INFORMATION
CROSSROADS
OF THE 80s

318 oaSMRRIIRREINTEREX
HOSTED BY BALTIMORE/WASHINGTON RUG

PROCEEDINGS
HP 3000/SERIES 100

VOLUME I

22
INTEREX

the International Association of

Hewlett—Packard Computer Users

Proceedings
of the
1985 CONFERENCE
at
Washington, D.C.
Hosted by the

Baltimore—Washington Regional
Users Group

Papers for the
HFP 3000
and

Series 100

VOLUME I
PAPER 3043-3091

Sam Inks, Editor

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

VOLUME I

Introduction

This volume of the Proceedings of the INTEREX 1985 North American
Conference was printed from machine readable text supplied by the
authors (with a few exceptions). Each paper was formatted in TDP
and printed on an HP2680A Laser Printer.

Thanks go to the authors who sent their papers in on time and in
the requested formats. Special thanks to the Review Committee for
all of their time, efforts and suggestions.

A special thanks also to those who have helped me keep my sanity,
typed the non-machine readable papers, held meetings at their
house or in some other manner lent their own time and support to
the publishing of these proceedings.

REVIEW COMMITTEE SPECIAL PEOPLE
Nick Demos Dean Gabersek
Sam Inks Millie Gabersek
Suzanne Perez John Grether
Joan Peters Dorothy Inks
Kevin Rhea Lee Mauck

Chris Seiger Mary Moorer

Nancy Murray
Ron Smirlock

I would also like to offer special thanks to Jim Cummins, my
boss, and to Atlantic Research Corporation for allowing me the
time to participate in this undertaking and for the use of the HP
Computer systems.

My thanks also to F. Stephen Gauss of the HP1000 group for his
help and support.

WASHINGTON, D. C.

7

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Index by Author VoI,
Beasley, Dave Hewlett-Packard
How Dispatching Queues Really Work................ . .3065 Tl
Bircher, Carolyn Hewlett-Packard
Writing Efficient Programs in Fortran 77............ 3076 11
Boles, Sam Hewlett-Packard
Unix Thru The Eyes of MPE.uvvierereeenenenn.s 3083 R
Boles, Sam Hewlett-Packard
A Blend of HP3000/HP9000 For Computer Graphics...... 3066 11
Bowers, Keith & Beauchemin, Denys Northern Telcom
Things That Go Bump in The HP3000.........v.ciuinvens 3018 1
Boyd, Larry Dallas Times Herald
The Segmenter............... RN e veeaee....3005 |
Butler, Stephen M. Weyerhaeuser
Dictionary/3000--Extended TOUT. v s vav v enessan 3006 |
Carroll, Bryan Hewlett-Packard
MPE Disc Caching.........cvviuvivivenannnnn e 3068 It
Casteel, Michael -~ Computing Capabilities Corp
Anatomy of a True Distributed Processing
Application. ..ottt e <o, 03029 |
Chang, Wanyen Longs Drugs
The Sorted File Access Method....\v.verviernunenenns 3036 1
Clark, Brice . Hewlett-Packard
Positioning Local Area NetworKs..........ouveinneen.s 3092 i1
Clemons, Brett Consultant
Using Intrinsics in COBOL Programs.......... e .3027 t
Clifton, Roy Hewlett-Packard
North American Response Center..............oeveuennn 305k i
Cornford, M. G. Northrop Corporation
There’s Got To Be A Pony Here, Somewhere........... .3024 |
Depp, James A. UPTIME
Recovery by Design.............. PP 3053 t
Duncombe, Brian Carolian Systems Inc.
Performance Self Analysis..v.iivininiiiiieneneens L3025 |
East, Ellie Media General
Training: The Key To Success With Personal
6o 1oL 0 = o~ 3011 1
East, Ellie Media General
Information Center: Implementation Using HP3000
and HPL150. ..o vneeenneanenns D 3026 i
Engberg, Tony Hewlett-Packard
Response Time: Speeding Up the Man/Machine
TNterface. c ot e it e , 3060 1t
Fisher, Eric S, Wellington Management Co.
You Said You Have a Bunch of Micros Linked
To Your HP3000? Great!! Now What?...........c.ouvn.. 3035 !
Floyd, Terry H. ASK Computer Systems
CIM Is Not A Software Package or a Magic Wire....... 3010 1
Fochtman, Jerry Exxon Chemical Americas
Emulating A Real Time, Multi-Tasking Application
System on the HP3000. .ttt e i ieeeneinnnnnnns 3038 |
b

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Franklin, Bill Hewlett-Packard

Software Technology for the 80’s (Understanding

Key Current and Future Technologies)...ve.vvvenoenan 3009 f
Gerstenhaber, Peter C(MS Ltd.

Cooperating Processes in an Information Network.....3051 11
Grim, Jelle Holland House

The Twilight Zone, Between MPE Capabilities.........30L5 il
Gross, Gail Hewlett-Packard

Training and Supporting Office Systems Users........ 3019 1
Hirsh, Scott RCM

Change Management: An Operations Perspective........ 3084 i
Hoeft, Mark L. Hewlett-Packard

Developing Cost Effective Utilities and

Applications Using Business Basic/3000......c.v.....3067 I
Holt, Wayne Union College

Communicating in a Mixed Vendor Environment....... ..3031 |
ldema, Tom Westinghouse Furniture Systems

The Role of The System Manager........ PN veee 03072 i
Isloor, Srekaanth Cognos

The Ultimate Challenge in Application Design:

Managing Data Integration..... PR L Y '

Kaminski, Thomas J. Singer
Migrating Information Between HP3000 Data Bases,
Electronic Spreadsheets and Microcomputer

Data Bases.......ovvvnerionean Ch e veeens e 3042 |
Kane, Peter Hewlett Packard

TurboIMAGE Run Time Options.......v.vvev. ceieaaesy..3039 |
Karlin, Robert Consultant

Auditability: or What’s a Nice Byte Like You

Doing in a Base Like This?...uuiiviinrirainnennvunan L3061 I
Ropecky, Jerry Illinois Criminal Justice Authority

Operational Considerations for Police Networks...... 3077 It
Korb, John P. Innovative Software Solutions

Store-and-Forward Data Transmission in a

Multi-System Network................ Cieaaeeene e, 3046 "
Larson, Orland Hewlett-Packard

Application Prototyping: A Proven Approach to

Information Systems Design and Development..........3081 b
Lawson, Roger Proactive Systems

The Use of IMAGE Transaction Logging in a

Multi Data Base, Multi Machine Configuration to

Achieve A Non-Stop, Fault Tolerant HP3000 System....3023 I

Lewis, Donn Allegheny Beverage Corp.

