PROCEEDINGS

LLL

0IUG

3 msterdam
onference’85

* Sponsored by Interex, The International Association of Hewlett-Packard Computer Users

Amsterdam, The Netherlands, March 31 - April 5, 1985
Internationaal Congrescentrum RAI

PROCEEDINGS

0IUG

" g msterdam
onference’85

* Sponsored by Interex, The International Association of Hewlett-Packard Computer Users

Amsterdam, The Netherlands, March 31 - April 5, 1985
Internationaal Congrescentrum RAI

The technical papers are grouped according to the nine subject categories.

Within these categories the alphabetical order of the first author has
been followed.

Papers are reproduced exactly as they were submitted.
Scientific, grammatical or typographical inaccuracies have not been
corrected.

Copyright 1985 by HP3000 IUG Amsterdam Conference '85
c/o Interex

2570 E1 Camino Real West

4th floor

Mountain View, Ca. 94040

USA

Printed in The Netherlands
by order of Interex, The International Association of Hewlett-Packard
Computer Users.

COMMITTEES

ORGANIZING COMMITTEE

H.A.G. van Roosmalen —-Chairman

D. Leeksma -Secretary/HP Liaison
H. Swart -Treasurer

J. Grim -Public Relations/

Entertainment Manager

ProGrRAM COMMITTEE

H. Swart

W. Derksen

VENDOR SHow CoMMITTEE

H.A.G. van Roosmalen

D. Leeksma

F. Blihrer -System Manager
PCO

Organisatie Bureau Amsterdam bv
Europaplein

1078 GZ Amsterdam
The Netherlands

TOPICS OF THE CONFERENCE

The technical papers are divided in the following
subject categories:

AL

BS

DB

DC

(0):

oP

SD

SM

VS

ADVANCED LANGUAGES

This category contains contributions pertaining to
"4th" and "5th" generation languages, as well as
program generators.

BUSINESS SYSTEMS
Applications for the business environment are
disposed.

DATA BASE MANAGEMENT SYSTEMS
Papers dealing with the traditional DBMS fall in here.

DATA COMMUNICATIONS AND NETWORKS

The distinction between networking from the DC
perspective and OA is sometimes narrow. Where the
emphasise is put unto data transport, it falls into
this category.

OFFICE AUTOMATION AND NETWORKS

This group contains contributions about OA as well
as PC's as stand alone or intedrated in the network.
The latter where the multi-purpose station character
is described.

OPERATIONS MANAGEMENT
Sessions with Data Centre support systems fall into
this group.

SYSTEM DEVELOPMENT
Contributions of importance to the application software
development staff's.

SYSTEM MANAGEMENT

Lectures, tools and experiences with the present and
future operating - and other - support systems, the
bread and butter of the system programmers staff's
fall into this category.

VARIOUS
All other papers which cannot be put in the previous
groups are gathered under this mnenomic.

INTRODUCTION

It is with much pleasure that the host committee of the HP3000 IUG
Amsterdam Conference '85 presents to you the proceedings of this
Conference.

The success of the Conference is greatly determined by the quality
of the technical speakers. We have received a fine selection of
outstanding papers for which we are very obliged.

You will find the contributions within the proceedings arranged by
subject categories, which we consider reasonably appropriate.
People and especially computer people are difficult to put between
brackets, so we realise that, in your opinion, their might be
deficiencies.

Nevertheless, we hope to give you sufficient guidance for your
convenience.

We succeeded in having a plenary session by a knowledgeable and
renowned speaker at the beginning of each Conference day. It was not
possible for all Keynote Speakers to submit their full paper, but at
least a short biography is listed.

An absolute novelty as far as we know is the student contest in
conjunction with this Conference. A grant of ADAGER made it possible
for us to offer a prize to university students. To participate in this
competition students had to send in a paper on their work with HP-3000
computers during their study.

We are happy to include in these proceedings the winning paper by
Elisabeth Forster. We hope this initiative will find an echo in the
forthcoming Conferences.

We planned 80 papers to be presented at the Conference and received

140 abstracts. It was a difficult task to make a selection of abstracts
that will arouse the interest of the Conference participants. I am
grateful to Wim Derksen, Jelle Grim and Jan Moen for their assistance.
Eventually we selected 80 papers. We regret that there is no
possibility to schedule more contributions.

We are also grateful to Pam Tower of HP. She was of great help in
gathering the contributions from HP speakers from the USA.

We hope this Conference will be a valuable contribution to your
present and future work and that it will bring you many useful ideas.

Program Chairman

Haije Swart

Vi

CONTENTS

INVITED SPEAKERS

KEYNOTE SPEAKERS:

Dreyfus, Ph...ciiiiiiiiiitiieteneeennetnncaceennan

The need for future 5th generation hard/soft-
ware?

Herschberg, Prof.dr. I.S5...ceccieeeneerannanannn

Malice in Bitland

Hudson, Dr. P.T.W. ...ttt eeeensnssesosnnseancsssoss

Artificial intelligence and the cognitive
approach to software: The programmer's
apprentice

Jepson, Ch.W...uieiteneenienoeeeneaeenannonsnnenns

HP Overview

ADAGER AWARD WINNING PAPER:

Forster, Elizabeth.R...uee it ieetieeecerersenaocnacans

The ultimate challenge - perfecting the man -
machine interface

AL - ApvANCED LANGUAGES

Aalders, Kenneth...... it iiiiieeeneeieeeenneennnnns
How fourth generation languages improve the man-

machine interface

Bishop, SharOn. ...ttt iieieeeeneteennnnnaseeenns

AI in the commercial marketplace

Kellogg, Harry and Bale, JON...ceeeeereeneecenennn

Native language support for the HP3000

KEMP, LAYy .eeeeeeeeeeenssonesososaosscsnnonasssssss

Getting the most from Transact/3000

Laiho, Martti and Harris, KiM..e.eeeeesooosceneecaos
PPL/3000 - a user interface programming language

Leeuw, Hans van der.....eeeeieeeneeeccenoannesacans
An integrated approach to software engineering;

experience within the ASSYST-RAET GROUP

Page

17

21

40

53

59

74

81

87

\1

Vil

Lewis, Chris.......cvcvv.... ceteescetceeteeeesnans
Application building with ARTESSA/3000,
description of concepts and facilities

Moreno—-Davila, JUliO.. .. eeieeeeeeeenenneeenenennnes

Taking the myth out of art1f1c1al 1ntelllgence
(Building and using expert systems)

Remillard, RODEIrt...ieveeeseeeestsecoessscsannnnss

Opportunities and dangers of fourth generation
languages

Rush, Stephen M..... ..ttt eneenorecnns et .
How RAPID/3000 can ellmlnate the "moving target"
syndrome

Sharaf Eldin Ahmed.......cceeee.. c e e st ea e
PDS/3000 - a man-machine interface

Vekaria, Hitesh.....ciiiieiieeeioeeonenenaescnsenns

What are expert systems?

