
INFORMATION
CROSSROADS

.:. OF THE 80s

HOSTED BY BALTIMORE/WASHINGTON RUG

INTEREX
the International Association of

Hewlett-Packard Computer Users

Proceedings
of the

1985 CONFERENCE
at

Washington, O.C.
Hosted by the

Baltimore-Washington Regional
Users Group

Papers for the

HP1000
and

HP9000

F. Stephen Gauss, Editor

Washington Conference Host Committee

Chris Sieger, Chairman
Tom Benedict
Nick Demos
Dan Felman
Steve Gauss
Sam Inks
J. J. Myatt
Don Nayden
Suzanne Perez
Joan Peters
Doug Pilkington
Frances Smithson
Holly Siler

Paper Review Committee

Cimarron Boozer
John Campbell
Dean Clamons
Dale Garcia
Art Gentry
Ken Griffin
Hugh Hanks, Jr.
Mark Katz
Jock Mcfarlane
Dick Minor
Terry O'Neal
Larry Rosenblum
George Santee
Dan Steiger
Szabolcs Szekeres
Steven Telford
Don Wright

Introduction

This volume of the Proceedings of the INTEREX 1985 North American Conference
was printed from machine readable text supplied by the authors (with a few
exceptions). Each paper was checked using the spelling checker SPELR (from the
CSL library tape Rev. 2533) and printed using the version of TYPO (also from
the CSL library) called TYPER on an HP2686 LaserJet printer. Papers have been
numbered sequentially in order of presentation at the conference with HPlOOO
papers numbered lOxx and HP9000 papers numbered 90xx. Several papers will be
of interest to members of both communities and it is quite likely that papers
in the companion volume for the HP3000 and Series 100 will also be of interest.

Participation by the users of the HP9000 conference is significant (making up
one third of the technical papers).

Thanks go to the authors who sent their papers in on time and to the paper review
committee for their prompt response and illuminating comments. Through the
efforts of Pam Tower we have an unprecedented number of papers from HP employees.
Thanks also to Dean Clamons, Dan Felman, Mike Gauss, Karen Gauss, and Vivian
Gauss who lent technical assistance at crucial times.

F. Stephen Gauss
U. S. Naval Observatory
1 August 1985

-i-

Index By Authors

Anderson, Gary, Statistical Software Group
Integrating Multiple Programs Under HPUX 9011

Anderson, Roy, Hewlett Packard Co.
HP Techwriter-Integrated Text & Graphics For the HP9000 Series 200 9015

Andreas, James, Hewlett Packard Co.
Personal Computer UNIX For the Technical Professional 9003

Argoud, Ninon, Universal Computing
Interfacing an Array Processor to the HP A-series 1014

Asp, Wayne, Hewlett-Packard Co.
Improving CDS Program Performance•.............. 1027

Atkinson, Robert, TRW
A Test Program Development System Based on
the HP-9000 Family Of Computers•.................... 9010

Barrett, Thomas, General Electric Co.
CAR/1000-Computer Aided Calibration•............................. 1004

Benson, Karl, PCI Ltd.
Real·Time Management Control of Factory Operations 1022

Bishop, Sharon, Hewlett Packard Co.
Artificial Intelligence Environments -
Speeding Up the Software Development Cycle .•..•......•..•.•..•..•...... 9007

Blanchard, Lt. Ed, TSA
SARSAT ·Satellites, HPs and Search and Rescue•.................. 1023

Boozer, Cimarron, Universal Computing
Interfacing an Array Processor to the HP A•series•........... 1014

Boyer, Tom, Hewlett Packard Co.
Good Laboratory Practices and How They Can Be Supported
By A Laboratory Information Management System•....... 1032

Brewster, John, Hewlett Packard Co.
A New User Interface For UNIX: the HP INTEGRAL PC 9005

Brovet, Ed, Hewlett Packard Co.
HP EGS- A Facility Management Tool On the HP 9000 Series 200 and 300 ... 9013

Bury, Robert, Hewlett Packard
Performance of Multiple Processors in the HP9000 Series 500 9012

Clark, Beth, Hewlett Packard Co.
RTE-A Command Interpreter Features•............................... 1024

Cline, Robert, Hewlett Packard Co.
Personal Computer UNIX For the Technical Professional•........ 9003

Craft, J., Martin Marietta Aerospace
Taking Advantage of Forms Mode for Database Entry Applications 1019

Drews, Larry, Lexico Enterprises
The ADA(tm) Programming Language On HP Hardware 1002

Eyre, Joe, Hewlett Packard Co.
HP EGS· A Facility Management Tool On the HP 9000 Series 200 and 300 ... 9013

Falstrom, Carl, ACCESS Corp.
Getting Acquainted With the B·Channel MUX .•......•..................... 1021

. iii·

Fix, Craig, Hewlett Packard Co.
Fixed/Removable Disc Drive Performance on the HPl000 ..•.•...•••..•.•••. 1034

Garcia, Dale, Technology Development Corp.
'High-Level' Programming Using the HP Macro/1000 Assembler ..•...•.••••. 1018

Gardner, Robert, Hewlett Packard Co.
Data Communications Via X. 25 On HP-UX 9004

Gentry, Art, ATT Communications
Building An In-House Time Share Service Center .•.•.••.•..•.....•....... 1035

Gerwitz, Paul, Eastman Kodak Co.
Program Development in a Large HP/1000 Network ...•.•••....•.•.•...•.... 1026

Goldberg, Itzhack, CMS Ltd.
Fast Access to HPUX(SOO) File System .••.•.•.......•.•.•.•••....••...... 9009

Guist, Judy, Hewlett Packard Co.
HP-UX- Hewlett Packard's Standard UNIX Operating System••......... *9001

Hassell, Bill, Hewlett Packard Co.
TEXED- Text Processing Program For HPlOOO Computers••......... *1001

Helt, Karen, Hewlett Packard Co.
A New User Interface For UNIX: the HP INTEGRAL PC ..••......••...••...•. 9005

Krizan, Brock, Hewlett Packard Co.
A New User Interface For UNIX: the HP INTEGRAL PC ...•...•.......•...... 9005

Kwong, Arnold, DCS Corporation
The ADA(tm) Programming Language On HP Hardware ..•........•.•....•..... 1002

LaRobardiere, Don, C & L Systems
The Design Of Application Utilities For Image ..•.•.•..•..••.•••..••.... 1003

Latven, Kazmer, Hewlett Packard Co.
Good Laboratory Practices and How They Can Be Supported
By A Laboratory Information Management System••.•.••••...•.. 1032

Lenk, Robert, Hewlett Packard Co.
Real Time Functionality In HP-UX .••.•.••...•.•••.•..•••.••....•.•...... 9008

Livermore, Norman TSA
SARSAT ·Satellites, HPs and Search and Rescue ..••••••••...•••......... 1023

MacGuidwin, Reid, Forest Computer, Inc.
Using An HPlOOO A-series Computer As An SNA Gateway .••..••.•••.•.•..... 1013

McCrory, G.L., ITT Aerospace/Optical Div.
Incoming Material Management and Vendor Quality Control•.•..•...•. 1020

Mccutcheon, John, TRW
A Test Program Development System Based on
the HP-9000 Family Of Computers•.•••..••....•......... 9010

McElrath, Trudy, Martin Marietta Aerospace
Controlling An Ultrasonic Inspection Process With An HP9000•... 9018

Merritt, Jerry, TDC
A Test Program Development System Based on
the HP- 9000 Family Of Computers .•.......•.. , ••.•.....•.•..•... , ...•.... 9010

Mill, Lizette, Hewlett Packard Co.
Troubleshooting Strategies For HP 1000 Computer Users .••...••.••...••.. 1033

Miller, Paul, Corporate Computer Systems Inc.
How To Buy Custom Software•..••.••...••.•••.••..•.••.•.. 1005

Miller, R., Martin Marietta Aerospace
Taking Advantage of Forms Mode for Database Entry Applications 1019

Miller, William, City of Philadelphia
Continuous Air Monitoring Using An HPlOOO-Controlled
Data Acquisition System .. 1015

Mortensen, Glen, Intermountain Technologies Inc.
File Backup and File Archiving On the HPlOOO 1012

Neuhaus, Peter, Hewlett Packard Co.
Techniques For Developing Device Independent
Graphics Software For The HPl000/9000 1006

Nevogt, G.R. ITT Aerospace/Optical Div.
Incoming Material Management and Vendor Quality Control 1020

Ott, Linda, Lawrence Livermore Laboratory
EDS Operator and Control Software 1010

Pappagianis, Chris, RCA Corp.
Using the HPlOOO To Automate A Machining And Gauging Process 1017

Parnigoni, Harold, Northern Telecom Ltd.
HP9000 Job Accounting-How to Find Out What Your HP9000 Is Doing *9014

Parnigoni, Harold, Northern Telecom Ltd.
Setting Up A Data Centre Communications Network- A Practical Example .. *9016

Phelan, Frank, Universal Computing
Interfacing an Array Processor to the HP A-series 1014

Phillips, Jay, Hewlett Packard Co.
A New User Interface For UNIX: the HP INTEGRAL PC 9005

Reis, Richard, Case Communications
Building and Using an Automatic Test Database 1029

Robrahn, Martha, Hewlett-Packard Co.
Evaluation of HP Realtime Systems Performance 1031

Rood, Andrew, Hewlett Packard Co.
Personal Computer UNIX For the Technical Professional 9003

Santee, George, Intermountain Technologies Inc.
File Backup and File Archiving On the HPlOOO 1012

Sayani, Dr. Hasan, ASTEC
An Ideal Systems Development Environment
Exploiting HP's Family Of Processors *1009

Schneberk, Dan, Lawrence Livermore Laboratory
Real Time Analysis Under EDS ... 1011

Schneider, Robert, Hewlett Packard Co.
HP /UX For I/O Control .. 9002

Sciuk, Robert, Statistical Software Group
Integrating Multiple Programs Under HPUX , 9011

Singer, Leonard, General Electric Co.
CAR/1000-Computer Aided Calibration and Recall System 1004

Snider, Tim, Statistical Software Group
Using Interprocess Communication to Implement
Data Base Concurrency Under HP-UX 9006

-V·

Sturdivant, Vernon, Southwest Research Institute
Using An HPlOOO for Robot Communication•.............•.•...•.... 1025

Sullivan, David, ZONAR Corp.
How To Use the Users•.. , ..•.•... 1008

Taylor, Stephen, Hewlett Packard Co.
Human Interfaces for Series 200 Basic Programs••.•.....•... *9017

Telford, Steven, Lawrence Livermore Laboratory
Transient Data Acquisition Techniques Under EDS•...........•. ,.1007

Walden, Philip, Hewlett-Packard Co.
The Design of SKETCH - A General Purpose Graphics Editor•..••.•... 1030

Webb, P.J., Admiralty Research Establishment
Making the Most Of the A-Series•.••..••...••.••.•..•• , ... 1028

Wright, Don, Interactive Computer Technology
Interactive Programming•.. , ...•.•. , .•....•.....•.•... 1016

* Papers marked with an asterisk (*) were not received in time for inclusion in
the proceedings. The abstract is printed in its place.

UNIX is a trademark of AT&T Technologies
-vi-

Index By Title

A New User Interface For UNIX•.•........................... 9005
John Brewster, K. Helt, B. Krizan, J. Phillips, Hewlett Packard Co.

A Test Program Development System Based on
the HP-9000 Family Of Computers•.•........ , 9010

Jerry Merritt, TDC, John McCutcheon, Robert Atkinson, TRW
An Ideal Systems Development Environment

Exploiting HP's Family Of Processors••••........•..... *1009
Dr. Hasan Sayani, ASTEC

Artificial Intelligence Environments -
Speeding Up the Software Development Cycle•..............•••.•. 9007

Sharon Bishop, Hewlett Packard Co.
Building and Using an Automatic Test Database•... 1029

Richard Reis, Case Communications
Building An In-House Time Share Service Center 1035

Art Gentry, ATT Communications
CAR/1000-Computer Aided Calibration and Recall System•.... 1004

Thomas Barrett, Leonard Singer, General Electric Co.
Continuous Air Monitoring Using An HPlOOO-Controlled

Data Acquisition System•....................••.. 1015
William Miller, City of Philadelphia

Controlling An Ultrasonic Inspection Process With An HP9000 ..••........ 9018
Trudy McElrath, Martin Marietta Aerospace

Data Communications Via X. 25 On HP-UX 9004
Robert Gardner, Hewlett Packard Co.

EDS Operator and Control Software•...•... 1010
Linda Ott, Lawrence Livermore Laboratory

Evaluation of HP Realtime Systems Performance .•...........••••••..•.... 1031
Martha Robrahn, Hewlett-Packard Co.

Fast Access to HPUX(500) File System•..•..••..•.•.•........ 9009
Itzhack Goldberg, CMS Ltd.

File Backup and File Archiving On the HPl000••.. ,1012
George Santee, Glen Mortensen, Intermountain Technologies Inc.

Fixed/Removable Disc Drive Performance on the HPlOOO 1034
Craig Fix, Hewlett Packard Co.

Getting Acquainted With the 8-Channel MUX 1021
Carl Falstrom, ACCESS Corp.

Good Laboratory Practices and How They Can Be Supported
By A Laboratory Information Management System 1032

Tom Boyer, and Kazmer Latven, Hewlett Packard Co.
'High-Level' Programming Using the HP Macro/1000 Assembler•... 1018

Dale Garcia, Technology Development Corp.

-vii-

How To Buy Custom Software "•...•.•.••..... 1005
Paul Miller, Corporate Computer Systems Inc.

How To Use the Users ... 1008
David Sullivan, ZONAR Corp.

HP EGS- A Facility Management Tool On the HP 9000 Series 200 and 300 ..• 9013
Ed Brovet and Joe Eyre, Hewlett Packard Co.

HP Techwriter- Integrated Text and Graphics For the HP9000 Series 200 .. 9015
Roy Anderson, Hewlett Packard Co.

HP-UX- Hewlett Packard's Standard UNIX Operating System•... *9001
Judy Guist, Hewlett Packard Co.

HP/UX Operating System For I/O Controller Applications•... 9002
Robert Schneider, Hewlett Packard Co.

Human Interfaces for Series 200 Basic Programs *9017
Stephen Taylor, Hewlett Packard Co.

HP9000 Job Accounting-How to Find Out What Your HP9000 Is Doing•.. *9014
Harold Parnigoni, Northern Telecom Ltd.

Improving CDS Program Performance•....•............ 1027
Wayne Asp, Hewlett-Packard Co.

Incoming Material Management and Vendor Quality Control 1020
G.R. Nevogt and G.L. McCrory, ITT Aerospace/Optical Div.

Integrating Multiple Programs Under HPUX 9011
Gary Anderson, Robert Sciuk, Statistical Software Group

Interactive Programming ,•.... 1016
Don Wright, Interactive Computer Technology

Interfacing an Array Processor to the HP A-series 1014
Ninon Argoud, Cimarron Boozer and Frank Phelan, Universal Computing

Making the Most Of the A-Series .. 1028
P. J. Webb, Admiralty Research Establishment

Performance of Multiple Processors in the HP9000 Series 500 9012
Robert Bury, Hewlett Packard

Personal Computer UNIX For the Technical Professional 9003
Andrew Rood, Robert Cline, James Andreas, Hewlett Packard Co.

Program Development in a Large HP/1000 Network 1026
Paul Gerwitz, Eastman Kodak Co.

Real Time Analysis Under EDS ... 1011
Dan Schneberk, Lawrence Livermore Laboratory

Real Time Functionality In HP-UX 9008
Robert Lenk, Hewlett Packard Co.

Real-Time Management Control of Factory Operations 1022
Karl Benson, PCI Ltd.

RTE-A Command Interpreter Features 1024
Beth Clark, Hewlett Packard Co.

SARSAT - Satellites, HPs and Search and Rescue 1023
Lt. Ed Blanchard and Norman Livermore, TSA

Setting Up A Data C~ntre Communications Network- A Practical Example .. *9016
Harold Parnigoni, Northern Telecom Ltd.

Taking Advantage of Forms Mode for Database Entry Applications 1019
J. Craft and R. Miller, Martin Marietta Aerospace

-viii-

Techniques For Developing Device Independent
Graphics Software For The HPl000/9000•............. 1006

Peter Neuhaus, Hewlett Packard Co.
TEX.ED- Text Processing Program For HPlOOO Computers *1001

Bill Hassell, Hewlett Packard Co.
The ADA(tm) Programming Language On HP Hardware 1002

Arnold Kwong, DCS Corporation, Larry Drews, Lexico Enterprises
The Design Of Application Utilities For Image 1003

Don LaRobardiere, C & L Systems
The Design of SKETCH - A General Purpose Graphics Editor 1030

Philip Walden, Hewlett-Packard Co.
Transient Data Acquisition Techniques Under EDS 1007

Steven Telford, Lawrence Livermore Laboratory
Troubleshooting Strategies For HP 1000 Computer Users 1033

Lizette Mill, Hewlett Packard Co.
Using An HPlOOO A-series Computer As An SNA Gateway 1013

Reid MacGuidwin, Forest Computer, Inc.
Using An HPlOOO for Robot Communication•..... 1025

Vernon Sturdivant, Southwest Research Institute
Using the HPlOOO To Automate A Machining And Gauging Process 1017

Chris Pappagianis, RCA Corp.
Using Interprocess Communication to Implement

Data Base Concurrency Under HP-UX•..•......•.•........ 9006
Tim Snider, Statistical Software Group

* Papers marked with an asterisk (*) were not received in time for inclusion in
the proceedings. The abstract is printed in its place.

-ix-

1001. TEXED- TEXT PROCESSING PROGRAM FOR HPlOOO COMPUTERS

Bill Hassell
Hewlett Packard Co.

3003 Scott Blvd.
Santa Clara CA 95050

ABSTRACT

TEXED is a program based on many of the text processing techniques currently
popular today. It runs on RTE-4B, 6, and A opsystems and provides the user with
a fast, well-featured documentation system. TEXED can provide a Table of
Contents, an index, Appendices, and even has options to provide output that can
be directed to the 2680 and 2688 laser printers. Justification, centering,
change bars, and variable paragraphing can be invoked along with a page width
up to 130 characters. A quick overview of text processing and TEXED's history
will be provided along with ideas on how to create manuals, memos, and good-looking
communications in general. TEXED was given to the CSL library in 1984 and an
updated version that supports the new file system on both RTE-6 and RTE-A.

-1- Paper 1001

1002. THE ADA(tm) PROGRAMMING LANGUAGE ON HP HARDWARE

Arnold W. Kwong
DCS Corporation

363 Cretin Avenue South
St. Paul, Minnesota 55105

Larry Drews
Test Systems Division

Lexico Enterprises, Inc.
10516 Northeast 37th Circle

Kirkland, WA 98033

I. Introduction

This section will first describe the background of the ADA language and then
discuss why ADA is important to the HP user community.

A. What is ADA?

The ADA programming language was developed tmder the auspices of the US Department
of Defense. The project that led to the development of the ADA programming
language was begun in 1975.

The needs that led to the development of ADA were:

1) A proliferation of languages (JOVIAL, CMS·2, various assembly
languages, and lesser known languages such as TACPOL) were being
used to develop software for systems used by the DoD.

2) The languages in use by the DoD, and its contractors, were often
of poor quality \llhich led to the failure of DoD development projects
due to language and compiler problems.

3) The life cycle costs of designing, developing, maintaining and
creating systems in specialized languages were growing.

ADA was specifically designed incorporating the experience gained in research
and industrial environments using languages such as PASCAL, MESA, MODUI.A (MODCAL),
ALGOL (SPL), and PL/l. Specific additions for the real time environments include
inline machine code insertion, interfacing to other languages (including
assembler), untyped variable data conversions, and time-to-interrupt task
specification.

An important element in the development of ADA as a programming language is the
concurrent development of a "programming environment" within which ADA language
based applications are developed, executed, and maintained. Generically these
environments are called "APSE"s ("ADA Programming Support Environments") and
are labeled in three types of special interest: the "KAPSE" ("Kernal ADA Program
Support Environment"), the "MAPSE" ("Minimal ADA Program Support Environment"),
and the "APSE" ("ADA Program Support Environment").

·l· Paper 1002

The KAPSE includes operating system functions such as resource allocation,
input/output, process management, and error handling.

The MAPSE includes basic program development tools such as an ADA compiler,
linker, absolute object loader, debugging tools, editor, prettyprinter, terminal
interface, file system, software configurator, and command interpreter.

The APSE includes environmental tools not usually associated with a specific
programming language. These tools include: context/syntax directed editors,
documentation support, project control, software configuration control, performance
measurement, error tracking, design and verification, pre/post processors,
command interpreters, and support program code libraries.

In summary, the ADA programming language environment consists of more than a
language compiler. The environment includes defined levels of interfaces, tools,
and methodologies that combine to provide an effective means with which to
develop application systems.

B. Why is ADA important to HP users?

The original broad design for ADA was focused by DoD Directive 5000.31 that
mandated the use of ADA for "mission critical" systems begun in 1984, The
definition of "mission critical" encompassed such embedded computer uses as
avionics, fire control, and aircraft control. This definition has since been
extended in practice to include a wide variety of other systems.

The HP user sites in the DoD and its contractors thus have very strong reasons
for being interested in ADA. Other HP users need to consider the advantages
that ADA will bring in the long term:

1) Ease of maintenance, leading to lower life cycle costs, is a
critical design goal of ADA.

2) Efficiency was an almost overriding concern during the language
development process.

3) ADA presents a machine independent consistent method for describing
and using parallel and sequenced tasks. The reduced need to train
programmers in the idiosyncratic use of a specific operating system
is a benefit in building and maintaining systems.

4) ADA compilers have a better chance of working properly after
validation. A DoD validated ADA compiler has to pass a compile/execute
suite of over 2600 tests. This gives a greater assurance that
the compiler works in the documented manner.

5) ADA provides a well thought out method for handling faults, errors,
and processing exceptions. This, and other features of the
language, provide for the design and development of maintainable
fault tolerant systems within real time operating environments.

6) ADA is specifically designed to facilitate the transport of tools
between ADA based systems. The MAPSE/APSE level provides the means

Paper 1002

for vendors, and third party software suppliers, to supply
sophisticated tools for a very wide market without having to be
concerned with the intricate details of each of the underlying
operating systems.

7) Funding for development of software development methodologies,
training materials, and software tools is being provided by the
DoD. The availability of tools and trained people is a long term
advantage.

II. How to get ADA on an HP machine:
A quick tutorial on software architectures.

This section will discuss the needs of the ADA language for KAPSE and instruction
set features, and then a general discussion of HP systems' architecture will be
made. Following the discussion of the HP systems' architecture will be a short
tutorial on virtual systems and approaches to implementing them.

A. The ADA KAPSE and Instruction Set Requirements

Implementing ADA environments (KAPSE/MAPSE/APSE) is a time consuming and difficult
task. Existing efforts have exceeded two man centuries. Fortunately the effort
required to move an existing compiler does not approach this magnitude.

The STONEMAN Document forsaw the use of virtual environments in order to implement
ADA in a variety of ways: cross compiling, rehosted environments (developed
and run on separate machines), and code generation for multiple machines from
a single compiler design. (5.F.l) Included in the list of possible machine-independent
low level coding schemes were: BCPL/C, P-code (PASCAL), JOVIAL, and others.

Implementing ADA requires implementing several "virtual systems" where the
implementation of each layer does not depend on implementation details of other
layers.

The KAPSE

At the next to lowest level, the Kernal ADA Program Support Environment (KAPSE),
the interface to the operating environment, takes the form of calls to system
services. In practice the current implementation of KAPSE functions has followed
the provisions of the UNIX Kernal. The Telesoft implementation of the ROS KAPSE
required only about 300 lines in the C programming language to implement the
Kernal functions required for ADA as a virtual system above UNIX. This kernal
approach is not unlike that of the HP 3000/MPE Kernal, HP 9000/500 Series SUN
Kernal, or the services provided by the HP 9000/200 Series PASCAL environment.

The Instruction Set

At the lowest level the ADA compiler must create a list of instructions to be
executed by the macro-level instruction set of the executing processor. There
are several approaches to deciding what are the "best" instructions to execute
for efficient program processing.

The ADA language is very demanding on the features of the instruction set that

-3- Paper 1002

is running the compiled code. There are many requirements for run time checking,
complex fault handling, references to complex data structures, and rules for
data sharing. This provides significant challenges in the current HP systems.

HP systems have historically been microprogrammed for specific language and
feature support.

The HP 1000 traces its roots back to "The Gibson Mix" that was characterized at
IBM. Later HP 1000s have extended the original instruction set with 'RPL'
instructions that serve to implement a wide variety of support functions for
applications (such as the Fast Fourier Transform), computation (such as the
vector instructions), language support (such as the Fast Fortran and Decimal
String Arithmatic), and architectural extension (such as Code and Data Separation) ,
Thus, the HP 1000 is optimized for the efficient execution of FORTRAN and support
for the RTE operating environment.

The HP 3000 traces its roots back to the Burroughs B5000/5500 systems and the
use of the ALGOL-derived Systems Programming Language (SPL) for most of the
system. The HP 3000 instruction set has been microcoded on at least four
different architectures that completely emulate the commonly used user functions
so as not to require recompilation of programs in all cases. The microcode for
the HP 3000 also includes features that increase the efficiency of MPE operating
system functions, COBOL language features, and FORTRAN language features.

The HP 9000/200 Series systems use the Motorola 68000 as a processor. The M68000
has been custom remasked for IBM to emulate the majority of the IBM 360/370
unpriviledged instruction set for use in the XT/370 and AT/370. The internal
use of MODCAL to develop some of the underlying support for the UCSD-derived
PASCAL environment is a demonstration of the multiple levels used in the 9000/200.

The HP 9000/500 Series systems have provisions for on chip-set microcoding.
This is rumored to have been the basis for the canceled VISION product which
would have run the HP 3000 instruction set. The existing use of both MODCAL
and C demonstrate the current orientation of the instruction set microcoded on
the HP 9000/500.

Other HP systems, such as the HP 64000 and HP 250, use descendants of the HP
BPC chip set which was originally designed for use in the HP 9825 calculator.
This cpu has a limited memory addressing space and a limited instruction set.

In summary, the demands of the ADA KAPSE and language features provide a difficult
set of problems for would-be compiler and environment implementors. The
optimization of the major product lines, the HP 1000 and HP 3000 systems, for
other languages and environments introduce obstacles for a new compiler and
environment like ADA.

B. Emulating Systems Using Virtual Systems and Virtual Instruction Sets

This section will define and describe the use of "emulation" in order to implement
features on systems not necessarily optimized for a given language.

Paper 1002

The use of emulation in order to run a system of different characteristics on
a system normally used for other functions is not widely known, but the technique
has been used in many commercial systems.

A "virtual instruction set" approach allows for the execution of an arbitrary
instruction set on hardware and firmware that may be optimized for other uses.
The "target" (or emulated) instruction set is executed by hardware and software
such that the executing program cannot distinguish the execution environment
from one of pure hardware designed specifically for it.

"Virtual systems" are implemented in virtual instruction sets to execute on
hardware and firmware other than that specifically designed to execute the
virtual instruction set.

"Virtual machine" operating systems allow for the execution of multiple operating
system copies on the same physical hardware. Thus, concurrent execution of the
IBM DOS and MVS systems is possible with the use of the IBM VM Operating System.
The IBM VM operating system treats the other operating systems as "guests"
which are running on the same physical hardware. Each of the guest operating
systems may execute special instructions that are unknown in the other guest,
or the VM, operating system.

The existing examples of virtual instruction set machines include the Burroughs
Bl700/1800/1900 Series, the Nanodata QM/l, and the APL Assist feature on the
IBM 370 Series.

The effective use of virtual system techniques along with instruction set virtual
machines provide an operating environment that cannot be distinguished from the
emulated machine. In this paper the term "emulation" will encompass both the
virtual system and instruction set virtual machine use to provide the apparent
system image. Examples of these machines include the IBM 1400 Series emulation
on IBM 370/30XX, emulation of the B2XX machines on the BlOOOs, and emulation of
the APL/SV environment on the IBM 51XX.

Emulated Machines

The emulation of a target virtual system and instruction set can be performed
totally in software, although this normally incurs a high performance penalty
when contrasted with assembly language coding for the same task.

Examples of the software implementation of emulated virtual systems include the
PASCAL·P/UCSD Pascal, many BASIC interpreters (including BASIC/3000), APL/APLGOL
on the HP 3000, and RM/COBOL on many small systems.

Why use a software virtual machine for a spectrum of need?

Emulating a target machine in software is needed in several situations:

1) The emulated machine is obsolete, but some applications should
not, or can not, be converted to a new system. Examples include
the IBM 14XX Series emulated on the IBM 370/30XX, the Honeywell
2000 Series emulated on the Level 64/DPS 7, and the IBM 1130
emulated on the META 4.

-5- Paper 1002

2) The emulated machine does not yet exist. Emulation is frequently
the preferred approach where the target machine is not yet available
or fully debugged. Examples include the HP 9000/500, the HP
3000/44, the HP 300, and the HP 150.

3) The emulated machine will never by built as dedicated hardware,
but the virtual system and virtual instruction set are efficient
approaches to solving problems. Examples include the E-Code used
in HP APL/APLGOL/3000, the P-code used in UCSD PASCAL (also
implemented in hardware as the Western Digital Microengine), and
the RM/COBOL intermediate code.

4) The emulated machine may need features that the existing hardware
cannot support directly. Examples are the COBOL implementations
found on small systems. Packed decimal arithmatic, picture clause
editing, byte oriented memory access, and extended precision
arithmatic instructions are not usually found in small systems.

5) The emulated machine may be implemented using a simplified
instruction set in order to reduce hardware cost and simplify CPU
design. This technique is at the heart of the Reduced Instruction
Set Computer (RISC) projects like Spectrum. Examples currently
being available are: the APL/SV models of the IBM SlXX (50
instructions in the native machine), the Cyber SXX Series (supporting
both NOS and NOS/VE environments), and the Pyramid 90X (with a
large register window).

The use of emulated machines can gain benefits not available using just hardware:

1) Certain guarantees about the execution environment (such as
interrupt handling, time synchronization, resource sharing
mechanisms, and fault/error handling) can be made where the native
hardware base changes. A good example is the implementation of
the HP 21XX instruction set in the HP 1000/A-900. The word I/O
to and from cards is emulated even though the physical I/O occurs
via DMA on the backplane instead of handshaking. The current
product architecture is very different from that of the original
HP 2114.

2) Debugging the system, performance measurement, portability, and
development are much easier. The target being emulated need not
be run on a small system when first prototyped. Large scale systems,
with richer toolsets and faster speeds, can be used until hardware
becomes available. Emulation is a tool that can be used to
guarantee the portability of source level codes although the
underlying hardware may be altered significantly. Examples include
HP Standard PASCAL which uses similar internal structures prior
to code generation.

3) Different environments can be provided on the same hardware.
Although the IBM 14XX emulation may be active, other tasks can be
concurrently processed within the IBM 370. This concurrency of
processing is due to the allowances for separate virtual systems

Paper 1002 -6-

(and instruction sets) executing over the same physical equipment.

In some cases the development of virtual systems and virtual instruction sets
has led to the creation of a special optimized CPU for the "virtual" environment.
Examples include the BellMac 32000 (for 0-Code/C), the Western Digital Microengine
(for P-Code/PASCAL), and the INTEL iAPX-432 (for ADA).

C. Swmnary

Emulating a virtual system, and possibly a virtual instruction set, can be an
effective means to implement systems, software, and features that camiot otherwise
be supported on a given system. This technique can be used to implement ADA on
the HP 1000, or other HP, systems.

III. Implementing ADA on HP Systems

This section will discuss the efforts to implement ADA on HP systems and then
examine the suitability of existing HP systems for execution of ADA environments.

A. ADA Implementation Efforts on HP Systems

There are, or have been, at least three projects to implement ADA for HP systems.

The Solutions Plus ADA for the HP 9000/200 is a conversion of the Telesoft ADA
compiler. This software is currently marketed and will reflect the validated
Telesoft compiler as it becomes available.

There was an attempt to produce an ADA compiler for the HP 1000 by Science
Applications, Inc. The effort was to generate a subset ADA compiler that
generated HP 1000 instructions from ADA language programs possibly using the
PASCAL code generators. This effort has been suspended.

A partial subset of ADA for the HP 3000 (approximately the size of PASCAL) was
implemented by NuSoft, Inc. As far as is known this effort has also been
suspended.

Hewlett-Packard has signed a contract with Alsys, a French firm headed by ADA
designer Jean Ichbiah, to acquire the AlsyComp technology. Published information
indicates that this compiler product consists of" ... the machine independent
root portion of the compiler, and the tools, utilities, and documentation needed
for them to develop the remaining 20 percent (or back end) needed to target a
compiler to a particular hardware ... ". Thus, the KAPSE/MAPSE/APSE development
remains for HP. The initial validated version for the Alsys compiler was
performed on an M68000 based system. HP plans for a product are not known as
of this writing.

B. What Choices are there for ADA on HP Equipment?

This section will consider each of the HP product lines in turn and their
suitability to execute ADA environments. ADA environments currently available,

-7- Paper 1002

or in development, will be noted in passing.

HP 3000

The HP 3000 computer systems would appear to be suitable for execution of ADA
environments. The stack architecture and block-language (AI.GOL/SPL) orientation
provide some basis for ADA implementation. Significant drawbacks are present
in the limited data stack size (64KB) and the overall processing power (approximately
one MIPS). Existing ADA compilers consume DEC VAX 11/780 systems very quickly
both from an I/O and CPU usage perspective. ADA compilers tend to be very large
and require large linear address spaces for symbol tables and semantic checking
of program code. The HP 3000 is not supported as a user microcodable system.
The combination of limited data stack size, limited processing power, and no
access to microcode support make implementing a full validated ADA environment
on the native HP 3000 unlikely.

HP 9000/200 and HP !PC

The M68000 based HP 9000/200 is currently being supported by Solutions Plus with
a conversion of the Telesoft ADA KAPSE and compiler. The large linear address
space and large memory available makes the HP 9000/200 Series an attractive
target machine for an ADA environment. A number of ADA environment/compiler
producers are targeting the first implementation of their products to the M68000
based systems. (Alsys, Telesoft, others)

HP 250/260, HP 64000

The HP 250 and the HP 64000 share the use of the HP BPC chip set. It is unlikely
that there will ever be an ADA environment converted for the HP BPC. The
availability of PASCAL and C for cross compilation on the HP 64000 makes it
possible to consider use of ADA environments for target microprocessors on the
HP 64000. The ADA environment and its related tools would probably be implemented
in a "target" processor. A question arises whether the HP 64000 would be the
target system, or the system under development, when the majority of memory
access and processing would be occuring outside of the HP 64000. The in circuit
emulation and software performance measurement features of the HP 64000 would
be ideal for ADA environments and some "cooperation" between an external ADA
environment ("target") and the HP 64000 system would be useful. The implementation
of this cooperation would be in the form of transferred symbol tables and a
memory allocation map for use by the HP 64000.

HP 150

There are currently several efforts to develop an ADA environment for the INrEL
808X/80X8X microprocessors (INTEL, R&R, TELESOFT, others). A conversion of one
of these products is possible, but no organization has announced plans to do
so. The KAPSE would be layered on top of MS-DOS or XENIX for these CPUs.
Another alternative is cross compilation support for the object code with an HP
150 resident KAPSE (INTEL).

HP 1000

The HP 1000 is used in environments where the ADA environmental capabilities

Paper 1002 -8-

are most useful: real time control, data acquisition, test and measurement,
and embedded processing. The existing HP 1000 instruction set architecture
makes it difficult to implement a block structured language of significant
complexity. The difficulties of HP PASCAL/1000 are evidence of problems mapping
a block structured language to a FORTRAN oriented instruction set.

The HP 1000 can also use the M68000 add-in card (HP currently supplies one) and
run cooperative ADA-generated code with the HP 1000 providing I/O and bther
services.

The availability of user microcoding on the HP 1000 provides the opportunity to
extend the HP 1000 native instruction set to provide for the extended functionality
needed by ADA.

C. Summary

The HP product lines have a number of opportunities for ADA environment
implementations. The HP 1000 is the product line most suitable for ADA usage
and one of the most difficult products on which to implement ADA.

IV. ADA on the HP 1000

A. Problems with implementing ADA on the HP 1000

There are a number of significant problems that face an implementor of an ADA
language compiler for the HPlOOO. Chief among these are:

Multiple machines (E,F,A series)

Multiple operating/file systems

Archaic architectures

Non-tasking operating systems

No direct access to interrupts

Interfacing ADA programs to host operating/file system

Interfacing ADA programs to existing subroutine libraries

Each of these problems will be examined in turn.

1. Multiple machines (E,F,A series)

The HPlOOO series of computers actually consists of a number of slightly different
architectures. As each machine was introduced, additional features were added
in response to customer needs. The A- series embodied several substantial
enhancements.

-9- Paper 1002

In order to minimize development and maintenance costs, it is desirable to
implement any ADA language system using a common set of capabilities that are
available on all of the machines in the series. Unfortunately, some required
capabilities fall outside of the common set and therefore cause Dn.lltiple versions
of the ADA language system to exist.

A prime example of a non-common feature which is different is the microcode
architectures. As will be discussed later, one of the mechanisms that can be
used to s9lve the ADA language implementation problems is the use of microcoding
to provide necessary architectural features. The A900, A700, and the older E
and F series all have different microcode architectures which will require
different versions of any microcoded features.

2. Multiple operating/file systems

The HPlOOO series of computers currently has several operating system/file
managers combinations in use. On the E,F series, RTE-IVB and RTE6/VM are the
primary operating systems in use. On the A series, RTE-A is the operating
system, but there are two different file managers in use: FMGR and FMP. This
gives four combinations of operating/file systems that the ADA language system
must cope with.

3. Archaic architecture

The original HPlOOO architecture is almost 20 years old! It started out life
in the late 60's as the HP2116 (or was it the HP2114?). Computer architectures
have' evolved considerably since then. And while HP has made yeoman efforts to
adapt the original design to accomodate the new requirements, still the HPlOOO
suffers from the lack of modern architectural features. Primary deficiencies
include few registers, non-stack architecture, and limited address space. This
results in a machine that cannot easily support re-entrancy or recursiveness,
features that are inherent in the ADA language.

The A-series has implemented a limited stack for procedure calling and local
variable storage, but such features do not exist on the E and F series. The
limitations of the HP 1000 instruction set compatibility between series of
machines is also a problem.

The saving grace of the HPlOOO architecture is open access to its microcoding
mechanisms. As will be discussed later, with microcoding many of the above
architectural deficiencies can be overcome. In short, the implementation of a
virtual system and virtual instruction set can provide an adequate cure for the
archaic architecture of the HP 1000.

4. Non-tasking operating system·

None of the operating systems on the HPlOOO series provides for convenient user
application multi-tasking. While separate programs may be invoked as asynchronous
executing entities, storage sharing is severely restricted. Running multiple
copies of a program using such a restricted set of capabilities would be difficult
to implement. And yet, this is exactly the intended operating mode of ADA
applications. Consequently, ADA multi-tasking becomes a problem area in any
implementation on the HPlOOO.

Paper 1002 -10-

5. No direct access to interrupts

The HPlOOO operating systems do not provide user application programs any kind
of direct access to interrupts. The user may implement special drivers, or even
programs that are initiated by interrupts, but applications that must be able
to recognize and handle multiple interrupt driven events have no mechanisms to
handle such requirements.

A prime example is clock interrupts. Much of ADA tasking requires the ability
to sense the passage of time on an interrupt basis. However, there are no
mechanisms in the HPlOOO operating systems that provide an application program
with an interrupt signal to indicate that a given time interval has occurred or
that a specified clock time has arrived. Getting around this deficiency represents
a significant challenge.

6. File system interface

Although input/output operations are not part of the ADA language definitions,
a standard package handling the major forms of file input/output is defined.
On the HPlOOO, the ADA language system implementor must provide for an interface
between this standard package and the the HPlOOO file system. Given the number
of file types available to the HPlOOO user and their various characteristics,
this file system interface is a non-trivial problem.

7. Existing subroutine library interface

There exists a large body of software already implemented on the HPlOOO for
various applications. For practical purposes, any useful ADA language system
on the HPlOOO must be able to access these existing subroutine libraries. The
two major problems involved here are linking to the subroutines and passing of
parameters. The ADA language does provide an optional mechanism to support this
linkage, the "interface pragma." This, or some other pragma, must be implemented
to provide the mechanisms necessary to allow use of the existing software.

B. Solutions to the problems

Given the problems outlined above, the burning question becomes: how can an
ADA language system be implemented on the HPlOOO series? As will be discussed,
emulation with microcode assistance seems to be a workable approach.

1. Emulation of better architecture

Emulation allows the use of a virtual instruction set that supports the types
of operations required by an ADA language system. Stack operations, re-entrancy,
recursiveness, and multi-tasking primitives may be easily implemented given an
appropriate virtual instruction set. Similarly, an efficient instruction
repertoire in conjunction with easy and straight-forward code generation can
compensate for some of the loss in execution time associated with emulation.
Execution performance can be further enhanced by microcoding critical and
frequently used portions of the emulator. In fact, with a suitably chosen
virtual system implemented in a reasonably effective manner with microcoding
where possible, the emulated programs will perform comparably to native HPlOOO
Fortran programs. This relative effectiveness of emulated instructions occurs

• 11- Paper 1002

because of the inherent awkwardness of the native HPlOOO instruction set in
implementing high level language structures.

A major consideration in choosing such a virtual system is the availability of
ADA compilers that generate code for such a virtual instruction set. If
implementing a new code generator can be avoided, then the task of porting an
ADA language system onto the HPlOOO series will be eased considerably.

2. Lowest common denominator

Since the HPlOOO series is a series of not quite identical machines, the lowest
common denominator, in terms of machine features and operating system functions,
must be found and used. To the extent that instructions or operating/file system
functions that are not common across the series can be avoided, to that extent
is the task of providing a uniform product eased.

3. Localize the differences

However, non-standard features cannot be totally avoided. The emulator must
interface to the host I/O system, and will use the native microcode to improve
performance. The goal in these areas is to localize the usage of these features
so that the differences between versions of the ADA language system are well-defined
and easily controlled. In addition, the A·series does provide enhancements in
the architectural area that may well be worth using in spite of the additional
maintenance problems that may be incurred.

4. Multi-tasking within one session/program

Since none of the HPlOOO operating systems provide the level of sophistication
in multi-tasking required by an ADA language system, those capabilities llD.lSt be
provided as part of the emulation system. This restricts multi-tasking to be
contained within one session. While this is not the general, host operating
system integrated true multi-tasking that is preferred, for most applications
on the HPlOOO this will probably be sufficient. However, it should be noted
that this is a major deficiency that can not be rectified without introducing
a new operating system.

5. Polling of central interrupt flag

Again, the host operating systems effectively prevent coupling ADA language
applications with multiple interrupts, or with clock interrupts of any kind
without significant surgery. A polling mechanism which is coupled to the
emulation cycle can be implemented that can simulate interrupts somewhat crudely.
Every so often, at whatever resolution is required, the emulator can poll the
various sources of interrupts to determine if an interrupt has indeed occurred.
If so, the emulator can fake whatever interrupt action is suitable for the
emulated architecture.

6. Emulator implementation of low level file operations

If the emulator can recognize and trap the low level I/O operations associated
with file manipulation, then the emulator can redirect the actions to the host
operating system. The standard package defined for ADA systems uses file types

Paper 1002

that are a subset of the FMGR and FMP file types, so no major problems should
occur in this area. In essence, RTE becomes a virtual machine system where the
ADA system is a microcode assisted virtual system.

7. Foreign subroutine interface

There exists a large collection of programs and subroutines already implemented
on the HPlOOO, primarily in Fortran and Macro. These packages represent a
substantial economic resource and will not be readily abandoned by users just
because a new language has appeared on the scene. Consequently, any lillA language
system that is implemented on the HPlOOO must be able to access and use these
existing software packages in a reasonable manner.

Since an emulator based system is being proposed, several problems arise in the
area of interfacing to foreign subroutines. First, how to recognize that a
foreign subroutine is being accessed, and secondly, how to pass parameters to
and get results from the foreign subroutine. A special "pragma" must be
introduced by the ADA language implementors. This pragma would associate a
programmer specified number with the declaration of the foreign subroutine, and
allow the emulator to trap and redirect the procedure call to the user provided
subroutine via a user provided lookup table.

The virtual machine/virtual system approach allows each system to operate in an
optimized manner (ala' the Bl700 or QM/l).

C. Summary

Implementing an ADA language system on the HPlOOO would be much simplified by
using a virtual system suitable to the ADA language requirements. With micro-coded
assistance, performance of such a system would approach native Fortran efficiencies.
An emulation approach provides the controls necessary to provide multi-taskin·g
and interrupt controls. And interfacing to FMGR or FMP files does not seem to
be difficult. Finally, mechanisms to interface to existing subroutine libraries
can be devised, which, although somewhat awkward, can do the job. ADA on the
HPlOOO awaits the putting together of these components.

V. Implementing MAPSE and APSE Capabilities on the HP 1000

This section will describe the possible MAPSE and APSE alternatives for use on
the HP 1000.

A. MAPSE/APSE Features

The ADA MAPSE and APSE, as defined in the STONEMAN document, provide more
sophisticated development support capabilities than are typically used on the
HP 1000. Integrated tools that are specific to the ADA environment (pretty
printers, cross references, software configuration control, and performance
analysis) are not commonly available for the HP 1000. ADA environmental tools,
such as the ALS being developed by SofTech, can be converted to a validated HP
1000 ADA environment with a minimum of effort. The effort is minimized by the
use of the validated ADA compiler. KAPSE and MAPSE tools are generally coded in
ADA thus providing an interchangable source of tools within the ADA community.

-13- Paper 1002

B. HP 1000 Considerations

In order to support sophisticated tools in the HP 1000 systems two problems have
to be overcome:

1) Human interaction may need other methods than are currently
supported by the HP 1000 (such as mouse, light pen, or voice entry).

2) Sophisticated tools put a load on the HP 1000 system where resources
may not be available.

These problems can be overcome using intelligent workstations such as the IBM
PC or HP 150 to off load human interaction and tool processing functions from
the HP 1000. The existing tools for ADA on these workstations include context
sensitive editors, syntax checkers, and methodology support for ADA as a program
definition language.

The workstations can be combined with the computer linkage capabilities of
PC-to-1000 transfer capabilities to effectively do the code creation on the
workstations and then transfer the files to the HP 1000.

C. Summary

The tools available for the MAPSE and APSE levels will not be as complete as
some larger machine environments. Sufficient tools are already available to
make development of ADA software for the HP 1000 viable.

VI. Conclusions

The ADA programming language is a good fit for applications on the HP 1000.
The implementation of a virtual system for ADA, using a virtual instruction set
just for ADA, will provide adequate performance on an HP 1000. The implementation
of ADA on the HP 1000 is feasible without a long period of time.

VII. Annotated Bibliography

INDEX TO BIBLIOGRAPHY
I. Support for Virtual Systems

A. Bl700 References
B. Hardware/Software/Firmware Tradeoff Analysis
C. Instruction Set Requirements
D. QM/l References
E. Virtual Machines
F. Hardware Assisted Virtual Instruction Set Implementation

II. ADA References

III. HP Product References
A. HP 1000
B. Desktop

Paper 1002 -14-

C. HP 9000
D. HP 300/3000

I. Support for Virtual Systems

A. Bl700 References

Design of the Burroughs Bl700; Wilner, W. T.; Proceedings of the 1972 FJCC;
1972; p 489-497

A definitive reference to the design of the Bl700 systems this article
describes the use of virtual instruction sets to allow an optimized
implementation of various high level languages to be supported on a
single hardware design.

Burroughs Bl700 Memory Utilization; Wilner, W. T; Proceedings of the 1972 FJCC;
p 579-586

This is a good reference comparing the use of optimized instruction
sets tuned for a given source language (FORTRAN, COBOL, and RPG are
the examples used).

Realizing A Virtual Machine; Forbes, B., et al; Ninth Annual Workshop on
Microprogramming (MICR0-9) Proceedings; 1976; P 42-46

A specialized virtual system and virtual instruction set are described.
The task defined is a real time software system used to control check
sorting equipment. The mapping of the virtual system to the physical
hardware is described and the design process illustrated.

MPL1700 A High(er)-level Microprogramming Language; Fisher, R. N., et al;
Software- Practice and Experience; V7(1977); P 747-757

The report described the implementation of an intermediate level
microprogramming language that is roughly equivalent to PL360. The
design process and goals for a LISP-type interpreter are also described.

B. References Related to Hardware/Software/Firmware Analysis

Evaluation of hardware-firmware-software trade-offs with mathematical modeling;
Barsamian, H.; Proceedings of the SJCC 1971; 1971; P 151-161

A mathematical model providing a rational basis for trade-off analysis
is provided. Most of the factors affecting design choices are still
current with some updating for cost factors that have changed since
publication.

The interpreter· A microprogrammable building block system; Reigel, E.W., et
al; Proceedings of the SJCC 1972; 1972; P 705-723

This is a discussion of work that lead to the development of the

·15· Paper 1002

Burroughs 'D-machine' interpretive system. Analysis of hardware and
microprogrammed architectures is provided to determine a possible set
of design choices in detail.

C. Instruction Set Requirements

Implications of Structured Programming for Machine Architecture; Tanenbaum, A.
S.; CACM; V21N3; 1978; P 237-246

The study analyzed the use of a tuned instruction set for a C-like
language. Stack oriented requirements and a sample virtual instruction
set are described.

iMAX: A Multiprocessor Operating System for an Object-based Computer; Kahn, K.
C., et al; Proceedings of the Eighth Symposium on Operating System Principles;
Operating Systems Review; VlSNS; 1981; P 127 - 136

The iAPX-432 (INTEL) computer uses ADA for the systems programming
language. This article defines the hardware/software interface and
requirements for ADA.

Supporting ADA Memory Management in the iAPX-432; Pollack, F. J., et al;
Proceedings of the Symposium on Architectural Support for Programming Languages
and Operating Systems; SIGPLAN Notices Vl7N4; 1981; P 127 - 136

Instruction set requirements supporting ADA on the iAPX-432 are defined
in this article. Specific discussion of ADA memory management for
packages and block structures is also discussed.

INTEL 432 System Summary: Manager's Perspective; Manual 171867-001; 1981

This manual is a general discussion of the ADA-oriented Intel 432.

The GIBSON Mix; Gibson, J. C.; IBM Technical Report TR 00.2043, June 18, 1970
Computer Instruction Repertoire - Time for a Change; Church, C. C.; Proceedings
of the SJCC 1970; 1970; P 343-349

The HP 1000 instruction set was modeled after the GIBSON mix.

D. Nanodata QM/l References

The Nanodata QM/l is a hardware system designed to support many different virtual
systems and virtual instruction sets. Methods tor handling virtual peripherals
and I/O are also provided.

An Insight into PDP-11 Emulation; 9th Annual Workshop on Microprogramming
(MICRO 9) Proceedings; 1976; P 20 - 26

An emulation of the PDP 11 as a virtual instruction set on the QM/l
is described.

Paper 1002 -16-

A Meta-Assembler for Highly-parallel Microprogrammable Systems; Berglass, G.
R.; 13th Annual Microprogramming Workshop (MICRO 13) Proceedings; 1980; P 181
- 189

This paper describes the emulation of the IBM System/370 as a.virtual
system/virtual instruction set on the QM/l.

Considerations for Local Compaction of Nanocode for the Nanodata QM-1; Rideout,
D. J.; 14th Annual Microprogramming Workshop (MICRO 14) Proceedings; 1981; P 205
- 214

Compaction of microcode for a virtual instruction set implementation
is described. An example is given from a C-type progranming language.

E. Virtual Machine References

Architecture of Virtual Machines; Goldberg, R. P.; Proceedings of the NCC 1973;
1973; p 309 - 318

The concept of a 'hardware virtualizer' that permits concurrent
execution of multiple virtual systems is described along with the
necessary data structures and hardware/firmware support.

Evolution of a Virtual Machine Subsystem; Hendricks, E. C., et al; IBM Systems
Journal; Vl8Nl; 1979; P 111 - 142

VM/370's development, from the early CP-67 until 1979, is traced in
this article. Providing data communications, virtual machines, and
support for existing operating environments were problems enco\llltered
and solved.

VM/370 - A Study of Multiplicity and Usefulness; Seawright, L. H., et al; IBM
Systems Journal; Vl8Nl; 1979; P 4 - 17

A very good overview of the usefulness for virtual systems software
is provided in this reference work.

F. Firmware Supported Languages

These papers discuss the implementation of various languages as finnware virtual
instruction sets.

A Firmware APL Time-sharing System; Zaks, R., et al; Proceedings of the SJCC
1971; 1971; p 179 - 190

An APL Emulator on System/370; Hassitt, A., et al; IBM Systems Journal; Vl5N4;
1976; p 358 - 378

APL\3000 Issue of HP Journal; V28Nll; 1977

APL Now Available on a Small General Purpose Computer; HP Computer Advances

-17- Paper 1002

5953-0843

Hardware Assisted Virtual Instruction Set Implementation

Microprocessor Implementation of Mainframe Processors by Means of Architecture
Partitioning; Agnew, P. W, et al; IBM J. R&D; V26N4; 1982; P 401 - 412

This article describes the implementation of the IBM 370 unpriviledged
instruction set using M68000 chipsets. lllis is a technical description
of the investigations that led to the IBM XT/370 and AT/370 products.

An Analysis of C Machine Support for other Block-Structured Languages; Hill, D.
D.; ACM Computer Architecture News; VllN4; 1983; P 6 • 16

Additional virtual instruction set implementation references can be found in
the discussions of the RISC/CISC (Reduced Instruction Set/ Complex Instruction
Set) literature such as:

The 801 Minicomputer; Radin, G.; Proceedings of the Symposium for Programming
Languages and Operating Systems; ACM SIGARCH Computer Architecture News; VlON2;
1982;

also published in: IBM J. R&D; V27N3; 1983; P 237 - 246

The 801 project is the IBM development from which major members of
the HP SPECTRUM Project came from.

Architecture of SOAR: Smalltalk on a RISC; Patterson, et al; 11th Annual
International Symposium on Computer Architecture; ACM SIGARCH Vl2N3; 1984; P 188
• 197

A very good paper describing the implementation of a particular
instruction on a RISC architecture.

The reader is referred to the ACM SIGARCH publication Computer Architecture News
for an analysis of the RISC/CISC tradeoffs. This is currently an area of
considerable debate within the academic and technical community.

11. ADA References

The reader is directed to the AdaTec letters in general, published by ACM, and
in particular the Proceedings of the AdaTEC Conferences (annually).

ts ADA Too Big? A Designer Answers the Critics; Wichmann, B. A.; CACM V27N2;
1984; p 98 • 103

An examination of the features of ADA that are useful - and those that
are discardable.

Paper 1002 -18-

ADA: Past, Present, Future; Ichbiah, J.; CACM V27Nl0; 1984; P 990 - 997

This interview with Jean Ichbiah presents a good 'feel' for the thought
process of those who architected ADA.

STONEMAN • Requirements for ADA Programming Support Environments; US DoD; 1980

This document defines the KAPSE/MAPSE/APSE environments. Later
documents have expanded, clarified, and refined the concepts, but this
document is still 'all in one place'.

ADA Programming in the 80's; IEEE COMPUTER; Vl4N6; 1981

This issue of COMPUTER discusses a range of ADA concepts and issues:
history, environments, and validation; and provides a background for
readers new to ADA.

Reference Manual for the ADA Programming Language; DoD; 1983

This is THE standard • MIL-STD-1815a. The ANSI/ISO standards both
reference this work as definitive.

ADA Software Tools Interfaces; Proceedings of the Bath Workshop; 1983

The proceedings examines the use of the DIANA intermediate language
as a representation for ADA programs.

There are a large number of articles, spread widely in the literature, discussing
ADA as PDL - Program Design Language. These articles describe the use of ADA
as a high level 'pseudo-code' in which program and system specifications can be
described.

ADA Joins the Army; Defense Electronics Vl5Nl2; 1983; P 68 - 79
First ADA Compilers Show Diversity; Defense Electronics Vl6N3; 1984; P 52 - 63

These articles discuss the variety of implementations of ADA compilers
with an overview of some of the structures and approaches.

III. HP Product Related References

Most of these references come from the HP Journal, a publication of HP, which
can be ordered from:

Hewlett-Packard Journal
3000 Hanover Street
Palo Alto, CA 94304

Each issue deals primarily with a single topic and will be cited as such with
some annotation. The citations to a month and year refer to a particular issue
of the HP Journal.

-19- Paper 1002

A. HP 1000 References

OCTOBER 1971
The HP 2100A microprogramming is described in this issue.

JULY 1972
Microprogramming using WCS is discussed.

MARCH 1977
The micrprogramming for the E-Series is discussed.

OCTOBER 1978
This issue includes a description of the microcode F-Series
instruction sets.

OCTOBER 1974
The microprogrammability of the M-Series is discussed.

FEBRUARY 1975
Microprograms for the FFT are discussed.

(undated) 1984
Issue on A900 implementation and firmware.

B. DESKTOPS

HP 9836

MAY 1982
Discusses the architecture and software of the HP 9836. Small section on MODCAL
is presented.

HP 64000

OCTOBER 1980
Discussion of machine independent HP PASCAL compiler on the HP 64000.

C. HP 9000

AUGUST 1983 and MARCH 1984
These two issues provide considerable detail in the implementation of the HP
9000 hardware and software architecture, including the chipset capabilities.
The March 1984 issue discusses the SUN OS kernal.

A 32b VLSI CHIP; Beyers, J., et al; Digest of Technical Papers of the 1981 IEEE
ISSC Conference; (1981)
An NMOS VLSI Process for Fabrication of a 32b CPU Chip; Mikkelson, J., et al;
Digest of Technical Papers of the 1981 IEEE !SSC Conference; 1981
These articles are the first public descriptions of the FOCUS chipset.

Paper 1002 -20-

D. HP 300/3000

HP 300

JUNE 1979

The HP 300 is the same hardware as the HP 3000/30/33 systems. Different CPU
microcode is in use. At one time the HP 3000/4X CPU was also considered for
microcoding of the HP 300 instruction set.

HP 300 Computer System Architecture

This HP manual provides one of the best descriptions for any HP computer system
architecture.

HP 3000

HP 3000 Computer System

JANUARY 1973
This issue discusses the HP 3000 Computer System • the original.

HP 3000 Series 11

AUGUST 1976

This issue discusses the Series II in general terms.

Microprogramming in an Integrated Hardware/Software System; Sell, J.V.; Computer
Design; 1975; P 77-83

John Sell has since gone on to Ridge Computer Systems and implemented the Ridge
CPU using a semi-RISC approach.

The microcode was shipped as listing along with the manual set for most HP 3000
Series II systems.

HP 3000/30/33

SEPTEMBER 1979
The HP 3000 was implemented in a totally different hardware packaging from the,
then larger, HP 3000 Series III. The instruction set stayed the same, but the
hardware completely changed.

HP 3000/68

MARCH 1982
The microprogram development for the HP 3000/68 is discussed in this issue.

Also of interest to HP 3000 readers may be:

Architecture of the HP 3000; Kell, J.; HP IUG Journal VSNl-2; 1982

-21- Paper 1002

This discussion includes the layout of the Series II microcode words.

The MPE IV Kernal: History, Structure, and Strategies; Busch, J. R.; Proceedings
of the HP 3000 IUG Conference in Orlando; 1981

Some external documentation of the MPE-V/E finnware changes are also in publication.

Paper 1002 -22-

1003. THE DESIGN OF APPLICATION UTILITIES FOR IMAGE

1. Introduction

Don LaRobardiere
C & L Systems, Inc.

1250 E. Ridgewood Ave.
Ridgewood, New Jersey 07450

Today's expense of developing custom software for dedicated applications warrants
a further look at alternatives. This paper will attempt to outline the major
stumbling blocks in developing application software, and what alternatives there
are to avoiding them. Several references to an existing set of utilities
developed since the late seventies to solve these types of problems will be
referred to in this paper.

1.1. What Kinds of Applications Involve Image

Since its inception in the mid 70's HP's IMAGE has been the focal point for most
users of data bases. IMAGE has grown in size and complexity in an attempt to
meet more of the users needs. User applications have grown as well. Typically
their solutions involve one or more of the following approaches to storing and
retrieving data. Lets consider them.

1.1.1. The On·line Multi·user

Tii.is approach to supporting online multi-users is quite typical of the manufacturing
environment. Here lots of terminals are tied in with a multitude of users
gaining access at different levels. Typical requirements usually do not require
a lot of data but many records are frequently accessed. Response varies and
usually is in tens of seconds.

There are quite a few packages with a commercial flavor that address this area.
They are commonly referred to as application code generators, data entry and
retrieval subsystems, etc.

1.1.2. Real-time processes

Another approach.to the data·base usually involves a high speed programmatic
interface. More often than not this is custom code that has been optimized for
I/O performance. Such types of coding are usually done for data acquisition
packages. Typically IMAGE is used here for long term storage of condensed data,
rather than an online data base for obvious performance reasons.

1.1.3. Batch Operations

One of the oldest approaches is the batch approach. Typical of this are reports
that require a sufficient amount of time to complete. Usually these are run in
off-hours so as not to disturb any real-time or multi-user activity.

·l· Paper 1003

2. What are the Common Pitfalls in These Approaches

We have just briefly mentioned three generic approaches most applications fit
in. However, most applications are rushed into without a lot of forethought in
the planning stages. It is difficult to design from scratch and come up with
an acceptable solution. Let us remember that "difficulty is an excuse history
never accepts" and consider the following "gotchas" the next time we have a
custom application to solve.

2.1. Inadequate Specs

One of the prime reasons for failure is the lack of an adequate functional
specification. Without it, although the design may be good, the objective for
doing the project may be missed. The functional spec should be written in tenns
the end user can understand. Only when both the customer and designer mutually
concur on the functional spec does the actual design phase begin.

Typically the design spec should be done by software designers and not just
programmers. The design spec is not meant to be readable by the inexperienced
software type but must be written so it is thorough and concise. Typically,
all tables, file layouts, forms, software module interfaces, module descriptions,
etc. are included in this spec,

After the design spec, the designer(s) should write a preliminary draft of the
user and program reference manuals for the customer to check over. This will
further inforce-enforce the objectives and catch minor de.ficiencies in the
functional spec.

Only after the functional and design specs, and the preliminary manuals are
done, are we ready to involve the programmer.

2.2. Poor Design & Coding Methods

Everything falls from the structure laid out in the design spec. Just like
nobody in their right mind starts out to build an expensive house without adequate
plans, neither should you begin coding without a good design spec in hand.

Programmers should be forced to follow structured methods that reinforce the
ideas of modularity. choosing the proper language helps but does not ensure
that you will end up with a structured and supportable system.

Often the best language is not the one touted at the moment by all the media
but one that has been around a long time and is well proven. I prefer Fortran
77, like HP's RTE it has evolved and been tested in thousands of real-life
applications. Its code is the most efficient of any structured language on the
1000, and it's the most portable in terms of input/output interfacing, something
the current university taught languages seem to ignore.

The proper approach to writing a module is to create a flowchart outline that
speaks in terms of what is to be done not how to do it. It should probably even
make sense to the customer. After all the modules have been flowcharted in this
manner, then the coding can commence.

Paper 1003 -2-

From the structured approach, key aspects like Modularity, Data Flow, Code
Efficiency, Flexibility, and Portability evolve naturally.

2.3. Inadequate Testing

Lets assume we have a good set of specs and competent programmers who have
created this masterpiece of software. They have claimed it's working. From
their viewpoint it probably does what they have asked it to, but the real test
comes when different users start "banging" on the code.

Beta Test sites have been used for years to shake down new software. There is
no hard and fast rule as to what is and isn't enough, but experience shows that
when the bugs stop coming in, either nobody's using your software or you've
invented the perfect program (hardly likely).

Most developers have a level at which they can support a certain number of bugs
with an adequate response time. It is at this time that the software is usually
turned over to the customer.

2.4. Inadequate Customer Instruction

Probably the biggest reason why custom software or software packages don't
succeed is the misunderstanding by the customer of what the package can and
cannot do, as well as how to get it to do what he wants it to.

Easy to understand instruction manuals for the beginner and the advanced user
are a necessity. They should have numerous illustrations, an index, a table of
contents, and not be too wordy. Many examples seem to work the best in helping
the customer learn to do what he wants.

Many companies today also provide on-line help facilities that can be quite
extensive; even bordering on the fringes of Artificial Intelligence. Several
have directories of keywords that are laid out in a hierarchical fashion to
provide several levels of increasing explanations. Some even display a page of
help for the task the user is currently working on without the user having to
go searching for it.

In addition, a very friendly easy to use command interface helps the customer
feel confident quickly. Characteristics of such "friendly" interfaces are easy
to remember commands, a command structure that can be miss-typed yet understood
by the command interpreter, prompting for missing parameters, informing the user
of incorrect parameters, and re-execution with/or without modification of what
was entered; these are just some of the ways to make the interface friendly in
the traditional sense.

2.5. Inadequate Software Support

Many software projects come and go, those who stay have support. We have observed
that support depends on primarily one thing, people. Especially those who did
the design, coding, and debugging. If they aren't around anymore watch out.
Even the best documented code can be a support problem for new people.

Usually the smaller the development team, the quicker the response to your bugs.

-3- Paper 1003

This is generally because those few people know more of how everything works,
fits together, and have the skil]s at hand to implement the changes almost
immediately. In larger corporations where the development teams are larger,
and the turnover rate greater, the support people are less familiar with less
software and usually less enthusiastic about your problem. The reason for a
lot of this is large companies tend to have a separate staff of people for
support. If it was your software causing the problem I'm sure you'd feel more
responsive to fixing the bug. 3. What Can be Done to Ensure a Success

It has often been said that "Experience is a good school, but the fees are high".
We all are constantly being re-educated in our way of doing things. lets consider
the following ways to attack your problems. I'm sure at the end you'll agree
that the "fees" are much less than those of the school of "Hard Knocks" ...

The three data-base access approaches mentioned before are illustrated in the
following pictorial.

I terminal I
I handler!

Jterminall
I handler!

QUESTOR
data-base manager

Jterminall
I handler!

I IMAGE
I data

QREPORT I
batch report writer I·

I bases I

custom Data Base Manager

I custom coded I
I modules I

application
code
generators

Report
Writers

Data-Base
Managers

Progammer
Aids

The approaches are outlined in sectional blocks to depict various module groupings;
Application Code Generators, Report Writers, Data Base Managers, Custom Code.
Several of these groups represent commercial offerings on the market place.
Considering the features of each should make us more hesitant in re-inventing
the wheel next time we have a project to consider.

Paper 1003 -4-

3.1. Application Code Generators

Application Generators have evolved over the last ten years primarily. They
have become easier to use and more comprehensive in what they can and can not
do. Here is a list of features supported by one of our products, QUESTOR, which
I think is state of the art since it eliminates the intermediate phase of having
to compile the generated code and link it.

Should be quick and easy to implement.
code that has been generated or linking
confidence in a product is greater when
an operational form on his data base.

One should not have to get into checking
it. We have found that the customer's
in a matter of minutes you can generate

The package should support individual logon accounts, menus, function keys, help
screens. All of these should be customizable without code by the user directly.

Support of multiple data bases in various states of activity while concurrent
development with the package has also been found to be most useful in almost
all production environments. In addition the ability to make use of the new
backup and recovery procedures of IMAGE II is quite essential.

The question of concurrent access to the same record is easily answered since
record locking is provided as a function of the package. The second user is
still allowed to examine but not to change the record. Access levels of update,
add, and delete capabilities are assignable on an individual account basis.

The package should not be a system resource "hog". It needs to co-exist with
many other packages already out there. It's requirements on SAM, memory, driver
support, and operating system types should all be minimal and transparent. Any
package that takes advantage of the niceties of RTE will find themselves in
trouble in the future and so will you if you're using them.

QUESTOR, besides being an application generator, can provide a user interface
shell for other programs. A convenient "command transfer file" approach has
been implemented to pass data to and from other programs running within this
shell.

3.2. Report Writers

One of the programs that can run under the QUESTOR shell is QREPORT, a procedure
file driven report writer. Like many other report writers common features are;
the ability to generate elaborate reports involving horizontal and vertical
tabulation, totals and subtotals, multiple different format types for data,
sorting at various levels by items, etc.

What is particularly nice about them is that you don't have to write any code.
By various procedure files passed you can generate a multitude of reports.
Under the QUESTOR shell you can even pass information from the form to further
qualify the search for data.

In addition several hooks have been allowed where custom code can be added for
special formatting purposes.

-5- Paper 1003

3.3. Data Base Managers

The QUESTOR package has its own "data base manager" for handling the various
terminal handlers as depicted in the previous figure. In general data base
manager packages provide a more general function. Support of custom code is
generally their role. Some of the benefits of using them follows.

All the data base access code is centralized in one module. 1his does not cause
a proliferation of the data base access routines in each module dealing with
data from the data base. Supportability and conservation of memory are the two
key benefits here. Another usually is support of larger data-bases.

Another feature that is usually implemented is a record locking mechanism;
something that IMAGE doesn't provide directly.

Startup and shutdown of the data-base is more controlled and easier to support.
Automatic bootup features, like QUESTOR's, can make customer support a lot easier.

The development of custom code generally progresses faster since programmers do
not have to get involved in the details of the data base operations.

3.4. Form Generators & Programmers Aids

Concerning custom code, a number of programming aids come to mind. With packages
you can concentrate more on your application than on how to make the system work
for you.

If you are using forms on the HPlOOO, many of you may have experienced the
nightmare of trying to get them to work on one terminal, one driver, and under
one operating system. Try to imagine supporting forms on the gamut of HP's
operating systems, drivers, and crts.

Over the past several years we have survived with our forms generation package,
QFORM. QFORM has more than most of the existing form packages today since it
was developed around 1980 for the industrial process control market, where
operator interfacing is very crucial. It can considerably cut down code
developement to a few lines. Lets look at the benefits of such packages.

Format conversions, programmatically controlled, allow multiple use of the same
form field. The HP formatter is not used so an additional benefit is a saving
of approximately Sk of code.

Ideally the packages should provide all the terminal support required to get
your application done. Function key support and help screens are a necessity.

Equally important is the minimal use of system resources. The package should
only have to use a few thousand words of code on top of your program. It should
not force you into using CDS, EMA, extensive amounts of SAM, or additional
programs.

If you intended to port your code to other HP systems, or even intend to run
your application on a different terminal or driver, portability becomes a key
question since the packages are so closely tied to the I/O of the operating

Paper 1003 -6-

system. Support becomes a key question to ask in this area.

4. Conclusion

We have pointed out several areas in which code developement and success fail.
We have tried to illustrate, based on our own experiences of developing products,
what we felt was required to accomplish a variety of applications based around
IMAGE.

Let us conclude then with what we feel is "The Good-Programmers Seal of Approval
Checklist" for successful software projects.

Good Functional & Design Specs should provide for:

Adequate flexibility to cover unexpected customer desires
User friendliness
Portability
Ease of implementation

A Good Code Implementation is based on:

Use of a structured language with a structured approach
Proper coding techniques
Proper documentation before and after the project

Survivability of the Code is based on:

Ease of installations
Current support levels

-7- Paper 1003

1. Introduction

1004. CAR/1000
Computer Aided Calibration and Recall System

Leonard Singer
Thomas L. Barrett

Information Systems Software
General Electric Company

Re-Entry Systems Operation
3198 Chestnut Street

Philadelphia, Pennsylvania 19101

Precision, accuracy and quality are the key words in the calibration laboratory
at General Electric's Re-Entry Systems Operation. Here, technicians calibrate
and maintain sophisticated measuring instruments whose accuracy is vital to many
departments. Thermal converters, voltmeters, generators, pressure gauges and
temperature chambers are just some of the thousands of pieces of equipment that
must be c.alibrated regularly.

In the late 1970's, however, the calibration laboratory had problems. ni.e staff
was overwhelmed by the paperwork needed to track the status and location of
every instrument inside and outside the laboratory. The complexity and size of
the process outstripped the ability of the technicians and support staff to
respond to and maintain this manual record keeping system. A solution had to be
found. The solution chosen was to develop our own on-line (real-time) data base
management system that would meet user needs through 'fixed' application programs
and related database techniques.

In 1980, when this system was first envisioned, we knew we wanted a system that
would provide:

o Real-time, interactive data collection and feedback compatible
with existing terminals, printers and our HPlOOO minicomputer
system.

o Analysis routines to automate automatic scheduling and other work
control functions.

o Communication packages to interconnect with other property systems
maintained on a Honeywell mainframe.

At that time, we knew of no commercially available package with such features.
Therefore, we did what we felt we had to do. We designed, developed and installed
our own system that was 100% compatible with our existing equipment resources
and mimicked the 'proven' manual system. But because of intense pressures for
a viable (and quick) solution, almost all of the normal software development
cycle was short circuited and NO untried approach to this manual/automatic
conversion was attempted.

The resulting CAR/1000 system was partially on line within 60 days and fully
operational 120 days after the start of initial design tasks. We had our problems,

-1- Paper 1004

but through some innovative use of IMAGE and GRAPHICS we survived. In fact, the
'CAR' system of today is virtually the system that was specified back in 1980
and it continues to meet the everyday and long term needs of the calibration
laboratory.

2. Calibration Laboratory Facility

The current calibration laboratory facility is divided into two sections, one
for mechanical equipment and one for electrical equipment. Each section has
three specific work areas:

(1) Window area for receipt and disbursement of equipment.
(2) Holding area for storage of equipment scheduled for or recently

completed with calibration.
(3) Maintenance and calibration area where the work is carried on.

Equipment constantly moves between these laboratory areas and other departments,
Knowing the location and/or status of any individual item of equipment is vital
to providing quality service. With the CAR system, the company can keep accurate
account of thousands of pieces of mechanical and electrical equipment as they
cycle into and out of the laboratory for maintenance.

3. The CAR/1000 Packa~e (Features)

CAR is an interactive, real-time system that a user accesses to get up-to-date
information about a specific piece or family of equipment, by just selecting
from a menu of options.

The system helps different people carry out their responsibilities
more effectively. The calibration laboratory supervisor relies on CAR:

(1) to keep track of the status and location of each instrument as it
progresses through the laboratory.

(2) to schedule calibration work activities and assign tasks to
technicians.

(3) to identity questionable equipment for retirement and/or major
overhaul.

(4) to provide equipment receipt and pickup information-gathering
functions.

The calibration laboratory technician relies on CAR:

(1) for the identification of assigned work.
(2) for listing of test equipment necessary for calibration tasks.
(3) to enter time and material associated with each calibration function.

The equipment owners rely on CAR:

(1) for ALERT notices of due, past due and early warning equipment
listings.

(2) to determine equipment calibration status and when items are ready

Paper 1004 ·2·

I

I
I

1·

4. The CAR/1000 {Specification)

A diagram of our CAR/1000 system is shown in Figure 1. Some points of interest
are:

o FORTRAN applications were segmented and only very loosely tied
together via common. A menu segment retrieves the proper work
segment per user menu response.
This segmentation allowed us to write a very large package and
have it reside within our maximum 28 page partition.

o Problems associated with who can or cannot update the infonnation
about a specific piece of equipment were handled via a table of
operations and pointers back through the segment via an HP routine.

o GRAPHICS/1000 was the selected method of providing graphics based
on reliability and tolerance information. FORTRAN applications
using the GRAPHICS package were again segmented.

o This system was totally compatible with a communications network
(Gandalf) recently installed at our facility. Using this network
and its associated DEC terminals we were able to communicate from
widely dispersed locations to our HPlOOO mini system.

o System analysis and maintenance are accomplished using COMSCI's
IMF/1000 package. This package provides for quick on-line capacity
changes and relinking of specific records or entire data sets.

Our computer system then (in 1980) and now is an M series HPlOOO minicomputer
using RTE-IVB operating system. The hardware diagram is shown in figure 2.

S. The Data Base Structure

As shown in Figure 3, the CAR data base design is extremely simple. Keyed items
(those that provide for quick access to data residing in any one of the six
detailed data sets) were limited to these:

o Inventory Control ... A number assigned to each item of equipment upon
Number receipt at Re-Entry Systems. This number is also

the key to the existing property system.

o Family Code A number which groups like pieces of equipment.
Such grouping is extremely important when
providing statistical operational data. The family
code is a 6 digit numeric code assigned to
each item upon receipt.

o Calibration Due The date when a specific item of equipment
Date is due for calibration and/or maintenance.

Keying on this number provides for quick
extraction of items due on any specified
week.

o Calibration Status .. A numeric code representing the calibration

-3- Paper 1004

status of a specific item of equipment. Keying
on this value provides for quick extraction of any
of the 8 status conditions.

(0) Not in Calibration Laboratory
(1) Scheduled for calibration
(2) Scheduled but waiting on parts
(3) In storage
(4) Calibration complete
(5) At vendor
(6) Out-er ... The code of the operation using the item.

Keying on this value provides quick listings
and summaries for all levels of management.

o Rack Identifier .•.. The rack where a quantity of inventory controlled
equipment resides. Keying on this value provides an
easy way of entering all equipment associated with a
particular rack.

As with everything in life, nothing is really free. The payment for quick access
to CAR via these seven elements requires that each modification physically
rewrites the entire data entry.

6. Applications

Access to this CAR/1000 system is through a twenty-nine segment FORTRAN application
program. This program (See flow diagram, Figure 4.) uses the calls provided by
FORTRAN/IMAGE to satisfy customer information entry and gathering requests.
The interesting features of this application include~

o Session hello files to provide access into the system. These
hello files pass information into the program via an HP routine.

Data passed include:

(1) Logical unit number of requesting device (terminal).
(2) Logical unit number of printing device.
(3) Code reflecting who the user is.
(4) Code reflecting valid operation number.

o Internal menus to provide requested actions. Users need not know
how the system is constructed since merrus direct user to the proper
segment. (See Figure 5, 6, 7, 8 and 9 for menu displays.)

Reliability and out-of-tolerance data accumulated within the CAR/1000 data base
are further compiled for reports and display by a nine segment plotting program.
Data generated by this application are used by both our calibration laboratory
and our customers to determine the effectiveness of the calibration tasks. Sample
plots of reliability, out-of-tolerance and operation levels are shown in figures
10, 11 and 12.

To further identify those items causing a low reliability or a high out-of-tolerance
condition, another set of FORTRAN applications was developed. Using these

Paper 1004 -4-

applications, calibration laboratory personnel identify and may eliminate or
overhaul problem-causing items.

Yet another FORTRAN application was required to develop management ALERT reports
from the data base; these reports identify items past due or due for calibration.
The summary data, along with equipment listings, are sent (monthly) to operation
managers and our customer iences. One of the biggest problems was the lack of
good development and design documentation. Even today we still hurt a little
when we attempt to modify the existing code. If we had to do it all over again
(with a little more time), we would demand a complete set of documentation.

o Requirement Specification
o Software Requirements Document
o Design Document
o Test Plans and Result Documentation
o User's Manuals
o Installation Manuals
o Full and complete Programmers Design Notebooks

Other problems uncovered include these:

o The data base was opened at the front end of the application
program, causing (at times) the unavailability of the data base
to other users. We should have opened the data base just prior
to a function then immediately closed it. This would have provided
some contention for the limited data base open level.

o The HP-provided lock routines tended to slow down the system. A
user-friendly lock and unlock system had to be designed.

o Updates and writes to the data base were designed into the
appropriate segment. This function should have been handled via
a 'father-son' program (schedule without wait and allowing for a
queue). This arrangement would have speeded up transactions.

o Data base design task should have allowed for additional time to
completely analyze each of the required elements. Some are
incorrectly typed, others are superfluous.

7. Summary

The benefits of the CAR/1000 system to our operation have been significant.
For now, our management, supervision and technical staff have full access to
all of the calibration laboratory inventory and work records. This has meant
increased productivity within the laboratory, lower quantities of past due
equipment on the shop floor, elimination of most paper records, improved data
integrity, improved historical and service files, enhanced workload management,
means for immediate response to inquiries from equipment users, improved equipment
turn-around times. All of these add up to timely, accurate information by which
to manage our calibration facility.

-5- Paper 1004

HARD
REPORTS

CAL
LABORATORY

14 1 APPLICATION
INTERFACE

1 1 APPLICATION 14 1
.. INTERFACE

CAR/1000
FORTRAN

APPLICATIONS

'CAR'
DATA
BASE

APPLICATIONS
INTERFACE

HISTORICAL 1 •I
FILES

PROPERTY
ADMIN

EQUIPMENT
OWNERS

COMSCI
'EMF'

ON-LINE
QUERY

GRAPHICS
1000

INTERFACE

Figure 1. System Block Diagram CAR/1000

SYSTEM
ANALYSIS

&
MAINTENANCE

CALIBRATION
APPRAISAL

PLOTS

PRINTER
N0.11
(2608A)

FLOPPY
(9885S)
9885M)

(3EACH)

(2648)

TEK GRAPHICS

(7920)
DISK

TEK 4014
TEK 4610

SYSTEM
(7905A)

DISK

(7915)
DISK

MUX
(8 CHANNELS)

79708

MAG TAPE DRIVES

79708 HP1A IDENT NO. 30

Figure 2. Hardware Configuration

GAN DOFF

'IN'· 'OUT'
HISTORICAL

MAIN
DETAIL

CET
(CACAR)

EQUIP
TRANSFER

CET
(XFR)

TEST EQUIP
USED

INCAL
(IHS)

INVENTORY
CONTROL
NUMBER

t

LAST 'IN'
LAST 'OUT'

(1/0)

MASTERS

DETAILS

i
APPRAISAL

DATA
SET

(TIME)

Figure 3. CAR/1000 database structure

NOT OK

LOAD NO
HOLD

SEGMENT

YES

START

MAIN
SEGMENT

LOAD
MENU

SEGMENT

DISPLAY
PROPER
MENU

LOAD
SELECTED

WORK SEGMENT

• SUPERVISOR
•MANAGER
11 WINDOW
• EQUIPMENT OWNER

Figure 4. CAR Application Program Flow Diagram

Coaput•~ Aided Calibration and Recall Systc• ..

PfANACEMEHT 'CAR' ..aNU

EHTER 'HELP' TO ACTIVATE HELP FlLE

SCREEN N01 GEHERtcL FUHCTZONr
< t> TH?S WEEKI STATUS ••• ,IHIOUT <FOR PEHDIHC WEEk> SUMMARY
< 2) WORK LOAD SUl'IMARY •• , .CAL LAI PREDICTED LOAD SUM"ARY
< 3> "AIHTEHANCE SU ... ARV. ,PASS/FAIL/REPAIR HISTORY
< 4> EQUIPMENT SUl1tlARV,,, .EOUlP STATUS IV OPERATION
< 5) PAST DUE Slm"ARV .• ,, .PAST DOE QUANTITIES BY SECTION
< 6) TRAHSACTION SU""ARV •• HEW EQUIP ' TER"IHATIOH ACTIYITV
< 7> IERYICE CONTRACTS ..•• LIST OF SERVICE COHTRACTS AMO DUE DATES
< 8> PAST OUE EQUIP LIST •• Ll8TlHC OF EQUIP BY OPERATION
< 9> SEARCH IY IC •. ,,,,,, .Ll8TlHC OF SELECTED IC JTE"
< 99) EHO MENU;'TERIUHATE PROGRM
SCRE£H?99

SAttPLE SCREEN 018PlAV8 ARE PROVIDED OH FOLLOWING PACES

Figure 5. Manager's CAR/1000 menu display

Compute~ Aic:Md Calibration •nd Rac•ll Syste• ..
CALIBRATION LAI SUPERYISOR •cAR• '91MU

SCREIM N01 QEH£RAL FUNCTIOH1
(1) NEW EN TRV. , , , , , • , , , , , • , , , , , , • • , •• AODS NEW RECORD TO DATA BASE
< 2) EQUIPftEMT LOC IN,,,,,,••,,,,,,•• ,,OG IH £QUIP TO CAL LAB
< 3) E8UlP"£NT ~oc OUT •••••••••••••••. LOC GUT EQUfP TO USER
< 4) IQUJftttENT STATUS UPDATE,,,,,••,, .UP~TE £QUIP STATOS IN LAB
< S> ~OOL COMT•OL .•• , ,,,, ,, ,, ,, ,, ,, ••• MOOIFY POOL CONTROL ELEMEHTS
< ') ITEPtS OUE FOR CALIBRATION •. , .. ,, .PREDICTION OF lTEPll DUE FOR C,_l
(7) GEHl!R~L UPDATE ••••.••••••••.••••• cOR•EcT ELEK!NTS UITMIH A RECORD
< 8) SCHEDULED EQUIPMENT 8U""ARY. ,, ••. CAL LAB WORK LOAD PRIDICTIOH
< 9) SCHEDULED !QU?PflEHT LJITING. ,, ,, .DETAILS OF ITE"S SCHl!l>ULEO
< t O> SCHEDULED <CHANGE CONTROL> FW.,. ·"®IFV SCHEDULED WORI< BY FW
<t1 >SCHEDULED <CtMNGE CONTROL> JC,,, .NOOIFY SCHEDULED UORK BV IC
<t2> LIST IV FA"flY CODE .••• ,.,,, ••••. L:STINQ OF EQUIP IV TVPE
<13) LIST BY LOC~TIOH,,,, ,, ,, ,, ,, ,, •• ,LISTING BV AREA LOCATION
(14) LIST IV IC HUMIER ••••• •• ,, ,, ,, ,,,LISTI~C OF SPECIFIED IC HU"BER
CtS> LIST BV OttEIATIOH •• , •• •• ,, ,, ,, .•• LISTING 8Y SPECIFI~D OPERATION
(16) LIST ev RACK IDENTIFIER •••••••••• Ll&TIHG av SPECIFIED RACK HUftBER
<17) BLOCK UPDATE •••••••. ,,,,,,,,,,,, .TOTAL DATA BAS£ "ODIFICATIOH
(18) STATUS UPO~TE, ,, •• ,, ,, ,, •• ,, ,, ..• CORRECTS E•UlP ST~TUS
<99) END l'IENUIPRO~MI EMIT,••••,, ••• , .TERftIHATE PROCRA"
SCREEN?

Figure 6. Supervisor's CAR/1000 menu display

Coapute~ Aidad c•li.,.atlon •nd Rec•ll systea ···-··-··---··-··-··------··-·
TUtl AHi> TEST EQUIP•HT DATA EMTRV MODULE

ENTER 'HELP' TO ACTIYATI HELP MODULE

SELECT SCREEN1 CENERAL FUNCTION
< t> TiftE ANO TEST EOUIP ••••• ,, •• PFR TI"E~"ATL AND TEST EQUIP
< 2> TEST EQUIP •• •••••••••••• ,,,,TEST EQUIP"EHT FILE
(99) EMIT PROmtA"·· ••••••••••••••TER"JNATE AHO EXIT
SCREEN NUMBER ? 99

l!E FOLLOWING PAGES FOR SAltPLE SCREENS

Figure 7. TechnicianJs CAR/1000 menu display

I

Co•put•r Aid•d Calibration and Recall Syst•• ...

LAI "ANAGERS CA- '9EMU <ENTER •HELP• TO ACTlYATE HELP FILE>

SCREEN H01 GENERAL FUNCTJONt
< t) EQUIPMENT IUMttMtV,,,,.,, •••• ,, ,, ••• OP£RATJOH9 OVERALL EQUIP SUMMARY
< 2) INVENTORY LJSTINQ,,,,,,, ••••••••,,.ENTIRE OPERATIONS EQUlP LISTING
< 3) EQUIPMENT PAST OUE LlSTJMQ,, ,, ,, ,, .OPERATIONS PAST DUE EQUIP LIST
< 4) EQUJPftEMT DUE LJSTINQ.,,,,, •• , ,, ,, .OPERATIONS EQUIP DUE FOR CAL
< S> CALIBRATION LAI EQUIPM£NT STATUS ••• USER SELECTABLE LISTJNCS
< 6) TRANSACTION •LOCATJON•,. ,,,, ,, ,, ,,,ftOOIFIES EQUIPMENT LOCATION INFO
C 7> TRAH8ACTION 'TER"JNATIOH/STORltGE',,ITORES OR R£"0YES AN ITE" FROM STORAC
C 8) TRAHSACTION 'LOST AHD FOUND',, •. ,,,ADDI OR DELETES ITEM FFOM "ISSIHG LIO
< 9> TRANSACTION •oPERATJOH T_.HSFER',, ,PROYIDES NOTICE OF TRANFER
CtO) OPERATION TRANSFER •ACCEPTIREJECT',PROYJDES POSITIVE TRANSFER CONTROL
(tt) SEARCH av IC M&MIER ••• If ••••••••••• FINDS ANO LISTS A SELECTED JC
(12> SEARCH av FA"lLV CODE ••••••• ,, ••••• LIST ev EQUIPMENT TYPE
<t3> SEl!lttCH IV LOCATION CODE.,,,,,,,,,, .LIST BY AREA LOCATION
Ct4) TRAHSACTION ·ouT OF 8ERYICE',, ,, ••• PLACES EQUIP JN OR OUT OF SERVICE
C99> END MENUIPROCRMt EMIT,,,••••••,, ••• TERftJHATES PROGRA"
SCREEN? 99

Figure 8. Equipment Owner's CAR/1000 Menu Display

Cocaput•~ Aided calib~•tlon and Recall syst•• ..

CALllltATJOH Lill WINDOY •cAlt' •NU
ENT.ER 'HELP' TO ~CTIYATI HELP FILE

SCREIN NO 1 QIMEML FUNCTION
< 1> EQUIPMENT LOC IN,,,,,, ,,,,LOC IN EQUIP TO CAL LAB
< 2> EQUIPMENT LOG OUT.,,,,,, ,,LOC OUT EQUIP TO USER
< 99) END "ENUIPROCRMI IXl11

ICREEH?H

Figure 9. Laboratory Window CAR/1000 Menu Display

i
I
1.
I

Cl

.,,
Cl

\. , 0 D.

tz. ~ti. :::J
c
::x: ec.
\.
.a ... ?'C • ...
:z

6C. ::J

.,, ~c .
,_ ~o.
.... ... 30 .
...I ...
l!I 20.
< , o • ..J
w
ii:: o.
'.!

---1 X RELIABILITY CFfiMlLY: SEJ
5TRNDRRD5 ~ELECTR[CRL*

----- ~ P.ELI~BILIT'r' UNI TS PEP. HLJVR

!
....... l,.,..\ ,... ____ . I ./--. , . I -/ --.. , I \\ ... ··'"·-.. , -........ ___ ~-· I

' ..,,,....._ , , • .!' .'............ I ... ,.._,... - •'
l --..... / \ // '-.

RP'R

1'98~

·~· -.., I ·1·

· / I

I
j

. •······· ·· ~.. • ..•.....•.. ········.
·., .. ············

.
·· ...

...L..--...l---'---··.J_--...l ____ ,j_ _____ ...1--__ __t ___ ,.....__...,; __t. ___ _J

RUG DEC

I

Rf"'P. I
'1.'e~ !

Ml:lliTH5

---------------------·-----------·---·_1
Figure 10~ Family Reliability Plot

Cl
Cl

'\.

a.
:J
Cl
:r --.

w
u
z:
'C
a::
IJ.J
_J

a
I

HIO,

'90.

eo.
i"O.

&Q.

:itt'

~Q.

;, IJ •

20.

1 Cl •

ti.. o.

I ~

~OUT-OF-TOLERANCE CF~~ILY: SE)
STANDARDS ~ELEGTRfCAL•

----- r-: TOLERAf-~CE UtH TS PEP HOUR

..... ,_ ... ,. ~·· ,. ... ~
., ··

RPP: RUG OEC

MDfiTHS

I
RP'"'!

!
';;ie~ I

----------~---~-----------~-~

_________ J
Figure 11. Family Out-of-Tolerance Plot

i ,,.

t 011.

':!O.

eo.

i' 0 .

oo.
_)
< z :io.
0
~ ~o. <
ll:::
UJ 30. a..
0

:°I! ~o.

1 0.

o.

RP~

~ OPE~ATJONAL (FAMILY: 5E)
STANDARDS ~ELECTRLCRL*

-'-___-----------...____ ----~---··---·--·

I
l
l

~-t...--~~-.L.---L----1--..L-----L----1---1------L-----L_____J I
I

RUG

f'1DliTH5

RPr.' I
I

1 •,!el:f i

I
' -----------------------'

Figure 12. Family Operational Level plot

i

!

I,

I

1005
How To Buy Custom Software

Paul W. Miller
Corporate Computer Systems, Inc.
Custom Systems Group
33 West Main Street
Holmdel, New Jersey 07733

For the last 9 years CCS has been working with clients developing
custom software packages to address a spectrum of needs. Our as­
signments have ranged from space satellite control to insulin
needle test systems. Even with this diversity, one general theme
has run through our interactions with customers. Most people
don't know anything about the initial phases of custom software
purchasing.

We discovered that during early contact, customers were most in­
terested in the ultimate price for development. Unfortunately,
trying to "just get prices" is the wrong approach to purchasing
sophisticated custom software.

In the following, I will share with you some personal insights
gained from fighting in the trenches of custom software develop­
ment. I hope that this collection of observations, rules and war
stories will help those of you who are embarking on what can be a
very trying time -- the procurement of a custom software package.

Well begun is half done

The most important stage is of a custom software development ef­
fort is the beginning. Decisions made there can and do have a
lasting effect on the tone of the entire project. Initial con­
tacts with vendors, basic planning and contract negotiations are
the foundations on which the entire project will be built. The
foundations must be sound if the project is to be successful.

What are the stakes?

What is at stake when you begin development of a custom software
package? At first thought you might be tempted to say the only
risk you are exposing yourself to is the money you are going to
spend on the development. After all, if the project fails that's
all you can loose -- right? Wrong. Most of us work for other
people, If you propose a project, sell it to your superiors, get
funding and spend corporate time and treasure developing only to
meet with failure, what is the loss? It takes a big chunk out of
your career potential to say the least. Unless you can get your­
self promoted before the final delivery, you have a very real

-1-

personal interest in the success of the project. If the project
succeeds, you' 11 be a hero. But if it fails, you fail. Those are
high stakes!

How do projects fail?

There are probably as many failure mechanisms as there are
projects. There are some general trends though. I like to think
that there are four basic class of failure:

1 • It never got off the ground.

This is the most obvious. For many different reasons some
projects die before they are really born. The expense
estimates were way off, the development fell far far behind
acceptable limits or there were impossible (unanticipated)
technical problems. Unfortunately, by the time you recog­
nize it won't fly, tremendous resources have been expended.
In retrospect, you always understand what went wrong -- too
late.

2. Time bomb

This is an insidious failure mode. The system is in, it
passed the acceptance test, and is running. Suddenly, for no
apparent reason, the system bellies up. Perhaps it only hap­
pens once or twice a week, but when it happens data is lost,
work must be redone. Where is your support? How does the
developer react? What does your boss think? We found that
real time systems have a nasty habit of displaying this symp­
tom. The test loads just didn't have that "one" interesting
case ••••

3. Great, but will they use it?

One of the CCS systems I am most proud of was built right to
specification, tested within an inch of its life and
documented from the inside out, but it failed. The reason
was that the people who wrote the requirements were from a
different division from those who were to use the system.
The users balked. The system sat. The project failed. From
now on we require meetings with users as well as ad­
ministrators.

4. Old age.

When you think a system is done, it's not. Systems require
care and tending and updates and changes. We have a client
who worked with another custom house before us. The system
they had installed was very old, unattended, and as a result
had to be replaced entirely. Ongoing support and main­
tenance is important to a system's success.

-2-

Of course the cause is not hopeless. There are some steps that
can be taken to save a project; to insure that it will be success­
ful.

What is the real problem?

In order to solve a problem, you have to identify the problem.
CCS was asked by a small surveying company to help computerize
their collection process. After some investigation, we
discovered that the company wasn't billing customers for jobs
under $200.00. They didn't have a collection problem; they had
an invoicing problem.

If we had gone by the initial description we might have come up
with an elegant solution to the wrong problem. The first rule,
then, is to try and really isolate the salient problem. This lets
you establish the goals for the project. Try to make the solution
result in a measurable benefit. "We want to automate the fac­
tory" is not really a good goal. "We want to increase produc­
tivity by 201" is a good goal. Benefits might be financial, an
improvement in quality or productivity or it might be better
availability of information for important decision making.

What is it really worth to solve the problem?

Once the problem is isolated and the goals have been set, it is
important to establish if the solution is worth what it will
cost. If the benefit of the solution is financial, then the solu­
tion had better have a timely payback. If the benefit is
availability of information, then the cost of that availability
should be carefully considered. Do you really need that report?
Computers are flashy for sure, but is one really needed for that
particular function?

You may be surprised at the cost of developing custom solutions
for computer problems. This surprise comes from two general
sources. First, the cost of generally available software
products (Visi-whatever and Calca-something) are extremely
small relative to their actual development cost. This is because
the costs are amortized over thousands of product sales. How
many sales can your custom vendor use to amortize his costs?
Right. Only one. Yours.

Second, developing software is a hard, dirty frustrating busi­
ness. IBM's Little Tramp may be able to skate in with working
software and Apple may be able to run the World Trade Center with
a couple of quick keystrokes on a II/c, but we mortal developers
are somewhat less deft at our trade. If Madison AvenQe' s
software doesn't work they just do a re-take; if ours doesn't
work, we have to stay late at night, pay overtime, sweat blood and
fix it.

-3-

Software, in general, is super labor intense. Custom systems are
often mostly one of a kind (yes, we know about fourth generation
languages, thank you) and as a result custom software is expen­
sive.

What features should the system have?

Customers usually begin their interactions with us the same way
"How much would it cost to •••• 11 The question is easy to pose, but
I.fil:.Y hard to answer. In order to even come close to answering the
"how much" question, the custom system developer must begin
getting an idea of what the required features are -- ru.l, the re­
quired features.

No one would ask a builder "how much is a house?" We have to give
him a hint on what we have in mind. Are there three bedrooms or
four? Is there a swimming pool? Is it on a slab or is there a full
basement. Software development is no different. We have to
enumerate all the features the system is to have. It's useful to
break the list into two parts. The "must have" list and the
"wouldn't it be nice" list. These lists will enable you to
evaluate different approaches to the solution. You must begin
with a flexible attitude with respect to required features. In­
flexibility will wind up adding substantial dollars to the final
cost. Try to figure out what are truly required features.

Do you really need a custom solution?

As much as it pains me to say so, there are many cases where a
custom solution is not warranted. Try and find an "off the shelf"
product which addresses as many of your "must have" features as
possible. Remember, you are sharing the development costs for
the product with all of the other people who purchased it.

Now is the time to review your "must have" list. Is it really im­
portant that the company name appears in the upper left hand
corner? Wouldn't the upper right be just as good? You might even
consider changing the way you do things to accommodate an ex­
isting package. The cost savings could be large.

If one package won't do the trick, how about several? It may re­
quire some "glue programs" to develop the overall application,
but these will be substantially less expensive than developing
the system from scratch.

The rule to remember here is go custom if you really need to, but
don't do it as a matter of course.

What is your people commitment?

Again, the Little Tramp is to blame here. Operating software

-4-

i.
I

systems is not all sweetness and light. You have to assess your
personnel needs in order to operate the system. Are you going to
hire staff to maintain the sources or are you going to assume
(hope?) that the vendor will be around to do it? What skill level
of operator is going to be required to make the thing work? Sure
he has to know how the applfcation works, but will he also have to
be a system manager?

Your approach may well be dictated by the people you have
available. If you have people who are computer savvy, then per­
haps you can piece together a system from off the self packages
and a few home made glue programs. If you are not planning to have
someone on staff who knows the answers, then make sure that your
software vendor can support you in the long term. Also make sure
that there will be adequate training and a friendly voice at the
other end of the phone when you get stuck. At CCS we have 24 hour a
day support -- some customers need it.

So you're going to do it custom, huh?

If, after, examining the alternatives you come to the conclusion
that none of the products meet your list of needs, you should
prepare to buy a custom solution.

The first surprise you will be met with is the complaint that your.
feature list is not complete. Custom systems builders who work
on fixed cost are very conservative folks. They don't want to be
half way into a job and discover that the customer really wanted
it blue with red stripes instead of red with blue stripes. So,
the first step will be to prepare a functional reguirements docu­
numt..

The functional requirements document will define precisely what
the new system is supposed to do from the outside. I say from the
outside because the functional requirements should not really
include information about how the system will actually be built
apart from where a particular implementation scheme is a re­
quirement of the system (use IMAGE, or RTE, etc.)

If you develop the functional requirements yourself, be careful
that they really say what you want them to say. Remember that
this document is going to be a "treaty point" between you and your
custom developer. The clearer the document is and the more
precise the description of the requirements, the greater the
chance you and the developer will complete the project and remain
friends.

One really important aspect of the functional requirements often
forgotten is capacity. How many, how much and how often are ques­
tions which should be answered. And the answers should be for
tomorrow as well as today. The system, if successful, will most
likely be asked to grow (you'll be getting promoted to handle the
system's expanded responsibilities so growth is good). You will

-5-

be smart to consider the growth path right at the start.

One common mistake we have seen is undersizing the computing
engine to save costs. Desk top computers are a prime example.
Desk tops tend to be single user single program. A common growth
path is to add multiple users and multi-tasking. This is very
difficult with most desk tops. If you think this is the way the
system will grow, it might be a good idea to buy a more general
processor even if it means more up front money. The alternative
may be to redevelop the system again for a different machine.

An alternative to developing the functional specifications
yourself is to have a consulting company do this. If you take
this route, make sure that you understand how many times you get
to change your mind before the consul tan ts become angry with you.
You should set up an agreed upon scope for the development of your
requirements.

Also, don't think that you have a lock on what the system is all
about. Humility is important here. Remember your bows are taken
when it all works -- who cares who contributes to the develop­
ment? Make sure that the users, the secretaries, the president
and the wash room attendant get a chance to tell you how the new
system will impact their work. They may have important input.
You should be in a listening roll here not in a defensive posi­
tion. If someone insults your ideas, so what? You own the paper
and pencil.

Sorry about this next section

Contrary to casual observation, the following is not an eye
chart, it is a list of some topics which should appear in a func­
tional requirements document. Not all topics should appear in
all systems, but all of these topics should be considered for all
systems.

A. Overview of the desired system

B.

1. Purpose of the system
2. Current work flow
3. Proposed system flow

Type
1 •
2.
3.

of system needed
Interactive - CRT immediate access
Batch - overnight turnaround
Combination - daily activity & summary reporting

C. Special system features
1. Security requirements
2. Interfaces with other systems & instruments
3. Back-up, activity logging and recovery
4. Archiving of data

-6-

'

! ~

D. Transactional activity
1. CRT screen formats
2. Report Layouts
3. Plot formats
4. Inquiries
5. High & low volume of activity

E. Data definition
1. Data items
2. Key data items
3. Collection of items into files
4. File relationships
5. Volume of data anticipated

F. Calculations & special algorithms

G. Hardware
1. Number and types of interactive terminals
2. Size of disc
3. Throughput & response time required
4. Telecommunications

So how much already?

Armed with a well written functional requirements document you
are now ready to go out for bids. Make sure that you own the re­
quirements document if you have had consultants develop it. That
requirements document should be yours to do with as you please.

The functional requirements document is what should be given out
to the potential bidders. We have some (non-governmental)
customers who are really strict about bids. You must bid exactly
what is in the requirements and they don't want to hear anything
else. I think that this is a big mistake. Sure, it helps in the
comparing apples to apples department, but it cuts you out of a
lot of free engineering work. If a bidding company wants to
suggest alternative approaches, I think they should be listened
to -- especially if the suggestions are for free.

When you get your bids you should discuss what the engineering
change procedure will be with each vendor. Undoubtedly there
will be things which were left out of the specification. How will
this problem be addressed? Also you will change your mind on
things once you see pieces of the system operational. How will
these changes be accommodated and at what cost?

Unless you are working with a trusted company with a track
record, you should obtain several different bids. It is not un­
common to have a wide range between the lowest bid and the highest
bid. Make sure that you understand why the low price is so low or
why the high price is so high. You usually get what you pay for in
software development. If you (inadvertently) trick a company
into an artificially low bid through misunderstanding on either

-7-

their part or yours t success is doomed from the start (it won• t
get off the ground).

Who .au those guys?

Before you award the contract t you should do some homework on the
company you are going to pick. How long have they been in busi­
ness? Who have they done work for? Were any projects similar to
what you are going to try to do? Don't be shy. Ask questions and
check out references. I have found that much of CCS business is
repeat business. Assume that you are going to establish a long
term relationship with your developer and make sure that they are
worthy of the trust you are going to give them.

It sounds corny, but the construction of a software system is
really a team effort. If an antagonistic relationship develops
everyone suffers. A few checked facts can greatly contribute to
the success of the project.

Who owns the software when the project is done?

This sounds like a silly question, but its not. You should
discuss with your vendor who will own the software when the
project is finished. Some vendors view custom systems projects
as a golden opportunity to develop their software product line.
Are you going to wind up grub-staking a vendor into a new product?
Think about it, he could turn around and sell your software to
your competition.

Another problem along this same line is the use of vendor
proprietary packages in the development of your system. If the
vendor gives you the sources of what you have paid for, but keeps
key pieces because they are his proprietary products, what will
happen to you if you must support yourself? An often workable
solution to this problem is to escrow the sources of the vendor's
product. The rules for the escrow must make allowances for his
non-compliance with support commitments or his potential insol­
vency.

Don't be shy about asking vendors to sign non-disclosure agree­
ments. You might ask for one before handing out functional re­
quirements if you work in a highly competitive environment.

Where can I look 1 t up?

The customer has a very basic and a very important decision to
make. Will the customer provide the long term support or will the
vendor? If you are going to support the system (support means en­
hancements, training, bug fixes and telephone calls late at
night) then you are going to need the right type of documenta­
tion. Most documentation falls into two general categories: in-

. -8-

ternal and external.

External documentation is what users typically receive. It
tells you what to do before you hit the carriage return. This
level of documentation is a must. If you don't get this you
haven't got anything.

Internal documentation is what you will need to support the
system. It should include a broad brush narrative of how the
system works followed with a detailed explanation of individual
modules. If possible, the internal documentation should be or­
ganized for reference. You will have a specific question which
you want to ask. You don't want to have to read through reams of
prose to find the answer. Look for indexes, tables of contents,
etc.

Also an important part of internal documentation is annotated
source listings. These are required, but don't let a vendor tell
you that they~ the internal documentation. You need some in­
formation on how the parts fit together. Don't just weigh the
comments on source files, look at what is being said. If the
variable X is set to 0 the comment should D..Q.1 be something like
"set X to 0". Comments should be more descriptive.

Ask your prospective vendor for copies of documentation which he
has provided to other customers as examples. Require that he
provide at least this level to you. The cost of documentation may
seem high and the temptation might be to cut some of it out.
Don't. Documentation is you insurance policy against vanishing
vendors.

Are we there yet, Daddy?

Get the vendor to provide best estimates for schedules. If time
is of the essence on a project, be ready to pay more than if you
are flexible about completion dates. Make a realistic assess­
ment of what the target date means. If you are working to get
something done for the next space shuttle, time might really be
important. Other commitments could be less binding.

Your vendor is human too. He has other customers and employees
which he must keep happy and busy. It is unreasonable to stall
the bidding phase and eat up the vendor's development time by re­
quiring a non-movable completion date. We keep running into
customers who move slowly and then call up and say NOVI Even
small vendors have inertia which must be taken into considera­
tion.

Try to schedule working milestones. Progress payments are good
for this. By taking this approach you get to see that you are
really getting something for your money and the vendor gets some
money for something. Always keep an interesting hold back
pending completion of the work even if the vendor seems 1 ike an

-9-

honest guy.

One final aspect to completion is the acceptance test. The final
test should be spelled out in the specification. If the details
are not known, then the philosophy should be spelled out as
clearly as possible. The acceptance test is your agreed sign off
point with the vendor. This needs to be established for your
protection as well as the vendor's. Projects sometimes have a
way of going on forever because of poorly defined acceptance
tests.

One year or 12, 000 miles.

You can never get all of the bugs out of a major system, so a
discussion of warranties is important. What does a warranty mean
to your vendor? How long does it last? What will be the on going
cost of fixing software which is out of warranty? Will the post­
warranty support be available long term?

And now the hard part .••

After you have successfully done all of the above it is time to
award the contract and actually build the system. You can tell by
the length of this section that I'm not going to tell you how to do
that. Project management is an art in itself and worthy of many
many more words. The only advise that I will offer here is to
remember that you and the vendor should work together to insure
the success of the project.

Try to understand at the beginning what roll you and your or­
ganization will play during actual development. If you have made
commitments to do part of the development, such as review docu­
ments, make choices or develop test streams, make sure that these
things are completed in a timely fashion. For some reason,
people excuse their own slipped schedules while they are very un­
forgiving when others slip them. Don't give your vendor more to
worry about by being late on what you owe him.

The literature is filled with horror stories about projects
which never made it for one reason or another. Our experience has
shown us that preparation done during the purchasing phase of a
project can develop a sound foundation which greatly increases
the likelihood of the project's overall success.

-10-

1006. TECHNIQUES FOR DEVELOPING DEVICE INDEPENDENT GRAPHICS SOFTWARE

Peter Neuhaus
Hewlett Packard Company

19447 Pruneridge
Cupertino CA 95014

Background

In the early 1970s, the computer graphics industry realized that it needed to
standardize some of the methods used in developing graphics software. The
resulting conventions made it possible to create graphics in one environment
(computer) and transport them to another with a minimum of recoding. To date,
only a few standards have been established but others are under investigation.
The Graphics Kernal System (GKS) has been adopted by the International Standards
Organization and is being used extensively throughout Europe while the Siggragh
CORE system, proposed in 1979, has not gained much acceptance. The debate
continues but GKS seem to be pulling ahead.

Regardless of whether or not one chooses to follow a strict standard, considerable
improvements can be made in the writing of graphics software by following a few
simple guidelines.

Frequently, companies plan to use only the specific graphics output devices that
they already own, for example a HP7550 plotter or perhaps a non-HP graphics
terminal. To support these devices, the specific instructions required by the
devices would be scattered throughout the application program (see figure 1).
The result would be very efficient but would necessitate excessive modifications
if new or additional output devices were acquired at a later date.

The First Step

Device independence is nothing new to the professional programmer. Common
functions such as cursor control are often modularized into separate subroutines
(device drivers) that can be easily modified or replaced to accommodate new
output devices that require different "escape sequences" for their proper
operation. When it was necessary to drive more than one output device, a duplicate
set of subroutines is written for each device (see figure 2). In addition, if
more than one device might be used simultaneously, it is necessary for subroutines
with identical functions to have different names, such as LINEl, for drawing a
line on device 1, or LINE2 for device 2. At this level, device independence
was still not achieved since the LINEl and LINE2 calls must be embedded in the
application program.

Step Two

By inserting another level between the application program and the device drivers,
the interface between the application program and the outside world is standardized.
If this new level, perhaps a commercially available GKS package, contains a
function that allows the application program to select which output device should
be used, if it is possible to remove the references to LINEl and LINE2 and
substitute a call to the new LINE function in the GKS package (see figure 3).

·l· Paper 1006

At this point, true device independence has been achieved since new devices can
be supported without modifying the application program as long as someone writes
a device driver for the new device. However, creating these new drivers can
consume enormous amounts of programming effort because each device is unique in
that it requires specific nonstandard "escape sequences" to perform a given task.

VD! - The Last Step

The graphics industry is attempting to standardize the hardware instructions
required by graphic output devices through a concept called the Virtual Device
Interface (now often called the Computer Graphics Interface). If all graphic
devices understood the same commands, the need for device drivers would be
eliminated (see figure 4). Essentially the device drivers would be implemented
within the device's firmware. However, until the VD! concept becomes commonplace,
it is necessary to employ the basic concepts of device independence when writing
graphics applications. Several alternatives are possible.

Ways to be Independent

The most straightforward solution would be to obtain a graphics software library
either from the computer manufacturer or from an independent third party. Such
packages include any number of device drivers for the most popular graphic
devices. The disadvantage to this solution becomes evident if it is necessary
to change host computers at a later date. Even switching between computer lines
offered by the same manufacturer can cause significant problems. Therefore,
when shopping for this type of software product, it is important to investigate
the possibility of moving the product between systems. Packages written in
standard languages such as Fortran or Pascal help simplify portability. But
even standard languages often don't port well.

The ability to move to another CPU may sound like something that wouldn't be
done too often, but as desktop computers become as powerful as typical multi-user
systems, many applications will be moved to smaller workstations. It's much
like the user who feels he needs only 50 megabytes of disc storage, orders lOOMB
even though he knows it will never be needed, then runs out of disc space six
months later. Applications and technologies change continuously. Investing
the extra resources to implement a flexible solution often pays high dividends
at a future date.

Sharing Graphics Data

Frequently graphic databases created on one system need to be processed on
another. To address this need, a standard format for exchanging databases,
called the International Graphics Exchange System (IGES), has been established
and is currently supported by a number of graphics packages. A similar newer
standard, the Virtual Device Metafile (VDM), performs much the same functions.
By simply using the IGES or VDM device driver, an application can store the
resulting image or object description onto a transportable media such a magnetic
tape which can then be read by another IGES/VDM compatible system. Applications
written in a device independent manner are able to utilize this useful feature.

Paper 1006 -2-

Summary

The trade·offs involved in the decision to standardize the development of computer
graphics software deal mainly with short tenn versus long tenn benefits. Projects
that seem to be "one shot" programs may not appear to necessitate the features
of device independence. But often the programs are modified and used again,
possibly for another "one shot" application. In general, establishing standards
or guidelines in a programming environment leads to increases in productivity.
The slight perfonnance degradation created by the overhead of a graphics subroutine
library can be offset by the ever decreasing costs of computer hardware. Once
standards have been implementedj applications can be developed faster since it
becomes unnecessary to reinvent the wheel for each new project. In addition,
program maintenance is simplified since each programmer understands the basic
strategies used by his fellow graphics programmers. overall, the need to be
device independent will become increasingly important as the number and capabilities
of systems and graphic devices expand.

Paper 1006

...-.
~ C\I c: CW) C\I /

0 UJ
7 cc ·- i---

I •

a3
0 ·-
c.
c.

~ C\I
(')

<(..... C\I
/

UJ cc -7 i---

Paper 1006

(1)
0

"' 'I- /

(1)
c: -

(1)
0

"' 'I- /
(1)
c: -

...
(1)
0 -a.

-"' c: ·-E ...
~

,..
e
= Cl n:

I.
I

I

l..n
I

"'d

~
(I)
11

......
0
0

°'

Application

INIT1 I MOVE1 I UNE1

RS232
Interface

Terminal

Figure 2

INIT2 I MOVE2 I UNE2

RS232
Interface

Plotter

>rj

~
'd

C1l
'i

I-'
0
0

°'

I

°' I

Application
I I I

Graphics Package
\ / \ [/ \ I \ / \ v \V

INITI MOVE1 UNE1 INIT2 MOVE2 UNE2

s \ V_ L ~ \ I I
RS232 RS232

Interface Interface

Terminal Plotter

~--..-

FlnatrA ~

I

-..J
I

"d
Ill

"Cl
<1l
Ii

t--'
0
0

°'

Application
-........._

..-~~~~·,,,. IC.,..-,.~~~~---.,;;;~~~~~~~~~~~~-'"-"'--~~~~~.;::;~~~~~~~~...i~~~~

Graphics Package

RS232
Interface

VOi FIRMWARE

Terminal

Figure 4

RS232
Interface

VOi FIRMWARE

Plotter

1007. TRANSIENT DATA ACQUISITION TECHNIQUES UNDER EDS

1. Introduction

Steve Telford
Electronics Engineering Department

Lawrence Livermore National Laboratory
Livermore CA 94550

The Experimental Diagnostic System (EDS) developed for the MARS project is used
to support Atomic Vapor Laser Isotope Separation (AVLIS) experiments at Lawrence
Livermore National Laboratory. The AVLIS process uses finely tuned frequencies
of laser light to photoionize, or electrically charge, atoms of a particular
isotope of uraniwn. The photoionized atoms are collected on charged plates.
Reactor grade uraniwn can be produced by separating uraniwn-235 atoms from other
naturally occuring isotopes. The purpose of developing the AVLIS process is to
produce reactor fuel at a lower energy conswnption and at lower capital and
operating costs than other processes (gaseous diffusion or centrifugation). An
experimental facility (Figure 1) was constructed at LLNL to study the AVLIS
process. The project is divided into two areas: the laser facility and the
separator facility. EDS was written to support the separator portion of the
process.

The general philosophy behind EDS is to create a diagnostic to study specific
aspects of the process. From this philosophy EDS has evolved into a general
purpose diagnostic system which provides the user a means of acquiring large
quantities of transient data, viewing the raw data as it is taken, and analyzing
that data in real time. EDS also interfaces to our process control system,
PMC/1000, and to our in house process modeling and analysis system. EDS consists
of over 100 programs written primarily in FORTRAN and currently manages four
diagnostics and eight users. The four diagnostics are:

Vapor characterization by absorption spectroscopy
Gas analysis by mass spectrometry
Extractor Performance using transient recorders
Process Laser Characterization

This paper will discuss the front end hardware used to do the data acquisition
as well as the diagnostic control programs and data structures used to interface
the front end hardware to the rest of EDS. Figure 2 is a general block diagram
of the Experimental Diagnostic System.

EDS has been implemented on an HP/1000-A700 computer with 4 Mbytes of memory,
94 Mbytes of disc, and a 1600 BPI tape drive. Front end hardware is made up of
CAMAC (IEEE Std. 583-1982) data acquisition and control modules and Tektronix
digital oscilloscopes. Graphics output is made available on HP 26xx terminals
and Raster Technologies color graphics systems.

2. EDS Design Elements

In order to develop a diagnostic system that we could readily adapt to the
changing requirements of a very dynamic experiment, the following principle

-1- Paper 1007

Laser system

Separator system

Pump laser

Figure 1. Atomic Vapor Laser Isotope Separation Diagram.

Experimental
processes

Front-end
hardware
diagnostic

#1

Front-end
hardware
diagnostic

#4

Fig. 2. EDS configuration.

Real
time

displays

Real
time

displays

legend

D
0

External
hardware

Programs

Data stores

design elements were identified:

The front end hardware configuration had to be very flexible
A method of logically connecting that hardware to the experiment
was required (configuration data base)
Large quantities of data had to be shared among many programs
(data acquisition, graphics, analysis)
Codes should be table driven
Need a fast system
Need a standard user interface
Need a general graphics package

Figure 2 is a general overview of EDS showing all the major components of the
system.

2.1 Front End Hardware Design Elements

In order to acquire large quantities of transient data the front end hardware
must be capable of digitizing and storing that data without intervention or
control from the computer. In the EDS system, control of front end hardware
consists of set up, triggering, and unloading of the data. When and how often
the data is sampled is controlled by the front end hardware after that hardware
has been set up by the EDS system. All front end hardware used in EDS has local
storage capabilities. By using front end hardware with local storage the
communication to that equipment can be limited to small blocks (< 100 bytes) of
programmatic I/O for set up and control, and DMA I/O for all large blocks of
data (>100 bytes).