Building Your Own X.25 Data NetworK.....veses.vson ..30L0 I
Mattson, Robert R. WIDCO

Why Software Projects Don’t Quite Succeed........... 3034 |

McDermott, James T. Consultant
Ratlonal Structuring Techniques for COBOLII/3000

Maintainablity............. ..., O 10 |
McGinn, Dennis Hewlett-Packard
An OSI Networking Architecture for Multi-Vendor
Networking.......... RN e e v 003007 |
c

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Miller, Marv Hewlett-Packard

The Application Development Environment

of the 80’s..ivvvivriiiiiiviniinennnny Ceevasanias.3052 1t
Naber, Lance L.J. Naber & Associates

Ergonomics and VPLUS/3000 Screen Design.....s.......3020 t
Neilson, Tom Hewlett-Packard

Simple Steps to Optimize Transact/3000

Applications........... T G101 X | Y
Neuhaus, Peter Hewlett-Packard

Techniques for Developing Device Independent

Graphics SoftWare.....vovevverroonessnnnons veresess.3090 1
Olsen, Roger Productive Software Systems

A Guide to Software Evaluation and Selection........3017 |
Olson, Tad Hewlett-Packard

The Effectiveness and Shortcomings of Using

Programming ToolS....ieeevune S i ereeteeeraereansee.3037 |

Overman, James S. EXXON
Manufacturing Application Experiences Implementing
HP’s Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and

HPF A, i ittt in et ittensosnonnsanene TG 181 1 i
Porter, Steve DP Systems

Turbo Pascal and AGIOS on the HP150....¢.vevvvsove..3050 it
Rego, Alfredo Adager

Natural Data Base Normalizing...e.eeecevsreccracseass.3075 11
Rego, Alfredo Adager

The Drama Behind The System Status Bulletin (SSB)...3082 it
Remillard, Robert Infocentre, Ltd.

Opportunities and Dangers of UGL ' S.vvuecicnrceannnn. 3004 1
Rodriguez, Julia Hewlett-Packard

The New COBOL Standard: "What’s in it for You"......3003 1
Scheil, Dennis Base 8 Systems Inc.

KSAM Survival TechniquesS.....evevsvsesssssessnassss.3049 11
Schulz, Duane Hewlett-Packard

Fitting Printer Technologies with Personal

Computer and Office Applications......vevievsvesss..3073 1
Scott, George B. ELDEC

Using Process Handling to Optimize Throughput

in a Transaction Oriented System......vveeeuecsesss.3058 11
Scroggs, Ross Telemon

Everything You Wanted to Know About Interfacing

to the HP3000: The Inside Story.v..sesvsessvsenssss-3055 i1
Setian, Kathy Hewlett-Packard

Personal or Powerful......... S s s resetecscescacons 3002 1
Shoemaker, Victoria Mitchell Humphrey

Software Design: Building Flexibility...............3044 (B

Simmons, E. R., Ph. D

Information and Humanity....vevsivesceosenceacsass. 3059 i
Skrabak, John T Baltimore Aircoil

HP3000--Gateway TO SUCCESS...vevsncararsessasasrsss.3022 !
Snesrud, Wallace M. General Mills

UGL and Reality. . vevivivernessoncnsanossassossaonss.3021 |
Solland, Leigh Cognos

How to Design for the Fourth Generation.............3013 |

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Stewart, Dwight Hewlett-Packard

Spoolfile Recovery Without. a Warmstart..............
Sullivan, Charles Pacific Coast Building Products

The HP3000: A Data Base Engine..........civviininen.
Tobak, Bruce Consultant

Performance Optimization in COBOL...................
Van Geesbergen, Rene’ Holland House)

The Poor Man’s DS, Fact or Fiction.............
Volokh, Eugene VESOFT

Secrets of System Tables..Revealed..................
Wallace, Mark Robinson, Wallace & Co.

UGL’s: Use and AbUuSe......overvrnenrnnn e
Whitehurst, Otis Vermont Housing Finance Agency

Writing Intelligent Software...........civvivveen..n
Wilhelm, Lisa & Lukoff, Stan E.I. DuPont

Transact & 3rd Party Software Tools Used in a

Large On~Line Environmment.........cvviveeneeensenns

3091 "
3030 1
3057 B
3016 f
3014 1
3085 I
3028 t
3069 "

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Index by Title

UGL and ReALity. . seevererersovnnvnenseeonnenoeasonensans..3021
Snesrud, Wallace M. General Mills
LGL’s: Use and ADUS@.:vuvvvvvvrerssnossonssanesssssssess 3085

Wallace, Mark Robinson, Wallace & Co.
A Guide to Software Evaluation and Selection....vescs....3017
Olsen, Roger Productive Software Systems

Anatomy of a True Distributed Processing
APPlication. cvvveeviovsrariarasasesastosotesaseeees.3029
Casteel, Michael Computing Capabilities Corp
Application Prototyping: A Proven Approach to
Information Systems Design and Development..........3081
Larson, Orland Hewlett-Packard
Auditability: or What’s a Nice Byte Like You
Doing in a Base Like ThisS?..evcivrvenroreraannsnsos.3061

Karlin, Robert Consultant

A Blend of HP3000/HP9000 For Computer Graphics...........3066
Boles, Sam Hewlett-Packard

An OSI Networking Architecture for Multi-Vendor
NetworKing. coveves i eervrereseesvonoasisroanesnas. 3007
McGinn, Dennis Hewlett-Packard

Building Your Own X.25 Data Network........ecoceevevese..30L0
Lewis, Donn Allegheny Beverage Corp.

