK and XON/XOFF.
The HP supports one input flow control protocol, DC1/DC2/DC1,
commonly referred to as the "block mode" protocol.

The ENQ/ ACK protocol is controlled by the HP- 3000. After
every 80 characters output the system sends an ENQ to the
terminal and suspends further output until and ACK is received
back from the terminal. The suspension is of limited duration
for termtypes 10 to 12, output resumes if no ACK is received in a
short amount of time. The suspension is indefinite for termtypes
15 and 16, the ENQ is repeated every few seconds until an ACK is
received.

It is the ENQ/ACK protocol that fouls up non-HP terminals
attempting to access the HP-3000 through an ATC port configured
for an HP terminal. Most terminals do not respond to an ENQ with
an ACK, you must do it manually; type control-f which is the ACK.
An ENQ is output by the ATC upon receipt of the initial carriage
return from the terminal. You get hung immediately, unless you
type control-f and logon and specify the proper termtype in your
HELLO command. No ENQ is output by the ADCC and ATP upon receipt
of the initial carriage return from the terminal. Thus, you do
not get hung immediately. You must still specify the proper
termytype in your HELLO command to avoid getting hung on an ENQ
output later.

The XON/XOFF flow control protocol is controlled by the
terminal. When the terminal wishes to suspend output from the
HP-3000 it sends an XOFF (control-s or DC3) to the HP-3000 and
sends an XON (control-q or DCl) to resume output. Unfortunately
the HP-3000 sometimes fails to properly handle one of the two
characters and you either overflow your terminal or get hung up.
This is particularly nasty when your terminal is a receive-only
printer and you can't supply a missing XON. You're really dead
if the HP-3000 misses the XOFF. XON/XOFF is not handled well by
the ADCC and ATP. Neither controller strips the parity bit of

6 Paper 3055
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

incoming characters when pass-through parity is in effect. Thus,
a terminal using any parity other than space will have all of its
XONs or XOFFs ignored; the character with the parity bit included
will not match the character used by the controller because its
parity bit is set to zero.

A special note on XON. If you inadvertently send an XON
(DCl) to the HP-3000 (ATC only) when output is not suspended, you
will be in paper tape mode and backspace, control-x, and linefeed
will act strangely. Hit a single control-y to get out of this
mode.

Some terminals perform flow control by raising and lowering a
signal on their interface, the HP-3000 can not handle this. You
must either run the terminal at a low enough speed to avoid
overflowing it or provide hardware to convert the high/low signal
to ENQ/ACK or XON/XOFF.

The form of !low control used by HP terminals when block mode
is enabled is the DC1/DC2/DC1 protocol. When the enter key is
pressed on the terminal, a DC2 is sent to the HP-3000 after
receipt of a DCl to alert the HP-3000 of a pending block mode
transfer. When the HP-3000 is ready to receive the data it sends
a DCl back to the terminal to start the data transfer. (Your
program does not handle the DC2/DC1, but see below FCONTROL 28,
29.)

This works fine except in certain circumstances. In certain
modes the terminal actually sends DC2 carriage ,return when the
enter key is pressed. This is no problem unless the DC2 and CR
do not arrive at the HP-3000 together. The CR may be seen as the
end of the data if it comes sufficiently far behind the DC2, your
program completes its request for data with nothing and the real
data bites the dust when it finally shows up. The separation of
the DC2 and CR can occur when using statistical multiplexors or
when using Telenet or Tymnet. Be aware, this problem is
infrequent, but unsettling when it occurs. The ADCC and ATP
attempt to solve this problem by deleting any carriage return
that follows a DC2, regardless of the distance between them.

Special Considerations

Every shop should have the proper tools to perform its tasks.
Don't neglect your terminal needs. Keep on hand a small flat
blade screwdriver, a small Phillips head screwdriver, needlenose
pliers, and some sort of breakout box. A breakout box is a small
box which is placed inline between two devices. It allows you to
monitor, via LEDs, certain RS-232 leads. This tool lets you
visually verify the state of modem signals and data flow. It
allows recabling by providing a jumper area so that any pin to
pin combination desired is achievable. These boxes cost from $38
to $200.

Paper 3055 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP JNTEREX85

The RS-232 specification requires that terminals running at
high speed be no further than 50 feet apart. Almost everyone
ignores this specification and experiences no problems. ATP
users are beginning to have the rule enforced, the ATP seems more
sensitive to long RS-232 lines. Asynchronous line drivers (short
haul modems) can be used to drive terminals at greater distances.
The HP implementation of RS-422 specifies a maximum separation of
4000 feet at high speeds. This improvement, as well as the fact
that the interface is almost immune to noise, will simplify
certain aspects of terminal interconnection in the future.
Unfortunately, the two specifications are incompatible and
switching from RS-232 to RS-422 is not trivial.

A multiplexor is a device that allows many terminals at a
remote location to be connected to the HP-3000 over a single
communication line. Each terminal is connected to a distinct
port on the HP-3000, but savings are realized because all
terminals share the same phone line. Multiplexors attempt to
maximize the shared use of the line, but in doing so have to use
flow control protocols if the aggregate data rate from the
terminals or computer exceeds that of the data communicaton line.
Multiplexors can be set up to use XON/XOFF flow control protocol
at either end. On the computer end this usually causes little
trouble. On the terminal end, though, problems abound. Neither
the user, typing in character mode, or the terminal, transmitting
in block mode, is likely to obey an XOFF. Many block mode
terminals sharing a line may overflow it if sufficient capacity
is not available.

The ENQ/ACK protocol does not perform well with some
multiplexors. The delay between the transmission of the ENQ from
the HP-3000 and the subsequent receipt of the ACK generated by
the terminal can cause the terminal to print in a start/stop
mode. Some multiplexors attempt to solve this problem by
emulating the ENQ/ACK protocol at each end. The multiplexor at
the HP-3000 end responds to ENQ with an ACK and passes the ENQ to
the remote multiplexor. The remote multiplexor passes the ENQ to
the terminal and waits for the ACK response. This feature allows
the transmission to proceed much more smoothly.

The value added networks, Tymnet and Telenet, also use
XON/XOFF and have the same problem with sending an XOFF to the
terminal as do multiplexors. The networks can be configured not
to use XON/XOFF, but you can still lose data. There is a new
termtype, 24, that is used for virtual terminal ports connected
through an INP. The INP, Tymnet/Telenet, and certain HP
terminals can work together to make block mode work effectively
without data loss.

A port selector is a device that allows niany terminals to be
connected to not-so-many computer ports. Terminals are assigned
to ports on a first-come, first-served basis until all ports are
consumed. Subsequent terminal service requests are refused or
held until a port becomes available. Beyond this basic

Paper 3055 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP rNTEREX85

operation, port selectors can implement priority schemes,
allocate terminals to ports on different computers, and perform
automatic disconnects. One question arises though. How does the
port selector know when a port on the HP-3000 is available? When
a terminal logs off a direct connect port, subtype 0 or 4, there
is no indication other than the logoff message that the port is
free. For ports controlled by port selectors, use of subtypes 1
or 5 causes a modem signal to drop on logoff. This can be used
by the port selector as an indiction that the port is free. Some
systems require that all terminals provide a terminal ready modem
signal. When the terminal is powered off, the signal is lowered
and the port to which the terminal was connected is considered
free. Other systems require that the user type a disconnect
sequence whenever they cease using a port.

There is one very large potential problem with port selectors
that must be dealt with carefully. Suppose there is a brief power
outage in the computer room; the HP-3000 powerfails and maintains
all sessions intact. The port selector will probably lose all
connections requiring that the users re-establish their
connections. However, there is no guarantee that each user will
get the same port, and since all sessions are still active,
everyone winds up in someone else's session. (Something to think
about before your next secur~ ty audit) . You will have to
manually abort all sessions on the HP before allowing the users
to reconnect through the port selector.

PROGRAMMATIC DtVICES

Attaching a terminal as a programmatic device is usually done
when you want to attach a serial printer, instrument, data
collection device, or other strange beast to the HP-3000. An
application program you write will typically control all access
to the device; a user will not walk up to it, ~it return, and log
on. I will explain the various in tr ins ics that are used to
access programmatic devices.

In the following intrinsic descriptions, differences between
ATC, ADCC and ATP machinces will be noted. However, it is
finally the case that the ADCC and ATP behave identically except
in the case of parity. The ATC is essentially frozen and does
differ significantly in some areas.

FOPEN

You must call FOPEN to gain access to the device. I always
use a formal file name to allow control of the open with file
equations. If the .device is unique in the system, I use its
device name as the file name. The foptions specify CCTL,
undefined length records, ASCII, and a new file. The aoptions
specify nobuf, exclusive access and input/output. Choose a

Paper 3055 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

record size that is larger than the maximum data transfer that
will take place.

For devices that are to be used exclusively in programmatic
mode it is recommended that you REFUSE the device so that
extraneous carriage returns from the device will not be
interpreted as logon attempts by the HP-3000.

Opening subtype 1 or 5 ports differs among the controllers
regarding the point at which you hang if the controller finds
that the modem is not online. Programatically handling incoming
calls can be tricky; experiment carefully.

FCLOSE

You call FCLOSE to release access to the device. Though
FCLOSE resets most FCONTROL options, it is good practice to
explicitly reset all FCONTROL options before calling FCLOSE.

ATC • MPE sends a CR/LF to the device if it believes that the
"carriage" is not at the beginning of the line, i.e., the last
character output was not a linefeed.

ADCC/ATP • MPE never sends a CR/LF.

FREAD

You call FREAD to get data from the device. Many of the
FCONTROL calls shown below affect how FREAD works. End-of-file
is indicated by a record that contains ":EOF:". Any record with
a colon in column one is an end-of-file to $STDIN. ":EOD",
":EOJ", ":JOB", ":DATA", and ":EOF:" are end-of-file to $STDINX.

The default end of record terminator is carriage return. You
should change this if the device terminates all records with some
other character. You can specify an alternate terminator that
will terminate a record in addition to carriage return. Choose
the teminator so that it is the last character input. For a
device that sends a linefeed after carriage return, try to use
linefeed as the terminator instead of carriage return. See
FCONTROL 41 below.

Some devices send data followed by
followed by a LRC or CRC character.
character can take on all values, thus it
terminator. Unfortunately, it often looks
halt any further output to the device.

a fixed terminator
This error checking
can not be used as a
like XOFF which will

You may want to trap certain errors returned by FREAD to your
program: 22, software time-out; 31, end of line (alternate
terminator); and 28, timing error or data overrun. This last
error occurs frequently on ADCCs running at high speeds.

Paper 3055 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

ATC The characters NULL, BS, LF, CR, DCl, DC3, CAN
(control-x), EM (control-y), ESC:, ESC;, and DEL are stripped
from the input stream for both session and programmatic devices.

ADCC/ATP • The characters NULL, BS, LF, CR, DCl, DC2, DC3,
CAN (control-x), EM (control-y) and DEL are stripped from the
input stream for both session and programmatic devices. There is
a patch available that deletes recognition of ESC: and ESC; while
solving certain overrun problems, the patch is strongly
recommended. A DC2 at the beginning of the line causes the
driver to send another DCl to the terminal, as it thinks that a
block mode read has started.

Each time you issue an FREAD to the terminal, MPE sends a DCl
to the terminal to indicate that it is ready to accept data.
Most devices ignore, totally, the Del. If your device reacts
negatively to the DCl, use termtype 18 which suppresses the DCl
on terminal reads. The device must not send data to the HP-3000
until it has received the DCl, otherwise the data will be lost.
If the device does not wait for the DCl you must supply external
hardware that will provide buffering and wait for the DCl; or you
can solve the problem on the HP-3000 by using two ports to access
the device. One port is opened for reading and the other for
writing. A no-wait read is issued before the write that causes
the device to send data, then the read is completed. Connect the
terminal's pin 2 (Transmit Data), to the read port's pin 2;
connect the terminal's pin 3 (Receive Data), to the write port's
pin 3; and connect the terminal's pin 7 (Signal Ground), to pin 7
of both ports. (This two port scheme was first introduced to me
by Jack Armstrong and Martin Gorfinkel of LARC.)

The ADCC and ATP now offer another possible solution to this
buffering problem. If the device waits for some character from
the computer before transmitting data, the FDEVICECONTROL
intrinsic can be used to have the driver send that character
rather than DCl on each read. Your program would write the
prompt sequence less the final trigger character, then perform
the read which supplies the trigger character.

FWRITE

You call FWRITE to send data to the device. The carriage
control (cctl) value of %320 is often used to designate that MPE
send no carriage control bytes, such as CR/LF, to the device.
Control returns to your program from FWRITE as soon as the data
is loaded into the terminal buffers, MPE does not wait until all
data has been output to the device. If you must know when the
actual output is complete, the temptation is to use FSETMODE to
enable critical output verfication. Unfortunately, this isn't
implemented for terminals. However, you can achieve the same
effect by calling FCONTROL to set the desired echo state after
each write. The FCONTROL will not complete until the write is
physically complete.

Paper 3055 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEAEX85

ATC - the initial FWRITE to an HP terminal termtype causes an
ENQ to be sent to the terminal.

ADCC/ATP - the initial FWRITE does not send an ENQ.

FSETMODE - 4 - Suppress carriage return/linefeed

In normal operation a line feed is sent to the terminal if the
input line terminates with a carriage return, a CR/LF is sent to
the terminal if the line terminates by count, and nothing is sent
if the line terminates with an alternate terminator. These extra
characters may not be desirable in certain applications.
FSETMODE 4 suppresses these linefeeds and carriage returns.
FSETMODE 0 returns to normal line termination handling, an FCLOSE
also returns the device to the normal mode.

FCONTROL

FCONTROL is the workhorse intrinsic for managing a
programmatic device on the HP-3000. Each use of FCONTROL will be
shown separately but it will usually be the case that several
calls will be used. Most calls are required only once, but the
timer calls are required for each input operation. Each call
will be identified by the controlcode parameter that is passed to
FCONTROL.

FCONTROL - 4 • Set input time-out

This option sets a time limit on the next read from the
terminal. It should always be used with devices that operate
without an attached user to prevent a "hang." If something goes
wrong with the· device, your program will not wait forever;
control will be returned eventually. The FREAD will fail and a
call to FCHECK will return the errorcode 22 (software time-out).
No data is returned to your buffer in the case of a time-out; any
data entered before the time-out is lost.

If you issue a timeout for a block mode read on the ATC, the
timer is stopped if a DC2 is received from the terminal. A new
timer is started which runs for 30 seconds plus the expected data
transfer time. If the read doesn't complete, an error 27 is
reported. On the ADCC/ATP, receipt of the DC2 dces not stop the
timer. It continues to run and if the read doesn't complete, an
error 27 is reported. In all cases, an error 22 is reported if
no DC2 is received and the read doesn't complete. To get the
ADCC/ATP to start a new timer on receipt of a DC2, FCONTROL 31
must be used which starts a new timer for 10 seconds plus the
expected data transfer time.

Paper 3055 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX 8 5

FCONTROL • 10, 11 • Set terminal input/output speed

These FCONTROL options allow you to change the terminal input
and output speeds. FCONTROL 37 can also be used to set terminal
speed. It sets termtype as ~ell and is the method that I prefer.

ATC - Split speeds are allowed.

ADCC I ATP • Split speeds are not allowed, FCONTROL 10 does
nothing and FCONTROL 11 sets both input and output speed.

FCONTROL • 12, 13 • Enable/disable input echo

These FCONTROL options allow you to enable and disable
terminal input echoing. Many devices that attach to the HP-3000
do not expect or desire echoing of the characters they transmit.
This option, along with FSETMODE 4, completely turns off input
echoing. Echoing is not restored when a file is closed, so you
should always put echo back the way it was found.

FCONTROL • 14, 15 · Disable/enable system break

The break key should be disabled if terrible things happen
when the user hits break and aborts out of a program. You, the
programmer, always seem to need break for debugging purposes and
discover that you have it turned off. System break can only be
enabled for session devices, it is not allowed for programmatic
devices. If break is entered on a session device, the data
already inp•.it will be retained and provided to the user program
after a resume and completion of the read. If a break is entered
on a programmatic device, a null will be echoed to the device,
but no data is lost.

FCONTROL - 16, 17 - Disable/enable subsystem break

Subsystem break is recognized only on session devices; it can
be enabled on programmatic devices but has no effect. If a
control-y is entered during a read, the read terminates and the
data already input will be retained and provided to the user
program after the control-y trap procedure returns. If control-y
is disabled, any control-y will be stripped from the input but no
trap procedure is called and the read continues. Control-y trap
procedures are armed by the XCONTRAP intrinsic. A subsystem
break character other than control-y may be specified when
unedited terminal mode (FCONTROL 41) is used. In programmatic
mode, the subsystem break character is always stripped from the
input stream.

Paper 3055 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FCONTROL • 18, 19 • Disable/enable tape mode

ATC - This is effectively an FSETMODE 4, an FCONTROL 35, and
suppression of backspace echoing, all rolled into one.

ADCC/ATP • Tape mode can not be enabled.

FCONTROL • 20, 21, 22 • Disable/enable terminal input timer, read
timer

These options can be used to determine the length of time it
took to satisfy a terminal read. It is not a time-out, that is
FCONTROL 4. The manual states that you must enable the timer
before each read, so why is there a disable option? If you read
the timer without enabling the timer, you get the time of the
most recent read that did have the timer enabled. The number
returned is the length of the read in one-hundreths of a second.

FCONTROL - 23, 24 • Disable/enable parity checking

This option enables parity checking on input for the parity
sense specified by FCONTROL 36,

ATC • This option affects input parity checking only, output
parity generation is controlled by FCONTROL 36.

ADCC/ATP • This options controls both input parity checking
and output parity generation, FCONTROL 36 only specifies the type
of parity.

FCONTROL - 25 · Define alternate line terminator

This option is used to select an alternate character that
will terminate terminal input in addition to carriage return. It
is useful if your device terminates input with something other
than return. No CR/LF is echoed at line termination.

ATC - NULL, BS, LF, CR, DCl, DC3, CAN, EM and DEL are not
allowed as terminators. The manual claims that DC2 and ESC are
not allowed as terminators, but they work. If a DC2 is the first
input character from an HP termtype terminal, the HP-3000 drops
the DC2 and sends a DCl back to the terminal, and thinks a block
mode transfer is starting. Any other DC2 is recognized as a
terminator, if enabled. By enabling user block mode transfers
(FCONTROL 29), a DC2 as the first character will also be
recognized as a terminator when enabled. For non-HP termtype
terminals a DC2 is always recognized as a terminator when
enabled.

ADCC/ATP everything (except NULL) is allowed as an
alternate terminator, even carriage return.

Paper 3055 14
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Ir a line terminates with the alternate terminator, the
character will be included in the input buffer and counted in the
length. A read terminated by the alternate character always
returns an error condition. You must call FCHECK to determine
that the read terminated with the alternate character, which is
indicated by errorcode 31.

FCONTROL • 26, 27 - Disable/enable binary transfers

Binary transfers can be used to transmit full 8-bit
characters to and from the terminal. On input, a read will only
be satisfied by receiving all characters requested, a carriage
return (or alternate terminator) will not terminate the read.
Thus, you must always know how many characters to read on each
input from the terminal. Enabling binary transfers also turns
off the ENQ/ ACK flow control protocol and carriage control on
output. No special characters are recognized on input. No CR/LF
is echoed to the terminal at the end of the read. If a session
device is being accessed in binary mode, a break wil,l remove the
terminal from binary mode but it will not be returned to binary
mode when a resume is executed.

FCONTROL - 28, 29 - Disable/enable user block mode transfers

As described above, the normal sequence of events in a block
mode transfer from an HP terminal to the HP-3000 is for the
HP-3000 to send a DCl to the terminal indicating its readiness to
accept data. The terminal sends a DC2 when the enter key is
struck to indicate that it is ready to send data. The HP-3000
responds with another DCl when it is really ready to take the
data. Finally, the terminal sends the data. All of this is
transparent to your program which just issues a big read. If you
would like to participate in this handshake you enable user block
mode transfers and MPE relinquishes control of the handshake.
Your program would issue a small read, get the OC2, and issue
another read to accept the data. This allows you to meddle
before the data shows up.

FCONTROL • 30, 31 • Disable/enable V/3000 driver control

This option is an undocumented option in which the terminal
driver provides low level support for V /3000 use of terminals.
When V/3000 issues a read to the terminal, the driver outputs a
DCl; the terminal user hits enter, which causes a OC2 to be sent
to the 3000; the driver responds with ESC H ESC c DCl, which
locks the keyboard and homes the cursor; it appears that the
driver also enables- binary transfers, because the second read
only terminates by count, not by terminator. Until the DC2 is
received, the read looks like an unedited mode read with CR as
the terminator, except that the read doesn't fail. Any
characters received before a DC2 are discarded {as are an

Paper 3055 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

indeterminate number of characters that immediately follow the
DC2). Typically, this would be a CR(LF) when the terminal is
operating in block, line mode. The ATC sends ESC c ESC H (just a
little inconsistency to keep you awake.)

The terminal d~iver only supports block mode transfers with
HP termtypes and performs one other function during block mode
transfers. Normally you wouldn't put a timeout (FCONTROL 4) on a
block mode read because the user can take an indefinite amount of
time to fill a screen; but you would like to avoid terminal hangs
because data or the terminator from the terminal gets lost. This
situation is handled by the driver for you; the portion of the
read after receipt of the DC2 is timed for (#chars in read/#chars
per sec)+lO seconds. If some data or the terminator is lost and
the read times out, the read will fail and FCHECK will return
error 27. The ADCC/ATP do not perform this function unless
FCONTROL 31 is in effect. The ATC performs this fun ct ion
regardless of the FCONTROL 31 state and uses 30 seconds instead
of 10 seconds when starting the timer.

FCONTROL - 34, 35 - Disable/enable line deletion echo suppression

Option 35 disables the ! ! ! CR/LF echo whe.never a control-x is
received from the terminal. The control-x still causes all data
to be deleted from the input buffer. The ADCC/ATP disables the
!I!, but not the CR/LF.

FCONTROL - 36 - Set parity

This FCONTROL option sets the sense of the parity generated
on output and checked on input. The four possibilities are: O,
space or no parity, all 8 bits of the data are passed thru; 1,
mark parity, the parity bit is always set to one; 2, even, even
parity is generated on all characters ; and 3, odd parity, odd
parity is generated on all characters.

An undocumented effect of this FCONTROL call is that the
previous parity setting is returned in the "param" parameter,
wiping out its original value!

ATC - FCONTROL 36 sets the parity sense and enables output
parity generation. FCONTROL 24 must be called to enable parity
checking on input.

ADCC/ATP - FCONTROL 36 sets the parity sense only. FCONTROL
24 must be called to enable output parity generation which
results in input parity checking, as well.

On the ATC, parity is not reset to the default when a device
is closed. This can be useful if you have a session device that
can not run with the default parity. Each time the system is
started, run a program that: opens the device, sets the parity,

16 Paper 3055
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEAEX85

a.nd closes the device. !t can then be accessed as a session
device with the required parity.

On the ATC, the default parity for programmatic devices is
odd parity on output and no parity checking on input with the
parity bi ts set to zero. The ADCC and ATP default to parity
pass-through for programmatic devices. Note that there is no way
on the ADCC/ATP to request the default parity setting. This
makes it difficult to write a program that sets parity
pass-through without knowledge of the machine type; except for a
subtle trick: issue an FCONTROL 36/0 without an FCONTROL 24. On
the ATC, this results in parity pass-through on output, with
parity stripping (without checking) on input. Without an
FCONTROL 24, the FCONTROL 36 has no effect on the ADCC/ATP,
leaving the default parity pass-through in effect.

The following tables shows the results of testing the various
parity options. In each case, both FCONTROL 24 and FCONTROL 36
were specified so that parity generation was enabled on output
and parity checking was enabled on input.

Option 0 • Space parity or parity pass-through

ATC • pass-through parity on output, did no checking and
stripped parity bits on input.

ADCC • generated even parity on output, checked for even
parity on input.

ATP - generated space parity on output, checked for even
parity on input.

Option 1 - Mark parity

ATC - generated mark parity on output, did no checking and
stripped parity bits on input.

ADCC • generated odd parity on output, checked for odd parity
on input.

ATP - generated mark parity on output, checked for odd parity
on input.

Option 2 - Even parity

ATC/ADCC/ATP - generated even parity on output, checked for
even parity on input and stripped parity bits.

Option 3 - Odd parity

ATC/ADCC/ATP • generated odd parity on output, checked for
odd parity on input and stripped parity bits.

Paper 3055 17
WASHINGTON, D. C.

BAI. TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FCONTROL • 37 • Allocate a terminal

In the old .days you had to allocate a programmatic terminal
before it could be used • now you don't. This option is still
useful, however, because you can set the termtype and terminal
speed with one FCONTROL call. Common sense (mine at least) says
to set termtype and speed each time a device is opened, even if
the proper values are configured.

FCONTROL • 38 • Set terminal type

This option allows you to set the terminal type, but use
FCONTROL 37, and set type and speed all in one shot.

FCONTROL • 39 • Obtain terminal type information

Before changing the terminal type, get the current value and
reset it when you are through.

FCONTROL - 40 - Obtain terminal output s~eed

Before changing the terminal speed, get the current value and
reset it when you are through.

FCONTROL - 41 - Set unedited terminal mode

Unedited terminal mode is probably the most useful FCONTROL
option used to communicate with programmatic devices. It allows
almost all control characters to pass through to the HP-3000
without requiring reads of exact length, as in binary transfers.
Input will terminate on a carriage return or an alternate
terminator, if specified. The subsystem break character,
replacing control-y, can also be specified, but is only effective
on session devices.

ATC - all input parity bi ts are set to zero (7 bit mode).
Unedited mode overrides parity checking.

ADCC/ATP - all input parity bits are passed through (8 bit
mode). Parity checking, when enabled, overrides unedited mode
and all input parity bits are set to zero (7 bit mode).

Binary transfers, when enabled, override unedited terminal
mode enabled. If the input terminates with the end-of-record
character or alternate terminator, no CR/LF is sent to the
terminal. If the input terminates by count, a CR/LF is sent to
the terminal unless an F0ETMODE 4 has been done. Unedited mode
does not turn off the ENQ/ACK flow control protocol.

18 Paper 3055
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FDEVICECONTROL

This intrinsic is related to FCONTROL in the same m~nner that
FFILEINFO is related to FGETINFO. Many of the same functions are
supported, as are many new functions. FDEVICECONTROL provides
intrinsic access to the new features supported by the Workstation
Configurator. Unfortunately, the manual states that many of the
features will not be supported at all in the future or will not
be supported programmatically. Read the manual carefully before
using these virtual features.

PTAPE

The manual describes PTAPE as the intrinsic to use to read
paper tapes. (Paper tape is a fancy data-entry media that is
becoming increasingly popular.) It can be used on the HP-3000 to
access devices that send up to 32767 characters all in one shot,
subject to a few limitations. The data must be record oriented
with carriage returns between records; MPE will cut the data into
256 character records if there are no returns; and the whole mess
must be terminated by a control-y. Certain buffering terminals
allow you to: fill their memory off-line, connect to a computer,
and transmit all the data. This could save considerable time and
money over dial-up phone lines.

DEBUGGING

If you have a requirement to attach a programmatic device to
the HP-3000, the worst strateg~ is to write some code on the
HP-3000, plug the device in and start testing. Murphy says it
won't work and it won't. The method I use is to test the device,
then test the code, and then test the code and the device
together. I test the device by plugging it into an HP-2645 (or
equivalent) terminal, turning on monitor mode, and simulate the
HP-3000 by typing on the keyboard. (Remember that you are
hooking two terminals together; you will probably hook device pin
2 to 2645 pin 3, device pin 3 to 2645 pin 2, and device pin 7 to
2645 pin 7.) You can stimulate the device and observe all
responses quite simply. Any strange behavior can be noted at
this point. The next step is to write the code on the HP-3000 to
access the device in the manner determined by the first tests.
Then plug the HP-2645, not the device, into the HP-3000. Now
type on the 2645 to simulate the device, continue until your code
is debugged. Now you can plug the device into the HP-3000 and
you have a good (modulo Murphy) chance of actually getting it to
work.

Paper 3055 19
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

REFERENCES

Data Communications Handbook (Fundamental), Hewlett-Packard
Company, June 1984, Part # 5957-4634.

Roseville Terminals Cabling Manual, Hewlett-Packard Company, Part
I 5957-9918.

Black Box Catalog, P.O. Box 12800, Pittsburgh, PA 15241, (412)
746-5500 A catalog that is required in every shop.

HP Point-to-Point Workstation I/O Reference Manual, Hewlett~
Packard Company, December 1984, Part # 30000-90250.

Paper 3055 20
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3057, PERFORMANCE O?rIMIZATION IN COBOL

Bruce Tobak
2205 Fulton Road

La Verne, California 91750

The first standard COBOL was proposed in 1960, when computers
were very different from today's mini- and microcomputers. They
were single-user, multi-priest behemoths with architectures designed
to fit the electronic components merely expensive. The processor
itself required a large corporation and a large staff to purchase and
maintain it.

The original COBOL standard was designed with these facts in mind, and
many of the programming practices and accumulated wit and wisdom of the
COBOL programmer come from those times. Presented here is a selection of
that wit and wisdom, and how it relates to COBOL/3000 (and indeed most
modern computers).

1. Indexing is faster than subscripting.

Remember registers? (If you ever programmed in assembly language, you
certainly do. If you've only programmed in a high-level language, you
probably don't.) General purpose computers usually had a limited number
of these high-speed memory locations, generally eight or sixteen. The
compiler, when generating code for a COBOL source program used several
of these for itself, but the remainder were available to the programmer
for USAGE IS INDEX items. Indexing was much faster than subscripting
because in order to access an array element, a subscript would have to
be brought into a register, and possibly converted to a different data
type. Indexing, by definition, meant using an item which was already in
a register, so bypassing the conversation and data movement steps. Worse
still, some computers had addresses that could be operated on only by
special instructions (e.g., the Burroughs B200/300/500 series). This is
the reason that indices can only be added to or subtracted from.

On the HP3000, though, there is only one index register, andit is shared
by all arrays. Therefore, as long as the subscript you are using is
USAGE COMP PICS9(4), there is no difference between indexing and
subscripting - either in the generated code or the speed of the
resulting program. Shops which try to speed up programs by converting
them to use indexing would be better o£f devoting the time yo
programmers' vacations: system performancewould then at least be
improved because of a smaller program development load! However,
performance can be improved by changing your subscripts from COMP-3 to
COMP: the compiler emits code necessary to do the required conversion,
but this is relatively expensive in run time. (But see 5.)

2. COBOL sorts take longer than external sorts.

This is very application dependent, and again has strong roots in
history and folklore. In the Dark Times, the COBOL SORT verb generated
in-line code to call some routines the compiler folks wrote. The
compiler folks generally had better things to do than write sorts, so

PAPER 3057 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

the sorts were not necessarily very good. In addition, these sorts were
not very adaptive to circumstances, and had a limited performace range.
They might involve additional overlays that had to be read in from
(heaven forbid!) cards. Besides, in a batch-oriented, job-step
environment there was not much point to an internal sort. On the
HP3000, though, all sorting is done by the SORT/3000 subsystem,
regardless of whether you use SORT.PUB.SYS or the COBOL SORT verb: the
HP3000 COBOL compilers simply emit code to call SORT/3000 intrinsics on
behalf of your program. The result of this is that sorts done with the
same sets of keys and in the same kinds of environments will take the
same amount of time, regardless of whether you envoke them through COBOL
or through MPE.

The key here is in the same kinds of environments. SORT/3000 needs
memory to work: the more, the better. If your COBOL program requires 20k
words of memory for itself when you execute the SORT verb, SORT/3000
will get only about 9k. Experiments show that when sorting 80-byte
records, SORT/3000 needs about 8k words to produce acceptable
performance, and works best with at least 16k words. So, you' 11 have
better performance with an external sort ...

Sometimes, to determine whether to use an internal sort or an external
one, you should look at your entire application. Many batch-oriented
systems converted to run on the HP3000 have jobsteps that include a sort
to a temporary file, a report on the temp file, a different sort to a
temp file, a report on the new temp file, and so on. This means that
each record in your master file is being handled three times: once as
imput to the sort, once as output to the temp file, and once again as
input from th.e temp file. Replacing the external sort with a SORT verb
with an OUTPUT PROCEDURE reduces this to only one: records are read once
by SORT/3000 on behalf of your program, and then passed to your program
via the output procedure. (Of course, SORT/3000 handles records several
times during its execution, but this number is largely irreducible
except by providing more memory for the sort.) The results of this kind
of redesign can be dramatic: reductions of 2:1 or 3:1 in runtime are
possible.

3. COMPUTE is faster/slower than the ADD/SUBTRACT/MULTIPLY/DIVIDE verbs

Like SORT, this depends on how you use the various computational verbs
available to you in COBOL. If the object is to perform a complex series
of arithemetic operations, using COMPUTE will generally be faster (by a
few microseconds). If you are simply adding values to an accumulator,
ADD and COMPUTE will generate exactly the same code, and so there will
be no performance difference.

4. COBOL is inefficient at arithmetic.

As the previous point shows, how "efficient" a language is at a
particular task depends mostly on how you use it. (This generalization
applies only to general-purpose languages.) By following a few simple
rules, COBOL is as efficient as, say, FORTRAN at arithmetic. In
particular, avoid either implicit or explicit type conversions: don't
mix COMP-3 and COMP items, and try not to mix COMP PIC S9(1-4) with COMP

PAPER 3057 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

P!C S9(5-9). And in addition, avoid arithmetic uith USAGE DISPLAY
i terns, since these always require type conversions. (The HP3000 has
instructions tb operate directly on COMP and COMP-3 items, but lacks
arithmetic instructions to operate on DISPLAY types.) For an extended
discussion of this, see Jim May's paper Programming for Performance,
published in the Proceedings of the 1982 HP3000 IUG Conference,
Edinburgh.

5. Searching~ !MAGE and internal techniques. Searches, or table
lookups, are very common in data processing operations. You probably do
them without thinking in most cases, since every IMAGE master lookup
(DBGET mode 7, or DBFIND) is really a search operation. If you routinely
use IMAGE to do your table lookups for you, you might be surprised at
how much time can be saved by using your own code to perform the same
operation.

The examples used for this article are derived from a real-life
application: printing a purchase order report. Purchase order records
were contained in a detail data set containing four items: a part items:
a part number, a vendor number, a purchase date, and a quantity.(Other
items were l~ft out for the purpose of this example.) Each part number's
corresponding manual master record contains a description for it, and
each vendor number's corresponding manual master record contains a
description for it, and each vendor number's corresponding manual master
record contains the vendor's name and address. To test the methods
outlined here, I wrote a small COBOL-II program to generate a simple
purchase order report, and then modified it to try different search
methods.

In the first example, the i tern being looked up was the vendor's name.
The program in Figure 1 is representative of most such programs: a
serial read (or perhaps, a sort output procedure) get each detail
record, and then a lookup is performed on the associated manual master
to get desriptive information. The lookup is entirely contained in the
paragraph GET-VENDOR, so that various lookup techniquescan be tried
without making significant changes in the rest of the program. (If your
programs are written like this, you should be able to simply lift code
from the examples, place it in your system, and enjoy the kudos.)

All of the examples, and the performance information derived from them,
comes from a 1/2-megabyte Series 30 running T-delta-1 (MPE-V/T) and a
single 7925 disc drive. You should keep this in mind when you examine
the performance data. If you are running a faster system (you 169
a faster system (you couldn't possibly be running a slower one), you
should divide the "CPU-seconds" figures by 2 if you are on a Series III
or Series 37; by 5 on a Series 4x CPU; or by 12 (!) if you are on a
Series 6x machine. Clock times will not scale by as much, since
non-cached I/O rates for a single disc drive are almost identical on all
CPU's. In addition, all timing was done with disc caching turned off.
Catching will in most cases improve wall-time perfonnance, but leave CPU
time almost unchanged. (Disc caching resulted in a slight performance
degradation on on this small-memory Series 30.)

PAPER 3057 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The first test was run using the "standard" program in figure 1. To
produce this 9,000-line report took just under thirteen minutes, and
used 475 CPU seconds. (If you are scaling these numbers for your Series
68 CPU, you should come out with about 5: 45 clock time, and 40 CPU
seconds.) Is any improvement possible? Since by now you have looked at
the graph in figure 5, you know the answer is "yes". The program in
Figure 2 replaces the DBGET with a SEARCH verb, which performs a serial
search of a table in memory. Of course, some preparation is required for
this technique, and this is done in the paragraph INIT-VENDOR-SEARCH.
INIT-VENDOR-SEARCH does a simple serial read of VENDOR-MASTER, and saves
the vendor number and vendor name in VENDOR-TABLE. The result of
running Program 2 is almost a 2:1 reduction in run-time, and savings of
about one-third in CPU time. Clearly the extra effort of creating a
table in memory was well-spent.

COBOL, though, supports an even faster search verb: SEARCH ALL. Using
SEARCH ALL requires that the table used for the search be sorted into
ascending or descending order. This, of course, requires some additional
preparation, shown in Figure 3. SORT-VENDOR-TABLE is a generalized
Shell sort, and you should be able to use this in any of your programs
by changing only the identifiers used for the table. For sorting tables
that fit entirely in memory, it is much faster than the SORT verb. (The
sort would execute faster still if it were programmed in SPL, but the
difference for small tables is not worth the the extra effort.)

The result of using SEARCH ALL is a further improvement, although not as
dramatic a change as eliminating IMAGE from the picture. The ratio will
improve noticeably, though, with larger tables, as you will see shortly.

There is a search method even faster than binary search, however, for
most commercial data. The "80-20" rule is a generalization about most
things in business: twenty percent of the customers generate eighty
percent of the revenue (or orders, or complaints); twenty percent of
your vendors are responsible for eighty percent of your shortages, and
so on. (As practical examples, think about the number of transactions in
your accounting system that use the "accounts payable" or "inventory"
accounts.) Because your computer records will (should) reflect the
parameters in your business, you will probably discover that eighty
percent of the records in a detail are linked to only twenty percent of
your master entries. (Of course, for pure "control" information such as
invoice numbers, this is not true.) This will probably apply to parts in
inventory, to purchase order line items, to sales order items, and other
details requiring "descriptive" information from associated masters.

You can use this property of business data to come up with a new search
rule for your memory array: Whenever an item is found in the table, it
is moved up one entry. Repeated application of this rule rapidly and
automatically organizes your table by frequent use. The resulting
program is shown in Figure 4; the very simple change is in paragraph
GET-VENDOR. About 20 percent less clock time is required now, and about
15 percent less CPU time as well. (The test data used for these timings
was designed to have approximately an 80-20 distribution.)

PAPER 3057 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP JNTEREX85

To summarizethe information gathered so far, look at Figure 5. (You've
probably already done this, but look again.) Clearly, the "standard"
method is the worst of the lot. Given the small effort involved in
adding any of these internal searches, they are probably an easy way to
gain performance. The small amount of "overhead" time in each bar is the
time required to do any pre-processing before the report starts. In
program 1, the time is spent only in opening the data base and output
files. In programs 2 and 4, there is additional time required to read
the master data set, and in program 3, some additional time is required
to sort the array. The overhead time is very low for all three "fast"
methods.

These techniques will work on small master data sets (a few hundred
entries or so), but what about masters too large to fit into the stack?
(Unless you are sorting using a seperate process, you should leave at
least 12K words for any required sort.) In the case of the vendor file,
the maximum would be about 1100 entries. In the case of the part master,
however, the maximum would be only about 650 entries. (In a practical
program, there would be even fewer entries, since these small test
programs make no allowance for V/3000 space, extra files open, or other
uses of the stack. Moreover, there would probably be several manual
masters on which lookups were to be performed.) A modification of the
technique used in Program 4 can still be used as long as the master data
set or sets are not extremely large. In this case, rather than reading
the entire master data set into memory at once, entries are read in "on
demand." No initial "preload" of the array is performed. Instead, the
table size is set to zero during initialization, and as each detail
record is read, a table search is performed. If the table search fails,
the program looks up the key in the appropriate master data set, and the
newly read record is added to the growing array. (If the requested
record is found in the array, its position is adjusted as in Program 4.)
When the array becomes full, there are two choices. First, the entry at
the bottom of the array can be thrown away to make room for the new
entry. This method will efficiently handle cases in which detail records
with a particular key are "clustered" - newly-read records will tend to
migrate to the top of the array as their "cluster" is read.

6. A perspective on performance

With the exception of searching and sorting, most of the performance
questions analyzed here, and most performance debates in general are
matters of microseconds on modern computers. You should take this into
account before embarking on any large rewrite projects. For example,
changing a subscript from COMP-3 to COMP may save 50 microseconds
(millionths of a second) per array access. If you access the table in
question ten million times· over the course of a three-hour run, your
rewrite will save 500 seconds, or about eight minutes out of 180 - a
4-1/2 percent improvement.

Conversely, if you are doing an external sort followed by a report, for
a total run-time of three hours, changing the application to run with a
single internal sort might save an hour or more, a savings which would
justify a two-day redesign. (Assuming that the report is run more often
than once a year.)

PAPER 3057 5
WASHINGTON. 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Finally, performance is much more a matter of choosing the right design
in the first place, rather than "tweaking" a poor design to get more
speed out of it. As the sorting example shows, shaving 20 percent off
the run-time of a bad design will usually pay a lot less than finding a
good design to start with. For an excellent discussion of this, see The
Elements of Programming Style, Kernighan and Plauger (1974), Chapter 6.

PAPER 3057 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

PAGE 0001 HEWLETT-PACKARD 32233A.00.12 COBOL II/3000 FRI, AUG 2, 19

00001
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

001000$CONTROL USLINIT, LINES = 56, MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. TESTSRCH.
001300 ENVIRONMENT DIVISION.
001400 INPUT-OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT REPORT-OUTPUT ASSIGN TO "LPFILE, UR".
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD REPORT-OUTPUT LABEL RECORDS ARE OMITTED.
002000 01 OUTPUT-AREA PIC X(80).
002100 WORKING-STORAGE SECTION.
002200 01 OUTPUT-REC.
002300 05 PART-NUMBER PIC X(16).
002400 05 FILLER PIC X(2) VALUE SPACES.
002500 05 VENDOR-NUMBER PIC Z(4).
002600 05 FILLER PIC X(2) VALUE SPACES.
002700 05 PURCHASE-DATE PIC X(6).
002800 05 FILLER PIC X(2) VALUE SPACES.
002900 05 QUANTITY-PURCHASED PIC z(7)9.99- USAGE DISPLAY.
003000 01 DBSTAT.
003100 05 DB-STATUS PIC S9(4) USAGE COMP.
003200 05 DBSTAT-ELEMENT PIC S9(4) USAGE COMP OCCURS 9,
003300 01 VENDOR-REC.
003400 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
003500 05 VENDOR-NAME PIC X(20).
003600 01 PURCHASE-REC.
003700 05 PART-NUMBER PIC X(16).
003800 05 VENDOR-NUMBER PIC S9(4) COMP.
003900 05 PURCHASE-DATE PIC X(6).
004000 05 QUANTITY-PURCHASED PIC S9(8) COMP.
004100 77 DATA-BASE PIC X(16) VALUE " PURCH ".
004200 77 VENDOR-MASTER PIC X(16) VALUE "VENDOR-MASTER "
004300 77 PURCHASE-FILE PIC X(16) VALUE "PURCHASE-FILE "
004400 77 PART-MASTER PIC X(16) VALUE "PART-MASTER
004500 77 DSET-NAME PIC X(16).
004600 77 PASSWORD PIC X(16).
004700 77 IMAGE-LIST PIC X(32).
004800 77 SAME-LIST PIC X(2) VALUE "*;".
004900 77 ALL-ITEMS PIC X(2) VALUE "@;".
005000 01 DUMMY.
005100 05 FILLER
005200 77 MODE-1
005300 77 MODE-2
005400 77 MODE-3
005500 77 MODE-4
005600 77 MODE-5
005700 77 MODE-6
005800 77 MODE-7
005900 77 DB-MODE
006000 77 NAME-INDEX

PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP VALUE 1.
PIC S9(4) USAGE COMP VALUE 2.
PIC S9(4) USAGE COMP VALUE 3.
PIC S9(4) USAGE COMP VALUE 4.
PIC S9(4) USAGE COMP VALUE 5.
PIC S9(4) USAGE COMP VALUE 6.
PIC S9(4) USAGE COMP VALUE 7.
PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP.

PAPER 3057 7
WASHINGTON, D. C.

BAL. TIMORE WASHINGTON REGIONAL USERS GROUP

PAGE 0002/COBTEXT TESTSRCH
00053 006200 PROCEDURE DIVISION.
00054 006300 INITIALIZATION SECTION.
00055 006400 INIT-DB.
00056 006500 CALL "PRINTIME".
00057 006600 MOVE "; " TO PASSWORD.

INTEREX85

00058 006700 CALL INTRINSIC "DBOPEN" USING DATA-BASE, PASSWORD, MO
00059 006800 DBSTAT.
00060 006900 PERFORM DB-CHECK.
00061 007000 MOVE "VENDOR-MASTER M TO DSET-NAME.
00062 007100 MOVE 201 TO DB-MODE.
00063 007200 CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, 0
00064 007300 DBSTAT, VENDOR-MASTER.
00065 007400 PERFORM DB-CHECK.
00066 007500*
00067 007600
00068 007700
00069 007800
00070 007900
00071 008000*
00072 008100
00073 008200
00074 008300
00075 008400*

MOVE "PURCHASE-FILE H TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE,

DBSTAT, PURCHASE-FILE.
PERFORM DB-CHECK.

MOVE "PART-MASTER ff TO DSET-NAME.

DSET-NAME, D

CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
DBSTAT, PART-MASTER.

00076 008500* Set up list for PURCHASE-FILE.
00077 008600*
00078 008700
00079 008800
00080 008900
00081 009000
00082 009100*

CALL INTRINSIC "DBGET" USING DATA-BASE, PURCHASE-FILE
MODE-1, DBSTAT, ALL-ITEMS, PURCHASE-REC,
DUMMY.

IF DB-STATUS IS NOT = 17 THEN PERFORM DB-CHECK.

00083 009200* Set up list for VENDOR-MASTER
00084 009300*
00085 009400
00086 009500
00087 009600
00088 009700
00089 009800*

MOVE "VENDOR-NUMBER,VENDOR-NAME;" TO IMAGE-LIST.
CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
DBSTAT, IMAGE-LIST, PURCHASE-REC, DUMMY.

IF DB-STATUS IS NOT = 17 PERFORM DB-CHECK.

00090 009900* Open report file
00091 010000*
00092 010100
00093 010200
00094 010300
00095 010400*

OPEN OUTPUT REPORT-OUTPUT.
MOVE ALL SPACES to OUTPUT-AREA.

CALL "PRINTIME".

00096 010500* End of initialization.
00097 010600*

PAPER 3057 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0003/COBTEXT TESTSRCH
00098 010800 REPORT-GENERATION SECTION.
00099 010900 GET-NEXT-RECORD.
00100 011000 CALL "DBGET" USING DATA-BASE, PURCHASE-FILE, MODE-2,
00101 011100 SAME-LIST, PURCHASE-REC, DUMMY.
00102 011200 IF DB-STATUS = 11 GO TO CLEANUP.
00103 011300 PERFORM DB-CHECK.
00104 011400 PERFORM GET-VENDOR.
00105 011500 PERFORM PRINT-LINE.
00106 011600 GO TO GET-NEXT-RECORD.
00107 011700*
00108 011800 PRINT-LINE.
00109 011900 MOVE CORRESPONDING PURCHASE-REC TO OUTPUT-REC.
00110 012000 MOVE CORRESPONDING VENDOR-REC TO OUTPUT-REC.
00111 012100 MOVE OUTPUT-REC TO OUTPUT-AREA.
00112 012200 WRITE OUTPUT-AREA.
00113 012300*
00114 012400 GET-VENDOR.
00115 012500 CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTE
00116 012600 MODE-7, DBSTAT, SAME-LIST, VENDOR-REC,
00117 012700 VENDOR-NUMBER OF PURCHASE~REC.
00118 012800 IF DB-STATUS IS = 17
00119 012900 DISPLAY "Expected vendor not found ~
00120 013000 VENDOR-NUMBER OF PURCHASE-REC
00121 013100 GO TO CLEANUP .
. 00122 013200 PERFORM DB-CHECK.
00123 013300* .
00124 013400 CLEANUP.
00125 013500 CALL INTRINSIC "DBCLOSE" USING DATA-SASE, DSET-NAME,
00126 013600 MODE-1, DBSTAT.
00127 013700 CLOSE REPORT-OUTPUT.
00128 013800 CALL "PRINTIME".
00129 013900 STOP RUN.
00130 014000*
00131 014100 DB-CHECK.
00132 014200 IF DB-STATUS NOT = 0
00133 014300 CALL "DBEXPLAIN" USING DBSTAT
00134 014400 PERFORM CLEANUP
00135 014500 STOP RUN.

PAPER 3057 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0001 HEWLETT-PACKARD 32233A.00.12 COBOL lI/3000 FRI, AUG 2, 19

00001
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

001000$CONTROL USLINIT, LINES = 56, MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. TESTSRCH.
001300 ENVIRONMENT DIVISION.
001400 INPUT·OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT REPORT-OUTPUT ASSIGN TO "LPFILE,UR",
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD REPORT-OUTPUT LABEL RECORDS ARE OMITTED.
002000 01 OUTPUT-AREA PIC X(80).
002100 WORKING-STORAGE SECTION.
002200 01 OUTPUT-REC.
002300 05 PART-NUMBER PIC X(16).
002400 05 FILLER PIC X(2) VALUE SPACES.
002500 05 VENDOR-NUMBER PIC Z(4).
002600 05 FILLER PIC X(2) VALUE SPACES.
002700 05 PURCHASE-DATE PIC X(6).
002800 05 FILLER PIC X(2) VALUE SPACES.
002900 05 QUANTITY-PURCHASED PIC Z(7)9.99- USAGE DISPLAY.
003000 01 DBSTAT.
003100 05 DB-STATUS PIC S9(4) USAGE COMP.
003200 05 DBSTAT-ELEMENT PIC S9(4) USAGE COMP OCCURS 9.
003300 01 VENDOR-REC.
003400 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
003500 05 VENDOR-NAME PIC X(20).
003600 01 PURCHASE-REC.
003700 05 PART-NUMBER PIC X(16).
003800 05 VENDOR-NUMBER PIC S9(4) COMP.
003900 05 PURCHASE-DATE PIC X(6).
004000 05 QUANTITY-PURCHASED PIC S9(8) COMP.
004100 77 DATA-BASE PIC X(16) VALUE" FURCH ",
004200 77 VENDOR-MASTER PIC X(16) VALUE "VENDOR-MASTER .,
004300 77 PURCHASE-FILE PIC X(16) VALUE "PURCHASE-FILE "
004400 77 PART-MASTER PIC X(16) VALUE "PART-MASTER
004500 77 DSET-NAME PIC X(16).
004600 77 PASSWORD PIC X(l6).
004700 77 IMAGE-LIST PIC X(32).
004800 77 SAME-LIST PIC X(2) VALUE"*;".
004900 77 ALL-ITEMS PIC X(2) VALUE"@;".
005000 01 DUMMY.
005100 05 FILLER
005200 77 MODE-1
005300 77 MODE-2
005400 77 MODE-3
005500 77 MODE-4
005600 77 MODE-5
005700 77 MODE-6
005800 77 MODE-7
005900 77 DB-MODE
006000 77 NAME-INDEX

PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP VALUE 1.
PIC S9(4) USAGE COMP VALUE 2.
PIC S9(4) USAGE COMP VALUE 3,
PIC S9(4) USAGE COMP VALUE 4.
PIC S9(4) USAGE COMP VALUE 5.
PIC S9(4) USAGE COMP VALUE 6.
PIC S9(4) USAGE COMP VALUE 7.
PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP.

PAPER 3057 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 6 !5

PAGE 0002/COBTEXT TESTSRCH
00053 006110*
00054 006120* Search table for vendor number and name
00055 006130*
00056 006140 77 VENDOR-TABLE-SIZE PIC S9(4) USAGE COMP VALUE 0.
00057 006150 01 VENDOR-TABLE.
00058 006160 05 VENDOR-TABLE-ENTRY OCCURS 1 TO 150 TIMES
00059 006170 DEPENDING ON VENDOR-TABLE-SIZE
00060 006180 INDEXED BY VENDOR-INDEX.
00061 006190 10 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00062 006191 10 VENDOR-NAME PIC X(20).

PAPER 3057 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAl USERS GROUP fNTEREX85

PAGE 0003/COBTEXT TESTSRCH
00063 006200 PROCEDURE DIVISION.
00064 006300 INITIALIZATION SECTION.
00065 006400 INIT-DB.
00066 006500 CALL "PRINTIME".
00067 006600 MOVE "; " TO PASSWORD.
00068 006700 CALL INTRINSIC "DBOPEN" USING DATA-BASE, PASSWORD, MO
00069 006800 DBSTAT.
00070 006900 PERFORM DB-CHECK.
00071 007000 MOVE "VENDOR-MASTER " TO DSET-NAME.
00072 007100 MOVE 201 TO DB-MODE.
00073 007200 CALL INTRINSIC "DBINFO" USING DATA·BASE, DSET-NAME, D
00074 007300 DBSTAT, VENDOR-MASTER.
00075 007400 PERFORM DB-CHECK.
00076 007500*
00077 007600
00078 007700
00079 007800
00080 007900
00081 00800011

00082 008100
00083 008200
00084 008300
00085 008400*

MOVE "PURCHASE-FILE " TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D

DBSTAT, PURCHASE-FILE.
PERFORM DB-CHECK.

MOVE "PART-MASTER " TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D

DBSTAT, PART-MASTER.

00086 00850011 Set up list for PURCHASE-FILE.
00087 008600*
00088 008700
00089 008800
00090 008900
00091 009000
00092 00910011

CALL INTRINSIC "DBGET'' USING DATA-BASE, PURCHASE-FILE
MODE-1, DBSTAT, ALL-ITEMS, PURCHASE-REC,
DUMMY.

IF DB-STATUS IS NOT = 17 THEN PERFORM DB-CHECK.

00093 009200* Set up list for VENDOR-MASTER
00094 009300*
00095 009400
00096 009500
00097 009600
00098 009700
00099 00980011

MOVE "VENDOR-NUMBER,VENDOR-NAME;" TO !MAGE-LIST.
CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
DBSTAT, IMAGE-LIST, PURCHASE-REC, DUMMY.

IF DB-STATUS IS NOT = 17 PERFORM DB-CHECK.

00100 009900* Open report file
00101 01000011

00102 010100
00103 010200
00104 01021011

OPEN OUTPUT REPORT-OUTPUT.
MOVE ALL SPACES to OUTPUT-AREA.

00105 01022011 Initialization for vendor search table.
00106 010230*
00107 010240 !NIT-VENDOR-SEARCH.
00108 010250 MOVE 0 TO VENDOR-TABLE-SIZE.
00109 010260 INIT-VENDOR-SEARCH-1.
00110 010270 CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
00111 010280 DBSTAT, SAME-LIST, VENDOR-REC, DUMMY
00112 010290 IF DB-STATUS IS = 0
00113 010291 ADD 1 TO VENDOR-TABLE-SIZE
00114 010292 SET VENDOR-INDEX TO VENDOR-TABLE-SIZE
00115 010293 MOVE CORRESPONDING VENDOR-REC TO

PAPER 3057 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0004/COBTEXT
00116 010294
00117 010295
00118 010296
00119 010297
00120 010298"

TESTSRCH
VENDOR-TABLE-ENTRY (VENDOR-!NDEX)

GO TO INIT-VENDOR-SEARCH-1.
IF DB-STATUS IS NOT = 11 PERFORM DB·CHECK.
CALL "PRINTIME".

00121 010299* End of initialization.
00122 010300*

PAPER 3057 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0005/COBTEXT TESTSRCH
00123 010800 REPORT-GENERATION SECTION.
00124 010900 GET-NEXT-RECORD.
00125 011000 CALL "DBGET" USING DATA-BASE, PURCHASE-FILE, MODE-2,
00126 011100 SAME-LIST, PURCHASE-REC, DUMMY.
00127 011200 IF DB-STATUS = 11 GO TO CLEANUP.
00128 011300 PERFORM DB-CHECK.
00129 011400 PERFORM GET-VENDOR.
00130 011500 PERFORM PRINT-LINE.
00131 011600 GO TO GET-NEXT-RECORD.
00132 011700*
00133 011800 PRINT-LINE.
00134 011900 MOVE CORRESPONDING PURCHASE-REC TO OUTPUT-REC.
00135 012000 MOVE CORRESPONDING VENDOR-REC TO OUTPUT-REC.
00136 012100 MOVE OUTPUT-REC TO OUTPUT-AREA.
00137 012200 WRITE OUTPUT-AREA.
00138 012300*
00139 012400 GET-VENDOR.
00140 012500*
00141 012600* Get the vendor specified in the purchase record. To do s
00142 012700* search the vendor table.
00143 012800*
00144 012900
00145 013000
00146 013100
00147 013200
00148 013210
00149 013220
00150 013230
00151 013240
00152 013250
00153 013260
00154 013270
00155 013280
00156 013300*

SET VENDOR- INDEX TO 1.
SEARCH VENDOR-TABLE-ENTRY; AT END

DISPLAY "Expected vendor not found -
VENDOR-NUMBER OF PURCHASE-REC

GO TO CLEANUP
; WHEN VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX)
VENDOR-NUMBER OF PURCHASE-REC

NEXT SENTENCE.
MOVE VENDOR-NAME OF VENDOR-TABLE (VENDOR-INDEX)
TO VENDOR-NAME OF VENDOR-REC.
MOVE VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX) TO

VENDOR-NUMBER OF VENDOR-REC.

00157 013400 CLEANUP.
00158 013500 CALL INTRINSIC "DBCLOSE" USING DATA-BASE, DSET-NAME,
00159 013600 MODE-1, DBSTAT.
00160 013700 CLOSE REPORT-OUTPUT.
00161 013800 CALL "PRINTIME",
00162 013900 STOP RUN.
00163 014000*
00164 014100 DB-CHECK.
00165 014200 IF DB-STATUS NOT = 0
00166 014300 CALL "DBEXPLAIN" USING DBSTAT
00167 014400 PERFORM CLEANUP
00168 014500 STOP RUN.

14 PAPER 3057
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX 8 5

PAGE 0001 HEWLE'IT-PACKARD 32233A.00.12 COBOL II/3000 FRI, AUG 2, 19

00001
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

001000$CONTROL USLINIT, LINES ~ 56, MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. TESTSRCH.
001300 ENVIRONMENT DIVISION.
001400 INPUT-OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT REPORT-OUTPUT ASSIGN TO "LPF!LE,UR".
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD REPORT-OUTPUT LABEL RECORDS ARE OMITTED.
002000 01 OUTPUT-AREA PIC X(80).
002100 WORKING-STORAGE SECTION.
002200 01 OUTPUT-REC.
002300 05 PART-NUMBER PIC X(l6).
002400 05 FILLER PIC X(2) VALUE SPACES.
002500 05 VENDOR-NUMBER PIC Z(4).
002600 05 FILLER PIC X(2) VALUE SPACES.
002700 05 PURCHASE-DATE PIC X(6).
002800 05 FILLER PIC X(2) VALUE SPACES.
002900 05 QUANTITY-PURCHASED PIC Z(7)9.99- USAGE DISPLAY.
003000 01 DBSTAT.
003100 05 DB-STATUS PIC S9(4) USAGE COMP.
003200 05 DBSTAT-ELEMENT PIC S9(4) USAGE COMP OCCURS 9.
003300 01 VENDOR-REC.
003400 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
003500 05 VENDOR-NAME PIC X(20).
003600 01 PURCHASE-REC.
003700 05 PART-NUMBER PIC X(16).
003800 05 VENDOR-NUMBER PIC S9(4) COMP.
003900 05 PURCHASE-DATE PIC X(6).
004000 05 QUANTITY-PURCHASED PIC S9(8) COMP.
004100 77 DATA-BASE PIC X(16) VALUE" PURCH ",
004200 77 VENDOR-MASTER PIC X(16) VALUE "VENDOR-MASTER "
004300 77 PURCHASE-FILE PIC X(16) VALUE "PURCHASE-FILE "
004400 77 PART-MASTER PIC X(16) VALUE "PART-MASTER
004500 77 DSET-NAME PIC X(16).
004600 77 PASSWORD PIC X(16).
004700 77 IMAGE-LIST PIC X(32).
004800 77 SAME-LIST PIC X(2) VALUE"*;".
004900 77 ALL-ITEMS PIC X(2) VALUE "@;".
005000 01 DUMMY.
005100 05 FILLER
005200 77 MODE-1
005300 77 MODE-2
005400 77 MODE-3
005500 77 MODE-4
005600 77 MODE-5
005700 77 MODE-6
005800 77 MODE-7
005900 77 DB-MODE
006000 77 NAME-INDEX

PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP VALUE 1.
PIC S9(4) USAGE COMP VALUE 2.
PIC S9(4) USAGE COMP VALUE 3.
PIC S9(4) USAGE COMP VALUE 4.
PIC S9(4) USAGE COMP VALUE 5,
PIC S9(4) USAGE COMP VALUE 6.
PIC S9(4) USAGE COMP VALUE 7.
PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP.

PAPER 3057 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0002/COBTEXT TESTSRCH
00053 006200*
00054 006300* Search table for vendor number and name
00055 006400*
00056 006500 77 VENDOR-TABLE-SIZE PIC S9(4) USAGE COMP VALUE O.
00057 006600 01 VENDOR-TABLE.
00058 006700 05 VENDOR-TABLE-ENTRY OCCURS 1 TO 150 TIMES
00059 006800 DEPENDING ON VENDOR-TABLE-SIZE
00060 006900 ASCENDING KEY IS VENDOR-NUMBER
00061 007000 OF VENDOR-TABLE-ENTRY
00062 007100 INDEXED BY VENDOR-INDEX.
00063 007200 10 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00064 007300 10 VENDOR-NAME PIC X(20).
00065 007400 77 I PIC S9(4) USAGE COMP.
00066 007500 77 J PIC S9(4) USAGE COMP.
00067 007600 77 K PIC S9(4) USAGE COMP.
00068 007610 77 D PIC S9(4) USAGE COMP.
00069 007700 77 T PIC S9(4) USAGE COMP.
00070 007800 77 S PIC S9(4) USAGE COMP.
00071 007900 01 T-VENDOR-TABLE-ENTRY.
00072 008000 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00073 008100 05 VENDOR-NAME PIC X(20).

16 PAPER 3057
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0003/COBTEXT TESTSRCH
00074 008300 PROCEDURE DIVISION.
00075 008400 INITIALIZATION SECTION.
00076 008500 !NIT-DB.
00077 008600 CALL "PRINTIME".
00078 008700 MOVE "; " TO PASSWORD.
00079 008800 CALL INTRINSIC "DBOPEN" USING DATA-BASE, PASSWORD, MO
00080 008900 DBSTAT.
00081 009000 PERFORM DB-CHECK.
00082 009100 MOVE "VENDOR-MASTER " TO DSET-NAME.
00083 009200 MOVE 201 TO DB-MODE.
00084 009300 CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
00085 009400 DBSTAT, VENDOR-MASTER.
00086 009500 PERFORM DB-CHECK.
00087 009600*
00088 009700
00089 009800
00090 009900
00091 010000
00092 010100*
00093 010200
00094 010300
00095 010400
00096 010500*

MOVE "PURCHASE-FILE " TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE,

DBSTAT, PURCHASE-FILE.
PERFORM DB-CHECK.