By using front end hardware with these characteristics the constraints on the
CPU I/O performance can be relaxed. The DMA speed between the computer and
front end storage device must be capable of moving all data acquired by the
front end hardware very quickly. In the EDS system we have found that an end
to end transfer speed of 50 Kbytes per seco.nd is the minimum we can tolerate.
From our experience we have fotmd that the instrument we are using for a particular
diagnostic is the limiting factor on the data transfer speed, not the CPU. The
GPIB interface (IEEE Std. 488-1978) offered by HP, for the A-series computers
is well within our performance constraints and is a reliable means of interfacing
front end equipment. All four of the diagnostics that we use in the EDS system
interface to the front end hardware via HPIB.

2.2 Configuration Data Base Design Elements

The front end hardware used for data acquisition and diagnostic control is
connected to the process being monitored through a configuration data base. The
information in this data base provides a complete history of the front end
hardware configuration for a particular experiment. The elements of this data
base include:

Which channels are active
Engineering unit conversion algorithms and coefficients for all
channels
Short and long labels for each channel
Relationships between the various data channels

Paper 1007 -4-

Where the data from each diagnostic event is stored
The state of the front end hardware for each event

The data base not only holds the current diagnostic configuration, but also the
configuration of the hardware for the duration of the experiment. This feature
is necessary because often times what we are trying to accomplish changes in
the middle of an experiment and therefore the diagnostic configuration must also
change to meet the new goals. To meet these design criteria, a fast and reliable
data base management system was needed. A third party data base management
product, Berkeley Software System Database, written explicitly for HP lOOO's,
is used for all EDS data bases. This data base is used to keep the entire
diagnostic configuration for an experiment. To ensure the best possible
performance for EDS, key parameters from the data base are kept in Extended
Memory Access (EMA) and only updated when the data base is changed. With this
scheme we have been able to make EDS a very fast data driven system.

2.3 Shared EMA Design Elements

The shared EMA in our system is designed to make both raw and analyzed data from
each diagnostic available to the entire EDS system. Because of the way HP has
implemented EMA, only one shared EMA partition per program, all EMA for EDS had
to be lumped together. Currently our EMA partition is just under 800 pages(l024
words - 1 page). For each diagnostic the raw data is read directly into EMA
via the VMAIO call to the front end hardware. Once the data has been read in
by the respective diagnostic control program it is immediately written to disc
by the diagnostic control program. Here the data is read out of EMA into local
program memory, identifying information is attached, and then written to disc.
EMA provides a means of handling large quantities of data on the HP machines
but has the disadvantages of 1) only one EMA partition per program, 2) no shared
VMA, and 3) access time for a variable in EMA is triple that for a variable in
local memory.

Another design philosophy of EDS required that the data acquisition, quick-look
graphics, and real-time analysis portions of EDS be as independent as possible.
In order to accomplish this the graphics and analysis phases of EDS always work
from their own copies of the data. Once data is put into EMA by a diagnostic
control program copies of that data are made by each program that wishes to
operate on that data. This design allows each process to operate asynchronously
from all other processes in the system. This also ensures that the performance
of one process does not affect the performance of other processes and that the
best possible system performance can be attained. The disadvantage of this method
is that large amounts of memory are required to store multiple copies of all
the data in the system (- 800 pages).

3. Front End Hardware Configuration

On the MARS project we are using two general purpose hardware configurations
for the four diagnostics in EDS. One configuration is based on a set of CAMAC
modules and the other is based on high speed digital oscilloscopes.

3.1 CAMAC Front End Hardware

Figure 3 is a block diagram of the CAMAC hardware we use to interface three of

Paper 1007

Ch.#1
•

Ch.#N-i

CAMAC data highway

Multiple channel 4 - channel function Programmable
data logger with function generator clock
local memory

• 16K memory • User
• 1024 points/channel (4K per chan) settable

frequency
• 5 kHz sample rate • Programmable

per channel function profiles • 16 freq.

• 12 bit resolution I I • Programmable

• 0 - 10V range

• Differential inputs

f t
II

Sync

gain & offset

• 10 bit accuracy

• -6V to +6V
into 50 n.

11

I t t I I Sweep active !
Trigger

t
Diagnostic
hardware
control

11

Fig. 3. CAMAC hardware configuration.

Trigger Error detector
generator

I I • 5 inputs
• Leading

or 11 • Active during a
trailing data sweep
edge

I ! 'S
External
stimulus

Arc
signals

External 32- analog
inputs

Memory 32-channel
module data logger

LeCroy LeCroy
8800/12 8212A/32

This unit set
for 1024 post-
trigger samples

0 to 1 OV range

Stop Clk
trig in

t Sync

External
data b

+
4-channel Dual-port
function memory
generator module

LeCroy 8601 LeCroy
8801/12

Sync out

Clock in

LMWin

Ext trig in

Output
channels LMW
1 2 3 4 out

Programmable
cl.ock

LeC'roy
8501

Clock
out

T LT T. I aser sweep gate srgna

Laser
drive
signal

LMW

Misc
output
signals

J 1

Beam Extractor
ARC

Lock signals

..!. ..!. ..!.

Arc Stable-lock
detector

LLNL

LLNL
• Laser 1
• Laser 2

•Gun 1 • Laser 3

• Gun2 • Laser 4

•Gun 3 • Laser 5
• Gun4
• Extractor Status lights

Status Clock §Control
lights Control Comae

Switch No control

Gate Gate Clock
In in in out

1 J
Clock

Fig. 4. Vapor characterization front end hardware.

External
32-analog

inputs

..!.

Extractor Memory
trigger module

LLNL LeCroy
8800/12

Trig Trig
out in

Extractor
on/off

..1...1. ..!.

32-channel
data logger

LeCroy
8212A/32

- 1024 Post
trigger samples

- 0 to lOV range

Clock Stop
in trig

Crate
controller

LeCroy 8901

c HPIB
Bus
to
EDS
computer

Data Mass
bus command

Memory I 32-channel data
module logger

LeCroy I LeCroy
8800/12 8212A/32

Stop
trigger

1

Clock
in

Mass Data
values bus

4-channel Dual-port I Progammable I
function gen. memory clock

I Lecroy
8601

r Sine out

r-Clock in

r-LMW in

,...- Ext. trig.

Outputs
1 2 3 4

module

Lecroy
8801/12

LMW
out

J

........,. Mass command

I Lecroy
8501

Clock
out

Fig. 5 Gas analysis front end hardware.

I

HPIB HPIB bus

r-toEDS
computer

I Crate
controller

I LeCroy
8901

External
memory

32
channel

input

l 11 1
Lecroy LeCroy 8212A/32 LLNL Lecroy
8800 data logger frequency 8501
memory 0-10V divider clock
module 12 bit resolution /1000 generator

1 2 3 4 5 6

CT 1 J
Divided Clock

clock

Trigger

LLNL
trigger
gen.

1

External .__ .
trigger

Fig. 6. Hardware configuration for process laser characterization.

HPIB HPIB Bus

-- to l:U:S

,~ computer

KSC Lecroy
3992 8901
data-way crate
display controller

23 24 25

D TEK DTEK DTEK D TEK
7~3 7~3 7~3 7~03

7D20 7D20 7D20 7D20

~~ ~~ '~ ~~

HPIB BUS

TEK TEK TEK TEK
FG FG PS PS -

' 5010 5010 5004 5004

Diagnostic control

Fig. 7. Extractor performance diagnostic front end hardware.

..L DTEK 7~3

7D20

~~
HPIB BUS

to EDS
computer

our diagnostics. Figures 4, 5, & 6 are the detailed drawings of how the CAMAC
equipment is configured for the Vapor, Gas Analysis, and Process Laser
Characterization diagnostics. A four channel function generator is used to
control any hardware associated with the particular diagnostic. The 32 channel
data loggers are used to monitor all the signals associated with the diagnostic,
As many 32 channel data loggers as necessary can be used for each configuration.
Each data logger is capable of taking 5000 samples per second per channel and
up to 1024 samples per channel can be held in local memory at each data logger.
We have found this configuration to be very versatile. In order to pre-filter
the data acquired by EDS we developed a general purpose error detection module
that can be used to eliminate bad data before it is read into the computer. This
module is active only when the front end hardware is acquiring data. At the end
of a data scan, before the data is read into the computer, the status of the
error detector is checked and if a problem occurred the front end hardware is
immediately retriggered. Another module developed at Livermore is the trigger
generator. This module allows us to trigger a data sweep in one of three ways:
1) operator command from the keyboard, 2) rising edge of an external stimulus,
and 3) falling edge of an external stimulus. As shown in Figures 3 through 6
all the components described above are tied together through a common clock.
This hardware configuration has the characteristics required to do a wide range
of medium speed transient data acquisition: 1) Experimental hardware can be
controlled by the diagnostic, 2) data acquisition equipment is able to acquire
multiple channels of vector data simultaneously, and 3) the experimental
configuration can be linked to this hardware via the configuration data base
within EDS.

3.2 Digital Oscilloscopes

The second type of general purpose front end hardware that we use for diagnostics
in EDS are digital oscilloscopes and programmable instrumentation built by
Tektronix. This equipment allows us to control diagnostic hardware as well as
acquire diagnostic data on multiple channels at a rate of 40Mhz per channel.
Figure 5 is a typical hardware configuration using digital scopes as the main
data acquisition device. As with the CAMAC equipment described above this hardware
can be logically linked to the experiment through a real time data base. In
addition to the increased sampling speed, these scopes offer the following
advantages: 1) data can be previewed on the scope prior to being read in by the
computer, 2) all scope settings are read and stored with the data, 3) these
oscilloscopes have a wide input range, and 4) statistical functions can be
performed on the data in the scope itself (i.e. signal averaging).

4. EDS Diagnostics

The following paragraphs will describe, in more detail, the four diagnostics
that we have implemented under EDS on the MARS project. Each diagnostic consists
of front end hardware tailored specifically for that diagnostic and a diagnostic
control program which interfaces the front end hardware to the rest of EDS as
well as to the real time data bases. In each case the real time data bases serve
at least three basic functions: 1) they allow the experimenter to assign names
and calibration factors to the input channels, 2) allow the experimenter to
define relationships between the input signals, and 3) the data base is used to
record exactly the state of the diagnostic each time data is acquired.

-11· Paper 1007

The diagnostic control programs associated with each diagnostic must meet the
following guidelines in order to obtain the maximum performance and flexibility
from each diagnostic: 1) CPU utilization by the control program must be kept to
a minimum, 2) I/O must be as fast as possible due to the large quantities of
data, 3) the user must be able to control all phases of the diagnostic from his
terminal, 4) all pertinent information concerning the experiment must be saved
in a data base as the experiment progresses, and 5) the control program must
operate independent of the real time graphics and analysis. By meeting these
criteria the diagnostic control programs are capable of controlling equipment
and acquiring large amounts of data without putting undo strain on the CPU.

4.1 Vapor Characterization by Absorption Spectroscopy

Vapor diagnostics is designed to provide the user with the characteristics of
the uranium vapor being created in the MARS facility. This diagnostic is based
on absorption spectroscopy in a doppler broadened medium. Figure 8 is a block
diagram of a typical configuration used to do absorption spectroscopy work on
a uranium vapor source. Figure 4 is a diagram of the front end CAMAC hardware
used to interface the absorption spectroscopy equipment to the EDS system. In
order to support absorption spectroscopy experiments the front end hardware
configuration must be able to accurately control CW dye lasers, acquire multiple
channels of transient data simultaneously, and be logically connected to the
experiment through a data base.

The four channel function generator is used to control the frequency of the dye
lasers and the 64 channel data logger is used to monitor the intensity of the
diagnostic laser light as well as other associated information about the
experiment. The arc detector is used to monitor the status of the electron beam
guns generating the vapor. The arc detector is only active during a laser sweep
and can be queried at the end of each sweep before the data is read into the
computer. If one of the guns had an arc during the sweep the data is discarded
and the lasers are reswept for new data. The trigger generator is used to start
a sweep from external stimulus. A laser sweep can be started by the operator
from the keyboard, by the leading edge of a trigger pulse or from the falling
edge. All of this equipment is then tied together through a common clock with
a variable frequency. The hardware configuration described here has the
characteristics required to do vapor diagnostics in real time: 1) experimental
hardware can be controlled, 2) multiple channels of vector data can be acquired
simultaneously, and 3) the experimental configuration is linked to this hardware
via a data base.

The diagnostic control program, VCDL, is written to work explicitly with the
front end hardware described above and meets the general guidelines for a
diagnostic control program. This program allows the user to control all of the
functions required to do vapor characterization, is responsible for archival of
the data to disc, and keeps the real time data base current on each diagnostic
laser sweep. Control of the diagnostic functions is communicated to VCDL through
the EDS user interface, SHELL. Typical functions that the user can control thru
SHELL are when to sweep the diagnostic laser, the profile of the laser sweep,
the duration of the laser sweep, whether or not data is archived, and what
conditions generate an automatic resweep of the lasers (arc mask).

When a laser sweep is initiated by the operator, VCDL sweeps the diagnostic

Paper 1007

I ,

I ,

+V

~ Opto
~

Lock-in I-
galvanic

amplifier i..., ~ ~
~

I- Fabry
4- Perot

! !
Pump '- CW dye (, f , [,

IZ 1 Chopper ['~
laser I- laser -JZ- ~ , i_ r l'

~] 1 Frequency \ Vapor source/

generator
re +V +V

_ Y!1J~~ I 1 1
~ Lock-in ~ -#vl

f

amplifier -- f --
~ Lock-in

amplifier

Fig. 8. Absorption spectroscopy hardware configuration.

lasers, waits for the sweep to complete, unloads the data loggers, archives the
raw data to a disc file and places diagnostic status parameters into the real
time data base for vapor diagnostics. When the data is read in by VCDL it is
read into shared EMA partition so that the other pieces of EDS can get at the
data. Once the data is read into shared EMA both quick-look graphics and real-time
analysis make copies of the raw data to work from. Once the copies are completed
the raw data can be written over with a new laser sweep. In this manner, as much
independence as possible is maintained between the individual diagnostic and
the graphics and analysis packages in EDS. This independence is maintained
without sacrificing speed.

The combination of the front end hardware described above, the diagnostic control
program, VCDL, and the real time data base create an environment which can be
controlled by the user, changes with the experiment being performed, and does
real-time vapor diagnostics.

4.2 Gas Analysis by Mass Spectrometry

The gas analysis diagnostic was designed to provide a real time indication of
the relative amounts of different gases in our vacuum vessel. For this diagnostic
the front end hardware and diagnostic control program must be able to control
a UT! residual gas analyzer and monitor the output of that device. Input to
the UT! consists of a DC voltage representing mass number and the output is a
DC voltage representing the amount of gas sensed by the UT!. In order to get
levels for a number of different gases the UT! is swept through mass numbers 0
to SO using a function generator and mass values for those gases are monitored
by data loggers.

The front end hardware used for this diagnostic is a subset of the hardware used
for the vapor characterization diagnostic and is shown in Figure S. The four
channel function generator is used to drive the UT! through mass numbers 0
through SO and two channels of the 32 channel data logger are used to monitor
the drive signal sent to the UT! and the mass values returned. Both the ftmction
generator and the data logger are run from a common clock that has a programmable
frequency. The hardware described here has the capabilities required to do real
time residual gas analysis: 1) diagnostic hardware can be controlled, 2) multiple
channels of vector data can be acquired simultaneously, and 3) the experimental
configuration is logically connected to the front end hardware via a data base.

The diagnostic control program, MCDL, was written to work explicitly with the
front end hardware described above and meet the general guidelines for a diagnostic
control program. This program allows the user to control the diagnostic via the
user interface, SHELL, is responsible for archiving the data to disc, and
maintains current diagnostic status in a real-time data base. Typical ftmctions
that the user can control through SHELL are when to do an RGA sweep, the duration
of the sweep, whether or not the data is archived, and whether or not to do
quick look graphics and real time analysis with each sweep. If the user has
chosen to do graphics and analysis it is the responsibility of the diagnostic
control program to schedule these tasks. If these tasks are scheduled they are
done so without wait so that the diagnostic can proceed independently from the
graphics and analysis.

The combination of front end hardware described above, the diagnostic control

Paper 1007 -14-

program, MCDL, quick-look graphics, real·time analysis, and a user interface
combine to perform real·time gas analysis on the MARS experiment.

4.3 Process Laser Characterization

The process laser characterization diagnostic has been designed to monitor all
the parameters in the MARS facility which determine the amount of separative
work the facility is doing. This diagnostic is the simplest of the three described
so far in that it is simply a slow speed data logger with real· time display and
analysis of the data it is acquiring. Figure 6 is a diagram of the front end
CAMAC hardware used to interface the signals of interest to the EDS system.
Control of the diagnostic is done through the system wide user interface, SHEll..,
and plotting of the data is done through the quick-look graphics system. As
with all other diagnostics in the system, status of the diagnostic is maintained
in a real·time data base. In order to support the integrated separator diagnostics
the system must be able to acquire multiple channels of slowly moving data and
be logically connected to the front end hardware through a data base.

The hardware for this diagnostic includes only a 32 channel data logger and a
programmable clock. As shown in Figure 6 the same clock is used here as for the
other diagnostics but it is divided down by a factor of 1000 to better match
the requirements.

The diagnostic control program for the integrated separator, ICDL, has many of
the same capabilities as VCDL and MCDL described above. One additional comnand
is available to the user with this diagnostic; he is able to set the rate the
data is archived independently from the sample rate. The sampling rate is
determined by how often one wishes the real-time plots to be updated and the
archival rate determines how many points are plotted with each diagnostic scan
as well as how many points are saved. The main function of the real-time data
base for the integrated separator diagnostic is to attach name and conversion
values to each signal coming into the data logger. The other function of the
data base is to maintain the state of the diagnostic.

This front end hardware along with the diagnostic control program combine to
create an environment where the user can monitor all the parameters associated
with isotope separation in one location.

4.4 Extractor Performance Using Transient Recorders

This diagnostic is designed to provide the user with a means of monitoring very
high speed transients yet make the data being taken available to the entire EDS
community. Figure 7 is a diagram of the front end hardware we have selected to
do this diagnostic. As one can see this diagnostic has been implemented mainly
with Tektronix 7D20 digital oscilloscopes. A diagnostic control program has been
written to control these devices and a data base designed to logically connect
the front end instrumentation to the data being acquired.

Tektronix digital scopes were chosen for this diagnostic for a number of reasons:
1) they have a wide dynamic input range, 2) all scope settings can be read in
along with the data, 3) data can be previewed before it is read in, 4) signal
averaging can be done in the scopes to reduce random noise, and 5) the equipment
is very easy to work with and interface to the computer. As this diagnostic

-15· Paper 1007

progresses control can be added by using Tektronix programmable instrumentation.

The diagnostic control program for this equipment is designed to simply pass
user commands on to the front end equipment. This is the best way to comnunicate
with this equipment because it already has a large (dt of English like connnands
that it understands. What the diagnostic control program does in addition to
this is to allow the user to define an active set of scope channels and provide
a small number of higher level commands which are strings of basic 7D20 conmands.
When a command is issued by the user, that command or string of commands is sent
to all active scope channels as defined by the user. A diagnostic control data
base is maintained and keeps track of the state of the diagnostic as well as
where data is stored in the archive file for each data acquisition event. Once
data has been read into the computer further viewing of it can be done through ! ·

quick-look graphics.

5. I/O Performance of the Front End Equipment

I/O performance of the CAMAC front end equipment is governed by the crate
controller used. On the MARS project we have been using the Lecroy 8901 GPIB
crate controller. An evaluation of this has been reported to the HP 1000 users
group in 1983 (UCRL-89129). Essentially this device will handle DMA I/O at
rates up to 400 Kbytes per second. However in some instances the line level
handshaking of the HPIB bus on the A-series computer is too fast for the 8901.
In these instances the HPIB bus must be artificially delayed by placing a slower
device on the bus. At Livermore, we have designed such a device into a CAMAC
module that plugs into the same bus as the crate controller. This reduces the
effective DMA speed to approximately lOOKbytes per second. In some cases where
the CAMAC crate is placed more than 20 meters from the computer we have extended
the HPIB bus with fiber optic bus extenders. The disadvantage of this method
is that DMA speed is further reduced to SOKbytes per second. But as I stated
earlier we have found that an effective throughput rate of SOKbtes per second
is adequate. When we implemented the Tektronix digital oscilloscopes we found
that we were able to communicate with them from the HP computer immediately.
The transfer time for a single waveform of 1024 points and all associated
parameters is approximately one second. We have never actually measured the
DMA speed of these devices but have not found them to be a problem. One of the
best things that can be said about the Tektronix scopes is that they worked as
promised the first time.

6. Conclusions

EDS has been a successful integration of work done by many people over several
years. It is unique at Ll.NL in the amount of data acquired, the graphics displayed,
and the analysis done in real-time. The EDS design has withstood the test of
time. While continually incorporating new commands, diagnostics, and capabilities,
it has been run at regular intervals, one to three times a month. At the present
time, EDS has been used in twenty (20) experiments with a total operating time
in excess of one thousand (1000) hours.

*This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Paper 1007

1008. HOW TO USE THE USERS

David E. Sullivan
ZONAR CORPORATION

2915 Hunter Mill Rd.
Oakton VA 22124

I suppose that in all areas of human endeavor there must always be a THEM and
an US; continuation of the human race would be impossible without such distinctions.

But you'd think that once you'd climbed into bed with someone you could expect
to be included in the resolution of common problems, and I for one have not
always gotten that feeling during my six year marriage to Hewlett Packard.

Perhaps the too brief courtship and resultant shotgun wedding are partially to
blame. I was brought in as a consultant on an HP 1000 based product installed
by an OEM--then stayed behind to support the end user. Thus, no relationship
was built with the local HP office.

But committed to HP we are, and after dealing with the HP support organizations
over the years, experience has frequently made me feel that our THEM is not a
large part of their US--at least in the area of system software problem solving.

Case I

Our first case study took place five years ago when we were developing complete
software for a 30-user, interactive system. Reentrancy was considered necessary
to avoid the RTE, copy-per- terminal approach which would require some 400 TASKS.

Since the JSB subroutine is inherently non-re~ntrant, the entire system was
designed around the use of the (then) new JLY instruction.

Because of the reentrant environment, the on-line debugging facility available
then was essentially unuseable; nonetheless, checkout was proceeding fairly well
until we got to the "batch" programs which processed a large number of records
on a continuous basis.

The more we tested the batch runs, the more "bugs" we found- - actually, we
couldn't find the bugs, just the evidence of their occurrence (Remember DM TASK
ABORTED?). And the more we tested the batch runs, the more the interactive
TASKS didn't work either.

After six weeks of increasing frustration, we began to seriously seek help.

Our initial calls to the local HP office resulted in some sympathy; but since
they hadn't heard from us in 14 months it took a lot of talking to convince them
that at least we thought we had a problem.

The next step in the procedure, however, brought us to a complete halt. The HP
office wanted to duplicate the problem on their HP 1000 configuration.

The configuration we were running on had 256 pages of memory, one 120 MB disc

-1- Paper 1008

and two 50 MB discs (full of data base), two tape drives and two sixteen line
multiplexors with associated terminals; plus printers, a card reader, and console.
In our experience, problems occurred with adequate frequency (four per day) only
when everything was running.

Not only could their system not accommodate the data base, they didn't have
thirty terminal operators available to exercise the system.

While asking the original OEM supplier of the equipment to work through his
local HP office, we began to insert programmed traps around every problem area.
The more traps we put in, the more non-trapped problems we discovered.

After two weeks, we began to get some trap information that allowed us to move
the traps closer to the cause.

Productive use of the system was, of course, virtually impossible
time. Every problem report called for analysis and "retrapping"
function could be retried. Often, the problems resulted in data
which had to be corrected before the process could continue.

during this
before the

base damage

After four weeks of trap analysis, we felt we were getting close to discovering
the cause and were sleeping in the computer room waiting for traps to go off.
Meanwhile, both the local HP office and our OEM contact reconfirmed that no
similar symptoms had been reported by any other HP user.

I had been begging continuously to talk to someone in the "lab" about the
problem. It was my feeling that the problem would be recognized by someone in
systems programming, once the details of our analysis were conveyed. But the
HP field people kept saying that even they couldn't talk to the "lab", and we'd
have to transport the problem to another site before they could do any more.

Finally the OEM presented another option. The HP rep from his area would come
on site and take a look, if we agreed to pay the time and travel costs if it
turned out not to be an HP problem--after more than two months, that sounded
like a good deal.

I met with the HP rep and our OEM technical manager on a Thursday morning after
spending all night in the computer room analyzing traps. I had a theory--the
only thing that could explain the diversity of the problems we'd been having--but
hadn't figured out a way to test it before the meeting.

All day was spent trying to bring the HP rep up to speed on the application
system and the problem symptoms and analysis we'd accumulated. Although I didn't
think he could be of immediate technical help, he was willing to accept the
possibility of an HP problem; and he left that evening promising to use his
contacts to research the problem through the "lab".

When he left, I went back to the computer room and wrote the following program:

START

LOOP

Paper 1008

NOP
CLA
CLB
INA

-2-

'· I

INCB

JLY INCB
CPA B
JMP LOOP
HLT
!NB
JPY 0

It ran less than 10 seconds before halting.

I took off Friday, after notifying the OEM of the transportable test; expecting
to spend Monday in planning a work-around for the problem. But by Monday HP
had installed a fix and the problem no longer existed.

Why were they able to install a fix so quickly? Of course--it was a known
problem with a known fix!

Unfortunately, whoever had discovered the microcode error (which caused the JLY
to NOP if interrupted during execution) decided that the fix should be provided
only on user request.

The report of the problem/fix was made throughout HP in hardware release
information, and its implications for software developers were apparently
unrealized and therefore not communicated to the rest of the organization.

Although HP was obviously embarrassed, discussions with (mostly service) HP
management did not result in any basic change in the way these problems would
be handled in future. It did result in the one- time delivery of RTE source
and documentation for our use--a penance which came to benefit HP at least as
much as it did us, as you'll see in Case Two.

After finding the cause of the problem, it became evident that the "normal"
problem resolution procedure had no hope of success.

1. The problem was not transportable because:

a. it occurred in a complex environment with unique peripherals
(in this case, 30 humans) which could not be emulated elsewhere,
and

b. it was hardware related, though as a design fault not component
failure.

2. Checking known problem reports was useless, since:

a. the problem was resolved within the hardware organization, and

b. the nature of the problem defied intelligible description by
the victim.

The case also suggests several truths which should have had an impact on the
way such problems were handled in future:

-3- Paper 1008

1. One or more persons in the "lab" must have encountered and thus
known of the problem and its impact on software. Only they would
have recognized the symptoms, and only if communicated interactively
and not up through the support channels.

2. The nature of the problem required an extremely high level of
software expertise for its identification, and although it is sure
to have occurred at other locations, credit for its eradication
must go to a user working independent of HP support.

This initial experience with the field support structure also identified some
philosophical differences between my beliefs, accumulated over a twenty year
period, and those evidenced by HP management; such as:

1. Finished goods are not manufactured in a "lab"--so either the
nomenclature is wrong or some other group is responsible for the
software we use.

2. Good products, including software, require feedback from the
consumer to be integrated into their design and production--preferably
before this feedback is conveyed by a reduction in sales.

Case II

The second problem arose just as the last person in HP who might have remembered
us from the JLY days was transferred or quit the company.

The symptoms were fairly straightforward--the computer hung in a tight loop,
requiring a re-BOOT to restore operation. It happened once, and we blamed
gremlins. It happened again, and we called service.

No amount of board swapping made it go away, and its frequency increased to
eight times a week.

Since we hadn't changed system software in over six months, and .since no one
else had a problem like that, it appeared that once again it was OUR problem.

Weeks of analysis had gotten us to the point of blaming the double, sixteen-line
multiplexor, and we then took an approach normally prohibited by HP policy--we
looked at the source for the driver.

There it was! A sixteen millisecond window after RETURN was entered on a terminal
when an additional input character would cause a tight loop. Obviously, some
of our operators had learned how to shut down the system for early lunch, but
of course they wouldn't tell us.

The most interesting part of this case was the subsequent process of conmru:nicating
the fix to the "lab."

Although the local HP office never had quite understood the problem, it seems
there was another site with similar symptoms; and the "lab" was interested in
the fix.

Paper 1008 -4-

A careful explanation communicated via the local systems manager made no sense
by the time it got to California, and the "lab" decided to call us.

This couldn't be done easily, however, since the systems manager insisted that
all conversations include him.

Thus I found myself standing in a phone booth in Massachusetts for half an hour
while the Rockville manager tried to arrange a conference call with California.

Unfortunately, the initial, official fix didn't cover all aspects of the problem,
and full resolution took two more conference calls and several more weeks.

This case illustrates some additional characteristics of the support environment:

1. Although the user is most interested in fixing a problem, effective
use of the resources he is willing to invest requires some reasonable
documentation and support--in this case source listings.

2. A production user needs first to restore productive operation.
Typically, the standard HP support mechanism is only a last resort
for accomplishing that objective. Thus, most frequently, users
report problems first to help the HP community and second to try
to stay "product line"--that is, to bring their fix into conformance
with HP's.

3. The current store-and-forward path between the two individuals
(one on-site and one in the "lab") who are competent to cornnn.micate
makes both problem and fix reporting almost futile.

4. Finally, it raises the question; "who is the no- direct-contact
policy intended to protect when the "lab" wants to talk to a user?"

Case III

The final case involves a printer that didn't work-·at least not all the time.
It never did work, and HP service finally gave up after trying everything they
knew. They suggested the user work through his HP systems representative.

Unfortunately, this federal government organization didn't have a systems
representative (OEM sale, again)--they just barely had Response Center Support.

So in spite of their expenditures for the original hardware and subsequent
maintenance, there was no guarantee by HP that it would ever work on their
system. And although they could buy guaranteed, two-hour response for hardware
service, there's no such provision for a driver bug.

They could report the problem, which they did. And they could wait for new RTE
releases which, thanks to the intercession of the OEM, were supplied through a
truly concerned systems rep from Louisville on an emergency basis.

And they could run a new SYSGEN, at a cost of about five hours each, and find
that the fix they'd installed was for some other printer problem.

-5- Paper 1008

Through these months and multiple SYSGENS, no one from HP ever wanted to look
at conditions when the printer hung or at copies of the EQT dumps we had taken.

They weren't needed, of course, because they already had a site with THE PROBLEM
and a fix was in process.

Each time we reported failure of a fix we were told "they" were already working
on it.

OUR PROBLEM was ultimately fixed with another driver (installed magically without
a SYSGEN) and the printer became fully operational 18 months after delivery.

l've been told that AMS would have made a difference; but the difference seems
only to have included the ability to get early releases of the driver and allow
installation without a full SYSGEN.

Both of these items should be available to any site with basic hardware and
software maintenance, when a hardware component is not functional.

This case points up another defect of the problem resolution mechanism:

There remains no method to assure that another, similar problem
will not be assumed to be the same as one previously reported,
until after the "fix" is installed and found not to work.

This "take a number and wait" approach, although it may limit the
total number of problem reports active at any one time, prevents
delivery of complete problem information to the fixer, thereby
dragging out the final, total solution.

A SOLUTION

I would first suggest that a description of the positive attributes of its USERS
might precipitate better integration:

1. Users are at least as interested in resolving a problem as the
assigned "lab" people, and may have a better test envirornent--especially
for intermittent problems where getting it to occur while someone
is watching is the trick.

2. For specific problem solving, users may be as competent as anyone
in HP.

3. Once they've solved THEIR problem, most users will continue to
work to eliminate the problem for others, on the assumption that
others are doing the same for them.

4. Users don't pay their programmers and waste computer time to "play"
with standard software. The only reason users might do non-standard,
unsupported things is because they feel they have to in order to
achieve or maintain production.

5. Production users are highly pragmatic--they'll use the least-cost

Paper 1008 -6-

fix available and generally not assess blame until severely
frustrated.

6. Users know they are stuck with HP, and work to feel good about
it. Very few are masochists.

If HP can learn to take full advantage of their users, a number of significant
benefits can result:

1. FREE MAINTENANCE • HP can use "free" user resources to improve
their products and reduce their own maintenance costs.

2. FREE TRAINING • HP can allow the integration of ideas and information
from highly qualified users into their design and programming
groups.

3, FREE MARKETING • through a greater level of technical commitment
to HP, its support, and its product line, by highly qualified
industry professionals.

Unfortunately, the current support relationship is often an obstacle to HP's
enjoying the full benefits of its user base, since it prevents utilization of
some impressive resources.

THE REGISTERED EXPERT

It has been suggested that HP requires some protection from its users, lest it
be inundated with trivia. What is needed, then, is a way to identify users with
whom technical communications can be expected to be mutually beneficial. Since
this depends on the individual person, a user category of "Registered Expert"
is clearly required:

Qualification

Any individual may be recommended as a candidate for Registered Expert
(RE), and upon confirmation of qualifications or expertise by an HP
support person, the RE will be identified as expert in the appropriate,
specific areas (e.g. RTE-IVB).

An RE must maintain his or her status by showing evidence of a minimum
level of participation in the area(s) of expertise each year, upon
annual renewal.

RE status nray be withdrawn upon recommendation of any HP support
person, thereby requiring re-qualification of the individual.

Privileges

The name, identity confirmation code, and areas of expertise will be
maintained by HP on its RCS computer network for all RE's.

Initial contact within HP for RE's shall be at the same level as that

-7- Paper 1008

available to HP systems personnel.

RE's shall be able to file problem reports within their areas of
expertise on a basis equal to that of HP systems personnel.

RE's shall be able to request call-back from increasingly higher levels
of HP technical staff upon concurrence by the prior level; up to and
including the "lab."

All conversations between RE's and HP personnel shall be considered
as discussions between individuals, and neither shall be assumed to
be speaking officially for his or her organization.

RE's shall be provided source files :and available, internal documentation
on items within their areas of expertise, at minimum cost.

RE's shall be provided SW service kits and other materials pertinent
to their areas of expertise which are available to HP systems personnel.

None of the materials provided RE's under this plan shall be guaranteed
or supported by HP. All shall be considered proprietary to HP if so
designated, and use of such materials shall be limited to the cooperative,
problem resolution efforts designated by the RE plan.

Upon recommendation of the appropriate HP systems personnel, an RE
may accept primary or secondary responsibility for problem resolution.
In such a case, local HP hardware and software resources will be made
available to the same degree as if the effort were conducted by HP
personnel.

Although all work by RE's shall be voluntary, and HP shall incur no
obligation to pay for any such services; acknowledgment of the
contribution made by RE' s shall be made by HP in its Software Bulletins,
or other appropriate documents.

Annual, informal RE conferences shall be held with HP "lab" and field
personnel in appropriate expertise groups, for the purpose of trading
information and ideas.

The formality of current HP software support channels has inhibited the construction
of the "old boy's network" which exists in some other computer vendor environments.
Thus, a formal approach to user integration has been proposed.

This plan will not solve all of the problems with the current support environment.
It will, however, establish the necessary level of technical communication and
understanding to allow their solution.

If such a program is considered by HP to be outside of the scope of their interest
in the users, then some alternatives may be possible within INTEREX.

1. INTEREX problem reporting. With two publications each month it would
seem there is room for user-generated problem reports. These reports
would attempt to describe symptoms recognizable to someone else with

Paper 1008 -8-

the problem; provide a "workaround;" and give contact information on
the user submitting the report, so that additional information may be
shared.

2. Provide pressure for problem resolution. INTEREX could maintain a
list of the "TEN MOST WANTED" solutions, and use its power to hasten
their development and distribution.

3. Maintain its own Registered Expert list of volunteers and a "hot line"
to refer experts to one another.

The USERS remain an enormous, underutilized resource available to HP; and the RE
program provides a feasible way to apply the best part of this talent to mutual
advantage.

There must always be a THEM and US in dealings between customer and manufacturer;
but commonality of interest (if not responsibility) provides the basis for a
synergistic bond which can only benefit the entire HP community .

• 9. Paper 1008

I

!

'" I

1009. AN IDEAL SYSTEMS DEVELOPMENT ENVIRONMENT
EXPLOITING HP's FAMILY OF PROCESSORS

Dr. Hasan Sayani
AST EC

9111 Edmonston Rd.
Greenbelt MD 20770

ABSTRACT

The development of powerful computers at reasonable prices has made possible
the re-examination of the way resources are allocated to the Information Systems
Development activity. While organizations employing CAD/CAM technology have
routinely accepted that their engineers will have dedicated workstations at the
$25,000-$30,000 level, the developers of Information Systems · administrative,
real-time, and other - have typically not spent too much money beyond a "dumb"
terminal for their analysts and designers.

This paper suggests a strategy of setting up a configuration of user work-stations
(HP150's) to be used with an HP9000 at the center. Such an arrangement has also
made possible the "front-ending" of complex development tools to make lesser
experienced analysts and designers acceptably productive. The economics of the
arrangement are shown to be quite acceptable, and other advantages for the
analysts, designers, and their managers are discussed. An actual configuration
is described along with scenarios of usage. Critical management issues necessary
for the success of this arrangement are pointed out.

-1- Paper 1009

1. INTRODUCTION

1010. EDS OPERATOR AND CONTROL SOFTWARE

Linda L. Ott
Lawrence Livermore National Laboratory

P.O. Box 808 L-441
Livermore, California 94550

The AVLIS process uses finely tuned frequencies of laser light to photoionize,
or electrically charge, atoms of a particular isotope of uranium. The photoionized
atoms are collected on charged plates. Reactor grade uranium can be produced
by separating uranium-235 atoms from other naturally occurring isotopes. The
purpose of developing the AVLIS process is to produce reactor fuel at a lower
energy consumption and at lower capital and operating costs than other processes
(gaseous diffusion or centrifugation). An experimental facility (fig. 1) was
constructed at LI.NL to study laser isotope separation. The project is divided
into two areas: the laser facility and the separator facility. EDS was written
to support the separator portion of the process.

Two types of data were identified as being necessary to collect: the conventional,
relatively slowly changing scalar values (temperatures, pressures, etc.) and
large vector arrays of fast transient data. Many connnercial systems are available
to monitor the slowly changing data and the decision was made to use the HP
product PMC/1000. To collect the highly spe~ialized types of data, the data
acquisition system (EDS) was developed in-house. EDS is functionally divided
into three parts: data acquisition hardware and software, control and graphics
software, and analysis software. This paper describes the second function:
control and graphics.

The general philosophy behind EDS is to create a diagnostic to study specific
aspects of the process and then, once it is sufficiently characterized, to
replace the diagnostic witu a "black box" to provide the condensed data to the
plant process and control system. For example, during one vapor diagnostic
sweep cycle, 64K words of data are reduced to approximately ten values (eg.
temperatures, velocities, densities). The natural progression for an EDS
diagnostic is to migrate from an interactive experiment to a passive instrument.

2. DESCRIPTION

The Separator Instrument and Control system is based on a network of five HPlOOO's:

Node 1: Post Run Analysis (F series)
Node 2: PMC/1000 (A700)
Node 3: EDS (A700)
Node 4: Feeder system (A700)
Node 5: Modeling (A900)

EDS consists of over 100 programs written primarily in FORTRAN. EDS has evolved
over a number of years from a one user, one diagnostic system to a multiple
user, multiple diagnostic system. EDS currently manages four diagnostics and
eight users.

-1- Paper 1010

' I

Laser system I

I

'

Separator system

Pump laser

Figure 1. Atomic Vapor Laser Isotope Separation Diagram.

The four diagnostics are:

* Vapor characterization by absorption spectroscopy
(64 channels, 1024 words per channel)

* Gas analysis by mass spectrometry
(10 channels, 1024 words per channel)

* Extractor Performance using transient recorders
(20 channels, 1024 words per channel)

* Process Laser Characterization
(32 channels, 1024 words per channel)

A complete diagnostic cycle consists of data acquisition, display, analysis and
transmission of key process parameters to the process monitoring/control system,
PMC/1000, and to the process modelling system.

3 . GENERAL REQUIREMENTS FOR EDS

The requirements for EDS are listed below:
* Acquire large quantities of transient data.
* Create a convenient user interface.

Provide means to configure workstation displays.
Provide simple commands to manipulate diagnostic.

* Provide guarantee that only one user is controlling
a diagnostic at a given time.

* Design interface to incorporate new commands easily.
* Allow several levels of command execution to handle

a range of user sophistication.
no interaction
detailed interaction

* Permit different modes of diagnostic operation.
Automatic Mode: Used when system is stable.

Scan at specific intervals.
Manual ~ode: Used during critical transition

periods. User has complete
control.

* Ensure that the first priority is data acquisition.
Graphics and analysis are to be done as time allows.

* Provide immediate results of scan.
Graphical output should be displayed within
ten seconds of the scan's completion.
Analytical capabilities should be user defined
and modifiable during the run.

* Make data available for display at any workstation.
* Need ability to isolate or coordinate diagnostics.
* Need convenient means of adding new diagnostics.
* System needed immediately. The deadline was moved

from 1987 to April 1985.

4. EDS DESIGN ELEMENTS

After studying the general requirements for EDS, the following principle design
elements emerged:

* Need the ability to share large amounts of data among

Paper 1010

many programs (data acquisition, graphics, analysis codes)
* Need to make codes data table driven.

- Write codes to accept input from data bases.
• Write interpretive codes that receive input from text files.

* Need to make data acquisition, graphics and analysis
independent of each other. The system should be uncoupled.

* Need a fast system.
* Need a standard user interface.
* Need a general graphics package.

5. EMA DEFINITION

Shared extended memory area (EMA) was selected as the fastest means of sharing
large data arrays among programs. Twelve named common blocks were created using
a total of 778 pages (1024 words per page) of memory area. The common blocks
are listed below:

* Vapor diagnostic raw data and parameters
(65 pages)

* Mass spectrometer diagnostic raw data and parameters
(33 pages)

* Extractor diagnostic raw data and parameters
(21 pages)

* Integrated separator diagnostic raw data and parameters
(33 pages)

* Vapor analysis work area
(77 pages)

* Mass spectrometer analysis work area
(9 pages)

* Extractor analysis work area
(41 pages)

* Analysis matrix
(165 pages)

* Graphics data area
(202 pages)

* Graphics user tables
(97 pages)

* Graphics viewport tables
(9 pages)

* Graphics element tables
(26 pages)

Each diagnostic has its own common area which contains the raw data and the
parameters necessary to control the diagnostic. The raw data is duplicated in
both the graphics and the analysis work common areas. The cost of keeping
graphics and analysis independent of data acquisition and of each other is large
memory usage.

6. EDS INTERFACE PROGRAM (SHELL)

The SHELL is the primary interface between the experimenter and the rest of the
EDS software. The main purpose of the SHELL is to provide the user with a
mechanism to programmatically control a diagnostic, analyze the data and
graphically display the raw and reduced data. Basically, the SHELL schedules
programs and passes commands to active programs. It isolates the user from the

Paper 1010

HP operating system. All commands to EDS are executed through the SHEIL. System
log-on files are created for each diagnostic which set the working directory
and run SHELL with the appropriate diagnostic name. The first prompt the user
sees when he logs on to the EDS system is the SHELL prompt for his diagnostic.

Commands are grouped in the SHELL by category. Each diagnostic has its own
category. Once a user has obtained ownership of a category, he has exclusive
access to the commands in the category. This ensures that only one person is
controlling a diagnostic. Commands within a category are two characters followed
by parameters. If parameters are required but not entered, a menu is presented
to prompt the user for input. The parameters are range checked and validated
before passing on to the appropriate program. The SHELL is not connected with
EMA.

All commands are contained in the SHELL database. When new commands are needed,
they are entered into the data base. The SHELL program itself is not modified.
The following elements define a command in the data base:

Category (two characters)
Subcategory (two characters)
Purpose (forty characters of text)
Action selector (two characters)

Use class 1/0
Schedule program without wait, single copy per session
Schedule program with wait, single copy per session
Schedule program without wait, single copy per system
Schedule program with wait, single copy per system

Name of program to schedule or receive class I/O message
Parameter requirements
Number of parameters associated with the command
Parameter type (integer, real, ASCII)
Parameter definition
Parameter key words
Parameter default values
Parameter lower limits
Parameter upper limits
Forms library name
Menu number

The standard format for a message from the SHELL is an integer ASCII string.
The string contains the SHELL data base manager name, the SHELL workstation,
the command, and the parameters.

7. SHELL HELP LEVELS

Several levels of help are available. Commands within a category are grouped
by function into subcategories. Two question marks (??)will list all the
categories and subcategories in the SHELL. If a category is owned, the owner
will also be listed. A question mark followed by a category (eg. ?VC) will list
all the commands available in the category; a question mark followed by a
subcategory (eg. ?VS) will list the commands in the subcategory with a short
description of the command. A question mark followed by the cornnand (eg. ?VCSW)
will list a detailed explanation of the command. Users may select different
levels of command execution from immediate execution when the command is entered

Paper 1010

to stepping the user through each phase of command execution with a prompt.

8. WORKSTATION CONFIGURATION

Through the SHELL, the user configures the workstation's graphics device,
typically either an HP2627 display terminal or a CONRAC monitor driven by a
Raster Technologies Graphic Display Controller. A Versatec printer/plotter may
be selected as the graphics display device although this is usually not done in
the real-time mode. For the Raster Technologies device, there are generally
two graphic planes defined with either four or eight viewports per plane. In
this manner, the user has eight to sixteen graphs available at one time. Plots
may be superimposed; line types, colors, and symbols are selectable. The user
also has the capability of plotting one data set against another. The data may
be reduced in a number of ways before being plotted by defining functions and
coefficients in the data base. The in-house Device Independent Graphics Library
(DIGLIB) has been very valuable in meeting the EDS graphic requirements.

9. TYPICAL DIAGNOSTIC PROCEDURE

Perhaps the best way of illustrating the operation of EDS is to describe a
typical diagnostic run session. The vapor diagnostic will be used for the
example. Be aware, that the other three diagnostics could be running on separate
workstations at the same time. It would be possible for one user to "own" and
control all four diagnostic at once. The basic sequence of events for a diagnostic
is:

* Set up instrument(s)
* Get data
* Plot raw data or slightly transformed data
* Condense the vector data to scalar parameters
* Plot the reduced data
* Send the reduced data to other nodes

A typical procedure is outlined below:
1. Log-on to the computer and EDS.

a. The user types VAPOR.
b. The SHELL prompt (VC>) appears for the

vapor diagnostic.
2. The user turns "ON" his diagnostic

a. CAMAC instruments are initialized.
b. Update EMA with the data base values (Fig. 2)

* Define active channels
* Define labels
* Define engineering conversion algorithms and

coefficients
* Define analysis parameters

c. Set up Class I/O communication link between the
SHELL and the message handling program (VMESS).

3. The user selects the graphs to be displayed.
4. The user selects analysis options:

*Don't do any analysis
* Calculate reduced parameters
* Calculate and plot reduced parameters

5. Initiate data acquisition.
The user may select to do sweeps one at a time,

Paper 1010 -6-

SCHEDULED
BY VCON OR VCSM COMMANDS

CHANNEL NUMBERS
LINE PARAMETERS

ANALYSIS POINTERS

RFTAB

NUMBER
SCANS

ARCHIVED

Figure 2. Update EMA with Data Base Values.

NUMBER CHANNELS
PLOT LABELS

PLOT PARAMETERS

USER

vcsw
1:

vcsw

VSWEEP

Figure 3. Execution of a Sweep Command.

RAW
DATA

c:
~CAMAC I

ODULES

IF ANALYSIS-FLAG= 1 (ON)

LASERS: KDA T AXX
ANALYSIS-FLAG
ANPRT-COMMAND-FILE

ANPRT-COMAO-FI LE

Figure 4. EDS Vapor Sweep Flow.

RAW DATA
(KDATAXX)

as rapidly as possible, or at set intervals in
a batch mode.

6. The user may adjust a number of parameters during
the experiment to tailor the diagnostic to
changing needs.

7. End data acquisition.
The data file is closed, Class I/O terminated.

10. GENERAL SWEEP SEQUENCE

Continuing with the vapor diagnostic example, the sweep command processing is
initiated when the user enters a sweep command to the SHELL (Fig. 3). If the
user wants to take a number of sweeps as rapidly as possible, SW followed by
the number of sweeps to do is entered.

The SW command causes the program VSWEEP to be executed. VSWEEP passes the
sweep command and parameters to the data acquisition program, VCDL, via an EMA
command stack. VCDL checks EMA for commands to process.

VCDL accepts the sweep command (Fig. 4) and sends the appropriate commands to
the CAMAC instruments. When the data is ready to offload from the data logger,
VCDL uses the HP routine VMAIO to transfer 32K words of data to EMA. Two VMAIO
calls are used to transfer all 64K words of data. If the data is to be archived,
it is written to disk and the data base is updated with the sweep information
(time of sweep, file name, number of channels, and other parameters).

The graphics sequence is started by scheduling the graphics copy program, VCOPY,
with an EXEC 10 call (immediate execution, without wait). In a similar manner,
the analysis sequence is started by scheduling the program, VCSCD, with an EXEC
10 call if analysis has been requested.

The "without wait" option permits VCDL to continue without waiting for the son
program (VCOPY or VCSCD) to complete. This was one of the requirements, namely,
that graphics or analysis would not interfere with data acquisition. By requesting
"immediate" execution, the graphics and analysis are skipped if either is still
actively processing previous sweep data.

11. GENERAL GRAPHICS SEQUENCE

The graphics sequence is started when VCDL schedules the copy program, VCOPY
(Fig. 5). VCOPY checks a flag to make certain that the data from the previous
copy has been plotted. If it has not been plotted, VCOPY ends. If the flag is
clear, the data is copied into the graphics area for the vapor diagnostic. 1be
scan number is checked before and after the copy to ensure that the data is
completely from one sweep. If the data is complete, the plot executive program,
PLTEX is scheduled. PLTEX scans the graphics tables to determine which users
have requested data from the vapor diagnostic. PLTEX schedules the plotting
program, QUICK_LOOK_DRAW, for each user requesting vapor plots. When the data
has been plotted, the flag is cleared so that VCOPY is allowed to overwrite the
data the next time it is called.

Paper 1010 -10-

I•
I

12. GENERAL ANALYSIS SEQUENCE

The analysis sequence is started when VCDL schedules the program, VCSCD (Fig.
6). VCSCD checks a flag to make certain that the data from the previous copy
can be overwritten. If it can not be overwritten, VCSCD ends. If the flag is
clear, the data is copied by ANCPY into the vapor analysis EMA work area. The
scan number is checked before and after the copy to ensure that the data is
completely from one sweep. If the data is complete, the program RTGEN is
scheduled. RTGEN does the calculations requested and puts the reduced values
in the analysis spreadsheet matrix. The data base contains directives of what
to compute, how to compute it, and where to store the results in the spreadsheet
matrix. These directives are stored in EMA for RTGEN to use. RTGEN clears the
overwrite flag to permit new data to be copied. If plots have been requested
of the reduced values, ANPRT is scheduled. ANPRT is capable of sending data to
other nodes in the system. ANPRT is an interpretive code which receives its
input from a file. The user can change the analysis parameters during the
experiment by altering the input file to ANPRT. VCSCD schedules ANCPY, RTGEN
and ANPRT with wait. In this way, a new analysis cycle cannot be started until
the previous one is completed.

13. BERKELEY SOFTWARE SYSTEMS DATABASE MANAGEMENT SOFTWARE

Since EDS is designed to be data base driven, it was essential to have a quick
and reliable data base management system. The Berkeley Software Systems (BSS)
hash database management software written by a consultant, Richard Lawhorn, is
used for all EDS databases. BSS has been used in a number of projects at llNL.
It uses Class I/O to communicate between the application program and the data
base manager. A hashing algorithm is used to extract data from a type 1 disk
file by the data base manager program. The disk file is built by a structure
initialize program (BSHSI) from a text file, the blocklist. A value initialize
program (BSHVI) is used to initialize data cells to defined values. A data base
of a thousand blocks takes about two minutes to build and initialize.

14. SYSTEM PERFORMANCE

The use of shareable EMA was the first step taken to increase overall system
speed. All frequently used parameters are kept in EMA. If data is to be used
in detailed calculations, it is often beneficial to move it from EMA to local
buffers. The double word addressing used for EMA variables is slower than the
addressing scheme used for local variables.

Critical and frequently used codes were locked into memory and ended with the
"saving resources" option. Priorities were adjusted so that the data acquisition
codes ran at the highest priority. Priorities of other EDS codes were set
according to their importance.

The buffer limits on I/O devices were increased to speed data throughput. Disk
accesses were kept to a minimum. Class I/O was used extensively for program-to-program
communication. Programs posting a Class I/O call can suspend themselves without
CPU overhead and are awakened only when there is a message present. FMP file
reads and writes were used instead of FORTRAN I/O since the FMP calls are much
faster.

-11- Paper 1010

QL
CONFIGURATION

OL
PLOTS

VCOPV

DIAGNOSTIC
ID

PL TEX

OL
PLOTS

Figure 5. EDS Graphics Flow.

PLOT DATA

OL
PLOTS

SCHEDULED
BY VCDL

VCSCD

ANPRT -COMAO-FILE
VC-ANPRT-FLAG

RAW DATA

ANPRT
COMMAND
Fl LE NAME

RTGEN

Figure 6. EDS Vapor Analysis Flow.

ANPRT

v

ANALYSIS
PLOTS

15. HP EXPERIENCE, GOOD AND BAD

Overall, the use of HP hardware and software has been a good solution. The
system has met the major requirements. It was discovered early in the project
that the phone-in-consulting service (PICS) was not adequate in resolving many
of the problems in a timely manner. A contract was made with HP to provide an
on-site consultant one day a week to resolve problems, answer question, perform
system generations and write performance tools. This proved to be a very useful
service in terms of resolving specific problems. Turning over system generations
to HP was less successful in that problems would arise several days after the
new system was installed. It was usually necessary to call HP back in to fix
the problems. After several episodes of this, the system was frozen and no
further updates were done.

Another troublesome area centered around the use of EMA, critical to EDS. The
fact that HP provided a mechanism such as shared EMA to permit many programs to
have access to large data arrays was very valuable. The restriction that there
could only be one EMA declared per program was a problem. Separate comnon blocks
were desired since each program needed only a subset of the total 778 pages of
EMA. Two diagnostics, vapor and mass spectrometer, use VMAIO calls to transfer
32K words of data from the I/O device to their respective EMA raw data buffers.
The success of a 32K word transfer depended upon the name of the common block
into which the data was being written. To add to the confusion, the errors for
unsuccessful transfers were undefined.

After many months of investigation by the on-site consultant, it was discovered
that LINK was the program that arranged the common blocks in memory and that
the user had no control over the arrangement. LINK uses a hashing algorithm on
the block names to define memory. The other crucial information obtained was
that for a VMAIO call to successfully transfer 32K words of data, the EMA array
must begin on a page boundary. In order to work under these restrictions, each
common block is padded with the appropriate number of spares to make the block
an even multiple of a page. Careful system management is necessary, since the
redefinition of any common block requires the recompiling and linking of all
codes using shared EMA.

Since the EDS design specifies large data array transfers, a fast copy routine
was needed. The VIS EMA move routines seemed to be likely candidates, but
unfortunately were not suitable. The VIS routines only work on floating point
values, whereas the EDS values are integer. It would be very useful if HP would
provide integer VIS EMA transfer routines.

EDS depends upon having only one copy of certain programs active at one time in
the systems. Past operating systems (RTE-6/VM and RTE-4B) have included a "don't
copy" bit in the program's ID segment to manage cloning. RTE-A has dropped this
bit making it much more difficult to control cloning. It was discovered that
by linking a code as a system utility and by RP'ing the code with the "don't
clone" option, cloning could be inhibited.

Two performance tools provided by the HP consultant were very helpful in finding
system bottlenecks. The program CPU displays a CPU utilization profile, and
ACT is a detailed system activity monitor. The consultant also provided utilities
to programmatically obtain the state of any program in the system.

Paper 1010

16. CONCLUSION

EDS has been a successful integration of work done by many people over several
years. It is unique at LLNL in the amount of data acquired, the graphics
displayed and the analysis done in real-time. The EDS design has withstood the
test of time, While continually incorporating new commands, diagnostics, and
capabilities, it has been run at regular intervals, once to three times a month.
At the present time, EDS has been used in twenty experiments with a total running
time in excess of one thousand hours.

17. ACKNOWLEDGEMENTS

! wish to express my appreciation to my co-workers: Steve Telford, Dan Schneberk,
Mathilde Killian, Tom Treadway, and George Miller. I thank Jay Ackerman, Joe
Brandt, Jim Held and Lloyd Hackel for their support and for the opportunity to
participate in the INTEREX 1985 North American conference.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Lab under contract No. W-7405-Eng-48.

-15- Paper 1010

Abstract

1011.

* Real Time Analysis under EDS

Dan Schneberk
AVLIS Program, Y-Division

Lawrence Livermore National Laboratory
U. S. A.

This paper describes the analysis component of the Enrichment
Diagnostic System (EDS) developed for the Atomic Vapor Laser
Isotope Separation Program (AVLIS) at Lawrence Livermore
National Laboratory (LLNL) . Four different types of analysis are
performed on data acquired through EDS, i) Absorption
spectroscopy on laser-generated spectral lines, ii) mass
spectrometer analysis, iii) general purpose waveform analysis,
iv) separation performance calculations. The information produced
from this data includes: measures of particle density and
velocity, partial pressures of residual gases, and overall
measures of isotope enrichment. The analysis component supports a
variety of real-time modeling tasks, a means for broadcasting
data to other nodes, and a great degree of flexibility for
tailoring computations to the exact needs of the process.

A particular data base structure and program flow is common to
all types of analysis. Key elements of the analysis component
are: i) a fast access data base which can configure all types of
analysis, ii) a selected set of analysis routines, iii) a general
purpose data manipulation and graphics package for the results of
real time analysis. Each of these components will be described
below with an emphasis upon how each contributes to overall
system capability.

*This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National _Laboratory
under contract No. W-7405-Eng-48.

l

The analysis software completes the EDS operations cycle which
begins with data acquisition and concludes with broadcasting data
to PMC-1000 and the Process Modeling node. Two goals define the
majority of the work for the analysis component; 1) compute and
display meaningful measures of process performance, 2) make all
EDS analyzed data available for further analysis or control. To
accomplish these objectives analysis software divides into two
categories; i) data reduction programs which condense acquired
vectors into sets of meaningful scalars, and ii) the routines
which make up a spreadsheet-type code (ANPRT) which manipulates,
plots, and/or sends data to other nodes in the network.

Data reduction programs are specific to the type of data being
reduced. Each program has its own applications work area, and its
necessarily different functionality. Four different programs are
included in EDS at this time: i) a code for performing absorption
spectroscopy on spectral lines from diagnostic lasers, ii) codes
which perform gas composition calculations on spectra from
residual gas analyzers, iii) general purpose waveform analysis on
vectors from the extractor diagnostic, iv) calculations of U235
collected from a combination of different types of data. The
results of the different programs are: particle densities,
velocities, mole fractions, fraction ionized, evaporation rate,
partial pressures of residual gases, stripping efficiency, swu
rate.

The spreadsheet-type code (ANPRT), manages the reduced data
from every diagnostic. Each applications program has its own
columns for writing into the matrix, and its own time vector
recording when data was taken and analyzed. Any further plotting
or manipulation of the scalar data is performed by ANPRT which
can work on separate columns or the matrix as a whole. ANPRT
includes: a command interpreter which supports batch and
interactive processing, macros and subroutines; a set of
intrinsic functions tailored to the needs of the process, a full
X-Y plot capability using LLNL Device Independent Graphics
Library (DIGLIB), numerous data base functions, and a single
command for broadcasting data to other nodes.

To perform this work the elements of the analysis component
access the shared data structures in the EDS system and follow
the general guidelines for program flow. Like other elements of
EDS all analysis software depends upon diagnostic data bases for
direction and data identification. The relationship between
shared data structures and data base provides the groundwork for
many features of the analysis system.

2

i:
I

I•
1 ·

EDS data bases do not contain the vector data. Every effort is
made to avoid manipulating the data until absolutely necessary.
Data Baces do contain the information required for identifying,
analyzing and the tracking the data flow through the system. Data
bases record a history of data acquisition events. They connect
program sequences, vectors and scalars to particular instances in
the process.

The data base for thI diagnostic lasers is the best example.
One particular relation in this data base is exclusively devoted
to laser data. Each instance of this relation identifies a
different wavelength(frequency), and position for a laser shot
(wavelength-position). Of the total items of this type in the
data base, only a few are active at any one time, but many
different wavelength-positions may be used in the course of
process operation. Each item is comprised of four types of
information; i) basic identifiers, all the labeling information
and parameters for analyzing the data, ii) channel information,
the connection between the hardware channels and the software
locations of the vectors, iii) time information, the times at
which that wavelength-position was used and possibly re-used, iv)
analysis pointers, the pointers to the functions to be applied to
those vectors and the locations for putting the scalars into the
reduced parameters matrix.

Every program sequence depends upon information from the data
base at each step, through local tables. Figure 1 presents a
pictorial of the five-step EDS sequence; i) acquire vector data,
ii) copy to applications workspace, iii) reduce vectors to sets
of scalars and put into reduced parameters matrix, iv) manipulate
and plot from ANPRT, v) broadcast to other nodes. Prior to
sequence execution local tables are filled with the most recent
settings for key parameters and pointers. To maintain system
speed, no program makes data base accesses during a program
sequence. However, all key parameters are in the data base with
time stamps attached.

[l] This paper subscribes to the definitions and conceptual
framework found in E.F. codd's, ' A Relational Model of
Data for Large Shared Data Banks', ACM Communications Vol. 13,
(6), June 1970.

3

Figure 2 contains the pictorial for the laser diagnostics
sequence. Labels and parameters for the active wavelength­
position items go directly into the applications work area,
identifying the vectors of data to the applications program. This
includes all the information required to perform the analysis:
crossection, wavelength, laser path length, and information for
calculating scan lengths. The analysis pointers write a set of
flags for directing what function(s) to apply to the vectors
acquired, and direct the writing of names and labels to the
matrix managed by ANPRT. Re-configuring lasers will result in new
values written to local tables, with the episode of use for those
parameters and labels recorded in the data base.

EDS Data Reduction Software

While the quantity of vector data handled in EDS is
substantial the amount of data reduction code is not large.
Fundamentally there are two types of vectors; line spectra, and
waveforms. Similar data-analytic problems are common across
different diagnostics. There is a base set of component tools
which covers the variety of different analyses. With different
instrumentation, it is entirely possible that the base set could
be made much smaller.

Mass Spectrometer Analysis

Partial Pressures of the different gases in the tank are
obtained from this diagnostic. A UTI Residual Gas Analyzer is
combined with Lecroy front-end hardware to probe the presence of
gases in the low mass ranges. Each sweep of the mass range (l-50
AMU) generates a set of line spectra, the peaks corresponding to
the different mass units found in the tank. Figure 3 contains a
representative trace of the spectra obtained.

Analysis involves three steps, i) resolving the baseline for
the spectra, ii) finding the peak heights of the different mass
units, iii) un-cracking the peak height intensities into partial
pressures of gases.

4

I . I,

I.
I

Resolving the spectra to a baseline of zero guarantees that
peak heights are handled correctly, and allows for easy handling
of signal to noise problems. In this task, the first job is to
find the baseline. There are two alternatives which combine both
speed and accuracy; i) find an unoccupied mass range and compute
a mean value, ii) find that value in the amplitude of the trace
which is most common by discretizing the range of the trace. The
second is more general purpose, and yielded good results for our
application. Once the baseline is determined, normalize to zero
by subtracting the baseline value from the trace.

There are a variety of techniques for peak detection. Our
choice of techniques has been driven by the kinds of problems
with input ramp and traces. The sweep over the mass range of 1-50
AMU was not always linear. Traces were sometimes noisy, and mass
peaks overlapped enough to make peak heights difficult to
determine. Our approach made the most of what we knew. Of the
entire range only a few mass numbers were important. Peak
detection was restricted to the small ranges of interest. Only
peaks above the current signal-to-noise threshold were
considered. Overlapping peaks were de-convolved by examining the
non-adjacent side of the peak. The limits for the small ranges
and the signal-to-noise are in the data base, and could be
changed during the run if necessary.

Uncracking the peaks into partial pressures of the gases was
performed according to research done by project scientists.

Absorption spectroscopy from Diagnostic Lasers

The data reduction code for this diagnostic computes measures
of source performance from absorption broadened spectral lines
and related data. A number of different laser wavelengths are
mixed into a single shot through the vapor. One absorption
broadened spectral trace and a variety of different types of data
are obtained for each wavelength. Two different types of
variables are computed for a diagnostic laser shot; (i) for each
wavelength, state-specific particle densities, widths, (Full
width at Half Maximum-FWHM), centers, and amplitudes, (ii) from a
combination of these numbers, partition functions, and results
derived from in-house models: vaporization rates, mole fractions,
fraction ions, and measures of source efficiency.

5

An absorption broadened spectral line is the result of a
particular interaction between laser light and the vapor
propagating from the source. Under the conditions obtained in our
process, the incidence of a spectral line at that frequency
indicates an absorbing quantum transition for certain particles
in the vapor.
The mathematical description of absorption broadened spectral

lin2s is a direct application of the differential absorption
law •

(1) I(v)/I0 (Y)) =exp (- N61 * L * B(~(v))

or more simply,

(2) -ln(I(v)/I0 (~)) = Nsl * L * B(u(v))

where:

I(v) - the laser light exposed to the absorbing substance at
frequency ..J •

I 0 (v) - the laser light not exposed to the vapor at the
same frequency v.

N - the number particles of the vapor in the lower
sl energy state subject to the transition corresponding

to the laser wavelength.
sl - the energy level of the lower state, in wave numbers.
6(~) - the absorption crossection at frequency v.
B() - denotes a functional description of a broadening

mechanism for that spectral line.

The conditions in our process ensure the predominance of
velocity, or Doppler, broadening. Specific measures are taken to
keep other broadening effects at a minimum. The shape of the
spectral line reflects the intensity of the flow vectors from the
source. The directional velocity of the flow, relative to the
laser light, determines the shift in off-center resonance. The
velocity distribution of the vapor is written into the broadened
line shape. In our case the distribution is roughly Maxwellian,
permitting the B() in equations (2) & (3) to be replaced by a
gaussian as follows.

[2] Mitchell & Zemansky, 'Resonance Radiation & Excited Atoms'
Cambridge University Press, Cambridge, England, 1934, contains
a full analysis of absorption broadened spectral lines.

6

!'

where:

= Nsl * L * (G'(T',)\)* f(T',.>-.)/ ~(T,A))
*exp (-4*ln(2) * ((\/- vc)/ 8(~,.>-.)))

<'.f(T,A) - is the crossection at center frequency, wavelength
A, and temperature T.

~(T,~) - is the FWHM (full width at half maximum) at
temperature T, wavelength A.

v0 - the relative center frequency for the line.

T' - the norming temperature for the crossections3 .

The resultant equation is an un-normed gaussian with a number
of linear multipliers. Of the many parameters on the right all
but N 1 , v, and S'(T,)\) are known. It is the object of the data
reduction ~rogram to estimate these parameters.

Two different types of line spectra are involved in the
analysis of diagnostic laser data; i) a frequency calibration
trace from the Fabry-Perot cavity, ii) the absorption broadened
spectral line. Both the absorption trace and the Fabry-Perot
signal are swept with the same ramp function. While the broadened
spectral line contains the particle density and velocity
information, it is the Fabry-Perot data which provides the
frequency scale for the absorption trace.

Each peak in the Fabry-Perot trace demarcates the position
around the center frequency of the absorption line for that point
in the sweep, see Figure 3(b). The separation between the peaks
measures the distance traveled in frequency for the absorption
scan, (ie, 300 mhz, 2ghz etc ..). Analysis reduces to; i) resolve
a baseline, ii) find the peaks, iii) apply the calibration factor
to the distance between the peaks and make the frequency scale.

The best procedure involves Fast Fourier Transforms, but
reliable results can be achieved with other techniques. In our
work the mass spectrometer routines described above work well for
both baseline finding and peak detection. In this case the ranges
for finding peaks are determined by the intended scan length
dialed into the instrumentation for sweeping the laser. The
expected scan length and the calibration factor, are both in the
data bace and in local tables.

[3] our project scientists chose 2015K as the temperature for
reporting crossections.

7

The frequency scale determined, analyzing the absorption line
involves three steps, i) resolve a baseline, ii) transform the
data and estimate center, amplitude, and width, iii) compute
particle density and mach numbers. Again, techniques described
above can work here for baseline fitting. The third task is
fundamentally a matter of arithmetic. The majority of the work is
involved in computing center, amplitude and width.

While there are many alternatives for estimating parameters in
gaussian-shaped data, our work has focused on two techniques; i)
order statistic estimators, ii) least squares. The first involves
estimating quartiles by numerically integrating data which has
the form indicated in (3). The second involves an additional log
transform of (3), then a polynomial fit of the result over the
peak absorption region. The first technique has the advantage of
speed. However, the second is more resilent to common data­
analytic problems.

At this time our procedure involves a combination of the two
approaches. While obtaining the quartiles involves more work, the
total area under the curve described by (3) can be computed in
the course of least squares procedures. The estimate of particle
density computed with the area total is regularly compared with
the estimate from least squares and has proven a better goodness­
of-f it statistic than the traditional choices. Estimates of
density and mach number take just less than a second per line on
an A-700.

More meaningful measures of source performance; neutral
densities, evaporation rate, mole fractions etc, are computed
from sets of single-state densities. Provided two different
transitions for the same4substance can be mixed into the same
shot, standard equations can be applied to compute neutral
densities for any substance in the E-Beam source. Combined with a
model of vapor propagation, neutral densities can generate all
the measures necessary for mass balance and real time film flow
modeling.

The extra computations for these results is not large. Neutral
densities are obtained from partition functions (a table of
statistical uncertainties, and energy levels for the different
energy states for a substance). Also, it has been our experience
that mod~ling results can be approximated by polynomials,
minimizing the need for lengthy numerical routines.

(4] We make the assumption of internal thermal equilibrium and
employ the equations for relating energy-state populations
which conform to a Boltzmann distribution.

8

In our system partition function routines exist in two places,
in the data reduction programs, and in ANPRT. The applications
program can perform the operations faster but without the same
flexibility. ANPRT, running from a command file, has access to a
variety of modeling results, and can estimate certain parts of
equations if trouble develops with a certain laser. This
capability has proven invaluable for a variety of untoward
conditions, and has made real-time modeling an oft-used feature.

Extractor Waveform Analysis & Separator Performance Calculations

Calculations for both of these diagnostics is performed within a
small interpreter with intrinsic functions for combining columns
of the applications work area. Key scalars are written to the
ANPRT matrix, but the amount of data reduction for this
diagnostic is small, and still being developed.

At this point in time waveform analysis is oriented towards
computing received current loads on certain parts of the
extractor hardware. This can involve some algebra between
waveforms taken at different times, but will always involve some
quadrature integration of the ion current waveform itself.

Measures of U235 separation performance integrate data from a
variety of different diagnostics. Recieved current loads are
taken from the extractor diagnostic. Vaporization rates and
source efficiencies are provided by the diagnostic lasers. Once
this data is moved to the correct applications work area, the
calculations are straightforward combinations of columns of data.

ANPRT Capability

The spreadsheet-type interpreter 'ANPRT' has five components,
i) command interpreter with macros & argument passing, ii) a
processor for equations and if-conditionals equipped with a set
of intrinsic functions tailored to real-time modeling needs, iii)
full X-Y plot capability to any viewport or device in the system,
(all graphics plotting is performed with DIGLIB), iv) a variety
of data base functions for manipulating the matrix.

The reduced parameters matrix contains the analyzed data from
the data reduction programs and the names and labels from the
data base. The central data structure is a real valued matrix,
each row a different instance of a data reduction code, the
columns a different computed quantity. In addition to the

9

separate time vectors written by each data reduction code
(decimal time relative to start of the run), there is a six­
integer time array, one for each case, providing an unambigous
time reference for the data. There is a 4-character ascii
identifier for each case for further ease in addressing case
ranges. Each real-valued column has an associated 16-character
name and 40 character label. Figure 4 is a pictorial of this
structure. At present the real valued matrix is 500 by 150. Once
500 events have occured the data reduction programs 'wrap-around'
the matrix starting at 1.

The reduced parameters matrix resides in shared EMA and can be
accessed by many versions of ANPRT. Each applications program
keeps track of the number of cases it has written into the matrix
in separate EMA variables locked into memory. Each version of
ANPRT has local pointers for that session which can access the
EMA pointers for each diagnostic on command. In this way there
can be many versions of ANPRT which can operate on the same
matrix independently.

The command interpreter combines two types of interpretation in
the same general structure. Commands begin with a major keyword
which identifies the type of interpretation applied to the rest
of the command. The major keywords 'CALC' or 'IF' can be followed
by equations or if-conditional statements conforming to the rules
in BASIC. All other key words are followed by sets of keywords
and parameters. Continuation lines and comments are supported.
Macros and subroutines are accessed with the 'TR' command for
compatiblity with HP-1000 'CI' and 'FMGR' usage. Menus arise as
prompts when not enough parameters are supplied for the keyword
oriented syntax. In this way the range of different users are
accomodated. Experienced users can suppress menus once commands
are known, while novices have the benefit of on-line tutotrial
help in the menus.

The processor for equations and if-conditionals features a
number of built-in functions. This type of interpretation parses
expressions into reverse-polish strings of function addresses and
data addresses. The two subroutines which perform the work are
driven by the tables of variable, scalar, and function names. As
mentioned above the syntax for operators and arguments conforms
to BASIC-1000 in all major respects. Arguments are columns in the
matrix; or user-defined scalars.

10

Any column in the matrix can be addressed by 16-character name
or by a 'VNNN' identifier where 'NNN' is the column number in the
matrix, (name or 'SNN' for scalars). The intrinsic functions are
selected specifically for the needs og the experiment. In
addition to the standard set of functions , a complete set of
routines is supplied to compute energy state populations for any
component in the vapor. Intrinsic functions exist for computing
internal temperature, total population, or any specific state
population. Figure 5 contains a list of some of the intrinsic
functions.

All graphics are implemented with DIGLIB and drivers exist for
HP 26XX terminals and Raster technologies graphics devices. While
the plotting is performed with one command, 'PLOT', the variety
of graphics settings are manipulated with the 'SET' major
keyword. To plot any variable(s) the 'PLOT' major keyword is
issued followed by one or two variable names or 'VNNN'
identifiers, i.e. 'PLOT V5 URATE'. If only one variable is
supplied the X-axis is the index of the variable. Every plot is
performed with the extant graphics settings for: axis scaling,
line type, point style, device, grid display type, color,
superpose options, titles, and hardcopy options. Until a new
setting is supplied the current value remains in force. Figure 6
has a list of the graphics commands.

Data base operations are performed primarily through other
keywords, with case pointers and variable pointers as parameters
to those keywords. With these commands it is possible to delete
columns, rows, restrict the case range for 'CALC' operation,
enter data directly into the matrix, etc, .. With these commands
it is possible to focus on any column or row in the matrix.

Curve fitting is also included in the package; polynomial
fitting and general purpose linear regression. These commands can
prove useful in real-time or in post-run analysis.

From the command interpreter, one row of data can be sent
across DS-1000 to PMC with the 'SEND' command, i.e., (SEND VARS
V3, URATE, V4-V7 will send variables 3,4 to 7 and the variable
•urate' for the specified case). Once this command is issued a
master program is initiated which ships real values to the slave
on another machine. In the event of any problem both the master
and slave terminate without affecting ANPRT operation. The user­
specified names of the columns are the parameters for the 'SEND'
command. Figure 7 contains an example of commands used during
process operation.

[5] By 'standard functions' I mean the set found in the variety
of different languages, SIN,COS,ABS,ACOS,ASIN etc .. ,.

11

Conclusion

The EDS Analysis system contains two types of software; data
reduction programs and a spreadsheet-type code. They combine to
form a system which generates reliable estimates of source
performance, extractor performance, gas composition and overall
process performance. Further, EDS analysis can support a variety
of real time modeling tasks, and bridge the gap between EDS and
PMC-1000. EDS is a general solution to the problems which will
arise for real time systems that combine scalar value periodic
data acquisition with high-speed vector oriented data acquisition
and analysis.

EDS analysis is both flexible and powerful. At any one time the
analysis of the vector data can be directed or re-directed from
the data base. Different types of data reduction can be performed
by changing settings in the data base. Once within ANPRT, new
variables or more sophisticated measures of system operation can
be computed interactively or through a command file. Indeed all
the kinds of modeling performed in ANPRT can be performed on an
automatic basis. More than one ANPRT session can operate at one
time supporting a variety of analysis and monitoring needs during
the experiment. The advantage of full data base capability and
filtering controls the data entry into PMC on the basis of values
computed from other moving quantitites, assuring the integrity
data input to control algorithms. The variety of X-Y graphics to
any viewport presents a picture of system response over the
history of the process.

This effort takes exception to other approaches to real time
systems that uniformly sacrifice flexibility for supposed 'speed
of operation arguments•. EDS shows that a great deal of
flexibility and power can be obtained in a real time system
oriented to vector data, within the time intervals assumed by
many commercial process monitoring and control systems.

In spite of the fact that EDS can work without operator
intervention in fully automatic mode, it is not a desirable plant
system. There are disadvantages to too much flexibility.
Eventually EDS will be replaced by a number of devices attached
to a much larger control system. EDS is an intermediary system
which can take a process from experimentation to plant operation.
The success of the AVLIS program underscores this point.

12

(1) Acquire data

(2) Copy to applications
work area

(3) Reduce vector data
to measures of
process performance

(4) Plot/Display reduced
data, calculate other
measures of process
ptirformance

(5) Broadcast data
to other nodes

Front-.nd
~ instrumentation ,--___.

OMA-write
workspace

~--
Applications

work area

~--
Reduced parameters

matrix

Other
HP-1000

computers

Figure 1. Generalized EDS sequence

Diagnostic
data base

Display
terminals

(1) Acquire raw
diagnostic laser

data

(2) Copy data to
lasers workspace

(3) With data base
parameters, reduce
data to densities &
widths

(4) Calculate accumulated
totals

(5) Broadcast uranium
data to mass balance
code and PMC-1000

Lecroy 32·
channel

data logger

~-
OMA-write
workspace

~--
Applications work

area for lasers

~--
Reduced parameters

matrix

HP 1000
A-900

&
A-700

Figure 2. EDS sequence -lasers

Lasers
data base

Raster tech.
&

HP 26XX

Residual gas analyzer data

0.70 r I I I I I · I I I I]
0.60 -

.g 0.50 .
a o.40 -:a. 0.30 .
.ci 0.20 ~-

0.10

0 0 5 10 15 20 25 30 35 40 45 50

Mass number

Absorption data

0
2.0

' 1.T \ I l -g
1.2 ·g_ ...

0
0.8 .s

<(

0.40
~

100 200 300 400 500 600

Index of Y

Cll

200

160

] 120 ... :a. 80
E

<(40

0

Fabry-Perot

'----''----'~---'~__.~__._-

0 100 200 300 400 500 600

Index of Y

Absorption data

1.6

2
1.2 ••

--::::. 0.8
c
'"i

0.4

00 1 2 3 4 5 6 7 8

Frequency in GHz

Figure 3. EDS vector data

)(
·;:: ... co
E

Function

LOG
EXP
SIN
cos
TAN
SQRT
SUM

ABS
ASIN
ACOS
ATAN
INDX
GRAB

ERF
SMTH

TRAP

RIEM

TE NEUT

NTOT

EX POP

ANPRT INTRINSIC FUNCTIONS

Description

Computes Natural Log
Exponential Function
Sine Function (in radians)
Cosine Function
Tangent Function
Square Root
Calculates sum of VlO over

specified case range
Absolute value
Arc-Sine function
Arc-Cosine function
Arc-tangent function
Puts case index into VS
Grabs variable V3 from

case 1 to current range
Error Function
Performs 11-point quadratic

smoothing
Trapezoid rule integration

on VlO using V3
Riemann sum on Vll using

V3

Computes uranium internal
temperature from two state
specific densities

Computes Neutral Uranium
density from one state
specific density and a
temperature

Computes an expected
population from neutral
density,temperature and
an energy level

* Example

V3 = LOG(V4 + 9)
NEWl = EXP(V23)
VlO = SIN(V6)
Vll = COS(V21 * 0.44)
Vl6 = TAN(theta)
SCALl = SQRT(4.56)

SCAL2 = SUM(VlO)
V3 = ABS(Vl4)
VlO = ASIN(Vl3)
Vl3 = ACOS(Vl04)
Vl2 = ATAN(Vl4)
VS = INDX

Vl2 = GRAB (1, V3)
Vl5 = ERF (V6)

Vl6 = SMTH(Vl5)

Vl5 = TRAP(V3,Vl0}

Vl9 = RIEM(V3,Vll)

VlO = TENEUT(V3,V4,0,620)

Vl2 = NTOT(V3,0,Vl0)

Vl5 = EXPOP(Vl2,Vl0,3SOl)

* - in ANPRT all of these commands would br preceded by the
major keyword 'CALC'.

FIGURE 5

13

ANPRT GRAPHICS SETTINGS

* All graphics setting are accessed with the 'SET' major key­
word, combined with the appropriate minor keyword and option

Keyword Description Example

VIEW Select Viewport,

POINT

LINE

AXIS

LOG

PEN

GRID

SU

DUMP

there are 8 available SET VI A
all settings apply to the selected viewport)

Point Style Options,
there are 12 styles

Line Style Options
there are 10 types

SET POINT A

SET LI B

Axis settings, can set
for autoscaling or for
explicit axis scale SET AX Y O 1 0.1 0.02

Log axis option

Pen color options

Turn on grid

Superimpose Option

Automatic hardcopy

FIGURE 6

14

(set y-axis explicitly)
SET AX A Y

(set y-axis to autoscale)

SET LO A

SET PEN A

SET GRID ON

SET SU ON

SET DUMP ON

Command File Example

** Command files are sent in the run string with the the call to
execute ANPRT. The lines below are a sample for a command file
used during a run, for the laser data. The '*' denotes a comment
line.

* * Tell ANPRT the diagnostic, REFRESH local tables, and set to
* operate on last case
IAM VAPOR
REFRESH
SET CASES $,$
* * Compute Uranium internal temperature from ground and 620
* state-specfic densities
CALC UTEMP = TENEUT(V4,V6,0,620)
* * Calculate Neutral U-density,from ground and temperature
* and calculate URATE with UFACT function from modeling work
CALC UTOT = NTOT(V4,0,UTEMP)
CALC URATE = UTOT * UFACT
* * Accumulate URATE from beginning of data
SET CASES 1,$
CALC U_ACCUM = RIEM(TIME,URATE)
* * Send data to other nodes
SEND VARS UTEMP,UTOT,URATE,UACCUM
* * Plot last 40 cases on viewport A
* Auto scale data for X and Y Axis
* Filter data with IF statement
* Set Point style,and Line style and plot
SET CASES -40,$
SET VIEW A
SET AXIS AUTO BOTH
IF (URATE GT 0) AND (URATE LT 110)
SET POINT I
SET LINE A
PLOT TIME URATE
END IF
** ** all done
EX

FIGURE 7

15

1012. FILE BACKUP AND FILE ARCHIVING ON THE HPlOOO

George E. Santee, Jr.
Glen A. Mortensen

Intermountain Technologies, Inc.
P.O. Box 1604

Idaho Falls, Idaho 83403-1604

FILE BACKUP AND FILE ARCHIVING

File backup and file archiving both are intended to reduce the possibility of
data loss on a computer system. Common reasons for data loss include user errors
such as editing an existing file to make a revised copy and then over writing
the original file instead of creating a new file, and writing to an existing
magnetic tape instead of reading from the tape. Hardware failures such as a
disc head crash can also result in loss of data. Another form of data loss
occurs when a user either forgets the name of the file that contains the data
or forgets what data is in a file. Most computer system managers back up their
systems to magnetic tape frequently enough that should some event cause destruction
of some files, these files could be restored. However, system backups are
generally recycled at regular intervals. Therefore, if a user has removed a
file from the system for a period of time greater than the recycle interval,
the user needs a different type of backup, a form of backup that has an extended
lifetime. This form of backup is commonly called archiving. When information
is archived, the user generally intends to maintain the data in an accessible
state for an extended period of time. Archived information can be restored to
a system without any conflict with other system functions whereas backup
information generally replaces the entire contents of a system when restoration
occurs. If a computer system manager adopts an archiving philosophy instead of
a backup philosophy, the computer users can enjoy the benefits of backup, i.e.,
being able to recover from losing a large number of files, as well as the benefits
of archiving, i.e., being able to recover individual files. The only requirement
that must be met for an archiving system to replace a backup system is that the
archiving must be done at regular intervals rather than only at times when
someone wants to make an archived copy of a file. Thus, if archiving is performed
regularly, the system backup becomes a subset of the file archiving system.

DEFINITION OF TERMS

ASCII - The American Standard Code for Information Interchange. The ASCII code
uses 7 bits to represent 128 possible characters on a computer. ASCII is used
on the HPlOOO for all character oriented data storage.

EBCDIC - Extended Binary Coded Decimal Interchange Code. The EBCDIC code uses
8 bits to represent 256 possible characters on a computer.

Inter Record Gap - The space between physical records on a magnetic tape unit.
(Approximately 0.6 inches).

Inter File Gap - The space between files on a magnetic tape tmit. (Approximately
3 inches).

·l· Paper 1012

Blocking • The process of combining a number of logical records into a single
physical record.

Logical Record • The smallest collection of data that can be accessed by a user.

Physical Record • A physical record contains one or more logical records. The
physical record is the amount of information that is transferred to or from a
storage device.

Track • That portion of a disc surface that is covered by the disc head during
one revolution of the disc surface.

Sector • The smallest division of a disc track. On the HPlOOO a sector is 64
words.

Directory· The set of information which describe a file's attributes. This
information includes such items as file name, file size, file protection, and
record length as well as the location of the file.

AVAILABLE MEDIA

Tii.ere are a rrumber of different types of media available for archiving information.
Among the options are Magnetic Tape, Magnetic Disc, Optical Disc, Paper,
Microfiche, and Punched Cards.

Perhaps the oldest form of archiving is punched tape and punched cards. This
method of archiving as a matter of practical use has a very limited storage
capacity.

Microfiche of printed data is another form of archive media. Microfiche is
quite durable and can conveniently hold large quantities of data. However,
recovery of large quantities of information from this media is very time conslUiling
and prone to transcription errors.

Paper is another method for archiving information. Paper suffers from its
bulkiness and the print quality deteriorates with time and exposure to sunlight.
Recovery of large quantities of information from this media is very time conslUiling
and prone to transcription errors.

The magnetic disc offers yet another form of archive media. The magnetic disc
is a very fast, high density storage medium. Information is easily moved to
and from magnetic disc. The major disadvantage of the magnetic disc is cost.

Magnetic tape is currently the most popular form of archive media. Magnetic
tape is relatively inexpensive, has high storage density, and is quite fast.
A disadvantage of magnetic tape is that it deteriorates with time. Also included
in the magnetic tape category are the CS80 cartridge tapes and the 264x cartridge
tapes. The 264x cartridge tapes have a limited storage capacity.

The optical disc provides an new form of archive media that will prove to be
more widely used in the future. Current information suggests that the optical
disc will provide an archive media with an almost infinite life.

Paper 1012

IDEAL ARCHIVING SYSTEM

For an archive system to effectively function as both an archive system and a
backup system, one can think of a number of highly desirable features. At the
top of the list, the archive system should be easy to use. If the user finds
the system difficult to use, then archiving will not be done on a regular basis
and before you know it something will happen and destroy some of the user's
unarchived files. So an archive system that is difficult to use is really of
no use. The user will more than likely never have the file archived when it is
needed.

The archiving system should also efficiently use the space on the archive media.
Not only does this reduce the cost of the archive media, but it also reduces
storage problems. In order to efficiently use space, the archive system must
allow multiple versions of a file to be stored on the media. The archive system
must also be able to pack the data as densely as the archive media will allow.

Another feature of an ideal archiving system is a means for recovery from some
of the more common occurrences that might affect the media. For example, a user
should be able to recover data even if part of the media is over written. From
the point of view of over writing data, the current generation of write once
optical discs provide an extremely safe archiving media.

Another desirable feature is to have quick access. Quick access would be possible
if the media were on line at all times. However, on-line access introduces a
new set of problems unless the archive media is not prone to destruction or
unless dual-but-distinct archiving methods have been employed.

Another desirable feature of an ideal archiving system is to have an on-line
database associated with the archive media so that the user does not have to
keep track of what file is on what archive media. However, this database should
not replace the directory that is on each volume. It is essential that each
volume of the archive media contain a directory of the files on that media.
Ideally, this directory should contain enough information about a file so that
a user will know what is in the file at some later date without having to look
at the contents of the file.

FILE STRUCTURE ON HPlOOO

The file structure on disc can be important in some archiving systems, e.g., a
system that makes a copy of the disc image of the information. For the HPlOOO,
the disc contains a directory either in file manager, FMGR, format or CI format.
This directory maintains the file attributes such as size, record length, nunber
of extents, name, security code or protection status, owner, and track and sector
disc address pointer to the file. The actual format of the data on disc depends
on the file type. For type 1 and 2 files, the disc file record format consists
of 128-word blocks. For a type 1 file, the record length is equal to the block
length of 128 words. For type 2 files, the record length is user defined and
may cross block boundaries.

For files of type 3 and greater, the records are of variable length. The variable
length disc file record format consists of a record length word followed by the
data which in turn is followed by a redundant record length word. Sub-file

-3- Paper 1012

marks are indicated by a zero length record, i.e., two adjacent zeros with no
data. An end-of-file <EOF> mark is indicated by a -1 in the first record length
word location.

AVAILABLE SOFTWARE

Six HP supported programs: FMGR, SAVER, FC, TF, WRITT, and PSAVE, and three
third-party programs: DUPER, SAVEM, and GSL/1000 will be analyzed in terms of
meeting the requirements of an ideal archiving system.

FMGR

For FMGR ST, DU, or CO transfers to tape, each record of the original file is
sent to or from the tape as one record. The records may be variable length.
Each file is terminated by a single EOF mark. The tape utilization is very low
for this format and no directory information is maintained on the archive media.
Hence this format is unacceptable for an archiving system. The format for a
tape created with FMGR is shown below:

SAVER

File 1
<EOF>
File 2
<EOF>
File N
<EOF>
<EOF> • Added by the CN,lu,EO command

The SAVER utility was the first HP supported program to save individual files
as well as maintain a directory of the files. SAVER works with either half-inch
magnetic tape or 264x cartridge tape. SAVER blocks files into records of up to
2048 words (128 words on 264x cartridge tape) and is therefore quite efficient
in using the archive media. However, SAVER does not allow multiple versions of
a file on tape which limits space efficiency. SAVER is quite easy to use and
has an on-line help menu. The current version of SAVER is limited in that file
names can be no longer than 6 characters and hence only works with FMGR files,
although this will change when SAVER II is released. SAYER does lack features
for recovering from one of the more common occurrences that can damage a tape,
writing over the front of the tape. If the front of a SAVER tape is over written,
all information about file name, size, location, etc. are destroyed. The format
of a SAVER tape is shown below:

Directory
Header - 80 bytes
N File Entries • 50 bytes per record

<EOF>
File 1
<EOF>
File 2
<EOF>
File N
<EOF>
<EOF>

Paper 1012 ·4·

I

Tape file records are images of the disc records including the length words.
The records are blocked to a maximum of 2048 words (128 words for 264x cartridge
tapes). The last record on tape may be less than 2048 words, but will not be
less than 128 words.

FC

The FC utility saves individual files and maintains a directory on the front of
the tape. FC blocks files into records of up to 4096 words and is therefore
quite efficient in using the archive media. FC has both a local file directory
at the front of the tape as well as distributed file directories at the begirming
of each data file. However, FC does not allow multiple versions of a file on
tape which limits space efficiency. FC limits the length of file names to 6
characters. An FC tape file may contain a number of disc files. The format of
a FC tape is shown below:

TF

Header File
Gap Check File
Comment File
Volume Body
Directory File
Data Files
<EOF>
<EOF>

The TF utility is an extension of the UNIX TAR utility. TF is currently the
only HP utility that will work with both the FMGR and the CI file systems. 'llle
file directories on a TF tape are distributed along the tape. Hence, it is
quite inconvenient to get a directory listing of the file names on the tape.
TF allows a user to save files on half-inch magnetic tape or on magnetic disc.
TF blocks files into records of up to 5120 words (ten 512 word logical blocks)
and is therefore quite efficient in using the archive media. Additionally, TF
allows multiple versions of a file on tape which further enhances space efficiency.
If the create time for a particular file on a TF tape is not known, recovery of
files from a TF tape can be quite time consuming since TF must go through the
entire tape looking for file matches. TF does allow file names to be longer
than 6 characters, i.e., CI file name format. The two greatest hindrances of
TF are the fact that directory lists take a long time, and the fact that file
recovery requires that the whole tape be read unless the create time is known.
The format of a TF tape is shown below:

Directory Blocks
Data Blocks - No data blocks follow the directory

block for a directory file.
End-of-Data Blocks - "TF End of Tape padding block"
Padding Blocks - Fill remainder of record after end

of data blocks
<EOF>

After the last file on tape, two consecutive data blocks of all zeros are written.
Any unused bytes at the end of a data block are undefined.

-5- Paper 1012

WR.ITT

The WR.ITT utility stores data in the form of disc images i.e. track by track.
Hence physical records will be either 6144 words or 8192 words depending on
whether the disc has 96 sectors/track or 128 sectors/track. WR.ITT accesses the
cartridge directory and saves only those tracks identified as containing active
data. Since WR.ITT is oriented toward saving tracks, it is very inconvenient to
recover single files and hence WR.ITT is not suitable as an archive system. The
format of a WR.ITT tape is shown below:

PSAVE

Header (SO words)
Copy of First Directory Track

Copy of Last Directory Track
First Data Track

Last Track Containing Data
<EOF>

The PSAVE utility stores data in the form of disc images i.e. track by track.
Physical records will be either 6144 words or two 4100 word records depending
on whether the disc has 96 sectors/track or 128 sectors/track. Since PSAVE is
oriented toward saving tracks, it is very inconvenient to recover single files
and hence PSAVE is not suitable as an archiving system. Unlike WRITT, PSAVE
saves all tracks on an LU. The format of a PSAVE tape is shown below:

Header - 6 records
28 words
10 words
35 words
38 words
34 words
23 words

Overhead Records
128 words

20 words
First Track (Track 0)
Last Track (Track N)

For discs having 8192 word tracks, two 4100 word records are written for each
track. For discs having 6144 word tracks, each track is stored as a 6148 word
record.

DUPER

The DUPER utility is from the LOCUS library. Duper blocks the records of a file
into 2568 word physical records on tape and therefore uses the archive media I
quite efficiently. Additionally, DUPER allows files to be added to tape as long
as the file name is unique. The ability to add files to the archive media
further enhances the use of space on the media. DUPER maintains a distributed
file directory at the beginning of each file on the tape. Therefore, to recover

Paper 1012 -6-

a file, DUPER must search through the tape. DUPER does not allow file names to
be longer than 6 characters. The two greatest hindrances of DUPER are the fact
that directory lists take a long time, and the fact that file names are limited
both in length and occurrence. The format for a DUPER tape is shown below:

File 1 Contains 8 word file directory in first record
<EOF>
File N - Contains 8 word file directory in first record
<EOF>

SAVEM

SAVEM is a utility from CSL/1000 (the CSL/1000 tapes are written in SAVEM format).
SAVEM writes physical records of 2048 words on tape and hence uses tape quite
efficiently. SAVEM maintains the file attributes in directories at the front
of each "save" on a tape. SAVEM also contains a 128 word record at the beginning
of each tape file to identify attributes of the disc file. Using the concept
of "saves", allows additional files to be added to tape. The restriction for
adding additional files is that additional files must be maintained in a new
"save". In order to get a complete directory list for a tape all of the
directories for the individual saves must be accessed. The concept of saves
also makes it necessary for the user to keep track of what version is in each
save. An additional feature of SAVEM is its ability to manage the disc file
directory in order to speed the rate of file transfer. The format of a SAVEM
tape is shown below:

SAVE 1
Directory
<EOF>
Directory
<EOF>
File 1 in
<EOF>
File N in
<EOF>
<EOF>

SAVE 1

SAVE 1

SAVE N
Directory
<EOF>
Directory
<EOF>
File 1 in SAVE N
<EOF>
File 2 in SAVE N
<EOF>
<EOF>
<EOF>

Paper 1012

GSL/1000

A GSL/1000 tape is extendable, i.e., the tape's table of contents is automatically
updated whenever a new file is saved on the tape. An eight-level naming structure,
or pathname, allows logical organization of similar files. Up to eight names,
including the FMGR file name, can be associated with a file when it is archived
on tape. Duplicate pathnames are allowed and are given successively higher
version numbers to distinguish them. Any version of a file can be easily restored
by specifying its pathname and version number. Multiple copies of the table of
contents are stored on the tape, two at the front and one at the end of the
data, in order to minimize the chances of losing the information stored there.
Even in the unlikely event that all of the copies of the table of contents are
destroyed, individual datasets can be retrieved with program RRR. The format
of a GSL/1000 tape is shown below:

Table of Contents Copy 1
<EOF>
Table of Contents Copy 2
<EOF>
Space for TOC to Expand
<EOI>
First Data Set
<EOF>
Second Data Set
<EOF>
Last Data Set
<EOI>
Table of Contents Copy 3
<EOF>
<EOF>

End-of-File mark <EOF>
<EOI> End-of-Information mark - <EOF> + (1 record - "EOI") + <EOF>

The table of contents and datasets are written in blocks of 2048 words when
possible. Shorter blocks are always a multiple of 128 words. The first 128
words of each dataset make up an ID block which contains enough information to
restore the original disc file from the following tape file. The remaining blocks
in the dataset are copies of the corresponding blocks in the original disc file.

Paper 1012 -8-

SUMMARY OF ARCHIVING UTILITIES

orientation extendable directory block on line
(words) database

FMGR file yes none variable no
2 - 128

SAVER file no local 2048 no
FC file no local and 4096 no

distributed
TF file yes distributed 5120 no
WRITT track yes N/A no

6144 - 96 sec/trk
8192 - 128 sec/trk

PSAVE track yes N/A no
6144 - 96 sec/trk
4100 - 128 sec/trk

DUPER file yes distributed 2568 no
SAVEM file yes local and 2048 no

distributed
GSL/1000 file yes local and 2048 no

distributed

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Bill Hassell and Mr. Dave Doxey of Hewlett Packard
for their assistance in supplying information to be used in this paper.

REFERENCES

Hassell, Bill. "Saving and Restoring Data for 1000 Computers." Tutorial for
the INTEREX European 1000 Conference. April 9-11, 1985. Antwerp, Belgium.

-9- Paper 1012

I'

1013. USING AN HPlOOO A-SERIES COMPUTER AS AN SNA GATEWAY

INTRODUCTION

Reid MacGuidwin
Forest Computer Incorporated

1749 Hamilton Rd.
Okemos, MI 48864

Forest Computer specializes in developing and supporting software for very high
performance transaction processing and networking on HP computers. Increasingly,
these disciplines are required in multi-vendor environments. A large percentage
of these multi-vendor sites combine IBM/SNA networks and one or more other
vendors such as Hewlett Packard, Burroughs, Prime or DEC.

In November of 1984, Forest approached a large commercial loan corporation
confronted with such a multi-vendor communications problem. This case required
a communications gateway between 600 existing Burroughs terminals and printers
and a newly installed IBM 3083 mainframe and its IBM 3725 front end processor.

This particular site posed some interesting problems. The company had an
installed base consisting of some 150 terminals located at the home office in
Chicago. The remaining 450 devices were spread among 10 branches in the United
States, Canada, and Europe. The client had decided to migrate the existing
application systems from Burroughs to IBM, so for some period of time the users
would need access to both vendor's mainframes. Faced with the need to provide
their user base with this dual access, the company came very close to the
extremely costly undertaking of placing two terminals (the existing Burroughs
and a new IBM) on each user's desk, and installing separate leased lines to each
branch to handle the IBM traffic.

Forest, having already experienced such dilemmas at several other client sites,
presented the company with four possible solutions which would allow one terminal
to serve both host processors. These four options were: IBM Series I minicomputers,
Network System's Hyperchannel product, protocol convertors, and a protocol
converter/terminal emulator running on an HPlOOO A60o+ using Forest's proprietary
software.

The costs of the first three options ranged from $125,000 (plus a good deal of
IBM systems programming) for the protocol convertors, to $300,000. The fourth
option could be made to provide the same services at a fraction of the cost,
while requiring no modifications to the IBM system and permitting a "vanilla"
SNA environment.

Forest had HPlOOO-based products which had been used previously in similar
circumstances where specialized communications were called for. It was shown
that these could be enhanced to meet the customer's needs within the implementation
schedule of 10 weeks.

HARDWARE

Forest chose to base its products on the HPlOOO A-series for several reasons.

-1- Paper 1013

The RTE-A real time operating system is well suited for data communications
applications. In addition, the A-Series support of Progranmable Serial Interface
(PSI) boards makes this computer an ideal candidate for protocol development.
In this case it would be required to handle both the Burroughs and IBM SDLC
protocols. The capability of RTE-A to support user-written drivers enabled the
high performance that we would require to support the message volumes generated
by the 600 devices. Finally, EMA (Extended Memory Arrays) support under RTE
allowed us to keep all working tables in memory, again to maximize performance.

The hardware configuration consists of an A600+ with 3M bytes of memory, a 7941A
24 Megabyte disk drive, a 9144A cartridge tape drive, and two 12005 asynchronous
interface cards (one for the system console, the other for remote, dial-in
diagnostics). The final hardware components were the three PSI cards which
handle communications between the Burroughs FEP, the A600+, and the IBM 3725.

PSI BOARDS

The PSI board is a programmable data communications interface card. It contains
a Zilog Z80 microprocessor with 16K bytes of RAM and supports up to 16K bytes
of ROM. It has Z80 peripherals including two DMA chips, a 4 channel Counter
Timer Chip (CTC) and a two channel Serial I/O chip (SIO). There are also several
memory mapped latches for control of the data communications channels and the
backplane interface. The backplane is the standard L/A-Series custom I/O
processor (IOP) chip which includes on-board DMA access to the A600+ memory
system, plus all backplane handshake signals. The backplane appears to the Z80
as an BK byte segment of memory. The Z80 DMA can be used with the IOP DMA to
transfer from PSI RAM to the A600+ memory without interaction by either the Z80
or the A600+ processor.

DATA COMMUNICATIONS CONSIDERATIONS

Although initially the system would have to handle only moderate message throughput
(approximately 1 message per second), we realized that ultimately, as the
application load shifted to the IBM, the gateway would have to handle volumes
closer to four messages per second. Due to line speed limitations on the
Burroughs FEP, the fastest link we could provide between the FEP and the A600+
was 19.2K baud. We chose the Bisync (BSC) 3780 contention protocol for maxinrum
throughput. Since this speed allows only one full screen (1920 character)
message per second, we initially configured the system with four of these lines
between the A600+ and the Burroughs.

On the other hand, the IBM 3725 supports SDLC line speeds to 56Kbps. Since this
permits message volume close to eight full-screen messages per second, we were
confident that a single 56K baud link would handle the volume requirements.
Figure 1 depicts the datacomm configuration of the various computers.

SOFTWARE

As a rule, we generally program all protocol and line handling functions in Z80
assembly on the PSI card. Forest has created a proprietary operating system on
the Z80 specifically designed for datacomm applications. By offloading the CPU
intensive chores of character transmission and reception, error handling and
retries, and upping and downing of devices to the PSI card, the HPlOOO can be

Paper 1013 ·2-

FIGURE 1 - DATACOMM CONF!GURATION

BURROUGHS
CP3680 FEP

4 x 19.2Kbps
Bisync 3780

HP1000
A600+

56Kbps

SDLC

IBM
3725

FJGURE 2 - SOFTWARE MODULES

r--·

SNA PR08ESSOR

FRAME
PROCESSOR

PRE-DRIVER

PSI DRIVER

HDLC Bl SYNC
DRIVER DRIVER _ ____.

turned into a high-powered message switch, capable of "front-ending" terminal
networks in excess of 1000 devices.

For this project we decided to put only the lowest level of the SDLC protocol,
transmitting and receiving frames, on the PSI card. Two considerations caused
us to initially forego developing the full SDLC protocol on the PSI card. First,
we were faced with a ten-week deadline for installation. Second, although we
had created the PSI operating system, we had not required line speeds in excess
of 19.2Kbps before this project. To err on the side of caution, we therefore
chose to limit processing within the PSI card until we were sure that the card
could handle the 56Kbps speed required to the IBM.

Our initial design, therefore called for most of the SNA processing to take
place within the HPlOOO. Figure 2 shows the individual tasks that comprise the
system. Tasks communicate with each other through the shared memory facilities
of RTE-A. We have written a set of procedures to simplify the efforts of this
form of intertask communication.

Following, is a brief description of each task on the system.

HDLC DRIVER

Bit-oriented support on the 280 SIO chip made this task relatively easy. By
properly initializing this chip, the PSI card will handle flag recognition,
character framing, zero insertion and checksumming. Thus, within our existing
PSI operating system, we were able to quickly develop a streamlined HDLC line
driver which passed all inbound messages to the A600+. A small header on each
message told the driver on the A600+ whether or not an error occurred during
the transmission. All error and retry logic was handled within the A600+.
Likewise, the software on the A600+ passed outbound messages which were already
formatted to the PSI card, which is responsible for the actual transmission to
the 3725.

PSI DRIVER

This is a generic driver which we had written for other projects. The driver
was designed to reduce to the absolute minimum the number of interrupts needed
to transfer messages between the A-600 and the PSI. When the driver receives
a write request from a program the entire message is transferred via DMA to the
PSI. The A600+ is interrupted only on completion or on an error condition.
Messages from the PSI to the A600+ occur asynchronously, so they involve two
interrupts of the A600+, one when the PSI requests a transfer, the second when
the transfer completes. The PSI-to-1000 interface was also designed to be highly
reliable. Data transfer errors are detected and the transfer is retried by the
driver. PSI software failures are detected and reported to the pre-driver, in
which case the card can be reinitialized.

PRE-DRIVER

The pre-driver has complete control over all the PSI cards on the system. It
initializes each card, downloading the protocol code which can be specific for
each card. It sends control messages to each line task to configure the line
parameters. It communicates with the cards through the PSI driver with class

Paper 1013

I ~

!

I/O on two devices, one for reading and one for writing.

FRAME PROCESSOR

In SNA jargon, this module is responsible for the Data Link layer processing.
Since we were emulating 600 devices on a single line to the IBM, this line was
defined within the IBM as having 20 multidropped 3274 controller units as the
Physical Units (PU), each with 30 terminals defined as the Logical Units (LU)
attached to it. The frame processor is responsible for checking the PU addresses,
maintaining the sequence numbers for each frame, and handling recovery and
retries of sequence errors.

SNA PROCESSOR

This was the most complex and time-consuming task to create. The remaining SNA
layers, path control, transmission control, session control and data flow control
are handled by this task. All messages for a PU and all non-data messages for
an LU are processed here. Non-data messages include initialization handling,
session parameter processing and flow control. In addition, this task is
responsible for maintaining the "state" of the PUs and LUs on the system.

TERMINAL EMULATOR

The Burroughs terminals; like most non- IBM devices, have quite a different
keyboard layout than the IBM 3278. We therefore had to implement special keyboard
emulation capabilities, such as the Program Function (PF) keys, the Program
Attention (PA) keys, the Clear key and the System Request key. Although there
are several methods for handling this, our client chose what we believe to be
the most straightforward solution with the least impact on existing and newly
developed IBM applications.

We arrived at a convention, whereby the user could start any unprotected field
on the screen with the "PF notation character" (an exclamation mark was chosen),
followed by "Pnn", where nn is the PF key the user wishes to simulate. For
example, to simulate hitting the PFlO key on a 3278, the Burroughs user enters
11 ! Pl0 11 at the start of any unprotected field on the screen. Likewise, a 11 !PA2 11

which starts an unprotected field will cause the terminal emulator in the A60o+
to simulate the transmission of the IBM 3278 PA2 key. We were thus able to
totally simulate an IBM keyboard without causing the programming staff to redesign
every form within the IBM applications system, and without requiring extensive
interaction between the user and our terminal emulator.

CHARACTER MAPPING

The Burroughs terminals are capable of handling the standard 3278 set of field
attributes (protected/unprotected, highlighted, hidden, numeric/alphanumeric),
thus the mapping of control characters from IBM to Burroughs is straightforward.
However, because the Burroughs terminals send all unprotected data (whereas IBM
terminals only transmit modified fields), the mapping of the entire data streams
can be rather complex.

To handle this chore, we defined a 1920 byte array for each terminal into which
the IBM data stream was stored on each outbound message. This array (screen

-5- Paper 1013

buffer) was coupled with a 1920 bit array which denoted whether or not that
character position started a new field. Thus, when the response was received
from the terminal, we can "remember" where the unprotected fields resided on
the screen, compare the received data with what was originally presented to the
terminal in that unprotected field, and determine which fields were modified by
the user. In this manner, we are able to build the 3278 data stream which will
be transmitted back to the IBM.

FINISHED PRODUCT

As you might expect, the majority of CPU overhead takes place in the character
mapping subroutines. Indeed, we have found that, so far, this is the limiting
performance aspect of the system. We have found through timing instrumentation
to expect that with the A60o+ we should be able to handle message rates approaching
four messages per second, assuming full, 1920 character messages. The use of
a 3-mip A-900 would result in dramatic improvement. The maximum response time
under the initial implementation was a disappointing 6 seconds. We knew that
the 19. 2Kbps line between the Burroughs FEP and our box would add up to 2 seconds
to this lag, but certainly did not account for an additional 4 seconds back and
forth from the IBM. After some amount of testing, we found the response time
problem was caused by the fact that we were emulating 20 3274 controllers on
the SDLC line. Even though this is a 56Kbps line, the time involved in polling
20 individual control units, and the time lag before the poll response is received
could indeed be responsible for up to 2 seconds additional response time. By
changing our emulation scheme from multiple 3274 controllers to the IBM 8100
architecture (which permits 255 LUs per PU), we were able to significantly
decrease this latency by decreasing the number of polled LUs from 20 to 3.

ENHANCEMENTS

As mentioned earlier, we are accustomed to moving as much of the line handling
and protocol logic as possible out to the PSI card. Since we now know that this
card is easily capable of handling 56Kbps links, our next step is to move frame
processing out of the A600+ into the card. This will improve the performance
and response time of the system for two reasons.

First and foremost, the latency between a poll from the IBM and response from
the A600+ will be all but eliminated. Currently, since no frame processing
logic takes place on the PSI card, each poll is passed into the A600+ for
dissemination, where the frame processor decides the proper response. By placing
this logic within the PSI card, this "wait time" is eliminated resulting in
faster turnaround. Secondly, by removing frame processing from the A60o+, added
CPU is available to the other tasks within the system.

Also available, and closer to home for the HP user, is the HP point-to-point
protocol and HP terminal emulation capability. Thus the system can serve as a
high volume SNA gateway for HP devices in much the same manner as the Burroughs
devices discussed in this paper.

Our faith in the HPlOOO as the proper computer for communications handling was
rewarded. The real time capabilities of RTE and the performance potential of
the PSI boards has time and again allowed us to provide an HP solution at sites
where, quite often the client has never owned or even considered HP equipment.

Paper 1013 -6-

When this is coupled with the reliability of the hardware and the professional
support of HP field personnel, we feel confident in reconunending the A-Series
as a conununications processor.

-7· Paper 1013

'" I

1014. INTERFACING AN ARRAY PROCESSOR TO THE HP A-SERIES

Cimarron Boozer
Ninon V. Argoud
Frank M. Phelan

Universal Computing
4710 Ruffner St. Suite A

San Diego CA 92111

The HP A-Series (A600, A700, and A900) has been interfaced to a MAP 300 array
processor. The MAP 300 array processor is manufactured by CSP, Inc. (CSP!) and
has been manufactured since 1978. The same Universal Computing software and
hardware interface works on all three machines in the HP A-Series without
modification.

Universal Computing designed the HP A-Series interface on request from a number
of companies in the United States and Europe. The A-series interface has
successfully been installed on the HP A600, A700 and A900 in the United States,
France, and Italy.

PART I: MAP 300 PERFORMANCE AND SELECTION CRITERIA

Our experience with the MAP 300 started in 1979 when it was installed on an HP
1000 F-series computer. ~hroughout the years, the number of I/O interfaces
developed for the array processor and the library of software has grown. For
this reason, it was extremely important to have an interface to the new A-series
that was compatible with the old system.

Universal Computing has developed a product line for the HP 1000 and MAP 300
combination. Standard products include interfaces to the DATARAM Wide-Word Bulk
Memory, LEXIDATA 3400 color display, and RASTER TECHNOLOGIES Model 125 and 180
color display. In addition, numerous interfaces have been designed for customer
hardware including high-speed A/D converters and video cameras. For example,
60 frame per second continuous video image processing (using floating point
correction) has been achieved at over 2 megabytes per second.

Although there are many array processors on the market today, the MAP 300 is
highly suited for many real-time applications commonly found on HP computers.
For those unfamiliar with array processors, we have provided the following
summary of the MAP 300 architecture, I/O capability, software, and expandability.

MAP 300 Architecture

The MAP 300 is designed to allow blocks of numbers (vectors) to be processed
efficiently. The MAP 300 is user programmable and FORTRAN callable. It is
capable of speeds in excess of 12 million arithmetic operations per second and
runs in parallel with the host computer.

The MAP 300 uses a 25 bit mantissa and a 7 bit exponent for true floating point
representation.

-1- Paper 1014

The MAP 300 uses a parallel architecture to achieve its processing speed. Two
multiplier-adder units operate in parallel with an address processor, a control
processor, and one or more I/O processors. Arithmetic routines can thus be
written without regard to buffer control or I/O processing.

MAP 300 Input/Output

The MAP 300 offers a separate programmable I/O Processor, allowing the array
processor to free itself from the chores of I/O. The MAP 300 can have multiple
"I/O scrolls" each providing interrupt driven data streams.

Software

The software used with the MAP 300 includes the host resident support library,
the host resident I/O driver, the array processor executive, and the array
processor resident arithmetic routines.

The host resident support library is used by most programmers to access the
array processor. These routines contain common vector and matrix operations,
and are available in the "SNAP" library. Most tasks can be performed using
these routines singly or in groups.

The MAP 300 uses an Executive resident in the array processor memory, that
schedules tasks, controls data flow, and coordinates activity between the array
processor and the host. The Executive and the processing routines (CSP! and
user written) are downloaded into memory once. Overhead is minimal because
routines can be referred to by 6-word function control blocks (FCB's). FCB's
can be grouped together to form function lists, which allow a number of tasks
to execute without host intervention.

The MAP 300 array processor utilities include a cross assembler, cross loader,
simulator, and diagnostics. Cross assemblers allow programmers to make custom
routines for the array processor. The cross loader allows files to be downloaded
to the array processor. The simulator program allows the host machine to emulate
the array processor. This is useful for verifying complete and accurate operation
of user written routines. Array processor diagnostics test both hardware and
software.

Expandability

Adding or upgrading memory is trivial on the MAP 300. The memory controller
allows any memory configuration on its three busses: three different speed
memories can be "mixed or matched", For example, the user can specify high
speed "scratch pads" for some operations, while using slower memory for buffering
I/O data. Increased processing speed can be accomplished by upgrading from a
MAP 300 to a MAP 400. This requires the addition of an extra arithmetic unit,
and can effectively double the processing speed to about 24 million floating
point operations per second (MFLOPS). Both the memory and the MAP 400 upgrades
can be done in the field.

Paper 1014 -2-

PART II: COMPARISON OF HP A·SERIES TO HP 1000 M/E/F INTERFACES

Hardware Differences

The HP 1000 M/E/F has a special CSP! cable adapter which attaches to one HP
12039A Universal Interface card. For the A-series, Universal Computing developed
a special cable adaptor to allow standard CSP! interface cables (VAX-compatable)
to attach to two HP 12006A Universal Interface cards. In this way, no special
interface was required for the A-series.

Software Differences

DVX74, the driver for the HP 1000, was written in HP assembly language (ASMB).
Because most of the work was done by the driver, changes required that a new
SYSGEN be performed in pre RTE-6/VM days. In addition to DVX74, a pseudo-driver
was written which passed all of its operations via EXEC calls.

The HP A-Series uses the HP supplied driver ID.SO. Most of the work is actually
done in a FORTRAN written pseudo-driver which handles all bookkeeping operations
and does EXEC and custom calls to perform I/O. These custom routines were
written in HP MACRO to perform quick I/O operations using the $LIBR and $LIBX
library routines. In this way, small (6 word) transfer or control operations
could be performed without causing excessive system overhead required by EXEC
calls.

The Software libraries and utility programs are identical for both series of
computers.

The HPlOOO M/E/F is operable with the MAP only under FMGR. The software interface
for the HP A-Series was developed to operate under both FMGR and CI.

PART III: A-SERIES INTERFACE CONSIDERATIONS

HARDWARE INSTALLATION

Installing the interface between the A-series and the MAP 300 requires two HP
120006A Parallel Interface Cards (PICS). First, the two PICS require 8 switch
selectable options to be set. These switch selectable options are the 6-bit
select code (UlS3-UlS8) and the device command sense bit (UlS2). The switches
are located near the two cable connectors (Jl) on the PIC.

After setting all switches on both PIGS, they are installed in two adjacent
slots on the HP backplane. The highest priority slot is the data channel and
the lowest priority slot is the command channel.

SOFTWARE INSTALLATION

System Generation

An Interface Table Entry (IFT) and a Device Table Entry (DVT) must be added to
the System Generation Answer File for each PIC.

.3. Paper 1014

The following is an example of adding the !FT and DVT to the System Generation
Answer file for PIC #l and PIC #2. The select codes in the following examples
are set to 21 and 26, but can be assigned any valid select code numbers as long
as the select codes correspond to the switch settings on the PICS (see Switch
Setting). The LU'S are set to 83 and 84 in the example but may be set to any
valid LU number as long as they are consecutive numbers and the lowest number
is the data channel and the highest number is the command channel.

* * PARALLEL INTERFACE CARD #l

* IFT,%ID,S0::00017,SC:21B
DVT,,,LU:83,TO:SOOO,DX:2,DP:l:l:2:ST:45B

* * PARALLEL INTERFACE CARD #2

* !FT I %ID, SO: :00017' SC: 26B
DVT,,,LU:84,TO:OOOO,DX:2,DP:l:l:2:ST:45B

Loading the Software Using TF

There are three options available to the user when restoring the tape to disc,
The user can restore: "Nl" installation and runtime software, "N2" SNAP executive
source listings and hex object files, or "N3" development software.