CIM Is Not A Software Package or a Magic Wire..........,.3010
Floyd, Terry H. ASK Computer Systems

Change Management: An Operations Perspective....seesos...3084
Hirsh, Scott RCM

Communicating in a Mixed Vendor Environment...seecesee...3031
Holt, Wayne Union College

Cooperating Processes in an Information Network..........3051
Gerstenhaber, Peter CMS Ltd.

Developing Cost Effective Utilities and
Applications Using Business Basic/3000...cvss0vvs....3067
Hoeft, Mark L. Hewlett-~Packard

Dictionary/3000--Extended TOUT .. cvervrvrvsrrersronncroes 3006
Butler, Stephen M. Weyerhaeuser

Emulating A Real Time, Multi-Tasking Application
System on the HP3000. .. cviueervvsoveoresarasnresae.3038

Fochtman, Jerry Exxon Chemical Americas
Ergonomics and VPLUS/3000 Screen Design....iveocssavess..3020
Naber, Lance L.J. Naber & Associates

Everything You Wanted to Know About Interfacing
to the HP3000: The Inside Story......vceovve0ss0....3055
Scroggs, Ross Telemon

Fitting Printer Technologies with Personal
Computer and Office Applications......eevveeeecr.o..3073

Schulz, Duane Hewlett-Packard

HP3000--Gateway TO SUCCESS..ciuvverrvriovivseroressesess 3022
Skrabak, John T Baltimore Aircoil

How Dispatching Queues Really WorK.......vevvevvoeraeeo...3065
Beasley, Dave Hewlett-Packard

How to Design for the Fourth Generation.........c........3013
Solland, Leigh Cognos

f

Vol.

It

B}

t

1t

1

1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Information Center: Implementation Using HP3000

and HPL150. e vt vevrvuvnoennonnsnnnonoans e, 3026
East, Ellie Media General

Information and Humanity........ ceeenen N 3059
Simmons, E. R., Ph. D

KSAM Survival Techniques....eoeeeeenrovecoeoenoonenss3049
Scheil, Dennis Base 8 Systems Inc.

Manufacturing Application Experiences Implementing
HP’s Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and

HPFA.......... et G 10 [0 X X
Overman, James S EXXON

MPE Disc Caching.....oevvusnens e e 3068
Carroll, Bryan Hewlett-Packard

Migrating Information Between HP3000 Data Bases,
Electronic Spreadsheets and Microcomputer
Data BaseS....covuus. e G 16 L ¥~
Kaminski, Thomas J. Singer

Natural Data Base Normalizing...evseveeoessvoscnscenesss.3075

Rego, Alfredo Adager

North American Response Center. ves N 14 1
Clifton, Roy Hewlett Packard

Operational Considerations for Police Networks...........3077
Kopecky, Jerry Illinois Criminal Justice Authority

Opportunities and Dangers of UGL’s......... PG [0 [o 1
Remillard, Robert Infocentre, Ltd.

Performance Self Analysis.......e.evvuunn siereeesenaesss.3025
Duncombe, Brian Carolian Systems Inc.

Performance Optimization in COBOL....se0vsevnenssosssens.3057
Tobak, Bruce Consultant

Personal or Powerful..iiveeievevnnnnnn G {0 [0 -4
Setian, Kathy Hewlett -Packard

Positioning Local Area NetWorKS...evoveeeeeresecrsnanness 3092
Clark, Brice Hewlett-Packard

Rational Structuring Techniques for COBOLII/3000
Maintainablity...eeeeerevsnnnnnrnnes F G 10 4
McDermott, James T. Consultant

Recovery by Design....evsveeesss G 1 X6
Depp, James A. UPTIME

Response Time: Speeding Up the Man/Machine
Interface. evivveernnrecnnennns A 1011
Engberg, Tony Hewlett- Packard

Secrets of System Tables..Revealed.....vevvivevensnosss..301l
Volokh, Eugene VESOFT

Simple Steps to Optimize Transact/3000
ApPPlicationsS..viverierinrnneanonnnnn et et 3043
Neilson, Tom Hewlett-Packard

g

It

R

1

R

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Software Design: Building Flexibility...........c..covn.. 304y R}
Shoemaker, Victoria Mitchell Humphrey
Software Technology for the 80’s (Understanding

Key Current and Future Technologies).........vvu.n.. 3009 1
Franklin, Bill Hewlett-Packard

Spoolfile Recovery Without a Warmstart................... 3091 3]
Stewart, Dwight Hewlett-Packard

Store-and-Forward Data Transmission in a
Multi-System NetworK. ..vvuieeeeureeuneenenenooennnns 3046 R
Korb, John P. Innovative Software Solutions

Techniques for Developing Device Independent
Graphics Software.......cvviveriveennnnnnns e 3090]
Neuhaus, Peter Hewlett-Packard

The Application Development Environment
of the 80’s..... ittt ee it i it et e e 3052 tt
Miller, Marv Hewlett-Packard

The Drama Behind The System Status Bulletin (SSB)...... ..3082 B

* Rego, Alfredo Adager

The HP3000: A Data Base Engine...... e e e 3030 1
Sullivan, Charles Pacific Coast Bulldlng Products

The New COBOL Standard: "What’s in it for You"........... 3003 !
Rodriguez, Julia Hewlett-Packard

The Poor Man’s DS, Fact or Fiction......ovvuveunennens ...3016 1
Van Geesbergen, Rene’ Holland House

The Role of The System Manager........veeevenennenns v....3071 t
Idema, Tom Westinghouse Furniture Systems

The Segmenter....... e e e e i e e 3005 1
Boyd, Larry Dallas Times Herald

The Sorted File Access Method.......... e3036 [
Chang, Wanyen Longs Drugs

The Twilight Zone, Between MPE Capabilities.............. 3045 11
Grim, Jelle Holland House