BS - Business SysTems

Belford, Stephen.... i eeereeeeeeeeossncnesasesas ..
User-directed application development

Boll, Franz—Josef ...ttt ittt enneennennannns
A thesaurus of information - document storage
and retrieval

Drunen, DO VaAN..cseetoeesosscososesscssssosssscsonsas

Hewlett-Packard's internal data processing;
a way to office automation

Frijda, RON..¢.veeeeeneeons Sea s e e ees e s e sseneasnne s

MR - A shop time reporting system on the HP-3000

Harrier, Laymond and Rinesmith, Ralph..... et e e e

At last - Relief for frustrated repetitive
manufacturers

Lawshe, Jim..ve et necoanas C e e et e s es e s e sees e e

Integratlng order entry with manufacturlng
How to handle options?

LawsSONn, ROJEI ¢ i cevecsscsscsossasesecscssssssnnsscons

Using computers to create brand names

Shroff, Vasant R. and Raghunathan, K..............

Funding projects management system in third world
countries - an application of HP3000

Page

103

109

129

160

167

177

203

214

232

246

254

DB - DaTA BASE MANAGEMENT SYSTEMS

Frydenberg, Rolf...... e eereteetecncrencsanenas
Remote data base access - to non-HP computers

Isloor, Dr. Sreekaanth S....eeieierietetececeranans
4th generation DBMS as the heart of future
systems of the automated office

Mund, Ewald Maria@.......eeeeieeieieeeneeneneanacans
Synchronization and recovery of a distributed
data-base an implemented example on HP/3000
computer systems

Rego, F. Alfredo..... S e et e eeec e e et e
IMAGE reflections

Yang, C.C., Shyh-Ming Chien and Jen-Shyh Lai......
The design and implementation of Chinese data
base management system

DC - Data CoMMUNICATIONS AND NETWORKS

Aramoonie, Philip and Scope, Arie............ ce e
Designing a network to match your operating
environment

Baynton, Ken.....ooeeeeeee csesecsane ce oo ceveoe .o
Advances in the world of data communications

Buiteweg, Anton J.W...... Cheee s e cee e ee s essa o
From terminal to computer port in 232 easy steps

Driskell, Andre€......ceeee. C e ee et ee e
The evolving micro-to-mini/mainframe interface

Faulkner, KeViN.....oieoieeeeeoseooooaoonannsas e
Network services/3000 transport An inside look

Geesbergen, RENE VaAN....cceeeeeeeeeccesssancaasonns
The poor man's DS, fact or flctlon

Gresset, Christian.......ooou.. c et it ee e s s e e e
Local area network: build up your prlvate X.25
network

Lynn, Brian....... st et e ce e e s es e aes e ceeeeeen
Network services for the HP3000

Martina, G.F. and Nicotra, S.ceeeseeeecsoncsens e e
Interactive local network for HP computers

Page

268

276

299

307

316

336

344

360

377

384

392

408

419

428

IX

Page

Williams, David Roy

............................... 435
Travelling light for data communications

OA - OFFice AutomMATION AND NETWORKS

Burch, MarC......eeeeeeeness . ceceeccentecnoasns 446
Ergonomics of personal computer software in data
communication networks

Christman, WesSley S..eeeirieeeeieenennnnnnnnenn e 453
Business - Management Decision Support Systems -
MDSS

Crow, Bill....iiuiiiiiiiineeeeenneonosaonaaennenns 479
Integrating series 100 personal computers with
the HP3000

Damme, JACOUES VAl . e e ee s oo neeeeeenneeonnnsennns .. 498
Converting SPL programs from the HP3000 to the
HP150

Dummer, David C and Beek, Henny van......... ceeeen 516
Growing need for HP3000 -to- micro

Fisher, E.S...... c et e s et e Ce e e e 520
The place of the micro in an HP3000 network

FOolkins, Dale. ... ceieeeoecocansesesonssancncnnnns 527
Using your HP PC's as HP3000 workstations

Kohon, Michel....iiiieereeenn c it eecs e se e e eaens 542
Mini/micro merge strategy

Padanyi-Gulyas, David and Benz, Hans Ulrich....... 556
Complex documentation applications with laser-
print-output
Implement it just by moulding HP-supplied
subsystems for individual needs

Rypma, Te€d...eeeeriieeeenenooonons C e et 574
New ideas in spreadsheet programs

Setian, Kathy...... C e et it et Ceeene e 581
Personal or powerful: Can we compute both ways?

Vanstappen, HansS.......eetveteeeeesn cetee et e 592
An intelligent processor for *text-creating'
users

Wilk, Steve and Boles, Sam........ c e ee e aseaanee 603

Man-machine interface in technical publications
simplified with laser printing

Wilson, PaUll. ... iiiieeeeeeeeeeeeeenoeeeennneannns

Exchanging electronic mail between HPDESK, PROFS
and others

OP - OPERATIONS MANAGEMENT

Campbell, TaAN....ieeeeeeeeoeeeasosensanasanenanees

Shadow - providing users with 100% application
uptime

Day, BaArrie W..eiee e eieeeoeeoeosesennaoonessnanans
Automated scheduling of computer operations -
A case study

Harris, KimM. .. .oeooiiii i it ineteenaeeeeoneasnnnnns
Scheduling for better system usage

KOOV, Tttt ittt iiieeeneeeeneeseananannnns
Specific services of the Computer Uitwijk
Centrum, in particular on contingency service
levels

Leight, BetsSy.ieiiii ettt ieesenennsensnancenns
It is time to automate your data center