LU Configuration for the MAP 300

Routine IMAP! has an option which returns the MAP llJ. After the user has finished
the system generation and restored the software to disk, the user must edit the
file &IMAP! and change the MAP LU to correspond to the system generation. After
the change is made, the routine will be located in a library which all users
can search.

Routine IMAP! can also be called with an option which allows the user to access
multiple MAP 300 array processors on the same HP system.

If the user wishes to lock LU's other than the MAP using HP llJRQ calls, the user
must first call IMAP! to get the MAP LUS and include them in the list of llJS to
be locked. This call to IMAP! will inhibit the MAP driver from calling LURQ.

DOWNLOADING SOFTWARE TO THE MAP

In order to use the array processor, a software executive must be loaded into
its memory. The utility program MPLD is used to perform this function. There
are two types of executives: (1) the diagnostic executives, and (2) the SNAP
II executive. The diagnostic executives are contained within each of the host
loadable diagnostic files. In order to simplify the loading of the SNAP executive
a command procedure called *EXEC is provided. To load the SNAP II executive
the user issues the following command:

Cl> TR,*EXEC

Also supplied is MPLD, a program which, can: (1) Transfer an object file to the

Paper 1014

j ..

I

MAP, (2) Transfer a binary file to the MAP, or (3) Convert a object file to a
binary file.

After loading the SNAP executive and linking with the SNAP library ($SNPLB),
the user program is ready to run.

REFERENCES

[l] HP 12006A Parallel Interface Reference Manual (Manual Part No. 12006-90001)
January 19 84

[2] Growth Pains of A Shipboard HP-1000: From Paper Tape to Array Processor
(HPlOOO International User Group Conference, Exploitation '83) p.37

[3] MAP 300 to HP A-Series Installation and Operating Manual (May 1985), Universal
Computing

Paper 1014

1015. CONTINUOUS AIR MONITORING USING AN
HP1000-CONTROLLED DATA ACQUISITION SYSTEM

William C. Miller, P.E.
City of Philadelphia

Department of Public Health
Air Management Services Laboratory

1501 E. Lycoming Street
Philadelphia, PA19124

INTRODUCTION

The Air Management Services Laboratory (AMS) is responsible for operating a
city-wide air pollutant monitoring network as required by federal EPA regulations,
state law, and city ordinance. This monitoring effort is intended to report
actual air quality with respect to established health related and other national
guidelines. Short-term (daily) information is reported to the public in a manner
known generally as an 'air pollution index.' Long-term study of the air quality
data is done by both the EPA and AMS in order to determine general progress in
attainment and maintenance of federally mandated air quality goals. This process
permits periodic adjustments to federal and local enforcement policy based on
actual air quality trends.

Air quality data is a highly visible indicator of an air pollution control
agency's effectiveness in protecting the air environment. The system used to
measure and collect this data must, therefore, be highly reliable, timely, and
possible to operate within the expected budget constraints of a municipal
government.

AMS currently operates thirteen continuous air monitoring stations located
throughout the city. Pollutants measured at these sites include sulfur dioxide,
carbon monoxide, nitrogen oxides, ozone, hydrocarbons, particulate matter, and
lead. A variety of instruments are used to continuously analyze the air sampled
at these remote sites. With the exception of lead, the result of the analysis
is a voltage level which indicates the concentration of the pollutant in the
atmosphere. This voltage must be sampled, recorded and eventually converted
into the pollutant concentration.

In the original monitoring system operated from 1965 through 1972 the voltages
were recorded on a continuous strip chart and later evaluated by a technician
who estimated the hourly average concentration from the trace. This approach
becomes very labor intensive with even a modest monitoring effort and provides
no real-time information or data quality assurance capability. In the early
1970s AMS was required by the newly implemented Clean Air Act to expand its
original two station, manual air monitoring network to an eight station, automated
system. This project involved the installation of six new remote sites, an
analog telemetry system and an HP model 2100S central computer system. Software
development for this system was done by AMS engineering and technical personnel.
The system went into service in the fall of 1974.

After several years of operation it was determined that the analog telemetry
system was not performing adequately. In 1978 AMS initiated a major upgrade of

Paper 1015

the system which included the installation of an HP-1000 E-series CPU and the
development of a digital telemetry system and associated quality assurance system
to replace the analog system. AMS contracted with the Wallace-Fisher Instrument
Company (WF) for the design and construction of the system electronic hardware.
Revision of the system operating software was done primarily by AMS personnel.

SYSTEM HARDWARE CONFIGURATION

The AMS Laboratory Computer Center currently operates an HP·lOOO system based
on an early E-series CPU (HP 2113B) with one megabyte of memory operating under
RTE-6/VM and Session Monitor. Major peripheral subsystems include an HP 7925
disk drive, an HP 7914ST mass storage system consisting of an HP 7974 dual·density
tape drive and an HP 7914 disk drive, an HP 7970B tape drive, an HP 2563A system
printer, a graphics subsystem including an HP 2647A terminal and an HP 9872A
plotter, two eight-channel multiplexors, ten terminals (hard-wired or dial-up),
and two HP 150C MAX personal computers. The computer center supports general
agency data processing needs in program development and database management.

Figure 1 shows the major components of the real-time data acquisition system.
Communication between the HP-1000 and the Wallace-Fisher PH-16 telemetry system
is handled through a standard HP 12966A interface card. The AMS implementation
of the PH-16 requires the use of a second I/O slot for a relay control card
which is used to control the central modem and telephone relay rack. Each remote
telemetry set (RTS) is connected to the central relay control rack by standard
quality, dedicated, two-wire telephone circuits. The maximum number of remote
sites is sixteen with each RTS capable of reporting up to sixteen voltage inputs.

The PH-16 system communicates using RS-232C protocol at speeds up to 60
characters/second. Each RTS is hard-coded with a unique two-character ASCII
address so that it may respond properly to the system polling software. This
feature is most important in the alternate configuration having no central relay
control with all RTS sites 'looped' in one continuous telephone circuit. Each
input channel of the RTS has an individual input amplifier so that the monitoring
instrument voltage level can be standardized to a specified voltage range.
These analog voltages are digitized to 1/2000th of the full scale value and
transmitted to the central computer as ASCII characters.

A major feature of the PH-16 system is the ability to send and receive command
and status information as part of the polling and response messages. Command
bits sent to the RTS can be asserted as low level digital signals, relay contact
closures, or to operate a digital-to-analog output circuit card. The response
from the RTS can report the status of implemented digital inputs to report a
variety of conditions such as relay closure, alarms, temperature sensors, and
the 'on-line' status of each input channel amplifier.

The PH-16 can be configured in a truly remote manner by installing a data-logging
9-track magnetic tape unit in place of the normal telephone communication
hardware. The format of the data recorded in this manner is consistent with
that returned by the telemetry to the central computer.

Paper 1015 -2-

DATA ACQUISITION SOFTWARE

The air quality data system operating software consists of three major components:
data acquisition, quality assurance, and reporting. The fundamental data item
derived from this system is an hourly average pollutant concentrat~on. The
concentration is usually expressed in units of parts per million or micrograms
per cubic meter. Long term averages are calculated from the hourly average
data. Federal air quality standards for each pollutant are commonly expressed
in several sample averaging periods. For example, the standards for carbon
monoxide are specified as a one hour average, and eight hour average, and an
annual average.

Primary system data files include the air quality data file (AQDATA), the status
and command bit definition file (STATUS), and the input channel definition file
(CHAN). Other related files contain definitions of the monitoring instrument
characteristics, a description of each monitoring site, and error logging data.

The AQDATA file is a direct access file with each record containing the hourly
average pollutant values for each instrument reporting. This file is presently
capable of holding 100 days of data. Each new hourly record overwrites the
oldest hour on file. After appropriate quality assurance this 'on-line' data
is archived in monthly files on magnetic tape.

The STATUS file contains definitions and message strings for the 56 possible
status bits for each PH-16 RTS. The CHAN file describes each of the 256 possible
telemetry input channels including the type of pollutant measured, the analytical
method used, EPA codes, equation coefficients for converting voltages into
concentrations, and equipment ID numbers. It is also possible to define derived
measurements in the CHAN file. This feature is used to calculate the mean value
and standard deviation from measured wind speed and direction. These statistical
values are then stored in AQDATA as hourly data.

Both STATUS and CHAN are ASCII files. Information in these files is routinely
edited to reflect operational changes or adjustments to conversion equation
coefficients. Utility programs are used to reduce both files to bit maps for
rapid access by the real-time data acquisition system. These and other reference
files and tables are stored in a small global scratch file area located on the
auxiliary subchannel (LU 3). This global area is used to share information and
for short-term data storage as required by the system software. Track and sector
addresses for the various global files are kept in a simple directory table in
a system subroutine. Files are referenced by code names which are converted
into addresses for the appropriate EXEC read and write calls. For example, the
name of the status bit map is 'ST' and the telemetry channel definition map is
called 'MP'.

The major software components of the data acquisition system are shown in Figure
2. The system initialization program START sets the system time and schedules
the SET75 and MINIT programs at system boot-up. Sampling of the RTS voltages
is scheduled once a minute. These minute samples are averaged by the HRAVG
program at the end of the hour. The results are then stored in the AQDATA file.

The RTS polling and control program SET75 executes at 7.5 seconds after the
minute. The basic functions of this program are the operation of the telephone

-3· Paper 1015

line switching relay, sending the polling message to the RTS through the BACI
card, reading the response message from the RTS and logging error conditions.
Operation of the interface card is managed by the DVR75 driver program developed
by AMS for this application.

The polling message is constructed by SET75 for each RTS. The message consists
of ten ASCII characters: the first character is a constant indicating the start
of the message; the next two are the RTS 'name'; six characters follow carrying
7 bits of command data each; the final character is another constant which
signals the RTS to scan the 16 input amplifiers and process commands. The RTS !'
responds with a 112 character message consisting of seven characters for each
input channel. The seven characters include: one character to indicate the
channel number; three ASCII numbers representing the decimal digits from the j"
DVM; one character containing bit status information concerning the polarity,
range, and status of the DVM value; one character carrying status bit data from
the RTS command components; a final character serves as a delimiter. The RTS
names and command values required for the SET75 polling message and the data
returned to SET75 from the RTS are stored in system common.

The MINIT program is scheduled to execute near the end of the minute to capture
the digital voltage values and to process the return status bits. Each minute's
data is moved to a file in the global scratch area. At the end of minute 59
the MINIT program schedules the HRAVG program to convert the minute data into
hourly averages and to report messages to the system console as required by the
status bit definitions.

Cooperation among the various programs involved in this process is managed by
the use of a global resource number stored in system common. Other flags in
system common indicate the on-line status of each RTS input channel so that
empty channels are not processed. Error conditions and 'bad scans' are reported
by SET75 to an error logging program which saves the RTS response in a global
area file for diagnosis by engineering personnel to determine the source of
telemetry system problems.

QUALITY ASSURANCE AND REPORTING

An integral part of the air monitoring network operations is the use of quality
assurance procedures to establish a statistical data base to indicate the
precision and accuracy of the analytical instruments. This statistical data is
required for all instruments designated as reporting data for the EPA mandated
portion of the network. At present there are 24 instruments in this category.

Instrument precision checking basically involves challenging the instrument with
a known concentration of the pollutant at the remote site and observing the
MINIT program results with a portable terminal. This procedure allows the
technician doing the procedure to see immediate results. Adjustment to the
voltage equation conversion coefficients in the CHAN file may be made to compensate
for minor differences between the input and output concentration values. Extreme
disagreement between the values requires additional procedures to correct the
error.

A fully automated precision check procedure can be accomplished by using the

Paper 1015 -4-

command capability of the PH-16. By providing appropriate remote site equipment
(gas tanks, pumps, flow controllers, valves, etc.) the automatic procedure and
the recording of concentration values can be initiated and managed by the CALIB
program. This program periodically scans a master file containing general
commands such as procedure number, starting time, and site-instrument matrix
coordinates. After CALIB schedules itself to execute, the required procedure
command file is interpreted and implemented. The operation of remote quality
assurance equipment is controlled by CALIB through the setting of command bits
in system common. The CALIB procedure commands are sent by SET75 to the remote
site and obeyed as required. The status bit response from the RTS can be reviewed
by CALIB with adjustments being made to the procedure as necessary. Minute data
values and other messages are recorded in the corresponding 'result' file for
later statistical analysis.

Data reporting and archiving procedures are done on a monthly basis. The hourly
records for one month are copied from the AQDATA file to magnetic tape. The
records for one month are also reformatted into EPA SAROAD format records and
copied to magnetic tape. The EPA data is submitted quarterly with the required
quality assurance supporting data. A daily report of the Pollutant Standards
Index (PSI) is prepared from the AQDATA file and distributed as public information.

SYSTEM PORTABILITY

In 1980 the City of Houston contracted with Wallace-Fisher for the installation
of the PH-16 telemetry and an HP-1000 computer system to operate an existing
air monitoring network. The modular nature of the AMS system software and the
extensive use of tables and reference files made it fairly easy to transport
the system to Houston. AMS personnel assisted with installation, testing and
training for the Houston version of the software. In an informal sense the City
of Philadelphia acted as a free consultant to the City of Houston since it was
viewed as an advantage to have another user of the PH-16 in an identical
application. The major difference between the two systems is the use of the
non-relay, looped telephone circuit arrangement in Houston. This is appropriate
since there are about half as many remote sites involved. It is expected that
the PH-16 system could be applied to a variety of similar applications such as
radiation monitoring, storm sewer flow control, and meteorological monitoring.

COMMENTS

The most reliable component of the air monitoring system is the HP-1000. The
total down-time for the E-series CPU and major peripherals due to equipment
failure since going on-line in 1978 is less than a week. Some mechanical problems
with the PH-16 relay contacts occurred last year but were solved with the proper
cleaning solution. The modular construction of the PH-16 hardware makes
troubleshooting and repair fairly easy. The majority of data loss is attributed
to telephone circuit interruptions and power failures.

The best feature by far is the command capability which allows the automation
of the quality assurance procedures. A manual precision check procedure requires
the time of one person for most of one day for each instrument. This time
includes travel to the remote site, equipment set-up, and the domination of a

Paper 1015

dial-up terminal port. The continued development and application of these
automated procedures has top priority at AMS.

ACKNOWLEDGEMENTS

The development and operation of the AMS air monitoring network is supported in
part through a program grant from the U.S. Environmental Protection Agency under
Section 105 of the Clean Air Act. I would like to express my appreciation to
Stephen Fisher and to the employees of Air Management Services for their efforts
in providing a clean air environment for the citizens of Philadelphia.

Paper 1015 -6-

, ,
I

FIGURE 1. Hardware Configuration

+-··-----·-+ +··-············+
!------·---------+ I

HP 1000 I HP 12966A BAGI !<--····->! Central Relay
E-series !--------------··+ I Rack & Modem
CPU I Relay Selector !·····--->!

!------·------·--+ I
+------·---+ +··············-+

I
up to 16 > I
telephone > I
circuits > I

______ !
I

I
I

+·················+

I
I

···-··-··-···-·>! I
up to 16 ·····->! PH·l6 Remote I /=====~==\
analog ·-····>! Telemetry Set I/ control & \
voltage ··-···>! I\ status bits /
inputs · - · - - ·>I (RTS) I \=============/
---------······>! I

+·················+

FIGURE 2. Software & Data Flow

+·········+
SET75

(DVR75)
polling
program

+···----··+

+·········+ +·········+
I MINIT I I HRAVG

>I data l==>l file
I capture I
I program I
+··-·---··+

I update
I program
+·----·-··+

I
I
I
I

·········· *·····V·····*
I I I I
I Mag Tape !<=~=~===! AQDATA I
I Archive I I file I
I I I I
··········

·7· Paper 1015

1016. INTERACTIVE PROGRAMMING

Donald A. Wright
Interactive Computer Technology

2069 Lake Elmo Avenue North
Lake Elmo, MN 55042 USA

INTRODUCTION

If there were a Bill of Rights for computer users and operators,
it would include, among other things, a list of features to be
expected in all software packages to make them easy for anyone to
use. These features might include: automatic casefolding (now
available in most HP programs), automatic justification (deletion
of leading spaces), free exit (the ability to exit from the program
at any point), delimiting parameters on commas or spaces, and much
more. Even without the Bill of Rights, a user certainly does have
the right to expect to find such features in software written
especially for his/her own application.

This paper describes four types of programs employing differing
methods for operator interaction. Techniques appropriate to each
program type are explored in some detail, with emphasis on the
newest RTE Library Subroutines and some new CSL contributions.
While the basic principles discussed are of value in all languages,
the examples are in Fortran 77.

PROGRAMS USING RUN-STRING PARAMETERS

When a program uses no operator inputs other than runstring
parameters, it may stretch credibility a bit to classify it as an
interactive program. Nonetheless, this is a very common type of
program, and several things can be done to make such programs easier
to write and to use.

* RUN-String Parameter Recovery:

Run string parameters (and, in fact, most other commands and
parameters) are easiest to deal with if they are first recovered
into the program in their original form - as ASCII character strings.
The least-well-documented parameter-recovery subroutine in the
Fortran 77 Manual is the easiest to use: FPARM. A typical FPARM
call is as follows:

CHARACTER INPUT1*20, INPUT2*20,

CALL FPARM (INPUTl, INPUT2, - ·)

FPARM accepts any number of input parameter strings of any length,
and will place the separated values passed by the RUN command into
these strings, blank-filling the excess length of any string which

- 1- Paper 1016

receives a parameter. When a value is not supplied in the RUN
command, the corresponding string is unchanged (NOT blank-filled).

Once received into the program as character values, numeric runstring
parameters (if any) can easily be converted to the appropriate
numeric type by using a Fortran READ or by using one of the new
RTE Relocatable Library functions such as DECIMALTOINT. This is
further described under the heading PARSING.

* Usage Help:

A very simple technique applicable to programs which accept no
interactive input other than runstring values is the Usage display.
It is displayed when the program determines that at least one
required parameter has not been supplied at all. For example, the
LI program requires that the operator supply at least the filedescriptor
of the file to be listed. A Usage display for LI might be coded
this way:

CHARACTER FILENAME*64, OPT*l, FIRSTLINE*l2, LASTLINE*l2

FILENAME
OPT
FIRSTLINE
LASTLINE

Make sure the variables are
initially blank, not null

CALL FPARM (FILENAME, OPT, FIRSTLINE, LASTLINE)
IF (FILENAME .EQ. ') THEN ! Oops • no file name

WRITE (1, *) 'Usage: LI file [opt] [range]'
GO TO 9999 ! Exit from program

END IF

This Usage display requires just 4 lines of code (the IF-THEN-ENDIF
block). But such a simple addition to a program can be an enormous
help to an operator, often eliminating the need to spend valuable
minutes consulting a manual. Of course, a Usage display can be
much longer than a single line if called for by the application.
Many of the newest HP utility programs have a Usage display.

SCREEN-ORIENTED PROGRAMS

Screen-oriented programs (forms, screen-driven programs) can be
developed from scratch, but are MUCH easier to develop using any
one of several different purchased packages. Some vendors of such
software known to this author are: C & L Systems, CCS, HP, and
Polaris (alphabetical order).

Disadvantages of screen-oriented operator interaction are:

* Initial cost.
* Only HP terminals can be used.
* Time is required for screen changes .

Paper 1016 . 2.

Advantages are:

* Much easier for an inexperienced user.
* Fast if there are many prompt fields per screen.
* Packages can provide many tools which make interactive

programming much easier.

Techniques for making the best use of screen-oriented programs
differ considerably with the forms package purchased. But some of
the basic principles are the same for screen-oriented programs as
for all others. Even screen-oriented programs should provide at
least these functions:

* Free exit from the program at any time (unless exit from
the program is not to be allowed at all).

* Ability to restart the program at any time.
*Temporary escape to other programs.
* Appropriate handling of illegal operator entries.
* Easily available help facilities.
* Casefolding & justification of selected input fields.

All screen-mode packages permit the application of these principles,
but they must still be implemented by the programmer.

PROGRAMS USING SEQUENTIAL PROMPTS AND RESPONSES:

This is perhaps the most common type of program written for very
specific applications, especially when the program is intended to
execute in the same sequence (if not with the same data) every
time. The program prompts for one specific input (parameter,
variable, whatever), then another, etc. until it has sufficient
information to execute to completion.

Examples of this program type are the RTE-6 Generator RT6GN and
the SWTCH program. The responses to the prompts in RT6GN are nearly
always supplied from a file rather than interactively, but operation
is the same. When an error occurs, RT6GN reverts back to interactive
prompt and response. Some of the following principles of interactive
programming do appear in these HP programs, and a few do not:

* Casefolding:

Two RTE Library subroutines now make casefolding (upshifting of
lower-case letters a-z) very simple indeed:

CALL CASEFOLD (STRING) for character variables,

CALL CLCUC (!STRING, LENGTH)
integer arrays.

for strings contained in

New programs written in Fortran 77 will obtain the most flexibility
by keeping operator inputs in character variables and will use the

- 3 - Paper 1016

CASEFOLO subroutine. Older programs which already keep operator
inputs in integer arrays can be easily upgraded with CLCUC. Both
subroutines have exactly the same function: the characters a-z
are changed to A·Z, and no other changes are made in the string at
all.

* Left·Justification:

How do blank characters appear at the beginning of an operator's
input? Who knows. But we all do it from time to time, and when
such an input line is processed the leading blanks often must be
deleted to prevent errors which will be unclear to the operator.
If operator responses are being read from a file it may be even
more important to delete leading blanks which may be put there for
appearance reasons. A contributed CSL subroutine called LEFTJUSTIFY
is the easiest to use:

CALL LEFTJUSTIFY (STRING) for a character variable STRING

The HP subroutine SPLITSTRING will left-justify a parameter as it
is being split off from a string, but it will not leftjustify an
entire string containing delimiters (such as blanks) nor will it
leftjustify a string in place.

* Free Exit:

This is a MOST important principle in the user's Bill of Rights,
No matter what dumb thing I may have done in a program I must be
able to exit at virtually any point without penalty (unless I have
reached a point where files are modified and it is just too late).
This is easily implemented by checking for a specific EXIT command
at every operator input. 'EX' is the one most commonly used in HP
programs, and is recommended. When the EX is detected, the program
should close files and perform any other necessary cleanup, then
terminate.

* Operator·!nput Subroutine:

Since every interactive prompt and response requires some common
actions, these can often be combined in a simple input-processing
subroutine such as the following:

SUBROUTINE INPUT (STRING, *)
CHARACTER*(*) STRING
READ (1, '(A)' , END-5) STRING
CALL CASEFOLD (STRING)
CALL LEFTJUSTIFY (STRING)
IF (STRING . EQ. 'EX') RETURN 1

5 RETURN
END

No runtime errors
Upshift a-z to A-Z
Delete leading blanks
Alternate EX return
Usual return

With such a subroutine th~ prompt-response portions of a program
may be coded as follows:

Paper 1016 -4-

WRITE (1, *) 'What is the title?
CALL INPUT (TITLE, *9900) 9900 is exit

If the expected input is numeric, further processing of the input
character string is required. This can be done with the Fortran
formatter or by using the new RTE Library numeric conversion
subroutines. This example provides free exit, numeric conversion,
and runtime error traps:

4 WRITE (1, *) 'What is the pressure (PSI)?
CALL INPUT (STRING, *9900)
READ (STRING, *, ERR=4, IOSTAT=IOS) PRESSURE

*Handling Illegal Operator Responses:

The preceding example shows how input strings containing illegal
numeric responses can be handled. Nothing will bring a program
user back to the programmer faster than a message like

RUNTIME ERROR 0494@ 02016.
Trapping and handling such cryptic messages is one of the biggest
favors a programmer can offer to both parties.

In many instances it may also be helpful to test the received value
for a valid range, as in this example:

IF (PRESSURE.LT.13.6 .OR. PRESSURE.GT.33.3) THEN
WRITE (1, *) 'Pressure must be between 13.6 and 33.3'
GO TO 4

END IF

Such a test can often prevent the operator from unwittingly entering
an inappropriate value which might alter the program's results in
a confusing way.

The most important technique in dealing with illegal responses is
to repeat the prompt, as in the above examples. In some cases it
may also be desirable to reduce confusion by explaining why the
prompt is being repeated, as in the example above.

* Input from Files:

When a program is capable of accepting a predetermined sequence of
responses from a keyboard, it is usually a simple conversion to
make it accept its inputs from any arbitrary device or file.
Usually the input device/file is specified in the run string,
defaulting to the interactive terminal if not specified. Whatever
device or file is specified in the following example will be referred
to as Fortran Unit 1 after being opened:

CHARACTER*64 FILEDESCRIPTOR
LOGICAL*2 INTERACTIVE

- 5 - Paper 1016

FILEDESCRIPTOR = 'l' Set default
CALL FPARM (FILEDESCRIPTOR) Device/file name
INTERACTIVE=FILEDESCRIPTOR.EQ.'l' Set flag for later
OPEN (1, FILE=FILEDESCRIPTOR, IOSTAT=IOS, ERR=2,

& STATUS='OLD')
2 IF (IOS.NE.O) THEN ! Oops • OPEN error

Deal with the error
END IF

The interactive prompt-response sequences then should be altered
to inhibit display of the prompts except when Unit 1 is the
interactive terminal. Typical prompt-response code might be:

IF (INTERACTIVE) WRITE (1, *)
CALL INPUT (TITLE, *9900)

'What is the Title?
! 9900 is exit

It may be even more efficient to design the INPUT subroutine so
that it issues the prompt in addition to collecting the response,
and so that it is capable of inhibiting the prompt when input is
not interactive.

* Restart:

ln some cases it may be very desirable to permit the operator to
restart interactive inputs from the very beginning, or to restart
a particular portion of them. This can be accomplished easily by
adding an alternate return to the INPUT subroutine and testing
there for a command such as "/R", or by using Control·D as the
Restart command as follows (Control-D will cause the READ statement
to go to the statement specified by END=):

READ (1, '(A)', END=l) STRING

PROGRAMS WITH A MENU AND COMMAND STRUCTURE:

Many programs have a standard prompt and can accept a variety of
different commands at that prompt. Examples are FMGR, CI, EDIT,
and very many more. This structure allows the user (and the
programmer) the most flexibility, but of course it is somewhat more
complex than the Sequential Prompt and Response structure.

All of the principles discussed for Sequential Prompt and Response
programs apply here, and more. A program of this type is usually
designed to return to a particular point in the code after completing
each command. This means that the processing of operator (or
TRansfer file) input occurs at only one point and need not be moved
outboard to an external subroutine.

A simple prompt with minimum processing of the response might be
as follows:

Paper 1016

IF (INTERACTIVE) WRITE (1, *) 'Entry>
READ (1, '(A)', END=l0) STRING
CALL CASEFOLD (STRING)
CALL LEFTJUSTIFY (STRING)

* Command Stack:

At this point a command stack is useful in menu-driven programs.
A contributed CSL subroutine named CMDSTACK is called as follows:

IF (INTERACTIVE) CALL CMDSTACK (LOG, STRtNG, STACK)

LOG is the LU of the interactive terminal (usually 1), STRING is
the just-entered string (before or after CASEFOLD and LEFTJUSTIFY),
and STACK is a CHARACTER variable in which the CMDSTACK subroutine
maintains the stack entries. STACK is typically sized to at least
256 characters. There is no limit on the number of entries that
CMDSTACK can maintain in STACK; the limit is on the total number
of characters. New entries will push out the oldest ones to make
room if necessary.

CMDSTACK expects the same slash (/) commands as are used by the HP
programs Cl and EDIT. If the entered string is not such a command
it is copied into the stack and returned in STRING unchanged except
that it will be left-justified. If the string is a stack command
(/), CMDSTACK will display the stack and accept an edited input
just as CI and EDIT do.

CMDSTACK adds just over 400 words to the program size, plus the
size of the STACK variable (typically 128 words or more). It is
written in MACRO and is fully documented in its source in the CSL
Library (most-recent issue).

* Command Parsing:

A command may consist of the command characters alone (e.g. 'EX'),
or it may contain one or more qualifying parameters (e.g. CO FILEl
FILEl). After the command is received and initial processing is
complete, parameters need to be separated off and their numeric
values resolved (if any). The following code is a fairly complete
input-processing sequence for a 2-character command and two possible
parameters. The SPLITSTRING subroutine is part of the RTE Relocatable
Library; it divides the string at a comma or at one or more spaces:

CHARACTER CMD*3,
CHARACTER PRAM1*78, PRAM2*78
INTEGER*2 INTl, INT2
LOGICAL*2 ERRl, ERR2
INTEGER*2 DECIMALTOINT

Command (2 char + space)
String parameters
Integer parameters
Integers valid?
RTE number conversion

2 IF (INTERACTIVE) WRITE (1, *) 'Entry>
READ (1, I (A) I, END=lO) STRING

- 7 - Paper 1016

IF (INTERACTIVE) CALL CMD!TACK (LOG, STRiNG, STACK)
CALL CASEFOLD (STRING)

CALL SPLITSTRING (STRING, CMD, STRING) Split out
CALL SPLITSTRING (STRING, PRAMl, STRING)
CALL SPLITSTRING (STRING, PRAM2, STRING)

INTl DECIMALTOINT (PRAMl, ERRl) Convert
INT2 DECIMALTOINT (PRAM2, ERR2)

The above code can be used with all entered strings with no danger
of runtime errors. Error testing is then done after branching to
the specific module or code section where the command is processed,
since each command will have different requirements.

* Command Branching:

When a command has been separated from the entered string, then
the program can branch to the section where that command is to be
handled. The simplest way to branch (not the most efficient) is
to use a list of IF' s. The following list makes easy code reading:

IF (CMD .EQ. I) GO TO 2 Nul entry
IF (CMD .EQ. I ? ? I) GO TO 6000 Help
IF (CMD .EQ. I? I) GO TO 6000 Help again
IF (CMD .EQ. I HE I) GO TO 6000 And again
IF (CMD .EQ. I EX I) GO TO 9900 Exit
IF (CMD .EQ. I/RI) GO TO 10 Restart
IF (CMD .EQ. t TR I) GO TO 5000 TR file command

A somewhat more efficient way to code the branching is to establish
a list of possible commands in a character array, use a DO loop or
the Fortran INDEX function to find the ordinal position of the
command in the array, and use that ordinal position value in a
Computed GOTO. In the HP/1000, the computed GOTO is microcoded
and occupies VERY little code space.

*Running Programs (Temporary Escape):

When an entered command is not found in the command list or the
list of logical IF's, then execution will fall through to the next
executable code. At this point it is convenient to attempt to
execute the command as if it were a RUN (or implied RUN) command
rather than local. A new RTE Library subroutine FMPRUNPROGRAM is
very slick in this application. In fact, it is the very same
subroutine used by CI to schedule other programs. It is called as
follows:

!ERR ~ FMPRUNPROGRAM (STRING, LRMPAR, RUNNAME)

Paper 1016 -8-

STRING is a copy of ~he original keyboard-entered string, LRMPAR
is a 5-word integer array to receive the RMPAR parameters back from
the scheduled program when it completes, and RUNNAME returns the
true name of the scheduled program. !ERR returns an error code if
a problem was encountered (such as -6, file not found).

If the string passed to FMPRUNPROGRAM does not begin with 'RU' or
'XQ', then FMPRUNPROGRAM assumes 'RU'. Blanks or strings of blanks
in STRING are treated as single commas.

The unfortunate penalty of FMPRUNSTRING is that it adds about 6
pages of code, with all of the subroutines it pulls in. This is
a maximum value - it will be less in some applications because some
of those subroutines will be required anyway by other parts of the
program.

* Help:

There are at least three good ways to implement a help function.
The simplest is for the program itself to contain WRITE statements
and FORMAT statements (or character strings) to display help for
each requested help parameter. The problem with this solution is
the excessive program space required for large FORMAT statements,
so it may be appropriate only for modest Help displays.

A second method employs the FMPLIST subroutine. It lists a specified
file to the interactive terminal, and can be directed to list only
specific lines so that 'subfiles' can be listed if needed. FMPLIST
imposes a substantial size penalty on the program, and is not fast
when the lines to be listed are not at the beginning of the file.

The third method is the contributed CSL subroutine LIST and its
companion program ADDIX. A keyworded file (where keywords are
identified in advance) is first created using EDIT. Then ADDIX is
run to add an index (to the keywords) on the end of the original
file. When LIST is called by the program using it for the HELP
function, it opens the ADDIX'd file and performs a direct-access
binary search on the index to find the requested keyword, then
begins the listing directly at that keyword.

The file which ADDIX uses for input may also be the source for the
program's manual, if one is to be provided. It contains forms-control
characters in column 1 to facilitate printing of the manual, and
those same characters can be used by ADDIX in the identification
of keywords.

LIST adds 600 words of code directly to the program, and several
pages more if none of the usual FMP subroutines are called elsewhere
in the program. But it is fast: In a recent test of speed on a
3100-line Help file containing 212 keywords, the longest time
required to begin displaying text was 210 milliseconds, the shortest
50, using a 1-block DCB for the file. This test was performed on
a Micro-600 system using the Integral Disk, which is substantially

- 9 - Paper 1016

slower than most CS/80 or MAC disks. The speed is possible because
the index can be randomly accessed for the binary search, and
because each index entry points directly to the word position of
the keyword it represents, again permitting direct access.

LIST and ADDIX comprise the HELP facility used in the commercially
available CONNECT terminal-emulator package. They have been
contributed to the HP/1000 CSL and are fully documented in their
source files.

REFERENCES:

l. RTE-A Programmer's Reference Manual.

2. Relocatable Libraries Programmer's Reference Manual.

3. INTEREX HP/1000 CSL.

Paper 1016

1017. USING THE HP-1000 TO AUTOMATE A MACHINING AND GAUGING PROCESS

BACKGROUND

C. Pappagianis
RCA/Missile and Surface Radar Division

Moorestown, New Jersey 08057

The objective of this project was to improve and automate the machining process
for a circuit component made of a plastic material subject to unpredictable
spring-back. The original process used templates, a manually controlled milling
machine, and hand-gauging to determine if additional machining was required to
meet the depth specification. The large number of machining positions possible
for each piece/pattern made this a time-consuming, error-prone, and costly
operation unsuitable for full·scale production.

~e started by searching the market for an automated machine capable of communicating
with our HP-1000, which contained a database of part locations and dimensions
to be machined. In addition to accepting coordinate data over an RS·232 line,
the candidate controller had to have a high degree of repeatability and accuracy
in positioning the work pieces.

APPROACH

The Automation Unlimited Work Station with the C60 Motion Controller was chosen
because it met these requirements and was available "off the shelf." The work
station is a large, X·Y table driven by stepper motors. It operates like a
large, flatbed plotter·-the Y-motion of the table corresponds to the paper motion
of the plotter, and the X-motion of the tool arm, which is mounted on a beam
above the table, is similar to plotter pen motion. Mounted next to the tool
arm is a probe-like linear transducer that serves as a gauge. Both the tool
arm and the gauge are capable of independent vertical motion.

The C60 Motion Controller is a Z80·based microcomputer with a plasma display
for all position information, and a membrane keyboard for programming and the
manual operation of the table. The C60 can also be programmed through an RS·232
serial port; a program can be written on a small computer and downloaded to the
C60 for execution.

Programming the C60 is very simple. A program consists of the position data,
which implies a motion to that X·Y location, and a tool command in the form of
a four-digit number from 0000 to 6999. The tool command actually determines
what will happen when the table reaches the specified position; the command
options range from "no operation" to the calling of subprograms and the sending
of characters via the communications port.

Although the C60 has a built·in microprocessor, there were several application-specific
reasons why it had to be interfaced to the HP-1000. The C60 was originally
designed to handle repetitive tasks. An operator writes a program to perform
each task, be it simple or complex, and either keys it in from the front panel
or downloads it from the text editor of a small personal computer (PC). However,
data cannot be passed to subroutines in the C60, and its decision-making capability
is very limited. In our production process application, the system must be

-1- Paper 1017

capable of handling many different parts, each demanding unique machining
operations. Writing a separate program for each part is therefore impractical.
Furthermore, the coordinate and dimension data for each part is generated on
the HP-1000 and maintained in a database. Finally, the C60 contains no provision
for reading the post-machining gauge. The resilient nature of the material
being machined required this additional gauging operation; an HPIB DVM was
therefore added to read the gauge and feed the information back to the HP-1000.

THE INTERFACING PROCESS

Interfacing the C60 to the HP-1000 presented a few problems. The C60 uses a
strictly hardwired handshake. In addition, the ENQ and ACK characters have
special meanings to the C60. The use of an HP-12966 BACI interface together
with a special driver (e.g., a DVFOO or DVWOO) was considered, but the BA.CI card
would have used a slot in an already crowded card cage. We opted for the
versatile HP-12792B 8-channel multiplexer (MUX), which was available with spare
ports. The MUX turned out to be a good choice, since the system configuration
had to be changed several times before we found one that worked reliably.

The communication parameters on the C60 are not as flexible as those on the MUX,
so the MUX was reprogrammed to conform to the data format the C60 expected, i.e.:

* 7 bit ASCII;
* 1 start & 2 stop bits;
* even parity;
* 2400 baud;
* no ENQ/ACK handshaking.

This was easily accomplished by passing the correct word value to control function
code 30B for the MUX driver.

PROGRAMMING THE SYSTEM

Programming the C60 is simple; a single ASCII character emulates each of the
front panel keys. Control and alpha characters represent commands; numerics
are automatically considered data. There are two ways to execute commands.
The first is a fully programmed method: the entire program is entered and the
C60 is instructed to start execution. The other method is to put the C60 into
Manual Data Input (MDI) mode, where each command is executed in real-time as it
is received. Both methods were used in this project.

The heart of the HP-1000 program is two subroutines that send data to the C60.
Each makes use of a C60 feature that allows transmission of a character to a
remote computer; we used this feature as a substitute for handshaking. Overrun
is not a problem, as the subroutines always send data in short bursts and the
C60 has adequate on-board buffer.

The first subroutine handles coarse movement around the table in MDI mode. It
sends a single set of coordinates to the C60 together with a motion command,
and, immediately after, another command that causes the C60 to transmit a carriage
return. Then the subroutine establishes a pending read on the C60 LU. The C60
executes the commands serially; it does not pull the next command from its buffer
until execution of the previous command has been completed. In other words,

Paper 1017 -2·

the HP-1000 is "paced" -- it must wait until the pending read is satisfied.

The second subroutine handles the step-and-repeat portion of the machining
process. It constructs a complete C60 program "on the fly" based on the
dimension data stored by another program on the HP-1000. This includes (1)
moving the tool into position; (2) doing the machining; (3) moving the tool
away; (4) moving the gauge into place; and finally (5) sending the pace character.
Once the gauge is in place, the HP-1000 takes a reading on the DVM via the HPIB
and decides if the piece has been properly machined; if so, the system returns
to MDI mode and moves to the next location, and if not, the program constructs
a new C60 program that increases the depth setting of the machining tool to
compensate for the spring-back. The process is then repeated. To keep the
program from getting "hung up", a maximum of five attempts to machine a single
(stubborn) location is allowed before the program moves the tool to the next
machining site.

CONCLUSION

By designing and programming an automated machining system, we are now able to
produce in one hour what used to take half-a- day. In addition to the savings
in time, there is less error- related waste of expensive parts/material.
Production scheduling is also simplified. This automated system was relatively
simple to implement and uses hardware currently available in the marketplace:
the HP-1000, the Automation Unlimited Work Station, an HP-12792B 8-channel MUX,
and the HPIB DVM.

-3- Paper 1017

1018. 'HIGH-LEVEL' PROGRAMMING USING THE HP MACR0/1000 ASSEMBLER

INTRODUCTION

Dale S. Garcia, Senior Software Engineer
Technology Development Corporation

621 Six Flags Drive
Arlington, Tx. 76011

In the earlier days of computers, before the development of modern 'structured'
languages, a great deal of programming was performed using assembly language.
As the computer industry matured, improved programming techniques were developed.
As these techniques developed, additional languages were created to take advantage
of these new ideas. In the 1970s, the concept of structured programming was
introduced as a method of designing and developing software in a logical,
systematic manner. Since then, a host of new languages have been developed such
as C, Pascal, and Ada, each providing some new capability not found in existing
languages. Some languages, such as FORTRAN and BASIC have evolved through various
revisions to implement many of these new features. These new language capabilities
greatly improve the speed and quality in which software is developed.

As high order languages developed, assembly language became used less except
for where it was absolutely required. About the only major advance that assembly
language has made is the introduction of the Macro-assembler. This new capability
allows programmers to define macros to do a specific task. When a macro is
invoked during the assembly, it is expanded, in a predefined manner, into several
lines of code. The Macro-assembler has been under-utilized in its capability to
greatly improve the efficiency of the software development cycle. With the proper
development of a library of macros, tools are made available for use by the
software developer. A library of macros has been developed for Structured Macro
Assembly. This library is a collection of tools to implement all of the current
structured programming constructs, along with several variations. It also has
many extensions beyond the capability of higher order languages to handle assembly
language-type functions. Most of the macros described in this paper are contained
in this library.

This paper will discuss the macros used to implement these techniques along with
additional macros to make programming and documentation easier. Due to time and
space limitations, details of how the macros are written and the code they
generate will not be discussed.

HP SUPPLIED MACROS

Hewlett-Packard supplies a library of macros with the Macro- assembler which
perform many useful functions. The following macros are supplied in the library:

ENTRY
EXIT
CALL

IF
ELSE

ADD
SUBTRACT
MAX
MIN

SETBIT

ROTATE
ASH I FT
LSHIFT
RESOLVE

TEXT

Paper 1018

ELSE IF
END IF

CLEARBIT
TES TB IT
FIELD

MESSAGE
TYPE
STOP

Some of the HP supplied macros are briefly described in this paper. Additional
documentation concerning HP supplied macros may be found in Appendix K of the
MACR0/1000 Reference Manual.

SEQUENCE/INVOCATION MACROS

The sequence/invocation instructions usually perform a simple operation such as
invoking a function/subroutine or performing an assignment operation. The
sequence/invocation instructions are as follows:

DO
CALL
BEGIN
SUBROUTINE
FUNCTION
ENTRY
RETURN
EXIT

COPY

!NCR
DECR

TRUE
FALSE

CLEAR
SET.BITS
CLEAR.BITS

CALC
FCALC

Invoke a subroutine without parameters
Invoke a subroutine with parameters
Begin subroutine w/o parms, retains entry point
Begin subroutine with parms, retains entry point
Begin function with parms, Same as SUBROUTINE
Provided by HP, Same as SUBROUTINE
Return from subroutine or function
Provided by HP, Same as RETURN

Copy word(s) from one location to another

Increment a variable
Decrement a variable

Set variable(s) to logical .TRUE. value (-1)
Set variable(s) to logical .FALSE. value (0)

Set variable(s) to a zero value
Set selected bits as specified by mask word
Clear selected bits specified by mask word

Perform arithmetic/logical operations
Floating point arithmetic/logical operations

The DO macro is used to invoke a subroutine that has no parameters, such as with
the BEGIN macro. It is used to make the code more readable and generates a JSB
instruction.

Example:

DO Read_request

The CALL macro generates the code to invoke a subroutine or function with up to
ten parameters. The subroutine called should use the .ENTR sequence, such as
generated by the SUBROUTINE, FUNCTION, and ENTRY macros.

Example:

CALL Get_status,Status_word,Return_code

Paper 1018

Other forms of this macro (DCALL, LCALL, DLCALL) are also provided by HP to
handle local and/or direct calls.

The BEGIN macro is used to enter a subroutine that has no parameters and does
not need the return address resolved. It generates a NOP instruction to store
the return address and retains the entry point name in order for the RETURN
macro to generate the code to return from the subroutine. This macro is used
with the DO and RETURN macros.

Example:

BEGIN Read_request

The SUBROUTINE, FUNCTION, and ENTRY macros generate the .ENTR entry sequence of
instructions for a subroutine or function with up to ten parameters. Each
subroutine or function should have at least one corresponding RETURN macro to
return to the calling routine.

Example:

Get record
Factorial
Get status

SUBROUTINE ABuffer,ARecord_length,AError_code
FUNCTION ANumber
ENTRY AStatus_word,AReturn_code

The RETURN macro is used to return from a subroutine or function that has been
entered with the BEGIN, SUBROUTINE, FUNCTION, or ENTRY macro. The macro generates
the return jump for the most recent subroutine/function macro. If a parameter
is specified with the RETURN macro, the A-register will be loaded with the data
as specified by the parameter before the return jump is made. A second parameter
may also be specified to load the B-register. In this manner, a function may
return a value to the calling routine.

Example:

RETURN
RETURN Value
RETURN Status,Transmission_log

The COPY macro is used to copy a word from one location to another or will copy
multiple words from one location to another. The first parameter specifies the
source location. The second parameter specifies the destination location. The
third parameter (optional) specifies the number of words to copy. If the length
is not specified, the macro will generate a LDA and STA to copy one word. If
the length is specified, the macro will use the MVW instruction, in which case,
the source and destination parameters are location addresses.

Example:

COPY Stop_flag,Program_flag
COPY AData_buffer,AName_field,Name_length

The !NCR macro will generate the code to increment the value of a variable by
a specified amount. The DECR macro will generate the code to decrement the

-3· Paper 1018

value of a variable by a specified amount. The value to increment or decrement
is specified by the first parameter. The second parameter (optional) specifies
how much the value is to be incremented or decremented. If not specified, the
value will be incremented (for INCR) or decremented (for DECR) by one (1).

Example:

INCR Error counter
DECR Words=left,Record_length

The TRUE macro sets all variables in the parameter list to a logical .TRUE.
value (-1) which is compatible with FORTRAN LOGICAL*2. The FALSE macro sets all
variables in the parameter list to a logical .FALSE. value (0).

Example:

TRUE Got_record,End_of_file,Process_data
FALSE Continue_proc,Read_data_rec

The CLEAR macro will clear all variables in the parameter list to zero.

Example:

CLEAR Record_length,Record_number,Record_index

The SET.BITS macro will generate the code required to set 'selected bits according
to the bits set in a mask word. The bits set in the mask word will set the
corresponding bits of the variable with the IOR instruction. All other bits
will remain unchanged. The CLEAR.BITS macro will generate the code required to
reset (clear) selected bits according to the bits set in a mask word. The bits
set in the mask word will reset (clear) the corresponding bits of the variable.

Example:

SET.BITS System_flag,Error_bit
CLEAR.BITS System_flag,First_time_flag

The CALC macro generates the code to perform arithmetic and logical operations.
The first parameter is the variable where the result of the operation is to be
stored. The second parameter is the expression to be evaluated. Imbedded blanks
are allowed in the expression if the string is in quotes. A constant number in
the expression will be treated as a constant value and not an address. Eg: 3+4
will be treated as '=D3 + =D4'. An octal constant may be specified by appending
a 'B' to the end of the number. For example, a '177400b' will generate the value
of '=Bl77400'. The allowed operators for integer and single word operations are
as follows:

OPERATOR

+

*
Paper 1018

OPERATION

INTEGER ADDITION
INTEGER SUBTRACTION or UNARY NEGATE
INTEGER MULTIPLICATION

-4-

/ INTEGER DIVISION

& LOGICAL AND
I LOGICAL OR
\ LOGICAL EXCLUSIVE OR

LOGICAL NOT (COMPLEMENT)

< LOGICAL SHIFT LEFT
> LOGICAL SHIFT RIGHT
[ROTATE LEFT
] ROTATE RIGHT

Notes: '&' and '\' must be part of quoted string to
properly work with the macro assembler.

The shift/rotate amount must be an integer
value from 1 to 16. (not a variable or
literal) eg: 6, not -D6 or Six to
shift/rotate 6 bits.

Arithmetic, logical, and shift/rotate operators may be combined in an expression.
A unary negate may be used for an operation by preceding the value to be negated
by a minus (-) sign. Evaluation of the expression is from left to right.
Parentheses are permitted for documentation purposes, but are ignored when
evaluating the expression.

Example:

CALC Word_addr,'((-Byte_length-1) / 2) + Buffer_addr'
CALC Request_type,Request_code'&'-request_mask'\'177400B
CALC Device_stat,'((Interface_stat&377b)<8)1Card_stat'

The FCALC macro is similar to the CALC macro, but it generates single precision
floating point instructions for arithmetic operations and double word instructions
for the logical and shift/rotate operations. Similar macros may be written for
extended precision operations. Mixed mode arithmetic is not supported.

ALTERNATION INSTRUCTIONS

The alternation instructions will conditionally execute a group of instructions
depending on the state of a condition. There are two types of alternation
instructions, simple and multiple. The simple type is in the form of IF .. ELSE .. ENDIF
statements. The multiple alternation instruction is the CASE statement.

The IF macro is used to generate conditionally executed code. It is similar to
the FORTRAN and Pascal IF Statement. The macro IF statement is used with the
ELSE, ELSEIF, and ENDIF macros. The IF Statement will generate a JMP statement
to a label used by these other macros. The following conditions may be tested:

.5. Paper 1018

Relationship Operator
..................... -..... -
equal or EQ
not equal <> or NE
greater than > or GT
GT or equal >- or GE
less than < or LT
LT or equal <- or LE

Example:

IF Return_code,EQ,System_failure
IF A,<-,Max_value

The ELSE macro is used in conjunction with the IF and ELSEIF statements. !t
will generate code to execute a block of statements when the logical condition
for the corresponding IF statement is false. An ENDIF macro is used to terminate
the ELSE block.

The ELSEIF macro will generate an ELSE statement followed by another IF statement
without increasing the nesting level. Otherwise, the IF statement portion of
the ELSEIF statement behaves like the IF statement. The ELSEIF statement must
be followed eventually by an ELSE, ELSEIF, or ENDIF statement.

The ENDIF macro is used to terminate the block of statements for the preceding
IF, ELSE, or ELSEIF. The ENDIF also reduces the nesting level by one.

Example:

IF A,EQ,Parity_error
code for IF goes here

ELSEIF A,EQ,Xmit_error

ELSE

END IF

code for ELSEIF goes here
ELSE statement is optional
code for ELSE goes here

The IF statement is provided in the HP macro library. Several different IF
statement variations are used to cover a broader range of conditions found when
programming in assembly language. Additional IF macros are as follows:

IF.TRUE
ELSEIF.TRUE
IF.FALSE
ELSEIF.FALSE

IF.ZERO
ELSEIF.ZERO
IF.NOT.ZERO
ELSEIF.NOT.ZERO

Paper 1018

Test if value is .TRUE. (MSB one)
ELSEIF form of IF.TRUE
Test if value is .FALSE. (MSB zero)
ELSEIF form of IF.FALSE

Test if value is equal to zero
ELSEIF form of IF.ZERO
Test if value is non-zero
ELSEIF form of IF.NOT.ZERO

i'

IF.POSITIVE
ELSEIF.POSITIVE
IF.NEGATIVE
ELSEIF.NEGATIVE

IF.EVEN
ELSEIF.EVEN
IF.ODD
ELSEIF.ODD

IF.BITS

ELSEIF.BITS
IF.NOT.BITS

ELSEIF.NOT.BITS

IF.FLAG.SET
ELSEIF.FLAG.SET
IF.FLAG.CLEAR
ELSEIF.FLAG.CLR

Example:

Test if value is positive (MSB zero)
ELSEIF form of IF.POSITIVE
Test if value is negative (MSB one)
ELSEIF form of IF.NEGATIVE

Test if value is even (LSB zero)
ELSEIF form of IF.EVEN
Test if value is odd (LSB one)
ELSEIF form of IF.ODD

Test selected bits specified by a mask
If all corresponding bits set in the mask
are also set in the variable, then the
subsequent code will be executed.
ELSEIF form of IF.BITS
Test if selected bits are clear.
If all corresponding bits set in a mask are
clear in the variable, then the subsequent
block of code will be executed.
ELSEIF form of IF.NOT.BITS

Test if I/O card flag is set for select code
ELSEIF form of IF.FLAG.SET
Test if I/O flag is clear for select code
ELSEIF form of IF.FLAG.CLEAR

IF.FLAG.SET Phi
DO Process_phi_intr

ELSIF.FLAG.SET Dma_complete
IF.TRUE Read_request

DO Cont dma read
ELSE

DO Cont_dma_write
ENDIF

ELSEIF.FLAG.SET Dma_parity
DO Device_clear
GOTO $DMPR

ELSE
DO Illegal_intr

END IF

The CASE routines implement the CASE structure. CASE statements may be nested
up to 15 levels deep. The depth of the case statements does not affect the
nesting level of the IF statements.

The DO.CASE.OF macro is used to initiate the case structure. The first parameter
is a variable that will be used for the selection criteria for each case. An
optional mask may be specified as the second parameter to mask out unwanted bits
before each case is tested. A third parameter may be used to specify the length
of the selector value.

-7- Paper 1018

The CASE.OF macro is used to specify each case that is being tested. If the
variable (ANDed with the mask in the DO.CASE.OF macro) equals the value of the
parameter specified in the CASE.OF statement, then the subsequent block of code
is executed. If the values are not equal, then execution proceeds to the next
CASE.OF, OTHERWISE, or END.DO.CASE statement for the case structure.

The OTHERWISE statement is used to specify the block of code to be executed if
none of the previous case conditions were satisfied. This statement is optional.

The END.DO.CASE statement must be specified at the end of each case structure.
It generates a label for the end of each case block to jump to when completed.

Example:

DO.CASE.OF Request_code,Req_code_mask
CASE.OF Read_request

DO Process read

CASE.OF Write_request
DO Process write

CASE.OF Control_request
DO Process control

OTHERWISE
INCR Error counter
DO Process_error

END.DO.CASE

ITERATION INSTRUCTIONS

The iteration routines are a collection of routines to repetitively execute a
block of code a number of times. The number of times a block of code is executed
is dependent on the type of statement and the values of the parameters used. A
block of code may be exited before the termination conditions are met by using
a break statement.

The following macros are used to implement the iteration routines:

DO.UNTIL
END.DO.UNTIL

DO.WHILE
END.DO.WHILE

DO.FOR
DO.NEXT

Perform a block of code until a condition is met
End of DO.UNTIL block. (post-test)

Execute code while condition is true. (pre-test)
End of DO.WHILE block.

Execute code specified number of times (DO Loop)
End of DO.FOR. Do next iteration of loop.

DO.REPEAT Repeat block of code a specified number of times
END.DO.REPEAT End of DO.REPEAT block.

Paper 1018 -8-

CYCLE.DO Skip rest of block, do next iteration of loop

BREAK.DO Terminate DO.UNTIL, DO.WHILE, DO.FOR, or DO.REPEAT

The DO.UNTIL macro will generate the instructions necessary to perform a block
of code until a specified condition is met. The test for the condition is made
at the end of the block, hence, a block is always executed at least once.

The END.DO.UNTIL macro terminates the DO.UNTIL block. It must be specified
following the body of the DO.UNTIL block.

Example:

DO.UNTIL Buffer_index,>,Buffer_size

END.DO.UNTIL

The DO.WHILE macro will generate the instructions to perform a block of code
while a given condition is true. The test for the condition is performed at the
beginning of the block.

The END.DO.WHILE macro terminate the the DO.WHILE block. It must be specified
following the body of the DO.WHILE block.

Example:

DO.WHILE Process_flag,-,TRUE

END.DO.WHILE

The DO.FOR macro generates the instructions to implement the FOR-NEXT loop. The
first parameter is the variable to be used for storing the index value. The
second parameter is the initial value to be assigned to the index variable. The
third parameter is the termination value. The loop will terminate when the third
parameter value is exceeded. The fourth parameter is the optional step size to
increment or decrement the loop index value on each pass through the loop. Any
of these values may be negative as long as the step size is consistent with the
termination value. When the loop is terminated, the value of the loop variable
will be incremented by the step size past the termination value. The number of
passes through the loop will be calculated and maintained separate from the
parameters and may not be subsequently modified.

The DO.NEXT macro generates the code to specify the next iteration of the previous
DO.FOR. The loop variable is incremented by the step size and a check is then
made to see if the loop has been executed the proper number of times. Alteration
of any of the parameters specified in the DO.FOR after the loop has been entered
will not effect the number of times that the loop will be executed.

Example:

-9- Paper 1018

DO.FOR Buffer_pointer,!egin_of_bufr,Bufr_length,Record_size

DO.NEXT

The DO.REPEAT will generate the instructions necessary to repeat a block of code
a specified number of times. Once the REPEAT block has been entered, changing
the value of the parameter will not effect the number of times that the block
will be executed.

The END.DO.REPEAT macro is used to terminate the DO.REPEAT block. !t must be
specified following the DO.REPEAT block.

Example:

DO.REPEAT Number_of_passes

END.DO.REPEAT

The BREAR.DO macro is used to break out of an iteration block.

Example:

DO.UNTIL End_of_file,•,TRUE

IF Action_flag,•,Abort_loop
BREAR.DO

END IF

END.DO

The CYCLE.DO macro is used to cycle through to the next iteration of a DO.WHILE,
DO.UNTIL, DO.FOR, or DO.REPEAT loop.

Example:

DO.UNTIL End_of_file,•,TRUE

IF Action_flag,•,Skip_record
CYCLE.DO

ENDIF

END.DO.UNTIL

DATA DECLARATION

The following macros are useful to allocate and initialize variables. Variable
names may be declared using these macros to document the data type and to properly
initialize the variable for the given data t)'pe. Since there is no automatic

Paper 1018 -10-

data type conversion, operations on the data are the responsibility of the
programmer. Each macro, except for CHARACTER, will generate one line of code
for each variable in the variable list. The CHARACTER macro will generate three
lines of code for each variable. These macros are designed to be compatible with
their FORTRAN counterparts.

Macro

INTEGER
INTEGER.2
INTEGER.4
REAL
REAL.4
REAL.6
REAL.8
LOGICAL
LOGICAL.2
LOGICAL.4
HOLLERITH
CHARACTER

Example:

INTEGER
INTEGER.4
REAL.4
REAL.6
LOGICAL

Generated Code

DEC 0
DEC 0
DEC 0,0
DEC 0.0
DEC 0.0
DEX 0.0
DEY 0.0
OCT 0
OCT 0
OCT 0,0
ASC w,xx ... x
DEC b+lOOOOOB
DBL *+l
ASC b+l/2 ,xx ... x

w = # words
b # bytes

x = chars

1,J,R,Buffer index,Buffer word,Error code
Two words - - -
Val~e,Old_value,Total_value
Extended_value
Data_flag,End_of_file,Error_flag

the TABLE macro is used to create entries in a table. Several values may be
contained in each table entry. The values may be any of the valid Macro/1000
language literal values or an indirect reference. An indirect reference is made
by preceding a literal value or a variable name with an at (@) sign. This will
produce the address of the value rather than the value itself.

Example:

ENTRY TABLE eBl2347,-D3,l.2,-S'a string' ,@~S'Ptr to string'
TABLE @Prior,@Current,@Next
TABLE @Command,@Mask,@Next_state,@Process_command,3

THE STATE MACHINE

A state machine may be created by using macros to define states and the conditions
required to allow control to pass to another state. Before control is passed to
the next state, an optional action routine may be executed. A parameter may also
be passed to the action routine if required. The DEFINE.STATE macro is used to
label and define the start of each state. The TRANS macro is used to define the

-11- Paper 101.8

conditions to transfer to another state and to define the corresponding action
routine and parameter. Several TRANS macros may be given for each state. The
END.STATE.DEF macro is used to indicate the end of the defined state.

Syntax:

label DEFINE.STATE
TRANS vall,rel_op,va12~next_state,act_routine,act_parm

END.STATE.DEF

Where:

vall and va12
rel_ op
next_state

act routine

act_parm

Example:

StateO DEFINE.STATE

are the values to compare
is a relational operator (see IF macro)
is the state to transfer to if the given
condition is true
is the action routine to execute if the
given condition is true
is the parameter to pass to the action
routine (if executed)

TRANS ,,,Statel,Init_system,Terminal_no
END.STATE.DEF

STATEl DEFINE.STATE
TRANS Temperature,<,Min temp,State2,Low temp,Temperature
TRANS Temperature,>,Max:temp,Statel,Cool,Max_temp
TRANS Fluid level,<,Min level,Statel,Add fluid
TRANS Fluid=level,>,Max=level,Statel,Stop_fluid
TRANS Pressure,>,Max_pressure,State3,STOP_SYSTEM
TRANS ,,,Statel,Wait,30
END.STATE.DEF

STATE2 DEFINE.STATE
TRANS Temperature,>=,Min_temp,Statel
TRANS Pressure,>,Max pressure,State3,STOP SYSTEM
TRANS ,,,State2,Wait~S -
END.STATE.DEF

STATE3 DEFINE.STATE
TRANS Resume_flag,•,Resume,StateO
TRANS ,,,State3,Wait,l
END.STATE.DEF

Paper 1018

I·
I

SYNTAX DIRECTED TEXT PARSER

A syntax directed text parser, similar to TPARSE found on the VAX-11/780 (Digital
Equipment Corp.), may be created using macros. The syntax directed text parser
is useful for the development of command interpreters, compilers, and translators.
It is also useful for interactive programs to provide a greater flexibility for
user input. The text parser operates like the state machine except that
transitions are made depending on the input text string. Before control is passed
to the next state, an optional action routine may be executed. The symbol matched
will be passed to the action routine. A parameter may also be passed to the
action routine, if required. The STATE macro is used to label and define the
start of each state. The TRAN macro is used to define the condition required to
transfer to another state and to define the corresponding action routine and
parameter. Several TRAN macros may be given for each state. The END.STATE macro
is used to indicate the end of the definition for the state. The following symbol
types may be checked in the string:

Symbol Type

'$x'
$$ANY CHAR
$$ANY=ALPHA
$$ANY_DIGIT
$$ANY STRING
$$ANY=SYMBOL
$$ANY_BLANK
$$ANY_DECIMAL
$$ANY_OCTAL
$$ANY_HEX
'keyword'
$$NIL_STRING
$$END_STRING

Syntax:

label STATE

Character(s) Matched

Any particular character
Any single character
Any alphabetic character
Any numeric character
Any alphanumeric string
Any valid symbol name
Any string of blanks
Any decimal number
Any octal number
Any hexadecimal number
Any particular keyword string
Match anything (string pointer not moved)
End of input string

TRAN symbol_type,next_state,act_routine,act_parm

END.STATE

Where:

symbol_type
next state

act routine

act_parm

is one of the valid symbol types.
is the state to transfer to if the given
symbol type is matched. $EXIT is used to
exit the parser. $ERROR is used for an
error exit from the parser.
is the action routine to execute if the
given symbol type is matched.
is the parameter to pass to the action
routine (if executed).

·13· Paper 1018

Example:

StateO DEFINE.STATE
TRAN 'MARY' ,Statel,Proc_name,1
TRAN 'JACK' ,Statel,Proc_name,2
TRAN 'JILL' ,Statel,Proc name,3
TRAN $$NIL_STRING,$ERROR,Proc_error,1
END.STATE

Statel DEFINE.STATE
TRAN 'HAD' ,State2,Proc_verb,l
TRAN 'FETCHED' ,State2,Proc_verb,2
TRAN 'AND' ,StateO
TRAN $$NIL_STRING,$ERROR,Proc_error,2
END.STATE

State2 DEFINE.STATE
TRAN 'A' ,State2
TRAN 'LITTLE' ,State~,Proc_descr,1
TRAN 'BIG' ,State2,Proc descr,2
TRAN $$NIL_STRING,Stat;3
END.STATE

State3 DEFINE.STATE
TRAN 'LAMB' ,State4,Proc_object,l
TRAN 'PAIL' ,State4,Proc_object,2
TRAN $$NIL_STRING,$ERROR,Proc_error,3
END.STATE

State4 DEFINE.STATE
TRAN $$END_STRING,$EXIT,End_of_story
TRAN $$NIL_STRING,$ERROR,Proc_error,4
END.STATE

CONCLUSION

With the use of macros, programming in assembly language will become both more
productive and easier to maintain. The concepts and examples given should provide
an insight as to what may be done using the power of the Macro-assembler. This
paper is intended as an overview of what can be done and is by no means complete
or totally descriptive. Additional macros may be needed, in some cases, to
support the macros mentioned in this paper and to declare & initialize required
assembly time variables.

Paper 1018 -14-

I . .

1019. TAKING ADVANTAGE OF FORMS MODE FOR DATABASE ENTRY APPLICATIONS

R. Miller and J. Craft
Martin Marietta Aerospace

Michoud Div Dept 3437
P.O. Box 29304

New Orleans LA 70189

THE NEED FOR AN EASY TO USE DATA ENTRY SYSTEM:

Most of the database applications we are involved in are used to track project
statuses or man-power requirements. Updates to these databases are performed
via interactive terminal input. When constructing the terminal data entry
routines, we were faced with the following problems;

1: Our group's primary task is process control software, not database
applications. Because of this, we would not have a lot of time
to train users or to assist with data entry problems.

2: Our average user is a secretarial type with minimum computer
orientation.

3: Memory in our system is configured for our primary task, process
control software development, and could not be re-configured.
Maximum size of the database application programs was 32K.

We needed a data entry routine which would meet the following criteria;

1: It must be easy to train users.
2: It must be as easy to use as possible.
3: It must not greatly affect program size.
4: It must be flexible enough to handle all types of data.
S: It must be able to handle data entry modifications without

a lot of re-programming.

We had a lot of problems meeting more than two of our criteria at a time until
we got ahold of two routines which constructed and displayed forms on a 264x
terminal. Without any modifications they met all of the criteria, but they also
added a whole new set of problems. The major ones were;

1: The forms construction program was very un-forgiving. Any mistake
could totally destroy the desired output.

2: It was impossible to determine if a form was accidently erased
while in use by an application program. This made it extremely
difficult to exit the program.

3: Output of error messages to a terminal in forms mode involved
quite a bi.t of complicated code.

However, these routines provided us with an excellent base for our data entry
routines. The following routines are the current results of our efforts to
develop a data entry system to meet our criteria.

'Paper 1019

BASIC PARTS:

There are three basic parts to our forms package;
First; FORMS, A program to construct and edit the forms, Second; FFORM, A
subroutine which controls forms IO, and Third; CFORM, A subroutine which
handles non-forms IO to a CRT in forms mode.

FORMS PROGRAM • Creating and Editing:

Form Files:

We'll start at the logical place, forms construction. Forms are created as File
Manager type 30 files by the program FORMS. Type 30 was selected just to give
us a non-standard file type to eliminate problems like trying to run the editor
on a form, or passing a non-form file to our form display routine.

To create or edit a form, the user runs FORMS, selects the Modify option, and
then enters a file NAMR. If the file can not be found, the create form mode is
assumed and a file is created. If the file is found, it is opened and the first
record is read and re-written to verify read/write access to the file. This
eliminates a problem we had of spending 30 minutes editing a form only to discover
we couldn't re-write the result back to the original file.

Softkeys:

Once the program has verified capability to access the form file, the CRT softkeys
are programmed to enable the user to quickly define the unprotected fields on
the screen. The display shown in figure 1 is output to the CRT. Unfortunately,
this is the only time the user can view this display. Once forms editing begins,
there is no way to output any help messages, so you must remember what each
softkey does.

When RETURN is pressed the screen is cleared and, if in modify mode, the current
version of the form is output to the CRT. The screen may then be changed as
desired with the Edit group, Display group, or Alpha-numeric keypad. When the
desired form is completed, the user presses the ENTER key to read the fonn into
the file.

Edit Rules and Practices:

There are some rules:
1: To abort an edit without file re-write, put an XX in the top left

corner of the screen before pressing ENTER. This provides an escape
route for a serious error such as pressing the clear display key
instead of the delete character key.

2: To delete an unprotected field, start with the character before the
field and use the delete character key. Starting with the first
position of the field, or using the space bar will not delete the
undisplayed field control characters.

Paper 1019

3: There must be less than 20 consecutive blank lines in any given
form, as the program stops the screen to file copy when it encounters
this condition.

4: If the screen is to be cleared before the form is output by an
applications program, put a C in the top left corner of the screen.
Otherwise the screen will be cleared only from the first non-blank
line of the form. This feature is extremely useful when the top
lines of the form are identical as in figures 2 and 3. The top
section of both screens is in one file while the bottom sections
are in two different files. To produce the screens shown, the top
section is displayed first, then one of the bottom sectio.ns is
displayed. Although this method of combining files to produce one
screen does conserve some disc space, the primary reason this is
done is to keep forms editing at a minimum if it is ever necessary
to change the top section of the screen.

A good practice to follow is to leave the top line blank so that the application
programs can use it to identify the form or a process step. Quite often in our
application the same form is used in different tasks. Before we installed this
feature, our users would sometimes lose track of which task was being performed.

It's also a good idea to leave a couple of blank lines at the bottom of the screen
for application program messages. Message output techniques will be discussed
later.

FORMS PROGRAM - Forms Check-Out:

After the form is created, the most obvious thing to do is to verify that it has
been created correctly. Originally this involved dumping the form to the terminal
and insuring that the form was displayed correctly and that the fields were of
the proper alpha/numeric type. This method left the terminal in forms mode and
a hard reset had to be done to return it to normal operations. To make check-out
easier, the TRY routine was added to the program FORMS.

The "TRY" routine actually simulates a program, which displays a single form or
as many as 10 forms to a CRT. This is done to check the form's display and to
verify the unprotected fields for proper length and data types. This routine is
extremely useful in preparing the forms for a program. If any of the forms are
incorrect the programmer can return to the MODFIY routine, make the necessary
corrections, and TRY the forms again. It is also useful during the coding stage
of a program, because the programmer can TRY the forms at any time to get the
correct field size and type or location of data in the forms.

Prompts for the "TRY" routine are;

Entry expected is:
Form-File-Namr <,flag ,ntab>

flag 1 to advance to next form without pressing ENTER
ntab ~ Number of tabs to output

Enter file name # 1:

The input should consist of all the forms to be verified

-3- Paper 1019

and a blank entry stops the input and starts the display.

Definition of input:

Form-File-Namr is the file names of the forms to be displayed.

flag

ntab

controls how to advance through the forms.
If flag is set to zero (0) than try this form before
advancing to the next form by pressing ENTER.
This is useful in stepping through a multiple set of forms.
If flag is set to one (1) than the next form is displayed
without pressing ENTER.

NOTE: When displaying a single form or the last form of
multiple set of forms, the flag should be set to
zero (0) to try the form or forms.

If field positioning is desired, ntab is the field
number minus one.

NOTE: If flag is not zero than ntab is ignored.

Figure 4 shows some input examples for the TRY routine.

FORMS PROGRAM - Listing Forms:

The LIST routine in the FORMS program grew out of a necessity to produce hard
copies of the forms for documentation and user approval purposes. Attempts to
dump a form file to the 2608A printer resulted in unreadable text as the inverse
video and unprotected field control codes were printed. The LIST routine strips
these characters from the output and replaces the spaces in the unprotected fields
with a vertical line as an aid in determining the field locations.

Prompts for the LIST routine are;

Enter List LUN/File namr:

User may enter a logical unit number or a file namr as the
list output device.

NOTE: If a file namr is entered and the file already exists
the program will request permission to overwrite the file.

After the list device is selected, the program will request form
file namrs to be listed. A blank entry terminates the list routine.

Figure 5 shows a copy of a print listing.

Paper 1019 .4.

APPLICATION SUBROUTINES = FFORM:

The subroutine FFORM is used to display forms, read forms, and reset the terminal
to non-forms mode. The calling sequence is;

CALL FFORM (NAME, NCRN, NBUF, LEN, MODE, NCRT)

NAME and NCRN are used for display form mode to define the form file
name and cartridge reference number.

NBUF is the data buffer for form read functions. This buffer must be
sized large enough to contain all the data from the screen including
the field separators. However, the field separators are stripped
from the buffer before the data is returned.

LEN is used for display and read forms mode. When the call is made,
it is the length of the data buffer. The return value depends upon
the function selected as described below;

MODE

Display: Zero if no error, otherwise FMP negative error code.
Read: The word length used in the data buffer is returned.

A return of zero (0) indicates that no data was read from the
screen. Usually this means that the screen was inadvertently
cleared by the user. A return of minus one (-1) indicates that
the screen was successfully read, however all the unprotected
fields were blank. We typically treat this condition as a
terminal time-out condition.

defines the function or functions to be performed.
A layout of this parameter is shown in figure 6.

Bit 2 on selects the display form function,
Bit 1 on selects the read form function, and
Bit 0 on selects the reset terminal function.

Since functions are selected by certain bits, the user may
issue a call which performs multiple functions such as display
and read a form. In this case, the return value of LEN would
be determined by the first un-successful, or the last successful
function performed.

Depending upon the function selected, the MODE parameter may
also be used to invoke the following options;

1: In the display function up to 78 characters of identifyi~g
text may be output on the top line of the terminal. To
do this, set bit 3 of MODE on, put the text in the data
buffer NBUF, and set LEN to the word length of the text.
When this option is used, it is a good idea not to select
the read form function as the text buffer will be used
to return the data from the form and is normally too
small for input operations.

2: In the read function the cursor may be positioned to the
beginning of any of the first 128 fields on the screen
by setting bits 14 thru 8 of MODE to the field number

-5- Paper 1019

minus one.

3: Also in the read function the terminal is normally set
to time-out in five (5) minutes. This is done to prevent
the terminal from being tied up if a user leaves in the
middle of a session. To set infinite time-out set bit
15 of mode on. In either case, infinite or five-minute
time-out, after the read form operation is complete the
original time-out value for the terminal is restored.

NCRT defines the terminal logical unit number for the IO operations.

Figures 7 thru 10 show various calls to this routine and the
resultant screen display.

APPLICATION SUBROUTINES - CFORM:

The subroutine CFORM is used to control non-form IO on a terminal which is in
forms mode.

The calling sequence is;

CALL CFORM (NOPT, NCRT, NPOS)

NOPT is the function to perform where;
1 Turn forms mode off and line position the cursor.
2 Turn forms mode on and field position the cursor.
3 ~ Clear screen from a specified line number, then field

position the cursor.
4 Field position the cursor then output spaces to form.

NCRT is the terminal logical unit number

NPOS defines the positioning information for the function selected.
The left byte contains the field number mirrus one for all functions
which perform field positioning. This value cannot exceed 79.
The right byte contains the line position for functions 1 and 3.
This value cannot exceed 23.

For function l, the sign bit is used to enable or disable the
keyboard while the forms are off. The keyboard will be disabled
unless this bit is on. We typically leave the keyboard disabled
to output informational or error messages and only enable it if
we are going to request a single non-form user input such as;

IS THIS THE CORRECT RECORD? (Yes or No):

For function 4, the right byte is the number of spaces to output.
If this value is set to 255, then the unprotected fields of the
form are cleared from the cursor position.

A typical use of functions 1 and 2 is shown in figure 11. Here the

Paper 1019 -6-

I ~

i

forms mode is turned off in order to outp~t an error message and tnen
forms mode is turned back on.

The typical use for function 3 is to clear the error messages. And the
typical use for function 4 is to clear a constantly displayed form.

FORMS TECHNIQUES:

User Training:

Usually a ten to twenty minute session with a user is all the training that is
required. Also, because it is so easy, we normally only have to train one user
from a group and then that user trains the others in his group. Our typical
user has no idea of what program is running or what database is being accessed.
He merely sits down at an available terminal and logs on. From that point on
all his decision making is performed thru forms entry. He has only three things
to remember;

1: His user ID and password,
2: Press ENTER when the form is filled in, and
3: Press RETURN and re•type the last field if the cursor

won't move.
The last item is due to the fact that forms are using the extended edit capabilities
of the terminal and if the alpha/numeric type of the character entered by the
user does not mee.t the field type, the terminal beeps and keeps the cursor in
the position where the character is entered. There is a caution on this. The
HP 238x terminals do not have extended edit capabilities. If you are using
those terminals, you'll have to perform alpha/numeric character validation within
the application program. ·

Dealing With Form Changes:

Unless you're living in a totally different world than I am, one of the life's
constants is user requested changes. This used to cause all kinds of minor
headaches in re-formatting prompt messages and input statements. Thru the use
of forms, we've been able to greatly reduce the problem.

Figure 12 shows an original version of a user entry form. Note the position of
the fields FACTOR and SCHEDULE TYPE. Figure 13 shows a modification to this
form to meet additional user requirements. Here a function escape method has
been provided, two new fields dealing with installation data have been added,
and the SCHEDULE TYPE and FACTOR fields have been repositioned to correspond
with the user input document.

Figure 14 is the code used to read both forms. As can be seen, the only changes
required for the modified form were a DECODE and a FORMAT statement. Granted,
program changes had to be made to handle the additional three fields, but what
we're concerned with here is only those changes required to handle input changes.
Our average time to make this type of change is around 15 minutes. Most of that
time is spent editing the input form.

-7- Paper 1019

Outputting Data To Forms:

Data may be output to a form using standard FORTRAN formatted write statements.
If necessary, the cursor may be positioned to the start of a field using function
4 of CFORM. Special consideration must be given when outputting more than 132
characters to a form since this exceeds the normal buffer limits of the terminals.
One way around this is to use the HP subroutine LGBUF to increase the IO buffer
size. Another method is to output less than 132 characters with the last
character being an underscore (), and then output the remaining characters.

BENEFITS AND SUMMARY:

There are two major benefits derived thru our use of forms;

First: User appreciation and acceptance of our system has greatly
increased. A major factor in this increase is the minimal
amount of entry rules that have to be learned. We spend
less time training the users and assisting them with problems
in running their applications. We have received several
comments on how easy our system is to use compared to other
systems they have used.

Second: The programmers in our group have more time to work on the
'guts' of the program. Major reasons for this are the
reduced time spent with the user, and the fact that CRT IO
has become a matter of displaying the correct form and
reading or writing the data.

Use of forms relieves the programmer of a lot of the burden in formatting terminal
IO. Also, if the terminal has extended edit capabilities, the necessity for
verifying the data type inside the application program is eliminated. Use of
forms need not be restricted to data entry either. A form can be output to the
terminal and then filled in with data. Here again, the programmer is relieved
from writing FORMAT statements to get the desired results.

Although we developed it for our database applications, forms may be used in
any program which performs a lot of terminal IO. It is a method which is easy
to program, easy to train, and easy to use.

Paper 1019 ·8-

I .

fl . Start unprotected field with ' { '

f2 . Stop unprotected field with ' l .

f3 . Start unprotected field

f4 . Stop unprotected field

f5 . Start unprotected field, numerics only

f6 . Start: unprotected field, alpha only

f7 Start unprotected field with ' t t 1 numerics only

f8 . Start unprotected field with t [' t alpha only

Press RETURN when ready to continue: -

Figure 1: Softkey settings for form creation/edit.

Enter Report Function • Tool ID is OK

Exit (J Add[] Change[

TOOL ID: Tool Number
[T27Kl234

Copy[Display[J

Revision
[NEW]

From-Unit
[l]

Report[X]

To-Unit
[2]

To abort this function put a A in this box ··--------------> []

(_] Deleted tool list
[l Active tool list
[l Display Tool ID above on this CRT
[l Print using Tool ID above
[l Print changes since this date I I

Press ENTER to read form.

Delete()

Figure 2: Example# 1 of form output with identification line.

-9- Paper 1019

Enter Report Function - Tool ID is Invalid

Exit[] Add[] Change[

TOOL ID: Tool Number
(T27K

Copy[] Display[]

Revision From·Unit
(l

Report(X]

To-Unit
(l

To abort this function put a A in this box ----------------> (]

[_] Deleted tool list
[l Active tool list
(l Display Tool ID above on this CRT
[l Print using Tool ID above
(l Print changes since this date I I

Press ENTER to read form.

Delete []

Figure 3: Example # 2 of form output with identification line.

Example # 1: Display a single form.

Enter file name # 1: FORMl
Enter file name# 2: (CR]

Example # 2: Display a single form and field position the cursor.

Enter file name # 1: FORMl, ,9
Enter file name# 2: [CR]

Example # 3: Display a three forms

Enter file name # 1: FORMl
Enter file name # 2: FORM2
Enter file name # 3: FORM3
Enter file name # 4: (CR]

one at a time

Example # 4: Display a three forms as one screen
And field position cursor.

Enter file
Enter file
Enter file
Enter file

Paper 1019

name #
name #
name #
name #

1:
2:
3:
4:

FORMl,l
FORM2,l
FORM3,, 9
(CR]

Figure 4: TRY routine input examples.

-10-

****** List of Form FNAMl ******

Enter Person's NAME
LAST FIRST

1111111111 111111 1111 111 l 11111 I I I 111 f II I 11 II

****** List of Form FNAM2 ******

ADDRESS I I 1111 11 I I I 111 I I 11 11 11111

CITY
I I l I I I I I II l II I I

NOTES:

STATE
1111111111111111

ZIPCODE
111111

INT

11

****** List of 'Form namr ****** Indicates start of form
****** Indicates end of form

Indicates unprotected field position

Figure 5: LIST routine output example.

I Keyboard I Field
I Control! Positioning I Not Used I H I D I R I X I
I ·-------1 ··-------·------1 ·------------·I ··-I·-· I··· I·-· 1
I 15 I 14 s I 7 4 I 3 I 2 I 1 I o I

Bit Usage

X Reset Terminal to normal mode
R Read form
D Display form
H Output text header line (Display form mode only)

Keyboard Control and Field Positioning use for Read form mode only

Figure 6: MODE parameter for FFORM

• 11- Paper 1019

LEN-10
MODE=4
CALL FFORM (NAMEl,0,TEXTl,LEN,MODE,NCRT)
IF (LEN .NE. 0) GO TO error

Exit[_] Add(] Change(] Copy(] Display(J Report(J Delete [J

TOOL ID: Tool Number Revision From-Unit To-Unit
{ (1 [1 [1

To abort this function put a A
Schedule Type (]

in this box ---------------------------> []
(S=Standard, C=Compressed, X=Expanded)

Number of Phase Indentures []

Gross
Factor

Standard Hours
Start Date

Complete Date

Press ENTER To Read Form

(
(
(I I
(I I

(Per Unit) Installation
#Phases Start Date

(1 I I 1

Figure 7: FFORM Display form option without text ID line.

Paper 1019 -12·

DATA !TEXT / 'Enter Tool Data ' /

LEN=lO
MODE=l2
CALL FFORM (NAMEl,O,TEXTl,LEN,MODE,NCRT)
IF (LEN .NE. 0) GO TO error

Enter Tool Data

Exit(_] Add[Change[] Copy(] Display[) Report [) Delete [J

TOOL ID: Tool Number
[

To abort this function put
Schedule Type [

Number of Phase Indentures [
Factor [

Gross Standard Hours [

a A
l
1

Revision From·Unit To·Unit
[l [l

in this box ->
(S=Standard, C=Compressed, X=Expanded)

(Per Unit) Installiation
Start Date [I I #Phases Start Date

Complete Date [I I [l

Press ENTER To Read Form

Figure 8: FFORM Display form option with text ID line.

LEN=400
MODE=2
CALL FFORM (0,0,NBUF,LEN,MODE,NCRT)
IF (LEN .EQ. 0) GO TO error
IF (LEN .EQ. -1) GO TO no input

Enter Tool Data

I I 1

[l

Exit[_] Add[Change[] Copy{] Display[) Report(] Delete[]

TOOL ID: Tool Number Revision From-Unit To-Unit
([l [l [l

To abort this function put a A in this box -> [l
Schedule Type [l (S=Standard, C=Compressed, X=Expanded)

Number of Phase Indentures [l
Factor [

Gross Standard Hours [(Per Unit) Installiation
Start Date [I I #Phases Start Date

Complete Date [I I (l I I l

Press ENTER To Read Form

Figure 9: FFORM Read form option with no field positioning.

-13- Paper 1019

LEN=400
MODE=l2*256+2
CALL FFORM (0,0,NBUF,LEN,MODE,NCRT)
IF (LEN .EQ. 0) GO TO error
IF (LEN .EQ. -1) GO TO no input

Enter Tool Data

Exit [) Add[Change [) Copy [] Display[J Report [J Delete (J

TOOL ID: Tool Number Revision From-Unit To-Unit
{ J [J

To abort this function put a A
Schedule Type [_}

Number of Phase Indentures (J
Factor [

Gross Standard Hours [
Start Date [/

Complete Date [/

in this box --------------------------->
(S=Standard, C=Compressed, X=Expanded)

Press ENTER To Read Form

I
I

(Per Unit) Installiation
#Phases Start Date

(l (I I

Figure 10: FFORM Read form option with field positioning.

CALL CFORM (l,NCRT,18)
WRITE (NCRT,l) IERR,IESC,IESC
CALL CFORM (2,NCRT,0)

1 FORMAT ('DBGET Error on Dataset TFRPDl = ',16,//,
> 'Please Record Error Message. ,
> 'Then press ',Al, '&dB ENTER' ,Al,'&d@')

Enter Tool Data

[J

Exit[_] Add[X] Change[J Copy(J Display[J Report [J Delete[J

TOOL ID: Tool Number
[T27Kl234

Revision
(NEW]

From-Unit
[l]

To-Unit
[2 J

To abort this function put a A in this box ···---··--··-···--··----·--> [J
Schedule Type [SJ (S=Standard, C=Compressed, X=Expanded)

Number of Phase Indentures [2)
Factor [. 7

Gross Standard Hours [289] (Per Unit) lnstalliation
Start Date [6 /25/85] #Phases Start Date

Complete Date [11/15/85) { J [/ / J

Press ENTER To Read Form

DBGET Error on Dataset TFRPDl = 114
Please Record Error Message. Then press ENTER

Figure 11: CFORM Turn off forms to display an error message.

Paper 1019 ·14-

Enter Tool Data

Exit[] Add[X] Change []

TOOL ID: Tool Number
[T27kl234

Number of Phase Indentures
Schedule Type

Gross Standard Hours
Start Date

Complete Date

Press ENTER To Read Form

[_)
[l
[
[I
[I

Copy[] Display[J Report [J Delete(J

Revision
[NEW]

From-Unit
l]

Factor [
(S=Standard, C=Compressed,

J (Per Unit)
I l
I 1

To-Unit
[2 J

X=Expanded)

Figure 12: Original Tool Data Entry Form.

Enter Tool Data

Exit (] Add[X) Change[J

TOOL ID: Tool Number
[T27K1234

To abort this function put a A
Schedule Type [_)

Number of Phase Indentures [J
Factor [

Gross Standard Hours [
Start Date [/

Complete Date [/

Press ENTER To Read Form

Copy[J Display [J Report [J Delete[J

Revision From-Unit
(NEW] l]

To-Unit
2]

in this box --------------------------->
(S=Standard, C~Compressed, X=Expanded)

I
I

(Per Unit) Installiation
#Phases Start Date

[l I I l

[)

Figure 13: Re-structured Tool Data Entry Form.

-15- Paper 1019

DIMENSION NBUF(400),ISDATE(3),ICDATE(3)
1 FORMAT (29X,Il,FS.0,Al,F8.0,6(I2))

LEN=400
MODE=ll*256*2
CALL FFORM (0,0,NBUF,LEN,MODE,NCRT)
CALL CFORM (3,NCRT,16) Clear previous messages
IF (LEN .EQ. 0) GO TO 8000
IF (LEN .EQ. ·l) GO TO 4000
DECODE (56,1,NBUF) NPHASE,FACTOR,ITYPE,GROSS,ISDATE,lCDATE

DIMENSION NBUF(400),ISDATE(3),ICDATE(3),1IDATE(3)
l FORMAT (29X,2Al,I2,FS.0,F8.0,6(I2),Il,3(I2))

LEN=400
MODE=ll*256*2
CALL FFORM (0,0,NBUF,LEN,MODE,NCRT)
CALL CFORM (3,NCRT,16) Clear previous messages
IF (LEN .EQ. 0) GO TO 8000
IF (LEN .EQ. ·l) GO TO 4000
DECODE (65,l,NBUF) IABT,ITYPE,NPHASE,FACTOR,GROSS,

> !SDATE,!CDATE,IPHASE,IIDATE

Figure 14: Form read code for figures 12 and 13.

Paper 1019 -16-

1020. INCOMING MATERIAL MANAGEMENT AND VENDOR QUALITY CONTROL:
AN HPlOOO CASE STUDY

G.R.Nevogt
G.L.McCrory

ITT Aerospace/Optical Div.
3700 E. Pontiac St.
Ft. Wayne IN 46801

In December of 1983 a government contract was awarded to ITT's Aerospace/Optical
Division for the production of the Single Channel Ground and Airborne Radio
System (SINCGARS). A new production facility was dedicated for this effort,
and in May of 1984 the new facility was staffed in Fort Wayne, Indiana. It was
Quality Engineering's desire to implement a computer which would automate many
of the tasks traditionally done manually. For planning purposes, it was assumed
that the system should be capable of processing seventy (70) incoming lots of
material per day and that the material would be routed to one of eight inspection
stations upon receipt. This paper addresses the tasks which are performed by
this system in the Purchased Material Inspection (PMI) area at ITT's SINCGARS
production facility. Among these tasks are:

(1) The creation and maintenance of inspection instructions for all
purchased material used in the radio,

(2) The maintenance of information on each inspection lot in the
department including current location, status, and priority level,

(3) The storage of statistics on parametric test data which could be
used at a later date for the plotting of histograms to be used
for trend analysis and process capability studies,

(4) The accumulation of inspection histories by part number and vendor,
contributing to the determination of sampling requirements per
MIL·STD·l05D.

CHOOSING THE SYSTEM

Several factors were deemed essential in the determination of which computer
system would be chosen for ITT A/OD's SINCGARS facility:

(1) A proven "track record" had to exist, with respect to service
representative response to customer inquiries and problems,

(2) The system chosen should possess a history of performing in a
similar applications' environment reliably. Downtime was, of
course, a major concern as production capability is directly linked
to the availability of parts,

(3) Relatively inexpensive applications software and software consulting
should be available from a vendor located in close proximity to
the facility,

-1- Paper 1020

(4) The system should be user friendly, as the population of users
would be non-computer oriented.

It was decided after extensive research that an HPlOOO was the computer which
best satisfied our requirements. Our attention then turned to locating an
applications software vendor, familiar with the Quality requirements involved
in a program governed by MIL-Q-9858. Automated Technology Associates,Inc.(ATA),
founded by a nucleus of Quality Management and laboratory automation personnel
with expertise in Hewlett-Packard computer applications, was chosen to supply
the software which would allow Purchased Material Inspection to efficiently
carry out the required tasks.

INSPECTION INSTRUCTION MANAGEMENT

MIL-Q-9858 requires thorough procedures and instructions for all operations from
procurement of material to delivery of the end product. Thus, the problems
faced by preparing to inspect more than 1500 different piece parts in 12 months
would seem a formidable task. Our objective was to be able to create and
efficiently maintain approximately 1500 inspection instructions while at the
same time minimizing disk storage requirements.

In discussing the problems of creating the work instructions with ATA, a program
referred to as Technical Instruction Manager (T.I.M.) was proposed as a solution
to the task.

Automation of this task was based on the concept that inspection instructions
for like material would be very similar with only minor variations from part to
part. Some examples;

• Resistance tests on carbon composition resistors are exactly the
same except for value and tolerance specifications.

• Mechanical measurements made on screws are exactly the same except
for thread and size specifications.

This concept allows boilerplates to be created for general types of inspection.
Variable files containing part specific information would be merged into the
boilerplates creating unique inspection instructions. See figures A and B.

Boilerplates and variables files can be organized using the CI hierarchical file
system to facilitate efficient management. The main benefit of using the
hierarchical file system was based. on being able to efficiently maintain the
files that, when merged, represent several thousand pages of work instructions.
Boilerplates are created using EDIT, for each type of test to be performed in
the inspection department. Variable files are also created using EDIT, for each
part number to be inspected. Variable files control what boilerplates are used
and sets the variable values to be inserted. Variable files representing different
types of material are grouped into sub-directories by commodity. Organizing
the files in this manner facilitates creation of similar instructions very
efficiently. For example: The variable file for a specific part may be copied
to create another variable file using the CO command. The minor changes required
in the new variable file, as defined by the material specification, are readily

Paper 1020 ·2·

I'

/Wt /\.iE-4DE::;>. ~p
< < 8 4 l::. l: . l? 1] 7 .,)

·······················-········-·
I TT .::voD

PMI WOPK i~lSTRUCTION

tP~RT NUMBE=: c<PN ,, SOURCE DOC. ~£0: <(RE 1J ''I
t------------------------------~--------------------------~--------~-· ~ ~ tW/I REtJ: <{WIRE'J >> DElJlC~ TYPE: .;~TYPE >}\

1--·------------••A------•••·! tP~ANNED 3·~: <<r~AME ,, APPPOVAL: 1
t-------------------··•••••••••••··--------·•·····------·-·----•- .. I
I EDU I ?f'1ENT KS::'JU r REO: c < E·J 1 ., > • , < EO? >., l
1 < < ECl'.2 .,. > , < < E'J6 >) 1
t C<E03 }J.1.<EJ7 ''l
t ~<E.J4 ''. <'E:;B .,, I

t--1 15?S:C:f'.:!L Nl]T~::,; c <NOTEl ~>I
I < <NOT=::2) } I
t ! <NIJTE; >, t
t <<NOTE4 ::i)I

, , t~CALt8RATl0N OATE VER!F!~ATICN

A} ~e~k ! t ~".) l~me~t .~c11br-~H1ori ~t:1c1<.er-:. ~nc V'!'l"\i'J tt>~t
.::l1:ir~ :on u<:: dote?> ar'!' no~ ~.<C':!'!'O<::j.tf th~ c~l!br~ 1 1on
ue .:lat 1~ vce'!!c~c. 00 MOT :::>QCJCE=:J •...i1tr> t~~t:no l'~r;itif'..i
1.JC~r'.Jl ,:ir.t r:nni·:::~".~r ~ngt'1~~,. imm-eat~•.ely! 1 ·

• ,•a i!M SWtiCH VA~!A8LE FIL~.
CPEATEQ BY G.L. McCrorv ·ss0~22.1219~.,
/WI/SWITCH/~3011234.PN

SE:i VAR! .ABL~S t='QR T~E HE~~ OEK

, .SY=~N-~301!1?~·1
•• -:=·y·,.;;:su=G
•• S·r=r,J[RE•J,.~8 ._:i:,N!_!.:,~;' 1-;57
, • SY 2 TYP1=:=~=::i_.:::iy

•. S'(=NAME:J.C. ~HWTf
•• SY.,..NOTEl•
, • SY•NOTE2•
.• SY.:::NOTE3.
, . SY=NOTE4•
,,SY=EQl=HPQ~l6 ~ONTROLLER

, .SY*E02=~P2671 ~R!NTER
, ,S'(=EJ~=~P3~78 DVM
.. SY*E~4~~500AU5~ ~1-oor TE3T~R
•• S'r'= ~ 1~i:::,,, -!P-:, 0 3-4 P'JlJE.::: '-=UPPL Y
•. SY~E0~•6'' OIGL ~~LIPERS
•. SY•E07•
• , SY=E09•
.,TR=/W[/~E~DER.9P

.. ••SET UARl~BL2~ ~GR 0~R~~ ~APKING

. ,S\'~!iE~l,.~~011234·!
,,S'i~!TEM~=2~.~ !J 300 JhH~

•. S'i':!TEl'1:: .. i•) AMP-= ..::iT :1'3 I~ ':]0:

, ,S't=!T~M4= 1::?C~£T 0l~G~HM

•. SY~!TEM~=TE~Ml~lQL !OE~lT!~EC~TiON

.. SYs!T~M6=SOUF~~ CODE C~T~ CJDE

•. TR~/Wt~'MARK!NG/PART3.SP
.. EX

f igur~ 3

-3-

, ..

Paper 1020

accomplished using EDIT.

INCOMING MATERIAL MANAGEMENT

Prior to installing an HPlOOO computer in our Purchased Material Inspection
department, incoming material management was a very labor intensive effort. A
simple question from the Material Control Department : "Is this part in the
inspection area?", required a search of the various shelves where the specific
types oE material would normally be stored awaiting inspection. Material
deviating from the normal flow would complicate the task further. Additionally,
the Inspection manager had no efficient or accurate method of measuring the
current inspection work load. The quantLty of incoming and outgoing boxes of
material gave a vague measurement of throughput; however, the manager had no
way of knowing the work load at each inspection station except to inventory the
boxes at each station.

ATA was contracted to help solve these problems and streamline the flow of
accepted and rejected material through the Inspection Department. The goal was
to be able to easily use a computer terminal and access material locations and
status of inspections.

ATA implemented several modular applications programs, intended to perform
various tasks in a "friendly" environment, thus allowing non-computer oriented
personnel to collect and report inspection information. The plan was to collect
data at specific points in the inspection process;

1) · Receipt of material :
· assignment of material to a station,
· monitor station workloading,

2) · Completion of inspection :
· collection of inspection results,
· tracking accepted material to stock,
· tracking rejected material to the "HOLD" area,

3) · Final disposition of rejected material :
· Tracking material being returned to the vendor,
· Tracking material being reworked,

Data is collected on data entry screens using HP FORMS/1000 and stored in a
"Work In Progress" IMAGE data base. A second menu driven application was created
to allow users to run various reports in batch at lunch or during breaks. Four
reports were designed initially as follows;

Paper 1020 -4·

Part Status report • to report status of all lots of a given
part number in the inspection area.

CURRENT PART NUM6ER STATUS
MAY 28, 1985 e:sa AM

PM! !NOU!RY ~OR A3012701-I
TRAr<SISTOR. RE'J-8

LOT A5S!GN€0
NUMS£R LOCAi JON

50ZQ76 A
502068 A
SJ:::~2! A
502300 A
SQ! 783 A
5~ 1650 A
5~0707 HO~O R
4~ZSS4 HOLD R
Si:i0773 HOLD R
5~0357 HOLD R
5~~437 HOLD P.
500110 HOLD R

rMI

CR12ZZ
CR I :37
CR l Z33
CR 1226
CRt 241
CR0968

•:OM~U::t l•JN
~E~iJ:r.~:J

;s,-0s1's
85105118
95,~5;:7

85i0Sl16
35/135103
85104123
8Sl0Z/1 B
54111115
as1021:s
a510 111 9
851~1 /26
85101106

E:(!1 ~M!

I I

55t03l0S
95, 03105
85/03/~9

35/03/09
85103/11
85/03/l l

Priority Report · to report all material waiting to be
inspected sorted by length of time
in the inspection department.

MER !'Ml LOCATION
!)A•" •t

95:05.'02 CH:1
~EC:-i

es1os103 a
0
F
HOLO

8SlCS1oq HOU)
SSt'CS1ns HOLD

Station Backlog
Report

!.OTS ?AF.T NUMBER
rn

O'.~ A301329?-0C1
A3l1133!1S-1
A30\3214-001
1-13013325-1
A3013330-001
A301'.:330-l}U1
A3013333-00!
A3tl13~3':-;}U1
A3013~CS- l

r.11 LOi ?:? fORITY :!:'.?CRT
!1lY 28, !SSS S:uS H:1

QTY RECE!IJEO
ff~I)

36. ocu
34. 030
son. au
7no .no
257 00
17. 000
unun
337. 00
19'1. 00
!lS. or.u

· to report all material at each inspection
station.

LOT NUMBER

502101
502191
502144
SU1B3S
502212
Sn'2123
502098
SW22!!5
502127

~RT OESCP.IPTIC~

.5.

40. aco
~9 .000
llS .00
36. O~!l
18. O~ll
24.flOO
56. 000
~qs ~o
23. 000

il5l05/'Z3
8510~/2(;
85105/'25
851!15105
SS10Sl3l
85/!15/24:
85105123
35/1}5/'27
85105/24

Paper 1020

Rejected Material
Report

• to report all rejected material and
length of time waiting for disposition.

~.R ACT!UITY P~G!
J'J~!~ <l, 1925 11 : 2'1 RM

P.SS!CN£D P{:IRT NIJ~.SER
LOCATIC.~

CC~P A3Cl262S-ll
A3012694-I
A301279/ ... l
A30t29'29al
A3012932-l
A3fl12932al
A3013aSO-l

LOTI 1'?-!R 1 START D~~ ~!T PM1
ORTE

401834 CRff322 W!M? 85/0o.'23
502015 CRl 464 SS/CS/~5 RS1fl51~0

502259 CR1503 es1ns130 SStUS/30
snn270 CR!?9S3 I I 85Jfl5/1S
402884 C~C760 84/11/30 SS/Co.'29
501273 CR15fi2 SSIUS/30 351:!5/30
5017~2 CP.1383 85104/iS BSIOS/20

Users can also create custom reports using the IMAGE access language QUERY­
Figure C shows the information available for reporting from the PMI data bases.

I P1'1I DATA BASES]

WORV IN-PROGRESS
Dll.TA BASE

-Pc't Numcer
-PMI Lot#
-Location in PM!
-PMI mfg co,:Je
-Date Received in PM!
-Oly Received in PMI
-Sample Pion
-Sample Size
-Total # fo;led
-Accepted/Rejected
-DMR#
-Dote Exited PM!
-Dote on HOLD
-Qty to Stock
-Qty to RTV
-Qty to Repair/Retest
-.Qty to Scrap
-Qty to Other

NOTE: This ir"1forrnotion is
current1y available
durir1g the period frorn
dote received until
2 weeks ofter PMI exit.

C 1JAlfTY $VST<:::M MANA8ER
DATA BASE

-~ort N•.J'Tlber
-P.MI lot#
-PMI rnfa code
-Dote R.;ceived in PM!
-Oty Received in PMI
-Sample Pk:in
-Sample Size
-Tc.to! # foiled
-Accepted/Rejected
-DMR#
- Date Exited PM!

NOTE: This information is
currently available
for the lost 1 0 lots
of o given part n•~moer
from a giv;;.n vendor.

Figure C

VENDOR QUALITY CONTROL

A vendor's "quality rating" is calculated based upon the ratio of unacceptable
parts to acceptable parts in samples of past inspection lots. This quality
rating then becomes an integral factor in the determination by Purchasing of

which vendor shall receive an order for the part in question. It should be noted
that vendors may be evaluated on an individual part number basis, or on a
cUIIn.llative part numbers submitted basis, as the database is capable of accommodating
either inquiry. Figure D is an example of an inspection history for material
from a specific vendor. This information is used when determining the sampling
plan for material received, and is indicative of the information from which the
quality rating is derived.

M.! .~.

_____ ... _ ----·--------- -............... _ .. ,..
?MI =NiRY L.OT: ;AMPt.£

:JATE ~LRN

?:"!! 1ir1
WE".:EiV~Q

NUMSER ACCE=> T OMF.:
;r-t:...=::: -~EJECT ------- .. -.......... -............... ---- --- --- - - -·-------

S!:l05/!S S0~C7J 110RM 795Z ~~e 0 A

aSi04/ZS 501743 NORM SA.2'l ~00 0 A

SS/04 II 8 Sal 671 NORM 735 a0 0 A

85103/06 Si{)0S9S NCR~ T Zt 66 :!l i: 0
841 I :106 A0:30S2 NORM l71 17 315 4

84/ I llZB !02909 NORM 3~es I ZS 0 CRC799

84110125 4024.34. NORM 1006• ;;1 s 0 .~:=:0i:2e

6.:t/09/:7 401 970 NORM 1011 80 0

:irzans .i~cs:s NC;o.M s~ 12' ~~~ ~ :.::~: 1 l

a.4l0a101 400425 NORM I 2S30 31 s A C~0 ! ~ g

l"igura 0

The inspection environment is one which exhibits a high degree of both automation
and parametric data collection. Data is accumulated at individual work stations
using microcomputers and is transferred to the HPlOOO via RS-232. ATA's
applications software then reduces the raw data to sunnnary statistics which are
retained in the database, and histograms which are maintained in the vendor's
file. These histograms may then be used to analyze a vendor's process capability,
or to identify the drifting of a parameter toward a specification limit, as
successive lots are compared to each other. A common example of this phenomenon
is where a vendor's tooling wears, impacting a part's physical dimensions. The
intent of this "trend" analysis is to identify potential problems in PMI before
they become problems influencing the production of deliverable items. Figure
E represents typical histograms available to PMI engineers for material analysis.
Field engineers may access information which resides in the HPlOOO by using
portable terminals. These engineers request information regarding:

(1) Current revision of specification control documents,

(2) Status of vendor's lots currently in the inspection area,

(3) Failure modes of material submitted previously so that it
is possible to discuss corrective actions on a timely basis.

.7. Paper 1020

j
' ~IO'.ST ME..t.N s,ro

DEV
0~1~.
HIGH

C•.l..'r.,, UNITS
~PG

jf-'ESIST

~REQ.PPM
i5HUf.IT C

15

~ 10
3
•J

94.CO

1.!lO a.zo 1.l,17

06 3 70

FfiEC·.PPM

LCN

~.45 OHMS

-0~.90 PPM

-37.6 ~ .. 75 2 94

OHMS

•o '':;HlJrJT C
ut:l:. '

1 I .
I

I

I I
,! ti

I
j

::~~·- c

~:CL' <.J

10 I .
0 -~~-----'-1-1-1-~~~~~-----"J

21 42 0 1,4•}14 2.er.·28 4.2042 e.s.:ice 7.0C7

Figure E

CONCLUSION

All people at ITT's Aerospace/Optical Division, who have been involved in the
justification, procurement, and applications design of PMI's HPlOOO, have
experienced a great deal of satisfaction with respect to the extensive utilization
of the system. The HPlOOO has proven to be a versatile tool, providing written
reports and on-line information which is used by several departments in the
facility. The system has provided vendor quality ratings to the Purchasing
department for use when procuring material. Material Control personnel depend
upon the system to provide status of material which is required on the production
floor. The Quality department, of course, has used the system to automate the
generation and maintenance of inspection instructions, the tracking of material
through the inspection process, the maintenance of inspection results, and the
analysis of parametric test data.

Paper 1020 -8-

'"
!

1021. GETTING ACQUAINTED WITH THE 8-CHANNEL MUX

INTRODUCTION

Carl A. Falstrom
ACCESS Corporation

4815 Para Drive
Cincinnati OH 45237

If you use an HP 1000 computer and need to communicate with more than one or
two serial devices, it is likely you will wish to use a product called the
8-Channel Multiplexer. (There was a 16-channel multiplexer which never quite
achieved legitimate status within HP as a product, HP literature not withstanding.
This paper will not deal with this earlier device.)

Brought out in two versions, one for M/E/F CPUs and one for A/L series CPUs,
the two products are architecturally very similar, though electrically and
mechanically distinct. This paper discusses the A/L series product, the HP
12040. However, from time to time, similarities and differences in the counterpart
for the M/E/F family, the HP 12792 will be pointed out. The 8-Channel MUX is
a powerful and flexible product, capable of supporting a wide variety of RS-232
peripherals, and to describe all of the features of the 8-Channel MUX is beyond
the scope of this paper. Instead, an attempt will be made to convey sufficient
information so as to enable the programmer to deal with typical problems he or
she might encounter when interfacing a simple serial device such as a "Dumb CRT"
to an A series CPU through a port on the 8-Channel MUX. A few pitfalls to be
avoided will also be brought out.

While the bulk of this paper will deal with programming aspects of the MUX, a
brief description of the hardware is necessary to understand some of the discussion
to follow. The HP 12040 8-Channel Asynchronous Multiplexer provides a method
for interfacing HP 1000 Computers using the A/L series backplane to any RS-232-C
device. Device communication to and from the host system is provided through
a microprocessor based interface. This card utilizes a Z-80A microprocessor in
conjunction with EPROM, RAM, DMA and SIO support to manage the asynchronous
serial protocol of connected devices. Each of the 8 channels is separately
buffered (two 254 byte buffers for receive and two 254 byte buffers for transmit).

Each MUX contains two programmable baud rate generators (BRGs) which provide
channel transmission speeds from 50 to 19.2K Baud. The MUX provides the ability
to support five different baud rates to external devices simultaneously.

DEFINITION OF TERMS

Before attempting to come to grips with using the MUX, there are a few terms
that are either unique to RTE-A or HP serial communication that should be defined
first. Particularly important concepts to understand are device and interface
drivers, the control word, ASCII and binary transfers, transparency mode, status
(there are several kinds) and finally the distinction between end of data transfer
and read termination.

In the A series architecture, there are two kinds of software drivers: interface

-1· Paper 1021

drivers and device drivers. Interface drivers are associated with interface
cards (in this case, the interface driver IDMOO handles the 12040 MUX card).
Device drivers are associated with peripheral devices attached to the cards.
The 8-Channel MUX can use one of two device drivers for each channel, DD.00 or
DD.20. DD.00 supports display terminals, such as the HP 262x series, or printers
such as the HP 263x or 293x series. DD.20 is the cartridge tape unit (CTU)
device driver to handle devices containing CTUs (HP 264x terminals). The same
terms are used for the driver combinations used for the 8-Channel MUX on the
M/E/F series of processors but the I/O archit~cture is quite different, and of
course, the drivers have different names.

Device drivers DD.00 and DD.20 are designed to work with the interface driver
for the HP 12005 ASIC card, ID.00, as well. While the characteristics of ID.00
and IDMOO are similar, enough differences exist for confusion to arise since
the documentation generally describes use of DD.00, for example, with ID.00.
Where important differences exist, I will try to cover them.

Interface drivers usually process I/O requests from device drivers. Device
drivers process requests from application programs and pass them on to the
interface driver. However, the device drivers for the 8-Channel MllX are written
to support the specific characteristics of HP peripherals. If you must talk to
a non-HP device, you may find it convenient or even necessary to bypass the
device driver with your application program and make requests directly to the
interface driver. This is fairly straightforward, and shortly we shall examine
how to do this.

In the process of performing 1/0, the interface driver and RTE share access to
information in what is called an interface table (IFT). The interface table is
constructed at system generation time, and there is one interface table for each
MUX card installed in the system. The interface table for the MUX (as of A.85)
is 9 words long, and in addition, there are an additional 20 words of IFT
extension for storage of all temporary data associated with the MUX. For the
curious, a description of the usage of the IFT and IFT extension words is given
in Figure 1.

The generator also constructs a device table (DVT) for each device in the system.
Each channel or port of the MUX must have its own device table, so there are 8
DVTs for each MUX. RTE uses the DVT for storage for its concerns, such as status
indicators and list linkage words. The device driver uses the DVT for storage
of device dependent data and as a communication area to the interface driver.

The DVT is followed immediately by the driver parameter area, or DVP. The
contents of the DVP are defined at generation time, and this 12 word table
supplies the device driver with information specific to the attached peripheral,
such as whether it should be given the characteristics of a line printer, or a
display. (In contrast, the device driver to be attached to a channel on the
MUX on the M/E/F series may be changed with an EXEC control call to suit the
peripheral.)

Immediately following the DVP area is the DVT extension area, DVTX. This 57
word table area is used by DD.00 and DD.20 for temporary storage and there is
little in it of interest to the application programmer.

Paper 1021

Areas of interest in the DVT(DVP(DVX area for DD.00 are illustrated in Figure
2. The driver parameter area is as it would appear if the device being interfaced
to this MUX port were a 262x display terminal.

The control word (usually abbreviated CNTWD) supplies information to RTE
identifying the device and supplies control information related to the I/O
operation to be performed. The low order six bits, 0-5, identify the device
LU. The meaning of the remaining bits, 6-15, depends on whether the device
driver or interface driver is being called, and whether the I/O operation is a
read, write, control, or status request. Most of the control bits affecting
the MUX will be discussed later, but some of the I/O parameters controlled by
these bits will be defined now.

Data transfer to and from most serial devices may be accomplished using DD.00
and IDMOO, and the use of one or both of these drivers is assumed for the duration
of this paper. The following definitions are specifically applicable for DD.00.

The Device Driver DD.00 supports writes and character reads in both normal ASCII
and transparent ASCII modes. (Block mode keyboard reads are also supported,
but this subject will not be discussed here). A normal ASCII write simply means
that the device driver will add a CR/LF pair to the end of the output string,
unless the last character in the string is the underscore. In this case, the
underscore is not displayed and the CR/LF pair is not transmitted.

A transparent ASCII write does not supply the CR/LF automatically. It is the
responsibility of the application programmer to supply these characters to the
buffer where needed. The underscore character is also output to the display,
even if it is the last character in the buffer.

During a normal character mode ASCII read special characters (e.g. DEL and BS)
are processed and removed from the data stream. The data transfer stops with
the occurrence of a record terminator. Record terminators recognized by the
MUX are CR, control D (EQT), control R (DC2) or control~ (RS). The record
terminators, or delimiters, end the data transfer, but they are not passed
through to the user buffer. If no record terminator is encountered, then data
transfer is ended upon reaching the character count or word count specified in
the EXEC call that originated the read request.

The transparent character mode ASCII read is very similar to normal ASCII reads.
All the record terminators listed above except CR are not processed by DD.00,
but instead are passed directly on to the user buffer. Data transfer ends when
a CR is encountered, or on character count. In this mode, IDMOO behaves
differently from ID.00. If the user buffer fills before the CR, the ASIC
terminates the request immediately. The MUX, however, does not terminate the
request unless it is specifically configured to terminate on character count.

For normal binary write requests the driver ignores processing of special
characters. None are added or deleted from the user buffer. As far as IDMOO
goes, there is no difference between a normal binary or a transparent binary
write request. The device driver, DD.00 does not perform binary writes, but
rather treats such a request as a transparent ASCII write.

During normal binary reads, special characters are not processed or removed.

-3- Paper 1021

The driver ignores CRLF processing and passes these characters to the user buffer
as normal data. Data transfer ends when the character or word count is reached.
IDMOO makes no distinction between transparent binary reads and normal binary
reads.

The important fact to remember is that DD.00 is not capable of performing binary
I/O. If you wish to do this, you must bypass the device driver and perform your
I/O through IDMOO. More will be said about this later.

There is a mysterious term mentioned in the 12792 MUX user reference manual !'
called "honesty mode", This term is nowhere defined in the manual. Supposedly,
bit 7 of the CNTWD establishes this, but for every form of I/O transfer listed
that the MUX can perform, bit 7 is defined as a "don't care" bit, and the drivers
ignore the state of this bit. My personal theory is that honesty mode is left
over from the days when DVROO was used with a paper tape reader. If bit 7, then
called the V bit, was set, then DVROO expected the first character read would
indicate the remaining number of characters to be read less 1. Any other
explanation for the use of this term would be welcome. In any event, the usage
of bit 7 with the A/L series MUX will be dealt with shortly.

One other point of possible confusion to clear up before getting down to the
business of using the MUX is the distinction between ending the data transfer
and terminating the read request. The terms are used interchangably throughout
the DRM, but they are not synonymous. Differentiating between the terms is only
necessary for read requests. When a read request terminates, the calling program
is rescheduled, and the data transferred, if any, is available in the user
specified buffer, ready for processing. In contrast, ending a data transfer
means only that the driver stops transferring incoming characters into the user
buffer because the number of characters to be transferred as specified in the
EXEC call has been reached. The read request is still active on the port,
though, and the calling program remains suspended until the read request actually
terminates, either because a record terminator character is recognized by the
MUX or the 254 byte buffer on the MUX card becomes full.

The 8-Channel MUX is capable of supplying a multitude of information about its
current status. The simplest information to obtain is the status of the previous
EXEC call to the MUX port of interest. For lack of a better word, let's call
this 'ordinary' status. To obtain ordinary status it is necessary either to
examine the contents of the A and B registers or to issue an EXEC 13 call after
an I/O transfer.

The information returned after this type of status call may not be sufficient.
For an example, there is only one bit to indicate that an error occurred, but
no information is given as to what kind of error it was. Now the second type
of status, extended status, comes into play. After every I/O operation the
driver updates the associated DVT with information about the I/O that just took
place. The words that are usually of interest are DVT16-DVT18. How you may
access that data and interpret it will be discussed in a later section.

The important thing to note about both types of status mentioned so far is that
the information supplied is only valid after an I/O call has been made. This
is because the data is being extracted from the DVT. The driver is not called.

Paper 1021

There are situations where it is desirable to check the status of a par~icular
MUX channel before performing any I/O, so that you can have reasonable assurance
that the I/O transfer can successfully complete. The solution to this type of
problem is called a dynamic status request. First, a control call with a function
code of 6B must be made to the driver, which in turn interrogates the MUX card
for status information. This "dynamic status" iI).formation is then stored in
DVT16-DVT18 to be accessed by the programmer in a manner soon to be described.

GET READY, GET SET,

Arm yourself with a generator listing, the HP Driver Reference Manual (DRM),
the 8-Channel Multiplexer Installation and Reference Manual, phone nwnbers for
a friendly SE and CE and prepare to set up a MUX port for connection to a serial
device.

The first thing that must be done before it is possible to issue a read or write
request to a port on the MUX is to set up the Port ID. If you attempt to perform
I/O to a port without setting up the Port ID first, your requests will be totally
ignored by IDMOO. You won't receive any error indication, but you won't accomplish
anything either. The Port ID is set up by an EXEC control call with a function
code of 30B. In Fortran, this looks as follows:

CALL EXEC(3,3000B+LU,PRAM1)

You can also issue the control call interactively from CI by entering

en lu 30b praml

This control call not only establishes a logical connection between the LU and
the peripheral device connected to the port, but it also sets up eight parameters
that are needed to define the basic communication characteristics of the port
(e.g. baud rate, parity, handshaking, etc.) to match those of the peripheral.
All 16 bits of the control call parameter PRAMl must be set exactly right, or
not only will you be unable to talk to the device on the port you are interested
in, but you stand a very good chance of rendering most of the other ports on
the MUX unusable as well. This can make you very unpopular with other users on
the system.

Before proceeding, this seems like a good time at which to bring up a point
about the software support for the 8-Channel MUX. At least one, and possibly
as many as half a dozen control calls are necessary before you can perform a
read or write to one port. Many of the control calls pack a lot of configuration
information into the call parameter. Even a seasoned systems progranmer may be
seen balancing the Driver Reference Manual on one knee while he scribbles ones
and zeroes in the margin and arranges them in groups of three to figure out the
proper octal value for the control parameter. As has already been noted,
consequences of an error in this process range from bizarre to disastrous. A
"user friendly" MUX configuration utility is practically a necessity. I have
submitted mine to the CSL and I imagine many other people have written software
tools to remove the pain from configuring the MUX. Perhaps the best features
of all of them could be combined into an HP supported program.

Back to setting up the Port ID. The first parameter to be defined is the number

-5- Paper 1021

of bits per chatacter. This usually does not present much of a problem for the
user since there are only four choices and it is only necessary to use the same
number of bits that the peripheral expects. Of course, if you don't get it
right, all you will see on a display or printout is unintelligible gibberish.

The next bit is used to indicate whether the port is to be used as a modem LU.
It is at this point that the user may begin to have the first feelings of anxiety.
The Driver Reference Manual contains a cautionary paragraph about use of this
bit that is almost inscrutable. Even if a Systems Modem is eventually going to
be employed, it is wise not to set this bit at first. Once a successful
configµr~tion has been achieved and tested with a hardwired connection to the
peripheral one can then proceed to getting things working with the Systems Modem.
This paper will not deal any further with the topic of the Systems Modem.
Perhaps next year's conference.

The next parameter is the number of stop bits to be employed. I suppose there
are some users who operate peripherals at 110 baud, and even fewer who need
134.5 baud (does anyone remember what a 2741 is?), and therefore require 1.5 or
2 stop bits, but 99.44% of the RS232 devices in use today work fine with 1 stop
bit.