The Effectiveness and Shortcomings of Using
Programming ToolsS.. ...ttt iinnneseinanonneosans 3037 |
Olson, Tad Hewlett- Packard

The Use of IMAGE Transaction Logging in a
Multi Data Base, Multi Machine Configuration to

Achieve A Non-Stop, Fault Tolerant HP3000 System....3023 |
Lawson, Roger " Proactive Systems

There’s Got To Be A Pony Here, Somewhere..... Ceeenaeees..302h |
Cornford, M. G. Northrop Corporation

Things That Go Bump in The HP3000.......... e .3018 i
Bowers, Keith & Beauchemin, Denys Northern Telcom

Training and Supporting Office Systems Users.............3019 1
Gross, Gail Hewlett-Packard

Training: The Key To Success With Personal
Computers.......... . e e e 3011 1
East, Ellie Medla General

Transact & 3rd Party Software Tools Used in a
Large On-Line Environment...........v.ueeveeuennns ...3069 11
Wilhelm, Lisa & Lukoff, Stan E.I. DuPont

Turbo Pascal and AGIOS on the HP150......coitvrereeeennns 3050 T
Porter, Steve DP Systems

TurboIMAGE Run Time Options....... e e e 3039 1

h

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Kane, Peter Hewlett-Packard

The Ultimate Challenge in Application Design:
Managing Data Integration............. e 3074 8}
Isloor, Srekaanth Cognos

Unix Thru The Eyes of MPE...... P e 3083 i
Boles, Sam Hewlett-Packard

Using Process Handling to Optimize Throughput
in a Transaction Oriented System........ e 3058 11
Scott, George B. ELDEC

Using Intrinsics in COBOL Programs............... oo e 3027 1
Clemons, Brett Consultant

Why Software Projects Don’t Quite Succeed................ 3034 1
Mattson, Robert R. WIDCO

Writing Efficient Programs in Fortran 77....... R ..3076 K}
Bircher, Carolyn Hewlett-Packard

Writing Intelligent Software........ N Ceeeeen e ..3028 1
Whitehurst, Otis Vermont Housing Finance Agency

You Said You Have a Bunch of Micros Linked
To Your HP3000? Great!! Now What?............. e 3035 i

Fisher, Eric S. Wellington Management Co.

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S%

3043. SIMPLE STEPS TO OPTIMIZE TRANSACT/3000 APPLICATIONS

TOM NIELSEN
MWC ATC
HP-NAPERVILLE

WM RN RN RN NN H NN IIINIIIIIIININNNRNNN NN

The trend towards higher labor costs and lower hardware costs in today’s
economy has led to a rapid increase in the use of a class of computer
productivity tools called "Fourth Generation Languages (u4GL’s)." LGL’s
are designed to relieve the programmer of much of the tedious coding
required by many traditional languages, allowing the programmer to code
at a much higher, and productive level. This reduction in programmer
effort results in the inherent tradeoff that the computer is now faced
with the task of doing more of the work in order to make the application
run. This increased burden on the computer resources invariably causes
the topic of performance ramifications to be brought up in nearly every
discussion of 4GL’s. While 4GL’s inherently use more computer resources
than conventional languages, there are many techniques the programmer
can use to attempt to minimize this difference.

The following paper attempts to outline numerous techniques that are
avaliable to programmers creating TRANSACT/3000 (Hewlett Packard’s
version of a 4GL) applications which will improve their program’s
efficiency significantly with minimal effort. The format will be to
first discuss the generalities of each performance optimizing technique
in light of TRANSACT/3000’s methodology. This general discussion will
then be substantiated with short test programs designed to highlight the
performance ramifications of various techniques.

Since many of the test programs utilize an IMAGE data base, a
familiarity with that data base may be helpful in the analysis of
certain portions of code. For this reason, a schema listing of the
IMAGE data base TESTB has been included as APPENDIX B. Listings of the
test programs and their results are also included in APPENDIX B.
APPENDIX A includes an explanation of the testing procedures used.

WRBNNNRRNRNNINNRIRNW RN RNNRRNINRNRRRRNRRIHRRNRRT RN R RN

Paper 3043 1 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

I. MINIMIZE DATA ACCESSED FROM IMAGE DATA BASE FILES

This statement goes beyond the obvious of advising against unnecessary
accesses to a data file and stresses the optimization of each data
access verb (ie. GET, FIND, OUTPUT, PUT). Since TRANSACT data access
verbs actually call IMAGE intrinsics directly, this point can be used to
improve performance for programs coded in any language.

When a program accesses a data item, the IMAGE intrinsic must first
determine that item’s data base relative item number from the data base
root file. The security matrix (also in the IMAGE root file) must then
be checked to verify that the password used to open the data base grants
the appropriate access to that item. These two overhead operations must
be performed for each item requested by the program for each access.
Understandably, then, the fewer items the program attempts to access,
the less time it will take for the IMAGE intrinsics to transfer the data
to/from the program’s DATA register.

Unfortunately, this relatively simple step is often bypassed by many
programmers. Reasons seem to vary from ignorance of the functions of
the LIST= option to the philosophy that it’s just easier to retrieve all
the data so that whatever the program may need down the road will be
available in the DATA register. The former could be resolved with
adequate training and experience, and the latter could be resolved with
good initial program design.

The TRANSACT Reference Manual makes it very clear that the only items
absolutely required in the LIST= option are those items that are being
used as MATCH criteria in selecting specifi¢ records. Perhaps the
biggest misconception is that key or search items must be included in
the LIST= option of retrieval verbs. This is entirely false using
TRANSACT, and differs from the rules present when calling the IMAGE
intrinsics directly from ordinary languages. In fact, for most keyed
access retrievals, the program already has the desired value (we had to
use it to set up the Key and Argument registers). Who knows how many
millions of unnecessary item retrievals are being done on search items
alone.