Parkinson, JONN. ... ettt eeeeeeeoossassosnsassosscas
Who needs an operator anyway? - The potential
for an automatic HP 3000

SD - SysTeEM DEVELOPMENT

Alblas, HeNK. ..t eieeeieoeeeooeoooesasessaancsssoas
Friendliness standards

DiCecco, Martha...ueeee et eeeeeeeeeeananeennns
My experience installing application software

Franklin, Bill......iie et ieieeeeeeoncoonnncnnaass
Software technology for the 80s
(Man &-> Software <-> Computer)

Huysmans, RUudi......ieeieeeiieneeeenennnonsacnnns
Standards for ergonomic interactive programs

Larson, Orland.....eeeeeeeeseesesoacecscssascanaes
Application prototyping - A methodology for
perfecting the man-machine interface

Marsh, Bill......iiieieeeeeeeeeeeneaneosonannnnns .
Guidelines in designing user-oriented software

Page

609

632

641

646

655

666

671

684

691

702

716

731

744

X1

Xt

Mowinski, Julie T.....ccv0eee Ce e e .
Many men - one machine - the design of
international applications packages by adapting
the use of the machine to the European market

Ofslager, Nancy..... t e e e e ecctee et et ecsnceesansas
VPLUS: Improving the end user interface

Olsen, Roger J........ Ceecesasesse et cennn .
A guide to software evaluation and selectlon

SM - SysTEM MANAGEMENT

Beasly, DAavVe....eeeeeesessansens Ce et et ee st
How dispatching queues really work

BOlES, SAGM:tteteieeesosesnoocosssasans ceeseneseu e
Interfacing the MPE man w1th the UNIX machlne

Dijk, ROD VaAN..:.eeeeeeeessecssacssocsss i .
The poor man's performance measurement

Duncombe, Brian........ s et ecceceac st aaans c et esane
Performance self-analysis

Grim, Jelle..uci.i ittt eeneeteesoananaccnnnnnnns oo
The twilight zone.......between MPE capabllltles

Grim, Jelle....civiviieennnnnn cecececceseceecenan
Towards a better utilization of print resources

Heidner, Amy and Heidner, Dennis........c.ceecee..
The world according to GREP

Muntean, Mark and BolesS, Sa@Me.:eeeeeececsaocassas
Structured tuning: Man's interface to the
machine's performance components

Primmer, Paul....... T
HP LABS systems performance evaluation project

Spitz, Carolyn..iceeeeeecssanens ceeseceeeneonn oo
A file access method for source version
management

VS - Var1ous

Engelbreit, Greg...... ceeeteean ceteec e .
Digital optical recording . . . What it is and
how it will impact the mass memory hierarchy

Page

750

758

772

786

797

813

819

833

853

873

887

897

905

916

Heidner, Dennis and Heidner, Amy
Throw away the keyboard

.................

Lehane, John F
Managing information services in the elghtles

SimmMONS, EuiRuiititieeieeieeeesooseasasscoossssasonss
The nature and needs of human belngs

Page

929

947

957

X

Xiv

AUTHOR"S

Aalders, K.
Alblas, H.

Aramoonie, P.

Bale, J.
Baynton, K.
Beasley, D.
Beek, H. van
Belford, S.
Benz, H.U.
Bishop, S.
Boles, S.
Boles, S.
Boles, S.
Boll, F.
Buiteweg, A.J.W.
Burch, M.

Campbell, I.
Chien, S.-M.
Christman, W.S.
Crow, B.

I NDEKX

Page

40
684
336

59
344
786
516
160
556

53
603
797
887
167
360
446

632
316
453
479

Damme, J. van
Dav, B.W.
DiCecco, M.
Dijk, R. van
Drevfus, Ph.
Driskell, A.
Drunen, D. van
Dummer, D.C.

Duncombe, B.

Engelbreit, G.

Faulkner, K.
Fisher, E.S.
Folkins, D.
Forster, E.R.
Franklin, B.
Frijda, R.
Frydenberg, R.

Page

498
641
691
813

377
177
516
819

916

384
520
527

23
702
203
268

Geesbergen, R. van

Gresset, C.
Grim, J.

Grim, J.

Harrier, L.
Harris, K.
Harris, K.
Heidner, A.
Heidner, A.
Heidner, D.

Heidner, D.

Herschberg, Prof.dr.
Hudson, Dr. P.T.W.

Huysmans, R.

Isloor, S.S.

Jepson, Ch.W.

Kellogg, H.
Kemp, L.
Kohon, M.
Kooy, J.

I.S.

Page

392
408
833
853

214

81
646
873
929
873
929

17
716

276

21

59
74
542
655

Lai, J.-S.
Laiho, M.
Larson, O.
Lawshe, J.

Lawson, R.

Leeuw, H. van der

Lehane, J.F.
Leight, B.
Lewis, C.

Lynn, B.
M
Marsh, B.

Martina, G.F.
Moreno-D4avila,
Mowinski, J.T.
Mund, E.M.

Muntean, M.

Nicotra, S.

Ofslager, N.
Olsen, R.J.

J.

Page

316

81
731
232
246

87
947
666
103
419

744
428
109
750
299
887

428

758
772

XV

Page " Page

P

Padanyi-Gulvas, D. 556 Wilk, S. 603
Parkinson, J. 671 Williams, D.R. 435
Primmer, P. 897 Wilson, P. 609
R Y

Raghunathan, K. 254 Yang, C.C. 316
Rego, F.A. 307

Remillard, R. 115

Rinesmith, R. 214

Rush, S.M. 129

Ryvpma, T. 574

S

Scope, A. 336

Setian, K. 581

Sharaf Eldin Ahmed 139

Shroff, V.R. 254

Simmons, E.R. 957

Spitz, C. 905

v

Vanstappen, H. 592

Vekaria, H. 148

XVi

INVITED SPEAKERS

Ph. Dreyfus

"The need for future 5th generation hard/software?"

BIOGRAPHY

Mr. Philippe Dreyfus is Vice Chairman of the
world-wide CAP Gemini Sogeti Group, where he was
chairman of CAP Europe since 1968.

After completion of his studies in chemistry and
physics in Europe and at Harvard University in 1951,
he was involved in the design and marketing of the
Gamma 60 computer of Compagnie des Machines Bull.