Next to be decided is which baud rate generator should be selected. Only one
bit is involved, but this decision is by no means easily made. Earlier I stated
that the MUX hardware has two baud rate generators. Depending on when you
purchased your MUX, it is likely that either Port 0 is wired to baud rate
generator 0 and Ports 1-7 are wired to BRG 1, or Port 7 is wired to BRG 0 and
the rest of the ports are tied to BRG 1. Other wiring options are available
from HP. (You can also rewire the connector to the MUX interface yourself and
connect any port to either BRG, but if you are good enough to do this then you
don't need to spend your time reading this paper.)

Assuming you know how your cable is wired, the next thing to be determined is
the vintage of your MUX. If you have a 12040A, things are relatively simple.
Two baud rate generators yield two baud rates. All ports wired to BRG 0 must
operate at one baud rate, and all ports connected to BRG 1 must also operate at
one baud rate, though this baud rate need not be the same as BRG 0.

If you have a 12040B or C, however, a clever twist has been added. Firmware
changes allow programmatic control of a prescaler on the Serial I/O chips on
the MUX card to provide three groups of baud rates for each BRG. As long as
you make sure to select baud rates from only one group per BRG, you can program
ports connected to the same BRG to operate at different baud rates (up to a
maximum of three, depending on the group selected). ls all this perfectly clear?
Details on baud rate grouping may be found in the 8-Channel MUX Installation
and Reference Manual.

Ponder the setting of the BRG selection bit in the control call very carefully,
because if you get it wrong and you issue the control call on a multi-user 1 ,,

system, you might be unfortunate enough to change the baud rate that six other
people are currently using to your desired baud rate. This sort of selfish
behavior can damage relationships with your peers.

Now a selection of parity must be made. No problem: odd, even or none, right?

Paper 1021 -6-

Well, almost right. There are two kinds of "none" listed in the Driver Reference
Manual. Choose one and the parity bit will always be set to a 1, choose the
other and the parity bit will always be set to a zero. Unfortunately, the proper
choice can be crucial, and the ORM doesn't indicate which is which.

The gotcha here is that selecting no parity checking doesn't mean that the parity
bit will always be ignored when the port is receiving data as you might expect.
The handshaking and delimiter characters (more about these later) must have
their eighth bit set exactly as defined by the Port ID configuration or the MUX
will not recognize them. The symptoms of this kind of problem can be baffling.

During transmission, if handshaking is enabled, the MUX will send an ASCII ENQ
character to the peripheral, expecting the peripheral to return an ASCII ACK
character indicating that it is ready to receive data from the MUX. If the MUX
expects the eighth bit to be a 1 and it is a 0, or vice versa, the MUX fails to
recognize the ACK and the port 'hangs' indefinitely unless a time-out has been
set. When receiving data, the message delimiter, the carriage return, for
example, is not recognized as such. The MUX treats the delimiter as an ordinary
data character, passes it through to the user buffer and fails to terminate the
read request. No error is reported. So be careful when you specify "no parity"
to choose the correct kind. The state of bit 9 in the control parameter is the
state of the eighth data bit generated by the MUX during transmission and expected
by the MUX during reception.

This brings up another point. If you do select parity generation and checking,
and a parity error occurs during message reception, your read will be aborted
with the dreaded "Transmission error occurred" message. Any data on the MUX
card is flushed and the transmission log is set to zero. Isn't this treatment
a little harsh for a simple parity error? It would be nice to allow the user
the option of receiving a garbled message if he should so wish.

Well, we still have a way to go before we are finished setting up the Port ID.
I have already mentioned ENQ/ACK handshaking. The state of the next bit in the
control parameter turns this feature on or off. If the peripheral you wish to
talk to is manufactured by HP, it will be compatible with this form of handshaking.
Use it, and you can avoid data loss due to exceeding the ability of the peripheral
to handle the data rate. But be sure that the peripheral is configured to
perform ENQ/ACK handshaking or your port will hang when transmission is attempted.
If the peripheral is not made by HP or designed to emulate an HP product, odds
are that some other form of data traffic pacing is used, so do not enable ENQ/ACK
handshaking.

The next four bits of the control parameter select the baud rate. Obviously
you must match the baud rate of the peripheral, keeping in mind the previously
mentioned idiosyncracies of the two baud rate generators on the MUX interface
card.

Finally, we have arrived at the last three bits left in the control parameter.
These bits define which of the 8 ports on the MUX is to be associated with the
LU specified in the control call. This relationship has already been established
at generation time, but now you are given the flexibility to change it. Some
may regard this as a wonderful opportunity, but my experience has been that the
necessity to select the port number in the control call just increases the risk

-7- Paper 1021

of earning the disfavor of your colleagues.

Once a successful' 30B control call has been issued, you have met the minimal
requirement to begin performing I/O to the peripheral. Many applications require
additional control calls to set up other MUX functions, but discussion of these
will be deferred until later in the paper. Let us now deal with transferring
some data.

READIN', WRITIN' AND NO 'RITHMETIC

The Fortran calling sequence for a read request from a MUX port is:

CALL EXEC (l,CNTWD,BUFR,BUFLN,[PRAM3,[PRAM4]])

The parameter definitions for BUFR and BUFLN are the same as all HP read and
write requests. BUFR defines the user buffer that is to receive the data, and
BUFLN is an integer variable that defines the number of words to be received if
it is positive, or characters to be received if it is negative. The meaning of
PRAM3 and PRAM4 is dependent on whether the read request is being made through
DD.00 or direct to IDMOO. Shortly I shall deal with each case, but first let's
examine the control word, CNTWD. The format of CNTWD is given below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

f BBINBIUEIZ IWWITRIXXIECIYYIBII Device LU

Bits 0-6 and 8-10 have basically the same meaning for the A/L series and the
M/E/F series MUXes so I shall define these bits first. The main difference in
the meaning of these bits on the two machines lies in the documentation. The
mnemonics chosen for the 12792 product are inexplicably obscure, so I shall use
the mnemonics from the 12040 manual.

The low order 6 bits (0-5) define the LU to be associated with the read request.
(This limitation of 63 LUs plus LU 0 for the bit bucket has been addressed with
the introduction of the XLUEX call, but I shall use the standard EXEC call
throughout this paper.)

If bit 6 (BI) is set then a binary read is performed, and if bit 10 (TR)
then transparency is in effect. This is only true for IDMOO, however.
important to note that DD.00 treats a request for binary I/O (i.e. Bit 6
the CNTWD) as a request for transparent ASCII I/O.

is set
It is
set in

If a true binary read is desired, a way to accomplish this is for the application
program to access IDMOO directly. To do this, it is only necessary to set the
device driver bypass bit BB . Then to complete the process, you must set bits
14 and 15 in PRAM3 to 00. This will cause data transfer to end and the read to
terminate when the user buffer is full.

If bit 8 (EC) is set, then echo is in effect. This simply means that the MUX
firmware will immediately transmit back to the peripheral any characters it
receives. If the peripheral is a terminal configured for full duplex operation,
this is how the operator can see what is being typed. If echo is not desired,
say for entry of a password, then the programmer may suppress it simply by

Paper 1021 -8-

clearing bit 8 of the control word.

Bit 9 (XX) is interesting. This bit means different things to 00.00 and IDMOO.
Therefore, care must be taken when you use it. Bit 9 set to a 1 means that a
program-enabled block read is enabled according to the ORM. However, this is
only true if the terminal configuration, stored in DVPl, indicates page strapping
is in effect (i.e. bit 3 is set to a 1). If bit 3 of DVPl is a 0, then IDMOO
interprets bit 9 as the "keep" bit. If KP is set, any data received by the Mill{

card that is beyond the end of the user buffer is saved and may be accessed by
subsequent read requests. This allows you to "nibble away" at a message a piece
at a time if you so desire. The usefulness of this feature is somewhat compromised
by the inability of the MUX to pack multiple records into its 254 byte buffers.
However, if you must manage large records and your buffer size is constrained,
the "keep" bit may be an answer to your problem. In a little while I shall
deal with how you may examine and modify the value in DVPl to suit your purpose.

In M/E/F series systems, bit 7 is the mysterious "honesty" bit mentioned earlier.
In A/L series systems, bit 7 (YY) is a multipurpose bit whose meaning must be
defined in the context of whether or not DD.00 is being used, and the type of
terminal to be employed with the LU specified at system generation time. IDMOO
ignores the state of this bit entirely. On the other hand, DD.00 attaches
special meaning to this bit only during write requests, so further discussion
will be deferred to the next section.

The remaining bits in the control word have no counterpart in the M/E/F series
MUX.

Bit 12 (Z) is useful if you have a need to perform two I/Os to a peripheral with
a single EXEC call. An example of this might be to write a prompt message on
a display and then read the user entry. If the Z bit is set, then PRAM3 must
define the buffer containing the message to be sent to the peripheral and PRAM4
must define the length of the message. (The conventions employed by the BUFR
and BUFLN parameters apply here as well.)

Bit 13 (UE) should be set if you don't want RTE to write nasty messages on user's
terminals or the console when an I/O error of some sort occurs. By setting this
bit, you inform the driver not to suspend the calling program, down the device
or take any sort of gratuitous actions whatsoever. It now is incumbent on you,
the programmer, to interrogate the status after each I/O request, and take what
measures you deem appropriate. I shall discuss how to examine status shortly.

Setting bit 14 (NB) normally means that the I/O transfer is not to be buffered
by RTE. However, EXEC ignores the state of this bit during read requests and
always performs a non-buffered read. This is generally desirable, because
meaningful status returns after the read request completes are available.
However, it does mean that the program is not swappable for the duration of the
read request. If this is a problem, the way around it is Class I/O. More about
this bit later when I discuss writing information to a peripheral.

I have alluded previously to the fact that it is possible to perform I/O directly
through the interface driver, IDMOO, without having DD.00 perform any processing
on your request. All that it's necessary to do is to set bit 15 (BB) and this
is just what happens. Easy, huh?

-9- Paper 1021

I have already discussed usage of PRAM3 and PRAM4 in the context of DD.00, and
these parameters have no counterpart in the M/E/F MUX.

When calling IDMOO directly, PRAM3 takes on an entirely different meaning and
must be supplied. PRAM4 is also redefined, but its use is optional.

Page 3-37 of the DRM defines the usage of these parameters with IDMOO. Basically,
bits 15-14 of PRAM3 define how the read request is terminated (the DRM merely
states that the data transfer ends, but the read request terminates too) and
bit 11 turns echo on or off.

The left hand byte (bits 15-8) of optional PRAM4 allows the progranmer to specify
a prompt character to be output before the read is started. If the value of
this byte is zero, then no prompt character is output.

The utility of the low order byte of PRAM4 appears to be limited to rather
special circumstances, but perhaps it may be just what someone reading this
paper is looking for. If this byte is non-zero, then it defines the number of
characters beyond the end of the user buffer that are to be discarded by the
driver during a binary read.

By now you should be sufficiently well informed to handle all but the really
nasty types of reads, such as variable length data that is not terminated by
anything the MUX recognizes and the message length cannot be determined in
advance. If you want to do this, be patient, and after a few more MUX features
have been introduced, we will discuss this kind of problem. Meanwhile, let's
move on to write requests.

In Fortran, you write to a MUX port like this:

CALL EXEC (2,CNTWD,BUFR,BUFLN[,PRAM3,PRAM4])

The definitions for BUFR and BUFLN are as usual. Defining the format of the
CNTWD is slightly more complicated. The M/E/F series MUX uses a very different
definition from the A/L series. I shall only discuss the latter and refer the
reader to page 2-6 of the 12792B MUX User's Manual for details on the former.
First let's look at the CNTWD when DD.00 is used:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I OINB!UEIZ IX ITRJX IX JCCjBII Device LU

Most of these bits should be familiar by now as they have the same meaning as
in a read request.

If the Z bit is set, PRAM3 and PRAM4 must be supplied. The definition of these
parameters is the same as for a receive request.

Bits labelled X are "don't care" bits, although the DRM recommends that they be
set to zero.

Bit 7, here labelled CC, only has meaning if the LU to be written to has been

Paper 1021

defined at system generation time to be a hard copy terminal, (i.e. device type
12 in DVT6). In this case, if CC is set to 1 the driver uses single spacing
and outputs the entire user buffer to the printer, If CC is 0, then the first
character in the user buffer is not printed, but rather is interpreted as a
carriage control character. The conventions for this character are the same as
employed by most HP line printers. An ASCII '0' means double space, a '1' means
eject the page, an '*' suppresses the line feed, and any other character is
ignored (and not printed). If the LU has been defined as a display terminal,
bit 7 is a "don't care" bit. Also, DD.00 will not interpret the CC bit in
transparent mode.

Now let's examine the format for the CNTWD when DD.00 is bypassed and you wish
to write directly with IDMOO:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I l!NBIUEI OJ Function Code Device LU

Double buffered I/O is performed by DD.00, so note that the Z bit is zero, and
PRAM3 and PRAM4 should not be supplied. Bits 0-5 and 13-15 have the standard
meaning, but something new has been introduced in bits 6-11. The meaning of
the bits defined as of this writing is as follows:

Bits 6 and 7 are related. Basically, if either bit is set to a 1, !DMOO does
not append a CRLF to the data in the user buffer. Only by setting both bits to
0 will you get the CRLF. No explanation is offered for why two bits are required
to perform this simple function.

Bit 8 controls ENQ/ACK handshaking. If handshaking has been previously enabled
with the control 30B call, it will be disabled for THIS WRITE REQUEST ONLY if
bit 8 is set to 1. If bit 8 is 0, the handshaking takes place as defined by
the 30B control call.

Bit 11 controls a mysterious function called the Non-Display Terminator (NDT)
which is the ASCII string "ESC_". This is interpreted by 264x series terminals
as an end-of-line termination. If bit 11 is set to 1, IDMOO outputs an NDT after
printing the user buffer. Otherwise it doesn't.

Probably the most useful values for the function code are 0 for simple transmission
of ASCII data, and 35B for binary transmissions. When a function code of 35B
is specified, the user buffer is transmitted exactly as supplied - nothing added,
nothing deleted. What happens when you try other combinations of bits 6-11 will
be left as an exercise for you, the reader, to find out.

Now that we have covered reading and writing, let's see what you have to do if
you wish to find out whether your program may safely attempt the I/O transfer,
or if the transfer has already completed, whether it took place without error.
This type of information is provided by the MUX driver when a status request
call is made.

The simplest way to obtain status information after a read or unbuffered write
request to a MUX port is to examine the contents of the A and B registers after

-11- Paper 1021

the EXEC call completes. If you are not programming in assembly language, the
utility subroutine ABREG may be called to obtain the data. The A-register
contains word 6 of the DVT, which is the device status passed by the driver.
Refer to Figure 2 to see how to interpret the information in this word. The
B-register contains the transmission log, which is the positive number of words
or characters (depending on how BUFLN was specified in the original EXEC call)
that were transferred.

Another way to obtain status is with an EXEC 13 call. The format of this call
is given below:

CALL EXEC (13,CNTWD,STAT1,STAT2,STAT3,STAT4]]])

The format of the CNTWD is simple. As usual, bits 0-5 indicate the LU of
interest. Bit 12 is the Z bit, which 1 shall define in a minute, and all other
bits must be zero. STATl is an image of DVT6, defined in Figure 2. If supplied,
STAT2 will contain an image of IFT6 which is defined in Figure 1. The meaning
of STAT3 and STAT4 is dependent on the state of the Z bit. If Z is 0, STAT3
contains DVPl and STAT4 contains DVP2. If Z is set to a 1, STAT3 defines a user
buffer area that is to be passed an image of the DVP area, and STAT4 defines
the length of this buffer.

Perhaps bit 0 of STATl is set, ·indicating some form of error occurred during
the transfer. If you would' like additional information about the specific
problem, then you must examine the extended status information placed by the
drivers in DVT16 -18. This may be done by making a call to the utility subroutine
RMPAR. The interpretation of these three words may be found in Figure 2.

The information we have covered so far should be sufficient to handle basic I/O
transfers to and from a serial device attached to a MUX port. We shall now turn
to the use of some of the more exotic features of the 8·Channel MUX. To use
these, some more control calls must be introduced.

WHO'S IN CONTROL HERE?

The next few control codes to be discussed provide an additional degree of
control over the MUX for applications that require it. Normally, the next call
to be issued after the 30B call is the 33B call. Remember, the format for a
control call in Fortran looks like this:

CALL EXEC (3,NNOOB+LU,PRAMl)

where NN is the control function, in this case, 33B. For this and the control
functions to be discussed soon, I shall not go into as much detail as I have
with the 30B call. The DRM provides copious information for each control call.
Instead, I shall limit myself to clarification of some of the information given
in the manual and pointing out a few potential traps to avoid.

The important functions defined by the 33B control call are device error handling,
type-ahead control, program scheduling, break key processing, and configuration
of read requests.

Type-ahead, for those who are new to the 8-Channel MUX, is the ability of the

Paper 1021 ·12·

MUX to buffer received data if no read is pending and pass the data to the
interface driver when a read request is made. It is generally a nice feature
to use since it increases the apparent response time of the system but it can
create some problems too. For a good discussion of the pros and cons of
type-ahead, refer to pages 3-56 thru 3-58 of the DRM. Depending on how you
configure PRAMl, you can disable type-ahead or enable it. You can also attempt
program scheduling when type-ahead data is available on the card, or you can
merely set.a bit in the DVT to notify the user that type-ahead data is available.

Action to be taken when the user hits the BREAK key can also be defined.
Normally, when type-ahead is used, the BREAK key is the only way to get RTE's
attention.

A very important function performed by the 33B control call is to instruct !DMOO
how to control sending of read configuration to the MUX interface card. Typically,
read configuration information is passed to the MUX in bits 6-15 of the CNTWD
of the read EXEC call as discussed earlier. However, there are times when it
is desirable not to allow the read request to change the configuration. By
setting bit 7 of the CNTWD to a 1, you can tell the interface driver to ignore
the configuration bits in the read EXEC call. An example of this will be give
shortly.

A word of caution concerning the 33B control call. If you have specified a
printer, such as the 2631B, to be associated with a given MUX port at generation
time, DO NOT issue a control call with a function code of 33B to this port.
This can crash the system and necessitate a reboot.

If you decide to prohibit read configuration information in the read request
from affecting the MUX, then there needs to be a way to tel1 the MUX what
configuration to use. This is where the 37B control call comes in. PRAMl in
this call configures the MUX card for read requests. Remember, for this
configuration to remain in effect, bit 7 in a previously issued control 33B must
have been set. Otherwise, any read request will override these parameters.

The format for PRAMl follows. When the specified bit is set to a 1 it enables
the function:

15 - End transfer on carriage return (CR)
14 - End transfer on control "' (RS)
13 - End transfer on control D (EOT)
12 - End transfer on control R (DC2)
11 - End transfer on character count (Set by a control 36B call)
10 - End transfer according to bits 15-12

9 - Enable input data editing
8 - Enable input data echo

7-0 - Reserved

Most of these functions are self explanatory. So far, I have not mentioned data
editing. This simply means that when editing is enabled, the backspace and
delete characters are not treated by the MUX firmware as data characters and
entered into the user buffer. Instead, the backspace erases the last character
received in the MUX receive buffer, and the delete erases the content of the
entire buffer and transmits a backslash to the peripheral . Obviously, bits 10

-13- Paper 1021

and 11 are mutually exclusive, so don't set both of them in the same control
call.

If you have set bit 11 in the control 37B call, then there must be some way to
tell the card when enough characters have been received to end the transfer.
The control 36B call accomplishes this. PRAMl in control call 36B should be a
positive integer in the range of 1-254 defining the number of bytes to be
transferred by the read request.

So far we have dealt with control calls handled by IDMOO. There are several
more that we shall return to, but now we shall consider some frequently used
control calls that DD.00 manages.

First, there is the control 20B/40B call for enabling the scheduling of a primary
and secondary program. Primary and secondary programs to be scheduled for each
MUX LU are usually specified at system generation time, and stored in DVPS-12.
The names of these programs may be changed with these control calls. Similarly,
a complementary pair of control calls, 21B/41B may be used to selectively disable
scheduling of either the primary or secondary programs. It is also possible to
disable scheduling of either program with a control call of 23B.

Frequently, it is desirable to set a time-out on a port so that a read request
won't tie up the port indefinitely. Here is where a major departure occurs on
the A/L series from the technique employed on the M/E/F series MUXes for detecting
time-outs. On M/E/F systems, control call 22B sets a time-out on the port.
Each port uses two words in the EQT for timing user requests. One word, if
non-zero, contains the time-out value in tens of milliseconds, and the other
word is used as a clock. Each time a read, say, is posted, the driver copies
the time-out value into the clock word. Then, each time the TBG interrupts,
any non-zero clock word has its content decremented by one. Should a clock word
decrement all the way to zero, then the port has timed out and appropriate
processing takes place.

This technique is used on the A/L series, but only for system calls to the
driver. A control call of 22B establishes the system time-out for a given port
and the technique used to implement time-out processing is essentially that of
the M/E/F series.

A completely different method is used to handle user request time-outs. A control
call of 27B must be issued to set a time-out for user requests. This causes
the system to issue an ENQ to which the device must ACK within the specified
time-out period. This is fine if the peripheral can deal with the ENQ/ACK
protocol. Unfortunately, some devices react in unpredictable ways when they
receive unexpected characters. There is no nice way I know of to set a time-out
on a port that avoids this problem. Incidentally, the DRM says ENQ/ACK must be
enabled in order for time-outs to work. I have found that if a port has a
time-out set, the system generates ENQs no matter how control 30B has configured
the port. I assume that the caution refers to the fact that the peripheral
device must have ENQ/ACK enabled for time-outs to work properly.

As has been mentioned, DVPl is set up at system generation time to specify the
terminal configuration, Should you wish to change this information, DD.00
provides a control call (Function code 44B) with which to do it. The value of

Paper 1021

PRAMl is stored in DVPl. Handy.

There is another control call that DD.00 provides that is very useful for talking
to non-HP devices. If you use an HP terminal connected to an A series CPU for
program development and you turn display functions on, you will notice after
the Cl> prompt, a DCl appears. Normally, this character is transmitted by the
MUX prior to posting a read request on the port. 'Tile DCl is used by HP terminals
to trigger a read transfer. As in the case of the ENQ character mentioned above,
many non-HP devices don't take kindly to unexpected characters being sent to
them. The control 45B call can come to your rescue. With this call, you can
modify the trigger character (which is defined at system generation time and
stored in DVP3) to any other character by setting the desired trigger character
in the upper byte of PRAMl, or no trigger character at all by setting this byte
to zero.

Let's now return to some control codes handled by IDMOO that come in handy. A
typical problem encountered when dealing with some serial terminals is that
depression of the carriage return key after entering a line of text not only
generates a CR but also a LF. This so-called auto-line feed may not be easy to
disable. If type-ahead is enabled, here's what happens: The MUX recognizes
the CR as the read terminator and does just what you would expect - it terminates
the read. Then the LF comes down the line. A read is not now pending, but
since type-ahead is in effect, the LF character goes into the active receive
buffer on the MUX card and gets tacked onto the front of the next message. A
way to avoid this annoyance is to perform a control 26B buffer flush call prior
to issuing the read request to the port. This will clear any data that may have
accumulated in the port's active input buffer while in type-ahead mode.

Function code 34B is useful for transmitting to peripherals that use the popular
(outside of HP) Xon-Xoff traffic pacing protocol. If you have a B version MUX
or later, you can enable or disable Xon-Xoff traffic pacing. Be careful if you
enable this type of handshaking to avoid several traps: HP's EDIT/1000 uses
the Xon (control Q) and Xoff (control S) for edit functions, and so does BASIC.
Since the MUX will treat these characters as handshaking characters with Xon-Xoff
enabled, you can have problems. It is also not advisable to attempt to read
binary data with this form of traffic pacing enabled.

A problem can occur with this protocol should a peripheral send an Xoff to the
MUX and then go down. After the peripheral is brought up, how is it possible
to force it to send an Xon to allow transmission to resume? This is one of
several problems addressed with the C release of the MUX. A new function has
been added to the 34B control call which allows you to go to a working port and
issue a command that fools the MUX into thinking it has received an Xon from
the previously downed peripheral.

One last control call, and then we shall look at a nasty interfacing problem
and how it can be solved. This control call uses function code 52B and its
purpose is to immediately terminate the active receive buffer on the MUX card.
A subsequent read request will read however many characters are on the card (you
can find out what the transmission log is from the B register or by making a
RMPAR call to retrieve the contents of DVT17). This call is useful for solving
a problem I alluded to earlier, that of having to read variable length messages
that are not terminated by anything recognized by the MUX. A program fragment

-15· Paper 1021

illustrating the use of this call is given in the DRM and I have reproduced part
of it here:

c
C SET THE PORT UP FOR TYPE-AHEAD AND DON'T RECONFIGURE
C THE READ OPERATION ON A READ REQUEST.
c

CALL EXEC (3,3300B+LU,22200B)
c
C SET THE READ CONFIGURATION TO END ON A COUNT OF 254, ECHO
C AND EDIT OFF
c

c

CALL EXEC (3,3600B+LU,254)
CALL EXEC (3,3700B+LU,4000B)

C THE FOLLOWING LOOP WILL TERMINATE AND READ THE INCOMING
C DATA BUFFER
c
10 CALL EXEC (3,5200B+LU,O)

CALL EXEC (l,LU,BUFR,·254)
CALL ABREG (ISTAT,LEN)

c
C LEN CONTAINS THE TRANSMISSION LOG
c

c
C PROCESS THE DATA
c

c
C READ SOME MORE DATA
c

GO TO 10

The program does work as advertised, but it has an unfortunate weakness that I
have found no way to circumvent. For the program to work, it is necessary to
set bit 7 in the 33B control call. Hence, IDMOO dutifully does not update the
MUX card with information contained in bits 6-15 of the control word. This in
itself is not a problem, because most of the information conveyed in those bits
can be supplied instead from PRAMl of the 37B call. Most of the information,
that is, but not all. In particular, I did not want the driver to perform error
processing, but there appears to be no way to inform the driver of this fact
because the UE bit in the CNTWD is ignored. Perhaps some of the available bits
in PRAMl of the 37B call could be used to convey this sort of information to
the driver when it cannot be supplied by the EXEC read. With the A.85 release,
it is possible to prevent MUX buffer overflow errors from being reported by RTE
by setting bit 4 of DVPl, but parity errors are still reported.

Hopefully, the information I have presented in this paper will be of use to some
of you who have taken the trouble to stay with me to the end. If I can save
one person from the hours of frustration I have endured learning the hard way,
then I shall consider the effort well worth while.

Paper 1021

IFT1
IFT2
IFT3
IFT4
IFTS
IFT6
IFT7
IFT8
IFT9
IFX1

15 14 1 1 11 10 g 8 7 6 5 4 3 2 1 0

Time-out List Linkage

Time-out Clock
Q Request List Linkage

Interface Driver Entry Address

Device Toble Address ($DVT 1)

AV Interface Type x 110 Select Code

System flags F M • Words I FT Extension

Driver Partition Physical Page

M x ML OHM Reserved Map Set Num.

Start of I FT Extension

Rev. 850801

Q - Queuing option
0 Requests queued by priority
1 Requests queued FIFO

AY - Availability Field
0 Interface evailable
1 Interface locked to DYT
2 Interface 1s busy
3 I nterfuce is locked end busy

WA - Waiting to obort bit

F - First entry bit

M - List dequeuing control

MA - Map allocated

ML - Map Locked

OH - Waiting for mop set

MQ - Map set queued

Mop set number is the number
of the mop set ollocated for this
1/0 channel. Only valid if MA
is set to 1.

DVT1

DVTS
DVT6

DVT12
DVT13
DVT14
DVT15
DVT16
DVT17
DVT18

DVT21
DVT22
DVT23

DVT25
DVP1
DVP2
DVP3
DVP4
DVPS
DVP6
DVP7
DVP8
DVP9
DVP10
DVPl 1
DVP12
DVXl

1_:~lY!l '~ t_31~1_~ !i ~ 1 ~ sj ~ 31 2l 1_1 o
DVT Lint Word

xT Addres~ of I FT

AV I Device Type J-oJ o J-oT 0 }To1 E
• •

Device Driver Time-out Clock

Interface Driver Time-out Value

Device Driver Entry Address

TY JuElzJ Subfunction IN8 x IL IuoJ RQ

Error Code

Transmission log

Tl Length of Type-Ahead Data

• .
Driver ParameterJ # Extension Words

DVT Extension Address

Driver Partition Physical Page .
• •

Spool Node List

Terminal Configuration

Suppress Space Flag (Bit 0)

Trigger Character Before Read

Device Time-Out Value

Primary Program Name {Chars 1 and 2)

Primary Program Name {Chars 3 end 4)

Primary Program Name {Chars 5 and 6)

Primary Program Optional Character

Secondary Progr8m N8me (Chars 1 and 2)

Secondary Program Name (Chars 3 end 1)

Secondary Program Name (Chars 5 and 6)

Secondary Program Optional Character

Start of DVT Extension Area

Continued on Next Page •••

Rev. 850801

AV - Avaflabtl1ty
00 Device Available
01 Device Down
1 0 Device busy
11 Device down and

bUS'/ with request

Device Type: oo .os. 12

·o indicates that a control D !

was entered from the key- 1~
board. Bit 5 indicates EOf
and Bit 7 indicates EOM

TO indicates a time-out

E Indicates an error. See
DVT 16 for explanation.

TY - Request Type
0 User Program Request
1 Buffered User Request
2 System I /O Request
3 Class I /O Request

UE - User Error Bit {from
EXEC request) .

Z - Double Buffer Bit

NB - Nonbuffered bit

l - Data Location bit

UD - Device Driver Bypass
bit

RQ - Request Tvoe
0 Multibuffered request
1 Reed, Write/Reed request
2 Write request
3 Control request

Subfunction is bits 6- 11 of
the EXEC CNTWD.

Error Code -
3 Timeout
5 Transmission error
77B Request aborted by RTE

T - Type-ahead data avanable

VX1
VX2
VX3
VX4
vxs
VX6
,vx1
1VX8
1VX9
VX10
VX12
VX13
VX14
VX15

VX16
VX17
VX18
1VX19

iVX20
1vx21
tVX22
IVX23
)VX24
>VX25
>VX26

DVPl

1~1'!l_1 ~ 1 ~ 1111 91 Bl 1l 61 sj 41 3l 2J 1J o
Address of current DVT

DD.00 internal use

DD.00 internal use

DD.00 internal use

~w ~BlBU RP x PO x x Port Key

ND RT TA PE rm SE PK last read configuration

length of type-ahead data

Pram 1 of control 338 call

Pram 1 of control 308 calJ

Pram 1 of control 348 can

DVT address for program scheduling

Temporary Storage

Temporary Storage

Temporary Storage

Temporory Storage

Pram 1 of control 318 call

Pram 1 of control 328 colJ

Modem alarm program (Chars I and 2)

Modem alarm program (Chars 3 and 4)

Modem alarm program (Chars 5 and 6)

DD.00 internal use

DD.00 internal use

DD.00 in-ternaJ use

DD.00 internal use

DD.00 internal use

DVT Extension Area

Terminal Configuration Word

RW - Read/Write to card
WB - Waiting for xmit buffer
BU - Internal buffer in use
RP - Request pending
PO - Parity/overflow int. stat.
ND - Not end of msg yet
RT - lost terminator recvd.
TA - Type-ahead data available
PE - Parity error/overflow
MD - Modem line down
SE - Scheduling enabled
PK - Port has lcey

The last read configurotion is
os set by a Control 378 call or
the last EXEC read, depending
on the state of bit 1 of Control
coll 338.

Control calls 31 B and 328 are
for use with the Systems Modem
Panel or the Modem Cord.

Terminal Configuration Word
Format:

PM - Page mode bit
AS - ASCII bit (0=7 bits,

1 =8 bits)
T - Termination bit

1 Terminate on count
0 Normal termination

FB - Flush input buffers on
terminal status request

SE - Suppress transmission
errors caused by buffer
overflow

PS - Page strapping bit
lF - line Feed bit. Must

be set for IDMOO.
FF - Form feed enable bit
EQ - Enq/Ack. enable bit.

Don't set when using
MUX. Use CN 308 to
control handshaking.

lFD®l1lllt1Cil ~ m C@oo~ctl" IDlCilWO~Cil 1r@l!lU@ lF@lfrmfil{t.
Rev. 850801

1022. REAL TIME MANAGEMENT CONTROL OF FACTORY OPERATIONS

K. Benson
PCI Ltd.

Snaithing Grange
Snaithing Lane

Sheffield SlO 3LF
South Yorkshire

England

INTRODUCTION

In the current economic climate, it is essential that all manufacturers maintain
tight controls over both factory costs and their investment in stock and
work-in-progress, while attempting to meet customer delivery commitments.

To enable the manufacturer to meet these objectives, he must have efficient
pre-production planning routines, and when work is actually loaded into the
factory, each production order should be controlled against a pre-planned
timescale to ensure an acceptable level of delivery performance.

While many manufacturing processes have generally become much more complex to
organise and operate in recent years, the tools provided to assist management
and supervision in the control of factory operation have not changed dramatically.
Little wonder, therefore, that the type of problems mentioned above are all too
prevalent.

Although computer-based production planning and control systems have been
available to industry for some years, they have typically reported historically
on what happened in the factory the previous day, or the previous week - too
late to take effective corrective action. If we are to control factory operations
efficiently, front-line management and supervision must have access to key
information as it happens, so that they can respond quickly to correct an
imbalanced situation. This information can only be made available via a Real-Time
system, such as the PCI Production Control System.

DEFINING THE SYSTEM

The PCI SYSTEM controls the following functional areas in a manufacturing company:

* production planning
* production scheduling
* factory loading
* factory progress control
* section balancing
* work-in-progress level control
* gross payroll and labour cost control

At the beginning of each manufacturing period, certain basic information is fed
into the system such as:

PRODUCTION SECTION DATA: information on operators assigned to each section,

-1- Paper 1022

hours worked, operation(s) performed, supervisor responsible, etc.

OPERATOR PERFORMANCE HISTORY: details of regular operation(s) assigned,
performance levels achieved, other operations worked on, etc.

PRODUCT SPECIFICATION DATA: for each product to be manufactured·operation
numbers, descriptions, standard piece rate values, operation sequence.

When a production order is raised, information such as order number and quantity,
planned issue date to manufacturing and planned complete date, is input to the
system. Batch data is added - batch number and quantity - and the actual issue
date to the factory is input, when the order is loaded.

FACTORY OPERATION

A small terminal, known as the Operator Input Device (O!D), is located at each
operator's workplace. Each operator has a clock card which contains bar·coded
information. After arriving at his workplace At the beginning of a shift, he
enters his clock card via the. terminal, and in this way, the system knows that
the operator has arrived for work and the time clocked is automatically read by
the system.

Details of the operation to be performed by the operator at that workplace are
input via an Operation Card, which contains details of the operation number (in
bar-coded form) and operation description. This Operation Card is similarly
read by the terminal. Now the system knows which operation the operator will
be working on, at least for the first batch of the day.

Each batch of work has a Batch Card travelling with it, and the batch details
- production order number, batch number, quantity and product number - are held
on the Batch Card, again in bar-coded form. As the operator completes work on
the batch, he detaches the batch card from the work and reads it through the
terminal, into the system. The Batch Card is then returned to the batch of
work, to be moved on to the next operation in the manufacturing sequence.

For each of these transactions, a signal is given to the operator to indicate
whether the data has been correctly received by the system. If the data has
been accepted, a single flash of the LED display and a single bleep from the
audio device in the OID is provided; however, if the data is not accepted by
the system, several flashes and bleeps are produced simultaneously.

When the operator has to go onto an off-standard category of working, such as
machine breakdown, or waiting time, he logs off the system by reading his clock
card through the OID. This action produces a warning message on the Hewlett-Packard
Visual Display Unit (V.D.U), which is located at his Supervisor's workplace in
the factory. This VDU is used by the supervisor to authorise all periods of
operator off-standard time.

Again, each terminal entry is time stamped, so that the computer can calculate
the actual time spent at off-standard for each category, for each direct operator.
This information, together with the batch data, which is captured for all
on-standard working, enables the gross pay to be calculated daily and weekly

Paper 1022 -2-

for each direct operator.

All data collected from the factory floor is verified and edited by the PCI Data
Concentrator, which is capable of receiving data from and transmitting data to
a maximum number of 128 Operator Input Devices (O.I.D.s).

The Data Concentrator receives and checks data from the O.I.D.s and sends an
acknowledgement back to the O.I.D.s concerned. Through the use of the Data
Concentrator's own on-board microprocessors, upon receipt of a successful read,
the data is transferred from one microprocessor (Z80 based), where the data is
Date and Time stamped, is stored in memory and transmitted to the Hewlett-Packard
computer for processing.

The Power Fail Recovery System provides the Concentrator with Battery Back Up
to protect against failure of mains supply.

A Hewlett-Packard A600 Series machine is utilised as the system processor, and
a 65 megabyte disk is employed as standard. The bar-coded cards are produced
on a Hewlett-Packard 2934A Printer, and cut to size using a Guillotine, which
is supplied as part of the system hardware.

SYSTEM OUTPUT

The output information generated by the system consists mainly of visually
displayed data provided for the section supervision and line management. Some
hard copy reports (largely for payroll/labour cost control purposes, and for
production planning and scheduling routines), are produced on the printer.
Reports are generated either automatically at pre-determined intervals during
the day, or on request when immediate corrective action is required by the
supervisor or line manager.

The applications software for a typical real-time system covers five major areas:

* PLANNING AND SCHEDULING REPORTS
* Production Scheduling
* Factory Loading

* PROGRESS CONTROL REPORTS
* Works Order Status
* Batch Status

* PRODUCTIVITY REPORTS
* Dynamic Balancing
* Production and Work-in-Progress

* PAYROLL/LABOUR COST CONTROL REPORTS
* Pay/Performance Status
* Payslip Print
* Section Reports
* Labour Cost Control

* INVENTORY CONTROL REPORTS

·3- Paper 1022

PLANNING AND SCHEDULING REPORTS

* PRODUCTION SCHEDULING
The System produces a Report which details, by Department, the works
orders scheduled to be loaded for the next 'x' weeks, and compares
this planned load, by week, against available weekly capacity, in
units or standard minutes, to determine potential weekly over/under
load situations, in advance of order issue.

* FACTORY LOADING
This report details, for a specific week ahead, by Department, the
work content of the works orders scheduled to be issued to the factory
that week, in key sections, machines or operations, and compares this
planned load against available weekly capacity of those sections,
machines or operations, in units or standard minutes, to determine
potential local bottleneck situations, prior to releasing the order
for manufacture.

PROGRESS CONTROL REPORTS

* WORKS ORDER STATUS
The system produces a report which shows the current status of any
works order and its relative position against target completion dates,
at key progress points down the manufacturing cycle.

* BATCH STATUS
A screen report is produced for the Supervisor which identifies overdue
batches within a works order which have failed to reach a key progress
point by the scheduled completion time necessary if the works order
is to be completed on time.

PRODUCTIVITY REPORTS

* DYNAMIC BALANCING
The system is constantly checking actual production achieved per
operation against daily targets set by management. When an imbalance
situation is highlighted, a Dynamic Balance Report is produced on the
Supervisor's screen. Production achieved day-to-date figures are
detailed for the operation and also for the operators/machines currently
assigned to that operation. In the case where actual production
achieved is significantly below target, details of operators and/or
machines to assign are shown, to assist the Supervisor to efficiently
balance his section.

* PRODUCTION AND WORK-IN-PROGRESS
Details of production, in units and standard minutes, are produced
for the day and for the week-to-date. These actual production figures
are compared against targets set by management, and the variances
expressed as a percentage. Information relating to the actual level
of work-in-progress by Department is produced, which is compared with
the target level and the variance figure is shown. The level of

Paper 1022 -4-

work-in-progress is expressed in equivalent days production.

PAYROLL/1ABOUR COST CONTROL REPORTS

* PAYROLL/PERFORMANCE STATUS
A dynamic report is provided for the Supervisor on demand, which
details up-to-the-minute pay and performance figures for each operator
in the Department.

* PAYSLIP PRINT
At the end of each working day, a payslip is produced for each operator,
which details gross pay earned that day, broken down into on-standard
and off-standard pay elements.

NB: These payroll-related Reports are only meaningful if the factory
is operating an individual piecework payment system for the direct
operators.

* SECTION REPORTS
Daily/Weekly Reports are produced, which detail at operator level, by
Department:

* clock minutes worked • on standard/off standard
* SMs earned • on standard/off standard
* operator on standard performance
* operator pay • on standard/off standard
* department efficiency
* cost per standard hour
* average earnings per hour

This performance-related data is used for Supervisor follow-up and
control.

* 1ABOUR COST CONTROL
This report, which is produced daily, details achieved figures, by
Department and for the factory in total, for key control parameters,
such as:

* on standard performance
* utilisation
* efficiency
* analysis of excess costs - by category
* production achieved (units/SMs)
* direct labour costs
* cost per unit produced
* cost per standard hour
* minutes per unit produced
* analysis of operator performance, etc

These figures are compared with budget, and the variance is shown.
Daily figures are summarised into a weekly report.

·5- Paper 1022

* INVENTORY CONTROL
A wide range of Reports, both in the visual and printed format, are
produced to handle all functions associated with raw material/bought-out
component stock control, including:

* Order Analysis - provision of bill of material requirements from
each customer order or contract;

*Full stock control facilities - processing of customer orders,
purchase orders, material/component receipts, issues, returns,
amendments and cancellations;

* Automatic identification of items requiring re-ordering;

*Routine material/component delivery control procedures;

* Provision of up-to-date physical and free stock figures, on order
balance and allocated balance, per item;

* Identification of slow-moving, obsolete and over-stocked items;

*Full stock checking facilities;

* Provision of up-to-date stock valuation information.

FIGURE 1: SAVINGS AND BENEFITS POTENTIAL

+--+
I BENEFIT I LEVEL OF SAVING EXPECTED
-------------------------------------1--------------------------------------

Increased Productivity

Reduction in level of work-in-
progress

Reduction in factory excess costs
Reduction in factory-related

clerical costs
Reduction in shipping costs

Improved morale of supervisors/
managers

Improved delivery performance to

I Highly engineered factory: 2-4%
I Small batch company: 5-10%
I
I
I
I
I
I
I
I

5-10%

5-10%
10-40%

10-50%

I Not quantified
I
I
I Not quantified, but should generate

customers I additional sales
Improved customer service I

+--+

REAL TIME SAVINGS AND BENEFITS

Obviously the level of savings and benefits which can be realized in a specific
situation depend both on the effectiveness of control systems currently in use, and

Paper 1022 -6-

also on the type of manufacturer who would use the system. A highly engineered
company manufacturing a relatively stable range of products on a contract basis will
gain different levels of savings and benefits to an organisation making small batch
lots of a wide range of differing products.

However, in Figure 1 we outline the type and level of benefits, including quantifiable
savings, which can accrue from the use of this type of real-time production control
system.

ROI POTENTIAL

For a medium-sized manufacturer, having about 250 direct operators, the payback
period for the PCI SYSTEM is often 1-1.5 years. As the installed cost of the system
works out at approximately 75 cents per direct operator per working day for five
years, it can be seen that a very attractive return on investment potential can be
realised from the use of this type of installation.

CONCLUSIONS

Various techniques for the efficient control of manufacturing have been outlined
above. Certain disciplines need to be introduced and all levels of staff fully
trained if these control systems are to be successfully implemented. Key,
up-to-the-minute information for action will result from the introduction of a
real-time system; however, it is the use of this data which will determine whether
or not the potential benefits from improved control systems are realised.

If manufacturers in developed countries are to remain competitive, or even survive,
then modern methods of management control must be utilised in their factories. The
PCI On-Line Production Control System provides the type of dynamic factory control
system necessary in today's working environment to ensure that maximum productivity,
minimum factory operating costs and a high level of delivery performance is achieved.
We suggest that these three factors are essential to the successful operation of
any manufacturing business today and that therefore this type of system should be
seriously evaluated by any progressive company.

-7- Paper 1022

I ~

I

1023. SAR.SAT • SATELLITES, HPs, AND SEARCH AND RESCUE

Norman P. Livermore
Lt. Edward Blanchard

TSA,Inc.
Suite 325

1400 Lake Hearn Dr.
Atlanta GA 30319

Most general aviation aircraft and many boats carry some type of Emergency
Locating Transmitter (ELT) which uses a special radio frequency for reporting
emergency situations. The major problem with these transmitters is detectability
because most distresses occur in isolated areas. Quick location and recovery
time are critical to the survival of the victims of a crash or other distress.
Studies show that only 20 percent of injured victims will survive if not rescued
with 24 hours and only 50 percent of uninjured victims will survive if not
located within 72 hours. Prior to SARSAT, an airport or harbor monitoring
station, aircraft or ship in the distress area and listening on the proper
frequencies had to receive the distress signal for rescue to be effected. SARSAT
(Search and Rescue Satellite Aided Tracking) and the Soviet equivalent COSPAS
has brought a space-age solution to this problem. With SARSAT, U.S. and Soviet
satellites regularly pass over the earth in low, near polar orbits listening
for distress signals and relaying them to Ground Stations throughout the world.

SARSAT/COSPAS is a cooperative effort spawned as an experiment involving the
U.S., Canada, France and the Soviet Union using satellites to detect and locate
these emergency signals. The project quickly expanded, bringing in the United
Kingdom, Norway, Finland and Bulgaria. The most recent tally of SARSAT related
rescues is 343; 154 of which are Marine, 177 of which are aircraft, and 12 of
which are classified as terrestrial.

The United States involvement in SARSAT may be divided into two parts: A
Spaceborne segment and a ground based segment.

The entire project is based on the ability of low earth orbiting satellites to
receive distress radio signals and relay information about them to earth based
rescue forces. There are two discrete components of the spaceborne segment of
the project; the first is the spacecraft. The current environment consists of
three Soviet Cosmos class satellites called COSPAS I, II, and III and two United
States rescue packages called SARAI I and II which ride on specially equipped
TIROS-N satellite~. All five satellites are in a high inclination polar orbiting
constellation at an altitude of approximately 450 miles and with an orbital
period of about 100 minutes.

Each Satellite is equipped with radio receivers for 121.5 MHz and 406MHz radio
signals. The SARSAT packages include an additional capability for receiving
243.0 MHz distress signals. This last frequency band is reserved for U.S.
Military use. These distress signals are transmitted to ground stations in
"real time" when the distress and the ground station have mutual visibility _of
the spacecraft. When the ground station cannot receive the signals, each
spacecraft has the capability to store them and replay them upon command.

Paper 1023

The second component of the project's space segment are the distress signal
transmitters themselves. Called Emergency Locator Transmitters (ELT) or F.mergency
Position Indicating Radio Beacons (EPIRB), they are simply a self-contained,
battery powered radio transmitter. These transmitters have an automatic trigger.
ELTs are aviation type transmitters and are required to be carried on all civil
aircraft. ELTs are designed to be automatically activated upon crash through
the incorporation of "G" switch. EPIRBS are carried by the marine community
and are designed to be activated automatically upon floating. A special type
of ELT is also available which is called a personal ELT. This device is designed
to be carried on backpacking and other outdoor activities in remote areas.
These ELTs may be activated by manual means only.

406 MHz beacons differ from the 121.SMHz and 243.0 MHz beacons by providing
unique identification and information on the type of distress and number of
persons involved. This generation beacon is currently being developed. Tests
of the beacon show highly favorable results.

The United States ground segment consists of a network of gro\ll'ld stations called
Local User Terminals (LUTs) and the United States Mission Control Center (USMCC).

The LUTs are responsible for tracking, receiving and processing distress signals
relayed from the satellites passing within site of the LUT antenna. An HP-1000
F-series computer is the heart of each LUT and is responsible for controlling
all LUT processes. The LUT configuration consists of the following hardware
and system software.

1. HP Configuration
• HP-1000 F-series processor with 1 megabyte of memory.
- Two 7925 MAC Disc drives.
- One 7970 tape drive.
- HP 12966A BACI cards, terminals and printers.
- HP 12794B DS-1000 Modem interface card for MCC

communications.
- HP 12825 CPU to CPU direct connect DS-1000 cards.
- RTE !VB operating system
• DS-1000 IV network software for remote communications

2. Other Hardware
• Datron antenna subsystem
• AP-120 Array Processor

The software system within the LUT is written primarily using FORTRAN 4 with
several special purpose modules written using HPlOOO Assembler, Assembler use
is restricted to those functions where timing requirements are critical ("Real
Time" processing functions). The LUT software can be separated into four basic
sub-systems: Pre- Pass processing software, "Real Time" processing software,
Post-Pass processing software, and User Interface software. Pre-Pass software
performs all operations necessary to ensure that the LUT system is ready to
receive data from an upcoming Satellite pass. Within the Pre-Pass subsystem
the following functions are performed: the antenna and receiver system is
positioned, all data files required during "real-time" processing are verified
present and properly initialized, all inter-pass processing software is initialized
and ready for the satellite pass, and finally the Pre-Pass subsystem is responsible
for initializing the array processor software and the signal processing hardware.

Paper 1023

The Real Time processing software is responsible for collecting all data required
for Post-Pass processing during the Real Time tracking of the spacecraft. This
software collects the 121.5 MHz and 243 MHz data from the array processor,
separates it into the different bands and places it in memory for future
processing. The Real Time software is also responsible for collecting all 406MHz
signals from 2.4K bit frame synchronizing hardware responsible for receiving
and decoding the 406 MHz signals. Also collected during operation of this
subsystem is range rate data used during Post-Pass processing for satellite
orbital elements. The Real-Time subsystem is also responsible for controlling
the antenna's position during the satellite pass. Post-Pass processing is the
subsystem where the actual signal processing is performed. 406MHz signals are
processed through a weighted least squares processing technique to obtain
positional information (lat/long). 121MHz and 243 MHz signals are also processed
into position information during Post Pass Processing. These positions are
computed using a two dimensional FFT algorithm. Both raw signal data and doppler
templates created by signal characteristics and spacecraft/LU! geometry are
applied to the FFT logic. The positional data is placed in memory and transferred
to the USMCC when the Post Pass processing cycle has been completed. The User
Interface software is provided to permit the LUT operator to interact directly
with the LUT processing software. A set of user friendly command ori~nted
modules are included in this sub-system allowing the operator to modify controlling
parameters, as well as permit the human operator to assist in the system decision
making process.

A set of utility software is also present within each LUT to pennit reprocessing
of previous satellite passes as well as to provide data analysis and debugging
capabilities,

The USMCC acts as a focal point for all North American SARSAT/ COSPAS related
communications. The USMCC software is responsible for collecting all US LUT
distress locations, sorting these locations by geographic region and transmitting
the locations to the proper rescue coordination center worldwide. The USMCC is
also responsible for processing all SARSAT stored data including stored distress
data, spacecraft instrument housekeeping information (Telemetry) and management
of all SARSAT Spacecraft orbitography information with regards to the worldwide
ground station network.

The USMCC uses two HP-1000 F-series computers operating as co-processors. The
actual configuration of the USMCC hardware and system software is as follows:

1. HP Configuration
• Two HP-1000 F-series processors

Four HP-7925 MAC disc drives
Two 7970 tape drives

• A mix of 26XX terminals
• HP 12828A 8 channel MUX for six HP terminals

HP 12828A 8 channel MUX Tektronix terminal interfaces
• HP 12966A BAGI cards for terminal interfaces
• 12821A HPIB used with extenders for IBM-PC, HP printer and

HP 9872C Plotter
• 12794B DS-1000 Modem interface board for each of the LUT

modes.

-3- Paper 1023

2. Non HP Equipment
- IBM PC used in the RCC connected using a Tekmar IEEE-488

interface board to the HPIB extender.
- Tektronix 4Ll5 used in the RCC via the 8 channel Mill{.
- Nu data T-16 Telex interface.

3. The USMCC computers both use the RTE-6/VM operating system and both
have two megabytes of main memory. All communications with the
LUTs is through HP's DS-1000 networking software. All incoming
and outgoing data is kept in IMAGE data-bases and being installed
are DSN/X.25 1000 and PMF/1000. The X.25 interface will replace
the current synchronous communications interface while the PMF/1000
will connect the USMCC system to an IBM 4341 located in the US Air
Force RCC.

The USMCC processing system SARIPS (Search and Rescue Information Processing
System) resides on two HPlOOO F-series Computer systems and is comprised of 52
separate software modules. The SARIPS software is written using FORTRAN77 with
several fundamental routines written in HPlOOO Assembler. Interprogram
communication is achieved using RTE class input/output operations. A master
scheduling routine SCHED provides a means of programatically assigning class
buffers to each SARIPS module and initiating operation of the module (program
scheduling). The DSlOOO DEXEC utility is used to schedule those modules identified
to execute on the processor which is not "controlling" system initialization.
As each module is scheduled it sets up its own operating environment, responds
to the Master Scheduler and examines its assigned class queue for incoming
commands.

USMCC-LUT communication is accomplished by software which takes advantage of
the HP DSlOOO subsystem using Program-to-Program communication operations. As
data is received from a LUT it is identified according to data type, LUT
identifiers, spacecraft source and orbit number. Inputs are collected and sorted
by this identifying information and processed as a collection. The "best"
position is extracted for each location set using signal characteristics in a
probabilistic module. Where possible the ambiguities of the LUT doppler processing
are resolved by historic comparisons to other satellites and earlier orbits.
After the "best" solution has been determined, the position is used to determine
the rescue region of responsibility. Rescue regions are determined according
to a predefined set of latitude/longitude pairs which define international
boundaries as well as domestic rescue regions. Information pertaining to each
distress signal processed is then formatted and transmitted to the responsible
parties.

Stored SARSAT data is received at the USMCC in "raw" form from NOAA's data
processing sub-system (NOAA-DPSS). This data is transmitted by a special
communication interface called NASCOM. The data received is identified by
spacecraft and data type, formatted into a usable form and passed to one of
several processing modules. Data identified as incident (containing distress
data) is passed on to be processed into location/frequency information using a
method similar to that employed in the LUTs. This information is then collected
again by satellite and orbit and passed to the geographical identification
software to be merged into the "Real Time" incident data processing flow.
Spacecraft housekeeping data, identified as telemetry data, is separated into

Paper 1023 -4-

data related to the Search and Rescue Repeater (SRR) provided by Canada's DOC
and the Search and Rescue Processor (SRP) provided by France. This separated
data is passed to the appropriate processing modules where the digital data is
converted into voltage, amperage and temperature information. These values are
used to perform statistical analysis on the general health of the respective
instruments. Reports containing this information are formulated and transmitted
to the proper foreign agency.

The USMCC requires all data received and transmitted be archived for recall at
a later date. The IMAGE 1000 system is used for this purpose. Two databases
have been created for incoming and outgoing message traffic respectively.
Several user oriented software modules are contained within SARIPS to permit
USMCC personnel to obtain information on message traffic, extract and display
a message according to any of several keys, or retransmit a message as requested
by a user. These programs are menu driven using soft-key technology. A separate
master menu program is available to provide online documentation on all other
user software and well as provide one key execution of a selected program.

Graphical representation of spacecraft suborbital tracks according to time, and
ELT/EPRIB activity in a given area are also included in the SARIPS software.
Merru driven programs provide graphical information to USMCC personnel as requested.
This information is dispatched to an HP Color Graphics terminal or an HP eight
pen plotter according to user inputs. Another graphic based module is contained
within the system which automatically displays ELT/EPIRB activity within the
continental United States on a set of TEKTRONIX Color Graphics Terminals.

A final module is present in SARIPS. This module, called MONTR, provides automatic
monitoring of all SARIPS software and adjusting priorities of modules which show
above a given level of backlog in their class queues. The module also provides
for a certain level of automatic error recovery and notification of any trouble
to the USMCC personnel. The monitor software automatically checks the status
of all communication interfaces by "looping back" through the distant end at
periodic intervals. MONTR results and trouble reports are displayed on a screen
format resident on an HP Color Graphics Terminal.

As the USMCCs chief role is data collection and distribution in a worldwide
network, several different communication interfaces are contained within the
system. These interfaces include: DSlOOO based computer-to-computer comnunication
used for interfacing the USMCC and all US UJTs as well as between USMCC processors,
an HPIB communication with an IBM PC used for automatic record keeping within
the Air Force RCC, an AUTODIN interface (Automatic Digital Information Network)
used to relay information to the US Coast Guard RCCs and between the USMCC and
the Canadian MCC, a TELEX interface for communications between the USMCC and
all European and Soviet MCCs, and a special synchronous communication interface
called NASCOM used for USMCC/NOAA-DPSS communication (relay of SARSAT Stored
Data). These interfaces are described below:

A. IBM PC
1. Specifications and hardware.

- Tekmar IEEE 488 IBM PC interface.
- HP interface bus (HPIB) with extenders.
- Data Products DDU·l short haul modems.
• 9600 baud transfer rate.

-5- Paper 1023

2. Description.
The IBM PC is used by the Air Force RCC as file system and a
means of keeping track of the current status of search and
rescue events. Prior to the connection of the PC to the
HP-1000 all SARSAT data was entered manually. This was a time
consuming job. As a part of this design a program was written
to receive data bound for the PC and hold it until a request
to send was received from the PC. Hardware communication was
established using a Tekmar IEEE-488 interface card connected
to the HPIB bus. Periodically the PC sent the HP a data
request. If the HP had no data it returned a no data flag.
If the HP had data it sent the data via the HPIB bus.

B. AUTODIN.
1. Specifications and hardware.

- HP 12966A BAGI card.
- Data Products DDU-1 short haul modem.
- Western Union portable terminal controller (PTU).
• 2400 baud RS-232.

2. Description.
Communication with Canada and U.S. Coast Guard i~ VIA the
military AUTODIN system. AUTODIN is used because of it's low
cost and availability to most Coast Guard RCCs. The HP portion
of the interface uses a BAGI card and the user group driver
DVFOO. DVFOO is used here and in TELEX because of it's very
flexible nature. The other part is a custom Western Union
portable terminal controller (PTC) Data is transferred between
the BAGI card and the PTC in 5000 word or less blocks. DVFOO
is programmed to detect the program a line at a time. For
transmission to AUTODIN the data is fixed record length.

C. TELEX
1. Specifications and hardware.

• Nu Data T-16 Telex interface set.
- HP 12966A Baci card.
- 100 baud RS-.232 between the BAGI and the T-16.
• 50 baud over the Telex network.
• User group driver DVFOO.

2. Description.

Paper 1023

The Telex interface is by far the most troublesome one within
the system. The Telex system was designed with very slow
online terminals which had a high tolerance for errors induced
by poor signals and bad connections. Automating this connection
has been a challenge. The hardware level of interface is BAGI
card on the HP connected to a Nu Data T-16. DVFOO is again
used as the driver. The T-16 handles the electrical interface,
dialing and automatic answering of incoming calls. When a
message is to be sent, a program called TELCM sends the T-16,
via DVFOO, a connect signal. The T-16 dials the network and
sends the response back via the same route. If the response
is a "go-ahead", TELCM sends the TELEX number to be dialed to

-6-

the T-16. The T-16 dials the number and returns the response
to TECl11. TELCM checks this response and if it is correct,
the message is sent one line at a time to the T-16. After
the last line is sent, TELCM has the T-16 request confirmation
of the transrniss ion from the receiver. If the correct response
is received, the transfer is complete. If not, the process is
repeated until the message is successfully transmitted.

Incoming calls are answered by the T-16 which signals DVFOO
that a message is inbound. When the T-16 gets a "go-ahead"
from TELCM, via DVFOO it sends the message in one line at a
time. When TELCM detects an end of transmission, an
acknowledgement is sent to the sender via the T-16. The answered
acknowledgement is validated. If the answer is proper the
message is accepted; otherwise the message is rejected.

D. Tektronix 4115.
1. Specifications and hardware.

• HP 12828A 8 channel MUX.
• Data Products DDU-1 short haul moderns.
• 9600 Baud RS-232.

2. Description.
The Tektronix 4115 is used by the Air Force RCC to give a
graphical display of the "conus" U.S. and any rescue efforts
in progress. A data-base of current ELT locations as well
as other rescue situations is kept on the HP. When ever a
new ELT is located by SARSAT it is added to the data-base
and transmitted to the Tektronix terminal via a 9600 baud
RS-232 Mux port. If the RCC controller enters any data at
the Tektronix terminal it is transmitted back to the HP
data-base via the MUX.

E. NOAA Communications.
1. Specifications and hardware.

- HP 12618 Synchronous Communications Kit (SCK).
·Cross Systems Nascom Interface Unit (NIU).
• Racal-Milgo 9601 Synchronous Modem.
• 9600 Baud.
• Two custom privileged drivers developed by TSA Inc.

2. Description,
All stored data from the SARSAT satellites as well as spacecraft
tracking data is sent from NOAA to the USMCC using a NASA
protocol known as NASCOM. The NIU performs error checking
on the incoming data then sends it in 1200 bit blocks to the
receive portion of the SCK. An application program checks
the error bits then accepts or rejects the block of data.
If the data is rejected a request to retransmit is sent back
to NOAA through the Transmit portion of the SCK and NIU.

-7- Paper 1023

SARSAT OBJECTIVES

8 REDUCED MANUAL EFFORT

e RAPID DISSEMINATION OF RESCUE INFORMATION

9 IMPROVE LOCATION ACCURACY

e RAPID RESPONSE TO INFORMATION REQUESTS

SARSAT CAPABILITIES

• AUTOMATIC DISTRIBUTION OF SATELLITE TRACKING DATA

• AUTOMATIC DISRTIBUTION OF SATELLITE STATUS INFORMATION

• AUTOMATIC MERGING OF MULTIPLE SOLUTIONS TO DETERMINE THE BEST LOCATION

e AUTOMATIC TRANSMISSION OF LOCATIONS TO THE PROPER RESCUE AGENCY

• INTERFACE WITH OTHER RELATED DATA SYSTEMS

.,,,,..,..-

,,..-~~
~~

Distressed Units

.--------~------------- ---
EL T Emergency Locator Transmitter
EPIRB Emergency Position Indicating

Radio Beacon
LUT Local User Terminal
MCC Mission Control Center
RCC Rescue Coordination Center
SAR Search and Rescue

SAR Forces

,,,
SARSAT System Concept

ArRCRA.FT

Emergency Locator Transmitter
{ELT)
o Operates at 121.5 or 243.0 MHz

o Automatically activated by impact of
crash with manual override

o Position accuracy within 12 miles

o Batteries will last between 48 and 72
hours (while transmitting)

o Cost $150-$300

-·~ ! , ~-~ ..
. ~·~ ~; ··-·~ .. !\·"".' ~ - ·~ "~.:..;?(,· . . ~ ;.

i'il~'t{JNE

Emergency Position-Indicating
Radio Beacons (EPIRB)

o Operates at 121.5 or 243.0 MHz

o Automatically activated by Immersion
in water with manual override

o Position accuracy within 12 miles

o Batteries will last between 48 and 72
72 hours (while transmitting)

o Cost $150-$300

"----

•' -~ -. -~~~--... ,_.
' ~~- ••.•• -·~· , -·· :...~ : :·~~ 1-~

~-~:· ··\.:.· ;:.,,.- .- ,:_ ..--~ •. --~~
-•·· . - #. . --~ .. 4 $

._.,~~.~~·:.~~

! : 1 ,.. __ _

'

'\ t

·.

.r.~ ..

,. . ,..
•.

,.
1 ~ ..

' ' ' .-,,<· ' .
' .

Local
User

Terminals

are
Kodiak

HP1000 I LUT
Computers

NOAA
LUT

NOAA
(US Satellite
Stored Data)

/ .'°i . .---·-·-·-·-·-- . ~ • . I/ t •• .

HP1000
(System A)

HP 1000
{System B)

• /1
! j US Mission Control Center

. ! · (USMCC)

I
•
I

IBM 4381

.... ·-·-·-·-·-·..:/

Search and Rescue Satellite­
Aided Tracking System

_ (SARSATl ·--
~.

' France
MCC

••• I ...
i

DevelopmentTerminats
at Scott and Atlanta Ga

Canada
MCC

Norway
MCC

Britain
MCC

SARSAT HARDWARE CONFIGURATION
TELEX
T16

HP 1000 HP 1000 1600 BPI ATLANTA CPU MAG TAPE CPU

ON-BASE
DDU

FFP FFP

NOM/DPSS 1/0
SEDL 1600 BPI EXTENDER

MAG TAPE
KOOi UNEPRINTER 120 Mb 120 Mb 120 Mb

SANF DISC DISC DISC

PTC
BLACK BOX

NIU

ON-BASE

f COMM RACK I PROCESSOR B PROCESSOR A

US Mission Control Center (USMCC)

;;;so; --

USMCC Terminals
at Scott

Autodin

TELEX

HP 1000
(System A)

RTE-6

s r···i··· .. 1
A iM
R ~ A
I ~1 G :;
P i E ~ l S : : :

·~ '.~::::,~ ~::~~~~:~::~ l
l ~ OS 1000 l l : : =~
i. ::::::::::::::;r:::::::::::::::: .. j

....... ,-........... .
OS 1000

....................... ,.

LUTs
NOAA

Database

HP 1000
(System B)

RTE-6

. OS 1000 . .
:~::::z: ····~~~~~~·.·.·.·-~:
: S : : I :
: A E 1 M:

R l l A
I ~l G
P l l E
s . ; :

DevelopmentTerminals
at Scott and Atlanta Ga

••• I W •

Database

USMGC C.OM.MUNJCATION INTERFACES

uses Luf'
POINT REYES

USCG LUT
KODIAK, AK

CMCC

DC - DIRECT CABLE

AD

LCL - LEASED COMMUNICATION LINE
AD - AUTODIN
AV - AUTOVON
FTS - FEO.ERAL TELECOM SYSTEM

UN'1ED STAHS
MISSION CONTROL CE~HR

_+

AV
I

OTHER
DOD

AGENCIES

LCL

SEDL

FTS

• OTHER
U.S. GOV'T
AGENCIES

LC.l/AD

~
I ~nMI

... AF.RCC----·
- .,,

SC9,TJ ,AF,B
~ ••• <.»- k ""'-' ,.. ~

. AAC .R~~
nM~NP.O.RF ,~F.B

USCG
3RD DISTRICT

12TH DISTRi.CT
•'- -·-. - _,_ -·. - -·- ~ ...

2 3348 AR

~ J

'
r
t·
' ... \ . ~ <~·./ ~: ;
(~~ .. ' ';.- i

..
1 ''

,·
\

~. > • • I i ·•
"'/~ ~. .~ : ·. \ ' ·' ' ..

(,/ \ : · .. ~ : ..,...,.
<. L~.J) -.. ~ f : 1
-~~ ·: ·~t 1 ·~r

;· .•. r,) 1 l '- I •I'
~ ~ .,, ' \ l - -1··· 1-·· -""""",_
~: ~I • ' ' ,. c:··,
~ .. ,,., t I I ! I . ' .,
,,.,;'--,,~t.,, __ _: -...... ~::.. - ... -- _ ·-~·~·· .. __ _.,.._ --~L--_ f\ . ..---~~-- , · ..

(Hi1tf\Jrt 0
', 1;-• ~ : ; j • •...,v•"' '° ,;'1 ,.\ ._ : ,,..-)

-----~~~ ."'' t i ~.. /t .. ·,.H~ .~-~r • t-'-V"'_ \ 0 "~·~:;_,.~--·•,,.,·~ ... , ~/ ,''--"'-<._J"1•
\ ~ ; . \ / ~ l '· \ .. ~... , •°j' •, ,, '"'!,. (\' ' ~ ! \~ \ l ~- ~ .,,:.~· !. " ~ ~... ', • ;;; / : -:, lJ t .. "' I (·1 'L t \ •·• I \ • ,,, ~, . .• ·, • ,.,. .. : \ • • ;;(I

I 1
- ' ~ } ~,.,, .. ._.J,._,_, , .. _nl ' .,a '~) .-~;f•~',... ') i! j t 11..----..... ')t

i . '-'\ .. ' I' ~ \ . ~ l' •,,. ·'~. \ ·-··; (I· t ·;. •• -··;;. . " . --~ . -··--·- . _, I . ·-1 ••• .! • ·~ .• . • • r .,,.. 1 / ~ .-
...... _,.~ . "..... ' J) j / > ""' l # ~ ... ' t ~ ; I) · { l · ,. \ · ,, · ·<::' l · (/ ! ,,., t ,/ <o•oo,.

:. \. \ .. ' '' • ·- . I. I '. • l ij ;': :.:- • ,) , } '• ../
i •.. , ·r·· ... -.. • 1 t ~· .) • > ? .,.....
; ~ • t ,~. --t . /S .<.~;; .if .. . {

·•. •· ·., • •····-·-·· I • · ! fj,..' · ·Ytr- • fl ·9i*' I' . •• 'j l • ~ I ,~ "o . '4 • l> t I • t.,,.,
.. ··• .. • t 1.-· .. .

• >. .. •• " • • • • • " , I 1 . r- ~~ 80> TOI>
• • ? • • • • • : ~ • . L;L_ - ..

I f,. ~ : ' ;., • -•' • " ••• ; ,'7;. ' p- .·) ~ /
• ; ? • : ~ ~ ... ~. ~· I l . i : l . . . ,.... ~ . . ,.' ''/l,(> ,

"• " · ... ,, : : ~ • · fl, ; • > 1-» /rt J Nn~ 'rl)~l •·
'i"' . ' I - , .,,.. I . . ; .. · ' . ,. ;. ~ /
\' \... L_~,j~_t _·~ .. --~ ... _._, .L- ... ~ ... -~· 1~. _, t .. -~· .. ~:,; ___ , ~~t I

1 .. ,rn""':1·;co I fJ._ • .' i 11 I L •• - ..
1

: ! --··-···· / .j·-·········~--~;r .. ···-<»· - I
• ,,. . "" ····.I , ' I •., • : , ·,.,-,. • '
'. ·. i " t / '\ l . I I :· · · '--...,/
.)'--.... ·~r' I .,j _ ·1 . \ / .. , ::_:··.·-(t~a-1. ~,r no•FOL• ;' on,Anfl(

,. - - I -,.!. 't' . ,.... "' \ I
/

.:---.. I I ' fry,. 1 ~~· • ·. ',~. ~
'II • • t ~ i ... r ,. / ••• ·:::: f : ' I . ,. I

" --...., i -~-:--· .1 \ ,. I , .
/ '1- ·•• ••• •••••••• ' ' •.• I I ~ (/

' . ') l .. 'fl. r -· '<.,
,,. / ~. t \ } \. r\ ~ (). .. _,. '.-·~; .. : :..'{,.,7. \ -; \ . . · ' , '-'. ~) . • ~ > ~ -

, s... ; ~? I
·. (~ \' I ' . '. ., ~... t "t\ : ~ " . ,. . .. ·~ ,, "' .. . I ' ;' l .,; ~. , .. 1.. : ~ j

• • ' t ,. • • .. . ; \,•' \ . ~
J • ~ i ~. r·) , .i...J "I""'
• . - .~:. . (! ; ~ .. I

, ,. /l., ! .. I \) , . ; .
. • t '. t • i I i

~ 1·\r.;07.~-;·.;. I lllA"T 1:11AP[1
. ;._r • ,,. ,,.,.." • I - ') u -

/ ~i

su..rn.~

i •
l

• , -··-· ·-1 -•

i.lr-tb e;~..:..:i.