Programs T1 and T2 highlight the performance implications of retrieving
unnecessary data from an IMAGE data set. Both programs center around a
FIND(SERIAL) command which retrieves 150 detail records. The only
difference between the two is that Tl retrieves values for all six items
in the data set, while T2 retrieves values for only one item. An
initial GET is inserted to remove the irrelevant overhead of opening the
dataset from the timed loop. The PERFORM= paragraph performs a data base
access to eliminate any optimization of the list parameter that either
TRANSACT or IMAGE may attempt on the iterative FIND verb.

Paper 3043 2

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

RARRARRRAAARRAARARAARRARARAARARARAARARRARARAARRAAARAARAARRAAARRBEARARAARR

PROGRAM # OF ITEMS RELEVANT
NAME RETRIEVED ELAPSED
TIME
RARRAARRARRR KRRRARRRRR RAREHRERR
T1 6 2999
T2 1 2516

BRARRRARARARAAARARARRARRRRRRRARDARRARRARRARRRRERRAARARARRRARARARRARRR

Paper 3043 3 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

II. STRUCTURE THE LIST= OPTION TO OPTIMIZE PERFORMANCE

Performance optimization suggestion I dealt with the idea of minimizing
the number of items which are accessed from an IMAGE data base. Once
the programmer has decided on the items which must be accessed, however,
there are further simple steps which can be taken to improve
performance. These steps deal with the structuring of the LIST= option
of data access verbs.

As the TRANSACT Reference Manual indicates, there are numerous methods
to indicate which items are to be accessed. The most common of these
seem to be:

1. LIST=(iteml:itemn) requests retrieval of values for all
items in the LIST register between
iteml and itemn, inclusive.

2. LIST=(iteml,..,itemn) requests retrieval of values for
the specific items listed.

3. LIST=(@) a feature as of A.02.02 which
specifies all items in the data
set.

While the second option is often simpler to implement, as it does not
require any strategic management of the LIST register, it is also less
efficient as far as program execution. Specifying the LIST= option as
an item range (as in example #1), on the other hand, will result in
faster execution, but is more difficult to manage the LIST register, as
the programmer must attempt to put items that are accessed at the same
time contiguously in the LIST register. The idea of different data
access verbs requesting a different combination of items leads to
complication of this process. Performance tests indicate that specifying
LIST=(@) is identical to specifying all items via an item range,
assuming that range includes all items.

Many programmers agonize over how to build the program’s LIST register
so that they may always use the more efficient item range construct. It
should be noted that minimization of data access should take precedence
over this concern and thus the LIST register should be constructed to
allow the item range construct to be used in the most frequent data
access verbs (use test modes or temporary DISPLAY statements to
determine the most frequent verbs). The remainder of the data access
verbs, then, should simply use an item list construct. To attempt to
manipulate the LIST register to allow item ranges for all verbs would be
quite laborious, probably end up slowing execution, and would cause many
debugging nightmares.

Programs T9, T3, and T4 highlight the performance ramifications of
different LIST= constructs. Program T9 uses an item range, T3 uses an
item list, and T4 uses a variation on the item range that is even a
little faster than the traditional iteml:itemn construct. T4 uses the
itemn construct which specifies retrieval values for all items in the
LIST register from the bottom of the LIST register through itemn. This
technique turns out to be a little more efficient because of reduced
search time of the linked list (see performance suggestion III). It

Paper 3043 4 WASHINGTON, D. C.

. -

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

should be noted here that while the performance difference may be small
in the test programs supplied, these programs only reference six (6)
items. The performance ramifications would obviously become more
substantial as the number of items accessed increased.

HARRARRRRRARRARRAARRRRRRRRRARARARRAARARRAARARARARRARRARRBEAARARAARARAAAS

PROGRAM L1ST= RELEVANT
NAME CONSTRUCT ELAPSED
TIME
(2222222] RARRBREAR L2222 2]
T9 (ITEM1: ITEMN) 2665
T3 (ITEM1,ITEM2,...,ITEMN) 2863
T (: ITEMN) 2659

RARRARRRBRRRRARRARARARRARARARRARRARAARARRARARARRAAARAARRRARRRANAARAARARNS

Paper 3043 5 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

III. PLACE FREQUENTLY USED ITEMS NEAR THE TOP OF THE LIST REGISTER

Every time a program references a data item’s value, TRANSACT must first
locate the corresponding item name in the LIST register, which then maps
to the appropriate location in the DATA register. Since TRANSACT allows
multiple occurrences of the same item name in the LIST register,
TRANSACT can not use a direct, or hashed, search method to locate the
item in the LIST register. Instead, TRANSACT maintains the items in the
LIST register as a linked list which is searched whenever a data item
name is referenced. The search will continue down the linked list until
one of two conditions occur:

1. The item name being searched for is found, providing a map
into the DATA register.

2. The linked list is exhausted without finding the item name
being searched for, in which case the run-time error
"ITEM NOT FOUND IN LIST REGISTER" will occur.

Obviously, we are more interested in case #1, as case #2 is merely a
programming error which must be corrected.

Understanding the direction of the search is crucial to optimizing a
program’s performance. If the programmer can minimize the time taken by
each search (which, remember, occurs every time a data item is
referenced) the program will, as a direct result, take less time to
execute. As it turns out, the search starts out at the top of the LIST
register (ie. it starts with the item most recently put into the LIST
register) and works its way to the beginning (or bottom) of the LIST
register. In order to minimize search times, then, frequently accessed
items should be added to the LIST register last. This optimization
technique is even more crucial for applications using a large number of
data items, as search times can become significant.

Programs TS5 and T6é point out the performance implications of putting
frequently used items near the top of the LIST register. Both programs
have a relatively large LIST register (129 items). Program TS accesses
an item near the top of the LIST register 200 times while T6 accesses an
item at the bottom of the LIST register. Note the significant
difference in execution time between the two otherwise identical
programs.