He introduced the first Control Data computer in Europe and was VP
of European Development of that concern. Mr. Dreyfus is consulted
frequently by the French government and he organized for president
Giscard D'Estaing the week of "Information and Society". He invented
the conception and the French word "Informatique".

Philippe Dreyfus is Chairman of "Syntec Informatique" and Fellow
of the British Computer Society, ex member of the council of Association
for Computing Machinery A.C.M. in USA and of SICOB, France.

ABSTRACT

Ph. Dreyfus

"The need for future 5th generation hard/software?"

From the early 60's through the 80's Information Processing
was constructed around main frame computers operating in
a closed-shop environment.

During these 25 years huge investments have been made in
operational software built around first generation high-
level languages and even assembler code.

The staff DP Manager, analysts and programmers have been
trained and have aquired great skills working with these
systems.

The need for change in these well proven techniques does
not originate from this environment but from demands
from end-users.

Their needs can only be satisfied if thev do not have to
depend from that former type of EDP organization.

Hence the outburst of professional micro computers and
of fourth generation software.

However, two big questions remain:

Does an end-user accept the disciplines of programming
even with new languages?

Can he operate without accessing corporate data, stored
within the traditional structure?

The answers to both these questions will be discussed.

Prof.dr. I.S. Herschberg

"Malice in Bitland"

BIOGRAPHY

Prof. Herschberg started his career as a chemist
with a strong theoretical bent. In 1955, this led him
into a computer treatment of a problem in theoretical
organic chemistry. When he found that about a day's
work on an electrical calculator could be performed
in a minute on the ARMAC, one of the first Dutch
home-grown computers, he never looked back on
chemistry.

After serving three major Dutch-based internationals, he took his
present post with Delft University of Technology, where he teaches and
researches in operating systems, emphasizing their security and privacy
aspects, or rather, the lack thereof. This has naturally led him into
various advisory functions in which he advocates enhancing security, by
adversary process if need be.

MALICE IN BITLAND
by

Prof. dr. I.S. Herschberg! and R. Paans MSc?

Computer-system security is penetrable to the clever. Some
causes of this sad fact are presented, the historical
absence of security-consciousness being first among them.
A few instances, representing an anthology from the
authors' portfolio of documented cases, will substantiate
our main assertion, viz. that no system is proof against a
really astute programmer. It follows that programmers
should be excluded from systems processing reliable data.

INTRODUCTION

The clever man has always had a malicious trait in him. The first
familiar example in history must be Jacob. He had an agreement with
Laban: whatever lambs were speckled and spotted would fall to Jacob,
whichever progeny of the flock were white lambs would be for Laban, his
innocent partner.

So Jacob, certainly a clever man and, in our view, a programmer avant
la lettre, saw to it that whenever the best animals mated, they had
fresh, half-peeled rods in front of them, in consequence of which they
produced speckled and spotted offspring to this prime programmer's
advantage. The 30th chapter of Genesis has all the details about this
extremely clever programmer manipulating the system.

Many present-day programmers have inherited Jacob's propensities.
They can, and will, program against the system and, in doing so, will
wreak havoc to security in proportion to their quality as programmers.
A crack programmer implicitly is a cracksman.

We shall analyse the causes that enable them to do so and hope to
frighten our readers by citing a few cases in relevant detail.

Delft University of Technology, Department of Mathematics and
Informatics, Julianalaan 134, 2600 GA Delft, The Netherlands.

When researching for this paper, Mr. Paans was with Delft University
of Technology, Department of Electrical Engineering.

THE BURDEN OF HISTORY

To some it may seem incredible that present-day systems are vulner-
able and easily penetrated by any Jacob. The penetrations in themselves
have been amply documented: though many are collected by EDP auditors,
only a few have been described in open literature [5]. The authors'
collection of known breaches numbers some fifty cases and is still grow-
ing by the month. However, these fifty cases seem to be only the top of
the iceberg.

One cause at the root of this vulnerability is the burden of histor-
ical development shouldered by our current systems. To quote but one
instance: System/360 will reach its twenty-first birthday this year
[1]. As a self-imposed constraint, the manufacturer has undertaken to
make sure that programs valid for the very first models of System/360
will still be textually correct and have the same effect on his very
latest models (43XX and 308X Series). Yet, in 1963, the notion of secu-
rity, especially against the malicious programmer, had not even, so to
speak, been invented. Those old enough to recall early computing days
will remember that the system then was programmed and operated by a
small dedicated group, who literally slaved day and night to persuade it
to do its job. In this tightly-knit group, there was a great deal of
social control and neither time nor inclination to pervert the instru-
ment. Also, access to the facilities was only by physical entry to the
computer room, again making for tight social control.

Since then, access has spread geographically: in-house terminals
came into being, followed by remote stations, capable, in some cases, of
free programming in time-sharing mode or its equivalent. This develop-
ment in itself makes for vulnerability, especially when one considers
that social control is not only absent but also impossible in such a
large and scattered population of users. Yet many systems, such as
IBM s, remained compatible with their predecessors which were not both-
ered by a security problem. It follows logically that whatever security
is now built into our systems has been tagged on, almost as an after-
thought. It is symptomatic in this respect that even a leading manufac-
turer has not integrated security into his OS (which is by no means
defenseless), but provides it as an optional, additional package avail-
able for an extra fee.

Not to mince words: security has been tagged on. It is comparable to
the kitchen article that goes by the name of a strainer when required to
be converted into a pressure cooker. Soldering shut the holes one by
one seems a poor procedure for obtaining an air-tight vessel. Indeed,
the metaphor is too optimistic: the holes in a strainer have a very reg-
ular pattern, while the potential breaches in security seem to have no
pattern whatsoever.

In tagged-on security another, psychological element may contribute
to its weakness. The supplier and his programmers are locked into a
mode of thought which tends to persuade them that their security meas-
ures render the system secure. This mode of thought tends to made them
blind to any flaws still remaining. This blindness is strictly compara-
ble to chess blindness. Weinberg [8] has wise remarks on cognitive dis-
sonance in programmers; they apply equally well to a supplier s security
experts.