SQ" JU~'t

r.--~~·;.::;··.,~~·f·M6ci°r'FY/··1.-,:·s0Rr/"·J·~·: ·-,,.-·_·: .· -:,,-R.ECALL""}·.REPORT71 .. ~'· -:1 ... ···: ·1

~~~.~~---~-~Q_?_s_ .... ~.B.IT~ ~-§!! ~""~.:-~~ ·-.X~.~.GE-.. -· ~ ! SJ_I !'lq s"~ ,.~~~:'!:~~ --•-k•:2:.:~....J 







1024. RTE-A COMMAND INTERPRETER FEATURES 

Beth Clark 
Hewlett-Packard Company 

Data Systems Division 
11000 Wolfe Road 

Cupertino, CA 95014 

At Revision 2440, Hewlett-Packard significantly enhanced CI, the Command 
Interpreter program on the HPlOOO. Cl's latest features include nestable command 
files, user-defined string variables, predefined system string variables, 
file control structures, return string and return status variables. 

These new features make CI more capable, powerful, flexible, and friendly than 
ever before. Procedures that were done manually before can now be automated 
and functions previously under program control can now be accomplished by command 
files. All of this adds up to increased engineering productivity. 

The reader is assumed to be somewhat familiar with Cl's commands and syntax, 
and the general concept of a command file. 

Positional Variables 

Positional variables (sometimes called positional parameters or positionals) 
are a simple way to pass values in to a CI command file. They 
.be911_i,tse the relationship between a variable a 
position in a runstring or TR command. _(The TR command may be explicit or 

iiiiP"iicit.) For example, 

In CI runstring: 

CI,commandfile.cmd,varl,var2,var3 

In the TR command (explicit): 

CI> tr,commandfile.cmd,varl,var2,var3 

In an implied TR command: 

CI> commandfile.cmd,varl,var2,var3 

A maximum of nine variables can be specified. They can be separated by commas 
or spaces. The value of any omitted variable is set to null. Commas must be 
used to hold the places of omitted variables. 

The length of each variable is restr' 
string containin 

.._;:;~;,g.,:.--~ny c a ac er can appear in the string (although CI metacharacters must 
be quoted for correct parsing). 

-1- Paper 1024 



Positional variables are referenced within a command file by "$" followed by 
a number. "$1" refers to the first value in the runstring, "$2" to the second, 
and so on. If a position greater than nine is referenced, it is interpreted by 
CI as a positional variable less than nine followed by a number • for example 
"$23" is parsed as the value of $2 followed the character "3". 

When CI finds a reference to a positional, the value from the runstring is 
substituted in the command line in place of the positional. If a null or illegal 
variable is referenced, a value cannot be substituted therefore the character 
string is left untouched. So "LI $0" would report the error "No such file $0". 

The positional variables receive their values at invocation of CI or a command 
file. The values can be referenced as positionals only in the current CI or 
command file · if another copy of CI is run or another command file entered, 
new positional variables are created for that invocation. Unlike other types 
of CI variables, positionals cannot be altered within the ~ommand file. 

As an example, consider an interactive command that copies a particular file 
from one specific place to another. Suppose that many files with similar names 
must be copied. (If only a few files were to be copied, the command stack could 
be used to edit the command several times.) A command file that specifies the 
static parts of the command can be created, and positional variables used to 
pass the differing part of the file descriptor. 

Suppose that without using a command file the following commands accomplish the 
necessary copies: 

co testfile4::datafiles /archive/testdata/test4>56 
co testfileS: :datafiles /archive/testdata/test5>56 
co testfile6::datafiles /archive/testdata/test6>56 
co testfile7::datafiles /archive/testdata/test7>56 

The command file used to replace the above commands would contain: 

co testfile$1: :datafiles /archive/testdata/test$1>56 

Specifying the needed file descriptor part for each invocation of the transfer 
file will cause the same file copies to be done: 

tr,commandfile,4 
tr,commandfile,5 
tr,commandfile,6 
tr,commandfile,7 

We will see later how a variable can be used to create the differing part of 
the file name in this example. 

In the next example, consider that many operations must be performed many times 
on a certain set of files. In this case, the file names are static but the 
operation needs to be manipulated. A command file can be created that contains 
the file names with the operation determined through one or more variables: 

Paper 1024 -2-



$1 filel 
$1 file2 
$1 file3 
$1 file4 
$1 fileS 

This file can be used to purge, unpurge, or create files, but only on the current 
working directory. Adding another variable for the directory allows ary copy 
of the file wherever it exists to be accessed: 

$1 $2filel 
$1 $2file2 
$1 $2file3 
$1 $2file4 
$1 $2file5 

As it exists, the command file can be used for commands that require only one 
parameter • the target file name. But most file manipulation commands require 
at least two file parameters • a source and a target. Adding a third variable 
increases the available command set to include rename, copy, move, and others. 
If the source file name should reappear in the target name, file masking can be 
used. 

$1 $2filel $3 
$1 $2file2 $3 
$1 $2file3 $3 
$1 $2file4 $3 
$1 $2file5 $3 

In this file, $1 represents the desired file operation, $2 represents the source 
file path, and $3 represents the target file descriptor. 

You can use this file in many ways: 

To copy all the files from /john/local/ to /global/: 

Cl> filer co /john/local/ /global/@ 

To purge all files on the current working directory: 

Cl> filer pu 

To display information about these files on the current 
directory: 

Cl> filer dl, , ! 

·3- Paper 1024 



User·Defined Variables 

User-defined var les are similar to 
Like positionals, the va ue o a user•defined variable is substituted by CI when 
a variable reference is made. However, the value of user-defined variables is 
not related to the CI or TR runstring.., Also. the mal11; ee; Sil alt" red at a.m' 

"'-time within a cgmmapd f}le or interacti~elJ. The names of user-defined variables 
are not fixed (like "$1", "$2", etc.) but are'user-specifia'61e. 

The user-defined variable name can be up to 16 characters long. It must begin 
with a letter or underscore and may contain letters, digits, or underscores. 
When parsing a command line, CI determines the termination of a variable by 
encountering a character that is not legal in a variable name, usually space, 
comma, or slash. The variable value may be up to 80 characters in length. It 
may contain any character. 

A user-defined variable is created by the SET command. Both the name and the 
value are specified in the command. If the variable already exists, the SET 
command assigns it a new value. The UNSET command deletes a variable. 

A user-defined variable is referenced in the same marmer as a positional variable 
- "$<varname>". CI substitutes the variable's value in a command line when it 
finds a reference to the variable. Unlike ·positionals, user-defined variables 
are kept globally by CI. A variable set in a command file can be referenced 
interactively or in another command file and variables set interactively can be 
referenced in command files, no matter how deeply nested. However, CI "knows 
about" its variables only. A copy of CI run from CI will not substitute for 
variables defined in the father CI, only those defined in the son CI. 

only performs variable substitution for one level. If the value of a va~ 
tains a string that references another variable, the strin will ;;;u~:\ 
erpreted as a variable and NO substitution will be made. This is easily 

demonstrated by: 

CI> return 1 2 3 4 S 
CI> set e - '$returnl $return2 $return3 $return4 $returns• 
CI> echo $e 
$returnl $return2 $return3 $return4 $returns 

The values of the return variables are not displayed because CI substituted at 
one level, for '$e', and did not substitute again for the value of $e. 

A common application of user-defined variables is in file pathnames. For example, 
the pathname "/sysgens/rev2440" could be assigned to "gen" and referenced as: 

CI> set gen = /sysgens/rev2440 
CI> rtagn $gen/answer $gen/system $gen/snap $gen/list 

Note that the terminating slash cannot be part of the variable's value because 
CI needs the slash to recognize the end of the variable's name. 

Paper 1024 



Predefined Variables 

There is a set of variables that CI defines and initializes automaticall . 
These variables are called the "predefined variables". The values oft 
variables will appear when a SET command without parameters is entered (alon 
with the values of other types of variables). The variables' values can b 
altered by the SET command, but the variables cannot be deleted by the UNSE 
command. 

The predefined variables can be grouped into three catagories. One set of 
variables defines what actions Cl will take in certain circumstances: $AUTO_LOGOFF, 
$LOG, $PROMPT, $RU FIRST, and $SAVE STACK. A second set can be used to determine 
the current enviro~ent in which CI-is running: $0PSY, $SESSION, and $WD. The 
last set contains variables used by commands and programs to return status 
information upon completion: $RETURN1 through $RETURNS and $RETURN_S. 

Note that CI automatically updates the value of some of the predefined variables. 
In the case of the current session number variable ($SESSION), it is impossible 
to actually change the variable's value to be different than reality. At the 
completion of processing the SET command, $SESSION is reset to the current true 
value. The current working directory variable ($WD) is only updated after each 
WD command, so its value may be temporarily altered between WD commands. Its 
value may be altered interactively by the SET command or programmatically by 
the FMPSETWORKINGDIR call. 

$RU_FIRST 

When CI processes an input command, it first attempts to recognize the command 
itself. Examples of internal CI commands are WD, HELP, MO, and CL. Next it 
attempts to treat the command as an RTE intrinsic, such as BR, PS, and OF. If 
the command is neither a CI or RTE command, than CI assumes the command is 
referencing either a command file or program file to be executed. The $RU_FIRST 
variable comes into play at this point. If $RU_FIRST is true, RU is inserted 
into the command line, if false, TR is inserted. The normal mechanisms for 
program schedule and command file access are then used. 

An application of $SESSION and $PROMPT 

Being able to control the prompt that Cl issues can be quite helpful. One 
interesting usage of the $SESSION and $PROMPT variables is to set the current 
prompt to include the user's current session number. For example: 

CI> set prompt - 'ci'$session> 
ci24> 

(For an explanation of all the predefined variables, see the RTE-A User's Manual 
[HP part 92077-90002]). 

-5- Paper 1024 



Completion Status Information 

Cl orts two type of return vari rameters and 
a string. Test ng t e s ng e variables in Cl IF statements is a straightforward 

,,...way of determining the success or failure of an operation. Based on status, 
the command file may terminate, continue, issue an error message, or take whatever 
action is appropriate. 

Return variables 

Most CI commands and HP-supplied programs return status variables. The PRTN 
system subroutine can be used by any program to return up to five single integers 
for CI (or any scheduling program) to access. Also, the CI RETURN command will 
accept 1 through 5 return variables. 

The return variable usage of selected HP commands and programs is supplied here; 

Function 

DL 

TM 

WD 

TR 

IS 

LINK 

MACRO 

CI 

EDIT 

RTAGN 

SAM 

Paper 1024 

$RETURN1 Others 

0 if no error or 2·5 not used 
·<error code> 

0 if no error or 2-5 • 0 
·1 if error 

0 if no error or 2-5 not used 
FMP error if error in wd specification 
(Note: $RETURN1 is not set for errors in 
command file portion of WD command) 

determined by parameters, set to 0 if 
not specified 

status of compare 2-5 - 0 

if no error, 1·3 • program name, 4 not used, 5 n n 
if error, 1-numeric error, 2-4 not used, 5-0 

number of errors 2·5 - 0 

Depends on last command executed: 
if no error, left intact from previous values 
if error, FMP error or ·l, 2·5 - 0 

not used 

number of errors 

0 if no problems 
·l if problems 

not used 

2 total SAM in words 
3 - total free/problem words 
4 - no. of free/problem blocks 
5 - largest free/problem 

block in words 



Return string 

The return string can be used to pass back information that doesn't easily 
conform to five integer parameters. The return string can be a maximum of 80 
characters long and may contain special characters and meta characters. A 
command file may access the $RETURN_S variable just like any other variable. 
A program that wishes to return a string for use by a command file may issue an 
EXEC 14 call with second parameter equal to two. The CI RETURN command can be 
used to return a string from within a command file. 

Control Structures 

control -ELSE-FI and WHILE-DO-DONE. 
ese structures can manipulate Cornman ile execution flow through ec sio 

branching and iteration. Cl's control structures are both conceptually and 
syntactica~~y ~ilar to-Constructs found in higher-level programming languages ... f/4'/)£ 

Either control structure may be nested within itself or within the other type 
of structure. There is no arbitrary restriction on depth of nesting, but when 
Cl's internal buffers for control structures become full, CI abruptly terminates 
execution of the current command file. 

Decision Branching 

Cl's IF structure simply executes a command and branche~depending on the outcome 
of the command - if success is indicated, the THEN branch is executed, if failure 
is indicated, the ELSE branch is executed. The command may take many forms -
a CI command, a series of CI commands, execution of a program - any activity 
that provides a return status of 0 (success) or non-zero (failure), CI recognizes 
the end of the command(s) when it finds the THEN clause. If 11n.1ltiple activities 
are specified, the return status of the last is used. 

The THEN clause can be a single command or set of commands. The ELSE clause is 
optional and may also contain one or more commands. An IF structure must be 
terminated by a FI command. 

Both the IF and THEN can also be followed by no commands. A null IF is interpreted 
as true. A null THEN is simply a placeholder for an ELSE clause. 

Using the HP-supplied IS program expands the types of conditions that can be 
easily tested in IF structures. IS compares two strings for equality or all 
five types of inequality and returns success or failure. 

The following command file segment demonstrates a simple command in an IF command. 
The command file runs a program called PROBE to check the status of the DS link 
specified in the variable $node and transfers to a (nested) command file that 
copies files over the link if the link is operational. If the link is not 
operational, the UP_DS program is run to attempt to restore the link. 

-7· Paper 1024 



if probe $node 
then tr ds_copy $node 
else echo ' Attempting to restore DS line' 

fi 

if up_ds $node 
then tr ds_copy $node 
else echo ' DS line down • no copying' 
fi 

The following command file, that could be called crushall.cmd, can be used to 
run a utility called CRUSH with two different runstrings. The concept demonstrated 
in this example can be generalized to create a command file to interface with 
any program, varying the runstring as specified in the positional parameters: 

if is $1 - e 
then crush @.@.e 
else if is $1 - s 

then crush @.@.s 
else echo, 'Usage: crushall,e/s' 

echo,' e crushes all files everywhere' 
echo,' s crushes files in this directory tree' 

fi 
fi 

Iteration 

Another CI control struct bilit to eat one or 
more commands as long as a condition remains true:... Like IF-THEN-ELSE-FI, t e 

"" WHILE structure is comprised of several parts: a ii st of commands in the WHILE 
clause, a list of commands in the DO clause, and a terminating DONE command. 
In most usages, the DO portion will alter the WHILE condition so the iteration 
will eventually terminate. The WHILE condition is evaluated before the DO 
command(s) is initially executed, and before each re-execution. 

The IS as well 
'tions. used to 

(See IF RTE-A User's Manual for more information about IS.) 

One of the most common applications of the WHILE structure involves numeric 
iteration - that is, looping based on incrementing or decrementing a counter to 
a certain limit. While CI currently does not offer an intrinsic calculation 
facility, a simple calculator is easy to create: 

ftn7x,q,s 
program calc 

c Calculator program to perform simple arithmetic. 

c runstring: ru calc operandl operator operand2 

c results: RETURNl - status (0 - good, -1 - bad) 

Paper 1024 -8-



c RETURN2 - resulting value of operation 

integer params(S),operandl,operatori,operand2,result 
character operator*2 
equivalence (params(2),result),(operator,operatori) 

c Get parameters from runstring. 

call rmpar(params) 
operand! - params(l) 
operatori - params(2) 
operand2 - params(3) 

c Initialize return parameters. 

params(l) 0 
params(2) 0 
params(3) - 0 

c Check for operator. User may need help. 

if (operatori .eq. 0) then 
write(l,'("Usage: ru calc operandl operator operand2")') 
params(l) - ·1 
goto 10 

endif 

c Check the operator and perform appropriate arithmetic. 

if (operator(l:l) .eq. '+') then 
result - operand! + operand2 

elseif (operator(l:l) .eq. '·') then 
result - operand! · operand2 

elseif (operator(l:l) .eq. '*') then 
result - operand! * operand2 

elseif (operator(l:l) .eq. '/') then 
result - operand! / operand2 

else 
write(l,'("operator must be +,·,*,or/")') 
params(l) - ·1 

endif 

c Return status in params(l) and result in params(2), 

10 call prtn(params) 
end 

-9- Paper 1024 



Ris calculation program can be customized to provide additional capabilities 
~ropriate for particular applications. 

The following command file utilizes both the IS and CALC programs. The variable 
$count is initialized to 0 and incremented from 1 to 12. The variable is used 
for two functions - as the loop control and as part of the file descriptor. 
Note that during development of the command file, an error check could be included 
after the CALC reference. For a simple increment operation the check is 
unnecessary during normal operation. 

The current value of the predefined variable $LOG is saved and restored by the 
command file. The temporary variable used is deleted by the UNSET command. 

* * Compile and link programs TESTl through TEST12. 

* set oldlog = $LOG 
set LOG = off 

* 

* 

* 
* 

set count = 0 

while is $count lt 12 -i 
do 

* Increment counter. 

* calc $count + 1 
set count $RETURN2 

* *Compile file and link if no errors. 

* if ftn7x test$count.ftn 0 -

fi 

done 

then link test$count.rel 
else echo <bells> 

echo $RETURN1' errors compiling TEST'$count 
echo I I 

set log = $oldlog 
unset oldlog 

Paper 1024 -10-



FMGR and CI comparison 

Earlier versions of RTE contained a command interpreter called FMGR (File 
ManaGeR). It provided a set of commands that included support of command files. 
The capabilities offered by CI and FMGR are compared in the table below: 

Feature/Capability 

define variable values 
show variable values 
return variables (status) 

-return string 
conditional branching 
unconditional branching 

~tructured IF-THEN-ELSE 
--structured WHILE-DO 
--runstring variables 
.-user-controlled variables 

- mnemonic names 
,.... length varies 
-variable removal 

....-friendly syntax 
implicit substring 

-implicit concatenate 
implicit calculator 
implicit prompt/response 
pause 
error action control 
return to specified level 
comments 

CI 

set 
echo 
5 integers 
80 chars 
IF 
no 
yes 
yes 
9, total 256 chars 

1-16 chars 
1-80 chars 
unset 
yes 
no 
yes 
no 
no 
no 
$LOG only 
no 
yes 

FMGR 

SE 
DP 
5 integers 
no 
IF 
crude (true IF) 
no 
no 
5, 6 chars each 

no 
2 or 6 chars 
n/a 
no 
limited, via P & G 
no 
CA 
DP/TR 
yes 
severity levels 
yes 
yes 

,a prggkam (a simple calculator program appears o s return 
string function could be used to create a prompt/response program. 

A possible application of the two sets of features is demonstrated here by 
implementing the same function in a FMGR command file and a CI command file. 
The function receives the name of a PASCAL source file and two options. If the 
source file is found (on the current working directory or CRN), it is compiled. 
If the compile is successful the program is linked. If the link is successful, 
the program is executed and its return status displayed. The input options are 
"s" to print the error list file if compile errors occur, and "k" to keep the 
relocatable file. 

First, the FMGR version of the file: 

:* 
:* usage: PASLK <file name> Is] [kJ 
:* s - redirect output to LU6 
:* k - do NOT purge the relocatable file 
:* 
:* Purpose: This command file schedules the PASCAL compiler on the file 

Paper 1024 



:* 
:* 
:* 
:* 
:* 
:* 

passed as the first parameter. If the file compiles without 
errors LINK is scheduled with the debug option and the 
resulting program is run once. If there are compiler errors 
the list file is listed to the terminal or if the s option is 
used, to the printer (via PRINT). The K option can be used 
to save the relocatable file created by MACRO. 

:* 
:* 
:* 

Note: The file name must be 6 characters or less. The FMGR 
special character naming convention (&,%,etc.) is used. 

:* 
:IF,·36P,EQ,3,2 
:DP,Usage: PASLK <file name> (sJ (kJ 

:RU,DL,lG, ,0 
:IF,lP,EQ,0,3 
:DP,1P,2P 
:DP,No such file:,lG 

:DP,Compiler scheduled. 
:CA,6,lG 
:CA,·15:P,·15P,AND,377B,OR,22400B 
:RU,PASCAL,1G,'PERR,6G 
:IF,lP,EQ,0,5 
:IF,2G,NE,S,2 
:RU,PRINT,'PERR 

:LI,' PERR 

:PU,•PERR 
:DP,Link scheduled. 
:RU,LINK,6G,$PLIB,+DE 
:IF,3G,NE,K,2 
:DP,Relocatable saved in file:,6G 
:IF,l,EQ,1,1 
:PU,6G 
:DP, 
:DP,Your program scheduled. 
:DP, 
:RU,lOG 
:DP,1P,2P,3P,4P,SP 

Now the CI version of the command file: 

* * Usage: 

* 
* 
* 

PASLK <file name prefix> (s] [k] 
s · redirect output to LU6 
k • do NOT purge the relocatable file 

* Purpose: This command file schedules the PASCAL compiler on the file 
* passed as the first parameter. If the file compiles without 
* errors LINK is scheduled with the debug option and the 

Paper 1024 ·12· 

/ 



* 
* 
* 
* 
* 

resulting program is run once. If there are compiler errors 
the list file is listed to the terminal or if the s option is 
used, to the printer (via PRINT). The K option can be used 
to save the relocatable file created by MACRO. 

* Note: The file name will have .PAS added to it. 
* 
if is $1 ' ' 
then echo 'Usage: PASLK <file name prefix> [s] [k]' 
else echo '' 
if dl $1. pas, , 0 

then 

fi 

* 

echo 'Compiler scheduled.' 
if pascal $1.pas paserror.lst $1.rel 
then echo 'Link scheduled.' 

pu paserror.lst 

else 

link $1.rel pascal.lib prg$SESSION.run +de 
if is $3 - k 
then echo 'Relocatable saved in file: '$1.rel 

else pu $1.rel 
fi 
echo '' 
echo 'Your Program scheduled.' 
echo '' 
ru prg$SESSION 
echo $returnl $return2 $return3 $return4 $returns 
echo $return s 

if is $2 - s 
then print paserror.lst 
else li paserror.lst 

fi 
fi 

else echo 'No such file: '$1' .PAS' 
fi 

Conclusion 

A comparison of CI and FMGR capabilities shows that each command 
processor offers a cohesive set of functions. Each contains some 
functions that the other lacks, and some functions are common between 
them. 's s trol structures a ern s ntax make it the 
processor of choic..,!l., .,.J:~ousut"-So;u;.~t~h~e~;i;,.uoc.I:.J.~l.Q...~~;_..i....i.._.c.u:o:::e.o.J:.J..:j....J.J;l&.l~ 

::§an>e. pronidea byexternal programs. 

Cl's command file features provide many useful capabilities to 
improve ease of operation and to increase productivity. The features 
covered here included user-defined variables, pre-defined system 
variables, return string and return status variables, and command 
file control structures. 

-13- Paper 1024 





1. INTRODUCTION 

1025. USING AN HPlOOO FOR ROBOT COMMUNICATION 

Vernon R. Sturdivant 
Southwest Research Institute 

6220 Culebra Road 
San Antonio, Texas 78284 

The Cincinnati Milacron industrial robots in use today have been designed 
primarily for stand alone operation. That is, they are used without a separate 
computer. The robot is manually taught its operational sequence with the 
coordinate points being stored within the robot's own memory. These sequence 
points can even be complex enough to include decision points that cause conditional 
execution of a subsequence based upon an external condition. However, the 
conventional use of these robots has been in this stand alone mode. 

The Robotic Deriveter System being designed and constructed for the Navy required 
the control and coordination of a large number of subsystems including a vision 
system and a complex end effector. In order to accomplish the control tasks, 
an HP A700 host computer was selected. It was desired for the robot to fi.mction 
as a computer peripheral whose task is to position the end effector based upon 
end effector and vision system measurements. An optional REMOTE function was 
purchased from Cincinnati Milacron that allows host computer communication with 
the robot via a three layer protocol. These protocol layers provide for error 
checking and retransmission of messages to insure error free communication. 

This paper will describe the robot communication protocol layers and how they 
are implemented on an HP A700 computer for the Navy deriveter project. 

2. ROBOT COMMUNICATION PROTOCOL 

The Cincinnati Milacron ACRAMATIC Version 4 robot controller communicates with 
a host computer through a three layer protocol: a physical layer, a link layer, 
and an applications layer. Each layer provides services to the layer above. 
Services from one layer are provided by routines in that layer as well as the 
layer below. The physical layer provides a physical connection for the transmission 
of data by use of RS-232 serial communications. The link layer provides for 
the transmission, error checking, and retransmission of individual packets of 
data through the use of the Digital Equipment Corporation (DEC) Digital Data 
Communications Message Protocol (DDCMP). The applications layer provides the 
services to send commands to the robot and receive data from it. The applications 
layer protocol is a special one defined by Cincinnati Milacron. 

2.1 Robot Operation 

Normal robot operation involves execution of commands from its own memory. 
These commands are executed sequentially much the same as program execution in 
a digital computer. A robot program is referred to as a sequence with the 
commands contained in a sequence referred to as points. A point will contain 
coordinate data for robot movement and other information about attributes of 
the point. One attribute that is important for colillllUilication with a host computer 
is the REMOTE function. 

Paper 1025 



2.2 Application Layer 

Whenever the robot executes a REMOTE function within a sequence, the robot sends 
a Begin Remote Activity message to the host computer and waits for an Activity 
Request message from the host computer. At this point the host computer is in 
control and can send multiple Activity Requests to the robot during this one 
function execution. The robot performs each activity before receiving the next 
Activity Request. The Activity Requests implemented for the deriveter are: 

(1) Send Sequence Data to the Host Computer 
(2) Receive Sequence Data from the Host Computer 
(3) Send Coordinate to the Host Computer 
(4) Receive Coordinate from the Host Computer 

The two activities concerned with sequence data allow the transfer of complete 
robot sequences between robot memory and host computer memory. The two activities 
concerning coordinate data allow reading the current robot coordinates or moving 
the robot to a given set of coordinates. The receive coordinate activity is 
the only activity that causes immediate robot motion. 

To exit the REMOTE function, the host computer sends an Activity Request of No 
Activity to the robot, and the robot responds with an acknowledgement of the No 
Activity message. The robot is now released from the host computer and continues 
on to the next sequence point in its current sequence. 

There are four basic types of communications messages used in the REMOTE ftmction 
protocol. These message types together with the information fields within each 
type are as follows: 

(1) Begin Remote Activity Message (Robot to Host Computer only) 
Message Identification • Two bytes. 
Robot Mode and Communications Status • One byte. 
Activity Type • One byte. 
Current Sequence Number • One byte. 
Current Point Number • Two bytes. 
Variable Data • 0 to 249 bytes. 

(2) Remote Activity Request Message (Host Computer to Robot only) 
Message Identification • Two bytes. 
Activity Type • One byte. 
Variable Data • 0 to 253 bytes. 

(3) Data Packet Message 
Message Identification • Two bytes. 
Activity Status • One byte. 
Variable Data • 0 to 253 bytes. 

(4) Packet Request Message 
Message Identification • Two bytes. 
Activity Status • One byte. 
Variable Data • 0 to 253 bytes. 

Paper 1025 ·2· 



2.2.l Send Sequence Data to the Host Computer 

The Send Sequence Data activity instructs the robot to send one or more points 
of a selected sequence to the host computer. To initiate the Send Sequence Data 
activity the host computer sends a Send Sequence Data Activity Request. The 
robot responds by sending the first Data Packet containing the first sequence 
data point. The host computer continues by sending a Packet Request message. 
Sequence data points are sent in this fashion until the requested number of 
points have been sent. 

2.2.2 Receive Sequence Data from the Host Computer 

The Receive Sequence Data activity instructs the robot that it is to receive a 
new sequence from the host computer. The points received replace existing 
points. The host computer sends a Receive Sequence Data Activity Request to 
initiate this activity. The robot responds by sending the first Packet Request 
message. The host computer then sends the first Data Packet containing the 
first sequence data point. The host computer continues sending data points 
until the requested number of points have been sent. 

2.2.3 Send Coordinate to the Host Computer 

The Send Coordinate activity returns the current real world coordinate position 
and orientation of the robot. After the host computer sends the Send'Coordinate 
Activity Request message, the robot responds with a Data Packet containing the 
current coordinate position of the tool center point and the orientation angles 
of the tool centerline. 

2.2.4 Receive Coordinate from the Host Computer 

The Receive Coordinate activity causes the robot to position and orient the tool 
to a new set of real world coordinates and angles. As stated earlier, this is 
the only REMOTE function activity which causes the robot to move. The host 
computer first sends a Receive Coordinate Activity Request message containing 
the new robot coordinates. After the robot motion is completed, the robot sends 
a Data Packet indicating that the activity has been completed. 

2.3 Link Layer 

The link layer protocol is DDCMP. Only DDCMP control and data messages using 
full duplex communication between two nodes have been implemented for the 
deriveter project. 

2.3.1 Data Messages 

Numbered data messages carry the application protocol messages over the DDCMP 
link. The message number assures correct message sequencing. by the receiver. 
Data messages contain a header of fixed length and data of variable length. 
The data length information is contained in the COUNT field within the header. 
All data messages start with the ASCII SOH character. Data messages contain 
the following fields: 

(1) Message ID - ASCII SOH message identification character (one byte). 

-3· Paper 1025 



(2) COUNT - Length of the data information (two bytes). 
(3) RESP - Response number to acknowledge correctly received messages (one byte). 
(4) NUM - Message number of this message (one byte). 
(5) ADDR - Not used. Set equal to one (one byte). 
(6) Header CRC - Header block check (two bytes). 
(7) Data· Data portion of message (COUNT bytes). 
(8) Data CRC - Data block check (two bytes), 

2.3.2 Control Messages 

Unnumbered control messages carry channel control information, transmission 
status, and initialization notification between nodes. All control messages 
begin with the ASCII ENQ character. Control messages contain the following 
fields: 

(1) Message ID· ASCII ENQ message identification character (one byte), 
(2) TYPE - Control message type (one byte). 
(3) SUBTYPE - Control message subtype (one byte). This 

field has meaning only for NAK messages. 
(4) RESP • Response number to acknowledge correctly received 

messages (one byte). This field has meaning only 
for ACK and NAK messages. 

(5) NUM - Number of last sequential numbered data message 
sent (one byte). This field has meaning only for 
REP messages. 

(6) ADDR • Not used. Set equal to one (one byte). 
(7) CRC - Message block check (two bytes). 

2.3.2.l Start Message (STRT) 

The STRT message (TYPE-6) is used to establish initial control and synchronization 
on the DDCMP link. It is used only on link startup or reinitialization. It 
operates with the start acknowledge message described below. The start sequence 
resets the data message numbering at the robot and host computer. 

2.3.2.2 Start Acknowledge Message (STACK) 

The STACK message (TYPE-7) is returned by the robot in response to a STRT from 
the host computer when the robot has completed initialization and reset data 
message numbering. 

2.3.2.3 Acknowledge Message (ACK) 

The ACK message (TYPE=l) is used to acknowledge the correct receipt of numbered 
data messages. It conveys the same information as the RESP field of numbered 
data messages. 

2.3.2.4 Negative Acknowledge Message (NAK) 

The NAK message (TYPE-2) is used to pass error infonnation from the data receiver 
to the data sender. The NAK message also includes the same information as the 
ACK message, thus serving two functions: acknowledging previously received 
messages and notifying the sender of some error condition. 

Paper 1025 



2.3.2.5 Reply to Message Number (REP) 

The REP message (TYPE-3) is used by the robot to request received message status 
from the host computer, It is sent when the robot has transmitted data messages 
and has not received a reply within a time-out period. The response by the host 
computer is either an ACK or NAK depending on whether the host computer has or 
has not received all the messages previously sent by the robot as determined by 
the last robot message number sent in the NUM field of the REP message. 

3. IMPLEMENTATION 

3.1 Application Layer 

The programmatic interface to the application layer is through one routine with 
seven operational modes. This routine is written in Fortran 77 and has the 
following calling sequence: 

CALL ROBOT(MODE,BUF,LEN,IERR) 

where MODE is a character constant specifying one of the 
seven modes: 

(1) LINK 
(2) START 
(3) MOVE 

(4) READ 
(5) READ_SEQ 
(6) SEND_SEQ 
(7) STOP 

• Initiate the linkup process. 
• Receive the robot Begin Remote Activity message. 
• Robot receives coordinate message and moves to 

the specified coordinates, 
• Robot sends current coordinates. 
• Robot sends sequence data. 
- Robot accepts sequence data. 
• Sends No Activity message to robot to terminate 

REMOTE function. Robot proceeds to next point in 
its current sequence. 

BUF is data to be sent to robot or received from robot, LEN is the length of 
BUF, and IERR is an error parameter returned to signal whether the mode successfully 
completed or not, 

Basically, each mode consists of sending the robot the Activity Request message 
corresponding to the required mode and then reading the robot response. The 
messages to the robot are encoded and the messages from the robot are decoded 
by routines written in assembly language to allow easy byte manipulation. In 
order to provide error recovery, each message received from the robot is checked 
for the following features in the order given: 

(1) Is it a data message? • Does it contain application layer information? 
If it does, skip to item (4), 

(2) Is it an ACK message? • It should be a data message. If it is an 
ACK message, ignore the ACK and repeat the read to obtain the required 
information. Then check the new received message. 

(3) Is it a NAK message? - It should be a data message, If it is a NAK 
message, repeat the Activity Request message to the robot and repeat 
the read to obtain the required information. Then check the new 
received message. 

-5- Paper 1025 



(4) Does it have the expected message !D? - Application layer message 
identification code (ID) must match that of required message. If 
it is a Begin Remote Activity message ID, the robot and host computer 
are not in step so repeat the Activity Request together with the 
read for the required information. 

The details of the implementation of each mode are discussed below. 

3.1.1 LINK. Mode 

The LINK. mode allows synchronizing the robot and host computer message ni.nnbering. 
Also, this mode is used to initialize the serial multiplexer port by flushing 
the type-ahead buffer (Control Request with 26B function code). 

3.1.2 START Mode 

In the START mode the host computer.waits for the robot seven byte Begin Remote 
Activity message that it sends when it reaches a REMOTE function point in its 
current sequence. 

3.1. 3 MOVE Mode 

The MOVE mode consists of scaling the move coordinates to robot t..mits and encoding 
the coordinates into the seventeen byte Receive Coordinate Activity Request. 
The Send Data Message link layer routine is used to transmit the request to the 
robot with the link layer Read Message routine used to receive the robot reply. 
The receipt of a No Activity Response indicates that the robot has completed 
the move. 

3.1.4 READ Mode 

The READ mode consists of sending the three byte Send Coordinate Activity Request 
message and then reading the robot coordinates using the link layer Read Message 
routine. The received message is decoded into the robot coordinates using an 
assembly language routine and then is scaled to engineering units. 

3.1.5 READ SEQUENCE Mode 

The READ SEQUENCE mode consists of sending the nine byte Send Sequence Data 
Activity Request message and then looping to read each successive sequence point 
in the robot Sequence Data Packet message until the robot signals the end of 
sequence by sending an activity status of zero in the last Data Packet message. 

3.1. 6 SEND SEQUENCE Mode 

The SEND SEQUENCE mode consists of sending the eleven byte Receive Sequence Data 
Activity Request message and waiting for the three byte Sequence Data Packet 
Request message from the robot. When this message is received, the sequence 
data for the first point is scaled to robot units and coded into a twenty-two 
byte Sequence Data Packet and transmitted with the link layer Send Data Message 
routine. Each time the robot sends the Sequence Data Packet Request message, 
the next sequence point is sent until all points have been sent. The robot is 
signaled that the last point has been sent by setting the activity status bit 

Paper 1025 -6-



to zero in the last data packet. The robot responds with a three byte Sequence 
Data Packet Request message with the activity status bit also set equal to zero. 

3.1.7 STOP Mode 

The STOP mode is used to signal the robot the end of the REMOTE function and 
allow it to continue its current sequence. A three byte No Activity Request 
message is sent to the robot for this purpose. 

3.2 Link Layer 

The link layer top level software is implemented by three routines: two to send 
messages and one to receive messages. 

3.2.1 Sending Messages 

Two separate routines are used to send DDCMP messages to the robot: one for 
sending control messages and one for sending data messages. The sending of a 
control message consists of encoding the ID, type, subtype, response number, 
message number, and address fields; computation of the CRC for the encoded 
fields; the merging of the framing bytes, the encoded fields and the CRC; and 
an EXEC call to transmit the message to the robot. The encoding of message 
fields and the merging of the complete message are performed by assembly language 
routines. 

The sending of a data message consists of encoding the ID, count, response 
rrumber, message number, and address fields into the message header; the computation 
of the CRC for the header; the computation of the CRC for the data; the merging 
of the framing bytes, the encoded fields, the CRC for the header, the data, and 
the data CRC; and an EXEC call to transmit the message to the robot. 

Framing bytes containing hexadecimal FF are added at the beginning and end of 
control and data messages to aid in synchronization (See Reference 2). 

3.2.2 Receiving Messages 

Only one routine is used to receive messages from the robot since it is not 
possible to know ahead of time if a message is a control message or a data 
message. Because the length of the control message and the header portion of 
a data message are the same length, the initial task in reading any message is 
to read only the first eight bytes (ignoring any framing bytes). The control 
and data messages can be separated based upon the first byte: ENQ for control 
messages and SOH for data messages. 

If the message is a control message, it is checked for re-linking (STRT) or 
reply to message number (REP). If it is a STRT message, re-linking is performed 
and another attempt is made to read the required information. If it is a REP 
message, the NUM field is checked against the last good received message n1..Ullber 
(LGRMN) and if they match an ACK is sent. Otherwise a NAK is sent. 

If the message is a data message, the length of the data in the the message is 
obtained from the COUNT field of the header and another read is made to obtain 
the data. An ACK is always sent to the robot in response to the receipt of the 

-7- Paper 1025 



data. 

Messages sent by the robot are held in the type-ahead buffer in the A700 serial 
multiplexer so that messages can be received at any time. Due to the necessity 
of making two reads to obtain a complete data message, it was necessary to write 
a routine to manage the received information. This routine maintains an internal 
buffer of received information that has not yet been requested by the message 
read routine. Any time a request is made for a message, this internal buffer 
is checked for the required number of bytes. If they are contained in the 
internal buffer, they are sent to the message read routine and removed from the 
internal buffer. If an insufficient number of bytes are contained within the 
internal buffer, the type-ahead buffer is terminated (Control Request with 52B 
Function Code) and the available information there is read into the internal 
buffer. If the type-ahead buffer is empty at the time when the buffer is 
terminated, the routine waits at the read instruction for information from the 
robot and then obtains it one byte at a time. 

The HP12040B serial multiplexer for the A-series computers allows partial reading 
of the type-ahead buffer without clearing the remaining information. However, 
these routines were initially written for and checked out using an HP12792B 
serial multiplexer and an E-series computer which does not provide for partial 
reading of the type-ahead buffer. 

3.2.3 CRC Generation and Checking 

. 16 15 2 The DDCMP protocol employs the CRC-16 polynomial (X +X +X +l) to generate the 
block check bytes for control messages, data message headers, and data message 
data fields. The technique employed to compute the block check bytes emulates 
a hardware shift register with modulo-2 add feedback to bits 2, 15, and 16. 
This routine is written in assembly language and takes advantage of the A700 
shift and exclusive-or (modulo-2 addition) instructions by storing the current 
CRC value in the A-register and the new data byte in the B-register. 

A received message can be checked by computing the CRC over the message together 
with its block check. If there has been no error made, the resulting CRC will 
be zero. The same routine is used for both generating and checking the block 
check fields. 

3.2.4 State Variables 

State variables for the communication channel are kept in COMMON for access by 
all link level routines. These variables are: 

(1) LSMN • This is the last sent message number. It is used to number 
data messages and is incremented after each data message is sent. 

(2) LGRMN - This is the last good received received message number. It 
is updated each time a data message is received and is checked 
whenever a REP control message is received to determine if any 
messages have been lost. 

4. CONCLUSIONS 

The routines described in this paper have proven to provide reliable co111I1UI1.ication 

Paper 1025 -8-



with the robot. The control functions provided have accomplished all of the 
deriveter project requirements even though they are a subset of those available 
from Cincinnati Milacron. In fact, only three basic operations are actually 
used: (1) move the robot to given coordinates, (2) read the robot's current 
coordinates, and (3) read a sequence from the robot. 

5, ACKNOWLEDGEMENT 

This work was supported under U.S. Navy Contract No. N00244-38-Cl281. 

6. REFERENCES 

(1) RTE-A Driver Reference Manual, June 1983, Manual Part No. 92077-90011, 
Hewlett-Packard Company, Cupertino, California 95014. 

(2) DECNET DIGITAL NETWORK ARCHITECTURE, Digital Communications Message 
Protocol, DDCMP Specification Version 4.0, March 1978, Order No. 
AA·DS99A-TC, Digital Equipment Corporation, Maynard, Massachusetts 
01754. 

(3) Supplemental Communications Manual for Cincinnati Milacron ACRAMATIC 
Version 4.0 Robot Control, November 1983, Publication No. 10-IR-8332-S, 
Cincinnati Milacron, Cincinnati, Ohio 45209. 

-9- Paper 1025 





1026. PROGRAM DEVELOPMENT IN A LARGE HP/1000 NETWORK 

Paul F. Gerwitz 
Management Services Division, KP 

Eastman Kodak Company 
1669 Lake Ave 

Rochester, NY14650 

INTRODUCTION 

In designing and implementing a large manufacturing network, particular emphasis 
must be put on the application code and it's long term effects on supportability. 
Items such as standard coding, use of common subroutines, predefined data types 
and record formats and methods of source module revision tracking were considered 
and implemented as part of the network development specification. This paper 
will describe these major elements that were used in such a network. The paper 
describes the network configuration, goals for implementing the application code 
and systems, methods of revision tracking and overall standardization techniques. 

NETWORK DESCRIPTION 

Application of computer technology has been for many years a prime activity at 
Kodak Park. The Application of computer systems spanning micro's, minicomputers 
and mainframe systems are an integral part of many manufacturing operations. 
One of the newest products to utilize computer technology in the manufacturing 
environment is the network for Kodak Disc Film. The original design of this 
project dictated a highly visible and integrated information system which would 
provide several levels of data collection and process monitoring through the 
use of computers spanning the spectrum of size and functionality. A network 
was proposed and finally implemented to fill these needs and provide flexibility 
for future expansion. This network consists of a 4 level hierarchical architecture 
with Programmable Logic Controllers (PLC) at the lowest level and an IBM mainframe 
system at the top. The PLC's are primarily responsible for production machine 
control and data collection. There are also small micro computer systems which 
provide specific functions (bar code readers, label printers, etc). The HP/1000 
systems occupy the 2nd and 3rd levels of the network and provide production data 
storage and process monitoring control and reporting. This part of the network 
consists of 35 HP/1000 E-series processors divided into 3 functional groups, 
Plastic and Metal Parts manufacturing, Film Finishing and Program Development 
and Testing. Communications to the PLC's and micro computers are provided 
through vendor software products and in-house hardware/software where vendor 
solutions were not available. The HP/1000 systems communicate via DS/1000-IV 
links. The IBM mainframe system receives the data from the HP/1000 network via 
an RJE link and provides report and analysis functions as part of a larger Kodak 
Park database system. The remainder of this paper will describe the HP/1000 
part of the network. 

HARDWARE AND SOFTWARE CONFIGURATION 

Configuration of each of the HP/1000 systems was dependent on a predefined set 
of criteria. These are: 

Paper 1026 



1. Maintenance of all HP/1000 hardware must be performed by the 
in-house maintenance organization. 

2. Production machine uptime must be maximized. 

3. All system debugging and hardware repair must be performed off-line. 

4. Parts and backup hardware must be available for immediate use 
when the need arises. 

Based on the criteria, the hardware was configured as follows: 

1. The processors are E-Series processors with equal amounts of 
memory. Initial memory consisted of 256kw, additional memory was 
added across the network as needed. Also Fast Fortran Microcode 
was added to the processors later to improve performance primarily 
for .ENTR due to heavy use of software subroutines. 

2. All systems require I/O extenders, to accomodate the large number 
of devices and DS/1000 links. 

3. All systems use a 7906 MAC controller disk as the system disk 
unit. 7925 disk drives are used on those systems requiring 
additional disk memory. All systems use a standard disk subchannel 
layout to facilitate interchangability. 

4. The backplane layouts in both the main processor boxes and the 
I/O extenders are standardized as much as possible. Such interfaces 
as the Time Base Generator, disk controller, System Console and 
DS/1000 links were arranged using a standard select code map. 
Unused select code locations on a given processor are filled with 
jumper cards. Groups of select codes are reserved for designated 
device types or interface card types. 

5. All systems are connected via DS/1000 for primary communication 
and have at least 1 redundant link in case of primary link failure. 

6. Backup hardware (configured processors, I/O extenders, peripherals) 
are maintained for immediate use. Backup system disk packs are 
stored in the same area as the production computer. 

All HP/1000 systems in the network are currently running revision 2301 of 
RTE-6/VM. The network was first installed running RTE-4B and converted during 
1983. All application code is written in Pascal or Assembler. Data storage is 
handled through IMAGE/1000 and an in-house Database Manager that provides 
capabilities which IMAGE did not provide at the time such as auto mirror image 
backup, multiple programs accessing one database at a time, remote database 
access transparent to the user. As stated before, network communication is 
handled through DS/lOOO·IV with the RJE/1000 utilized for communication to the 
IBM mainframe. In addition to the use of HP software, products from Corporate 
Computer Systems are also used. Source Control System (SCONS) is used for source 
archival, Text Formatter (TFORM) is used for documentation, SCREEN/1000 is used 
for terminal dialogue on some systems and SORT/1000 which provides basic sort 

Paper 1026 



capability. 

DEVELOPMENT AND TEST SYSTEMS 

A focal point of the HP/1000 network is the development system. This system is 
configured to provide on-line development capability for approximately 30 
programmers. The system consists of an E-series processor with 2mb of memory, 
404mb of disk storage (3 7925's, 2 7906's), 20 terminals, a 2608 line printer, 
mag tape unit and a 9872 4 pen plotter. The primary function of this system is 
to provide editing, compiling and source archival for the rest of the network. 
No special devices are included and program testing is kept to a minimum. 

There are also 2 test systems present in the network. Both follow the same disk 
and backplane layouts as the production computers. Test 1 includes interfaces 
and devices which can be found on the production processors, providing the 
capability to test code with actual hardware in an off-line environment. Test 
2 has only a processor, disk and terminal. Both systems are also used to perform 
program loading for subsequent installation on a production system. The system 
installation procedure will be described later. 

GOALS FOR PROGRAM DEVELOPMENT AND IMPLEMENTATION 

When the project was in the initial design stages, a firm set of guidelines were 
established and was used to guide the implementation strategy. The goals were 
modified as the project matured and the team gained experience with the technology. 

1. Code should be written in one high level language to ensure long 
term supportability. Assembler will be utilized in cases where 
the high level language does not provide adequate capabilities. 
These included access to system tables, drivers etc. 

2. Code should utilize structured design and coding techniques. 

3. Code should utilize standard coding techniques including standard 
abbreviations, external subroutine calling sequences, types etc. 

4. A procedure must be established to track application code changes 
to allow support of multiple program versions. 

5. Support of a large development team must be maintained. Services 
such as concurrent editing and compiling environments, management 
of large amounts of disk space, communication of corrnnon procedures 
and coding techniques and support of the hardware and software 
technology as far as using it effectivly in design and implementation. 

6. Schedules must be met for system startup and installation and 
software development and support costs must be minimized. 

-3- Paper 1026 



IMPLEMENTATION OF GUIDELINES 

This section describes the implementation steps used to fulfill the guidelines 
that are stated above. These steps are organized by groups that specify general 
areas of concern. Appendices are referenced for additional detail. 

PROGRAM STANDARDIZATION 

The project team evaluated the two high level languages available at the time, 
FORTRAN 4 and PASCAL. PASCAL was chosen because of its structured syntax, code 
readability and user defined typing. Key members of the project team were part 
of a beta test of the original HP version of Pascal and found it to be well 
suited to our needs. Some initial programs were written in FORTRAN while the 
beta testing was going on and were compared to corresponding PASCAL versions, 
the Pascal versions demonstrated clearly the benefits for code readability and 
structure. The only significant problems with using PASCAL are the large memory 
requirement and slow compilation time compared with FORTRAN. Memory capacity 
on the Development system was increased to 2 MB, the maximum allowed, and the 
compiling was and is still run through the batch system. On-line compiling is 
permitted only in situations when a serious problem exists in a program which 
is affecting production. When the development system was upgraded to RTE-6/VM, 
the new version of the compiler doubled the compile speed, which has greatly 
improved programmer effectiveness. 

The project did not have the luxury of Symbolic Debug and had to revert to coded 
debug statements, tracing capability etc. Some users with familiarity with the 
assembler debug subroutine DBUGR were able to use it successfully with PASCAL. 
Unfortunately the majority of programmers reverted to the tedious trial and 
error method of debug. Other procedures such as code walk throughs, structured 
design specifications and paper debug techniques were employed to reduce the 
use of the trial and error method. 

PASCAL include files are used extensively throughout the code. Users bring 
these include files into the source program by inserting a $INCLUDE compile 
directive in the source code. These include files are of two distinct types. 
System Global Includes contain standard constants, data types, and record 
structures. Files were built for subsystems such as DS/1000, IMAGE/1000, FMP 
data types as well as system related data types such as EXEC call option bits 
and standard buffer and character string types. These provided an excellent 
way for users to standardize large sections of code. 

The second type of includes are termed Subroutine Includes. Since all external 
procedures in PASCAL must be declared before they are used, these includes 
provide an excellent way of standardizing the calling sequence to externals. 
Each include contains a subroutine name of up to 80 characters in length although 
in practice the length was up to 20 characters. The parameters are then listed 
followed by an $ALIAS directive and EXTERNAL directive. Some of the subroutine 
calls would have multiple formats or names if there was a clear need to distinguish 
differences. See Appendix C for examples of include file usage. 

The project team also made extensive use of pre-defined skeleton files for source 
and documentation files. Source header files contain the program name, author, 

Paper 1026 



a description and a descriptive block called a revision log. For Pascal programs, 
compiler options are included such as $RANGE OFF$, $HEAP 0$, $RECURSIVE OFF$, 
$TITLE and $SUBTITLE. For assembler code a HED line is also included. These 
compiler options were selected as the defaults to prevent additional code for 
range checking, heap/stack management etc to be pulled in from the Pascal Library. 
If users need some of these options, they could be specified via the Pascal 
Options file in compiler runstring. These skeleton files provide a building 
block for the programmer when writing new programs. 

The most essential component of the header is the $PASCAL or NAM record. This 
record contains the release.revision of the module along with the comment that 
would eventually appear in the relocatable file once the module is compiled. 
This provided the central means of tracking source code changes. The records 
used for Pascal and Assembler are: 

$PASCAL 'COMMENT GOES HERE %rel3%.%rev03%' (<850731.1455> 

NAM PNAME,7 ··-put comment here--· %rel3%.%rev03%<850731.l455> 

'If I/' t ft 1''' '/'ff' 2' 't I/' I'' 3' t '' /' '' t 4' 'I'/' f' '5' I''/' It' 6 I''' I 

The %rel3% ..• field are keywords used by the Source Control System for the 
current release/revision, The comment field data is placed in the relocatable 
file after compilation and the compile timestamp from Pascal is appended to the 
end. The edit timestamp is not transferred to the relocatable because it is 
enclosed in comment braces. For assembler files, the edit timestamp is placed 
so that it will line up with the other modules in the load. This record contains 
all the information necessary for a user to trace back a program to it's original 
source file. How this record is utilized will be explained later in this paper. 

STANDARD SUBROUTINE LIBRARY 

Subroutine libraries are a very common method used to reduce coding and provide 
a central pool of software for all programmers. The project makes extensive 
use of subroutine libraries. Specific application functions use libraries, even 
extending across application systems. The largest library is referred to as 
$SLIB or the System LIBrary. This library consists of code to access system 
table information, conversion utilities such as real to ASCII, integer to ASCII, 
standard interface utilities to IMAGE and DS/1000 and terminal I/O interfaces. 
Responsibilty for this library has now been transferred to a central support 
group where it is now available to any user within the company. 

The subroutines in the library follow the same coding standards that apply to 
application code. But the subroutines need to be written to execute as fast as 
possible and to use as little code space as possible. Since Pascal generates 
fairly efficient code, most subroutines are written in Pascal. Assembler is 
utilized for specific functions where Pascal is clearly lacking, such as number 
conversion, id segment modification, system linked list traversal and i/o device 
table modification. 

-5- Paper 1026 



!TERAT!VE CONSTRUCTS 

To make optimum use of the Pascal language syntax, sta,,ndards were created to 
guide the programmer in the use of the various structured elements. Tqese were 
called Iterative Constructs. They were created to provide a common method of 
coding, optimize the source code storage requirements and provide a common 
readable format for future modification. Members of the team spent a significant 
amount of time studying the code that was generated by the compiler to determine 
the optimum coding strategy. This study produced a set of standard coding syntax 
that would result in the most optimum code possible. Examples of this can be 
found in Appendix A. 

To some, these constructs may appear a little hard to read. Tiie common practice 
of placing BEGIN, END, THEN on separate lines was deemed unfeasible due to the 
enormous amount of disk space necessary to store lines that only contained these 
reserved words. Also by using these constructs the typical problem of 'climbing 
stairs' was minimized. This problem occurs when users indent blocks of code 
and use separate lines for BEGIN, END etc causing the code for a given logic 
block to extend too far to the right or across a listing page. 

IF xxxxxxxxxxxx 
THEN 

BEGIN 

!F yyyyyyyy 
THEN 

BEGIN 

code tends to move right ---------> 
and down I at a very fast rate 

I 
I 
v 

The method that was used helps to compress code without compromising readability. 

IF xxxxxxxxxxxx THEN BEGIN 

!F YYYYYYYY THEN BEGIN 

PROGRAM AND F!LE NAMING CONVENTIONS 

Naming programs in the RTE environment has proven to be a difficult task at 
best. But attempting to design a scheme for 4000 programs and segments is 
formidable indeed. The scheme used was that file names for program main modules, 
segments, and subprograms have the following format: 

(prefix)(group)(id)(module id) 

where 

Paper 1026 -6-



prefix is one of the standard file prefix characters 
group is a 2 letter program group name (see below) 
id is the program id within the group (any 2 characters} 
module id indicates the type of module 

null for a main module 
0-9 for a segment (may use alphas if >10 segments) 
A-Z for subprograms 

AB12 could consist of main AB12 
subprogram AB12A 
segment AB120 
subprogram AB12B 

The 2 letter group name will indicate function type or data type. For example: 
MD could mean Master Data, 
IV could mean Inventory. 

A similar problem exists for files in general. Since the project was forced to 
operate in the FMP file system, file naming was a very important task. It was 
quickly realized that without a consistent scheme, a development disk cartridge 
could quickly become very difficult to manage. Several solutions were proposed 
such as creating a master directory file on each cartridge or writing an in-house 
cartridge management package. These solutions were deemed to be impractical 
for this project. The naming scheme that was agreed to made use of the defacto 
list that HP has published in various manuals in addition to our own extensions. 
This list can be found in Appendix B. 

SYSTEM BASED STANDARDS 

SYSTEM UTILITY PROGRAMS 

Utility programs were written to handle a variety of tasks including system 
error logging, class number management, remote spooling capability, source file 
cross reference utilities, type 6 file management etc. These programs are used 
throughout the network and are designed with the widest possible functionality. 
New programs continue to be added to this library and enhancements are made to 
the existing utilities to provide greater functionality. 

TYPE 6 FILE TIMESTAMPING 

The RTE Link program places a time stamp and other information into the end of 
the first record of the type 6 file. This feature along with the NAM record 
comment field described previously provides the means to track a given program 
revision. Using the load time stamp provided by Link, a user can refer to a 
load map and determine which relocatables went into a given type 6 file. The 
user can then determine the version of the source module in question by looking 
in the comment field of the module in the load map. The data contained in this 
field will directly relate to a version of the source by virtue of the SCONS 
keywords or the EDIT or Pascal time stamps. The tail end of the first record 
also contains a description field which the user has the option to set either 

-7- Paper 1026 



at load time or through a utility program. The common practice is to place the 
release/revision of the module, and the "release" of the application system that 
the program is loaded on such as: 

SYS:Ol.00: 1.005 
HP :01.00: 2340 

• These are in words 105-112 
in type 6 file record 1 

I 
I 
I 
I 
I 

I 
I 
I 

release.revision or HP rev of the relocatable 

l······-----release of "system" 

(···············-program type 

PRODUCTION SYSTEM STANDARDS 

Standardization was also applied to the production system itself. Procedures 
were implemented to assure minimum requirements on a system level. Each system 
uses standard WELCOM and initialization files (DS, for example), system utility 
programs and transfer files, etc. These files are used to link programs, provide 
standard interfaces to remote printing programs, RP system programs, initialize 
system utilities and set system time. 

The disk layout standard resulted in providing many useful advantages. The 
layout of the 7906 drive is as follows: 

+-·-·---··--··-----·--··--·--·--------··----··-·-+ 
subchannel 0 I subchannel 1 
264 tracks I 528 tracks 
lu 10 I lu 11 

I 
application files, databases etc ....•...•• 

subchannel 2 
256 tracks 
lu 2 (sys) 

I 
I 
I 

subchannel 3 
256 tracks 
lu 3 (aux) 

subchannel 4 
284 tracks 
lu 12 

> 
> 

> removable 
> 

> 
> 

> 
> 
> 

I > fixed 
op system, FMPI track pool, spooling, log > 
track pool I Type 6 files files, sys FMP > 
some t6 files I only files > 

+-----·---·----------------------------·----------+ 
This layout provided a great deal of flexibility. Placing the operating system 
on the fixed platter was initially received with some reluctance, but after 
implementing it on several production systems, it proved to be a very effective 
implementation tool. It also allows the same system generation to f~§ide Q~ 
different processors, with unique production data being stored on the removable. 
The removable platter also provided a method of storing test data and test 
program relocatables which could be used on any system in the network if needed. 
Any additional disk memory requirements were satisfied by installing a 7925 
drive on a system. The subchannel layout for these disk drives are also the 
same, so that disk packs can be interchanged if needed. 

Paper 1026 -8-



An idea that evolved from the implementation of this layout was that of the 
'Master Loading Disk' or MLD. This pack exists in one of three types. First 
is the 'Production MLD'. This contains relocatables of the programs that are 
actually running on the system. This pack is only used when the production 
release is built and is then saved for backup. The second type is the 'Pending 
MLD' which contains relocatables for the next release of the proch.iction software. 
This pack will eventually become the production pack. The third type is the 
'Test MLD' containing test versions of programs. These separate packs are all 
managed by one member of a given application group by hand written logging 
procedures. In addition to the various MLD's, a group may have a test data disk 
pack as well. Common system software is maintained on the Software Group MLD 
and is maintained outside the project by the central support core group. 

SOURCE AND CHANGE CONTROL SYSTEM 

SCONS 

The Source Control System (SCONS) is a software package developed by Corporate 
Computer Systems and is designed to aid in the management of software development 
projects. There was no package from HP that provided this capability at the 
time and many of the programmers on the team previously worked in an IBM 
programming environment where this type of change control was already in use. 
As the amount of software increased it became readily evident that some method 
was needed to control the tremendous amount of software for the project. 

The source control system functions on the concept of "release" and "revision". 
A revision is a modification to a file which corrects or enhances it in a small 
way such as a bug fix. A release represents a major change in functionality or 
philosophy. A release file would be separate from any previous versions of the 
file and be supported in it's own right. Release and revision notation is 
specified by two integers separated by a period or decimal point. The first 
number specifies the release and the second, the revision of that release. 
SCONS stores the entire source file at a given release and additional files 
containing only the changes to the original file; these are known as the 'Base' 
and 'Delta' files respectively. When a given release.revision of a file is 
needed, SCONS takes the base file and applies all the revisions to that base 
from the delta files until the specified release.revision is reached. 

Each application group is assigned an individual disc cartridge. It is on this 
cartridge that all files being used by that group reside including the SCONS 
library and associated files. Each programmer has his own individual system 
and SCONS logon. SCONS stores each file under it's control by copying it to an 
internal file with a unique name. An entry is maintained in the SCONS library 
that relates the logical program name (i.e. &MMOl ) to a physical file name 
(i.e. )G2XYZ). When a user wishes to modify an existing program, he tmlSt "check 
out" the file to himself. Only one user can have a given file checked out at 
a time, preventing multiple changes to be made concurrently by different people. 

TYPICAL CHANGE CYCLE 

When a user wants to make a change to an existing source file, the file is 

-9- Paper 1026 



checked out of SCONS by the user. The checkout command creates an FMP file with 
the logical name, i.e. &MMOl. A subparameter specified at checkout tells SCONS 
not to substitute the release.revision number in the keyword field in NAM record. 
The file is now modified by the programmer and recompiled. This continues until 
the module is error free and ready to test. When the file is compiled the 
relocatable NAM record will contain the %rel3%.%rev03% keywords, thus designating 
this as a test relocatable. The program is then tested either on the test 
computer, a non-production mode application system or the development system. 
The testing and debug step may require additional changes and re-compiles. 

After the program has been thoroughly tested and is ready for release, it is 
returned to the SCONS system. At this point the decision is made as to whether 
this change dictates a new release or a revision to an existing release. Once 
this has been determined, the file is returned to SCONS and either a new base 
file or a delta file is automatically created and an entry made in the SCONS 
directory. The next step produces an SCONS relocatable. SCONS has the capability 
of interfacing to user written programs to process any file under it's control. 
SCONS will build a copy of a specified release.revision and then schedule a user 
written program. A set of programs were written to take advantage of this 
capability so that programs could be compiled without taking the files out of 
the SCONS subsystem. During this step, SCONS is instructed to replace the 
keywords in the NAM record with the actual release and revision numbers and the 
program is compiled using the appropriate compiler. The resulting relocatable 
has the release.revision number in the NAM record and it can then be loaded on 
a production system. The tracking of this program is now assured. The program 
is then moved to the Pending MLD for eventual release and the compile listing 
is filed for reference. When the program is loaded, the release.revision number 
can be placed in the type 6 file description field and will also appear in the 
load map. 

CONCLUSIONS 

The procedures and standards described in this paper were deemed appropriate 
for this application network by virtue of it's perceived lifetime and the need 
to be able to support the ever changing needs of the manufacturing organization. 
We feel that the major goals have been achieved and that the network can be 
supported with the small programming staff that is available longterm. Many 
innovative solutions were designed to extend the technology to the fullest. 
The effort has produced not only an efficient, effective, reliable network but 
also has produced highly technical individuals who have gone on to other projects 
where the wealth of experience is paying off in other areas. We are also sharing 
some of the common software in new and existing projects as a way of improving 
the use of the HP/1000 technology. 

Paper 1026 



a) FOR ~ange_of_values DO 
simple_statement; 

APPENDIX A 

ITERATIVE CONSTRUCTS 

b) FOR range of values DO BEGIN 
statement number l; 
statement-2; -
statement-number_ three; 

END; -

c) WHILE condition DO 
simple_statement; 

d) WHILE condition DO BEGIN 
first statement; 
seconu statement; 
last statement; 

END; -

e) REPEAT 
statement number one; 
statement-number-2; 
statement-number-3; 

UNTIL condition_is_true; 

f) IF condition THEN 
simple_statement; 

g) IF condition THEN BEGIN 
statement number one; 
statement-number-two; 
statement-number-3; 

END; - -

h) IF condition THEN 
simple statement 

ELSE simpie_statement; 

i) IF condition THEN BEGIN 
statement number one; 
statement-number-two; 

END ELSE BEGIN -
else statement number one; 
statement number 2; -
last statement; -

END; -

j) IF condition 1 THEN 
statement-1 

ELSE IF condition 2 THEN 
statement 2 -

ELSE IF condition 3 THEN 
statement 3 -

ELSE statement_4; 

k) CASE variable OF 
value 1 statement 1; 
value-2 BEGIN -

- statement 2 
statement-3 
statement-4 

value 3 : 
OTHERWISE 

END; 

END· -
statement number 5; 
all_other:conditions; 

Paper 1026 



APPENDIX B 

FILE NAMING CONVENTIONS 

Hewlett-Packard 

& 
% 

$ 
* " 
n 

I 
\ 

Kodak 

Source, RTE Sysgen Answer files (&---GN), DB schemas 
Relocatable 
Compiler listings, Loader listings, DBDS Schema listings 
Use 'name' for loader listings if name < 5 characters 
Absolute load modules, RTE Sysgen output files ( -·-GN) 
Help files for CMD program (e.g. CMD) 
Searchable relocatable libraries 
Transfer files (FMGR instructions with : prompts) 
PASCAL assembly code; also DS Network definition files 
Documentation files, Help files, DBDS Schema list files 

Accts answer files 
RJE commands; also IBM JCL 
Spare 

# Loader command files, Merge command files 
&& System-wide include files 

Keydump files to program terminal softkeys 
< QUERY XEQ command files, DBBLD input files 
> IMAGE type 2 Data Base files, type 1 root file 
? SBULD scratch files 
[ Forms library (SCREEN/1000), BRUNO picture files 
] Forms data dictionary (SCREEN/1000), Test data 
( Spare 
) Source Control system file (SCONS) 

Backup relocatables, library production relocatables 
KCD source file prefix 
RTE sysgen listing files (from the software group) 

D Data files associated with a specific program. 
I Include files for individual application programs 

Include files for FMP, IMAGE, and LIBRARY subroutine calls 
Include files for EXEC and DEXEC calls 

J Job files (for batch submission) 
L Error Log files 
P Remote Spooling Output files from PRT/OUTSP 
Q Query select file (QSELnn recommended) 
S User defined spool files 
T Text Formatter (TFORM) Input Files 
X Source file with expanded INCLUDE files (via XINCL) 

Paper 1026 



APPENDIX C 

GLOBAL SYSTEM INCLUDE FILE EXAMPLES 

$LIST ON$ { USE SCONS UPDATE PROCEDURES} 

{&&SYS Rel.Rev- 1.001, Revisor= PFG <850731.1455> 
############################################################# 

######## GENERAL DECLARATIONS FOR ALL SYSTEMS ######## 
############################################################# 

Requires no prior INCLUDE files 
$LIST OFF$ 

CONST 
execOl - 1; exec02 ... 2; 
exec05 - 5. 

' 
exec06 = 6. 

' exec09 ... 9· 
' 

execlO 10; 
execl3 = 13; execl4 14; 
execl7 - 17; execl8 18; 
exec21 = 21; exec22 22; 
exec25 ... 25; exec26 26; 

no abort = -32768; {100000B} 
{ lOOOOB} 
{ 400B} 

z 
echo 

x bit 
a bit 
k bit 
v bit 
m bit 

4096; 
256; 

1024; 
512; 
256; 
128; 

64; 

2000B} 
lOOOB} 
400B} 
200B) 
lOOBJ 

exec03 3. 
' 

exec04 = 4; 
exec07 - 7• . 
execll 11; execl2 12; 
execl5 = 15; execl6 - 16; 
execl9 19; exec20 = 20; 
exec23 = 23; exec24 - 24; 
exec99 = 99; 

no wait 
save 

-32768; 
16384; 

{lOOOOOB No wait for class I/O, RNRQ, LURQJ 
{ 40000B Save bit for class 1/0} 

no dealloc -

rte6vm = -17; 
rte4b -9; 
rteA ... -37; 
rteAl = -45; 

8192; { 20000B No Deallocate bit for Class 1/0) 

{System Codes for l.OPSY} 

{NOTE: This constant will be retained until 3/1/84) 
{de_alloc 8192; NOTE: Do NOT use this any more 

TYPE 
int 
positive_int -
char set 

-32768 .. 32767; 
0 .. 32767; 
SET OF char; 

string_2 =PACKED ARRAY (1 .. 2] OF char; 
string_3 =PACKED ARRAY [1 .. 3] OF char; 

-13- Paper 1026 



string_8 =PACKED ARRAY [1 .. 8) OF char; 
string_9 - PACKED ARRAY [1 .. 9] OF char; 
string_lO - PACKED ARRAY (1 .. 10] OF char; 
string_l2 - PACKED ARRAY (1 .. 12] OF char; 
string_66 - PACKED ARRAY (1 .. 66] OF char; 
string_80 - PACKED ARRAY (l .. 80] OF char; 

prog_name_type - string_6; 
messs_type - string_40; 

array 2 - ARRAY[l .. 2] OF int; 
array=3 - ARRAY[l .. 3] OF int; 
array_7 = ARRAY[l .. 7] OF int; 
array_8 = ARRAY[l .. 8] OF int; 
array_9 = ARRAY[l .. 9] OF int; 
array_lO - ARRAY[l .. 10] OF int; 
array_l2 - ARRAY[l .. 12] OF int; 
array_l6 - ARRAY[l .. 16] OF int; 
array 32 = ARRAY[l .. 32] OF int; 
array=l28 = ARRAY[l .. 128] OF int; 

register_type - RECORD 
CASE int OF 

1 (num 
2 : (str 

int); 
string_2); 

END; 

sys_time_rcd - RECORD 
CASE int OF 
1 : (tens_of_msec 

seconds 
minute 
hour 
day_of_year 
month 
day 
year 

2 (arr : array_S); 
END; 

user time red = RECORD 
CASE int OF 

1 (hour_min 
sec tmsec 
day_year 
year 

int; 
int; 
int; 
int; 
int; 
int; 
int; 
int); 

int; 
int; 
int; 
int); 

2 (sys time integer); 
END; 

(---------------------------------------···-------------------·-··---l 
{----------- END OF GENERAL SYSTEM DECLARATIONS (&&SYS) --···-··-·--} 
{----------------------···-------------------------------------------} 
$LIST ON$ 

Paper 1026 -14-



$LIST ON$ { USE SGONS UPDATE PROCEDURES} 

(&&DSG Rel.Rev- 1.000, Reviser- DWR <850731.1455> 
############################################################# 

######## DS/1000 GLOBAL DECLARATIONS ######## 
############################################################# 

Requires &&SYS } 
$LIST OFF$ 

CONST 
ds local node - -1; (For local OS node) 

ds_open_req - l; (Function codes for GET call} 
ds_read_req - 2; 
ds_write_req - 3; 
ds_control_req - 4; 

ds_terminate_req - -1; 

TYPE 
(++++I I I 111 I 11 I I 1111 I I I 1111+++++++++++ 

+ DS/1000 CONTROL/TAG FIELD TYPES + 
11III111III1++++++++11111IIII11 I I 11++) 

ds_control_type - ARRAY (1 .. 4] OF int; 

ds_tag_type - ARRAY [l .. 20) OF int; 

ds_cartridge_type - RECORD 
GASE int OF 

1 (num 
node 

2 (str 
END; 

int; 
int); 
string_2); 

(--------------------------------------------------------------------} 
(----------- END OF DS/1000 GLOBAL DECLARATIONS (&&DSG) -------·----} 
{---------------------·----------------------------------------------) 
$LIST ON$ 

$LIST ON$ { USE SGONS UPDATE PROCEDURES} 

{&&FMP Rel.Rev- 1.001, Reviser- PFG <850731.1455> 

CONST 

############################################################# 

######## GENERAL FILE MANAGEMENT (FMP) DECLARATIONS ######## 
############################################################# 

Requires &&SYS } 
$LIST OFF$ 

deb size 1 144; 
272; 

{Standard DCB buffer sizes by # blocks} - -
dcb_size_2 -

-15- Paper 1026 



dcb_size_3 400; 
dcb_size_4 528; 
dcb_size_5 656; 
dcb_size_6 784; 
dcb_size_7 912; 
dcb_size_8 - 1040; 
dcb_size_9 - 1168; 
dcb_size_lO • 1296; 

e~clusive_access - O; (File open access options} 
shared access - l; 
update_access - 2; 

TYPE 
{ 111111111 I I I I I I I l++I I I I I I I I I I I l+++++I I 111 I I 
+ SECURITY CODE/CARTRIDGE REFERENCE TYPES + 
I I I I I I I I!++++++++++++++++++++++++++++++++++} 

security_type - RECORD 
CASE int OF 

1 (num int); 
2 : (str string_2); 

END; 

cartridge_type .. RECORD 
CASE int OF 

1 (num int); 
2 : (str string_2); 

END; 

{++++++++++!I I I I I 1+++++++++++++++++1111 II 
+ FILE NAME/SIZE TYPES + 
+++++II I I I l++++++++++++t I I I I I I I I II++++++) 

file_name_type - string_6; 

file_size_type - RECORD 
CASE 

1 

(For GREAT and ECREA calls) 
int OF 

2 

END; 

(number blocks : int; 
recor()ength' : int); 

(ext blocks 
ext=length 

integer; 
integer); 

{I I I I II I 1++++++++++++++++++++++111111 I+++++++++++ 
+ CARTRIDGE STATUS ENTRY RECORD FORMAT (!STAT) + 
++++++++++I I I I I 11111111II1111+1IIIIII1111 I I I I 11 I} 

fmt2_type - PACKED RECORD 

Paper 1026 

lock_word 
cart lu num 
last=fmp_track 

0 .. 255; 
0 .. 255; 
int; 

-16-



cart ref num 
session id 

END; 

cart_entry~type - RECORD 
CASE int OF 

cartridge_ type; 
int; 

int; 
int; 

1: (cart_lu_num 
last_fmp_track 
cart ref num 
lock_word 

cartridge_ type; 
int) ; 

2: (fmt2 : fmt2_type); 
END; 

cart_list_type - ARRAY [l .. 64) of cart_entry_type; 

{ 11 I 11 I I I I I I I I I I I I I I I I I I 11 I I I I I!++++++++++++++++ 
+ RECORDS FOR NAMR PARSING FUNCTION (NAMR) + 
+++++I I I I I I++++++++++++++++++++++++++++++++++++) 

namr_type - RECORD 
CASE int CF 

1 (file_name string_6; 
parm_type PACKED ARRAY { 1. . 8] 
security security_type; 
cartridge cartridge_type; 
file _type int; 
file _lng int; 
rcd_lng int; 
spare int); 

2 (device_ lu int); 
END; 

OF 0 .. 3; 

(···-------------------·-··----------------·---··-··-----------------) 
(--·-------- END OF FILE MANAGEMENT DECLARATIONS (&&FMP) ·-----------} 

$LIST ON$ 

SUBROUTINE INCLUDE FILE EXAMPLES 

PROCEDURE read from disc 

$ALIAS 'EXEC'$; 
EXTERNAL; 

request code 
functio~ and lu 

VAR data buffer 
buffer_length 
track number 
sector number 

-17-

int; 
int; 
exOl_buffer; 
int; 
int; 
int) 

Paper 1026 



PROCEDURE read from device request_code 

$ALIAS 'EXEC'$; 
EXTERNAL; 

function and lu 
VAR data buffer 

buffer_length 

PROCEDURE read_from_driver request_code 

$ALIAS 'EXEC'$; 
EXTERNAL; 

function and lu 
VAR data buffer 

buffer_length 
option_l 
option_2 

int; 
int; 
exOl_buffer; 
int) 

int; 
int; 
exOl_buffer; 
int; 
int; 
int) 

{####################################################################} 

PROCEDURE get pgm name (VAR pgm : prog_name_type) 
$ALIAS 'PNAME0$; 
EXTERNAL; 

PROCEDURE open_data_base (VAR dbase name 
dbase level 
access mode 

VAR status 
$ALIAS 'DBOPN'$; 
EXTERNAL; 

data_base_type; 
db_level_type; 
int; 
data_base_status) 

{####################################################################) 

PROCEDURE open_ds_link (VAR ds_control_block 
VAR error_code 

$ALIAS 'POPEN'$; 
EXTERNAL; 

slave name 

slave node 
ds_tag_field 

PROCEDURE open_ds_clone (VAR ds_control_block 

$ALIAS 'POPEN'$; 
EXTERNAL; 

VAR error_code 
slave name 
slave node 
ds_tag_field 
clone_option 

ds_control_type; 
int; 
prog_name_type; 

int; 
ds_tag_type) 

ds_control_type; 
int; 
prog_name_type; 
int; 
ds_tag_type; 
int) 

(####################################################################) 

Paper 1026 



1027. IMPROVING CDS PROGRAM PERFORMANCE 

Wayne R. Asp 
Hewlett-Packard Company 
2025 W. Larpenteur Ave. 

St. Paul MN 55113 

Under the RTE-A operating system, Code and Data Separation (CDS) gives the 
capability to execute programs larger than 64kb with excellent performance. 
Using CDS, many large FORTRAN programs are being written or converted from larger 
machines to run on the A-Series, The usage of CDS by these programs involves 
compiling the FORTRAN code with the CDS option, and then loading the program 
using automatic segmentation. MACRO routines can also be written to use CDS. 
While the first pass compilation and loading of these programs will run, it is 
usually possible to obtain much better performance. This performance can be 
gained by understanding the CDS implementation and taking advantage of CDS 
features, by analyzing and tuning the code segmentation, and by making trade-offs 
in performance and space requirements. This paper examines CDS features and 
performance issues for FORTRAN and MACRO programmers, and presents alternatives 
for implementation. As always, the user must evaluate the alternatives, select, 
and implement those that would be the most beneficial to any particular program. 

The basic key to good CDS program performance involves understanding how CDS is 
implemented. Once the implementation scheme is understood, performance issues 
are more easily addressed. From a user's perspective, little must be done to 
convert a FORTRAN program from non-CDS to CDS. First, the program must be 
compiled under the directive '$CDS ON'. This instructs the compiler to emit 
relocatables with the code separated from the data. Next, the program is linked 
using automatic segmentation. When using automatic segmentation, LINK creates 
code segments by placing modules one-by-one into a segment. When the current 
code segment overflows 31 pages, the module creating the overflow is backed out, 
and the current code segment is considered complete. The backed out module is 
then placed into a new current code segment. This continues in a FIFO manner 
until all modules have been placed in code segments. The order in which the 
relocatable modules are presented to LINK affects the code segmentation which 
LINK performs. After linking, the program is ready to be run. 

Converting a MACRO routine from non-CDS to CDS is a more involved task, and 
should only be attempted if absolutely necessary. When writing MACRO using CDS, 
it is the user's responsibility to account for the locations of all data in the 
MACRO routine; code, data, stack, or static. Because most non-CDS MACRO routines 
have their data and code interspersed throughout, the conversion to CDS is 
extremely difficult. Some guidelines for writing CDS MACRO routines are presented 
in Appendix C. 

When the CDS program is run, two partitions must be allocated; one for the code, 
and one for the data (figure 1). The code partition is divided up into code 
blocks, each the size of the largest code segment created by LINK. There may 
be more code segments than code blocks, meaning not all code segments can be 
resident in memory at one time. When a code segment is executing, the segment 
is resident in a code block in the code partition. This code block is then 
mapped into logical memory in map set 3. The data partition is divided into 

·1· Paper 1027 



CODE 
PARTITION 

DATA 
PARTI'l'lON 

CDS Program Partitions 
PHYSICAL MEMORY 

CODE BLOCK 
n 

CODE BLOCK 
1 

CODE BLOCK 
0 

CODE PAGE 
0 

LOGICAL MEMORY 31 

WRITE 
PROTECT 

CURRENT 
CODE BLOCK 

CODE PAGE 
0 

,, 
R 
I 
T 
I 

p 
R 
0 
T 
I 
c ! 

CODE MAP (3) 0 T 

EMA/VMA ~ AREA VSEG 
1-- - - - 31 

HEAP AREA HEAP AREA 

STACK AREA STACK AREA 

NON-CDS CODE NON-CDS CODE 
& & 

STATIC VARIABLES STATIC VARIABLES 

DATA 
BASE PAGE SYSTEM COMMON 

DATA 
BASE PAGE 0 

Figure 1. DATA MAP (2) 



several ateas in physical memory. Any non-CDS code used by the program, plus 
the static variables for all of the CDS modules are resident immediately following 
the data base page. Next in the partition is the stack area. The stack is used 
to store dynamic variables and parameter addresses for CDS subroutines. Each 
time a CDS subroutine is called,. a new entry is built on the stack. This entry 
is called a stack frame. When the subroutine is exited, the stack frame is 
popped. Following the stack area is the heap area. The heap can be accessed 
from FORTRAN and MACRO using the LIMEM system subroutine. Last in the data 
partition is the EMA/VMA area, if the program uses this feature. The data 
partition is mapped into logical memory using map set 2. System common is mapped 
into logical memory if the program was linked using system or labeled common. 

Generally, programs linked using automatic segmentation will perform fairly 
well. In many cases, however, better performance can be gained by performing 
manual segmentation on the program. In addition, as the CDS programs get larger 
and larger, the CDS scheme becomes less and less transparent. The point at 
which this can occur varies from program to program depending on many factors: 
code size, data segment size, stack size, usage of EMA, etc. The presentation 
of two scenarios at this point will help to illustrate possible problems: 

Scenario 1: A large FORTRAN program was converted to run on 
an A900. This involved moving a large data array 
into VMA. The converted program has 40 code 
segments of 20 pages each, and one data segment 
of 20 pages. Due to memory limitations, there 
are 15 code blocks in the code partition. 

Problem: The program takes 24 hours to run on the A900. 
It should execute in less than 3 hours. 

Scenario 2: A FORTRAN program is written to run on the A900. 
The program has 30 code segments of varying sizes, 
and one data segment of 31 pages. It uses System 
common and several lK word arrays. 

Problem: The program generates a CS06 error, meaning the 
stack has overflowed. 

A brief discussion of the internal design of CDS is included here which will 
focus on limiting factors in the CDS design which can make CDS non-transparent 
to the user. 

In CDS, the JSB instruction does not exist. This is because a JSB instruction 
saves the return address in the code of the called routine, which is illegal in 
CDS. The JSB type instruction in CDS is PCAL, or procedure call. The PCAL 
instruction loads the called code segment into memory (if necessary), maps the 
code block containing the code segment into logical memory (if necessary), and 
builds a stack frame for the called subroutine. PCAL also checks for stack 
overflow, resolves parameter addresses, and records the return address. There 
are different versions of the PCAL instruction. PCALI calls a subroutine in 
the current code segment. PCALX and PCALV call subroutines in a different code 
segment from the current one. This is called a cross segment call, since the 
called subroutine is in a different code segment from the caller subroutine. 

-3- Paper 1027 



Q 

l J 

Stack Frame Format 
r----------1 
I 

....... I next stack frcme 
"' L 

I 
LOCAL 

VARIABLES 

PARAMETER POINTERS 

NON-CDS RETURN_P 

NEXT_O 

ftETU~N-CST A"C-COUNT 

) 

RETURN_P 

PREV_Q 

....... STATIC_Q 
"" 

I previous stock frame I 

~' I 
,, I I 
L---- ------J 

Figure 2. 

Steck 
Frei me 



Code Segment Table Entry 

0 P/A ML Starting Physical Page 

1 Disc LU 24 bit 

2 Disc Address of Segment 

3 Reserved Segment Length 

15 14 8 7 0 

PIA ::: 0 IF THE SEGMENT lS IN MEMORY 
1 IF THE SEGMENT IS NOT CURRENTLY IN MEMORY 

ML ::: 1 IF THE SEGMENT IS MEMORY LOCKED 
DISC LU ::: LU OF THE TYPE - 6 FILE 
DISC ADDRESS ::: OFFSET IN BLOCKS FROM THE BEGINNING OF THE 

DISC LU TO THE START OF THE CODE SEGMENT 
CODE SEGMENT ::: NUMBER OF 128 WORD BLOCKS IN THE CODE 
LENGTH SEGMENT ON THE DISC 

Figure 3. 



Segment Replacement Table 

Code Segment # of 
Code Block N Occupant 

• 
• 
• 
• 
• 

Code Segment # of 
Code Block 1 Occupant 

Code Segment # of 
Code Block 0 Occupant 

10008 Pointer to Next SRT entry 

Figure 4. 



Segment Transfer Table 
. . . . . 

Unused Entries . . 

Entry Point N Address 
. . . . . . . 

Entry Point 2 Address 

Entry Point 1 Address 

20008 
CST Entry 

# of STT Entries {Segment Number) 
15 8 7 0 

Figure 5. 



PCALR and PCALN call non-CDS code from CDS code. LINR determines which PCAL 
version to use at load time and patches the correct instruction into the code. 

A stack frame is built by the PCAL instruction to contain any dynamic (local) 
variables used by the called subroutine (figure 2). The Q register points to 
the first word of the stack frame. The first six words contain the stack marker. 
This information is used for stack management. STATIC_Q is simply a copy of 
the Q register and is used by the higher level languages. PREV_Q points to the 
beginning of the previous stack frame. RETURN_P and RETURN_CST together give 
the return address and code segment where the address resides. (CST stands for 
Code Segment Table, which will be discussed next). ARG_COUNT indicates how many 
arguments were passed. NEXT_Q points to the beginning of the next stack frame. 
NON CDS RETURN P is used as the return address by PCALR and PCALN. Following 
the-stack marker are pointers to the parameters which were passed. These 
parameter pointers are always resolved for indirects and are not relative to Q. 
There are ARG_COUNT parameter pointers in the stack frame. Last in the stack 
frame are the local, or dynamic variables. These variables are defined by the 
called subroutine. The stack frame cannot exceed 1024 words, which means that 
the parameter pointers plus local variables cannot exceed 1018 words. FORTRAN 
can create stack frames greater than 1024 words by performing its own stack 
management relative to Q. The Z register points to the last word of the stack 
area and is used to check for stack overflow by the PCAL instruction. 

The Code Segment Table (CST) is used to describe each code segment and its 
current state (figure 3). The CST resides in the code base page from address 
Ob to 777b. This provides enough table entries for 128 code segments. The 
number of each code segment is derived from the segment's entry in the CST, from 
0 to 127. The CST entry for a code segment shows whether the segment is currently 
in memory, if it is memory locked, the page location in physical memory, the 
disc block address of the segment, and the length of the code segment in 128 
word blocks. 

The Segment Replacement Table (SRT) is used to identify which code block in the 
code partition contains which code segment (figure 4). RTE-A uses this table 
to determine which code segment to overlay when a new code segment must be 
brought into memory, i.e. a segment fault bas occurred. Word 0 of the SRT points 
to the least-most-recently loaded entry in the SRT. This is the next code block 
that will be overlaid when a new code segment needs to be loaded, and the pointer 
will then be incremented. The pointer wraps around when the end of the SRT is 
encountered. The SRT resides in code page 0, beginning at lOOOB. 

The Segment Transfer Table (STT) contains the addresses of all the entry points 
into a particular segment (figure 5). Each code segment has its own STT which 
is located at 2000B in the code segment. Each STT can contain up to 255 entry 
point addresses. The STT also contains a pointer to the CST entry (segment 
number) for its code segment, and the number of entry points in the code segment. 
When a cross segment call (PCALX/PCALV) is executed, the microcode uses the STT 
in the called segment to find the requeste.d entry point address in the called 
code segment. The STT is the only place that the entry point addresses exist, 
the PCALX/PCALV only contains an STT index. 

A PCALX/PCALV instruction contains both a CST index and an STT index which 
represent the called code segment number and entry point into this code segment. 

Paper 1027 -8-



When the instruction is executed, the stack marker in a new stack frame is 
initialized, the parameter addresses are resolved for indirects and stored in 
the stack frame. Then, the CST entry for the called code segment is checked to 
see if the code segment is currently in memory. If it is, the code block 
containing it is mapped into logical memory. If the code segment is not in 
memory, an interrupt to trap cell 13B is generated. The CDS fault handler (CDSFH) 
is then entered. CDSFH uses the SRT to determine which code block to overlay 
with the requested code segment. The requested code segment is then loaded from 
disc into physical memory, and mapped into logical memory. The STT.index from 
the PCALX/PCALV is used to find the entry point address in the code segment. 
At the entry point in the code segment is a word specifying the stack frame size 
required by the called subroutine. The Z register is then checked for a stack 
overflow condition, and the stack marker is completed. The called subroutine 
is then executed. When the subroutine has completed execution, the data in the 
stack marker is used to find the CST entry to return to, and the return address. 
The stack frame is then released by changing the Q register to point to the 
previous stack frame. The caller subroutine is then scheduled for execution at 
the return point. 

When the CDS design is analyzed, the following limiting factors become apparent, 
some .of which can make CDS non-transparent to the user: 

*The maximum data segment size is 31K words. If EMA/VMA is used, 
~o pages in the logical map are reserved for VSEG, limiting the 
data segment size to 29K words. The data segment size is limited 
because all of the data area must be mapped in all the time, since 
data references could be made to any portion of the data area at 
any time. 

* Cross segment calls take longer to execute than calls to subroutines 
contained in the same segment as the caller. Calls to segments 
not in memory force the code segment to be loaded from disc and 
overlay the least-most-recently loaded code segment in the code 
partition. 

* The maximum size of a stack frame is 1018 words for data and 
parameter addresses. 

* The maximum size of a code segment is 3lk words. 

*Code blocks in physical memory are of equal size. If the code 
segments and code blocks are not of equal size, physical memory 
will not be fully used. 

* Maximum of 255 entry points per code segment. 

* Maximum of 255 parameters per entry point. 

* Maximum of 128 code segments per program. 

The extent to which any of these factors can make a CDS program non-transparent 
to the programmer depends entirely on how each particular program is designed 
and what system resources the program utilizes. 

-9- Paper 1027 



Scenarios 1 and 2 discussed previously were designed to illustrate typical 
problems that can arise when running large CDS programs. In the first scenario, 
the problem seems to be execution speed. In the second scenario, the problem 
is shortage of stack area, or space in the data segment in general. Having 
examined the way in which CDS is implemented, some recommendations can now be 
made as to how to minimize these types of problems. 

In the first scenario, the goal is to reduce the execution time for the program 
to a more reasonable level. There are severa~ actions that can be taken by the 
programmer to achieve this. 

1. Reduce the number of CDS segment faults which occur during program 
execution. Each code segment fault delays program execution by 
a minimum of forty five milliseconds, versus about 45 microseconds 
to map a code segment already in physical memory into logical 
memory. To accomplish this, the programmer can: 

* Perform manual segmentation on the program instead of 
automatic segmentation in LINK. 

* Make code segments as large as possible. 
* Place subroutines which call one another frequently into 

the same code segment. 
* Memory lock code segments which are called often from 

other code segments. 
* Make the code partition as large as possible, to allow 

a maximum number of code segments in physical memory. 
* Group less used subroutines together in the same code 

segment, causing this segment to be resident on disc 
most of the time. 

Appendix A provides details on analyzing cross segment calls in a 
CDS program. 

2. Keep VMA page faults to a minimum. As is the case with code 
segment faults, each VMA page fault generally takes a minimum of 
forty five milliseconds to be loaded from disc. VMA performs best 
when accessing data sequentially in VMA. This will generate page 
faults only when absolutely necessary. If data is accessed randomly 
in VMA, page faults will probably occur half of the time. VMA 
performance is the worst when accessing data elements around 1024 
pages apart. The programmer can, therefore, arrange the VMA area 
such that the program will access data elements in the most linear 
fashion possible. 

3. Minimize the amount of data in EMA/VMA. Accessing one element in 
EMA/VMA takes a minimum of twice as long in FORTRAN compared to 
referencing a non-EMA/VMA element. If several elements must be 
accessed by FORTRAN, the access will be several times slower if 
some reside in EMA/VMA. This is because FORTRAN maps the EMA/VMA 
pages containing the element into logical memory each time an 
element is accessed. Appendix B presents some ideas for speeding 
access to EMA/VMA. 

4. If the CDS program uses a large number of small subroutines calling 

Paper 1027 



one another, m1nl!Il1z1ng cross segment calls can improve performance. 
With four parameters being passed, it takes more than twice as 
long to make a cross segment call as a call to the same code 
segment. This is about 45 microseconds on an A700. If there are 
less code blocks than code segments for the program, any improvement 
in this regard will be overpowered by the time lost going to disc 
to load a new code segment into memory when needed. See Appendix 
A for information on cross segment call analysis. 

5. Routines which take up the most time in a CDS program can be 
rewritten in MACRO. CDS MACRO is not difficult to understand for 
the experienced assembler programmer. Appendix C gives information 
on writing CDS MACRO routines. 

6. Take advantage of the VIS routines for large floating point data 
manipulations. For non·EMA/VMA data, this will improve the program 
execution time with little penalty. If the data resides in EMA/VMA, 
the VSEG size in most cases must be larger than 2, thus taking 
away logical memory pages from the data partition. 

The second scenario presents the problem of not having enough memory available 
in the data segment. This is due to the constraint of 31 pages placed on the 
data segment size, which is probably the largest limiting factor in the entire 
CDS scheme. Actions which can be taken by the programmer to maximize efficient 
usage of the data segment are: 

1. Move data arrays to EMA/VMA. Larger arrays should be moved first, 
since their access will tend to be more linear. Arrays which 
reside in the static variable area should also be moved first, 
since this will reduce the size of the entire data segment. This 
includes arrays specified in local COMMON blocks, arrays which 
are initialized in FORTRAN 'data' statements, and arrays specified 
in FORTRAN 'save' statements. Next, arrays which are dynamic 
variables •• those that reside in the stack area -- should be 
moved to EMA/VMA. This will provide more stack area when the 
subroutine referencing these arrays is called, since the array is 
no longer on the stack. The array will always exist in EMA/VMA 
in this case, meaning space will always be allocated for it. 

2. Use Shareable EMA (SHEMA) instead of system common. This will 
provide more data space only if system common is greater than two 
pages. It is not possible to use both EMA/VMA and SHEMA. Access 
to data in SHEMA will also be at least two times slower than access 
to system common. 

3. Variables declared in a 'save' statement in FORTRAN are placed 
into the static data area. Reducing the number of these variables 
will directly increase the amount of data segment available for 
other uses. Variables not declared in 'save' statements are placed 
on the stack. It is usually preferable to use dynamic variables 
such as this, since the stack area is used again by other subroutine's 
dynamic variables. 

·11- Paper 1027 



4. Constants and variables initialized in 'data' statements are also 
placed in the static area. If possible, initialize variables 
during program execution. This will allow the variables to be 
placed in the stack. An example of this might be a 256 byte array 
that is initialized to spaces. A 'do' loop during program execution 
could be used in place of the 'data' statement. Constants and 
variables common to many routines ·• constants such as 1, 2, 3, 
256, etc.·· can be placed into a common block and shared between 
all of the routines. This way only one copy of the constant will 
exist in the data segment, rather than a copy of the constant for 
each subroutine which references it. 

5. Minimize the amount.of non-CDS code which the program references. 
Non-CDS code takes space directly out of the data segment. If 
possible, make the code CDS. The code will then be placed into 
a code segment and mapped in only when called. 

As is the case in most programming situations, some of the above recomnendations 
are contradictory in terms of execution.time and memory usage. The programmer 
must make trade-offs based on each particular program's requirements. These 
include defining the manual segmentation scheme, moving data to EMA/VMA, using 
SHEMA in place of system common, and static variables versus dynamic variables. 
Each CDS program must be analyzed individually to ascertain which changes will 
have the greatest effect on increasing performance. 

In summary, as CDS programs become larger, the programmer must begin to take 
into account the way in which CDS is designed. If this is not done, poor program 
performance will result when the limitations in CDS are met. Programmers can 
work around these limitations and improve execution speed by: 

*Reducing the number of code segment faults. 
* Making code segments as large as possible. 
* Making the code partition as large as possible 
* Accessing VMA sequentially to reduce overhead. 
*Minimizing EMA/VMA data since access time is greater. 
*Minimizing cross segment calls. 
* Rewriting critical routines in MACRO. 
*Using VIS whenever possible. 

If the limitations are related to the data segment size, the programmer 
can: 

* Move data arrays to EMA/VMA. 
* Use SHEMA instead of system common. 
*Avoid the 'save' statement in FORTRAN. 
* Share constants/data between routine·s by placing in a common block. 
* Convert non-CDS code to CDS. 

Each program must be analyzed for its own particular performance problems. 
The programmer must then make choices to improve the performance. 

Paper 1027 -12-



A.Dpendix A: Analyzing Cross Segment Calls 

Code segmentation determines which portion of the code is mapped into the 
program's logical address space at any given time. When code from the currently 
mapped segment calls code in another segment, the called segment must be mapped 
in. If the called segment is already in memory, a simple re-map of logical 
addresses occur. If the called segment is not in memory, a segment fault occurs. 
RTE-A is then called upon to bring in the segment from disc and the segment is 
then mapped into logical memory. The instructions which accomplish this are 
PCALX/PCALV and EXIT. If the code from the currently mapped segment calls code 
in the same segment, no re-map is necessary. The instructions executed in this 
case are PCALI and EXIT. The following table illustrates the execution time 
for these calls on an A700 processor: 

Call to Same 
Segment 

Call to Different Segment 
Already in Memory 

Call to Different Segment 
Not Currently in Memory 

PCALI 
1 parameter 

indirect 
EXIT 

5.5 us 
1. 5 us 

.5 us 
2.5 us 

--------
9.0 us 

PCALX 
1 parameter 

indirect 
EXIT 

23.0 us 
1.5 us 

.5 us 
15.0 us 

40.0 us 

PCALX 23.0 us 
1 parameter 1. 5 us 

indirect . 5 us 
Disc access 30 ms 
EXIT 15.0 us 

---------
45+ ms 

** dependent on disc model and other system activity 

** 

As the table shows, a PCALX subroutine call will take a maximum of four times 
longer than a PCALI subroutine call. If additional parameters are passed, the 
difference will be smaller. If the called code segment does not reside in 
memory, then the disc access to retrieve it takes much more time than the actual 
PCALX execution time. 

As discussed previously, there are two alternatives which can be implemented to 
improve code segmentation performance: 

1. Avoid segment faults at all costs. Make frequently used code 
segments memory locked. 

2. Make each code segment as self sufficient as possible. Most of 
the routines called within one code segment should reside within 
that code segment. This will eliminate thrashing between segments 
when cross segment calls occur. 

The problem is, how to improve code segmentation performance, since there is no 
real mechanism available for analyzing the code segmentation. 

With this in mind, work was begun on a method to analyze the code segmentation 
efficiency of a CDS program. The method designed had to have the ability to 
analyze all code segments for calls between any two segments. Secondly, it must 
analyze all calls into a particular code segment, including providing the name 
of the called subroutines in a code segment. A summary of the design criteria 

Paper 1027 



used was (in order of importance): 

l. Analyze all calls between all code segments. 
2. Analyze all calls into a specific code segment, including analysis 

on a routine-by-routine basis within the segment. 
3. Incur as little overhead as possible in the CDS program being 

analyzed. This includes both the size of the code required that 
must be be loaded with the CDS program, and the execution time of 
the analysis code. 

4. Easy to use. 
5. Easy to change or modify the scheme. 

The assumption was made that most programmers have a good idea of the structure 
of their code, and that the analysis would only be a tool for the programmer to 
use for increasing the program's performance, but would not automatically increase 
performance. 

The method designed uses the $TRACE option in the FORTRAN compiler. When this 
option is turned on, the compiler generates a call to a subroutine called !TFEN 
on entry, and a call to !TFEX on exit. !TFEN and !TFEX are non-CDS code, and 
therefore reside in the data segment. They print out the subroutine name on 
entry and exit. The subroutine name is stored as the first few words of the 
subroutine in the code segment. The last word of the subroutine's stack frame 
contains the first word address of the subroutine in the code segment. By 
replacing ITFEN with another routine of the same name, the new !TFEN can do 
whatever it wants, whenever a new subroutine is entered! 

To analyze cross segment calls between segments, there must be some mechanism 
to retrieve the caller's segment number and the called segment number. The 
caller's segment number can be found in the stack frame of the called subroutine. 
The called segment number, however, does not exist anywhere. By forcing another 
stack frame to be created, however, the called segment number can be found in 
the new stack frame (figure 6). The new !TFEN is loaded into a code segment by 
itself. Each time it is called from a newly entered subroutine, a stack frame 
is created. !TFEN then calls the real !TFEN (called !TFENR). !TFENR gets the 
segment numbers from the stack, and passes them to an analyzer program, TRSEG, 
via class I/O. Execution is then resumed in the called subroutine. TRSEG, 
being a separate program, takes no resources from the CDS program being analyzed. 
When the subroutine is finished, !TFEX is called. !TFEX does some cleanup and 
exits back to the subroutine, which exits back to the caller. When the program 
is completed, TRSEG is flagged, and produces a printout of the results. Subroutine 
names cannot be kept during this analysis because it cannot be guaranteed that 
the called code segment, which contains the name, will not be overlayed by the 
segment containing !TFEN. The code segment containing !TFEN should be memory 
locked. 

The scheme to analyze all calls to subroutines within a particular segment works 
in a similar fashion. In this case, !TFEN is loaded into the code segment being 
analyzed. This guarantees that the code segment containing the subroutine names 
will not be overlayed (figure 7). !TFEN calls !TFENR. !TFENR finds the subroutine 
name by getting the address from the stack and retrieving the name from the 
beginning code of the called subroutine in the code segment. !TFENR also gets 
the calling code segment. This information is passed to another analyzer program, 

Paper 1027 



Analyze all Segment Calf s 

Caller Segment Carted Segment 

PCAL Subroutine ......... PCAL!TFEN 1--

rE- / 

Subroutine Executes ~ 1--

PCAL!TFEX 

~ EXIT ./ 
........ 

Data Se_mnent !TFEN Segment 

Get Caller Segment / PCAL !TFENR ~ ......... 

Number and Called 

Segment Number from 

Stack Frames. ~ EXIT i-----; 

Pass to TRSEG via 

c CLASS 110 and EXIT. 1---' 
./ 

L Post Processing. ......... 

A u s EXIT 

s !TFEN Stack Frame 

I 
Called subroutine 

TRSEG PrQgram Stack Frame 0 
....... Process Segment data Caller subroutine 
,,,.,. 

from ITFENR Stack Frame . . 
Stack 

Figure 6. 



Analyze Calls into One Segment 
Caller Segment Called Segment 

Subroutine Name -----------------
PCAL Subroutine ......... 

/ PCAL!TFEN ~ 

~ Subroutine Executes ~ 

PCAL !TFEX 
EXIT 

,...,. 
t....--.-.i ......... 

.-- PCAL !TFENR ~ 

~ EXIT f----' 

Stack . . 
Data Segment 

!TFEN Stack Frame 
~ Get Subroutine Address 

5-uPIQ.l!tln~ _ QQQ~ 1'.fl.9r~~s from Stack Frame. 

Called Subroutine Get Subroutine Name 

Stack Frame from Subroutine In the 
Called Code Segment. 

Caller Subroutine 
Get Caller Segment # 

Stack Frame 
from Stack Frame. 

Pass to TRSUB r--. . via CLASS 1/0 • . .__ t-1 EXIT 
c 
L 

TRSUB Program A s / s Post Processing. "" Process Subroutine Name I 
and Calling Segment # / 0 

""' from !TFENR EXIT 

Figure 7. 



TRSUB, via Class I/O. Further processing is done in the same way as described 
above. 

ln conjunction with this paper, the author is submitting the cross segment call 
analyzer utilities described in this appendix to the CSL/1000 Contributed Library. 

Paper 1027 



Appendix B: Speeding up EMA/VMA Access 

The major problem with moving large amounts of data from the static or dynamic 
data area to EMA/VMA is a major decrease in speed when accessing the data from 
FORTRAN. FORTRAN imposes mapping overhead each time an element in EMA/VMA is 
accessed. This is because FORTRAN can never know where in EMA/VMA the next 
element is located. It takes FORTRAN less time to remap the page into logical 
memory than to figure out if the page containing the element is already mapped 
in. Each EMA/VMA element in FORTRAN has a 32 bit address. The microcode FORTRAN 
calls uses this address to map the physical page containing the address into 
logical memory, and returns a 16 bit logical address to FORTRAN. The 16 bit 
logical address is then used to access the element. 

In a CDS program, it is possible that the data in EMA/VMA will contain both 
large arrays and small arrays, since putting these arrays in EMA/VMA removes 
them from the data segment. One method which can be used in FORTRAN to speed 
access to these arrays uses the MMAP subroutine. This subroutine, callable from 
FORTRAN, allows the user to map any EMA page requested into VSEG. The problem 
is how to access the EMA data from FORTRAN once it is mapped in. To accomplish 
this, a $ALIAS directive is used to set up an absolute common block, as shown 
in the following example: 

FTN7X,l 
$CDS ON 
$EMA /DUMMY/ 
$Alias /mine/-74000B Address of first word in VSEG 

Common /dummy/ Iarray(20000) ! declare entire EMA size 
Common /mine/ Myarray(lO),Mydata(lOO),Myflag 

My_page==S 
Call MMAP(My_page,l) 

Mydata(SQ) .. l 
Mydata(60)-2 

this routine uses page 5 
map in 2 pages of data starting 

at my page 
access my data 
no further mapping required!! 

Using this method, the programmer must know, or assign, on which pages the data 
resides. This makes the method ideal to use for static data in a subroutine. 
Each subroutine can have its own page(s) and common block(s) to store static 
variables. It is easiest to program this method if each common block is a 
multiple of 1024 words, or one page. 

The difficulty with this method is the possibility that VSEG will be remapped 
if another element in EMA is accessed by the program. In this case the MMAP 
call must be made again, in order to map VSEG back to the pages desired. The 
elements in the common block /mine/ can then be accessed again. It is reconnnended 
that the programmer use only MMAP calls and no other EMA access, or be very, 
very careful when allowing FORTRAN to access EMA elements. 

Paper 1027 



Appendix C: Writing CDS MACRO Routines 

Writing a MACRO routine using CDS is not difficult. Five important items of 
which the CDS MACRO progranuner must be aware are: 

1. The JSB instruction is undefined under CDS. HP supplies a CDS 
Macro library which includes ENTRY, PCALL, and EXIT for MACRO 
subroutines. These are documented in the MACRO manual, and make 
CDS programrning much easier. 

2. The progranuner must define where all instructions and data are to 
be located. This is done with the RELOC command. 

RELOC CODE - places following instructions into code segment 
RELOC DATA - places following values into data segment 
RELOC LOCAL - places local variables into stack 
RELOC STATIC - places local variables into static data area. 

Same as FORTRAN 'save'. 

3. Since CDS programs use only current page links, the programmer 
must tell LINK where to place them. This is done using the BREAK 
command. BREAK commands should follow every JMP instruction, 
except where the JMP instruction follows an instruction which can 
skip over the JMP, such as CPA, lSZ, SSA, etc. In general, the 
BREAK should be placed where it would never be executed, since 
current page links might be placed there by LINK. 

4. There are many new instructions added for CDS. Among these are 
.CCQA, which will copy the Q register to the A register. This is 
useful for examining the stack. There are also instructions to 
modify Q and Z. Be careful!! 

5. Some of the base set instructions work slightly differently tmder 
CDS or are illegal. 

* Memory Reference Group: 
- All references to base page access Q-relative locations. This 

is how the stack is accessed. 
- All references to current page access code space and are not 

Q-relative. 
· JSB is undefined. 
- ISZ, STA, STB cannot reference the current page directly. 

* Extended Instruction Group 
- MBT, CBT, MVW, and CMW are illegal instructions. 
- LAX, LAY, SAX, and SAY resolve base page addresses for 

Q-relativity first. 
* Vector Instruction Set 

- The interrupt state may not be saved in the code space. This 
is handled automatically. 

* FFP/Language Instructions 
- .ENTR, .ENTN, .ENTC, and .ENTP may not be used in CDS code. 
- If the word 1 of CFER, DFER, ZFER, or XFER is Q-relative, 

then all the addresses are Q-relative. 
* Dynamic Mapping Instructions 

- For cross map memory accesses, CDS is turned off. 

-19- Paper 1027 



If the programmer follows these guidelines, after a little practice, CDS MACRO 
programming will be as easy as non-CDS MACRO programming. 

Suppose that a critical subroutine which takes two integer parameters, adds them 
together, and adds one if the result is odd, needs to be speeded up. Here is 
an example of what that MACRO routine might look like: 

macro,q 

* 

* 
FAST 

* 

* 

HED Example CDS Macro Routine 

NAM Fast 
MACLIB $CDSLB: :LIBRARIES 
CDS ON 

RELOC CODE 

* USE RTE-A/VG+ CDS MACROS 
* TURN ON CDS MODE 

ENTRY Valuel,Value2,Return_Value 

LDA @Valuel 
ADA @Value2 
STA Temp 
SLA 
ADA One 
STA Save 
STA B 

* Get first parameter value 
* Add second parameter value 
* Save in stack 
* Odd? 
* Yes, add one 
* Save in static data area 
* and B for return 

STA @Return_Value * and returned parameter 
LDA Temp * Put sum in A for return 

* ALL DONE, EXIT 

* 

* 
* 
One 

* 
Temp 

* 
Save 

* 
* 

Paper 1027 

EXIT 
BREAK 

RELOC DATA 
DEC 1 

RELOC LOCAL 
BSS 1 

RELOC STATIC 
BSS 1 

END 

* RETURN 

* SCRATCH 

* Save for later use 

-20-



Synopsis 

1028. MAKING THE MOST OF THE A-SERIES 

P.J.~ebb 

Applied Psychology Unit 
Admiralty Research Establishment 

Teddington, Middlesex. 
United Kingdom 

This paper aims to highlight some attributes of the Hewlett Packard HPlOOO 
A-series mini-computer, and to report how its performance has been enhanced by 
the Applied Psychology Unit (APU). The A-series is used in APU's Human Factors 
research for the development of real time simulators for future naval system 
design. Loosely coupled processor networks and advanced communication links 
have been developed and are now in use at APU. The mini computer has a vital 
role in the development of various forms of graphics technology and advanced 
interactive systems to improve the man- machine-interface of future computer 
based systems for the Royal Navy. 

Introduction 

The prime function of the Applied Psychology Unit (APU) is to identify and 
attempt to solve the human factors related problems of future naval computer 
based systems. This covers a wide range of operational requirements from advanced 
Command and Control systems to Sonar detection and classification problems and 
the general use of knowledge based systems in the Royal Navy. The common link 
throughout this work is the interface between man and machine. The application 
work is therefore focused on the development of hardware and software tools and 
techniques to provide improved man-machine-interaction. 

The procurement cycle for a military system is generally of the order of three 
to five years. The rapid advance in computer technology in recent years has 
often meant that new equipment is obsolete, in technological terms, even before 
it enters into service. This places a heavy burden on the equipment design team 
as a decision has to be made at an early stage as to when the design becomes 
solid, after which no further hardware modifications are allowed for technological 
improvements. It is therefore essential that as much information as possible 
is provided to the design team to allow them to maximize the system's performance 
with the level of technology available to them. 

The method employed by APU to investigate and assess the likely performance of 
these new systems has been to build a simulator of the proposed system utilising 
advanced forms of interactive display technology and data processing techniques. 
Royal Naval personnel have then been employed in a series of controlled experiments 
to assess their performance on the new system. 

The system designers problem 

Military equipment is generally purpose-built to perform a set range of functions 
or tasks. This enables the equipment designer to use hardware and software 
specifically to maximize the systems performance. This is particularly true of 
signal processing and graphics display systems. The data processed by these 

·l· Paper 1028 



systems is normally provided by various types of environmental monitoring 
transducer. The human factors researcher and the simulator designer are therefore 
faced with some major logistical problems. It is essential for the researcher 
to present the test subject with a system that realistically emulates the real 
life task: it must feel right, otherwise the performance tests are not truly 
representative. The simulator designer must therefore provide a system that 
not only accurately represents the interactive task but also simulates a real 
world environment, in real time. He must also provide additional processing 
capacity for on line performance analysis and adequate means for expansion of 
the experimental task. Thus the simulated task often becomes a great deal more 
complex than the real system. 

Design of any experimental system using advanced forms of technology is, at 
best, a speculative task. The researcher is often unwilling or indeed unable 
to provide a detailed specification of the overall system requirement. Thus 
much of the final design is dependent on the results of a series of pilot studies. 
This means that the system designer must be able to accommodate many design 
changes and provide a high degree of flexibility in interfacing to other systems. 

A major problem in designing and developing any system using advanced forms of 
technology is the general availability of the technology required. This is 
particularly true of interactive graphics systems and demands close co-operation 
with other governmental, academic and commercial organisations. Utilising new 
technology in the confines of an existing simulator design is often difficult. 
The development of special purpose interfaces and low level software tools is 
time consuming and expensive and is to be avoided where possible. 

The adopted solution 

The Applied Psychology Unit, like most research organisations, has limited funds 
and must maximise its use of available resources. With a total staff of only 
twenty four the development and manufacture of large purpose-built simulator 
systems is unrealistic. So general purpose commercial processing and display 
equipment, that can be employed for a wide range of applications, is used where 
possible. By adopting a modular approach it has been possible to develop a 
series of building blocks with which to attack most simulation problems. Loosely 
coupled processor networks have been employed to provide for maximum flexibility 
and expansion. 

The general policy has been to use one manufacturer to allow maximum flexibility 
in the interfacing and interchanging of processors and peripherals. This has 
also proved to be cost effective in attracting the more favourable commercial 
discounts in terms of bulk purchase and volume repair. However no one manufacturer 
can satisfy our overall research needs so the next best approach has been to 
split the requirement into an interactive graphics and a data processing task. 
The interactive graphics task has been the more speculative and equipment has 
been acquired from several manufacturers dependent on the type of display 
technology employed. The data processing task has been achieved by using almost 
exclusively one manufacturer, Hewlett Packard and and one range of equipment 
the HPlOOO mini-computer systems. 

Paper 1028 -2· 



Why the HPlOOO ? 

The Applied Psychology Unit's first experience with Hewlett Packard computers 
was in 1976 when an HP2100S system was purchased for processing experimental 
data and simple modelling. Not completely defeated by the HP2100s's 32KWords 
of memory and the redoubtable RTE-II operating system, we graduated to the HPlOOO 
F-series and RTE-IVB in 1980. The early design studies undertaken on the F-series 
formed the foundation of our current simulator development programme. The F 
series was a state-of-the-art computer in its day with some features which still 
put it a class apart today. The Vector Instruction Set (VIS), Microprogrammability, 
the open Real Time Executive (RTE) operating system and the Multi Access Controller 
(MAC) partnership made it easy to customise for real time simulation applications. 

The considerable investment in hardware, machine specific application software, 
the growth of in-house expertise, high system reliability and the overall system 
compatibility outweighed marginal performance improvements offered by other 
manufacturers. So with its introduction, in early 1983, we progressed to the 
HPlOOO A-series, initially the A700 and later the A900. The new architecture 
and increased performance of the A-series overcame many of the problems encountered 
in the previous systems particularly in terms of Input/Output (I/O). The 
RTE-A/VC+·operating system, though an improvement on the previous RTE's, falls 
well short of the ideal. It aptly reflects the view of many Hewlett Packard 
computer users that the excellent hardware is constrained by mediocre software. 

When looking for a processor for this type of application one of the prime 
requirements is its ability to be interfaced to a wide range of third party 
equipment. Perhaps Hewlett Packard systems do not immediately spring to mind 
in this respect, but the openness of the RTE operating system does allow the 
enthusiast a good deal of scope. The wide range of technically advanced 
peripherals manufactured by Hewlett Packard which can be supported under RTE 
also makes the designers task easier. The wide use made of the Hewlett Packard 
Instrument Bus (HPIB - Hewlett Packard's somewhat individual interpretation of 
the IEEE-488 standard) has made the interfacing of many third party products a 
relatively straightforward task. More complex interfacing tasks requiring 
special purpose driver development have been made easier with RTE-A allowing 
the user to develop drivers on-line from high level languages employing all the 
standard debug and test tools. This not only reduces driver development time 
considerably but also provides a structured, well-documented and more efficient 
end product. 

Processing performance 

The processor ideally suited to our applications is the Hewlett Packard HPlOOO 
A-series A900. It is probably the most advanced 16 bit Central Processing Unit 
(CPU) architecture Hewlett Packard will ever develop. At its introduction in 
1983 its performance was superior to most other 16 bit CPUs available at that 
time and even some contemporary 32 bit CPU systems including the early single 
processor HP9000 500 series systems. The powerful 3 Million Instructions Per 
Second (MIPS) CPU, microprogrammability, the capacity to support 24 MBytes of 
core memory and the high standard of manufacture and reliability at a competitive 
price makes it APU's favoured solution for the data processing task. 

The processing capacity of the A900 coupled with user developed microcode has 

-3- Paper 1028 



provided sufficient performance for most of APU's modelling tasks. However real 
time operation has often been hampered by the speed of disc I/O when using 
Virtual Memory Addressing (VMA) and Extended Memory Addressing (EMA) under RTE-A. 
Dependent on the precise application a variety of options are available. Some 
improvement can be achieved by providing an additional disc on a separate HPIB 
interface effectively separating the operating system and data file disc 
requirements and reducing the disc access bottleneck. Another alternative is 
to increase the amount of core memory. 

The introduction of the 3MByte memory cards for the A900 solved many of our disc 
bound application problems, at a high financial cost. A system utilising 18 
MBytes was soon in service. However under RTE.A a problem was soon apparent. 
A program requiring very large data areas in EMA, more than 1022 pages, could 
not directly access the memory. By using VMA, and the "pointers" provided by 
its use with Pascal, in conjunction with the privilege mode an elegant solution 
is offered. This not only allows access to data areas far larger than the 
current A900 memory capacity but adds optional access to the VMA disc area. 
The elimination of these time consuming disc accesses considerably enhances the 
performance of the system. 

However, for some of our simulation applications the processing power of one 
A900 has proved to be inadequate for the complete simulation task and it has 
been necessary to connect more than one A900 in a loosely coupled processor 
network. Networks of three or four A900's are currently in use for various real 
time applications. These networks provide an extremely powerful and flexible 
processing system at a relatively low cost. There are currently fourteen A-series 
computers linked by various communication networks employed in a wide range of 
projects by APU. 

Communication 

With any multi-processor system interprocessor communication is of major 
importance. Hewlett Packard offer two forms of processor-to• processor 
communication as standard on the HPlOOO A-series. The Distributive System 
software package, DSlOOO, operates over a high speed serial link utilising a 
range of communication protocols. A faster 16 bit parallel link is also provided 
for high speed data transfer but this is not supported under DSlOOO and 
communication is via direct EXEC calls to the operating system. It has been 
stated by Hewlett Packard that an IEEE 802.3 (Ethernet) high speed packet switched 
serial network with Local Area Network (I.AN) software, to replace DSlOOO, will 
be released soon. 

These two types of communication serve two totally different functions. The 
serial DSlOOO network provides a high level network environment, with direct 
access to many "node" processors that can be thousands of miles apart. It can 
provide message accounting and rerouting to ensure reception of the signal. 
However most of the facilities offered, file transfer, shared peripherals and 
remote program scheduling can be looked upon as domestic tasks. The speed of 
the serial line, around 28KBytes/sec with HDLC protocol, and the overhead imposed 
by the control and monitoring software make DSlOOO too slow for most real time 
data transfer applications. With the potential speed improvement offered by 
the IEEE 802.3 network, l.25Mbytes/sec, the line arbitration and LAN software 
overhead is unlikely to provide much more than an order of magnitude speed 

Paper 1028 



improvement on the existing DSlOOO system over distances up to 1 Km. 

The standard 16 bit parallel link using the 12006A interface card provides a 
much faster link, over distances up to 6 metres. Benchmark tests carried out 
at APU have given 714 KBytes/sec on a write and half this speed on a read, which 
is only half the intended design performance of the card. For our early work 
this was not a major problem and several loosely coupled processor systems have 
been developed using this type of link for data transfer. In addition a simple 
set of utility programs was developed to allow remote scheduling of "CI" over 
the link, thus allowing the user full use of a remote system from his terminal, 
providing some of the domestic facilities for software development. This was 
developed to economise on backplane slot occupation and to eliminate the load 
on system resources imposed by the DSlOOO software. 

For our more recent applications the speed of the 16 bit parallel link has proved 
to be inadequate. An improved link has been developed in conjunction with 
Hewlett Packard. The new link's benchmark test provides values of 1.75 MBytes/sec 
for a write with approximately half this speed for a read. The hardware for 
this link was provided by the specials group at Hewlett Packard Roseville 
Division. The interface driver and communication software was developed by APU. 
The driver was written in Pascal with a number of assembler subroutines, and 
this enables the structure of the driver to be well fonned. Testing and debugging 
was carried out on line without the need for repeated system generation and 
access to the interface hardware was via the system routines $LIBR and $LIBX. 
A set of utilities, similar to those for the previous link, was developed for 
domestic use. 

The communication strategy adopted by APU has been to develop application specific 
processor "clusters", which in turn have been linked by a more general purpose 
network. Processor-to-processor communication within the "clusters" is not 
restricted to A900s; high speed links have been developed to connect the A-series 
to third party graphics processing equipment. Interfacing to non-Hewlett Packard 
equipment via high speed parallel communication links is not an easy task. Only 
four communication control lines are provided on Hewlett Packard parallel 
interface cards; many other manufacturers require six or eight control lines, 
which invariably means that two interface cards are required in the A-series. 
This increases backplane slot occupation and necessitates the development of a 
more complex driver and often requires hardware modification to the interface 
cards. 

Graphics 

The nature of the work at APU demands access to the most advanced forms of 
interactive graphics technology. In recent years raster scan Cathode Ray Tube 
(CRT) technology has dominated the graphics market place. The demand for greater 
display resolution and the increase in graphics processing power has caused a 
departure from the traditional terminal based graphics product. Special purpose 
raster graphics systems employing high performance graphics processing hardware 
began to appear in the .late 1970s. These systems were generally produced by 
manufacturers specialising in graphics products, not the major computer companies. 
In the absence of any suitable system from Hewlett Packard APU chose the best 
cost/performance graphics processor available at that time. 

·5- Paper 1028 



The Advanced Raster Graphics System (ARGS) was first introduced in 1980 by 
Sigmex, a United Kingdom based company. An Intel 8086 microprocessor and bit 
slice technology based system, it supports four Red-Green-Blue (RGB) video 
processors with 32 dynamically assigned 1024 x 1024 pixel planes. Separate 
processors sharing a common data bus service the interactive and graphics task. 
Hosted by both F and A-series HPlOOO systems via 16 bit parallel links the 
HPlOOO/ARGS partnership has proved very successful over a wide range of 
applications. The ability to program the local processors within the ARGS has 
freed the host of much of the interactive graphics task and relieved the I/O 
load. 

Like most high performance frame buffers and graphics processors of this type 
the ARGS is user programmed at a relatively low level. Order coded display 
files can be prepared in the host and down loaded to the graphics processor for 
execution. Data from the host can also be loaded directly into the pixel storage 
areas. Additionally programs developed in 8086 assembler can be down loaded 
for local execution by the graphics or interactive processor. This form of 
software development tends to be specialised and time consuming. Experience 
with earlier vector refresh graphics systems and the graphics packages that 
supported them led APU to examine the host resident graphics package approach 
to software development. 

At that time Hewlett Packard offered Graphics/1000 which in its original form 
was not suitable. Sigmex provided no host based software so after due consideration 
it was decided to develop a graphics package to support the ARGS. In the early 
1980s graphics standards were undergoing a considerable change and APU decided 
to adopt the Graphics Kernel System (GKS) then a proposed standard from Darmstatd 
University, Germany. The package took twelve man-months to develop and supports 
not only the ARGS but most Hewlett Packard graphics terminals. Much of the 
package needed to be written in assembler so that it is very much Hewlett Packard 
specific. The performance obtained was better than expected and tests have 
shown it to be faster than the Graphics/1000 DGL (Device Independent Graphics 
Library) package when used on Hewlett Packard terminals. Though ideal for many 
of our more speculative applications, like all general purpose packages a high 
performance price is paid for adaptability. For applications where performance 
is paramount a combination of order code, direct pixel dumps and machine-coding 
is still used. To assist in the development and debugging of the 8086 code in 
the ARGS a CORAL/8086 cross compiler was purchased for use on the HPlOOO, so 
providing a range of host based low level software development tools. 

Five ARGS systems are currently in use at APU employed in a wide range of 
man-machine-interface research applications. These include the presentation of 
preprocessed sonar data, real time Computer Generated Imagery (CG!) and complex 
tactical plan development. The technology employed by the ARGS has kept pace 
with advances in component technology but is now becoming dated. A joint APU 
and Sigmex team are currently developing a second generation ARGS which is 
Motorola 68020 based and will employ transputer technology to provide more than 
an order of magnitude increase in performance. 

The introduction of the 12065A video interface card for the A-series was a major 
addition to the Hewlett Packards process graphics range. The performance is 
far better than that previously offered on the F series video interface giving 
higher resolution and multiplane RGB colour on a single interface card. Fully 

Paper 1028 



supported under Graphics/1000-II DGL, application programming is made easy. 
For high performance applications direct EXEC calls can be used to good effect. 
Provision of the two RS232 inputs enables the user to connect a wide range of 
interactive devices directly to the card but with limited support under DGL. 
A keyboard, mouse and touch sensitive device for use with this interface are 
currently being developed by APU. Several video cards are in use operating with 
Touch Sensitive Interactive Displays. The 560 x 455 x 4 bit resolution display 
is ideal for menu selection and other medium resolution operator workstation 
applications. 

Interactive device development 

The investigation and assessment of the various forms of interactive technology 
is an important area of APU's man-machine-interface research. Hewlett Packard 
has traditionally provided a wide range of interactive devices which have been 
directly or indirectly supported on the A-series. However with the emergence 
of many new forms of interactive technology a variety of new devices have needed 
to be interfaced to the A-series. This presents a major interfacing problem 
for each device requires a special purpose interface and host resident device 
dependent control and data handling software. 

The best approach to this interfacing problem is for the device to emulate a 
standard Hewlett Packard peripheral. The general purpose peripheral chosen was 
the HP2623 Graphics terminal which allows the use of standard RS232 serial 
terminal communication protocols and is fully supported for graphics input/output 
by DGL. A Zilog Z80 microprocessor based emulator was developed which in 
conjunction with a series of modular device dependent "front ends" enables HP2623 
emulation for a wide range of graphics and interactive devices. These include 
DC Electroluminescent (DCEL) and Plasma graphics displays in conjunction with 
various forms of touch sensitive technology. A general purpose "console" front 
end has also been developed for use with a range of experimental operator 
workstations incorporating switch arrays and a tracker ball. This emulation 
approach enables host software to be developed with a standard terminal and 
interactive devices can be interchanged without the need to modify the host 
software. 

On and off display touch sensitive interactive devices are being used increasingly 
in a wide range of workstation designs. Several forms of touch sensitive 
technology have been investigated for various interactive tasks by APU. A high 
resolution infra-red "shadow" system was developed for interacting with graphics 
displays. This system provided good positional accuracy with high reliability 
through redundancy. Interfaced to the A-series via the HPIB, four such TSID 
have been operated on a single bus with other Hewlett Packard HPIB devices. 

The area of Direct Voice Input (DVI) is a controversial one which is viewed with 
some scepticism by the military. A continuous speech recognition system is 
currently employed at APU, for general experimental use and to assess its 
performance under "stressful" conditions. A LOGICA LOGOS DVI has been interfaced 
to the A-series via an RS232 serial and HPIB link. Special purpose control and 
analysis software is resident in the host with a large library of individual 
user templates stored on the host disc storage. Feedback of the system's 
interpretation of the operator's speech input is a vital feature of any DVI 
implementation. Forms of visual and auditory response are currently under 

-7- Paper 1028 



investigation. 

Conclusion 

This paper has outlined some of the practical problems that face the simulator 
designer. The many complex problems involved in systems modelling have not been 
discussed as they are application specific and to a greater degree machine 
independent providing the necessary tools are available. The role played by 
the A-series at APU is a demanding one which often requires the system to operate 
to the limit of its designed performance. · 

Some of the good and bad features of the A-series have been highlighted. A 
range of techniques have been described that enable the user to overcome some 
of the design problems and enhance the performance of the system. To further 
enhance the performance of the A-series the user requires some assistance from 
Hewlett Packard. 

If a personal wish list were to be compiled of the improvement that could be 
made by Hewlett Packard to enhance the A-series a higher standard of system 
software must be placed at the top of the list. The basic structure of RTE 
needs to be improved and some of Hewlett Packard's "Historical" concepts need 
to be revised to take full advantage of modern technology. To enable users to 
interface more easily to third party hardware the provision of additional control 
lines would be of major assistance. The range of raster graphics devices needs 
to be improved; some of the higher performance graphics systems provided on the 
HP9000 series could be officially supported on the HPlOOO range. 

With the introduction of the "Spectrum" in late 1985 many of these wishes will 
no doubt be fulfilled. What further development will be carried out on the 
A-series in the light of the Spectrum's introduction only Hewlett Packard can 
say. However the A-series is employed in a wide range of applications, many of 
which will be in service well into the 1990's, for which the user will wish to 
make the most of his capital investment. 

Crown Copyright Controller HMSO, London, 19 

Paper 1028 -8-



1029. BUILDING AND USING AN AUTOMATIC TEST DATABASE 

Richard Reis 
Case Communications, Inc. 

2120 Industrial Parkway 
Silver Spring, MD 20904 

During the past 4 years Case has developed a general purpose 'Universal' test 
station for functionally testing our products before they are shipped. Test 
results are printed out onto tickets, which are attached to tested units. They 
contain the following information: 

1. The pass-fail status of a unit - is it ready for shipment. 
2. Failed step(s) if applicable. 
3. Test parameters - eg. transmit level. 

This information is useful in improving quality and lowering cost by helping us 
to identify and correct design, material, process, and test problems. However 
collecting the tickets and analyzing the information contained on them could 
not be done efficiently using manual techniques. 

I developed an automated solution to this problem using an HPlOOO to 'read', 
parse, and systematically record information from these test tickets as they 
are printed at each of the various test stations. Tabular and graphical reports 
are being produced. Test result reports enable us to focus on and correct the 
biggest problems. Parameter distributions reports allow us to adjust our design 
values. 

In the future we may expand the system to provide a repair loop and to look at 
data from the in-circuit component test area. 

Introduction: 

I will present an overview of the environment that led to the development of 
the automatic test database and the method of data entry and reporting. I will 
share some of the tools and techniques used in the development process. 

Background and Environment: 

Engineers at Case have developed a Universal Test Fixture (UTF) to f\ll'lctionally 
test products in our factory. The UTF is controlled by a FLUKE 2270 computer 
through two IEEE 488 busses and an RS 232 asynchronous port. Instrumentation 
in the UTF takes our products (typically modems) through their paces and evali.iates 
their performance. 

Results of these tests are printed onto a test ticket through another RS 232 
interface. The printout is up to 40 columns wide by about 30 lines. It contains 
three types of information: 

1. Identification of the unit tested including a bar code 
serial number, a product number, ... 

2. Values for transmit level and other parameters. 
3. If the unit under test fails a step the printout contains 

the step number(s). 

-1- Paper 1029 



Figures 1 and 2 show typical printouts. 

Requirement: 

We in quality assurance are interested in getting summary information about 
product test to evaluate the overall level of performance of our product, to 
set control limits for parameters, and to address and correct the principle 
causes of failure. The task at hand was one of going from thousands of individual 
test tickets per week to sensible concise reports. An objective was to make 
the process as automated as possible. 

The product of this effort is periodic and custom summary reports on product 
system tests. These reports help us to identify design, material, and process 
problems. Figure 3 is a somewhat whimsical view of a typical test, repair, and 
reporting system, including the problem identification and correction process. 
Although this report will focus on the data collection and reporting process, 
the process of identifying, addressing, and fixing a problem is just as crucial. 

Data flow: 

The physical configuration of the system is shown in figure 4. The input to 
the system is the data that is sent to the printer that prints the test tickets. 
This RS232 data is monitored and sent to the HPlOOO using CASE multiplexers. 
The multiplexers provide error correction and allow us to have only a single 
cable from the test fixtures. By using low capacitance shielded cable we are 
able to run the composite RS232 link 500 feet without any signal conditioning 
equipment. 

At the HPlOOO site the data is broken out to separate RS232 cables. 'lbese lines 
are read using an HP 12040B multiplexer card in the HPlOOO, model A600+. Data 
is then placed into IMAGE data files on a HP7912P disk/tape using FORTRAN 
programs. The database schema is shown in figure 5. 

Software structure; 

The software structure is shown in figure 6. A program called SCHED enables 
all system session programs that are needed for reading, parsing, and storing 
the data. 

A program called LOGT is used to read each of the testers. LOGT was written 
and linked using code and data separation (CDS) features as a code shareable 
program. All testers share the code segment of LOGT. Each tester has its own 
data segment of the LOGT program that reads its records. As each line of the 
test ticket is read it is placed in a character string array. When the LOGT 
program detects the end of a test or the beginning of another, it sends the data 
into system available memory (SAM) using a class write statement. All copies 
of LOGT use the same class buffer. By running LOGT at a very high priority, I 
can assure that no copy of LOGT will suspend during a class write. I thus assure 
that test tickets in SAM will not be interleaved. The information going to the 
class buffer is an exact copy of the test ticket, with system time and date 
appended. 

RECEIVE reads the class buffer. Each line received is placed into a character 

Paper 1029 ·2· 



string array. A subroutine, PARSE, uses the character string manipulation 
features of HP FORTRAN 77 extensively. The intrinsic function, INDEX, is used 
for locating substrings within the text of the test ticket. Once found, data 
is copied from the text to character and integer variables. The database 
subroutine, DBPUT, must be used to load data into IMAGE. DBPUT requires its 
input data to be in the form of an integer array. I use many equivalence 
statements to transfer from character strings to the ASCII integer arrays required 
by the IMAGE database. 

A program called TSTR (test report) is used to produce weekly and monthly reports 
on the data. TSTR uses seven separate tree structures to efficiently store 
information for test numbers failed, for each parameter measured, and for the 
test revision number. Recursion, one of the features of HPlOOO FORTRAN 77, is 
used extensively. A subroutine, SET [right or left], creates nodes and records 
the number of times that that node was visited. The tree is later traversed 
recursively to create the plots. Printed dot plots show the population at 
various test limits with a normal distribution overlay. Figure 7 shows a typical 
weekly report. TSTR also produces another file that is transferred to an HP 
150 Touchscreen which is used to produce a bar chart summary. 

Future enhancements: 

The following features may be added to the system in stages. 

1. Test failure description reporting. 
2. Active repair loop. The repair technician will retrieve test 

information from the database, and he will add repair infonnation 
to the database. 

3. Reporting on repair information. 
4. 'Expert' repair assistance. 
5. Information on the number of units awaiting repair. 
6. Application of concepts to in-circuit test area. 

A more advanced system is indicated in figure 8. 

Tools and methods: 

Several special tools were employed to enhance and speed development. 

AUTO BOOT is a program which I wrote for the Touchscreen in TURBO Pascal (Borland 
International). It boots the HPlOOO and enters the date and time from the 
Touchscreen's battery backed up clock automatically (if power is lost and 
restored) or upon command. Several commercial software packages for the 
Touchscreen were very useful. Memomaker was even used before the HPlOOO was 
delivered to create the IMAGE schema source. It was and is used for documenting 
the system including this paper. Diagraph is used for drawing documentation. 
Picture Perfect is used to produce a bar chart summary of weekly and monthly 
tests. (Diagraph and Picture Perfect are products of Computer Support Corporation.) 
An inexpensive but very good spreadsheet, the Planner (Hayden), is a very 
effective tool for budgets and proposals. 

A system session program called WEEK runs every day at 3 A. M. It uses TF to 
back up the system and runs the past week's report Monday morning . 

• 3. Paper 1029 



I have created several miscellaneous programs, subroutines, and functions which 
I am contributing for the swap tape. 

Perhaps the most useful tool was begun during my RTE-A course when I realized 
that EDIT 1000 lacked a paste buffer. The enhancements are enabled by listing 
the file, FUNKEYS, to the user's HP terminal. My EDIT screen appears as in 
figure 9, which also contains the text of FUNKEYS. You can key it in in several 
minutes. FUNKEYS is also on the swap tape. 

Conclusion: 

I have spent over one busy year developing the hardware and software described 
in this report. By presenting this paper, it is my hope that you can use this 
information to help you and your organization enhance the quality of its products, 
while improving productivity. 

Paper 1029 -4· 



Figure 1 
Typical Failed 
Test Printout 

Figure 2 
Typical Passed 
Test Printout 

Universal S~stem Level Test 

Model: R201C Control#:00273248 
Sta: 2 Rev: 1 Date::30-Ma:;-:35 Time: (1(1:33 
Pn: 905-5147-001 Ser: 8adge:2390 

1) AL TEST 
RTS/CTS DELAY (150mS) 

2) MANUAL ORIGINATE 
Tx Level PERMISSIVE MODE 
Tx Level=-10.4d8M 
DCD ON AT -43DBl'1 
DCD OFF AT -48DBM 
ABORT TIMER TEST 

~) UUT AUTO ANSWER 
RTS/CTS DELAY (425mS) 

***** Error in 3.30 ***** 

Universal S~stem Level Test 

Model: Intelligent 212 Control#:00269464 
Sta: 5 Re:v:4 Date::30-Ma~-85 Time: 01:39 
Pn: 905-5137-001 Ser:3 Badge:2705 

1) Wake up Auto dialer 1200 Baud 
Check Idle Mode RS-232 States 

2) 300 Baud Originate 
P1...1lse ['ialin·;j 
Number Exrected:&150 
Number Found :&150 
Establish Line after Dialing 
Bi.:is 48% 
Recieve Space Disconnect 

3) 300 Bal...IC{ A1...1 to AnS'1~er 
Send Space Disconnect 

4) 1200 Baud Auto Answer 
Hi ·~1h Channe I.:PEF.: 

Tx Level=-10.5dBM 
Reciever Threshold 

-43d8M ON 
-49dBM OFF 

5) 1200 Baud Originate 
Tot1e C•ial Test 
Number Expected:&12345 
Number Found :&12345 
Drops Line alter Bus~ 
Number Expected:&67890 
Number Found :&67890 
Establish Line after Dialing 
Active: RS-232 
Errors 0 <Max 3 Allowable) 
Lc11,1 Ch.:inne 1; PEF.: 

Tx Level=-10.2d8M 
Prog~ammed Disconne~t 

Unit PASSED with 0 Errors 



~~___,.,____~~ Test and Repair 
Reports 

/Analysis &tCorrection 

Design 
Engineering 

Figure 3 

' 

t-~ 
I> 
I Manufacturing 

Process 

Test, Repair, Analysis, 
and Correction Process 

@ 
~ 

Test 
Design 

Data-base 
Computer 

~ 

\ 
I .Test L_~-­

F 1 xture I -- I Finishc;;id I I Product I 

Repair 
Station 

~ 



Manuf 
<Touch 

up) 

VAX! 
1111ao I 

Computer 

Modems 

[ J 

"fJ'~onx 
plant 

terminals 

~ 
Figure 4 
System Configuration 

~ 

Automatic 
Test Eguip 
(in circuit 
component) 

1 of 3 

Repair 
Station 

1 c-F 4 

HP 150 
Micro­

computer 

IEEE 488 BUS 

MUX3 MUX2 MUXl 

HP 1000 QA 
Minicomputgr 

Floppies 
/15Mbyte 

Hord disk 

---

Universal 
System 
Test 

(functional) 
1 of 5 

Repair 
Station 

1 o.P 4 

DCX 815 MUX 

------------

0 
D 

I HP 7912 
65Mb Tape 
65Mb Disk 

IEEE 488 Bus 

QA 
Final 
Test 



WORKR 

Figure 5 
IMAGE 1000 
Database Schema 

REP CD 

PARTL 

TES TL 

MFGR 

TESTK 

Manual 
Master 
Data 
Set 

Keyed Access 

Cammon Items Only 



T12ster 
Data 

TES TO 
SEG 1 

Figurs 6 
Soft wars 
Structure 

I I 

Tester Tester T12st12r Tesb~~r 
Data 

TESTD 
SEG 2 

Data Data Doto 

~ 
I 

t 
I I 

TES TD I I TESTD l I 
TES TD 

SEG 3 SEG 4 I SEG 5 

I RECEIVE I ~ 
~rogram ! > l'~' ___ __ii I MAGE 

Test 
j Report . 

~ 

/ Graphical 
Output 

Database 

t 
TSTR 
Test 

Report 
Program , 

_J 

T12ster 
Data 

I r 
I I TE STD 

SEG 5 



Report time and date: 1:55 PM VIED •• 29 MAY , ~985 

Model: Intel I igen Assy i: 905-5137-001 
Date range of report: 5/19/85 to 5/25/85, 

Test st.a: Af 1 
New/RGA:Ne-w 

Population by test revision. 

F'.:ige: 

4 100.0% 354XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Population by tests failed. Only first 1 fauftis) shown. 
, 17 5,4% 2XX 

1.07 16.2% 6XXXXXX 
1.13 10,8% 4XXXX 
2, 17 8,1% 3XXX 
2,25 13.5% 5XXXXX 
4.19 8.1% 8XXX 
5.20 21.6% 8XXXXXXXX 

misc < 5% 16.% 6XXXXXX 
Total number of boards tested: 354 
Total number of failures reported: 37 

fa i I ures /board 
%Tested Qnty 

2 

By test 
P/F 

PASS 
FAIL 

89.6% 317 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
10.5% 37 xxxxxx 

Plot by transmit level 1, 

•

........ 4 ...... LLJ, .... • ... L,.1.. .. ..3 ......... '. ... : ... : ... :l. !•g<All -lo.3l Std 4.,u.,4;, .!116 
::::::::::::::::::r:--:: ~'::;::::::::::::::::::::::r:::::;::::::: :::! hrs denote population of the data co 11 ected, 
:::::::::::::::·'.;:: : : .:·::::::::::::::::::::::1::::::::::::::: :::1 Line graph shows norl'la I dis tr i but ion over 1 ay. 
:::::::::;:: .. ·:·: : : '."~:::::::::::::::::F::;;;;;;;;;; :::1 Uertica i lines denote lower and upper ii1uts • ....... ............. ~~··: .. ·············"·: 

11 5 1.0 -10.5 -10.0 -9.5 <··· Scale 

Plot by transmit level 2. 
, ................ , ..... l .... l. .. ..,?, 1..1 ... ) .... .J ....... , .,9" > , -1o.01 Std '"" "" • • ma 
E::::::::::: :::::E::::::::::::::::::~::::::::::··: : :·:::::::::::::::£:::::::::::::: '.'.'.! Bars denote popLt lation of the data co 1 lected. ; .................. ; .................. ; .... z ..................... ; ................. ; L1·ne nraph sh s no al d1'str1·b t1·0 o l 
!::::::::::::: :::::!:::::::::::::::::::;:::::· .:: : : : .":::::::::::;::::::::::::::: :::i , 01i1 , rl'I u n ver a y, 
.............................................. · · · · · .............................. Uert1· c~ ., 11'nes denote lo"er and upper 11·1'11·t 
!::::::::::::::::::;::::::::::::::::::+.·:::::: ~::::::::::::::::::; G .. St 

11.5 ·11.0 ·10.5 ·10.0 -9,5 <··· Scale 

Plot by number of errors. 

Al . ..1.JJ ... , .. -........ .., .............. 1 ... · :·-.. ,............... "9" >: 1.8927£-02 Std '"' 1, ,IJ: , I !l! ................................................................................................ B~rs denote p l t1· n f th data co 11 ct d 
:. :::::::::::::::i::;:;::::::::::::::i::::::::::::::::::: :::::::::::::::::::i:::::::::::::::::::j a 0 pu a 0 D e e e , 
.. .. 1 ...•...•...•... 1 ... 1 ...................................................... 1 ... 1............ . . . . . 
::: :::::::::::::!:::::::::::::::::::!::::::::::::::::::: :::::::::::::::::::!:::::::::::::::::::! Line graph snows norl'la I d ls tr l but 1 on over l av, 
•••• ................................ ; .......................................................... : 11ert1'cal 11·n denote lo"er and ppe" i1·P11·t 
::::: ... :::::::::j::::::::::::::::::;i::::::::::::::::::: :::::::::::::::::::i::::::::::::::::::;l v es .. u , s, 

.o 1.0 2.0 3.0 4.0 (··· Sea le 

Plot by bias level, 

;:::::::;:::~:::~::~:;::~::·A."::~;::~:::?:::;~:;::::::;:::;:::;:::;:::;:::;:::;:::;:::;:::; Avg (Al: 48, 23 . Std dev (1,. 4 l: 1. 250 
i ............................... ; ..................................... + .................. ;Bars denote population of the data collected. 
?"•I • • •• • • .o • "' • • • • • •t" • • • o I o ~· o •I•• •Io .,1 o o o Io,, o, o Io• , 1 , " I , ,.1 • o • ~ , , , o , ool uo I , ,.1., •? 

;::::::::::::::::::: :::::: .. : ::::.(i::::::::::::::::::: :::::::::::::::::::1:::::::::::::::::::1 Line graph sh ow s nor~ a 1 dis tr i but ion over l a y , 
!'.'.'.!'.~:::::::::::: :::::: : ;::::~:::::;:::::::::: ::::::::::::::::::f:::::::::::::::::l Uerti ca I Ii nes denote l ouer and upper 1i l'li ts, 
!•·· .. ~··· ..•••.• ... ... • . . • . .. 1 • ........................ ·?·"'"·'· .......... ? 

· 4.0 4,5 5.0 5.5 6.0 <··· Scale • 10•1 

Figure 7 
Typical weekly report. 



Manuf 
CT ouch 

up) 

VAX 
11/780 

Computer 

Afdri~ 
plant 

terminals 

~ Plotter 

Figure 8 
Future System Configuration 

Automatic 
'Test Equip 
(in circuit 
component) 

1 of 3 

Repair 
Station 

DCX 815 Mux 

HP 150 
Micro­

computer 

IEEE 488 BUS 

' ,,, ,, 
' 

OCX 815 MUX 

MUX3 MUX2 MUXl 

HP 1000 QA 
Minicomput8r 

Floppies 
/15Mbytg 

Hard disk '\ 
~ 

Universal 
System 
Test 

___ J (funct ionoD 
11 1 of 6 

~ 
!R~r~~~ l 
[ Station J 

~of' 4 \ 

DCX 815 MUX 

---------------

io 
lo 

HP 7912 
65Mb Tape 
65Mb Disk 

IEEE 488 Bus 

! 

0 
Fl LJ 

I HP 7946A 
1 55Mb/65Mb 
j dis~:tape 

QA 
Final 
Test 



<ED3 
<EC)&f0alk8dl4LPICK ->B ••• 11 •• B/I FCL 
<EC)&f0a2k8d4L PICKn+l.,.+ 
<EC)&f0a3k8dllllines->B,L,,8/FCL 
<EC)&f0a4k16d2L 1 Command (EX) 
<EC)&f0a5k8d9L PUT B .-1/l M,8 
<EC)&f0a6k16d3L Scroll Back COL) COL) 
<EC)&f0a7k16d3L Scroll Forward(Ak) (Ak) 
(EC)&f0a8k16d3L BACKSP DELETE <BS) <EC)P 
<ED &jB 
<ED 1 <ED 1 <ED 1 <ED 1 <ED 1 <ED l (EC) 1 

qq~ 

I PfrKn+l I ~i-;,,,s->B 
Command 

1 PUT B Scroll 

Back 

~ 

Scroll 

Forward 

Enter text of this file 'FUNKEYS' as shown on scregn 

BACKSP 

DELETE 

Fi:;iure 9 
Edit 1000 enhancements 

in screen mode. Press 'system' key. f4Cmodes). and then f? 
(DISPLAY FUNCTNS> and then escape to enter esca~CEC) character. 
Press f7 again to continue text entry. Similiarlx enter 
CNTL-CCEX>. CNTL-PCOL>. CNTL-FCAk>. and BackspCCQCBS). 



1030. 
The Design of Sketch, 

A General-purpose Graphics Editor 

Philip Walden 

Hewlett-Packard 
Advanced Manufacturing Systems Operation 

Data Systems Division 
11000 Wolfe Rd., Cupertino, CA 95014 





1 INTRODUCTION 

The purpose of this paper is to provide the reader with a basic 
understanding of the design and operation of an interactive graphics 
editor, called Sketch. The intention is to provide the reader with a 
case example of how one particular interactive graphics editor was 
implemented. Hopefully, the concepts covered may be of use in the 
implementation of other systems with similar requirements. 

The reader need not be familiar with the operation of Sketch to derive 
value from this paper [l]. Many of the concepts may be used in other 
computer graphics functions. 

Several topics will be discussed: 

1. Defining the role of an "Editor". 

2. Work station independence. 

3. Sketch data structures. 

4. How the Hewlett-Packard Advanced Graphics Pagkage (AGP) is used. 

1.1 A Brief Introduction to Sketch. 

The Sketch graphics editor (version 2.0) was first released to the 
HP 1000 Users Group contributed library in September of 1983. Its 
primary function was to enable the easy development of overhead projector 
transparencies (slides) for presentations. However, it also contained 
features that allowed the user to extend its role into other areas of 
graphics, such as floor plan layouts, technical illustrations, process 
displays, and more. All the figures for this paper were' created with the 
Sketch editor. Figures 1 to 4 illustrate some of Sketch's additional 
capabilities. 

Sketch has subsequently been enhanced. The most recent version is 3.3. 
The major enhancements include: operation on HP 9000 series 500 
computers, HP 1000 hierarchical file support, GRAPHICS/1000-II version 
2.0 support, a high productivity non-tablet interface, additional 
functions and performance improvements. This version of Sketch will be 
the one referenced in this paper [2]. 

Sketch has its roots in several graphics programs which the author had 
some hand in the developing. The most noteable predecessor being the 
slide design program BRUNO. The BRUNO program was released to the 
contributed library in 1980 [3]. BRUNO provided a truly interactive user 
environment. The user dealt with relatively few self-explanatory 

1 



commands. Feedback was continuously provided with a display of the work 
in progress. The command set provided the user with a productive method 
for initially creating the slide and for making changes. In this sense 
BRUNO was one of the first graphics editors for slide preparation. As a 
side note, BRUNO was also the design seed for HPDraw (released in 1982), 
the standard HP product on the HP 3000. {The version of HPDraw available 
today is still very similar to BRUNO.) 

Another program contributing to the present Sketch package was PENNY 
{1980) [4]. Penny is a schematic drawing package with an especially 
interesting data structure implementation built upon the HP IMAGE/1000 
data base package. It provided a hierarchical scheme for developing 
drawings. The scheme was well suited to schematics that which usually 
consist of many instances of the same symbols and shapes. It also 
represented a different style of interface, since the operator used a 
digitizer for menu picking, moving, copying and other editing operations. 

A third package, called AESOP (1983) must also be considered [5]. It 
represented a initial trial of lessons learned from BRUNO. It overcame 
problems in BRUNO's data structures, and created a workable scheme for 
using the GRAPHICS/1000-II Advanced Graphics Package (AGP). 

The above programs contributed to the present day Sketch editor in 
ways, both by what they did well and by what they did not do well. 
with all examples of evolution, unworkable features or problems in 
generations are improved in the next generation. 

2 

many 
As 

early 



2 DESIGN OBJECTIVES 

The Sketch graphics editor had four main design objectives. As mentioned 
in the previous section, many of these objectives evolved from problems 
experienced with previous graphics editors. Failure is the "mother of 
invention", so to speak. 

1. Provide a comprehensive set of functions that are easy to learn and 
use, yet allow the user to accomplish most any desire. 

Many earlier graphics editors provided a large number of functions on the 
premise that more functions were needed to cover more situations. 
However, this approach resulted in two problems. First, the user was 
faced with learning too many different functions and would quite often 
have to refer to a manual. Secondly, the program itself became large, 
complex and harder to implement incremental improvements. 

The reasoning behind Sketch's array of functions is that fewer is better. 
Less to learn and easier to use. To maintain the level of capability, 
the function set must interlock so that combinations of functions can be 
used to achieve the desired result. 

2. Utilize work-station independence as fully as possible without 
underutilizing the work station features. 

Probably the biggest problem with graphics editors prior Sketch, is that 
they were designed to work with only one or a few work stations and 
graphics devices. Sometimes it seemed that the software took so long to 
develop that the target work station always became obsolete shortly after 
the software was released. Furthermore, often a potential installation 
site would have the right work station, but not the right plotter, or the 
reverse. 

What was needed was a concerted effort not to "hard code" the editor to 
any one set of peripherals or machines. Achieving this objective would 
create an editor with longevity and versatility. The user could use 
whatever equipment was handy and expect to follow hardware trends as new 
equipment became available. 

3. Eliminate most restrictions associated with drawing size or 
complexity. 

BRUNO had a particular problem which showed up when advanced users pushed 
the limits of the number of objects in the drawing and when a lot of 
detailing was required. For example, a drawing could have only so many 
lines, and so many pieces of text, and so on. Also, as more objects were 
added drawing speed dropped rapidly. Dense drawings became difficult to 
edit and users had to save and restore files to recover data space. 

3 



Sketch tried to overcome these problems by using a more advanced data 
structures and capitalizing on AGP capabilities. 

4. Use the full power of the Advanced Graphics Package (AGP) in order 
to reduce overall development time. 

Only a limited amount of time was available to develop Sketch. AGP 
provided a vehicle for designing and implementing a working editor 
quickly, thus providing more design time to achieve the other design 
objectives. Also, AGP at the time was in the process of being ported 
from the HP 1000 to the HP 9000 series 500. Using AGP offered some hope 
of portability across future HP machines and therefore a longer useful 
life for Sketch. 

4 



3 FUNCTION SET 

The function set for Sketch evolved from a prototype set. The driving 
forces behind the evolution were many: feedback from users, desireable 
features of similar graphics editors and analogies to similar 
applications. 

In order to keep some semblance of order and cohesiveness to the function 
set, a de facto decision criteria evolved to decide which new functions 
were acceptable and which were not. These criteria were the following: 

1. Is this feature a basic function of an "editor"? 

2. Does this feature meet the needs of the "general graphics" user? 

3, Is this function necessary? Can it be decomposed into one or more 
existing functions? Would a different "mode" of operation on an 
existing function be more satisfactory? 

4. If an option or mode of operation, is it specific to one function 
or is it applicable to many functions? Modes should have some 
universal effect on sets of functions in order to keep function 
complexity minimal. 

The original Sketch function set was developed based on analogies to text 
editors. Text editors have evolved from primitive beasts to rather 
useful tools over the last several years. So capitalizing on a mature 
technology would theoretically short-cut some years of graphics editor 
evolution. 

3.1 Functions of an Editor 

Earlier graphics editors offered a starting set of graphics edit 
functions. In the normal evolution of applications, each new generation 
of editors would build on the previous getting better and better. In 
order to accelerate this process, many of Sketch's features are based on 
a similar application technology with a longer lineage, the text editor. 
The assumption is that the empirical theory of "editing" developed by the 
successive generations of text editors should be transferrable to 
graphics editors. 

The objective of 
productive tool. 
graphics editor. 
text editor with 

any editor is to provide its users with a creative and 
The objective is no different with an interactive 
Therefore it is useful to compare the function of a 

that of a graphics editor. 

The most powerful text editors basically achieve their productivity 

5 



through a combination of a "complete" set of basic editor functions, a 
generalized syntax and a simple scheme that provides visual feedback of 
the work at hand. By analogy, a "good" graphics editor should do the 
same. 

3.1.1 Basic Editor Functions 

What are the basic set of editor functions? Many text editors divide 
functions into two major groups: Commands and Text Entry. Text Entry is 
the operation of keying in text. Commands refer to all other functions. 
The Commands are of four basic types: Edit functions, Input/output 
functions, Viewing functions and Operating modes. There is by analogy 
direct equivalents in the Sketch graphics editor as shown in table 1. 

Function 

Entry: 

Commands: 
Edit 

I/O 

Viewing 

Modes 

Text 
Editor 

Graphic Editor 

lines 
text .... • ...• text 

arcs 
polygons 

move ......•. move 
copy ....•... clone 
delete ....•. purge 
undo ........ unpurge 
exchange .... edit attributes 

scale/sotate 
stretch 

read ...•.... edit drawing 
write ....... save, overwrite 
merge .....•. merge, insert 
list ........ plot 

list ........ pan 
find ...••... area pick 

set window 
expand window 
reset window 
grid 

global ..•... area pick 
asking ...•.. pick okay 

Table 1. Text editor functions compared to Sketch 

6 



3.1.2 Function fnteraction 

Most text editors have a flat or networked command processor. Therefore, 
almost all commands or functions are accessable at the highest level. A 
"move" can be performed right after a "copy" without traversing a 
hierarchy of menus. The benefit is productivity, since the user does not 
waste time jumping from one command to another. A drawback is that the 
user must learn a large command set and be more cautious about not 
confusing one command with another. 

Sketch also has a large main menu with virtually all editor commands 
accessable at that level (figure 5). There are still compound functions, 
such as Load/Save that branch to subfunctions, but these cases occur with 
the less frequently used commands. 

3. 2 General Graphics 

If Sketch was to be a "general-purpose" graphics editor, the question 
then becomes "what is general graphics?". Most interactive graphics 
applications are targeted for some specific application such as drafting, 
mechanical design or PC board layout. The requirements for these 
applications can be well defined. A general purpose tool in theory means 
that the tool could be used in every application. However, one would 
probably not use the 100-tools-in-one gadget from the local hardware 
store to fix a watch. 

Sketch tries to give the user every flexibility, but it does not 
specifically address specialized applications. For example, Sketch 
provides a set of standard media shapes such as 8-1/2 by 11 paper. 
However,' users may still define their own media shapes and sizes. Once a 
media shape is chosen it can be changed and the drawing does not have to 
be drawn inside the media area. Some users care little about the actual 
coordinate system units they work with while others may care a great 
deal. Again, Sketch provides both options. 

3. 3 Function Modes 

To reduce the size of the command set, modes or options are often 
provided with the base functions to modify their behavior to suit various 
requirements. For example, a line draw function could have a continous 
(connected lines) mode or a single (individual line segments) mode. 
Otherwise two base functions, continous line and single line, would be 
required. The advantage of modes, is that the size of the base function 
set is minimized and is easier for users to learn. The drawback is that 
each function can have many modes or options specific to it. The results 
is an overall increase in command syntax complexity, making it harder for 
the user to learn. 

7 



Sketch does use the mode scheme to modify specific base function 
operations. However, the span of control for each mode typically covers 
many functions. When a mode is used in several functions it has a 
universally predictable affect on the operation of the command. The 
result is a reduced base function set without a substantial increase in 
complexity. 

The Area-Pick mode in Sketch is one example. It modifies the operation 
of almost all edit operators such as move, clone (copy), scale, rotate, 
stretch and group. With this mode, these operators work on all objects 
within a specified area instead of individual objects. The Pick-Okay 
mode allows the users to confirm object selection before a function is 
executed. The keyboard mode modifies all commands that use a locate 
input (user specifies a coordinate value) to read the keyboard instead of 
using the pointer device. Precise numeric coordinates can be entered in 
this way. 

8 



4 WORK ST A TION INDEPENDENCE 

An interactive graphics program interfaces with the user through a 
graphics work station. A graphics work station provides the user with a 
range of graphics devices or tools to achieve a desired result. It is 
not just the graphics display, but an integration of the the other input 
and output devices that allows the user to complete a task. Work station 
devices are often generalized to offer a degree of freedom from specific 
hardware. Examples of generalized devices are listed in table 2. 

Generalized work 
station device 

Display 

Keyboard 

Alpha display 

Button 

Valuator 

Locator 

Pick 

Stroke 

Function 

Displays graphics 

Returns alphanumeric strings 

Displays alphanumeric strings 

Returns a finite range of integers 

Returns a real value 

Returns a point coordinate (x,y) from 
a pointing device 

Returns an identifier for an object 