MOVE "PART-MASTER " TO DSET-NAME.

DSET-NAME, D

CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
DBSTAT, PART-MASTER.

00097 010600* Set up list for PURCHASE-FILE.
00098 010700*
00099 010800
00100 010900
00101 011000
00102 011100
00103 011200*

CALL INTRINSIC "DBGET" USING DATA-BASE, PURCHASE-FILE
MODE-1, DBSTAT, ALL-ITEMS, PURCHASE-REC,
DUMMY.

IF DB-STATUS IS NOT = 17 THEN PERFORM DB-CHECK.

00104 011300* Set up list for VENDOR-MASTER
00105 011400*
00106 011500
00107 011600
00108 011700
00109 011800
00110 011900*

MOVE "VENDOR-NUMBER,VENDOR-NAME;" TO IMAGE-LIST.
CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
DBSTAT, IMAGE-LIST, PURCHASE-REC, DUMMY.

IF DB-STATUS IS NOT = 17 PERFORM DB-CHECK.

00111 012000* Open report file
00112 012100*
00113 012200
00114 012300
00115 012400*

OPEN OUTPUT REPORT-OUTPUT.
MOVE ALL SPACES to OUTPUT-AREA.

00116 012500* Initialization for vendor search table.
00117 012600*
00118 012700 !NIT-VENDOR-SEARCH.
00119 012800 MOVE 0 TO VENDOR-TABLE-SIZE.
00120 012900 INIT-VENDOR-SEARCH-1.
00121 013000 CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
00122 013100 DBSTAT, SAME-LIST, VENDOR-REC, DUMMY
00123 013200 IF DB-STATUS IS = 0
00124 013300 ADD 1 TO VENDOR-TABLE-SIZE
00125 013400 SET VENDOR-INDEX TO VENDOR-TABLE-SIZE
00126 013500 MOVE CORRESPONDING VENDOR-REC TO

PAPER 3057 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

TESTSRCH
VENDOR-TABLE-ENTRY (VENDOR-INDEX)

GO TO INIT-VENDOR-SEARCH-1.

INTEREX85

PAGE 0004/COBTEXT
00127 013600
00128 013700
00129 013800
00130 013900*
00131 014000
00132 014100
00133 014200*

IF DB-STATUS IS NOT = 11 PERFORM DB-CHECK.

PERFORM SORT-VENDOR-TABLE THRU SORT-VENDOR-TABLE-END
CALL "PRINTIME".

00134 014300* End of initialization.
00135 014400*

PAPER 3057 18
WASHINGTON, 0. C.

BAL TrMORE WASHINGTON REGIONAL USERS GROU? INTEREX 8 5

PAGE 0005/COBTEXT TESTSRCH
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180

014600 REPORT-GENERAT!ON SECTION.
014700 GET-NEXT-RECORD.
014800 CALL "DBGET" USING DATA-BASE, PURCHASE-FILE, MODE-2,
014900 SAME-LIST, PURCHASE-REC, DUMMY.
015000 IF DB-STATUS = 11 GO TO CLEANUP.
015100 PERFORM DB-CHECK.
015200 PERFORM GET-VENDOR.
015300 PERFORM PRINT-LINE.
015400 GO TO GET-NEXT-RECORD.
015500*
015600 PRINT-LINE.
015700 MOVE CORRESPONDING PURCHASE-REC TO OUTPUT-REC.
015800 MOVE CORRESPONDING VENDOR-REC TO OUTPUT-REC.
015900 MOVE OUTPUT-REC TO OUTPUT-AREA.
016000 WRITE OUTPUT-AREA.
016100*
016200 GET-VENDOR.
016300*
016400* Get the vendor specified in the purchase record. To do •
016500* search the vendor table.
016600*
016700
016800
016900
017000
017100
017200
017300
017400
017500
017600
017700
017800*

SEARCH VENDOR-TABLE-ENTRY; AT END
DISPLAY "Expected vendor not found -

VENDOR-NUMBER OF PURCHASE-REC
GO TO CLEANUP

; WHEN VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX)
VENDOR-NUMBER OF PURCHASE-REC

NEXT SENTENCE.
MOVE VENDOR-NAME OF VENDOR-TABLE (VENDOR-INDEX)
TO VENDOR-NAME OF VENDOR-REC.
MOVE VENDOR-NUMBER OF VENDOR-TABLE {VENDOR·INDEX) TO

VENDOR-NUMBER OF VENDOR-REC.

017900 CLEANUP.
018000 CALL INTRINSIC "DBCLOSE" USING DATA-BASE, DSET-NAME.
018100 MODE-1, DBSTAT.
018200 CLOSE REPORT-OUTPUT.
018300 CALL "PRINTIME".
018400 STOP RUN.
018500*
018600 DB-CHECK.
018700 IF DB-STATUS NOT = 0
018800 CALL "DBEXPLAIN" USING DBSTAT
018900 PERFORM CLEANUP
019000 STOP RUN.

PAPER 3057 19
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0006/COBTEXT TESTSRCH
00181 019200 SORT-VENDOR-TABLE.
00182 019300*
00183 019400* Sort the vendor lookup table so that a "SEARCH ALL ...
00184 019500* statement can be used. (Shell sort.)
00185 019600*
00186 019700 COMPUTE D = 8191.
00187 019800 COMPUTE K = 1.
00188 019900 SORT-K.
00189 020000 IF K > 12 GO TO SORT-K-OUT.
00190 020100 COMPUTE D = (D - 1) /2.
00191 020200 COMPUTE I = D + 1.
00192 020300 SORT-I.
00193 020400 IF I > VENDOR-TABLE-SIZE GO TO SORT-I-OUT.
00194 020500 MOVE VENDOR-TABLE-ENTRY (I) TOT-VENDOR-TABLE-ENTRY.
00195 020600 MOVE VENDOR-NUMBER OF T-VENDOR-TABLE-ENTRY TO T.
00196 020700 COMPUTE J = I - D.
00197 020800 SORT-J.
00198 020900 IF J c 1 GO TO SORT-J-OUT.
00199 021000 IF T NOT < VENDOR-NUMBER OF VENDOR-TABLE-ENTRY (J)
00200 021100 GO TO SORT-J-OUT.
00201 021200 COMPUTE S = J + D.
00202 021300 MOVE VENDOR-TABLE-ENTRY (J) TO VENDOR-TABLE-ENTRY (S)
00203 021400 COMPUTE J = J - D.
00204 021500 GO TO SORT-J.
00205 021600 SORT-J-OUT.
00206 021700 COMPUTE S = J + D.
00207 021800 MOVE T-VENDOR-TABLE-ENTRY TO VENDOR-TABLE-ENTRY (S).
00208 021900 ADD 1 TO I.
00209 022000 GO TO SORT-I.
00210 022100 SORT-I-OUT.
00211 022200 ADD 1 TO K.
00212 022300 GO TO SORT-K.
00213 022400 SORT-K-OUT.
00214 022500*
00215 022600* Done with sort.
00216 022700*
00217 022800 SET VENDOR-INDEX TO 1.
00218 022900 SORT-PRINT.
00219 023000 IF VENDOR-NUMBER OF VENDOR-TABLE-ENTRY (VENDOR-INDEX}
00220 023100 NOT c VENDOR-NUMBER OF
00221 023200 VENDOR-TABLE-ENTRY (VENDOR-INDEX + 1)
00222 023300 DISPLAY "Sort failed at ", VENDOR-NUMBER OF
00223 023400 VENDOR-TABLE-ENTRY (VENDOR-INDEX)
00224 023500 STOP RUN.
00225 023600 SET VENDOR-INDEX UP BY 1.
00226 023700 IF VENDOR-INDEX < VENDOR-TABLE-SIZE GO TO SORT-PRINT.
00227 023800 SORT-VENDOR-TABLE-END.

PAPER 3057 20
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

PAGE 0001 HEWLETr-PACKARD 32233A.00.12 COBOL II/3000 FRI, AUG 2, 19

00001
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

001000$CONTROL USLINIT, LINES = 56, MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. TESTSRCH.
001300 ENVIRONMENT DIVISION.
001400 INPUT-OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT REPORT-OUTPUT ASSIGN TO "LPFILE,UR".
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD REPORT-OUTPUT LABEL RECORDS ARE OMITTED.
002000 01 OUTPUT-AREA PIC X(80).
002100 WORKING-STORAGE SECTION.
002200 01 OUTPUT-REC.
002300 05 PART-NUMBER PIC X(16).
002400 05 FILLER PIC X(2) VALUE SPACES.
002500 05 VENDOR-NUMBER PIC Z(4).
002600 05 FILLER PIC X(2) VALUE SPACES.
002700 05 PURCHASE-DATE PIC X(6).
002800 05 FILLER PIC X(2) VALUE SPACES.
002900 05 QUANTITY-PURCHASED PIC Z(7)9.99- USAGE DISPLAY.
003000 01 DBSTAT.
003100 05 DB-STATUS PIC S9{4) USAGE COMP.
003200 05 DBSTAT-ELEMENT PIC S9(4) USAGE COMP OCCURS 9.
003300 01 VENDOR-REC.
003400 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
003500 05 VENDOR-NAME PIC X(20).
003600 01 PURCHASE-REC.
003700 05 PART-NUMBER PIC X(16).
003800 05 VENDOR-NUMBER PIC S9(4) COMP.
003900 05 PURCHASE-DATE PIC X(6).
004000 05 QUANTITY-PURCHASED PIC S9(8) COMP.
004100 77 DATA-BASE PIC X(16) VALUE" PURCH ".
004200 77 VENDOR-MASTER PIC X(16) VALUE "VENDOR-MASTER "
004300 77 PURCHASE-FILE PIC X(l6) VALUE "PURCHASE-FILE "
004400 17 PART-MASTER PIC X(l6) VALUE "PART-MASTER
004500 77 DSET-NAME PIC X(l6).
004600 77 PASSWORD PIC X(16).
004700 77 IMAGE-LIST PIC X(32).
004800 77 SAME-LIST PIC X(2) VALUE "*;".
004900 17 ALL-ITEMS PIC X(2) VALUE"@;".
005000 01 DUMMY.
005100 05 FILLER
005200 77 MODE-1
005300 77 MODE-2
005400 77 MODE-3
005500 77 MODE-4
005600 77 MODE-5
005700 77 MODE-6
005800 77 MODE-7
005900 77 DB-MODE
006000 77 NAME-INDEX

PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP VALUE 1.
PIC S9(4) USAGE COMP VALUE 2.
PIC S9(4) USAGE COMP VALUE 3,
PIC S9(4) USAGE COMP VALUE 4.
PIC S9(4) USAGE COMP VALUE 5.
PIC S9(4) USAGE COMP VALUE 6.
PIC S9(4) USAGE COMP VALUE 7,
PIC 59(4) USAGE COMP.
PIC S9(4) USAGE COMP.

PAPER 3057 21
WASHINGTON, D. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX85

PAGE 0002/COBTEXT TESTSRCH
00053 006200*
00054 006300* Search table for vendor number and name
00055 006400*
00056 006500 77 VENDOR-TABLE-SIZE PIC S9(4} USAGE COMP VALUE 0.
00057 006600 01 VENDOR-TABLE.
00058 006700 05 VENDOR-TABLE-ENTRY OCCURS 1 TO 150 TIMES
00059 006800 DEPENDING ON VENDOR-TABLE-SIZE
00060 006900 ASCENDING KEY IS VENDOR-NUMBER
00061 007000 OF VENDOR-TABLE-ENTRY
00062 007100 INDEXED BY VENDOR-INDEX.
00063 007200 10 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00064 007300 10 VENDOR-NAME PIC X(20).
00065 007400 77 I PIC S9(4) USAGE COMP.
00066 007500 77 J PIC S9(4) USAGE COMP.
00067 007600 71 K PIC S9(4) USAGE COMP.
00068 007610 77 D PIC S9(4) USAGE COMP.
00069 007700 77 T PIC S9(4) USAGE COMP.
00070 007800 77 S PIC S9(4) USAGE COMP.
00071 007900 01 T-VENDOR-TABLE-ENTRY.
00072 008000 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00073 008100 05 VENDOR-NAME PIC X(20).

PAPER 3057 22
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0003/COBTEXT TESTSRCH
00074 008300 PROCEDURE DIVISION.
00075 008400 INITIALIZATION SECTION.
00076 008500 INIT-DB.
00077 008600 CALL "PRINTIME".
00078 008700 MOVE Mj " TO PASSWORD.
00079 008800 CALL INTRINSIC "DBOPEN" USING DATA-BASE, PASSWORD, MO
00080 008900 DBSTAT.
00081 009000 PERFORM DB-CHECK.
00082 009100 MOVE "VENDOR-MASTER M TO DSET-NAME.
00083 009200 MOVE 201 TO DB-MODE.
00084 009300 CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
00085 009400 DBSTAT, VENDOR-MASTER.
00086 009500 PERFORM DB-CHECK.
00087 009600*
00088 009700
00089 009800
00090 009900
00091 010000
00092 010100*
00093 010200
00094 010300
00095 010400
00096 010500*

MOVE "PURCHASE-FILE " TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE,

DBSTAT, PURCHASE-FILE.
PERFORM DB-CHECK.

MOVE "PART-MASTER " TO DSET-NAME.

DSET-NAME, D

CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
DBSTAT, PART-MASTER.

00097 010600* Set up list for PURCHASE-FILE.
00098 010700*
00099 010800
00100 010900
00101 011000
00102 011100
00103 011200*

CALL INTRINSIC "DBGET" USING DATA-BASE, PURCHASE-FILE
MODE-1, DBSTAT, ALL-ITEMS, PURCHASE-REC,
DUMMY.

IF DB-STATUS IS NOT ~ 17 THEN PERFORM DB-CHECK.

00104 011300* Set up list for VENDOR-MASTER
00105 011400*
00106 011500
00107 011600
00108 011700
00109 011800
00110 011900*

MOVE "VENDOR-NUMBER,VENDOR-NAME;" TO IMAGE-LIST.
CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
DBSTAT, IMAGE-LIST, PURCHASE-REC, DUMMY.

IF DB-STATUS IS NOT = 17 PERFORM DB-CHECK.

00111 012000* Open report file
00112 012100*
00113 012200
00114 012300
00115 012400*

OPEN OUTPUT REPORT-OUTPUT.
MOVE ALL SPACES to OUTPUT-AREA.

00116 012500* Initialization for vendor search table.
00117 012600*
00118 012700 !NIT-VENDOR-SEARCH.
00119 012800 MOVE 0 TO VENDOR-TABLE-SIZE.
00120 012900 INIT-VENDOR-SEARCH-1.
00121 013000 CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
00122 013100 DBSTAT, SAME-LIST, VENDOH-REC, DUMMY
00123 013200 IF DB-STATUS IS = 0
00124 013300 ADD 1 TO VENDOR-TABLE-SIZE
00125 013400 SET VENDOR-INDEX TO VENDOR-TABLE-SIZE
00126 013500 MOVE CORRESPONDING VENDOR-REC TO

PAPER 3057 23
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

TEST SR CH
VENDOR-TABLE-ENTRY (VENDOR-INDEX)

GO TO INIT-VENDOR-SEARCH-1.

INTEREX85

PAGE 0004/COBTEXT
00127 013600
00128 013700
00129 013800
00130 013900*
00131 014000
00132 014100
00133 014200*

IF DB-STATUS IS NOT = 11 PERFORM DB-CHECK.

PERFORM SORT-VENDOR-TABLE THRU SORT-VENDOR-TABLE-END
CALL "PRINTIME".

00134 014300* End of
00135 014400*

PAPER 3057

initialization.

24
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

PAGE 0005/COBTEXT TESTSRCH
00136 014600 REPORT-GENERATION SECTION.
00137 014700 GET-NEXT-RECORD.
00138 014800 CALL "DBGET" USING DATA-BASE, PURCHASE-FILE, MODE-2,
00139 014900 SAME-LIST, PURCHASE-REC, DUMMY.
00140 015000 IF DB-STATUS = 11 GO TO CLEANUP.
00141 015100 PERFORM DB-CHECK.
00142 015200 PERFORM GET-VENDOR.
00143 015300 PERFORM PRINT-LINE.
00144 015400 GO TO GET-NEXT-RECORD.
00145 015500*
00146 015600 PRINT-LINE.
00147 015700 MOVE CORRESPONDING PURCHASE-REC TO OUTPUT-REC.
00148 015800 MOVE CORRESPONDING VENDOR-REC TO OUTPUT-REC.
00149 015900 MOVE OUTPUT-REC TO OUTPUT-AREA.
00150 016000 WRITE OUTPUT-AREA.
00151 016100*
00152 016200 GET-VENDOR.
00153 016300*
00154 016400* Get the vendor specified in the purchase record. To do s
00155 016500* search the vendor table.
00156 016600*
00157 016700
00158 016800
00159 016900
00160 017000
00161 017100
00162 017200
00163 01 7300
00164 017400
00165 017500
00166 017600
00167 017700
00168 017800*

SEARCH VENDOR-TABLE-ENTRY; AT END
DISPLAY "Expected vendor not found •

VENDOR-NUMBER OF PURCHASE-REC
GO TO CLEANUP

WHEN VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX)
VENDOR-NUMBER OF PURCHASE-REC

NEXT SENTENCE.
MOVE VENDOR-NAME OF VENDOR-TABLE (VENDOR-INDEX)
TO VENDOR-NAME OF VENDOR-REC.
MOVE VENDOR-NUMBER OF VENDOR-TABLE (VENDOR~INDEX) TO

VENDOR-NUMBER OF VENDOR-REC.

00169 017900 CLEANUP.
00170 018000 CALL INTRINSIC "DBCLOSE" USING DATA-BASE, DSET-NAME,
00171 018100 MODE-1, DBSTAT.
00172 018200 CLOSE REPORT-OUTPUT.
00173 018300 CALL "PRINTIME".
00174 018400 STOP RUN.
00175 018500*
00176 018600 DB-CHECK.
00177 018700 IF DB-STATUS NOT = 0
00178 018800 CALL "DBEXPLAIN" USING DBSTAT
00179 018900 PERFORM CLEANUP
00180 019000 STOP RUN.

PAPER 3057 25
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0006/COBTEXT TESTSRCH
00181 019200 SORT-VENDOR-TABLE.
00182 019300*
00183 019400* Sort the vendor lookup table so that a "SEARCH ALL ''
00184 019500* statement can be used. (Shell sort.)
00185 019600*
00186 019700 COMPUTE D = 8191.
00187 019800 COMPUTE K = 1.
00188 019900 SORT-K.
00189 020000 IF K > 12 GO TO SORT-K-OUT.
00190 020100 COMPUTE D = (D - 1) /2.
00191 020200 COMPUTE I = D + 1.
00192 020300 SORT-I.
00193 020400 IF I > VENDOR-TABLE-SIZE GO TO SORT-I-OUT.
00194 020500 MOVE VENDOR-TABLE-ENTRY (I) TOT-VENDOR-TABLE-ENTRY,
00195 020600 MOVE VENDOR-NUMBER OF T-VENDOR-TABLE-ENTRY TO T.
00196 020700 COMPUTE J = I - D.
00197 020800 SORT-J.
00198 020900 IF J < 1 GO TO SORT-J-OUT.
00199 021000 IF T NOT < VENDOR-NUMBER OF VENDOR-TABLE-ENTRY (J)
00200 021100 GO TO SORT-J-OUT.
00201 021200 COMPUTE S = J + D.
00202 021300 MOVE VENDOR-TABLE-ENTRY (J) TO VENDOR-TABLE-ENTRY (S)
00203 021400 COMPUTE J = J - D.
00204 021500 GO TO SORT-J.
00205 021600 SORT-J-OUT.
00206 021700 COMPUTE S = J + D.
00207 021800 MOVE T-VENDOR-TABLE-ENTRY TO VENDOR-TABLE-ENTRY (S).
00208 021900 ADD 1 TO I.
00209 022000 GO TO SORT-I.
00210 022100 SORT-I-OUT.
00211 022200 ADD 1 TO K.
00212 022300 GO TO SORT-K.
00213 022400 SORT-K-OUT.
00214 022500*
00215 022600* Done with sort.
00216 022700*
00217 022800 SET VENDOR-INDEX TO 1.
00218 022900 SORT-PRINT.
00219 023000 IF VENDOR-NUMBER OF VENDOR-TABLE-ENTRY (VENDOR-INDEX)
00220 023100 NOT < VENDOR-NUMBER OF
00221 023200 VENDOR-TABLE-ENTRY (VENDOR-INDEX + 1)
00222 023300 DISPLAY "Sort failed at", VENDOR-NUMBER OF
00223 023400 VENDOR-TABLE-ENTRY (VENDOR-INDEX)
00224 023500 STOP RUN.
00225 023600 SET VENDOR-INDEX UP BY 1.
00226 023700 IF VENDOR-INDEX < VENDOR-TABLE-SIZE GO TO SORT-PRINT.
00227 023800 SORT-VENDOR-TABLE-END.

26 PAPER 3057
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

PAGE 0001 HEWLETI'-PACKARD 32233A.00.12 COBOL II/3000 FRI, AUG 2, 19

00001
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

001000$CONTROL USLINIT, LINES = 56, MAP
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. TESTSRCH.
001300 ENVIRONMENT DIVISION.
001400 INPUT-OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT REPORT-r>UTPUT ASSIGN TO "LPFILE,UR".
001700 DATA DIVISION.
001800 FILE SECTION.
001900 FD REPORT-OUTPUT LABEL RECORDS ARE OMITI'ED.
002000 01 OUTPUT-AREA PIC X(80).
002100 WORKING-STORAGE SECTION.
002200 01 OUTPUT-REC.
002300 05 PART-NUMBER PIC X(16).
002400 05 FILLER PIC X(2) VALUE SPACES.
002500 05 VENDOR-NUMBER PIC Z(4).
002600 05 FILLER PIC X(2) VALUE SPACES.
002700 05 PURCHASE-DATE PIC X(6).
002800 05 FILLER PIC X(2) VALUE SPACES.
002900 05 QUANTITY-PURCHASED PIC Z(7)9.99- USAGE DISPLAY.
003000 01 DBSTAT.
003100 05 DB-STATUS PIC S9(4) USAGE COMP.
003200 05 DBSTAT-ELEMENT PIC S9(4) USAGE COMP OCCURS 9.
003300 01 VENDOR-REC.
003400 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
003500 05 VENDOR-NAME PIC X(20).
003600 01 PURCHASE-REC.
003700 05 PART-NUMBER PIC X(16).
003800 05 VENDOR-NUMBER PIC S9(4) COMP.
003900 05 PURCHASE-DATE PIC X(6).
004000 05 QUANTITY-PURCHASED PIC S9(8) COMP.
004100 77 DATA-BASE PIC X(16) VALUE" PURCH ".
004200 77 VENDOR-MASTER PIC X(16) VALUE "VENDOR-MASTER "
004300 77 PURCHASE-FILE PIC X(16) VALUE "PURCHASE-FILE "
004400 77 PART-MASTER PIC X(16) VALUE "PART-MASTER
004500 77 DSET-NAME PIC X(16).
004600 77 PASSWORD PIC X(16).
004700 77 IMAGE-LIST PIC X(32).
004800 77 SAME-LIST PIC X(2) VALUE"*;".
004900 77 ALL-ITEMS PIC X(2) VALUE "@;".
005000 01 DUMMY.
005100 05 FILLER
005200 77 MODE-1
005300 77 MODE-2
005400 77 MODE-3
005500 77 MODE-4
005600 77 MODE-5
005700 77 MODE-6
005800 77 MODE-7
005900 77 DB-MODE
006000 77 NAME-INDEX

PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP VALUE 1.
PIC S9(4) USAGE COMP VALUE 2.
PIC S9(4) USAGE COMP VALUE 3.
PIC S9(4) USAGE COMP VALUE 4.
PIC S9(4) USAGE COMP VALUE 5.
PIC S9(4) USAGE COMP VALUE 6.
PIC S9(4) USAGE COMP VALUE 7.
PIC S9(4) USAGE COMP.
PIC S9(4) USAGE COMP.

PAPER 3057 27
WASHINGTON, D. C.

BAL TfMORE WASHINGTON REGIONAl USERS GROUP INTEREX85

PAGE 0002/COBTEXT TESTSRCH
00053 006200*
00054 006300* Search table for vendor number and name
00055 006400*
00056 006500 77 VENDOR-TABLE-S!ZE PIC S9(4) USAGE COMP VALUE O.
00057 006600 01 VENDOR-TABLE.
00058 006700 05 VENDOR-TABLE-ENTRY OCCURS 1 TO 150 TIMES
00059 006800 DEPENDING ON VENDOR-TABLE-SIZE
00060 006900 INDEXED BY VENDOR-INDEX.
00061 007000 10 VENDOR-NUMBER P!C S9(4) USAGE COMP.
00062 007100 10 VENDOR-NAME PIC X(20).
00063 007200 01 TEMP-VENDOR-TABLE-ENTRY.
00064 007300 05 VENDOR-NUMBER PIC S9(4) USAGE COMP.
00065 007400 05 VENDOR-NAME PIC X(20).

28 PAPER 3057
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

PAGE 0003/COBTEXT TESTSRCH
00066 007600 PROCEDURE DIVISION.
00067 007700 INITIALIZATION SECTION.
00068 007800 INIT-DB.
00069 007900 CALL "PRINTIME'',
00070 008000 MOVE"; "TO PASSWORD.
00071 008100 CALL INTR!NSIC "DBOPEN" USING DATA-BASE, PASSWORD, MO
00072 008200 DBSTAT.
00073 008300 PERFORM DB-CHECK.
00074 008400 MOVE "VENDOR-MASTER " TO DSET-NAME.
00075 008500 MOVE 201 TO DB-MODE.
00076 008600 CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D
00077 008700 DBSTAT, VENDOR-MASTER.
00078 008800 PERFORM DB-CHECK.

MOVE "PURCHASE-FILE " '!'O DSET-NAME.
CALL. INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D

DBSTAT, PURCHASE-FILE.
PERFORM DB-CHECK.

MOVE "PART-MASTER " TO DSET-NAME.
CALL INTRINSIC "DBINFO" USING DATA-BASE, DSET-NAME, D

DBSTAT, PART-MASTER.

00079 008900*
00080 009000
00081 009100
00082 009200
00083 009300
00084 009400*
00085 009500
00086 009600
00087 009700
00088 009800*
00089 009900* Set up list for PURCH~SE-FILE.
00090 010000*
00091 010100
00092 010200
00093 010300
00094 010400
00095 010500*

CALL INTRINSIC "DBGEr US!NG DATA-BASE, PURCHASE-FILF:
MODE-1, DBSTAT, ALL-ITEMS, PURCHASE-REC,
DUMMY.

IF DB-STATUS IS NOT = 17 THEN PERFORM DB-CHECK.

00096 010600* Set up list for VENDOR-MASTER
00097 010700*
00098 010800
00099 010900
00100 011000
00101 011100
00102 011200*

MOVE "VENDOR-NUMBER,VENDOR-NAME;" TO IMAGE-LIST.
CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
DBSTAT, IMAGE-LIST, PURCHASE-REC, DUMMY.

IF DB-STATUS IS NOT = 17 PERFORM DB-CHECK.

00103 011300* Open report file
00104 011400*
00105 011500
00106 011600
00107 011700*

OPEN OUTPUT REPORT-OUTPUT.
MOVE ALL SPACES to OUTPUT-AREA.

00108 011800* Initialization for vendor search table.
00109 011900*
00110 012000 !NIT-VENDOR-SEARCH.
00111 012100 MOVE 0 TO VENDOR-TABLE-SIZE.
00112 012200 INIT-VENDOR-SEARCH-1.
00113 012300 CALL INTRINSIC "DBGET" USING DATA-BASE, VENDOR-MASTER,
00114 012400 DBSTAT, SAME-LIST, VENDOR-REC, DUMMY
00115 012500 IF DB-STATUS IS = 0
00116 012600 ADD 1 TO VENDOR-TABLE-SIZE
00117 012700 SET VENDOR-INDEX TO VENDOR-TABLE-SIZE
00118 012800 MOVE CORRESPONDING VENDOR-REC TO

PAPER 3057 29
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0004/COBTEXT TESTSRCH
00119 012900 VENDOR-TABLE-ENTRY (VENDOR-INDEX)
00120 013000 GO TO INIT-VENDOR-SEARCH-1.
00121 013100 IF DB-STATUS IS NOT = 11 PERFORM DB-CHECK.
00122 013200 CALL "PRINTIME".
00123 013300*
00124 013400* End of initialization.
00125 013500*

PAPER 3057 30
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PAGE 0005/COBTEXT TESTSRCH
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178

013520 REPORT-GENERATION SECTION.
013530 GET-NEXT-RECORD.
013540 CALL "DBGET" USING DATA-BASE, PURCHASE-FILE, MODE-2,
013550 SAME-LIST, PURCHASE-REC, DUMMY.
013560 IF DB-STATUS = 11 GO TO CLEANUP.
013570 PERFORM DB-CHECK.
013580 PERFORM GET-VENDOR.
013590 PERFORM PRINT-LINE.
013600 GO TO GET-NEXT-RECORD.
013610*
013620 PRINT-LINE.
013630 MOVE CORRESPONDING PURCHASE-REC TO OUTPUT-REC.
013640 MOVE CORRESPONDING VENDOR-REC TO OUTPUT-REC.
013650 MOVE OUTPUT-REC TO OUTPUT-AREA.
013660 WRITE OUTPUT-AREA.
013670*
013680 GET-VENDOR.
013690*
013700* Get the vendor specified in the purchase record. To do s
013710* search the vendor table.
013720*
013730
013740
013750
013760
013770
013780
013790
013800
013810
013820
013830
013840
013850*

SET VENDOR- INDEX TO 1.
SEARCH VENDOR-TABLE-ENTRY; AT END

DISPLAY "Expected vendor not found -
VENDOR-NUMBER OF PURCHASE-REC

GO TO CLEANUP
; WHEN VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX)
VENDOR-NUMBER OF PURCHASE-REC

NEXT SENTENCE.
MOVE VENDOR-NAME OF VENDOR-TABLE (VENDOR-INDEX)
TO VENDOR-NAME OF VENDOR-REC.
MOVE VENDOR-NUMBER OF VENDOR-TABLE (VENDOR-INDEX) TO

VENDOR-NUMBER OF VENDOR-REC.

013860* Also, interchange the located entry with the preceding o
013870* unless it's already the first or second.
013880*
013890 IF VENDOR-INDEX > 2
013900 MOVE VENDOR-TABLE-ENTRY (VENDOR-INDEX) TO
013910 TEMP-VENDOR-TABLE-ENTRY
013920 MOVE VENDOR-TABLE-ENTRY (VENDOR-INDEX - 1)
013930 TO VENDOR-TABLE-ENTRY (VENDOR-INDEX)
013940 MOVE TEMP-VENDOR-TABLE-ENTRY TO
013950 VENDOR-TABLE-ENTRY (VENDOR-INDEX - 1).
013960*
013970 CLEANUP.
013980 CALL INTRINSIC "DBCLOSE" USING DATA-BASE, DSET-NAME,
013990 MODE-1, DBSTAT.
014000 CLOSE REPORT-OUTPUT.
014010 CALL "PRINTIME",
014020 STOP RUN.
014030*
014040 DB-CHECK.

PAPER 3057 31
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

PAGE 0006/COBTEXT
00179 014050
00180 014060
00181 014070
00182 014080

PAPER 3057

TESTSRCH
IF DB-STATUS NOT = 0

CALL "DBEXPLAIN"
PERFORM CLEANUP
STOP RUN.

32

USING DBSTAT

INTEREX85

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3054. HEWLETT PACKARD RESPONSE CENTER

Roy A. Clifton
Support Operations Manager

HP North American Response Center
Santa Clara, California

l. Original Concept

A. The problem statement
B. Locations
C. Staffing
D. DP support
E. Productivity improvements
F. Response Center Objectives

l!. The first year

A. Staffing
B. HPCOACH
C. DP support
D. Remote Support
E. RC Documentation
F. Patch Coordination

III. The second year and beyond

A. Predictive Support
B. After Hours Dispatch
C. CE Technical Assist
D. Total Quality Control
E. System Support Team
F. System Interrupt Team
G. Application Notes
H. Product Division Feedback
I. Future RC Tools

IV. Summary

V. Statistical information

INTEREX85

This is the written presentation text; the actual presentation
will focus less upon the Response Center evolution and more

upon the statistical results of its existence.

Paper 3054 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

I. Original Concept

The current implementation of Hewlett Packard•s Response Centers
is, in some ways, different than described below. In most ways
it is the same. Notably, the European Response Center has
evolved into a two-layer organization, the Country Response
Centers and Computer Support Pinewood rather than as a single
entity. The Original Concept is presented to show how the
program was initially envisioned.

A. The problem statement

Prior to the Response Centers (RC) HP supplied telephone support
(PICS) to customers on a contractual basis at the local
(area/country) level. This part of our software support program
had been extremely important in achieving both customer
satisfaction and customer loyalty. At the same time it became a
limiting factor in our ability to expand our support offerings.
The number of Systems Engineers dedicated to telephone support
continued to increase but not in proportion to the number of
products that had to be supported. To prepare for the future
support requirements of our customers we needed to consolidate
our current PICS activities into two Response Centers in North
America and one Response Center in Europe.

These Response Centers would encompass our current AEO
phone-in-consulting as well as the hardware Tele-support and
hardware after-hours dispatch. Each center would consist of a
day shift and two off-hours shifts thus allowing 24 hour
operation. The average permanent staffing of each center would
be 60 professionals, 12 technical support, and nine managers. In
addition to the permanent staff, approximately 10 field
profesisonals would be involved on a rotational basis with the
Response Center.

Two centers in North America would provide support to ICON PICs
Centers. The European Center would be self-contained with its
own data base, while the two centers in North America would share
a single data base. Information common to both systems would be
kept in sync via daily DS transmissions.

The implementation of the Response Centers would start in October
of FY '83 and be completed by February of FY '84. The two
centers in North America would begin customer support in Q2 FY
'84. The European Center would lag North America by
approximately one quarter due to the more complex issues involved
in data communication. The described implementation was chosen
to m1n1m1ze the impact of their transition on the field
operations and the financial start-up costs.

Paper 3054 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

B. Locations

The location of the Response Centers has been evaluated and the
following sites recommended •

1. Atlanta • (ARC) given the percentage of HP customers in
the Eastern Time Zone one of the two North American Centers
should be in that zone. Atlanta was chosen because of it
being easy to attract people to live there; as well as having
good schools and direct air transportation to the rest of the
U.S. Since Atlanta is also the Southern Region Headquarters
it would be easier to leverage some needed services in that
location.

2. Cupertino/Sunnyvale/Santa Clara • (SCRC) the second North
America site should be close to our Systems divisions and IND
and CSD as well as serving the high percentage of customers in
the Pacific Time Zone.

3. Europe • Pinewood (ERC) • primary consideration is the
availability of skilled professionals and existing support
from the current HP site. The cost and availability of
communications media, and the UK's membership in the EEC were
the deciding factors in choosing Pinewood.

C. Staffing

Staffing and hiring for the Response Centers would take place in
a phased method during FY '84. During the first quarter the
North American Centers would hire and train approximately 303 of
the required professionals. This hiring would be off-set by not
hiring the same number of people in the field operations. During
Q2 FY '84 the North American Response Centers would begin
operation by drafting almost 1003 of the needed professionals
from the field for two week tours of duty in the centers.
Additional staff would be hired by the centers during Q2 FY' 84
again offsetting these hires by not hiring field operations
professionals. In Q3 the centers would complete their hiring of
full time staff. The field contribution would decrease to 703
due to first quarter hires becoming productive. Hiring would
return to normal in the field operations during fourth quarter
and the field draft would decrease to 303. By the start of Ql FY
'85 steady state operation is achieved in North America. The
centers would be fully staffed and only 103 of the members would
be field professionals on two week assignments.

The European Response Center would follow a similar plan but one
quarter offset from the North American Centers. Although this
offset is due to circumstances outside our control it has the
benefit of distributing the start-up costs over the year and
allows us to learn from our experiences in Atlanta and Cupertino.

Paper 3054 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

D. DP Support

The Response Centers will be supported for EDP purposes by two
data centers - one in Cupertino and one in Europe. Each data
center will consist of a large HP3000 system, UPS system, data
comm control and spares to allow continuous operation. Initial
software will consist of STARSII, IBS, TRAKII and possibly
FIREMAN. Atlanta will be connected to Cupertino via leased lines
and multi-point. Eventually X. 25 connections will be used to
lower the communication costs.

E. Productivity Gains

In addition to providing customers with a better level of overall
support and service it was expected that we could accomplish the
following real productivity gains in the affected organizations -
AEO and CEO.

1) Provide 24 hour, 7 day per week software support with
between the same to no more than 103 increase in the number of
professionals.

2) Provide 24 hour hardware Tele-Support with the same
staffing level as current 8-5 coverage.

service for hardware
consistency than is

the same cost as the

3) Provide an HP after-hours answering
maintenance with better quality and
currently delivered for approximately
multiple methods of operation today.

4) Minimize the interrupt driven activities in our field
operations.

5) Decrease th~ duplication of current field operations
activity in providing software support.

6) Speed-up the ability to provide quality support on new
products.

7) Decrease the amount of field support equipment.

8) Reduce the duplication of effort that takes place in
solving similar problems in our field technical centers.

9) Improve our ability to support major acqounts with
dispersed networks.

Paper 3054 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

F. RC Objectives

The RC objectives established were:

Use technology to increase customer satisfaction through the
use of a common database and increased availability of
diagnostic tools and predictive maintenance.

Improve teamwork to decrease problem resolution times by
creating support teams which cross discipline lines and making
them responsible for solving problems.

Leverage off response center to improve support by increasing
hours of coverage, identifying frequency of problems, and
working with divisions on new support tools and supportability
of new products.

Paper 3054 5
WASHINGTON, 0. C.

BAL. TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

II. The First Year

A. Staffing

During the first year of operation, technical staffing for the
RCs was accomplished by using HP field engineers on a rotating
loan program (FOL). This provided several benefits:.

Customers received the best combination of experience and
technical knowledge to answer their calls.

RC engineers were provided the opportl,lnity to be trained in a
less stressful environment.

RC engineers had the chance to watch and learn from field
engineers to broaden their view of interfacing with customers.

Field engineers were exposed to a wider variety of calls than
they would normally encounter in their own offices.

As RC engineers (RCEs) completed their training (see "The RCE
training binder", below) they were mentored by FOL engineers
until ready to proceed upon their own. Note that the training
included analytical and people skills training in addition to
technical training. At the time RCEs went online, they were
typically better trained (technically) than their FOL
counterparts, but did not have the equivalent "real" experience.
However, this was at least partially offset by the fact that the
RCEs were hired specifically for this job and they did not
consider this to be a 'part time' job, but rather as their 'real'
job. During the latter part of the first year, the FOL
contingent in the RC began to ramp down as the permanent
engineers began to take on the call responsibility. For the most
part, hardware RCEs were already trained CEs from HP' s field
operations.

In addition to the technical, analytical and people skills
training, engineers were expected to participate in programming
projects and field and factory visits. As we listened to our FOL
engineers we determined that burnout would be a significant issue
if not addressed at an early. stage. Therefore, we made several
important decisions. The first was that we would go light on
managment hiring to allow hiring additional engineers early in
the program. This would maximize the availability of engineers
for phone duty as early as possible. Secondly, we decided to
hire more engineers than actually needed to answer the expected
volume of calls. This would allow all RCEs to have weeks off the
phones. During this time, they would work on projects, visit the
field and/or factory, take training or other activities except
taking calls. This strategy worked well in providing for a
motivated staff of engineers and an extremely low turnover rate.
However, the managment team began to experience its own burnout.
This was addressed in November, 1984 through a reorganization
which provided for an additional 8 managers in each RC. The bulk

Paper 3054 6
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP 1INTEAEX85

of the new management team t.ras in place by April, 1985. This
provided the right balance of engineers and management for
efficient operation.

From the
groups.
composed
members.

beginning RCEs t.re.re brganized into mixed discipline
This means that each working team of engineers was
of hardware, general system and applications software
There were several reasons for this orientation:

People naturally communicate with others having the same
expertise and experiences. This is a comfortable mode. By
creating mixed teams, we expected significantly greater
exchange between members not having the same background. This
would tend to raise the average system-wide knowledge of every
engineer rather than to increase their specific expertise.

All the expertise necessary to resolve almost any problem now
would reside on each team rather than on any specific team.
This would provide for 'trapping' calls in a team and having
that team responsible for resolving it. !n addition, if
expertise in another area was needed, an appropriate engineer
would be on the team instead of on another team located at the
other end of the building or elsewhere.

Prior to the previously mentioned reorganization, the different
'types' of engineers' were separately managed even though they sat
together on a team. This means that all hardware engineers were
managed by one manager, all applications software engineers were
managed by a different manager and the general software engineers
were managed by a third and fourth · manager. Holding team
meetings and coaching and planning sessions was difficult due to
the spread-out nature of the members of a particular manager's
organization. As an integral feature of the reorganization, the
mixed teams are now managed as a team. This means that our first
level managers have responsibility for all three 'types' of
engineers. The advantage, of course, is that they all sit
together as a team.

B. HPCOACH

The PC support organization, HPCOACH, was merged with the RCs in
late 1984. This would coalesce HP's support for computer
products into one organization. PC product support in Europe is
provided through the Country Response Centers.

HPCOACH, originally known as the Personal Software Assistance
Center, went "on the air" on October 1, 1983, The initial
charter was to assist customers in using PC software from PSD.
This charter was soon expanded to include peripheral and systems
support for HP's PCs.

In its first month HPCOACH answered 2, 735 customer questions.
This number grew rapidly until February 1984 became our first
10,000 answer month.

Paper 3054 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

HPCOACH has made a major contribution to the quality of HP's
personal computers, peripherals and software by providing fast
feedback from users to the various divisions. This was
particularly true in the case of PSD where, as part of the PSD
Support Group, HPCOACH actually participated in the MR process.

HPCOACH has been a focal point for the production and
distribution of documentation for our customers. In January, we
produced our first edition of "Answers to the Most Frequently
Asked Questions on the HP 150". This document was soon packed
with each 150 shipped. It has now been expanded to cover the
HP110 and peripherals. HPCOACH has generated over 30 application
notes and along with notes created by the product divisions
distributes about 50 application notes per day to our customers.

C. DP Support

As identified in section I.D., the RCs opened with one DP
facility in Santa Clara with Atlanta achieving access via leased
lines. Within a relatively short time, this DP arrangement was
determined to be inadequate for the RCs needs. Therefore,
additional systems and equipment along with the staffing to
operate, configure and program it was added to the function.
From a start with one system manager/system administrator the DP
organization grew to two development engineers, one
programmer/analyst, one diagnostic system manager, one operations
manager and one facilities information systems manager along with
the necessary operations staff to operate 7 days a week, 24 hours
a day within the first year. By the end of that first year,
three administrative systems were necessary in addition to the
engineer's hands on diagnostic systems to run the business.

D. Remote support (Telesupport)

Remote support was the first hardware support program implemented
in the RCs. This function, as well as hardware consulting for
the software engineers, is performed by the hardware engineers on
each team. The concept is to use remote diagnostic procedures on
HP3000 systems to determine failure causes and provide that
information to the responsible Customer Engineer (CE) for his use
in resolving the problem. The local HP area office determines if
a hardware service call can be remotely diagnosed. If so, the
call is electronically transferred to the RC for analysis. After
the RCE investigates the problem, the results are electronically
transferred back to the local office for use by the CE. This
procedure saves time for the CE and customer by determining the
cause of failures prior to the CE arriving on the customer's site
ensuring that the CE has the appropriate parts and expertise. In
addition, we have found that about 203 of the calls received in
the RC can be resolved without the CE going on site.

Paper 3054 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXBl5

E. RC documentation

Our first year of operation was focused upon working out the
details of our daily jobs. This was primarily in the areas of
interfacing with customers and HP field and factory organizations
as well as ourselves. To provide consistency, the following
documents were developed:

1. The Book of Knowledge is a compendium of how-tos and check
lists for RCEs. Included are i terns such as factory support
organization charts, how to download patches, memory dump
procedures and field support office locations and names.

2. The RCE training binder contains a copy of the RC training
plan and check lists for completion of course modules. The
plan includes technical, analytical and people skills
development materials and managers check off courses as they
are completed. This document defines a "phones ready" RCE.
This document, of course, is in constant refinement as new
products and training becomes available and necessary.

3. A Field Notification Procedure defines the process for
reassigning responsibility for an RC call to the HP field
operation. This must be done in a controlled manner and the
process provides a detailed flowchart format to cover all
contingencies. This document was developed jointly with the
HP field operation.

t. Patch Coordination.

During first year of operation, we found that everyone seemed to
benefit by the RCs ability to install patches on customers
systems to resolve problems. However, this is a time consuming
procedure and, therefore we implemented the patch coordinator.
This person(s) was responsible for installing patches on
customers systems when requested by an RCE. This program
provided consistency in the patch procedure and increased RCE
productivity.

Paper 3054 9
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GR01.JP INTEAEX85

I!I. The second. year and beyond

During the first part of the second year of operations, the RCs
began to focus more energy on improving existing programs and
developing new ways to leverage our organization and knowledge to
provide better customer support and lay the groundwork for better
future products. In addition, we began implementing product
information feedback to the HP product divisions for their use in
prioritizing the assignment of their resources.

A. Predictive support

This program provides for programmatic statistical analysis of
the customer's log files. Through this analysis, future device
failures can be predicted. The customer;s system then transmits
this information to an HP system at the RC. This automatically
envokes Remote Support and possible on-site activity. The major
benefit is that repairs can be scheduled prior to failure rather
than at the time of failure. The customer schedules the running
of the analysis program on their system and thus maintains
control of their system utilization. It is anticipated that
Predictive Support will interface to future Artificial
Intelligence support tools.

B. After Hours Dispatch

Centralized After Hours Dispatching contributes to Hewlett
Packard's goal of improving customer satisfaction by providing
dispatching service during night business hours in a manner
similar to that used during day business hours. Customer support
contracts are checked against a database maintained by the
customer's local service office and in this way we are able to
explain any additional cost that might be associated with on-site
service that night. In addition, Remote Support services are
extended to assist customers in recovering quickly from system or
peripheral malfunctions. If on-site service is required to
resolve the problem, the RC will page the appropriate Customer
Engineer and he/she will call the customer back to arrange for
the visit.

C. CE Technical Assist

Customer Engineers being very responsible individuals, usually
know when they need help in understanding and resolving a
problem. The Customer Engineer usually just wants to discuss the
events, symptoms and his action plan with a more experienced
engineer to determine if he is headed in the right direction.
The Response Center has started to develop an on-line support
organization that we call CE Tech Assi~t. Currently, the Center
has a full staff of engineers who deal with the workstation
products. The next product family will be the commercial systems
and then the technical systems. This consulting team also
collects data relative to the reliability and supportabilty of

Paper 3054 10
WASHINGTON, 0. C.

i
BAL TfMORE WASHINGTON REGIONAl USERS GROUP INTEREX85

our products and participates with the manufacturing divisions in
improving current products and designing future products.

0. Total ~ality Control

Total Quality Control (TQC) is HPs reference to its
implementation stategy for a quality program that has the
objective to improve customer satisfaction by eliminating defects
from any process, whether it be a manufacturing activity or a
service. TQC is a managment philosophy totally committed to
quality that focuses on continually improving the engineer's work
by employing scientific methods of data collection and analysis
on the process steps with a goal of perfecting them - perfection
begin the elimination of defects or "doing the job right the
first time". The result of the TQC methodology is measured by
the end product exceeding the customer's expectations.

The US Response Centers are approaching TQC from two different
directions. One stresses first line employee involvement in
isolating and resolving deviations and bottlenecks in the process
of providing answers to customer calls. This approach encourages
employee participation and has the benefit of increasing employee
morale by giving them responsibility for identifying problems
that impede the delivery of the correct solution to Response
Center users, proposing solutions to the management of the center
and implementing them with management involvement and support.
In addition, communication between employees and managers is
improved because they are all actively involved in a unified
approach toward improved customer satisfaction.

The second TQC program involves surveying customers in order to
define needs as well as gauge their satisfaction with responses
to their calls. The survey will be implemented by managment
personnel performing telephone interviews of customers. Aside
from the obvious outcome of identifying ways the RC's service may
be improved, the survey will raise management communication with
their customers.

Both projects stress a methodical approach to problem
identification and resolution, management support and an effort
to meet the customer's needs better. The contrast between the
two highlight the flexibility of TQC in approaching various
situations.

E. System Support Team.

In addition to the above, the RCs also initiated the System
Support Team (SST). This team is dedicated to providing internal
support for the PI~s engineers. They do not take calls directly
but rather act as consultants for the engineers who are actually
taking calls. T:1is function is staffed from the Support
Engineering organization. By focusing on technical and
analytical skills coaching, they can become very proficient in
their respective areas of expertise.

Paper 3054 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Support Engineering in the Response Centers is chartered to
provide a high level of technical assistance and training to
other elements of the RC and directly to customers as required.
In addition, Support Engineering participates in definition and
development of new RC support services and productivity tools by
working closely with other RC groups. Its mission is:

Provide technical and analytical skills consulting for RCEs.

Assist in the Field Notification process by screening system
calls that are candidates for the Field Notification process.

Provide dump analysis service to PICs teams and the System
Interrupt team as necessary.

Assist RCEs in down loading patches to customer systems and
provide total patch installation to the System Interrupt team.

F. System Interrupt Team.

Another new program implemented recently is the System Interrupt
Team (SIT). This team is responsible for taking all system
interrupt calls in each RC. The team is dedicated to this
function and takes no other calls. The team is jointly staffed
by the Support Engineering and Support Operation organizations.
By focusing on handling all system interrupts, significant
expertise is gained by the team members and subsequently provided
to customers.

The mission of the SIT is to:

Provide a group of engineers focusing on assisting customers
to restart their systems from a system interrupt expeditiously
and in a manner that will maximize data integrity.

Increase customer satisfaction by presenting a consistent
methodology that exhibits concern for the customers situation,
minimizes down time and provides the best possibility of
preventing another interrupt.

Utilize information recorded in TRAKII to consult with the
customer regarding any patterns of interrupts that may be
forming and keep team members informed of customers who are
experiencing multiple failures.

Assure that all appropriate tools are utilized to provide the
customer with the most complete information possible about the
cause of and any potential remedy to the interrupt.

Increase the productivity of the PICs operation by eliminating
high priority interrupt-type calls into one group thereby
decreasing engineer 'context switch' time for the remainder of
the operations team.

Paper 3054 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

G. Application Notes

Application Notes are intended to provide Hewlett·Packard
customers with information in a format that will assist them in
using and managing the hardware and software capabilities of
their systems. Application Notes are created as a result of
analysis of telephone inquiries to the Response Centers where the
volume of calls we receive indicates a need for addition to or
consolidation of information available through Hewlett-Packard
support services.

The Application Notes are distributed with the Software Status
Bulletin (SSB) to assure wide availability, but aren't included
with every SSB since their creation is determined by the
circumstances outlined above.

HP3000 Application Note #1 is the "HP3000 PRINTER CONFIGURATION
GUIDE" for HP-IB systems (this excludes the Series II and III.).
Hewlett Packard introduced a number of printers in recent years
for text, graphic and word-processing applications. This guide
covers some of the most common questions that System Managers
have in configuring printers on their systems.

HPlOOO Application Note #1 is entitled "UPDATING RTE-A • VERSION
A.84 TO A.85". This guide contains a description of the steps
necessary to update to this release of RTE, A.85, and provides
hints to allow one to make a smooth transition to this release.

H. Product division feedback

In addition to continued focus upon our relationship with
customers and HP's field organization, we began to look for
opportunities to leverage the data we had been collecting for
feedback to HP's product development divisions. This required us
to examine the data we were collecting and to discuss with the
divisions the nature of data they would like to see from us. As
a result of We have met with the managment teams of several
product divisions. These meetings have been received with
enthusiasm and results. The divisions have now found the single
source of real customer data they have been looking for and have
responded with appropriate zeal. In most cases, these high level
meetings have been followed by meetings between RC and division
engineers to discuss problem areas in more detail. In some
cases, the R&D organizations have sent engineers to actually sit
in the RC and take customer calls as a means to provide 'real
world' experience. Where enough time has elapsed to see change,
we have seen improvement in product quality. This activity
continues as we work with the divisions to further refine the
type of data we will collect and report back to them. We view
this as a major contribution to HP and HP's customers!

Paper 3054 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

I. Future RC Tools

A development team, dedicated to improving customer support
through RC tools, is a major advantage to Hewlett Packard's RCs
and customers. This team examines the present and future needs
of the RCs and then develops and implements the appropriate
tools. This means that support cost can be minimized by
providing the tools necessary to increase the productivity of
RCEs rather than continuing to hire more engineers to keep pace
with product introductions and sales. "Working smarter rather
than harder" is the phrase we like to use to describe how we can
continue to be successful through the use of our own development
team. In addition to increasing productivity, these tools also
increase the availability of knowledge--knowledge through
efficient linking of previous solutions as well as easier to use
knowledge gathering ability.

HP' s support development team will play an important role in
providing superior support and maximizing our customer's return
on support dollar investment.

Paper 3054 14
WASHINGTON, D. C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

IV. Summary

HP' s RCs have grown considerably since they started 17 months
ago. They have become an important element of HP's strategy to
deliver hardware and software support more effectively. The RCs
provide software telephone assistance for all of HP's contractual
support customers as well as provide remote diagnosis for HP 3000
hardware calls. There are two RCs in the U.S. - -Santa Clara,
California and Atlanta, Georgia, which resolve over 3000 system
calls per week.

In Europe, HP has recently established Country Response Centers
(CRCs) providing software telephone assistance and hardware
remote diagnosis. In addition, an operation in Pinewood,
England, called Computer Support Pinewood (CSP), has been
established as a resource for the CRCs. CSP has a direct line to
the Santa Clara RC which enables rapid updating of the
information databases for both North American and European
customers.

Response time to software questions has been consistently within
the two hour specified time usually getting back within an hour.
And for hardware problems, the RCs have been particularly
successful in initiating problem diagnosis within 30 minutes
after a customer places a hardware service call to the local area
office. RCEs are able to resolve 953 of the software calls and
203 of the hardware calls without onsite assistance.

The Centers have also been designed to handle their own
emergencies. The North American Response Center in Santa Clara
has a fully redundant HP3000 Series 68 system to allow complete
switch-over within 15 minutes. An uninteruptable power system
including an array of batteries and a diesel generator provides
continuous backup if a full power outage should occur. Physical
security has been addressed with a sophisticated identification
system. HP's focal point for Europe, Computer Support Pinewood,
has similar backup capabilities to maintain its operation. HP's
RCs are often able to back each other up also. For example, at
one point a tornado knocked down power lines near the Atlanta
Response Center and HP was able to switch the phone lines to the
Santa Clara Response Center and continue serving customers until
Atlanta resumed operation the next morning.

RCEs have access to information data bases for history on
previous customer difficulties as well as a database containing
solutions to known problems. Bes ides the computerized pool of
knowledge, the RCs are equipped with more than a dozen different
HP systems. Support analysts, sitting at desktop terminals, can
reproduce a customer's difficult problem on a duplicate machine
or, through a state-of-the-art telephone system, a customer's
system. HP engineers can then do even more sophisticated
troubleshooting from afar.

Paper 3054 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX65

V. Statistical Information

The distribution of PC HELPLINE calls (about 185,000} are:

1GOBIC
20.0"

1!50A
at.e"

110
13.0"

200 8EFIES U "

OTHER
e.o"

TYPICAL PC CALL SUMMARY BY SYSTEM TYPE

The hardware activity distribution (about 35,000 calls) are:

PRINTERS
24..9"

DISCS
13.7 "

PIC8 ASSIST
38.0"

TERMINALS .7 ,.
CE ASSIST 'L8 '6

DATAOOMM U "

TAPES
10.8"

TYPICAL REMOTE SUPPORT CAU. DISTRIBUTION

Paper 3054 16
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP IN TEREX 8 5

The distribution and resolution of P!Cs calls (125,000 in North
America and 70,000 in Europe) are as follows:

HP3000
78.0"

HPZSO f.0"
HP8000 S.O "

HP98XX i a.o "

HP1000
111.0"

T'YPICA1. PICS CALL SUMMARY BY SYSTEM TYPE

Cl.OSED IY AC
74.0"

Paper 3054

TYPICAL PICS CALL DISPOSITIOH

17

OPEN TO AC 4.0 "

9/W PROBLEM 4.0 "

HIW PROBLEM
7.0"

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

SUMMARY

3065. HOW DISPATCHING QUEUES REALLY WORK

Dave Beasley
Computer Systems Division, Hewlett Packard

Cupertino, California

INTEREX85

Have you ever wondered how the MPE scheduler decides which
process should be given the CPU? Have you ever wanted to know
why some batch jobs seem to have a disastrous effect on on-line
response time? If so, you're not alone. This topic seems to
emerge as one of the most debated subjects at every user group
meeting that I've attended over the past several years. I think
that the confusion about how the dispatcher really works is
largely due to the fact that the internal algorithms and policies
of the dispatcher/scheduler are not well documented. Based on my
experience of working daily with the MPE operating system,
focusing primarily on the kernel and I/O system, I would like to
share with you what I have learned about this subject over the
past few years. This paper will focus primarily on how the
dispatcher and interrupt system interact and how the scheduling
algorithm works. The performance effects of certain events, such
as the execution of batch jobs, resource locking, (SIRS and
control blocks), and disc I/O will be mentioned where
appropriate.

THE DISPATCHER/SCHEDULER

The MPE dispatcher/scheduler, together with the interrupt
system, comprise the heart and soul of the MPE kernel (note that
the terms dispatcher and scheduler will be used interchangeably).
The dispatcher's major responsibilities include selecting the
next process to run, invoking the memory manager when a process
needs memory, and keeping track of the CPU time used by each
process (rescheduling and adjusting priorities accordingly). The
dispatcher also invokes the memory management garbage collection
routines when the system would otherwise be idle AND when that
action is desireable. The dispatcher is invoked explicitly by
the DISP machine instruction and runs on a special stack called
the Interrupt Control Stack, (ICS). If a DISP instruction is
executed on the ICS (ie., an interrupt handler is running), the
dispatcher is not entered immediately, but is deferred by setting
a "dispatch requested" flag. This is to allow all interrupt
handlers executing on the ICS to complete (note that we could
have stacked interrupts due to one interrupt interrupting
another). Each interrupt handler that executes on the ICS must
do an IXIT instruction, (a special type of EXIT), when it has
finished processing. When all interrupts have been processed,
the last IXIT executed must decide whether or not to enter the
dispatcher code by "EXIT'ing" through a special "dispatcher stack
marker", or to return to whatever was interrupted.

Paper 3065 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Vhen no process is running, the CPU is either executing in
an interrupt handler and the I/O completion routines that it may
call, in the dispatcher, or in the memory management routines,
(called by the dispatcher). Before proceeding with the algorithm
and policies of the scheduler, we must define what a process
actually consists of and discuss some key points about the
interrupt system.

WHAT IS A PROCESS?

As the well informed HP3000 user, which I'm sure you are,
you must have read that "a process is the unique execution of a
program at any given time". This statement is absolutely
correct, but I'm going to expound on this definition based on the
outside chance that even one person reading this may be a little
confused. Each time that you logon, a Command Interpreter
process is created for you by the system. Each time that you
:RUN a program, a new process is created. If an executing
process CREATES and ACTIVATES a son program, a new and distinct
process is created. Each process on the system has some unique
attributes. Each one has its own unique stack for its own
private copy of the program's data. Each process has one or more
code segments associated with it. Since the HP3000 allows code
sharing, these code segments may be shared between processes
running the same program or sharing SL segments. Each process
may also have one or more extra data segments associated with it,
some of which may be needed by MPE for system tables and file
control blocks, and possibly some that are acquired by the
program for its own use. Each process is also given an entry in
the Process Control Block Table, (PCB). The PCB table contains
a.11 of the status and necessary information that the dispatcher
needs to decide which process should be given the CPU next. Each
PCB entry contains critical information about the process. For
example, the '.PCB entry informs the dispatcher whether the process
is ready to run and only needs the CPU, or if the process is
blocked, waiting for some event to occur. Some of the events
that a process could be waiting on are I/O waits, memory waits,
or critical resource waits, (ie. , a SIR or file control block
wait). It is the job of the dispatcher to schedule processes to
run based on the information found in the PCB table.

THE INTERRUPT SYSTEM

It is well beyond the scope of this paper to fully explore
the interrupt system, however it is essential that you understand
some of the key points. MPE is an interrupt driven operating
system, meaning that MPE does not "go around looking" for things
to do, but rather is informed of pending activity and/or the
completion of certain events by way of an interrupt from some
device or a "message" from some part of the operating system.
There are two basic types of interrupts on the HP3000: internal
and external. Internal intetrupts are a result of the CPU and
its microcode detecting some unusual or abnormal condition. Some
examples of internal interrupts are stack overflows, absence

Paper 3065 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

traps, (referencing a segment that is not in memory), integer
overflows, and bounds violations. There are many others. In
most cases, these internal interrupts are handled directly on the
user's stack, but some of the interrupts must be handled on the
ICS. Additionally, in certain instances, the dispatcher must be
invoked on behalf of the process to perform some function, such
as initiating and handling a stack overflow or absence trap. The
second type of interrupt is called an external interrupt. These
can be thought of as device interrupts. External interrupts are
always processed by their interrupt handlers on the !CS.
External interrupts usually indicate a change in the status of an
I/O device, such as a magnetic tape being placed on-line, or the
completion of an I/O operation, such as a disc read or write.
The external interrupt handlers and the I/O completion procedures
that they typically call, may call the procedure AWAKE to signify
that some event has completed. AWAKE will indicate in the
appropriate PCB entry that the event has happened; if it was the
event for which the process was waiting, then AWAKE will request
that the process be inserted into the dispatcher's list of
processes waiting for the CPU. AWAKE may or may not do a DISP
instruction at this time. We will discuss AWAKE's role in
process preemption and in communication with the dispatcher
later.