HACKERS vs. BACKERS: AN ADVERSARY PROCESS

The above cause of penetrability is worthwhile restating: many pres-
ent-day vulnerable systems have not been constructed with security as
one of their primary design goals.

It is characteristic that one of the systems in which security was a
major and even an overriding design criterion has turned out, in our
hands, to be proof against major breaches. Not only was security para-
mount in the design of GE's MARK III, but it was also supported by a pro-
cedure in which expert programmers were charged with the task of
cracking the system. Breaches discovered by the cracksmen were then
given to others to repair. In brief, the system evolved to a fair
degree of security by an adversary process, avoiding the cognitive dis-
sonance that must arise when cracksmen and constructors belong to the
same team. It is equally characteristic that even in this system a
malicious programmer could still do some mischief denying part of a
machine to its users, though only transiently.

While still retaining our assertion that any programmer worth his
salt can program almost any system to pieces, it is at least encouraging
to note that the USA Department of Defense [3] prescribes security test-
ing by adversary process for systems to be evaluated to the Department's
criteria. All systems should be considered totally penetrable unless,
to coin a phrase, its backers have been shot at by hackers.

SQUATTERS' RIGHTS?

Another cause of penetrability is the glaring co-residence of system
data and user data in what might be termed a single compartment. In our
view, co-residence amounts to committing a sin. Sinful instances are:
catalogues will be found to reside on the very volumes they describe,
highly sensitive programs with unlimited access (system utilities) will
be found running in conjunction with user programs intended to have
strictly limited access, all-important control-block fields indicating
'access should be verified' co-reside with low-privileged user
programs.

Co-residence, sinful in itself, is heightened to the level of mortal
sin when, as in most installations, users having very limited privileges
co-reside with system owners of unlimited privileges. It is commonly
assumed that the latter must have all privileges. They normally dele-
gate all of these privileges to their technical subordinates, such as
system programmers. and, to a lesser degree, to data-base
administrators, network operators and the 1like. The sin is mortal
because it is often found that expert programmers, starting with lowly
privileges, can gradually acquire all the privileges pertaining to
those happy few delegates of the system owner.)

More compactly: squatters can assume owner's rights.

To restate this cause: a poor separation of residence is equivalent
to a poor separation of functions. Now the principle of separation of
functions and duties is well known to be an absolute requirement for the
auditability of an enterprise. Reasoning by analogy, a separation of
residence between system data and user data would equally seem to be a
prime requirement for the auditability of a system's security.

We remark in passing that the smaller systems (typically minis and
micros) have poor separation of residence. This exactly mirrors the
poor separation of duties often found in the smaller type of enterprise.

FRIENDLY IS TOO FRIENDLY

There is yet another cause for the easy penetrability of computer
systems. The cause is fairly subtle and arises from the need of any
supplier effectively to market his system. It should be noted that this
marketing need not be a commercial operation: an in-house supplier of
services to a company or to a scientific institute also must market his
wares. Should he fail to do so, he is threatened with loss of prestige,
power and, ultimately, with the loss of his job. Now this need of mar-
keting implies ease of access to a user; the marketing is often in the
shape of providing 'user-friendly' systems. Security requirements, in
the present state of the art, greatly detract from ease of access and
from other characteristics considered to be user-friendly.

Hence, we have a dissonance: if the marketeer is to enforce security,
he is hampered in his marketing efforts. Experience then shows that the
balance is always tilted against security and in favour of perceived
friendliness.

Again, this cause may be restated in slightly different terms: when a
balance must be struck between the requirements of security and those of
operational speed, experience shows that speed of operation is almost
invariably opted for, greatly to the detriment of security.
Computer-centre management are on record to have refused the installa-
tion of security packages because, reportedly, these would increase
overhead by a few percent [6].

THE 5000-YEAR JIGSAW-PUZZLE

Current systems are hypercomplex. Their very size is terrifying: ten
million statements are seen to be too complex to be manageable when it
is known that a good programmer creates only 2,000 statements a year.
Five thousand man years of intellectual labour is too large to be sur-
veyed by any human being.

As a consequence, the system contains flaws both in concept and in
execution or, to be more precise, errors in logic as well as errors in
coding. A constant flux of corrections to operating systems is a fact
of life and users are lucky when they see their complaints responded to:
cases are known where documentation reflecting the design has been
retrofitted to meet incorrigible errors...

It follows that those responsible for the system's long-term welfare
have a fairly continuous job of installing such corrections as are pub-
lished, modifying the system at regular intervals. To this end, opera-
tor intervention is often needed. The impact on security is that the
operator, when confronted with such a request, is forgiven for thinking
that 'those system programmers are it again' and therefore consents
readily to requests for changes which may well stem from the malicious.

To make matters worse, there is a current tendency to disintegrate
whatever poor structure may have been originally present in operating
systems. It has recently shown that, in the interest of speed, a major

10

operating system has resorted to programming tricks such as undisci-
plined branching, modifying links and the like which, while they may
speed up operation, are a bane for maintainability and further compli-
cate a complexity already known to be unmanageable.

WHO SHOULD HAVE DONE IT?

On top of everything, there is a great deal of confusion in the allo-
cation of responsibilities for the system's correctness, maintenance
and security. Operators are often being given responsibilities which
should not be theirs, system programmers, knowing all, are conven-
tionally permitted all. As a result, in many installations nobody is
sure w@ether it is his duty to install and update or whether it is his
fellow s.

The result is confusion, usually with everybody being allowed sensi-
tive accesses, but nobody being in charge of them. This greatly con-
tributes to the many opportunities all too often given to the malicious.
Needless to say, this also greatly detracts from such security as can be
achieved.

MODERN INSTANCES

So far, we have presented an abstract case for penetrability without
exhibiting penetrations. We think the reader is entitled to some actual
instances of systems having been breached. Three of them will follow,
but we stress again that these three are no more than an anthology from
our well-stocked collection [5]. The cases to be presented have been
selected because they reflect the causes. They possess a number of com-
mon traits:

. the knowledge needed for penetration was either in the public domain
(published in manuals or in the scarce and scattered open
literature) or was deduced from facts in the public domain,

. the breaches were made by persons having at least some limited priv-
ilege to program freely,

* the breaches were effected by pure programming, which is to say that
they did not rely on human carelessness (e.g. broadcasting pass-
words),

. the programming involved admittedly was often less than straight-
forward in nature and in all cases relied on a knowledge of machine
code and other suitable means of access at the bit level: here, too,
a crack programmer is at an advantage as a cracksman.