selected by user with a pointing device. 

Returns a series of points (curve) 

Table 2. Examples of Generalized Work Station Devices 

One or more generalized work station devices may be implemented by an 
actual device. For example, a button function could be implemented by 
the keyboard associated with a graphics display terminal, or it could be 
a separate box of buttons plugged in somewhere else. 

Since generalized devices can be physically implemented by a variety of 
hardware, application assumptions on such things as the number of buttons 
on the button device could limit the user to devices that only match the 
original assumptions. There may be only eight buttons on the keyboard 
and sixteen buttons on the box. An interactive graphics program 
expecting no more than eight different responses might fail when the user 
presses button 9 on the box. 

In an environment where graphics hardware changes rapidly and product 
lives are brief, interactive graphics programs that presume too much 
about device capabilities will have equally short lives. Instead of 
assumptions about device capabilities, generalizations of capabilities 

9 



and real-time device decision rules should provide a measure of program 
adaptability to the changing work station environment. Further, it will 
increases the breadth of work station the program can support. 

Consider the layout menus and work areas of the sketch display (figure 
5). Here the basic layout is stored as a set of ratios of screen width 
and height. The real dimensions inquired from the work station combined 
with the ratio rules adapt the Sketch display to a specific work station. 
The menu adapts to the size of the hardware graphics text by the use of a 
table containing the number of characters for each the family of display 
devices. If the alphanumeric display is also the same device as the 
graphics display, then an area the height of two alphanumeric lines is 
reserved at the top of graphics display area for alphanumeric messages. 

Inquiring at run-time for the work station's capabilities and basing 
interface decision on them, provides a measure of adaptability and 
maximizes the use of work station hardware. For example, if the work 
station can perform hardware generated polygon fill, then Sketch will 
automatically turn on that mode of operation. Otherwise, it remains off. 
In cases where there are a fixed number of alternatives in a users 
response, the button device is usually a good choice for user input. 
However, if the number of choices might exceed the number of buttons, 
then a back up response device such as the keyboard or pick devices 
should be used. 

In other areas user preferences influence the operation or configuration 
of Sketch. A user profile file is established to record the users 
preferred environment. From this file hard copy options, menu colors, 
line styles and other defaults may be set. 

In general, in order to maximize the adaptability of the Sketch editor 
three guidelines are followed: 

1. Never assume a specific display size or aspect ratio. 

Basic screen layout is not a hard coded set of device coordinates. 
It is stored as a set of ratios. The same is true for any graphics 
object or artifact that needs to be sized and shaped relative to 
the display size. 

2. Inquire from the work station at run-time as much information as 
possible about the work station. 

This information is used to make real-time decisions about the 
operator interface. The AGP inquiry capabilities are very 
comprehensive and are largely responsible for the adaptability of 
Sketch. 

3. Use decision tables and configuration files to obtain information 
not available from the work station. 

10 



This allows Sketch to adapt to the preferences of the user and the 
work station environment. 

11 



5 DAT A STRUCTURES 

The data structures used in Sketch evolved over many iterations. Rather 
than describe its history it may be more useful to describe the data 
structures used in Sketch relative to two other well known graphics 
editors: BRUNO and PENNY, 

5.1 Overview of Sketch Data Structures 

Sketch is implemented in Fortran (77) and is therefore restricted to some 
extent by Fortran's lack of high level data structures, such as records 
and pointers. Since Fortran is highly portable along with other reasons, 
it was chosen as the implementation language. 

Sketch drawing data is stored in one large fortran array as illustrated 
by figure 6a. Pointers and data records are simulated using array 
indices and variable equivalencing. A heap space and free list is 
maintained in this array by a set of space allocation and garbage 
collection routines. In both the HP 1000 and HP 9000 versions, this 
array resides in virtual memory so that it can be large without requiring 
large amounts of physical memory. 

The drawing data is structured as one or more sets of doubly linked, 
circular list of object records. The five primary object record types 
are lines, arcs, text strings, polygons and groups. Group records in 
turn point to separate lists of object records. 

Object records may be of variable length. Text and polygon records take 
advantage of this feature. The other objects use fixed length records. 

Group objects as mentioned previously reference other lists of objects. 
Thus a group allows a collection of objects to be "grouped" together. 
The process of "cloning" (copying) a group will only duplicate the group 
record. Duplication of the group sublist is not required. 

File storage and retrieval of drawing data is essentially performed by 
unformatted Fortran reads and writes directly from the data array to the 
file system. No formatting is performed in order to minimize file size 
and preserve graphics data accuracy. A Sketch drawing file is therefore 
a file copy of the memory array. 

5. 2 Sketch Compared to Bruno 

Bruno is also implemented in Fortran (66). However, its data storage is 
implemented in multiple arrays as shown in figure 6b. Separate arrays 

12 



are used for text records and figure records. Arcs and lines are stored 
together in another array. Bruno figures are roughly analogous to Sketch 
groups. Bruno does not have polygon capability. 

Arc, line and figure records are of fixed length. The text record is of 
variable length, but has a maximum of 144 characters including linefeeds. 

Bruno's array management routines only manage heap space. The data space 
of an erased object is marked empty but never re-used. If during an edit 
the number of characters in a text object is increased over the original 
allocation, then the original space is discarded and a new space from the 
heap is allocated. 

The figure object record references o~ly the name of a file containing 
the figure data. Figure data files are a totally .different forma~ from 
Bruno "drawing" files. The more complex figures are in fact created by a 
separate and totally different digitizing program. 

Drawing storage and retrieval is also performed using unformatted, binary 
reads and writes. However, during storage, each array is sequentially 
scanned and empty space is not written to the file. Thus, when the file 
is read back, discarded array space is recovered. 

The disadvantages with the Bruno scheme compared with Sketch's are: 

1. It is possible for the user to run out of space for one type of 
object while still having room for others. For example, Bruno 
applications are typically presentation slides, the text space is 
usually exceeded first even though plenty of line and figure space 
is available. Since Sketch data is all in one array, overall data 
space allocation is more efficient. 

2. Frequent editing of text objects resulted in much discarded space. 
However, this was recovered by somewhat inconveniently saving the 
drawing and then retrieving it. Sketch text records can be 
increased dynamically with no additional user effort. 

3. Objects were never recorded in temporal order of their creation. 
Each array is drawn in the order: text, lines and arcs, and finally 
figures. This is not necessarily bad, but sometimes the order of 
display may effect the final graphics (especially on crt's). 

4. If a figure file was renamed or accidentally purged the Bruno 
drawing would reference non-existent data. Frequently drawings 
would deteriorate with age as its figure files "disappeared". In 
addition, archiving a drawing also required archiving of all the 
figures the drawing referenced. Sketch loads at one copy of a 
"figure" into a group sublist. Thus all the original data is saved 
at that time. 

5. Bruno figures are a different format from Bruno drawings. They can 

13 



only contain lines and curves (connected lines). Editing 
capabilities on figures are minimal. Sketch "figures" are the same 
as drawings and thus have the full complement of edit functions 
available to the user. 

6. Figure drawing speed is slower in Bruno because file reads are 
required for every instances of a figure. 

The advantages of the Bruno scheme over Sketch's are: 

1. Drawings are saved in files with the empty or discarded records 
removed. Sketch drawings are saved in files along with the free 
(empty) list. Separate utilities provided with Sketch are used to 
recover all empty space. Although the Sketch garbage collection 
routine minimizes the necessity for this operation. 

2. No space is wasted for pointers and record type tags. Sketch uses 
five words of each record for object management. 

3. Figures do not use much drawing data space since they only 
reference a file. Sketch groups require one copy of the data to be 
stored in the data space. Thus a Sketch drawing with many 
different large groups uses much more data space than the 
equivalent Bruno drawing. 

5. 3 Sketch Compared to Penny 

The data structures used by Penny is "totally" different. Penny uses 
IMAGE/1000 for all data storage and data organization. 

The data base schema is a recursive and allows a drawing to have a 
hierarchical structure (figure 6c). The set of Penny objects consists 
only of lines, text and macros. Macros are again roughly analogous to 
Bruno figures or Sketch groups. A macro can consist of a set of lines, 
text and more macros. In this way a hierarchy is formed as each macro 
points to another [6]. In fact a Penny drawing is simply a macro at the 
highest level in the hierarchy. The actually data, lines and text, are 
at the bottom (the leaves of the tree structure) as illustrated in 
figures 7 and 8. 

Another feature is that each record in the data base can be quickly found 
using the IMAGE key hashing algorithm. One macro can be shared by many 
drawings. This scheme prevents redundant data and reduces storage 
requirements. A fall out of this feature is that one database stores all 
drawings for the Penny user. If done right the database will never 
duplicate text or line data. This feature is ideal for drawings with 
many instances of similarly shaped objects, such as a electronic 
schematic drawing. 

14 



Another unique quality of this implementation is that since IMAGE is disc 
based any aborted Penny session can usually be recovered up to the point 
of the abort. There was consequently no need for data storage and 
retrieval since that function is performed "on the fly". 

The use of IMAGE also causes some problems. All object records are of a 
fixed uniform length. Text objects, for example, are restricted to only 
32 characters. Object attributes are also limited. 

The speed of drawing is limited by the IMAGE throughput. This problem is 
compounded by the use of multilevel macros. For example the macro in 
figure 8 which contains 13 lines and 4 text objects requires 25 IMAGE 
accesses to draw it. To alleviate this problem, some unsupported IMAGE 
record caching was used in the original Penny. 

The disadvantages of the Penny data structures are: 

1. The IMAGE file-based data structures are inherently slow on reads. 
Frequently the user requires a total screen refresh which requires 
full traversal of the drawing's (macro) tree structure. 
Performance seriously degrades with each additional user as the 
disc I/O bandwidth is used up. This is not to say that a 
file-based data structure is not workable, just that the use of 
IMAGE incurred too much overhead. Further, a graphics data base is 
not IMAGE's primary target, thus enhancements to IMAGE since 1979 
have not reduced this problem. As an additional note, the first 
prototype of Sketch used a file-based data structure using RTE type 
2 files with record caching. Performance was adequate, but again 
multiple users degraded performance seriously. 

2. The fixed record lengths limit the options for object attributes 
and object variety. This restriction can be worked around with a 
somewhat more elegant IMAGE schema. However, data base access 
procedures would grow in complexity and some length restriction 
might always exists. 

3. The hierarchical nature of the Penny data structures are well 
suited to applications requiring many instances (occurrences) of 
identical objects or symbols. Electronic schematics are a good 
example. However, in applications where most objects are unique, 
such as presentation graphics or mechanical drafting applications, 
it is not clear that the hierarchy is indeed useful and may in fact 
be a burden. 

4. All macro references had to be within one database. Thus when the 
database filled up with drawings, a new data base with a fresh set 
of "library" macros had to be created. 

5. One could not easily transmit "a drawing" to a different user in 
another database, since all the data for every macro reference also 
had to be transmitted. 

15 



6. Since a macro could be used by many drawings, the problem mentioned 
earlier of drawing deterioration with age occurred when other users 
edited, deleted or renamed macros used by other drawings. This 
problem in addition to the problem highlighted in #4, lead to the 
practice of creating one copy of a common "library" database for 
each user. Thus the original intent of the database, to reduce 
data redundancy, was defeated. 

The advantages of the Penny data structures are: 

1. The file-based data structure provides an increased degree of 
session security. Users rarely lose hours work in an editing 
session due to accidents. 

2. The use of a ready-made data base reduces the complexity of the 
application. Data management, free lists, pointers and more are 
all handled by the IMAGE data base system. 

5.4 Detailed Description of Sketch Data Structures 

As briefly described earlier, the Sketch data structures were implemented 
in one large Fortran array (figure 6a). The drawing data is structured 
as a series of doubly linked, circular lists of variable length object 
records, as in figure 9. The data access routines are structured such 
that almost all the pointer manipulation and garbage collection is 
handled at the lowest level. The upper level routines do not access the 
data directly, simplifying their structure for other complex operations 
such as graphics computations. To describe the Sketch data structures, 
both the structures and the access routines are presented. 

5.4.1 Data Structures 

At the lowest level, the data space is simply a large array of double 
precision real numbers. Character, integer and real data is stored and 
retrieved from the array by using Fortran equivalencing. Each double 
real can hold eight characters, four integers or two reals (usually an 
X,Y pair), or a mixture of all. The choice of a double real as the 
foundation was primarily made because eight bytes of data could be easily 
moved with one Fortran assignment statement, as shown below. 

CHARACTER*8 
INTEGER*2 
REAL*4 
REAL*8 

chars 
ints (4) 
reals (2) 
value 

EQUIVALENCE {chars, ints, reals, value) 

16 



value = data(index) 

data(index) = value 

At the next level, a package of data, or node, consists of several 
consecutive double reals (figure 10). Each node has a one double real 
header containing four integer pointers and counts. To address data in a 
node, the array index of the node, the data index within the node and the 
data position within the double real is needed. 

Usually the header contains two pointers for the doubly linked list (next 
and previous nodes), a node length (in double reals), and a next extent 
pointer. An object record consists of one or more nodes. Objects such 
as text or polygons can grow with over time as more data is added to 
them. Thus nodes can have extents referenced by the extent pointer. 
Initially, the extent pointer value is null (zero). When the record is 
about to overflow the node, an extent node with the another header is 
created automatically. The extent pointer on the original node then 
references the extent node. Nodes can have any number of extents. 

Nodes are created out of one of two places, the free list· or the heap 
space (figure 11). The free list is a circular doubly linked list of 
discarded array space created by purging (erasing) an object. The heap 
is the remaining virgin space at the upper limits of the data array. 
When a node is to be created, the free list is scanned first to find a 
space large enough for the node. If space is found the node is created 
there and any remaining space is returned to the free list. If no space 
large enough is found then the lowest part of the heap is used. When 
space is returned to the system, the free list is again scanned. First 
to join any unused adjacent spaces and then to insert it in the free list 
in physical (index) order. If the returning space is adjacent the heap, 
it is returned to the heap. Thus, as objects are purged the heap space 
can also be restored. As new objects are created, they will tend to 
re-use space closest to the start of the array. 

Object records overlay one or more nodes and can be formed into 
sequential lists of records. A Sketch drawing consists of one or more 
object lists, as shown in figure 12. The main level list grows as each 
object is added to the drawing. The object record is added to the end of 
the list. Secondary lists are formed for groups. A group is formed by 
adding or moving objects to the secondary list. The secondary list is 
referenced from one or more group records that contain transformation 
parameters for the group. The transformation parameters are used to 
translate, scale, rotate and stretch that instance of the group on the 
display. It would have been possible to create a hierarchical with this 
structure, but limitations with AGP do not allow more groups records in 
the secondary list. Therefore, third level or higher lists do not exist 
in a Sketch drawing. 

Another temporary list is also maintained with the unpurge list. When 
objects are purged, they are first moved to the unpurge list where they 

17 



are kept until the next purge operation. At that time they are really 
erased. To unpurge an object, the record or records last purged are 
simply moved back to the main list. 

There are many types of records in a Sketch drawing. Obviously there are 
the actual object records: line, arc, text, polygon and group. Then 
there are drawing data records: main list root record, group sublist root 
records, color table record and the polygon style table record. A record 
type is identified with a tag field as the first integer of each record 
(after the header). 

5.4.2 Data Access Routines 

The Sketch data access routines are stratified into levels in order to 
reduce the complexity of accessing a dynamically linked structure and yet 
maintain flexibility in their use. 

There are three levels of access routines. The first level is used to 
directly address the array and pack or unpack data into the double real 
format. With the HP 1000 version it also serves to isolate the rest of 
the program from the EMA (extended memory area) addressing peculiarities. 

The second level provides node addressing. The calling routine only 
needs the node pointer (index) value and the relative data index in the 
node. This level also returns the header pointer data. 

The third level routines provide record level addressing. At this level, 
the calling routine only provides the record pointer (index) value and 
the relative index into the record. The third level routines 
automatically account for node extents and will allocate new node extents 
automatically when needed. Thus the record appears to the calling 
routines as being one large node having no limit in length and expanding 
automatically as needed. An object record is therefore much like a 
memory based mini-file. 

Higher level routines exist to access object records in a specific 
manner. For example, both variable length objects, text and polygons, 
have a set of file-like access routines: 

open text record 
get text line 
write text line 

close textrecord 

open_yolygon_record 
get_num_vertices 
get next vertex 

close:J>olygon_record 

18 



6 HOW AGP IS USED 

The Sketch editor relies heavily on HP's Advance Graphics Package (AGP) 
[7]. The Sketch software can almost be considered as an interactive 
shell over AGP. In fact, almost every subroutine provided by AGP is used 
within Sketch. Besides the fundamental mechanics of the graphics itself, 
there are several features of AGP that make it particularly useful for 
the Sketch editor. Those people who have used both AGP and Sketch will 
probably recognize many similar terms and functions. For example, the 
Sketch color and polygon style tables are simply manifestations of the 
equivalent AGP tables. However, there are other less obvious uses of AGP 
as explained below. 

6.1 Work Stations 

The AGP work station concept is heavily used in Sketch. Essentially, a 
graphics work station consists of several basic graphics devices 
integrated into a work station. 

AGP provides two output devices, the display and alpha device, and five 
input devices, the locator, pick, keyboard, button and valuator devices. 
Sketch makes use of of all these except the valuator. These AGP devices 
can be physically implemented as one or more real devices that will act 
as an integrated work station, as described previously. 

As an example, an entire work station could be implemented by one 
HP 2627A color terminal. The 2627 through AGP provides all the six 
device functions expected by Sketch. Alternatively, a work station could 
be implemented by an HP 12065A video card with monitor, an HP 9111A 
graphics tablet and an HP terminal. The video card and monitor provide 
the display, the tablet provides the locator, button and pick, and the 
terminal provides the keyboard and alpha display. The AGP work station 
integrates their operation such that the same Sketch program operates in 
a functionally similar manner, regardless of the actual hardware 
configuration. 

To achieve a measure of adaptability over a wide variety of work 
stations, Sketch makes extensive use of the AGP work station inquiry 
routine, JIWS [8] (9]. This information is used to make real-time 
decisions about the user interface. Table 3 lists the type of 
information inquired and its use. 

Information inquired I Use 
------------------------------------+-----------------------------------
Display aspect ratio Anything related to the screen. 

Display device name Miscellaneous tests not covered 
by AGP: e.g. hardware highlighting 

19 



Locator device name 

Button device name 

Alpha device name 

Number of alpha text lines 
Number of buttons 
Hardware text minimum width 
Number of line styles supported 
Number of polygon styles 
Number of colors 
Retroactive polygon style changes 
Hardware polygon fill 
Retroactive color table changes 
Background color modification 
Color table modification 

Is locator same device as display: 
Can locate limits be changed 

Is button same device as display: 
Is use of buttons easy 

Is alpha same device as display: 
Do two lines of the display need 
to be reserved for the message area 

How much space for the message area 
Limit value 
How many chars on the menu names 
Limit value 
Limit value 
Limit value 
Redraw needed after change 
Sets state of fast polygon mode 
Redraw needed after change 
Capability limit 
Capability limit 

Table 3. Work Station information required by Sketch 

Generally, experience over both the HP 1000 and HP 9000 versions of 
Sketch have indicated that this scheme of work station independence does 
work with most graphics devices to date. Few exceptions were encountered 
where more than the information supplied by AGP was needed to support the 
work station. The primary areas where more information was needed (and 
thus coded into Sketch) dealt with the interaction between alpha and 
graphics planes on the same display device. The HP 2627A was the most 
difficult. Background color and the alpha plane color did not mix well 
and extra routines were needed to modify the alpha plane color when the 
graphics background color changed. The other notable exception was for 
the 12065A video card for the HP 1000 A-series. Here the device performs 
hardware highlighting (blinking), but AGP does not have a specific 
inquiry to return that information. 

In the future when window manager interfaces become more prevalent, 
graphics displays could vary their aspect ratios and other 
characteristics "on the fly". In this case a graphics editor would have 
to trap such changes and make appropriate accommodations. 

6. 2 Segments and Picking 

AGP provides the object picking facility for Sketch. A pick function 
returns the identity of the object selected by the operator. This is a 
fundamental operation required of any graphics editor. 

20 



To make use of the AGP pick function, individual objects are recorded in 
the AGP segmented display area (SDA) as AGP segments. When an AGP pick 
function is invoked, AGP scans its SDA and returns the segment identity 
(id) of the nearest segment (object) to the pick coordinates. 

AGP segment id's are simply integers. Sketch equates the segment id 
directly to the object pointer, another integer. Since AGP uses single 
precision integers, the Sketch data array size cannot exceed 65,534 bytes 
without some other method of equating AGP id's to object pointers. 

Object erasure is another facility provided by AGP through use of 
segments. To erase an object from the screen a call is made to the AGP 
segment purge routine with the object pointe.r used for the segment id. 
The blinking of lines and arcs is performed by the AGP highlight 
function. The active menu function boxes are again the AGP segment 
visibility functions. An interesting use of segment visibility is 
required for displaying the color table or polygon tables. The entire 
screen display is made invisible by one AGP call (JVSAL) [10]. After the 
table function is completed, the entire screen is returned to visibility 
with one call, restoring the original screen. 

6.3 Modelling Matrix 

The AGP modelling matrix (JDMOD, JCMOD) provides a useful method of 
transforming objects [10). In the case of Sketch, the modelling matrix 
calls are used to transform groups. A group is simply a fixed list of 
objects referenced by a group record. The group record contains the 
values for the 4x4 modelling matrix providing translation, scaling, 
rotation and stretching of the group list. 

The advantage of this method is that the group list data need never be 
modified to perform a graphics operation. Only the modelling matrix is 
modified to provide the operation. Since a group list can be referenced 
by many group object records, it is also a convenient for creating 
similar objects with one set of data. 

A drawback to using the AGP modelling matrix is that it cannot be altered 
more than once per AGP segment. Therefore, a group list can never 
contain another group record. If it did, AGP would report an error when 
the group record in the group list caused the modelling matrix to change 
for a second time. This is the primary reason why Sketch does not 
provide a hierarchical drawing structure, even though the underlying data 
structures could accommodate this capability. 

21 



6.4 Difficulties using AGP 

Although AGP has proven to be an extremely useful tool in the development 
of Sketch, it is not perfect. There are many areas where changes or 
enhancements would result in its easier application. The following 
sections outline areas where AGP could be improved. 

6.4.1 The Duplicate Data Base Problem. 

There are two data structures, or databases, within Sketch. One is 
controlled by the Sketch program and the other resides as the SDA within 
the AGP work station program. As with any duplicate data base situation, 
there are problems with keeping the duplicated data synchronized. 

Sketch's data structures store graphics and higher level information such 
as order, groups, arcs, and more. The SDA stores primarily basic 
graphics data grouped into segments for picking and other operations. 
The AGP SDA is basically a write-only data base. It does not provide 
read capability on for its graphics data. Thus both Sketch and AGP 
duplicate the graphics data in their respective data bases. If the SDA 
graphics data could be read back by the application, then all graphics 
data could be stored in the SDA and no duplication would be necessary. 

6.4.2 Multiple Segment Operations 

Sketch makes use of AGP segments stored in the SDA. AGP provides a set 
of segment manipulation functions that affect segment visibility, 
detectability, and highlighting. However, the control over these 
functions is limited to the point that often they cannot be used because 
of negative side-effects, even though they offer attractive savings in 
application code and development time. 

6.4.2.1 limited segment selection 

Originally Sketch maintained the basic menu and screen layout as a fixed 
set of AGP segments. To clear the work area and refresh the display, all 
object segments had to be purged first. The menu segments were left 
alone. Thus, the menu and screen layout was drawn only once at program 
start-up. The menu was automatically maintained by AGPI 

However, the segment purge routines only allow erasure of one segment at 
a time (JPURG) or the entire SDA (JCLR), including the menu. Therefore, 
Sketch had to scan a list it maintained of visible object segments to 
provide the selective purge. This scheme was eventually dropped because 
the AGP purge of a large number of individual segments took too long. 
Currently, Sketch purges all segments and redraws the menu each time. 
Thus bypassing what could have been a useful feature in AGP. 

In general, more comprehensive segment selection scheme could be 

22 



provided. Examples are: 

1. Selection by area. All segments within a specified area are 
selected for the operation. 

2. Selection by range. All segments with identifiers greater or less 
than a certain value are selected for the operation. 

3, Selection by set. Given a set of segment identifiers, all segments 
in the set are selected for the operation. 

6.4.2.2 Display and SDA synchronization 

Within the AGP work station program there is another synchronization 
problem where the contents of the SDA must be the same as the graphics 
displayed on the screen. 

AGP is somewhat overprotective in this area. If the application attempts 
to modify the SDA without changing the graphics on the display, 
eventually AGP will automatically force a new-frame-action. The 
new-frame-action clears the graphics display and redraws the display from 
the contents of the SDA, thus ensuring synchronization. This phenomena 
occurs primarily when Sketch knows a segment operation will not affect 
the graphics of the display, but requires restructuring of the SDA. For 
example, merging separate objects/segments together as one segment 
(grouping) . 

Originally in this case, the work station was turned off via a JWOFF, and 
the objects/segments involved were purged and redrawn under in one 
segment. The effect was to prevent object erasure and redrawing on the 
graphics display. However, AGP would later cause a total screen erasure 
and refresh when another unrelated segment operation was performed. This 
side-effect was annoying and currently Sketch puts up with the object 
erasure and redrawing. 

In this case AGP could be changed to 'trust' the application when it does 
things that might cause display/SDA inconsistency. 

23 



7 SUMMARY AND CONCLUSIONS 

The previous sections briefly outlined several areas about the 
implementation of the Sketch graphics editor. These areas represent the 
most important lessons discovered during the design and implementation of 
Sketch. Lessons which can be leveraged into the implementation of other 
computer graphics programs 

The areas covered were: 

1. The function of a graphics "editor". Modelling a relatively "new" 
application after "tried and true" applications in different but 
similar environment thus reducing the evolution time of the 11 new0 

application. 

2. The need for work station independence and basic rules for achieving 
it. 

3. The data structures used in the Sketch editor, their implementation 
and their access methods. 

4. The leverage provided by the Hewlett-Packard Advanced Graphics Package 
(AGP). Both the uses and difficulties with it were covered. 

24 



References 
1. Walden, Philip: The Sketch System Operator's Guide and Reference 

Manual, Sketch - General Purpose Graphics Editor Version 2.0. 
CSL/1000 Program Library of Users' Software for HP 1000 Systems, 
Interex, The International Association of Hewlett-Packard Computer 
Users, 2570 El Camino West, Mountain View, California, 94040, 
September, 1983. 

2. Walden, Philip: The Sketch System Operator's Guide and Reference 
Manual, Sketch - General Purpose Graphics Editor Version 3,3, 
Hewlett-Packard, 11000 Wolfe Road, Cupertino, California, 95014, 
January, 1985. 

3. Long, Jim and Walden, Philip: BRUNO. CSL/1000 Program Library of 
Users' Software for HP 1000 Systems, Interex, The International 
Association of Hewlett-Packard Computer Users, 2570 El Camino West, 
Mountain View, California, 94040, January 1, 1983. 

4. Walden, Philip: Penny Programming and Reference Manual. CSL/1000 
Program Library of Users' Software for HP 1000 Systems, Interex, The 
International Association of Hewlett-Packard Computer Users, 2570 El 
Camino West, Mountain View, California, 94040, September, 1979. 

5. Key, Scott: AESOP - A Slide Development Package. CSL/1000 Program 
Library of Users' Software for HP 1000 Systems, Interex, The 
International Association of Hewlett-Packard Computer Users, 2570 El 
Camino West, Mountain View, California, 94040, June, 1983. 

6. Walden, Philip: PENNY - Computer Aided Drawing on the HP 1000. 
Communicator/1000, Hewlett-Packard, Data Systems Division, 11000 Wolfe 
Road, Cupertino, California, 95014, Vol. III, No. 6, 1979, pp 38 - 47. 

7, Advanced Graphics Package User Guide. Hewlett-Packard, 11000 Wolfe 
Road, Cupertino, California, 95014, Part No. 97085-9000, June 1983. 

8. Advanced Graphics Package Version 2.0 Supplement for HP 1000 Systems. 
Hewlett-Packard, 19420 Homestead Road, Cupertino, California, 95014, 
Part No. 92862-90001, pp III-15 to III-23, May 1984. 

9, Advanced Graphics Package Version 2.0 Supplement for HP 1000 Systems. 
Hewlett-Packard, 11000 Wolfe Road, Cupertino, California, 95014, Part 
No. 97085-90001, pp III-14 to III-22, June 1983. 

10. Advanced Graphics Package Reference Manual. Hewlett-Packard, 11000 
Wolfe Road, Cupertino, California, 95014, Part No. 97085-90005, June 
1983. 



Generalized 
Subsystem 
Structure 

User 
Interface 

Viewer 

Command 
File 

11111 p Run String ..i rocessor Data lilllllllflll<----Other 
Data 

Fite 

._ _____________________________ ~-------
Figure 1. Overhead Transperency created with Sketch. 



0 
'-
0 
,L 
u 
0 

Q__ c 
I () 
-~ ,_, 
'Q; CTl 

c 

"" c 
Ql :;) 

T 0 
.~ £ 

""' Ql 
Ql u 

C<:. ::J 
_ _,_, 

~· 
",> Q) 

0 
Q) 

.Y 
u Q) 

lf) .n m 
Q; . .C 
2 -+-' 
~ -

0 --. 
tf) > 

u 
Q) 

+-" 
0 
Q) 
L 
() 

c 
0 -

Q._ 

L 

0 
0 

l.L 

Q) 

01 
' 
0 
__J 

N 

Q) 
L 
:::J 
01 

\_;::: 



Equipment_dir.d 
Lost Updot-:: 04/19/85 g J[Jl D 

hp2627.d hp7585.d hp7914td.d hpnewdisc.d 

~ ~ D g-, ~ ~ ~~ 
hp9000.d hp9836.d bay1.d hpworkstot.d hp7914r.d 

ftlJ 
epoc.d 

hp120.d 
ii . 

;::;:, ~ h 2~6-88--1 
d. UJJ ~O .. 

hp2608s.d p a. 

~ 
hp1000.d 

Figure 3. Library of [quiprnent Figures created with Sketch. 



~
-·.-- ·-------· -------·-····------·---·------------·-1 .- -··.-·- --·-·· ··--·-·· ·--, ~-E·--------------------------···-·-····---·---·-···-·--1 ' . 

-r::1 L~;;;-_1 ~rd --·-·-· - ·• ·-·--·- 'T ~~r~tr?'9 ~~~~~n I t1 ~ ~-" I t _______________________ . 
'I !:[', , I n A 

! I ( ,, If ~/ f I r--9~·1 
~h "-v ! l _ _J~.2,,-=.<.J 

Ntruc~ [ ;:-l ; Work Statltn 
11 .... u Station ~.J I Tllble 

11~1 -~_ t8:~- --··f::~l:.-:------1 r-----f-.;;l_-+-=;b.-~-~-1! EJ r·-J s~ ;· L'~ ! D t~t3 _..;i . ~ t __ 

il1D1:c1-o OBcJ~c-f 1 i ,=~.fJ~! 
II .--. -Ej g· -- 1! ~- ·--b;--, 
~-,-. ·····T ··:i;· ·--;--· iiii> ----1 ,-----..., --·i· -;§--.· -·_---·-;:--·· 1,. ~ - ~ ~ r,;;;.. 1- _ , - __ . .:;i 1, L:'-~-- L: 

' r'.'..!- L. ' ·-- r~· l r.:;:· r-· ....___ ~I •' ~ Lllr"ar!en 1 ~: s:.~t [~J,-J __ , L ~1-1 ~J_~._.J (~ : \ Work Stat!o<> War-\ StetlcY> 

11! o· 1 ,----J D· - o·-·- o·--·-· ro···-··- !! PJ::~~~~j~ 1·1 
(,; L I' b 7500 Piotr;,,.. ' I ',. lj L .J 

1

11' ; ~ ' I.AN !1r'11W'ti 

: ?!'n~er Station ' ---

1, :,. B-1r.r"J 9lelves r-·c-.::-=--1--11 jl r----··-··1t:r-·1 !1 Legend 
I I ~---j / L Coffee 1 I 
•ii ... I! I L. I ! . - ! 
l L=::!_ ___ , ______ , ___ -··--··-:.:=! L .. ::: ..... ··-·-··-----··-:._-'-:=·=·.,!·' 

Fig'Jre 4. Local Area Floor Layout created with Sketch. 



·-··-----·-

Enter START point ~ 
Exp w CHO l \ -:J""" Ml'IJ 0 I 

l R•t w Loc1/S 

1 
Bet w Gr(); A 

Menu scvR color 

Area i"""' L sTv 

1 

PUr11e UNpur 

MOve p Col 

----->f CLone p St)I 

E011' p L"t 

I v-
Message Area 

----Work Area-----

GRoup T Fon-

Active M•h G T S1a 

Function --- LXne• T Po• 
-··· 

Box A Ree T Oir 

TExt T Gap 

\ Mak P T Sla 

I 
Pg Br BYet• 

'1'""• n Cpy "' 
Attribute Area 

L- ?---"'~ ~ ' Pal: T 

.t:u llllllJ~lUllllllll 
SNap Col T 

I Fet Tj[_Fut :!] 
PikOk or111t 

KEyl:>o ENO 

Figure 5. Layout of Display Screen for Sketch. 



E J 
[ I 
! =1 

8--·=-~ 

Lines, Arcs, Text, 
Polygons and Groups 

A. Sketch 

Text 

J 
' 

! 

R 
~ 

B 
Figures 

=-=t__,: 

i----; 

Lines 
& Arcs 

8. Bruno 

Automatic 
Master 

.----'------Macros, 
Lines, 
Text Detail 

Dataset 

C. Penny 

Figure 6. Sketch, Bruno rind Penny Data Structures. 



1 7 4SOO 

2 I ) 3 

Figure 7. A Penny Drawn 
Nand Gate 

Text n1,. 

74500.AND. 1 

74500.AND 

Text "2" Text "3'• Text ''74500" 

TW0.0.4.STUB5 NANO.AND 

Une 1 Une 2 MCIRCL 

6 nnea 4 Llnes 
Gate Outline Circle 

Figure 8. Macro Expansion of 
a Penney Nond Gate 

Une 3 



·-----

··----------· -~ir~~;~r. D~·:b~-Li~ked List --~ 
--~_J ___ _L_r------ ___ r ____ r=r-=]- / 
-----·--- - -- ---- ------------~--/ 

I 

-~~~~=- -==-=~! --·-:-----·--1 -----. -----1 
r-·· __ :=~i ~ · -=--==j 

~--.,~---·-----·-

--

..........__~---~ 

Object Record Object Record Object Record 

Figure 9. Structure of a Sketch Drawing. 



~ ---h-r=r--­
NOO l ~~~~Ioourr 

t==-·--·--·-
·-·--·· ... ---___ , .. ____ _ 

Node 

NEXT 

I 

==f=-----~ 
,,_____-T-· 
~ ·----

,._ 8 Bytes ~ t 

t fx'I-~ Extent 

Double E ___ · __ --_~ 
Precision~ Rr· ~ -~ 

+ ·---' 

NEXT 1 ~~~r~~'f:im:W1 ____ .. ._ ____ '] ______ .... ..., ____ _ 
, ______ .. __________ _; 

i 
----·----·--···--·-j 

I 

·-.-----.. -.. j..l ____ ...., _____ _...... __ ~ 
··---------

--·-· 1 

Node 

Node 

Figure 10. Sketch Node Structure 



Index 1 

2 

3 

4 

5 

6 

• 
• 
• 
n 

Fortran Array of Double Precision Reals 
--

- ·----

-

1--

• 
• 
• 

Drawing Lists 
and 
Free List 

Heap 
Space 

L 

Figure 11. Allocation of Data Space. 



~ 
<:96' 

l 

MAIN LEVEL LIST 

.1 l ,-6. >< --:-... .1 l ,-6- _ ... _l l 
NEXT l PREV jLENGTHlEXTENT NEXT l PRE.V jLENGTHlEXTENT NEXT l PRE.V jLENGTHjEXTENT 
Group I Point I Group l Point J 

7 / 

Tronsfonnatlon Transformation 

Parameters Parameters 

for for 

UodelRng Mode!Rng 

Matrix 
I 

Matrix 

Group Node I Groap Node Object Node 

SECONDARY LEVEL LIST 

PREV LENGTH EXTENT NEXT PRE.V LENGTH EXTENT 

I I 
I 

I 

~ I j 
I 

Sublist Root Node Object Node Object Node 

Figure 1 2. Two Group Nodes Referencing a Secondary List. 



1031. EVALUATION OF HP REALTIME SYSTEMS PERFORMANCE 

PROJECT OBJECTIVES 

Martha Robrahn 
Performance Technology Center 

Information Technology Group 
Hewlett-Packard 

Cupertino, California, USA 

The major objective of the SPEP project is to assist in the design and development 
of future systems and system components through the use of performance analysis 
technology. Specifically, this objective is being met by measuring system 
utilization and performance in actual customer environments. Tools to support 
this data collection effort and summarize the data are being developed. Data 
collected is used to model future system usage and to predict future system 
performance in order to facilitate design and implementation tradeoffs. The 
profiles of customers' usage of HP machines will also be used to develop standard 
benchmarks that emulate specific customer application types. These benchmarks 
can be used to characterize system performance of typical customer applications. 

SPEP also collects patterns of customer usage that can be used to influence 
product decisions. What is the typical amount of memory and disc space on a 
system? What percentage of that space is used? What are typical buffer sizes 
for terminal transactions? For HP-IB transactions? These type of questions 
will be used to characterize customers' application· workload mixes. 

PROJECT BACKGROUND 

In 1983, SPEP began collecting performance data on HP 3000 systems. To date, 
over 200 sites have been collected and summarized in a database. This data 
allows modeling of current and predicted performance of systems,. as well as 
inquiry into typical customer configurations and workloads. 

In 1985, a similar effort was initiated for the HP 1000 family of processors. 
Very little performance instrumentation or tools existed for the 1000 systems. 
ITG, DSD and selected field SEs worked together to implement the software 
necessary to fulfill the requirements of the SPEP program. An important side 
benefit of this effort will be the availability of system-wide performance data 
collection software to HP's technical field SEs. A subsequen~ section of this 
paper will cover the specific goals of the RTE-6 and RTE-A performance data 
collection efforts and describe what has been accomplished towards these goals. 

Initial sites surveyed .were selected by one of two criteria. DSD marketing 
selected those customers that they felt were representative of their customer 
base. Additionally, SEs were offered the opportunity to survey any customers 
they felt could benefit from the performance report generated from the data 
collected at their site. 

Paper 1031 



GENERAL COMPUTER PERFORMANCE EVALUATION METHODOLOGY OVERVIEW 

Computer systems performance evaluation and prediction can be divided into two 
components: performance measurement and performance modeling. Performance 
measurement is useful once a system has been implemented. Performance modeling 
can be used to predict performance of new systems as well as determining how a 
current system will perform when workloads or device configurations are altered. 
A workload is a grouping of similar processes consuming system resources. 

Performance measurement techniques for real-time systems fall into three 
categories: hardware measurements, sampling techniques, and event driven 
measurements. Each type is useful in various situations. 

Hardware measurements are typically taken using logic analyzers. They are used 
to determine the time it takes to do very specific things in HP's RTE operating 
systems: the time to enter a driver from an interrupt, the time to make a 
particular EXEC call, the time it takes to transfer n bytes of data via a 
particular driver/interface/device combination, etc. These types of measurements 
are performed under ideal conditions and typically represent best case nlllllbers. 
They are found in the performance briefs (1,2] for RTE operating systems. They 
are useful when trying to determine whether a dedicated real-time application 
is a good fit for a particular processor and operating system. 

Sampling techniques involve taking a snapshot of what is going on in the computer 
system at regular intervals. The code to do the sampling can be part of the 
operating system or simply a high priority privileged process. It could also 
be implemented with a logic analyzer. An example of a sampling program is HP's 
Profile Monitor.[3] This monitor observes only one program at a time, but the 
concept can be expanded to system wide monitoring. [4] Sampling can be useful 
when there are many long-lived processes on a system. 

Event driven performance measurements require that the operating system be 
instrumented to log specific events as they happen. The result is a complete 
trace of the selected events during system operation or counts of the various 
events over the collection period. Typical events that might be logged are EXEC 
calls, program dispatches, I/O initiations and completions, swap traffic, VMA 
faults, etc. Obviously, this technique yields the most comprehensive performance 
information for a given system. It also causes the most overhead and could 
potentially yield misleading results if this overhead is too large. Event driven 
measurements should be most useful in characterizing real-time systems where 
many things happen too quickly for a sampling technique to detect. 

Performance modeling techniques fall into two general categories: analytic 
modeling and simulation modeling. "A model is an abstraction of a system: an 
attempt to distill, from the mass of details that is the system itself, exactly 
those aspects that are essential to the system's behavior." [5] Models view the 
computer system as a series of servers (eg. CPU, disc) which provide resources 
to the different workloads made up of various programs. In order to model a 
computer system one must measure or estimate the inputs to the model. Inputs 
might include the amount of CPU time used by a process, the number and length 
of disc and other I/O operations, amount of time spent waiting for resources, 
etc. The outputs from the models include resource utilization, system throughput, 
and average response time. 

Paper 1031 -2-



Analytic models use mathematical algorithms to solve a set of equations to 
predict system performance. Simple system configurations lend themselves well 
to this kind of modeling technique. Analytic models are reasonably easy to 
define and evaluate. They execute quickly and therefore are useful for asking 
"what if" questions. 

Simulation models attempt to m1m1c the computer system in detail. For complex 
systems, simulation may be the only accurate modeling technique. An example of 
such a system might be a data communications network. Simulations are complex 
to define and time consuming to run. 

RTE DATA COLLECTION SOFTWARE IMPLEMENTATION 

Keeping in mind the components of performance evaluation described above and 
the goals of SPEP, software was developed for performance monitoring of both 
RTE-6 and RTE-A systems. Brief descriptions of the instrumentation and reduction 
software follow. 

It was decided to implement the software for RTE-6 outside of the operating 
system. The goal was to write the minimum amount of software that would allow 
analytic modeling of RTE-6 systems. Three events are captured during a performance 
run: program state changes, I/O initiations, and I/O completions. Additionally, 
the currently executing program is recorded with each event. From this information, 
a relatively complete description of program execution and RTE operation can be 
derived. The software that controls the data logging allocates a 1 KW block of 
System Available Memory (SAM), patches its code into the SAM block, and then 
patches RTE to call the logging software in SAM. Two additional programs are 
used to retrieve the event data from SAM and log it to disc or mag tape. 

In parallel with the RTE-6 development, RTE-A was being modified to collect 
performance data. Some of the events that can be traced include those in RTE-6 
plus VMA faults, EXEC calls, process activations and terminations, CDS faults, 
swapping, session logons and logoffs. Each event can be activated or deactivated 
individually. Event logging software was placed into RTE-A. Collection software 
was developed to log RTE and other events to disc or mag tape. (Use of this 
software requires a new system generation.) Additionally, sampling programs were 
developed to monitor SAM use, Id Segment use, Swap file use, class number use, 
memory use, resource number use and file system usage. This information will 
allow use of both analytic and simulation models. Additionally, it will allow 
access to many different types of information about how a particular system is 
being used. This should allow HP to better understand our customers' needs. 
It should also allow field SEs to be better able to deliver comprehensive 
performance consulting services to their customers. 

A typical customer performance run involves sending a tape of software to the 
SE or customer. The files can be restored using standard utilities. The customer 
fills out a survey to more completely describe their application. A procedure 
file is used to load, install, and run the collection software. Customers were 
allowed to set the duration of the data collection run based on their specific 
applications. (For comparative purposes, all data in HP's summary data base of 
real-time customers will be normalized to one hour.) When the run is completed, 
the tape is returned to HP for reduction. A summary report is returned to the 
customer and the account SE. This report contains a summary of each program 

-3- Paper 1031 



executing during the data coilection. It includes a list of the amo1.mt of time 
the program spent in each state as well as a summary of all I/O done by the 
program. Als·o contained in the report is a summary of disc usage. 

SPECIFIC ISSUES RELATED TO REAL·TIME SYSTEM PERFORMANCE 

There are many issues related to real-time system performance that do not seem 
to be of concern on commercial installations. They include the resolution of 
the time base generator (TBG), the applicability of modeling to real-time systems, 
and the definition of real-time workloads. 

The resolution of the TBG on a 1000 is 10 milliseconds. Many events in RTE 
systems occur in less than this time. If three programs executed in one 10 ms 
interval, how should the CPU time be credited to those programs? Currently, 
the program executing when the clock ticks gets credited with the entire 10 ms. 
It is hoped that this will average out over time. However, with the time 
scheduling capabilities of RTE systems, this may be unrealistic. 

Analytic modeling techniques work well for commercial systems. Most models tend 
toward system configurations that include only the CPU, discs and terminals. 
The assumption is that one process services one terminal. Will RTE programs 
that service multiple devices fit well into analytic models? How does one 
incorporate the large array of black boxes and instruments our customers use 
into these models? Will the applications using specific RTE features like class 
1/0, resource numbers, and Shareable EMA fit well in these models? Many of 
these types of questions need to be addressed. 

Workload definition for our customers' real-time systems also seems to be more 
complex. Many commercial customers use "off the shelf" software packages to 
do much of their processing. As such, they are easily recognizable as a particular 
type of program: database, editing, accounting, manufacturing, etc. Most 
real-time customers write the majority of their own software. The grouping of 
programs into workloads will be difficult without an in-depth knowledge of 
individual applications. 

Finally, there is the issue of what the criteria for acceptable performance is 
for our real-time customers. For a commercial customer, there are some very 
standard measures: terminal response time for interactive applications and 
throughput for batch applications. By definition, a real-time system must 
respond to external events "fast enough". The goal of performance optimization 
in real-time systems is to maximize throughput while insuring that real-time 
processing remains unimpeded. Our real-time customers may have some different 
measures of performance: interrupt response time, device I/O throughput, disc 
throughput, CPU speed, RTE overhead, etc. The survey sent to each customer 
participating in the SPEP program solicits their inputs on this subject. 

CONCLUSIONS 

Since data collection on RTE systems has just begun, there are no conclusions 
at this time. It is hoped that some preliminary results can be presented at 
the September conference. 

Paper 1031 -4-



ACKNOWLEDGMENTS 

Special thanks to: 

Bob French (HP Fullerton) and Dave Glover (HP San Ramon) for their work on the 
RTE-6 software. Also to Nick Copping (HP everywhere) for getting us into this. 

Nigel Clunes (HP Sydney) who single handedly instrumented RTE-A and sold the 
concept to DSD. Also to Beth Clark (HP DSD) for believing that performance 
evaluation software would make an important contribution to RTE-A's feature set. 

Tony Engberg and Paul Primmer (HP ITG) for their views that perfonnance technology 
also belongs in the technical computer arena at HP. 

Tony Lukes (HP ITG) for raising the state of the art of performance evaluation 
at HP to an ever higher level. 

REFERENCES 

[l) RTE-6 Performance Brief. HP part number 5953-2846. July 1982. 

[2) RTE-A Performance Brief. HP part number 5953-8753. January 1984. 

[3) RTE Profile Monitor. HP part number 92083A. 
Manual part number 92082-90001. 

[4) D. A. Thombs. "Dynamic RTE system monitors". TC Interface. 
March, April 1985. 

[5) E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. 
"Quantatative System Performance". Englewood Cliffs, New 
Jersey: Prentice-Hall, 1984. 

[6) P. Heidelberger and S. Lavenberg. "Computer Performance 
Evaluation Methodology". IEEE Transactions on Computers, Vol. 
C-33, No. 12, December 1984. 

Paper 1031 





1032. GOOD LABORATORY PRACTICES AND HOW THEY CAN B~ SUPPORTED 
BY A LABORATORY INFORMATION MANAGEMENT SYSTEM. 

Thomas C. Boyer, Kazmer Latven, Ph.D. 
Scientific Instruments Div. 

Hewlett-Packard Co. 
1601 California Ave. 
Palo Alto, CA 94304 

Most of the applications that are written for the HP3000 address a concept called 
Generally Accepted Accounting Practices. Business data processing systems are 
audited by accounting firms that have standardized business controls and 
procedures. Laboratories are also audited but generally not by accounting firms. 
If a data processing system is to be built to support the laboratory, a concept 
called Good Laboratory Practices provides guidelines for the system designer. 

Laboratories can be divided into two major classifications. The first category 
is a "project" laboratory. It is identified by the type of activities that are 
generally thought of as a project. Sub-categories would include an R+D 
organization, an Investigative organization, or a "Methods" development 
organization. The second category is a "process" laboratory. This type of 
laboratory handles samples as a process rather than a project. It is organized 
to handle many similar samples routinely. Sub-categories would include an 
in-house control laboratory in a chemical manufacturing plant, a similar type 
of process laboratory in a more regulated type of manufacturing process or a 
Contract laboratory which operates a laboratory as a routine business service. 
(See Figure 1.) 

A typical project laboratory would be divided into groups organized around the 
chemist or engineers completing a focused project. These project teams have a 
number of laboratory services available to them that cross several disciplines. 
Although the time for the completion of a project is not fixed, this type of 
lab would expect to work on a project for a long time. 

A typical process laboratory is divided into sections or cells that are organized 
to perform specific types of analysis. One area might be equipped to test for 
metals; another area, such as a mass spectrometer section, would be set-up to 
test for organic compounds. A sample receiving area is responsible for receiving 
the sample, assigning it a "method" and initiating the sample analysis process. 
(See Figure 2.) 

Personnel functions that are to be found in a process laboratory include: 

1) Operations manager 

This is the business manager of the operation. He is responsible 
for the financial performance of the labs as well as the focus 
for customers and vendors. He bears the responsibility for passing 
a financial audit. He bills the customer for services. He is 
responsible for sample storage and disposal. 

2) Lab manager 

Paper 1032 



This is the technical head of the lab. He has some administrative 
responsibi+ities in the technical operation of the lab. He usually 
hires and fires the technical staff. He is responsible for the 
Standard Operating Procedures, the Methods, the qualification of 
the lab staff, and the equipment. He specifies sample storage 
an.cl disposal requirements. He bears the responsibility for passing 
a GLP audit. He reports to the Operations Manager. 

3) Chemist/ Engineer/ Technician 

This is the person who actually does the productive work. 
Specifically, she has the education, experience and technical 
license to perform the tests and record the results. 

4) Receiver/ Dispatcher/ Reporter 

This is a key administrative function. This person receives the 
sample, assigns it a Method or process, passes the sample on to 
the proper station or inventory location, initiates the customer 
acknowledgment, initiates the billing, and distributes the sample 
report. He reports to the Operations Manager. 

5) The Auditor/ Quality Inspector 

This is either the person assigned by the regulatory agency to 
audit the lab for compliance or an in-house quality assurance 
person. The regulatory auditor does not check for financial 
performance but verifies that the lab's Standard Operating Procedures 
are adequate and are being followed. The in-house quality assurance 
person is responsible for inserting "spiked" and "blank" blind 
samples and for other operational quality control procedures. 
(See Figure 3.) 

Other resources that are important to laboratories include the facility where 
the sample is processed and stored, the equipment that is used to perform the 
analysis, and the operating procedures the lab has implemented to control the 
process. 

Many laboratories are audited by outside regulatory agencies. The Environmental 
Protection Agency, the Department of Defense, various health agencies, and the 
Food and Drug Administration all have specific requirements meant to insure that 
analyses that are performed generate valid results. While each of these agencies 
has similar requirements, there is no organization or society that provides 
inter-agency coordination of acceptable laboratory procedures. The FDA regulation 
entitled, "Nonclinical Laboratory Studies Good Laboratory Practice Regulations" 
(1),(2),(3),(4) abbreviated GLP, is becoming an industry standard that attempts 
to fill the vacuwn left by a lack of coordination. 

A major thrust of the GLP requirement is to have an audit trail of the resources 
used to perform an analysis and to be able to recreate the result based on 
archived record keeping. These audit trails might keep track of the calibration 
schedule of the instrwnents, the recent training of the laboratory personnel, 
or the version of the "method" that was used in the process. An auditor should 

Paper 1032 -2-



be able to trace back through the audit trail and verify that the conclusions 
generated from a test were valid. (5) 

What follows is a short list of the tools common to the accounting or manufacturing 
systems designer that might be used in a Laboratory Information Management System 
that supports GLP. 

Besides the normal security associated with the MPE operating system, other 
security systems such as a positive identification system might ensure that the 
operator of the instrumentation would find a match in a list of qualified 
operators. 

Automatic machine-to-machine communication not only offers speed but reduced 
errors. Besides the obvious advantage that the computer system brings in 
automating the laboratory, there is less chance for errors when the results of 
an analysis are directly read from a file. 

Machine logging of transactions is very familiar to the HP3000 application 
designer. Besides machine logging, database logging provides a strong archiving 
tool. Archive retrieval is supported also. 

Existing applications also offer some aids. Bar codes and check digits ensure 
the proper sample disposition. Reasonableness checks in screen forms packages 
reduce errors. 

Text editors that keep track of versions of software code should be easily 
applied to handle versions of methods and processes. 

1) "Nonclinical Laboratory Studies Good Laboratory Practice Regulations," 
FEDERAL REGISTER, Vol.43, December 22,1978, pp. 59986-60025. 

2) "Good Laboratory Practice for Nonclinical Laboratory Studies; Amendment of 
Good Laboratory Practice Regulations," FEDERAL REGISTER, Vol. 45, April 11, 
1980,p 24865. 

3) "Review of Agency Rules," FEDERAL REGISTER, Vol.46, July 14, 1981, pp. 
36333-36335. 

4) P.O. Lepore, M.M. Kemp, "FDA's GLP regulations: proposals for change," 
PHARMACEUTICAL TECHNOLOGY, January 1984, pp. 30-36. 

5) King, Paul G., "Laboratory Computerization and Good Laboratory Practice 
Standards (GLPS)," ANALYTICAL INSTRUMENTS & COMPUTERS, May/June 1984, pp. 14-15. 

-3- Paper 1032 



Laboratories 

Project types 

Methods 
development 

Process Types 

R+D 

In-house In-house 
with audit 

Figure 1 

Inves­
tigative 

Contract 

-



Typical Lab Layout 

Administration 

Lab Area #3 

UVNIS 

Fiaure 2 

Sample 
Storage 

Lab Area #2 

LC/MS 

Receiving 

Lab Area #1 

GC/MS 

' 

-



Operations 
Manager 

Lab 

Manager 

Figure 3 

Chemist/ 

Engineer 

Receiving/ 
Dispatch 

Auditor/ 

QC 



1033. TROUBLESHOOTING STRATEGIES FOR HP 1000 COMPUTER USERS 

Lizette I. Mill 
Hewlett Packard Co. 

11000 Wolfe Rd. 
Cupertino CA 95014-9974 

Troubleshooting for Supportability 

Programming for supportability is a topic that has been widely discussed in the 
computer science field. Students learn structured programming methods in 
university courses, and programmers are cautioned to document extensively and 
to use "goto-less" programming techniques. 

On the other hand, troubleshooting (problem resolution) techniques have not been 
given the same attention. This is unfortunate, for it becomes obvious after 
even a cursory study of problem resolution and design that these activities, 
normally regarded as distinct from one another, are simply two guises of the 
same process. 

The HP 1000 factory support group has a running joke that any HP 1000 troubleshooting 
problem can be resolved with one of the following answers: 

1. Halt and reboot, 

2. That's not supported, 

3. That's fixed in the next revision, 

4. Read the manual, or 

5. That's not a bug, that's a feature. 

Although we treat it humorously, like any myth, this joke has a certain ring of 
truth. 

The HP 1000 computer is, by design, an open system. Manipulation of the system 
is a programming feature. This means that users can tie their systems into 
programmatic Gordian knots by incautious use of EXEC calls, rash exercise of 
privileged code and other unparalleled feats of daring. The solution of cutting 
the knot by rebooting does not actually solve the problem. The progrannner needs 
a better answer than that provided by Alexander the Great's straightforward 
method of problem resolution. The programmed Gordian knot usually holds the 
whole system together. 

I cannot cover here what I have learned about problem resolution techniques in 
two years of troubleshooting in the HP 1000 factory support group. That would 
take two years. Moreover, it would require the reader to attend (then teach) 
HP 1000 internals courses, answer obscure questions over the phone for weeks on 
end and resolve knotty system problems using logic analyzers and assembly language 
programming. But, I can pass on some tools and techniques which I have found 
especially useful during those two years. 

Paper 1033 



Methods and Mechanisms 

The most important troubleshooting tool is the mind of the troubleshooter. 
Without a systematic, comprehensive approach to the troubleshooting process and 
the ability to use problem-solving techniques, the HP 1000 computer system's 
information sources will simply drown the troubleshooter in a sea of details. 

James L. Adams iri his fascinating book "Conceptual Blockbusting" describes 
the problem-solving technique we are all prone to use. 

(T)he natural response to a problem seems to be to try to get rid 
of it by finding an answer-- often taking the first answer that 
occurs and pursuing it because of one's reluctance to spend the time 
and mental effort needed to conjure up a richer storehouse of 
alternatives from which to choose. This hit-and-run approach to 
problem-solving begets all sorts of oddities-- and often a chain of 
solution-causing-problem-requiring-solution, ad infinitum. In 
engineering one finds the "Rube Goldberg" solution, in which the 
problem is solved by an inelegant and complicated collection of 
partial solutions. 

Adams goes on to describe blocks that obstruct the design and problem-solving 
processes, and conscious and unconscious methods of ''block busting". He suggests 
using different problem-solving languages: verbal, visual, mathematical and 
diagrammatic. He recommends different problem-solving strategies: elimination, 
substitution, comparison, separation, dissection, list making, and so on. These 
are all valuable problem-solving techniques. But the most important element of 
the troubleshooting process is a consistent problem analysis method. 

A number of authors have written on the subject of problem analysis. Some, such 
as Kepner-Tregoe, Inc., teach courses on it. But, as William J. Reilly pointed 
out in 1947, one of the most powerful problem analysis techniques ever devised 
has been around for quite some time. That technique is the scientific method, 
which Reilly described as follows: 

1. Some kind of observation suggests an unanswered question or a problem. 

2. The problem is defined and possible solutions considered. 

3. Controlled experiments are set up and observations made. 

4. A conclusion is drawn based on the results of experimental and other 
observations. 

Reilly noted that to reach the second step of the scientific method, you must 
expand the original observation to obtain a precise understanding of the problem. 
This expansion is contracted into a problem definition. The problem is expanded 
again as more observations are made in the third step to determine the validity 
of each possible solution. Finally, the process contracts to a chosen solution. 

Paper 1033 -2-



Figure 1 illustrates this process. 

It's fairly obvious that we go through this process every day. We observe that 
the light has turned yellow. We define the problem as the fact that our car 
must not be in the intersection when the light turns red. We consider possible 
solutions: we could speed up in hopes of getting through the intersection before 
it's too late, or we could slow down and stop before entering the intersection. 
We've done experiments in the past that provide data on how the speed of the 
car and the length of the yellow light affect the outcome of these possible 
solutions. Based on these past experiences and other observations, such as how 
late we will be for work and the speed of the car behind us, we draw a conclusion 
and choose a solution. 

It's also true that we fail to apply this technique every day. We observe ants 
marching resolutely into the bathroom from under the floor board. We spray the 
floor board. The next hour finds the ants marching in from behind the sink. 
We spray behind the sink. The next time the ants are coming out from under the 
bath tub. Finally, in desperation, we call the exterminator. He's been 
troubleshooting insect problems for years. He's a firm believer in the axiom, 
"Garbage in, garbage out." He knows the ants are coming from somewhere. So, he 
goes out the back door and sprays where the ants are marching in under the 
outside spigot. No more ants. If we had applied the scientific method to this 
insect problem, we could have been spared the $50 exterminator fee. 

Let's see how this process might be applied to a simple HP 1000 troubleshooting 
situation. 

Tom Programmer occasionally gets FMP -11 errors from his program PlotCurve. He 
observes the occurrence for a time and deduces that PlotCurve only gets FMP -11 
errors if it's run at the same time as another of his programs, PlotHisto. 
Tom's a bit intimidated by all the packages he's been using to write these 
programs. He's not sure they all work together the way they should. Instead 
of using a systematic approach, Tom examines the two programs hurriedly and 
notices that they both use system common. 

"Ah, ha!," Tom speculates prematurely, "it must be that PlotHisto is somehow 
corrupting PlotCurve's blank common. I'll bet that PlotCurve is corrupting 
PlotHisto's blank common, too, but the symptoms aren't as obvious." Tom rushes 
to the phone and calls Sharon Troubleshooter over at the HP 1000 factory support 
group. 

"Sharon, I've found a problem where two programs are writing into each other's 
blank common," he explains. "The blank common data in one program is getting 
corrupted when I run another program that uses blank common." 

Now, Sharon's been troubleshooting HP 1000 problems for some time. She is 
immediately skeptical. The two programs are running in completely different 
areas of memory. Moreover, that area of memory will probably be different each 
time the programs are dispatched. She's learned the value of the systematic 
approach, so she starts leading Tom through the process. 

1. Some kind of observation suggests an unanswered question or a problem. 

.3. Paper 1033 



Observation 

Ex ansion of Observation 

Problem 
Definition 

Examination of Possible Solutions 

Conclusion 

Figure 1: The Scientific Method 



Sharon: "What error are you seeing, Tom?" 

Tom: "I'm occasionally getting FMP -11 errors." 

2. The problem is defined and possible solutions are considered. 

Sharon wants to define the problem more precisely, so she 
starts considering the famous W's: Where, What, When, Who. 

Sharon: "When do these FMP -11 errors occur?" 

Tom: "My program PlotCurve gets them when I run 
another program, PlotHisto." 

Sharon: "Are the FMP -11 errors occurring only with 
PlotCurve, or are other programs exhibiting the 
same failure symptoms?" (Who gets this error?) 

Tom: "So far I've only seen it with PlotCurve, but 
I've only got these two programs running at the 
same time. Later, I'll have more programs 
running simultaneously, and they'll use blank 
common too, so they'll have the same problem, I'm 
sure." 

Sharon: "It's possible. What does PlotCurve do, anyway?" 

Tom: "Well, I'm using Image/1000 and the DGL Graphics 
package to plot graphs of collected data." 

Sharon: (looks in the Quick Reference Guide) "An FMP -11 
means DCB not open. Does your program explicitly 
use FMP calls, or are they called by Graphics or 
another routine?" (Who calls FMP?) 

Tom: "I use FMP explicitly to read data from a 
temporary file." 

Sharon: "That's interesting. What's the format of your 
FMPOpen call?" 

Tom: "The call is 'type 
plotfile,'ros' ,3)'." 

FMPOpen(dcb,error, 

Sharon: "Your options are 'ros'? You're using a shared 
file?" 

Tom: "Yes, I am." 

Sharon: (the light's dawning) "ls 
accessing that shared file?" 

-5-

PlotHisto also 

Paper 1033 



Tom: "Yes." 

Sharon: "Does one of the programs close that file by any 
chance?" 

Tom: "Well, they both close the file on termination." 

Sharon: "Hmmrnrn. Does this problem occur only after one 
of the programs terminates?" 

Tom: "Now that you mention it, it might work that way. 
I'm not really sure." 

Sharon: "Well, it sounds to me like a problem closing a 
shared file. Let me check if there's any known 
bugs on that, and call you back." 

3. Controlled experiments are set up and observations are made. 

Sharon can't turn up any problems with closing shared files in her 
bug database and R&D hasn't heard of anything like it, except possibly 
an old bug fixed in the last revision. When she calls Tom back to 
find out if he has old software, he has solved the problem. He had 
neglected to FMPClose the shared file in PlotHisto. If PlotHisto 
closed the file, the problem went away. By using better questions, 
he was able to come up with a more likely cause than the blank common 
theory. Research into the more likely theory produced the solution 
to the problem. 

4. A conclusion is drawn based on the results of experimental and other 
observations. 

Tom explicitly closes all 
especially the shared ones. 

his FMP files now, 

Steps 2 and 3 are the two most important parts of the troubleshooting process. 
Problem definition and experimentation (isolation of cause) are essential to 
accurate and comprehensive troubleshooting. Figure 2 breaks down the problem 
definition process (step 2 of our scientific process) for HP 1000 problems. 
The appendix includes a form that can be used during this process. 

The fourth problem definition step in Figure 2 is particularly important for 
the very effective troubleshooting technique of isolation. Reproducing the 
problem symptoms with the smallest possible set of problem inducers often 
pinpoints the cause. 

For example, reports from the field alerted the HP 1000 factory support group 
that I/O to certain IEEE-488 devices would fail if the FORTRAN subroutine LGBUF 
(use a large buffer) was called with a buffer larger than 128 words. After the 

Paper 1033 -6-



1. Define the environment. 

For an application program, define the subsystems 
being used-- FMP, Graphics, Fortran, Pascal, a 
database package, system library routines. 

For a system problem, define the CPU (A900, A700, 
A600+, E-series, F-series), the operating system 
(RTE-A, RTE-A/VC+, RTE-6/VM, RTE-4B, a 
memory-based system), peripherals (printers, 
terminals, plotters, black boxes), interface cards 
{HPIB, multiplexor, ASIC, DS). 

Check your revisions! Many problems are caused by 
the accidental mixing of revisions (whether your 
own, HP's, or another vendor's). The problem 
symptoms are usually obscure and bizarre. 

2. Define the symptoms. 

This calls for the W's. What are the symptoms? 
What are the meanings of any error messages that 
are generated? When do the symptoms occur? What 
is happening at the time that the symptoms occur? 
Where (in the program, in the operating system) 
does the problem occur? 

3. Define the purpose of the application, if appropriate. 

What is the intended task? Is the application 
attempting to perform this task "legally"? 

4. Determine the history. 

When did the symptoms start occurring? Did 
anything change, and when did this change occur? 
Did the environment change (new hardware or 
subsystems), and when? What has already been 
attempted while trying to solve the problem? Has 
it ever worked? 

Figure 2: The Problem Definition Process 



problem was isolated to any l/O transmission greater than 128 words between the 
HPIB interface card and a particular class of devices, the theory that FORTRAN 
was at fault could be discounted and the actual problem cause deduced. Above 
256 bytes the HPIB card terminates data transfers using the EOI bit. Some 
devices can only terminate using CR/LF. Data can only be transferred in 256-byte 
blocks across that interface card to those types of devices. This fact simply 
needed to be well-documented. 

Troubleshooting Tips 

There's a few quick sanity checks that should be performed during the HP 1000 
troubleshooting process. 

1. Read the appropriate documentation if you're not absolutely certain 
that you've done things correctly. See the appendix, section A.2, 
for a list of useful documentation. 

2. Check the Software Status Bulletin for known problems. Scrutinize 
the problem descriptions. The unwary may waste time chasing false 
leads, while the cautious troubleshooter uses the SSB to avoid 
unnecessary troubleshooting on a known problem. See section A.2 of 
the appendix for information on the SSB. 

3. Check your generation. Look for correct revisions and proper 
configurations. This was the solution in the case of the Puzzling 
Shared Program Problem. When Cari System-Manager tried to run her 
new shared version of CI, the system informed her, "Can only run 
unshared CI." Cari checked the index of her RTE-A System Generation 
and Installation Manual and found a shared programs specification 
command. Her current generation specified zero for the number of 
shared programs in the system. She regenned with one for the number 
of shared programs and solved the case. Elementary. 

Tools and Techniques 

There are a variety of information sources and troubleshooting tools available 
for HP 1000 problems. I'll briefly review those that I've found particularly 
valuable, along with some pointers on their usage. 

Keep in mind that RTE·A and RTE-6/VM are table- and list-driven operating systems. 
Status utilities obtain their information from these tables and lists. System 
troubleshooters may want to examine those tables and lists directly, while 
application programmers obtain ample information for their troubleshooting needs 
from the status utilities alone. Use of the tools discussed below should be 
tailored to the problem at hand. 

1. Symbolic Debug/1000 

This HP product is a powerful application program troubleshooting 
tool. A data sheet describing its capabilities can be found in 
section A.3 of the appendix. 

Paper 1033 -8· 



2. Load map 

A program's load map is obtained using the LL command of LINK or by 
specifying a list LU or file namr as a runstring parameter of l..OADR. 
The load map is most valuable when used with a listing from FORTRAN, 
Pascal or Macro that includes the relocatable address of each 
instruction. 

In FORTRAN, this type of listing can be obtained using the Q compiler 
option or the M compiler option. (See the FORTRAN 77 Reference 
Manual, HP Manual Part Number 92836-90001, Chapter 7.) In Pascal, 
the equivalent compiler options are the CODE_OFFSETS ON compiler 
option and the KEEPASMB compiler option. (See the Pascal/1000 
Reference Manual, HP Manual Part Number 92833-90005, Appendix C.) 
In Macro, the relocatable address is provided in the second column 
of the listing. (See the Macro/1000 Reference Manual, HP Manual 
Part Number 92059-90001, Chapter 1.) 

When using the FORTRAN Q and the Pascal CODE_OFFSETS ON options, 
keep in mind that each high-level language statement is equivalent 
to several relocatable instructions, so that the relocatable address 
for one statement might be 117 octal, while the next statement is 
130 octal. This means there are 11 (octal) relocatable instructions 
needed to perform the action of the first statement. In Macro, 
there is generally a one-to-one correspondence between line number 
and relocatable address, though there are exceptions for comment 
lines and .so on. 

How is this information useful? Let's look at an example. Figures 
3 and 4 show the program TEST's listing and load map. 

When an error message (such as a system error message) provides a 
P-counter value, this value can be calculated by adding the relocatable 
address from the compiler listing to the module start address from 
the load map. Using our example, if a system error message listed 
"2124" (octal) as the offending P-counter value, we can determine 
that the error occurred in statement 5 of our Pascal program. 

-9- Paper 1033 



Pascal/1000 
Ver. 2/2440 

l 0 : $KEEPASMB 
2 0 : Program Test(input,output); 
3 0 
4 0 1 BEGIN 
5 0 1 writeln ('This is a test,'); 
6 0 1 writeln ('This is another test, ') 
7 0 1 END. 

C 0 D E 0 F F S E T S 

STMT OFFSET STMT OFFSET STMT OFFSET 

5 00117 6 00130 

0 Errors detected. 
0 Warnings issued, 

12 Source lines read. 

7 00141 

597 Words of program generated. 

Figure 3: TEST listing 

4:20 pm Jun 6, 1985 
Purging old file: TEST.RUN:::6:89 
Load map: 
PAS.GLOBALINFO 2000 0. 850606.1536 
TEST 2000 597. 850606.1536 

25315 64. named common FMPBUFFER 
FMPREGS 25415 2. named common 

Main 2000 • 25416 9999. words 

Program TEST.RUN:::6:89 ready; 11 pages 
4:20 pm Jun 6, 1985 

Runnable only on an RTE-A system 

Figure 4: TEST Load Map 

Paper 1033 -10-

Thu Jun 6, 1985 3:37 pm 
TEST Page 1 

STMT OFFSET 



3. System Generation Listing 

In addition to configuration information, the gen listing provides address 
information for system modules and drivers. This address information can be 
used as described above for a program load map. The only difference is that 
the gen listing would be used with operating system and driver code listings, 
rather than application program listings. This is useful if you are troubleshooting 
your own driver (or the operating system, as we do in the factory support group). 

If you are on HP support services, make a practice of having your gen listing 
handy when calling HP. HP support engineers will probably ask you to check your 
gen at some point in the troubleshooting process. 

4. Status Utilities 

IO and LUPRN are the I/O status utilities on RTE-A and RTE-6/VM, respectively. 
They provide information about the devices on your system, including the LU 
number, the type of device and the device's availability. Chapter 6 of the 
RTE-A User's Manual (HP Manual Part Number 92077-90002) describes the IO command, 
and Chapter 2 of the RTE-6/VM Utility Programs Reference Manual (HP Manual Part 
Number 92084-90007) describes LUPRN. 

WH and WHZAT are the program status utilities on RTE-A and RTE-6/VM, respectively. 
Depending on the options specified, they provide information about programs and 
memory usage on your system, including program name, partition usage, program 
size and program srgtus. There are more options for WH on RTE-A than for WHZAT 
on RTE-6/VM. WH is described in Chapter 6 of the RTE-A User's Manual, while 
WHZAT is described in Chapter 2 of the RTE-6/VM Utility Programs Reference Manual. 

There are two additional useful status utilities on RTE-A: METER and SAM. 
METER is most useful for system profiling. It has one advantage over WH as a 
status utility. METER continually displays information that is updated about 
every 5 seconds. This is useful for characterizing system activity during an 
error occurrence. SAM lists information about System Available Memory utilization, 
including free SAM information. SAM can be scheduled programmatically, with 
the SAM information returned in the EXEC or FMPRunProgram parameters. These 
utilities are described in Chapter 9 of the RTE-A Utilities Manual (HP Manual 
Part Number 92077-90004). 

RTE-A with VC+ also provides an error logging capability. Through the spooling 
system, the user can direct the system to echo the error messages that appear 
on the system console to a file or a hardcopy device. Again, this can be useful 
for characterizing system activity during an error occurrence. Error logging 
is described in Chapter 2 of the RTE-A User's Manual. 

5. M/E/F-Series Computer Front Panel 

The physical front panel of the M/E/F-Series CPU displays register contents and 
can be used during operating system and driver troubleshooting to examine and 
modify system values. 

Some especially useful activities are: 

-11- Paper 1033 



a. examining the P, M and T registers in standard register mode to 
obtain information on where a problem is occurring, 

b. examining the m, t and f registers (dynamic mapping registers) in 
special register mode to determine what map the system is executing 
in, the contents of the map registers and other dynamic mapping 
system information, or 

c. patching values in the system, such as changing an instruction just 
before a potential problem area into a halt so that relevant system 
or driver values can be checked, or changing a table value to observe 
the effect on the problem symptoms. 

How is this done? By pushing switches and observing lighted indicators. The 
HP 1000 M/E/F-Series Computers Technical Reference Handbook (HP Manual Part 
Number 5955-0282) Chapter 2 describes how to use the switches, while Chapters 
3 and 4 explain the meaning of the lighted indicators. 

6. The A-Series Virtual Control Panel 

The A-Series' Virtual Control Panel allows you to do everything that can be done 
with the M/E/F physical front panel. The difference is that VCP is both simpler 
to use and more powerful. Moreover, you read octal numbers, rather than lighted 
indicators. 

VCP can be used to examine all the important registers. The VCP commands are 
described in Chapter 2 of the appropriate A-Series Computer Reference Manual 
(see the appendix, section A.2, for information on these manuals). 

VCP has a particularly valuable command if you are working with HP on a 
troubleshooting problem. That command is the %W command. This command can be 
used to dump the contents of memory to magnetic tape or Linus cartridge for 
analysis by HP support engineers. Let's discuss how this command would be used 
through an example. 

Our example system has 512K bytes of memory. The device to which VCP will dump 
memory is a magnetic tape drive at HPIB address 4, select code 27. The memory 
dump would be performed as follows: 

a. Inform VCP that memory size is 512K bytes. This is accomplished by 
setting memory location 0 to the number of 64K byte memory blocks 
and memory location 1 to the number of words in the remaining memory 
block that is less than 64K bytes. 

Use the RW command to insure that the dynamic mapping system is 
pointing to the system map:. that is, set the value provided by the 
RW command to 0. Then, use the M command to set the current location 
to 0. Now use the T command to change that location's contents to 
10 octal. This informs the system that there are 8 (decimal) 64K 
byte blocks in memory (512K bytes). Since 512 happens to be divisible 
by 64, location 1 should be set to 0. Again, use the M and T commands 
to do this. This is what the process might look like (user inputs 
are underlined): 

Paper 1033 -12-



VCP> RE 000002 Q 
RW 000000 

VCP> M 001531 Q 
M 000000 

VCP> I 
M 000000 T 000003 1Q 
M 000000 T 000010 

VCP> M 000000 l 
M 000001 

VCP> I 
M 000001 T 000060 Q 
M 000001 T 000000 

b. Direct VCP to dump to the magnetic tape drive. (You've put a tape 
on the drive, of course.) The %W command format is similar to the 
format for the %B (boot) command. In our example, the coumandwould 
be: 

VCP> %WMT4027 

7. The 1630 Logic Analyzer 

This troubleshooting tool is far too powerful for most users' problem resolution 
needs. However, during system-level troubleshooting such as driver debugging, 
the logic analyzer is extremely effective for pinpointing problem code, especially 
when used with the M/E/F-Series• front panel or the A-Series• VCP. The 1630 
analyzer monitors hardware signals and can be configured to trace and store 
instruction fetches. 

HP currently offers 1630 analysis interface cards for the M/E/F·Series CPU, for 
the A600/A600+ CPU and for the A700 CPU. An analysis interface card for the 
A900 should be available by late summer of 1985. 

8. System Analysis Software 

System analysis software tools find and display system tables, lists and entry 
points. They may also have the capability to modify memory or disc, search 
memory or disc for a specified value, perform comparisons on the contents of 
memory locations, manipulate maps, dump memory and produce hardcopy listings of 
system information. 

Some system analysis tools are available through the Interex contributed library. 
You can also write an analysis utility tailored to your needs. An interesting 
approach is to write such a utility as a driver. This puts the code in the 
system map where system tables can be easily accessed. The code can be entered 
via an EXEC control request through the dummy LU associated with the driver. 

It•s Only A Joke 

Let's re-examine our HP 1000 troubleshooting joke. Is there any valuable 
troubleshooting information in it? 

·13· Paper 1033 



1. Halt and reboot. 

RTE-A and RTE-6/VM are table- and list-driven. Rebooting will re-initialize 
these data structures. If the problem symptoms are affected by rebooting, 
those structures are suspect. Thus, we have refined our problem definition. 

2. That•s not supported. 

There's probably a good reason why HP advises against a particular hardware 
or software configuration. You may have just found it. Check to be sure 
you're within tolerances. 

3. That's fixed in the next revision. 

You may have found a legitimate bug in HP's, another vendor's or your own 
code. Pull out a service request form if you suspect it's an HP bug, fill 
in the form and send it to one of the two addresses listed in the preface 
to your SSB. 

4. Read the manual. 

Did you misunderstand the proper procedure for configuring your system, 
or make an error in the use of a software utility? Check it against the 
documentation. 

5. That's not a bug, that's a feature. 

You may have an objection to the design of an HP product. Don't hesitate 
to file a service request asking that the design be changed, but recognize 
that other users may depend on the very design feature to which you object. 

Conclusion 

This paper has reviewed both a systematic approach to troubleshooting, and 
specific tips and tools that can be used to troubleshoot HP 1000 problems. The 
key to effective HP 1000 troubleshooting is the consistent problem analysis 
method. The tools and techniques described above can only provide information 
during the troubleshooting process. This information benefits the systematic 
troubleshooter, but the careless problem solver will become muddled in a morass 
of minutiae. With a consistent approach, problem solving becomes a stimulating 
challenge instead of an unavoidable burden. 

Paper 1033 -14-



Appendix 



Problem Definition 

Environment 
Subsystems: _________ _ 

CPU: O/S: 
Peripherals: _________ _ 

Interface Cards: _______ _ 

Revisions: 

Symptoms 

What: 



When: _______________ _ 

·------------·--· 

Where: __ 

-------·-----

Who: ________ _ 

Purpose 

Intended Task: ________ _ 

--.. --.....----------- --
-----------

History 

Symptoms First Observed: 

Changes: 
--· .- .. --·-- ---------

What Has Been Attempted: 

-·----------·--·--------
- .. ------------------ ... --·------



A.2 Useful Documentation 

A.2.1 RTE-A 

1. RTE-A System Design Manual, HP Manual Part Number 92077-90013 

This manual is designed to provide information that helps the 
user configure a system and troubleshoot system difficulties. 
It includes information on system data structures, system 
memory usage, and functions performed by system modules. The 
system tables chapter is especially informative. 

2. RTE-A Quick Reference Guide, HP Manual Part Number 92077-90020 

This little gem of a manual exttacts useful information from 
other RTE-A manuals and assembles it all into one handy guide. 
The tables and error messages sections are particularly 
convenient for troubleshooting. 

3. HP 1000 A900 computer Reference Manual, HP Manual Part Number 
02139-90001 

HP 1000 A700 computer Reference Manual, HP Manual Part Number 
02137-90001 

HP 1000 A600/A600+ computer Reference Manual, HP Manual Part 
Number 02156-90001 

These three reference manuals describe the hardware 
architecture and instruction sets of the A-Series CPU's. They 
are indispensible for system-level troubleshooting (for 
example, driver debugging). Valuable information includes 
instruction word formats and VCP commands, useful for 
troubleshooting with VCP and a logic analyzer. 

4. RTE-A Driver 
92077-90011 

Reference Manual, HP Manual Part Number 

This should be instantly accessible during any I/O 
troubleshooting. It provides information on proper 
configuration, correct format of control statements and legal 
uses of drivers and I/O cards. 

5. RTE-A System Generation and Installation Manual, HP Manual 
Part Number 92077-90034 

Always check your gen. Always check your gen. Always check 
your gen. This manual and the RTE-A Driver Reference Manual 



provide the information you wi1l use to check your gen. 

6. RTE-A Technical Specifications 
EXEC Control, HP Part Number 92077-90027 
I/O Control, HP Part Number 92077-90028 
Link Loader/Generator, HP Part Number 92077-90029 
BOOTEX/BU:ILD, HP Part Number 92077-90031 
Drivers, HP Part Number 92077-90032 

These documents are not very useful unless you also have access 
to source code. However, used in conjunction with the source 
code, they are extremely informative on the internals of the 
operating system and how programs and drivers interact with the 
operating system. I advise against using this information to 
tinker around with tables and lists, but a better understanding 
of precisely what is happening is obviously helpful for both 
troubleshooting and efficient design. 

7. RTE-A Index and Glossary, HP Manual Part Number 92077-90036 

How to find out where almost everything is documented in the 
RTE-A manual set. 

A.2.2 RTE-6/VM 

l. HP 1000 M/E/F-Series Computers Technical Reference Handbook, 
HP Manual Part Number 5955-0282 

This manual is the M/E/F-Series equivalent of the A-Series 
Computer Reference Manuals. Chapter Two discusses the use of 
the front panel for examining registers. 

2. RTE-6/VM QUick Reference Guide, 
92084-90003 

HP Manual Part Number 

This is the RTE-6/VM equivalent of the RTE-A QUick Reference 
Guide. Keep one copy by your system console and one by your 
terminal. 

3. RTE-6/VM System Manager's Reference Manual, HP Manual Part 
92084-90009 

RTE-6/VM on-Line Generator Reference Manual, HP Manual Part 
92084-90010 

It's even mo+e important to check your gen under RTE-6/VM, 
since the generation procedure is more obscure than under RTE-A 
(although the generator is no longer much slower). These 
manuals and the appropriate driver manuals provide the 



information necessary to do that checking. 

4. Driver Manuals 

RTE-6/VM driver information is not all in one manual as it is 
for RTE-A. However, manuals are available £or the various 
drivers. 

S. RTE-6/VM Index to Operating System Manuals, HP Manual Part 
Number 92084-90001 

As the title suggests, this manual indexes a1l the RTE-6/VM 
operating system manua1s. 

A.2.3 Miscellaneous 

l. HP Computer Users Documentation Index, HP Manual Part Number 
5953-2460(D) 

This manual tells you the part numbers and titles of all sorts 
of interesting documentation, including those driver manuals 
mentioned above. 

2. The Communicator/1000 

How do you tell if you have the correct revisions? You use 
your Communicator/1000 (formerly the Software Update Notice), 
or you look at the Software Numbering Catalog file. (The 
Communicator/1000 document is supplied as part of your Update 
service. The Software Numbering Catalog file is included as 
one of the product update files which are supplied on magnetic 
tape or other media, again as part of your update service. The 
Software Numbering Catalog file is always named with the 
product number prefaced by an A. For example, RTE-A has the 
product number 92077, so the SNC file is A92077. Likewise, 
RTE-6/VM with product number 92084 has SNC file A92084.) You 
then list the relocatable file (for example, %FMGR) and compare 
the revision code in the relocatable with that in the 
Communicator/1000 current Revisions chapter or the Software 
Numbering Catalog file. You can also tell what a module's 
revision codes are from gen listings and load maps. 

3. The Software Status Bulletin 

Another document that comes as part of your update service, the 
Software Status Bulletin lists known bugs in HP 1000 products. 
You can compare your symptoms against the known bugs. The 



Software Status Bulletin also describes workarounds where one 
is available, and fix information (the cause and the revision 
in which the bug will be fixed) when known. 



A.3 Symbolic Debug/1000 Data Sheet 

Symbolic Debug/1000 

HP Program Development Software 

Symbolic Debug/1000 is an interactive, symbolic debugger 
for source-level FORTRAN, Pascal, compiled BASIC, and 
Macro programs on RTE-6NM and RTE-A based HP 1000 
systems. Variables are displayed or modified using names 
from the original program. Load maps and program list­
ings are not needed. One and two word integer, two, three 
and four word reals, logical, complex, character, Hollerith 
and most structured data types are supported. Symbolic 
Debug resides in a separate partition from the program 
being debugged to eliminate program code space intru­
sion. A single-stepping, source-line capability displays the 
current and adjacent lines during execution. Conditional 
breakpoints can be used to monitor variable values and 
stop the program at a specified value. Using the profiling 
capability, the user can determine which subroutine is 
using the most program time and optimize the code to 
decrease execution time. A small, simple command set, the 
use of dozens of English error messages, and an on-line 
"help" facility make Symbolic Debug/1000 a friendly and 
powerful programmer's productivity tool. 

Features 
• Interprets all code types and symbols used 
• Can display source code during execution 
• Non-intrusive - no Symbolic Debug code resides in 

user space 
• Supports EMA and RTE segmentation 
• Supports all simple and most structured data types 
• Program profiler isolates slow subroutines 
• Source line-by-line single stepping capability 
• Up to 50 conditional breakpoints to stop program at 

specified variable value 

Functional description 
Symbolic debug. Symbolic Debug recognizes the names, 
types, and locations of all of the variables and routines 
used in the program, eliminating the need for load maps, 
symbol table dumps, and mixed listings. The value of a 
variable can be examined as fast as its name can be typed. 

Interactive debugging process. The user interacts with the 
program as it runs and can examine or alter variable values 
while the program runs without having to insert state­
ments into the code. Bugs can be found fast since there's no 
need to recompile and load every time a new bug occurs. 

Separate partition. Symbolic Debug resides in a 32-page 
memory partition separate from the program. No code 
space is lost and no extra statements are added in order to 
debug. The program being debugged runs exactly the same 
as it would normally. No bugs are introduced by the 
debugger, and more importantly. bugs don't disappear 
when the debugger is present, only to reappear when the 
debugger is not used. There is no need to restructure a 
program just to debug it. 

40 
41 
42 
43 c 
44 c 
45 c 
4b 

> 47 
48 
49 
50 c 
51 c 
5l c 
53 
54 

F/,"0'9 H£WL£TT 
~~PACKARD 

product number 92860A 

KE • DCOS (ANG) 
IM • DSIN (ANG) 
IF ( .NOT. NEW .ANU. K•KO .Gt:. l ) GO ru 4 

COMPUTt: TWllJl)J...ES If N.t::Ct:SSARY ••• 

U( 1) • DCMPLX( Kh , ·SlGN(IM,OBLE(K)) 
DO ) I • 2 ,L2N 
U(l) • U(l·l)*U(l·l) 
KO • K 

BUTT.t::KFLIES. 

SHY2 • N 
DO 7 STA<it:: • l ,LZN 

U&B.A) b 47/f!t 
Breakpoint set at 41/FFT 
llEB.A) p 
Break at 4 7/FFT 
OED.A> d L2N new re u(l) 
l.2N • 5: NEW• true RE • 0.9807H5:l82244344 
U(l) • (U.980785282244344 ,•0.19~090312760225) 
l>E».A> m L2N b 
L2N' 5 •> b 
l>Eli.A> 

Source-level symbolic. Symbolic Debug recognizes what 
line of source code is about to be executed, and identifies it 
on the CRT display. Programs can be debugged in the 
language in which they were written, without the need for 
inverse assemblies or mixed listings. There is no need to 
list files at all. 

Detects RTE program violations. After a detected violation 
such as an attempt to access protected memory, memory 
locations can be examined to determine the cause of the 
problem. Symbolic Debug pinpoints the line of source 
code that caused the error, giving the operator an inter­
active tool for catching system violations. 

Standard and conditional breakpoints. Up to 50 break­
points enable Symbolic Debug to monitor program var­
iables and halt program execution if a variable reaches a 
specified value. A large number of possible paths can be 
trapped and values can be quickly tracked through the 
program to determine where they go wrong. 

Supports transfer files and message logging. Non­
interactive debugging sessions may occur where users can 
submit debug commands in a file, and have results logged 
in another file. This automates the debugging process, so 
users don't have to wait for bugs whose symptoms may 
take hours or even days to occur. 

Built·in profile monitor. Helps isolate slow parts of the 
program. High-level analysis of activity distribution 
within the program helps to identify time-consuming 
subroutines that should be optimized in order to improve 
execution time. For example: 



Symbolic Debug/1000 

Profile for program TEST 

Routine 

OTEST 
SUBR 
OTESl 
UTILITY 
OTESO 
Other (your rode) 
Other (libraries) 

Amount 

39% 
27% 
16% 
9% 
3% 
2% 
3% 

Histogram 

Profile for module OTEST: 39% of total time spent here 

Line No. 

7 
8 
9 

13 

Amount Histogram 
20°/o ..................... . 

11% 
33°/o ........... ,. .......................... . 
36°/o ......................................... _ 

Debug command summary 
B <Location> 
C<Location> 
D <Locations> 
E 
Fl< string> 
G <Location> 

H 
l<fl(f2)> 

L <Location> 

M <Loe> <val::> 
0 

P <line> 

s 
T <Location> 

V <number> 

w 

Sets breakpoint al specified location. 
Clears breakpoint at specified location 
Displays variable. 
Aborts your program and exits Debug. 
Finds string in source file. 
Allows your program to proceed from 
specified location. 
Displays histogram. 
Executes a set of commands from a file 
(fl) and optionally logs the output to f2. 
Lists a screenful of source code in your 
program. 
Modifies the value of variable. 
Enters overview mode (enables profile 
monitor). 
Allows your program to proceed to the 
next breakpoint or specified line 
Steps to the next line of source code. 
Shows location executed without 
stopping program. 
Changes the number of source lines 
displayed on screen. 
Shows callers of the current subroutine. 
Help facility 

Environment 
Operating System 

HP 1000 Computer System operating under RTE·A or 
RTE·61VM, revision code 2226 or later. 

Supported Program Languages 

92836A FORTRAN 77, Macrol1000, PascalllOOO• and 
BASIC/lOOOC (Compiled code)•. 

•Effective with A.84 revision. 

Ordering information 
92860A Symbolic Debug/1000 

92860A Symbolic Debug/1000, which must be ordered with 
Use Option 600, 700, or 890, includes: 

1. Symbolic Debug11000 software on one of Media Options 
020-051. 

2. Symbolic Debug/1000 User's Reference Manual 
(92860-90001) 

3. Symbolic Debug/1000 Configuration Guide 
(92860-90002) 

92860A Media Options 

020: Software on 264x Minicartridges 

0~2: Software on CS/80 cartridge tape. 
041: Software on 1.2M byte flexible disc. 
042: Software on 5-in. Minifloppy Discs. 
044: Software on 3.5-in. Microfloppy discs. 

050: Software on 800 bpi mag tape. 
051: Software on 1600 bpi mag tape. 

92860A/92860R Use Option 

600: Use in A600+ or A600 system. 

601: Upgrade from previous version of 92860A/R Opt 600 
to latest version of same for customer NOT on sup­
port service. 

700: Use in A700 or EIF·Series system. 
701: Upgrade from previous version of 92860AIR Opt 700 

to latest version of same for customer NOT on sup­
port service. 

890: General license to use in A900 system or any other 
AIE/F-Series system, including right to purchase 
92860R Opt 600/7001890 right to copy products for 
additional systems. 

891: Upgrade from previous version of 92860AIR Opt 890 
or 700 to latest version of 92860AIR for customer NOT 
on support service 

92860R Right to Copy Symbolic Debug/1000 for Use 
on an Additional Computer System 

The 92860R Right to Copy product, which must be ordered 
with Use Option 600, 700, or 890, is available only to 
customers who have previously purchased a 92860A 
product. 92860R consists of: 

1. The license to make one copy of software purchased 
with 92860A for use on an additional computer 

2 and 3. Same as for 92860A. 

Software Support Products Available 
See page 1-4 of Volume I of the HP 1000 Software Data 
book. 



A.4 Bibliography 

Adams, James L. (1974). 
Better Ideas. W. H. 

Conceptual Blockbusting, A Guide to 
Freeman and co. , San Francisco. 

Reilly, William J. (1947). The Twelve Rules for Straight 
Thinking, Applied to Business and Personal Problems. 
Harper & Brothers, New York. 



1034. FIXED/REMOVABLE DISK DRIVE PERFORMANCE ON THE HPlOOO 

Craig Fix 
Hewlett-Packard Co. 

P.O. Box 39 
Boise ID 83707 

INTRODUCTION 

Fixed/removable disc drives have played a major role in the area of mass storage 
for many HPlOOO applications. Those products currently in use include the 7900, 
790S, and 7906 disc models. On May 2, 198S, Hewlett-Packard introduced the 
7907A. The 7907 is HP's newest fixed/removable disc drive featuring: 

- CS/80 controller / HP-IB interface 
- 20.SMb fixed/20.SMb removable formatted capacity 
- SS pound weight 
- l/S the size of the 7906M 

Push button save/restore capability in two minutes 
- Lower cost per Mb 

Although the above features are highly attractive compared to it's MAC drive 
predecessors, how well does the 7907 compare to the 7906 in the area of performance? 

This paper will focus on comparing the 7907 and 7906M in the areas of random 
and sequential access environments as well as backup on the HPlOOO A900 and 
E-Series model computers. 

REVIEW OF COMPONENTS AFFECTING PERFORMANCE 

Before performance results are presented, it may be helpful to review some of 
the components affecting 1/0 performance of the 7907 and 7906M on the HPlOOO. 

SOFTWARE TIME 

Software time, the first level in an I/O call, includes the time to launch the 
request, and the time for the request to propagate through the 1/0 subsystem in 
RTE. For programs using EXEC reads and writes, this time is very small compared 
to total l/O time. This time will vary depending on CPU model, operating system, 
and disc driver being used. 

DISC CONTROLLER TIME 

The controllers used in the 7906 and 7907 are very different. The 7906M uses 
the 13037 multi-access controller (MAC), whereas, the 7907 uses a single board 
CS/80 controller. The MAC controller, a hardware intensive device has very 
little overhead, and can process commands very fast. The CS/80 controller has 
much of it's functionality migrated to firmware. This results in a more cost 
effective and more reliable disc drive, as well as providing significant 
improvements in I/O performance in multiple drive system configurations. 

Table 1 compares the disc controller overhead associated with the 7907A and 
7906M. 

Paper 1034 



DISC MECHANISM TIME 

The lowest level affecting 1/0 performance is the time required to seek to the 
target address and transfer the data. Seek time is primarily a function of the 
acceleration and deceleration capability of the actuator. Both the 7907A and 
7906 have linear actuators. Their average random seek times are shown in Table 1. 

Average latency, another component of disc time is equal to one-half the time 
to complete one revolution of the disc. 

Transfer rate, the final component of disc time is affected by three items: 
(1) rotational latency, (2) density, (# sector/track), (3) and to a lesser degree 
the time required to transfer the data to the host. 7906M are shown in Table 1 
below. 

Table 1. Factors Affecting Performance 

AVERAGE AVERAGE AVERAGE SECTORS 
DISC CONTR.011..ER CONTR.011..ER RANOOM ROTATIONAL TIME TO PER 
MODEL TYPE OVERHEAD SEEK DELAY TRANS. ll<b TRACK 

7907A CS/80 4.0 ms 30 ms 8.5 ms 1.8 ms 64 
7906M MAC 16 bit// .5 ms 25 ms 8.3 ms 1.1 ms 48 
7906M MAC HP-IB .5 ms 25 ms 8.3 ms 1.1 ms 48 
Opt.102 

PERFORMANCE TESTS 

Performance tests were conducted with the 7907 and 7906 using the A-Series Model 
A900. Results for the E-Series 2109 with High Performance Memory were uncompiled 
at the time of submittal. 

The following tests were conducted: 

1) Random Access Performance 
Comparison of drive performance using randomly generated addresses 
for EXEC Read requests using lK to SK byte transfer lengths. 

2) Sequential Access Performance 
Comparison of drive performance using sequential addressing and 
EXEC Read requests for .25K to 4K byte transfers. 

3) Backup Performance 
Comparing how the 7907 and 7906 perform when copying the same set 
of files from the fixed disc to various backup devices using RTE 
utilities. 

RANDOM ACCESS RESULTS 

Figures 1 and 2 illustrate how the performance of the 7907 and 7906 compare in 
random access environments on the A900. In the single drive comparisons, the 
7906M is only slightly faster than the 7907 at 1 Kilobyte transfers. Note in 

Paper 1034 



Figure 1 that the difference diminishes slightly with increasing transfer size, 
since it takes less time for a sector to pass under the head on the 7907 than 
the 7906. 

The 7907 can provide significant improvements in data throughput in A-Series 
system configurations designs where multiple disc mass storage solutions are 
employed. Note in both charts that the multiple 7907's per HP·IB improve 
aggregate data throughput, whereas additional 7906's per 13037 controller would 
yield no more throughput than one 7906. This improvement in multiple drive 
performance is possible due to the design of the CS/80 controller, and the I/O 
subsystem design in RTE-A. Using dedicated HP-IB interfaces for each disc can 
further improve I/O performance where multiple disc configurations are needed 
using the 7907 or 7906 Option 102. 

SEQUENTIAL ACCESS RESULTS 

Figures 3 and 4 represent the performance characteristics of the 7907 and 7906 
under a sequential access environment. Here, the 7907 yields a five to ten 
percent improvement in performance through these transfer lengths. The performance 
edge of 7907 is attributed to the rate at which data can be read off the disc. 
Remember, 7907 has 64 sectors per track compared to 48 for the 7906. However, 
both drives have nearly the same rotational latency. 

BACKUP PERFORMANCE 

Often, the time to backup data on the disc drive is of great importance to the 
user. In addition, the availability of the disc during the backup may be just 
as important. The backup performance benchmarks were conducted using files 
under the new file (CI) system. All files were contiguous on the disc and 
accessed in the same sequence during backup. Both RTE disc to disc and disc/tape 
utilities were used. 

A significant feature available on the 7907 is the ability to conduct a fixed 
removable disc backup in two minutes with the touch of a button. Restores of 
the removable disc to the fixed are possible in two minutes also. Backup 
performance for RTE·A are summarized in Table 2. Unfortunately, data for RTE-6 
was uncompiled at the time of submittal. Clearly, the push button backup/restore 
provides the fastest backup possible and thus, minimizes system downtime. RTE-A 
disc to disc and disc/tape utilities perform nearly identically using the 7907 
or 7906M Opt. 102. 

UTILITY 
Push Button 
COPYL 
TF 
TF 
TF 
ASAVE 
ASAVE 
ASAVE 

Table 2 7907 vs. 7906M BACKUP PERFORMANCE 

TO DEVICE 
Rem. Disc 
Rem. Disc 
7970E 
7974A 
9144A 
7970E 
7974A 
9144A 

·3-

7907A 
11. 71 Mb/min 

8.99 Mb/min 
1.24 Mb/min 
1.20 Mb/min 
1.02 Mb/min 
3.70 Mb/min 
8.32 Mb/min 
1.97 Mb/min 

7906M 
Opt. 203 
Can't Do 
8.91 Mb/min 
1.37 Mb/min 
1.30 Mb/min 
1.04 Mb/min 
3.68 Mb/min 
8.14 Mb/min 
1.92 Mb/min 

Paper 1034 



SUMMARY 

This paper has presented the performance results of the latest fixed/ removable 
disc drives from Hewlett-Packard. For A-Series systems, the 7907 provides 
comparable performance to the 7906 in random and sequential access I/O bound 
environments.. The 7907 can yield even more significant gains in perfonnance in 
multiple spindle configurations with other 7907's or CS/80 fixed disc drives. 
In addition, the 7907 provides this level of performance while at the same time 
providing more capacity, lower cost, and less maintenance than the 7906. Although 
the results for RTE-6 were not presented here, they will be available at the 
time this paper is presented. 

Paper 1034 -4-



79061.t 
Opt. 102 

7907 and 7906M Performance for Single/Multiple Drives 

Random EXEC Reads Using on A900 

(1) 7907 (2) 7907's (4) 7907's 

~ 
l/O'• P•' Sec. j 

'l ' . ., .............. 
.,- ·-.......... .............. 

t ·---·---. 
---·---·---·--·-

40 

"' ........................ __ 

--------------------------
Jot-

-----20 I- ---------------
10~ 

"' 

-I 

-I 

-I 

-I 

01-~-L~~~~~.L_~~~~-'-~~~~---'~~~~~-'-~~~~-'-~~~~---'~~~~~-'-~--' 
t Kbyte 2 Kbyte 3 Kbyte 4 Kbyte 5 Kbyte 6 Kbyte 7 Kbyte 8 Kbyte 

Transfer Size 

Flgure 1 



79061.! 
Opt. 102 

7907 and 7906M Performance for Single/Multiple Drives 

Random EXEC Reads using an ASOO 

(1) 7907 (2) 7907'• 

Aggregate Transfer Rate (Kb/Sec) 

(4) 7907'• 

JOO,-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--. 

200 

100 

-- --------- -- ------
~-----

~---­
/ ... -

,--
,/ 

-------------- --------------/; 

o.__~_._~~~~~~~~~~~~~~~~~~~.._~~~~.__~~~~'--~~~--'~~~ 

1 Kbyte 2 Kbytea 3 Kbytes 4 Kbytea 5 Kbytea 6 Kbytea 7 Kbytes 8 Kbytea 

Transfer Size 

F1gure 2 



Sequential Access Performance Results for the 7907 and 7906M 

Various Transfer Lengths using EXEC Reads on the A900 

7907A 

rzz;~/~~/1 

7906M 
Opt. 102 

I I 

I/O's Per Second 
50,..:.._~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--, 

///// ·-· 
///// ///// 

///// ///// ... ,, 
/// //// ///// 

////// / ///// /// // 
/// // //// / // /// 
// /// /// // // //// 

//",,/// ///",,// /~~///'\------..., 
///~// :///",,/ ///~// 
/// // /// / /// // 

// /// /// // // "'""' '. '/ 
/ / ",, / / / / / / ",, / / / / ",, / / / // j / / / ~ A------, //,-~// :/,-,.~/ ///~// ,.,.~/// 
/// // /// / ,.,.,. // / /// 
// /// /// // // /// //// 

"',-",,"',-/ //,.~// //~/// ~~///: ,./,.~// /,./,.~/ //,-",,"',- //~/// 
/// // //// / /// // ,.,, /// ///~,.,. :///~/ //,,",,,.,. ,.,.~"',-,, 
/// // /// / /// // // ""',-///~// ://,-",,/ ///j// //j"',-,, 
/// // /// / /// // // //,-///~// :""',,j"' ///~// //",,"',-,, 
/// // /// / /// // // /// 

"'",,",,"'/ ://,.",,/ //,.",,// //~/// 
/// // /// / /// // // /// 
,.,,/",,// :///~/ ///",,// /,,",,/// "',-,. // /// / /// ,.,. // ,,,,,. 
""',-",,// "'""',.,.,/ //,,",,// ,.,.~/// 
/// // //// / ,.,.,. ,.,. // /// ,/ /// /// // ! // /// / //// 
/ //// ,.,. /// / //,.,. //// / ,.,. /// /// /// / 
""',-/// //// / /// "',- // /// 
/ /,.,. /// "',- // "',-,. / //// / // /// / //// / / 0 / 

50 

40 

30 

20 

10 

.25 Kbyte 1.0 Kbytes 2.0 Kbytes 4.0 KbytH 

Transfer Length (Kbytes) 

Flgur• 3 



~ 
tO 0 
0 0 
Ol O> ,....,,, <( 

"'O 
Q> 
.c c ...... 

0 c 

r-.... 
0 

0 O'I 

Ol "O 
0 

r-.... Q> a:: 
<I> u .c ...... w 

x 
L.. w 
0 

OI .._ 
c 

(/l 'iii ...... :J 
::i O'I rn .c <I> ...... 
~ OI 

c 
(/l ~ 
(/l 

<I> L.. 

u Q> .._ 
u O'I 
<{ c e 
0 I-

'.µ O'I 
c :J 
<I> 0 
::i ·;: 
CT g 
<I> 

en 

::I!~ u "' ... 0 • 
OI <44 

" 0.. 0 

~ ~ 
0 
OI 

" 

........ 
(J 
Q> 

(/) 

.......... 
JJ 
:s:: ....... 
Q) ...... 
0 a:: 
L.. 

~ 
OJ 
c 

~ 
Q) ...... 
0 
OI 
f 
OI 
OI 
<( 

0 
0 
N 

0 
II) 

.. .s 
~ ......................... _......,............................................ ~ 

0 
0 

0 
II) 

0 

0 
c-i 

........ 
OJ 
Q) 

~ 
:s:: ....... 
..c .... ...... 

f OI 
c ::J 

~ 
.,, 
It 

L. 

~ 
OJ 
c 
0 .= 



1035. BUILDING AN IN-HOUSE TIME SHARE SERVICE CENTER 

R. Arthur Gentry 
AT&T Communications 

811 Main Street 
Kansas City, MO 64141 

This paper will describe how the Midwest Region of AT&T Communications set up 
an in-house time share system for use in their Regional Headquarters building. 
The system currently has 5 major applications running, being used by 5 departments. 
The paper will describe each application as well as overall system design and 
operation. 

The System 

The system currently consists of 3 F Series processors, 422mbytes of disc storage, 
2 BOObpi tape .drives, 1 1600bpi tape drive and 1 tri- density tape drive. Each 
processor is equipped with 2mbytes of high performance fault control memory, up 
to three 8 channel multiplexors and 1 I/O extender. (See figure 1) All three 
processors are linked together using DS/1000 IV over a X.25 network, hardwired. 
The system also has a 2608S high speed line printer for shared use. All terminals 
are hardwired to the system either through EIA line extenders, direct connection 
or 9600bps data modems over dedicated lines. 

The processors are divided by major applications, with all users having remote 
logon capability to get to any application. Processor #l has a CAD package on 
it only. It is a very disc intensive application and studies are currently 
under way for the installation of a solid state disc for this. Processor #2 
has all our major database applications and processor #3 is our miscellaneous 
applications. 

Each group of users has its own terminals, printers, plotters, etc. and through 
the use of remote mapping, each appears to be connected to which ever processor 
the user is currently logged into. Processor #3 is set up to allow restoral of 
processors #l or #2 in the event of a system failure, as they have our most 
critical operations on them. 

Transmission Engineering 

This group is in a remote location with two HPlSOs and several HP-IB devices 
working over a 4 channel statistical multiplexer on a 9600bps data modem. The 
HP-IB devices work over a 37201A HP-IB to RS232 extender and include a 9872C 
plotter, a 9111A digitizer and a 2225A printer. They have applications running 
on two of the processors. Their main application, on processor #3 is an in-house 
designed project management package. It is used to write project sheets for 
the design and installation of communication lines to our various remote relay 
stations. They also access processor #l for the CAD package to make drawings 
of the layouts. 

Graphics 

This group is made up of mechanical draftsmen and graphics artists. They are 

-1- Paper 1035 



responsible for all the graphics arts projects for the region as well as a large 
percentage of the mechanical and electrical drawings for our various engineering 
departments. The draftsmen are using the Holguin CEADS/CADD 2000 package for 
all their mechanical and electrical drawings. The graphics artists are using 
GRAFIT/1000 for charts and posters used by various management, marketing and 
public relations personnel. They currently have six 2627A terminals e/w 17623A 
tablets, one 2648, connected via either an 8 channel multiplexor, EIA line 
extenders, or direct cabled; two 7475B plotters, one 7585B plotter, one 9872C 
plotter and one 2632A printer all connected via two 37203A HP-IB extenders and 
one 44" X 60" CalComp digitizer connected via the multiplexor. The users in 
this group access processor #l for the CAD package and processor #3 for the 
GRAFIT package. 

Construction Engineering 

This group is responsible for the design and construction of our various remote 
relay buildings. They have two HP150s and a 2627A terminal connected via EIA 
line drivers and a 7475B plotter, 9111A digitizer and a 2632A printer cormected 
via a 37203A HP-IB extender. They access processor #l for the CAD package for 
their mechanical and electrical drawings, and processor #2 for their database 
of remote buildings. This database contains all the information on each site, 
including; when built, how much, continuing costs, modifications, inspection 
reports, drawing records and accounting information. 

Medical 

Approximately two years ago, the company started an in-house fitness program 
for its employees. This program proved to be so popular, it generated a tremendous 
amount of paper work for the center staff. A database and analysis system was 
designed to help elevate some of this work. The database contains all the 
pertinent medical information for each participant, their prescribed workouts, 
and an automatic method for each user to receive their workout information and 
store results back into the database for later analysis. They have 1 150PC e/w 
a 2225A printer for use by the center personnel and a 150 terminal e/w a thermal 
printer for use by the center participants. 

Real Estate Engineering 

This department is responsible for facilities planning for our various administrative 
offices in the region, including floor space planning for our new headquarters 
building, just now being built. Using the Holguin package, which has a built 
in "Bill-of-Materials" package, they are able to generate a list of how many 
desks, partitions, files, electrical outlets, phones, etc. that are needed for 
each floor. Also, using the "layering" concept, they are able to generate plots 
of 1) the "raw" floor, 2) electrical only, 3) collllllUili.cations only, 4) mechanical 
only, or 5) any combination of these. 

Future Directions 

One of the major communications enhancements to be installed in our new building, 
is a LAN. It is our intention to interface this system via that LAN to all 
terminals not requiring graphics. The reason for not including graphics 
capabilities is, it is felt that with current LAN technologies, the graphics 

Paper 1035 



traffic would totally overload the network. We also plan on bringing our R&D 
lab on line to do their design drawings on the system. One of our major goals, 
is to bring all our regional drawings, approximately 20,000, on line and to 
place numerous terminals in all of the engineering departments, so any engineer 
can have instant access to the latest version of any drawing, and also have the 
ability to do "source level" modifications to those drawings. Currently all 
drawings are "penciled" by the engineer and sent to the graphics department for 
the actual master drawing changes. Another major tmdertaking will be to interface 
our WANG word processing center through the 1000 to a photo typesetter for high 
quality printing. 

We anticipate the system growing to over 100 terminals accessing over 30 major 
applications within the next 2 years. 

THE APPLICATIONS 

Computer Aided Design & Drafting 

We are using a 3rd party software package called CEADS/CADD 2000 by Holguin and 
Associates of El Paso, Texas. After much searching for a package that would do 
the type of operations needed, we found that this package had the best 
price/performance of any we found useful. This package has many outstanding 
features including, layering, ease of use, short training time, automatic 
dimensioning, good response time, and a "bill of materials" package. Our only 
major problem has been disc contention. The package does extensive disc I/O 
and with 15 users all doing CAD work simultaneously, the disc gets thrashed very 
heavily. We are currently studying the possibility of installing a solid state 
disc for the package work files. Investigation shows that we can expect a 30% 
improvement in system response by not using an electo-mechanical disc. 

Our drawing library currently contains over 3000 drawings and is growing at a 
rate of 10 to 15 per day. 

Business Graphics 

For our business graphics, charts, announcements, etc. we were using TELEGRAF 
on a time-shared main frame over 1200bps dial-up modems. Since we were running 
up $1500.00 per month in time-share charges, we decided to investigate moving 
our work over to the 1000. We found the GRAFIT/1000 by Graphicus of Santa Clara, 
California, is able to replace almost all of our current TELEGRAF use. It is 
very friendly to use, and allows the user to "see what you've done" as he goes. 
That, along with the ability to run at 9600bps made the loss of those few TELEGRAF 
features very painless. Also, the software writers have been excellent in 
incorporating our suggestions into their package, so that we expect GRAFIT to 
totally replace TELEGRAF in the very near future. As of this time, we have 
totally cut the strings to TELEGRAF, and were able to transfer most of our 
TELEGRAF command files over to the 1000 for use by GRAFIT with very few generic 
modifications to the commands. 

Project Management 

Our Transmission Engineering group is responsible for designing and implementing 
projects to install communications equipment at our various remote repeater 

-3- Paper 1035 



locations. This was a totally manual operation, with the engineer drawing the 
circuit layout and writing up the ordering information for the actual equipment. 
We have now totally mechanized this, with a tremendous reduction in the amount 
of time it now takes the engineers to get a project out. The circuit drawings 
are now done on the Holguin CEADS/CADD package, and the order writing is handled 
by an in-house developed project writer. The engineer now needs only to 
"fill-in-the-blanks" on the CRT screen, and the system takes care of producing 
the actual project letters. This information is databased for easy retrieval 
and modification if necessary. 

Fitness Center 

The medical department needed a method of keeping track of who was using the 
company fitness center and how much their overall health improved by use of the 
center. We developed a totally mechanized package which allows the center users 
to "log-in", receive their personal workout prescription, and when leaving, log 
their progress. This data is then analyzed by the medical staff for trends in 
employee wellness. 

When a user enters the center, they use a HPlSO Touchscreen terminal to enter 
their Social Security number, after the system confirms the identification, it 
prints via the built-in thermal printer the users workout list. When logging 
out of the center, the user enters various information, telling the system what 
he/she did that day. The Touchscreen works very well, as the users are not 
dripping sweat and grime into the keyboard. 

The center staff has application programs that allow listing of current users, 
analysis of center usage, input of user base and testing data, maintenance of 
locker assignments, print individual fitness profiles, review workout cards that 
have been flagged by the system as abnormal, and analysis of health related data. 

BUILDING THE SYSTEM 

All the major system components, CPU's, disc drives, tape drives, some of the 
terminals, and printers, were "salvaged" from other company locations that had 
purchased them and no longer needed them. Several other items, such as printers, 
disc controllers and terminals were purchased on the used equipment market. 
The remainder, CPU upgrade kits, multiplexors, additional terminals and plotters, 
were purchased new from HP. .This made our initial investment in the system very 
low. For 3 CPU's, 5 disc drives, 4 tape drives, numerous terminals, printers 
and plotters our total hardware investment was less than $50,000. 

All software was purchased "new" from HP or other 3rd party vendors, and with 
carefull system planning, the only software we needed right-to-copy on is the 
operating system and the DS/1000 IV package. This helped keep the software 
costs low as well. Our total investment in software was approximately $100,000, 
with half of that being spent on the CAD package. 

Another item that has helped keep the system operating costs low is hardware 
maintenance contract£. We elected to "split" our various pieces into criticality 
groups and write contracts accordingly. The items the system can't live without, 
CPU's and disc drives, were put on a standard 4 hour response. Important, but 
not critical items such as plotters and the system printers, were put on next 

Paper 1035 -4-



day contracts; and the remainder such as terminals, small printers and plotters 
were put on a once per week contract. This arrangement saved us several thousands 
of dollars over putting everything on the standard same day service contract. 

All terminals are interfaced directly to the processors via either direct RS232 
cables, EIA line drivers or 9600bps data modems. We have found, by using good 
quality shielded cables, we can extend the RS232 lines to 250 feet with little 
problem. You must, however, be very carefull about running the cables over or 
near any AC power lines, as noisy power can easily introduce noise into the 
cables. For distances over 250 feet but less than 2000, EIA line drivers have 
worked very well. They are totally transparent and do not hinder line rates at 
all. Where there is a cluster of terminals, an EIA line driver multiplexor is 
a very economical choice, up to 8 9600bps terminals or devices can share one 
EIA 4 wire cable, with no noticeable degradation in performance. For remote 
terminals over 2000 feet, 9600kbs DDS modems are the choice and again, where 
there is a cluster, a multi channel multiplexor is quite a bit cheaper than 
several data modems. Be very carefull about selecting terminal line speeds, as 
too slow a line, particularly when doing graphics intensive work, can cause your 
clients to spend more time waiting for the terminal to finish than doing actual 
work. 

Most of our plotters, printers and digitizers are interfaced via HP-IB. There 
are several advantages to this; moving devices from one area to another as well 
as from the HPlOOO to a desk top computer is very easy, several devices can 
share the same interface and the devices are easy to find on the used equipment 
market. However, two items to consider are; how many and type of devices to 
place on one interface and the cabling restrictions enforced by IEEE-488. One 
must be very carefull, particularly when interfacing plotters, not to put too 
many devices on any given interface, one 7585 plotter can "hog" the line very 
easily. When dealing with cabling restrictions, HP·IB extenders work extremely 
well and allow you to extend the HB-IB line up to 3000 feet using coaxial line. 
You must, however, balance the cost of the extenders, $2040.00 per pair, versus 
using RS232 interfaces. When working with remote HP-IB devices over a modem, 
the RS232 version of the HP-IB extender makes very good sense, as it also 
functions as a built-in multiplexor. 

When placing applications on the system, one very important consideration is 
disc usage. Be very carefull about placing several highly disc intensive 
applications on the same disc; even better, if possible, divide applications 
over multiple disc controllers. Traditionally, disc contention is the biggest 
bottle neck in any system, and particularly in a time share operation, this can 
become a very serious problem, if users are constantly waiting on the disc. 
Disc controllers for CS-80 type discs are fairly inexpensive, $800.00 to $1000.00 
and carefull shopping for MAC controllers can sometimes reveal a deal on them. 
We found a used MAC controller for $600.00 !! 

On system operation, there are many things that can contribute to a well run 
and reliable operation for your clients. Schedule PMs, system generation switches 
and off-line backups for off hours. There is nothing a client hates more than 
being in the middle of a "hot" project only to be told he must get off so 
"system work" can be done. As for backups, we highly recommend requiring all 
applications to use the new CI file package. Among its many advantages, is the 
ability to do incremental backups of all accessed files. We keep all our file 

Paper 1035 



backups back to day l, and if you really want to impress a client, wait until 
he/she asks if a file created 2 years ago can be restored and you tell them "no 
problem"!! Our current backup policy is, incremental backups every night, disc 
backups (PSAVE) every Friday and IMAGE/1000 II database backups every weekend 
(done remote from the system managers home). PSAVE and IMAGE backup tapes are 
rotated every month, so we have the ability to restore the system backwards up 
to 5 weeks ago. I might also note that we h.nre converted all our IMAGE applications 
to take advantage of transaction logging, so we also get a dynamic backup of 
all IMAGE database work done between weekly backups. 

As well as backing up the data, you must also backup the system manager, 
particularly if it is a one man operation, such as ours. This can be as simple 
as having a "key operator" who is familiar with system operation and knows where 
to call for major help or a second person working directly with the system 
manager. One serious mistake I have seen in several operations has been the 
one "key" person with a large amount of system operation information "in his 
head" and no one working with him to share this information with. Systems have 
spent days of down time because the key person was unavailable and no one else 
knew his "secrets". 

Training is another very large consideration when going into this type of 
operation. If you are going to make the investment in hardware and software, 
you must also make the investment in proper manager and operator training to 
get the most return on your investment. In our system, the system manager is 
responsible for getting training for himself on all software used on the system 
and then train the individual system users. Hewlett Packard as well as some 
other vendors, have created several self pace in-house training packages that 
make in-house training very economical and easy. We have found, however, that 
some very large applications, such as CAD, have required that the individual 
users go to the vendors training to get the most out of the package. Training 
can be expensive, but if you truely want the most out of your hardware/software 
bucks, it is a must. 

One last note, when picking your system manager, he/she must have the following 
qualities; 1) have or is willing to get detailed system operation knowledge, 2) 
a self starter, 3) willing to work closely with system users, 4) willing to 
spend that extra time to find the best value for the dollar, and possibly most 
important 5) willing to go out into your business and seek new applications to 
add to the machine. If the operation is allowed to stay status quo, the system 
will not be giving you additional time and work savings and therefore no new 
return on investment. Your system must, at minimum, "pay for itself", or it is 
a total waste of company resources. 

Conclusions 

This has been a very inexpensive project, most of our hardware was second hand, 
either bought on the used equipment market, or salvaged from other departments, 
where it was no longer needed. Our major outlay has been for 3rd party software 
packages. Currently only one person runs the entire operation, so payroll 
expense is very low, compared to the operations the system is supporting. 

Some very critical observations; with a very limited support staff, one person, 
support services from all software vendors is absolutely critical to the continued 

Paper 1035 -6-



success of an operation of this type. The size of the staff does not allow the 
luxury of digging out problems locally, the system manager must have expert help 
he can call on to assist in application problem resolution quickly. The major 
item to remember, you must keep your client base satisfied to the best of your 
ability, or they will go back to their old methods of operation. 

All maintenance costs, hardware and software, are prorated back to all the users 
of the system. This keeps our departmental expense very low. We are only 
responsible for acquiring system hardware and initial software expenses. 
Individual users are responsible for acquiring their own terminals, printers, 
plotters, etc. Individual or department application software development by 
the system manager is provided on a "time and materials" basis, and system 
applications for general use are provided "free". 

In conclusion, we have found by carefully keeping a handle on your expenses, 
shopping for the best hardware values, and creative maintenance contracts, and 
user charge backs, a local time share operation is a very good use of company 
resources, with surprisingly high paybacks and savings. Hewlett Packard and 
other software vendors continue to come out with more new and exciting software 
packages to make this type of project more appealing. 

-7- Paper 1035 



TO 
Rllll- 1 
LAB L 

TO OTHER -
ENG GROUPS 

EIA LINE 

r~:v~fF 
I 
I 
I 
I 
I 
I 
I 
'REAL ESTATE 
: ENGINEERING 
I 

"----------' 

#1 
COLLOSUS 

r-----------
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CAL COMP 
DIGITIZER 

5-2627A 
E/W 

t7623A 

X.25/DS 1000 

-., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: ~ GRAPHICS 1 

~--------------------------J 

2932 

X.25/DS 1000 

#2 
GUARDIAN 

X.25/DS 1000 

.--~~-r-~~~r-~~-i i:;: 1------l 

9U1A 7475 

CONSTRUCTION ENGINEERING 

#3 
WOPR 

PHOTO f" 1TYPESETTER _., 
LAN 

~ 

8 MILES 

r--------------------1--, 

HPIB 1---+-----1 
SWITCH 

9872C 

91UA 

2225A 

I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 TRANSMISSION ENGINEERING 1 

L-----------------------J 



I 
I 
I 

r-~ 

I 
I 

I= I 7912 
E/W CTO 

#1 

#2 

#3 

HPI8 
EXT 





9001. HP-UX- HEWLETT-PACKARD'S STANDARD UNIX OPERATING SYSTEM 

Judy Guist 
Hewlett Packard Co. 

Information Technology Group 
19447 Pruneridge Ave. 

Cupertino CA 95014 

ABSTRACT 

HP-UX is Hewlett-Packard's standard UNIX operating system. There are three 
major goals guiding this standard. They are: 1) • effortless migration of 
applications between any system in the HP·UX family, 2) - easy migration of 
applications from other popular UNIX environments, and 3) - add value without 
impairing ease of migration. This paper will describe how that standard was 
originally created, what it is based on, and how it is maintained. Included 
will also be a description about how conformance is checked as well as the 
standard's current direction and growth. In addition, a comparison to other 
popular UNIX systems will be presented. 

Paper 9001 





I. Introduction 

9002. HP-UX FOR I/O CONTROL 

Robert J. Schneider 
Hewlett-Packard 

Fort Collins System Division 
3404 East Harmony Road 

Fort Collins, Colorado 80525 

Historically, Hewlett-Packard's Fort Collins System Division (FSD) has produced 
single user workstations that served as excellent 1/0 controllers. There are 
numerous examples including the series 200 Pascal workstation, the series 200 
Basic workstation, and the series 500 Basic workstation. These workstations 
had extensive features to allow users to control instrumentation systems on HP's 
IEEE 488 bus (HPIB), 16 bit parallel (GPIO), and RS-232 serial interface cards. 
In some cases other less common interface cards were supported as well. 

When FSD introduced their multi-user HPUX workstations there were no provisions 
for instrumentation I/O capabilities. At that time it was thought that the HPUX 
workstations would be used as development workstations and there would be little 
interest in instrumentat.ion 1/0 capabilities. This assumption proved to be 
incorrect. Realizing that there was a large demand for these capabilities the 
decision was made to add device I/O capabilities for the HPUX products. 

II. HP-UX Device I/0 Development 

The development of a device I/O library (DIL) for HPUX began with forming a 
committee of I/O oriented people from several of HP's divisions with HPUX 
products. The purpose of the committee was to design and agree upon a device 
I/O standard to be implemented on all HPUX machines. The highest priority goal 
was to provide a compatible device I/O library on all HPUX workstations so that 
user code could be portable from one workstation to another. This goal caused 
some deviations from how I/O functionality was typically presented to the user 
in past HP products. 

HPIB capabilities were given the highest development priority followed by GPIO 
capabilities. Some RS·232 capabilities currently exist in HPUX through the 
terminal driver and terminfo, therefore there has been little effort for RS232 
interfaces. 

It was determined that the cleanest method for achieving the code portability 
goal was to provide a library level for device 1/0 support. This would allow 
the various implementors to add the functionality as they saw fit for their 
environment. The library would serve as a layer to hide as many system dependencies 
as possible. 

Initially, DIL was designed to provide a low level building block interface to 
the user. The intention was to provide all the necessary functionality bMt at 
a low level. It was felt that general routines could be built on top of the 
functionality provided. The initial feedback to this concept was unfavorable. 
This provided the motivation for some initial changes in the user interface. 

-1- Paper 9002 



Some of the changes to improve the user interface include auto-addressing for 
HPIB I/O transactions. In HPUX there are device files that refer to specific 
devices. These device files typically contain information associated with that 
device. In the case of HPIB device files addressing information is stored as 
well. When the user opens the device file, the operating system stores this 
addressing information for later use. Any read or write operation on this opened 
device file will have the addressing sequences supplied automatically by the 
operating system. 

Another addition was the inclusion of the hpib_io function. This is a f1.metion 
that allows the user to build up a series of 1/0 transactions in a data structure 
and then pass them into the system via the hpib_io intrinsic. This call will 
perform all the requested transactions. Only one system call is supplied by the 
user to perform the series of 1/0 transactions. This can be very convenient 
when a given protocol is known ahead of time. It is important to note that this 
function adds no new functionality. 

DIL will officially be supported under the C, FORTRAN, and Pascal languages. 
Currently, FORTRAN and Pascal impose a slightly different interface to the user. 
There are plans to resolve this issue in the future. 

After the device I/O committee agreed on the proposed device I/O library 
functionality it was presented to HP's Technical Working Group to verify that 
it would fit into HPUX properly. After several minor revisions the device I/O 
library became part of the HPUX standard. 

As more products support the device I/O library there will be a need for a 
validation suite to determine adherence to the standard. Currently there has 
been some work done to ensure that the mainline functionality works properly. 
However, much more extensive validation testing is required for the future. 

III. Overview of Usage 

The user is provided with several sets of functions. The first set is generic 
and applies to both GPIO and HPIB interfaces. The following functions fall into 
this class: 

io eol ctl 
io_get_term_reason 
io_interrupt_ctl 
io_on_interrupt 
io reset 
io=speed_ctl 
io timeout ctl - -
io width ctl 

set read termination character sequence 
determine termination cause on last read 
enable/disable interrupt handlers 
set up interrupt handler 
reset specified interface card 
specify desired I/O throughput rate 
establish time limit for I/O operations 
set width of data path 

This next set of functions applies to HPIB interfaces only: 

hpib_abort 
hpib_bus_status 
hpib_card_ppoll_resp 
hpib_eoi_ctl 

Paper 9002 

stop activity on specified HPIB 
return status of HPIB interface 
configure parallel poll response 
control EOI assertion on writes 

·2· 



hpib_io 
hpib_pass_ctl 
hpib_ppoll 
hpib ppoll resp ctl 
hpib=ren_ctl -
hpib_rqst_srvce 
hpib_send_cmnd 
hpib_spoll 
hpib_status_wait 
hpib_wait_on_ppoll 

vectored reads and writes 
change active controllers 
conduct a parallel poll 
control response to parallel polls 
control the remote enable line 
request service from controller 
send ATN data (commands) 
conduct a serial poll 
wait until status item becomes true 
wait for parallel poll response 

The last set of functions applies to GPIO interface cards only: 

gpio_get_status 
gpio_set_ctl 

return state of status lines 
set control lines 

The read, write, open, and close functionality is provided by the standard HPlJX 
read, write, open, and close intrinsics. This unified I/O approach allows the 
nice features of HPUX I/O to remain, for example, I/O redirection. 

One of the most obvious deviations from past I/O functionality is the absence 
of functions to generically read/write interface card registers. Since interface 
card registers are very hardware specific, and not portable, this functionality 
was replaced with status and control functions, for example hpib_bus_status, 
that return or set information of interest. This method allows the hardware 
dependent interface registers to be hidden at the library level. 

The interrupt mechanism differs from the past as well. The HPUX I/O interrupt 
mechanism works in a manner similar to the HPUX signal mechanism. The user can 
set up different interrupt handlers (procedures) for each uniquely opened select 
code. The user can even specify different handlers for the same select code by 
multiply opening the same select code. An example of the advantages that this 
scheme offers would be that the user could set up different interrupt handlers 
for different parallel poll responses. 

Another noteworthy function is the io_speed_ctl call. This call was added to 
help machines with limited DMA capabilities. On these machines the user can 
specify a desired I/O rate, within the limits of the machine, to allow the 
machine to determine an appropriate method of transfer. On the series 200 HPUX 
system for example, if a requested speed can be satisfied without DMA then 
another method will be chosen should no DMA be immediately available. The series 
500 always provides DMA and therefore returns without doing anything on this 
call. 

In general, most of the I/O functions in HPUX have direct mappings with I/O 
functions from past products, Therefore, conversions of I/O application programs 
on past workstations should be relatively straight forward. 

At this point a typical example might be in order. The following example waits 
for a device to request service. When service has been requested, a serial poll 
is perfo~med to verify that the desired device was in fact the one requesting 
service. A data byte is then read. 

-3- Paper 9002 



#include <dvio.h> 
#include <fcntl.h> 
#include <stdio.h> 
main() 
{ 

int eid, atof(); 
extern int errno; 
double data; 

eid - open("/dev/hpib",O_RDWR); 
io timeout(fd,1000000); /*set up 1 second timeout*/ 
if( hpib_status_wait(eid,SRQ) -- ~l) 

else 
{ 

if(errno ==- 5) 
printf("error, possible timeoutO); 

else 
printf("hpib_status_wait failedO); 

if( hpib_spoll(fd,my_dev_address) & 64 ){ 
hpib_send_cmnd(fd,address_info,4); 
read(fd, bytes, 8); 
data - atof(bytes); 
printf(data - %lf0data); 

This example illustrates how the DIL functionality is presented to the user as 
a series of library level calls. All DIL calls are function calls and therefore 
have return values associated with them. In many cases the return value is only 
used as a success/fail indicator. In other cases, for example hpib_spoll, the 
return value may be a parameter of more interest. 

Note the usage of the HPUX ilQf function to convert the character data to floating 
point format. HPUX offers atof. atoi. sscanf. and sprint£ for conversion utilities. 
atof and atoi are specialized high performance subsets of sprintf. 

Other usage considerations include additional functionality for performance 
enhancers. Better and more predictable performance can be attained by using 
the HPUX real time enhancements along with DIL. A typical example might be to 
use the plock and rtprio intrinsics to prevent a process from being swapped out 
and to put it in the real time priority range. A common place to employ these 
intrinsics would be in conjunction with the interrupt handler. 1his allows users 
to cope with situations where the time to swap a handler into memory might be 
intolerable. 

The series 200 has provided an extension to DIL for extreme performance improvements 
most notably in the small data transfer range. The series 200 HPUX implementation 
has a call to provide memory mapped I/O for the user. Since many instruments 
transfer data in small quantities, for example 8 bytes is typical for a digital 
voltmeter, this can be very useful. 

Paper 9002 -4-



The series 500 provides memory locking intrinsics that allow a user to perform 
I/O directly from user memory. Normally, data is transferred from the user 
space to the system space. By performing I/O directly from the user space a 
significant performance improvement can be obtained on data transfer rates. 

IV. Performance Observations 

Since the HPUX systems are multi-user and multi-tasking systems, some additional 
information must be supplied to understand the performance conclusions. 
Performance figures discussed in this paper refer only to lightly loaded systems 
with one active user. Performance could vary drastically with multiple users 
and multiple tasks executing in parallel with I/O performance benchmarks. 

Performance results have been encouraging. The series 500 HP-UX I/O rates are 
very similar to the series 500 Basic I/O rates. In fact, the HP-UX system is 
capable of outperforming the Basic system on the Nelson benchmark by a small 
percentage. 

The initial results on the series 200 HP·UX system were mildly discouraging when 
compared to the series 200 Basic system. As many people know, the series 200 
Basic system was tuned to perform quick I/O data transfers, especially the small 
size transfers typical of instruments. However, the developing engineer for 
series 200 DIL implemented a memory mapped I/O scheme that has amazing I/O 
performance. Initial results show that for small transfers, the series 200 HPUX 
memory mapped I/O scheme is capable of producing I/O rates approximately six 
times faster than the series 200 Basic system. 

The hpib_io routine may also be used for performance improvements. The actual 
performance improvement varies with the number of I/O transactions that are 
bundled into the one call; however, on the series 500, request blocks with around 
7 transactions requested can typically enjoy about a 15% improvement over making 
7 separate I/O calls. 

Finally, auto-addressing allows users to cut the number of 1/0 requests in half. 
Without auto-addressing the user is required to perform addressing manually with 
the bus command to send ATN data. By allowing the system to address the bus 
significant performance improvements can be observed. 

V. Conclusions 

The conclusion reached was that device I/O fits nicely into the HPUX scheme. 
Acceptable levels of functionality and performance have been demonstrated. By 
combining the real time functionality with the I/O functionality users can begin 
to expect to achieve controller level performance from HPUX machines. However, 
appropriate expectations must be set. The HPUX workstations are multi-user 
systems. Given enough of an external workload, controller applications performance 
can degrade to unacceptable levels. Conversely, if a given controller application 
is running at real time priorities and consuming a large portion of the available 
CPU resources, then other workloads on the system will be degraded severely. 

VI. Real World Considerations 

Currently, the HP9000 series 500 HPUX 4.0 operating system is the only HPUX 

Paper 9002 



product supporting user callable DIL. The 4.0 release does not support the 
interrupt scheme discussed in this paper. However, the HP9000 series 500 HPUX 
5.0 release will contain support for interrupts. This release is expected to be 
available to customers later this year. The HP9000 series 200 HPUX 5.0 release, 
also expected later this year, is planned to provide all of DIL with the exception 
of interrupts. DIL is expected to be supported on future HPUX products as well. 

One major intention of DIL was to hide as many hardware dependencies as possible. 
However, this is not always possible. Different hardware presents different 
problems that must be dealt with. In some cases, when the hardware does not 
support the functionality as intended, differences do show through. Some of 
the more noteworthy examples are introduced by differences between the ABI and 
the TI9914 IEEE-488 bus controllers. These two chips have different behavior 
that cannot be totally hidden from the user level. The ABI chip does not support 
setting of the serial poll response byte while the TI9914 does. The TI9914 edge 
triggers SRQ interrupts while the ABI level triggers SRQ interrupts. These 
examples and others may be cause for some confusion when porting code from one 
machine to another. These hardware dependencies will be well documented which 
will allow application programmers to design portable programs that avoid 
depending on these differences. 

VII. Future Investigations 

Within HPUX there exists the possibility of implementing shell level 1/0 comnands. 
What this means is that a series of I/O utilities could be made available to be 
executed by the user without writing a program. Shell level utilities could be 
used to help train new instrumentation users as well as providing some help in 
early breadboarding of I/O solutions. This could be a valuable aid in designing 
instrumentation systems given the right set of utilities. 

There have been suggestions for looking into faster formating capabilities. The 
scanf and sprint£ do not provide the performance that is generally expected. 
Atoi and atof do; however, they have no output counterparts. 

Another futures item is to implement the complete set of meta-messages. The 
hpib_bus_cmnd function allows the user to send any sequence of ATN commands, 
yet it is felt that the meta-messages would be provided to ensure that the 
commands are sent in the proper sequence. 

The locking issue will also be resolved in the future. Locking has been a 
difficult issue since one can view locking in levels. There could be select code 
locking and there could be device locking. The difficulty begins when one attempts 
to determine how the two levels should interact. Select code locking also brings 
up the issue on how restrictive it should be. Should one allow users to lock 
the select code with the system disk for example. 

Finally, RS-232 functionality issues will be addressed. As mentioned before, 
a subset of RS-232 capabilities are currently available through the terminal 
driver and terminfo. However, there has been little feedback to indicate that 
the functionality available is insufficient. 

Paper 9002 -6-



9003. PERSONAL COMPUTER UNIX for the TECHNICAL PROFESSIONAL: 
the HP INTEGRAL PC 

Andrew L. Rood 
Robert C. Cline 

James Andreas 
Hewlett-Packard Portable Computer Division 

1000 NE Circle Blvd. 
Covallis OR 

1. A Transportable Personal Computer 

The goal of the Hewlett Packard Integral Personal Computer (IPC) design team 
was to produce a transportable personal computer which runs UNIX (1) and which 
has instrument control capabilities. This paper will assume the design goal. 
It will not discuss why the goal presumes transportable, why personal computer, 
or why UNIX. Much debate went into the product definition and many things were 
considered including modular form factors and other operating systems (e.g. 
MS-DOS [2] ,BASIC,p-system (3)). The debate eventually generated a product 
definition which described a transportable, UNIX-based, personal computer. 

The definitions accepted for transportable and for personal computer greatly 
affected the design of the operating system. The traditional UNIX implementation 
has some very strong drawbacks for a transportable personal computer product. 
In particular the design responds to four major aspects of UNIX which make it 
inappropriate for use in a transportable personal computer. 

Transportable was defined as light-weight (less than 25 pounds), and fully 
integrated in an easy-to-carry package. Transportable implies fully integrated 
since a modular design is difficult to break down and set up because of the many 
inter-module connections (cables, connectors). A personal computer was defined 
as a computer for an individual; a computer which is low-cost, easy-to-use, and 
tailored to the needs of the single user. A personal computer must be easy-to-use 
because there is no systems administrator to provide day-to-day help with the 
PC operation. The machine will be used by an individual who will be an expert 
in his own field but not a computer expert. A PC must also be low-cost because 
the machine will be a tool for an individual and must justify its cost to that 
individual alone. Larger machines have many users to share the expense of the 
machine whereas the PC expense must be paid by a single user. 

HP's reputation for powerful instrument control and our PCD commitment to low 
cost controllers (e.g. the series 80) implied that the Integral should also 
provide instrument control capabilities. Traditionally UNIX has been weak in 
the areas of instrument control and real-time. The IPC adopted the HP-UX/RT 
(HP-UX Real Time) approach to real-time in the UNIX environment. 

These design goals drove the !PC OS implementation: easy- to-use, fully-integrated, 
single-user, low-cost, with instrument control capabilities. 

-1- Paper 9003 



2. The Integral Solution 

The HP Integral Personal Computer is tailored to the needs of the personal 
computer user. The Integral has been scaled to meet the cost-performance needs 
of the individual technical professional. The Integral PC provides the UNIX 
operating system; scaled to fit into the personal computer hardware environment. 

The desire for a low-cost UNIX implementation, as well as a commitment to 
transportability led to consideration of a UNIX implementation without any 
hard-disc requirements. In traditional UNIX implementations the OS is disc-based; 
booting from disc and swapping or paging from some system disc. To save the 
cost of the hard disc a UNIX was configured which boots from ROM using an internal 
RAM-disc. Further, the UNIX command set has been unbundled to fit onto individual 
floppy discs of approximately 1 megabyte capacity. The IPC also accommodates 
external hard discs in the more normal UNIX manner. At the time of the IPC 
design hard disc technology provided compact high-density hard discs, but these 
were neither cheap nor rugged; placing a hard disc in a low-cost, transportable 
package was not within current technology limits. 

One of the riskiest tasks undertaken in the Integral design effort was that of 
making UNIX user-friendly. In the past UNIX has been considered terse and 
unfriendly to the naive user. In order to overcome this image the IPC design 
took state-of-the-art user interface technology and applied it to UNIX. The 
technology involves a windowed user interface modeled upon work from Xerox PARC 
[4]. Prior to the Integral design effort several PCD engineers had visited 
Adele Goldberg's lab at Xerox PARC and seen the effectiveness of their windowed, 
iconic user interface. The IPC design adopted their model to a large extent. 

The major part of the creative work of the Integral project involved merging 
windows and a new user-interface into the OS. This interface uses a custom IC, 
the Graphics Processing Unit (GPU). This also involved enhancing the UNIX tty 
concept and structures. Further, the IPC adopted a user-friendly, menu-driven 
command interpreter; PAM, the Personal Applications Manager (concepts already 
in use with the HPlSO). Finally, the integration of the machine, which guarantees 
that every system will have a built in electroluminescent panel facilitated the 
construction of built-in high-capability graphics drivers. 

The IPC is intended as a single-user machine in the sense that one person will 
be using the machine at a time. However, the concept of 'single-user' is really 
a command level distinction. A single user logged onto a UNIX machine can do 
everything that several users could do when simultaneously logged on. A single 
user has the capability of running as many processes as he wishes (within machine 
limits). Single-user implies that the IPC OS design is not as concerned with 
protection and security as is the OS of a multi-user UNIX machine. Protection 
from other users is not as necessary in a single-user environment. The ultimate 
personal computer security is developed when the single user takes his software 
(and possibly his entire machine) and locks it in his safe. 

A single-user personal computer cannot presume that there is a systems progranuner 
who maintains the machine. Rather, the single user will have to be his own 
system manager. This implied that the Integral should require only a minimum 
of system management help. The system boots and configures itself automatically. 
The single-user concept is one which has been refined again and again over the 

Paper 9003 -2-



course of the Integral OS development and is a concept which continues to evolve 
in the lab today. The concept of a 'single-user' machine has many repercussions 
throughout the design of the OS and of the entire software/hardware environment. 

The IPC concerns with real-time performance derived largely from HP's historical 
and continuing commitment to instrument control. It was clear at the outset 
that UNIX would have to be enhanced to provide adequate real-time support. 
Fortunately, there has been and continues to be substantial effort across the 
9000 development divisions to generate and refine an HP-UX/RT enhancement set. 
The IPC implements those portions of the HP-UX/RT definition which directly 
address known, glaring, UNIX instrument control shortcomings. In particular 
the definition enhances UNIX in the areas of scheduling, interprocess communication, 
and file system manipulation. 

This paper highlights four major areas in which UNIX has been customized to 
operate in the hardware and software environment of the small, personal computer. 
These four areas involve: operating with a single, small, removable mass storage 
device; booting and executing from ROM; optimizing utilization of the small, 
built-in, bit-mapped, display device to provide a friendly user interface; and 
providing real-time-control system enhancements. 

3. Intended Applications 

The intended customer for the Integral is the individual technical professional. 
The Integral is intended to provide vertical solutions in many application areas. 
Of particular interest are instrument control applications. The intended use 
also involves HP's Computer Aided Work (CAW) solutions. Computer aided work 
solutions include word processing, spreadsheet, electronic mail, time management, 
and other productivity tools. Target Integral users are primarily individual 
technical professionals in areas where vertical applications exist, and where 
there is a need for the standard set of PC productivity applications. For 
example, the chemical engineer who wishes to perform word-processing, graphics 
presentation, and electronic mail as well as his primary engineering tasks is 
an ideal match to the Integral. Target users also include UNIX sophisticates 
such as computer science professionals. The multitasking of the UNIX OS provides 
capability unmatched by single-tasking (MS-DOS) machines. The Integral allows 
simultaneous operation at some control task and use as a computer aided work 
station. 

The transportability of the Integral also responds to the needs of the IPC target 
customers. It is intended that the machine be used in environments where 
transportability is beneficial. Applications of this sort may involve large 
labs or factories where the machine is transported among many work stations each 
day. Another typical application of transportability is for the technical 
professional who wants to take the machine home with him in the evenings; or 
the professional who wants to transport the machine with him as he makes trips 
to various different sites. 

The IPC is intended as a single-user machine meaning that at any point in time 
exactly one engineer will be using the machine. However, over the course of a 
day or week several different engineers may use the machine at different times . 

• 3. Paper 9003 



4. ROM OS 

Historically PCD has produced machines with ROM based software and operating 
systems. ROMs provide many benefits. They are lower cost per bit than are 
RAMs. They are very reliable. In particular, a boot-from-ROM system is generally 
more reliable and quicker to boot than is a disc based system. Further, the 
ROMs fit very well with the concept of transportability because they are rugged 
in traveling and reliable in power-on in many different environments (much more 
so than discs and disc drives). Thus, a ROM OS met the IPC design goals of 
low-cost and transportability while also being rugged and reliable. 

The Integral provides 256k bytes of system ROM. The Integral PC kernel code 
resides primarily in this ROM space. Furthermore, certain processes (e.g. the 
command interpreter) are ROM resident. 

The ROMs are not without their drawbacks. The most glaring of these is the cost 
to develop and upgrade. The development cost exceeds nonnal software development 
cost because of the time required to manufacture the ROMS, which in turn lengthens 
the software development cycle. Further, upgrades traditionally require an 
entire new R.CM package which is more costly to produce than a new soft distribution. 
The Integral OS design has attempted to alleviate the upgrade problem by 
configuring our ROMs to be software "patchable". 

The ROMs are jump-linked together. Every major kernel function is linked to 
the rest of the kernel indirectly through a RAM vector table. This allows 
downloading OS patches which replace certain OS functions by intercepting the 
RAM vectors and redirecting them to the soft, RAM-based, replacement functions. 
In this manner the IPC can even go to the extreme of downloading a new scheduler 

, while the system is executing; and changing to that new scheduling algorithm on 
the fly. This mechanism and the normal kernel table linkages allow drivers to 
be configured into and out of the system while the system is running. 

Although memory for the Integral is far more abundant than it has been for 
previous generations of machines; memory is nonetheless a critical resource. 
By placing the OS itself and certain process images in ROM, OS RAM requirements 
are reduced. To further optimize RAM utilization, a two level RAM management 
scheme is used. Yith this RAM management discipline the RAM resides normally 
in the user process RAM pool. Yhen the OS requires it (e.g. to allocate blocks 
for the RAM disc; or to provide system memory for a new driver, or for a new 
window instance) memory is moved from the user RAM pool to a kernel RAM pool. 
Yhenever memory is freed back to the kernel RAM pool (e.g. by removing a file 
from the RAM disc and freeing RAM disc blocks or by destroying a user window) 
that memory is coalesced into the kernel pool and any available memory is 
transferred back to the user pool for use in user processes. 

Memory is a critical resource in a small machine like the !PC, however in a 
single-user environment memory utilization should be predictable. That is, if 
the IPC user runs out of memory then the single user is the one who has invoked 
those processes which have consumed the memory. In a multi-user environment a 
particular user has to compete with the machine's other users for memory and 
CPU resources. This competition leads to unexpected performance delays and 
unpredictable memory utilization. The predictable nature of the single-user 
environment is one of the desirable features of the personal computer. 

Paper 9003 



5. Display and User Interface 

The Integral is most innovative in its user-interface. This interface makes 
the traditionally terse and unfriendly UNIX user-friendly. The novice can learn 
to use the Integral to perform real work in a very short time, yet can extend 
his quick-learned knowledge into an understanding of how to use the whole power 
of UNIX. Jon Brewster in his paper: "A new user-interface for UNIX" will discuss 
this in more detail. 

The HP Integral PC provides an electroluminescent display panel controlled by 
a custom graphics processing unit (the GPU). This device provides a display 
system which is small in display size but great in power. The size constraint 
derives from the size of currently available display technologies (256 x 512 
pixels on the Integral). The great power of the display derives from its 
bit-mapped nature and the powerful GPU IC which controls the display. The 
Integral PC uses the great power of the display mechanism to mask its relatively 
small size. The primary means of accomplishing this is through extremely 
efficient use of the available display area. In particular the Integral PC 
incorporates window drivers which allow optimal utilization of all available 
display area. 

5.1 Windows 

The HP Integral PC display is viewed by the OS as a collection of 'windows' each 
of which provides a view onto some entity or process. A window is simply a 
rectangular portion of the display area which is used for one purpose. These 
windows can be of arbitrary size and can be placed arbitrarily ·on the display 
device. This allows the Integral PC and the Integral PC user an environment in 
which the display can be optimally used by the intelligent manipulation of 
windows. 

The HP Integral PC implementation provides a framework in which windows can be 
used transparently by window-dumb applications. A 'window-dumb' application is 
one which does not 'know' about windows. A 'window-dumb' application is one 
which presumes it is performing IO to a standard terminal. The majority of 
currently existing UNIX applications are window-dumb. Applications which have 
been written with windows in mind can make use of the full- featured programmatic 
interface to the Integral OS window manager. The Integral command interpreter 
(PAM) is an example of such a 'window-smart' application. 

6. BASIC and Real-Time 

The Integral provides real·time support in the form of a subset of the HP-UX/R.T 
standard definition. The !PC design has selected those portions of HP·UX/RT 
which directly address major problems with current Bell System V [5] UNIX 
implementations. Robert Lenk in another paper will be discussing the entire 
HP-UX/RT extension set. This paper will discuss only those items implemented 
on the Integral. Each will be motivated and briefly described. Finally, a 
brief discussion of real-time performance and the Integral implementation is 
presented. 

The HP Integral PC hosts as one of its major applications a PCD BASIC environment. 

Paper 9003 



This BASIC language envirorunent enables the user to perform certain real-time 
control operations. To facilitate such operations the Integral PC provides a 
set of real time control enhancements. These include: reliable signals (Berkeley 
4.1 bsd (6] signals), real-time scheduling, high resolution interval timers and 
time of day, shared memory, process locking, efficient process forking (vfork), 
and file synchronization (fsync). In order to accommodate real-time scheduling 
the HP Integral PC provides an envirorunent in which the system scheduler itself 
can be replaced while the OS is executing! 

6.1 Reliable Signals 

The trouble with Bell signals is twofold. First, there is a critical section 
between the kernel dispatch of a signal and the user re-establishing a handler 
during which processes may be killed inadvertently. Second, signals are not 
stacked so that multiple occurrences of the same signal can be reduced to a 
single occurrence. These problems are resolved using the HP-UX/RT interpretation 
of the Berkeley signal facility. In this signal package signals are masked from 
recurring until explicitly released, thus covering the critical section hole 
manifested by Bell signals. The HP-UX/RT signal implementation also provides 
counting signals so that multiple occurrences of the same signal will cause 
multiple signal dispatches. No signals are lost. 

6.2 Real-Time Scheduling 

Normal UNIX scheduling is round-robin. The HP-UX/RT definition specifies a form 
of non-degrading real-time priority-based scheduling which operates above the 
normal round-robin scheduling. Real-time scheduling is accessed using the rtprio 
call (real-time priority). In this scheduling paradigm all real-time processes 
(i.e processes running at real-time priority which have used the rtprio call) 
are executed before any round-robin processes. Real- time processes are absolutely 
ordered by their real-time priority. Round-robin processes are time sliced, 
Real-time processes are not time-sliced and will run to completion. 

The !ntegral does not perform preemptive scheduling. Kernel calls are not 
interruptible and cannot be restarted. This implies that in the Integral 
implementation the maximum kernel latency is unbounded, with long reads and 
writes on slow devices possibly locking out other processes for long periods of 
time. The !PC view is that in a single-user environment the user has control 
of all processes and can restrict such long reads and writes during critical 
sections of real-time processing. Further, the single-user machine has less 
computational power than do most multi-user machines and typically performs only 
one 'hard' task at a time (where 'hard' implies using a lot of CPU and IO time). 
This is another aspect of our definition of single-user; i.e. having computational 
power matched to one user where there is a presumption that many users will in 
general require more computational power than will a single user. 

6.3 Interval Timers and Timeofday 

The normal UNIX timing mechanism is the alarm call which provides a second 
resolution alarm clock capability. The time call provides a second resolution 
wall clock. For certain real-time applications millisecond (or even microsecond) 
resolution is required. Millisecond wall clock and alarm clock capabilities 

Paper 9003 ·6· 



are provided on the Integral using the HP-UX/RT getitimer, setitimer, gettimeofday, 
and settimeofday intrinsics. Gettimeofday returns the most exact time the system 
can return (millisecond resolution on the Integral). Setitimer allows the user 
to program alarms at the finest granularity the OS can accomnodate (milliseconds 
on the Integral). 

6.4 Shared Memory 

UNIX has been weak in the area of interprocess communication. To augment the 
relatively weak communication mechanisms of signals and environment passing, 
HP-UX/RT has adopted a form of shared memory. Shared memory involves the slunop 
(shared memory operations), shmctl (shared memory control), and shmget (shared 
memory get) operations. Using shared memory two or more HP-UX processes may 
directly access the same portion of physical memory. This primitive inter-process 
communication method is a cornerstone upon which efficient interprocess 
communication protocols may be built. 

6.5 Locking. Forking. and File Synchronization 

To facilitate real-time performance processes may lock themselves in memory. 
This is accomplished using the plock (process lock) call. This prevents those 
processes from being swapped to disc or from being moved about in physical 
memory. This allows such processes to protect themselves from unwanted performance 
'glitches' which may occur when processes are moved by the OS. 

The UNIX OS performs a certain amount of buffering of information written to 
discs. This buffered information is written to the disc at the discretion of 
the OS. To force file synchronization (i.e force writes to the disc itself) 
the HP-UX/RT definition includes an fsync (synchronize file) call. Fsync allows 
the user to selectively force buffers associated with a particular file to be 
written to disc. An fsync call performs.action similar to that of a close-open• 
lseek sequence. The close forces all information to be written to the disc, and 
the open and !seek restore the file status in preparation for the next read or 
write. 

One of the most common operations for a UNIX process is the fork-exec. For 
example, PAM performs a fork then an exec each time the user invokes a file 
based command. The HP- UX/RT definition specifies an efficient form of fork, 
called vfork (virtual fork) which is intended specifically for this fork-exec 
(or fork-exit) operation. Vfork creates a new process just as does fork, but 
with vfork the new process and its parent both share the same process image 
(data and text) until the child either exits or execs. Thus the user of vfork 
must be careful that the child of a vfork not corrupt its parent's data space 
(which it shares until exec or exit). However, the vfork operation itself is 
much more efficient than the fork operation because the forking process image 
is not duplicated. 

6.6 Performance 

The overhead to perform a system call in the Integral HP-UX environment is on 
the order of two milliseconds. The maximum kernel call latency is unbounded 
because the kernel is not preemptable. For an arbitrarily long read or write 
call to a slow device the overhead may be arbitrarily long. User processes 

-7- Paper 9003 



receive signals to notify them of external events. The signal overhead is on 
the order of twenty milliseconds if a process context shift is required (i.e. 
to start the process which will receive the signal). Signal overhead for a 
real-time process which is currently executing is on the order of one millisecond 
(similar to a kernel call). The actual kernel interrupt latency is on the order 
of fifty microseconds for high priority interrupts. Using Integral specific 
solutions it is possible for a user process to perform its own interrupt servicing 
and achieve this fifty microsecond interrupt response. Finally, the Integral 
is considered to be a .5 MIPS (million instructions per second) machine. This 
MIPS figure has been developed by comparison with the rest of the 9000 family 
on a standard set of performance benchmarks. 

7. The UNIX File System and Personal Computers 