POLICIES OF THE MPE SCHEDULER

All decisions about CPU scheduling are made by the
scheduler. The scheduler maintains a DISPATCH queue of all
processes in the PCB table that are READY to run. Being READY to
run implies that a process does not need to wait for some event
to occur or for some system resource to become available before
it is able to execute. All that a READY process needs is to have
the CPU allocated to it. Now that I've said this, there are two
exceptions to the previous statement about READY processes on the
DISPATCH queue. A process that is "short waited" for disc I/O is
not taken off of the DISPATCH queue since those waits are usually
satisfied so quickly that it is not worth the effort to take them
off. Of course, they will not be launched until the I/O is
complete. The other exception is that processes waiting on
memory resources are also on the DISPATCH queue, since the
dispatcher is responsible for initiating memory management
activity. A process which becomes READY, due to the completion
of some event or some resource becoming available, is inserted
into the DISPATCH queue in priority order. The scheduler will
ALWAYS ATTEMPT to allocate the CPU to the highest priority
process that is READY to run. Under certain circumstances, a
higher priority process may become READY while a lower priority
process is executing. This can occur when an executing process
is interrupted, and the reason for the interrupt satisfies the
"wait reason" for a higher priority process. After AWAKE
requests that the process be inserted into the DISPATCH queue, it
must determine if it should take the CPU away from the current
process in order to allow the dispatcher to run the higher
priority process, or if it should allow the lower priority

Paper 3065 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

process to run until it blocks naturally. There are some
specific rules that AWAKE must follow with respect to process
switching, which we will discuss later. The point here is that
if the process switch does not occur, this is the only time that
the highest priority process does not run, and it's a very
temporary condition.

WHEN DOES A PROCESS GIVE UP THE CPU?

A process will run until it blocks naturally, is preempted
by a higher priority process becoming ready for the CPU, or until
the dispatcher decides that the process has had the CPU long
enough.

BLOCKING NATURALLY

To block naturally simply means that the process requested
some resource that wasn't available, such as a SIR, a lock on a
file control block, a system buffer,etc. A process will also
block naturally when it has requested I/O or if it needs memory
resources. A process requests to be blocked by calling the
procedure WAIT, specifying what type of event it expects to occur
before it can execute again. WAIT stores this reason in the PCB
entry for the process. When the procedure AWAKE is called to
awaken a process for a particular event, it will update the PCB
entry to indicate that the event has occured. If the event
corresponds to the reason why the process was waiting, AWAKE will
request that the process be placed in the DISPATCH queue of READY
processes.

PROCESS PREEMPTION

A process is said to be preempted when the CPU is taken away
from it, before it blocks naturally, in order to allocate the CPU
to a higher priority process. After verifying that the reason
the new process is being awakened corresponds to the reason that
the process was originally blocked, AWAKE requests that the
process be inserted into the DISPATCH queue in priority order.
If AWAKE determines that the new process being awakened is of
higher priority than the one that has been interrupted, AND IF
the dispatcher has enabled process preemption for that process,
AWAKE will do a DISP to initiate the process switch. We will
discuss the rules for process preemption and the role of the
procedure AWAKE in this effort after we discuss the
characteristics of the scheduling queues.

HOW DOES THE DISPATCHER DECIDE HOW MUCH IS TOO MUCH?

Every 100 milliseconds, the system clock generates an interrupt~
which causes control of the CPU to be transferred from the
executing process to the ICS, where the interrupt handler for the
system clock will execute. Each time that a process is launched,
it is given three "ticks". In other words, a variable, which

Paper 3065 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

we'll call QTIME, gets set to 3, representing 300 milliseconds of
CPU time. Ea.ch time that the clock interrupt handler executes,
it decrements QTIME. Whenever QTIME falls to zero, a DISP
instruction is executed to invoke the dispatcher. The dispatcher
will then treat this process just as if it had voluntarily given
up the CPU or had been preempted. The dispatcher will reschedule
this process, adjusting its priority if necessary, and will
select the highest priority process on the DISPATCH queue to
launch. Note that the new highest priority process may be the
same one that the clock interrupt handler preempted because QTIME
was zero. Many people still confuse the above method of allowing
the clock interrupt handler to preempt a process with the idea of
the process using a "quantum". In fa.ct, under the MPE III
operating system, we did call it that! There was even a :QUANTUM
command that allowed the system manager to determine how many
"ticks" or milliseconds a process would get as its "quantum".
However, it is important to note that this method is not used to
determine a "quantum" in MPE IV and MPE V! The dispatcher uses
different criteria. to determine if the process has used more than
its "fair share" of the CPU, (or has exceeded its "filter"
value). Preempting a process because it has used 300
milliseconds of consecutive CPU time is only done to allow the
scheduler to reschedule this CPU intensive process to ensure that
it does not exceed the "filter value" for its scheduling queue.

SCHEDULING QUEUE CHARACTERISTICS

There are five distinct scheduling subqueues in MPE. The AS
and BS queues are considered to be linear queues, meaning that
the scheduling algorithm makes no priority adjustments to
processes in these subqueues. The CS, DS, and ES subqueues have
always been considered to be "circular" queues. This term
originated because of the way· that priorities of processes in
these queues gradually moved up and down, resembling a "circular"
shape, in MPE I II. This is not the case in MPE IV and MPE V,
however much of the documentation still refers to these queues as
"circular" queues, (if you must make a geometric analogy, they
probably appear more like "semicircles"). The scheduler controls
the priority of processes in these queues.

The scheduling queue priorities range from 0 to 255, with
255 being the lowest priority. When a process is created, it is
scheduled by default into the same scheduling queue as its
father. However, the scheduling queue and/or the absolute
priority number of the new process may be specified in the
CREATE, CREATEPROCESS, or GETPRIORITY intrinsics.

AS AND BS SUBQUEUES

The priority range for the AS subqueue is from 0 to 100.
This queue is typically reserved for high priority MPE processes.
The priority range for the BS subqueue is from 101 to 149. Some
MPE processes run in this queue also. This queue n1ay also be
used by high priority user processes if the user specifies. With

Paper 3065 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

the proper capabilities, a user can specify any priority for any
process. It should be pointed out, however, that it is possible
to deadlock the system or to adversely effect system performance
by using these subqueues, particularly the AS queue, Once a
priority has been assigned to a process in one of these linear
queues, the scheduling algorithm does not alter it.

CS SUBQUEUE

The strategy of the CS subqueue scheduling algorithm
attempts to favor interactive users. The default range of
priorities in this queue is from 152, which is called CBASE, to
202, which is called CLIMIT. These values may be altered by the
:TUNE command. A process' priority is dynamic within this
subqueue and is controlled by the scheduler. Whenever a process
blocks for a terminal read, it is rescheduled at CBASE priority.
Therefore, the first time that a process runs after being
awakened from a terminal read, it is launched at CBASE priority.
A process may use the CPU and then block, or give it up, several
times before it blocks on another terminal read. For example, a
process may block for several disc I/O's or it may be impeded for
some system resource before it requests another terminal read.
We call the CPU time used between terminal reads, a
"transaction". A process is rescheduled each time that it gives
up the CPU, (or quiesces). Its priority may be decremented,
(incremented numerically), if it exceeds the filter value for the
CS subqueue, or if it blocks due to a memory trap. In MPE V, its
priority is not decremented due to a memory trap, but only for
exceeding the filter value. Additionally, a process in the CS
queue is enabled for preemption if it exceeds the filter value.
Once the priority of a process is decremented, it is never
incremented again until it blocks for a terminal read, (which
completes a "transaction"), and it is assigned the CBASE priority
at that time. A process' priority may never be decremented below
the CLIMIT priority. There is one exception to the scheduling
algorithm which may cause a process' priority to be raised
without having blocked for a terminal read. We will discuss this
exception after the discussion of each of the scheduling queues.
How does the scheduler determine the filter value for the CS
subqueue? The filter value is also called the "average short
transaction" time, or AST. The AST is a computed average of the
time required for all "transactions" to complete for every
interactive process on the system. Remember that a "transaction"
is defined to be the amount of CPU time used between terminal
reads. Each time that a process blocks, or is preempted, the
scheduler keeps track of the CPU time used since the last time
the process was awakened from a terminal read, therefore, when
the process blocks for a terminal read again, the scheduler knows
the time used for the current transaction. A formula is then
used to calculate a weighted AST which is effected by each
int,>ractive process on the system. Processes in the DS and ES
queues which are running interactively, and therefore complete
transact ions, also contribute to the AST, even though the AST
value is not used as the filter value for processes in the DS and

6 Paper 3065
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

ES queues. The AST value will never be allowed to exceed the CQ
MINQUANTUM and CS MAXQUANTUM limits, which are set by default to
0 and 300 milliseconds respectively, or which may be set by the
:TUNE command.

DS AND ES SUBQUEUES

The DS and ES subqueues are primarily intended for batch
jobs, al though sessions may run in these queues if so des ired.
The default range of priori ties for the DS queue is from 202,
which is called DBASE, to 248, which is called DLIMIT. The
default EBASE value is 250, and the default ELIMIT value is 255.
These values may be altered by the :TUNE command. When processes
are created in either of these subqueues, they are originally
placed on the dispatch queue at their BASE priority. Each time
that a process in one of these queues blocks for any reason, if
the total CPU time accumulated exceeds the "background filter",
its priority is decremented, (numerically incremented by one) •
In MPE IV, its priority is also decremented, (numerically
incremented by one) , if it blocks for a memory absence trap,
(this does not happen in MPE V). A process' priority will never
go below the LIMIT value for its scheduling queue. When a
process is not executing interactively, such as a job, once its
priority has been lowered it will not be raised again by the
scheduling algorithm. Again, the same exception that applies to
the other queues exists for the DS and ES queues also. We will
discuss the exception shortly. If a process is executing
interactively, and it is awakened from a terminal read, it will
be placed on the dispatch queue at the BASE priority for its
scheduling queue.

How is the "background filter" determined for the DS and ES
subqueues? Although the :TUNE command allows you to specify a
MINQUANTUM and MAXQUANTUM value to be used as the filter values
for these queues, the filter value is constant and is the value
specified as the MAXQUANTUM for the DS queue.

THE BIG EXCEPTION

There is one exception to all of the above rules for
scheduling processes. A process in any subqueue may have its
priority temporarily raised if it is the holder of certain
critical resources and another higher priority process wants one
or more of those resources. The only two resources for which
this exception applies are SIR's and IMAGE data base control
blocks. A SIR, (System Internal Resource), is a semaphore that
is used to guard against unwanted concurrent access to certain
system resources, such as system tables or the system directory.
If one process is the holder of a particular SIR that another
process also wants, the second process must wait until the first
process releases the SIR. In MPE IV, this "SIR queue" is
priority based. For example, if a higher priority process queues
up for a SIR which is held by a lower priority process, the lower
priority process is given "SIR priority". In other words, its

Paper 3065 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

priority is temporarily raised to that of the higher priority
process. As soon as the SIR is released, the higher priority
process will be given the SIR and the process that was given "SIR
priority" is returned to its original priority. Intervening
processes in the "SIR queue" will remained queued, but the higher
priority process will take precedance in gaining access to the
SIR. In MPE V, the "SIR queue" has been changed to a FIFO based
queue. If a higher priority process queues for a SIR which is
held by a lower priority process, then the process holding the
SIR and all intervening processes queued for the SIR will be
given "SIR priority". The SIR will then be given to each of the
processes in the order that they queued for it. If a process is
the holder of an IMAGE data base control block, and a higher
priority process requests it, the holder and all intervening
processes that are queued for the control block have their
priorities raised to that of the higher priority process
requesting the control block. Once each process has released the
resource, its priority is lowered back to its original priority.
Note that as of MPE V/E, processes in the CS, DS, or ES queues,
will not have their priori ties raised above the CBASE priority
due to impeding a higher priority process for an image control
block. There are many other kinds of resources that processes
may queue up for. Some examples of these are RINS, locks for
file system control blocks, message buffers, IOQ and DRQ entries
if too few are configured, and many more. Note that higher
priority processes simply have to wait behind lower priority
processes for these types of resources.

WHAT DOES AWAKE DO WHEN A PROCESS BECOMES READY?

!f the dispatcher is running and is in PAUSE, meaning that
there are no processes currently needing the CPU, AWAKE will do a
DISP instruction to restart the dispatcher. The dispatcher will
then scan the list of READY processes and launch the one with the
highest priority, (which would in this case be the one we have
just awakened). If the dispatcher is running, but is not in
PAUSE, it is either preparing a process to launch 1 it has called
the memory management routines on behalf of some process, or it
is calling memory garbage collection routines. If this is the
case, AWAKE simply places the priority of the process it is
trying to awaken in a special memory location that is reserved
for communication between AWAKE and the dispatcher. The
dispatcher will look at this location at convenient points to
determine if there is a more urgent process to launch than the
activity that is currently in progress. If the dispatcher is not
running, it means that a process is currently running. Actually,
it means that we have interrupted the last process launched by
the dispatcher. AWAKE must decide whether or not to preempt this
process and initiate a process switch, or to allow the executing
process to run until it blocks natu1·ally. The following rules
apply to process preemption.

1) Any process in a linear queue ma~ be preempted by any process
that has a higher priority, regardless of the priority of the
scheduling queue that it is in.

Paper 3065 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 6 5

2) Any process in any queue may be preempted by a higher priority
process that is also in a higher priority scheduling queue.
For example, the CS queue has a higher priority than the DS
queue which is higher than the ES queue.

3) A proc~ss in the CS queue may be preempted by a higher
priority process in the CS, DS, or ES queue if and only if it
has been enabled for- preemption. The dispatcher enables CS
processes for preemption only when they have exceeded the AST,
(average short transaction time).

4) Processes in the OS and ES queues are never enabled for
preemption which means that they can never be preempted by
processes in their same queue, regardless of their priority.

PRIORITIZED DISC I/.O

Since the introduction of MPE IV, disc !/O has been
prioritized. If a process issues a disc request, the disc
request is issued at the priority of the process requesting the
I/O. Memory management I/O is also issued at the priority of the
process that needs the memory. Background writes, or
anticipatory writes, are issued by the memory manager at a
background priority, which is 255, Background writes are issued
in order to update the copy of a data segment on disc in
anticipation of having to swap out the data segment. Since the
segment may be "recovered" in memory. therefore invalidating the
need for the disc write, these types of writes are performed in
the background, so as not to interfere with useful I/O. If the
memory manager decides that the memory space is needed, and if
the background write has not completed, then the priority of the
disc request for the background write is bumped up to the
priority of the process that needs the memory space.

PERFORMANCE IMPLICATIONS OF BATCHJOBS

There are several characteristics of the scheduling
a.lgori thm and scheduling queues which are quite good at
attempting to ensure that batchjobs really do execute in the
background. (Although, with the :TUNE command, you can arrange
the scheduling queue limits to allow jobs to compete with
sessions, or to even be favored). One characteristic in
particular is that the scheduler allows higher priority processes
in higher priority scheduling queues to preempt lower priority
processes as soon as they become ready for the CPU. For example,
while one process in the CS queue is waiting for terminal I/O, a
CPU intensive batch job in the OS queue may be executing.
However, as soon as the terminal read is completed, the higher
priority CS queue process will preempt the DS queue process, thus
favoring the interactive user. Another mechanism which prevents
CPU intensive processes from adversely effecting system
performance i~ the system clock interrupt handler, which prevents
a process from using more than 300 milliseconds of CPU time
consecutively without being rescheduled. Another characteristic

Paper 3065 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

which favors the interactive user is prioritized disc I/O, which
tends to allow· I/O from interactive sessions to take precedence
over I/O from lower priority batch processes. However, in spite
of the attempts to ensure that sessions are favored over batch
jobs in scheduling, low priority processes that compete for the
same resources as higher priority processes can seriously effect
performance on busy systems.

Once a. batch job, or low priority process, acquires a
critical resource that is needed by a higher priority process,
the higher priority process must simply wait until the resource
is released. If there are a large number of processes on the
dispatch queue ahead of the lower priority process, obviously it
cannot run in order to release the resource. To complicate the
scenario, if the low priority process has outstanding disc I/O,
and if there is a significant amount of I/O being issued at
higher priorities, the low priority process that holds the
resource may have to wait a considerable amount of time for the
I/O to complete. In the mean time, the higher priority process
that wants the resource will simply have to wait, as well as any
other process that queues for the resource. As we have
previously discussed, an attempt was made by the scheduling
algorithm to give low priority processes a higher priority,
temporarily, when they are impeding higher priority processes.
This was only done for two resources, however; SIR• s and IMAGE
control blocks. Although this works well in most cases, if the
lower priority process had previously issued disc I/O which was
not complete, the priority of the outstanding disc I/O is not
bumped up in priority. Therefore, if a considerable amount of
disc I/O is being queued up at a higher priority, the I/O request
for the lower priority process that holds the resource may be
delayed, in spite of the fact that its CPU priority had been
temporarily increased.

CONCLUSION

As you can plainly see, there are many variables in
determining how one or more batch jobs will effect the
performance of a system. The most obvious ones are the total
number of processes on the system and the scheduling queues that
they execute in, and the amount of disc I/O that is queued up at
any one time. What is not so obvious is what effect competition
for the same resources, by sessions and batch jobs, have on the
scheduling algorithm.

I hope that this paper has helped you understand this to some
degree.

It is almost impossible to recommend "rules" and
"guidelines" about what is the ideal mix of batch jobs and
sessions. The only recommendation that I will make is that you
attempt to m1n1m1ze resource competition between jobs and
sessions. One way in which this can be done is by minimizing, or
not running, jobs during peak hours that utilize the same files

Paper 3065 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

and data bases as online users. Of course, it will be impossible
to eliminate competition unless you simply defer all jobs to off
hours. This assumes that you have "off hours" in your shop! Good
luck and happy tuning!

Oave Beasley is a Systems Support Engineer for Computer Systems
Division of Hewlett Packard in Cupertino, California. Dave has
worked for Hewlett Packard for 6 years and has been a user of
HP3000's for 8 years.

Paper 3065 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

3066. An !nformation Crossroads Decision: A Blend of

HP3000 and HP9000 for Computer Graphi~s

Sam Boles, Member Technical Staff
Hewlett-Packard

.. a picture's worth a thousand words ... and on a

computer can take more processing and storage than

10,000 words ... here are some tips on performance,

resolution and load balancing that can help you with • .

We all know that a picture's worth a thousand words.

And those of us who've drawn pictures with a computer know a
picture can take more processing and storage than 10,000 words.

Then once you've gotten the basics under your belt, you get
harder to please. You want resolution. You want performance.
You want those end-points to meet, you want your curves smoother

you might even want animation ... but, for sure, you
don't want to wait.

This growing colony of computer artists with their growing
appetite for the artistic can bring a multi-user commercial
machine to its knees unless you resort to second-order
Distributed Systems.

You've experienced first-order DS with your HP3000 talking to
others like it, sharing programs and databases. There's a
second-order distribution that networks into your HP3000 the
high-performance high-resolution graphics capabilities of the
HP9000. This gives you better pictures faster -· and without
degrading the performance of your main-line transaction
processing applications that make the profits that you wanted to
draw the pictures about in the first place. And you can still
use the data-words-graphics integration of your HP3000 with its
laser printers and other powerful peripherals.

The war stories of the extensive graphics and technical
publication requirements of the HP Systems Productivity Center
may give you some productivity ideas for your own installation.

Paper 3066 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

••• why graphics? •••

for those who can't

:read , ••

Once upon a time, there was a magnificent piece of americana
called Life. It came out once a week. And it cost only a dime.
It was the week that was, in pictures. The glory of victory, the
agony of defeat. The blood, sweat and tears that started wars
and finished wars. The laughter, the sobs, the bad, beautiful,
noble and ludicrous of the human condition -- photographed by
some of the most courageous men and women in the history of
journalism.

But not everyone viewed this piece of americana the same way. A
young undergraduate (an English major) once remarked,

"Life is for those who can't read

Time, for those who can't think •

Without commenting on its validity let's see if we can leverage
this wisdom of a generation past, and come up with an answer to
the question

Why Graphics?

Graphics is for those who can't read. No, it's not that they
can't read because they can't read. They can't read because they
don't have time to read.

Let's look at an example out of one of the HP9000 reference
manuals. Read these numbers:

Paper 3066 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX85

0.1610 0.1625 0.1625 0.1628 0.1636 0.1631 0.1627 0.1608
0.1610 0.1606 0.1607 0.1617 0.1614 0.1626 0.1634 0.1640
0.1656 0.1660 0.1644 0.1651 0.1635 0.1641 0.1628 0.1619
0.1630 0.1624 0.1627 0.1644 0.1644 0.1657 0.1660 0.1670
0.1672 0.1666 0.1658 0.1662 0.1646 0.1633 0.1634 0.1636
0.1645 0.1652 0.1656 0.1677 0.1689 0.1680 0.1696 0.1680
0.1674 0.1677 0.1669 0.1655 0.1665 0.1662 0.1667 0.1668
0.1681 0.1688 0.1687 0.1707 0.1716 0.1716 0.1694 0.1698
0.1683 0.1683 0.1671 0.1681 0.1683 0.1684 0.1681 0.1698
0.1705 0.1723 0.1730 0.1734 0.1714 0.1722 0.1716 0.1696
0.1702 0.1699 0.1684 0.1706 0.1696 0.1715 0.1730 0.1737
0.1739 0.1751 0.1732 0.1747 0.1729 0.1717 0.1710 0.1707
0.1706 0.1709 0.1713 0.1720

Did you read them? No, or course you didn't. You don't have time
to read •.. really read . . . a hundred numbers. And if you
did have time you wouldn't waste it like that. (Notice how
boring it gets after about the third digit?)

Besides why read a hundred numbers when today's technology can
read them for you and maybe tell you something you might have
missed· -- because it's in between the lines. Just browsing
probably gives you the overall trend, but how about periodic
motions and number of cycles?

Why Graphics?
The 100 Numbera You Didn't Read

Better, Easler, FASTER!

• . • and for those who

can't think .•• again,

because they don't

have the time . • •

Paper 3066 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

This maybe tells us something else, too: Graphics is for those
who can't think. No, it's not that they can't think because they
can't think. They can't think because they don't have time to
think.

Sure, they could take a pencil and paper and calculate the deltas
and get the pattern clusters in a few minutes. But that few
minutes has an opportunity cost. What they could've done. Like
get the corrective action launched. Or the next step of the
design underway. Or whatever is the real work they could've been
doing.

to save time

the Ultimate

Unreplenishable •

at a rate of a

thousand words per •

It's the old story of "a picture's worth a thousand words." You
get the message to your audience better • • • faster. You save
time. They save time.

Let's look at this thing called time. It's a unique commodity.
Or maybe it's not a commodity -- ever try to buy some time?
Anyway, it's unique.

Remember back in the early 70's when we had to stand in line to
get gas? Geologists for years had been telling us we were burning
oil faster than it was being replenished. Then we finally got
the message: That meant we could run out. So the oil owners
lowered production and raised the price. And suddenly there we
were, waiting in line for stuff that not long before that a Gulf
station in Los Angeles would sell for 18.9 cents a gallon during
a gas war • and clean your windshield while you bought it.

All of that for something relatively unreplenishable. But look
at time. The Ultimate Unreplenishable.

If oil is slow at replenishing, it's nothing compared to Time.
Time doesn't replenish at all. You burn it and it's gone.
Forever. And we burn it every second of every minute of every

Paper 3066
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

day. Not just when we drive to work. And we burn more of it
faster all the time. Ask anyone who's been around awhile about
how much faster you burn it as years go by. And how much more of
it you burn.

The Ultimate Unreplenishable.

Anything that improves performance in time utilization deserves
attention. And graphics is one of those things.

So much for Why Graphics? Let's look at the evolution of the
computer graphics artist.

• • • the evolution of the

artist • • • basics under

your belt, you get

harder to please

Remember a few years ago when DSG (Decision Support Graphics)
brought charts right to our terminal on the HP3000? Bar charts,
line charts, pie charts. We could eavesdrop a plotter on the
line and get hard copy on the spot in minutes. Then there was
HPDRAW to build the text and picture slides to go with the
charts.

We could build our slide presentations quickly and conveniently.
And update with the latest numbers in a matter of minutes.

The magic of Interface Reduction.

We no longer had to queue
wait for the typesetter.
We saved time and money.
Interface Reduction.

up at the graphics department. And
We reduced these interfaces to zero.
A quantum leap in Productivity thru

It was great.

Then as the elation wore off we noticed you could tell the
computer slides from the typeset slides. It was the letters.
Those stick letters. Like tapioca: good, but not exciting.

Paper 3066 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

We needed better letters. Nice smooth spline curves, with fill
and boundary in different colors. And a wider range of fonts and
sizes.

So DRAW II arrived with really world-class letters. A quantum
leap in professional quality lettering.

It was great.

Then as the elation wore off we noticed that next to the
beautiful spline letters you really noticed when the end points
in our drawings didn't quite meet, and some of the detail was a
little ragged.

We needed better resolution, and better and faster zoom, pan,
grid snapping and .

On top of all that, something was happening in our work area.

Our colleagues were trying to figure out how we were able to get
such good presentations so fast and still come in under budget.
They saw we were using DSG and DRAW, and they started to do the
same thing.

CPU utilization began to grow. The last 3 days before quarterly
review, response time got really slow. We upgraded to a 68, and
that helped. But not enough to keep up with the growing
popularity of the tool.

. . . the issues of

resolution, response

time and load

balancing

As we experienced more and more positive results from our
graphics, we wanted more and more quantity and quality.

More people were starting to use the tool. And the positive
results from using the tool made them use it more.

Each iteration made the users more proficient with the tool,
enabling them to do a better job of the next slide and increasing
their appetite for perfection proportionately.

Paper 3066 6
WASHINGTON, D. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP tNTEREX85

The need for fast•response high·resolution graphics tools evolved
as the degradation of response time evolved, aggravating the
economic imbalance with a diminishing supply of CPU cycles, disc
I/Os and main memory being confronted with an increasing demand
for a higher service level by more users.

Compound the situation with a 25 per cent annual growth rate and
you get the scene that led us into second-order Distributed
Systems for our computer graphics.

We already had our 3000's OS-linked so we could get at programs
and databases on neighboring machines. And if we had a
heavy-duty crunch that we needed to run we could off-load this to
one of the light-load nodes.

But with the graphics overload we were looking for more than just
CPU cycles. We were looking for functionality. A richer command
set. A more natural human interface. Higher resolution. Faster
graphics performance in first-draws, redraws, transformation of
primitives and cells.

We turned to our CAD-CAM family, the HP9000, and found what we
were looking for.

Let's look at where the 9000 was coming from.

. . . the HP9000

genealogy . . . a "pc"

before they invented

the word

If you trace the roots of today's HP9000 family, you go back to
the days when we used words like "programmable calculator" and
"desktop computer." If you look at the HP9825 (circa mid-70's}
you see the low-cost, small footprint, portable and individual
work station that might've 'been called a "pc" if we'd used that
kind of language in the medieval days of 10 years ago.

When we retired its jersey some time back, the HP9825 had been
one of the top unit sellers in the history of Hewlett-Packard.

Paper 3066 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The tradition evolved into the low-cost HP9000/200 with 8- and
12-Megahertz processors with 3- and 4-plane color graphics, and
the HP9000/500 with 3 CPU's in a box supporting 8 planes of color
(that's 256 colors from a palette of 16 million) with a graphics
accelerator that pumps 60,000 vectors a second over a 2 Megabyte
bandwidth bus.

What all that bottom-lines to is high-performance high-resolution
graphics with a wide range of price points.

Let's take a look at what the low-cost range of this spread can
do for your resolution, performance and load-balancing problems •

• • • a rich

repertoire of

commands, primitives

and structurism • • ,

Even in the low-cost HP9000/200 you find a feature set with a
functional richness that puts you in a new graphics domain.

With tools like EGS (Engineering Graphics System), you can zoom
in on a particular detail and get the positioning you want, right
down to the whiskers on the face (actually, a whisker's about 50
microns in diameter and the system has sub-micron resolution
capabilities) •••

Using the cell instantiation, component and level display
selectivity and other functions so essential to CAD applications
such as integrated circuit layout, you can build a basic cell one
time •••

Paper 3066 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

and scale and package it with a given instantiation in a
given context .

6

d
••• include it in another instantiation with a different
context • • •

mirror the same cell for a different orientation in still
another context • • •

Paper 3066 9
WASHINGTON, 0. C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

build up your hierarchical structure of cellular components
with whatever scalint, translation, rotation, mirroring, zooming,
panning are required, till you have the modules arranged in a
multi~level composite that is your complete circuit ... or
whatever it is you're building ...

- ~-: -~a

.~•-:
d f!v~~

you ean then take your integrated circuit layout or
t11hatever it is you're building, "plot to disc" so you get an
ASCII form of the HPGL commands that normally drive a plotter.
You then use a terminal emulator (LAN's on its way, so your 9600
baud ean move to the multi-megabit range) to get the vectors from
the 9000 to the 3000. Here you've got the full power of TDP,
lasers and other technology (such as EGS2FIG in the Contributed
Library) to do your final packaging. Once established, your
components can go into a library to provide a leverage base for
future fan-out

Paper 3066 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Epilogue ...

The odyssey spans computer domains, operating systems, design
disciplines. It gives you the rich functionality of the HP9000
CAD/CAM world, with it's high resolution, instantaneous response
and natural human interface. It gives you the powerful
data-words-graphics capabilities of the HP3000 and the laser
printer. And it smoothes your processing load by spreading it
out across the appropriate nodes to make your general user
population a bit happier as their data processing engine is a
little more responsive to their touch.

About the Author

Sam Boles is a Member Technical Staff in the Productivity Center
at the Hewlett-Packard computer facility in Cupertino,
California. With HP since 1976, his computer experience started
back in the AUTOCODER days of the 1401/1410, migrated thru the
360/370 era, and now focuses on networking HP productivity
technology. Sam received his MS at UCLA in Information Systems.

Paper 3066 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX 8 5

3067. Developing Cost Effective Applications and Utilities
Using HP Business BASIC/3000.

Mark L. Hoeft
Language Development Engineer, HP Business BASIC/3000

Computer Languages Lab
19447 Pruneridge Avenue,

Cupertino, California 95014, USA

Abstract:

HP Business BASIC/3000 is a very powerful language which, when
used properly, can be a cost effective solution to the serious
problem of collecting data and converting it into meaningful
information. The wide variety and richness of the feature's in HP
Business BASIC/3000, which accesses several of the subsystems
available on the HP3000 through language constructs, make it very
easy to write both massive applications and small utility
programs quickly. These features allow programmers to
concentrate on the problem at hand instead of concentrating on
the details of language and subsystems.

In order to make the best use of any tool it is necessary to
understand how it works and how to make the best use of its
features. This paper will introduce some of features of HP
Business BASIC/3000 which make programming more productive and
describe how to tune the performance of programs written in this
language. Other topics include the intended purpose of HP
Business BASIC/3000, the system resource requirements of its
features and its portability from/to other systems.

Table of Contents:

1.0 INTRODUCTION

2.0 DEVELOPING APPLICATIONS AND UTILITIES

2.1 ADVANTAGES OF HAVING BOTH AN INTERPRETER AND A COMPILER

2.2 SPECIAL FEATURES OF THE LANGUAGE

3.0 PERFORMANCE TUNING

3 .1 COMPILING

3.2 USE THE HIGH PERFORMANCE FEATURES

4.0 RESOURCE REQUIREMENTS

5.0 PORTABILITY

6. 0 CONCLUSION

7.0 REFERENCES

Paper 3067 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

1.0 INTRODUCTION

HP Business BASIC/3000 (HPBB) is a language which was recently
introduced on the HP3000. Based on BASIC/250, HPBB provides many
powerful features besides those found in most programming
languages and also an entire environment for developing
applications and utilities. These enhanced features and this
interactive environment combine to provide very high programmer
productivity resulting in cost effective software. HPBB is well
suited to easily processing information into a more
understandable format. It does a lot of the work that
programmers now need to do when accessing several of the
subsystems of the HP3000, allowing the programmer to deal with
the problem instead of the tool.

HP Business BASIC was started in August 1981, after several years
of investigation and spe'cification. It has taken over 50
man-years to complete, and contains over 310,000 lines of PASCAL
source (180,000 lines of real code). Its goals were to provide
an upgrade path from the HP250 to the HP3000 (both are commercial
systems) and to provide a complete, modern BASIC for the HP3000.
It it a complete program development system providing editing,
debugging and program execution in one environment.

HP Business BASIC/3000 is intended to be used in developing
business applications and utilities. Its easy subsystems access
makes it convenient to write large applications and its rich
language features and interpretive environment make it easy to
write quick utilities. It is based on BASIC/250, which has one
of the highest user satisfaction ratings in the industry.

This paper will introduce many of the features which increase the
productivity of those who program in HP Business BASIC and will
describe how to make the applications and utilities they write
run faster. The resource requirements of HPBB and HPBB's
compatibility with other BASICs will also be discussed.

2.0 DEVELOPING APPLICATIONS AND UTILITIES

One of the biggest problems in developing applications and
utilities in the languages currently available has been that
these languages have been limited in features specifically aimed
for commercial applications. The features supported have
typically been control statements and data structures. Some
examples of control statements are used for declaring and calling
procedures, evaluating expressions and branching (conditionally
or unconditionally). If one wanted to perform some complex
action, then one would use these building blocks together to

Paper 3067 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

perform it. Sometimes subsystems for doing common actions would
exist in libraries that could be called from user programs.
These libraries provided a lot of flexibility and could be called
from a number of languages. As a result it was very difficult
for programmers to write programs to use these subsystems. They
found that they spend a large amount of time figuring out how to
use the subsystem instead implementing what they wanted to do.
Also there were a lot of common actions which were not in
subsystem libraries and the programmer had to "re-invent the
wheel" each time these actions were needed. Needless to say,
this had a large negative impact on the productivity of the
programmers, and as a result, the time and cost needed to write
software. Even a small utility could be difficult to write.

HP Business BASIC/3000 (HPBB) solves many of these problems. !t
has a wide variety and richness of features, of which a portion
will be presented here. The language has many of the desirable
features which are present in other languages (but not in the
combinations present in HPBB) and they make it easy to access
many of the subsystems of the HP3000. HPBB does much of the
"house keeping" necessary and does many of the common actions
faster that if they are written by the programmer. In general
HPBB's features allow the programmer to spend time on WHAT should
be done and not on HOW to do it. It also makes it easy to do
many of the common tasks which the business computer programmer
wishes to do. HPBB has both an interpreter and a compiler.
Because of this, the programmer can productively develop programs
in the interpreter using its extensive editing and debugging
features and then compile it to get high performance.

In addition, there are many programmers who know BASIC. With
little or no additional training they can program in HP Business
BASIC using most of its special features.

2.1 ADVANTAGES OF HAVING BOTH AN INTERPRETER AND A COMPILER

In non-interpretive languages, much of the information about a
program is not present when the program is running. This causes
problems when debugging either because debugging is non-symbolic
or it is very slow (because the debugger may be another process
which has access to the symbolic information). In either case it
is not possible to change the program without another lengthy
recompile. Since HPBB has an interpreter the development cycle
can be shorter than when using "Compiled-only" languages such as
COBOL and PASCAL. This is because the programmer edits his code
and debugs it in one environment instead of editing his source,
compiling it, PREPing it (also known as linking) and then finally
running it with a debuger. Syntaxing is done only once, the
first time it is entered, instead of during each and every

Paper 3067 3
WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

compile. Syntax errors are displayed when the program is being
editing. This allow the programmer to correct the problem right
away instead of waiting for the compile to finish and then
looking through a listing.

HPBB has numerous editing commands, many of which are found in
dedicated text processors. The programmer can MOVE lines from
one part of the program to another or make a COPY of one or more
lines. One can FIND all occurrences of a character string within
the program and may CHANGE those occurrences to a different
character string. There are also commands for line editing
(MODIFY and REDO) and a command to DELETE lines. As is
traditional in BASIC implementations, a line can be replaced
simply by entering the new line with the existing line number.

Adding many lines of text is simplified by the AUTO command,
which provides ascending line number prompts. The RENumber
commands will renumber all or part of a program. The INDENT
command will "pretty-print" the program according to the
programmer's specifications. The program can also be SCRATCHed,
or completely deleted.

Programs can be saved as ASCII text or in a special file format
called BSAVE. These files contain the program in the internal
format used by the interpreter. It is this file format that is
read by the compiler resulting in better performance of the
compiler. There are several commands for managing the files of
HPBB programs. The GET, LINK and MERGE statements which can be
used to bring programs in from the disc, and the GET SUB and DEL
SUB statements which bring in and delete subprograms.

When listing a program, the LIST TO command will send the listing
to a file or an output device. There is also the LIST SUBS
command which will list the subunits in the program. There are
many ways of describing what portions of a program to be LISTed,
MOVEd, CHANGEd. Some examples are ALL, FIRST, MAIN, LAST, line
numbers, line labels, subunit names, + offset, offset and
ranges.

The SECURE command prevents a program from being LISTed or SAVEd
as an ASCII file and the RUN-ONLY command prevents a BSAVE file
from being edited or listed. As soon as a "RUN-ONLY" file is
loaded, it automatically starts to RUN and as soon as it pauses
or stops for whatever reason, the program is SCRATCHed from
memory.

When an interpreted program is suspended during execution (either
by the PAUSE statement, pressing an control-Y or by encountering
an untrapped run~time error), variables and program lines may be
displayed and modified. Execution can then be resumed with the
CONTinue command. Variables can be TRACEd (and UNTRACEd) so that
changes in their values are reported at run-time. To clearly
show the execution flow of a program, lines can be also be
TRACEd. The programmer may also execute most of the statements

Paper 3067 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

in HPBB (such as GOTO, GOSUB, CALL, ect.) as commands from the
keyboard. Programs can be run in STEP mode which displays each
line and executes lines one at a time. There is also the HOP
command which allows you to single step a routine without having
to single step all of the subroutines it calls. The INFO, FILES
and CALLS commands give information on the current status of the
interpretive environment such as what files are open and what are
their current file pointers, what calls have been made and the
current state of the OPTIONS. This is a vast improvement over
the long wait encountered during program development when
changing a program using non-interpretive languages.

There is an on-line HELP facility provides immediate information
on syntax and functionality of all of the HPBB statements and
functions. The HELP facility can also correct spelling mistakes
so that it will find the right topic and/or subtopics even if
they are slightly misspelled.

The interpreter is always in 'calculator mode 7 , which allows the
programmer to execute expressions entered from the keyboard. The
HPBB compiler is directly accessible through commands in the HPBB
interpreter. These commands are the COMPILE, COMPPREP and COMPGO
commands. By typing COMPGO, HPBB will save your current program
in a temporary file, compile it, prep it and then run it.

A string can be specified when running the interpreter and it
will be executed when the interpreter first starts.

2.2 SPECIAL FEATURES OF THE LANGUAGE

HPBB has many features that allow the programmer to spend time on
WHAT should be done and not on HOW to do it. These features make
HPBB a very advanced system combining a language, an operating
system and a language library, all in one.

In addition to some of the standard control structures such as
GOTO, GOSUB, FOR-NEXT ON GOTO, GOTO OF, ON GOSUB, GOSUB OF and
IF-THEN, there are statements and constructs to support
structured programming, such as IF-THEN-ELSE, WHILE-ENDWHILE,
REPEAT-UNTIL, SELECT-CASE, LOOP-ENDLOOP-EXIT LOOP and enhanced
FOR-NEXT. This results in making the code more understandable
than using IF THEN GOTO statements (and is faster also).

There are many statements to change for environment of HPBB.
These include the OPTION DECIMAL, OPTION REAL, OPTION !NIT,
OPTION NO !NIT, OPTION BASE 0, OPTION BASE 1 , OPTION TRACE,
OPTION NO TRACE, OPTION DECLARE, OPTION NO DECLARE, WARNINGS ON,
WARNINGS OFF, CWARNINGS ON, CWARNINGS OFF, GRAD, RAD, DEG,
DEFAULT ON, DEFAULT OFF, STANDARD, FLOAT and FIXED statements.

Paper 3067 5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

When dealing with the compiler there are the COPTION SEGMENT,
COPTION NOLIST, COPTION LIST, COPTION LINES, COPTION PAGE,
COPTION RANGE CHECKING, COPTION NO RANGE CHECKING, COPTION TITLE,
COPTION WARN, COPTION NOWARN, COPTION ID TABLES, COPTION NO ID
TABLES, COPTION LABEL TABLES, COPTION NO LABEL TABLES, COPTION
MAXGOSUBS, COPTION PAGESUB, COPTION TITLESUB, COPTION SET ERRL,
COPTION NO SET ERRL, COPTION REDIM, COPTION NOREDIM, COPTION
ERROR HANDLING, COPTION NO ERROR HANDLING and COPTION MAXFILES
statements.

It is possible to break up a program into separate subunits.
There are three kinds of subunits: MAIN, subprograms and
multiline functions. MAIN is the subunit that is executed when a
program is run. Subprograms are subunits that are CALLed from
other subunits. Multiline functions are subprograms that return
a value. Both subprograms and multiline functions can have
parameters. These parameters can be files or any of the data
types supported in HPBB and can be scalars or arrays. Global
data can be shared through COMMON. COMMON can be either named or
unnamed. It is also possible to have single line functions
within a subunit, although they use the subunits variables, can
only contain expressions and have limitations on the parameters.
Virtual program space allows large applications to be run when
written in a modular fashion. Even though memory on the HP3000
may be limited, the HPBB interpreter can have a large program
running in it and will only bring the current subunit into
memory.

Run-time errors and interrupts from the keyboard (control Y, also
known as HALT) can be easily trapped by the program and
appropriate action taken. The statements that support this
capability are ON HALT, ON ERROR, ON END #, ON DBERROR, OFF HALT,
OFF ERROR, OFF END #, CAUSE ERROR and OFF DBERROR, as well as the
ERRM$, ERRL, ERRN, ERRMSHORT$ functions. The ON and OFF
statements arm and disarm the trap handling mechanism. If it is
armed then when a certain trap occurs, the action specified in
the ON statement would be executed. For example, if there is an
ON ERROR CALL Error sub, then when an error occurred a CALL to
Error sub would be executed. Only three type of action can occur
in a -ON statement: GOTO, GOSUB and CALL (without parameters).
If an ON END I is active then when the file specified by the
number following the I gets an END OF FILE error, the ON END
action will be taken. If a ON DBERROR is active then any
database statements without a STATUS clause which get a error
will cause the ON DBERROR action to be taken.

HPBB contains statements which provide access to the IMAGE
database management intrinsics. They are the DBCLOSE, DBDELETE,
DBERROR, DBEXPLAIN, DBFIND, DBGET, DBINFO, DBLOCK, DBMEMO,
DBOPEN, DBPUB, DBULOCK and DBUPDATE statements. These statements
use keywords to simplify the IMAGE calls and to make IMAGE-based
applications more readable and maintainabl. The programmer no
longer needs to append semicolons and the end of strings, and
then set the string length when returning from the intrinsic.

Paper 3067 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

Any error encountered in the statement can be caught by HPBB' s
error handling facility if the STATUS clause is not specified.
The ON DBERROR and OFF DBERROR error handling statement can be
used to customize error handling for databases. There is the
PACK, UNPACK and PACKFMT statements for packing and unpacking
data into strings.

There is a formatter for performing formatted output which is
very rich in its features. This is accessed by the PRINT USING,
PRINT# USING, DISP USING and IMAGE statements.

HP Business BASIC provides the capability to call system
intrinsics and programmer-supplied routines written in PASCAL and
SPL. This is done by the EXTERNAL, GLOBAL EXTERNAL, INTRINSIC
and GLOBAL INTRINSIC statements and the CCODE function. HPBB
subunits can be compiled for performance reasons and called from
interpreted routines. When calling HPBB routines, features such
as COMMON and error-trapping are available. This provides a way
to speed up an application or utility even though it is not
completely compilable. There are two routines, BB SORT IT and
BB MERGE IT, which allow the HPBB programmer t~ call the
SORT/MERGE intrinsics.

When RUNing HPBB programs from the interpreter it is possible to
specify an INFO string. This is the same as the INFO string on
the MPE :RUN command for compiled HPBB programs and is accessible
by the INFO$ function from both interpreted and compiled code.

Statements exist to issue MPE commands and to run other programs
from within an HPBB program. These are the SYSTEM (or ":") and
SYSTEMRUN (or ":RUN"). SYSTEM will execute a command on the
HP3000 and SYSTEMRUN will run another program. You can specify
all of the parameters of the MPE RUN command in addition to a
NOSUSPend and a PRI= parameter. These tell HPBB not to suspend
itself while the child process is running and at what process
priority the child process is to run, respectably. Both of these
statements can have STATUS clauses which indicate the result of
the action done.

Long identifier names and alphanumeric labels improve program
maintainability. Gone are the days of one or two identifier
names. Variables, line labels, subunit names, etc. can have up
to 63 characters.

There are numerious builtin functions in HPBB. Besides those
mentioned elsewhere in this paper, there are functions for string
processing, bit manipulation, trigonometric operations, accessing
the system clock and other useful things. They are the CHAR$,
WORD, DEBLANK$, COMPRESS$, TRIM$, POS, SCAN, LWC$, UPC$, RPT$,
RTRIM$, LTRIM$, VAL$, VAL, SHIFT, ROTATE, BINAND, BINCMP, BINOR,
BINXOR, BITLR, BITRL, SIN, COS, TAN, ACS, ASN, ATN, PI, DAT3000$,
DAT$, TIME$, CLOCK, CPU, TIME, BRK, CEIL, CTL, FRACT, LGT, MAX,
MIN, NUM, REAL, SHORT, INTEGER, SINTEGER, RND, SGN, SPA, SQR,

Paper 3067 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL. USERS GROUP INTEREX85

SKIP, SREAL, DECIMAL, SDECIMAL, TAB, TASKID, USERID, ROUND,
DROUND, EXP, REVISION, VERSION$ and ABS functions,

Seven data types provide flexibility and efficiency in data
structure design. These types are long and short INTEGER, long
and short floating point REAL (using binary representation), long
and short floating point REAL (using binary coded DECIMAL
representation) and strings. The names of thses types are
INTEGER, SINTEGER or SHORT INTEGER, REAL, SREAL or SHORT,
DECIMAL, SDECIMAL or SHORT DECIMAL, and strings. The binary
representation of floating point REALs uses the machine
instructions of the HP3000 resulting in high performance. The
binary coded DECIMAL representation of floating point REALs
provides higher accuracy because it can represent base ten
numbers exactly (the binary representation occasionally has some
small round off errors when converting from base 10 to base 2 and
then back again) However, there is a performance penalty for
using DECIMAL and SHORT DECIMAL. When an expression is evaluated
which contains different type of numbers, they will be
automatically converted to a matching type. The possible
operators are plus, minus, multiplication, division, integer
division (DIV), MAXimum, MINimum and remainder (MOD). There are
also the relational operators <, >, < >, =, <= and >=. The
logical operators <, >, <=, >=, < > and = can also be used in
expressions. They return 1 for true and O for false. The
boolean operators AND, OR, NOT and XOR can also be used. They
consider 0 to be false and anything else to be true.

All of these types are available as scalars or as arrays. The
maximum number of dimensions in an array is six. There are
several statements and functions built into HPBB for dealing with
arrays. Using these statements will result in more
understandable and better performing code. The MATRIX statements
are MAT READ, MAT PRINT, MAT INPUT, MAT READ #, MAT PRINT #, MAT
INPUT #, MAT PRINT USING, MAT PRINT # USING and MAT assign. The
MATRIX fun ct ions are CON, ZER, SUM, ROW, COL, IND, INV, TRN,
CSUM, RSUM, DOT and DET.

For storing constants, there is the READ, MAT READ, DATA and
RESTORE statements and the DATABUF function.

HPBB provides several statements and functions for accessing
files on the system. These are the READ #, PRINT #, MAT READ #,
MAT PRINT# and LINPUT #, CREATE, ASSIGN (open), ADVANCE, PURGE,
RENAME, COPY, LOCK, UNLOCK\ UPDATE, and POSITION statements, and
the SIZE, SLEN, WRD, REC, TYP and FNUM builtins. There is a
special HPBB file type available (BDATA) which allows data to be
stored with type information to facilitate later retrieval. In
addition, MPE's ASCII and BINARY file formats are fully
supported. For BDATA files, the I/O can be directed to a
specific word within a record. It is also possible to have all
reads and writes be encrypted. The FILES ARE IN statement
provides a way to tell HPBB to get all files from a certain group
and account.

Paper 3067 8
WASHINGTON, 0. C.

BAL TfMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

It is possible to redirect output from the terminal to other
files. The SEND OUTPUT TO statements will redirect the result of
normal PRINT statements to files or devices. The SEND SYSTEM
OUTPUT TO statements will redirect the result of normal HPBB
commands such as LIST and TRACE to files or devices. The COPY
ALL OUTPUT TO statements will copy all of the output of HPBB to
files or devices. Some of the files or devices that can be
specified are "filename", NULL, DISPLAY and PRINTER. PRINTER is
nefined in the configuration utility mentioned below.

The COPYFILE command allows you to copy one file to another. If
no "to file" is given, the file will be copied to the terminal.

When doing input and output to the terminal there are many
features that can be used. These include the PRINT, INPUT,
TIMPUT, PRINT USING, DISP, DISP USING, LINPUT and BEEP statements
and the BUFTYP function.

When printing or inputing, whether it is from a file, the
terminal or the DATA statements, it is possible to have a simple
FOR-NEXT loop in the I/O statement. This is know as the
"embedded FOR loop". ·

'there is the CAT or CATALOG statement which allows you to list
the names of the files in the system. It is possible to specify
the TYPE of file to be searched for as well as having wild-cards
in the name.

There is a configuration utility for customizing the default
OPTION settings to the programmers needs.

Conversion tools are provided for BASIC/3000 and BASIC/250
applications. These will be discussed in a later section.

HPBB is localizable to the local languages and customs of many
countries around the world.

3.0 PERFORMANCE TUNING

In order to make ·the bes1: use of any to6l it is necessary to
understand how it works and how to make the best use of its
features. HP Business BASIC improves the productivity of the
programmers using it by doing much of the work for them. The
penalty for this is that performance may suffer because HPBB may
be doing work for features that are not used. Here is a list of
things to do to help improve the performance of HP Business BASIC
applications and utilities. While compiled HPBB offers good
performance and in some cases may be faster than other languages,
it is normally somewhat slower that other languages like PASCAL,

Paper 3067 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SPL and FORTRAN for CPU-bound programs.
additional code generated by the compiler
features of the language. When a program
the difference may be insignificant.

3.1 COMPILING

This is because of the
to support the special
is I/O or IMAGE bound,

Compile all or part of your program. This may be the easiest
thing to do and performance improvements for most applications
will be very substantial. Certain I/0-bound applications,
however, will show little improvement. The COMMAND, LINK, GET,
GET SUB, DELETE, DEL, MERGE, RE-SAVE, PAUSE, SAVE, SCRATCH,
SECURE, STORE and TRACE statements cannot be compiled. If you
cannot compile all of your application the compile as many
subroutines as possible and call them from your interpreted
program. It is therefore possible to eliminate these statements
from low-level routines and compile those, resulting in faster
execution of the interpreted main program. Compiled programs
also result in a much lower demand on operating system resources
(memory, disc, etc.) • Please be careful of any of the small
differences in behavior between compiled code and interpreted
code, especially running the two together.

There are a number of compiler options that affect the size and
therefore the execution speed of the compiled program. They are
COPTION NO RANGE CHECKING, COPTION NO REDIM, COPTION NO SET ERRL
and COPTION NO ERROR HANDLING. COPTION NO RANGE CHECKING causes
the compiler to not emit code that will produce a run-time error
if a number or an array index is out of bounds. COPTION NO REDIM
cause the compiler to emit code which assumes that array bound
will not be changed at run-time throught the use of the REDIM
statement or the redim option on some of the MAT statements. Any
attempts at redimensioning are illegal. COPTION NO SET ERRL
causes the compiler to not emit code to update the value returned
by the ERRL function. COPTION NO ERROR HANDLING causes the
compiler not to emit code after each statement to check whether
errors or HALTs have occurred and to process the appropriate ON
HALT, ON ERROR, ON DBERROR statement, the use of which will be
illegal. COPTION NO ERROR HANDLING also causes COPTION NO SET
ERRL. If you use these COPTIONs, then use the STATUS clauses of
the statements in your program.

Try to segment your program using the COPTION SEGMENT statement
so that there are less intersegment calls. Large segments take
longer to load than small segments.

If, after you have compiled you program and tried some of the
suggestions in the next section, you still need better
performance there is one thing left to do. There are some things

Paper 3067 10
WASHINGTON, D. C.

BAL TJMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

which may be more efficient if written in another language such
as PASCAL.

3.2 USE THE HIGH PERFORMANCE FEATURES

If, when t.rriting an application or utility you pay attention to
what features you use, then you will be able to increase the
speed of your programs.

The type of numeric data you use can have a major impact on the
performance of your program. If possible have all numbers in a
expression be the same type. Conversion between numeric types
can take longer than the actual numeric operations. Constants
are stored as DECIMAL, REAL, INTEGER and SHORT INTEGER. As a
result, any other type will require conversion when combined in
expression with constants. DECIMAL, SHORT DECIMAL and OPTION
DECIMAL use HPBB' s uses binary coded decimal instead of binary
for its internal representation. There is limited hardware
support for this and so these operations are slower. If at all
possible use another data type. All SHORT DECIMALs are converted
to DECIMALs whenever they are used, and as such, should only be
used if you are short on space. When going between DECIMAL and
REAL, all conversions go through ASCII, and if going to/from
SHORT REAL there is an additional conversion. So, going from
SHORT DECIMAL to SHORT REAL causes three conversions.

Don't have a production program which has self modifying code.
Self modifying code is code that changes itself through the use
of statements like DELETE, GET, GET SUB, RE-SAVE, SAVE, SCRATCH,
LINK and MERGE. Also the COMMAND statement creates code
dynamically. These statements are slow if the accessed code is
in BSAVE format and VERY SLOW when using ASCII files. It is
alright to uses these in development, but they will cause the
interpreter to be very slow and will not be compilable. The most
efficient size of a subprogram is about 200 to 400 lines long.

HP Business BASIC may do a lot of work for the programmer when
executing some of its features. This work may be to support a
subfeature that you are not using. If this the case, the
programmer is may be better off rewriting the code. An example
might be writing strings to an ASCII file. The programmer might
want to call intrinsics directly, e.g. calling FOPEN, FREAD,
FWRITE, FCLOSE directly instead of using ASSIGN, READ I and PRINT
#. Another example might be to call the CREATEPROCESS intrinsic
to run another program, if there are only simple parameters.
Please note that it is not always easy to call intrinsics.

There are several features in the language which do a large
common operation. They were implemented as efficiently as

Paper 3067 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

possible and will probably be faster than if the programmer
implemented the action. Some examples of this are the COPYFILE,
MATRIX statements and the embedded FOR-NEXT loop in I/O
statements. Also try to use the structured and IMAGE statements.
They make the code easier to understand and are faster also.

When choosing a file type to use be aware that fixed record size
file are faster the variable record size files, but they use up
more space. When saving a HPBB program try to use the BSAVE file
format. It is faster and smaller than ASCII or BDATA, and is
required by the compiler.

GOSUB is faster than CALL. Long parameters lists take longer.
Make loops contain as few statements as possible.

Only specify the portions of COMMON which are required by the
subunits. Also make each line do as much as it can. Even though
this may make the program slightly less understandable, it
eliminates the overhead associated with processing a line.

Whenever possible try to evaluate expressions outside of the
program. By using the calculator mode and only putting the
result in as a constant, the program will run faster.

Removing comments from the production version of a program which
is interpreted will make it run slightly faster. This has no
effect on compiled programs.

4.0 RESOURCE REQUIREMENTS

The interpreter uses a lot of code and extra data segments. This
will put a load on memory management system. Adding memory,
and/or compiling you applications will fix this.

Some of the features in the interpreter can take up a lot of
memory, resulting is less user memory available than was on
BASIC/3000. This is not a problem for compiled code.

HPBB does use the PASCAL HEAP.
RELEASE.

5.0 PORTABILITY

Paper 3067 12

Be careful using MARK and

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

HP Business BASIC was written to be as compatible as possible
with BASIC/250 and BASIC/3000. As a result HPBB includes tools
to assist in the conversion of BASIC/250 and BASIC/3000
applications.

The conversion of BASIC/250 applications involves the transfer of
files from the HP250 to the HP3000 (using data communications
tools included with the BASIC/250 conversion package) and
conversion of those files on the HP3000. The conversion package
will allow the transfer and conversion of BASIC/250 source
programs, data files, databases and forms files. The run-time
behavior of each HPBB statement has been carefully designed to
duplicate, as closely as possible, the behavior of the
corresponding BASIC/250 statement. However, there are
differences and omissions of some BASIC/250 features due to
machine dependencies. In addition, there are a number of 250
subsystem statements (in particular those statements in the
FORMS/250, Report Writer/250 and SORT/250 subsystems) which are
not currently included in HPBB. Therefore, after an application
has been run through the conversion utility, manual conversion
will be required in most cases before the application can run
successfully with HPBB.

Since HPBB is highly compatible with BASIC/3000 on a
statement-by-statement basis, the conversion is accomplished
mainly through use of the conversion utility which can be
included, as an option, with the purchase of HPBB. Difference in
the organization of programs may result in the necessity for some
manual modifications in order to make those applications run with
HPBB. The conversion utility will convert BASIC/3000 programs
and data (BASD) files.

HP Business BASIC will be the standard for BASIC on all future HP
commercial system.

6.0 CONCLUSION

In this paper we have seen how HP Business BASIC can add to the
productivity of programmers using it. This is because of the
many features and the interpretive environment it provides. We
have also seen how to use these features in a cost effective
manner. There is a myth that BASIC is just a toy language and
not to be used for real work. Already that notion has been
proved false on the HP250. Hopefully it will be proved false
again for HP Business BASIC/3000.

Paper 3067 13
WASHINGTON, 0. C.

BAL. TIMORE WASHINGTON REGIONAL. USERS GROUP INTEREX85

1.0 REFERENCE:S

For more information on any of the features in HPBB please refer
to the HPBB Manual series. This is a set of five manuals which
constitute the user documentation of HP Business. There is also
an on-line HELP facility in the interpreter which provides
information on syntax . and functionality of all of the HPBB
keywords and statements.

HP Business BASIC Programmer's Guide Part No. 32115-90007

This guide is for those who want to learn how to program in HPBB.

HP Business BASIC Reference Manual Part No. 32115-90006

This manual describes all of the features of HPBB. It is for
those who wish look up how an HPBB feature works.

HP Business BASIC Quick Reference Guide Part No. 32115-90008

This is a MQuick Referencett ~ersion of the reference manual.

BASIC/250 to HP Business BASIC Conversion Guide Part No.
32115-90010

This guide describes how to convert BASIC/250 applications into
HPBB applications. It also describes the incompatibilities and
the conversions which take place.

BASIC/3000 to HP Business BASIC Conversion Guide Part No.
32115-90009

This guide describes how to convert BASIC/3000 applications into
HPBB applications. It also describes the incompatibilities
between the two BAS!Cs.

Paper 3067 14
WASHINGTON, D. C.

ISAL Tl MORE WASHINGTON REGIONAL USERS GROVP

3068. MPE Disc Caching
Bryan Carro 11

Marketing Engineer
Computer Systems Division

Hewlett Packard
19447 Pruneridge Avenue

Cupertino, Ca.95014

MPE Oise Caching
Introduction

IN TEREX 8 5

Now that MPE Disc Caching has finally arrived, it has become the
job of many users to determine what is happening inside this box we
call Disc Caching and learn how to take full advantage of its
capabilities. Disc Caching is being 'widely used by HP3000 users.
There is little user documentation available for internal flow and
organization to help understand how Disc Caching works.
Frequently asked questions by users attempting to understand Disc
Caching include: What is a Random/Sequential Fetch Quantum?,
What is a Serial Write Queue? or What happens when you issue a
STARTCACHE/STOPCACHE command?.

These are excellent questions that can help a System Manager tune
his/her system, a programmer increase the integrity of an
application system, and an operator understand what it means to
start or stop Caching on one or more discs. Based on my
experience with the MPE Operating System, I would like to share what
I have learned and am continuing to learn about the Disc Caching
Subsystem. This paper will focus primarily on the
implementation details of Disc Caching including some guidelines for
its successful use.

History

During the development of the MPE IV Kernel, algorithms were
developed that effectively managed the resources and optimized
performance for the existing HP3000 family. Since that time, the
Series 64 was introduced with a processor twice as fast and main
memory size four times that of the previous top of the lir.e
HP3000. The Series 64 performance was found to be very sensitive to
disc access times and relatively insensitive to main memory size.
The performance bottleneck of the Series 64 was then found to be the
disc subsystem. Efforts were then focused toward increasing the
disc throughput. Figure 1 illustrates a typical storage hierarchy
with the cost per byte and access speed increasing as you move
up the scale and capacity increasing as you move down the scale.
There have been four different traditional approaches for
addressing the bottlenecks between storage levels. These fou1·
approaches are: increase the management algorithms of the levels,
increase the capacity of the faster level, speed up the access time
of the next lower level, or introduce a new level into the system.
The HP3000 research and development lab went to work with these

Paper 3068 1
WASHINGiON. D. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP

four ideas to determine which,
implement on the HP3000 family.

if any,

INTEREX85

of these we could

Standard Computer System Storage Hierarchy

Cost
Per

Byte

~Processor
Registers

Processor
Cache

Main Memory

Discs

Backup Devices
(tapes, etc.)

Capacity

Figure 1

Speed
of

Access

The next lower level of the hierarchy was the disc subsystem and one
of the tasks was to determine if we could speed up the access times
of the disc subsystem. Processor speeds have been increasing
and the cost per byte of semiconductor memory has been dropping by
orders of magnitude but the disc technology has not

been keeping up with the increases in these other areas. The gap
between a semiconductor memory reference and a disc reference is
currently about five orders of magnitude and growing. Although
discs have been getting more and more dense, the access times have
remained relatively constant with the current moving head
technology. When a new technology is developed or when major
advances can be made in moving head technology the gap between main
memory and discs may be narrowed, but until that time, we will have
to look elsewhere for improved disc throughput.

Another traditional solution to removing a bottleneck is to
introduce a new level into the hierarchy. This level would have to
be introduced into the gap between the disc and main memory to help
the Series 64 bottleneck. Research was then done to
investigate the possibility of a disc resident cache independent of
any higher levels in the hierarchy. Introducing a new level at this
point using either bubble or semiconductor memory technology
has shown little cost effectiveness. Bubble memory has not been
able to keep pace with the density improvements of semiconductor
memory which has kept the cost per byte relatively high.
Semiconductor RAM memory has become more and more dense and the cost
per byte has been dropping but the cost per megabyte is still two
orders of magnitude greater than that of discs. Until major

Paper 3068 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

technology changes occur,
semiconductor main memories
hierarchy.

we can expect
to be dominant

INTEREX85

magnetic discs and
in computer storage

The remaining two approaches have been combined to give us disc
caching. The main memory capacity on the HP3000 family has been
increased to eight megabytes on the Series 64 and the Series 44
capacity has been doubled to four megabytes and it is likely that
future HP3000s will have even larger main memories. The MPE IV
memory manager has been enhanced with the addition of the Disc
Caching module to allow what we know as disc caching.

Overview

Disc caching on the HP3000 family is an optional feature that takes
advantage of excess CPU power and excess main memory to keep
frequently referenced portions of disc buffers in main memory.
The Disc Caching Subsystem monitors memory usage and uses as much
free memory as it can to increase the chance that the next
requested disc record will already be in main memory. There is no
permanently allocated portion of memory set aside for disc caching.
The algorithm monitors the current amount of memory required for
user and system data and code segments and adjusts the amount
of memory it uses for Disc Caching accordingly.