Our experience has shown that almost every system, regardless of its
supplier, is extremely vulnerable to this type of breach. It should
also be noted that none of the systems quoted were defenseless: all
embraced some degree of access control.

CASE 1 : EAVESDROPPING

Our first instance deals with a time-sharing system. It may be iden-
tified, viz. as the XEROX SIGMA-5, a 32-bit processor now obsolete. It
was run under that supplier's standard operating system and did not
enjoy the benefit of a front-end processor. Because of this, any I/0
data to or from terminals must necessarily be present in main memory.
An attempt to breach this system's security therefore could well start
by searching all of memory for printable strings, the assumption being
that (almost) all matter destined for or originating from a terminal
would consist of printable character strings.

In those bygone days, there normally were some 64 printables, each
stored in an 8-bit byte allowing 256 patterns. Strings can efficiently
be searched for because the chance of a fullword (4 bytes) appearing to
a printable string without being it is only (64/256)%*%4 or 1 in 256.
Hence, a hunting program was written to search for presumably printable
strings of length24 characters, printing these, when found, with their
memory locations. It was hoped that the terminal-I/0 buffers, presumed
to be memory-resident, would thus be found. To our surprise, this
yielded all system-error messages (e.g. 'SQUARE ROOT ARGUMENT ERROR'),
but no terminal-I/0 data.

After some experimentation, it became clear why: the program hunted
for EBCDIC strings while terminal I/O used ASCII. This was easily reme-
died, after which these buffers were found to occupy a contiguous area
of 32 by 80 bytes, amounting to one punch-card-sized buffer for each of
the 32 terminal-I/O-ports. Watching the activity of these buffers soon
revealed that each buffer had an associated variable with three possible
values: 0 corresponding to an inactive port, and 1 to one actively
engaged in I/0. Strangely, the value -1 also occurred. A little
reflection made it likely that such a port would be engaged in something
out of the ordinary. The hypothesis was formulated that I/0 during
log-in, when the system must be aware of the I/0 activity but cannot, as
yet, know which user to charge for it, corresponded to the value -1.
This hypothesis was soon corroborated.

Once this knowledge was acquired, watching the I/O buffers for sig-
nificant information was much simplified. Our program scanned the asso-
ciated variables; if none was found to be -1, the program went to sleep
for 10 seconds. The contents of each buffer having its variable at -1
was printed, repeatedly if necessary.

As follows logically, this yielded all userids and passwords of users
logging into the system during the program's activity. It must be
admitted that the program failed to obtain a/l userid/password combina-
tions. As against this, it is seen that the program is more likely to
catch a user in proportion to that user's activity. In a few days'
cheap operation (our program was asleep almost always), the vast majori-
ty of users were captured. It might be noted that, once a single pass-
word was detected, the program might have been run at somebody else's
expense, making the victim pay for having the privilege of having his
files accessed, inspected or even modified to the point of deletion.

The breach was reported to the supplier who, in this case, reacted
fairly promptly. The countermeasure installed was a twofold scrambling
of the terminal-I/0 buffers. First, each symbol was encrypted while,
second, the 80 positions of each port were no longer contiguous, but
randomized over the entire 32*%80-bytes buffer area. Moreover, the

1

12

scrambling algorithm, we were told, contained two variable instructions
which were changed weekly.

The countermeasure proved completely ineffective. The FORTRAN pro-
vided allowed us to write a fairly efficient disassembler, reducing the
resident machine code of the operating system to an easily readable
form. In this form, it was not difficult to identify the terminal-I/O
driver in the operating system. It had the form of a routine requiring
two integer parameters, / and j, and, when called, yielded the decrypted
value of the /-th symbol in the j-th buffer.

Consequently, our next program copied this subroutine into its own
program area (to take care of the variable instructions and to avoid
interference possibly due to concurrent use) and simply called this dri-
ver instead of reading out the buffers directly. It should be clear
that, with this modification, our program again fully achieved its pur-
pose, viz. capturing userids and passwords. As a curious footnote we
remark that we never understood the encryption/scrambling algorithm,
nor did we have to...

CASE 2 : HUSH, | TELL YoU

Our next instance refers to a system very much alive, currently in
daily use in several tens of thousands of major installations. In hard-
ware, the system has a fairly large number of I/0 processors, operating
at the main processor's request. Once such a request ('I/O program')
has been given to the I/O processor, the latter operates independently.
In these systems, any user program may offer an I/0 program to the oper-
ating system (0S). The latter then scans it for apparent validity, may
transform its main memory's addresses etc.; in due course, the 0S then
transfers it to the I/0 processor for execution.

A peculiar kind of breach may now be forced by any programmer who
constructs an I/0 program containing an infinite loop (though not a con-
spicuous one, which the 0S will reject). When this is offered to the
I/0 processor, that processor and any I/0 devices, such as disks,
attached to it are effectively disabled. Moreover, there is nothing to
stop the malicious programmer from offering such an I/0 program to all
I/0 processors in turn, bringing the system to a complete standstill.

It has been found experimentally that the action of the malicious
program is very hard to detect for what it is. The OS has been found,
moreover, to have no means for undoing the damage short of reinitializ-
ing the entire system, which is, to make matters worse, not an orderly
reinitialization. Hence, much of the work in progress (e.g. edit ses-
sions) will be lost in some unknown state of processing.

Thus, in summary, any malicious programmer is in a position at least
temporarily to deny the entire system to all other users, including the
system's owner.

When first describing this case, we had one supplier in mind. It has
since been brought to our attention that at least one other supplier
felt he had been referred to. On investigation, it turned out he had.

CASE 3 : THE OVERBURDENED OPERATOR

Our last instance covers a composite of sins to be found in almost
all major computing centres. They all rest on an assumption which, whi-
le pernicious, is very much part of computer-centre practice though it
runs counter to recommended procedure [4]. Whatever the guise it
appears in, it boils down to giving the operator ultimate authority.
Often, it is the operator who decides whether or not to allow:

¢ amodification of the system's kernel,
. overriding an expiration date 'protecting' information,

. jobs to access information protected by a password to be supplied by
the operator.