The UNIX operating system as distributed by AT&T Laboratories is not entirely 
well suited for a personal computer environment. This is especially true in 
regards to the file system and its hardware requirements. The file system is 
designed with the idea that access to a hard, fixed disc is guaranteed. This 
is not always economically feasible in a personal computer environment. Also, 
hard discs tend to be rather fragile and thus are not well suited to the informal 
personal computer environment. Certainly hard discs are becoming cheaper and 
more reliable, but for now, alternatives must be considered. 

Floppy discs are the media of choice for most personal computers since the disc 
drives are cheap and the media is fairly resistant to abuse. Their drawback in 
relation to using them with a UNIX file system is that they are easily removed. 
In other words, their presence can not be guaranteed. The UNIX file system is 
not designed to handle removable media gracefully. By removing a floppy disc 
at an inopportune moment, one could easily lose large amounts of data residing 
on the disc through the destruction of key file system data structures. 

The Integral Personal Computer has gotten around these problems by providing a 
UNIX that does not require a hard disc and goes to greater lengths to guarantee 
the integrity of information on removable media. Modifications were made to 
the file system and to the means by which disc data is handled to accomplish 
this feat. The interface to the file system as defined by the UNIX standard is 
maintained. Certain aspects of every day use are streamlined by added utilities 
and automatically performing functions which heretofore were not performed 
automatically. 

7.1 Removing the Need for a Hard Disc 

The main requirement to be met with the design of the Integral computer was 
transportability. This could not be reasonably achieved with a hard disc based 
system. Therefore, the first task was to remove the requirement of a hard disc 
by the UNIX system. This was done by emulating a disc in RAM. All the essential 
elements of the file system on the hard disc required by a UNIX system were 
placed on this RAM disc. These were fairly few in number and did not lead to 
the use of large amounts of memory. 

7.1.1 Ihe Root File System What is known as the •root' file system on a UNIX 

Paper 9003 -8-



system is the main reason why a hard disc is required. The root file system 
contains much of the information about how a particular UNIX system is configured. 
Most of this configuration is contained in the directory '/dev'. This directory 
contains references in the form of file names to all devices accessible by the 
system. This is the only way in which applications are able to locate devices 
and access them. The root file system also represents the place where file 
systems on disc media are integrated into the overall file system of a UNIX 
system. If viewed as a tree structure, the 'root' file system is the root of 
the file system tree. Therefore, to add to the file system tree by pointing to 
files held by a particular disc, one needs to attach a reference to these files 
to the file system root. This is done by creating a new branch of the tree from 
the root that points to the files on the disc. 

7.1.2 The RAM Disc The root file system on the Integral is contained in the 
RAM disc. The RAM disc is as fast as any hard disc and is always present with 
the machine. Each time the Integral is powered up a file system is automatically 
created in RAM to hold the root file system. All the information required for 
the root file system is then dynamically created and entered in the RAM disc 
file system. The boot up process tracks down every device connected to the 
system and puts the appropriate entry into the previously mentioned /dev directory. 
Also, each disc device attached to the system is examined for file systems and 
each file system found is automatically attached to the root file system. The 
dynamic creation of all this information is actually a benefit to the Integral. 
In a transportable personal computer environment, the number of devices attached 
to the computer can vary widely between times that the computer is used. It is 
indeed easier to configure them dynamically each time a system is powered up 
versus burdening a user with having to constantly change some more static form 
of device configuration. Connecting up all file systems on accessible disc 
devices also aids the user in efficiently bringing up a personal computer and 
getting it ready for use. A standard UNIX system with its associated hard disc 
provides none of these services and relies on the user to track the device 
configuration and what file systems to attach. So, in truth, the use of a RAM 
disc over a hard disc provides many more benefits than just reducing the cost 
of the product and making the product more transportable. 

There are even more advantages to the RAM disc on the Integral. One unique 
advantage is that the RAM disc dynamically allocates the RAM it uses and 
periodically releases back to the system any unused memory. Most RAM disc 
implementations associated with personal computers take up a fixed portion of 
the system's memory whether or not the memory is actually put to use for file 
storage. Another big advantage provided by the RAM disc is its speed. By 
storing high use utiliti~s in the RAM disc such as editors or compilers, one 
can achieve a high rate of performance. 

7.2 A Secure Floppy Disc Environment 

Floppy discs present many problems to an operating system. The ease with which 
they can be exchanged makes it difficult to ensure that all file information on 
them is kept up to date. This problem is made worse by the small amotmt of data 
that floppy discs hold. This lack of storage space forces users to swap them 
frequently. Obviously, since a floppy can be removed from its drive at any 
moment, the information on them can not be absolutely guaranteed. But, a system 
must try to do the best that it can. 

-9- Paper 9003 



7.2.l Synchronizin~ the File System 

7.2.1.l The UNIX Approach A UNIX file system has a set of disc cache buffers. 
These buffers are used to hold disc information in system memory in hopes of 
limiting the number of disc reads and writes needed in order to improve overall 
file system performance. All reads and writes performed on discs are done in 
blocks. Each block represents some number of bytes of disc information. The 
actual number of bytes is system dependent. The Integral uses lk bytes per 
block. When a disc read is performed, the block containing the information is 
read into a system buffer. Subsequent reads from the same block result in 
information retrieved from this system buffer instead of directly from disc. 
Writes operate in a similar fashion. If a write is performed to a block being 
held in a system buffer, only the system buffer is modified. Periodic flushing 
of system buffers synchronizes the disc with the system buffers. This is how 
a UNIX system maintains disc integrity. The main idea is to synchronize the 
disc with the blocks held in memory often enough to keep things straight. Such 
a scheme is good when dealing with fixed, hard discs when it is unlikely that 
the disc media will suddenly become unavailable to the system. In a floppy 
environment, the system would have to synchronize the block cache with the discs 
fairly often to avoid mishap. Given the slow speed at which floppy discs operate, 
this leads to a sizable amount of system overhead. A truly tough dilemna between 
file system integrity and system performance is the result. 

7.2.1.2 A Better Solution The Integral Personal Computer is shipped with only 
one built in floppy disc. When UNIX was chosen for its operating system the 
dilemma described in the previous section of this paper had to be resolved. 
First, the problem can be reduced to just the area of caching information to be 
written to the disc. Read caching changes no data and is. desirable to keep for 
performance reasons. However, write caching presents many problems. One missed 
write to disc can be disastrous. The first cut at the solution was simply to 
eliminate all write caching, and to perform all file system writes directly to 
disc. This would have worked if writes to disc just concerned user data. 
Unfortunately, with a UNIX file system, a lot of the information written to disc 
concerns maintaining the data structures of the file system out on the disc. 
Given the slow speed at which floppy discs work, this overhead slowed the system 
down prohibitively. Something had to be done to limit this disc activity without 
sacrificing too much of the ability to maintain disc integrity. 

The simple solution to this synchronization problem is to do no write caching 
of file information. This does work and provides a very secure environment, 
but there is one large problem. System performance falls off dramatically. 
The reason for this is that UNIX spends a lot of time updating file control 
structures out on disc. Each of these updates is composed of a write of a few 
bytes to the various blocks of control information out on the disc. With the 
old UNIX caching system, most of these writes were to cached blocks and file 
system performance was not effected much. With a system that writes through 
the caching system direct to disc each time, this becomes expensive. First, 
the block to contain the information must be read in so that the information 
can be updated, then the whole block must be written baok out. Quickly, a few 
writes of a few bytes becomes a few reads and writes of a few blocks of bytes. 
The solution to this problem is to limit the number of times that file control 
information is written out without putting the file system at too much risk of 
corruption. This is a delicate problem. On the one hand, file information 

Paper 9003 -10· 



caching needs to be eliminated and on the other hand, system performance must 
be maintained. The solution is to do a hybrid of the two systems. All user 
data will be immediately posted to disc. All file control information will be 
posted to disc only when a file is closed. This only puts at risk files that 
are open to a process. Because of how the UNIX file system works, only open 
files that grow in size are really at risk. A file that is only having information 
read or existing information altered can not be damaged. This greatly reduces 
the risk of file system damage while still using caching. Also, since it is 
file control information that is being cached, the operating system is in a 
better position to react to problems since it is the only entity that uses the 
cached information. The user is also more in control of the situation and can 
judiciously use file opens and closes to reduce the time that files are at risk. 
This compromise between a secure system and an efficient system works rather 
well and while not providing a completely secure file systems, it does go a long 
way toward that goal. 

7.3 Unbundling the HP-UX Commands 

To distribute the entire HP-UX command collection on small floppy discs (< 1 
megabyte) the commands have been broken into small working sets. This unbtmdling 
allows HP to market the command sets individually and to provide the commands 
in a manner which is usable in a floppy-based envirornnent. Currently HP provides 
discs which include working sets for: standard applications (e.g. vi, adventure, 
ed), operating system utilities (e.g. copy_disc, format_disc), UNIX commands 
(e.g. cat, date, ps, pwd), operating system enhancements (e.g. serial driver), 
hardware diagnostics, tutor, Datacomm, documentation tools (e.g. nroff, spell), 
development tools (e.g. make), C development tools (e.g. cc, as, ld), and many 
others. 

7.4 Auto-mounting on the Internal Floppy 

In a traditional UNIX environment removable media are introduced to and removed 
from the system using the mount and unmount commands. Because the Integral does 
not presume an experienced systems prograrrmer, and because we expect that floppies 
will be introduced and removed very frequently, the IPC design has gone to some 
effort to reduce the mount-unmount efforts required of the user. In particular, 
mounting and unmounting of floppy discs in the internal drive is performed 
automatically for the user. A background daemon process is run at system boot 
which performs this auto-mounting triggered by a disc interrupt from the internal 
hardware. This interrupt occurs whenever a disc is removed or introduced. The 
hardware interrupt is transformed by the internal disc driver into a signal to 
the auto-mounting daemon which then mounts the n.ew floppy or attempts to unmotmt 
the removed floppy. 

Further, the !PC design accommodates a mount-instance capability in the internal 
disc driver which allows several discs to be simultaneously mounted to the one 
internal disc drive. Reads/writes to a floppy which is mounted but not present 
yield driver busy errors which typically cause running applications to wait for 
the desired disc to be restored to the internal drive. 

PAM also cooperates with this auto-mount mechanism by moving to automounted file 
systems and showing their root directory when new discs are auto-mounted. 

-11- Paper 9003 



External discs are auto·mounted at power on for all disc drives connected when 
the machine is powered on. External discs are not auto-mounted at other times 
although the IPC does provide a scan-discs command which scans for and mounts 
new file systems on external discs. With these tools the end user need never 
know about the complication of the mount and unmount commands. 

8. Conclusion 

The Integral Personal Computer design team's goal was to produce a transportable 
personal computer with instrument control capabilities. This goal was transformed 
into the more tractable goal of producing a low-cost, single-user, fully 
integrated, user-friendly controller/workstation. This goal led to certain 
features of the IPC design including its ROM based OS with discless boot, floppy 
~isc based tool sets, windowed user-interface, and adoption of portions of the 
HP-UX/RT extension set. The concept of single-user has had great impact on the 
IPC design. This impact is evident in the cost of the hardware, in the interface 
to the software and throughout the OS itself. The final product meets the 
original design goal. The IPC is the first fully-integrated, transportable, 
UNIX-based personal computer in today's market place. 

[l] UNIX is a trademark of AT&T Technologies 
[2] MS is a trademark of Microsoft Corporation. 
[3] Copyright 1978 by the Regents of the University of California (San Diego). 

Copyright 1979 by SofTech Microsystems, Inc. 
[4] Goldberg, Adele and David Robson; SMALLTALK-SO THE LANGUAGE AND 

ITS IMPLEMENTATION, Addison-Wesley Publishing Company; 
Reading Massachusetes, 1983 

[5] System V is a trademark of AT&T Technologies 
[6] Copyright 1979,1980,1983 The regents of the University of California 

Paper 9003 ·12· 



Introduction. 

9004. DATA COMMUNICATIONS VIA X.25 ON HP-UX 

Robert D. Gardner 
Hewlett-Packard, Fort Collins Systems Division 

3404 E. Harmony 
Fort Collins, Colorado 80525 

Computer Networking has been in the limelight for a number of years, but the 
networking picture is confusing, and the customer's perception of it is still 
vague. With the multitude of networking products and strategies, this situation 
can hardly be surprising. Adding to the confusion are the products that claim 
to be the answer to everybody's problems, no matter what the needs are. HP 
makes only a modest claim for its HP·UX X.25 connection package: it allows 
reliable file transfers between HP-UX and other UN*X machines the world over, 
and allows terminal connections to them as well. 

Function and Purpose of an X.25 Network 

An X.25 Network operates on the well·known packet-switching principle, in which 
routing stations forward packets to their destinations. Initial access to such 
a network is generally quite simple, usually through an ordinary Bell-type modem 
to a local phone mnnber. When there is need for more throughput, more sophisticated 
methods of network access may be used. Such a network sprang from the need to 
transfer large amounts of data over long distances relatively quickly. It soon 
became clear that this type of large network was not only an efficient method 
for moving data overseas, but the ONLY efficient method for doing so. Because 
of Europe's lack of approved auto-dial modems and poor quality dialup lines, 
X.25 networks quickly became dominant there. 

Perhaps the most important distinction between an X.25 network (accessed directly) 
and a dialup network is the allocation of bandwidth. An X.25 network allocates 
bandwidth dynamically · only when you need it. The result is that you are 
basically charged by the packet. A dialup network allocates bandwidth for your 
line, and never deallocates any of it until your call is terminated. Tilus, the 
amount of data sent through a dialup network does not determine cost: you pay 
for connect time, whose rate is based principally on distance. 

The PAD approach to X.25 Networking 

As one would expect, a network such as X.25 is necessarily more complex than a 
dialup network, and there are significant difficulties in connecting to one. 
Fortunately, there is a device which simplifies the task greatly. 

The Packet Assembler-Disassembler (PAD) is a device which saves your host CompUter 
the arduous task of building and dismantling "packets." A packet is the basic 
unit of information in an X.25 network. It contains commands, data, error-correction 
information, routing information, and several additional fields which will not 
concern us. These packets are passed from station to station on their way to 
their final cestinations. If your host computer were to perform the task of 
creating packets for a file transfer function, many cycles could conceivably be 

·1- Paper 9004 



wasted. The PAD allows you to offload this process, and provides the host 
computer with a standard interface: a modem-controlled RS-232 type connection. 
The host computer needs no new interface card, no new drivers, and very little 
application· level support. Because of these simple advantages, PAD's have become 
quite widespread; adding one to an existing HP·UX system can increase its 
communication scope to worldwide proportions. 

HP's Implementation of PAD Access 

The advantages and simplicity of PAD connections over architecture dependent 
X.25 hardware makes the decision of X.25 access method easy: We want to support 
an X.25 connection for HP·UX, which runs on several different types of processors, 
and it is difficult to produce specialized hardware for all in an economical 
and timely fashion. The PAD solution also eliminates the need for kernel support 
(drivers) in HP-UX. The well known UUCP/CU package of programs was used as a 
basis for the project. 

Protocol 

The first and foremost problem with UUCP file transfers is the inappropriateness 
of the usual UUCP protocol (the 'g' protocol) for X.25 applications. The 'g' 
protocol simply sends a series of 64-byte packets, each with checksums, waits 
for acknowledgement from the remote side that each was received, and retransmits 
if necessary. This is an excellent scheme if phone lines are used, since they 
are slow and generally prone to errors. However, this scheme is quite bad for 
X.25. First, X.25 has internal error detection and correction, so the small 
packets are inefficient, and their checksums are redundant. Next, the delays 
involved with waiting for an acknowledgement every 64 bytes, when combined with 
the propagation delays inherent in long distance communications, makes this 
protocol about as slow as when it is used on ordinary phone lines. Last, since 
you pay by the packet, you incur significant financial penalties for not filling 
up packets to their limit. The solution to this problem was to employ a new 
protocol - the 'f' protocol, which was invented at the Mathematical Center in 
Amsterdam. The 'f' protocol does not create packets at all, but simply sends 
the whole file to the PAD, using nothing but XON/XOFF to pace the transmission. 
At the end of the transmission, a checksum is sent for the whole file to assure 
its safe arrival. This scheme avoids the delays involved with a send·ack·send·ack 
scheme, and is also efficient with respect to packet-filling. 

Configuration and Logging 

Another problem is the PAD configuration that is required each time a call is 
initiated or received. A default configuration is not suitable for the several 
types of calls that may be initiated (i.e., UUCP file transfer with f·protocol, 
interactive session, etc.) Therefore, there needs to be a facility serving the 
outgoing and incoming sides of the conversation that perform appropriate PAD 
configuration. On the outgoing side, there is not much problem, since the HP 
DIALIT module which ordinarily performs modem auto-dialing, is easily adapted 
to perform PAD dialing and configuration. However, the incoming side does not 
have such a convenient facility available. The incoming side also has the 
additional responsibility of logging the caller's address for security reasons. 
The "getty" program, which ordinarily waits for a call to come in on an incoming 
line, is inadequate for such a specialized set of tasks. Therefore, a special 

Paper 9004 ·2· 



getty is used, and is called getx25. Getx25 handles configuration and logging 
upon reception of an X.25 call. 

Ease of Use 

On top of the additional responsibilities placed on dialit and getx25, another 
important capability is needed: a way for them to work in conjunction with PAD's 
other than the HP2334A, and to be user- configurable to do so. A similar 
situation arises with all the various auto-dial modems available for use with 
HP-UX. Most of these modem have widely differing command sets, and so must have 
separate procedures for performing the dialing. In addition, all the possible 
modem types cannot be anticipated by HP, and so the DIALIT module is provided 
with source code so the customer can customize a dialing procedure for a new 
modem. This module is written in C, and so requires a good deal of knowledge 
on the customer's part. For the PAD configuration however, a simpler solution 
was called for, one that did not require C programming. This solution involves 
the use of an extremely simple command language specifically designed to 
communicate with devices such as PAD's and modems. The language has only very 
primitive commands like "send", "expect" and "error." A fragment of a typical 
"script" might look like this: 

/ this is a comment 
timeout 10 

try: 

ok: 

send "dial" 
expect 2 "number?" 
error try 

send "555-1212" 

This program fragment attempts to dial a number on a hypothetical modem by the 
sending the command "dial" to it. It then expects the modem to send back the 
string "number?", at which point the script sends it the phone number. If the 
"number?" prompt is not received within 2 seconds, then the script will try 
again until the global timeout (10 seconds) has expired. It is obvious that 
this "language" is much easier to learn and program than C. 

Summary 

The most common use for UUCP is as a vehicle for carrying mail from machine to 
machine. The HP-UX facility "notes" (generally known as "news" outside of HP) 
is also responsible for a large percentage of UUCP traffic. Actual explicit 
file transfers are relatively rare. As an interpretation of these observations, 
the most important contribution of the X.25 connection is not simply movement 
of data from one place to another, but increased communication among people in 
faraway places. HP's implementation is also transparent to the mail/notes user, 
working below the user-interface layer of UUCP. 

Acknowledgements 

Thanks to Radek Linhart for his work on this project. Thanks to Hal Prince for 

·3- Paper 9004 



his PAD configuration language, "Halgol." Also, to Mark Laubach for his assistance. 

Further Information 

1. HP2334A Multimux Reference Documentation (HP Part 02334-90001) 
2. HP-UX Serial Network Reference (HP Part 97076-90002) 
3. HP-UX Concepts and Tutorials, UUCP chapter (HP Part 97089-90004) 
4. "Unix Networking via X.25" Paper presented by Radek Linhart 

European Unix Users Group Conference Paris, April 1985 

Paper 9004 -4-



9005. 

A NEW USER INTERFACE FOR UNIX [l]: THE HP INTEGRAL PC 

Jon Brewster 

Karen Helt 

Brock Krizan 

Jay Phillips 

Hewlett-Packard Portable Computer Division 

1. A NEW USER INTERFACE FOR UNIX 

The term "user interface" describes all interactions between 
a person and a computer. This includes keyboard layout, 
display formatting, command structures, and disc handling. 
A friendly, yet powerful user interface is the goal of the 
user interface designer. 

The design of the user interface for the Integral PC was 
driven by the desire to make the power of the UNIX operating 
system available to the novice. Some important constraints 
were; to not alienate UNIX sophisticates or previous HP 
personal computer users, allow import of standard UNIX 
software, and to allow the novice to become more 
sophisticated in using the computer as familiarity grows. 

This paper describes the user interface for the tntegral PC. 
A complete overview of the entire Integral PC product, and a 
detailed discussion of the UNIX version used in the Integral 
can be found in Andy Roods paper: "Personal Computer UNIX 
for the Technical Professional". 

The user interface for the Integral PC consists of four 
parts: 

1. HP-windows (window manager) 

2. PAM (Personal Applications Manager) 

3. A set of friendly utilities 

4. The inherent user interface of each application 

The result is a visually oriented multi-tasking system that 
allows each program to run as it was originally intended. 
The novice user can get by very simply, and the 

[l] UNIX is a trademark of AT&T Technologies 



- 2 -

sophisticated user can be very productive. 

It turns out that the type of multi-tasking offered by the 
Integral PC can be mastered by the most novice of users. 
For example, in figure 3 {part of a later example) a 
calculator has been brought up to generate a number needed 
in a document. There is no requirement to exit the document 
editor before running the calculator. In fact, the user can 
"shuffle" back and forth between the editor and calculator 
any number of times. Once this sort of multi-tasking is 
gotten used to, a single tasking environment is difficult to 
go back to. 

2. THE ROLE OF THE 'USER MODEL 

During the design of the-Integral PC user interface, it was 
discovered that the user interface could benefit from two 
parallel descriptions. There is t:t;>.e "user model" or user's 
view, and the "structured" or implementors view. Confusion 
for the implementor and the user is likely if these two 
views are not understood. The question usually asked was: 
"How can a user interface be designed so that the details 
are understandable to the novice?" The answer for a powerful 
environment seems to be: "You can't! {nor do you need to.) 11 

An Integral PC user gets information only on a need to know 
basis. There are very few things that a novice user should 
be told. However, as the user gets more sophisticated, more 
detailed information is made available. This new 
information can be the "truth" about old features, or it can 
be new features and capabilities. New features may take the 
form of extensions, or whole new concepts. In general this 
concept is called progressive disclosure. 

An example of the war progressive disclosure works for the 
Integral is found in the system softkey menu. Windows are 
placed automatically into default positions, with default 
attributes. After a user is told how to run multiple 
applications at the same time, and a certain comfort level 
is reached, the system menu is described. one keystroke 
{the [System] key) brings up the system menu. In this menu 
are commands to move, stretch, and hide windows. The user 
is allowed to improve efficiency by getting the most out of 
his screen space without having been overwhelmed by details 
early in the learning process. 

The structured view manifests itself as an "External 
Reference Specification". The information density in such a 
document can be quite high. For instance, all the gory 
details about cursor behavior can be in one place instead of 



- 3 -

progressively disclosed throughout a tutorial. The 
structured view is also the design specification. 
Information in the user view is too diffuse for a design 
document. 

Keeping track of the two views during the design of the 
Integral PC turned out to be very useful. Many times the 
structuring of the user manuals would impact the actual 
design of the user interface. This happened mostly with the 
friendly utilities. The Technical writers were important 
contributors to the user interface design. 

3. THE USER MODEL 

The traditional UNIX user interface is very powerful and 
reasonably self-consistent. However it is also cryptic, and 
its main features are not presented in a way that a novice 
can understand. This is mainly due to the amount of 
memorization required. PAM provides most of the techniques 
for making things less cryptic. The window manager provides 
a model for easy multi-tasking. Both PAM and the window 
manager do their job by making things visible, and by 
prodigious amounts of defaulting. The Theory was: make 10% 
of the functionality visible, supply good defaults, and 90% 
of the users problems can be readily solved. 

Besides the system user interface, there are the application 
programs themselves. Application programs are the reason 
that a user·buys a computer. Everything else is overhead. 
Anything done to make the use or importing of applications 
difficult will turn out to be a mistake. Let's run through 
an example as a novice user. 

First we power-up the system. This happens relatively fast 
since the operating system, PAM, and the window manager are 
all in ROM. At power-up all internal and external discs are 
made availabl.e for use without the need for any 
configuration file. Now let's insert a disc with the 
MemoMaker text editor on it. Note that the system detects 
this and instructs PAM to open the top folder of the disc. 
(See figure 1 for the current screen.) we can run MemoMaker 
by using the mouse, typing its name, or using the softkeys. 
(See figure 2.) While running MemoMaker, we can shuffle 
back to PAM, run a calculator, and send a number from the 
calculator to our editor. (See figure 3.) Upon exiting both 
applications, the screen automatically returns to figure 1. 



- 4 -

C!E:f:D Et! l!:li:c: : .IM~Disc 

ett!9U~s;: Blit:l*Mii['l&UA rpn 

C!ah EilH= budget chap1 chap2 schedule 

Et!l!:lf:U: bad: up book gaMes 

Figure 1 

Figure 2 



- 5 -

Hi MOM' 

How are ~ou? I aM fine, Please send Money. The aMount I 
need is il:l75.00 

Love Son 

Figure 3 

4. THE PERSONAL APPLICATIONS MANAGER 

PAM provides facilities for managing files and running 
programs. Users of PAM have widely varied experience in 
working with computers in general and UNIX in particular. 
PAM accommodates this range of users by providing a small 
basic set of easy to use functions, along with additional 
functions that are more capable but more complex to use. A 
novice computer user can run applications and manage data 
with the basic set of visible functions. Very little 
knowledge of UNIX is necessary. As the user gains 
experience PAM's advanced features such as piping and 
redirection are readily accessible. Experienced UNIX users 
are not forced to use the basic functions and can use PAM as 
they would a traditional UNIX command interpreter. 

The PAM user interface has three basic parts: the command 
area, the folder area, and the menu or keylabels. (See 
figure 1.) With this interface the user can view the 
contents of a folder, view data files, and enter commands to 
run applications and manage files. A folder is a collection 
of programs, data files and other folders. This is also 
known as a directory. 



- 6 -

The command area, which is the upper portion of the PAM 
display, is where a user issues commands and receives PAM 
feedback. A command may be a function that is built into 
PAM (requiring no other program to be executed) or it may be 
a file in the file system. PAM has built in commands to do 
the following functions: 

e copy, move, rename, and delete a file. 

e view the contents of a file 

e print the contents of a file. 

e redisplay the contents of the open folder in the PAM 
folder area. 

e change the open folder (the folder displayed in the PAM 
folder area). 

e make a new folder. 

e type a file name or a line of text in another window. 

Commands that are not built into PAM are associated with a 
file in the file system. This is a standard feature of UNIX 
shells (command interpreters). With one of the standard 
UNIX shells the command file must be a program. PAM goes a 
step beyond this and allows a command to be a program, a 
data file or a folder. If the command is a program then it 
is run. If it is a data file then the contents of the file 
are displayed one page at a time in a separate window. And, 
if it is a folder, then the folder is made the open folder. 
In addition to simple command entry (which may be adequate 
for many applications) PAM supports the following command 
entry features: 

e command parameters. 

e specification of the standard input and output of the 
command. 

e specification that the output of a command is to be 
used as the input of another command. 

e start a command and don't have PAM wait for completion 
of the command. 

e start a sequence of commands to be run in order. 

e specification of the window in which the command is to 
be run. 



- 7 -

e 20 lines of commands are saved by PAM and are 
accessible to the user for editing and reentry. 

PAM always sets up a window for a non-built in command to 
use for output. This keeps the PAM display and command 
output separate and allows PAM to be used while a command is 
running. 

The folder area, which is the lower portion of the PAM 
display, displays the name of the open folder along with the 
contents of the open folder. Files of the same type 
(program, data, folder or device) are grouped together in 
the display. One of the file names is highlighted - this is 
the file that is operated on by the function keys and that 
can be run as a command with a single keystroke or pick of 
the mouse. The file highlighted can be changed from the 
keyboard or using a mouse. 

When PAM is used to change the contents of a folder or to 
change to another folder, the folder area display is 
updated. If the size of the PAM window is changed then PAM 
will reorganize the folder area display so that it fits 
within the new bounds of the window. In the event that 
there is insufficient room to display the contents of the 
open folder PAM allows the user to display the contents in 
several parts. 

The PAM function keys are used to do one keystroke execution 
of the most common PAM built in commands. The function keys 
operate on the file name that is highlighted in the folder 
area (this file name is the "parameter" for the function key 
commands). The labels of the function keys and their use 
change based on the type of the highlighted file (e.g. menu 
item l is used to start a program when a program is 
highlighted, to view the contents of a file when a data file 
is highlighted, and to change the open folder and redisplay 
the folder area when a folder is highlighted). Functions 
that are not applicable to a particular type of file are not 
accessible with the function keys when a file of that type 
is highlighted. 

PAM on the Integral has some features that are found in 
traditional UNIX shells and in PAM on MSDOS machines. But 
much of its character is based on the packaging of the 
Integral system and the powerful functionality of its 
windowing software. Commands to print a file were made to 
take advantage of the built in printer. Windows are created 
for applications to use. A mouse can be used to access much 
of PAM's basic functionality. File manipulation commands 
are available to take advantage of the built in micro­
flexible disc drive. 



- 8 -

The command to copy a file, which can be typed as a command 
in the command area or invoked using a function key, is an 
example of how a comm.on command is enhanced in the PAM 
implementation to meet special needs of the Integral user. 
When a copy command is done with only one file as a 
parameter the file is first copied to RAM disc and then the 
user is prompted for the new file name. This allows the 
user to copy a file from one micro-flexible disc to another 
even though only one disc can be accessed by the system at a 
time in the single built in disc drive. 

PAM Also has a startup feature that can be used to do system 
configuration or to run an application. By running an 
application using this feature the Integral PC can become a 
"turnkey" system where the user only needs to be familiar 
with the particular application. 

5. FRIENDLY UTILITIES 

Even though the user may only want to run applications, 
there are some ugly concepts that will have to be learned. 
Some of these are: formatting new discs, back-ups, printer 
configuration, etc. The friendly utilities represent work 
done to simplify these jobs. Help options, good defaults, 
and for the complex utilities form driven input, all help to 
make these commands as easy to use as possible. Figure 4 
shows the copy disc utility. 



- 9 -

Which drive Hill contain the destination disc? internal 

1. Make sure that the above choices are correct. 

2. Insert the source disc. 
3 • Press .. 1m.Wll?'i!1!'.I • 

Figure 4 

There is also a collection of software that helps make the 
Integral immediately useful right out of the box. These are 
the Standard Applications, including: an interactive 
graphics package, a couple of text editors, an rpn 
calculator, and games of course. 

The Tutor Disc contains an on-line tutorial program. The 
Tutor is an interactive program that teaches the user how to 
use PAM, windows, and many other system features. This 
concept works very well in a multi-tasking multi-window 
environment. 

6. WINDOW MANAGER DETAILS 

The first part of the windowing model is the desk and paper 
analogy. The screen can be considered a desk, with each 
window a paper on the desk. This model is supported by the 
fact that windows can overlay each other without modifying 
each others information. Windows can also be shuffled from 
front to back, and moved around. 

The term "window" is also part of the model. A window 
supplies a view taken from a large two dimensional object. 
This object can be scrolled up, down, left, and right to 
change which part of the object is visible through the 



- 10 -

window. 

Each window has a name. The name, selected by PAM, is 
usually the name of the program running or file which is 
being viewed. The name is contained in a small tab called 
the window "title" that sticks up from the upper left edge 
of each window. 

Since windows are allowed to cover each other, some rules 
for uncovering need to be discussed. In general, wheneve~ a 
window receives new information, either from a running 
program or from echoing a users input, that window will 
"show" itself. A window which is showing itself will be in 
front of the other windows. A window is also shown when it 
is selected by the mouse, when it comes out from "hiding" 
(off screen storage), or when it comes to the front via the 
"shuffle" command. 

Windows can also be told to hide. When a window is hidden, 
the information part of the window is removed from the 
screen, while the title is placed at the lower left part of 
the screen. When there is more than one window hidden, 
there will be a title for each hidden window. (See figure 
5.) If output occurs to a window in this state, the window 
will remain hidden. When the window is next shown (via the 
selector and the select key) the new information will be 
there. Note that the running applications are oblivious to 
all this shuffling, hiding and showing. 



- 11 -

Personal fipplications Manager (HP-UX> • 
Open folder: ;M~Disc 

PrograMs : •iirn:rnm l'll'jll rpn 
Data files: budget chap1 
folders: backup book 

chap2 

Figure 5 

schedule 

The keyboard is considered to be' connected to only one 
window at a time. When the user types, the characters will 
only show up in one window. This window is called the active 
window. The user is in full control of which window is 
active. A window is made active by the user in the 
following ways: 

1. The mouse can be used to make a window active. Move 
the selector over any portion of the desired window 
and press the "Select" button. This is also the 
mechanism to retrieve a hidden window from the lower 
left of the screen. Simply select the title. 

2. If a window is brought to the top with the "shuffle" 
command, then it is made the active window. 

3. When an application is placed in a new window by PAM, 
it is made the active window. 

Each window has its own cursor. If a window is a terminal 
emulator (most windows) then the cursor will behave as a 
normal terminal cursor. If a window is a graphics window, 
then the cursor is associated with the plotter pen. cursors 
are window based images that are not allowed to leave their 
windows. 



- 12 -

The selector is a small imaqe that is free to roam over the 
entire screen. When the selector is between windows it will 
appear as a small diamond. When the selector is over the 
menu it will appear as a small arrow. Each window is 
allowed its own selector imaqe so that as the selector 
travels across any portion of the window that image is in 
effect. The default image is a small arrow. The selector 
is usually controlled by a mouse, or other pointing device, 
but can be controlled by the cursor keys (by use of the CTRL 
key). The selector is used with the "Select" key to select 
a place of interest on the screen. 

The User Interface is desiqned around a required keyboard 
and an optional mouse. The followinq two techniques are 
used in order to allow the user interface to behave in a 
consistent manner with and without a mouse: 

1. 

2. 

The keyboard can simulate a mouse movement. In 
particular the cursor control keys can be made to 
control the selector instead. Simply use the CTRL key 
with the cursor keys. 

There are two keys on the keyboard ("Select", and 
"Menu") that duplicate the functionality of the two 
buttons on the mouse. 

A menu is a list of items equivalent to the keylabels of the 
Series 80 machines and current HP terminals. These items 
are listed horizontally at the bottom of the screen in an 
inverse video area. This area "floats" on top of any 
windows that extend into the bottom area of the screen. The 
"Menu" key on the keyboard, and the riqht button on the 
mouse, will act as a toggle causinq the menu to appear or 
disappear each time it is pressed. 

When a window is made active, the menu will show the items 
appropriate for that window. The softkeys can be used to 
access the menu items. However, it is also possible to 
access the items with the mouse and its "Select" key. 

Each window has its own menu called the user menu. This 
keeps menu items from different proqrams from interferinq 
with each other. There is also a system menu for window 
manipulation commands that is shared by all windows. The 
"User" and "System" keys on the keyboard are used to select 
the menu type. 

The center area of the menu contains the name of the active 
window and an identifier that tells the user which type of 
menu is active. (see figure 5.) 



- 13 -

7. USER CONTROL OF WINDOWS 

Window control can be very simple. PAM creates windows 
automatically. Unused windows get destroyed automatically 
whenever a new window is created. The only explicit control 
a novice user needs is the "shuffle". Shuffle brings the 
window at the very back to the front, and makes it active. 
Consecutive shuffles allow a user to review all windows. In 
particular, even windows which are completely hidden behind 
other windows can quickly be accessed. The next thing a 
user learns, is to move the selector wit~ the mouse and use 
the left mouse button to select a window. With this, a user 
can make any window which can be seen the active and front 
most window. 

The rest of the user control is performed through the system 
menu. (See figure 5 for a view of the system keys.) 

The [Hide] command removes the active window from the screen 
without modifying the information it contains. Its banner 
will be placed in the lower left corner of the screen. To 
get this window back, move the selector to the banner and 
press the select key. 

The [Invert] command inverts the color sense of the active 
window. Black on white will turn to white on black, and 
vice versa. The asterisk will come and go to indicate the 
current mode. 

[Move] is an interactive command that will move the active 
window to a specified location without changing its size. 
When "Move" is invoked, the selector will change its image 
to that of a bracket in the shape of an upper left hand 
window corner (like an upside down "L"). This corner 
selector indicates the placement of the upper left hand 
corner of the window. The user can move the selector 
anywhere on the screen, and use the "Select" key to finish 
the command. 

The [Pause) command is a toggle that tells the active window 
to perform no more output until the next pause command is 
given. The asterisk will come and go to indicate the 
current mode. When a window is paused, the internal buffers 
will fill up and then the program will be put to sleep. 
This is equivalent to CTRL-S and CTRL-Q in a standard UNIX 
tty driver. 

The [Save] command is used to retain old windows 
desirable information. Normally old unused 
destroyed when the next window gets created. 
keep the screen from getting cluttered. This 

that have 
windows get 

This is to 
command is a 



- 14 -

toggle for the active window. An asterisk will come and go 
to indicate the current mode. 

The [Stop] key will destroy the active window if it 
being used (not open). Otherwise, SIGQUIT will be 
the process group, and the window will be destroyed 
the final close occurs. 

is not 
sent to 
when/if 

[Stretch] is an interactive command that will change the 
size of a window while leaving its position unchanged. 
"Stretch" behaves like "Move" except that the corner 
selector looks like the lower right hand corner of a window 
(a backward "L"}• The selected position becomes the lower 
right hand corner of the window, and the upper left hand 
corner (called the anchor} stays where it is. If the 
selected position is above or to the left of the anchor, 
then the window will be placed such that the selected 
position and the anchor form two corners diagonally opposed 
to each other. 

The [Alpha] and [Graphics] commands bring up window type 
specific menus. The active window type determines which one 
of "Alpha, "Graphics", or a future type will be indicated in 
the system menu. These menus contain commands such as 
Display Functions for alpha windows, and Pen Up for graphics 
windows. 

Most of the keys on the keyboard are defined by the active 
window type. There are some keys on the keyboard whose 
functionality is defined by the window manager. 

The [Menu] key is found on the mouse and the keyboard. 
Pressing this key will toggle the on/off nature of the menu. 

The [Print] key will cause a full screen dump to the 
internal printer. 

[Shift][Select] is 
window back on the 
the active window. 
between windows. 

known as a "shuffle". The farthest 
screen will come to the front and become 
This is the standard way to switch 

The [Select] key is found on the mouse and the keyboard. 
When the selector is over a menu item, and "Select" is 
pressed, that item is invoked. When the selector is at the 
middle of the menu the menu is toggled between the system 
items and the user items. When the selector is over any 
part of a window, then that window is placed on top of any 
windows which might be covering it, and it is made the 
active window. When a "Move" or "Stretch" is in effect (as 
indicated by the shape of the selector}, the position on the 



- 15 -

screen will be used for placement or size information. 

8. PROGRAMMER CONTROL OF WINDOWS 

The programmers interface for window control allows for 
complete control of windows. However, all control is 
optional. The standard UNIX environment is mostly set up 
for terminals. The window environment is completely 
compatible with programs that utilize terminal abilities. 
In particular, the alpha window type is a pure superset of 
the normal UNIX tty driver. 

The technique for controlling windows was modeled after that 
which is used for controlling the tty driver. The program 
makes a call to get a copy of the current state, changes 
some of the information, and then makes another call to put 
it back. Some of the things which can be modified are name, 
location, and size. There are also some control bits which 
control whether the window is on the screen or hidden, has 
an inverted background color, is connected to the keyboard 
(active), etc. 

When a program is finished and goes away, the window it was 
using does not qet destroyed. This is because many UNIX 
programs compute their answers, output, then immediately 
exit. If the window were destroyed, the information would 
be lost. Instead, the window is destroyed the next time a 
window is created (unless the user presses the (Save] key). 
If a program wants its window to be destroyed when it exits, 
the program should set the AUTO DESTROY bit. Many times, 
this is all that is required to make a program "window 
smart". 

Many new programs would like to use the mouse. Asynchronous 
UNIX events such as alarms, or telephone hang-ups, are 
handled by signals. The program merely declares that a 
particular function be called when the event happens. The 
Integral PC has a new signal called SIGMOUSE. With this 
signal and a function that reports exactly what happened, a 
program can easily detect such things as the left mouse 
button ~oing down, or up, or the window being stretched, or 
made active. 

9. TERMINAL 0 WINDOW TYPE 

The main window type in the window system is the Terminal o 
window type (also known as the alpha window). This is the 
type of window PAM creates for an application when it is 
started. Since easy porting of applications was an important 



- 16 -

qoal, the alpha window needed to look just like a terminal 
to the application. 

Applications written for the UNIX operatinq system expect to 
talk to a terminal through a serial interface. This serial 
interface is called the tty interface. The alpha window 
must thus be a terminal emulator and a tty interface 
emulator. 

The alpha window type emulates a subset of the HP2391 
terminal. This subset is known as Termo or Terminal o. It 
has both an HP terminal mode and an ANSI terminal mode. The 
ANSI escape sequences supported are a subset of the ANSI 
XJ.64-1979 standard, "American National Standard Additional 
Controls for Use with American National standard Code for 
Information Interchange". The ANSI mode allows access to 
additional software which was not written to use an HP 
terminal. The VTlOO terminal is an ANSI terminal, and it is 
one of the more popular terminals. Thus in ANSI mode, much 
of the software written for the VTlOO could be used. The 
ANSI mode is not a complete VTlOO emulation. 

Soft fonts are a useful feature of the alpha window. There 
can be many different fonts of different sizes in use in 
different windows at the same time. There is also a font 
editor shipped with the Integral to allow the user to 
experiment with fonts. 

The alpha w~ndow also contains support for fast alpha. Fast 
alpha is a high performance functional interface that is 
supported on many HP machines. Fast alpha provides the 
capability to write strings of characters with or without 
display enhancements at any position in the window, to place 
the cursor and turn it on or off, to create, activate and 
remove fonts, to fill a rectangle with a character with or 
without display enhancement and to scroll a rectan~le in any 
direction. The performance comes from sending many 
characters in one call, from not having to look at every 
character in order to parse escape sequences and from not 
having to send an escape sequence to position the cursor 
before writing. 

10. HPGL WINDOW TYPE 

Importinq qraphics software was also important for the 
Inteqral PC. Since UNIX has very poor qraphics standards, 
an HP standard was selected. It was clear that external 
HPGL plotters would be supported. So, the qraphics window 
is a reasonably complete HP 7470A plotter emulator. This 
means that any program that performs qraphics via HPGL 



- 17 -

command sequences has a reasonable chance of an effortless 
port. 

There is also a set of fast functional entry points for 
programs that don't care about HPGL. 

11. ARCHITECTURE OF THE WINDOW SYSTEM 

The overriding constraint on the window manager architecture 
was the need to emulate already existing UNIX I/O. It would 
not be acceptable to require a program to be recompiled or 
order to run it in a window. Implementing the window 
manager as a normal UNIX program would force much more 
context switching between programs. It was felt that this 
would severely impact total system throughput. More 
expensive memory management hardware is one solution. 
However, the Integral PC is a personal computer, and keeping 
the cost down was important. Because of these things, the 
entire window system has been implemented as a set of UNIX 
device drivers. 

For every window type there is a driver. The standard 
window manager includes the terminal o alpha, and HPGL 
graphics drivers. There is also a driver called the window 
control module, which coordinates all screen and keyboard 
activity. The drivers mentioned above are all independent 
of the system hardware. The hardware dependent software is 
contained in the keyboard driver, and display driver. The 
inter-module connections are shown if figure 6. 

PrograM Calls 
PrograMs 

/ ' Unix Operating SysteM 7 ..::s::.\" 

,; ~ One Of 
Window ~ 71 Seueral Possible 
Control 

~ 
Window Types 

Module 
I /! 

keyboard 
Display 

Driuer 
Driuer 

l .2!__ Software 
/ \II Hardware 

keyboard Graphics Processing Unit 

Figure 6 



- 18 -

The keyboard driver receives control from the interrupt 
handler. It processes its inputs into four types: 

l. key strokes from keyboards 

2. relative motion from devices such as mice 

3. absolute coordinates from devices such as tablets 

4. ASCII codes from devices such as barcode readers 

Keystrokes are mapped through 
standard set of 16 bit codes. 
customize key layout. This is 
foreign language users. 

a ram based table into a 
This table can be modified to 
useful to support Dvorak, and 

Once the keyboard driver converts its inputs into a hardware 
independent form, it calls the window control module for 
further processing. The window control module processes 
some of the information (such as shuffle and mouse movement) 
and passes the rest on to the active window. However, the 
keyboard driver can also buffer the keystrokes and make them 
available for direct reading. This is useful for a program 
that wishes to capture all keystrokes entering the system no 
matter which window or program would normally receive them. 
Key strokes can also be written to the keyboard driver. 
These key strokes will be treated exactly like normal user 
input. 

The display driver has four main jobs: 

l. character placement and font manipulation 

2. line drawing 

3. raster operations 

4. identification 

At system power up the identification entry points are used 
to discover such things as screen size and default fonts 
size. Most of the software in this driver is associated 
with fonts and rasters. The design of the screen driver had 
to address many of the classical disc driver problems, such 
as thrashing, and fragmentation. The main problem is that 
fonts and rasters are big, and the hardware resources are 
limited due to cost. Data space for these objects is 
allocated dynamically from the main system RAM. In order to 
use these objects, they must be placed into a special area 
of RAM. This RAM is controlled by the screen hardware. 
This screen RAM is not large enough for all fonts or rasters 



- 19 

that might exist in the system at any one time. T~erefore, 
the allocated system RAM takes on the role of a backing 
store. 

The keyboard driver only calls the window control module as 
described above. All modules call the display driver. The 
display driver never calls other drivers. The window 
control module and the window type drivers have a more 
complicated relationship. Each window type driver must have 
12 entry points for the window control module to call. Also 
each window type has at its disposal 10 entry points into 
the window control module. These entry points are designed 
to hide the nature of each window type from the window 
control module, and to centralize screen update and user 
interface strategies. 

The original design, which was worked out in 1982, called 
for each window type to be a pure abstract data type. The 
term "window type" dates back to those days. During 
implementation it was found that some streamlining had to 
occur. This is mainly in the form of a data structure that 
both the window control module and the window type code use 
to find out the current state of things (window locat.ion, 
background color, etc.). 

New window types may be added to the window manager. The 
writer of a new window type must understand the use and 
maintenance of the shared data structure, the 22 cross 
module entry points and the abilities of the display driver. 

12. SUMMARY 

Making UNIX available to the novice user required a great 
deal of work. Fully half of the Integral PC software team 
worked exclusively on user interface. The final product is 
a bonafide UNIX machine that is easy to use. 





9006. USING INTERPROCESS COMMUNICATION TO IMPLEMENT 
DATA BASE CONCURRENCY UNDER HP-UX. 

l. History of SSG 

Tim Snider 
Statistical Software Group, 

200 James St. S., 
Hamilton, Ont., Canada 

SSG converts statistical and research oriented software to run on HP computers. 
Originally this was restricted to the HP3000 with all of its code and data space 
limitations. Although these were overcome for many very large packages, there 
were some programs which could not be converted until the advent of the HP9000 
with 32-bit addresses and virtual memory. One of these packages was the SIR 
data base management system, a research oriented data base system produced by 
SIR, Inc. 

2. SIR 

SIR/DBMS was originally a batch oriented data base system, with a comprehensive 
data dictionary and very powerful retrieval and reporting languages. More 
recently, it has been developed into a flexible, multi-purpose data management 
system with interactive data entry and enquiry in SIR/FORMS, an enhanced version 
of IBM's SQL language, SIR/SQL+, a soon to be released presentation graphics 
system, SIR/GRAPH, and multi-user data entry and update via the SIR/MASTER 
system. All of these have been converted by SSG to run on the HP9000 under 
HP-UX. It is the last of these that this paper will focus on. 

3. Considerations of Portability and Conversion 

Most of the software packages that are converted by SSG are written in Fortran. 
For all of its shortcomings as a programming language, it is still one of the 
most portable languages available. 

In writing portable software it is important to reduce the machine dependancy 
to the lowest possible level and rigidly define an interface at that level which 
can be supported on any target machine. If this standard interface is at too 
low a level, inefficiency may be introduced since some feature of a certain 
machine may be bypassed. If the interface is at too high a level, it is more 
difficult to define and may introduce too much variation in the operation of 
the software on different machines. 

All SIR software is written using a macro preprocessor that generates a very 
portable subset of Fortran-66. The lowest level macros must be defined for each 
machine that SIR is to be implemented on. For example, all primitive data types 
are handled through machi~e specific macros. Thus it is possible to simulate 
any data type on any machine. In addition to these macros, there are rigidly 
defined machine, operating system, and file interfaces. These are implemented 
for each target machine in about 100 procedures and functions, usually written 
in the assembly language for the machine. 

-1- Paper 9006 



4. Data Base Concurrency 

In order to allow concurrent users to update and enter data, it is necessary to 
coordinate access to data and index files. Modifications to information in data 
files must be coordinated with other users who are accessing the same data. 
Modifications to index structures, which occur whenever data is entered or 
deleted, may have far-reaching effects and must be coordinated with any other 
users in the data base. This is usually implemented at the operating system 
level by the file system. Since all file I/O is ultimately done through some 
form of system call this is an appropriate place to arbitrate between requests 
from different processes. 

This fact caused several problems for SIR in implementing data base concurrency 
in a portable manner. First, not all operating systems support the degree of 
file coordination necessary. HP-UX, and Unix systems in general, fall into this 
class. Second, those operating systems that do support it have a very wide 
variation in the manner in which it is supported. Third, SIR was already 
implemented on about many machines, using a file interface at a much lower level 
than would be necessary to efficiently support data and index locking. 

To solve these problems, SIR, Inc. has developed a data base concurrency manager 
called SIR/MASTER. This package enforces the different levels of data locking 
necessary and centralizes control over modifications to the index and data 
structures. User programs make requests to SIR/MASTER to access data, to apply 
different levels of locking and to write data. SIR/MASTER manages the locks 
that are in place at any time, arbitrates between users, and is the only program 
that physically reads or writes the data and index files. A program such as 
this can be written in a very portable manner, except for the communication of 
requests and results between the master process and user processes. Thus the 
problem of data base concurrency is reduced to a problem of interprocess 
communication. 

5. Interprocess Communication 

Interprocess communication relies on two components, a communication charmel or 
medium, and a synchronization mechanism or protocol. Under HP-UX there are 
several choices for both of these. Sometimes, both components are supported by 
a single mechanism, as is the case where two processes communicate over a pipe. 
In this situation, the pipe is the medium and the I/O calls on the pipe enforce 
their own synchronization. A reading process will automatically sleep on an 
empty pipe and a writer will sleep on a full pipe. Another paper in these 
proceedings, Integrating Multiple Programs Under HP-UX, describes a situation 
where pipes are used as the communication medium, but the default pipe 
synchronization is not adequate. In that case HP-UX "signals" were used. The 
synchronization implicit with pipes was not suitable for SIR/MASTER either. In 
this case it was not possible to use signals to correct the problem. Signals 
may only be sent between related processes. Since many user processes must 
communicate with SIR/MASTER it is not possible for them to be related. 

This is an example of the problems that arise in software conversion. A program 
written specifically for HP-UX could easily be designed to use pipes with their 
implicit synchronization. However, in porting a system with certain requirements 
built into its interface, it is necessary to use something more flexible. For 

Paper 9006 -2-



SIR/MASTER, shared memory was chosen for the communication medium, and semaphores 
are used to synchronize communications. 

6. Shared Memory 

Shared memory allows many processes to map a portion of their virtual address 
space into the same physical memory locations. Data stored in this shared area 
by one process is available to many other processes. 

On the HP9000-500 under HP-UX shared memory is implemented through the extended 
memory system. When a process uses extended memory an unnamed temporary file 
is created on disk. References to extended memory access this file through a 
page table with pages swapped in and out of physical memory as necessary. It 
is also possible for a process to specify that a permanent named file be used 
for extended memory. A set of processes that specify the same permanent file 
name will share the same extended memory. Thus there is no further overhead in 
using shared memory than for any use of extended memory. An additional feature 
is that shared memory may be locked into physical memory. This guarantees that 
it will never migrate to disk. However, memory locked in this manner carmot even 
be relocated by the HP-UX memory manager, so there may be some negative impact 
on overall system performance. 

7. Semaphores 

Semaphores are a synchronization mechanism supporting atomic "test and set" 
operations. They were originally proposed as a method to support cooperating 
processes by Dijkstra and are discussed in detail by Brinch Hansen. 

The operations currently supported by HP-UX (release 4.02 at the time of writing) 
are creation and access of individual semaphores, and initialization, increment 
and decrement of a semaphore's value. Semaphores are created and accessed via 
a system wide key. Any process using the same key will access the same semaphore. 
The semaphore invariant as implemented in HP-UX is that a semaphore's value 
cannot be decremented below zero. Thus a typical usage of a semaphore to 
guarantee individual access to some resource is as follows. A semaphore is 
created and initialized to 1 by some master process. This process may now 
terminate, leaving the semaphore behind. User processes wishing to gain access 
to the resource may now access the semaphore. Each process attempts to perfonn 
a decrement or "down" operation on the semaphore. This operation will test the 
semaphore to determine whether it may be decremented. The test and decrement 
are "atomic", that is if the test succeeds the decrement is guaranteed to take 
place before the process may be interrupted. Thus it is not possible for two 
processes to accidentally decrement a semaphore at the same time. Any process 
failing to decrement the semaphore may return a failure indication or sleep 
until the semaphore is incremented. The one process that succeeded in "downing" 
the semaphore takes control of the resource. Upon releasing the resource, the 
process increments or "ups" the semaphore, allowing another process to successfully 
complete its "down" operation and take control of the resource. 

The implementation of semaphores under HP-UX seems to follow very closely to 
the description given by Brinch Hansen. A semaphore is a data structure managed 
by HP-UX, having an integer value and a queue of pending operations. When a 
process attempts a "down" operation, the value of the semaphore is tested. If 

-3- Paper 9006 



it is greater then zero, it is decremented and the operation succeeds. If it 
is equal to zero, the process is added to the queue of pending operations and 
put to sleep. When a process attempts an "up" operation, the value of the 
semaphore is incremented and the operation succeeds. In addition, if the queue 
of pending operations is not empty, the next process is removed from the queue, 
awakened, allowed to decrement the semaphore and continue. The system overhead 
involved in using semaphores is minimal. 

8. Virtual Channels 

The interprocess communication interface for SIR/MASTER is defined in terms of 
"virtual channels". These are one-way communication channels between processes. 
Processes use a set of routines to open a channel for reading or writing and to 
read and write a channel. Under HP-UX, these channels have been implemented as 
circular buffers, using shared memory and semaphores. The buffer is stored in 
shared memory so that all processes may access it. A mutual exclusion semaphore 
is used to prevent collisions on updating buffer pointers, etc. Since the 
semaphore invariant ensures that its value will not go below zero, and it is 
guaranteed that no two processes will update a semaphore's value at the same 
time, a semaphore initialized to some positive value may be used to count events. 
For example a semaphore initialized to 10 will allow at most 10 "down" operations 
to be performed before an "up" operation. A semaphore such as this which is 
"downed" each time a message is to be put into the buffer, and "upped" when a 
message is removed causes writers to be put to sleep when the buffer is full, 
until a message is removed by a reader. A similar semaphore used in the opposite 
direction causes readers to sleep when the buffer is empty. 

9. Use of SIR/MASTER 

An installation wishing to allow concurrent access to a SIR data base rm.tst ensure 
that a copy of SIR/MASTER is running at all times that the data base is to be 
accessed. This master process creates the virtual channel that will be used 
for requests from user processes. The master process will sleep when there is 
no data base activity since its message buffer will be empty. 

!Data I !Master f f Master Channel f 
fBase '<·-->IProcessj<----1----------------1 
jFilesf --------- fmutexjfullf emptyf 
------- I 1 I 10 I o I 

A process wishing to use the data base must access the same virtual channel to 
send requests to the master. It also creates its own virtual channel to receive 
results back from the master. The user process now sends the name of its virtual 
channel to the master. The sequence of events is as follows. 

- the user process attempts a "down" on the masters "full" semaphore. 
This succeeds since its value is 10 

• the user process gains exclusive access to the masters Virtual 
channel by "downing" the "mutex" semaphore 

Paper 9006 -4-



• the user process puts its message in the masters virtual channel 
buffer and "ups" the "empty" semaphore 

!Data I !Master I I Master Channel I 
!Base l<--->IProcessl<----1----------------1 
I Files I ·----··-· IMsg 1: Hi there! I 
·----·· 1----------------1 

lmutexlfulllemptyl 
I o I 9 I 1 I 

I\ 

I User's Channel I --···---- --------
1----·-------·---I I User I 1/----\I 
lmutexlfulljemptyj<--·-IProcessl<-·->I IUserl I 
I 1 I 10 I o I ---·-·--· 1\----11 

• this wakes up the master process which was sleeping on the "empty" 
semaphore 

the master process attempts to gain access to the virtual channel 
by performing a "down" on the "mutex" semaphore 

• this fails because the "mutex" semaphore value is 0, the master 
goes to sleep again 

• the user process having finished with the channel "ups" the "mutex" 
semaphore, waking up the master process 

• the master process accesses its channel, reads the message and 
"ups" the ''full" semaphore to indicate that a message has been 
removed 

• the message tells the master the name of the user's virtual channel 
so the master may now open it 

!Data I !Master I I Master Channel I 
!Base l<··->IProcessj<····l--·-·-----------1 
I Files I ·-·-·--·· jmutexjfulljemptyj 
···-··- I o I 10 I 1 I 

I User's Channel I --··----- --------
1-·--····------·-I I User I 1/----\1 
lmutexlfulljemptyj---->IProcessj<--->I IUserl I 
I 1 I 10 I o I - - - - - - - - - I \ - - - -I I 

-5- Paper 9006 



- the master process now sends an acknowledgment to the user process 
and communication may proceed in both directions. 

10. Conclusions 

There are many different methods available now under HP·UX for interprocess 
communications and there will be even more in the next release. HP-UX 5.0 will 
support the "msg" internals and a more complete set of shared memory and semaphore 
internals as specified in Bell System V.2. Each of these offers a different 
degree of flexibility and ease of use. Each is appropriate under a different 
set of circumstances. As is usual with UNIX systems, the lowest level functions 
are available to the user, making it possible to mimic an interface designed 
for a different system. The implementation of virtual channels for SIR/MASTER 
was very straightforward using shared memory and semaphores and has been in use 
for several months without any problems. 

11. References 

1. Per Brinch Hansen, Operating System Principles, Prentice-Hall, Englewood 
Cliffs, NJ, 1973. 

2. E.W.Dijkstra, "Cooperating sequential processes", F.Genuys, ed .• Academic 
Press, New Programming Languages, York, NY, 1968. 

3. Bob Bury, "Lightweight Semaphores", HP·UX Technical Exchange, Vol.l, No.3. 

Paper 9006 



9007. ARTIFICIAL INTELLIGENCE ENVIRONMENTS ~ 

SPEEDING UP THE SOFTWARE DEVELOPMENT CYCLE 

Sharon Bishop 
Information Technology Group 

Hewlett-Packard 
11000 Wolfe Road, Cupertino, Ca. 95014 

INTRODUCTION 

Today, there are many different opinions on the future direction of the software 
market, but one of the few trends experts agree on is that software is becoming 
more sophisticated, powerful and intelligent. Hewlett-Packard and other companies 
such as Symbolics, TI, Apollo and Xerox are offering systems which provide both 
the technology for developing intelligent and sophisticated applications, as 
well as the environment for execution of such applications. 

Hewlett-Packard's first entry into the AI market was presented at the International 
Joint Conference on Artificial Intelligence hosted by UCLA in Los Angeles during 
August 1985. Hewlett-Packard's contribution to the AI market is a Lisp-based 
system that provides both a development environment, as well as an execution 
environment for AI applications on low-cost, conventional hardware (specifically, 
the HP 9000 Series 200). 

HP's symbolic processing environment, like several others in the market today, 
although designed for AI system development, also has capabilities that make it 
valuable for non-AI software development. Therefore, the target market for HP's 
product encompasses a wide range of users including not only AI software vendors, 
but government, universities and commercial and technical businesses as well. 

You may ask yourself, "why would HP, or any other vendor, for that matter, 
venture into the AI marketplace?". The two most obvious answers are: (1) the 
potential market growth and (2) potential internal productivity gains. While 
there are rampant market projections today, and one must be careful to separate 
the AI-hype from reality, there is generally a consistent view by n~rket analysts 
that by 1990 the market for AI applications will have projected sales of at 
least $5 billion. The various segments that make up this projection include: 
Expert Systems ($2.5 billion); Artificial Vision ($1.2 billion), Natural Language 
($1 billion), Robotics ($500 million) and Voice Recognition Systems ($200 million). 

Internal productivity gains is an area that holds great appeal for all companies 
in today's competitive environment. While software metrics are not easily 
obtained today to provide a measurement of the dimension that AI techniques may 
contribute to software productivity, the promise is luring many large companies 
into activity to investigate and/or develop projects internally. The most well 
known example of this is probably DEC's XCON tool developed to help DEC configure 
VAX computer systems. 

THE PRODUCTIVITY ISSUE 

A programmer/analyst who creates, enhances, upgrades, tunes, tests, or corrects 
a computer-based application system is performing a highly technical task. The 

Paper 9007 



function being supported, the hardware on which the system runs, the algorithms 
used, and the flow of infonnation are all complex. Unfortunately, many programmers 
are still using methods today that are manual •• paging through listings, 
scrolling through screens and hunting and pecking through the application forest. 

Today the productivity problem has reached crisis proportions. The need for 
software and software engineers is growing exponentially, but productivity is 
only rising at a rate of about five percent a year. The last significant 
improvement occurred in the 1950's with the invention of compilers. Now with 
the mushrooming demand of the private sector and the government, especially the 
Department of Defense and its Strategic Defense Initiative, there is an even 
greater impetus to solve the productivity problem. Tools and techniques first 
developed to support research in artificial intelligence and interactive graphics 
are increasingly becoming a reality in commercial implementations of software 
development environments. 

Imagine yourself, for example, designing software for a large oil company. You 
need a system to monitor and control the increasingly complex and frequently 
changing environment. In an oil refinery, which breaks down crude petroleum 
into the refined gasoline products that make internal combustion engines run, 
every step in the process must have a certain yield. You may, for example, have 
a situation where the refinery control room system operator receives a dozen 
signals at once that a dozen yields are below par. 

Or, imagine that you have been given the task to design a system that will 
support a nuclear engineer in crisis management. Human response to a crisis in 
a nuclear reactor requires analysis of the state of the reactor based on a 
hypothesized failure event, so your system would have to be able to contain a 
set of hypothesized accidents and a set of event-oriented rules for diagnosing 
accidents. In the event of a crisis, your system would analyze its own state 
and conclude what caused the accident and explain it's reasoning to the nuclear 
engineer. 

Numerous other examples abound, from a system to handle I/C design augmentation 
based on a variety of vaguely stated design rules, to a system that can provide 
for strategic management of technology planning by coordinating and analyzing 
complex sets of relationships between technology and products. These examples 
are presented to illustrate that applications of this nature are increasingly 
forcing the commercial deployment of a revolution in the way software engineers 
will have to do business. A common thread runs through the example applications. 
They are, of course, all large, complex programs whose implementations require 
significant resources. They all share the similarity that it is extremely 
difficult to give complete specifications because of the complexity, or continually 
changing requirements. 

CONVENTIONAL ENVIRONMENTS 

Today, a typical C, PASCAL, FORTRAN or COBOL programmer laboriously captures 
the design requirements, using mostly manual tools, entering information into 
text files, circulating paper and doing very little prototyping before design 
freeze. Documentation is done by hand or through a word processor, coding is 
done in a compiled-only language, with explicit edit/compile/link phases, usually 
using a batch or single-window terminal timesharing system. Most testing and 

Paper 9007 



integration is scheduled late in the project, leaving little room for change, 
and neccesitating enormous expense to redesign when serious implementation 
differences exist between the designer and the end-user. Powerful tools today 
include Programmers Workbench (PWB) UNIX* and the recent Apollo DSEE, with 
extensive use of Make and SCCS. Recently, object oriented preprocessors and 
interpreters for PASCAL and C are speeding up the process. 

The typical ADA or MODUlA-2 programmer is mostly concerned with the role of 
strict strong-typing interface specifications and module boundaries. Tools 
interact via a central database serving as system dictionary for definition 
modules and project database for all code, design and tools. The envirorunents 
provide the important ability to relate design and specification to resulting 
code. The database stores different collections of objects, such as alternative 
configurations, marked with release-date, or as derived from some specification. 
There is some exploitation of language based editors and "executable" specification 
languages. Powerful envirorunents such as APSE, AL5 and CEDAR have been developed. 

AI VS. CONVENTIONAL ENVIRONMENTS 

Recently, the terms "evolutionary programming", "rapid prototyping", or "exploratory 
programming" are used to refer to the kind of systems and lifecycles most 
associated with Smalltalk, LISP and AI programming. These deal with the 
interactive and incremental refinement of incomplete systems. Coding, debugging, 
testing, and maintenance is a single process. Programs evolve via enrichment. 
Tools include interpreters, debuggers, and language-oriented editors. So called 
"knowledge engineering envirorunents" aid in developing expert systems. The 
system captures knowledge in a multi-linked database, which the user can then 
browse or navigate exploring views and perspectives. 

In contrast, conventional programming techniques are ill-suited to handling 
uncertain or changing specifications. Virtually all modern programmiug methodology, 
such as structured design, is targeted to ensure that the implementation follows 
a fixed specification in a controlled fashion, rather than wandering off in an 
unpredictable direction. In a well-executed conventional implementation project, 
a great deal of internal rigidity is built into the system, ensuring its orderly 
development. 

AI "FALLOUT" 

And, of course, all of these envirorunents take for granted many capabilities 
that are essentially the "fallout" from AI development that took place in the 
1960s through the 1970s. For example, in the 1960s, the first computer time-sharing 
systems were developed in AI laboratories to address a faster means for testing 
and debugging very complex programs. Word processing was developed in the AI 
lab in the 1960s and experts systems started in 1965. Bit map displays, the 
now- popular mouse controls, and the whole structure of display windows were 
also originated during the 1960s as well as object-based programming and a large 
number of productivity tools. 

Commercial use of these tools originally was discouraged by the fact that they 
require large computing and storage capabilities, but in the 1970s improved 
computer performance at lower cost made it practical to start using these tools 
in conventional programming envirorunents. For example, there has been a dramatic 

-3- Paper 9007 



improvement in recent workstation and interface technology, with great 
cost/performance benefits for group work. Powerful networked workstations with 
high-resolution graphics are becoming widespread. Today machines offered by 
vendors such as Symbolics, TI or Xerox LISP machines, DEC VAX's, Apollo, Sun, 
Textronix 4040 and Hewlett-Packard HP 9000/237, support AI and LISP at modest 
cost. These machines provide adequate hosts for radically improved programning 
environments. 

AI DEVELOPMENT ENVIRONMENTS 

Object-oriented programming is very much on the rise within HP, as well as within 
the entire industry. It brings to the programmer a productive and powerful 
paradigm for software development with languages that address concepts such as 
code-reusability, data abstraction, encapsulation and generic operations. Tilree 
years ago, HP began work in its applied research and development laboratories 
to investigate marketable AI environments. Today that effort has evolved into 
an wnbrella of technology that is being actively used by well over one hundred 
people at various HP divisions, as well as by students and faulty at major 
universities around the country. 

HP has stepped into the software development fray by offering on its dedicated 
Series 200, 68xxx based workstation, a cost-effective way to run larger, more 
complex applications. The product implementation consists of an integrated LISP 
+ OBJECTS +AI programming+ conventional languages programming environment. 
It supports a flexible window management system and input devices of a standard 
keyboard, tablet, touchscreen, mouse and touchtone telephone (or users may define 
their own interface). When used as a development machine, all programning tasks 
are supported for editing, debugging, testing, version management, distribution 
and docwnentation. As a LISP programming environment, it provides an editor 
mode customized to LISP syntax and indentation. This editor is based on the 
EMACS editor originally developed at MIT. It is a customizable, extensible, 
self- docwnenting screen-oriented, display editor. Users can customize, or mold 
the system in subtle ways to fit their personal style of editing. Users can 
also extend the system by adding new editing commands, or changing old ones to 
fit hisjher particular editing needs, while he/she is editing. There is a full 
library of functions at hand for the creation of new editing functions. 
Interactive self-docwnentation facilities support the user in effectively using 
the generous supply of features. Users can edit in two dimensions on the screen, 
so the page on the screen appears as the page in a book, with the ability to 
scroll forward or backward at will through the book. As the user edits the 
page, the screen is updated automatically to reflect the change. Many screens 
may be visible and active simultaneously on a single physical display, or multiple 
screens may be active on multiple physical displays. 

Another component of the environment is a large library of tools known as 
browsers. A browser is simply a tool for the viewing/searching/manipulation of 
a particular set of items. For example, you may use a browser to peruse 
docwnentation, files, source code or applications. You might want to conduct 
automated searches of docwnentation, or browse and manipulate the contents of 
a stack. Browsers can provide a simple, yet powerful, intuitive interface that 
is useful for handling a wide range of problems. Users are provided a large 
library of browser construction tools and functions to create their own browsers 
for their particular applications. 

Paper 9007 



As a conventional programming environment a similar set of commands for C, Pascal 
and Fortran are provided. These include editor modes, code browsers and interfaces 
to compilers which permit browsing from an "error log" to the offending source. 
It is anticipated that future capabilities allowing three-dimensional or "faceted" 
views and additional browser interfaces to supporting subsystems will provide 
a state of the art environment for programmers using their language of choice. 
Other additions such as interfaces to C and Pascal interpreters and debuggers, 
as well as support for additional languages are planned. 

To support all tasks encountered by the programmer, a number of optional user 
services have been integrated into the software development environment. These 
include office applications such as electronic-mail, documentation preparation, 
slide editor and telephone services. For example, if the user is in the middle 
of editing a document, he can send a mail message or view a program source, and 
can at any time, jump back to editing the document without changing context. 

Quite naturally, the ultimate goal of this powerful software development 
environment is to develop new applications to solve large, complex problems that 
previously have been extremely difficult or unsolvable with conventional methods. 
At HP, some examples of development activity using this technology include 
knowledge-based or "expert systems" applications in natural language understanding, 
VLSI design, manufacturing, computer diagnostics, medical advisors and intelligent 
instrumentation. While the majority of this development in today's environnent 
at HP is proprietary and intended to address our own need for productivity gains, 
it is clear that much of this technology will be leveraged into future products. 

FUTURES IN SOFTWARE DEVELOPMENT ENVIRONMENTS 

In pursuit of the common goal to automate aspects of the software development 
cycle, several approaches using AI techniques have been investigated in leading 
AI research and development laboratories. Expert systems for debugging and 
maintenance and the more ambitious approach of "automatic programming" are 
underway. Examples include the Psi project at Stanford in the 1970's and the 
recent Chi project at Kestrel Institute. The Programmers Apprentice Project at 
MIT is another example of the first steps in the search for automatic programning. 
It uses the model of a senior and junior programmer to examine how two people 
cooperate and what the ideal division of labor between them should be so that 
the more senior professional experiences a net increase in productivity. A more 
comprehensive next step has been outlined in a research project called the 
Knowledge Based Software Assistant (KBSA). 

At HP, as our AI technology continues to permeate through the company, we expect 
greater interest and use of these AI tools by software developers. We are 
planning the next steps needed to produce more powerful aids to the group software 
develop process. HP assumes that programmers will continue to work in groups 
and develop code in a variety of languages on a variety of machines. We are 
working toward a uniform programming environment, supportive of a multi-lingual, 
distributed software development process. We feel programraing environments will 
evolve much as operating systems have done. For example, todays operating 
systems manage a multitude of system resources for users, but requires far less 
knowledge or interaction than before through the use of unobtrusive virtual 
memory replacing manual overlays. 

-5- Paper 9007 



The environment will take an increasing role in monitoring and controlling 
design, coding and debugging of software. Rapid prototyping, reusable tools 
and a stockpile of reusable code components, along with a full integrated 
environment to support a programming team and manager with office tasks, program 
management and tracking, integration and customization of the power of the 
workstation on a network will be offered. 

Object-oriented databases and intelligent software "agents" will coordinate 
program team activities. The uniform programtning environment will become more 
intelligent about the programming process, and programming "assistants" and 
smart "apprentices" will control the interaction between the programmer and 
the underlying language system of choice. The smart apprentice will help to 
track usage and changes to individual functions, files and systems. The system 
will know about the language and perhaps have a model of the programmer. The 
"apprentice" may be able to fill in the missing steps, advise on alternative 
implementations and do other transitions such as derive more efficient code, 
expand on specifications or customize generic applications. 

SUMMARY 

To summarize. HP thinks that we need to make a dramatic improvement in productivity, 
but to do so, we have to build systems that are capable of exploiting knowledge 
about programmers and projects. We believe that even though the AI marketplace 
is in its infancy, there is a great deal of market potential for integrated 
environments that will provide tools for programmers developing large, complex 
applications that are difficult or unsolvable by conventional programming methods. 

The pressure to increase productivity and avoid a shortage of software engineers 
is a major factor in driving the move towards sophisticated workstation environments 
using AI tools and techniques. As hardware costs continue to drop and personal 
workstations increase in power, programmers will expect more capable and 
easy-to-use systems. Tightly integrated environments with LISP, PRO LOG and 
object-oriented languages will infuse the conventional software development 
market. Architectures will continue to evolve, providing an efficient implementation 
of these AI tools, since performance has long been a concern. Software metrics 
need to be used to capture the value and increase in productivity from use of 
these environments, since a long learning curve may be associated with them. 

HP's earliest step is to provide an integrated environment based on AI methods 
where powerful programming tools and office tasks can share a common set of 
basic tools and interfaces. In the future we will look toward effective 
object-oriented databases so that many new tools can exploit the accumulated 
knowledge about programs being built. Eventually, with a firm base, we can 
begin to build truly "intelligent" expert tools to aid in automating the software 
development cycle. 

REFERENCES 

D. R. Barstow, H. E. Shrobe, and E. Sandewall, "Interactive Programming 
Environments", McGraw-Hill (1984) 

Paper 9007 -6-



S. K. Bishop, "Al in the Commercial Marketplace", IUG Conference, Amsterdam, 
(April 1985) 

M. R. Cagan, "What is PR!SM?", HP Software Productivity Conference, Cupertino, 
(April 1985) 

M. L. Griss, "The Next PRISM Programming Environment • Applying AI to Software~, 
HP Software Productivity Conference, (April 1985) 

K. A. Frenkel, "Toward Automating the Software·Development Cycle", Connnunications 
of the ACM, (June 1985) 

T. P. Kehler, G. D. Clemenson, "An Application Development System for Expert 
Systems", Systems and Software, (January 1984) 

Arthur D. Little Decision Resources, "Frontiers for Technology Development", 
Decision Resources, (November 1984) 

James Spoeri, "AI Environment Speeds Software Development", Systems and Software, 
(August 1984) 

-7- Paper 9007 





I. Introduction 

9008. REAL-TIME FUNCTIONALITY IN HP-UX 

Robert M. Lenk 
Hewlett-Packard 

Fort Collins Systems Division 
3404 East Harmony Road 

Fort Collins, Colorado 80525 

There are a variety of UNIX systems and imitations in the market, so it is 
difficult to make general statements about their strengths and weaknesses. 'Ille 
last implementation which is a common ancestor of almost all current ones was 
known as Research Version Seven (or V7), which was released by Bell Laboratories 
in 1978. References to "standard" UNIX systems will apply to this version, as 
its feature set is common to most systems available today. 

The definition we will use of a real-time application is one which must reliably 
interact with or respond to entities outside the computer itself in a time 
schedule which is driven by those outside entities. This definition is extremely 
general. In fact it can be applied to virtually any computer application, as 
any application will eventually exceed the patience of its user if it does not 
provide results in the user's time schedule, whether that schedule is on the 
order of microseconds or years. Therein lies the key to the definition: 
real-time does not define a black-or-white distinction which can be applied to 
applications or to operating systems, it defines a continuum of requirements. 

Near one end of the continuum are applications which need to respond to discrete 
inputs, such as keystrokes, from humans. The generally accepted response time 
for such applications is about one tenth of a second. Somewhat more demanding 
are applications which respond to continuous input, such as movement of a mouse, 
from humans. The required response time here is in the range of 15 to 33 
milliseconds, in order to track these movements at rates of 30 to 60 hertz. 
Beyond this, applications which must respond to various instruments, machines, 
or other computers can require response times on the order of single milliseconds 
and below. 

!n addition there are differences in the absoluteness of these requirements 
among applications. When dealing with humans slight failure rates can go 
unnoticed, while major fluctuations render an application useless. In other 
applications failures can cause loss of data or imprecision in control of a 
machine. In the worst cases such failures can be catastrophic. 

Standard UNIX systems, unless loaded beyond the capability of the machine, are 
generally good at interacting with humans via terminals. However, they tend to 
have problems supporting applications with more stringent real-time requirements. 
The way to get optimal performance from a specific machine for a specific 
application is to write a custom operating system. However, this is a very 
costly approach, which provides very little leverage either for porting the 
application to other machines or to porting other applications to the machine 
of interest. The differences between these extremes are analogous to those 
between use of a standard high-level language and use of assembly language for 

Paper 9008 



a specific task. HP has traditionally provided proprietary operating systems 
with very good real-time characteristics for given machines, such as RTE for 
the 1000 family and the BASIC and PASCAL language systems for the desktop computer 
family. This approach can be seen as a compromise between the extremes; using 
the programming language analogy it is similar to use of a non-standard high-level 
language. The approach being taken with HP-UX is to maintain the industry 
standard interface, but extend it as necessary to support real-time applications. 
This is a different compromise, analogous to adding extensions to a standard 
programming language. The extensions made to HP-UX are intended not to immediately 
cover the entire continuum of real-time needs, but rather to gradually extend 
its capabilities to a broader range. 

A number of specific deficiencies in standard UNIX systems have been addressed 
in the real-time extensions to HP·UX. Since the basic HP-UX definition has 
evolved to become a superset of System V, some of the solutions have come as a 
part of tracking that definition. Other solutions have been chosen from 4.2BSD, 
with a slight modification in one case to fit in and preserve compatibility with 
AT&T and earlier HP·UX systems. In cases where no solution was available in 
another available system, a new one has been carefully defined to fit in with 
HP-UX. The first two products implementing these extensions are the 5.0 releases 
of HP-UX for the HP 9000 Series 500 and Series 200 computers, produced by HP's 
Fort Collins Systems Division (FSD). 

II. Time Resolution 

One of the key limitations in the standard UNIX feature set is in the resolution 
of the primitives which deal with time. The standard primitives for scheduling 
events at a given time have a resolution of one second, which is insufficient 
even when dealing with humans. 

A feature known as interval timers was taken from 4. 2BSD to address this problem. 
Each process can schedule either a single interrupt or regularly repeating 
interrupts with whatever precision the underlying hardware and operating system 
support. The interval is expressed in units of seconds and microseconds, in 
order to keep the interface portable despite the system-dependent resolution. 
In the 5.0 releases, the supported timer resolutions are 20 milliseconds on the 
Series 200 and 100 milliseconds on the Series 500. 

The BSD primitives for reading and setting the system clock in the same units 
of seconds and microseconds are also included in the HP-UX real-time extensions. 
The system clock is maintained with resolutions of 20 milliseconds on the Series 
200 and 10 milliseconds on the Series 500. 

III. Inter-process communication and synchronization 

Another limitation is the set of inter-process comnunication mechanisms available. 
There are only two mechanisms common to all UNIX systems, pipes and signals. 
These facilities have various weaknesses in functionality, performance, and 
reliability. 

A pipe is essentially a one way channel through which arbitrary data is passed 
with the read and write system calls. It provides synchronization by blocking 
readers when the channel is empty and blocking writers when it is full. Pipes 

Paper 9008 -2-



have a limitation of requiring the using processes to have a common ancestor 
which sets up the communication channel. Their performance is limited by the 
overhead of the read and write system calls. Most implementations of pipes use 
disc files with an in-core system-wide cache. Thus when the system is busy 
there may be additional overhead from disc accesses. 

A signal is essentially a software interrupt delivered to a process. For each 
of several signals, each process is allowed to install a handler, a function 
called when the signal is received. The mechanism was designed to allow for 
the handling of exceptions such as math traps and interruptions such as a user 
hitting a BREAK key. The definition also allows for processes to send signals 
to one another, providing asynchronous communication. However the definition 
includes various race conditions when signals are sent repeatedly, when processes 
attempt to suspend execution and wait for signals, and when processes attempt 
to change the handler installed for a signal. These race conditions can cause 
signals to be missed or processes to be terminated. 

HP-UX includes three new interprocess communication facilities from System V. 
All three share an interface which allows communication and synchronization 
among arbitrary unrelated processes, yet provides protection from unauthorized 
access. An elaborate semaphore mechanism allows solutions to both simple and 
complex synchronization problems. A message passing mechanism allows transfer 
of data without any disc access, and provides features such as tagging and 
prioritization of messages which are unavailable with pipes. Most important 
for real-time needs is a facility to provide shared memory among processes. It 
allows by far the highest communication bandwidth, since data does not need to 
be copied to be communicated. On the Series 500 and 200 shared memory is paged 
by default, but can be locked in core to provide optimal performance. 

4.2BSD introduced a new signal mechanism to solve the reliability problems in 
standard UNIX signals. It is modeled after hardware interrupts, and its main 
contribution is the ability to mask out signals in order to eliminate race 
conditions. One major shortcoming of Berkeley's new definition is that it does 
not allow full emulation of the standard signals used in virtually every other 
UNIX system, including AT&T systems and existing HP-UX systems. lb.is is because 
of an orthogonal change to transparently restart system calls which have been 
interrupted by signals. A few minor modifications to this portion of the 4.2 
definition yielded one for HP-UX which can completely emulate both the standard 
UNIX mechanism and the new BSD mechanism. The HP-UX definition allows the user 
to choose whether an interrupted call is restarted as in 4.2 or aborted as in 
the standard mechanism. 

Another new feature of the 4.2 signal mechanism is the ability to designate a 
special stack for handling certain signals. As defined this feature is highly 
unportable, since it relies on the ability to arbitrarily move a process's stack 
pointer without affecting the remainder of its environment. In particular it 
is impossible to reasonably implement on a stack-oriented architecture like the 
Series 500. The major value of this feature is the ability to handle an exception 
when a process has run out of stack space. Thus the HP-UX definition replaced 
this feature with a system call that allows a user to reserve a specified amount 
of space for handling certain signals. It is left to the system implementation 
whether the space is reserved as part of the normal stack or as a separate stack . 

• 3. Paper 9008 



IV. Process priorities 

Another limitation in standard UNIX systems is in the degree of control available 
over process priorities. The UNIX process priority structure was designed for 
multi-user timesharing systems. As such, its major goals are fairness to all 
users and acceptable response to users at terminals. In order to achieve these 
goals, the system dynamically adjusts process priorities, favoring interactive 
processes with light CPU usage at the expense of those using the CPU heavily. 
Users are given some control of priorities with the nice system call, but the 
values specified are actually only one factor in a formula. As a result, it is 
difficult or impossible to guarantee that one process have an effective priority 
greater than another. In addition, processes executing within the kernel often 
have their priorities increased to favor them over any process executing user 
code. The priorities used in these situations are based only on the kernel code 
being executed, not the orig~nal priority of the process. Thus low priority 
processes inside the kernel are favored over high priority ones outside the 
kernel or in different portions of the kernel. 

Since these problems have not been addressed in any of the commonly available 
UNIX systems, a new solution is introduced with the HP-UX real-time extensions. 
This solution extends the priority model with a new range of priorities, named 
real-time priorities, and a new system call, rtprio, which allows processes to 
set their priorities in this range. Priorities in the real-time range are not 
dynamically adjusted by the operating system, but maintain absolute values as 
set by the user. Any process with a priority in this range is favored over any 
user process with a priority in the normal range, regardless of whether either 
process is executing kernel or user code. Furthermore, the rtprio call allows 
processes to read and modify not only their own priorities, but also. those of 
other processes owned by the same user. Processes with priorities in the normal 
range continue to behave with the standard UNIX semantics. 

V. Filesystem performance 

One major factor in the real-time response of some applications is the speed at 
which they can log data to disc files, or read the data logged by other processes. 
The mechanism used by the standard UNIX file system to allocate file space does 
not lend itself to optimal performance in this area. File space is allocated 
only at the the time a write is performed; new blocks are added to the file as 
needed from a list of free blocks. In the case of a single application writing 
to a freshly formatted filesystem, this may produce an optimal file layout. 
However, as files are created and destroyed, the free list tends to become random 
and the layout of any given file does the same. 

Since its inception, HP-UX on the Series 500 has had a filesystem implementation 
which is better suited for optimal file layout than the standard UNIX implementation. 
It organizes files as lists of varying-length extents, rather than as lists of 
uniform-length blocks. Whenever it extends the length of a file it attempts to 
make a contiguous addition to the last extent, rather than allocating additional 
blocks from a free list. A bit map of free space on the disc is maintained for 
this purpose. Also disc space is partitioned in cylinder groups, with small 
seek times within any one group. The algorithms attempt to allocate space for 
a given file from a single cylinder group, placing unrelated files in different 
groups to minimize contention for the same space. The more recent 4.2BSD 

Paper 9008 



filesystem implementation includes many of the same or similar improvements to 
the standard UNIX implementation. In particular it also uses cylinder groups 
and a bit-map for allocating free space. It does not use varying length extents, 
but does use larger block sizes than standard UNIX to speed up transfers. The 
5.0 release of HP-UX on the Series 200 uses essentially the 4.2BSD implementation, 
since it is an accepted industry standard. 

The bit-map allocation algorithms will almost always result in more optimal file 
layouts than the free list algorithm. Even so, when file space is only allocated 
as data is written, the layouts can be unnecessarily fragmented. This is because 
the operating system does not know the eventual size of the file when it must 
allocate the first portion, and there may be contention for the same space from 
other files being written simultaneously. Thus a new system call, prealloc, is 
included in the HP·UX real-time extensions. As the name suggests, this call is 
used to preallocate space for a file before the actual data is written. 

VI. Control over swapping 

Almost all UNIX systems support more processes than can fit in physical memory 
at one time by swapping whole processes, segments, and/or pages to backing store. 
The time required to bring one of these entities back into memory can range from 
several milliseconds to several seconds, and can thus violate almost any real-time 
requirement. The effect is· often a wide variation in the perfonnance of a given 
task, where the normal time is acceptable but an occasional swap causes problems. 
Since a process which is idle is generally the best candidate to be swapped out, 
one which suspends itself to wait for an external event is especially likely to 
suffer. 

HP·UX has adopted a solution to this problem from System V. The plock system 
call allows its caller to lock its executable code and/or its data in memory, 
to avoid unexpected swapping and paging. In addition, as alluded to above, 
shared memory segments can be locked in memory as needed. 

VII. User access to capabilities 

Some of these real-time features, notably real-time priorities and locking of 
memory, allow users to significantly degrade the performance seen by others on 
a multi-user system. The standard approach to capabilities of this nature in 
UNIX systems is to restrict the capability to the "superuser" or system 
administrator, who by definition has the ability to impact all other users. 
Unfortunately the superuser has many very dangerous powers, such as the ability 
to write or remove any file in the system, and care must be taken by anyone 
running as the superuser to avoid their accidental misuse. Therefore it is not 
optimal to require users using these real-time features to run as superuser. 

HP-UX includes a new concept called privileged groups as a solution to this 
problem. The system has several potentially dangerous capabilities or privileges 
which are ordinarily reserved for the superuser. However, the superuser can 
assign any of these privileges to a groups of users, designating that group a 
privileged group. All processes in a privileged group are empowered with the 
restricted functionality. The Series 200 implementation permits assignment of 
the real-time priority and memory locking privileges, as well as a third privilege 
not related to the real-time extensions. The 5.0 release of the Series 500 does 

Paper 9008 



not implement privileged groups, but restricts these rights to the superuser. 

VIII. Conclusions 

A number of features have been added to HP-UX to extend its suitability in the 
realm of real-time applications. At the time this paper is being written, the 
first implementations of these extensions have not been shipped, and performance 
measurements on them have not been completed. Shipments of these systems will 
have begun before this paper is presented, and it is expected that measurement 
results can be presented at that time. 

Hewlett-Packard is particularly interested in satisfying the needs of its 
traditional customer base. For FSD, this base has included many users of 
single-user BASIC and PASCAL workstation products in the area of measurement 
automation. These real·time extensions, together with features like the Device 
I/O Library, should allow many applications of this type to be implemented on 
HP-UX systems. This will promote greater portability of such applications, and 
also provide their users access to the many facilities available on an 
industry-standard operating system. 

Within FSD's Research and Development Laboratories, these real-time extensions 
have been used in developing an interactive graphics library and a window 
management system. The results of these efforts subjectively show a marked 
improvement over previous HP-UX systems in the ability to smoothly track input 
devices under human control. These particular applications will prove very 
important in the ability of HP-UX to support computer-aided engineering. 

Paper 9008 



MOTIVATION: 

9009. FAST ACCESS TO HP-UX(SOO) FILE SYSTEM 

Itzhack Goldberg 
CMS Ltd. 

11 Masad St. 
60706 Tel Aviv 

Israel 

One of HP's CUSTOMERS located in ISRAEL, was inquiring about our UNIX machines. 
Their main concern was the UNIX FILE_SYSTEM I/O performance. The deepest concern 
was that the WHOLE UNIX IO is BUFFERED, therefore even the use of the new 4.2 
FILE SYSTEM (also known as the FAST FILE SYSTEM) couldn't answer that requirrnent, 
as it uses a BUFFERED I/Oas well. A BUFFERED I/O isn't an adequate solution 
for an I/O bounded application. 

The current solution for an UNBUFFERED 1/0 on a UNIX SYSTEM is: the RAW DEVICE 
ACCESS METHOD. The customer wasn't too enthusia solution. He already has his 
own DESIGNED FILE SYSTEM on an old application. This experience convinced him 
to prefer a customized SYSTEM over a locally developed one. The RAW_DEVICE ACCESS 
METHOD actually forces him to implement once more such a SYSTEM. 

The use of a WELL KNOWN and SUPPORTED system is preferable to the use of a 
SPECIAL APPLICATION ORIENTED SYSTEM for a few reasons: 

It is more beneficial to concentrate on the application, instead of 
spending resources on something that may be bought for a cheaper price. 
The time allocated to design, write and maintain that FILE SYSTEM can 
be used on the profitable target application, let alone the fact that 
any FILE SYSTEM like any SOFTWARE PRODUCT is being changed and updated, 
which makes the SPECIAL FILE SYSTEM development process an endless 
one. 

The SPECIAL FILE SYSTEM might need its own hardware which makes that 
alternative a very costly one ( This is the case for instance with 
the HP9000 ). It may be even worse when the SPECIAL FILE SYSTEM is 
not using that totaly dedicated disc, in that case it is very difficult 
to justify such a solution. 

However there can be yet a good reason to keep a SPECIAL FILE SYSTEM and that 
reason is P ER F 0 RM AN C E . In cases like this, one is bound to develop 
his own FILE SYSTEM, otherwise his application won't sell. 

For a customer who wants to GET INTO THE UNIX WORLD and has an 1/0 bounded 
application there are TWO BIG QUESTIONS to be answered: 

1. Could his application withstand the I/O PERFORMANCE of the common 
UNIX environment ? 

2. If the answer to the l'st one is a negative one then: DOES IT 
NECESSARILY IMPLY A SPECIALLY DESIGNED FILE SYSTEM ?? 

-1- Paper 9009 



This paper assumes a NEGATIVE ANSWER for the first QUESTION. It will try to 
present a way to enable a user to perform an UNBUFFERED I/O on an ORDINARY UNIX 
FILE SYSTEM, if his application can LIVE with a few necessary restrictions. 

A way to avoid the development of a new FILE SYSTEM is to employ the UNIX FILE 
SYSTEM attributes for a RAW_ACCESS method. In other words if there is a way to 
ask the SYSTEM about the ABSOLUTE ADDRESS of EACH FILE on the DISC, then if the 
application won't try to READ after the END OF FILE or WRITE after the END OF 
FILE, it is possible to access that FILE in a RAW MODE. 

The UNIX machine on which this package was developed was an HP9000(500). Although 
this package may run transparently to the user, it is specific to this machine. 
This FILE SYSTEM resembles ,the BERK.ELY 4.2 FILE SYSTEM but is quite different 
from it. This means that any SOLUTION developed for it can only prove the 
FEASIBILITY of such a method. For those UNIX SYSTEMS which use the REAL BERKELY 
4.2, this package needs to be rewritten. 

To figure out what is the STRUCTURE of the FILE SYSTEM one has to look into the 
'/usr/include/sys' directory. The result of this phase may be a PROGRAM that 
enables the users to describe for any given FILE the ABSOLUTE ADDRESSES of its 
EXTENTS, as well as their SIZES. Such a program is: DESIND(l); for more explanations 
refer to the appropriate manual. Here is an OUTPUT EXAMPLE( copied from the 
manual page for desind(l) ) of the command: 

desind /bin/sh 

desind: /bin/sh D E S C R I P T I 0 N 

FILE SIZE in BLOCKS = 39 
FILE SIZE in BYTES = 39556 
Media BLOCK SIZE SIZE in BYTES • 1024 

EXT_NO 

0 
1 

START ADDR 
In BLOCKS 

59882 
55336 

FILE SIZE EXTENTS NO. = 2 

EXTENT SIZE 
In BYTES 

32768 
7168 

Having a DEBUGGED 'des ind' - like PROGRAM is essential before moving to the NEXT, 
PHASE: usage of the information obtained and demonstration which will exemplify 
the unbuffered I/O superiority to that of the HP-UX buffer oriented I/O method. 

In order to make the RAW UTILITY a user friendly solution, TWO POINTS have to 
be TAKEN CARE OF: 

1. The use of the RAW UTILITY should not disable the possibility to 

Paper 9009 -2-



PORT the USING program to another UNIX SYSTEM which lacks the 
RAW_ UTILITY. 

2. The UNBUFFERED METHOD HAS TO BE A CLEAN METHOD. It shouldn't 
VIOLATE the UNIX FILE SYSTEM SECURITY at the user level nor at 
the system one. 

Another point, not less important: Bench-mark results should illustrate the 
SUPERIORITY of the UNBUFFERED RAW ACCESS method to the regular BUFFERED l/O of 
the UNIX. Without firm proof this package won't be used. A study has to be 
conducted which compares different SYSTEM CONFIGURATIONS as well as buffer sizes. 
The results should relate the transfer rate to the system configuration and the 
different buffer sizes. 

In the following sections these POINTS will be COVERED. 

PORTABILITY; 

The RAW UTIL PACKAGE contains FIVE BASIC SUB-ROUTINES and the APPLICATION PROGRAMS 
call th;m. The 5 SUBROUTINES are: MOPEN(3C), MCLOSE(3C), MWRITE(3C), MREAD(3C), 
MLSEEK(3C). The program 'lMlm}cp' for which the source is included, may serve 
as an example for the way the PORTABILITY PROBLEM CAN BE SOLVED. It can be 
COMPILED in mainly two different environments. 

If it is compiled on the HP-UX9000(500) you just type the following ,line: 

cc -v Mcp.c -lraw -o MCP 

And the resultant 'MCP' then being changed own to the SUPER USER ownership, then 
execute: chmod 4555 Mcp (As a SUPER USER OF COURSE). Now one has the {mlm)cp 
which utilizes the UNBUFFERED RAW_ACCESS METHOD. A valid test of its performance 
is a file copy of a large file. However if the {Mlmlcp has to run on another 
UNIX machine, that machine just needs to have the system call prealloc(2) in 
its KERNEL. 

Then just type the following: 

cc -v -DORDINARY Mcp.c -o Mcp 

And the resultant 'Mcp' will be running on that system as well. The DIRECTIVE 
'ORDINARY' mainly tells the PRE-COMPILER to insert for EACH Mcommand its sys 
call; i.e., for 'mopen' there will be the sys-call 'open(2)' etc. 

By the way the {Mlm}cp introduces a NEW feature the '-P' which if NOT given will 
direct the program NOT to OVERWRITE an ALREADY EXISTING FILE. For a more in 
depth understanding of the 'ORDINARY' directive usage refer to: 'Mcp.h' an 
include file associated with the {MlmJcp PROGRAM. 

-3· Paper 9009 



Security: 

The clarity of the solution involves the following: 

For one: Will those programs which use the UNBUFFERED RAW ACCESS method 
endanger the FRAGILE SECURITY OF the UNIX FILE SYSTEM ? In other words 
could a process either unintentionly or on purpose OVER-WRITE an area 
on the disc which it is not supposed to ? 

Secondly: If the {Mlm)cp is taken as an example for a USER application; 
that program has to have the capabilities of the SUPERUSER, which 
enables the PROGRAM to carry out the UNBUFFERED RAW ACCESS METHOD to 
the DISC . How does one make sure that AIL UNIX FILE SYSTEM REGUIATIONS 
ARE OBSERVED ? In other words: Could I COPY a FILE that I'm not supposed 
to ? 

In the following sections these questions will be addressed. 

As for the DEBUG level the RAW_UTIL had gone through, it's a fact that the 
UTILITY was developed and tested under a normal HP-UX FILE SYSTEM. Except for 
the last PHASE of the UTILITY testing, all development and debugging was done 
on A ONE HP-UX NATIVE SYSTEM DISC. Not even ONCE did it cause any sort of SYSTEM 
FAILURE. It NEVER OVER-WROTE an unwanted file or by large it never caused the 
FILE SYSTEM any damage . That SHOWS that the MAIN BUGS were FOUND. 

A program which runs under the EFFECTIVE SUPER USER ID CAN READ or WRITE FROM/ON 
any FILE on the SYSTEM. To avoid that OVER QUALIFICATION of a PROGRAM, one has 
to USE the system call ACCESS(2). The MOPEN(3C) VERIFIES if the requested FILE 
SHOULD be MOPENED or not. This way the DESIND(l) makes sure one can't interogate 
a file which he doesn't have the access permission set to allow it for himself. 

In the lMlmJcp there are also some access(2) calls because the command is RUN 
under the SUPER USER mode. This STRESSES that the SUPER USER who is responsible 
for the different PROGRAMS RUNNING in the SYSTEM under HIS EFFECTIVE UID, DOES 
HAVE to CHECK and DOUBLE CHECK the APPLICATIONS which receive HIGHEST ACCESS 
PERMISSION in the ENTIRE SYSTEM. This concern is true for any application and 
NOT JUST FOR THOSE WHICH USE the UNBUFFERED_RAW_ACCESS_UTIL. 

Another ISSUE to address is: From where does the restriction of _MFILE arise? 

This restriction results from the fact that during the MREAD(3C)fMWRITE(3C) 
operation, the SYSTEM is not aware of the fact that the UNBUFFERED RAW ACCESS 
FILES are being accessed. A situation like this may cause a BIG PROBLEM-of FILE 
SYSTEM INTEGRITY. 

Suppose that another user or even the same one is not aware of a BACKGROUND 
process which tries to READ or WRITE from/to a CERTAIN FILE of his, and by 
mistake ( or intentionally ) REMOVES this FILE. 

Under the regular UNIX environment the file will be PURGED only after all file 
descriptors are closed. This way, UNIX ensures the integrity of the FILE SYSTEM 
and AVOIDS LOSS OF DATA. But in the case of the MREAD/MWRITE the FILE SYSTEM 
MANAGER is actually bypassed. The FILE would PROBABLY be REMOVED and the PROCESS 

Paper 9009 -4-



will, in the less difficult case, MREAD irrelevant INFORMATION which could belong 
to a newly created FILE, or under the WORST case our process will OVERWRITE the 
newly created FILE. 

In order to avoid a situation such as this, the MOPEN(3C) also opens the FILE 
as a REGULAR FILE so the SYSTEM will be notified about the FACT that SOME ONE 
is DEALING with the FILE and POSTPONE the ACTUAL REMOVE lllltil AIL FILE DESCRIPTORS 
related to the FILE are CLOSED. 

The following TABLES discuss performance benchmarks which were performed: 

1111111111111 11111111111111111111111111111 I l+++++++I I 11111111 I I 11111+++++ 

Tbe SETTING of the HP9020 while running the tests: 

The machine was in a single user mode. 
The SYSTEM WAS loaded with 2.25 MBYTES of MEMORY 
Cache buffer number - 120 
Read ahead level - 4 - -
Page_size - 1024 
The COPIED FILE called BIG is a 10Mbytes size. 
The tested DISCS were HP7912 and HP7914. 

MCP A ONE DISC COPY 
BUFFER 11111111+1 I I I I I 

SIZE REAL USER SYS 

lK 12:19 4.7 49.3 
2K 6:21 2.5 25.7 
4K 3:29 1.4 14.8 
SK 1:56 0.5 8.8 

l6K 1:12 0.3 6.3 
32K 50.8 0.1 3.9 
64K 46.3 0.1 3.9 

128K 35.0 0.0 3.4 
256K 32.1 0.0 3.4 

TWO DISCS COPY 
++++++++++++++ 

REAL USER SYS 

5:14 
2:55 
1:42 
1:05 

47.7 
39.0 
35.3 
32.4 
31. 5 

5.2 
2.4 
1. 2 
0.6 
0.3 
0.2 
0.0 
0.0 
0.0 

49.0 
27.0 
14.5 
8.7 
5.9 
4.6 
3.8 
3.6 
3.4 

At that CONFIGURATION the REGULAR READ/WRITE application figures WERE: 

BUFFER 
SIZE 

lK 
256K 

A ONE DISC COPY 
11III11 I I I+++++ 

REAL USER SYS 

1:25 
1:24 

1. 2 
0.0 

41.4 
30.6 

-5-

TWO DISCS COPY 
+++++++1111111 

REAL USER SYS 

57.1 
1:20 

1.3 
0.0 

42.5 
32.1 

Paper 9009 



The most impressive and OUTSTANDING DATA ,is certainly the fact that the REGUl.AR 
WRITE/READ were almost indifferent about their BUFFER SIZE. 

One could think that the reason for that was the complete dedication of 120 
CACHE BUFFERS to the SINGLE USER TASK. In order to evaluate the performance and 
compare the MCP and the REGULAR READ/WRITE COPY the configuration was changed 
so that the BUFFER NUMBER WERE REDUCED TO ONLY FOUR . The following illustrates 
how the performance was effected: 

MCP 
BUFFER 

SIZE 

256K 

REGULAR 
BUFFER 

SIZE 

lK 
256K 

A ONE DISC COPY 
+++++++++++++++ 

REAL USER SYS 

37.2 0.0 3.9 

A ONE DISC COPY 
+++++++++++++++ 

REAL USER SYS 

9: 20 1.1 
2:40 0.0 

45.2 
32.0 

TWO DISCS COPY 
+++++++I 111 I I I 

REAL USER SYS 

32.6 0.0 

TWO DISCS COPY 
++++++++++++++ 

3.3 

REAL USER SYS 

2:32 
2:36 

1.1 
0.0 

44.3 
30.3 

These DATA doesn't represent any REAL MIXTURE but this TIME the OUTSTANDING DATA 
is the FACT that the UNBUFFERED RAW ACCESSED bases MCP was hardly affected in 
its PERFORMANCE while the ORDINARY WRITE/READ were indeed. 

The NEXT STEP is to enlarge the NUMBER OF THE CACHE BUFFER NUMBER to 256 and 
CHECK how this change had affected the two cases: 

MCP 
BUFFER 

SIZE 

256K 

REGULAR 
BUFFER 

SIZE 

lK 
256K 

A ONE DISC COPY 
+++++++++++++++ 

REAL USER SYS 

31.4 0.0 3.2 

A ONE DISC COPY 
+111111111+++++ 

REAL USER SYS 

1,: 32 
1:23 

1. 3 
0.0 

42.6 
31. 8 

TWO DISCS COPY 
11111111111111 

REAL USER SYS 

32.5 0.0 

TWO DISCS COPY 
+++++I I I I 11 I I I 

3.5 

REAL USER SYS 

1:05 
1:19 

1.4 
0.0 

43.6 
32.4 

Once again one can CLEARLY see as EXPECTED that the UNBUFFERED_RAW_ACCESS based 
MCP copy utility is not affected by the change at all. 

The NEXT change in the CONFIGURATION was to enlarge the read AHEAD to 16 and 

Paper 9009 -6-



CHECK how this change had affected the two cases: 

MCP A ONE DISC COPY TWO DISCS COPY 
BUFFER +1111111111111+ 11111111111111 

SIZE REAL USER SYS REAL USER SYS 

256K 31.4 0.0 3.2 32.4 0.0 3.5 

REGULAR A ONE DISC COPY TWO DISCS COPY 
BUFFER 111111111111111 11111111111111 

SIZE REAL USER SYS REAL USER SYS 

lK 1:23 1. 2 47.6 1:07 1.1 47.4 
256K 57.5 0.0 36.2 57.6 0.0 37.6 

There is an improvement in the BUFFERED I/O application and none on the Mcp 
side. The GAP between the BUFFERED I/O and the UNBUFFERED I/O is closed. One 
could say that then the UNBUFFERED I/O is actually redundant. The fact is that 
a configuration like the ONE under this test will do some good to a very specific 
type of application: ONE which need BIG CHUNKS of CONTIGUOUS DATA, but on a 
MULTI-USER system there are many other applications which do not have this TYPE 
of characteristics and they will read 16K BYTES AHEAD while they actually needs 
much less. For such application this "IMPROVEMENT" won't do any good, but on 
the contrary, it may slow them down like an IO bounded PROGRAMS. 

In order to check whether the performance of the Mcp will tend to decline for 
BIGGER FILES in comparison to the I/O performance of the BUFFERED I/O a COPY of 
a 20Mbytes FILE was tested as well (still read AHEAD -- 16 and CACHE BUFFER 
NUMBER is 256 ) 

MCP A ONE DISC COPY TWO DISCS COPY 
BUFFER 111111111111111 II II II II II II II 

SIZE REAL USER SYS REAL USER SYS 

256K 1:03 0.0 6.2 1:03 0.1 6.6 

REGULAR A ONE DISC COPY TWO DISCS COPY 
BUFFER +++++++++++++++ 11111111111111 

SIZE REAL USER SYS REAL USER SYS 

BK 2:18 0.3 1:14 1:51 0.3 1:14 
12K 2:25 0.2 1:13 1:49 0.2 1:14 
16K 2:24 0.2 1:15 1:52 0.1 1:17 

It seems that the proportions are as they were on the smaller FILE TRANSFER. 

The LAST TEST was to TRY BOTH APPLICATIONS under a MULTI USER environment: 
under this sort of environment there was no guarantee as to the MAX TIME the 
transfer could take. This was the result the TIME SLICE allocated for each 
process. If a HIGHER PRIORITY WOULD BE GRANTED to the I/O BOUNDED process, then 
the result would be about that of the single user environment. 

A better performance issue: In the (M!m}cp utility a special calcul~tion is done 

-7- Paper 9009 



in order to MREADfMWRITE a MULTIPLICATION of the MEDIA BLOCK-SIZE. It is worth 
going to this trouble because this way the application overcomes an unnecessary 
BUFFER MECHANISM which would occur if the NUMBER of BYTES would not be around 
one. An EXTRA READ and WRITE respectively will have to be executed. A FILE is 
actually a collection of BLOCKS and not just as it might be thought, a collection 
of BYTES. Therefore it is possible in the Mcp to take this INFORMATION into 
account and use it for better performance. It is of course THEORETICALLY very 
helpful! but then when a copy of a FEW MEGA BYTES is the case, this aspect can't 
influence the total time very much 

The mlseek function is supplied to help the user seeking to a certain point in 
the FILE and from there to conduct a MASS I/O. If too many mlseeks are used, 
then the UNBUFFERED I/O will be actually mis-used. 

An issue which is unrelated to the RAW_UTIL but of some interest: The ·A option 
of the {Mfm}cp command. In transfers that involve TWO DISCS, an ASYNC mode can 
be of much help. There is some SEMAPHOR mechanism available on the HP9000. 
However it can't send QUANTITIES { LIKE: how much to READ or WRITE ). Therefore 
by using the 'MEMLCK(2)' system call it is possible to implement a sort of ASYNC 
communication. In order to make it work the BEST, a lot of FINE 1UNING is needed. 
On ONE DISC transfer the results clearly showed that a bigger BUFFER is preferred 
to an ASYNC mode with two halves of the buffer size. 

WRAP UP 

The UNBUFFERED RAW ACCESS UTILITY can be USED on the HP9000(500) family. 

The package has to be rewritten in order to be used on other UNIX machines. 

Programs which use the RAW_UTIL can relatively easily be ported to UNIX MACHINES 
which do not have the UNBUFFERED_RAW_ACCESS UTILITY. 

The UNBUFFERED RAW ACCESS UTILITY introduced a restricted UNBUFFERED I/O mechanism 
into the UNIX WORLD. (Can't READ/WRITE/LSEEK behind existing FILE END OF FILE). 

The UNBUFFERED RAW ACCESS UTILITY is respectfully DEBUGGED, and can be used by 
the users of the HP9000(500) family. In case of malfunction the AUTHOR is more 
than willing to hear about it and the reported BUGS will be fixed. 

Paper 9009 -8-



BACKGROUND 

9010. A TEST PROGRAM DEVELOPMENT SYSTEM BASED ON 
THE HP-9000 FAMILY OF COMPUTERS 

Jerry C. Merritt 
Technology Development Corporation 

Arlington, Texas 

John Mccutcheon/Robert Atkinson 
TRW, Redondo Beach, California 

Historically, a unique test software and hardware system was often developed to 
meet specific project requirements. During the past several years, however, 
existing test sets (one or more racks of test instruments, special purpose 
drawers, and instrument controllers) have often been modified for use on more 
than one project, and sometimes modified to test more than one type or class of 
module. New circuit designs and technology usually require more demanding tests 
(i.e. higher frequency, lower noise characteristics, etc.) resulting in more 
sophisticated test instrument requirements. Consequently, this hardware approach 
had only been moderately effective at reducing costs. New software was also 
normally written to support the newly modified test set since making major 
modifications to existing test programs was often found to be very expensive 
and time consuming. In addition, some new software functionality was usually 
required to operate new test instruments. As is typical with many low-production, 
high technology aerospace companies, the advantages of semi-automatic testing 
(increased throughput, improved repeatability, etc.) could easily be overtaken 
by the relatively high per-unit cost of developing software. 

MATS CONCEPT 

The MATS concept was initially formulated within the Hybrid Manufacturing 
Department (HMD) of the Manufacturing Division at TRW. Most of the original 
goals of MATS were thus directed toward reducing the costs and improving the 
performance of testing within the HMD. The primary test target or Unit Under 
Test (UUT) is typically a medium to complex hybrid circuit used in demanding 
aerospace environments. The original goals included: reducing test equipment 
costs; consolidating existing special purpose test sets (20-plus) into three 
general purpose test sets; developing a generic approach to modular, reusable 
software functions; and significantly reducing the test software development 
costs. Later these original goals were expanded to allow use in other 
manufacturing-related departments. Some of these added goals included: test 
software configuration management and data base management systems; communications 
capabilities with other systems (via modem or local area network(LAN)/IEEE 
802.3); output spooling for shared printing and plotting requirements; adaptability 
to any instrument-intensive test set via IEEE-488 bus; complete, easily understood 
documentation; and a user- friendly, menu-driven executive system. 

To facilitate producing a system which could meet these goals, TRW entered into 
a system development agreement with Technology Development Corporation (TDC) , 
located in Arlington, Texas. After a short evaluation/concept study, three 
development phases were scheduled as follows. During the first phase, the 

-1- Paper 9010 



overall system design would be completed, as well as completion of the critical 
Test Program Generator and main operator menus. The second phase would address 
the file and configuration management system, as well as the lower-level menu 
system. The data base management system would be completed during the third 
phase. As of this writing, the first two of these phases have been completed, 
and the third is underway. Following each of the phases, acceptance tests have 
been conducted to verify the MATS performance requirements. To date, MATS has 
been demonstrated to meet or exceed initial program goals. 

SYSTEM ARCHITECTURE 

MATS is targeted toward the HP 9000 family (series 200 and series 500) computers, 
including the HP Shared Resource Management (SRM) system and associated software. 
The hardware system includes individual series 200 workstations (comprising 
local computer, CRT display, keyboard, and mass storage device(s)) connected to 
individual test equipment peculiar to the class or type of modules/hybrids 
designated for that station. It also includes a dedicated SRM controller (also 
200 series), shared peripherals, and an HP series 500 computer which is used to 
provide extended capabilities in the area of test data analysis/management and 
communications. A block diagram of the prototype MATS hardware configuration 
is shown in Figure 1. 

The HP SRM system involves both hardware and software which, integrated as a 
central controller, functions both as a general purpose file server and a shared 
peripheral management service for MATS. This allows MATS software to centralize 
data base/file activities on a user-oriented basis, and to enable fast and easy 
access to controlled files. Several key software modules comprise the SRM 
operating system: a file system, a multi-tasking kernel (allows multiple requests 
or tasks to be performed at essentially the same time), a dispatcher, a spooler 
facility, and an operator console. The SRM system currently enables a maximum 
of 25 users to share discs, printers, and plotters; hardware connection of 
workstations is via a dedicated HP SRM interface/adapter and standard coax cable 
with a maximum of 1000 meters between controller and station. Maximum link 
speed of an SRM system is 700 Kb/sec, which results in an approximate file 
transfer rate of 15-35 Kb/sec. The main attribute of the SRM system is the file 
sharing capability available to users through their workstations. The SRM system 
handles all files through a hierarchical, tree-like structure which allows MATS 
to logically group them by user or specific project application. The number of 
directories and subdirectories under each is essentially unlimited, with each 
file name allowed up to 16 characters, and a date/time stamp automatically 
appended to each file. MATS takes full advantage of these attributes to provide 
a customized but controlled-access interface to the SRM system. 

SYSTEM SOFTWARE DESIGN 

MATS software is based upon the HP BASIC Operating System (version 3.0) on 
workstations and the SRM Operating System (version 2.0) on the SRM controller. 
This allows full support of all SRM and hardware capabilities as well as ease 
of adaptability for the typical test engineer. Though the software environment 
is controlled from power-on, access to the BASIC system is available for 
applications external to MATS and for new test function and instrument driver 
development. MATS software is comprised of three major components controlled 
by a single executive component as follows: 

Paper 9010 



2583A 
PRNTR 
300 LPM 

9920 I 
STATION 

82913A MNTR 
9122 DRIVE 
982038 KBD 
TEST EQUIP 

7550A PLOl i ER 

9920 

7914 
DISK 

132 MB 

SRM I 82913A MNTR 
I I 98203A KBD 

9920 I 9020 
STATION STATION 

I••• n 
82913A MNTR 

9122 DRIVE 
(INTEGRAL MNTR, 

982038 KBD 
FLOPPY, HARD 

TEST EQUIP DISK & PRNTR) 

Figure 1 - System Hardware Configuration 



1) MATS Control . main executive controlling access to the software 
functions and their components 

2) Test Program Generator • software to support all phases of creating 
an executable Test Program targeted for a particular UUT and associated 
test station configuration 

3) Test Program Executive • control software to support initiating, 
loading, and rurming an existing Test Program in the MATS environment, 
and properly routing output data to the appropriate files and devices 

4) Data and Control Manager · system software functions used to manipulate 
and transfer data/files, modify user or test station capabilities/paraneters, 
and perform supplementary configuration management and control 
functions 

A block diagram of the MATS software and its primary interfaces is shown in 
Figure 2. MATS software is designed for use on one or more of the host hardware 
test stations (series 200 computer) or the series 500 computer. The latter is 
designated the data analysis/communication computer, and provides for expansion 
of the data base and communication· related capabilities of the basic MATS 
system. MATS provides access to its lower level functions through a series of 
interactive terminal screen selections made by the user, using the keyboard 
function (soft) keys as the primary access mechanism. On·line help for use of 
the functions is generally available in the form of text displays describing 
user options when requested by the operator. Software interfaces between major 
MATS components are effected through BASIC common blocks, passed parameters, 
and the MATS data base file structure. 

The MATS Control function performs overall MATS executive functions, including 
system access (via password controlled logonjlogoff), general system initialization 
and termination, and system-level error processing not handled by other 
subcomponents. It performs user set-up and identification for new users, 
validates MATS user privileges, and provides top level merru screens as a mechanism 
to invoke lower level functions. Upon completion of MATS functions, it accomodates 
termination of MATS activity, including any required file closure and resource 
deallocation processing. It also allows straightforward access to the BASIC 
3.0 operating system environment. All MATS Control functions are invoked from 
a resident protected file on the SRM disk. The command screen at the highest 
level of the MATS hierarchy is shown in Figure 3. 

The Test Program Generator enables the user to create new Test Programs through 
a process of parameterizing and assembling a set of user-defined Test F\mctions 
and related parameter files into an integrated sequence of tests. Individual 
Test Functions are general-purpose subprograms dedicated to performing a specific 
class or type of test on a circuit to evaluate its operational performance under 
controlled conditions. Examples would include power application functions, 
frequency measurements, phase/gain tests, power output tests, and current-voltage 
measurements. Test Functions typically call one or more Instrument Drivers 
(also subprograms) which translate Test Function stimulus, response, commands 
and data into instrument-specific codes for processing by a target programmable 
test instrument (typically via the IEEE-488 bus). The Test Program Generator 
allows the user to select any number of these Test Functions and to select 

Paper 9010 -4-



r---------~-------~---------l MATS Control - system access c!c control, error handling 
-------. 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

Doto c!c Control Manager Test Pgm Gen Test Pgm Exec 
o Configuration Mgmt o File Mgmt o Builds Test Prog. o Initializes data 

- test access a: approval - me movement a: 
from Library c!c parameters - log a: mart< data/mes deletion 

- track test .station conflg 
o Test Results 

files o Sequences 
o System Mgmt - Data manipulation o Incorporates new test functions 

- control password prct. via IMAGE parameters o Routes results - enable data back-up - test data reports 
- communication via RS-232 and plottfng 

or LAN/IEEE-802.3 

--- - - - -- - --- -1- - - - --3- - -_;- - - - - - -T - . 

Shored Resource Mgmt System 
Printer 

o Provides access to resources 
Workstation - ----- 1-----
II n c!c Plotter 

o Printer c!c plotter spooling 

o SRM disk file structure 
..... 

-f-----i J_ -1- - - - - 3..} - - - 1- -- --· 

Test Instrument Gen. Purpose Test Prog Test Results Reports 
Function Driver Module Ltbrory Doto Files Generation 
Library Library Library Library 

' I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I I 
MATS Library Software I '- ~ - - ~ -- - - - --- - - - - - - -- .__. - - - -- - -- - --- ------ -
Figure 2 - MATS Software Configuration 



MAKE SELECTION ON FUNCTION KE'YS 

TEST RUN - allows execution of cm existing user-specified Test Program 
TEST RESULTS - provides test output data formatting. printing. plotting. 

and data analysis functions 
USER DIR - lists current files in the user's directory 
TEST GEN - allows the user to generate a new Test Program 
FILE MGMT - enable:s file purge. rename. copy. list. & print functions 
CONFIG MGMT - allows approval of test programs. test functions, and 

instrument drivers by authorized personnel 

SYSTEM MGMT - provides for modification of user accounts, access/ 
approval privileges. and password data by authorized personnel 

AC TEST DIR - lists current approved Acceptance Test Programs 

COMMAND MENU 
(C)COPYRIGl-ff_J 985 TRW I 
MATS-Rv 1.0 I S:OOOS.00 I JOHN W. SMITH I 11 May 1985 I 14:30 

HELP TEST RUN TEST RESULTS USER DIR TEST GEN 

flLE MGMT CONFIG MGMT SYSTEM MGMT AC TEST DIR EXIT 

Figure 3 - MATS Command Menu 



parameter values which customize the function for his particular use. Also 
provided are menus which allow identification of calibration functions/outputs, 
classification of several types of test runs (i.e. functional test, pre- seal 
test, burn-in test, etc.), and identification of test specification data (files) 
which designate supplementary test data, such as upper/lower limit values for 
tests. Once all Test Functions and related data have been identified through 
an interactive session, this information is saved as an intermediate file; it 
may then be later modified or processed by the Test Program Generator by 
'assembling' the source data into a completely integrated Test Program. The 
result is a uniformly constructed sequence of functions and tests wrapped within 
the Test Executive 'shell' which provides a common user interface at run time. 

The Test Program Executive provides a controlled execution environment for MATS 
by performing common initialization and run-time options for each Test Program 
run, and establishing formatted data output files and controls for error-handling. 
1his includes validation of selected test station configuration (test instruments), 
selection of which Test Functions are to be executed (user-selected or based on 
test run class), and sequencing of test functions. Once all test resources and 
options have been validated, Test Program execution is primarily dictated by 
Test Function code. Should fatal errors occur which are not detected by the 
Test Program, the Test Program Executive has the capability to terminate the 
execution process. As a separate function, the Executive provides test output 
formatting and routing to appropriate peripheral devices. This includes user 
selectable options for final disposition of test results. 

The Data and Control Manager enables configuration control and tracking of all 
MATS-resident Test Programs, Test Functions, and Instrument Drivers through a 
simple set of screen prompts and password validations. Files submitted for a 
formal approval cycle are software stamped such that engineering approval levels 
can be readily observed/printed without compromising file security. A status 
control file is maintained for each submitted file which documents the approval 
'signatures' and related control information. When formal approval has been 
completed, MATS allows an authorized user to enable transfer of the file to a 
permanent library-type directory from which other MATS users may draw on for 
their own needs. Data and Control Manager software also provides a complete 
set of functions for file manipulation (i.e. copy, rename, purge, list/print), 
system management (MATS user modification and directory control), and station 
configuration management. This latter capability enables a user to define and 
track specific workstation test instrument assets as a controlled entity (by 
instrument name, bus address) so that the integrity of hardware required by the 
Test Program is ensured. In the case of the series 500 computer, a Data and 
Control Manager function is provided which supports communication with computers 
external to the MATS hardware system (via RS-232 link and later a I.AN), as well 
as supplementary data analysis subprograms and utilities which may be used to 
further manipulate output test data. Provision is made for incorporation of HP 
IMAGE software to enable comprehensive data base management capabilities for 
the test results files. 

CURRENT STATUS AND LIMITATIONS 

MATS was originally designed and developed for the Hybrid Manufacturing Department 
at TRW in the 1984-1985 time frame. The current MATS system was successfully 
demonstrated in April, 1985 and has been informally released for use as version 

-7- Paper 9010 



1.0. At the' time of this writing it is being used for the first time in an 
actual engineering and manufacturing environment at TRW for a specific hybrid 
test application. The Test Function and Instrument Driver libraries are being 
established through requirements for testing these and other planned hybrid 
circuits currently in the design/production phase. MATS software has been put 
under configuration control so that problems/enhancements which are identified 
may be duly addressed and considered for later correction and implementation. 

Some current limitations have surfaced with the initial MATS release related 
primarily to the Test Program generation process. Due to the standard but 
somewhat sizable overhead folded into each Test Program generated, minimum 
program size is fixed (approx. 250KB), even for the most trivial Test Programs. 
Likewise, execution loading and initialization may be somewhat slower than could 
be achieved with a completely customized test package. A planned increase in 
standard workstation main memory (from 1 to 2MB) will minimize these constraints. 
Since there were few control features extended to the user for program/ logic 
control during program execution, it may be observed that special test cases 
requiring varying and unique looping or conditional branching constructs at nm 
time can be inconvenient to implement. Currently these may be handled through 
manual modification of the generated Test Program source file, but it is planned 
that special control functions will be implemented in the next release of MATS. 
Finally, due to a relatively low priority placed on the communications and DP.MS 
features initially planned for the original release, the associated file transfer 
and output data base manipulation functions of the software have not been fully 
integrated with the system as yet. These also are intended to be implemented 
in a future version of MATS, probably in the fall 1985 time period. 

CONCLUSIONS 

The major goals of reducing test software costs and reducing skill levels required 
to generate test programs have been met with substantial success with the initial 
release of the MATS system. Cost savings are realized primarily by accelerating 
the Test Program generation process through automated assembly of Test Functions 
and Instrument Drivers into an integrated whole, and by implementation of a 
series of stored, reusable, generic functions and drivers contained in protected 
libraries. By the nature of this system, as time progresses and more functions 
and drivers are developed, this cost savings will continue to increase. Required 
user skill levels have been reduced by enabling minimally trained personnel to 
access these libraries, and configure new test programs essentially by modifying 
UUT or test-specific parameters only. Judicious use of the available on-line 
HELP utility, along with a tailored MATS introductory training course and user's 
manuals have provided key tools for adapting to MATS. Closer tracking and 
control of all test software is possible with the Configuration Management 
functions of the system, thus saving much overhead in test-related paperwork 
procedures. The primary turning point for implementation of such a system relies 
on the enforcement of design and coding standards for newly developed Test 
Functions, and Instrument Drivers. This has been accomplished in the prototype 
system via a published set of programming style guides which define general test 
concepts as well as MATS-specific interface requirements. 

The success of MATS, as with any software system, relies on its use and acceptance 
as a productive and efficient tool which can be used not only to reduce costs, 
but to increase test programmer productivity as well. The implementation of 

Paper 9010 -8-



the reusable Test Function/Instrument Driver concept is a cornerstone of this 
system, and is considered critical to MATS acceptance. Recent industry studies 
[l] have indicated that software reusability in general may provide a progranming 
productivity improvement anywhere from 40% to an entire order of magnitude, 
especially when the total software life-cycle costs are considered. With today's 
exploding costs associated with hardware and (especially) software development, 
tools such as MATS may be considered to be the next logical step in enhancing 
the manufacturing test application environment. 

MATS was designed to be a dynamic system. It is based on guiding philosophies 
which permit change over time. Consequently, we have taken a structured, modular 
approach to the MATS executive software to allow incorporation of future 
innovations and enhancements. Of course, because we are working to 'real' needs 
and budgets, some compromises had to be made along the way. But, one of the 
fundamental concepts we have tried to follow is to allow for future growth and 
change. This philosophy and the resultant planning will give MATS a long and 
useful life. 

REFERENCES 

1. E. Horowitz and J.B. Munson, "An Expansive View of Reusable Software", 
IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, September, 1984 

-9- Paper 9010 





9011. INTEGRATING MULTIPLE PROGRAMS UNDER HP-UX 

Gary D. Anderson and Robert S .. Sciuk 
Statistical Software Group 

204,200 James St. South 
Hamilton Ont. LSP 3A9 

The Application Setting: 

The Statistical Software Group (SSG), acts as a converter and distributor to HP 
computer users of standard data analysis software packages, traditionally 
available on 32 bit mainframe systems. Since its inception in 1977, the SSG 
has converted and maintained the BMDP, SPSS, Minitab and SCSS packages on the 
HP3000 and, more recently, STAT80 on the HP3000. Since 1983, the SSG has also 
been involved in converting and distributing BMDP-UX, SPSS-X, Minitab, STAT80 
and SIR on HP-UX systems. 

BMDP provides a good example of a very powerful batch oriented package that 
uniquely meets the demands of large data analysis tasks. To use this package 
effectively in an on-line 'workstation' environment, the user needs easy movement 
to and from an editor. Sets of commands must be entered, submitted and then 
easily modified and re-submitted for each new analysis step. The user also 
needs a good facility for working with the output from the analysis steps. 
Often only small parts of the output stream from a data analysis session need 
to be printed. A facility for quickly browsing through the output to find the 
important parts and for easily moving those parts to a file or printer is a 
requirement. 

This paper describes a project, undertaken by SSG, to integrate an interactive 
front-end system with the BMDP package under HP-UX. The combined statistical 
package and front-end system has been named BMDP-UX. BMDP-UX provides an example 
of the type of interactive system that can be produced by forcing a batch program 
to communicate with interactive driver programs through appropriate interprocess 
communication channels. 

The BMDP Statistical Package 

The BMDP statistical package is the oldest and most highly respected statistical 
analysis system in existence. It is a direct descendant of the BMD Biomedical 
Computer Programs first published at UCLA in 1961. The package has continued 
to be enhanced and expanded over the years. Today, BMDP is used widely around 
the world and is recognized as a statistical standard against which other systems 
are measured. The present BMDP package is a set of 42 very comprehensive 
statistical analysis programs. The programs are loosely classified into eight 
series as follows: 

D: data description 
F: frequency tables analysis 
R: regression analysis 
V: analysis of variance 
M: multivariate analysis 
L: life tables and survival analysis 

Paper 9011 



S: non-parametric analysis 
T: time series analysis 

The BMDP package features a common sentence, paragraph structured conunand language 
as well as a common binary save file which can be written to, or read from, by 
any of the 42 programs in the package, interchangeably. The common BMDP language 
is used by all of the programs for describing the data to be analyzed and for 
requesting analysis and display options. The BMDP programs are ideally suited 
for use with an interactive front end which integrates access to the many separate 
programs into a unified system. 

The work described in this paper is based on an interactive system, developed 
by BMDP Inc., for use on a dedicated UNIX workstation called the STAT-CAT. 
BMDP-UX is an extension of the original STAT-CAT system and has been modified 
and extended for the HP-UX environment (HP9000 series 500, HP9000 series 200 
and the Integral PC). 

Features of the Interactive Interface: 

The most prominent feature of the BMDP-UX interactive interface is a screen 
'window' which is maintained by the system over the session input and output 
stream. This window features a one line, highlighted header banner which 
continuously displays the name of the current program being executed, the current 
date and the time of day at the top of the screen. This header serves to keep 
the user informed, at all times, about what activity is currently running 
regardless of what may actually be positioned in the window. 

The BMDP-UX window, by default, displays the activity happening at the moment, 
with input commands and program output scrolling from the bottom of the window 
and out of the top. This takes place in a manner consistent with the use of 
any standard terminal for interactive processing. At any point at which the 
system prompts for input, and, at regular points where the executing program 
has been forced to pause during generation of its output, the window may be 
moved up, down, left or right for viewing any part of the entire session output 
stream accumulated to that point. Alternatively, any HP-UX COillllBild may be executed 
at system prompts and pauses. 

To facilitate positioning the window over the desired place in the output stream, 
the arrow keys and the user menu keys associated with the eight highlighted 
boxes, situated at the bottom of HP terminals, are brought into play. 1he arrow 
keys move the window up and down or left and right over the output, in single 
page, or finer increments. The four right most user menu keys (f4 • f8) are 
associated with top, bottom, find and mark respectively. Pressing top or bottom 
moves the window to the beginning or to the end of the current session output 
stream, respectively. Find and mark allow the user to either position the top 
of the window at a specified string searched for in the output stream or to mark 
a location in the output stream with a user specified string marker for later 
recall. While the user is moving the window over the output stream, the BMDP 
program is maintained in a pause or 'locked' state. Analysis cannot continue 
until the window is returned to the bottom of the output stream. At that time, 
the program is unlocked and execution is allowed to continue. 

Papel: 9011 ·2· 



Once the user has positioned the window over an interesting section in the output 
stream, he will often want to move that part of the output to a separate file 
or to a printer. The user menu key f4 is associated with a submenu featuring 
a set of seven output options. These options include provisions for assigning 
or reassigning an output file or printer and for writing the present BMDP window 
contents, any marked section of the output stream or the entire output stream 
to this assigned file or printer. Using these options the user can easily build 
one or more output files containing selected parts of the present session output 
stream. 

The remaining main user menu keys (fl • f3) provide commands for invoking the 
vi HP-UX system editor to build or edit a BMDP command file or for causing an 
existing BMDP command file to be executed. 

In addition to the functions described, the BMDP-UX system provides additional, 
less commonly used commands, through CTRL keys. CTRL key alternatives for all 
user menu commands are also provided for use on non-HP terminals or older HP 
terminals without user menus. 

The Concurrent Programs Integrated in BMDP-UX: 

The interactive environment for BMDP-UX is created by three programs working 
together to process the users requests for data analysis using BMDP. These three 
programs are the Input Manager, the Output Manager and a BMDP program respectively. 
The three programs run concurrently and communicate via HP-UX facilities for 
inter-process communication described in the next section. 

The three programs are described as follows: 

1. The Input Manager (!PM): 

This program is the first to be started on executing the BMDP-UX command. 
The Input Manager processes all input from the user. Instructions entered 
by the user from the terminal are looked at by the Input Manager and 
passed on to either the BMDP program or the Output Manager for processing. 
The Input Managers task is to decide which of these two programs the 
users command is intended for. In general, instructions and data for the 
BMDP program are terminated by an end-of-line terminator, while Output 
Manager commands are terminated by a control character, a function key 
or an arrow key. 

BMDP program commands or data may be entered only when the program is 
prompting for them. Output Manager commands may be given any time that 
the program is waiting for the user to type at the keyboard. These times 
include the BMDP program prompting for input and the program pausing 
between "pages" of output. 

2. The Output Manager (OPM): 

The Output Manager program keeps track of all output from the BMDP program. 
In an interactive environment, the user normally views the BMDP program 
output on the screen. The user needs the ability to view any output 
which has moved off the top of the screen. It is the job of the Output 

-3- Paper 9011 



Manager to process the user's requests to display specific portions of 
the output stream on the terminal screen or to direct portions to a 
printer or file. 

3. The BMDP program: 

The BMDP program takes input consisting of instructions or data from the 
user and produces output in the form of reports, lists, charts, tables, 
files, etc. When being run under the control of the interactive Input 
Manager, a BMDP program will pause at appropriate points and wait for a 
user generated indication (<CR>) to continue. The BMDP programs can also 
be run, independently of the BMDP-UX interactive system, as stand alone 
batch programs. When running in batch mode, a BMDP program will run to 
the completion of its instructions and produce all appropriate output 
without pausing. 

Access to the vi editor and to HP-UX operating system commands is achieved by 
the Input Manager detecting an ESCAPE as the first character of a command which 
signals that the command is to be passed directly to HP-UX. The editor is executed 
in its own shell. The editor is invoked in BMDP-UX by pressing the user menu 
key f3. The editor uses a default 'input scratchpad' file. The current BMDP 
instruction set is maintained in this input file. Upon leaving the editor, the 
scratchpad file is automatically re- written and re-submitted to the BMDP program 
currently running. Thus, a user can repeatedly modify and re-submit a BMDP 
instruction set by merely pressing the user menu key f3. 

In addition to the input scratchpad file, which contains the most recent 
instruction set submitted to the BMDP program, the Input Manager also maintains 
a log file. This file contains a complete chronological log of all commands 
and instruction sets submitted. By editing this log file, a user can recapture 
any instruction set or command sequence used, up to that point, in a BMDP data 
analysis session. 

To cause the editor to access a file other than the default input scratchpad 
file, the user merely types the name of the desired file before pressing the 
user menu key f3. The same method is used to specify files other than the default 
for all commands involving a file. 

Process Synchronization and Communication: 

To address the problem of synchronization and flow of ,information between the 
asynchronous processes which make up the BMDP-UX environment, a system of 
"signals" and "pipes" was used. Although HP-UX version 5. 0 is expected to 
support the interprocess communication facilities of AT&T Unix System V, at the 
time of this writing semaphores and shared memory are "unsupported" in the HP-UX 
version 4.02 that we are currently running. A discussion of the implementation 
and use of semaphores can be found in Using Interprocess Communication to 
Implement Database Concurrency Under HP-UX which appears elsewhere in these 
proceedings. 

For those not familiar with the concepts of signals and pipes in Unix, a very 
good description is given in Tbe Unix Program Environment by Kernighan and Pike. 

Paper 9011 



Signals: 

Signals are sent to all processes initiated from the same terminal by events 
such as interrupts, software errors, hanging up a modem, or user intervention 
(eg: striking the DEL key on the terminal keyboard). Usually, a signal sent to 
a process will cause that process to terminate, unless that particular signal 
is caught and handled by specific code to either handle or ignore that signal. 
Signals may be trapped by application software through the "signal" system call 
which takes as its arguments a signal number (there are 19) and the address of 
a user-defined routine to handle that signal. One process may signal another 
process specifically by means of the "kill" system call which requires a process 
identification number (pid) and a signal number. The signaled process will 
immediately branch to the code specified to handle that particular signal. 

Pipes: 

Pipes provide a mechanism for connecting processes in a producer-consumer 
relationship, where one process reads as input the output of another process 
directly (ie: no file I/O is required). A pipe is an in-core first-in-first-out 
(FIFO) serial buffer, and may be either named or unnamed. Synchronization of 
pipe reads and writes is done automatically by the HP-UX kernel through the 
internal system calls "sleep" and "wakeup". One process may invoke another 
process by means of the "fork" and "exec" system calls and create a two way 
communication channel between them by means of the "pipe" system call. Note 
that although the "popen" system call combines the fork, exec and pipe calls 
all into one convenient system call, the child process' pid which is normally 
returned from the fork call and is used in the kill system call (see above) is 
not returned from popen. For this reason the fork - exec • pipe sequence was 
used. 

Filters: 

The concepts of filters and pipes are fundamental to the Unix environment. Unix 
consists of a number of simple programs which perform simple tasks, but which 
may also be combined in various ways to effect very elegant results. The only 
requirement for a program to be a filter is that it read from standard input, 
and write to standard output. As an example, the following command sequence 
will search through the file "myfile" for lines containing the string "Error", 
append those lines to a file called "errorfile" and display a count of such 
lines on the terminal. 

grep "Error" myfile I tee ·a errorfile I wc -1 

The "I" or pipe symbol means connect the standard output of the first program 
to the standard input of the second program - a sort of in-line connector. 1he 
"tee" program provides a T-join into a pipe, to direct the flow into two directions 
at once. Thus the analogy to plumbing or pipe-fitting. Much more complex 
arrangements can be made between programs as will be demonstrated below. 

The Plumbers Toolbox: 

An example of the code used to create a process, and to open a pipe between them 
is given below. For more detail of the actual pipe fitting the reader is referred 

-5- Paper 90ll 



to !he Unix Program Environment and the HP-UX Reference Manual. 

First, a pipe is opened. Opmfdl is an integer array of 2 elements containing 
"file descriptors" for the read (0) and the write (1) ends of the pipe. 

if (pipe (opmfdl) -- SYS_ERR) /* open a pipe */ 
fatal {"couldn't get opm pipes"); 

Fork will create an exact duplicate of the current process, which will immediately 
begin execution. The son process id will be returned from fork and stored in 
opmid in the parent process, and 0 will be returned in the child process. Since 
it can be determined whether the code executing is the parent or child, the code 
below will be executed only in the child process. 

if ((opmid - fork {)) -- 0) 
close (O); 
dup {opmfdl{O]); 
close (opmfdl[l]); 
execlp (opm,opm,0); 

(/* Fork a process */ 
/* Close stdin */ 
/* Attach pipe to stdin (read) */ 
/* Discard write side of pipe */ 
/* Execute opm */ 

The "execlp" system call will overlay the current (child) process with the OPM 
program, and there can be no return from this call. The "close" system call 
will close a file, and takes as its argument a file descriptor. By convention 
the file descriptors 0, 1 and 2 are standard input, standard output and standard 
error respectively. The "dup" system call will force its argument (a file 
descriptor to an open file) to be connected to the lowest available descriptor. 
Since we have just closed 0 (stdin) the read side of the pipe will be connected 
as standard input to the child. Since the standard files are inherited across 
an execlp call, OPM will be connected to the pipe when it overlays the child 
copy of IPM. 

ln the parent process, the write side of the pipe is attached to standard output 
in a similar fashion, and the read side of the pipe is discarded. 

close {l); /*Close stdout */ 
dup (opmfdl[l]); /*Attach pipe to stdout (write) */ 
close (opmfdl[O]);/* Throw away read side of pipe*/ 

the Plumbing: 

At initiation, the BMDP-UX environment can be depicted simply as follows: 

I I I I I I 
KYBD 1-········->I IPM l·····----·>I OPM 1-·····--·->I CRT 

___ I 1 ___ 11 1 __ 12 I __ _ 

The !PM will invoke the OPM as described in the section above. OPM will write 
its standard output to the terminal. At this point, the user will be in the 
BMDP-UX environment and is able to initiate any HP-UX command, specify that a 

Paper 9011 



BMDP analysis be done, or review any ASCII files. If the user invokes a BMDP 
program, the following situation arises: 

I I 
I BMDP I_ 

I I I 1- ····>I 13 l I I I 
f!NFILEJ···->I !PM l·········-····--'-->I OPM 1----->I CRT 
I I 1 __ 11 1 __ 12 I __ 
I I 
I KYBD I 
I I 

The above diagram indicates that a scratch INFILE now provides input to IPM, 
and a new pipe is created for the BMDP process. The input to IPM is handled 
like a stack (LIFO), and the input scratch file is checked periodically, to 
determine whether modifications have been made to it. If this is the case, and 
BMDP is expecting input, the input scratch file will be made the input file. 

It is interesting to note that the standard output of the BMDP process and the 
standard output of the IPM process are joined so that the OPM process is reading 
information from both the !PM (eg: file editing control sequences) and BMDP 
(eg: results of the analysis of the input data) on its standard input file. It 
is a result of this situation that synchronization of the several processes of 
the BMDP-UX environment becomes necessary. 

At this point it may be useful to indicate the manner in which BMDP-UX performs 
its transformation of incoming data. If the user had indicated that user defined 
transformations were to take place before the analysis was performed, a stand 
alone "filter" would be added to the processes as follows: 

I I 
ITRANSFI 
I 14 

" I 
I I 

_l_L 
I I 
I BMDP I_ 

I I I I·· -- ->I 13 I I I I 
f!NFILEl····>I !PM 1--··············'··>I OPM 1-·--·>I CRT 
I I 1 __ 11 1 __ 12 I __ 
I I 
I KYBD I 
I I 

The transformation program can be any C, FORTRAN, Pascal etc. program that 
reads input from its standard input, and writes its output to standard output 
in a specified manner (ie: a Unix "filter"). 

-7- Paper 9011 



Finally, if the user invokes an HP-UX command (eg: 'vi') while running a BMDP 
program with a transformation function, the following situation will arise: 

r 1 
ITRANSFI 
I 14 

I 
I I _,_,_ 

I I 
I BMDP I_ 

I I I I - · - ·->I 13 1 I 1 I 
IINFILEl··-·>I IPM l··-------------·'-·>l OPM l··-··>I CRT 
I I I 11 1 __ 12 I_.,.._ 
I I IHP-UX I 
I KYBD I·-··------------->[ CMD 1------·····-------------- 1 

I I l __ IS 

In the case of the HP-UX command, the generated output, if any, will be displayed, 
but not buffered by the OPM. Any required files for the HP-UX command will be 
opened as needed. 

Keeping Signals Straight: 

OPM must keep screen handling control sequences sent from the IPM separate from 
the output of BMDP programs. In order to do this, BMDP must signal IPM when it 
pauses periodically to allow commands from the keyboard to be sent to OPM. Upon 
invoking a BMDP program, the IPM will enter the "wait_for_bmdp" procedure which 
consists of the following C code: 

wait_for_bmdp() 
( 

if ( bmdp_done /* Check flag set by interrupt */ 
return (true); /*If true - return*/ 

else 
pause(); /* Sleep until signaled */ 

An interrupt handling routine will trap the signal sent from the BMDP program 
to the IPM, and set the bmdp_done flag (a global variable). The "pause" system 
command will cause the calling process (IPM) to sleep until awakened by a signal 
from the BMDP program. Upon closer examination, the reader will notice a slight 
problem with the above code. 

Critical Regions: 

There exists a critical region between the test condition and the sleep operation. 
If the signal from BMDP happens to arrive just after the test condition and just 
prior to the "pause" system command, the wakeup signal will be missed by the 
IPM, which will then go to sleep never to re-awaken. Since the kernel handles 
the synchronization over a pipe and presumably at this point the BMDP process 

Paper 9011 -8-



is sleeping on an empty pipe, deadlock will result as both processes wait for 
signals that can never come. 

As the code generated from the above C source will consist of several machine 
instructions, there is a small but finite possibility of deadlock occurring. 
Heavy loading of the system and insufficient physical memory may increase the 
probability of deadlock. The problem could be resolved by a system primitive 
which would guarantee an uninterruptible (atomic) test·and·sleep operation. 

If deadlock does occur, the kill signal may be generated from the keyboard 
(cntrl-\) and the opm will begin an orderly shutdown of the environment, saving 
the output buffer to disc, and closing log and input files. The user may then 
re-enter the BMDP·UX environment and retrieve the entire saved output buffer to 
continue processing. 

Validity: 

Although the "signal" and "pipe" method of interprocess communication is not 
as robust as the "semaphore" and "shared memory" method outlined elsewhere in 
these proceedings, several advantages exist to this approach. Simple programs 
which need only read standard input and write standard output (filters) can be 
combined in various ways to produce sophisticated results with very little 
development overhead. With the "test-and·sleep" primitive described above, 
signals would become more robust in their ability to synchronize multiple 
processes. 

In light of the above discussion, and the imminent availability of the IPC 
facilities of HP·UX version 5.0 it is felt that this approach for the BMDP·UX 
environment is valid for the interim period. 

Summary and Conclusions: 

BMDP-UX provides an illustration of the degree to which an interactive environnent 
can be created around a traditionally batch system. The authors feel that the 
resulting environment provides a very powerful and user efficient data analysis 
system under HP-UX. We consider BMDP-UX to be a prototype implementation of a 
more extensive interactive front·end system. 

Because of the relative independence of the Input Manager, the Output Manager 
and the vi editor from the BMDP programs themselves, it is felt that a more 
general interactive interface system should be developed which will front end 
to other batch systems. The SSG plans to extend the functionality of the Output 
Manager and to include access to other statistical packages, graphical systems 
and possibly a word processor from within the system. The degree to which this 
activity is carried will depend, to a great extent on the market acceptance of 
the initial BMDP·UX implementation described in this paper. 

Paper 9011 





9012. PERFORMANCE OF MULTIPLE PROCESSORS IN THE HP9000 SERIES 500 

I. Introduction 

Robert J . Bury 
Hewlett Packard Co. 

Fort Collins System Division 
3404 East Harmony Road 

Fort Collins, Colorado 80525 

Multiple processor architectures can provide many attractive benefits. In 
particular multiple processor systems offer the potential for greater system 
performance and throughput. Modular multiple processors can also provide a 
convenient and cost effective means of expanding the capabilities of an existing 
system. The potential of multiple processor systems, however, can only be 
realized through careful design of both hardware and software. 

The HP 9000 Series 500 is a tightly coupled multiple processor machine that can 
be configured with one, two or three CPUs in the same system. The hardware 
architecture and implementation supports multiprocessing with a high bandwidth 
to globally shared memory, fundamental synchronization mechanisms, and a synmetric 
approach to I/O. The system software complements the multiprocessing hardware 
with a reentrant kernel that fully supports symmetric multiprocessing. Multiple 
tasks can simultaneously execute within the operating system kernel. The overall 
design results in an efficient multiple processor system that is totally 
transparent to application programs. 

The granularity of multiprocessing on the HP 9000 Series 500 is at the task 
level. This is very well suited to the multitasking nature of the HP·UX operating 
system. Single users can experience performance benefits from multiprocessing 
by concurrently executing multiple tasks. Some single programs can achieve 
performance gains from multiprocessing if they are decomposed into separate 
tasks that coordinate through inter-process communication techniques. The actual 
incremental performance gained from multiple processors is dependent on the 
characteristics of the system load. 

Multiple processors add another dimension of configurability to a computer 
system. An optimum configuration should exhibit a proper balance of processor, 
memory and I/O resources that is well matched to the intended application and 
system load. A system monitoring tool can be used to dynamically measure the 
performance and behavior of the system in order to understand the effects of 
different hardware configurations. 

II. Hardware Support of Multiprocessing 

The HP 9000 Series 500 hardware was designed as a multiprocessor system from 
very near its inception. As a result, the hardware support for multiprocessing 
is an integral part of the architecture. It was not added on as an afterthought. 

The architecture of the HP 9000 Series 500 can be described as a tightly coupled 
symmetric multiprocessor with globally shared memory equally accessible by all 

-1- Paper 9012 



processors. A system is composed of three basic modules: CPUs, !/O Processors 
(IOPs), and Memory boards, which consist of a Memory Controller (MC) and a RAM 
array. These three types of component boards communicate over a single shared 
bus. A high level diagram of the basic architecture can be seen in the following 
diagram. 

ICPUI ICPUI 

I/O 
cards 

IIOPI 

1/0 
cards 

(IOPI 