Disc Caching takes advantage of its knowledge of the file system to
maximize the chance that the next requested record will already
be in memory. The goal of the Disc Caching Subsystem is to maximize
the number of times a request is made to read a record which is
in memory (read hit) and to minimize the number of times that a
request is made to write a record to disc which already exists in
main memory and is currently being written out to disc (write hit).
In both of the above cases, a disc access will be required to satisfy
the request. In the HP3000 family, a main memory move instruction,
which will be executed when a disc record is found to already be
present in memory when a process requests it, takes from 3 to 5
milliseconds. A disc access, which will be required when a requested
record is not already in main memory, takes from 30 to 40
milliseconds, which by comparison is a very long time.

Disc Caching can be enabled or disabled on a disc by disc bas is.
When Disc Caching is enabled for the first disc, all caching
related resources are created and likewise when Disc Caching is
disabled on the last disc, all related resources are deleted from the
system. This concept will ensure that Disc Caching will not introduce
any overhead when it is not enabled.

Paper 3068 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Disc Caching Data Structures

SYSGLOB I CACHESEG I

Cache
Cache

Directory
Cache 0 0 0

Domain Domain
Table
(CDTI Cache Cache

Domain Domain
0 Cl 0

Figure 2

When caching is enabled on the first disc, a Cache Directory
Table (CDT) is created to keep track of all caching related data. The
CDT maintains an entry for each disc that has been enabled for
caching. The CDT also maintains pointers to the portions of disc
that have been saved in main memory (cached) in hopes of satisfying
a disc request without having to access the disc. The portions of
disc that are memory resident are called cache domains and are
variable in size depending on the file structure and the available
memory. The cache domains are also connected by a linked list
for each disc. This list is linked in increasing disc address
order.

Data Structures

As ~e just mentioned, the Cache Directory Table (CDT) keeps track
of all caching related information. There is one CDT for each system
t.ti th caching enabled. The CDT is poil)ted to by three fixed low
memory locations. These locations are in the area of memory known
as System Global (SYSGLOB) and includes a one word Data Segment
Table (DST) number, a one word bank address, and a one word bank
offset address for the CDT. These words will be zero for a system
without caching or when caching is not enabled.

The CDT contains three different types of entries: the Header,
Device, and Mapped entries. There is one Header entry in each CDT
that contains some global CDT statistics and pointers. The
information found in a Header entry includes the number of
entries in the table, the first free entry, the number of logical
devices currently cached, etc.

There is one Device entry for each logical device currently being
cached. The device entries contain information such as the
logical device of the disc being cached, pointers to the cache

Paper 3068 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

domains, caching statistics, etc. A Device entry is created for
every successful STARTCACHE command and deleted for every
successful STOPCACHE command. The SHOWCACHE command uses the
information found in the Device entries to report caching
statistics. Each Mapped entry corresponds to a cache domain.
The mapped entries are searched by the read and write logic to
determine if there is an I/O already in process for the desired disc
location. The mapped entries are for every physical any
logical I/O performed by the Disc Caching Subsystem. The mapped
entries hold information such as the sector start and stop disc
address of the I/O, the target memory address of the cache domain,
and a number of flags. Each mapped entry pertains to a device entry
and all mapped entries belonging to the same device entry are
linked together.

A cache domain is a main memory resident temporary storage area for
data brought in from the disc. A cache domain may reside in any
available area in memory and is very similar to an extra data segment
but does not require a data segment table (DST) number.

We have briefly covered all the Disc Caching specific data
structures. We will now walk through the Disc Caching commands and
see how the resources are used by the Disc Caching subsystem.

STARTCACHE

The STARTCACHE command is responsible for all operations
necessary to enable Disc Caching on the specified disc. The
STARTCACHE command executor can be broken down into three
different sections. First, some checks are made of the state of
caching; second the resources are obtained; and third, the data
structures are completed with valid data and caching is allowed to
begin.

There are several checks that must be made before any resources can
be allocated. The first check is made to see if caching exists
on this system and if the specified device will support caching.
The device specified in the STARTCACHE command must be a disc. At
this writing, all random access discs will support Disc Caching.
Once we have determined that the system and logical device will
support caching, we determine if caching is currently being used on
the system or if we are the first command to enable caching. If
caching is not currently active, we must build the CDT and lock it
into memory. The CDT cannot be swapped out to virtual memory since
this would defeat its primary purpose of reducing disc transfers. In
addition to building a CDT, the caching code segment (CACHESEG) must
also be loaded into memory and locked for the same reason. The
fixed low memory locations are then updated to point to the CDT
memory location for later use by the Disc Caching subsystem. If we
are successful at all of these checks, we then proceed to collect the
needed resources.

Some of the more general resources have been established in the
checking phase. We must now gather specific data entries to

Paper 3068 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

allow caching to be enabled. The primary entry we are interested in
is a device entry in the CDT table. There is no upper limit on the
number of device entries that can exist in the CDT. This number is
only limited by the maximum number of supported disc drives which is
currently 24 per system. If for some reason, we are unable to obtain
a device entry in the CDT, a system failure 1009 will result. A
device entry is obtained and initialized to zeros, and we now begin
the business of completing the entry with valid and useful data.

The device entry is completed and linked in 1"7i th any other device
entries that may exist at this time. All counters are
initialized to zeros to ensure integrity of the counters, and the
pointers to the mapped entries and cache domains are initialized to
zeros since these entries do not exist for this device yet. Some
control words and pointers in the header entry are updated to
reflect the addition of a new device entry. The final value set
which makes caching available on the specified device is a bit in
the Device Information Table (DIT) for this device. The bit is set
on to indicate caching is enabled and the next disc request to this
disc will use caching code to resolve it.

Cached Read

The next disc request that comes down from the file system will be
intercepted by the caching routines. If this is a user I/O, the
operation will be performed on the users stack and will require
approximately 255 (%377) words of stack space to execute. The first
caching routine to execute is called CDT'ATTACHIO and will perform
checks of the many parameters that are passed to it as well as some
more checks specific to disc caching. If the tests pass, we will
check to see if caching is in the process of terminating (STOPCACHE
command just executed). If this is the case, we will not perform the
I/O but instead will wait until the STOPCACHE command has finished
executing and will return to perform a physical I/O. If all is
well, we will continue by building an entry into a table called
the Logical Disc Request (LDR) table. The LDR is a specially
formatted Disc Request Queue (DRQ) entry and is not part of a
separately configurable table. The LDR changes the DRQ entry format
for the specific needs of the Disc Caching subsystem. Once this entry
is built, a separate routine called REQUEST'CACHE is called to
determine if the requested data is already in memory.

REQUEST'CACHE will attempt to satisfy the request. If it is
successful, we have saved a physical access and will return
control to the current process without requiring the process to
block. If REQUEST'CACHE is not successful, a physical disc
access must be initiated to satisfy the request and the process must
block while this is done. REQUEST'CACHE will begin looking for the
requested data with the device entry in the CDT. The device entry
contains a pointer to the first and last mapped entry for this
device. Each mapped entry will be searched sequentially for a
match with the requested address and length. If a match is not
found in the mapped entries, the cache domains are then searched
i::aquentially. HP has investigated implementing other methods of

Paper 3068 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

scanning the mapped entries for a specific address in an attempt
to increase the throughput ot the system, but all the methods
investigated so far proved not to provide substantial throughput
increases.

As a result of the search, one of four things could happen; the
requested data could be found in a cache domain (hit), the data
could be found in a mapped entry, the data could not be found
(miss) or part of the data could be found (partial hit). If all of
the requested data is found, it is moved to the user's data area
and control is returned back to the current process who continues
executing without being rescheduled. If the data was found in a
mapped entry, it means that an I/O is already in progress for this
data. If necessary, the disc I/O priority is raised to the priority
of the requesting process and the process blocks awaiting the I/O
completion. If the data could not be found, or if only part of the
data could be found, the request cannot be satisfied without a
physical disc access and the process must block. In this case,
a new block of memory is obtained, or if memory pressure exists,
the least frequently accessed memory region is flushed to disc, if
necessary, and the region is allocated. Once the new cache domain is
allocated, the physical disc I/O is performed to read the data
from the disc into the new cache domain. The physical disc I/O
will usually move a data block larger than the requested data. Data
that is close to the requested data is also read into the cache domain
to satisfy any requests for that data that might be made.

After the data has been transferred to the user, some counters are
updated in the device entry to track how successful the disc caching
subsystem has been. These counters are used to compute the numbers
displayed by the SHOWCACHE command to be discussed later.

Cached Write

A cached write is very similar to a cached read in its operation but
the goal of the writing strategy is the opposite. The goal of the
read logic is to maximize the number of times that the requested
data is already in memory. The goal of the write logic is to
maximize the number of times that a record being sent to the disc is
not found in memory. The goal of both systems is to minimize the
number of physical disc accesses which require a process to block.
When the caching subsystem receives a write request, the mapped
entries in the CDT and the cache domains are searched just as they
are for a read request. This search also yields the same four
possible results; the requested data was found in a cache domain
(hit), the data was found in a mapped entry, part of the data was
found in a cache domain (partial hit), and the data was not found in
any cache domains (miss) . If the data was not found in any cache
domains, a new cache domain is acquired as with the read miss
situation and the data to be written to the disc is put in this
new cache domain. The new cache domain is linked into the linked
list of cache domains for this logical device and the process is
allowed to continue without blocking. A physical write must still
be scheduled for this cache domain but this write can take place at

Paper 3068 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

a background priority. A background priority means that the physical
I/O will not compete for disc 'lccesses with processes that are
blocked waiting for a physical I/O to complete. This has the effect
of increasing overall throughput because the process issuing the
write does not have to wait for this data to be posted to the disc
to continue. The data will remain in the cache domain until a time
that no higher priority physical disc request is pending for this
disc. It is to our advantage then, to minimize our write hits as
well as to maximize our read hits.

In the case of a partial hit, a total hit or a hit in a mapped
entry when a write function has been requested, more work must be
done. In all cases, the current process must block for a
physical write to complete before continuing. The cache domain that
caused the hit during the search will be flushed to the disc and then
the same logic used for a write miss described above will be used
to add the data being written to a cache domain. When flushing the
cache domain to the disc, a Disc Request Queue (DRQ) entry must be
obtained and completed and passed to the disc driver. If this cache
domain has been previously written to, a DRQ entry may already exist
at a background priority so a search must be made of the DRQ. If
an entry is found for the cache domain we need to flush to the
disc, its priority is raised to the priority of the process forcing
the disc I/O and the process is blocked pending the I/O completion.
When the I/O completes, the cache domain that was just flushed is
filled with the data that the blocked process is writing and a
background disc write is initiated for the new cache domain. Once the
background write is initiated, the process that initially requested
the write is unblocked and allowed to continue processing. The
blocked process does not wait for the data it is sending to be posted
to the disc.

CACHECONTROL

We have seen how Disc Caching gets started and how a typical read and
write operation take place, however, you probably have many questions
in your mind about how you can control Disc Caching. The
CACHECONTROL (appropriately named) command and the FSETMODE intrinsic
will give you some control over how things happen in the Disc
Caching subsystem. The CACHECONTROL command has three options,
SEQUENTIAL, RANDOM and BLOCKONWRITE.

The SEQUENTIAL and RANDOM options allow you to set a target
number of sectors that you want Disc Caching to bring into a
cache domain in memory every time it encounters a read miss.
These are both called "fetch quantums". The size of the cache
domain built, following a write miss, is always the size of the
requested transfer so write requests are not affected by any
fetch quantums. In the case of a read miss, Disc Caching will take
the requested size and round it up. The value selected will be the
largest even multiple of the requested size that is less than or
equal to the fetch quantum, but never less than the requested
size. This means that the requested size will always be brought
into memory and usually several times more than the requested size

Paper 3068 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

will be brought in. The values of the fetch quantums can range
from a low of only 1 sector to a maximum of 96 sectors. The default
values are 16 sectors for the RANDOM option and 96 for the
SEQUENTIAL option. Disc caching uses the file system information
concerning the type of access the file is being used for to know
which option to use on any given read. If the read request is a
FREAD, Disc Caching will choose the SEQUENTIAL option value. If
the read request is any other type of read, including
FREADBACKWARD, Disc Caching uses the RANDOM fetch quantum.

The setting of these two values can vary your performance and
total disc throughput, and there are many factors to consider in
setting these values for your shop. We will address a few of the
factors here briefly. In most cases, the default settings for both
options will give the best results. These values were chosen
after extensive testing using varying system loads and
configurations.

The SEQUENTIAL option should usually be set as high as it can. If
a file is being accessed sequentially, records will be read in
sequence so the more records you can put into memory, the more disc
accesses can be saved. One important note about sequential file
access is that after the last record in the cache domain of a
sequential file is transferred to the users stack, the cache domain
is marked as a Recoverable Overlay Candidate (ROC) which means that
the memory space used by that cache domain can now be used by some
other operation if it is needed. This is the method the memory
manager uses to determine who has been least recently accessed.

The RANDOM option gets a little more complex. There are several
reasons why a default value of 16 was chosen, the most important of
which deals with the internal disc resident hardware buffer found
in the CS80 discs. There is a 4K byte hardware buffer built into
the CS80 discs to reduce the time encountered because of latency
(disc rotational delay) for small transfers. Any transfer requests
greater than about 16 sectors will not use this hardware buffer and
will cause the transfer to be slower. In some cases, this
slightly slower transfer may be advantageous because of a possible
higher hit rate, but you should consider the options and
experiment with your system. The number of process stops
displayed by the SHOWCACHE command is another indicator of
system performance and in particular the Disc Caching
performance. This number is often affected by the RANDOM fetch
quantum value. If the process stops, as a percent of cache requests
(process stops/cache requests), is around 13~ or greater, this
is an indicator of excessive process stops that may be due to an
improperly set RANDOM fetch quantum. If the RANDOM fetch quantum is
set too high, then you may be encountering many write hits which
causes a disc access and a process stop. You may want to experiment
with a lower RANDOM fetch quantum in this case to reduce the chance of
a write hit.

The size of both fetch quantums also impacts the amount of memory that
will be used for caching. If you are short on memory, it would

Paper 3068 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

probably be best to experiment with smaller fetch quantums to relieve
any memory pressure that may be present. Since disc caching may be
enabled and disabled on a disc by disc basis, you should look at
the performance of each disc individually. In some cases it may
be best to stop caching on one or two discs with a poor read
percentage, read hit or high write hit rate, and release the
memory used by those discs to increase the performance of the
good performing discs even more. The bottom line concerning the
fetch quanturns is to experiment in your own shop with your own
application mix running to see what settings give you the best
performance.

The BLOCKONWRITE option of the CACHECONTROL command is an option that
will allow you to sacrifice performance for data integrity. The
BLOCKONWRITE option, if on, will tell the disc caching subsystem
to always cause a write operation to block the requesting
process until the data is recorded on the disc. This option will
prevent the situation where data could be written by a program and
held in a cache domain when a system failure occurs. This would
result in the data being lost since memory contents are not
recovered after a system failure. This option will always decrease
performance (up to 303) since unlike the case of a write miss, every
write operation will cause a physical disc access to occur while the
requesting process waits. This can be a sensitive issue which
must be addressed by each individual shop.

The BLOCKONWRITE option on the CACHECONTROL command will
establish the BLOCKONWRITE option for the entire system. You may also
establish the BLOCKONWRITE option on a file by file basis with the
FSETMODE intrinsic. After a file is FOPENed, a call to FSETMODE with
the appropriate parameters will allow you to establish the
BLOCKONWRITE feature even if the rest of the system is not using
BLOCKONWRITE. Image with logging and KSAM both use the FSETMODE
intrinsic to enable BLOCKONWRITE so you do not have to worry about
those two subsystems.

Another option available with the FSETMODE intrinsic and disc
caching is the Serial Write Queue (SWQ). Since a write operation does
not always transfer the data directly to the disc, several write
operations could all be waiting in cache domains at the same time.
Since all of these requests will be queued waiting to be transferred
to the disc at the same priority, they may not arrive at the disc
in the same order that they were written in. In most cases this will
not be important but in a few other cases it can be critical. It is
for this reason that the Serial Write Queue was developed and made
available. When the Serial Write Queue is specified for a file
with the FSETMODE intrinsic, you are guarantee that all writes
performed against that file will be written to the disc in the order
they were issued by the program. The SWQ is a First In First Out
(FIFO) linked list of entries in the Disc Request Queue. There is
only one SWQ for the entire system so as an extreme example if
the entire system used the SWQ, only one disc write would be serviced
at a time even though there may be multiple discs, controllers, GICs,
and even multiple Inter Module Buses (IMB's). This would cause

Paper 3068 10
WASHINGTON, D. C.

BAL TtMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX8 5

extreme system degradation, so caution should be used in determining
if the SWQ is necessary for your application.

Here are a few closing notes about BLOCKONWRITE and the Serial
Write Queue.

1. Setting BLOCKONWRITE on globally with the CACHECONTROL
command will disable the Serial Write Queue since all writes
are occurring as they are requested in the order that they
are requested.

2. Both Image and KSAM use BLOCKONWRITE and the Serial Write
Queue for "important" transaction such as Intrinsic Level
Recovery (ILR) for Image.

3. With BLOCKONWRITE off, the disc writes will occur after the
requesting process has issued the write and continued its
processing. If a write error occurs when the cache domain is
finally flushed to the disc (i.e. a bad track), a system
failure 650 or system failure 651 will result. If the same
disc error occurred with BLOCKONWR!TE on, or without caching
enabled, a write error would be returned to the file system.

SHOWCACHE

The SHOWCACHE command is the only way to get Disc Caching
statistics from the Disc Caching subsystem without purchasing any
performance monitoring programs or performance consulting. The
output from the SHOWCACHE command is, however, a very simple and
accurate picture of the current status of the Disc Caching
system. Figure 3 shows a sample SHOWCACHE output. The output
shows one line per disc with a total line showing a summary of the
combined Disc Caching subsystem.
DISC CACHE READ WRITE PROCESS % OF CACHE
LDEV REQUESTS HIT% HIT% REA.03 STOPS K-BYTES MEMORY DOMAINS

1 264738 86 79 80 34625 575 7 349
2 113893 '67 66 68 27575 337 4 132
11 165391 83 70 79 23714 715 8 308
12 715884 86 84 86 115000 1970 24 673

Total 1259906 84 78 82 200914 3597 44 1462

693 of user I/Os eliminated.
Data overhead is 374K bytes.
Sequential fetch quantum is 96 sectors.
Random fetch quantum is 16 sectors.
Block on Write = NO.

Paper 3068 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SHOWCACHE Output Figure 3

DISC LDEV is the logical device of the cached disc for which the
following data applies.

CACHE REQUESTS are the number of times a process has requested a read
or write operation to this disc, since Disc Caching was started on
this disc.

READ HIT% is the number of times a read request was satisfied
without a physical disc access divided by the total number of read
requests made to this disc since caching was started on this device.
You should try to maximize this number (i.e. greater than 60%).

WRITE HIT% is the number of times a write request required a
process to block in order to satisfy the request divided by the
total number of write requests made to this disc since caching was
started on this device. You should try to minimize this number
(i.e. less than 50%).

READ% is the total number of read requests divided by the total
number of cache requests since caching was enabled on this
device. The difference between this number and 100% is the write
percentage. Caching will show the greatest performance gain when the
read percentage is highest. PROCESS STOPS is the total number of
times that a process had to be blocked because a physical disc
access had to be performed. If the process stops, as a percentage of
cache requests, reaches about 13% or greater, adjusting the fetch
quantums may increase throughput.

K-BYTES is the number of bytes in thousands used by caching this
disc. This is for your information only.

% OF MEMORY is the number of K-BYTES used by caching this disc as a
percentage of the total memory available on the system.

CACHE DOMAINS are the total number of memory regions set up and
being used to cache this disc. The average size of a cache
domain for this disc can be calculated by dividing the number of
K-BYTES by the number of cache domains.

The information at the bottom of the display indicates the status of
the fetch quantums and the BLOCKONWRITE flag. In addition, the
data overhead and percent of user I/O eliminated is calculated
and presented here. The data overhead number includes the memory
used by the CDT, the header and the trailer information for
each cache domain. The percent of user I/O's eliminated is a
calculation of the overall success of disc caching on this
system. It is calculated by multiplying the overall read hit
percentage by the read percentage and does not take into
consideration any write operations transferred at a background
priority.

Paper 3068 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

When you are trying to determine what combination of Disc Caching
settings work best in your shop, it is useful to try a setting for
an hour or more and check your success with the SHOWCACHE command.
Since the totals displayed in the SHOWCACHE command are not reset,
you must stop and then restart caching before each test to
initialize the counters. This can be a high overhead operation.
A contributed program has been written and contributed to
the INTEREX Contributed Library to help this situation. This
program will lock the Caching SIR and zero all totals for all
currently cached discs. This program should be used with care as
you would any other contributed library program. The program is
called ZEROTOT.

STOPCACHE

The STOPCACHE command is just like the STARTCACHE command only in
reverse. The executor of the STOPCACHE command can be broken down
into the same three sections that the STARTCACHE command was,
except in the STOPCACHE command, they are executed in a different
order. The first section performs some checks of the state of
caching, the second section flushed all cache domains related to
this device to the disc, and the final section releases all
resources.

The first check is made to determine that caching exists on the
system and that caching is enabled. Additionally, several checks are
made against the system, such as verifying that the logical device
number passed to the routine is a disc device and is currently
cached.

When it seems that we can perform the requested function of
stopping caching on the specified logical device, we post all
"dirty" cache domains to the disc. A "dirty" cache domain is one in
which the data in the cache domain has been changed after it was
brought into memory so that the copy in memory is different than the
copy on the disc. Next, the bit in the device information
table (DIT) which indicates caching is enabled, is turned off for
the specified device. This will prevent any more cache domains from
being built until we are done with the STOPCACHE command.

When all the data has been posted to the disc and we have
prevented any more data from being put into cache domains, we
release the resources used by caching this device. This includes the
device and all associated mapped entries in the CDT and all the
cache domains. If this was the only disc currently being cached,
we will also unlock and release the CDT, and unlock the caching code
segment so that it can be unloaded as soon as we complete the
STOPCACHE command.

Should I purchase Disc Caching

When we defined Disc Caching for the HP3000 family of computers, we
said it takes advantage of excess CPU power and excess main memory.
It is very important that you take a careful look at your system

Paper 3068 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

before attempting to uae Disc Caching.
will improve your system performance
cause a performance degradation.

In most cases Disc Caching
but in some cases, it could

Knee of the Curve
~,....,_,.....,.......,,_ ,.... --..-.................

20

-IO

lY
t----1--1 L--+--1----+-+-IT

Paper 3068

Figure 4
Procenor UtillZatiOfl "9rcel1189f
CSY Porformance Toots Support

RESPONSE TIME/UTILIZATION RELATIONSHIP

MIGl1 Model wflh First Come First Serve Oueueing Olsclp1int

Aesponse,.
UtUlzation

14
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP IN TEREX 8 5

Disc caching 1-1ill add a. small amount of system overhead to your
system in terms of CPU. Al though the actual overhead is
relatively small, it can cause dramatic response time increases if
the increase puts your total CPU utilization over a magical number
that I will call the "Knee of the Curve". Figure 4 shows a graph of
the knee of the curve concept. There is a point all systems can
reach where a small increase in CPU utilization will cause a very
large increase in response time. The actual CPU utilization figure
will vary with the individual processor and the application mix
running on the system. If a system was running very near the knee
of the curve prior to installing disc caching, the Disc Caching
overhead could cause enough additional CPU utilization to push the
system over the knee of the curve and into dramatically longer
response times. A system could also be pushed over this knee of the
curve if any additional system load was added either along with Disc
Caching or independently. Summary Disc caching has been an excellent
product for the HP3000 family. It is modest in its use of system
resources and is easy to use. In most environments Disc Caching has
given its users a strong price/performance boost. References J. R.
Busch and A. J Kondoff, "Disc Caching in the System Processing Units
of the HP3000 Family of Computers," HP Journal, February 1985.

J. R. Busch, "The MPE IV Kernel: History, Structure, and
Strategies," Proceedings of the HP3000 Internals Users Group
Conference, Orlando, April 27 1 1982.

J. R. Busch and A.
Perspective," Proceedings
Group Conference, Edinburgh,

J. Kondoff, "MPE Disc Cache: In
of the HP3000 International Users

October 1983.

"Series 64 with Disc Caching Beats IBM 3033 in Batch MRP
~un," Hewlett-Packard Computer News, October 1, 1983.

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and
Kenneth C. Sevcik, Quantitative System Performance, Perntice-Hall
Englewook Cliffs, New Jersey, 1984.

MPE V Tables Manual, Hewlett Packard Company, 1984.

Paper 3068 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3069. TRANSACT AND 3RD PARTY SOFTWARE TOOLS
USED IN A LARGE ON-LINE ENVIRONMENT

Lisa Wilhelm
Stan Lukoff

E.!. DuPont de Nemours and Company, !ne.
Chemicals and Pigments Department

SUMMARY

INTEREX85

This paper is a ease study of the development effort of the DuPont
Chemicals and Pigments Department 3MCS (M aintenance M anagement and

M aterial C ontrol S ystem) project which begana few years ago. A brief
overview will be given on the key elements of the system (project
backround, module descriptions, data base overview, number of
screens, jobs and programs) and then all of the details relating to
the use of TRANSACT and 3rd party software will be discussed.

A major decision was made in the use of the TRANSACT language for
the DuPont 3MCS application. At the time, the language had just been
introduced by Hewlett Packard and there were very few people with
TRANSACT experience. Therefore, much work had to be done to develop
programming standards for 3MCS. System performance also became
an issue when more users were active in the application, and our
experiences to date will be shared.

Due to our aggressive development schedule, there were
incentives to be as productive as possible. We found that we could
fill most of our needs with 3rd party software packages which
supplement the HP software tools and MPE operating system. All of the
packages we are using will be discussed along with specific benefits.
These packages include ADAGER, DBPLUS, FASTRAN, MPEX, OCS, RADAR,
ROBOT, and SCOMPARE/COMPARE. We are currently evaluating VTEST and
PreVIEW.

The 3MCS System was also designed to be a general system that could
be used by many plant sites. Each plant would be able to tailor any
special needs by means of a specifications data set in our tables data
base. This way, plant customization would be eliminated, and
maintenance would be performed centrally by the Wilmington 3MCS support
team.

Paper 3069 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

BACKROUND/SYSTEM OVERVIEW

The Maintenance Management and Material Control System
(hereafter referred to as 3MCS) was initiated by plant requests for
an integrated solution for improving material control and maintenance
practices at plant sites. 3MCS is a collection of on-line integrated
TRANSACT programs comprising 8 modules.

The objective of the 3MCS system is to reduce maintenance and
stores costs by~

o Reducing stores inventories,

o Increasing maintenance productivity, and

o Reducing process downtime.

The original design for 3MCS was to customize Hewlett
Packard's Materials Management (MM/3000) package, Customizing
MM/3000 was supposed to give us 75% of the needed functionality. We
would then develop in-house the 25% functionality not achievable
through customizing MM/3000. We decided to use the TRANSACT language
to do this since most of the functionality developed in-house would
be on-line inquiries. After about six months of developing 3MCS
using this dual approach, we became convinced that the design would
not work. We realized that customizing MM/3000 would only give us
about 50% of the needed functionality and using 3MCS as it ran under
this dual approach was extremely cumbersome for the users. We
decided to abandon the dual approach and develop 3MCS completely
in-house.

The decision was made to write 3MCS completely in TRANSACT. We
felt that we could develop 3MCS quicker using TRANSACT than using
other languages such as COBOL. We also felt that we could develop a
standard system more easily with TRANSACT because TRANSACT handles
the calls to the IMAGE and VPLUS intrinsics. We knew that TRANSACT
could call programs written in other languages. We figured that
we could always write programs in other languages to be called by
TRANSACT if a situation arose that we couldn't handle directly with
TRANSACT. Using TRANSACT did allow us to develop 3MCS quickly. To
date, we have not encountered any situation that required writing
programs in other languages. The major drawback, performance, had been
discovered when we started running batch jobs. Our solution to the
TRANSACT performance deficiencies was to use FASTRAN. Without FASTRAN,
we would have had to use a compiled language, such as COBOL for our
batch programs.

Paper 3069 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Along with TRANSACT, we decided to make heavy use of the
DICTIONARY. All data bases, screens and common variables are
defined in the DICTIONARY. Documentation for these items also exists
in the DICTIONARY. Using the DICTIONARY eliminates the need to define
items in every program. Changing an item becomes a matter of changing
it in the DICTIONARY and recompiling all the TRANSACT programs that
refer to it. Additionally, the DICTIONARY provides information for
INFORM and REPORT users.

The functions of 3MCS are explained in the following
descriptions.

CATALOG MODULE

module

The catalog module contains descriptions of equipment pieces used
at a plant, and descriptions of spare parts and mill supplies
available from the storeroom.

Standard description formats are used including key noun,
descriptive adjective, manufacturer, material of construction, and
size. The equipment pieces are cross-referenced to common equipment
pieces and spare parts.

The objective of the catalog module is to provide easy access to
equipment, spare parts, and mill supplies. This allows quick
identification of the correct part or mill supply, inventory
availability, and an easy method to request material from the
storeroom. Rapid identification of material requirements is
achieved through a variety of on-line searches. Periodically, batch
reports (Catalog Reports) containing equipment, spare parts,
cross-references, and mill supply information are printed.

Paper 3069 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

STORES MODULE

The stores module deals with spare parts and supplies;
setting up items in inventory, maintaining descriptions and
accurate inventories; and receiving, brdering and issuing of items.
The module was designed to easily maintain and search for information
on-line for these activities. All of the following functions can be
performed:

o Create and print stores tickets, issue items, or process return
to stock,

o Order stores items, receive orders, reverse incorrect receipts,

o Perform physical inventory ructions,

o Review status of inventory levels, order status and ticket
requests,

o Transfer of salvage material, and

o Adjust quantities, price or value for selected items.

Batch reports are run to provide auditing and accounting
controls. Important accounting functions are performed within the
module such as updating work orders with material cost and passing
the monthly stores material costs to the Corporate Accounting
System. One of the obtainable objectives of the module was to
achieve service and inventory accuracy in excess of 953 while minimizing
inventory.

PURCHASING MODULE

The purchasing module
capability for purchasing
include:

provides
related

easy access and maintenance
functions. The major functions

o Setting up and maintaining vendor information,

o Creating stores, non-stores, and emergency orders,

o Altering orders,

o Reviewing orders, invoices, and vendor histories,

o Expediting orders,

o Closing orders, and

Paper 3069 4
WASHINGTON, 0. C.

BAL TrMORE WASHINGTON REGIONAL USERS GROUP

o Verifying invoices.

A variety of
accounting control.

reports are printed

WORK ORDER MODULE

fNTEREX85

for management and

The work order module allows users to estimate, create and issue
new work orders and projects; and to review, monitor, and revise
existing work orders and projects.

Labor and material costs are collected and written to the work
order data base. On-line inquiries and monthly reports are generated
to infonn users of the status of work orders.

Equipment history is updated when a work order is completed and is
available via inquiries and reports.

The primary objectives of this module are to:

o Allow maintenance personnel to improve their handling of work
orders, reduce paper work, ease the task of retrieving work
order data, and

o Allow for easy retrieval of work order cost on-line to compare
with estimated cost thereby improving the control of maintenance
cost.

PLANNING AND SCHEDULING MODULE

The objectives of the planning and scheduling module are as
follows:

o Provide the tools to assist planners and crew supervisors with
the scheduling of maintenance tasks,

o Use priorities and estimates to generate backlog reports~

o Help planners define
availability, and

Paper 3069

resources and assess their

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

o Prepare planners for utilizing more sophisticated scheduling when
that complexity is needed to efficiently schedule work.

The planning and scheduling module uses information entered via
the Work Order module to provide backlog reports. Daily work schedules
for crews are prepared on-line making use of existing entered data
(work orders, priorities, due dates, etc.).

The actual hours worked by an indvidual is entered into the module
and updates are made to the schedules and work orders.

A weekly batch job is run which
completion and scheduling performance.
information is available by area and crew.

summarizes work
On-line review of

order
this

PREVENTIVE MAINTENANCE MODULE

Preventive maintenance (PM) is the routine overhaul of
equipment on a regularly scheduled basis for the purpose of
inspection and replacement of worn parts. This type of activity is
usually done as often as once per month, with the exception of
lubrication activities.

This module provides the tools required to facilitate
scheduling of preventive maintenance activities. It also helps the
users gather and store equipment history data gained while performing
such activity. Finally, it provides tools for quick, easy retrieval
for this data.

The system uses information entered via this module and the Work
Order Module to generate preventive maintenance schedules, overdue,
exception, and performance reports. The schedules list preventive
maintenance jobs and their respective due dates. Overdue reports list
PM work which is overdue. Exception reports provide information
useful in determining the correct work frequency. Performance
reports provide feedback on the amount of PM work suggested and the
percentage of work completed.

Information gained while doing PM jobs is entered in the data base
via on-line interactive CRT's and becomes an integral part of the
equipment history files.

Data retrieval is accomplished via the equipment history
portion of the Work Order Module and the performance and
exception reports of the PM Module.

Paper 3069 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The objectives of the module are:

o Provide tools required for scheduling preventive
maintenance,

o Provide for storage of preventive maintenance instI1lc- tions and
history data gained through the performance of preventive
maintenance activities,

o Enable maintenance management to make better use of data gained
from a PM program by integrating it with other data, so as to
facilitate analysis and possible correcting of recurring
failures, and

o To enable management to adjust, add or delete this type of
activity by providing easy retrieval and analysis of history
data.

PREDICTIVE MAINTENANCE MODULE

Predictive maintenance is the periodic monitoring of physical
variables so as to predict, and thus prevent, costly and
disI11ptive equipment failures. Some examples of predictive
maintenance monitoring variables are: vibration, noise,
temperature, pressure, flow, etc.

This module helps users schedule predictive maintenance
activities. It helps them gather and store equipment history data
gained while performing this activity. Finally, it provides them with a
tool for quick and easy retrieval of this data.

The system uses information entered via this module, the
Equipment Catalog and Work Order module to generate predictive
maintenance schedules and exception reports. Information gained while
doing this type maintenance is entered in the data base via on-line
screens and becomes an integral part of the history files.
Alternatives to manually entering the data are being pursued.
These involve using hand-held monitoring devices to accumulate
various data.

Paper 3069 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

ADMINISTRATIVE MODUL!

Some 3MCS functions are common to or a prerequisite tor other
modules to work. These functions are administrative in nature and
include~

o System, acreen, and tield security administration and
maintenance,

o Ability to call a ne1'1 acreen via our "DRIVER" program,

o Administration and maintenance ot validity tables,

o Ability ·to select and maintain local plant options (i.e. plant
name, address, etc.),

o System control and clean-up jobs such as daily start· up
routines,

o Log tile utilities to enable/disable logging and create log file
audit reports,

o 3MCS recovery and restart procedures, and

o Copy routines to copy the on-line data base to the batch account
for month-end processing.

~etore any module can be installed, the users ot the module must
~ uniquely identified and screen security determined. Tables
must be set up with valid data and plant options identified.
These requirements are entered in the 3MCS system via screens in the
administrative module.

Paper 3069 a
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAl USERS GROUP, INTEREX85

HARDWARE AND SOFTWARE

HARDWARE

The typical plant will require a dedicated HP/3000 Model 68
computer with 8 megabytes of memory, 6 disk drives (404Mb), 1 high
speed tape drive, and a 1000 LPM line printer. Terminal and remote
printers vary in model and numbers required for each plant. This
configuration should support up to 100 on-line active users, and a
stores inventory of approximately 20-25,000 items. The number of disk
drives will vary depending on the size of the plant and the amount of
data needing to be stored.

SOFTWARE

3MCS. was developed using the following software tools; Also listed
are operation software tools used by users, operations, and support
personnel.

HP SOFTWARE

TRANSACT

VPLUS

IMAGE

DICTIONARY

INFORM

REPORT

TDP

Programming language

Screen handling

Data base access software

Data dictionary

Inquiry language (tool for users)

Report language (tool for users)

Source code editor

(Note: some sites also are using HPLIST and HPMENU)

Paper 3069 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3RD PARTY SOFTWARE (refer to appendix for more details)

ADAGER

COMPARE

DBPLUS

FASTRAN

MPEX,STREAMX

ocs

Pre VIEW

RADAR

ROBOT

SCOMPARE

VTEST

Paper 3069

Data base maintenance software

Compares data files to identify differences

Data base utility that extracts data into flat
files

Recompiles TRANSACT source code into SPL and
object code to improve performance

Extention of MPE utility for filesets, and job
streaming

Used for operations scheduling of jobs

Allows use of non-block-mode terminals for 3MCS
(i.e DEC terminals),

Monitors performance and jobs; sends messages to
block mode users (currently inactive)

Cross reference of where elements are used in
programs, jobstreams

Compares source programs or jobstreams to
identify differences

Runs interactive screens in batch mode to
facilitate testing (curently inactive)

10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

DATA BASE OVERVIEW

3MCS uses the HP IMAGE and DICTIONARY data management tools to
define and structure the data. There are currently 5 data bases in
the most current release of 3MCS. An additional data base for
Preventive Maintenance will be added in a future release. The
data bases are:

o STORES data base - contains item descriptions, inventory, stores
tickets, stock activity.

Number of master sets = 14 Number of detail sets = 5 Number
of elements = 235 Typical size = 517,000 sectors

o PURCHASING data base contains item history, vendor data,
purchasing data, receiving and invoicing data.

Number of master sets = 11 Number of detail sets ~ 15 Number
of elements 200 Typical size = 319,000 sectors

o WORK ORDER and EQUIPMENT data base contains equipment
descriptions, cross-references, work order information.

Number of master sets = 10 Number of detail sets = 9 Number
of elements = 179 Typical size = 218,000 sectors

o PLANNING and SCHEDULING data base contains daily work
schedules, crews, work order backlogs, performance data.

Number of master sets = 10 Number of detail sets = 8 Number
of elements 95 Typical size = 70,000 sectors

o PREVENTIVE MAINTENANCE data base PM schedule information,
equipment history data, and performance report data.

Number of master sets = 14 Number of detail sets = 10 Number
of elements = 140 Typical size = 150,000 sectors

Paper 3069 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

o TABLE data base - cost codes, standard description data., plant
specific data, security data.

Number of master sets = 34 Number of detail sets = 6 Number
of elements = 173 Typical size 10,000 sectors

MISCELLANEOUS INFORMATION

Number of VPLUS screens ::: 380 (including child forms)

Number of Batch jobs ::: 200

Number of On-line pgms ::: 200

Number of Batch pgms ::: 100

Approximate lines of code (on-line and batch) = 300,000

Paper 3069 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3MCS DESIGN

User
screens
included:

requirements played a key role in the design of 3MCS
and programming standards. The user requirements

o Saving values for key fields and displaying these values as the
user moved between screens,

o Filling fields with back slashes (\) to clear them,

o Displaying numeric fields with decimals as two separate fields on
the screen with the decimal point between the fields,

o Displaying stars (*) in secured fields,

o Going from screen to screen without traveling through the menu
subsystem, and

o Using function keys (f1-f8) instead of the enter key.

These requirements, coupled with the desire to make 3MCS a.s "user
friendly" as possible, influenced many 3MCS design decisions.
Our design decisions included user requirements, screen standards,
and programming standards. At the time, the costs of implementing
the decisions were not well understood. From a systems viewpoint,
these decisions were grouped into three categories • good, regrettable,
and neutral. Some of the reasons for these groupings are explained
below.

GOOD DECISIONS

We decided that we would implement the on-line portion of 3MCS
as a series of callable TRANSACT programs. Each 3MCS screen would be
implemented as one TRANSACT program. We developed a main TRANSACT
program that calls all other TRANSACT programs. This main TRANSACT
program, DRIVER, uses a table to determine which program to call.
The table is keyed by screen name, so that each screen in 3MCS is
given a unique name. The name appears in the upper right hand
corner of the screen. The user indicates which screen he wishes to
go to by pressing a function key or by keying the name of the screen in
an area known as the command window. The "DRIVER" approach allows
many people to develop screens at the same time. This approach also
allows the programmer to write the screen program independently and
'hook' it into the system at a later date.

Paper 3069 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GRO\JP INTEREX85

There is data that needs to be shared between DRIVER a.nd the
program it's calling. This data must be placed first in the
TRANSACT LIST and DATA registers in the two programs and it also must
be mapped identically in both programs. We use a TRANSACT include
file, LCOMMON, to accomplish this objective. LCOMMON contains the
LIST command for the shared data items. We established a
programming standard for screen programs - nothing is to be placed in
the LIST and DATA registers ahead of the items in LCOMMON. We also
use TRANSACT include files for common routines needed by ma.ny screen
programs. Using TRANSACT include files allows changes to be made
quickly and easily and provides an easy way to standardize the system.

Messages are used to direct the user through the operation of the
screen or to explain errors. We decided to use a "message catalog"
for the on-line portion of 3MCS. Every message is given a unique
identifier. The identifiers and text of the messages are stored in a
manual master. Each screen program uses a common routine to retrieve
the message just prior to displaying the message to the user.
This practice lets programmers change messages without having to
recompile programs. Not having the text of the message in the
programs saved stack space. Having 3MCS messages in a manual master
made it easy to get listings of the messages. Listings of the 3MCS
messages made it easy to standardize their wordings and format.

NEUTRAL DECISIONS

We decided to use one forms(VPLUS) file. Using one forms file
eliminates overhead associated with a second forms file. The forms
file is opened initially and closed when the user exits 3MCS. But 3MCS
screens are diverse. Having all the 3MCS screens in one forms file
means that TRANSACT requires more stack space to process the forms in
the forms file. Therefore less stack space is available for TRANSACT
to use for other purposes.

We decided not to use VPLUS edit specifications. The primary reason
for this was related to "user friendliness". 3MCS reads each screen
whenever a user presses any function key. Some of the function keys
cause the user to be transferred from the screen that he is on to
a different screen. With VPLUS edit specifications, if the user
keyed incorrect data into fields and then pressed a transfer key, he
would have to correct the data before he could go to the new
screen. This was considered unfriendly. We also felt that the
system would be easier to maintain if all validity was done in the
actual program. We could not make use of our message catalog
with VPLUS edit specifications, and having VPLUS edit
specifications would potentially increase the amount of stack space
TRANSACT requires to process the forms file.

We decided to make most screens multi-functional. For
example, a user would go to a single screen to review, add, change
or delete an item. We chose to implement this design using
parent-child forms. This decision was good for the user because it

Paper 3069 14
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTERE!l8 5

reduced the total number of 3MCS screens. ·But the screen programs
themselves were larger. Many of them had to be segmented to work.

We also decided to use different variables for the fields on the
screen and the fields in the data bases, even when they represented
the same item. This practice made the TRANSACT programs easier to
maintain. A programmer did not have to worry about whether the value
of the variable was the 'old' value from the data base or the 'new'
value from the screen at any given time in the TRANSACT program.
However, each program had to have routines to move the values in the
screen variables to the data base variables. This often involved data
conversion.

We decided to use an "X-option" in several 3MCS screens. The
"X-option" can be described as the user's ability to select items from
a list by placing an X in a designated spot next to the item. The
list of items to be selected is usually the result of an on-line
search. Although the "X-option" is very user friendly, the
TRANSACT screen programs that use this option are difficult to
maintain.

Another decision was to stay entirely in block mode. By
staying in block mode, we eliminated the overhead associated with
switching between block mode and character mode. This also
eliminated potential confusion between the ENTER and RETURN keys.
However, users were not able to use the roll backwards and
forwards keys in search screens because we stayed in block mode.

REGRETTABLE DECISIONS

We decided to make all VPLUS fields type CHAR and to bypass all
VPLUS field data verification. This was especially burdensome
for numeric fields. We were not able to take advantage of
numeric checks available through VPLUS. Instead we had to write our
own routines to do numeric checking. These routines had to examine
each character in the field to make sure that a digit (0-9) had been
keyed. These routines had to handle signed numbers and numbers that
had been keyed anywhere within the field. The routines lengthened
the screen programs causing more stack space to be used. More data
conversions had to be done as well.

For similar reasons, the decision to split numeric fields with
decimal values into two separate fields on the screens was also poor.
Complex routines to display data in these fields and to accept data from
these fields are required.

We learned
develop 3MCS.

Paper 3069

GENERAL OBSERVATIONS

a great deal about TRANSACT as we used it to
One of the challenges 3MCS programmers continue to face

15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

is how to overcome stack limitations. Many screen programs must 'be
segmented. The segmented programs must be retested when new versions
of TRANSACT and MPE are installed. The new TRANSACT/MPE
versions may use more stack space. Programs that ran before the
version upgrade, may not run after. Changes to the VRIVER program
must be made carefully and in a way that minimizes the amount of
additional stack space required.

Programmers need to code TRANSACT programs "procedurally". By
"procedurally" we mean using PERFORM statements and being careful
with GO TO statements. This becomes especially important if a program
needs to be segmented. The TRANSACT statements that make up a segment
must be physically together in the TRANSACT source code. A program
written "sequentially" may be difficult to segment. It is also
helpful to write common routines for error handling, screen I/O,
etc. to make programs function the same and ease future program
maintenance.

An important TRANSACT technique to learn is to use the LIST and
DATA registers dynamically. Typically programmers learning TRANSACT
will list all the variables they plan to use at the start of the
TRANSACT program. TRANSACT treats the LIST and DATA registers as a
stack. The i tern at the top of the list is the last i tern that was
listed. Whenever a variable is referred to, TRANSACT begins at the
top of the list and searches backwards until it finds the variable.
Keeping the LIST and DATA registers short reduces the amount of time
TRANSACT spends searching the LIST and DATA registers.

TRANSACT test modes were very useful for debugging and fine tuning
programs. We found the following modes to be the most useful:

Mode 2 • useful for tracing the actual statements executed during
program execution

Mode 4 • useful for fine-tuning programs; gives a clear
indication when segments are swapped and can be used to
evaluate various combinations of statements with respect
to timing

Mode 25 • useful 1-1hen you are having a problem with IMAGE data
bases

Mode 34 - useful when you are having a problem with VPLUS screens

Mode 43 - useful when you are having a problem with your LIST and
DATA register; should be used with discretion because
this mode can produce volumes of paper

Mode 102 • useful in fine-tuning the DATA and WORK options of the
SYSTEM statement

Paper 3069 16
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEXB 5

SEGMENTATION AND STACK CONSIDERATIONS

STACK LIMITATIONS

o Present stack limitation is slightly in excess of 32,000 words.

o 3MCS currently requires about 7500 words for our forms file, the
PCBX, and the transact outer block areas.

o The DRIVER program currently requires about 4600 words.

o Allowing an area of 8000 words for system called routines &
expansion this leaves about 12,000 words as our maximum program
size.

o Any program which has the final stack usage near 12, 000 words
should be considered for segmenting during the next modification.

o Using the "OPI'" option on all items defined in your program which
are not used in LIST= constructs,display item headings, or prompt
strings can significantly reduce your stack.

SEGMENTING RECOMMENDATIONS

o Always create the root and at least 2 other segments.

o Put infrequently used code in a separate segment ie. error rtns.
etc.

o Put "shared data" INCLUDE files in the root segment and keep
the root as small as possible.

o If possible put code frequently used by more the one segment in
the root. ie. GET(FORM) etc.

o Always leave/enter a segment with a GO TO or PERFORM. Program will
not just fall thru to the next segment in your listing.

o Parent/child relations defined in the dictionary having the parent
only referenced in the root may not recognize the child in a
later segment.

o Minimize segment transfers. Run your program in test mode 4 to
determine the number of segment transfers as well as the stack
used by the program. Stack= Z + D + 1500.

o Watch for FIND with a PERFORM = where the PERFORM = is in another
segment because this will cause two transfers for each record
read.

o Try to create segments by logical function.

Paper 3069 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

o Any items added to the list,match or update registers must be
removed before exiting that segment.

o The GO TO statement referenced by the "ERROR=" option on data base
access verbs must reside in the same segment.

o As a "temporary" last resort the SWAP option can be used by
specifying it in the DRIVER program. This saves about 2300 words.

o tor those users which experience the intermittent stack overflow
problem because they open many datasets by accessing many 3MCS
screens, a new user logon should be used which would use the NOCB
option when running TRANSACT.

CONCLUSIONS

The 3MCS application is large and complex, and has been
successfully written using TRANSACT, IMAGE, and VPLUS. TRANSACT is a
powerful, flexible language that allows programmers to develop
applications quickly and easily. Knowledge of VPLUS and IMAGE is
essential to be able to use TRANSACT efficiently for applications that
use VPLUS screens and IMAGE data bases. Using TRANSACT is not a
substitute for doing good <iesign. Design decisions should be made
carefully by evaluating the full costs and benefits associated with
using the design.

Paper 3069 18
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

APPENDIX

3rd Party Software Description

Software Package: AD AGER

Vendor: ADAGER APARTADO 248 ANTIGUA, GUATEMALA

Contact: Alfredo Rego (502-2) 324336 Telex 4192 Teltro GU

Where Needed:

3MCS development/maintenance site (Wilm. only) and sites where 3MCS
is running in production.

Product Description:

ADAGER is a data base transformation tool for the HP 3000. It allows
you to dynamically alter the structure of an IMAGE 3000 data base.

Reason Needed:

With the increased size of data base files and applications, issues
of performance (speed and reliability) have become very important.
Characteristics such as capacity, blocking factor, disc address, and
number of sort items have become a crucial part of data base design,
and the chances of getting them right the first time may be slim.
Unfortunately, the methods provided by the HP IMAGE utilities for
adjusting these characteristics and for changing other structural
qualities of the data base are often slow and cumbersome. To make a
minor alteration, such as changing the name of a data set or ra1s1ng
the capacity of a data set, requires that you unload the data base to
tape or disc, purge it, modify and recompile the dictionary or
schema, build a new data base, and finally reload the data from tape or
disc. If the bases are large, as is the case with 3MCS, this process
can take 10-16 hours.

Benefits:

ADAGER has saved countless hours of computer and programmer time by
allowing capacities to be dynamically changed without an
unload/reload.

Paper 3069 19
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: COMPARE

Vendor: ALDON COMPUTER GROUP FINANCIAL CENTER BUILDING 405
14TH STREET 90069 OAKLAND, CA 94612

Contact: JOAN S. BRODSKY 415-839-3535

Where Needed: 3MCS development/maintenance site (Wilm. only)

Product Description:

Comparison of output data files has always been a vital part of
testing the accuracy of changes made to programs. In most cases this
is a tedious, manual job performed by programmers looking at printed
output. COMPARE allows the computer to perform that function with
with either MPE, KSAM, or IMAGE files. Differences are pinpointed with
the specific positions in the record that are different highlighted for
rapid identification. Various options are available such as
comparing records of different lengths, ignoring fields that are
expected to be different and comparing for equality.

Reason Needed:

This software is needed to aid in 3MCS software testing and is not
available from HP. COMPARE will eventually will be used as a data
integrity check for new releases.

Benefits:

Programmer testing time is maximized and not wasted by looking at every
field in a file.

Paper 3069 20
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: DBPLUS

Vendor: SOFTWARE DESIGN ASSOCIATES 11260 ROGER BACON DRIVE
SUITE 300 RESTON, VA 22090

Contact: CURT LOUGHIN/RON KAHLOW 703-471-0076

Where Needed: Sites where 3MCS is runnng in production a.nd 3MCS
development/maintenance site

Product Description:

DBPLUS is an IMAGE/3000 data base productivity software whose strength
is its ability to manipulate the actual data in a data base. It
performs 3 basic functions:

o A LOAD function can load or update data sets from tape or disc
files,

o An UNLOAD function can unload data sets to tape or disc files.
and

o A COPY function can load or update dat sets from data contained
in one or several data sets.

The power of DBPLUS comes from a variety of situations and problems
these basic functions can be applied to. A wide range of options permit
reformatting data, changing data types, linking and building record
complexes, and applying selection criteria.

Reason Needed:

This software is needed to create MPE files at month-end for batch jobs.
The batch jobs run much faster using an MPE file as compared to reading
a data base. The utility features are also used for special
applications requiring fast response.

Benefits:

This software package eliminates writing TRANSACT programs to do data
base manipulation. Maintenance is very easy to perform when DBPLUS is
used instead of a program. Benchmarks show that DBPLUS is faster than
compiled COBOL in performing its functions.

Paper 3069 21
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Software Package:

Vendor:

Contact:

Where Needed:

3rd Party Software Description

FASTRAN

PERFORMANCE SOFTWARE GROUP P.O. BOX 1464 SANDY
SPRING, MD 20860

HOLLY SILER/NICK DEMOS 301-977-1899

CURT LOUGHIN 703-471-0076

3MCS development/maintenance site (Wilm. only)

Product Description:

FASTRAN is a compiler for TRANSACT source programs. It produces SPL
code that is then processed by the SPL compiler. The object program can
then be prepared and run like any other program. The major advantage is
a dramatic decrease in CPU time as well as response time. FASTRAN
compiled programs also use less data stack space and less overall system
memory, particularly if the same program is being run by several
terminals.

Reason Needed:

Inadequate performance of TRANSACT processor along with need to run more
terminals on an HP CPU.

Benefits:

Elapsed times of batch jobs have run 2 to 10 times faster after
compiling in FASTRAN. CPU times are reduced about the same ratio as
elapsed times. On-line testing has shown CPU utilization to be reduced
by 30-503 along with the same reduction in stack space. FASTRAN will
reduce stack space by eliminating the intermediate processor code
which TRANSACT maintains on the process's stack. FASTRAN also
eliminates time consuming operations such as list register searches,
table look-ups when child items are referenced, and also employs
COBOLII microcode instructions wihic greatly enhance certain functions.

Paper 3069 22
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: MPEX

Vendor: VESOFT, INC. 9213 WARBLER PLACE LOS ANGELES, CA
90069

Contact: EUGENE VOLOKH 213-859-9666

Where Needed: 3MCS development/maintenance site (Wilm. only) and
sites where 3MCS is running in production

Product Description:

MPEX is a useful productivity and system management control tool for any
HP/3000. MPEX enables handling of filesets (data bases, KS.AM, MPE) in
all MPE commands. This enables a user to do things like FCOPY @.SOURCE
or PURGE @.DATA. The fileset concept itself is also extended: files can
be selected not just by name, but by CODE, CREATOR, DEVICE, ACCDATE and
other parameters. Every MPEX command can be executed from EDITOR or TDP
(or QEDIT or QUAD}. MPEX also allows for very sophisticated handling of
mass compiles by the USER command which executes a template file.

Reason Needed:

The limitations of the HP MPE operating system necessitated using MPEX
to gain vast productivity improvements for programmers as well as system
management functions. With all of our account manipulation, MPEX has
been a real bargain and takes the drudgery out of fileset manipulation.

Benefits:

MPEX has allowed us to realize much higher programmer
to the time davings in executing commands on filesets.
extensively used in account merges since program
performed in more than one account.

Paper 3069 23

productivity due
It has also been
development is

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAi. USERS GROUP INTEREX8 5

3rd Party Software Description

Software Package: OCS

Vendor: OPERATIONS CONTROL SYSTEMS 560 SAN ANTONIO ROAD PALO
ALTO, CA 94306

Contact: ALLAN MARCUS 415-493-4122

Where Needed: 3MCS development/maintenance site (Wilm. only) and
sites where 3MCS is running in production

Product Description:

OCS is a totally integrated software package designed to increase
substantially the productivity of the HP/3000 data center. OCS
automates multiple-queue job dispatching, production scheduling,
forecasting, tape library management, resource utilization, data center
accounting, jobstream maintenence, and security.

The OCS Dispatcher runs any number of interrelated jobs concurrently
with full dependency control. The Dispatcher initiates, tracks, and
controls batch production. It maintains job sequencing and priorities
and logs individual job termination status. The Dispatcher's on line
screen facility prompts operators for required procedures and allows
them to check current job status, insert special jobs, and issue
commands while OCS/Dispatcher continues launching jobs and tracking
production in the backkround.

Reason Needed:

HP does not currently have software to perform these necessary
operations functions. OCS provides greater reliability, fewer mistakes,
better service, shorter total processing times, and greater control over
the data center.

OCS allows for standard product ion networks to be developed for daily,
weekly, and monthly jobs.

Benefits:

The daily jobs total run time has been reduced by 30-45 minutes per day.
This was time where the users were normally waiting to log on to 3MCS.
The month-end network of jobs was reduced by 3 hours after using OCS.
In addition, operator productivity has been increased since they do not
have to keep track of each job's status.

Paper 3069 24
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX 8 5

3rd Party Software Description

Software Package: PreVIEW

Vendor: TYMLABS CORPORATION 211 EAST 7TH STREET AUST!N. TEXAS
78701

Contact: TERESA L. NORMAN 512-478-0611

Where Needed: Sites where 3MCS is running in production and
non-block terminals are desired.

Product Description:

PREVIEW allows you to run VPLUS applications on any CRT or PC without
any changes to on-line programs or forms file. Wtih PREVIEW, screens
look the same, and applications work the same as they do on any block
mode terminal.

Reason Needed:

This software allows non block mode terminals to run 3MCS without having
to have 2 vendors terminals on a users desk.

Benefits:

PreVIEW is still in the process of being evaluated for 3MCS sites that
will be have non-block mode terminals on the plant.

Paper 3069 25
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: RADAR

Vendor: COMPUTING CAPABILITIES CORPORATION 465-A FAIRCHILD
DRIVE SUITE 122 MOUNTAIN VIEW, CA 94043

Contact: FRANK PINKELA 415-968-7511

Where Needed: 3MCS development/maintenance site (Wilm. only) and
sites where 3MCS is running in production

Product Description:

RADAR is a software system which monitors, controls, and collects
performance data from any HP/3000 on-line application. RADAR provides
system management with previously unavailable data such as terminal
utilization, transaction mix and throughput, number of user inputs, and
system response times. The monitored programs can also be controlled,
using simple commands which allow you to specify the days and hours when
a program may be run, and which terminals may use it.

Other useful features include the ability to show the active terminals
and send messages to terminals in block mode without overwriting user
data on the screen.

Reason Needed:

RADAR was at the time the only way to collect certain statistics on the
3MCS user profile. It also allowed for collecting transaction data for
various 3MCS users to see what user response was under various computer
load conditions.

Benefits:

RADAR is a good way to monitor increased user activity as well as being
able to communicate with users in blo,:k mode when a system shutdown is
pending. Activating RADAR requires no programming and does not affect
the applications program or operating procedures.

Paper 3069 26
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

3rd Party Software Description

Software Package: ROBOT

Vendor: PRODUCTIVE SOFTWARE SYSTEMS 561 7 COUNTRYSIDE ROAD
EDINA, MN 55436

Contact: ROGER OLSEN 612-920-3256

Where Needed: 3MCS development/maintenance site (Wilm. only)

Product Description:

ROBOT consists of 3 products: Automatic Documenter, Documenter Plus,
and the Audi tor. The ROBOT Automatic Documenter is a unique system
cross-reference tool to analyze the impact of changes on existing source
code. In the case of 3MCS, we have defined jobs, source code, and
"include" files to be cross-referenced.

The ROBOT Documenter Plus is an interface to the Automatic Documenter
data base and the program files. It shows where and how an item is used
within a source file or job stream. This way it is easy to see in what
context a data element is being used without having to go into the
program.

The ROBOT Auditor is a file management tool that shows which files have
been changed or restored and when. It also reports any files purged from
disc, intentionally or accidently.

Reason Needed:

The HP DICTIONARY does not keep track of any program cross- references.
By using ROBOT, we are assured that all occurences of an element have
been found, where performing this manually, we would never be sure that
something had been overlooked. This software ensures a complete job by
the maintenance or support programmer and no surprises later.
Estimation of the time for specific enhancements is greatly improved by
knowing the number of programs affected.

Benefits:

A quality maintenance job will be assured as well as maximizing
programmer productivity. Future maintenance will be done with much
greater efficiency.

Paper 3069 27
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: $/COMPARE

Vendor: ALDON COMPUTER GROUP FINANClAL CENTER BUILDING 405
14th STREET OAKLAND, CA 94612

Contactr JOAN S. BRODSKY 415-839-3535

Where Needed: 3MCS development/maintenance site (Wilm. only)

Product Description:

$COMPARE is a unique •ource comparison tool 'W'hich can identify clearly
the difference between two program source modules. lt identifies all
inserted, deleted, moved, or changed records.

Reason Needed:

This is a product which HP currently does not offer and establishes
"production confidence" with new releases of 3MCS.

Benefits:

AllolotS us to do our application development integration much more
safely, which gives us a much greater assurance that our quality
standards have been maintained. SCOMPARE also eliminates the need to do
laborious line by line desk checking when determining which version of
source code is "correct".

Paper 3069 28
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3rd Party Software Description

Software Package: VTEST

Vendor: TYMLABS CORPORATION 211 EAST 7TH STREET AUSTIN, TEXAS
78701

Contact: TERESA L. NORMAN $12-478-0611

Where Needed: 3MCS development/maintenence site {Wilm. only)

Product Description:

VTEST provides automatic, repeatable testing of on-line programs,
greatly simplifying the debugging and testing process. Using script
files that look like user input, VTEST logs on and runs your test script
unattended, just like a user at a terminal. A printed report is
produced documenting the entire session, showing the screen image before
and after each input. For multi-user environments, VTEST can run
simultaneous sessions in batch to thouroghly test file locking
procedures. Script files can be saved for easy testing after any
change.

Reason Needed:

VTEST allows for thorough "regressionH testing when preparing for a new
release of 3MCS. It assures that everything works prior to landing in
the users hands. It also allows for systematically creating test
scripts for key on-line screens.

Benefits:

VTEST is not yet available for MPE V /E a.nd has consequently not been
tested with 3MCS.

Paper 3069 29
WASHINGTON, D. C.

Theme:

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3071. The Role of the System Manager

Tom Idema
Westinghouse Furnature Systems

4300 36th Street S. E.
Grand Rapids, Michigan 49508

INTEREX85

The System Manager exists: the function is vital and the rewards
are real. You have only to recognize these facts and make the
proper application of the System Manager's talents to reap an
efficient, smooth operating system. Because a computer system
requires constant care and maintenance, competent system
management is vital to success.

SLIDE #1 ,

SYS TE GER

I. Introduction

Almost every HP3000 has a System Manager, whether called by that
title or not. However, the role and responsibilities of the
System Manager are quite often misunderstood and their efforts
are often wasted or misapplied, resulting in the abuse and or
misuse of the system. This paper will address some of these
points to show "who", "wh!!,t" and "how" to properly use the System
Mr,nager to ensure a "successful system." Topics covered include
what a System Manager is, who it should be, and what they should
do, including system monitoring, tuning, planning, standards,
etc. It is intended to be of general interest to both the
sophisticated as well as the novice HP3000 user.