Let us briefly analyse how sins have been heaped on one another in this
construct:

. the operator should be charged with the minute-to-minute welfare of
the system: matters of security are not within the scope of his
brief, nor should he be charged with them,

¢ passwords are also without his scope. Unfortunately, for historical
reasons, '...the operator must respond with the password before a
data set can be opened...", as Brown [2] recorded in the early days
of the System/360,

. nor is this practice imposed by the supplier: whenever the operator
should respond, the appropriate command (Write To Operator with
Reply) can be given a route-code. When this code equals 9, the mes-
sage should reach the security console with a presumed security
officer in charge, who can then express his approval. However, as
matters are usually arranged, this scheme fails for either or both
of two reasons:

— there is no security officer; as a substitute, though a poor one
in our view, the operator is given that officer's authority,

- it is thought too expensive to assign a distinct console to
security, so the security console is made to coincide with the
operator's.

For whatever reason, the nett effect is that the operator is inclined to
allow whatever is requested. Moreover, the security-sensitive
messages, some tens a day, are swamped by the tens of thousands other
messages passing the screen.

It follows that the consenting operator unwittingly allows at least the
following breaches to be perpetrated:

. modifications to the system's kernel; the simplest of these is that
a malicious programmer installs his own entry into system mode
which, when installed, will allow him all privileges [5],

. the apparently harmless overriding of an expiration date allows the
malicious, amongst others, to change or add modules to authorized
system libraries, granting themselves any and all powers for good or
evil,

13

14

. accesses to any sensitive data set, such as that containing all user
attributes or passwords, are habitually 'protected' by passwords to
be supplied by operators (in batch; time-sharing users are beyond
the operator's control) who promptly supply them.

Quoting Brown [2] again, we find that it was known, even in 1970, that
", ..password protection is adequate for non-critical data sets but may
not be appropriate for highly sensitive data sets such as payroll". In
spite of this early warning, password 'protection' is the rule rather
than the exception for data sets recording passwords (in clear!) which
are, in our view, infinitely more sensitive than mere payrolls.

THE ETHICS OF THE ADVERSARY PROCESS

Inevitably, publications of breaches lead to the question of whether
penetration in itself is ethical and whether one should publish any
found. We have stated our case before: an adversary process is, in the
present state of the art, probably the best and possibly the only means
of improving security [3]. When the supplier fails to employ such a
process, the authors believe it is their duty to act as adversaries,
accepting the obligation to report their findings to the suppliers.
Unfortunately, - our first instance provides a hint - suppliers act
inadequately and, let it be added, often sluggishly.

Our position is that publishing is ethical, it being the only means
of persuading suppliers to enhance security, though publications should
be couched in discreet language so as not to provide a hacker's
handbook. Granting this, suppressing attempts at penetration, neglect-
ing to report them or failing to publish them unless remedied in our
view comes close to being unethical.

Our view, though, is not shared by one and all. During the process
of persuading the supplier to take corrective action, the penetrator is
subject to a specific form of harassment and slander: "We [the suppli-
ers and users] are honest and decent people, who should not be worried
by reports about disreputable matters such as breaches in security. Mr.
X, who found the breach, must have a peculiar cast of mind to be so fas-
cinated by the subject. In effect, there is something unhealthy about
Mr. X's interest. Isn't Mr. X a bit of a suspect character himself?
After all, gentlemen do not read letters not addressed to them..."

We have found it necessary to steel the many students we have taught and
coached against this attitude, which is all too likely to confront them

[5].

CONSEQUENCES

By way of causes and instances, we have, we believe, pointed out the
astute programmer as a major threat to any system entitled to regard its
output as relatively reliable. It follows that programmers should be
excluded from production systems, as should their potentially threaten-
ing partners, job schedulers and operators.

A companion paper [7] points out the consequences of our findings: in
data processing, day-to-day production and software-development systems
must be completely and inpenetrably separated, both logically and phys-
ically; an unbreachable barrier between them should operate as a guaran-
tor of this separation.

ACKNOWLEDGEMENTS

The authors wish to record their indebtedness to the many persons
with whom they have exchanged opinions on computer-security issues.
They count themselves fortunate in that their discussion partners have
come from all ranks of life, ranging from security managers of major
installations and their systems programmers to perpetrators of breaches
at the student level. Most of our partners have expressed the wish to
remain anonymous, which wish we shall somewhat reluctantly respect.

REFERENCES

1 G.A. Blaauw and F.P. Brooks, Jr., "The structure of System/360, Part
I - Outline of the logical structure', IBM Systems Journal, Vol. 3,
No. 2 (1964), pp. 119-135,

2 G.D. Brown, "System/360 Job Control Language", John Wiley & Sons, SBN
471-10870-7 (1970) p. 237.

3 DoD, "Trusted computer system evaluation criteria', U.S. Department
of Defense, document CSC-STD-001-83, Library No. $225,711 (Aug 15,
1983).

4 1IBM, "42 Suggestions for improving security in data processing oper-
ations", IBM order number G520-2797.

5 R. Paans and A.H.J. Bonnes, "Surreptitious security violation in the
MVS operating system", Computers & Security, Vol. 2, No. 2 (June
1983), pp. 144-152.

6 R. Paans, "Performance aspects of supervisor call services in MVS
systems', ECOMA-11 Conference Proceedings, Copenhagen (Oct 1983),
pp. 93-105.

7 R. Paans and I.S. Herschberg, "A topology for secure MVS systems', in
"Computer security: a global challenge" Proceedings of IFIP/Sec'84
Conference, J H Finch and E G Dougall (eds) (Sept 10-12, 1984) Toron-
to, ISBN 0-444-87618-9 North-Holland Publ, pp. 137-147.

8 G.M. Weinberg, "The psychology of computer programming', Computer
Science Series, Van Nostrand Reinhold Co., ISBN 0-442-29264-3
(1981), pp. 54 sqq. :

15

16

Dr. P.T.W. Hudson

"Artificial Intelligence and the cognitive approach
to software: The programmer's apprentice"

BIOGRAPHY

Dr. Patrick Hudson is a British scientist
currently working at the Institute for Perception-TNO.
He first met computers in 1966 working for a company
building flight simulators.