WMNNNNRNNNRIENRRIIIIIINNNIIINIIIINNNRRRERRRRRRRRERRRRRERRE RN RNNRR

PROGRAM POSITION OF NUMBER OF RELEVANT
NAME ITEM IN LIST ACCESSES ELAPSED
TIME
RRRRERR RARRRRRRRRRRR REHRRREAN ERRRRRR
T5 TOP (#128) 200 1kg90
T6 BOTTOM (#1) 200 1827

HRREERRERRERRRRRRRRRRRRRRRERRRRRRRRRERRRRRRRRRRRERRRRARRRRRRRRRRRRR

Paper 3043 6 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

IV. REDUCE TRANSACT’S MANAGEMENT OF THE WORK AREA

This performance optimizing suggestion is perhaps the least frequently
thought of by TRANSACT programmers. With each TRANSACT application
comes an area called the WORK AREA, which is a temporary work area
containing the MATCH, UPDATE, and INPUT registers. Every time the
program utilizes these special registers, an entry is put into this work
area, which is implemented as a linked list. Whenever an entry is
deleted from these registers (ie. via RESET(OPTION)), TRANSACT merely
flags the entry in the linked list as deleted, but does not return that
space to the reusable state. With repeated use of these registers,
then, the WORK AREA, which has a user specified size (via the
WORK=option on the SYSTEM statement), will soon become full of "deleted”
entries. When this occurs, TRANSACT will automatically call a routine
called REWORK, which will actually delete the previously flagged entries
and return that space to the available list.

In order to improve program performance, the programmer should attempt
to minimize the number of times REWORK must be called. This can be
achieved by increasing the size of the WORK AREA via the WORK= option of
the SYSTEM statement. Increasing the WORK AREA, however, will increase
stack usage at run time, so it must be done with care. Perhaps a
realistic approach is to attempt to minimize the calling of REWORK ,
while at the same time monitoring stack usage to keep it appropriate for
your specific system.

Test modes 102 and 123 should be used in making these adjustments to the
WORK AREA. Test mode 102 reports statistics on WORK AREA usage during
execution, while test mode 123 prints a warning message to TRANOUT
everytime REWORK is called.

Programs T7 and T8 highlight the difference in program execution time
when we minimize reorganization of the WORK AREA by increasing its size.
T7 has a small work area and requires 124 reorganizations of the WORK
AREA, while T8 only requires 6, hence exectution time is decreased.

F6 09 30 03690 96 096 36 30 96 3 030 363 36 30 36 26 30 I 6 3 36 3 30 I 6 I 6 I 36 66 I 90 0 I 6 I 30 2 2 0 I 6 I I0 I 0 36 0 00 30 636 30 9 6 I 96 36 96

PROGRAM WORK AREA REWORK RELEVANT
NAME SIZE CALLED ELAPSED
TIME
RRNHRN HRARNRRR RN HRAANNR N
T7 15 WORDS 124 2181
T8 255 WORDS 6 2151

F6 336963635 030 0 0036300330 306 3 3 3366 006 IH I I I I J I I I I I I I I N IR R AN I I MR

Paper 3043 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

V. OPTIMIZE NUMERIC CALCULATIONS

TRANSACT was intended as a transaction processing tool as well as a
prototyping tool. Unfortunately, TRANSACT is not terribly efficient
when it comes to things like number crunching, because of some data type
conversion operations performed. A few simple techniques, however, can
at least make any necessary numeric calculations a little less time
consuming.

Perhaps the most common suggestion for streamlining TRANSACT number
crunching is to have the TRANSACT application invoke (via the PROC verb)
some external routine written in a more efficient language to do the
calculations for TRANSACT. This suggestion, however, does have a couple
of weaknesses. It first assumes that another programming language is
available on the system, and second it assumes that all number crunching
is done at one time in the program. It does not take into account the
idea of "sporadic" calculations done throughout the TRANSACT
application. The suggestions presented below will help optimize
TRANSACT applications in both of these instances.

The first suggestion is to choose an appropriate data type for elements
that will be involved in numeric calculations. The chart below
indicates Real (R)and Integer (I) are the most efficient data types for
numeric calculations, while Zone Decimal type (2) is the worst. If your
application permits then, attempt to make all variables that will be
used extensively in calculations type R or I. Counter items are an
excellent example of items which should be streamlined.

The second suggestion to minimize the amount of overhead incurred by
TRANSACT numeric calculations is to make all elements involved the same
type and decimal scale if possible. This will reduce the amount of type
conversion that TRANSACT must do before the calculations (done by a
procedure called CALCULATE). An example is programs T10, T15, and T16.
T10 crunches two I(5,0,2) elements in 1446 relative CPU seconds; T15
crunches two R(6,0,4) fields in 1446 relative CPU seconds. But when we
crunch one item of I(5,0,2) and one of R(6,0,4) together as we do in
T16, note the increase to 2332, which is higher than the calculation
using two of the less efficient Z type variables.

The chart below, then, depicts nine programs which do 100 relevant
numeric calculations with the only difference being the type and decimal
scale of variables used.

Paper 3043 8 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

INTEREX 85

RRARRAFHRUFRARAARARARRAARAARAARAARARARARAARAARRARAARARAAARARARARRARARRR

PROGRAM
NAME

RRERS

T10
T11
T12
T13
T14
T15
T16
T17
T18

VARIABLE

#1

RRURRRER

1(5,0,2)

VARIABLE
#2

HERRRARR

SAME AS #1
SAME AS #1
SAME AS #1
SAME AS #1
SAME AS #1
SAME AS #1

MAXIMUM
OPERAND
VALUE

HRMRRNRR

32,767
2,147,483,6L8
9,999
99,999,999
9,999,999
999,999

RELEVANT
ELAPSED

TIME

RRRNRRRS

1Lk6
1LL46
2171
2187
1491
1446
2332
2455
1511

RRARARARRRARAARARARARAAAARARRAARRAARARAAARAARARAARAARRARRARARRRARRRARD

Paper 30L3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

VI. OPTIMIZE INTERNAL DATA TRANSFERS

Transact offers two verbs to be used in transferring values from one
data item to another. Unfortunately, many people seem to be unclear, or
misinformed, about the difference between these two verbs and in which
situations to use either. The following discussion should clear up
these misconceptions of TRANSACT’s MOVE and LET verbs, and points out
how the appropriate use of the MOVE verb can improve performance.