Paper 3071 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

II. The Mechanics of System Management:

SLIDE #2

SYSTEM
MANAGER

A. What is a System Manager?

The System Manager is both a person and a function (system
management), but it is not a function to be performed by just
anyone who happens to be handy. Once upon a time, if someone had
asked what computer could stand alone, run without an operations
staff or systems programmer in an uncontrolled environment, the
answer, "An HP3000!" would not have been unusual. Today, however,
that simply is no longer true, (unless you'd like to discuss a
System 37). The fact is, Hewlett Packard requires that customers
with CSS/PICS support have a "trained" individual "designated" as
the System Manager, as well as an alternate who is equally
trained. The System Manager, therefore, is a trained individual
with a specific set of skills, who is responsible for the
efficient and effective operation of an HP3000 computer system
by maintaining system software and hardware integrity.

2 Paper 3071
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SLIDE #3

M~@ §~@~~~ ~@ t~@

~Y~rEM MANAGER

0

"' B. Who should the System Manager be?

Because a System Manager's first responsibility is to the overall
system, it is easier to say who the System Manager should NOT be.
The System Manager should not be a system programmer, since a
systems programmer would be very expensive in the first place and
simply not necessary in the second. Jf in some very remote
instance systems programming is needed, these requirements can be
provided by, and rightfully belong in, the domain of Hewlett
Packard.

Likewise, the System Manager should not be a programmer, an
analyst or other member of the systems development staff whose
primary responsibilities lie in some other area. This type of
person generally has the wrong perspective and priorities to do
an effective job of system management. When a programmer is in
charge of system management, system operation and performance
usually take a back seat to "getting the application system up on
schedule."

To be System Manager requires that the individual wear a System
Manager's hat and a policeman's badge, each of which are acquired
through training and experience. The hat helps keep the System
Manager's attention focused on the system's performance and its
day to day operation, while the badge helps keep the System
Manager's priorities in line with the operational philosophy of
the business and allows the enforcement of standards and system
requirements. With these things in mind, it is clear that the
System Manager has to be someone whose first responsibility is to
the system and whose secondary function might be in another area.

Paper 3071 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

SLIDE 14

~Y~iEM MANAGER

C. What should a System Manager do?

SLIDE #5

SysteM Monitor
Parf crMance
Schedu I i n9
Laadin9
UDC's
A I I acct i ens
Disc Mana9eMant

System Monitor

INTEREX85

One definition says the System Manager's job responsibility is to
plan, organize and control the function of the HP3000 so that it
best serves the needs of those who depend on it. Although
agreeing with this definition, most System Managers would say
that they are primarily responsible for the care and feeding of
the HP3000 computer system. This is not to say that it is all

Paper 3071 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP rNTEREX85

they do, nor that Hewlett Packard systems require constant
attention. However, like most machines, without a certain amount
of care they will quickly cease to operate as designed. The
System Manager makes sure this doesn't happen by performing a
large variety of tasks.

Performance

One of the most important tasks performed by the System Manager
is performance monitoring. This involves looking at the overall
performance of the equipment over time to determine what is
optimum for your installation. There are no set guidelines or
recommendations from HP to give you an optimum performance level
since every site is, indeed, unique. Performance is a matter of
trade offs and the balancing of one parameter against another to
develop the best performance according to your user's
expectations. When looking at these expectations, the System
Manager has to look at the system configuration as a whole,
keeping in mind the CPU, memory nsage, I/O requirements, disc
utilization, etc.

Scheduling

Some items which the System Manager should monitor in regard to
performance are scheduling, (priorities), and the mixture of
jobs/sessions as they affect response times. Systems are usually
characterized as batch or on line depending on a number of
factors. Once a system has been characterized as a transaction
processor or as a "chruncher," or both, the TuNE command can be
used to provide optimum scheduling. While there is no universal
setting to provide optimum processing under all conditions, you
might want to use different settings at night when processing is
primarily batch in nature and another setting during the day
which favors the on line users. Just remember, that while a
longer setting· favors the CPU bound processes, a setting which is
too short could require more system overhead and memory manager
activities than desired and result in very poor performance.

Loading

System loading should be monitored regularly to determine whether
some jobs should be run on another shift or after hours in order
to free up prime time for on line access. Since there is a high
correlation between system loading and response time, it stands
to reason that the better we manage the loading the better we can
control response time.

Some of the things the System Manager can do to control the
demands on MPE and to even out the load include managing the
job/session mix, deferring peripheral equipment loads, (tape and
printer), to non critical periods, minimizing data communications
sub systems use and ensuring that users employ good habits by not
using SHOWJOB's and by not logging on and off of the system

Paper 3071 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

excessively. (The system overhead for an idle terminal is quite
minimal compared to the overhead incurred at "sign on"). UDC's

In addition to the management of system loading to optimize
performance, the System Manager should control the seldom
addressed areas of UDC's and program allocations. Although UDC's
are convenient and occasionally provide a low grade security,
they can cause longer logon and slightly longer command execution
time if they are not kept short. More frequently used commands
should be placed at the beginning of the UDC file where they can
be accesed more quickly, while individual users should not be
allowed multiple UDC's, nor should they be set up for users who
don't need or won't use them.

Allocations

Program allocation can speed up the :RUN command for an often
used program by reducing disc I/O's by as much as 80 to 90
percent. To take advantage of this, however, the System Manager
must make certain MPE tables are large enough to accommodate
several allocated programs and normal processing as well. These
include, among others, the CST and XCST. The savings in
performance is usually well worth the expense of increasing table
sizes when one considers, for example, that I/O's associated with
running the EDITOR are reduced from a normal 156 to only 19!

Disc Management

Fragmentation

Disc management, load and organization have to be administered by
the System Manager regularly since bad file placement and
fragmentation can literally kill system response time. For
instance, whenever the system's disc drives have over one hundred
entries in their free space tables before finding a free space
segment of over 100 sectors, it is usually time to do a system
reload. Although recovering lost disc space will help, a reload
will provide tighter file placement and provide better
performance. Fragmentation not only hurts performance but can
make it impossible to run some jobs or place larger file extents.
To create files with multiple extents in a fragmented environment
will certainly cause excessive head movement.

File Placement

Poor performance due to bad file placement can be reduced by
"placing" KSAM key and KSAM data files on separate disc drives
and where two files are used by a single program, they too should
be on separate drives. File placement can be controlled with
careful use of device classes and readily available utilities
such as VESOFT's MPEX.

Paper 3071 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

SYSDISC

If possible, refrain from putting a class of DISC or SPOOL on
LDEVl, the SYSDISC. You would be surprised what this will do
for performance since access to MPE, the system directory and
other system related files is greatly enhanced when the system
does not have to compete with operational I/O's on this drive. To
keep from wasting unused space on the SYSDISC by using this
technique, use it to archive seldom used files and as a source
code library.

Caching

Disc caching, if you have both CPU and memory to spare, can
significantly reduce system I/O and therefore, improve system
performance. In some cases it can reduce disc I/O's 50 percent
and more. Although many users do not experience similar
improvements, it is usually because they don't have the CPU to
spare or that I/O really isn't the problem, per se.

Blocking

Another thing the System Manager can do with regard to effecting
good disc management is to ensure proper use of blocking factors.
Very simply stated, have your programmers block as close to
sector boundaries, (without exceeding them), as possible since
I/O transfers are done by sector. This will help you get the
most out of each disc I/O. Sequential files should have larger
blocking factors with BUF=2; random files should have smaller
blocks with BUF=l. Use of the contributed library program "Block"
will help you determine the optimum blocking factors for your
files.

Extents

The conscious use of the file extent allocation process will also
affect system performance. While allocating extra extents to
accommodate file growth takes time and temporarily wastes space,
performance is generally better because the extents are more
likely to be contiguous than if allocated on an "as needed"
basis.

Paper 3071 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

SL!DE 16

Data base
Query
Appl icatian DevelapMent
Hausekeepin9
Tools
Tunin9
Data Base

INTEREX85

Data base performance is another item which requires monitoring.
As a user of disc, a data base which is in need of housekeeping,
or is poorly designed, can ruin system performance. It is also a
good idea to keep heavily used master and detail data sets on
separate disc spindles.

In the area of system development, it is a good idea for the
System Manager to monitor the use of IMAGE, data base design and
system definition as it affects system performance. A poorly
designed data base can often cause degradation which is very
difficult to identify and at times even harder to rectify.
Performance improvements with IMAGE can also be obtained by

limiting the use of sorted chains, by minimizing the number of
paths in the data base to reduce pointer maintenance and the
overhead associated with each path and by selecting the most
frequently accessed path as the "primary" path since by default
the first unsorted path specified in the schema will normally be
the primary path.

QUERY

Along with IMAGE, the unchecked use of QUERY by careless and
untrained users is another means by which systems performance can
be destroyed. When properly used by trained, conscientious
users, QUERY can be a most useful and powerful tool; but in the
hands of the untrained, it is like a loaded gun in the hands of a
child ... aimed at the heart of your system.

Application Development

Paper 3071 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The development habits of the application programmers also have
to be policed with regard to system performance. Programs for the
HP3000 should be written to take advantage of, and at the same
time not abuse, its unique features and capabilities. The System
Manager should also look: at program stack management techniques
and use of system resources or special capabilities being used as
a regular part of performance monitoring. Remember, even a System
Manager can't make a poorly designed, poorly written application
run well.

Other habits a System Manager should make application programmers
adhere to include the opening and closing of as few files as
possible and leaving files open for the life of a process if they
are frequently used. Programmers should also strive for good
code locality and intelligent program segmentation because disc
access take several times longer than memory access. S"W"apping,
therefore due to bad locality is very costly in terms of system
performance.

With experience, one of the things the System Manager will gain
is an appreciation for patterns. Patterns of usage, growth and
problems will, over time, become vital to the effective
management of system performance as "W"ill a sense of an "orderly
house."

Housekeeping

The orderly house involves nothing more than a periodic dose of
"housekeeping," "W"hich, if done on a regular basis, "W"ill keep many
of the performance bugs away from your doorstep. Through
housekeeping, which could amount to no more than deleting KEEP or
KFILES, old log files and obsolete files, (programmers are
wonderful pack rats), performance and space can sometimes be
greatly improved. In fact, maybe you won't need that new disc
drive after all!

Tools

There are several tools available to the System Manager which
make life a little easier. Among these are TUNER, some
contributed library programs for data base and program analysis
and HP's O?t'/3000.

Tuner is a program which displays the system table configurations
and their percent of usage and high water marks. With Tuner, the
System Manager can determine whether the table configurations are
properly sized for the use of that system. The INTEREX
Contributed Software Library (CSL) programs PROGSIZE and
PROGINFO are helpful tools which assist with program
performance analysis. Another CSL program DBLOADNG, is useful
for analyzing the load statistics and data base performance
characteristics and should be run periodically on all IMAGE data
bases.

Paper 3071 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

O?l'/3000 is an invaluable tool which allows the System Manager to
look deep inside the HP3000 and to monitor almost everything that
is going on. It is far superior to any crystal ball, (which is
what System Managers used prior to O?l'/3000). The purchase of
O?l'/3000 requires a two week training class which includes over a
week of advanced system internals classes. I highly recommend
this product to anyone who is serious about system management.

Tuning

Tuning is another of the System Manager's major tasks which is
closely related to performance monitoring but deals more directly
with the system tables and their configuration. A tool such as
O?l'/3000 can make life much easier when it comes to monitoring
table usage and configurations. If you don't have OPl'/3000,
Tuner is about the only other tool available for this. A good
rule of thumb with regard to table sizing is to configure larger
than necessary, if possible. The trade off is real memory table
space versus bumping into table limits and possibly
suffering a system failure. The space is usually cheaper than
a critical system failure in most cases.

SLIDE #1

Planning

Planning
Learning
Standards
Security
Bacrup & Recovery
HP Liasian

Installation planning is another area, which with proper
performance monitoring and tuning, a System Manager should also
have enough knowledge to do some informed planning for future
system growth and performance enhancements. The System Manager,
armed with the system data, can specify additions to disc or to
memory for effecting improved performance and be relatively
certain in that recommendation.

Paper 3071 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The System Manager should also be the individual consulted by the
programming and development staff during the design phase or new
systems so that comprehensive hardware and software planning can
proceed within both groups and the methodologies approved.
Learning

A System Manager never really knows enough about the system to
sit back and not learn more. A System Manager should always be
trying to learn as much as possible about the system. One of the
ways to do this is to read. System Managers should read the
manuals, (in some cases re read them), to be the "resident ex
pert" and resource person for the programming staff and be able
to talk intelligently with HP or other technical representatives
about the system, it's operation or problems.

The COMMUNICATOR, (when there is one), INTERACT and the CHRONICLE
are all excellent sources of information which are available to
keep the System Manager current on new products and system
enhancements. Armed with this knowledge, the System Manager can
then take appropriate action or react to items affecting their
system's operation.

Standards

The System Manager is in an excellent position, because of his
intimate knowledge of the system, to develop and issue standards
affecting system operation and user techniques. Management must
ensure that this is done in light of business objectives and
scrutinize this process, since the System Manager is also the
"system police."

Some specific standards should include program segment size
limits, (4K is recommended), and established maximums for code,
stack and extra segments, to preserve on line response times for
user systems. Compiles should be restricted to running only in
batch mode or after hours, and privileged mode capabilities
should be disallowed entirely. Along with the items discussed
under application development which might be considered desirable
standards, the System Manager should establish language standards
as well. Some COBOL standards affecting the performance of the
HP3000 systems include the following:

o Data items should be described as picture "X" unless they
are going to be used in some numeric calculation for
example, the ZIP code should NOT be defined with PICTURE
of 9's.

o Numeric data items should be "signed" and defined with an
odd number of digits and be "COMP" if less than 9 charact
ers in length or "COMP-3" if greater than 9 characters in
length.

o Always "compare" and "move" fields of equal lengths.
o Avoid using the "COMPUTE" verb since it treats all data

items as packed-decimal and will convert the data to
packed decimal before doing the computation and will then

Paper 3071 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

restore the data to its original definition at the comple
tion of the function.

o Use indexing and NOT subscripting.
o Put error messages in code, as literals, and not in data

areas because on the HP3000 code is sharable while data
areas are not.

Security

Systems security is the concern of everyone associated with the
computer function. However, the responsibility usually falls to
the System Manager who must ensure that the integrity of the
system is not compromised and that the organization's data
remains intact. The account structure and password protection of
sensitive information should reflect the unique needs of each
organization; but, in any case, must be a prime concern of the
System Manager and must be continuously monitored. Dialup Lines
provide one of the most vulnerable areas to a computer's
security. If you have them, the System Manager must see to
their security by allowing only authorized access. The lines
should be "downed" at all times when not in use and only
"upped" for known, authorized users; and only then with password
protection.

Backup & Disaster Recovery

The best insurance a System Manager can subscribe to is a solid
backup procedure which, lUlless required more frequently, should
consist of nightly partials and weekly full system backups. To
further support this insurance, it is recommended that a secure
off site storage facility be provided for the various copies of
these backups and that it be used religiously. At least three
generations of backups should be rotated regularly. Monthly
copies should be retained for at least six months to a year.
Certain legal requirements might also dictate that some data be
retained for several years.

The System Manager is the individual who is on the spot if for
some reason disaster strikes. The System Manager must have a
disaster recovery plan. The plan should be published, understood
by everyone involved in effecting the recovery, and hopefully it
will have been rehearsed. This is the one area most frequently
neglected; but one has only to suffer a disaster once to realize
just how very important a disaster recovery plan can be to the
System Manager, their management and the business.

12 Paper 3071
WASHINGTON, D. C.

BAL TIMOF'\E WASHINGTON REGIONAL USERS GROUP INTEREX85

HP Liaison

Lastly, the System Manager should be your liaison with Hewlett
Packard insofar as system matters are concerned. The System
Manager should be officially designated to HP as your PICS caller
and be the HP contact for maintenance, system upgrades, etc. By
having the System Manager acting as the focal point for all HP
support activity, you gain a certain degree of continuity which
saves both time and resources when coordinating activities or in
the handling of problems, since all of HP's field support
organizations are designed to respond to all System Manager's
requests. This includes not only PICS calls but on site
assistance as well as account and problem management.

SLIDE #8

SYSTEM MANAGEMENT

r.­'0)
,L < ~
[~(;

D

D

D

When & how should system management be done?

System management is not something that can be done on a hit or
miss basis, when the moon is full and the boss is out of town.
Gone are the days when the System Manager can judge system
performance by the number of user phone calls received per hour.
To be effective, system status should be looked at daily, just
for drill, whether there are problems or not. Often performance
patterns can be spotted long before they become major system
problems.

Major housekeeping for systems performance should be
least monthly so that hidden problems don't have too
sneak up on you and become "serious."

done at
long to

As to the question of "How" system management should be done, I
can only say, "carefully!" Actions which are not thought out

Paper 3Q71 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

thoroughly in this area can be much worse than the situation you
are trying to resolve ... Be very careful!

III. Conclusion

The benefits of having a designated and trained individual as
System Manager are many and should not be taken lightly. When
major systems problems occur, the trained System Manager is the
only person who can effect ~ intelligent recovery from a system
standpoint. The HP operation that today tries to get by without
benefit of a person whose primary task is system management is
doing just that, "getting by." That organization bas given up on
optimum system performance and is likely to be surprised at some
point in time and will never be able to plan computer expansions
or upgrades without jeopardizing their operation or making costly
mistakes. They do not control their destiny but rather are at the
mercy of the gods of the system.

SLIDE 119 The
and

SYSTEM MANAGER
the function

The System Manager and the function, therefore, is vital; it must
be done; it is not difficult; it is not free; it does take time
and it is worthwhile.

14 Paper 3071
WASHINGTON, D. C.

BAL TfMOAE WASHINGTON REGIONAL USERS GAOU? INTEAEX85

Mr. Tom Idema is Manager of Systems and Programming for th•
Furniture Systems Division of Westinghouse Electric Corporation.
He is a graduate of Ole Miss, with an MBA from Western Michigan
University. Tom is a member of the faculty of Grand Valley State
College and Grand Rapids Junior College and has taught both
management and data processing"classes for the past nine years.
He is both a Certified Systems Professional and Certified Data
Educator. He has had several articles and papers published in
national data processing journals and has presented papers at
past INTEREX conferences and at various user group meetings. Tom
is currently a member of the INTEREX Board of Directors.

Paper 3071 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3073. FITTING PRINTER TECHNLOGIES
WITH

PERSONAL COMPUTER AND OFFICE APPLICATIONS

A POSSIBLE SCENARIO

Duane Schulz
Hewlett Packard Company

Vancouver, Washington

INTRODUCTION

INTEREX85

Suppose you are an MIS manager or an Office Systems support
person, and you have finally gotten the interest of your
company's Legal Department, who have been skeptical of your
network's ability to provide adequate word processing and records
management capabilities. They have extensive boilerplate tol'ord
processing and list management applications. Not wanting to take
any chances, you provide them with the most current hardware,
HP150Cs, access to Personal Productivity Center, all of the
finest HP150 software, and, knowing that laser technology is
state-of-the-art, a LaserJet printer.

During your carefully planned implementation over the next few
months, the PC and software training go quite well, but there a
few snags related to the printer. For one thing, the printer
doesn't handle some forms that the Legal Department uses: carbon
sets, NCR paper, etc. which are required by government programs.
The print resolution on the user's letterhead and bond paper,
which they just reordered for the next year, is poor~ it turns
out their media is not consistent with the paper specifications
for the printer. When the users discover the cost of consumables
(toner, cleaning and filter cartridge, etc) and monthly
maintenance, they are quite animated in their reaction. Service
problems crop up - streaks appear on the paper, and HP asks why
no one performs the suggested operator maintenance. After 7
service calls, you are told that your 175 pages per day usage
exceeds the 2686's acceptable daily usage, and your service
contract is in question. Finally, you find several application
requirements which are simply not met for the user due to printer
feature support constraints in the software they're using.

As a result, after four months, the manager of the Legal
Department asks you to take your "solution" back - they love
HPDESK, HPWORD and all of the other software and workstation
capabilities, but if they can't get the final printed output with
the quality they need (without a drain on productivity), it just
won't work. And you end up with egg on your face.

Paper 3073 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

ABS'l'RACT

Though this scenario may sound extreme, it happens frequently,
and points out the importance of proper selection and placement
of "workstation" printers in office and personal computer
applications. A natural tendency is to blame the printer, but
the true problems lie in MIS's knowledge of printer technologies
in general, and methods of recommendation of your Legal
Department's printers.

This paper will focus on the thought that, while MIS and User
Support personnel are becoming quite knowledgeable regarding
system and software capabilities, our knowledge of printer
technologies and potential applications for these technologies
lags far behind. We will provide some information in an attempt
to improve this knowledge, and try to assist MIS and user support
staff by providing tools for determining the best fit with
applications and budgets. Our premise is that printer technology
is as important as systems and software technology, and can be a
major cause of application failure and system shutdown. Proper
selection of printers can be the key to quality versus failure in
office and PC applications. A printer's job is to generate
images, and it is these images that people carry around with them
when thinking of a department's capability to perform work.

To accomplish these goals, we will proceed with: an examination
of why workstation printers are important; an overview of the
printer industry and general issues confronting it; a review of
information that MIS needs to select printers, and a method for
making these choices; an evaluation of technologies used in
workstation printers, including a comparison of specific
attributes which owners should consider; and a look at some
actions an MIS staff can take to gain control of this valuable
portion of an integrated systems network.

THE IMPORTANCE OF WORKSTATION PRINTERS

To begin this examination of workstation printers, we should
first outline just which printers are included in this category.
For the purposes of this discussion, workstation printers are all
printing devices which are: A) used specifically alongside
individual user workstations; and B) are priced at $3500 or less
(U.S.) . HP printers in this category include the HP ThinkJet,
LaserJet, 260X, 2932/4, 82906, and 267X. Other common offerings
include devices produced by Epson, Olivetti, NEC, Diablo, Canon,
and others. Though workstation printers are usually limited to
low usage, they are commonly found in multi-user ("shared'' or
"workgroup") applications. Discreet technologies used to produce
office and workstation printers which will be examined in this
document include:

Paper 3073 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

PREVALENT WORKSTATION
PRINTER OPTIONS

INTEREX 85

DRAFT/NLQ

Figure l - Workstation Printer Options

There are several factors which contribute to the importance of
these devices in an MIS environment (during this discussion, we
will refer to MIS management, PC and Office Automation
specialists, and User Support staff as "MIS staff," with "MIS"
intending to describe a network of computers which is used
together at a departmental - or larger· level):

l: Workstation printer technology is moving at least as
quickly as software and processor technology, making
choice, fit and investment very difficult.

2: These devices will account for up to 50 percent of a
typical workstation's cost; maintenance and ownership
costs will be significantly higher than those for the
workstation itself.

3: Printers are frequently the key to user acceptance of
an application. Because they offer the image and
result of an application, no application is truly
complete without the appropriate workstation printers
in place.

Paper 3073, 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

TODAY'S PRINTER INDUSTRY: ISSUES AND TRENDS

Before looking at how MIS can facilitate selection of a printer
and comparing the available workstation printer technologies, it
would be helpful to examine the printer industry in general, and
to look at the issues and trends which are considered by
successful workstation printer vendors. These include the items
indicated below:

Paper 3073

TODA Y'S OFFICE PRINTER
INDUSTRY ISSUES

©] QUAUTY OF l'llllNT

~ NOllE/llZE

Bil MPER HANDIJNG -MIDIA AND IUPPUEI

II GlllAPHICI AND COLOR

~ LANGUAGE/INTERl'ACE

a!I PNCE/PERl'ORMANCE

Figure 2: Today's Printer Industry Issues

WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

QUALITY OF PRINT

A major issue for both printer users and vendors is quality of
print. Since the advent of the electric typewriter and
daisywheel printer, the standard of quality has been "letter
quality," created by a single strike resulting in a fully-formed
character, and offering potentially infinite resolution. Newer
technologies have looked to the LQ character as a target for less
expensive and higher-performance technologies. However, the dot
matrix technology, created by striking groups of small wires, was
adopted readily by data processing shops for applications which
were not perceived to need LQ output. Continuation of dot matrix
technology by using smaller impact wires and multiple passes
across the paper have resulted in "near letter quality" (NLQ) dot
matrix impact printers, also called "multi-mode" dot matrix
printers. Finally, the advent of non-impact technologies, such
as those used in laser, ink-jet, and thermal transfer printers
now offer R&D facilities new ways of achieving letter quality
printing.

SIZE/NOISE

As these technological advances have been made, other factors
commonly discussed in input from customers are the size of the
unit and the acoustic noise level. From the HP ThinkJet and
other small printers to the HP2934, HP2601 and LaserJet, there is
a considerable range in size now available from ,3 cubic feet to
over 2 cubic feet.

Given moves to standardize and improve the office environment,
acoustic nois~ is frequently the major issue with office
printers. Vendors now offer products which range in decibel
output from "silent" to over 67 decibels of acoustic noise. This
is a major area of research in many labs, since print quality
often diminishes with noise output. A caution should be issued
here, as many vendors use "specsmanship" to understate their
noise level. Clearly, laser, ink jet, and thermal technologies
are forcing this issue with more conventional impact printers.

PAPER HANDLING

This area is one of the most commonly-overlooked portions of the
office printer market, and probably has the greatest impact upon
the productivity improvements seen by the end user. Just a few
years ago users were offered unidirectional forms tractors,
manual paper feeding, or unreliable electronic paper feeders
(usually with poor or limited application support). Today,
graphics output and higher-volume office applications such as
mailings have forced vendors to produce bidirectional forms
tractors and simple and cost-effective sheet feeders, frequently

Paper 3073 5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

with the ability to handle letterhead, plain bond, and envelopes
concurrently. In fact, this topic is so important that a
specialized industry in its own right has appeared in the form of
several feeder manufacturers.

MEDIA AND SUPPLIES

The improved technology found in current workstation printers is
usually associated with some costs, and these costs are otfen a
surprise to new printer users. Variables such as print density,
ink chemistry, feeders, duty cycle, impression-generating
techniques, and paper tolerance have led to special media and/or
consumable requirements. For instance, the HP ThinkJet requires
special paper for best resolution, and uses removable ink
cartridges which are printer-specific. Laser printers can
require special paper, toner, ozone filters, fuser cleaning pads,
OPC belts, and other consumable items. These are rarely included
in a user's departmental budget, and rarely optional. Also,
advances in paper production now offer new types of continuous
forms, with laser-cut microperforations, removable backing and
other capabilities. Again, the availability and cost of custom
forms often comes as a surprise to users, and may never be
communicated at all.

GRAPHICS AND COLOR

Without question, two of the most discussed topics in the printer
community today are the ability to print high-resolution graphs,
and the ability to do it in color. Since daisywheel and other
fully-formed character printing uses a single strike per
character cell, graphics is not a viable option. Sometimes users
need graphics output more than letter quality output and will opt
for dual-mode dot matrix printers because of their high print
resolution (though many more seem to need letter quality print
over graphics output). In reality, however, only high-density
ink jet, laser, or thermal transfer technology will perform text
and graphics output acceptable to selective office users, and
these cannot handle special multi-part or odd-sized forms well.
The need for integrated graphics in workstation printers will
eventually spell the demise of the fully-formed character
printer, but users who are ready and able to use this capability
are rare, and that demise will probably not occur for years.

Equally difficult to resolve is the need for color output in
workstation printers, which is available only on ink jet and dot
matrix printers at this time. The issues at the moment revolve
around quality of colors, resolution, speed, and software
support. Again, this is a highly-emotional area, and will
probably not be resolved until host software capabilities expand
to offer examples of potential color applications to the user
community.

6 Paper 3073
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMMAND LANGUAGE AND INTERFACE

A frequently unknown technical issue relates to the command
language to which a printer responds. This again offers users a
surprise when software which performs a function (such as bolding
or graphics output) does not properly ask a printer to perform
this function. This is because several "command languages" exist
for office printers, often with a separate set for each
technology, and software packages are written to support only
specific (not all) command languages. Common command languages
for daisywheel printers include Diablo API2, Diablo HPR05, NEC,
Qume 11, and Olivetti. Dot matrix printers use Epson, PCL (HP's
Printer Control Language), and others. Lasers often offer a
hybrid. Because software uses a specific command language or
languages, it usualy offers inherent limitations to printer
support. An effort is underway to adapt all HP-written and
HP-provided software to HP PCL, which should improve printer
support conditions considerably.

Also, consider that printer interfaces commonly found in HP
networks include: HPIB, RS232, RS422, Centronics, and HPIL.
Software designers must also attempt to insure that support of
HP's 15-plus international character set layouts is provided by
each printer's character generator, and so one sees that language
(human and printer) and interface selection can be a confusing
and often disappointing issue. Again, character set support is
seeing an attempt at resolution through the emerging standards of
IBM-8, ECMA-8, and, most importantly, HP's ROMAN-8, which offers
an 8 bit character set which handles most major western
languages.

PRICE/PERFORMANCE

Given all of these technological advances and challenges, it
would seem that user and vendor alike are offered more than
enough choices to make. However, manufacturers have found that
newer manufacturing techniques as well as the inherent design of
each tecnology are offering considerable opportunity to lower
printer prices. In fact, there is presently so much development
in the area of workstation printers that a sort of price war is
in effect, with average prices dropping by as much as 20 percent
each year. As an example, here are several comparisons of
printer price and performance:

TECHNOLOGY SPEED RESOLUTION 1980 PRICE 1985 PRICE

Daisywheel 45 cps Fully formed $4,000 $1,500
Dot Matrix 200 cps 90 x 90 $4,ooo $595-3,000
Ink Jet 150 cps 192 x 96 N/A $495
Thermal Trans. 45 cps 200 x 200 N/A $1,395
Laser 8+ ppm 300 x 300 $120,000 $3,495

Paper 3073 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL l:JSERS GROUP INTEREX85

Given this information and projection of high resolution color
dot matrix printers in the $300 range and daisywheel printers in
the $595 range, the future looks rather bright for the consumer.•
Unfortunately, the details of selecting a printer will offer
severe limitations to the options MIS can offer users, and price
can be VERY misleading. Below we will look at some important
considerations which will determine which printers can be offered
to users in the real world, and what price/performance factors
are realistic.

STEPS TO PRINTER SELECTION

In order to recommend a printer to a workstation user, five basic
items need to be considered. In many cases, only l or 2 of these
variables are considered, and this leads to most printer problems
and surprises. These five selection criteria are shown below:

PRINTER SELECTION CRITERIA

The 5 Major Variables
,.......,
u

~
s

HARDWARE/HOST SUPPORT < :> E

0 A

(2 SOFTWARE/FEATURE SUPPORT ~
0 E

N

~ APPLICATION/USER FIT < :> v

0 I

6J
R

COST OF OWNERSHIP < > 0

0 N
M

~ SUPPORTABILITY/SERVICE < > E
N
T

r.........;

Figure 3: Printer Selection Considerations

Paper 3073 a
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

RARDWAR.E CONSIDERATIONS

First, host support must be verified. This involves identifying
the printer interface, cabling and data communication options.
Once these are known, the host specifications should be checked
against them for hardware supportability. For instance, an HPIB
printer on an HP2628 workstation is only supported if the
workstation is equipped with that option. Two types of support
can usually be found: Explicit and Emulation support. With
explicit support, the printer is fully supported by model number,
such as the "HP2602" in the HP150's device configuration program.
Emulation support involves using another printer's explicit
support and your printer's emulation of that printer's
attributes. This would include such things as using a
"Diablo·compatible" daisywheel printer as an HP2601. The major
risk associated with emulation support is that the vendor will
usually not help with problems which may crop up, since they have
not fully tested the other printer. Finally. other support
parameters such as host speed limitations and printer spooling
support should be identified and considered.

SOFTWARE CONSIDERATIONS

To determine software support, it will be important to know the
printer's command language and print features, including: speeds,
pitches, modes, graphics support, print enhancements, etc. Given
these, each target software product to be used with the printer
should be checked, again looking for explicit or emulation
support. It is also worthwhile to determine support of the
proposed printer with software which may be offered to the user
in the future. Aside from specific print driver support of the
printer, each printer feature identified should be checked
through the software. For example, many printers offer normal,
compressed and expanded print modes, and both bold and shadow
print, but few word processing packages will support all of these
combinations. Also, many printers (even daisywheels) offer
graphics support, but many graphics packages, especially those
found on HP3000 hosts, do not support these capabilities on
office printers.

APPLICATION FIT

Though this consideration would seem to be obvious, it is
frequently omitted from the selection process. Here, several
less objective considerations, such as print quality, speed,
acoustic noise, paper handling options, and size should be
demonstrated to the user. Since the end user will be living with
the device, it is crucial that they have an opportunity to accept
how a printer performs in light of these variables. In many
cases, no currently available (or supported) printer will meet

Paper 3073 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

user expectations, and demonstrating the features and limitations
of each potential printer will help MIS by gaining empathy with
our technical position.

COSTS

When a printer has been selected for placement in your MIS
network, the total cost picture should be developed. This
includes two costs: true purchase price and cost of ownership.

The true purchase price is simple to compute. It should include
the price of the printer less any discount, plus the cost of
attachments (ie. sheet feeder and/or tractor), cabling, a stand
or table, and initial media and supplies, especially font
cartridges and such i terns. Again, it is important not to omit
these other items when considering total cost. Many users find
that, when their printer arrives, it has no place to sit or no
paper path, and when the first ribbon runs out, there are no more
to be found.

The cost of ownership includes two variables: support costs and
cost per page. The support cost should be an easily-obtainable
monthly fee. If the printer is covered on a per-call basis, then
you can use the annualized failure rate times the average cost of
repair, then divide by 12 (these items should be available from
your supplier) • The cost per page is more complex, involving
paper, ribbon, and other consumable costs. A formula for
determining a printer's cost per page is shown below:

COST PER PAGE =
COST OF PAPER PER PAGE +

COST OF RIBBON (OR INK CARTRIDGE) /
(RIBBON-CARTRIDGE LIFE/AVG. CHARS. PER PAGE)

In the case of laser printers, the cost of ribbon or cartridge
should be expanded to include all consumables, assuming the
vendor's stated characters per consumable item (filters, toner,
etc.)

As an example, let's look at a daisywheel printer with a 600,000
character ribbon at $19.00, and 25% cotton bond paper at a cost
of 2. 9 cents per page, also assuming 1500 characters per page
(cover letters will average approximately 1000 characters or less
per page). The cost per page for this printer would be:

.029 + (19.00/(600,000/1500)) = 7,65 cents per page

Assuming an 80 page per day volume (22 work days per month) and
$85 per month maintenance cost, the monthly cost of ownership for
this printer would be:

Paper 3073 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

(.0765 * 80 * 22) + 86 = $220 per month

Though these costs may often sound higher than we would like, the
invoices will start rolling in after the printer starts being
used, and it is helpful to insure that the cost of ownership is
included in the user (or MIS) department's budget at the outset.

SUPPORTABILITY

Finally, it is also crucial to determine that the proposed
application is consistent with the intended use of the printer.
This is simple to ascertain. The printer's documentation should
indicate usage (usually in pages or hours per day), environmental
requirements, and other support-related parameters such as
operator maintenance requirements. These items should simply be
checked against the projected usage and intended user
environment. This examination will eliminate any future
suggestions that a printer is experiencing service problems
because it is being used improperly.

Next, it would be worthwhile to examine some of the specific
attributes of workstation printer technologies, and perform some
comparative analyses of these technologies. This will be covered
in the next section.

CURRENT PRINTER PRODUCT/TECHNOLOGY REVIEW

To offer a brief overview of the printer (and technology) options
open to office and workstation users today, the following chart
outlines the attributes and relative merits of each printer type.
Followng this chart is a brief commentary on information
contained within. To arrive at several of the numerical values
on the chart, the following printers were used: Daisywheel:
HP2601; High-resolution dot matrix: HP2934; Laser: HP 2686; Ink
jet: HP2225; Thermal transfer: IBM Quietwri ter. Also, please
note that the dot matrix category refers to the newer high­
resolution, dual-mode printers.

Paper 3073 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

PRINTER TECHNOLOGY OVERVIEW
HIGH RES.

OAISYWHEEL DOT MATRIX LASER INK JET

IMAGE CREATION HAM'ER HAl+1ER PHOTOELECT. 11-1< SPRAY
1st MAJOR INTROOUCllON 1970 1978 1982 1982
LIKELIHOOD OF ENHANCEMENT LOW HIGH MEDIUM HIGH
POTENTIAL USERS

Managers x x
Profeaalonsla x x x x
Secretarlea x x
Clerical x x x

POTENTIAL APPLICATIONS
Word Processing+ 1 2
Graphics 4 1 3
Spreadllheet 3 1 5 2
Liat Mgt. 1 4 3 5
Data Proc. 3 2 1

INDUSTRY POSITION
Noise 55-67 dbA 57-6~ dbA •sJLENT' <50 dbA
Dot Reaolutlon FULLY FCHE 90 x 90 300 x 300 192 x 96
Size 3
Paper Handllnll* M/T/F
Media Tolerance EXCELLENT
Graphics POCfl
Color Capable? NO

PURCHASE PRICES $1500-3500
MAJOR REDUCllONS LIKELY'/ MEDIUM
PRICE/PERFORMANCE** $33
COST OF OWNERSHIP*** $241/MO

+ 1-BEST AT, 6-WORST FIT
* M-MANUAL. T-TRACTOR, F-FEEOeR

4 5 1
T F T
EXCELLENT GOOO POOR
FAIR EXCELLENT GOOD
YES YES YES
$1200-2800 $3500-30000 $400-700
HIGH LOW MEDILM
$14 $17.50 $3.30
$84/MO $279/MO $36/MO

** PURCHASE PRICE/CHARS. PER SECOND
*** 1600 CPP, FULL DUTY, W/MAINT., PAPER

Figure 4: Printer Comparison Chart

Paper 3073 12

THERMAL
TRANSFER

INK TRANS
1982
HIGH

x
x

3
2
4
2

•sJLEN'T•
200 x 200
3
M/T
FAIR
GOOD
YES
$300-1700
MEDIIM
$31
$224/MO

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

IMAGE PRODUCTION TECHNIQUE

The major differences in image fixation are non-impact versus
impact, and surface versus absorbed images. The daisywheel
printer still offers the only letter-quality impact technology,
and the ink jet printer offers the only non-surface, non-impact
image printing. These considerations are important for
applications requiring lasting quality.

FIRST MAJOR INTRODUCTION/LIKELIHOOD OF NEW DEVELOPMENTS

Though most technologies see a "gestation period" of over 5 years
in the lab, ink jet and thennal transfer technologies are the
closest to the experimental stage, and high-resolution dot matrix
printers can do more than the current market indicates, so these
three printer types should see the most new product development.

POTENTIAL USERS

The best-fit printer of choice for each group of t.torkstation
users is: Managers: ink jet; Professionals: any; Secretaries:
daisYt.rheel or laser; Clerical: dot matrix, ink jet, or
daisywheel. There are many potential exceptions and user
preferences due to application needs.

POTENTIAL APPLICATIONS

The most likely printer for use with each major workstation
application is: Word processing: daisywheel or laser; Graphics:
laser or dot matrix; ~preadsheets: ~y; List management:
daisywheel or laser; Data processing/report generation: laser or
dot matrix.

INDUSTRY POSITION

Noise/Size:

The laser and thennal transfer printers are the only examples of
"silent" printing available; however, the size of ink jet and
narrow carriage dot matrix printers offer real advantages in
space utilization and low heat generation.

Paper Handling:

This is another area where the daisywheel printer offers the most
flexibility. Though dot matrix printers can easily adapt to
feeders, they rarely offer the fiI·mware or command set support
needed to drive the triple bin feeder required in office

Paper 3073 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

applications. Also, note that manual feeding is difficult or
clumsy with many printers, which can cause problems as well.

Media Tolerance:

Along with image-fixation
paper which the printer
non-impact printers are
flexibility when high print

Graphics:

techniques come limitations to
cau tolerate. Most notably,
limited in paper tolerance

quality retention is expected.

the
all
and

Laser technology is the clear leader here, though ink jet and
thermal transfer printers may soon offer resolutions nearer to
the 300 x 300 dots per inch offered by laser printers.

Color Potential:

Through ribbon-lifting, multiple nozzles, or new photoelectronic
processes, color capabilities CAN be added to all technologies
but daisywheel. Nonetheless, vendors will be reticent to do this
until high demand is seen - this is difficult and costly.

PURCHASE PRICES/LIKELIHOOD OF MAJOR REDUCTIONS

In this area, the notable conditions are the wide range of end
user prices available. Many of the printers offered by major
vendors are priced to reflect the cost of providing system,
software and worldwide support and certification. Often, lower
priced printers do not include these things, but their aggressive
pricing will probably still affect major vendors' offerings in a
slight downward trend over time. It is probably unrealistic to
expect more than 10 percent price reduction per year in any area.

PRICE/PERFORMANCE

This measure of throughput per dollar shows that ink jet printing
is clearly the best buy, with laser and dot matrix price/
performance still pretty competitive. Daisywheel and thermal
transfer printers still command a premium for their adherence to
true letter quality, which is the new Holy Grail in the industry.

COST OF OWNERSHIP

Including ribbon/ink cartridge/toner, appropriate paper, and
service fees, and assuming usage at the printer's maximum monthly
rating, these figures show the normally hidden costs associated
with each technology. Again, the ink jet printer is the most
reasonable to support, with the dot matrix still reasonably
affordable. Laser, thermal, and daisywheel printers normally
cost more to support due to the higher service costs and the

14 Paper 3073
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

higher cost of good cut sheet paper. These cost projections
cannot be ovemphasized with the user.

CONCLUSION: AN MIS ACTION PLAN

Given all of these considerations regarding this important part
of an MIS network, what can an MIS manager or user support staff
do to prepare for coping with all of these choices? I would
suggest six simple steps which can be carried out today, and
these are described below.

USE AN APPLICATION APPROACH: For each request or problem, the
determining factor for each printer should be: A) its ability to
produce the final product of the user's applications in a fashion
acceptable to the user, and B) the user's acceptance of the
device in terms of human/operator interface, noise and size.

TRY UNITS BEFORE DEMAND IS SEEN: When an interesting technology
or product appears, arrange to look at an evaluation unit, and
become familiar with its capabilities, integration with hardware
and software, and other attributes BEFORE you are involved in
response to a request for user assistance in choosing a printer.

HAVE PRINT SAMPLES ON HAND: When discussing each type of printer
internally or with user departments, do so while referring to
print samples (the longer and more complex, the better). This
will again keep eveyone focused upon the quality of the end
result of the application. It is also interesting to see how
print samples wear through constant use.

ADOPT SELECTION GUIDELINES: Using the "Steps To Printer
Selection" above and/or other considerations, develop printer
evaluation and selection criteria. Worksheets and review forms
for MIS or O/A analysts are helpful here. This way, users can be
made aware of the possible choices, and how you are willing to
help them, before a need arises. This type of activity might
even lead to an internal guide to workstation printers available
within your network.

READ THE TRADE PRESS: Using office automation, personal
computer, INTEREX, and data processing publications, review the
newest hardware announcements (usually found towards the back of
any issue), and get more information regarding printers which are
of interest. Though many managers wait for their sales
representative to announce a product, this is a good way to keep
current.

MOVE WITH THE INDUSTRY: As with all electronic devices,
workstation printer technology is moving quite rapidly, and it is
important to be flexible in your ability to work with any
technology which offers itself. Though diverse technologies are

Paper 3073 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

becoming available, the equally diverse users in your
installation will react positively to different printers.

In this discussion, we have examined the issues confronting the
workstation printer industry, looked at available printer
technologies, and reviewed technical variables and selection
techniques for MIS to consider. In putting this information into
perspective, it is important to again consider the role a printer
will play in a workstation application. Though "paperless"
applications continue to be touted, when an accountant works with
a spreadsheet, a secretary a report, a professional a market
adoption chart, and a manager a business plan, these users will
find, in the future, the PRINTED IMAGE which was used to prepare
and preserve the information. Using the appropriate image for
the task will help to gain their involvement in your MIS network
as a daily part of their job.

BIBLIOGRAPHY

"Computer Users Catalog," Hewlett-Packard Company, Santa Clara,
CA, December 1984.

Doub, James: "Personal Computer and Printer: A Team," Electronic
Printer Industry Conference Proceedings, DATAQUEST, Inc. , San
Jose, CA, March 1984.

Downie, Robert: "Thermal Transfer Ribbons: The Gating Factor,"
Electronic Printer Industry Conference Proceedings, DATAQUEST,
Inc., San Jose, CA, March 1984.

"Electronic Printer Industry Service," DATAQUEST, Inc., San Jose,
CA, March 1985.

"New Technology Printers for Tomorrow's Office,"
Information Services, Newtonville, MA, August, 1983.

DATEK

"Peripheral Support Guide," Hewlett-Packard Company, Boise, ID,
March 1985.

"PRINTOUT Annual," DATEK Information Services, Newtonville, MA,
February 1985.

"Vancouver Division Customer Engineer Handbook," Hewlett-Packard
Company, Vancouver, WA, March 1985.

16 Paper 3073
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

3074. THE ULTIMATE CHALLENGE IN APPLICATION DESIGN:

MANAGING DATA INTEGRATION

Dr. Sreekaanth S. Isloor
275 Slater St., 10th Floor

OTTAWA, ONT. , CANADA, KlP 5H9

ABSTRACT

An organization's investment in it's data is enormous. The enormity of
this investment requires data to be treated as a corporate resource,
even in cases where data is collected and managed by small subgroups
within the total organization. The creation of this corporate resource
depends on management commitment, user participation and standards.
Achieving data integration in an environment where the development of
numerous applications spans long periods of time is a formidable task.
This paper outlines how data integration can be managed by the
appropriate use of databases in such an environment.

1. INTRODUCTION

1.1 Value of Information as a Corporate Resource

In today's world of exploding information needs it is essential to
manage information as a resource. The trend towards viewing data as a
corporate resource is indistinguishable from the trend to manage
information as a resource. Value is associated increasingly with the
support data provides for effective business activities. If major
strategic planning decisions are based on data, it is evident that bad
and uncontrolled data will result in bad and inconsistent decisions.
The value of data can be determined by the business cost associated
with not providing accurate information whenever needed. When data is
interpreted in terms of a business activity, it places tremendous
responsibility on an organization. Assuming this responsibility
requires control over all manual and automated data and all procedures
used for the manipulation, communication and presentation of
information in the course of doing business.

1.2 Objectives of Integrating Data

The software, the hardware, the firmware and the procedures that manage
an integrated data base comprise a database management system (DBMS). A
DBMS makes it possible to access integrated data across operational,
functional, or organizational boundries within an interprise. The major
objective of integrating data is:

a) to support management in strategic planning;

Paper 3074 1
WASHING TUN, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

b) to facilitate a "one·stop shopping approach" through an
information centre; and

c) to integrate all office functions {l] in an electronic office.

The benefits of integrating data are as follows:

* Different functions of an organization can be served effectiely
by the same DBMS [2].

* Redundancy in stored data can be minimized, resulting in higher
data integrity.

* Adequate security controls can be uniformly applied.
* Skilled personnel cost can be reduced by virtue of fewer people

being required to develope, maintain and enhance application
programs.

* Centralized control of the database is possible.
* Standards can be enforced on information managment procecess.
* Easier procedures for cumputer operations can be established.
* Phisical reorganization of the stored data is possible.

1.3 Long Term Implications of not Integrating

Data Redundancy:

If the same data is needed for several independent applications,
it is often stored redundantly in several files. Such data redundancy
requires multiple input, updating and reporting procedures. This
results in numerous problems with the integrity of data.

Loss of Data Integrity:

Inadequate Data Integrity is a result of storing the same information
in more than one place. Lack of data integrity can also result from
poor validity checks on data. In a multi-user, multi-application
environment, data redundancy demands synchronization of
modifications to the database. It requires strict concurrency
control techniques.

Data Availability Constraints:

When data is scattered in a number of data files, obtaining
combined data of related different applications is somewhat
constrained. In a fast moving business environment, availability
of data to the right person at the right time is essential.

Paper 3074 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

Difficulty in Management Control:

As a result of data redundancy and uncoordinated control, it is
difficult to implement new guidelines or enforce standards across
the organization.

Manpower Costs:

!n a totally uncontrolled environment and in the absence of data
integration, personnel costs for maintenance and development are
exorbitant. James Martin in advocating a planned approach to control
corporate data, states that "803 of the programming budget is
being spent on maintaining or modifying past programs and data;
only 203 is being used for new application programming". [3]
This also results in duplication of effort.

The lack of data integration results in:

* a totally uncontrolled environment;
* misuse of software, human and computing resources;
* duplication of effort;
* loss of data integrity;
* in cons is tent approach and lack o.,f standards; and
* inability to identify the impact of change.

2. DATA INTEGRATION

The term integrated database refers to a database containing files
from two or more applications which are not necessarily related.
The term corporate database refers to the collection of all
databases within an organization. Integration of systems means
the amalgamation of normally unrelated applications to process
some common data. This data may or may not be held in an integrated
database. The benifits to an organization resulting from an
organization resulting from an integrated database are as follows:

Availability of Infomation

Data storr;d on the integrated database by several independent
applications is immediately available for query and reporting.
Interrogation or reports on data from various applications can
be accomplished by an end user oriented language. In effect any
data from any application stored in the integrated database is
available from that database directly.

Paper 3074 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Simplified Maintenance

All maintenance activities such as modification of definitions,
addition of fields and changes in keys or utility programs are
performed, controlled and logged by a central area.

Massaging/Sorting

In many applications there is a reduced need to massage and sort
data for reports since the DBMS stores the data in logical sequence.

Standardized Techniques

Since all files are on the same database, naming conventions, coding
conventions and documentation techniques are standardized. There
will not be a requirement for multiple conventions and techniques.
This should reduce any manual effort involved in coding, documenting
and reviewing.

Centralized Support and Expertise

Detailed inhouse knowledge of the DBMS and its utilities will be
centralized. There is no need for the programmers and analysts to
be involved with the internals of the DBMS; those individuals
can devote full time to applications and in meeting the end-user
requirements.

Common Backup/Restore

Backup of the files for any or all applications can be scheduled
and performed by a central area. Once backup requirements are
established they can be invoked automatically. Since the database
area is responsible for integrity of the database, it is also
responsible for backup/restore of the database.

Restart/Recovery

Restart and recovery of any application is designed such that
minimum effect on the integrated database occurs. Restart and
recovery will be automated where posible to reduce the human
intervention after system failure. These procedures will be performed
by the centralized area and will require minimum involvement of the
application area.

Paper 3074 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Utility Functions

Utility operations can be performed during online usage of the
integrated database. The specific files requiring attention will
be unavailable to that· application during the certain operations,
but all other files and applications are unaware of the utility.

Enhancements

Any enhancements for the DBMS announced by the vendor of interest
will be installed and tested by the central area. The user will
take advantage of the enhancement without requiring his involvement.
All applications will benefit because of a modification to a common
routine.

Space Utilization

Since the DBMS handles all space management there will be an overall
reduction in the storage requirements for the integrated database
compared to multiple single databases. Since the central area
reviews space allocation regularly, and is monitoring performance
of the DBMS and applications, corrective action can effect multiple
areas immediately. There should be an overall reduction in
running time/costs since applications are processing the.intergrated
files, instead of massaging and reformatting data from different
files.

Other benefits of integration include reduced miscommunication,
reduced duplication of effort and standardized procedures in
times of failure.

Checklist provided in Appendix A can can be used to assess the actual
integrated corporate dat.a requirements in comparison to the
present DBMS enviroment.

3. APPROACHES TO DATA INTEGRATION

While it is quite easy to say we will move to a database environment
and maximize the integration of systems, there is phenomenal effort
required to get there. Very briefly, the organization must:

* identify what it does and what data is used in doing it;
* determine the generic groups of data used in doing its business;
* establish funding mechanisms to support this philosophy;and
* assess the impact on people associated with changing the way

things are done.

Paper 3074 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Th•re are several strategies possible for attaining data integration
in an organization. In general, there is no one strategy to be used
by all. The particular strategy adopted by an organization is
dependent on several factors, for example, the current environment,
the degree of sophistication of applications, the role pf the
DBA [4], the spatial distribution, and hardware/software distribution
of users, the level of standardization in data and methods and the
degree of autonomy of the various users. Here the two extremes are
outlined. In Approach A, applications are developed independently
and subsequent data analysis and integration are attempted. In
Approach B, the data analysis, data modelling and data administration
are implemented first and then systems are developed based on common
data.

3.1 Approach A

In approach A, each application is independently analyzed, designed
and implemented. Upon successful implementation of all systems,
an effort is made to integrate the common data. The approach
involves:

Step A1: Analyze Data for single application.

Step A2: Design the database for the application under consideration.

Step A3: Implement the application.

Step A4: The above steps are independently applied to each and every
application.

Step A5: Analyze all implemented systems to determine commonality of
data for integration.

• Determine common data in all related applications

• Determine common data in unrelated applications

* Identify data in Common data that is standardized
(e.g. Standardized codes etc.)

* Develope standards for data in common data that is
not standardized.

justify on
Step A6: Design integrated database for common data based on analysis

in Step A5.

Paper 3074 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3.2 Approach B

In Approach B, a conceptual global analysis of all the relevant
systems and potential applications is carried out first to determine
common integratable data. The applications are designed with the
integratable data as a common base. To do this complete data analysis
and data modelling is performed. The Approach involves:

Step Bl: Conceptually, model corporate data. Collect information at
Corporate level on entitles, and relationships between
entitles.

Note: A little reflection about the data dictionary approach is
that it tells you what information to collect and how to use
it. The data dictionary provides Coordination and stability
to the efforts it supports because it gives permanence to the
information and specifications on which those efforts are
based.

Step 82: Analyze existing application to collect minimum possible
common data, by modelling entities and their relationships.

Step B3: Analyze future potetial applications by collecting information
on potencial usage of data. Use results from Step B2 and
above to determine a maximal set of common data.

Step B4: Design standard codes and standards for the maximal set
of common data.

Step B5: Design the database for the common data.

Step B6: Design and implement all applications based on a common base
of integrated data.

Remarks: Approach B, is an ideal procedure, whereas Approach A is at
the other end of the spectrum. Approach B has an inherent
advantage in stressing that the idea of standardizing data
is a good one. Approach A is the result of lack of management
commitment, lack of user participation and the inability
of data processing departments to manage the Corporate
data resources.

In the next section, based on a review of some hypothetical systems
and their component data, a method is developed to allow progressive
intergration. The common data is identified and integrated
increasingly to provide short term benefits while preparing for the
longer term. While the move to data integration is technically
practical, and economically justifiable the major problems will be
social.

Paper 3074 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

4. EXAMPLE OF DATA INTEGRATION

A methodical approach to data integration is outlined in this section
based on an analysis of some hypothetical systems. Let us consider
three application systems SYSTEM 1, SYSTEM 2, SYSTEM 3 that are
developed independently, but use considerable arrount of data in
common. It is obvious that, to handle inter system requests, a
customized bridging system would become essential for shorter term.
Let us call that system, SYSTEM O. Let us assume that the generic
groupings of data that are used in doing business with the help of
above hypothetical systems are:

* Client Company data;
* Project Data;
* Financial Data;
* Commonly used coded tables data.

4.1 Common Data

Client Company Data

The systems considered have recorded data about a company in
different business dealings. Therefore, the information about a company
is stored under multiple systems. In this example, the company data
should be stored as common data accessible to any system that needs
it. The analysis of company data shows at least the following
data elements common to some of the systems.

Client Company Data

Data Elements Systems
1 2 3 0

Company Code x x x x
Company Name x x x x
Company Address x x x x
Zip Code x x x x
Telephone Number x x x x
Telex Code x x x x
Contact Name x x
Year Established Date x x
Mailing Address x x x x
Mailing Zip Code x x x x
Number of Employees x x
Total Sales x x
Stock Exchange Status x x

Paper 3074 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Similarly, an assessment of commonality of the project
data, financial data and the coded tables data is given below.

Project Data

The project data common to the systems is a direct result of the
commonality of business dealings of the companies involved. Thus,
common data about projects is stored under multiple systems.

Data Elements SYSTEMS

1 2 3 0
Project ro' x x x x
Project Description x x x x
Project Value x x x x
Project Effective Date x x x x
Project End Date x x x x
Program Name x x x
Sub-Program Name x x
Sub-Program Code x x
Activity Status Data x x x x

Program Code x
Project Budget Revisions x x x x

Financial Data

Financial data (e.g. Expenditure information) should be entered
only once. ntegration of financial data will avoid considerable
number of duplication of data entry operations, and lack of financial
data integrity by avoiding redundancy. The following financial
data is a representative set of common data in the systems under
consideration.

Paper 3074 9 WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Catagory of Data Elements SYSTEMS
1 2 3 0
Commitments Information x x x
Contract Value x x x
Project Expenditure Information x x x
Project Recovery Information x x
Project Losses Information x x x
Project Losses Recovered Info x x
Fees Received x x
Undisbursed Insurance x x
Outstanding Insurance x x
Project Amount Requested x x x
Revised Budget x x x

Coded Table of Tables Data

Coded Table of tables basically relates data names with their codes
assigned by coding systems. Coding of same information in different
systems must be standardized for data integration. Information on
regions, for instance, is used in several systems.

Obviously, it is useful to store such information, in standard
formats centrally, so as to facilitate its shared use by other system.
A representative set of such information is provided below.

Entity Catagory SYSTEMS
1 2 3 0
Country Information x x
Region Information x x x
Product Information x x x
Responsibility Centre Information x x
Product Support Information x x x
District Information x x x

Paper 3074 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

~.2 Cursory Analysis of the Hypothetical Systems

In section 4.1, a brief analysis of data in the systems showed that
there is considerable amount of common data. In this section an
analysis of the effects of data integration with common data as a
base will be considered.

ro begin with, represent data bases, systems and interfaces between
systems as follows

4.2 Cursory Analysis of the Hypothetical Systems

Paper 3074

In Section 4 .. 1, a brief analysis of data in the systems
showed that there is considerable amount of common data.
In this section an analysis of the effects of data
integration with common data as a base will be considered.

To begin with, we shall represent data bases, systems and
interfaces between systems as follows

G
8

Configuration A.

= ABC h • system such u
SYSTEM I, SYSTEM 3

= XYZ is • set of common
d1t1 such IS CLICNT
COMPANY DATA. COD[D
TABLES DATA.

=ABC is• system th1t uses
common dote XYZ.

=ABC and DEF ore systems
vi th 1n interface th1t
transfers some dote from
ABC to DEF. The interface
may be MANUAL or AUTOMATIC

The present situation in most organizations without any
integrated data can be represented as follows. Each
system maintains and controls its own data. The common
data is stored and maintained separately by every system.

SYSTEM 0 which acts as a support system for systems such
as SYSTEM 1, SYSTEM 2. SYSTEM 3. etc. interfaces to every
system to supply some financial data through either manual
or automatic interfaces. SYSTEM 4 does not interface to
any system. A representative set of problems encountered
in this configuration is listed below due to the lack of
data integration.

11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL. USERS GROUP INTEREX85

Configuration A

The present situation in most organizations without any integrated
data can be represented as follows. Each system maintains and
controls its own data. The common data is stored and maintained
separately by every system.

SYSTEM 0 which acts as a support system tor systems such as SYSTEM l,
SYSTEM 2, SYSTEM 3, etc. interfaces to every system to supply some
financial data through either manual or automatic interfaces. SYSTEM 4
does not interface to any system. A representative set of problems
encountered in this configuration is listed below due to the lack
of data integration.

SYSTEM 4

SYSTEM 0

SYSTEM 1 SYSTEM 2 SYSTEM 3

DIAGRAM CONFIGURATION A

Paper 3074 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Problem 1: A SYSTEM 3 project recorded in SYSTEM 0 but not recorded
in SYSTEM 3 is a result of different project identifiers for the
same project. This can happen due to (i) SYSTEM 3 forgot to record
the same project, (ii) SYSTEM 3 used the wrong identifier, and
(iii) SYSTEM 0 used the wrong identifier. In this situation,
determining whether SYSTEM 3 or SYSTEM 0 is to be corrected is
not simple.

Problem 2: There is no guaranteed way to check if a single client
company has defaulted. For instance, a company "A" blacklisted
by SYSTEM 3 for not satisfying contractual obligations may do
business with the group responsible for SYSTEM 2, even though a
tentative organization decision may be never to consider company
"A" again.

Problem 3: As regards financial data, there may not exist one
consistent definition for "committment \Talue" in different systems.
Each system may have its own definition (explicit or implied) of
"committed value", This is a stumbling block for budgetary control.
For instance, reconciling a SYSTEM 1 committment with a SYSTEM O
committment may pose problems.

Paper 3074 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Configuration B

In this configuration, the basic common data about
companies and projects is shared by most systems. This configuratiun
would be a natural successor to the configuration A. Rest of the
data such as financial is still maintained separately by each
system.

SYSTEM 0

SYSTEM 4 Auto

SYSTEM 2

CLIENT COMPANY DATA

DIAGRAM CONFIGURATION B

c
0
M
M
0
N

D
A
T
A

Paper 3074 14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!1

Configuration C

ln this configuration, the common data about companies, coded tables,
projects is shared by all systems.
The financial data is stored as common data on all projects through
a system called here the "financial system" (FINSYS). FINSYS
generates, maintains and controls all the financial data that is
required for every system. Please note that SYSTEM 0 as a supporting,
bridging system is not necessary.

SYSTEM 1

SYSTEM 1
relevant

Paper 3074

SYSTEM 4

SYSTEM 4

relevant
deto

FINANCIAl
SYSTEM

DIAGRAM : CONFIGURATION C

15

SYSTEM Z

SYSTEM Z
relevant

Gltl

c
0
R
p
0
R

" T
E

0

" T
A

SYSTEM 3

relevant
de to

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Remarks

a) Configuration C is closer to an ideal integrated data base system.
Configuration C would be the result of using Approach B described
in section 3.2 to integrate data bases.

b) Common standardized project numbers, codes in coded table of
tables data, standardized company identifiers will eliminate
all the problems that were encountered in configuration A.

c) Controlling financial data through a centralized system such
as FINSYS (hypothetical) described in Configuration C
results in better financial data security and integrity. It also
alleviates problems such as problem 3 described in configuration
A. Accessibility of financial data for budjeting and planning
purposes at the organizational level enhances considerably with
with centralized system control to the data.

4.3 Access Control for Common Integrated Data

The data items for common integrated data should be centrally agreed
upon. Centralized control is needed to ensure that the sharing of
common data between applications will be possible. A data dictionary
should be used by all teams that are developing applications using
common data. Only with proper control on common data, it is possible
to avoid the crippling problems that result from piecemeal development.
A delicate balance between central control of common data and
decentralized development of applications is needed.

In an integrated database such as shown in configuration C, update
control should specifically be assigned with one application or
some central authority. For instance the financial data updates
should be controlled only by FINSYS (the hypothetical system).
Individual systems such as SYSTEM 1, SYSTEM 2, SYSTEM 3 should not
be allowed to control any financial data. Similarly the responsibility
for update control of shareable Client Company information should
be assigned as well. The data on coded table of tables is used by
most of the systems.

A rough analysis of the update control necessities can be performed
by using the checklist in Appendix B tp determine a fair, acceptable
assignment for controlling data updates.