As a psychology student in Edinburgh he came
into contact with Artificial Intelligence in 1968.
His 1976 thesis at the University of St. Andrews was
about computational models of brain function.

In 1975 he came to the University of Amsterdam to lecture in the
department of Linguistics and then became Visiting Professor there in
"Artificial Intelligence Approaches to Natural Language" in 1976.

At present Dr. Hudson is working on problems of Computer-Human
Interaction and developing a number of Expert Systems. One is for an
expert in Printed Circuit Board design for CAD/CAM, the other an expert
to help airborne Search and Rescue missions. He is a member of the
editorial board of the journal "Future Generations Computer Systems"
and secretary of the NATO research group on "Computer-Human Interaction
in Command and Control".

17

18

ABSTRACT

Artificiai Iintellimence and the Cosnitive ApPproach
to Software. The Prosrammer’s Arprentl 2.

Patrick Hudson.

Institute For Percertion TNO-
Soesterbersa,
The Netherlianas.

Software costs already form the magvor pPart of anv
computer svstem. Higsh adevelorment and maintenance costs are
a function of the increasing comPplexity of modern svstems.
Many a&pProaches have been develored to trvy and cope with
these pProblems. such as rtapid pPrototyPing and proaram
aenerators. These are all essentially aepproaches to
software which allow minor variations on & theme. Whats
noWewer, 1¥ we want to develor entirely new software? What
1f we don’t HKnow exactiy what we want? The chances are that
Wwhoeuar writes the software will not maintain 1t and vice-
versar whoever defines the needs will neot be a sufficiently
g00d Prosrammer 1o Produce 1t: whoewver writes the Program
Won ‘'t Hnow what 15 really important.

Central to many of these pProblems 18 the 1dea that
ProgTamming a oomPuter 15 Pretty aifficult, thev are dumbd
bpasts andg need to be ariven all the wav to & solution. PBut
thlis easily leads to & situation where no one actually Knows
what 15 goins on as each sPecialist in the chain mav develop
his or her own 1ntereretation of the real socals of a svstem.
Une solution, which can certainly heler KeeP the astronomical
costs such proliferation can incur, 185 Lo use off—-the-shelf
comPonents. This forces the gefined or pPerceived problem
mto & standard moula, followed by the late tarlioring of the
result. This 1§ eaudivalent to castink somethina in metal ana
then fiiins 1t by hand until 1t Fits. While we mav be
satisfied because there 15 something which soes 1n the hole
and works a bit, this 1s fFar from ideal. It 15 all too
reminiscent of the drunkK looKins for the house—-Kevs under
tne lamp POSts tihey were lost somewhere else but it was
easier to looK for them under the lisht.

What we need 15 something which enables those who
aefine the needs to define their computer Prosrams as wells
guen thoush they are not wizard hacKers. In order to do
this we need a number of features in the environment we
PrOUVLIde.

1) The svstem shouwld be caraple of creating software 1n an
enuvironment made to fit the naividual who 1
controliing the comPuter, and not the reverser

2 The user should he provided with an envivronment in
Wwhich 1t 1s Possibie to try out alternatives, see their
consequences, anad be made aware of Possibilities other
than those currently considevear; and

L8]

The svstem should not only write 1ts own documentation:
what 1t shouid do 18 create its O, useable,
maintenance environment.

This adefines, essentially, an intelligsent pProsaramming
environment which attempPis to updersiand the Programmer and
15 thererfore carable of interfacina at the functional level.
The aeneral notion which thlis COUers 1& sSometimes seen As
the Prowision of & reasonably exPert pProgrammer at the
svstem desisner’s elbow, & sort of Proarammer’'s aPprentice.
Wwho can 40 the tedious hits. Two elements &re crucial 10
this understanding. The first 15 that we must be able to
Prouvide an environment which orPerates at the human level, in
terms of the concerts of the user, hence the term This 1s a
natural extension of the line from machine code, $0 symbolic
asnsemblers to so~called hizher level lanauages. But .,
contrary to the 1dea that &8 2000 CoOmPULer Jlansuase 15 one
wWilech 18 strictly standardised, we hauve the 1dea developen
in Artificial Invellisence, of a computer lansuase which
alters to fit the problem. The secona element is that such
an enuvironment be carable of entertaining alternatives,
different POINts of vuiew, s0 that the svstem becomes more
and not less flexible.

This talk will discuss some of the 1deas here in more
detairl, attempting to lary out what 15 necessary 1o create a
programmer’s apprentice and discussing how that miaht work
i PTAacLICE. Central 10 this are the notion of different
models, of the user, the tasi, the dialosues and of the
Possibilities which the compPuter offers. A mood sv¥stem will
be one which suPPOTLS those models which the uwser also nas
i their head. ALl in all the programmer ‘s aPrprentice will
have to a&ct as an 1interactive aid to the writing of
software. It wi1ill ‘understand’ why the software 1s weitten
the way 1t 1s and will!l attemPt to use 1ts tnouwleome of other
svstems to susmest code (or steal 1t) and also to suzzsest
refinements to the tasi descriPtion. If such a svstem does
nothing else 1t may make 11 less liKelvy that perfect code is
produced to one seecification, but the spegification has
chanzed in the meantime. The creation of such svstems will
rerPresent a further ster on the way from svsiems which are
"What You See 15 What You Get" to "What You Want 1s What You
Get". Thev will also mean thatr what vou 8et 15 what vou
dEESETUE becausse thev are intended Lo SUPPOTL the most
important process of defining exactly what 1t was that was
wanted and, only then, writins code for that.

19

20

Ch.W. Jepson

"HP Overview"

BIOGRAPHY

Charles W. (Chuck) Jepson is Marketing Manager
of the Informations Systems Group where he is
responsible for the marketing of Hewlett-Packard's
office automation products including HP3000 business
computers, HP250 small business computers, office
automation software, administrative productivity
applications and programmer productivity tools.

Chuck tormerly was Marketing Manager of the Information Products
Group in Boise, Idaho, where he was responsible for HP's Advancenet
networking products. Prior to this, he was Marketing Manager for HP's
Boise Division which makes computer printers and m