TRANSACT’s MOVE verb is specifically designed for straight data transfer
from one location in the DATA register to another and for alphanumeric
operations. Unfortunately. the TRANSACT reference manual’s discussion
almost leads you to believe that the MOVE verb can only be used when
manipulating (transferring or concatenating) alphanumeric values. To
many people’s surprise, however, the MOVE verb can also be used to
transfer numeric values. There are, however, certain limitations
inherent in the MOVE verb:

1. No numerice calculations can be done with the MOVE verb.

2. The MOVE verb does not do data type conversions, so both source
and destination variables should be the same type.

Because of the fact that MOVE does no data type conversions, it is a
relatively fast verb for data transfer. Programmers should thus use the
MOVE verdb for both alphanumeric and numeric data transfer operations
between like type data elements. Only for those operations involving
incompatible data elements and/or numeric calculations should the LET
verb be used.

Programs T20 and T2l point out a very simple example of the increased
performance of using MOVE over LET. T20 performs 100 MOVE operations,
moving an I(9) value to another I(9) field. T2l uses the LET verb
instead of the MOVE.

HRURRBRRRRERERRBRRBERRRRERRBRRRRBERRERRRRBRRRRRRERRRRRERRRRRRRRRRRRRERS

PROGRAM VERB RELEVANT
NAME USED ELAPSED
TIME
LT ey BRRRRRRR
T20 MOVE 759
T21 LET 800

r*****“**********ﬁ****“***********#******ﬁ******”*********************

Paper 3043 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

VII. USE FILE VERB FOR MPE FILE OPERATIONS

Transact offers two methods for reading, writing, updating, and sorting
MPE files. Unfortunately, because of the fact that most programmers are
more familiar with the data management verbs (ie. PUT, GET etc) used
with IMAGE files, they use these less efficient verbs when interacting
with MPE files as well. Because of the fact that these verbs were
designed to work with the more complex data base files, as well as to be
generic enough to work with all types of files, they incur much overhead

which is not necessary in working with MPE files.

The more efficient method for interacting with MPE files is the FILE

verb.
update, or sort MPE files.

This verb has modifiers which allow programmers to read, write,
As the sample program indicates below, the

FILE verb is much more efficient than the data management verbs.
Unfortunately, the FILE verb does not utilize TRANSACT s special
registers, so its uses are limited to operations such as a straight

serial read or simple additions to the file.

WRIINIINNIRIIRRIIRIINRIRIRIRRIIT RN NN RN RNNNNFRNNRNFRNNNINNINNRNN

PROGRAM VERB FREQUENCY RELEVANT
NAME USED ELAPSED

TIME

EX 222 2 2 2] R 222 2] E 2 X2 222X 23 E 22222 22X)

T22 GET(SERIAL) 200 4385

T23 FILE(READ) 200 3451

T2Y PUT 200 514y

T25 FILE(WRITE) 200 L277

RN NWNNNIIINIINNI IR II NI I W I T T I IR IIHI0 22633632 263036 362 3636 2 2636 2 % % % %

Paper 3043 11

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

SUMMARY

The seven techniques outlined aboved, then, are presented 'in order to
help programmers who are developing TRANSACT applications to better
understand TRANSACT’s methodology in certain operations. The intent was
to present these ideas in a way that would allow programmers to weigh
alternatives available to them in order to maximize their application’s
performance. It should be noted that the list is by no means exhaustive
in presenting methods of improving performance. Additional
considerations are outlined in Appendix E of the TRANSACT Reference
Manual. In addition to the techniques presented here, as well as those
outlined in Appendix E, the programmer should keep in mind the ordinary
techniques in program design, in attempting to design an optimal
application.

Paper 3043 . 12 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

APPENDIX A

The test programs presented in this paper were all c¢reated by the
author. The attempt was made to make the programs as simple as possible
while still allowing the point to be made, and may thus often seem very
trivial at first glance. That was the intention. Attempts were made
programmatically to insure a "clean" compare between multiple test
programs (ie. beginning many programs with an initial disc access to
insure initial disc head placement etc.). Most of these techniques are
discussed directly in the paper where appropriate.

The methodology selected in determining performance implications was one
of at least two methods which could have been used. The reader will
note that most programs initially place an item labelled TIMESTART into
the LIST register, initializing it to PROCTIME. The code which follows,
then, is the c¢ode that is being compared between programs, followed
immediately by the placement of a second item, labelled TIMESTOP, into
the LIST register, again initializing it to PROCTIME. The difference
between TIMESTART and TIMESTOP, then, is the amount of CPU milliseconds
within the loop, and is reported as ELAPTIME. This ELAPTIME value,
then, can be used for comparison purposes.

A second method of determining performance ramifications would be to use
TRANSACT’s test mode 4 to determine actual instruction timings. This
method seems to result in the same performance guidelines being agreed
upon, while the testing procedure is much more laborious, hence the
first method was selected for use with this paper.

The test programs were run on a dedicated HP3000 Series 48 with disc
caching enabled.