Paper 307i. 16
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

5. CONCLUSIONS

In summarizing, an organization must consider a global analysis of
its data to plan an effective data integration strategy. However,
to achieve configuration C of integrated data from the present
configuration A, it is necessary to select a data integration
Approach that falls between two suggested extremes in section 3,
Configuration C is achievable from A via configuration B by choosing
suitably planned strategy.

REFERENCES

1) S.S. Isloor, "4th Generation DBMS as the Beart of the Systems
of the Automated Office", Proc. HP3000 IUG Conference, Amsterdam,
April 1985

2) E. Miklovich and S.S. Isloor, "Selecting the Right DBMS for Your
Environment", Proc. CIPS Session "82, Saskatoon, Canada, May 1982,
pp. 87-94

3) J. Martin, "principles of Data-Base Management, Prentice-Hall,
Englewood Cliffs, New Jersey, 1976

4) H. M. Weiss, "Making the DBA the key to System Development",
Canadian Data Systems, March 1981, pp. 66-70.

Paper 3074 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

APPENDIX A

CHECKLIST FOR INTEGRATED CORPORATE DATA REQUIREMENTS

The following is a checklist that is representative and not
necessarily exhaustive for determing integrated data requirements.

1. Does the integrated data satisfy today's needs for information
in multiple applications and of the information centre?

2. Does it satisfy today's needs within a reasonable time to match
performance requirements?

3, Does it (to a large extent) satisfy all the anticipated, and
(to some extent) unanticipated requirements of end users?

4. Is the integrated corporate data easily expandable to keep pace
with the expansion of the enterprise or organization?

5, Is it easily modifiable in a changing hardware and software
environment?

6. Are good mechanisms in force to maintain the correctness of
integrated data over the duration of usage?

7, Are validation checks in force to ensure that consistent new
data is entered into the data base?

8. Are access control and authorization techniques adequate to
control access to stored data?

APPENDIX B

CHECKLIST FOR UPDATE CONTROL REQUIREMENTS OF COMMON DATA

A representative checklist for update control is provided here.

1. Is the database obtained from multiple sources?

2. Does the data need to be updated from multiple locations.

3, Is the data used by multiple applications systems?

4. Which application system has statistically most used the data?

5. Which application system has statistically most updated the data?

6. Can the data be updated overnight in batch?

7, In case batch updates are performed, is the data sufficiently
up-to-date for most users query traffic?

8. Which application system has the best data entry controls?

Paper 3074 18
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3075. Natural database normalizing:
The Entity-Relationship Approach of IMAGE/3000.

F. Alfredo Rego

Ad ager
Apartado 248

Antigua
Guatemala

'l'he tMAGE/3000 database management system has unique mathematical
properties which are natural consequences of its o·riginal design criteria.
These IMAGE properties allow us to model our entities and their
relationships in a normalized fashion, without the convolutions required by
run-of-the-mill database management systems described in the literature of
the day.

In this essay t describe some of IMAGE' s most intriguing mathematical
properties and I give specific examples of their applicability to common
database challenges.

From the call for papers

The call for papers from the Baltimore/Washington HP3000 RUG has a
paragraph which highlights the general database challenges:

"The conference theme -- INFORMATION CROSSROADS OF THE 80's
reflects the enormous volumes of data that the hardware and
software of today are capable of collecting and the equally
staggering problem of turning that raw data into meaningful
information".

Let's reviei.r some of the fundamental issues and some of the specific
solutions, particularly those related to the HP3000 computer and its
database management system: IMAGE/3000.

Paper 3075 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Database buzzwords

We use databases to model the behavior of ENTITIES and RELATIONSHIPS.

A DATA ENTRY represents the ATl'RIBUTES of an entity or a relationship.

A KEY is an attribute (or a COMBINATION of attributes) which uniquely
identifies a data entry.

A DATABASE is a collection of DATA ENTRIES.

A Database Management System (DBMS) attempts to control things. For
EFFICIENCY's sake, a DBMS has some type of internal structure to FIND and
ASSEMBLE data entries. For CONVENIENCE's sake, a DBMS has some type of
USER INTERFACE to CREATE, MAINTAIN, and RELATE data entries to assemble
INFORMATION.

The data entries which the user "sees" through the interface may be REAL
(if they exist physically in the database) or VIRTUAL (if they are the
result of relational operations on real or virtual data entries).

INTERFACE vis-a-vis STRUCTURE

The USER INTERFACE is an "ambassador" between the raw bits-and-bytes
computer stuff and the human-like specifications of the end-user.

A LOUSY user interface imposes the restrictions of the STRUCTURE upon the
poor suffering user. A NICE user interface shields the user from the
structure's shenanigans, while still being able to take full advantage of
the structure's properties. A good user interface is as efficient as
possible without being obnoxious.

An interface knows the "internals" of the database structures as well as
the "externals" of the user desires, and spends its existence translating
back and forth between bi ts and thoughts. This may very well be the
fastest kind of shuttle diplomacy!

Online database applications

Online database applications should provide RELEVANT information while
somebody waits over the counter or over the telephone.

This means that we should design (and periodically tune) our database
systems to provide the fastest possible response time for the most
important transactions and queries. Ideally, in a simple way!

Paper 3075 2
WASHINGTON, D. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEREX85

Complexity and NORMALIZATION

Unfortunately, things ARE complex. But we should avoid UNNECESSARY
complexity. This is the objective of NORMALIZATION.

The issue is to place the appropriate resources (no more and no less) where
they belong, at the appropriate level, at the appropriate place, at the
appropriate time. And to be able to reallocate resources quickly and
effectively to "balance the load",

This means that normalization applies at every level in the global computer
hierarchy:

- Data entry.
- Dataset.
- Database.
- Computer.
- Node.
- Network

A normalized network is open-ended. We can add more elements at any layer
without affecting existing systems. We can delete elements from any layer
without affecting existing systems which do NOT access such elements.

This, in a nutshell, is the challenge of normalization:

Do we want to favor efficiency in terms of ACCESS or do we want to favor
efficiency in terms of MAINTENANCE? In general, the higher the
normalization (i.e., the scattering), the higher the communications and
coordination costs.

Normalization is neither good nor bad. It is simply a method which allows
us the freedom to choose HOW FAR we want to go in one direction or the
other in the NORMALIZATION SPECTRUM, which has HIGHLY UNNORMALIZED
DATABASES at one end and HIGHLY NORMALIZED DATABASES at the other.

Usually, efficiency in terms of access implies redundancy. But redundancy,
in itself, is not "bad". It is just more difficult to maintain a bunch of
redundant things in perfect synchronization. This is analogous to an
"orchestra-man" who must play all kinds of disparate instruments in a (more
or less) coordinated fashion. (Don't try to rearrange a particular piece
of music 5 minutes before the next concert! All hell will break loose!)

Usually, efficiency in terms of maintenance implies simplicity of roles AND
a multiplicity of role-players. If we want to change ONE role, we only
have to change one player. But it can be a drag to keep track of thousands
of players. This is analogous to those fascinating groups of musicians who
play bells, one bell per musician. Each person is a "specialist" who can
only play one note.

In terms of maintenance, we can see how difficult it would be to "tune" all
the instruments of the orchestra-man while he is performing and how easy it
would be to simply exchange a bell which is out of tune in the case of the

Paper 3075 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL. USERS GROUP INTEREX85

multiple-musician single-note per person group. Nobody would get thrown
out of balance!

A super-normalized database contains a variety of small data entries,
grouped together in a multiplicity of datasets, with many ins~ances of key
fields scattered all over the place. Even simple queries may require that
we assemble the information from many sources. But we have a better chance
that each of these sources is correct. It is simpler to maintain a
"specialist" source up to date than to maintain a complex source which
tries to keep track of everything at the same time (like our friendly
orchestra-man).

Even though it may seem paradoxical, our experience shows that
highly-normalized databases actually occupy less total disc space than
unnormalized databases. Particularly if the redundant attributes tend to
be larger than the keys. Which is usually the case: the name of an entity
tends to be longer than its Number-ID.

This scattering of information into small bits and pieces might become a
nightmare to control. Fortunately, IMAGE's path mechanism automatically
protects the referential integrity of highly-normalized databases, since it
requires that every detail key field MUST have a corresponding ChainHead in
a master.

Naturally, we can go to ridiculous extremes and normalize a database to
death. We could conceivably chop up the information about an employee in
many data entries, each containing a single attribute such as name, birth
date, salary, and so on. But this would really be splitting hairs! Common
sense should prevent us from doing such attrocities. This is the
motivation behind the rules for the fifth normal form: A data entry is in
fifth normal form when there is nothing significant left to normalize!

Some general observations

In terms of "SPACE", an entity may be related to zero, one, or more
entities (of its own class or of different classes).

In terms of "TIME", these relationships may happen all at once or they may
happen one after another, in a strictly sequential fashion.

A relationship is an entity. For example, a marriage is a relationship
between two people AND a marriage is also the subject of attention of a
marriage counselor who treats it as an entity.

An entity is a relationship. For example, an individual is an entity AND
an individual is a relationship formed by internal organs, genes,
environment, and so on.

It is a matter of CONVENIENCE to designate some "thing" as an entity or as
a relationship.

Paper 3075
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP JNTEREX 8 5

Usually, a relationship's key is a,,concatenated key, consisting of the keys
of the related entities. If the same entities can be related in different
ways (thereby giving tise to several data entries to represent the
different relationships), then each relationship's key will include some
additional attribute (s) which will differentiate this relationship from
other relationships involving the same entities. (Example: line-numbers in
a purchase order "PO-line" relationship which links customer, product, POI,
etc.)

Another example that shows the convenience of a concatenated key has to do
with "discretionary" pricing (or discriminatory, or whatever you may want
to call it) . In this case, the price of a product for a customer may
depend on the part's supplier, on the customer's rating within the company,
on the order-date and/or on the ship- date, and so on. In other words, the
price is an attribute of the RELATIONSHIP among all these entities; the
price is not an attribute of the product alone.

Access strategies

Some people have spent endless amounts of time and talent solving a
fascinating problem: How to minimize the effort required to answer the
most infrequently-asked (and most arcane) questions.

Some other people have spent endless amounts of time and talent solving
another fascinating problem: How to minimize the effort required to answer
the most FREQUENTLY-asked (arcane or not) questions, while still preserving
a reasonably efficient environment for those who must toil, on a daily
basis, with the thankless task of feeding and babysitting the database.

IMAGE allows us the freedom to go "explorer-like" with sequential and
direct access methods, which allow us to implement our own indexing
methods, as well as "big-hub-to-big-hub-like" with hashing and paths. We
do not HAVE to scan anything in a predetermined order. But it is nice to
know that we may, if we know that a given "routine-route" (get the
connection?) will get us to our desired destination.

In an online database system, we want to get information about given
entities and their relationships. This means that we want to find the
entry (or group of entries) of interest to us, among millions of entries,
as efficiently as possible.

IMAGE provides two access methods which are optimized for efficiency:
HASHING and CHAINING. In general, we access entities (in master datasets)
by means of hashing and we access relationships (in detail datasets) by
means of chains which we built as we added new detail data entries. These
are contents-oriented methods.

We can always access either entities or relationships in other
address-oriented IMAGE-access modes: serial or directed. As a matter of
fact, this is what some indexing systems do, even though they are subject
to chaos whenever secondaries migrate in master datasets or detail chains
lose their absolute ·positions as a consequence of repacking.

Paper 3075
WASHINGTON, D. C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Advanced indexing systems avoid address-oriented IMAGE-access methods and
cleverly build upon IMAGE's intrinsic access methods (hashing and
chaining).

Naturally, we may have valid reasons (usually having to do with
convenience, performance, or both) that motivate us to use our own
combinations of physical MASTER and DETAIL datasets, with or without
physical paths, to model a given collection of entities and/or
relationships. Usually, these valid reasons are dictated by our choices of
indexing techniques.

===
A practical methodology based on DATA ENTRIES
===

A data entry models an entity or a relationship. A data entry has:

• A unique identifier ("KEY") for the represented entity or relationship.
Any unique identifier can serve as a key. But some identifiers are more
convenient than others.

• ATTRIBUTES (if any) which further "qualify" the entity or relationship.

The functional dependencies among keys and attributes will tend to show a
remarkable stability, parti~ularly if you cluster things around OBVIOUS (to
you) entities and relationships. For instance, the functional dependency
between a Personal Identification Number and the name of a person will
probably hold for life.

The manners in which people access, combine, manipulate, present, and
otherwise massage the data contained in the database to produce information
(or misinformation) will tend to change according to the inevitable changes
in the political winds.

Given these facts of lite, it might make more sense to spend our limited
energies and resources analyzing ENTITIES and RELATIONSHIPS first.
Interestingly, we may find that this Entity-Relationship Approach will
automatically and conveniently point us in the direction of a very
desirable thing: We will find that we need very simple user interfaces in
order to maintain information in the database and (most importantly, of
course) to obtain information from the database.

Naturally, stability should not imply inflexibility. The challenge is to
be as stable as possible while still being flexible and adaptable to
changing environmental conditions. But there should be some back-bone to
the whole thing!

Paper 3075 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX65

Database Dynamics

Entities and relationships don't just sit there, frozen in time. They
interact with one another and with their environments. They have
trajectories through time and through space, analogous to the performance
of a musical score or to the full-blown production of a ballet.

Events happen which affect (and are affected by) our entities and our
relationships. This, in effect, is the essence of "being", as mentioned by
Plato, who said that "Being is the ability to affect and be affected".

The discipline of DATABASE DYNAMICS studies the TRANSACTIONS which affect
(and are affected by) the evolution of databases through time. Both in
terms of the changing structures of the databases themselves and of the
changing meanings and values of the various kinds of information contained
in the databases.

We use PICOSECONDS (trillionths of a second) to measure events which we
think are super-fast. We use AEONS (billions of years) to measure events
which we think are super-slow.

Somewhere in the middle of this wide spectrum we find the events which
occupy most of our attention in our daily concerns. By definition, these
are the events which are the most useful and interesting. Most IMAGE
databases, for instance, keep track of entities and relationships whose
event-speed ranges from a "fast" which we can measure in days to a "slow"
which we can measure in years.

Some observations on the IMAGE/3000 implementation

Since entities and relationships are "topologically equivalent", IMAGE/3000
uses the same construct ("DATA ENTRY") to represent either an entity or a
relationship. For convenience (and performance) you may want to use MASTER
datasets as repositories of entities and DETAIL datasets as repositories of
relationships. After all, the designers of IMAGE tried very hard to help
you out and they spent many sleepless nights optimizing these two kinds of
datasets. But you can always change your mind to suit YOUR convenience!

Entities and relationships have identifying names or tags ("KEYS") and
qualifiers ("ATTRIBUTES"). Please note that a key is a field (or a
collection of fields) which uniquely identifies a data entry.

A key does NOT have to be an IMAGE search field. IMAGE search fields are
defined only for performance's sake, to allow PATHS between master and
detail datasets. Paths are particularly attractive for online access to
fashionable relationships, since paths tell IMAGE to build appropriate
linkages when adding a new data entry.

IMAGE/3000 manipulates entities and relationships with the same operations:
addition (DBPUT), finding (DBFIND, DBGET), deleting (DBDELETE), modifying

Paper 3075 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

(DSUPDATE), coordinating INTERFACE traffic (DBLOCK, DBUNLOCK, DBBEGIN,
DBEND). etc.

The IMAGE user interfaces use these fundamental IMAGE/3000 operations to
implement the standard user-interface bag of tricks (joins, projections,
selections, averages, consolidations, relations, etc.)

The order or keys and/or attributes is arbitrary. Therefore, the sequence
of fields ("columns" or "attributes"} in an IMAGE/3000 data entry ("tuple",
"row", or "record") is arbitrary. However, IMAGE provides the LIST
construct to map ANY permutation of key(s) and/or attribute(s) from/to the
user's buffers.

Remember that the database should remain as stable as possible even as the
fads and fashions of applications designers shifts around. The LIST
construct in IMAGE is one of the most powerful database tools in existence:
It promotes database stability at the same time that it allows all kinds of
whimsical permutations in terms of sequential presentation (to and from
screens, for instance).

Classify your Entities and your Relationships

Graphics are great for classifying! We like to use RECTANGLES to represent
collections of entities, CIRCLES to represent collections of relationships,
and lines to indicate WHICH entities are related by WHICH relationships to
WHICH other entities.

Since entities and relationships are equivalent, this is a valid choice of
geometric figures: After all, a rectangle and a circle are topologically
equivalent!

I had difficulties using the standard ASCII characters (not the best pixels
in the world) to simulate circles. These blackberry-like things were the
best I could do! So, please bear with me ••.

Regardless of the graphics you use to guide your classification, your
entities and your relationships will conveniently fall into categories
which are obvious to you. For instance, if you are a manufacturer or a
distributor, you probably would choose something along these lines:

Paper 3075 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

* *

! ,-' _\

INTEREX85

!\­,- \-
!- \

(Assembly)
_ _I

_ J
!\/!
I
I

* *

* MANUFACTURER*-------------(Manufactures)---------* PRODUCT *
* * \ I * *
**************** -\ __ ,- ***********

\/

* *
* DISTRIBUTOR *
* *

Notice, with pleasure, tha.t IMAGE/3000 relates entities in all kinds of
arrangements which are absolutely natural and commonplace to you.

Please ignore the fact that these unexpected features may throw some
database authorities out of balance! For example, a distributor may
represent some manufacturer(s) and still sell products made by OTHER
manufacturers! While some theoreticians AGONIZE over this minor issue,
IMAGE/3000 simply goes ahead and HELPS YOU IMPLEMENT IT.

As an interesting example of a bill-of-materials, elegantly modeled with
the minimum of elements, please see the H Assembly" relationship which
relates "products" to "products" so that we may quickly answer either of
these questions with equal ease: "Which products do I need to assemble
THIS product?" and "Which products can I assemble with THIS product?".

Paper 3075 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Another example models presidential administrations (or periods):

* *
* YEAR *
* *

! ~
*********** ,- -- \ *************
* * ,- --, * *
* COUNTRY * / Presidential \ * PRESIDENT *
* *-------(Administration)-------* *
*********** \ I *************

'--, ___ ,--'

Notice that this design does NOT include restrictions such as "citizenship"
and "uniqueness". The same person could be the president of more than one
country at the same time. Many persons could be simultaneous presidents of
the same country (have you heard recently of "presidents in exile"?). You
can find an administration by beginning year or by ending year.

Without any radical changes, this same design could apply to directors of
corporations (and would be very useful to trace interlocking boards of
directors!)

These apparently complex
IMAGE/3000, thanks to its
Ironically, if you look at a
kinds of relationships used as
database management systems.
blessings!

relationships are a delight to reflect with
conceptual clarity and modeling power.
average database book, you will see these
examples to show what is wrong with average

IMAGE users of the world: Count your

Presto

Translate your nice graphics to IMAGE's database definition language.
Rectangles ("collections of entities") translate immediately to MASTER
datasets. Circles ("collections of relationships") translate immediately
to DETAIL datasets. Lines which represent obviously "hot" relationships
translate immediately into PATHS.

For examples of syntactically-correct IMAGE/3000 schemas, see Appendix A
for the DISTRIBUTOR database and appendix B for the PRESIDENTIAL database.

Paper 3075 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Refine your indexing for performance

IMAGE' s "search fields" just happen to be convenient for the sake of
IMAGE's hashing algorithm (which converts a data value to an address) and
IMAGE's chaining algorithm (which links logical neighbors even when they
are millions of entries away from each other). But you can design ANY
mathematical mapping of your choice that will convert any data value into a
reference to whatever key you defined for IMAGE.

For instance, I like to use an indexing scheme that I developed with
Ross Scroggs back in early 1981 during one of his visits to Guatemala. We
used soundex-like algorithms to build powerful structures which allow us
very quick answers to questions like "Give me all the Fred's who live in
New York City and have a pre-release version of Adager's ItemChng". The
fun part of our indexing is that we can get the same answer even if we pose
a question which uses the equivalent attributes: "Give me all the Freddies
who live in The Big Apple and have product JC810312".

Orchestrate your Transactions

This is the dymanic part of the database! Specify the transactions that
will allow you to add, modify, delete, and report these entities and their
relationships. Decide whether or not some of these transactions need to be
undisturbed by other concurrent transactions. Take advantage of IMAGE' s
locking to make sure that you achieve a fair compromise between "privacy"
and "sharing".

Perform your Transactions

At your convenience, add, delete, find, modify, relate, and report entries.
Do it solo or invite all your friends and fellow workers, from the next
desk, from the next building, from the next country, or from anywhere in
the network. IMAGE/3000 is a multi-tasking multi-computer database
management system, after all!

Tune up your Performance

As you specify your masters, your details, and your paths, keep in mind
that the important question is: "can you define, redefine or cancel these
entities and their relationships at any time during the life of the
database?" For performance reasons, you may want to wire some OBVIOUS
relationships "hot" in the database's structure by means of PATHS. But you
do not want to be stuck for life, since some hot relationships may cool off
and some sleepers may wake up unexpectedly!

Fine tune things in such a way that you reach a reasonable compromise
between the RESPONSE TIME for any of these functions and the global
THROUGHPUT for the whole transaction load.

Paper 3075 11
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Bravo! You are now a Database Maestro, thanks to IMAGE/3000.

==========
Appendix A
==========

IMAGE/3000 schema for the DISTRIBUTOR database mentioned in the
"Practical Methodology" section.

Begin database DISTR;

<<

NOTES: YOUR imagination and convenience should decide how many (and
which) attributes to include at the "

>>

The paths are NOT necessary at all, but we include them as
examples of performance boosters for relationships which
seem to be "hot and heavy". You can always take ALL paths
away, or add OTHER paths at will. IMAGE/3000 does not care!

Capacities can go from 1 to several million. The help of
intelligently-defined paths becomes more obvious when you
deal with millions of entries. Toy-like academic examples,
of course, do not require any overhead in terms of structure.

Passwords:

10 SeeAll;
<< ••• >>

Items:

Manufacturer#,
Distributor#,
Product#,
assembly,
component,
name,
addressl,
address2 1

city,
department,
country,
amount,

Paper 3075

x6 ;
x4 ;
xlO;
xlO;
xlO;
x40;
x40;
x40;
x30;
x30;
x30;
r4 ;

<<Some countries may use "State'' or "Province">>

12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

production, j2
supervision, j2
responsibility, j2
<< ••• >>

Sets:

Name: MANUFACTURER, manual;

Entry:
Manufacturer# (2), <<paths to "Manufactures" and "Represents">>
name,
addressl,
address2,
city,
department,
cowitry;
<< ••• >>

Capacity: 2000;

Name: PRODUCT, manual;

Entry:
Product# (4), <<paths to "Manufactures", to "Sells", and two paths

to "Assembly">>
name;
<< ••• >>

Capacity: 80000;

Name: DISTRIBUTOR, manual;

Entry:
Distributor# (2), «paths to "Represents" and "Sells"»
name,
addressl,
address2,
city,
department,
cowitry;
<< ••• >>

Capacity: 20000;

Name: Assembly, detail; <<Relates products which are, in turn,
parts of other products>>

Entry:
assembly {PRODUCT), <<This search field allows us to find all

Paper 3075 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUF> INTEREX85

the products which we need to assemble a
given product>>

component (PRODUCT), <<This search field allows us to find all
the products which we can assemble with
a given product>>

amount,
Production,
Supervision,
Responsibility;

~<of the component product in the assembly>~
<<Person in charge, for instance>>
<<Person in charge, for instance>>
<<Person in charge, for instance>>

<< >>

Capacity: 150000;

Name: Manufactures, detail; <<Relates manufacturers to products>>

Entry:
Manufacturer# (MANUFACTURER),
Product# (PRODUCT);
<< ••• >>

Capacity: 2000000;

Name: Represents, detail; <<Relates manufacturers to distributors>>

Entry:
Manufacturer# (MANUFACTURER),
Distributor# (DISTRIBUTOR);
<< ••• >>

Capacity: ;ooo;

Name: Sells, detail; <<Relates distributors to products>>

Entry:
Distributor#
Product#
<< ••• >>

Capacity: 5000;

End.

Paper 3075

(DISTRIBUTOR) ,
(PRODUCT);

14
WASHINGTON, D. C.

' ' BALTIMORE WASHINGTON REGIONAL USERS GROVP INTEREX8 5

Appendix B
==========

IMAGE/3000 schema for the PRESIDENTIAL database mentioned in the
"Practical Methodology" section.

Begin database CHIEF;

<<

NOTES: YOUR imagination and convenience should decide how many (and
which) attributes to include at the n

>>

The paths are NOT necessary at all, but we include them as
examples of performance boosters for relationships which
seem to be "hot and heavy", You can always take ALL paths
away, or add OTHER paths at will. IMAGE/3000 does not caret

Capacities can go from l to several million. The help of
intelligently-defined paths becomes more obvious when you
deal with millions of entries. Toy-like academic examples,
of course, do not require any overhead in terms of structure.

Passwords:

35 GuessWho;
<< - •• >>

Items~

Country#, i
President#, i2 ;
Name, x50;
Year, · i2 ;
Year-In, i2 ;
Year-Out, i2 >
party, x20;
<< ••• >>

Sets:

Paper 3075 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

Name: COUNTRY, manual;

Entry:
Country# (1), «path to "Administration"»
name;
<< ••• >>

Capacity: 300;

Name: YEAR, manual;

Entry:
Year (2); «two paths to "Administration"»
<< ••• >>

INTEREX85

Capacity: 4000; <<You might want to go back to the Etruscans!>>

Name: PRESIDENT, manual;

Entry:
President# (1), «path to "Administration"»
name;
<< .•• >>

Capacity: 20000;

Name: Administration, detail; <<Relates countries to presidents to
In and Out years>>

Entry:
Year-In (YEAR), <<This search field allows us to find all

the administrations, anywhere in the world,
which began in a given year>>

Year-Out (YEAR}, <<This search field allows us to find all the
administrations, anywhere in the world, which
ended in a given year>>

Country# (COUNTRY), <<This search field allows us to find all the
administrations for a given country>>

President# (PRESIDENT),
Party; <<Who knows? Presidents might have different

<< ••• >>

Capacity: 150000;

Paper 3075

parties from one administration to the
other. Party is NOT really an attribute of
PRESIDENTS, as it might appear. Party IS an
attribute of ADMINISTRATIONS!>>

16
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX6!5

End.

=========
Gratitude
=========

Rene Woe (partner in business and science) and Leslie Keffer de Rego
(partner in life) helped me refine the ideas and the presentation.

======::::;==
Biography
=========

F. Alfredo Rego is Adager's Research & Development Manager. He has
worked with Hewlett-Packard instruments since 1966, when he was a
Physics research assistant in the Center for Nuclear Studies at The
University of Texas. In the 1970's he worked as a university
professor in Guatemala, teaching courses in Theoretical Mathematics,
Physics and Computer Science. He has worked exclusively with IMAGE
databases and Adager (The Adapter/Manager for IMAGE/3000 Databases)
since 1978.

The HP3000 International Users Group honored him with the 1980 Hall
of Fame Award, which reads: "Outstanding Contributor, for exemplary
service to the Group and its membership".

Paper 3075 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

3076. WRITING EFFICIENT PROGRAMS IN FORTRAN/77
ON THE HP 3000

INTRODUCTION

Carolyn Bircher
Hewlett-Packard, Cupertino, California

INTEREX85

The most important step to be taken when approaching the problem
of program efficiency is to select the most appropriate algorithm
for the problem to be solved. The programming optimizations
discussed in this paper may be insignificant compared to the
gains which can be achieved by the improvement in the overall
solution to the application. The choice of algorithm should be
determined by many factors, such as the resources available and
the amount and characteristics of the data to be processed.

Beyond the algorithm, though, significant steps may be taken to
further optimize your program. By manipulating your source, you
can enhance your program to perform its current algorithm most
efficiently. By having an understanding of the internals of the
FORTRAN compiler and of the machine code that it generates, you
will be able to minimize the amount of wotk required to execute
your program.

This paper will present many of the places where modifications
can be made which will decrease either execution time or data
space usage in FORTRAN /77 programs . Al though it was written
specifically about the FORTRAN/77 compiler on the HP 3000, many
of the optimizations would be relevant on any system.

Five major areas of the FORTRAN language will be addressed. They
are data declaration, express ions, control structures, program
unit interfacing, and I/O.

DATA DECL~TION

- Select Most Efficient Data Types

When you have a choice, use the most efficient data type~
Integers are the most efficient, followed by real, and double
precision is the most costly. Use real and double precision only
where you need the ability to handle fractions or very large
values.

Paper 3076 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Timings done on an HP 3000/series 44 showed the following
differences in the time required to do arithmetic operations.
The times are measured in milli-seconds and some are
approximations.

Operation INTEGER*2 INTEGER*4 REAL*4 REAL*8

Add/Subtract .840 .840 5.780 20.800
Multiply 3.203 6. 773 9.555 35.500
Divide 3.780 15.330 12.075 44.400

Table 1

Your program will generally run most efficiently if you set
INTEGER and LOGICAL sizes to equal the word size of the machine
on which you are running. Since the 3000 is a 16-bit computer,
you should u~e the $SHORT compiler option to change the default
sizes to INTEGER*2 and LOGICAL*2. This will also save space on
your data stack since integers and logicals will only take up
half as much space.

If you are using a 32-bit machine, such as the HP 9000, let the
defaults remain at INTEGER*4 and LOGICAL*4.

• Avoid Indirect Addressing

Avoid the use of arrays, equivalenced data, common variables, and
variables with a length greater than 64 bits. These elements are
all addressed indirectly. That is their address must be found
first and then the element at that address is found. Indirect
loads and stores take more than 50% longer than direct.

Use the 3000 $MORECOM directive only in programs where you cannot
avoid the use of a very large number of COMMON variables. This
option introduces an additional level of indirection when
addressing common variables.

You can sometimes increase the number of variables allowed in a
COMMON block on the HP 3000, without using the less efficient
MORECOM option, by changing the order of the variables. Each
COMMON block element normally has one pointer established by the
segmenter. The maximum number of pointers allowed is 254 when
MORECOM is not used. Therefore, there would be three pointers
for a COMMON block containing the variables C(3),A,B.

However, if the order of the variables is changed to A,B,C(3)
(the array following the simple variables), only two pointers are
required. This is because array pointers are set to point to the
zero'th element of the array. Since arrays start with element
one in FORTRAN, the zero'th element would be at the same location
as B when the variables are listed A,B,C(3). Therefore, a single
pointer will be shared for variable B and array C.

Paper 3076 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

- Minimize the Size of the Data Stack

Avoid the use of static variables. COMMON variables, variables
initialized in DATA statements, and SAVEd variables all will
remain on your data stack throughout the run of your program.
Non-initialized local variables will be there only when the
subroutine in which they are declared is active.

Do not place variables that are accessed by only one routine into
COMMON blocks. If a variable is used by only a couple of
routines, it may be advantageous to pass it between the routines
as a parameter instead of putting it into a COMMON block.

When including character variables with an odd number of
characters in a COMMON or EQUIVALENCE, group them together.

1 $SHORT
2 CHARACTER*3 C3, D3
3 CHARACTER*5 c5, D5
4
5 COMMON /Cl/ C3, Il, C5, !2
6 COMMON /C2/ DJ, D5, Jl, J2
7

When we prep this program, the PMAP information shows that the
COMMON named Cl takes one more word of storage than C2 even
though they contain the same data types. This is because a byte
is wasted after each of the character variables so the integers
will be alligned on a word boundary.

COMMON ARRAY ALLOCATION

NAME
Cl
C2

ADR
10
17

- Initialize Data Efficiently

LEN
7
6

Use DATA statements to initialize global variable values. On the
3000, all variables included in DATA statements are initialized
by a single move when the program is loaded, so code does not
have to be executed to initialize each one separately. However,
as mentioned above, variables which are initialized in DATA
statements are kept on your data stack throughout the entire run
of your program, so you probably do not want to use the DATA
statement to initialize local variables. Also, the data
statement only initializes at the beginning of program execution,
not each time that the subroutine that the variable resides in is
executed.

Paper 3076 3
WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

EXPRESSIONS

- Do Not Mix Data Types

When expressions contain more than one data type, one or more of
the variables must be converted. The conversion is always to the
less efficient data type. For example, the assignment statement
J=l. O+J, where J is an integer, requires conversion of J to a
real and then conversion of the result back to integer. A more
efficient assignment statement would be J=l+J.

If it is necessary to use different data types in an expression,
group the most efficient type at the left. Operations at the
same precedence level are evaluated from left to right so the
leftmost operators will be evaluated first and the result will
then be converted to the data type required for the remainder of
the expression. In the expression R = R + Il + I2 both Il and I2
will be converted to reals and floating point adds will be done.
If the expression is rearranged to R = I1 + I2 + R, the two
integers will be added together and then the sum will be
converted to real and added to R.

This could also be achieved by using parenthesis to group the
variables. R = R + (Il + I2) would be just as efficient as R =
I1 + I2 + R. This makes it a little more obvious that the
variable grouping is intentional. It is also a good idea to use
the conversion intrinsics to make it really obvious that a
conversion is taking place. The above expression would be
written as R = R + FLOAT(Il + I2),

- Reduce Strength of Operations

As you saw in Table 1, some arithmetic operations are faster than
others, even within a single data type. It is almost universally
true among computers and data types that the amount of time
required to execute arithmetic operations occurs in the following
order.

1. Addition (+} and Subtraction (-)
2. Multiplication (*)
3, Division (/)
4. Exponentiation (**)

c:- fastest

c:- slowest

When possible, you should reduce the strength or the operations
in your expressions. Exponentiation can often be replaced by a
series of multiplies (j**2 becomes J*J), When multiplying by an
integer co~stant, you could repla«e the multiply with a series of
adds (J*3 would become J+J+J). When dividing by a constant, you
sometimes can transform the expression into a multiply by a
fraction (Y/10 becomes Y*0.1).

Paper 3076 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

By applying some algebraic rules, you can also find opportunities
for reducing operation strength in expressions. For instance,
the series of divides A/B/C/D could be replaced by A/(B*C*D).

However, be aware of the fact that when these transformations are
done in expressions involving real data, the results may be
slightly different, due to floating point rounding differences.

- Enable Constant Folding

If you include more than one constant in an expression, try to
group them at the beginning. The compiler evaluates expressions
from left to right on each precedence level. As long as it has
found only constants, it will fold them. As soon as a variable
has been found, though, no more folding will be done. If a
program contains:

PARAMETER (MIN PER HOUR=60, SEC PER MIN=60)
INTEGER SECONDS, HOURS, MIN_PER=HOuR, SEC_PER_MIN

SECONDS = MIN PER HOUR * SEC PER MIN * HOURS

the compiler will generate code as if the expression had been
written 3600 * HOURS. But if the variable, HOURS, had been
placed between or before the two constants, a separate multiply
will be done for each constant. You could also effect the order
of evaluation by using parenthesis to group constants.

- Avoid Unnecessary Blank Filling

When assigning character data, blank filling will occur if the
target variable is longer than the data being assigned to it.
Extra code will be generated to do the blank filling when
assigning a variable. When assigning a character constant, the
blanks required to fill the remainder of the target are appended
to the string when it is put into your code segment.

If blank filling is not required for your application, you can
avoid either of these inefficiencies by assigning to a substring
which is equal to the length of the string being assigned. The
statement CH.ARSTRING= 'ABC' could be rewritten as
CH.ARSTRING(1:3)='ABC'.

CONTROL STRUCTURES

- Eliminate Invariant Code in Loops

Do not put invariant code within the scope of a loop. If the
result of an operation will be the same every time through the
loop, put it outside the loop so it will only be executed once.

Paper 3076 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

- Minimize Loop Overhead

There is a significant amount of overhead involved in executing a
DO loop. Before starting the loop, several variables must be
initialized. At the end of each loop interation, the loop
control variable must be incremented and compared to the end
value.

You can eliminate some loop overhead by combining adjacent loops
with similar loop controls. The loops

DO 100 I = 1,20
100 A(I) = B(I) + C(I)

DO 200 J = 2,40,2
200 X(J) = FLOAT(J)

could be combined into the loop:

DO 100 I = 1,20
A(I) = B(I) + C(I)
X(I+I) = FLOAT(I+I)

100 CONTINUE

If a loop is going to be executed a small, fixed number of times
you can eliminate loop overhead by rewriting the loop as several
separate statements. This is worth doing if there are not many
statements within the body of the loop and it is only executed a
few times. This loop

DO 100 I = 1,4
100 A(I) = FLOAT(I)

could be replaced by

A(l) = 1.0
A(2) = 2.0
A(3) = 3.0
A(4) = 4.0

• Use Efficient Loop Index~s

On the 3000, the MTBA (modify variable, test and branch)
instruction makes it possible to implement DO loops with an
INTEGER*2 index variable considerably more efficiently than loops
using other data types. If you have a choice, make sure that
the loop index is an INTEGER*2 variable. The overhead for MTBA
loops is only 1 instruction at the end of each loop iteration
compared to 10 instructions for an INTEGER*4 loop. Note,
however, that this instruction will not be generated in
subroutines in which assigned GOTO's are included.

Paper 3076 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL IJSERS GROUP INTEREX85

Do not use REAL or DOUBLE PRECISION loop indexes. The index is
incremented by the step value and compared to the end value each
time through the loop. These adds and compares are done in the
same data type as the loop index.

- Order Logical Conditions Efficiently

When writing complex conditions in IF or WHILE statements you can
minimize the time required to execute them by rearranging the
order in which they occur. In block IF statements, order the
conditions so that the most likely condition is tested first.
For example, if the value of ARG is 3 in most cases, write a
compound IF statement as:

IF (ARG .EQ. 3) THEN

ELSE IF (ARG .EQ. l) THEN

ELSE IF (ARG .EQ. 2) THEN

ELSE

END IF

When using the logical operators .AND and .OR. in a logical
expression, the code generated only checks enough conditions to
determine the result of the entire expression. The conditions
are checked from left to right, with AND having precedence over
OR. If several logical expressions are connected with .OR.,
checking discontinues as soon as an expression is found which
evaluates to .TRUE. When .AND. is used, checking discontinues as
soon as a .FALSE. condition is found. When writing logical
expressions, you should order the conditions so the least number
of checks is done.

If variable I is more likely to equal zero than variable J, write
the IF statement as

or
IF ((I .EQ. 0) .OR. (J .EQ 0)) •••

IF ((J .EQ. 0) .AND. (I .EQ. 0)) .••

'When assigning to a logical variable, use a simple assignment
statement instead of an IF/THEN/ELSE block. Instead of writing

use

IF (A .EQ. 0) THEN
L = .TRUE.

ELSE
L = .FALSE.

END IF

L = (A .EQ. 0)

Paper 3076 7
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX65

• Do Not Use Range Checking

Turn $RANGE checking on only when absolutely necessary. This
directive causes extra code to be included in your program to
check the bounds whenever a substring or array element is
referenced. Code is also generated for checking assigned GOTO's,
DO loop ranges, and parameters passed to some intrinsics. These
checks could be invaluable while you are debugging your program,
but you probably do not want to pay the performance penalty for
them indefinitely.

PROGRAM UNIT INTERFACING

• Avoid Unnecessary Procedure Calls

There is a lot to be said for modular programming. It makes
programs easier to read and to write. But each time a branch is
made to a subroutine, you pay the overhead of loading the
argument addresses and the stack marker onto the data stack and
of doing the branch.

One program modification which can be made to eliminate procedure
call overhead without sacrificing modularity is to replace short
function subroutines with STATEMENT FUNCTIONs. Instead of doing
a branch, the code to execute a statement function is expanded
each place where the function is referenced. Of course, doing
this will make your program file larger but it will run faster.

Something else to keep in mind is that the compiler generates
procedure calls to execute some arithmetic operations. If you
can, eliminate those procedure calls by reducing the strength of
those operations. Exponentiation is one such operation so the
statement X=Y**2 should be rewritten as X=Y*Y to avoid the
external call.

• Segment Efficiently

Segment your program with efficiency in mind. If a large amount
of interact ion will take place between two program uni ts, make
sure that they are placed in the same segment. Try to minimize
the total number of segments used, without making any of them too
large. The PMAP listing generated by the segmenter will show you
where calls are being done across segment boundaries.

• Use System Programming Language

In some instances it may be worth your while to write part of
your program in the system language for your machine. One
example of this would be when moving an entire array to another
array with like dimensions. In SPL you can do the move as a

Paper 3076 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

single instruction instead of moving each array element
separately. If the array is large, this could save a significant
amount of execution time.

1/0

- Format Only When Necessary

Use formatted 1/0 only when reading or writing data which must be
seen by the human eye.READ and WRITE statements which reference a
format string generate calls to the data formatter which
translates the data between ASCII and the internal format. On
top of the overhead for this procedure call, the conversion is
very costly and can cause a loss of precision in real data.

When you must use formatted I/O, do not put the format string
into a variable. Variable format specifiers are not parsed when
the program is compiled. Instead, the parsing routine is called
each time the format is used. These statements should be used

WRITE (6,20) VAR
20 FORMAT (Fl0.2)

instead of

CHARACTER*7 FMT
FMT = '(Fl0.2)'
WRITE (6,FMT) VAR

• Use System I/O

Use MPE intrinsic I/O instead of FORTRAN READ and WRITE
statements. The FORTRAN statements generate several procedure
calls for each statement. For instance, the statement

READ (!UNIT) I,J,K

would generate calls to five I/O library routines which in turn
call other routines.

• Operate on Entire Arrays

When reading or writing an array, specify just the array name
instead of using an implied DO loop. This allows the array to be
operated on as a whole, instead of performing individual
operations for each element. For example, specify

WRITE(6) MYARRAY
instead of

WRITE(6) (MYARRAY(I,J), l=l,10), J=l,10)

Paper 3076 9
WASHINGTON, D. C.

BALTIMORE WASH1NGTON REGIONAL USERS GROUP rNTEREX85

COSTS OF OPl'IMIZATION

There is no such thing as a free lunch. Before you rush out to
begin optimizing your FORTRAN/77 programs, I feel obligated to
caution you about some of the costs of optimizing.

Many of the optimizations mentioned above require that you
reorder or rewrite expressions. Although those kinds of changes
may be easy to make, they may also make the intended purpose of
the expression less obvious to someone reading your source code.
Be sure to carefully document any optimization changes that you
make.

Also, when optimizing, you may be trading one kind of efficiency
for another. A change that will decrease execution time may also
increase the amount of space required for your data or your code.
Several of these trade-offs were mentioned above.

Finally, it is sometimes difficult to justify the programming
time required to optimize. Performance evaluation usually gets
left to the last of a software project and when time constraints
become too tight, it may get skipped. Once you start making the
kinds of changes discussed in this paper, many of them will
become second nature and you will be able to build them in as you
do new development. But you will still probably want to allow
time in your schedule to evaluate and improve program
performance.

If you find that the time available for optimization is limited,
you should concentrate your effort on the parts of your program
where you will get the best return on your investment. Studies
have shown that typically 90% of a program's execution time is
spent in 10% of its code. Performance measurement tools, such as
SAMPLER/3000 {product number 32180A) are helpful for determining
where your program's execution time is spent.

BIBLIOGRAPHY

Hewlett Packard, fORTRAN/77 Programmer's Guide, (1985), Part No.
5957-4686.

Metcalf, Michael, FORTRAN Optimization, Academic Press, London,
1982.

BIOGRAPHY

Carolyn Bircher is a Software Development Engineer in the
Computer Language Lab at the Hewlett-Packard facility in
Cupertino, California. She joined HP in 1979 after receiving a
B.S. degree in Computer Science from California Polytechnic State
University at San Luis Obispo. She is currently on the FORTRAN
project team which has responsibility for the FORTRAN/77
compilers on the HP 3000, the HP 9000/series 500, and future HP
systems.

Paper 3076 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3077. Operational Considerations for Police Networks
Jerry Kopecky

Illinois Criminal Justice Information Authority
120 South Riverside Plaza
Chicago, Illinois 60606

There are many different aspects involved in designing,
implementing, and then successfully running police systems. The
Illinois Criminal Justice Information Authority has been
operating police systems since 1981. Operational considerations
involve 24-hour uptime (system backup, auditing, security
issues), hardware select ion, software design, online response
time, management report requirements, remote site support, and
operator training. These operational considerations are perhaps
common to other businesses but reflect additional police
requirements. 1981. Their underlying premise is one basic
tenet: information is a common resource shared not only within
individual police departments but also among other departments,
and other components of the criminal justice system.

Introduction

The Illinois Criminal Justice Information Authority has
nearly a decade of experience in developing computerized
management information systems for law enforcement agencies,
prosecutors, and correctional institutions. From a rather
inconspicuous beginning as a small research and development unit,
the Authority has evolved into a state agency that is
legislatively mandated to develop and operate computer systems
for the criminal justice community in Illinois. Not coincidental
with this expansion, the Authority has become very adept at
applying new and emerging technologies to the information
problems confronting criminal justice practitioners.

The underlying strategy behind the creation of the Authority
was to provide a forum of criminal justice professionals who
could identify in format ion problems and requirements: and
provide staff support to address these problems in a timely and
efficient manner. The Authority is made up of a 15 member board
appointed by the Governor, and consists of key criminal justice
administrators, representing state, county and local agencies.
Staff to the Authority are organized into five different
divisions (see Figure 1).

o Office of the Executive Director - the Executive Director
is appointed by the Governor and is responsible for the
administration of the Authority.

o Personnel and Budge.t - which is responsible for personnel
transactions, payroll, budgets, and contracts.

o Policy and Research Division • which is responsible for
fulfilling our mandate with respect to research, policy

Paper 3077 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

development, program coordination, and information
correlation.

INTEREX85

o Office of Federal Assistance Program - which is responsible
for the coordination of Federal criminal justice programs.

o Information Technology Division - This division consists of
two functional centers: Computer Operations Center,
responsible for the support and maintenance of our computer
lab facility, and the Systems Development Center, which
is responsible for the development, implementation and
maintenance of software developed by the Authority for use
other agencies.

Police Information Management System • PIMS Configuration

One of the largest and most resource intensive applications
developed and operated by the Authority is the Police Information
Management System (PIMS). PIMS is a computerized management
information system designed to increase a police department's
tactical and strategic effectiveness and to perform such
paper-intensive tasks as maintaining police records and producing
management information for administrators. PIMS is one component
of the Authority's Criminal Justice Information System (or CJIS),
a set of computerized information systems for law enforcement,
prosecution and correctional agencies. Although PIMS can operate
by itself, jurisdictions can realize additional benefits when
PIMS information is used in conjunction with automated
prosecution and correctional data.

The Authority provides central site computing facilities for
a range of different criminal justice agencies. Current hardware
consists of two Series 68s, one 48, and one 42 {see Figure 2 for
the ICJIA network). The PIMS network provides service to 22
different communities (population of 3/4 million people located
in the suburban Chicago area and uses the two 68s.

The most important requirement of a police system is to be
available 7 days a week/24 hours a day. The system cannot be
down for more than 20 minutes at any point during the day.
Hewlett-Packard maintenance support policies require that the
3000s be available for preventative maintenance sessions several
times a year. For the equipment configuration of the Authority,
this requires about 3-5 hours for each PM session. For those
times when hardware failures occur, even the shortest time for a
repair takes 1 1/2 hours (from the time the call is placed to
when the repair has taken place). The longest time experienced
for a repair has been 3 days.

Therefore, our "uptime" requirement necessitates the
availability of a second machine with a "mirror" configuration to
serve as a "hot" backup to the primary production mach5ne. This
second machine is appropriately named Backup. It is also a
Series 68 with the same amount of memory, disc di ives, tape

Paper 3077 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

drives, ATPs, etc.. It also has the same I/O configuration as
the Production system (see Figure 3).

When the Production system experiences a hardware failure or a
preventive maintenance session is scheduled, it takes Operations
staff approximately 15-20 minutes to completely switch the online
PIMS' applications to the Backup system.

Hewlett-Packard does not offer redundant systems or shared
peripherals between different CPUs so the Authority uses MPE 's
private volume facility to switch the data on H-P 7935 disc packs
from one system to the other. This obviously requires the
account structures to be identical on each system. This includes
everything from volume sets to group and user names. All
application data and programs are configured to reside on the
7935 disc drives. The longest part of the entire switch process
takes place when the drive is switched on after the pack has been
inserted. Each 7935 disc drive takes approximately 7 minutes to
go online. All system software including various software
utilities are configured to reside in the system domain on one
H-P 7925 disc drive.

To make the switch, several procedures are always followed.
The first procedure is to warn the currently logged on users that
the system is coming down (obviously, this step is not needed if
the system has already crashed!). When the users and the
application programs have logged off, the private volume sets are
logically dismounted with the various console commands and the
private volume domain disc drives are brought down. The disc
packs are then removed from one system and moved to the other.
In addition, the packs are wiped down with a· cleaning solution
before they are inserted into the disc drives. This additional
procedure has significantly reduced the number of bad sectors and
tracks on the various packs.

One common "glitch" noticed when the drives are brought back
online is the message "DISC FREE SPACE MANAGEMENT ERROR". The
H-P recommended procedure at this point is to do a coolstart and
recover lost disc space. However, this takes another 10 minutes.
Instead, the procedure is to quickly take the drive offline and
then put the drive back online. This usually does the trick and
is much faster than a coolstart.

The Authority uses very simple mechanical switches to switch
the other peripheral equipment. A H-P 1000 computer system is
currently used as a Front End processor to the Series 68. The
1000 has all the terminals and printers hardwired to it so to
switch systems, only one switch has to operated. The new version
of PIMS has eliminated the Front End so all the terminals and
printers are now hardwired directly to the Series 68. A series
of mechanical switches now switch from one system to the other.
This series of switches was custom designed so that only nine
switches have to be operated to completely switch up to 250

Paper 3077 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

devices. The switches are contained in one standard 19 inch bay
and require no electrical power.

After the packs and peripherals have bee.n switched, various
application programs are fired up. These programs include
bringing up various communication lines (OS and IMF), data bases,
and informing users what the current status is.

The redundant systems allow the Authority to offer better
than 99% system availability to its users. The 99% figure still
means there are periods of down-time. For instance, in a one
month period, 99% means there is anywhere from 7-10 hours of
total down-time. Effort to reduce this is constantly being
worked on.

System Performance Optimization

In order to maximize the efficiency of the system, modules of
the application have been segregrated. When the Backup system is
not in the "switched" mode, efficiency dictates its use. The
PIMS network offers the feature of providing additional
capabilities to the police system users that are not as critical
and sensitive on the Backup system. The additional capabilities
do not have to be constantly available to the user.

The Authority has integrated online transactions with batch
reporting functions yet segregated the two on two different
machines. Batch and online tasks have very different
requirements that make it difficult to "tune" and optimize one
system to efficiently and effectively process both functions,
Therefore, the functions have been split to the two machines.

PIMS offers two batch reporting functions: the Management
Reporting module and the Search module, both run on the Backup
system. The data for these modules are a subset of the data from
Production data bases and reside in KSAM file format. The Backup
KSAM files get updated daily from the IMAGE logfiles taken from
the Production system.

The Management Reporting module produces management reports
on the Backup 68. These reports are written using COGNOS's QUIZ
report package. Currently, there are approximately 200 reports
available to the user on demand. All reports are requested "as
needed, online" from the Production system by the individual
police departments. The report is then submitted to the
Production machine's job queue. When the job logs on, the JCL
statements are transferred to the Backup system via a dsline.
The job then logs on Backup and executes. When finished, the job
JCL transfer the print file back to the Production system where
it is produced on a printer located at the department. Since the
reporting requirements of one department may vary from those of
other agencies, each department controls its own report
initiation and specifications.

Paper 3077
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The search module operates in a similiar manner and is used
for creating lists of possible crime suspects and for analyzing
particular offense patterns. It lets the user search for and
access records even when the user does not have precise
information, such as a name or incident number. For example,
other modules collect physical descriptions of arrestees, the
search module allows the user to retrieve the records of all
individuals matching a certain physical description who have been
arrested on PIMS for a particular offense. The Search Module
also allows users to search for information about similar
incidents, property types and crime locations. Figure 4 gives an
example of a typical search request.

The Authority has taken a machine that always needs to be
available and moved less critical applications to it. The
integration of online access and the submission of batch jobs to
the second machine do not conflict and compete with each other.

Problem Isolation

At the Authority's central computing site, there are
presently 22 police departments connected online via leased phone
lines. At each department, there are an average of 7 devices (4
terminals and 3 printers). Figure 5 illustrates a typical
department's device layout. All of these sites are at least 15
miles from the central site so all problems are handled over the
phone. Since problems are inevitable (and one might add,
"normal"), the Authority has come up with a number of techniques
for problem isolation and problem resolution.

First Line "Defense"

All of the departments are responsible for their own
equipment. This includes terminals, printers, muxes, and
telecommunications equipment. They are also responsible for
obtaining their own service contracts for this equipment.
The Authority provides what is called "first line defense".
When a question occurs, the user always calls the central
site - henceforth called Operations - first. Operations then
makes the determination as to what needs to be done.
Problems can be of any nature, ranging from remote hardware,
software, tele-comm equipment problems. The other category
of user calls are for information. A user may not know how a
particular transaction works or what the policy is for items
in a transaction.

The rationale for the "first line" is quite simple.
Operations usually knows more about what is going on with the
entire system at that particular point in time. If there are
problems elsewhere in the system, user generally does not
have access to that information. Most users are not
technically oriented so they do not know how terminals,
printers, or modems (since digital leased lines are used,
modems are not used but the word remains in the vocabulary)

Paper 3077 5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

work. Once the problem has been identified, it is either
resolved directly by Operations or Operations makes the
necessary service calls to the vendor. Vendors appreciate
this arrangement because it allows them to better identify
the problem and serves to "weed out" unnecessary site visits.
The configuration of each site is known and knowledge of the
entire system aids with the resolution.

However, the users are a very important component in problem
resolution. They serve as very effective "distant warning
outposts" to provide advance notification of possible future
problems. For instance, a user complaint of slow response
time may indicate a master data set is getting full or a
frequently used transaction should be examined and perhaps
rewritten to work more efficiently.

Operations keeps track of the type of equipment maintenance
that each department has contracted with vendors. Staff have
to know this information so that unnecessary service (and
costly) calls are not made. Because of the 24 hour usage of
the equipment by different personnel shifts, even the users
do not know what type of service they have contracted for on
each piece of their equipment.

Operations keeps several different types of logs. Every user
call is tracked by recording several items about each call.
Figure 6 illustrates the screen layout of the log. This log
is then periodically reviewed by several different layers of
people involved with the project, starting with Operations
Management and then rolling forward thru project staff and
individual department staff, There are usually a large
number of software questions that come in. The log gives
staff the capability to find out who may need additional
training or where bugs or enhancements need to be worked on.

An equipment maintenance log is kept and is periodically
reviewed with vendor support staff. This log is invaluable
in that it shows where the "lemons" are so that they can
quickly be removed from the network.

To help with equipment breakdowns, the Authority has
established several geographically diverse "hot" sites that
contain equipment to be used as spares. The spares allow for
several department to reduce their equipment maintenance
costs by sharing the purchase price of backup equipment. The
Authority has contracted with the vendor to provide this
service at a reduced rate. When problems do occur,
Operations directs the police department to drive to the hot
site, pick up the spare equipment, and is then led thru the
procedures necessary to connect the equipment. The vendor is
informed about this during normal business hours and his only
task is to make arrangements to pick up the bad unit and
replenish the hot site's inventory.

Paper 3077 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Another MautomaticM log that is used is a program that
monitors data set capacities and then stores these figures.
Simple extrapolation can project when the set will reach a
dangerous level or maximum capacity thus allowing the
scheduling of time to make necessary adjustments.

The main purpose of these logs are not just to keep a history
of problems but to help to possibly eliminate similiar
problems in the future. Problems start to quickly show
patterns or trends that do not need an intricate analysis to
resolve or to predict.

One unique aspect of the police application is the very
precise audit trail of user calls. Most of the police
departments make tape recordings of all of their phone calls.
As a result, they have a very precise and accurate
description of how things were handled. · Operations staff are
very cognizant of any wrong .or misleading information they
may give to any user. This type of information is very
helpful in reconstructing sequences of events or situations.

Another important consideration with problem resolution is
the very mundane task of keeping the user informed about what
is going on. It is very basic, yet can become complex when
the number. of users involved becomes high. To aid with this
simple task, several standard "canned" JCL files are Used
that have the necessary session names included so the file
can quickly be opened (via QEdit) and then streamed. On an
individual department basis, periodic status reports are
always made to the user, informing them of such things as
vendor arrival time or some fix to their problem.

"The Talking Box"

The Authority maintains and supports several different
applications besides the PIMS network. Included in this are
the EDP functions of the Authority, court, prosecutors, and
jails. As a result, staff do not constantly monitor the
various consoles of the police systems. They generally are
not even in the computer room.

To help with this, a Digital Pathways SLCII "talking box" was
purchased. This device monitors console lines and when
certain phrases appear on the console, loud phrases are
spoken by the box. A time clock is then started. If the box
is not reset, at the end of the time limit, a phone list of
numbers is called with the SLCII auto dial capability. The
first number called is the computer room's phone number and
then people's home phones. The message spoken warns that
there is a problem and it has not been resolved. If nobody
answers their phones, the SLCII goes back to the top of the
list and starts calling the list again. Figure 7 illustrates
how the SLCII is connected.

Paper 3077 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Backup Strategy

A tape backup policy has evolved over a period of time.
Regular DBSTORE tapes are made of the data bases twice a week.
Currently, it takes approximately 1 1/2 hours for each DBSTORE
job. In addition, IMAGE logging is used for recovery purposes.
Every day at noon, the PIMS data bases are unavailable for about
7 minutes (a five minute warning of the pending store is given).
This time period is necessary to stop the logging process and
switch to a new empty log file. The log file is then stored on
tape. This IMAGE log file is then used to keep the subset
portion of the data current over on the Backup system. The new
Turbo-IMAGE log features should eliminate this down time.

There are portions of PIMS that never go down so they "never"
get backed up. There is a module of PIMS that communicates with
the State of Illinois' Department of State Police's LEADS system.
This system serves as the state's central repository for all
wants, warrants, car, and driver information. LEADS also serves
as a connecting switch to the National Crime Information Computer
system operated by the FBI in Virginia. The H-P Series 68s serve
just a switch to the LEADS system. The software necessary for
this communications switch uses a very small configuration data
base and message files to route both incoming and outgoing data.
This module of PIMS is very heavily used by the police radio
dispatchers when they communicate to patrol cars out in the
field. As a result, the LEADS module is the most sensitive to
any down time and the critical module that must always remain up.

The tapes used for the data base backup enter a cycle where
they are stored in several different places. For two weeks they
are kept in a tape room easily accessible to the computer room.
Then they are moved to room sized steel vault on the premises for
another two weeks. They are then moved off-site to safe deposit
vaults located in a commercial bank. The tapes are kept here for
another 5 months before they are then brought back to the site
and re-cycled. The tapes made for the week of January 1 and July
1 of each year are not re-cycled and are kept for archival
purposes.

Other tapes that receive similiar treatment are the tapes made
for software releases. Each time software is released, a copy is
kept on site and a second copy moved to the off site location.
Two versions of software release tapes are kept • the current
version and the previous version.

Conclusion

Participating departments share the cost of operating and
maintaining PIMS, thus keeping their expenses down. Authority
staff develop and maintain all PIMS programs and provide
necessary Operational support. The Authority assesses a monthly
user's fee to each department: the exact amount depends on the
department's size and police activity. This user's fee covers

Paper 3077 8
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

only a portion of the costs associated with operating and
maintaining the system. It helps pay for such items as
24-hour-a-day computer service, central site hardware
maintenance, and utilities. Software development costs are paid
for with funds appropriated by the State of Illinois, and
additional support for the system comes from the sales of PIMS
software systems to agencies outside the Illinois.

The most important and unique feature of PIMS is that the
user department not only has access to its own records but is
able to share valuable law enforcement data with other
departments. The system provides local police departments with
centralized data processing and EDP resources for hardware,
software, and technical consulting. However, as PIMS grows and
expands, distributed data processing will be necessary to provide
adequate network support. Distributed data processing is
feasible due to the modular design of PIMS.

The demand for PIMS by Illinois police departments has
necessitated the system to be distributed. There are only so
many devices that can be connected to a 3000 before response time
degradation becomes a problem. The modular nature of PIMS lends
itself to be very easily distributed over several 3000 systems
located at individual police departments. Declining hardware
costs have made owning a small computer more affordable.
However, the cost of providing operational support and
telecommunications is often beyond the resources of all but a few
departments.

Using the experience learned from designing, implementing, and
operating a very large central site PIMS' facility has allowed
the Authority to offer operational support to remote sites. This
will allow the expenses associated with PIMS to remain attractive
to police departments and, in addition, allows additional
capabilities to be built into the system. This includes the
archival of data in a readily accessible uniform format available
to criminal justice decision makers and researchers.

Paper 3077 9
WASHINGTON, 0. C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 1

SilRJTIE IOIF U.ll!NlOIS
JAMES R. THOMPSON, Governor

t~I~IOO~l JM~11~~ I~f ~~~~11~00 ~M1~~~11~

1
POLICY

AND RESEARCH
Division

scon M, l£VIN
Deputy

&ecuti ve Director

Paper 3077

WILLIAM I. GOULD, Chairman

Off ice of ttle
EXECUTIVE
DIFECTOR

J, DAVID COL.DfEN
Execut;ve Director

I
Office of
PEASONl'EL

Af'IJ BUDGET

MAUREEN OEMATOFF
Olief

Fiscal Officer

l

10

I
Office of

FEIERAL ASSISTANP'
PROGRAMS

BAFllAAA McDONALD

Administrator

l
INFORMATION
TECHNOLOGY

Division

EDWARD F. MAIER
Assistant

Executive Director

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAi. USERS GROUP INTEREX85

,;.;~·r.,-.1'!R

-~ -~

Paper 3077

PRODUCTION

DEMO

Pl'lltil"Efl

2808S

llACIUP

DIWEIDPMl!NT
; LJ

PRINTER DISC

11

2~ 6-79JS
1-7925

Illinois Criminal Justice
Inf ormatlon Authority
Computer Laboratory

Figure 2

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 3

Illinois Criminal Justice Information Authority

Production 1
HP 3000/68

ATP

250 3 Wire
Terminal Lines

RS232 2, 3. 7

Backup System
HP 3000/68

ATP

250 3 Wire
Termina 1 lines

RS232 2. 3, 7

Product ion 2
HP 3000/68

ATP

250 3 Wire
Termina 1 Lines

RS232 2. 3, 7

I ~ ~---~----
l..___.~~~~~~~~-:><:------~~~~~~~~~~~--;."l'O-~~~~~~~~~--'

S...::tch will connect
250 1 ines from
P'."'oduct ion #1 or
Production #2 to
the Backup System.
RS232 signals that
must be switched are
pins 2, 3, and 7.
Pin 7 is common grouno.