~~~~--~~~~~~~~~~--·~~~--~ Memory Processor 

IMC I

I
RAM

IMC I

I
RAM

JMC I

I
RAM

Bus (MPB)

Any successful multiprocessor system must provide an adequate bandwidth to memory
for all processors. The HP 9000 Series 500 accomplishes this with a high speed
Memory Processor Bus capable of transferring data at 36 Megabytes/second. This
high bandwidth bus is capable of supplying the data and instruction demands of
three parallel processors executing typical code sequences, and still deliver
bandwidth for I/O DMAs. An arbitration scheme on the Memory Processor Bus
ensures that no processor can be indefinitely denied access to the bus. The
prevention of processor starvation is very important in a multiprocessor system
in order to avoid system deadlock.

One very important aspect of the HP 9000 Series 500 architecture is its symnetry.
This symmetry is key to an efficient multiprocessor implementation. All I/O
devices are equally accessible by all processors. All processors are equally
capable of performing I/O to any I/O device. Of equal importance is the fact
that I/O devices can request service by any processor in the system. This allows
a task to initiate an I/O transaction while executing on one CPU, for the
interrupt to be serviced by another CPU, and for the task to continue execution
on a third CPU. This feature of the architecture is essential to building a
system in which the operating system can execute transparently and in parallel
on all processors.

In addition, there is no hierarchy or master·slave relationships between
processors, except for some power-on initialization functions. After power-on,
all processors are identical and equally capable of independently executing
tasks.

The Memory Controllers provide the fundamental synchronization mechanism to
synchronize processors. In addition to the normal read and write memory
operations, the Memory Controllers implement a semaphore-load operation, which
indivisibly reads the contents of the addressed location and writes a known lock
pattern (-1) into that location. This atomic memory operation is used as the
fundamental building block of all system synchronization mechanisms.

Paper 9012

The HP 9000 Series 500 architecture supports memory management and virtual memory
through microcoded address translation using segment tables and page tables.
These globally addressable tables can be concurrently accessed by multiple
processors. The tables can be referenced by both the processor microcode and
by the operating system's memory manager. The processor microcode synchronizes
access to these global tables and defines a synchronization mechanism that allows
the operating system to synchronize with the microcode and with itself. In this
way, the integrity of these shared global tables is guaranteed in the face of
concurrent access by the microcode and operating system executing in parallel
on multiple processors.

The HP 9000 Series 500 CPU microcode provides hardware support for many typical
operating systems functions, including process switching, linked list operations,
and semaphore synchronization operations. While these hardware features are
beneficial to most any operating system, they are especially important to a
multiprocessor in order to minimize system software overhead.

III. System Software Support for Multiprocessing

An efficient multiprocessor system depends not only on adequate hardware support,
but also on the careful design of the operating system. A poorly designed
operating system can negate nearly all of the performance benefits of a
multiprocessor by introducing bottlenecks or by requiring the user to contort
his application program in order to accommodate the requirements of the
multiprocessor.

A multiprocessor HP 9000 Series 500 can execute either the HP-UX operating system
or the HP BASIC language processing system. Both of these operating systems make
very efficient use of multiple processors with a minimum of bottlenecks. In
addition, the multiprocessing is completely transparent to all application
programs, with the obvious exception that a set of tasks will execute faster on
a system with more processors. No changes of any kind are required to transport
a program from a single processor system to a multiprocessor. Existing programs
can be moved from a single processor system to a multiprocessor with no
recompilation. In fact the exact same operating system is used regardless of
the number of processors installed in the system.

The granularity of multiprocessing parallelism on the HP 9000 Series 500 is the
task, or process. In this sense, granularity is a measure of the quanta of work
that can be performed in parallel by the system. In the HP 9000 Series 500
system, multiple tasks can truly execute in parallel on multiple processors,
but a single task can execute only on one processor regardless of the number
available.

The HP 9000 Series 500 operating systems dispatch runnable tasks onto available
processors. In this way, processors are treated as resources to be allocated
to the most deserving tasks, as defined by the scheduling algorithms. Each
processor is responsible for selecting the task to be executed on that processor
at any given time. All tasks are maintained on one global task queue which is
serviced by all available processors. All processors attempt to find a new task
to execute whenever the currently executing task becomes logically blocked (as
when waiting for I/O), or when the current task's time slice expires, or when
the processor is idle. At these times each processor searches the global task

Paper 9012

queue, with the required interprocessor synchronization, looking for the highest
priority runnable task that is not already executing on another processor. When
one is found, that task is dispatched to the searching processor and other
processors are then allowed to examine the global task queue in search of other
runnable tasks.

If no runnable task can be found, then the processor will enter an idle state,
waiting for any event that might make a task runnable. With the help of a
microcoded instruction, an idle processor consumes no Memory Processor Bus
cycles. By avoiding a busy-wait idle loop, a system with multiple processors
can always execute a single task as least as fast as a single processor system.
This is important to ensure that multiple processors are never a hindrance to
performance, even in the corner case of having only one runnable task in the
system.

The HP 9000 Series 500 operating systems are completely reentrant. 'lllis allows
the operating systems to be concurrently executed on multiple processors. 'lllis
is essential to efficient multiprocessor performance since it allows an application
program to freely call into the kernel and execute operating systems services
without regard to the processor that it is executing on and without waiting for
other processors to complete execution in the kernel. Synchronization mechanisms
are distributed throughout the kernel to protect critical sections of code from
parallel execution on multiple processors. The distributed nature of these
synchronization points avoids the bottleneck that would result if all kernel
calls caused the serialization of processors. By separating and distributing
the synchronization mechanisms, only processors that concurrently demand the
same resource will serialize. Tasks that require resources that are currently
in use by other tasks will block until that resource is available, freeing up
the executing processor to dispatch another task. 'llle synchronization operations
are also supported by the processor hardware to achieve fast performance and
low overhead.

The kernel is also preemptable, allowing a higher priority task to interrupt a
lower priority task and force the immediate execution of the now runnable higher
priority task in spite of the fact that the original lower priority task was
executing in the kernel. Without this feature real time response of the system
would be adversely affected by requiring kernel calls to be complete before a
higher priority task could be dispatched. By allowing any processor to service
any interrupt and dispatch any task, the average interrupt response time in a
multiprocessor system is probabilistically improved.

It is important to note that there is no master/slave relationship among the
processors in the system. Due to the symmetry of the hardware and the reentrancy
of the operating system, each processor may independently execute any part of
the operating system, .and except for the few critical sections of the operating
system, can do so in parallel with other processors doing the same. All processors
are effectively identical, servicing tasks from a common task queue. This
results in the most efficient utilization of the multiprocessor resources.

This symmetric and reentrant design is in contrast to some multiprocessor
implementations in which asymmetric hardware architectures force a master/slave
relationship between processors, resulting in excessive serialization, low
processor utilization and increased complexity and overhead. In these cases,

Paper 9012 -4-

tasks must be run only on the master processor when they request I/O or other
operating system services. Similarly, non-reentrant operating systems, such as
UNIX* systems as distributed by most all other vendors, are unsuitable for
multiprocessor systems due to the serialization required to call into the kernel.

IV. Multiprocessing from the User's Perspective

From the user's point of view, adding processors to a HP 9000 Series 500 system
simply adds resources with which to service the set of tasks that exist in the
system at any given time. No changes are required eo the user's application
program or to the installed operating system. Tasks are not aware of the number
of the number of processors running in the system. With this model, any
multitasking operating system could benefit from better service through
multiprocessing. The tasks in the system, corresponding to processes in an HP­
UX system or partitions in a BASIC system, are serviced by the available processors
in much the same way as passengers are serviced by ticket agents at an airport.
Adding a processor is analogous to opening another ticket agent window.

The HP-UX operating system naturally encourages the proliferation of many
independent processes. This typically leads to a relatively large population
of tasks which compete for the services of a smaller number of processors. When
the ratio of runnable tasks to available processors is greater than one, the
operating system selects the N tasks to be executed on the N processors based
on priority. In general, this leads to efficient utilization of the multiple
processors.

Single programs, however, do not naturally benefit from multiple processors
since a single task can execute on only one processor at a time. Single
applications can benefit from multiple processors if the programs are decomposed
into multiple cooperating processes. In order for a single program to be
implemented as a group of independent tasks, it is usually necessary for the
tasks to communicate and synchronize. The HP-UX operating system provides a
wealth of facilities to aid in this effort, including shared memory, inter-process
messages, a general semaphore mechanism, shared files, and pipes. The BASIC
language system, which implements multitasking through the concept of an
independent BASIC partition, provides shared files and memory resident volumes
for the communication and sharing of data, and events for the synchronization
of partitions. The usefulness of separating an algorithm or program into separate
tasks is dependent on the overhead involved in synchronizing and sharing data,
relative to the speedup obtained through parallel execution.

V. Performance of Multiple Processors

The performance of a multiple processor system and the incremental performance
gained by adding an additional processor is dependent on the characteristics of
the set of tasks being executed by the system. Different tasks demand different
resources from the system and in varying amounts.

Assuming that sufficient memory exists in the system to satisfy the virtual
memory requirements of all tasks in a system mix, the primary factor in determining
the incremental performance of additional processors is the memory bandwidth
requirements of the tasks in the mix. Tasks require memory bandwidth both for
instruction fetching and for data access. Some instructions are longer running

-5- Paper 9012

than others, resulting in some variation in the instruction bandwidth requirements
of different tasks. The data bandwidth requirements of different tasks vary
over quite a large range. At one extreme are memory intensive tasks that access
memory very quickly using microcoded block move or scan instructions. At the
other extreme are floating point intensive tasks, which when running on a
processor with a microcoded floating point implementation, use very little data
bandwidth and instead spend most of their time executing microcode with very
little main memory demand.

The table below shows the incremental performance obtained by the addition of
processors in systems executing several different workloads. All performance
figures are normalized, where unity is the performance of a single processor
system executing the given workload. Any fraction greater than one indicates
the incremental performance obtained by the additional processors relative to
the performance of a single processor of the specified type.

Performance of Multiple Processor Configurations
Relative to a Single Processor System

for Various System Workloads

System Workload l CPU 2 CPUs 3 CPUs

·-----·---------~----------·-·4··--------·-------·-··------·--· Floating Point Intensive 1.0 1.98 2.92
with Microcoded Floating Pt.

Floating Point Intensive 1.0 1.92 2.64
with Hardware Floating Pt.

Integer Math Intensive 1.0 1.87 2.50

16-user Computational 1.0 1.75 2.23
Vorkload

16-user Compilation 1.0 1.65 2.05
Vorkload

Block-Move Intensive 1.0 1.40 1.65

The incremental performance gain of additional processors is diminished when
Memory Processor Bus contention results in decreased memory bandwidth to the
individual processors. In the above performance measurements, system loads with
the least memory bandwidth requirements benefited most from the incremental
processors. Processors with microcoded floating point show the largest incremental
performance gains as processors of the same type are added in a highly floating
point intensive workload. The incremental performance relative to the first
CPU is not as great when processors with hardware floating point are added to
other processors of the same type, although the absolute performance in all
cases exceeds that of the microcoded floating point processors in the same
configuration. Since the hardware floating point instructions are several times
fa.ster than the microcoded versions, the programs execute faster and demand a
higher memory bandwidth. This decreases the incremental effect of additional

Paper 9012.

processors while providing higher absolute performance. For memory bandwidth
intensive system loads such as those frequently executing the microcoded block-move
instructions, the Memory Processor Bus becomes the limiting factor to performance.
When a larger number of users share the system, other complex interactions
involving virtual memory and disc access can affect multiprocessor performance,
as in the 16-user workloads above.

VI. System Hardware Configuration and Performance

The multiprocessor performance data presented in the previous section represents
the case when the code and data of all programs are resident in the main memory
of the system. The virtual memory feature of the HP-UX operating system introduces
a new aspect to multiprocessor system configuration. Virtual memory allows
programs or sets of programs to execute in the system in spite of the fact that
they may not totally fit in the system's main memory at the same time. The
HP-UX operating system's virtual memory manager transfers parts of the code and
data of the executing programs between main memory and secondary disc storage
as demanded by the system. When an application program references a memory
object that is not resident in the main memory of the machine, the task is
blocked until the system makes the memory object resident by swapping it in from
the disc. This operation is transparent to the application program, except for
the long delay experienced by the memory reference.

The amount of swapping of memory objects that occurs between main memory and
the swapping disc is dependent on the amount of main memory in the system and
the memory demands of the tasks executing in the system. If the system is able
to allocate main memory to satisfy all the memory demands of the executing tasks,
then no virtual memory swapping is needed and all memory references are fast.
If the memory demands of the executing processes exceed the capacity of the
system's main memory, then some memory references will appear to be several
orders of magnitude slower due to the need to swap the memory object in from
disc. The response time experienced by any one application program can degrade
non-linearly as more programs are added to the system due to the need to rely
on much slower secondary memory. In general, the addition of main memory will
decrease the virtual memory swapping activity for a given system workload and
result in improved average memory access time.

This virtual memory phenomenon complicates the performance analysis of a
multiprocessor system. A well functioning system requires a proper balance of
processor, memory, and I/O resources that is well matched to the system workload.
If the memory demands of the system workload far exceed the capacity of main
memory, additional processors are unlikely to result in significantly increased
performance, since main memory and virtual memory swapping will present a
bottleneck. Similarly, if the system workload is I/0-bound, and most of the
processes are typically waiting on I/O, then additional processors will not
improve performance. Because of the fixed number of slots (12) in the Memory
Processor Module, tradeoffs between additional processing power and memory and
I/O resources must often be made. Higher density memory boards, such as the
one megabyte memory card, increases the system configuration options by providing
a large amount of memory at the cost of only one slot.

A HP-UX system monitoring tool allows a system engineer to dynamically view many
characteristics of a system executing a given workload. This information can

-7- Paper 9012

be used to determine if the performance of a system workload can be improved by
the addition of processors and/or memory. The monitor dynamically displays the
utilization of the processors and discs in the system, the amount of virtual
memory traffic, the frequency of virtual memory faults, the allocation of main
memory, and the processor and memory characteristics of individual processes.
It can also provide some subjective judgements of the state of the system and
suggests steps that could be done to improve system performance.

Adding additional processors or memory is a trivial operation of shutting down
the system, sliding the additional processor or memory boards into the Memory
Processor Module, and re-booting the system. No modifications are required to
the hardware boards, to the operating system boot area, to the existing memory
or 1/0 resources, or to the application programs.

VII. Conclusions

For systems seeking additional performance, multiple processors provide a smooth
growth path that is usually less expensive and less disruptive than the acquisition
of a new machine. The HP 9000 Series 500 provides a very efficient multiprocessor
implementation through the support of both hardware and software. Its symnetric
architecture and reentrant operating systems yield maximum utilization of all
processors and complete transparency to all programs. Significant performance
gains can be obtained through multiprocessing for most system workloads. System
monitoring tools can be used to determine the optimal and most cost effective
configuration of memory and processor resources.

Paper 9012 -8-

9013

HP EGS: A Facility Management Tool on the

HP 9000 Series 200 and 300 Computers

Abstract

Joe Eyre
and

Ed Brovet

Fort Collins Engineering Operation
Hewlett-Packard Company
3404 East Harmony Road

Ft. Collins, CO 80525

This paper describes the use of the Hewlett-Packard Engineering Graphics System (HP EGS)
for facility management and engineering. Primarily a 2-dimensional computer graphics system
designed for engineering applications, HP EGS has many features specifically useful for facility
engineering. Some of these features include its file system, ease of customizing, and outputs that
enable post-processing of drawing data for additional information. A section of this paper also
describes the advantages of HP EGS over other facility management systems.

Introduction
If you have ever been a member of a growing department, you can understand the following
scene: Your department is growing both with people and equipment. Up until now you've
managed to shuffle desks and pack your people in a little tighter. Now, however, you cannot see
anyway to squeeze additional space out of the area.

You've considered your options - make the best of the area you are in, move your department
to a larger area in the facility or to another facility, or construct a new building. The options
dwindle wlien you consider that the employees are not anxious to move and the cost of a new
facility is out of the question. Looking around, you search your area for additional space, not
sure if it is really being used efficiently.

The manager of this department must consider more than just floor area. The department, for
example, might be charged a "rent" of $1.50/square foot/month for the area it occupies in the
facility. By occupying only a 100-by-100 foot area, its rent to the facility is $15,000 per month.
Multiply this figure by 12 months and the charge becomes significant. And for a company
that has several large facilities, each occupying around three-quarters of a million square feet, a
significant amount' of assets is tied up in real estate.

Facility Engineering: M'anaging Floor Space and Utilities
Facility Engineering is the planned placement of equipment and utilities in a facility so as
to promote an effective and efficient work environment. Although manufacturing areas differ
from office space in appearance, both require a layout that promotes efficient processes and
communication. Facility Engineers must also modify or redraw architectural drawings to reflect.
the actual construction of a new addition or facility.

Most large companies have developed a Facility Engineering group to manage and coordinate the
use of floor space and supporting utilities. Smaller companies and departments within companies
often "volunteer" someone to design and sketch the furniture and equipment layout. In either
case, designers must create or revise the floor and utility drawings each time the department
adds furniture or equipment. Accurate, up-to-date, and clean drawings are essential for efficient
planning of an area. They are also necessary for job bidding by outside contractors.

One of the most expensive aspects of any area change is the utilities. To add a new piece of
equipment, service personnel may have to remove, add, or modify telephone, plumbing, and air
lines, sprinkler systems, HVAC ducting, or computer networking cables. Drawings showing only
the pertinent utilities and landmarks (such as columns) enable the service personnel to more
easily make the changes. In addition, up-to-date drawings prevent unexpected discoveries such
as finding that a utility is already at capacity or worse yet, no longer exists in the area.

Finally, every company requires space and equipment accounting. The Facility Engineering
group not only has the responsibility to maintain the site drawings, but also regularly reports
the amount 9f floor area occupied by each department. Because the designers have to calculate
the floor area from drawings, irregular floor arrangements require a fair amount of estimating.

Facility Engineering with HP EGS
Many companies have taken HP EGS from their engineering labs to their Facility Engineering
group. Although HP EGS is a low-cost, 2-dimensional drafting system, it features many of the
same capabilities as facility management systems costing two to eight times as much. Facility
Engineers have found that their group's productivity increases by 30 to 50% over manual meth·
ods. This increase in productivity extends beyond the drafting board; it also includes the time
savings by everyone using HP EGS drawings.

-2-

Because it operates on Series 200 and 300 computers, HP EGS -can operate in a stand-alone
configuration as well as in a networking system. In addition to file sharing, networking also
allows designers to share storage discs and peripherals.

HP EGS with the Series 300 Computer

The following sections describe some of the benefits of using HP EGS for Facility Engineering.

-3-

Ease of Use
Designers access HP EGS either by selecting items from a menu or by entering HP EGS com·
mands. An item can be selected from the menu by a graphics tablet or mouse, depending on
the type of computer used. A representative screen display appears below. The menu is on the
right side of the screen.

+

EE
Q t.n

ADD DEL MOD
COF'r' I STEP MOVE

><
['.) TEF.'f··1.__M ...
HJFO 13-s·.:i

_..-·I !,,.,.'!
fJc•\.

A Facility Drawing on HP EGS

Because of the consistent and intuitive menu structure, and the documentation included with
the system, designers and engineers soon become productive with HP E;GS. A tutorial quickly
brings them up the learning curve by providing instructions and examples on how to use the
menus and other HP EGS features.

Sharing Drawing Data
In the simplest sense, designers can share HP EGS drawing data by sharing drawing files con·
tained on flexible discs or a Shared Resource Manager (SRM). On a larger scale, Facility Engi·
neering groups often develop unique HP EGS personalities for their convenience. Regardless of
the differences between HP EGS personalities, drawing files can still be transferred. The ability
to share drawing data between groups as well as among groups encourages common standards
and library parts - benefits anyone using the drawings can appreciate.

The HP EGS Archive file enables designers to use data with HP EGS post-processors and user­
written post-processors. One HP EGS post-processor is the bi-directional IGES Translator.
It converts HP EGS drawing data into the Initial Graphics Exchange Specification format for

-4-

transfer to other CAD systems that support IGES. Because it is bi-directional, it converts IGES
drawings from other systems to HP EGS drawings.

Keeping Historical Data
By not altering old drawings each time an area change is made, HP EGS allows a department
to keep excellent historical data. In contrast, paper or mylar drawings must either be erased,
thus losing the previous record, or attached as an addendum sheet to the new drawing. In both
cases, the manually-revised copy is not as easy to understand as HP EGS drawing files. Also,
the storage space required for HP EGS drawing files is significantly less than the floor space
required for drawer files that contain full-sized paper or mylar drawings.

Using Library Parts
A library of furniture, equipment, and symbol parts has several advantages. One of these is
consistency; all designers will use the same parts in every drawing. Stemming from consistency
is accuracy because with the same parts, different drawings will not contain parts drawn at
slightly different scales.

HP EGS only "references" library parts rather than actually containing parts on a drawing.
This means that the drawing file does not contain the part but only a pointer telling HP EGS to
go and get the part from the library each time the drawing is retrieved. This method of pointing
to parts rather than containing them is beneficial because if you must change a part, you only
need to change the library part once. Then each time you retrieve a drawing that contains the
modified part, the change is automatically made.

The most significant advantage of llbrary parts, however, is speed. Once a designer creates a
library part, he can add it to an HP EGS drawing with a command or macro. This is much
faster than drawing the part from scratch or by using a template. In addition, a part can be
duplicated and placed anywhere in the drawing with a single COPY command.

Making Accurate Drawings
With up to 100 million system points per user unit (typically a foot), HP EGS is capable
of producing accurate drawings. Although Facility Engineers may not need that degree of
accuracy, they can use the GRID and UNITS commands for precise layout. The GRID command
d~termines the "fineness" of the grid (a fine grid allows accurate parts placement, a necessity
for placing connecting modular furniture). Designers use the UNITS command to set drawing
units (such as feet or inches).

Two additional aspects of Facility Engineering require accurate drawings. One aspect is esti·
mates by outside contractors. With accurate drawings, they can give more realistic bids. And
finally, department billing for floor space depends on accurate drawings.

-5-

Overlaying Drawings
Facility Engineering groups often take a skeleton floor layout and place on it one utility or aspect
of a floor layout. For example, a drawing might contain only the furniture and any pertinent
landmarks (such as columns). Using this drawing, a mover can place the furniture without being
distracted by irrelevant details.

I.() D

The Furniture Layer

With HP EGS, a designer can separate a drawing into as many as 255 layers. Layers are
distinguished on the screen by colors; each layer is assigned a color that can easily be changed
temporarily or permanently. A designer can view an individual layer of a drawing or overlay
layers on top of each other. For example, where does one utility cross another? Similarly, a
plotted drawing can contain from one to all 255 layers. When plotted on a clear material such
as mylar, HP EGS drawings overlay just as the layers on the screen.

-6-

Post-Processing HP EGS Drawing Data
HP EGS offers several post-processors to extract additional information from its drawing data.
Two HP EGS post-processors used by Facility Engineers include the HP EGS Material Lister and
HP EGS Connection Lister. The HP EGS Connection Lister details connectivity information.
Taken in the context of Facility Engineering, a designer can use the Connection Lister to see
who is connected to a telephone or computer networking cable.

The HP EGS Material Lister, in contrast, counts parts. Take this further and you can use it to
count types of equipment or furniture. If necessary, you can break "type" into finer categories
such as model, date of purchase, value, function, or size. By running the Material Lister on the
drawing, you can have a detailed accounting of equipment in minutes. In addition, the Material
Lister produces an input file that can be used to annotate the drawing with a bill of materials.

Because of the open data structure of HP EGS, engineers and designers can easily write post­
processors in BASIC or Pascal. A post-processor could be used, for example, to find the length
of wire in a circuit. Similarly, if the width of a line designated the area of a pipe, a post-processor
could find the capacity of the pipe by multiplying the line width and length.

Customizing HP EGS for Facility Engineering
Unlike many other facility management systems, HP EGS is very customizable. Customizing
means convenience; designers have modified everything from the way the menu appears on the
screen to the library parts and macros contained on it. Customizing of an HP EGS personality
primarily involves modifying drawing settings and the screen menu, creating parts and macros,
and adding any additional features.

A designer can modify the screen menu to contain commands and parts in addition to, or in
place of, those included with an HP EGS personality. The graphics tablet is also available
for additional command and part input. Some items designers have placed on menus include
partitions, electrical and mechanical symbols, furniture, terminals, and commands to retrieve a
drawing of a particular area in the facility.

Macros are a time- and effort-saving feature. Macros are hierarchical; they build upon previous
commands and/or macros. A designer might write a macro, for example, to retrieve a department
drawing that shows only the tombstones on the floor. Another macro might calculate the area
between four of the tombstones. Both of these macros could then be placed on the screen menu
for one-touch activation.

HP EGS also has "ma.i:ro instances" for creating customized library parts. Similar to a macro
in that they accomplish several tasks with one command, macro instances also enable you to
add differently-sized components (such as desks) when you need them. Because macro instances
enable you to create a "family" of parts from one library part, they simplify your parts library
and save disc storage space.

-7-

Planning Ahead with HP EGS
HP EGS encourages effective facility planning because it is an easy and convenient tool for
making "what-if" layouts. With polar or rectangular step and repeats, a designer can quickly lay
out a department. This is obviously faster and more efficient than cutting out little pasteboard
shapes of desks and file cabinets and placing them on a floor plan or worse yet, arranging
furniture by pushing it around until it fits.

But HP EGS can be used for more than "eyeball" planning. For example, an engineer could
check the physical capacity of a bus carrying telephone wires by designating its capacity in terms
of width. Each telephone line also has a width. Every time a telephone line is strung through,
the bus fills a little more. When the bus line is a solid with telephone lines, the engineer knows
the bus is filled. This visual planning prevents time lost by the service person who discovers
that the bus is already full.

Post-processors can be used for planning. Consider the previous example, that of a bus carrying
telephone wires. The available circuit capacity of the telephone line can be estimated by com­
bining a couple of post-processors. Use the HP EGS Connection Lister to find the number of
occupied outlets on the line. Then operate a post-processor that counts the length and width
of wire (representing the gauge of the wire) and combines this information with the number of
occupied outlets. With this information the post-processor can give a usage figure that can be
compared to the capacity of the line. This same idea could apply to plumbing, air lines, sprinkler
systems, HVAC ducting, and computer networking cables.

The idea of post-processing line widths and lengths has another use by Facility Engineering.
Think about the number of times departments communicate within an organization. Translate
the number of interactions, say per week, into line widths. For example, if two departments
communicate with each other twice a week, denote this with a line width of two. Connect all the
departments in an area with lines representing the number of times they communicate. You can
then find, either visually or with a post-processor, the most efficient arrangement of departments
by minimizing the length of "fat" lines - those lines representing frequent communication.

And finally, you could use a post-processor to count all the floor space not occupied by furniture
or equipment. By studying the amount and location of this floor space you could identify wasted
or inefficiently used space.

The HP EGS Advantage
HP EGS has several advantages over other computer-aided facility planning systems. To many
companies, the most significant advantage is cost. A single HP EGS system costs one-half to one­
eighth that of many of the full-featured facility planning systems available today. Most Facility
Engineering groups do not need many of the computational and long-term planning features
offered by these systems. Multiple HP EGS systems not only decrease in price per system, but
also cut down cost by allowing several designers to share plotters and other peripherals.

Unlike many of the more expensive facility planning packages, HP EGS is easily customizable.
Starting with one of the HP EGS personalities, you can develop a personality and parts library
specifically tailored for your needs. And even if you have a customized personality, you can still
pass HP EGS drawing data to other designers, regardless of how they have modified their HP
EGS system. HP EGS data is easily transferred to other workstations via an SRM or flexible
discs and to other CAD systems via the IG ES Translator. Post-processors can access the data
via the Archive file.

-8-

HP EGS operates on Series 200 and 300 computers allowing other operating systems and applica­
tions software to be run alongside HP EGS. One especially useful application is HP Tech Writer,
a document editor that enables you to merge HP EGS graphics with text. HP Tech Writer is
useful for office documents such as proposals on how to develop an area in the facility. You can
then print the document complete with pictures on a dot-matrix printer or on the HP LaserJet.
An example of HP Tech Writer output appears below.

HP TechWri ter

HP TechWriter is an engineering documentation product that
provides Series 200 and 300 customers with a version of the familiar
Pascal text editor that has been enhanced to allow customers to create
and print illustrated documents. The illustrations are contained in
plot files produced by graphics editors such as HP EGS or by customer
programs.

HP EGS drawing:

Pictures are drawn scaled to a size specified by the picture
command. If you do not need to see the pictures, HP TechWriter allows
you to turn off the display of your figures if you wish to. The editor
also provides a number of convenient features for developing documents,
such as right justification, multi-line headers and footers, and
automatic table of contents generation.

Vin

Side by sid.e text and graphics
allows you to produce annotated
pictures on any printer which can
support this feature. Local margin
commands allow you to use special
margins for quotation text or the
text describing your picture, or to
turn margins off completely for
tables.

This sample was produced on an HP LaserJet printer (HP 2686A)
showing its variable resolution graphics capability - the top picture
is at 150 dots per inch while the lower picture is at 75 dots per inch.

Sample of HP Tech Writer Text with HP EGS Graphics

Behind every HP EGS system is a trained HP EGS Product Specialist who is readily available
for information and consultation. Many HP EGS users groups exist and more are forming as
the 2500 system installed base grows.

Throughout this paper you have seen the benefits of using HP EGS for facility engineering and
how to get more from the system by post-processing data and customizing. This final section
listed some of the advantages of HP EGS over other facility planning systems.

Acknowledgements
Many of the ideas for this paper were suggested by the Facility Planning group at the Hewlett­
Packard Fort Collins facility. Thanks are also due to Tom Krantz for his enthusiasm and cre­
ativity with HP EGS, and to Gretchen Tobin, Mary Ann Moore, and Ron Mora.

-9-

9014. HP9000 JOB ACCOUNTING -
HOY TO FIND OUT WHAT YOUR HP9000 IS DOING

Harold Parnigoni
Northern Telecom Ltd.

150 Montreal-Toronto Blvd.
Lachine Quebec
Canada H85 1B6

ABSTRACT

This paper will detail the log files available on the HP9000 model 540. Also,
shell scripts and data collection programs that can assist the system administrator
to find resource bottlenecks and report system utilization will be shown. This
paper basically will show how to report to management the utilization of your
HP9000 and allow one to have documentation to backup equipment purchase requests.

Paper 9014

9015
HP TechWriter:

Integrated Text & Graphics for the HP9000 Series 200

Roy E. Anderson
Member Technical staff

Fort Collins Engineering Operation
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, co 80525

ABSTRACT

This paper describes HP TechWriter, an integrated text
and graphics product aimed at the documentation needs
of engineers and scientists. HP TechWriter provides
text and graphic integration in an interactive editing
style that approaches "what-you-see-is-what-you-get,"
runs on all of the HP9000 Series 200 computers, and
supports a range of printer technologies.

In addition to a feature overview, this
descriptions of the key features and
accomplished, and presents execution
typical operations.

paper provides
how they are
times for some

[Note: This paper was written with HP TechWriter. The camera­
ready copy was produced with a LaserJet printer.)

1. INTRODUCTION

HP TechWriter is designed to aid scientists and engineers in
doing their job of working with words and ideas in a more
effective manner. In addition to typical word processing
capabilities, the documentation of technical ideas often
requires the definition and clarification that can only be
achieved through graphical means. Technical users need a
product that allows them to merge standard word processing
capabilities with graphical illustrations. Furthermore, they
need a product that is responsive, easy to use, and available on

-1-

a personal workstation.

HP TechWriter provides a document development environment in
which a document can be easily evolved from initial concept to
finished product. Throughout the document's stages of
development it always appears on the computer screen in the same
format that it would if it were printed, thus eliminating the
need for frequent printings during the preliminary writing
stages. A few exceptions to an exact "what-you-see-is-what-you­
get" philosophy exist for increased performance and ease of
use. These exceptions are page breaks and pagination related
features such as headers and footers. Paragraph margination and
other formatting features occur real-time and with considerable
speed. Pictures are displayed on the CRT in proper relation to
their surrounding text, as they will appear on the printed page.
Text and pictures can be scrolled up or down in a continuous
fashion at a comfortable speed.

Section two describes in more detail the key features and design
goals that distinguish HP TechWriter from other technical
documentation products, and section three describes in a general
manner the implementation techniques that were used to achieve
them. Finally, section four provides sample performance data on
several of the types of operations and functions described in
the paper.

2. FEATURES

HP TechWriter offers the typical text creation and modification
features found on most interactive text editors. Principle
among these are:

• continuous scroll
• find/replace
m settable tabs
• arbitrary movement to any location
• arbitrary insert/delete
• buffered insert/delete for easy duplication
• copy/move arbitrary text blocks
• whole or partial disc file insertions

In addition there are also features specifically aimed at
document preparation, such as:

• left and right justification
• ragged left or right margin
• top and bottom margin control
• auto-indent/outdent
• centering
• multiple line spacing (any value)
• optional automatic word wrap

• multi-line headers and/or footers
• flexible page number output
• conditional and unconditional page break control
• selectable non-print portions of document
• print-time character substitution
• table of contents
• underline
• over-strike

2.1 User Interface

Performance is a primary design goal of HP TechWriter it is
difficult for an accomplished typist to get ahead of the
program, so characters normally appear on the CRT the instant
they are struck on the keyboard. Operations like copying or
deleting information, jumping to a new location, search and
replace, and margination are tuned to minimize the disruption
from the user's point of view.

The user's interface is based on single character commands
causing it to be slightly more difficult to initially learn than
softkey or iconic based interfaces, but with the distinct
advantage that it becomes nearly transparent with a small amount
of practice (most users claim this happens in one to two weeks
of use). Thus, the mechanics of operating the editor require
almost no conscious thought, freeing the user's mind to
concentrate on "what to write," not "how to write it. 11

There are only thirteen primary commands in the editor for use
in creating and modifying text. In addition there are nine
document commands, which are textual information entered into
the body of the document to control formatting, pagination, and
graphics integration features.

2.2 Graphics Integration

HP TechWriter is not a graphics editor product; that is, it
cannot be used to create a picture. Instead, it captures
graphics data stored as a plot file on disc by another program,
and integrates it into a document. The user can specify any
position relative to the document's text, and the size of a
rectangular area to be occupied by the picture in terms of
character line and column positions. HP TechWriter then scales
the picture to fit in the described area whenever it is drawn.
The rectangular area for any picture can range from a single
character cell to a full page.

HP TechWriter integrates pictures from graphics software that
can produce ASCII files containing Hewlett-Packard Graphics
Language (HPGL) plotter commands. Some of the products that

-3-

have this capability include:

II FARB Computer-Aided Design System
II SMT Inc.•s Equation Writer
II HP Engineering Graphics System (HP EGS)
II HP Data Grapher/200
II HP Graphics Editor/200
II HP Statistics Library/200
II HP Project Management/200
• HP Graphics Presentations/200

Perhaps even more important is the flexibility that permits user
written programs (in BASIC or PASCAL) to produce graphics output
that can be subsequently included in HP TechWriter documents.
Programs that provide graphical information unique to a
customer's specialized applications can now be included in
written reports.

For some limited types of monochromatic graphics applications
where resolutions beyond 300 dots per inch are not required, HP
TechWriter can reduce, or eliminate, the need for a plotter by
effectively utilizing a graphics printer instead. Typically,
printing is as fast, or faster (depending on resolution), and
more convenient than plotting for small pictures.

2.3 Multiple Printer Support

A design objective for HP TechWriter was to enhance the value
and useful lifetime of existing HP dot matrix printers that had
been sold for several years prior to the introduction of HP
TechWriter, as well as to more effectively utilize the new
printers and printer technologies being introduced in the HP
TechWriter time frame. We felt it was a significant
contribution to our users to offer a documentation product for
the scientific marketplace that would operate with a price and
technology range of printer products, instead of just one or two
very capable (and possibly more expensive) printers. HP
TechWriter currently supports eleven printers ranging from the
HP 2631G and HP 9876A to the ThinkJet and LaserJet. In this
case, "support" not only means that a particular printer has
the character set and control sequences expected by HP
TechWriter, but it also means that the program contains the
printer's attributes needed to properly align and integrate text
and graphics on the printed page.

Rather than tune HP TechWriter's features for a specific
printer, we adopted a generalized approach so that the features
could be accomplished by most, or all, of the supported
printers. For example, instead of offering bold face that only
some of the newer printers could do with an actual font, we
supplied an over-strike capability that all of the impact

-4-

printers
included
sequence
feature
future) •

can do to simulate a bold face effect. In addition, we
the general capability to send any user-defined escape

to the printer to allow the user to select any font
that a particular printer may have (now or in the

In the same vein, we chose not to provide a true multi-font
capability to support mathematical formatting because it could
not be supported by most of today's printers. Instead, we chose
the more general solution of graphics integration which enables
practically unlimited freedom of font expression and formula
layout, all within the capabilities of our lowest priced
printers. An example of the result of this philosophy is the
picture of an equation shown below. This picture was produced
with SMT's Equation Writer, a graphics program specifically
designed for producing mathematical equations as pictures,
potentially for inclusion in HP TechWriter documents.

f Cx ,y) - y +

3. IMPLEMENTATION TECHNIQUES

3.1 Data structures

y+~
---dx

y+4

y+ 1

In order to achieve the highest performance possible with the
Series 200 processors, HP TechWriter employs a very simple data
structure for the representation of a document. This approach
lends credence to the popular belief that "simpler is faster" in
computer science. The representation of a document is
essentially the same on disc, where it is stored permanently,
and in memory where it is stored in its entirety during an
editing session. This reduces storage and retrieval operations
to linear copies done at the beginning and end of an editing
session, and enables them to be accomplished at the transfer
rate of the mass storage device or its interface.

The document's data structure is the ASCII text itself, stored
contiguously with a single 1024-byte record at the beginning
that contains environmental parameters (e.g., margin and tab
settings, location markers, and search/replace operators). The
concept of document commands simply represented as ASCII text
embedded in the document permit inherently fast editor
manipulations, as well as allowing easy transfer of data to
other computer systems.

Editor operations like insert and delete, which require linear
copies of portions of the document because of this simple data

-5-

structure, occur with surprising speed. This speed is due to
the fact that nearly all of the Motorola MC68000's processor
cycles are devoted to the copy operation, which is taking place
in memory with effective use of specialized copy instructions.

3.2 Graphics Inteqration

The integration of text and graphics is accomplished only by
textual reference (via a document command) within the data
structure and by merging the two forms of data on the CRT or
printer at display time. This allows HP TechWriter to take
advantage of raster displays and printers that have built-in
alpha raster capabilities. In addition HP TechWriter can send
text data to them in the normal ASCII encoded manner, achieving
a throughput rate that cannot be attained by today's
graphic-only (bitmapped) devices.

Figures are stored on disc by the graphics programs that
generate them, in the form of ASCII plotter instructions using
HPGL as a format standard. During an editing session, HP
TechWriter performs the vector-to-raster conversion by reading
the identified figure's file and "plotting" it to the CRT
display memory, whenever the figure comes into view on the CRT,
or is encountered during a listing of the document to a printer.
This solution avoids having to reduce the memory space available
for a document's textual data in order to provide space for
graphics data, or limiting the number of figures permitted in a
document, or a combination of both. HP TechWriter documents can
reach the same maximum textual size (as constrained by the
quantity of computer memory) with or without references to
graphics figures, and the number and size of figures referenced
is virtually unlimited.

3.3 Raster Graphics Printinq

Figures are output to a printer by two distinct mechanisms
depending on which HP TechWriter program is being utilized. The
editor, as described above, "plots" a figure in the CRT memory
using the CRT's size and resolution as upper limits for the
figure's representation. The pixels of the plotted figure are
then sent to the printer a row of pixels at a time. This
technique, while making good use of a "free" portion of memory
(i.e., the CRT display memory), suffers two shortcomings:

(1) the size of the figure on the printed page is limited
by the number of pixels in the horizontal and vertical
direction on the CRT (i.e., its resolution); and,

(2) it is usually impossible to obtain the printed
alignment of figures and adjacent text as it was shown
on the CRT.

-6-

The second shortcoming is a result of differences between the
amount of graphical space occupied by an alpha character on most
combinations of CRT's and printers. When there are more graphic
pixels per alpha character on the CRT than the printer, the
printed picture appears to "grow" relative to adjacent text;
when there are less pixels per alpha character on the CRT than
the printer, the printed picture appears to "shrink" relative
adjacent text. The editor balances the excess size of the
figure, or white space around the figure, but nonetheless
produces only draft quality output as a result.

The second mechanism for figure output, employed by HP
TechWriter's lister program, was designed to address the
editor's shortcomings. This program is a "post-processor" of
from one to fifty files created by the editor. Performance is
still a primary goal. However, since there is no interactive
editing requirement, the lister can process documents
sequentially by reading a line at a time from disc, thus its
data memory requirements are minimal compared to the editor's.
The lister uses this extra supply of memory for the vector­
to-raster conversion of figures at any resolution required by
the designated printer in order to obtain a match between the
appearance of the figure relative to its surrounding text when
it was displayed on the CRT and on the printed page. A Series
200 computer with 512K bytes of memory is sufficient to produce
pictures as large as 8 by 10 inches at 100 dots per inch. As a
result, the lister produces final quality document output.

-7-

With both mechanisms, text can
be positioned beside or "on top
of" a picture by sending a row
of alpha characters followed by
a carriage return (but no line
feed) and then the number of
pixel rows appropriate for the
height of the printer's
character set. Ten of the
eleven graphics printers
supported by HP TechWriter can
produce text and graphics merged
in this fashion. This paragraph
and the picture to the left
(drawn with HP EGS and printed
here with the lister at 150 dots
per inch), are an example of
this capability.

4. PERFORMANCE EXAMPLES

4.1 Data Memory Size

This paper, in its final form contained 21,soo bytes of data,
about 25% of the maximum size file that could be edited on a
512K-byte Series 200. Since there is no additional overhead for
larger amounts of memory, machines with more than 512K-bytes
devote all additional memory to document data space. At an
average of 2500 bytes per page, a 512K-byte machine has room for
about 40 pages. To overcome this limitation, the HP TechWriter
lister enables up to fifty files (about 2000 pages using these
averages on a 512K-byte machine) to be output as a single
document, or a series of separate documents.

This paper contains 450 lines of text information and an
additional 23 lines of document commands - in this case, a 5%
overhead for formatting data.

4.2 Real-time Marqination

To change this paragraph from the margin settings used in the
rest of the paper (64 columns wide) to twenty columns wide, as
shown below in italics, took 280 milliseconds with a justified
right column. With a ragged right column it took 124
milliseconds. To change the entire document to twenty-column­
wide margins (there are 41 paragraphs) took nine seconds with,
and four seconds without, right justification.

To change this
paragraph from the
margin settings used
in the rest of the
paper (64 columns
wide) to twenty
columns wide, as
shown below in
italics, took 280
milliseconds with a
justified right
column. With a
ragged right column
it took 124
milliseconds. To
change the entire
document to twenty­
column-wide margins
(there are 41
paragraphs} took
nine seconds with,
and four seconds

-8-

without, right
justification.

4.3 Data Insertion and Deletion

To insert the narrow paragraph shown above (24 lines) at the
front of this paper using a copy command (this is an operation
equivalent to "insert" but involving no typing' time) took 420
milliseconds. To delete it took 310 milliseconds. To do the
same operations at the end of the document took 270 and 190
milliseconds, respectively. The differences, 150 milliseconds
for the insert and 120 milliseconds for the delete, represent
the time required to copy the document's data (21,500 bytes) to
a different position in memory because of the linear data
structure described in section 3.1.

4.4 Graphics Plot versus Print

To illustrate the comparison between outputting a picture to a
plotter and a printer, the figure shown in section 3.3 was
plotted by sending the plot file produced for HP TechWriter to a
7475A plotter. The picture's drawing limits were set so that
the plot was the same size as the figure in this paper prior to
photo-reduction for these proceedings. It took 50 seconds to
plot the picture in a single color (i.e., multiple pen
selections were not a factor). It took HP TechWriter's lister
program 42 and 15 seconds to print the picture on the LaserJet
printer at 150 and 75 dots per inch, respectively (no text was
printed with the picture for this comparison). The same print
operation took 23 seconds using a ThinkJet printer at 96 dots
per inch.

S. SUMMARY

HP TechWriter is a capable technical documentation product that
provides fully integrated text and graphics in a convenient,
easy-to-use, and responsive manner. It is supported on all the
HP 9000 Series 200 computers, operates within Pascal or BASIC
disc environments, and fully utilizes all the printers supported
on the Series 200.

HP TechWriter was introduced on July 1, 1984, and since then
hundreds have been installed. Customers are using HP TechWriter
in conjunction with HP EGS to produce assembly manuals for their
manufacturing operations and for internal engineering design
documentation, as well as routine technical reports and
memoranda. At the time of this writing there have been no
defects ("bugs") formally reported to Hewlett-Packard. Of
course we do not claim that HP TechWriter is an example of
error-free software, but the common functions used by most
people most of the time have been thoroughly tested and proven.

-9-

It is a high quality product that carries the Hewlett-Packard
name with pride.

ACKNOWLEDGMENTS

Many of the ideas for HP TechWriter, especially in the area of
printing text and graphics, were developed by Elaine Regelson. A
special thanks to Gretchen Tobin for her frequent and helpful
reviews of this paper, and to Ron Mora, Tom Krantz, and Sandi
Anderson who encouraged me to write it in the first place.

REFERENCES

l. E.C. Regelson and R.E. Anderson, "HP TechWriter: Illustrated
Documents for Engineers, 11 Hewlett-Packard Journal, Vol. 36, No.
2, February 1985, pp.4-9.

-10-

9016. SETTING UP A DATA CENTRE COMMUNICATIONS NETWORK·
A PRACTICAL EXAMPLE

Harold Parnigoni
Northern Telecom Ltd.

150 Montreal-Toronto Blvd.
Lachine Quebec
Canada H85 1B6

ABSTRACT

Many papers have discussed the benefits and pitfalls of various communications
strategies. I intend to show how various different types of strategies can be
put together to provide a versatile and sophisticated network, while providing
high user friendliness. The use of HP3000, HP9000, IBM, PACX, leased lines,
X.25, terminals, etc. in my site (NT Lachine Data Centre) will be presented as
a practical example.

A detailed discussion on communications strategies for the HP9000 will also be
presented.

·l· Paper 9016

9017. HUMAN INTERFACES FOR SERIES 200 BASIC PROGRAMS

Stephen Taylor
Hewlett Packard Co.
3404 E. Harmony Rd.
Ft. Collins CO 80525

ABSTRACT

In addition to its other strong points, Series 200 BASIC provides a number of
capabilities which make it easy to implement custom user interfaces. After a
general summary of past and present capabilities of the BASIC Workstation, this
presentation will illustrate how these capabilities can be used and combined to
provide friendly interactive interfaces, with application specific messages,
menus, and even simple windows. Topics to be covered include: use of the
system's input processing capabilities; menu interfaces, from softkey menus to
selection lists and on to icons; and screen management techniques, including
providing for both alpha and graphics windows. Attention will be given to
methods of determining the resources available, and to writing the interfaces
in a manner which will transport easily from one machine to another.

The presentation will conclude with a discussion of possible directions for
future versions of the BASIC Workstation. A working knowledge of Series 200
BASIC will be assumed in this presentation, but on special background in human
interface topics.

-1- Paper 9017

9018. CONTROLLING AN ULTRASONIC INSPECTION PROCESS WITH AN HP9000

1.0 INTRODUCTION

G. P. "Trudy" McElrath
Martin Marietta Aerospace

Michoud Division - Department 3437
P.O. Box 29304

New Orleans, Louisiana 70189

This paper discusses the use of an HP9000 as the central processor for an
automatud weld inspection system. The system described herein is currently
being tested at Martin Marietta in New Orleans. It is still experimental and
as such is under constant revision. Some of the ideas presented here have not
yet been fully implemented. An attempt has been made to identify these issues
when they are discussed.

2.0 Why the HP9000?

The HP9000 was chosen as our primary computer for a number of reasons. Our
original Automated Weld Inspection System (AWIS) was purchased from a British
firm called MatEval. This system ran on an HP984SB computer. While functional,
it had a number of drawbacks, primarily speed and limited graphics capability.
A full inspection had to be performed before data analysis could begin, and then
a further wait was required while the analysis was completed before inspection
results could be viewed. The methods of results display were also limited.

Utilizing the 9000's multitasking capability, we can view results while an
inspection is progressing. Although still a three-step process (data collection
- analysis - display), the three steps can now run concurrently. The fact that
the 9000 is a 32-bit machine also speeds up processing time.

Another advantage of the HP9000 is its graphics package. The operator is now
able to view weld defects in a three-dimensional representation of an area of
weld. This display can be rotated as desired, enabling the operator to view
the flaw from a number of different orientations.

Yet another advantage of the HP9000 for our site is the fact that it is in the
same family as the HP9845B. Using the TRANSLATOR utility, programs already
written for the 45 can be easily adapted for use on the 9000.

3.0 OVERVIEW

The purpose of our system is to detect flaws within a weld and inform an operator
of the location and approximate size of those flaws so that repairs can be made
as quickly as possible.

A remote unit, containing 20 ultrasonic transducers and a marker pen, is
motor-propelled along the length of a weld. The transducers test each area of
the weld as they pass it and the pen marks flaws detected. Data collected by
the transducers is sent to the HP9000, where it is analyzed according to
constraints the operator establishes. Analysis is done on every foot of weld

-1- Paper 9018

after it has been inspected. Once an area has been analyzed, the operator can
display the results of that analysis in either tabular form or a graphic
representation.

While an inspection is progressing, the operator may pause and/or stop it, back
up the remote, and re-inspect an area of weld. The operator is also informed
of any error conditions encountered. If the error is a severe one (for example,
a prolonged loss of coupling in the transducer area), the system will pause the
inspection and await operator instructions.

4.0 HARDWARE CONFIGURATION

The major hardware components of our system are an HP9000
with 512K of memory, a MatEval MicroPulse unit, a remote
ultrasonic transducers, and an HP9895A floppy disk drive.
explained in the following sections.

4.1 THE HP9000

model 520 computer
unit containing 20

These are briefly

The HP9000 is the operator's interface to the inspection system. Through keyboard
entries, he may initiate, control, and extract results from the inspection
process. The 9000 also performs all data analysis and display, and programning
of the MicroPulse unit.

4.2 The MatEval MicroPulse

The MicroPulse unit, manufactured by MatEval, is a microprocessor that handles
all direct communications with the remote. It runs with an Intel 8085 chip and
communicates with the HP9000 through the HP-IB. By a direct link to the remote,
the MicroPulse controls the transducer array, although the MicroPulse itself is
controlled by commands sent to it from the HP9000. These crnnrna.nds contain ASCII
mnemonics which program the MicroPulse to perform an inspection according to
operator instructions.

4.3 The Remote Unit

The remote unit, also manufactured by MatEval, contains an acrylic block holding
twenty ultrasonic transducers. These transducers are set at different angles
within the block so that every section of a given area of weld is inspected.
The remote also contains a marker pen which visibly marks the location of any
flaws on the weld.

The remote unit is motor-propelled along the length of a weld, firing the
transducers at set increments. These increments are set by the operator prior
to the inspection. (A message is sent from the HP9000 to the MicroPulse, which
programs the remote.) The information gathered by the remote, as well as any
problems it may encounter (e.g., a motor stall), is sent through the MicroPulse
to the HP9000 over the HP·IB as ASCII strings.

Paper 9018 -2-

4.4 The HP9895A Floppy Disk Drive

The HP9895A is used for archival purposes. The raw data gathered by the remote
during an inspection (and transmitted from the MicroPulse to the HP9000) is
preserved for additional analysis at a later date. Although the HP9000 has an
internal floppy drive for 5-1/4 " diskettes, the large amount of data gathered
during an inspection warrants the use of 8" diskettes. These are handled by
the HP9895A.

5.0 SOFTWARE

All of our programs are written in BASIC. They are designed to run independently
of each other, interfacing primarily through a common data area.

5.1 Approximating Real-Time

In an attempt to produce real-time display of inspection results, we are running
our programs in three partitions. The Primary partition handles all programs
not directly analyzing or displaying inspection results. This includes the
software to set up and control an inspection, and also that which handles
communications with the MicroPulse. In the Analysis partition, MicroPulse
messages are sorted and analyzed, whereas the Display partition displays inspection
results. Communication between the partitions is handled by event flags and
the Common data area.

5.2 Common Data Area

There is a COMMON area, accessible to all partitions, which contains certain
variables and data structures. This common area is the primary means of
communication between programs. Among things stored there are the geometric
layout of transducers at the remote, the current position of the remote on the
weld, a DATALOCK flag which indicates if the database is currently in use, and
a NEXTFOOT location which specifies the next foot of weld to be analyzed.

5.3 System Start-up

Our system is designed to start at power-up of the HP9000. An Autostart program
will set default directory to the sub-directory containing our files and then
load a main menu program. This program begins by loading the system's COMMON
area.

A number of data items are loaded at this time. One of these is a table defining
the layout of the transducers at the remote. For each transducer, values are
listed which indicate the distance of the transducer from the edge of the remote,
and also the angle at which that transducer is set. These are significant
because they define the area of the transducer's beam on the weld.

Also initialized by the main program are the NEXTFOOT location (it is set to
1), the DATALOCK flag (it is cleared), and the Analysis Event Flag (it is set
to 0).

The operator is then required to select (through the special function keys) one
of a number of options. These options include inspection run preparation,

Paper 9018

hardware check-out, analysis and/or display of previously collected inspection
data, and display or printing of selected files that are present on the internal
hard disk.

5.4 Preparing For An Inspection

During this preparation phase, the system will remind the operator of the hardware
set-up required (the remote must be aligned against the weld, coupling must be
activated, etc.) by displaying a series of steps and requiring the operator to
confirm that they have been done. The system will then verify for itself that
the MicroPulse is powered up and ready for communication by initializing it over
the HP-IB. If a problem is encountered, an error message is displayed to the
operator. The system repeats this check until the problem is corrected.

A significant part of preparing for an inspection is programming the MicroPulse
and through it the remote. As previously mentioned, data is actually gathered
at the remote site by twenty ultrasonic transducers. These transducers, or
probes, are angled and timed for firing such that they run forty-six different
tests on each area of the weld they pass. By programming the MicroPulse to vary
a given test's gate and gain settings, the operator can manipulate which portion
of the weld is checked by each test. This enables him to fine-tune his system
to accommodate weld width fluctuations and other factors which may vary from
site to site or weld to weld.

Another area of inspection preparation involves the analysis process. Prior to
an inspection, the operator may change the criteria used in defect analysis.
The new criteria will only be in effect for a single inspection run. Upon
completion of that run, the values will be restored to their default values.

5.5 The Inspection Process

The inspection process revolves around communication between the HP9000 and the
MicroPulse.

An inspection is initiated by operator selection of a designated special function
key, which causes the runtime program to be activated and a message to be sent
to the MicroPulse to begin inspection of the weld.

The runtime program contains a subroutine to handle all messages sent from the
MicroPulse. This subroutine is called whenever an interrupt is received from
the HP-IB port connected with the MicroPulse. This routing occurs due to an
"ON INTR" statement in the early part of the runtime program.

As an area of weld is inspected, any flaws found will be flagged on the weld
with the remote's marker pen and in ASCII messages sent from the MicroPulse unit
to the HP9000. These messages are stored in a series of raw data files on the
HP9000's internal hard disk. These files are collections of all messages sent
from the MicroPulse to the HP9000, including any error conditions which may have
been encountered. A given raw data file will contain information on no more
than one foot of weld and will be named "FOOTx.DAT" where x indicates which foot
of weld it represents. Once that one-foot area has been inspected, the file is
closed and a new one is opened. The first file is then available to the Analysis
routine, and the Analysis Event Flag is incremented to reflect this.

Paper 9018 -4-

While the inspection is progressing, the operator will have the options (through
special function key selection) of pausing/continuing/stopping the inspection,
viewing the current analysis criteria, displaying areas of the weld that were
already analyzed, and pausing the inspection to back up the remote and re-inspect
an area of weld. The choices pertaining to control of the remote cause appropriate
commands to be sent to the MicroPulse, which executes them. Again, these commands
are ASCII strings.

Once an inspection is completed, the system will remind the operator of actions
required on his part regarding the hardware (e.g., disengage coupling, remove
remote from weld). The operator must confirm that these have been done. The
system then provides the options of either displaying results or terminating
the session.

5.6 The Analysis Process

The Analysis process is triggered by the Analysis Event Flag, which is incremented
by the inspection program (running in the Primary partition) when it has closed
a raw data file. The Analysis program itself is a loop beginning with a "WAIT
FOR EVENT". Analysis is done on a single file each time through the loop.
Since a "WAIT FOR EVENT" is used, the event flag will be decremented as a file
is processed. Therefor, it will always contain the number of files ready for
analysis.

Which data file is analyzed is determined by the current setting of the COMMON
location NEXTFOOT. The ASCII representation of that integer is appended to the
string "FOOT" and the extension ".DAT" is added. This is the name of the data
file for the foot of weld to be analyzed.

Initially, our system used IMAGE and QUERY 9000 to build and access a database
containing all information collected during an inspection. It was determined,
however, that due to the limited access we required to the data and the large
amount of memory used by the QUERY programs, it was more advantageous for our
purposes to write our own data access routines.

The Analysis program processes all flaw indication messages in the raw data
file. These messages indicate which tests detected a flaw and the position of
the remote when the detection was made. This information is then used, along
with data in COMMON specifying the beam paths of the transducers involved, to
generate three location coordinates. The X-coordinate represents the distance
along the axis of the weld from the beginning of the inspection, the Y-coordinate
the distance from the weld centerline toward the root or crown of the weld, and
the Z-coordinate the distance from the centerline toward either side of the
weld. These coordinates are stored with the test number and the remote position
in a temporary data file.

Once analysis on a raw file is completed, the program checks the DATALOCK flag
in COMMON. If this is clear, the program sets it and then appends the temporary
data file to the database. It updates the NEXTFOOT location in COMMON to reflect
the foot of weld just analyzed, and then clears the DATALOCK flag. The database
is now available to the Display routines.

The analysis process is normally not seen by the operator. He can, however,

-5- Paper 9018

through the primary partition, call up a screen which shows the analysis
parameters and the location of the weld area currently being analyzed.

5.7 Displaying Results

The display program allows the user to display (in a variety of ways) any section
of the weld upon which analysis has been performed. It is begun by a call from
either the main menu program or the runtime program. If called from the main
menu, it will present displays based on the current database. If there is no
database, an error message is given to the operator and no displays are allowed.

When the operator chooses the display option (which he does from either the main
menu or the runtime program), the system prompts him for display range. He must
specify the start and end points ex-coordinates • distance along the weld) in
millimeters. The system then checks locations in COMMON to verify that the area
of weld requested has been inspected and analyzed. If analysis of that area
has not completed, or if the area has not been inspected, an error message is
displayed to the operator and he is requested to provide new range coordinates
or abort his request.

If a legal range is specified, the program waits for the DATALOCK flag in COMMON
to be clear. Once this condition exists, the display program sets the flag,
copies the current database to its own data file, and then clears DATALOCK.
This copy is made and used by the program so that it does not tie up the actual
database and in so doing impede the Analysis process.

Display of inspection results is provided in two formats • tabular and graphic.
Both formats give the operator the choice of either hardcopy or CRT screen
display. Tabular format is simply a table listing what tests found flaws at
which locations on the weld and the position of the remote when the flaw was
seen. Graphic format provides a more diverse selection of display.

There are three drawings used in graphic display. The first is a "bird's eye
view" of a typical weld, another is a side view, and the third is a three-dimensional
slice of weld. These drawings are used as backgrounds when plotting weld defects.
We plan to add a fourth drawing which will show the transducer layout over a
weld and the beam path of each transducer.

The operator chooses which form of graphic display will be used. The program
clears the screen and displays the corresponding drawing. It then marks defective
areas by using the coordinates in the copy it has made of the database. Only
those flaws with X·coordinates within the range specified for the display will
be shown. Once the marking is completed, the system will dump the screen to
the internal printer if the hardcopy flag is set. (This flag is set or cleared
when hardcopy or CRT display is chosen.) The operator will then be given the
options of returning to either the main menu or runtime program menu (whichever
he was in when he called results display), displaying an additional area, or,
if he has chosen the three·dimensional display, of. rotating that display. [This
rotation feature is not yet fully implemented on our system.]

Paper 9018

6.0 CONCLUSION

As indicated early in this paper, our system is still experimental. Once our
initial implementation is completed and fully tested, we intend to revise it so
that it is an actual real-time system. Current plans toward this end include
adding more memory to our HP9000 and a possible conversion to UNIX.

-7- Paper 9018