Paper 3043 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

APPENDIX B

DATA BASE SCHEMA FOR TESTB

BEGIN DATA BASE TESTB;

PASSWORDS :
ITEMS:
El, X2 H
E2, X2 H
E3, X2 H
EY4, AN s
ES, zh 3
E6, 78 3
ET, I1 H
K1, X2 H
SETS:
NAME ¢ MASTERSET, MANUAL 3
ENTRY: K1 (1);
CAPACITY: 50;
NAME : DETAILSET, DETAIL H
ENTRY: K1 { MASTERSET ¥,
El,
E2,
E3,
Eb,
E5,
E6,
ETs
CAPACITY: 150;
END.
Paper 3043 1%

INTEREX 85

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T1

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T1,BASE=TESTB(";",1);

2.000 0000 << LOOP THROUGH DETAIL WITH ALL ITEMS RETRIEVED »>
3.000 0000 DISPLAY "ALL ITEMS BEING RETRIEVED";

7.000 0002 LIST K1:E2:E3:EY4:E5:E6:ELAPTIME;

9.000 0012
10.000 0012 LIST TIMESTART,PROCTIME;

11.000 0015 FIND(SERIAL) DETAILSET,LIST=(Kl1,E2,E3,EL,ES,E6),

PERFORM=A};

12.000 0026 LIST TIMESTOP,PROCTIME;

13.000 0029

14.000 0029 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
15.000 0031 DISPLAY ELAPTIME;

16.000 0033 END;
17.000 0034

18.000 0034 A:
19.000 003k GET(SERIAL) DETAILSET,LIST=(E2,E3);

20.000 0040 RETURN;
CODE FILE STATUS: REPLACED
0 COMPILATION ERRORS

PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:04

BRARARRARARRERARRARARARERRRRRAAAARRRAARRRRAARARRRAANRRARARRARRAANARAR
TRANSACT /3000 HP322UTA.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
3030

EXIT/RESTART(E/R)?>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
2999

EXIT/RESTART(E/R)?>

Paper 3043 15 WASHINGTON, D. €.

BALTIMORE WASHIN

COMPILED LISTING AND RUN RESULTS OF PROGRAM T2

GTON REGIONAL USERS GROUP

COMPILING WITH OPTIO]

.000

.000 0000
.000 0000
.000 0002
.000 0012
10.000 0012
11.000 0015
12.000 0019
13.000 0022
14.000 0022
15.000 0024
16.000 0026
17.000 0027
18.000 0027
19.000 0027
20.000 0033

O WM

CODE FILE STATUS: RE

0 COMPILATION ERRORS
PROCESSOR TIME=00:00
ELAPSED TIME=00:00

NS: LIST,CODE,DICT,ERRS

SYSTEM T2,BASE=TESTB(";",1);

INTEREX8S

<< LOOP THROUGH DETAIL RETRIEVING ONE ITEM >>

DISPLAY "ONE ITEM RETRIEVED";
LIST K1:E2:E3:EL:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME;

FIND(SERIAL) DETAILSET,LIST=(E2),PERFORM=A;

LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);

DISPLAY (ELAPTIME);
END;

A:
GET (SERIAL) DETAILSET,LIST=(E2,E3);
RETURN;

PLACED

:03
:03

BRRRRRRRRRRRERRRRRRRRARRRRRRRRRRRREERRRRRRRRRRRRRBRRERRRRRRRRRRNRR RN

TRANSACT /3000

SYSTEM NAME>
ONE ITEM RETRIEVED

ELAPSED TIME
2570

EXIT/RESTART(E/R)?>
ONE ITEM RETRIEVED

ELAPSED TIME
2516

EXIT/RESTART(E/R)?>

Paper 3043

16

HP32247A.01.07 - (C) Hewlett-Packard Co. 1983

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

INTEREX 85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T3

COMPILING WITH OPTIO

1.000

3.000 0000
7.000 0002
9.000 0012
10.000 0012
11.000 0015
11.500

12.000 0026
13.000 0029
14.000 0029
15.000 0031
16.000 0033
17.000 0034
18.000 0034
19.000 0037

CODE FILE STATUS: RE
0 COMPILATION ERRORS

PROCESSOR TIME=00:00
ELAPSED TIME=00:00

NS: LIST,CODE,DICT,ERRS

SYSTEM T3,BASE=TESTB(";",1);
DISPLAY "ITEM LIST BEING RETRIEVED";
LIST K1:E2:E3:EL:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME;

FIND(SERIAL) DETAILSET, LIST=(K1,
PERFORM=A;

LIST TIMESTOP,PROCTIME;

E2,E3,E}4,E5,E6),

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);

DISPLAY ELAPTIME;

END;

A:
GET (SERIAL) DETAILSET,LIST=(E2);
RETURN;

PLACED

:03
;04

(22222222 22 22 2222 222 222 s 2 sl s s st sy d

TRANSACT/3000 HP322U7A.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ITEM LIST BEING RETR

ELAPSED TIME
2894

EXIT/RESTART(E/R)?>
ITEM LIST BEING RETR

ELAPSED TIME
2863

EXIT/RESTART(E/R)?>

Paper 3043

IEVED

IEVED

17

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM Tk

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

.000

.000 00
.000 00
.000 00
10.000 00
11.000 00
12.000 00
13.000 00
14.000 00
15.000 00
16.000 00
17.000 00
18.000 00
19.000 00

O W

SYSTEM Th,BASE=TESTB(":",1);

00 DISPLAY "IMPLIED ITEM RANGE SPECIFIED";
02 LIST K1:E2:E3:E4:ES5:E6:ELAPTIME;

12

12 LIST TIMESTART,PROCTIME;

15 FIND(SERIAL) DETAILSET,LIST=(:E6),PERFORM=A;
19 LIST TIMESTOP,PROCTIME;

22

22 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
24 DISPLAY ELAPTIME;

26 END;

27 A:

27 GET (SERIAL) DETAILSET,LIST=(E2);

30 RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION

ERRORS

PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:07

RARKHARRRAERARER

RRARARRRAARRRFAARRARARRAARRARAARARRARAAARAARRARARARRARRRARSR

TRANSACT/3000 HP32247A.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
IMPLIED ITEM

ELAPSED TIME
2691

EXIT/RESTART(
IMPLIED ITEM

ELAPSED TIME
2659

EXIT/RESTART(

Paper 3043

RANGE SPECIFIED

E/R)?>
RANGE SPECIFIED

E/R)?>

18
WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILING

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14,000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24,000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000
40.000
41.000
42.000
43,000
LY. 000
45.000
46.000

Paper 3043

COMPILED LISTING AND RUN RESULTS OF PROGRAM T5

WITH OPTIONS: LIST,CODE,DICT,ERRS

0000
0002
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
001k
0015
00