25 Departments
8 Dev ices Each

Paper 3077

250 3 Wire
Terminal lines

RS232 2, 3, 7

v HP 2334A
Multi-Mux

GDC GSU-500A OSU

Figure 3

12

HP 2334A
Mult i-Mux

25 Departments
B Dev ices Each

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 4

J1~i~~:5~:1~-----1~~i~61i·l~i~iii["j~i~iii"iiiai~iiia;·;ci~~~ii;······5~75~;:
fOR~1 56 POI.ICE l'FORMATIO~ MANAGE•·E~T SYSTE~ i.::

ARROSTE< SEARCl1 REQUEST

OFFENSE: 0610 • 0620

SO:l'·RACE:W
AG: : 2~ - 2 S ~EIGHT! S 07 - 6 03

SCARS/~ARKS/TATOOS ••• ,.
~AIR STYLE ••••••••••••• \oiAV
SPEECH PATTER~ ••••••.•.

POLICE D!SP:
COURT OISP:

uoc _, ..•.•.•

CATE Of ARREST: 01 OT SS fO 06 30 o;

EYES: 8~0 !O!R:
WEIGHT: as·: iH SKIN: ::: :::

FACIAL 11A!R •••••••••••••• ~us
APPEARANCE ••• •• •••• ••. • • •
CAUTIONS·•·•••••••• .. •••••

ARREST OFF! ·~~•
COURT OAH ••

uo c ·3

ASSIST Off: ••••
•• T 0 •• •• •• i

uoc-2••. _ •••• •••• uoc-~ •..•••••••
•• . .;0.RCH OTHtt OEPART~ENTS IN/Tl? _

PiMsi4:6;:34·-----i~tiNois"ciiMiNAL-jLiirice 0 iNFORMATiON°AUTHORirr"""""o6iBtif
FORM 17 POI.ICE INFOR~ATION ~ANAGEMENT SYSTEM h:'.

CROSS-DEPARTMENT INQUIRY

NO DEPARTMENT NAME

01 11.1.INOIS CRIMINAL JUSTICE INFO
48 PARK RIDGE POLICE DEPARTMENT
49 BUFFALO GROVE POI.ICE DEPARTMEN
~~ ARl.INGTON HEIGHTS POLICE DEPAR
4c GLENCOE POLICE DEPARTMENT
4< MOUNT PROSPECT POllCE OEPARTMt
54 ROLLING MEADOWS POLICE DEPARTM
S< STREAMWOOD POLICE DEPARTMENT
~5 SCHAUMBURG POLICE DEPARTMENT

Paper 3077 13

NO DEPARTMENT N~~E

4t EVANSTON POLICE DEPARTMENT
55 ElK GROVE Vlt.lAGE POLICE DEPAR
51 HOFFMAN ESTATES POLICE DEPART~

40 JOLIET POLICE DEPARTMENT
56 NORTHEASTERN M(TRO, ENF. GROUP
53 PALATINE POLICE DEPARTMENT
43 HARVEY POLICE DEPARTMENT
50 WINNET<A POLICE DEPARTMENT
47 DES PLAINES POLICE DEPARTMENT

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 5

PIMS Configuration as of 6/85
Oiqitol Leased Lines (9600 BAUD)

Production 3000

86 Remote Terminals Terminals ore either HP2626A or HP2628A. Split !Creen applications

68 Printing devices, including Split Screens. ore counted as a prlnter device, other"#ise the printers ore HP2.334A.

06/05/8!

14 Paper 3077
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 6

ILLINOIS CRIMINAL JUSTICE INFORMATION AUTHORITY
**
* DATE OF PROBLEM: [~DA_T~E~­

OPERATOR 'S INITIALS: [OI]

TIME OF PROBLEM: CI.lliL.J
SOFTWARE PROBLEM: [SP]

WAS PROBLEM FIXED IN 1 TO 10 MINUTES 1 [UT] IN 10 TO 30 MINUTES 1 [TT]

***~
****lll:* **1t*••
* * * * * * D E S C R I P T I 0 N 0 F T H E P R 0 B L E M * • * • * •

*****'·
**~#

* [Pl
[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[. [~~

* [~~~~~~~~~~~

Paper 3077 15
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 7

Figure 7

Paper 3077 16
WASHINGTON, 0. C.

BAL. ilMORE WASHINGTON REGIONAL USERS GROUP IN TEREX 8 5

3081. INFORMATION SYSTEMS PRD'rOTYPING: A PROVEN APPROACH FOR
EFFECTIVE APPLICATION DESIGN AND DEVELOPMENT

Orland Larson
Hewlett-Packard

19447 Pruneridge Ave.
Cupertino, California 95014

One of the most imaginative and successful techniques for clarifying
user interfaces and. generally improving the productivity and
effectiveness ot application development is a methodology called
INFORMATION SYSTEMS PROTOTYPING.

With waiting time for new applications running into several years and
those applications failing to meet the users needs, managers as well as
users have been searching for more efficient and effective approaches
to systems development.

Prototyping, as an application
methodology, ~as evolved into a
professional and the user.

system design and development
real option for both the MIS

This paper reports on the growing body of knowledge about prototyping.
It begins by reviewing the changing role of data processing, the
challenges facing the MIS organization, and the traditional approach to
application development. It then defines prototyping followed by the
step-by-step prototype development process. The advantages and
disadvantages, as well as the cost and efficiency of prototyping, will
be discussed followed by the essential resources neccessary to
effectively prototype applications. In conclusion, to illustrate the
benefits of prototyping, the speaker will present success stories of
systems developed using the prototyping approach.

INTRODUCTION

The Changing Role of Data Processing

The data processing department has changed dramatically since the
1960s, when application development as well as production jobs were
usually run in a batch environment with long turnaround times and
out-of-date results.

The 1970s were a period of tremendous improvement for the data
processing environment. One of the key developments of that period was
the development and use of Data Base Management Systems (DBMS). This
provided the basis for on-line, interactive applications. In addition,
computers and operating systems provided programmers the capability of
developing application programs on-line, while sitting at a terminal
and interactively developing, compiling, and testing these
applications. The end user was also provided with easy-to-use, on-line

Paper 3081 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEAEX85

inquiry facilities to allow them to access and report on data residing
in their data bases. This took some of the load off the programmers
and allowed them to concentrate on more complex problems.

During the 1980s, the data base administrator and MIS manager will see
increased importance and use of centralized data dictionaries or
"centralized repositories of information about the corporate data
resources. Simpler and more powerful report writers will be used by
the end user and business professional. The programmer will see the
trend towards the use of high-level, transaction processing languages,
also known as fourth generation languages, to reduce the amount of code
required to develop applications. Finally, the tools have been
developed to effectively do application prototyping, which will provide
benefits to the end user as well as the application programmer and
analyst.

Throughout the 70s and 80s, information has become more accurate,
reliable, and available, and the end user or business professional is
becoming more actively involved in the application development process.

Challenges Facing MIS

One of the MIS manager's major problems is the shortage of EDP
specialists. A recent Computerworld article predicted that by 1990
th.ere will be 1/3 of a programmer available for each computer delivered
in this country. Software costs are also increasing because people
costs are going up and because of the shortage of skilled EDP
specialists. The typical MIS manager is experiencing an average of two
to five years of application backlog. This doesn't include the
"invisible backlog," the needed applications which aren't even
requested because of the current known backlog. In addition, another
problem facing MIS management is the limited centralized control of
information resources.

The programmer /analyst is frustrated by the changeability of users'
application requirements (typically, the only thing constant in a user
environment is change). A significant amount of programmers' time is
spent changing and maintaining users' applications (as much as 60 to 80
percent of their time). Much of the code the programmer generates
includes the same type of routines such as error checking, formatting
reports, reading files, checking error conditions, data validation,
etc. This can become very monotonous or counterproductive for the
programmer.

The end user or business professional is frustrated by the limited
access to information needed to effectively do his/her day-to-day job.
This is especially true for those users who know their company has
spent a great deal of money on computer resources and haven't
experienced the benefits. The users' business environment is changing
dynamically and they feel MIS should keep up with these changes. MIS,
on the other hand, is having a difficult time keeping up with these

Paper 3081 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

requests for application maintenance because of the backlog of
applications and the shortage of EDP specialists. Once the user has
"signed off" on an application, he is expected to live with it for a
while. He is frustrated when he requests what he thinks is a "simple
change" and MIS takes weeks or months to make that change.

Traditional Approach to Application Development

There are some myths concerning traditional application development:

• Users know exactly what they want

• Users can effectively communicate their needs to MIS

• Users needs never change.

The traditional approach to application development has serious
limitations when applied to on-line, interactive information systems
that are in a state of constant change and growth. Communications
among the user, analyst, programmer, and manager tend to be imprecise,
a detailed analysis prolongs the process to the annoyance of the user,
and specifications are either ambiguous or too voluminous to read. To
compound this problem, the user is often requested to "freeze" his
requirements, and subsequent attempts at change are resisted.

Let's review the traditional approach to application development.

Paper 3081

TRADITIONAL APPROACH
TO APPLICATION DEVELOPMENT

USER ANALYST/PROGRAMMER

[REQUEST FOR J =L DESIGN J
APPLICATION ~ SPECIFICATIONS

[SP~~~~AT~~NSI: ;[REDESIGN J
_'jl

l TRY I:
APPLICATION J

3

MOl<TI<S

MOl<THS

M'OHTHS/
YEARS

WEEKS/
MONTHS

I

i
I

j

I

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

- The user first requests an application and then an analyst or
programmer is assigned to the application.

- The analyst or programmer takes the oftentimes sketchy user's
specifications and designs more complete specifications.

- The user then reviews the analyst's interpretations of his
specifications and probably makes additional changes.

- The analyst redesigns his specifications to adapt to these
changes. (By this time, several days, weeks or months have gone
by.)

- The user finally approves the specifications, and a team of
analysts and programmers are assigned to develop, test and
document the application.

- The user finally tries the application. Months or years may
have gone by before the user gets his first look at the actual
working application.

- The user, of course, will most likely want additional changes or
enhancements made to the application. This is called adjusting
the application to the "real world".

- Depending on the extent of these changes, additional maintenance
specifications may have to be written and these program changes
coded, tested and documented.

- The total application development process may take months or
years, and the maintenance of these applications may go on
forever.

In summary, the traditional approach to application development results
in long development times, excessive time spent on maintenance, a
multi-year backlog of applications, limited control and access to
information, and applications that lack functionality and flexibility
and are very difficult to change. The question is: "Can we afford to
continue using this approach to application development?"

Prototype Defined

According to Webster's Dictionary, the term prototype has three
possible meanings:

1) It is an original or model on which something is patterned: an
archetype.

2) A thing that exhibits the essential features of a later type.

Paper 3081
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3) A standard or typical example,

J. David Naumann and A. Milton Jenkins in a paper on software
prototyping (see reference 7) believe that all three descriptions apply
to systems development. Systems are developed as patterns or
archetypes and are modified or enhanced for later distribution to
multiple users. "A thing that exhibits the essential features of a
later type" is the most appropriate definition because such prototypes
are a first attempt at a design which generally is then extended and
enhanced.

Roles in the Prototyping Process

There are two roles to be filled in prototyping -- the user/designer
and the systems/builder. These roles are vecy different from the
traditional user and analyst/programmer roles under the traditional
approach. The terms "user/designer" and "systems/builder" emphasize
these differences and denote the functions of each participant under
the prototyping methodology. Remember it is the user who is the
designer of the applicat~on system and the systems professional who is
the builder.

The user/designer initiates the process when he/she conceives of a
problem or opportunity that may be solved or exploited by the use of an
information system. The user/designer typically must be competent in
his/her functional area (many times he/she is a manager) and usually
has an overall perspective of the problem and can choose among
alternative solutions. However, he/she requires assistance from the
MIS organization.

The systems/builder is assigned by the MIS organization to work with
the user/designer and is competent in the use of the available
prototyping tools and knowledgeable about the organizations data
resources.

Prototyping Process

The process of application prototyping is a quick and relatively
inexpensive process of developing and testing an application system.
It involves the user/designer and the systems/builder working closely
to develop the application. It is a live, working system; it is not
just an idea on paper. It performs actual work; it does not just
simulate that work. It can be used to test assumptions about users'
requirements, system design, or perhaps even the logic of a program.

Prototyping is an iterative process. It begins with a simple prototype
that performs only a few of the basic functions of a system. It is a
trial and error process • build a version of the prototype, use it,
evaluate it, then revise it or start over on a new version, and so on.

Paper 3081 5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Each version performs more of the desired functions and in an
increasingly efficient manner. It may, in fact, become the actual
production system. It is a technique that minimizes the dangers of a
long formal analysis and increases the likelihood of a successful
implementation.

Prototyping Methodology/Model

The prototyping methodology in general, is based on the following
proposition: "People can tell you what they don't like about an
existing application easier than they can tell you what they think they
would like in a future application."

Prototyping an information system can be viewed as a four-step
procedure.

(

PROTOTYPING APPROACH
TO APPIJCATION DEVELOPMENT

USER/DESIGNER SYSTBMlVBUJLDER

L

Step 1. User/designer identifies the basic information requirements:

Write a brief, skeleton-like statement that captures the
essential features of the information requirements.
User/designer and systems/builder work closely together.
Concentrate on users' most basic and essential requirements.
Define data requirements, report formats, screens, and menus.
Need not involve lengthy written specifications. - For larger
systems, a design team may need to spend a few weeks preparing a
first-effort requirements document.

Step 2. Systems/builder develops the initial prototype:

• Systems/builder takes the notes developed in the user discussions
and quickly builds the menus and dialogs. • A data dictionary
would be useful at this time. • Design and/or define data base

Paper 3081 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

and load subset of data. - Make use of defaults and standard
report formats. - Write required application modules using a
fourth generation language. - Prototype performs only the most
important, identified functions.

Step 3. Users implement and use the prototype to refine requirements:

- Systems/builder demonstrates prototype to small group of users.
- Users gain hands-on experience with application. - Users are
encouraged to make notes of changes they would like made. - Users
discuss and prioritize desired changes.

Step 4. Systems/builder revises and enhances the prototype:

- Systems/builder modifies the prototype to correct undesirable or
missing features. - May require modification or redesign of data
base, changes to existing programs and/or additional program
modules. - Deliver back to users quickly.

NOTE: Steps 3 and 4 are repeated until the system achieves the
requirements of this small group of users. Then either
introduce it to a larger group of users for additional
requirements or if enough users are satisfied, demo it to
management to gain approval for the production system.

When to Use Prototyping

1. To clarify user requirements:

- Written specs are often incomplete, confusing, and take a static
view of requirements. - It is difficult for an end user to
visualize the eventual system, or to describe his/her current
requirements. It is easier to evaluate a prototype than
written specifications. - Prototyping allows, even encourages,
users to change their minds. - It shortens the development
cycle and eliminates most design errors. - It results in less
enhancement maintenance and can be used to test the effects of
future changes and enhancements.

2. To verify the feasibility of design:

The performance of the application can be determined more
easily. - The prototype can be used to verify results of a
production system. The prototype can be created on a
minicomputer and then that software prototype may become the
specifications for that application which may be developed on a
larger mainframe computer.

3. To create a final system:

Paper 3081 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

- Part (or all) of the final version of the prototype may become
the product ion version. - It is easier to make enhancements,
and some parts may be recoded in another language to improve
efficiency or functionality.

When Not to Use Prototyping

1. When an application requires a standard solution that already
exists and is available at a reasonable cost from a software
supplier.

2. When you don't have a good understanding of the tools available to
prototype.

3. When the organization's data and software resources are not well
organized and managed.

4. When MIS management is unwilling to develop a staff of professional
systems/builders.

5. When the user/designer is unwilling to invest his/her time in the
development of the application system.

Potential Problems

One of the initial problems typically encountered is the acceptance of
the prototyping methodology by the systems people. This is due to the
fact that people naturally tend to resist change. It may also
encourage the glossing over of the systems analysis portion of a
project. It is not always clear how a large complex system can be
divided and then integrated. Initially, it could be difficult to plan
the resources required to prototype (people, hardware and software) •
It may be difficult to keep the systems staff and users abreast of each
version of the system. Programmers may tend to become bored after the
nth iteration of the prototype. Testing may not be as thorough as
desired. It might be difficult to keep documentation on the
application up to date because it is so easy to change.

Even with these concerns, prototyping provides a very productive
working relationship for the users and the builders. So it behooves
all data processing management to learn to use this powerful tool
creatively and to manage it effectively.

THE ADVANTAGES OF PROTOTYPING GREATLY OUTWEIGH THE PROBLEMS!

Advantages of Prototyping

One of the main advantages of application prototyping is that this
methodology provides a capability to quickly respond to a wide variety

Paper 3081 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

e>f user requests. It provides a live, functioning system for user
experimentation and accommodates changes in a dynamic user environment.
One interesting aspect of this approach is that users are allowed and
even encouraged to change their minds about an application's interfaces
and reports, which is a very rare occurrence during the traditional
approach. Maintenance is viewed right from the beginning as a
continuation of the design process. Finally, prototyping provides an
effective use of scarce systems/builders. One or a limited number of
systems/builders will be required for each prototyping project; and
while users are testing one prototype, the systems/builder can be
working on another.

Cost and Efficiency

It has been found that there is an order of magnitude decrease in both
development cost and time with the prototyping methodology.

It is often difficult to estimate the cost of prototyping an
application system because the total costs of development, including
maintenance, are usually lumped together. The cost of implementing the
initial system is much lower than the traditional approach (typically
less than 253). However, prototyping could be expensive in the
following ways:

It requires the use of advanced hardware and software. It
requires the time of high-level users and experienced systems staff,

It requires training of the systems staff in the use of
prototyping and the associated tools. Application run-time
efficiency may be compromised.

The main thing to remember is that the main focus of prototyping is not
so much efficiency but EFFECTIVENESS!

Paper 3081

$
Cumulative i """tmeot

!

I~

PROTOTYPING VS TRADITIONAL
APPROACH

- -- Analysis/Design

- - Development

-·--· Test/Implementation

- Production

I
I

I
/

/

.. -r--- traditional
/" Approach

,,.-
{------<Ziser first sees system

/

1_ ••. ~···

'
/(t.·,,.· Prototype

-t Approach

/(:?i/
f ,..,."~,_+0user begins working with prototype

/,/ T;me rrz:t!KEWtCTT__J

11\,'..'/!I PACKARO

9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX85

Essential Resources

The following are the essential resources to effectively do application
prototyping:

1. Interactive Systems (Hardware and Operating System)

When doing application prototyping, both the builder and the
system must respond rapidly to the user's needs. Batch systems
do not permit interaction and revision at a human pace.
Hardware and associated operating systems tailored to on-line
interactive development are ideal for software prototyping.

2. Data Management Systems

A Data Base Management System provides the tools for defining,
creating, retrieving, manipulating, and controlling the
information resources. Prototyping without a DBMS is
inconceivable!

A Data Dictionary provides standardization of data and file
locations and definitions, a cross reference of application
programs, and a built-in documentation capability. These are
essential to managing the corporate resources and extremely
useful when prototyping.

3. Generalized Input and Output Software

Easy to use data entry, data editing, and screen formatting
software are extremely helpful in the application prototyping
process to allow the programmer to sit down at a terminal with
a user and interactively create the user's screens or menus.

Powerful, easy-to-use report writer and query languages provide
a quick and effective way of retrieving and reporting on data
in the system. A report writer that uses default formats from
very brief specifications is most useful in the initial
prototype.

A powerful graphics capability can be extremely useful for the
display of data in a more meaningful graphical format.

4. Very High Level (Fourth Generation) Languages

Traditional application development languages such as COBOL may
not be well suited for software prototyping because of the
amount of code that has to be written before the user sees any
results.

Very powerful fourth generation languages that interface
directly to a data dictionary for their data definitions are
ideal. One statement in this high level language could

Paper 3081 10
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

realistically replace 20-50 COBOL statements. This reduces the
amount of code a programmer has to write and maintain and
speeds up the development process.

5. Documentation Aids

Tools to aid in the maintenance of programs written in a 4GL.

- Tools to aid in maintaining user documentation on-line.

6. Libraries of Reuseable Code

A library of reusable code to reduce the amount of redundant
code a programmer has to write is an important prototyping
resource.

This code could represent commonly used routines made available
to programmers.

Hewlett-Packard's Tools for Prototyping

Hewlett-Packard is one of the few vendors that supplies the majority of
the tools needed to effectively do software prototyping .

• Interactive Systems

- HP 3000 (All Series) - MPE Operating System

* Data Management Systems

- IMAGE/3000 - KSAM/3000 - MPE files - DICTIONARY/3000

• Generalized Input/Output Software

VPLUS/3000 QUERY/3000 REPORT/3000 INFORM/3000
HPEASYCHART - DSG/3000

• Very High Level Languages

- TRANSACT/3000

• Documentation Aids

- HPSLATE - HPWORD - TDP/3000

Note: There are several additional excellent prototyping tools
available from HP third-party vendors which are too numerous to
mention here. Please consult the Hewlett-Packard Business

Paper 3081 11
WASHINGTON, 0. C.

Summary

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Systems Software Catalog (Part No. 3000-90251) for 111ore
information.

Information Systems Prototyping is truly a "state-of-the-art" way of
developing on-line interactive applications.

Prototyping promotes an interactive dialogue between the users
and the programmer, which results in a system being developed
more quickly, and results in an interactive development
approach which is friendlier for the end user.

The prototype provides a live working system for the users to
experiment with instead of looking at lengthy specifications.

The users are provided with an early visualization of the
system which allows them to immediately use it.

The users are allowed and even encouraged to change their minds
about user interfaces and reports.

Maintenance is viewed right from the beginning as a continuous
process and because the prototype is usually written in a very
high-level language, changes are faster to locate and easier to
make.

Information systems prototyping results in:

Biography

* Users who are much more satisfied and involved in the
development process.

*

*

Systems that meet the user's requirements and are much more
effective and useful.

Improved productivity for all those involved in software
prototyping: the user/designers and the systems/builders.

Orland Larson is currently Information Resource Management Specialist
for Hewlett-Packard. As the data base and application development
specialist for the Information Systems Group he develops and presents
seminars worldwide on data base management, application prototyping and
productivity tools for information resource management. He is a
regular speaker at Hewlett-Packard's Productivity Shows and also
participates in various National Data Base and 4th Generation Language
Symposiums. His experience includes the development of a methodology
for designing data bases and the application of software tools to
measure data base performance. Previously he was the Product Manager

Paper 3081 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

for IMAGE/3000, Hewlett-Packard's award winning data base management
system.

Before joining HP he worked as a Senior Analyst in the MIS Department
of a large California-based insurance company and prior to that as a
Programmer/Analyst for various software companies. Mr. Larson has
been with Hewlett-Packard since 1972.

Bibliography

Boar, Bernard H., Application Prototyping: A Requirements Definition
For The 80's, John Wiley & Sons, New York, New York, 1984.

Canning, Richard G., "Developing Systems By Prototyping," EDP Analyzer
(19:9) Canning Publications, Inc., September 1981.

Jenkins, A. Milton, "Prototyping: A Methodology For The Design and
Development of Application Systems," Division of Research, School
of Business, Indiana University Discussion Paper #227, April 1983,
(41 pages).

Jenkins, A. Milton and Lauer, W. Thomas, "An Annotated Bibliography on
Prototyping," Division of Research, School of Business, Indiana
Discussion Paper #228, April 1983, (25 pages).

Larson, Orland J.,"Software Prototyping Today's Approach to
Application Systems Design and Development," Proceedings 1984
International Meeting HP 3000 IUG, Anaheim, California, February 26
• March 2.

Martin, James, Application Development Without Programmers,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

Naumann, Justus D. and Jenkins, A. Milton, "Prototyping: The New
Paradigm for Systems Development," MIS Quarterly, Vol. 6, No. 3,
September 1982.

Naumann, Justus D., and Galletta, Dennis F., "Annotated Bibliography of
Prototyping for Information Systems Development," MIS Research
Center Working Paper (MISRC-WP-82-12), September 1982.

Note: The above working paper as well as the paper by Naumann and
Jenkins entitled "Prototyping: The New Paradigm for Systems
Development," MIS Research Center-Working Paper
(MISRC-WP-82-03), October 1981, are available for $3.00 each
from :

Paper 3081

University of Minnesota Systems Research Center
School of Management 269 19th Avenue South
University of Minnesota Minneapolis, Minnesota
55455

13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

or by calling 612-373-7822.

Podolsky, Joseph L., "Horace Builds a Cycle," Datamation, November
1977, pp.162-186.

Wetherbe, James C., "Systems Development: Heuristic or Prototyping,"
Computerworld, Vol. 16, No. 7 1 April 26, 1982.

Paper 3081 14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3082. The drama behind the System Status Bulletin (SSB)

F. Alfredo Rego

Adager
Apartado 248

Antigua
Guatemala

Operating systems control every bit in our computers. Compilers translate
our programs. Editors change our files. Device drivers send bunches of
bits back and forth to printers, plotters, terminals, and so on.
Application systems orchestrate all kinds of resources and resource
managers in an effort to carry out staggering amounts of tasks.

It is really a miracle that anything works at all! Yet, somehow, it does.
But we have to keep an eye open for ANYTHING that may have an effect
(favorable or otherwise) on our careful delegations of tasks.

One way {which I follow religiously) is to re,ad, every two weeks, the
System Status Bulletin (SSB). Strange but necessary stuff, indeed.

My wife wonders why, when I read the SSB, I act as if I was reading a
gripping novel or attending a melodrama that makes me go through a wide
range of feelings. To share with her the reasons behind my emotional
outbursts, I decided to go into the equivalent of theatrical productions
using some of the hidden plots in the SSB as my inspiration.

In this article, I give a full dramatic expansion for Known·Problem Report
(KPR) number 5000035840 and the plots for several other KPR' s. Please
note that the "plots" are just textual quotations from the System Status
Bulletin.

For a live presentation, please come to the session itself at the
Washington Conference. There are a few "surprise" dramas-, with door
prizes for those who discover the solutions for some cute mysteries!

KPR #: 5000035840 Product: MPE V/E

Keywords: FILESYS

One-line description:

Paper 3082 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Last 2 words of FILE LABEL (device class) are being overwritten
with %1

Cause:

In procedure FOPENDA in the file system, the file label is read in,
updated and then written out whenever an old file is opened. A
buffer is allocated on the stack which the file label is read into.
A delete statement exists in the code, in between the time the file
label is read and then written, wh.ich deletes the top word of the
stack (the last word in the file label -- the last two characters
in the device class), Therefore, the last two characters in the
device class in the file label are wrong anytime a file is opened
as an old file.

Fix information:

Fixed in a future release of MPE.

Here are my dramatic notes:

Something very mysterious happens to the one-line description as it moves
from left stage to right stage. The first phrase, which reads "last 2
words" on the left, becomes "%1" as the last expression on the right. The
solution is hidden in the parenthetical expression in the "Cause" section,
which explains that the last 1 (one) word is actually equivalent to the
last 2 (two) characters in the device-class name field of the file label.
This dramatic technique keeps the audience on edge and is very simple to
use: Just have your characters mix their words.

Even though I bought a new magnifying glass just for the occasion, I could
not find WHERE in the code that delete statement exists. Hopefully,
somebody knows. The "Fix information" section does not commit anything
toward the solution of the mystery: "Fixed in a future release of MPE."
Which release? When? Is there a patch available?

Fortunately, this particular plot is just moot, deprived of practical
significance, and of interest only to obscure academicians, as confirmed
by the sentence "Therefore, the last two characters of the device class in
the file label are wrong anytime a file is opened as an old file."

As the hero's next-to-last words, we should have these anguished questions
at the same time that the stage fills with orange smoke:

- How can I design a system that NEVER opens old files?

- What happens when my system creates a file in device-class
SysDisc (for instance) with 32 extents but only 1 extent allocated?
After I fill up the first extent and the file system goes about
its business and grabs the device-class name from the file label
(finding SysDis instead of SysDisc), will it default to DISC or
will it default to a system failure?

Paper 3082 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Since this is a participation drama, the LAST words or the hero are
left as an exercise for the reader!

KPR #: 9999033318 Product: HPEASYCHART

One·line description:
CONTROL Y will sometimes cause pen to drag on plotter

Problem:
Using CONTROL Y while a chart is plotted, sometimes causes the pen to
drag intermittently before the plotting stops.

Temporary solution:
Use Control·Y in plotting at your own risk.

KPR #: 4700144915 Product: MPE V/P

One-line description:
STORE does not report that a disk file is corrupted.

Problem:
STORE didn't detect that a disc file was corrupted and still wrote it
to the tape. RESTORE, however, reported catastrophic error.

KPR #: 5000060418 Product: MPE V/E & T-MIT

One·line description:
SYSDUMP to cartridge tape aborts because of stack overflow

Problem:
Sysdump to the cartridge tape in a batch job was aborted because of
stack overflow.

Cause:
The cartridge tape buffer takes too much stack space which caused
stack overflow.

Temporary solution:
When dumping users' files, use STORE instead of SYSDUMP because
SYSDUMP uses some additional stack space.

KPR #: 5000015610 Product: MPE

Keywords: SYSDUMP

Paper 3082 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

One-line description:
doing reload, user gets "short file not restored", losing data

KPR #: 4700048454 Product: MPE

Keywords: SFlO

One-line description:
SFlO results from HIOMDSC2 SXIT ~O with invalid TOS

Problem:
When a media error is encountered during a verify option to a CS80
disc, the disc driver will inadvertently branch to a random code
location.

Fix information:
Fixed in S-MIT (MPE V)

KPR #: 4700051243 Product: MPE

Keywords: IPC SYSHALT

One-line description:
Memory header and trailer corruption, application uses IPC &
process handling.

Problem:
System halt 4 caused by accessing IPC files in copy mode.

Cause:
When closing Message file opened in copy mode the system assumes
the file is buffered. The file is closed and data is moved from
a non-existent buffer to the file. Causing random system failures.
Memory may be corrupted causing region headers and trailers to be
destroyed.

Fix information:
Fixed in future releases of MPE.

KPR #: 5000044479 Product: MPE V/E

Keywords: RESTORE

One-line description:
RESTORE causes DFS corruption and a CNTL A prompt on the console.

Cause:
This problem is caused by attempting to RESTORE a file for which a

Paper 3082 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

copy currently exists on the system, and has a single extent, and the
file labels extent size and last extent size are different values.
In this case, RESTORE will deallocate more space than the file
currently owns.

Temporary solution:
Purge the old copies of files with these characteristics prior to
RESTORing.

Signed off 01/29/85 in release GOl.00

KPR #: 4700119974 Product: MPE V/P

Keywords: TAPE

One-line description:
If 7974 cannot write an ID due to retries, MPE will loop and
reject tape.

Problem:
When STORE encounters a bad tape it attempts to rewind and unload
the tape using FCONTROL. FCONTROL will write a file mark prior to
the rewind unload. If the file mark write fails then the rewind
unload is aborted. As a result the tape remains on line and STORE
assumes that a new reel has been mounted.

Fix information:
The fix is to check the status of the FCONTROL. If it fails then
force a rewind using ATTACHIO if not a remote file.

The problem was fixed in MPE V/E.

KPR #: 5000030676 Product: MPE V/P

Keywords: SF672

One-line description:
IPC problems

Problem:
Various system failures can occur when using IPC files that have
been open during a previous system failure. These include SF672,
SF59, and SF495.

Cause:
The principle behind IPC is that process to process communication
should be quick. IPC avoids as many disc reads/writes as possible
to help keep the process to process transfer time to a minimum. The
side effect from this strategy is that the file label on the disc
may not reflect the actual state of the "FILE" (whose records may

Paper 3082 5 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

have never been written to disc). To solve this problem, additional
checks were added when the file is first FOPENed.

Temporary solution:
Always purge an IPC file and rebuild it before using.

Fix information:
Fixed in E.00.01. Patch available.

KPR #: 4700014530 Product: MPE

Keywords: SF59

One-line description:
SF59 on Q-MIT when accessing a file

Problem:
SF59 on Q-MIT when accessing files. It could happen when the file is
opened, closed, or whenever the FCB of the file is accessed.

Cause:
The problem occurs because the ACB share count can be damaged due to
the fact that the ACB does not remain locked in FCLOSE when
decrementing the ACB share counts (see SR#4700-38562). This causes
the FCB to be deleted upon the last FCLOSE of the file but the ACB
has not been deleted. Then, when the file is re-opened, the FCB
vector in the ACB is reused. However, this FCB vector is not valid
or points to another file's FCB and havoc results.

KPR #: 1600019042 Product: HPSPELL

Keywords: ERRORMESSAGE

One-line description:
error messages spelled incorrectly

With this cheerful and delightful ERRORMESSAGE, we end our notes.

=========
Biography
=========

Paper 3082 6
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX 8 5

F. Alfredo Rego is Adager's Research & Development Manager. He has
worked with Hewlett·Packard instruments since 1966, when he was a
Physics research assistant in the Center for Nuclear Studies at The
University of Texas. In the 1970's he worked as a university
professor in Guatemala, teaching courses in Theoretical Mathematics,
Physics and Computer Science. He has worked exclusively with IMAGE
databases and Adager (The Adapter/Manager for IMAGE/3000 Databases)
since 1978.

The HP3000 International Users Group honored him with the 1980 Hall
of Fame Award, which reads: "Outstanding Contributor, for exemplary
service to the Group and its membership".

Paper 3082 7
WASHINGTON, 0 C.

BAL TIMOAE WASHINGTON REGIONAL USERS GROUP INTEAEX85

3083. At the Information Crossroads of Operating Systems:

UNIX* thru the Eyes of MPE

Sam Boles, Member Technical Staff
Hewlett-Packard

With UNIXA evolving as the de facto "industry standard" operating
system, Hewlett-Packard now includes this important dimension in its
array of computer technology. The Series 200 and 500 of the HP9000
family currently support HP-UX, a powerful dialect of UNIXA, with more
under development.

In engineering productivity ideas at the HP Productivity Center in
Cupertino, California, a key element is blending the HP3000 MPE
environment with the HP9000 HP-UX environment. In the light of this
experience you can get a view of UNIXA thru the eyes of MPE. The
friendly vernacular of MPE -- second language to HP3000 users around the
world -- becomes the familiar basis in terms of which those new to UNIXA
can acquaint themselves with the terse power of this operating system.

Starting with fundamentals that map one-to-one, you'll see some MPE
UDC's used with HP summer students to accelerate their productivity by
providing a transitional mechanism from their UNIXA background. From
there you'll move into the more complex facilities that the UNIXA
productivity engine gives to both programmers and end-users alike.

• . • the Hewlett-Packard

Productivity Center:

getting Performance

to the Bottom

Line •••

At the Hewlett-Packard Productivity Center in Cupertino, California, we
deal with a wide range of hardware and software products. This is part
of getting the right tool to do the right job and to interact with the
other tools in the right way. That's our job: Productivity: Getting
Performance to the Bottom Line.

In the course of doing this, we integrate into our Productivity Network
a wide range of Hewlett-Packard computers. A component of this task is
to make the HP3000 and the HP9000 play together. This means that the
engineers working in the Productivity Center need to be multi-lingual:
conversant in MPE, UNIXA and other operating systems.

Paper 3083 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP fNTEREX85

Much of our HP9000 work at the Productivity Center uses the HP-UX
operating system. Both the 16-bit Series 200 and the 32-bit Series 500
support HP-UX. HP-UX is a powerful UNIXA dialect that is based on the
Bell Labs System III, enhanced with features from the Berkeley 4.1 and
the Bell System V, plus some unique Hewlett-Packard contributions.

The Productivity Center leverages the SEED (Student Employment and
Educational Development) program that Hewlett-Packard has sponsored for
many years. The SEED program is designed for the mutual benefit of
Hewlett-Packard and outstanding students in universities around the
world.

"UNIXA is a trademark of AT&T Bell Laboratories. The student gains the
benefit of experiencing a real-world job doing real-world work on a
real-world project. The company gains the benefit of bringing bright
fresh creativity to its product development from youngsters who've not
yet learned that a given task is impossible. Since they don't have the
experience to know that it's impossible they sometimes actually get it
done. Or come up with a work-around we hadn't thought of before.

Sure, we throw a lot of stuff away. But once in a while we get some
super products. Probably at about the standard R&D hit ratio .

. . . MPE UDC's

to leverage the

SEED student's

knowledge of

UNIXA •..

Coming from the university community our SEED students typically have
UNIXA experience. UNIXA was born in the quasi-university environment of
Bell Labs, and some of its great evolutionary contributions have come
from universities such as the University of California at Berkeley.

In order to leverage this knowledge and to expedite SEED productivity in
the MPE environment, we have some MPE UDC's (User Defined Commands) that
map fairly closely to what the SEED student is accustomed to under
UNIXA. This provides a transitional mechanism that enables the SEED
student to focus more on the meat of the project than on some of the
accidental properties of the operating environment.

This same transitional vehicle, if we shift it into reverse gear, can
give an experienced MPE user a glimpse of UNIXA. That's what we do in
this paper.

Paper 3083 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX65

The initial emphasis is on the functional similarities of the two
operating systems. However you can't deal with the similarities for
very long without touching on the differences. Here you get a
superficial introduction to some of the powerful UNIXA features like
piping, redirection and the UNIXA file system; and, to give equal time,
some of the MPE features missing from some of the popular shells
(command interpreters), such as the MPE REDO (extensively used by some
of us heavy-fingered folks whose data-processing lives tend to be as
redundant as they are heavy-fingered.)

since 1969 .

a 1i ttle UNIXA

lore, mystique

and

culture .

Before we get into the trDC's let's look at a little UN!XA lore, mystique
and culture. Anything that's survived in this business since 1969 (for
the children among us, that's the year IBM "unbundled" in recognition of
the fact that software was no longer ju~t the packing that came free
with the hardware to keep it from rattling around in the carton) has
some lore and deserves a little nostalgia.

First of all, it's an operating system of the programmers, for the
programmers, by the programmers. That's why we byte hacks love it. And
that's why civilized people spend large sums of money for commercial
shells to cover the lean terse power of UNIXA.

Some say it's unfriendly. But you have to remember that one man's
"friendly" may be another man's "verbose." It's the classic issue of
efficiency vs friendliness. Do you have an elaborate high-overhead
ritual to establish friendliness or do you get right to the point? Do
you ask for a confirmation that the user really wants to purge every
file in his group, or do you assume that if he's smart enough to ask for
it you'll do it for him?

You can look at it this way: like a lot of development nodes, in my
section in Cupertino, we save trees by running OUTFENCE high, going to
hardcopy on only a small portion of our output. That means to get
hardcopy you need to

ALTSPOOLFILE #Onnn;PR!=nn

Paper 3083 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Now that's mnemonic and intuitive, probably. It's maybe what you'd call
friendly. But about the third time you do it, you decide it's worth the
trouble of updating your UDC's with something like

ASF SPL=O,PRI=l,COPIES=l
OPTION LIST
ALTSPOOLFILE #O!SPL;PRI=!PRI;COPIES=!COPIES

that you invoke with

ASF nnn nn

That's the UNIXA style. It's terse. All right, cryptic. Powerful. A
rich repertoire of commands and options to do the kinds of things
programmers do to build and document software.

• • • maybe something

of a misnomer:

today, there's little

UNI in UNIXA beyond

UNifying •••

Next, UNIXA may be a misnomer. Legend has it that when the brilliant
Ken Thompson named his brilliant child, he did it in counterpoint to the
multi-tasking multi-user MULTICS at MIT. His was a single-user system
for a single-engineer work station. Today there is little UNI in UNIXA
beyond the fact that it may be the single most UNifying element across
the wide variety of hardware architectures and configurations in the
industry today. Beyond that great UNifying attribute and signal
contribution, UNIXA is MULTitasking, MULTI-user, MULTI-noded,
MULTI-shelled, even MULTI-processed on the HP9000/500 with its tri-CPU
design.

One aspect of the "non-UNI" of UNIXA is its multiplicity of dialects.
This is probably good and bad at the same time. Like any worthwhile
software system, UNIXA is evolving. It's inevitable that such a
magnificent theme have myriad variations. The Bell Labs UNIXA, perhaps
the seat of orthodoxy, has a System III and a System V. There's the
Berkeley 4.1. And HP-UX, XENIX, VENIX, QNX, UNI-plus, -star, -plex and,
of course, the powerful NIX of the anti-UNIXA clingons.

Paper 3083 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

Not.t no one disputes the value to mankind of the c·she11 re·do (painfully
missing in some Shells), but when you transition from Brand X to Brand
Y, is it there or isn't it? Not a big deal. But neither is Life, for
that matter. Just a fabric (or hodge-podge) of little deals ·- but if
they gang up on you, you can be in trouble.

Now we can't hold back tomorrot.t. We don't even want to. Just don't be
deluded into thinking that the UNIXA "industry standard" is going to get
you entirely out of the technological retread business we've been
confronted with for generations (computer, that is), with all its
learning curve entropy and proactive inhibitions.

As Churchill once said about Democracy: It's not perfect by any means;
it's just the best we've been able to come up with. The same assessment
might apply to UNIXA.

Of course, you could see it coming. Back in ancient times, on the 1401,
you could put a complete program on a single 80-column card to
read-and-list cards. It started out

'008015 . . .

The comma set a word-mark to give you a "variable word-length" machine.
You'd slap that one card on the front of your "source deck" to do a

1,$p

(That's UNIXA editor for "/LIST ALL.") When the 360 arrived it had a
thing called an "operating system" and you couldn't do that with just
one card anymore. The beginning of the end.

So much for yesterday. Let's take a look at tomorrbw.

. . UNIXA and MPE

side by side,

going thru a few

ordinary everyday

commands •.•

Paper 3083 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

First a few words about the examples you see here. We all know the
frustration of the example that doesn't work. One way to reduce that
problem is to capture the example right at the screen in vivo.

Now to do this for the MPE part is a fairly straightforward exercise if
you have an old 2647 like mine. You work the example on the terminal
on-line to the computer, then position the cursor at the start of the
example. You go into local command mode to do a

COPY ALL FROM DISPLAY TO LEFT TAPE

When you've gotten the latest batch of examples on tape, you do a

MARK LEFT TAPE

REWIND LEFT TAPE

Then you get into TDP (Text & Document Processor), find the place where
you want to splice in the example, do an

/A nnn.nn

Then when you get the line number prompt, touch the READ key to get the
cartridge tape contents spliced into your text file.

Getting the UNIXA examples is a little different. If you're using an
HP9000/520, you've got an integrated 5" floppy disc drive. As you do
the examples you precede the example with an echo or a cat >> to the
disc file where you're collecting your actual examples. For example,
for the ps (process show) command:

echo $ ps -e >> seb

(The » means to append or concate.nate the string after echo to the
target file seb.) Then you actually do the command but redirect the
output to the same file:

ps -e >> seb

This gives you what would have been on the screen in your disc file.
Then, if you haven't bothered to engineer any better datacom, you can

lifcp seb /dev/rfd:SEB

6 Paper 3083
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

to get your examples onto a floppy in LIF (Logical Interchange Format),
take it over to your HP9000/236, do a virtual terminal file transfer to
the HP3000 where the main body of your text is for doing your laser
typesetting via TDP, and join the examples into the appropriate spot.

In the examples you see the HP-UX form, then the MPE form with an
HP-UX-like UDC. In the UDC there's an option list to show you how the
UDC gets expanded and executed. Imagine a Carriage/Cursor Return at the
end of each line unless specified otherwise. If there's a Control-D
you'll see [ctl-D].

So much for the logistics. Let's get started. First, get on the
system:

HP-UX:

login: boles

Welcome to Hewlett-Packard System 9000 HP-UX

MPE:

:hello boles.cad
HP3000 / MPE V G.B0.00 (BASE G.B0.00). MON, DEC 24, 1984, 4:24 PM

Accounting in HP-UX is done generally at the user level, as opposed to
user.account in MPE. There are some other differences, too. For
example, if you have a password and key it wrong, MPE asks you several
times to try again; HP-UX doesn't tell you whether it's the user or the
password or a backspace that's the prob~em, but asks for everything
again.

HP-UX:

$ who am i
boles console Dec 24 13:26

MPE:

:t.7hoami
SHOWME
USER: #S85,BOLES.CAD,UNIX (NOT IN BREAK)
MPE VERSION: HP32033G.BO.OO. (BASE G.B0.00).
CURRENT: MON, DEC 24, 1984, 4:26 PM
LOGON: MON, DEC 24, 1984, 4:24 PM
CPU SECONDS: 5 CONNECT MINUTES: 2
$STDIN LDEV: 22 $STDLIST LDEV: 22

Notice the blanks are suppressed in the UDC to get the showme.

Paper 3083 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

HP-UX:

$ date
Mon Dec 24 13:48:48 PST 1984

MPE:

:date
SHOWTIME
MON, DEC 24, 1984, 4:26 PM

INTEREX85

Basically the same but a little more time granularity in HP-UX and a GMT
(Greenwich Mean Time) basis. HP-UX:

$ ps -e
PID TTY

27335
27279

35
34
33
32
1

MPE:

:pse
SHOW JOB

co
co

?
a2
al
aO

?

TIME COMMAND
0:00 ps
0:04 sh
0:01 getty
0:02 getty
0:01 getty
0:01 getty
0:01 init

JOBNUM STATE IPR! JIN JLIST

1s69
#S85

EXEC
EXEC

20 20
22 22

2 JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
2 EXEC; INCL 2 SESSIONS
0 SUSP

INTRODUCED JOB NAME

FRI 8:54A OPERATOR.SYS
MON 4:24P BOLES.CAD

JOBFENCE= O; JLIMIT= 5; SL!MIT= 60

The ps, like showjob, tells you what's running in the system. Some
differences are cosmetic: syntax, format, nomenclature; but CPU
consumption, state and start time are all useful but not available in
both systems with these comparable commands.

HP-UX:

$ ls
seb
sebb

MPE:

Paper 3083 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

:ls
LISTF @

FILENAME

SEBUNX

Again, mostly cosmetic differen.ces.

HP-mt:

$ 11
total 3
-rw-rw-rw-
-rw-rw-rw-
-rw-rw-rw-
MPE:

:11
LISTF @,2

1 boles
1 boles
1 boles

101
101
101

ACCOUNT= CAD GROUP= UNIX

370 Dec 24 13:51 seb
100 Dec 24 13:48 sebb
365 Dec 24 13:51 sebc

INTEREX85

FILENAME CODE ----•-------LOGICAL RECORD----------- ----SPACt--··
SIZE TYP EOF LIMIT R/B SECTORS #X MX

SEBUNX * 72B FA 48 48 7 16 l 1

The HP-mt "long" file list gives security, date and owner. The
-rw-rw-rw- means it's an ordinary data file (not a directory nor a
device special file), the owner ot the file has read and write access
but not execute permission, as do the user's group and the public in
general. The listing also includes number of directory links, owner,
group code, size in bytes, date and time of last modification.

This touches on a major difference: the file system. The UNIXA
directory structure and file concepts are a major transitional
consideration, and beyond the scope of this paper. You get glimpses
here in the links information and in the mkdir and cd examples below.
But remember this is only the tip -- there's a real iceberg there.

HP-mt:

$ cat
This is to show cat with no parms.
This is to show cat with no parms.
This is line 2 of show cat.
This is line 2 of show cat.
[ctl-D]

MPE:

Paper 3083 9
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

~cat

FCOPY FROM= ;TO=
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show cat with no parms.
This is to show cat with no parms.
This is line 2 of show cat.
This is line 2 of show cat.

< CONTROL Y >

2 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

This is the cat (for concatenate) form without parameters. It's
basically input from $STDIN and output to $STDLIST -- the CRT in this
case.
HP-UX:

$ cat > filel
This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.
[ctl-D]

MPE:

: catt filel
FCOPY FROM=;TO=filel;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.

< CONTROL Y >

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

This is the concatenation of CRT input to a new or replaced file on
disc. An easy way to build a file without getting into the editor -­
but you give up the more powerful edits. Notice the >. That's UNIXA
redirection from the default CRT to the named file. Be careful: UNIXA
has high regard for your presence of mind. If it finds a file out there
already by that name, it doesn't ask as MPE does whether you're sure you
want to purge it (unless you've removed the write permission with a
chmod) -- it just writes over the old file.

Paper 3083 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

HP-tlX:

$ cat filel
This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.

MPE:

:catf filel
FCOPY FROM=filel;TO=
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.
EOF FOUND IN FROMFILE AFTER RECORD 2

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

Here with an implicit ~ redirection of input, we concatenate from the
named file to the CRT.
HP-UX:

$ cp filel f ile2
$ 11 file*
-rw-rw-rw- 1 boles

1 boles -rw-rw-rw­
$ cat file2

101
101

This is to show the translation of

121 Dec 24 14:01 filel
121 Dec 25 20:44 file2

the UNIX vernacular to an MPE environment.
It's getting harder.

MPE:

: cp file1 file2
FCOPY FROM=filel;TO=file2;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD 2

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:11 file@
LISTF file@, 2
ACCOUNT= CAD

Paper 3083

GROUP= UNIX

11
WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FILENAME CODE ··-------··-LOGICAL RECORD-----·----- -···SPACE---~
SIZE TYP EOF LIMIT R/B SECTORS #X MX

FILEl
FILE2

:catf file2

80B FA
80B FA

FCOPY FROM=file2;TO=

3
3

1023 1
1023 1

HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.
EOF FOUND IN FROMFILE AFTER RECORD 2

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

128 1 8
128 1 8

This is a simple file copy with no changes as you can see from the 11
and cat listings. Note the wild card * that gives you all files
starting with "file".
HP-UX:

$ cat » file2
This is some more text to illustrate the
concatenation facility of UNIX in this game
of "Follow the Leader" with MPE.
[ctl-D)

MPE:

: cattt file2
FILE file2,0LD;ACC=APPEND
FCOPY FROM=;TO=*file2
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO, 1983

This is some more text to illustrate the
concatenation facility of UNIX in this game
of "Follow the Leader" with MPE.

< CONTROL Y >

3 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
: catf file2
FCOPY FROM=file2;To~
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

Paper 3083 12
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

This is to show the translation of
the UNIX vernacular to an MPE environment.
It's getting harder.
This is some more text to illustrate the
concatenation facility of UNIX in this game
of "Follow the Leader" with MPE.
EOF FOUND IN FROMFILE AFTER RECORD 5

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM

Here you see a concatenation with the append redirection instead of the
replace. Control-D signals End of Data.

HP-UX:

$ cp file2 file3
$ cp file2 f ile3b
$ cp file2 file3c
$ 11 file3*
-rw-rw-rw-
-rw-rw-rw-
~rw-rw~rw~

$ rm file3*

1 boles
1 boles
1 boles

$ 11 file3*
file3* not found
MPE:

: cp file2 file3

101
101
101

FCOPY FROM=file2;TO=file3;NEW

247 Dec 25 20:55 file3
247 Dec 25 20:55 file3b
247 Dec 25 20:55 file3c

HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD 5

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:cp file2 file3b
FCOPY FROM=file2;TO=file3b;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD 5

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:cp file2 file3c
FCOPY FROM=file2;TO=file3c;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

Paper 3083 13
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

EOF FOUND IN FROMFILE AFTER RECORD 5

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:11 file3@
LISTF file3@, 2
ACCOUNT= CAD GROUP= UNIX

FILENAME CODE ------------LOGICAL RECORD---------·- ----SPACE----
SIZE TYP EOF LIMIT R/B SECTORS #X MX

FILE3 SOB FA 6 1023 1 128 1 8
FILE3B SOB FA 6 1023 1 128 1 8
FILE3C SOB FA 6 1023 1 128 1 8
:rm file3
PURGE file3
:rm file3b
PURGE file3b
:rm file3c
PURGE file3c
:11 file3@
LISTF file3@,2
NO FILES FOUND IN FILE-SET (CIWARN 431)

Note here the generic purge, representative of the UNIXA respect for the
programmer's presence of mind. (Some of us who only marginally deserve
that respect do a lot more back-ups under UNIXA.) You can protect
yourself on sensitive files by removing write permission and thereby
getting UNIXA to prompt for confirmation of purge.
HP-UX:

$ 11 filel
-rw-rw-rw- 1 boles
$ chmod 600 filel
-rw------- 1 boles

MPE:

:11 filel
LISTF filel, 2
ACCOUNT= CAD

101 121 Dec 24 14:01 filel

101 121 Dec 24 14:01 filel

GROUP= UNIX

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE---·

FILEl

:chmod600 filel
SECURE filel

Paper 3083

SIZE TYP EOF LIMIT R/B SECTORS #X MX

80B FA 3 1023 1 128 1 8

14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Here's an example of changing access permissions on a file. We don't
have a simple parallel in MPE. This now disallows group and public
users to access the file. Note that the UNIXA granularity of control
could be approximated by a combination of the secure you see here and
the altgroup xxx; access= facilities in MPE.

HP-UX:

$ cp file2 file3
$ 11 file*
-rw------- 1 boles 101 121 Dec 24 14:01
-rw-rw-rw- 1 boles 101 247 Dec 25 20:53
-rw-rw-rw- 1 boles 101 247 Dec 25 21:06
$ mv file3 file4
$ 11 file*
-rw------- 1 boles 101 121 Dec 24 14:01
-rw-rw-rw· 1 boles 101 247 Dec 25 20:53
-rw-rw-rw- 1 boles 101 247 Dec 25 21:06

MPE:

: cp file2 file3
FCOPY FROM=file2;TO=file3;NEW
HP32212A.3.18 FILE COPIER (C) HEWLETT-PACKARD CO. 1983

EOF FOUND IN FROMFILE AFTER RECORD 5

6 RECORDS PROCESSED *** 0 ERRORS

END OF SUBSYSTEM
:11 file@
LISTF file@,2
ACCOUNT= CAD GROUP= UNIX

filel
file2
file3

filel
file2
file4

FILENAME CODE ···········-LOGICAL RECORD--········· ····SPACE--··

FILEl
FILE2
FILE3

:mv file3 file4
RENAME file3,file4
:11 file@
LISTF file@, 2
ACCOUNT= CAD

SIZE TYP EOF LIMIT R/B SECTORS #X MX

80B FA
80B FA
80B FA

GROUP= UNIX

3
6
6

1023 l
1023 1
1023 l

128 l 8
128 1 8
128 l 8

FILENAME CODE ···········-LOGICAL RECORD----···-··· ···-SPACE--··
SIZE TYP EOF LIMIT R/B SECTORS #X MX

Paper 3083 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

FILEl 80B FA
FILE2 80B FA
FILE4 80B FA

Here you see the move or rename

HP-UX:

$ pwd
/users/boles
$ mkdir dir2
$ 11
total 15
drwxrwxrwx 1 boles
-rw------- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
-rw-rw-rw- 1 boles
$ cd dir2
$ pwd
/users/boles/dir2
$ cp .. /filel fileldir2
$ 11
total 1
-rw------- 1 boles
$ cd
$ pwd
/users/boles
MPE:

101
101
101
101
101
101
101
101
101

101

3 1023 1 128 1 8
6 1023 l 128 1 8
6 1023 1 128 1 8

facility in action.

0 Dec 25 21:26 dir2
121 Dec 24 14:01 filel
247 Dec 25 20:53 file2
247 Dec 25 21:06 file4

2536 Dec 25 21:28 seb
1055 Dec 24 14:07 sebe
1055 Dec 25 20:43 sebf
1607 Dec 25 20:54 sebg
2059 Dec 25 21:04 sebh

121 Oec 25 21:35 fileldir2

Here we don't have an MPE analog closer than hello with a new group
specified. In the example, while in the home directory, you make a new
directory with mkdir. The directory file (initial "d" in the 11
listing) now appears in its parent directory. A cd (change directory)
to the subdirectory dir2 is confirmed with a pwd showing the path name
up the directory chain. The cp uses a .. / to indicate the parent
directory of the current working directory. A cd without an explicit
directory gets us back to the home directory, which the pwd confirms.
This is just a quick dip in the deep end of the pool. Don't worry about
this for the brief glimpse of UNIXA you get here. But do be aware that
the UNIXA file system is different from MPE.

$ who > file4
$ cat file4
boles console Dec 24 13:26
$ date » file4
$ cat file4
boles console Dec 24 13:26

Paper 3083 16
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Tue Dec 25 21:42:10 PST 1984
$ 11 file4
-rw-rw-rw- l boles 101 59 Dec 25 21:42 file4
$ WC file4

2 11 59 file4
$ grep 'MPE' filel
the UNIX vernacular to an MPE environment.
$ 11 filel > templ; WC filel > temp2; cat templ temp2 I grep 'file'
-rw------- 1 boles 101 121 Dec 24 14:01 filel

5 22 121 f ilel

MPE:

Don't try to map this one-for-one to MPE. You see some redirection and
a new counter command, we, to set up an illustration of piping (the I
operand) and the string finder, grep. The we counts lines, words and
characters. The grep lists the lines that contain the general
expression ("mess": mnemonics are merely a state of mind) search string
argument. Here the cat has 2 input files that it pipes to grep which
outputs the two lines containing the search string 'file'. Before
wrapping up, let's scratch the surface of the UNIXA shell. First some
simple shell scripts. Suppose you want your UNIXA to speak MPE. Here
you see a file called listf that contains ls. At first it won't execute
but the chmod fixes that.

$ cat > listf
ls
[ctl-D}
$ listf
listf: cannot execute
$ chmod 777 listf
$ listf
dir2
filel

file2 • • • templ
file4 temp2

temp3

Here you see a file called purge with a $1, the symbol for the first
argument, which is the name of the file you want to purge. The chmod
makes it executable.

$ cat > purge
rm $1
[ctl-D]
$ chmod 777 purge
$ purge temp4

Next you see a shell control loop that edits all the files starting with
"file", using the commands in sebmod.

Paper 3083 17
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

$ cat sebsh
for i in file*

do ed $i < sebmod
done

INTEREX85

Here's what sebmod looks like. !t gives the file name, lists the first
record, inserts a new line, then lists the first three lines, then
quits.

$ cat sebmod
f
1
i
Begin w!th Sep 1985 HP3000 IUG Conference • • •

1,3p
q!

Here's an execution:

$ sebsh
107
filel
This is to show the translation of
Begin with Sep 1985 HP3000 IUG Conference
This is to show the translation of
the UNIX vernacular to an MPE environment.

233
file2
This is to show the translation of
Begin with Sep 1985 HP3000 IUG Conference
This is to show the translation of
the UNIX vernacular to an MPE environment.

59
file4
boles console Dec 24 13:26
Begin with Sep 1985 HP3000 IUG Conference .•.
boles console Dec 24 13:26
Tue Dec 25 21:42:10 PST 1984

Paper 3083 18
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Epilogue ...

There you have it: a glimpse thru the Looking Glass from MPE-land into
the Land of UNIXA. You've seen our "MPENIX": some of the elementary
functions in our quasi-UNIXA UDC's that we built to help our SEED
students. From there you sampled some of the UNIX power that enables a
computer user to re<·.ch new levels of productivity. You've seen some of
the features that have enabled UNIXA to establish a good track record as
the common link that lets us move with reasonable gracefulness across a
substantial portion of the computer world today.

About the Author

Sam Boles is a Member Technical Staff in the Productivity Centet at the
Hewlett-Packard computer facility in Cupertino, California. With HP
since 1976, his computer experience started back in the AUTOCODER days
of the 1401/1410, migrated thru the 360/370 era, and now focuses on
networking HP productivity technology. Sam received his MS at UCLA in
Information Systems.

Paper 3083 19
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3084. Change Management: An Operations Perspective

-Abstract-

Scott Hirsch
RCM

4 Embarcadero Center
San Francisco, California 94111

When an MIS department experiences a change in management, two
challenges must be met: (1) Day-to-day processing must continue
and (2) Overall Company needs must be evaluated in order to judge
the adequacy of existing systems and to form the basis of any
long-range planning. This paper will examine the role of
Operations in supporting existing production during transition
and address the reasons for change and how underlying problems
can be avoided.

-Operations Charter-

Operations will be responsible for acting as the user
interface for the MIS (or Data Processing) Department. Its
functions will include, but not be restricted to: forms
handling, report distribution, system performance and capacity
planning, ordering and distributing supplies, system backup
and disaster recovery, service requests and bug reporting, and
chargeback and billing.

-How Did It Happen?-

The first question that needs to be asked when approaching a
turnaround situation is how did things get as bad as they are?
(I am assuming that a complete change of management would not
have occurred had everything been wonderful.) The reasons I have
seen include:

o MIS has no say in decision-making process.
o Breakdown in relations between MIS and end-users.
o MIS Director/Manager unqualified for position

(typically a technical staffer who survived
long enough to win position by default).

o Decision-makers unwilling to commit the
dollars and time necessary to do the job
right.

o Management problems are treated as technical problems
o MIS staff no longer up on the latest

technology and methodologies.
All of the above contribute to the demise of even the
smoothest running of departments. Each point will now be
examined in greater detail.

-Whos Department Is It Anyway?-

In trying to turn around an MIS Operation, you want to learn from
the past and avoid repeating any mistakes. The biggest mistake

Paper 3084 1
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

you want to avoid is in the decision making process. There is
definitely such a thing as a no-win situation and if you have
no control over the direction of your department, such is
your fate. Therefore, it is the manager's responsibility to
provide an adequate case for any requests to Upper Management
for hardware, software, personnel, etc. However, if your
well-documented budget is shot down mercilessly by the Finance
Director or Budget Committee then you might as well throw in
the towel right there -- the situation is hopeless. We will
assume that you are not in that unlucky -- and, alas, far too
common situation and have established the credibility
necessary tor the successful turnaround of your department._

·An End-User Valentine-

Let's face itt the end•user is the MIS department•s reason for
being. MIS iii a support function and if those people you are
supposed to be supporting make unflattering remarks every time
you pass by, something is fundamentally wrong. Why not quantify
your suspicions with a survey? Leave it anonymous so users will
tell you the truth and insist that everyone submit a response.
You will probably fin_d that users are shocked by your interest
in them. Take this as a great opportunity to reestablish
communications with a very nice -· but frustrated -- group of
people. You need these people I They will provide priceless
Public Relations for you and your department when budget time
rolls around. And, after all, your success is measured to a
great degree by the amount of user satisfaction. This point
cannot be stressed enough!

-The User Speaks-

Since you are new to the Company, you will have a lot of
questions. I have found Users to be a great source of answers
to many of the most pressing Operations questions -- better, in
fact, than talking to MIS staff. For example, I wondered why we
were churning out so much paper -- like 10 copies of a 250 page
file dump -- every week. In talking with users I discovered
that it used to be that 10 people relied on that report but now
circumstances have changed and half the reports sit around
collecting dust. Eliminating unnecessary services can be a big
first step towards providing better support and will enable you
to devote more staff resources to the less easy problems -- all
without having to "go to the well". You also need the User as a
gauge of system performance. I am not aware of many users who
will call you to say that the system is performing with ligh~ning
speed, but that doesn't mean they will call and complain when it
-is- slow. As much as it hurts, you should encourage this kind
of negative user feedback. When system resources are preciously
finite, the machine jockeys over in devlopment had better learn
how to control their compiles or the payroll people might be
"slow" themselves next pay period. But seriously, until you are
able to get a true picture of your current and future needs so
you may upgrade, the user will be a valuable resource in managing

Paper 3084 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXB 5

your system resources. One final point: Once you have won over
the User, you will find that your job of keeping them happy is
that much simpler. Your interest in them will pay off in
more realistic requests (as opposed to the inflated ones your
predecessors used to receive because they never produced
anything) and an even greater understanding on their part of the
limitations you face in meeting their needs.

-Who's on First?-

Obviously, all attention eventually returns to the state of the
HP3000 itself. Where do you begin? Try starting with an
observation of the personnel around you. Are they organized?
Is there anything resembling a schedule? Are responsibilities
clearly defined or is everyone getting in each other's way?
Expect to hear from your staff that they don't have enough time
to get everything done. Now, ask them to submit to you a report
detailing everything they do on a daily basis -- what it is, how
long it takes and, most important, its purpose. Don't be
surprised if much of ·what they are doing is redundant or
downright unnecessary. Answers like "well, we've always done it
this way" are common. You are now able to do two big favors for
your staff: (1) A lot of meaningless work will be eliminated
from their schedule, allowing them to once again work a "normal"
work week and (2) By defining responsibilites for the tasks
remaining -- assuming that eliminating some tasks will require
a redistribution of others -- you will keep them from getting
in each other's hair and will give them a sense of
accomplishment. Not to mention the fact that you will stop
hearing "I thought it was -his- responsibility".

-Examining the Patient--First Glance-

And what of the HP3000 itself? It -is- the tie that binds us
users together and naturally can't be overlooked. Here you, as
manager, will unfortunately need to commi tt many non-prime
time hours playing the part of sleuth. What does it take to
manage the Operation side in strictly machine terms; that is,
what are the minimum requirements of your HP3000 computer for you
to maintain user satisfaction? First, all applications in
production should run bug free and fast. The chances of that
occurring in a shop in transition are next to nil. Therefore,
at minimum you will need access to all source code, file
definitions, documentation (oh no!) and, last but not least, a
way of putting everything together: a shop standards book. I
don't care how you work it, all these pieces are necessary if you
want to support your users. Much has been said about programmers
being "creative" and resistant to structure. That's all well
and good unless you're the guy who has to find the source code
for a program that suddenly starts zeroing out fields or
deleting records. Begin work immediately on establishing some
sort of order to your system. Any convention will work so long
as it is understood by everyone in MIS and is adhered to. You
may decide to keep all JOBS in a JOB group or you may elect a

Paper 3084 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

naming convention (both is best). Standards serve to make your
job of supporting users possible by eliminating the "needle in
a haystack" approach to finding the information you need when
you need it. Common sense? Certainly! But how many shops
maintain such discipline?

-How secure Should My System Be?-

Security is another area that varies in importance from shop to
shop but is always an issue. Everybody knows that it is easier
to start out with tight security and relax it over time rather
than vice versa. In MPE, the one thing to remember is that
Write access is equivalent to Purge access. From there you will
need to decide how you want to handle passwords and lockwords.
I have found general use of lockwords to be more of a nuisance
than a help. Getting back to good communication, internal
security problems can be avoided through good communication.
Have you found one of the programmers raising and lowering the
Job Fence from his terminal after running God? Rather than
arbitrarily slapping on a lockword, try talking with him. If
the problem persists, your problem goes beyond being technical.
In this world of hackers and such, rotating passwords on a
regular bas is makes sense and takes little effort to
implement. Obviously, password information should be kept in a
secure place on the system. Just make sure that all users are
kept up to date on the latest passwords. There is nothing worse
than getting a wake-up call from an irate user who can't log on
to the system.

-Where Did All My Disc Space Go?·

The typical approach to disc space seems to be "Since we have
all these drives, let's keep as much on-line as we can". I
hope that is not your situation. Lack of free space is a major
contributor to poor system performance. What is less obvious is
that when you actually need to find something, a LISTF can take
forever. Do yourself a favor and determine as quickly as
possible what must stay and what can be archived. In the worst
case, you will archive a bit too aggressively and will have to
restore some files. Archiving 5,000 files and then restoring 6
seems like a good deal to me.

·And Speaking of Tape·

Most HP3000 shops do not understand tape handling. Since you
can't have generations of files on the system at any given time
and, until recently, couldn't RESTORE a file if the creator was
not in the directory, tape handling tends to be approached with
some trepidation. Once again, the problem is management, not
technical. Anyone can do a STORE. Not everyone can find
those STOREd files or even that tape once the store is done. I
assume backup is a given. H-P teaches you how to backup up and
even provides sample jobs. With T-MIT, absolutely anyone can do
a backup. Please remember to send your backup offsite or you are

Paper 3084 4
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

wasting your time. My main concern in this area is with being
able to quickly locate the right tape with the right files on
it. There are any number of simple Tape Library Management
Systems that can be bought. We utilize a very simple
Contributed Software Library System that has been jazzed up for
our needs. You may want to take a hard look at all the hardcopy
listings you have of files dumped. Remember that utilities like
TAPEDIR or STAN allow you to generate hardcopy listings
superior to STORE/SYSDUMP in my opinion -- when needed. If you
are running out of file space for your dump listings, this may
provide a suitable compromise to keeping hard copies of
everything.

-You're Breaking My Batch!-

Of all the management challenges present in a changing shop,
batch is the most difficult. Jobs can have any name, reside in
any group, log on in any account -- not even the same one in
which the job file itself resides in -- launch any number of
other jobs in any number of accounts, have any number of
dependencies... As you can see, the potential abuses are
endless. I don't care what you have to do, but beg, borrow or
steal the money and purchase a good commercial batch
controller. In our shop we have had great success with MAESTRO
by Computing Capabilities, but I'm sure any number of other
products will suffice.
The features you will want are:

o Audit trail of all jobs run
o Automatic startup/shutdown
o Normal system security observed, with some

extensions over the product's internal functions
o Paramter substitution
o Definable dependencies
o Restart/recovery
o Ad hoc reporting of job run statistics

The reason batch control cannot be overemphasized lies in the
nature of batch processing. Batch is where the heavy-duty
processing occurs; batch is where the big updating takes
place; batch is where the morning reports originate.
Unsuccessful completion of last night's batch processing can
ruin your whole day! When batch processing has been stabilized,
at the very least you can get a good night's sleep, which will
give you the strength to cope with all the challenges of on-line
processing.

-Vendor Relations-

You may not make a lot of friends with my advice here, but at
least you'll avoid becoming a hot site. Your job as a manager
is to be proactive. That means you avoid problems by dealing
with issues before they become problems. Vendors - - including
H-P -- don't always see it that way. Sure, they will schedule
your P.M. 's for you; that much is there. But let's say you have
discovered an excessive amount of hi ts on one of your drives

Paper 3084 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

(you do monitor your LOG files frequently, don't you?) and H-P
comes out and runs COLOSSUS. Just to make it interesting, say
it's Friday night. What if H-P discovers a problem that
requires replacement of 10 heads and they have only three in
stock. What do you do? Accept their opinion that the problem
isn't serious and can wait until they can get the heads from
Boise? And what if you have a System Failure #650 on that
drive before Boise sends you your heads? Needless to say, you
have a responsibility to your users to keep the System up and
running during business hours (you can always fudge off hours).
You pay good money for support -- insist on good support. Until
H-P -- or any Vendor, for that matter ·- will guarantee no
downtime until the maintenance can be completed, you have every
right to expect an adequate part supply for rectification of the
problem on the spot. Believe me, once you have made it clear how
you feel about support, the Vendor will take notice. And you
and your users will have one less thing to worry about.

-Potential Problems-

O.K., so you're now communicating like crazy with everybody,
you've archived 5, 000 dead files, the remaining files are as
organized as a Japanese garden, your staff is now performing only
necessary tasks and in clearly defined roles, your nightly
batch processing is completing successfully for the first time in
years and your Vendors love and respect you. So now what's the
problem? You should be aware that every solution carries some
potentially unpalatable side effects.

Let's examine a few.

For one thing, you may lose some of your staff. Change is
difficult for everybody, for some it is impossible. Resist
slobbering over the person in every shop who supposedly knows
everything and keeps it all in his head. Give yourself and
the remaining staff enough credit for being able to solve
problems on your own. It will be difficult, of course, but you
will survive. Never underestimate the untapped enthusiasm
and the problems this brings -- of users who long ago gave up
hope of ever getting "anything" from MIS. They are now "born
again" users and their expectation is that you are miracle
workers -- especially if you were smart enough to satisfy some
easy requests in order to establish credibility. Anticipate
these expectations and, in the process of maintaining
communications , make sure you are not put into a situation of
committing to services you cannot possibly perform. Keep
turnaround times realistic. Nobody wins when you can't deliver
on impossible promises. And what about your poor old HP3000? I
now have more users than ever logging on -- many for the first
time. They are so excited about our concern in them that the
machine is just dying from kindness. Your initial capacity
planning will inevitably lag a little here, and hence some users
will be -more- frustrated than before all this great stuff
started occurring. You will find a way to juggle all the new

Paper 3084 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

demands by tuning the system a.nd breaking jobs, etc. That is
what being the manager is all about.

-Summary-

By avoiding the pitfalls of your predecessors and relying on good
management practices and your good experience, change can be
successfully managed with a minimum of disruption. You and your
users will both learn something in the process of communication,
which forms the foundation of any successful transition.

Paper 3084 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3085. Fourth Generation Languages: Use and Abuse

Mark Wallace
Robinson, Wallace & Co.
11693 San Vicente Blvd.

Los Angeles, California 90049

The topic for this paper is "4th Generation Languages: Use and
Abuse", and I will be talking about the benefits that 4th
generation languages have brought to the HP3000 user community.
Then I'll be discussing some problems that people have had due to
their use of fourth generation languages. I will suggest a
solution to those problems. That solution is a formal
development strategy into which 4GL' s fit at a particular place
and time. Another aspect of that strategy is a technique called
structured analysis and I'm going to be giving you a brief
introduction to what structured analysis is all about and how one
goes about doing it. One of the key features of structured
analysis is that it allows you to build a model of the essential
requirements which your system will have to fulfill. And I'm
going to conclude by talking about what we do after we build that
essential model. In other words, how we take these requirements
and implement them given that we have an HP3000 with certain file
storage mechanisms and software and so on.

I. Benefits of 4th GL's

So let's start by looking at some of the benefits that fourth
generation languages have brought to our community. First of
all: faster implementation. Assume you have a system specified
and designed and you need to implement it. If that system is of
the kind that's suitable for a fourth generation language, you're
going to be able to build it a lot faster than you would with
something like a Cobol or a Fortran.

You're going to be able to build it faster because it will take
you fewer statements to get the same amount of work done.
Because there are fewer statements to write there will also be
fewer statements to maintain over the life span of the system.
And also because there are fewer statements that you have to
worry about, there will likely be fewer errors in the resulting
software application that you create.

A fourth generation language typically assumes or automates some
of the programming that we had to do ourselves when we , were
writing in something like a Cobol or a Fortran. It's very
comparable to the way that languages like Cobol and Fortran
automated some activities that we had to do for ourselves when we
were programming back in the assembler days.

So faster implementation, reduced maintenance effort over the
system's life span, and a more reliable application (fewer
errors}, are substantial benefits of fourth generation languages.

Paper 3085 1
WASHINGTON, D, C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

They also have been proposed for use, and are used, in an area
called prototyping. Let's look at that area a little bit more.

First of all, what is a prototype? According to my Random House
dictionary, prototype is "the original or model on which
something is patterned." Now in the context of a computer
system, the prototype is a model which is executable. The
prototype that we're speaking about runs on a computer. And the
something that is going to be patterned on it, is a final system
which we are proposing to build (the application software).

The prototyping model itself could be at any one of several
levels of detail. You could have simply the screens themselves,
just hollowed shells if you will. You could have the screens
with literals and flow built in. By literals I mean, for
example, for a name you might see "John Smith" just to show you
where the name would go. By flow I mean we can transfer control
from a master screen to a detail screen and so on. You might be
able to input data and have it edited, or the screen might be
full function allowing all kinds of input as well as retrieval
and updating. These levels of detail on a prototyping effort
were cited by a gentleman named Bernie Boar in a ComputerWorld
article a couple of months ago. He's the author of a book on
application prototyping.

Now, where did fourth generation languages come into this. Well,
they are what we use to build the prototype. In fact, before we
had fourth generation languages, it was very expensive to build a
prototype, because in effect that involved building an entire
copy of the system itself out of something like Cobol. That
would involve just about as much effort as would be required to
build the entire thing.

The advantage of the "fast build" is that we get something in
front of the user. We get feedback from the user much sooner
than we would if we had to wait through a longer development
cycle. So we get that cross check early on as to whether we're
on target or not. However, misuse of prototyping and misuse of
fourth generation languages for prototyping can cause some severe
problems in the application development life cycle. These
problems are what I want to talk about next.

II. Problems with fourth generation languages.

One of the major ones is that they tempt us into implementing the
application too soon: before we really understand what's
required well enough to go ahead and implement. Other problems
of misuse come when we 're so enamored of a fourth generation
language that we use it to build an application when there's an
off·the-shelf package that would solve our requirements. Another
problem comes when we use a fourth generation language when it's
really not acceptable for a particular application and we really
need to retreat to something like a Cobol or more likely a
Fortran for the control that it would give us over a particular

Paper 3085 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX81S

kind of processing. If you're doing scientific number crunching,
for example, it is unlikely that any fourth generation language
(that I've seen so far) is going to be of much help to you.
There are borderline cases where you really might have a cleaner
build if you use something like a Cobol or a Fortran.

Now the first of these problems, implementing too soon, is one
that I want to take more of a look at. What do I mean by too
soon? First of all let's take a look at a typical system life
cycle (see Figure 1). Starting with the analysis and design
stages, moving on to coding, then to a test and debug phase, and
finally to the rest of the life history of the system: maintain
and modify modes. This kind of chart has been reproduced in
several books. The one that is probably the grandfather of them
all is Barry Boehm's Software Engineering Economics.

The size of the slices of the pie is meant to suggest the percent
of time that's spent in each of those stages. Now, in any given
shop, the figures may vary several percentage points one way or
the other for any specific phase but overall they're fairly
reasonable for the industry. Of course if your development life
cycle starts with coding you've already got a problem. That's
the extreme case of implementing too soon and what I'm going to
suggest is that there are a lot of problems with taking that
approach.

Now, let me ask you a question? Given that you've got a fourth
generation language, where in this life cycle does it begin to
help you? Someone suggests not until we get nearer to the
maintenance. Where does it begin to help you? Does anyone think
it might help you a little bit before that? Okay, it depends a
little bit on how you define the design phase or what activities
you assign to the design phase, but somewhere around late in
design to coding is where the 4th GL starts to play a role. In
the analysis and in what I would consider preliminary design, it
really does not provide much assistance at all. But, people who
attempt to use it as a substitute for those phases can get into a
lot of hot water.

Now, let me say that implementing too soon is not something
that's new to fourth generation languages. It is something that
has always been a temptation. In fact, we have something called
the WISCA syndrome that was first identified by Jerry Weinberg,
the author of Psychology of Computer Programming. Anybody know
what WISCA stands for? It stands for "Why Isn't Sam Coding
Anyway?" It's a typical manager's response when he or she walks
into your room, now you and I are the humble programmers here,
and sees that we're doing anything other than the writing of
code. Because for a lot of managers, anything other than the
writing of code is just a waste of time. They offer lip service
to analysis and design. "Oh, yeah, we know you've got to think
about it a little bit," but when push comes to shove what they
really want to see is: let's grind the code out.

Paper 3085 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

A lot of the time that comes from an approach which is referred
to as backward "estimating". In quotes because I don't really
want to dignify it with that kind of a name. The way it works is
the manager comes in and says "I've promised the user that we're
going to have this by December 1 and I know from my years of
experience in this industry, sonny, that the only way you 're
going to do it is if you start coding on it tomorrow, so by gosh,
that's when you better start coding." We take an arbitrary
deadline and work it backward to when coding has to begin.

Well, of course if you don't know what the problem is you're
supposed to be solving that can cause you some severe difficulty,
as you might imagine. Now, fourth generation languages have come
into play as i terns that cause a temptation to do this more so
even than the third generation. If you're using a fourth
generation language, you should be able to wait longer before you
start coding, right? Because you know when you get to coding
it's going to go faster.

However, if your manager is not familiar with that kind of speed
up, he or she may resist that bargaining or request on your part
and say, "Well, you better start it June 1st anyway because I've
been around for a lot of these projects, sonny, and I know that
you can run into problems and I want to see that thing done by
December 1st." So the pressure to get into programming or
prototyping can become great and, not only that, the pressure to
then let the prototype become the final system, which it was
never intended to be, can be almost irresistible. But there are
some real problems with that which have been reported in the
industry.

Here's a series of excerpts from an article in ComputerWorld
referring to a prototyping facility at the Bankers Trust Co. in
New York. They use a fourth generation language called Focus
which is actually probably a step more comprehensive than most
anything we have to work with on the HP3000 It will interrogate
you and construct the data base for you and allow you to build an
entire application from scratch and is supposed to be fairly user
friendly and so on. It's a main frame capability package, very
expensive, very capable.

But what happened at Bankers Trust? Programmers referred to as
"Focus acrobats" tended to attack requests without proper
analysis. And these are your hackers who graduated from high
school and now they have a job with your company. They're bit
pushers who really get their enjoyment from twisting and turning
these fourth generation languages to do things that would
otherwise be difficult to do. People like that have a place in
the company but we have to keep that place well defined. The
problem with letting them make that initial step too soon is that
it "led to applications that were poorly designed and documented
and had data integrity problems."

Paper 3085 4
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Now, a little while ago we saw Bernie Boar's view of prototyping.
Here's this gentleman's view. "A prototype is a full working
representation of a final system, not something you throw
together in an afternoon. You should be able to put production
data into it and run in a production mode." He has a much more
fully formed view of what he means by a prototype.

He goes on to say, "poorly designed prototypes were being used as
a base to create poorly designed systems." Furthermore, and to
me this is critical, "users were losing interest in confinning
systems specifications since they always assumed the prototype
could be changed."

We get these vendor claims that, or people read into vendor
claims the idea that, you can take your 4GL, toss something out
and if they don't like it you just rework it, until it is what
they like. But that reworking can take a long time. What these
people ran into was : it was taking longer to do it that way
after half a dozen false starts than it would have if they had
started out and specified this thing from scratch.

Let me give you another example. A significant size system was
implemented recently by Hughes Aircraft Radar Systems Group.
Their Kurt Lysy reported at the Structured Development Forum in
Newport Beach earlier this year that prototyping, as a result of
the experience at Hughes, at least in this group, was not a
substitute for analysis and design. We simply cannot identify
the functional requirements of the system as well as a careful
analysis and design.

It places too much emphasis on the details of form and screen
layout. You get the prototype up in front of the user and you
get the early user feedback, that's true. But what kind of
feedback is it. I'd like to see this field moved from column 15
to column 17. Make this one blinking instead of underlined. I
want this column to have a column heading that's stacked instead
of two words next to one another. That, I would like to submit,
is not the kind of feedback you need at this stage. Those are
coding details that can be dealt with a lot later in the
application development cycle. They take your attention away
from the policy requirement, the essential requirement that the
system has to fulfill.

Next problem. Prototyping is dependent on a pre-existing stored
data model. All of these fourth generation languages and
prototyping tools require that the data base or file structure be
there already. If you don't know what it ought to be, you're not
going to find out very conveniently by tossing up prototype
screens• That's going to be a very painful and slow learning
process. Like when the feedback requires you redo your data base
or file design, that's going to be a slow and painful process.

Last problem:
it into the

Paper 3085

the temptation to take the prototype and "enhance"
final system. I say enhance, more often it's

5
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

warping, twisting and turning. It happens if either you're late
or politics come in. User says, "Hey, you know, all the screens
are there, just stick a few more things in and we' 11 be done."
Not very often the case.

What is the benefit of prototyping as discovered or confirmed by
Hughes Aircraft? It does provide valuable assistance in defining
the man-machine interface. Your screen layout, your form layout,
what the system looks like to the user. It's great for that.
You can change things around very quickly once you've got a solid
base to build on.

So, at the risk of inflicting another acronym on an already over­
burdened industry, I would submit that we have to deal now with
not only WISCA - "Why Isn't Sam Coding Anyway?"• but also with
WISPA - "Why Isn't Sally Prototyping Anyway?" From the manager
who has just been visited by your friendly vendor sales rep and
been convinced this package is the answer to all of your needs,
dreams and prayers. "Let's get with it." Well, that could be
premature.

Given that we have these problems with a premature use of fourth
generation languages, what would I care to suggest as a solution?
Well, as I mentioned earlier I'm going to propose a formal
development strategy for building applications. I will first
attempt to provide some justification for that, then I will give
you an overview of a specific strategy that I would suggest,
although it's by no means the only one. A key piece of that
strategy is a formal requirements definition stage, also known as
systems analysis. I' 11 mention some problems with the
traditional approaches to systems analysis, and what I would
suggest is an answer to those problems, which is one particular
technique known as structure analysis.

III. Solution: A Formal Development Strategy

A. Justification

So let's look at the solution and why I think we need, and I'm
not the only one, a formal strategy. Bankers Trust from the same
ComputerWorld article: "Prototyping should be used within a
systems development methodology. At times it may not be
appropriate at all." Many of you may have been privileged to
hear Ken Orr speak at a previous SCRUG meeting where he refers to
the 'cut and run' approach to systems development. Again the
same kind of philosophy that we start prototyping before a formal
requirements definition.

There's a very interesting introduction in the SCRUG newsletter
for the 1985 conference, written by Maureen Nott from Intel, who
was one of the speakers on capacity management, planning and
tuning and so on. She says, "With the increased power of the
HP3000 has come an increase in workloads. (Here's the key.)
Larger and more complex application drive us to look beyond the

Paper 3085 6
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

familiar day to day systems tuning to search for rrrore concrete
methods of resource management." What, I would like to suggest
is that the same factor, larger and more complex applications, is
also driving us toward more concrete methods of software
development management.

As we get into, with systems like the 68, a ballpark of
applications that the HP world hasn't seen before, perhaps these
statistics from Capers Jones may be a bit sobering. From
ComputerWorld last November his prediction is, and based on
statistics that he's collected, up to 253 of large software
systems (those with over 64,000 lines of source code), currently
under development will be canceled before they are completed, and
up to 603 will experience significant cost and schedule overrun.

64,000 lines of source code is pretty big for an HP3000
application. Generally, when you see something that size, you
would be talking about some sort of general purpose package but
people are creeping up in that direction. The management is not
buying those 68s just to run the weekly football pool. They want
to see a lot of work out of them. So that's some justification
for a formal strategy.

B. Strategy overview

Here is one possible development strategy that you could take
(see Figure 2) . It's not the only one. We start off with an
activity called the blitz that I'm going to cover in more detail
later. Basically, that is a real fast sweep over the
requirements in order to get a feel for the overall scope of the
project. That results in a preliminary model which in turn is
fed into two separate activities: an information modeling phase
and a formal specification phase.

The information modeling phase yields what I call an ERA or
Entity Relationship Attribute model. Basically it's a model of
the data that you will need to store in order to satisfy the
output requirements of the application. The specification phase
produces what I call a structured specification. If both of
those are input to design, that produces a blueprint for the
building of the system and in turn, that's used to implement the
system, which generates a running version.

In the meantime, the spec has been used to generate test data
independently of the design and implementation activity. The
test data and the running system are used by a quality assurance
function to verify that in fact everything is as it should be.
And, the results of that are used by an installation activity to
decide whether or not to deliver the resulting system. This is
not the only approach. Mixing and matching is possible for the
needs of a particular organization and a particular application,
but it's certainly one that has well served users who look for a
formal development strategy.

Paper 3085 7
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

C. Requirements Definition

I want to focus on the phase that I call "specify". That's where
we' re going to define the requirements for the system.
Requirements definition is also known as systems analysis. The
purpose is to establish what the system must do. How to do it is
something we're going to defer until design. Again going back to
Bankers Trust and their experience. "What is required is a
functional specification that is approved by the user. In fact a
project cannot proceed to the next phase without it."

Another article in ComputerWorld last May by Maureen Lampirello,
"The lack of complete and correct specifications is the problem.
All too often project costs are estimated and completion dates
are targeted before the goals and boundaries of a project are
fully discussed. In the worst cases, work actually begins on
program design or coding when the project is little more than a
sketchy statement of the user's requirement." The danger with
this is that you may fall victim to Gordon's Law, which states
that "if a thing is not worth doing at all, it's not worth doing
well." So let's not spend a lot of time and energy designing and
implementing something about which nobody cares. Let's identify
the requirements first.

Another slice over the same idea is that "pay me now or pay me
later" commercial. If you want to skimp on analysis and design
and go straight into coding you're going to pay the price. But
the difference is that the cost to make a change in each
development phase goes up by approximately a factor of 10. In
other words, if you deliver a specification to the user and they
find something in it that is not what they wanted, let us say
hypothetically that the cost to fix it in the specification is
$100. Given that that was so, industry statistics indicate that
if you have completed the design before the discrepancy is
noticed it's going to cost you $1,000 to make the change, and if
you have coded and implemented the system, it's going to cost you
$10,000 to make the change. So the idea is, if you pay me later,
the tab is going to be a lot higher.

D. Problems with Systems Analysis

Given that we want to undertake a formal systems analysis, what
are some of the problems that we can run into? First of all
there's a personnel issue. The skill set that's required from an
analyst is very different from that required from a programmer.
Some companies are making very good strides at getting users
involved in doing systems analysis. DuPont on the East Coast is
one. But, for the most part, people who do analysis, like
myself, came up from the ranks, from a programming background.

As we all know, a programmer has to be able to communicate with
the computer. There are a lot of us around who, at least at one
point in our lives, were not particularly good at communicating
with people. Maybe that's why we even chose programming as a

Paper 3085 8
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

profession. An analyst, on the other hand, is a very different
story. There you have to communicate with people, both the users
on the one hand and the technicians on the other, who are going
to build the system. So promoting someone with a programing
background without giving them adequate training in how to do
systems analysis can be a source of problems.

A company, which is an HP3000 user with which I am familiar, had
a systems development project going on about a year, year and a
half ago, and they committed to systems analysis. They said,
"we're going to study the requirements before we build anything,"
but they had an analyst who came up from a programming
background, had no training in how to do analysis and they ran
into some major problems. The analyst went around talking to
users for six or eight months or more and never wrote anything
down in any formal way, just scraps and notes and stuff, and
never organized their requirements in any systematic fashion.

So, when it came time to do some designing and building of the
system, they were very poorly positioned to go ahead with that.
The analyst and the designer on that project are no longer with
that company and the project was shelved the last I heard. So,
your analysts have to be trained, especially if, like me, you
come from a programming background.

But a lot of the training that's available ls teaching analysts
to do things in ways that have since been demonstrated to be
outmoded. They teach you to produce specifications that are
redundant: the same pieces of information are defined over and
over again. They are wordy, long narrative descriptions of what
the system's supposed to be doing. They are too physical.
Concentrate on things like report layouts again, or screen
design, or the specific technology that's going to be used to
build the system, specific applications of computers.

And as Tom DeMarco, one of the leading experts on analysia, has
commented, they are tedious to read and unbearable to write.
What happens is you get a document that's about as thick as your
conference notes, and it gets dropped on the user's desk and the
comment is: Read this and sign it in blood or we're not going to
go ahead and build your system. Well, the user might sign off on
it, but I think a lot of you will agree that it is hardly what
you would call informed consent.

E. An answer: Structured Analysis

What's the answer? Well, I've kind of given it away by telling
you that in the next section we 're going to be talking about
structured analysis. Tom DeMarco, who was one of the pioneers of
structured analysis, when he set forth the goals for a
specification that his approach would produce, wanted it to be
maintainable. He wanted it to be partitioned in a top down
fashion, so that you could look at one piece of paper and get an

Paper 3085 9
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

overview of the entire system, and then if you wanted to pursue
any subsystem on other pieces of paper to get more detail.

Another goal is to use graphics - a picture is worth a thousand
words. And you'll see some examples of that very shortly. In
fact, you already have seen some examples. And he stressed the
need to differentiate between the logical and the physical
aspects of the system. The logical aspects are the requirements
that are essential to the functioning of a system regardless of
what level of technology you use. For example, if you have a
payroll system, you're going to have to generate checks
paycheck.;. You could do it by hand. It could be a completely
manual system - pen and paper. Or it could be totally automated
with the latest state-of-the-art, on-line data entry and so on.
Whether it is manual or automated or what technology is involved
- that is a physical aspect of the system. We need to keep that
separate from the functional requirements.

Now the approach that structured analysis takes is that it
encourages us to build a model of the requirements. What do I
mean by model? I searched my Webster and I got to the eleventh
definition of the word model and I came up with one that I was
happy with for this context. "A description or analogy used to
help visualize something (like an atom) that cannot be directly
observed." Well, I would subt .. ~t to you that your new system
cannot be directly observed yet because it doesn't exist.

So what are we going to do? In requirements definition we are
going to build a model of that new system. A model will omit
some aspects of the system, otherwise it would be the full system
itself. What are we going to omit? We are going to omit things
like screen format, report layout, physical storage detail, and
the sequential flow of control. Those will get incorporated at a
later point, after we have defined the essential requirement.
Now notice that those are the sorts of things that prototyping
focuses on right from the start. And that again, is another
slice at why prototyping is not a substitute for requirements
definition.

IV. How to do Structured Analysis

What I'd like to do now is give you a very brief introduction to
what structured analysis is all about. What kind of models are
we talking about building? Now, this sort of thing is taught
over 10 to 15 days of training by various organizations so in the
10 to 15 minutes that it takes you to read this obviously I am
not going to be able to turn you into fully capable structured
analysts. But I wanted to give you some kind of flavor for the
tools that are involved and the techniques that are applicable
for putting those tools to use. Tools are the data flow diagram,
the analysis data dictionary, mini-specifications and then a
concept known as leveling of data flow diagrams for systems
bigger than a certain size.

Paper 3085 10
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

A. Tools

We'll start with the data flow diagram. You've seen a couple of
these already in this paper. The data flow diagram has four
different kinds of components on it. We've got the arrows along
with the arrow heads. Those are data flows. They represent data
or information flowing from one part of the system to another.
We've got the circles or bubbles. Those represent processes or
activities. Those will typically receive some data and transform
it into a result. We have the double parallel lines which are
used for data stores. Data store is simply a technically neutral
name for a file or data set. It could be Master, Detail, KSAM,
MPE, whatever. And then we have the boxes, which are either
sources of data flows or sinks or receivers of data flows, or a
given box could be both as in a person who submits an inquiry and
gets back a response.

Now this data flow model of the system has some interesting
properties. First of all it is a network model. And by that I
mean that all of the processes can be thought of as active at the
same time. You can think of it like an automobile assembly line.
The automobiles start out at the end of a line, let's say start
out with a frame, and then maybe we attach the wheels to the
frame and it moves down and then we drop the body on, and then it
moves down and then the engine gets dropped in it, moves down to
the next station and the doors get put on, and so on. Now, as
the car leaves one station and goes to the next another car comes
to the prior station, so each of the stations is active
simultaneously.

But of course any one car is going through it sequentially. Now
the benefit of that is that a car pops off the other end every 60
seconds or so instead of every half an hour, which is how long it
takes that car to go from beginning to end. So all of the
processes are active simultaneously but any one transaction
coming into the system may only go through one at a time.

Also, it's a steady state model. We don't deal with
initialization or termination, we assume the system is up and
running and will continue to do so. That's not to say that the
system will not have to be initialized, it's to say that that is
not something we're going to think about now. We're going to
defer that until design time. Similarly we 're going to ignore
control flow until design time. Interrupts are pure stimuli as
opposed to the data flows that we do care about.

Now this data flow diagram follows the principle that we do not
want to overload any one component of our structured model. So
if a data flow, for example, was an order for goods we would just
call that an order here. We would not list all of the data
elements that make up that order, like what goods, how many, who
the customer is, where to ship them and so en. We have a summary
name and at another place in the model we will provide a more

Paper 3085 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

detailed look at that particular component. So, the advantage
is, we can see the forest here for the trees.

Here is an example of a. data flow diagram (see Figure 4) for a
very simple order entry subsystem that I just pulled out of a
class that my partner and I teach on one particular fourth
generation language. You've got a customer; customer can make an
order. We have an activity that accepts the order. In doing
that, we check the customer file to be sure that the customer ID
coming in on the order is a valid one. We're going to check the
parts master to make sure that all the parts being ordered in
fact exist. We'll check the sales master to validate the code of
the sales representative who booked it, and we will create an
order header record, and multiple line item records, one for each
part that was ordered. We will generate a packing slip that we
send to the warehouse, where presumably they will pick the goods
off of the shelf.

When a customer makes a payment we will accept that, we~ll update
their current balance in the customer file, and we' 11 create a
record that we will add to the payment history file reflecting
the fa¢t of the payment. This is a high level look at what the
system does.

Here's another data flow diagram (see Figure 5). This one is
from another one of our classes. Notice here that the network
nature is brought out because we've got, for example, off of a
compiled dictionary the ability to run any one of about six
separate tasks at the same time: Quick, QTP, Quiz, and three
utilities associated with the dictionary. All of those can be
active simultaneously, so again the model gives you a picture of
that parallelism which is very difficult to convey if you are
writing a sequential text description of what the requirement is.
That's why this "picture is worth a thousand words" thing is a
real benefit.

The data flow diagram can be checked for syntax. For example, if
there is a bubble into which data flows but nothing ever comes
out, you don't have to look very far to suspect that something is
wrong. You can also check it semantically. If you've got a
bubble into which flow sugar, eggs, and water and out comes
orange marmalade, a semantic understanding of cooking will
suggest that perhaps something is missing from the input. That,
you couldn't determine just from observation, you have to
understand the nature of the activity.

Now, given that the diagram is a high level model, where do we
turn to get more details. The first place is what I call the
Analysis Data Dictionary. Now, structured analysts refer to this
simply as the data dictionary but I want to differentiate here
because there's a difference between this and the data dictionary
that you may be more familiar with. In the Analysis Data
Dictionary we have an entry for each data flow, which breaks it
down to the data elements that are carried on that flow.

Paper 3085 12
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXe!5

For example, an incoming order might be your customer I.D., the
date the order was placed, and then for each part the part number
and how many they wanted and so on. Also, for each data !tore,
there will be a definition of the elements that make up that
store. So we 're indicating the composition of each of these
things. We are ignoring physical storage details. We don't care
whether it's packed, or binary, or signed or unsigned, or
anything like that. We don't care about the formatting, whether
we're going to float in a dollar sign, stick in a comma for every
three digits; all of those again are design and implementation
considerations.

So the reason why people who use what I call run time data
dictionaries, like Dictionary 3000 for example, have some
problems with structured analysis is they tend to fill in all the
blanks. Dictionary 3000 or the Powerhouse dictionary or, I'm
sure, many of the others can store a lot of information about
each data element, that is completely irrelevant to the
requirement. It will be a factor when we get into design.

Here are some sample data dictionary definitions. They tie back
to the earlier diagram (Figure 4).

ORDER = ORDER-HEADER + {LINE-ITEMS}

ORDER-HEADER = ORDER-NUMBER + CUSTOMER- ID + DATE- PLACED +
(SALES-REP-CODE)

LINE-ITEMS = ORDER-NUMBER + PART-NUMBER + QTY-REQUESTED

PAYMENT-TYPE = [CASH I CHECK J CARD]

Order, can be defined as the order header plus some number of
line items. The braces indicate that we have the possibility of
repeated occurrences. Then we break down order header into order
number, customer ID, date placed, and then the parentheses
indicate optionally a sales rep code. Maybe it's a house account
and there is no sales rep. Line items are broken down into order
number, part number and quantity requested. Payment type might
be, and here the square brackets indicate choose one of, either
cash or check or card, meaning credit card. So we have some
symbols that we use to compactly represent these dictionary
definitions. And those explain the data flows and the data
store.

The bubbles are explained by mini specifications. We call them
mini specifications because we've used the bubbles to break down
the system into miniature systems. We don't have to specify the
whole lump at one time. Just a piece at a time. These mini
specs are rigorous descriptions of the activities carried out by
one bubble. We want to focus on the policy that's being applied
by that bubble, not on the programming techniques. The mini spec
is not the coded implementation. Strategies like decision tables
or decision trees can be very useful for mini specs.

Paper 3085 13
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX86

Ir all else fails. you can fall back on something we call
structured or disciplined English and here is the mini spec for
the accept order bubble:

If Customer ID does not exist, reject the order Otherwise, create
an Order Header record, storing the input order header data. for
each input Line Item, if Part-Number does not exist, reject the
line item otherwise, create a line item record, storing the input
line item data.

This one is fairly simple because you don't have a lot of
calculations being applied like calculating a discount or
deductions from a paycheck and so on, but if that were the case,
this is where those would be specified. So again the bubble on
the diagram is a high level view of the mini-system.

Now, we want the system to be defined or modeled on one page.
How many of these bubbles could we fit on a single page?
Somewhere around a half a dozen to maybe eight or nine, we're
going to have as much on there as we really want to deal with in
a single picture. Suppose our target system has more than 8 or 9
essential activities? Well, what we do is, we zoom in on a
single higher level bubble and create for it a lower level
diagram explaining what goes on inside it, and we can repeat
that. On the lower diagram we can zoom into one of those bubbles
and break it down to another diagram. At the top we have a
context diagram that shows the entire system.

Now let me give you an example of that (see Figure 6). Again
drawn from one of our training classes. Here we have an
application system that happens· to be written in the Quick
package. We show the programmer and the operator interacting
with the system: referencing data stores, the dictionary and the
user data, with the data flows as shown. Now this is a context
diagram. The entire system is in this one bubble.

Well, suppose we want more detail. Let's zoom inside that bubble
and see what's going on (see Figure 7), Here we see inside that
bubble there are three smaller ones. QDESIGN, which is, if you
will, the compiler that translates your Quick specifications into
an executable screen. We have the Quick driver that executes the
screen at run time. We have a facility called SetQKGO which
simply provides some parameters that Quick will use at run time.
The same incoming flows from the operator and the programmer are
shown on this lower level diagram. We simply break the handling
of those incoming flows down to a greater level of detail.

If you want to, you can look inside one of these bubbles, so
let's look inside the Quick bubble (see Figure 8) and we find a
lot of separate procedures that are used by Quick at run time to
implement its processing, and I won't go into the details of
those, and you could take it down even additional levels still
(see Figure 9).

Paper 3085 14
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Now, just to review the tools, what you will end up t.fith is a
levelled set of data flot.f diagrams indicating the processes that
the system carries out, the data flows into and out of those
processes, the data stores in which we keep information t.fi thin
the system, and any sources and sinks in the outside world, by
that I mean outside of the system, with which we have to
communicate. And then to review, the processes are explained in
detail by either a child diagram where we zoom in on a bubble or
a mini specification where we write the detailed policy that the
bubble carries out. The data flow and data store, each will be
explained by a data dictionary entry. Now that's the kind of
model that we want to build.

B. Techniques

What sort of strategy or techniques can t.fe use to build it?
Again, just one possible strategy, and here I'm using a data flow
diagram to model the process that a structured analyst carries
out in defining a system (see Figure 10). We start with the
user, we get information about the existing system, we model the
current physical system. We then derive the essence, the
essential requirements; in other words, we strip off any signs of
the technology or particular hardware that's being used. That
gives us a current essential model.

We get the net.f requirements from the user. We derive the essence
of the net.f requirements. We merge those into the current
essential model, to come up with a new essential model. This is
the logical requirement for the net.f system. We take the new
physical requirements and the new essential model, and we carry
out an activity called new physical modeling which actually
becomes almost part of design. It's getting harder and harder to
draw that boundary. In fact, fourth generation languages are one
facility which is making it harder to draw that boundary. And at
this point we consider any new constraints in the nature of the
hardware and software that we'll be running on.

Now why do we care about the essence of the system? Why do we
care about the essential requirement? Let's consider what we
mean by the essence. In essential modeling, we're going to use
some basic principles. One is technological neutrality. We
don't want to presume any particular system. I just saw in an
article in ComputerWorld a few months ago, IBM is shutting down
its last plant that produces punch cards. 80 column cards. This
is just a few months ago. They're closing this down. People
still use them, right, but not enough for IBM to justify keeping
the plant in operation.

A large part of the reason for that is that when people upgrade
their systems, they don't take this intermediate step of
identifying the essential requirements. They just convert from a
370 to a 4300, or a series 3 to a model 48 or so on. You up the
technology but you don't take that opportunity to look back at
what the system really needs to be doing.

Paper 3085 15
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

In essential modeling, we will assume that the internal
technology that we have to implement the system is perfect, that
our processors are infinitely fast and have infinite storage, for
example. And of course, if you listen to your sales reps you may
sometimes get that impression, but we're not quite there yet.
That's why we have to have that follow-on phase where we do the
physical modeling.

The benefits are, we focus on the policy requirements, we
eliminate any physical fossils like a system where all the
records are 80 characters long. Has anybody seen any of those
lying around? We avoid a premature focus on the new
implementation. This is how we get the maximum confidence that
the new system will do what the user wants it to do.

Now, in breaking down the essence of the system we 're going to
break down the processes using the idea of event partitioning.
We're going to identify the events to which the system has to
respond. An event would be either an external event like
"customer submits an order," or "supplier delivers goods," or a
temporal event like "time to issue the paychecks." Once a week,
we know we have to put the paychecks out, and we don't need
somebody to come in with an ad hoc suggestion that we do that.

We will have one high level bubble which contains the entire
system response to each event that we identify. The data we'll
break down using the idea of object partitioning. The object
will come either from the information model or we can synthesize
them from the stored data requirements in our structured
specification. We will end up with one data store for each
object. This is still a logical model. When we put it onto a
computer there may well be multiple data stores for a given
object or we may have to collapse more than one object into a
single store.

I talked about starting off this modeling activity with something
I call the blitz. That is nothing more than a fast build of the
essential model. It can be done, it should be done, in no more
than a week or two even for a large mainframe system. For an
HP3000 system, you may be able to blitz in one or two days rather
than one or two weeks.

What are the speed-up tactics that you use during the blitz?
Well, you would stop the model one or more levels up from the
bottom-level bubbles. In other words, don't go through all the
details during the blitz. There'll be time for that later. You
can also take short-cuts with the data dictionary entries, and
the mini-specifications. For example, don't create data
dictionary entries when sample forms are available. Also, don't
write detailed mini-specs if you can cut and paste from existing
policies and procedures manuals.

The purpose of the blitz is to get a rough feel for the sjze of
the project. Why do you need one? Well, you can use the blitzed

16 Paper 3085
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

model to estimate the time and cost to do the complete analysis.
It can be used as a guide to allocate personnel and system
resources during later project phases. And, it gives early
warning that you may have to either re-scope (shrink) the
project, or plan to deliver it in incremental versions. But
please remember that, just like the prototype is not the final
system, the blitz is not the final systems analysis.

V. Life after Essential Modeling

After you have completed the New Essential Model, what next? What
happens during this phase we've called "New Physical I Design?"
Well, to start with, you have to identify the candidate physical
processors for the new system. This includes both manual (human)
processors and automated ones (computers and software). You take
a census of those processors and their capabilities, and try to
match them up against the essential activities from the New
Essential Model. That allows you to allocate the essential
activities among the physical processors. You will then,
typically want to optimize the physical model, taking into
account the constraints that those real-world processors operate
under,

At the same time, the stored data model is being converted into
an actual data base and/or file design. Again, optimization
would be done in consideration of the limits of your particular
data storage technology, both hardware and software. These would
form the components of the New Physical Model, and, from there,
the software design "blueprint."

The final phase is implementation. Be sure to pay attention to
manual procedures as well as the automated one~. Many projects
have been sunk by antagonistic users when a little effort up
front from the analysts to anticipate their needs would have
saved the day. The automated procedures will be coded in the
most appropriate programming language, and screen and record
layouts will be generated for review by users. This is where
4GL's can really help. You can revise these layouts very quickly
to provide better human engineering and more user-friendliness.

Some of you may be thinking, after all this, "We don't need any
of this stuff. We're going to buy a package." I have one
question for you: "How do you know you're getting the right
one?" I know, personally, of more than one HP3000 user who
bought a very expensive manufacturing package (I won't say from
whom) , and was totally unable to implement it. They ended up
switching to another package, after two years of wasted effort.

John Palmer, one of the co-authors of Essential Systems Analysis,
has written a paper entitled: "Applying Structured Analysis: The
Acquisition and Installation of Software Packages." His point is
that you need just as much, if not more, to go through a complete
requirements definition before purchasing a package. Once you
have this kind of requirements definition, purchasing becomes

Paper 3085 17
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

much easier. You just release the specification to all competing
vendors. "No marketing glossies, thank you. Just a bubble by
bubble response as to how well your package fits our needs." And
where no package is an exact fit, you have a super tool to
estimate the time and cost to modify one to handle your unique
needs. Can you see that you'll have a much better structured
procurement cycle with this kind of approach?

Finally, end-user involvement. Again, from Hughes Radar: Can
prototyping allow the end-user him or herself to build the
application? The conclusion for a small system: Probably we're
getting to that point. For a large system: Pretty doubtful.
And not only the size but how the system integrates with the rest
of your applications is a factor. If it has to communicate with
a lot of existing stuff, again, turning the end-users loose to
prototype is not going to be your best move. Like turning a lot
of them loose with separate micros can cause a problem in data
integrity and integration. However, there may be a political
benefit to letting them try to build their own application.
Right? You know, give them a lot more of a gut feel for what we
suffer through.

Finally, to summarize what we've covered in this paper: 4th
generation languages are great tools, but like any other tool,
they need to be used where they are most appropriate. I feel
that prototyping with them is not a substitute for a careful
systems analysis. You need a methodology for building software.
Structured analysis has proved to be an effective tool for
requirements definition. It should be used even when you're
pretty sure you're going to solve the problem with a package .•
Otherwise, how do you know you're getting the right package? And,
how do you know what you 're going to have to do to customize it
for your needs? Finally, end-users are still not able to
implement complex systems by themselves.

Paper 3085 18
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

Figure 1

[SYSTEM LIFE CYCLE l

I .
i MAit-1TI\r1'l

£
tJ\CbIFY

TESr

"'
J,.

/)E8UG-

Barry Boehm, "Software Engtn .. .,rtng Economlcs"
Pr8nti~e-ttaU, ! 981

Paper 3085 19
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROIJP INTEREX85

Figure 2

Paper 3085 20
WASHINGTON, 0. C.

BAL. TIMORE WASHINGTON REGIONAL. USERS GROUP INTEREX85

Figure 3

I DATA FLOW DIAGRAM i

1 SouRCE i

SINk

• Network model

• Steady-state model

• Ignore control flow

• Don't overload any one component

Paper 3085 21
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 4

I Order Entry Subsystem [Df'D]

CUSTOMER

t.oAREH-ousE

Paper 3085 22
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 5

DICTIONARY Data Flow Diagram [DFD]

Paper 3085 23

COBOL Fl:>
CoPy LrtS

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

Figure 6

USER. DATA

CONTJ:XI
DIAt;RAM

Paper 3085 24

DIC TYON ARY

O PER.ATOR

ROBINSON, WAU.ACE A: COMPANY: Page 4

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

Figure 7

QUICk
MEi;;SAQ:

QkGo

tNTEREX85

USE!< DATA

ROBINSON, WAU.ACE ac COMPANY: Page 5
Paper 3085 25

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 8

Paper 3085

USER. .t:.A 771

ACrrol./s btJ Pkee.du.1-es Flol4J

ROBINSON, WAUACE t COMPANY: Page 6

26
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 9

BllFF€R.

ROBINSON, WAUACE cl: COMPNft': Page 7
Paper 3085 27

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

Figure 10

USERS

Techniques -->
Strategy Overview

INTEREX85

Why do we care about system essence ? ...

Paper 3085 28
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3090. Techniques for Developing Device Independent
Graphics Software

Peter Neuhaus
Peripheral Product Specialist

Hewlett Packard Company
19447 Pruneridge Ave

Cupertino, California 95014

Abstract

Occasionally the requirements for displaying data graphically go
beyond the capabilities of existing software packages.
Consequently, it becomes necessary to begin the unpleasant task
of developing custom code. Since this typically involves a
significant investment of resources, it is important that the
software be written so as to maximize its longevity and
maintainability. To achieve these goals, it is necessary to
understand the basic principles of graphic device independence
and the concept of the Virtual Device Interface.

This paper will discuss these topics along with a discussion of
how available graphics software tools can be used to assist in
the development of device independent graphics software.

Background

In the early 1970s, the computer graphics industry realized that
it needed to standardize some of the methods used in developing
graphics software. The resulting conventions made it possible to
create graphics in one environment (computer) and transport them
to another with a minimum of recoding. To date, only a few
standards have been established but others are under
investigation. The Graphics Kernal System (GKS) has been adopted
by the International Standards Organization and is being used
extensively throughout Europe while the Siggragh CORE system,
proposed in 1979, has not gained much acceptance. The debate
continues but GKS seem to be pulling ahead.

Regardless of whether or not one chooses to follow a strict
standard, considerable improvements can be made in the writing of
graphics software by following a few simple guidelines.

Frequently, companies plan to use only the specific graphics
output devices that they already own, for example a HP7550
plotter or perhaps a non-HP graphics terminal. To support these
devices, the specific instructions required by the devices would
be scattered throughout the application program (see figure 1).
The result would be very efficient but would necessitate
excessive modifications if new or additional output devices were
acquired at a later date.

Paper 3090 1
WASHINGTON, D. C.

J_

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The First Step

Device independence is nothing new to the professional
programmer. Common functions such as cursor control are often
modularized into separate subroutines (device drivers) that can
be easily modified or replaced to accommodate new output devices
that require different "escape sequences" for their proper
operation. When it was necessary to drive more than one output
device, a duplicate set of subroutines is written for each device
(see figure 2). In addition, if more than one device might be
used' simultaneously, it is necessary for subroutines with
inde~tical functions to have different names, such as LINEl, for
drawing a line on device 1, or LINE2 for device 2. At this
level, device independence was still not achieved since the LINEl
and LINE2 calls must be embedded in the application program.

Step Two

By inserting another level between the application program and
the device drivers, the interface between the application program
and the outside world is standardized. If this new level,
perhaps a commercially available GKS package, contains a function
that allows the application program to select which output device
should be used, if is possible to remove the references to LINEl
and LINE2 and substitute a call to the new LINE function in the
GKS package (see figure 3). At this point, true device
independence has been achieved since new devices can be supported
without modifying the application program as long as someone
writes a device driver for the new device. However, creating
these new drivers can consume enormous amounts of programming
effort because each device is unique in that it requires specific
nonstandard "escape sequences" to perform a given task.

VDI - The Last Step

The graphics industry is attempting to standardize the hardware
instructions required by graphic output devices through a concept
called the Virtual Device Interface (now often called the
Computer Graphics Interface). If all graphic devices understood
the same commands, the need for device drivers would be
eliminated (see figure 4). Essentially the device drivers would
be implemented within the device's· firmware. However, until the
VDI concept becomes commonplace, it is necessary to employ the
basic concepts of device independence when writing graphics
applications. Several alternatives are possible.

Ways to be Independent

The most straightforward solution would be to obtain a graphics
software library either from the computer manufacturer or from an
independent third party. Such packages include an number of
device drivers for the most popular graphic devices. The
disadvantage to this solution becomes evident if it is necessary
to change host computers at a later date. Even switching between

Paper 3090 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP tNTEREX85

computer lines offered by the same manufacturer can cause
significant problems. Therefore, when shopping for this type of
software product, it is important to investigate the possibility
of moving the product between systems. Packages written in
standard languages such as Fortran or Pascal help simplify
portability. But even standard languages often don't port well.

The ability to move to another CPU may sound like something that
wouldn't be done too often, but as desktop computers become as
powerful as typical multi-user systems, many applications will be
moved to smaller workstations. It's much like the user who feels
he needs only 50 megabytes of disc storage, orders lOOMB even
though he knows it will never be needed, then runs out of disc
space six months later. Applications and technologies change
continuously. Investing the extra resources to implement a
flexible solution often pays high dividends at a future date.

Sharing Graphics Data

Frequently graphic databases created on one system need to be
processed on another. To address this need, a standard format
for exchanging databases, called the International Graphics
Exchange System (IGES), has been established and is currently
supported by a number of graphics packages. A similar newer
standard, the Virtual Device Metafile (VDM), performs much the
same functions. By simply using the IGES or VDM device driver,
an application can store the resulting image or object
description onto a transportable media such a magnetic tape which
can then be read by another IGES/VDM compatible system.
Applications written in a device independent manner are able to
utilize this useful feature.

Summary

The trade-offs involved in the decision to standardize the
development of computer graphics software deals mainly with short
term verses long term benefits. Projects that seem to be "one
shot" programs may not appear to necessitate the features of
device independence. But often the programs are modified and
used again, possibly for another "one shot" application. In
general, establishing standards or guidelines in a programming
environment leads to increases in productivity. The slight
performance degradation created by the overhead of a graphics
subroutine library can be offset by the ever decreasing costs of
computer hardware. Once standards have been implemented,
applications can be developed faster since it becomes unnecessary
to reinvent the wheel for each new project. In addition, program
maintenance is simplified since each programmer understands the
basic strategies used by his fellow graphics programmers.
Overall, the need to be device independent will become
incre~singly important as the number and capabilities of systems
and graphic devices expand.

Paper 3090 3
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

Application
I 1 \ I

RS232
Interface

\V

Terminal

Paper 3090

Figure 1

4

RS232
Interface

\V

Plotter

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Application

INITI MOVE1 UNE1

Paper 3090

RS232
Interface

Terminal

Figure 2

5

INIT2 MOVE2 UNE2

RS232
Interface

Plotter

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Application
l l J

Graphics Package
\/ \I \V \V \V \V

INIT1 MOVE1 UNE1 INIT2 MOVE2 UNE2

s: \ vZ s IV z
RS232 RS232

Interface Interface

Terminal Plotter

Figure 3

6 Paper 3090
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 5

Application

Graphics Package

RS232
Interface

VDI FIRMWARE

Terminal

Paper 3090

Figure 4

7

RS232
Interface

VDI FIRMWARE

Plotter

WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3091. Spool File Recovery • Without a Warmstart

Dwight P. Stewart
Hewlett-Packard

North American Response Center
Atlanta, Georgia

One of the facts that every system manager learns very early
in his association with the HP3000 is that if he can't warmstart
his system, his print files are gone forever. the purpose of
this paper is to provide two alternatives to the lost spoolfile.
Neither of the methods presented here are particularly
mind-bending, but they do require some familiarity with the data
structures involved with spooling, and some confidence in the use
of Sadutil and Debug. The first part of the paper will provide
some background on the data structures and the remainder will
describe the actual techniques involved in rescuing the lost
spool file. The step by step descriptions of each method of
spool file recovery have been placed in appendices for future
reference. (Experienced users feel free to skip to the juicy
part, the rest of us will catch up later.)

The creature that we are working with here is a spoolfile.
Its native habitat is the disc drive • as a matter of fact, any
disc drive with device class "SPOOL" configured on it. Spool
files can roam anywhere on the disc, there isn't any predefined
reserved area where they are forced to stay. (This allows us to
only use space for spooling when we need it.) Two major things
distinguish a spool file from its tamer relative - the permanent
disc file. First, the spool file does not have an entry in the
system file directory. This is what causes spool files to be
lost in the first place, their directory is rebuilt on cool and
cold starts. The second distinguishing feature of a spool file
is that its file label has a file name of blanks and a device
class of SPOOL. Yes, spool files have file labels just like real
files. The layout is identical to that of a permanent disc file,
but the file name and device class give it away.

How does the system keep track of spool files if they aren't
in the system directory? Easy, it uses a table. In this case,
we have two tables, the Input Device Directory (!DD) for job
streams and card reader input, and the Output Device Directory
(ODD) for print files and spooled output. The !DD and ODD,
(collectively known as the XDD) reside both on disc and in
memory. The memory resident tables are the official ones, the
disc copies are there so that people can warmstart and still have
spool files. While the two tables are almost identical, let's
focus attention on the output side of things and save the input
spool files for later.

Like most MPE tables, the ODD has some extra goodies crammed
into it along with the information we need. It has outfences for

Paper 3091 l
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

each output device, as well as the system out fence, and the
spoolfile number of the next spool file to be created. (Note:
here's a way to reset the next spool file number without doing a
coolstart - just change the right word of the ODD in Debug).

A general layout of the ODD is as follows: one eight-word
entry with global information such as table size, system
outfence, and next spoolfile number. Next are four word header
entries, one for each output device. The header entries are
followed by 32-word subentries which exist for each output spool
file and contain the disc address of the spool file label. The
header entries and subentries are similar to Image master and
detail records. Each header has pointers to the head and tail of
a linked list of subentries. The subentries are linked to each
other in only one direction, but have direct links back to the
headers. The extra links can come in handy when trying to check
yourself when using Sadutil.

Speaking of Sadutil, all this information about the ODD is
pretty useless unless we can find it on disc. Guess what •
another table! This one is called the Cold Load Information
Table - sector 28 on the system disc (ldev 1). Sector 28 is one
of the most useful portions of disc in data recovery situations
because it has pointers to most of the disc resident data
structures. The disc addresses of the IDD and ODD are here, as
well as pointers to the volume table, which is our next topic.

The volume table keeps track of what volumes are mounted on
each disc in the system domain. This is important because disc
addresses on the 3000 consist of a volume number and a sector
address. Spool file addresses being no exception, we have to
look at the volume table to see which logical device our file is
on. Luckily, most systems are installed with the volumes in the
same sequence as the disc device numbers, so volume 1 and drive 1
are usually the same device. In cases where the volume table is
trashed, we can use brute force to look at the same sector
address on every drive until a given file is found. Just to
complicate things, the disc addresses of the IDD and ODD do not
have a volume number, the tables being assumed to be on the
system disc.

Now that the basics have been covered, let's look at spool
file recovery method #1 - disc recovery. This method requires
either certain knowledge that the system will not do a recover
lost disc space when booting, or at least an adventuresome
spirit. This is because when using this method, all we do is
dump the ODD and then recreate it after the system has been
restarted. At no time do the spool files leave the disc. They
are perfectly safe there as long as a recover lost disc space
doesn't occur. Remember - space taken up by spool files isn't
returned when you do a cool or cold start, you have to do a
recover lost disc to get it back!

Paper 3091 2
WASHINGTON, 0. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

If the system went down with a disc error or a recover lost
disc space is forthcoming, recovery method #2 becomes attractive
- recovery to tape. Dumping the spoolfiles to tape is slower and
less clever than method #1, but has the advantage of having the
spool files safe from whatever trials and tribulations may be
occurring on disc. With this method we also have to save the ODD
and recreate it, but we also fool Sadutil into saving our spool
files. We do this be finding each spool file label and putting a
file name into the first four words of the label. We then
instruct Sadutil to Save the file by address and it blithely puts
the file on tape. (The file name is actually not a requirement
of Sadutil, but of Recover, since the file has to be put back on
the system somehow.) Once we have used Recover2/Recover5 to
retrieve the file from the tape, we still have a bit of work to
do. We find the disc address of the recovered file by doing a
Listf,-1 and then create an ODD subentry using the old subentry
and the new disc address. Now we have a potentially hazardous
situation, a file which exists in both the ODD and the system
directory. The file can be printed or examined in Spook, but
don't try to purge it! Instead, after it has been copied or
printed or Output to tape, purge the system file directory entry
using Dirpur, and do a cool or coldstart just to tidy things up a
bit.

Both methods are fairly time-consuming and probably
shouldn't be attempted by a poor typist. In most situations, one
can probably rerun a report more quickly /painlessly than
recovering the spool file. However, for those really precious
spool files, these methods may be life-savers.

Paper 3091 3
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Appendix A Spool File Recovery Method #1

1. Load Sadutil and configure.

2. Dump sector 28 on logical device 1.

3, Words 34 and 35 (decimal) are the ODD disc address. The
first eight bits are zeros, logical device 1 being assumed.
The last eight bi ts are the high order end of a 24-bi t
sector address. If they are not zero, multiply by two and
add to the first digit of word 35. Thus 3000052 %175234
becomes sector %5375234. Remember, Sadutil defaults to
decimal addresses unless specified otherwise.

4. Dump the first sector of the ODD.

5. Look at the right hand eight bits of word 0 to see how many
sectors of the table are in use.

6. Dump the rest of the ODD.

7. Determine whether the files should be saved to tape. If the
system went down with a disc problem or a recover lost disc
space is pending, play it safe and use method #2, otherwise
continue with this one.

8. Start the system. If a recover lost disc space occurred, or
you had to do a reload, forget it. The spool files are gone
forever.

9. Use Debug to look at the ODD in memory. Pointers to it are
in the Data Segment Table entry 56, but all you need do is a
DDA 56,100.

10. Most of the header entries that were recreated by the system
will be identical to your Sadutil listing, all you need to
do is modify the links for the devices which had spool
files.

11. Re-enter each of the subentries related to spool files which
are to be saved. (This is the time-consuming part, each
entry is 32 words long) . 12. Modify the forward links
(word %35) of each subentry to point to the first word of
the next subentry in this spool class.

13. Modify the links in the headers (words 2 and 3) to point to
the first and last subentries on the list.

14. Gotcha: Bounds violation in Debug. You have tried to enter
more spool files than the ODD currently has space for.
Either create a large number of spool files and then purge
them to force the table to be larger (it never shrinks), or
enter as many subentries as you can and make several passes.

Pap2r 3091 4
WASHINGTON, D. C.

BAL TIM ORE WASHINGTON REGIONAL USERS GROUP rNTEREX85

15. Do a showout, pat yourself on the back and print your spool
files.

16. Congratulations!

Paper 3091 5
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Appendix B Spool File Recovery Method 12

1. Load Sadutil and configure discs and tape.

2. Dump sector 28 of the system disc.

3, Dump the ODD using words 34 and 35 (decimal) of sector 28 as
the address.

4. Word 2 of the ODD is an offset to the subentries. Words 22
and 23 (decimal) of each subentry are the disc address of
the spool file label. The first eight bits of word 22 are
the volume number, the last eight bi ts are the high order
end of a 24-bit sector address. If the last eight bits are
not zero, multiply by two and add to the first digit of word
23. Thus %000452 %115234 becomes volume 1, sector
%5315234. Remember, Sadutil defaults to decimal addresses
unless instructed otherwise.

5, Dump the file label. If it doesn't look like a spool file
label, then the volume table may be in a different sequence
and you will have to look at the other disc drives to see
which one has your file.

6. Modify the file label and insert a sensible filename in the
first four words. You may have to manually convert Ascii to
octal if you don't have some artificial aid handy, Sadutil
won't do it.

7. Use the Sadutil Save command to save the files on tape.
Specify each file by disc device and address, it won't be
able to find them by name.

8. Restart the system.

9, Use Recover2/Recover5 to put the spool files back on the
system as permanent files.

10. Use Debug to resinsert each file back back into the ODD. Do
this by re-entering the ODD subentry for the file and
inserting the new disc address. You can get the disc
address by doing a listf, -1 on the file name. The ODD is
DST 46. The disc copy of the ODD need never be touched, the
system will update that for you.

11. Fixup any header and subentry links as necessary.

12. Print the files but don't delete them or let the system
delete them.

13. Use Dirpur to purge the system directory entries for each
file.

6 Paper 3091
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8!5

1~. Do a coolstart with recover lost disc space to get the ODD
cleaned up and the disc space returned.

15. Congratulations!!

Paper 3091 7
WASHINGTON, D. C.

