HP 3000 INTERNATIONAL
USERS GROUP

1983 HP 3000 INTERNATIONAL CONFERENCE
MONTREAL APRIL 24 -29

QUEEN ELIZABETH HOTEL

MONTREAL, QUEBEC, CANADA

|l PROCEEDINGS

CONFERENCE COMMITTEE

Denys P. Beauchemin ¢« +« ¢ ¢ v ¢« ¢ ¢« ¢« o « &

Myer Kwavnick . ¢ o ¢ ¢ ¢ o o o ¢ o o o o o o o o

James B. Fairchild ¢ ¢ ¢« ¢ ¢ ¢ ¢« ¢ o« o o =

Hank Van Leeuwen « o« o o o o s o o o o o

William Crow'. ¢« v ¢ ¢ o o o o o o o o o o o o o

Renaye Le€ . « o ¢ o ¢ ¢ s o o o o o o o o o o o =«

John Knapp . « « ¢ o o o« o o o o o« o o o o o o o

Sandra Hawker . . . ¢ ¢ o o o« o o o o o o o o o o =

Conference Chairman

Conference Vice-
Chairman

Conference Manager

Paper Selection

Executive Publisher/
Association Manager

Conference Manager

Publisher

« e e e

. Managing Editor

INDEX OF PRESENTATIONS — by SPEAKER

SPEAKER PAPER
BEASLEY, Dave — HP3000 Data Recovery 1
BERRY, Joseph — Another Image Article —

Using DBSTAT2 as a Data Base Analysis Tool 2
BIGLARDERI, Karen — Efficiency and Optimization of VPLUS

from an Ergonomic Perspective 3
BRAWN, Mel — Performance Characteristics of HP/DSN (DS/3000) 4
BRAWN, Mel — Selection Criteria for Choosing Bisync or X.25

Protocols for Use With DSN/DS 44
BURCH, Marc — Introduction to Local Area networks 5
BUSCH, John R. — MPE Disc Caching; A technical Overview 6
BYRNE, Jeff — Planned Performance and Capacity Enhancements for

HP3000 Systems 7
CASTEEL, Michael — Advanced Techniques Using VPLUS 8
CINTZ, Simon — Making The Most Out of Self-Paced Training For

Office Software 9
CLAAR, Doug — Security Issues: How Secure is YOUR System? 10
CLIFTON, Roy — QMIT: The MPE Quality MIT 97
COLE, Tipton — Supply Side Programming 11
COLLINS, Melissa — Signing The Dotted Line: An Updated Perspective

of Computer Law 12
COLWELL, Nancy — IMAGE Strategy — Where are we going? 13
COLWELL, Nancy — Data Dictionary/3000 — An Inside View 14

COPELAND, Jane — Quality Assurance: Keys To Higher Performance
and Profit 15

DAUCHERTY, Roger — Programming & Productivity Tools as Pathways
To User Satisfaction 17

DEMOS, N.M. — Design and Program Optimization to Support
Over 300 Terminals 18

DEMOS, N.M. — Synchronous Communications on the HP3000 19

DEVRIES, Doug — How Much Security is Enough? . .. A Method for
Determining Appropriate Levels of Protection 20

DIEHL, Richard — Central Site Support: A Case Study

DITOMMASO, Ingrid — Using OPT and APS For Performance Optimization
DOWLING, James — RAPID is a Relative Term

DUDLEY, T.K. — Are Computer Graphics Just Another Pretty Face?

DYHDALO, Nestor — IMAGE Logging Performance Revisited

EHRHART, Rick — MPE I/O System Overview or Where Do You Go After LDEVS?
ELLIOT, Dave — HP Business BASIC: The Early Years

ELLIOT, Tom — Lest We Forget . .. The End-User

FLEISCHMANN, Catherine — Beyond DSG/3000: Comprehensive Decision
Support Systems Using Graphics

FLOYD, Nanci — Introducing Novice Users to Friendly On-Line
Systems Through Games

FLOYD, Terry H. — Introducing Novice Users to Friendly On-Line
Systems Through Games

FONTAINE, Richard — Hiring Programmers for The HP3000

FRYDENBERG, Rolf — Implementing Distributed Applications in a
Mixed IBM — HP Environment

GAFFEY, Thomas — Modular Construction of On-Line Transaction Systems

GARVEY, Robert — The Future of Applications Development or
Programmers Are Users Too

GIOSCIA, Walt — IMAGE/3000 — Planning & Testing

GOERTZ, Jason — The MPE Memory Dump

GREEN, Robert — Transaction Logging Tips

GROSSLER, Jorg — Concepts of Tape Management in the HP3000 Environment |

HASLING, Bill — An Introduction to Relational Data Base
Technology for the HP3000

HAUGSOEN, Rune — Better Business Planning Through System Integration
HEIDNER, Dennis — Transaction Logging Tips
HEIDNER, Dennis — IMAGE/3000 — Planning & Testing

HERNANDEZ, Suzanne — Using X.25 Communications For Networking
Applications

HEWER, Alan — Guidelines for Migration to Future HP3000 Systems

21
22
23
25
24

28
29

45
32

32
33

34

35

36
98
39
96

40

41
42
96
98

43

83

HIBBARD, Carol — Selection Criteria for Choosing Bisync or X.25
Protocols for Use With DSN/DS

HULME, John — The Block-Mode Conspiracy — A Case of
Ignoring User Input?

JONEZ, James — Improving Backup Performance — A Model

KARLIN, Robert — Optimizing TRANSACT Code

KILPATRICK, lan — The Imperatives of Computer Audit In The 80’s
KONDOFF, Alan — MPE Disc Caching: A Technical Overview
KOSOLCHAROEN, Mike — How To Get The Most Out of Your MRP System
KRAMER, Jim — Performance Testing of Five Languages

LARSON, Orland — Software Prototyping: Today’s Approach to Information
Systems Design and Development

LEEPER, Kim — System Optimization At The Programmer Level
LESSEY, Ken — A Wrong Angle Lense

LUEDEMAN, Joel — Freedom/Screen — A Screen Processing System
For ANSI X3.64

MATHESON, Wendy — IMAGE/3000 Designing for Performance and
Maintainability

MAY, Jim — Programming for Performance (paper 58A & 588B)

MEARS, David — User Control of Terminal Type Characteristics

MILONE, Victor — Technical Aspects of the Private Volume Facility

MINTON, Vaughn — Name Index Subsystem for User Applications

MOORE, Ronald — Using VPLUS as a Driver for Computer Assisted [nstruction
NAZARI, Reza — Implementation of Tree Structures in MPE

NICHOLS, Paul — Creating Reliable Software Through Automated Testing

OFSLAGER, Nancy — Efficiency and Optimization of VPLUS from an
Ergonomic Perspective

ONALFO-WYBRANT, Sylvia — User Friendly Really Can Be Friendly —
If Finding the Answers Isn't A Hassle

PARNIGONI, Harold — IPC Files: Why haven’t You Used Them Yet?

POTTENGER, Linda — Setting Up Shop — Getting and Keeping On The
Right Track

PUCKERING, Gary — Data Dictionaries: A New Era

44

46
47
48
49

51

52

53
54

55

56

57
58
59
60
61
62
64

65

67

68

70

71

ROSE, Bill — Is The Fourth Generation Software Living Up To Its
Expectations

ROSEN, Dr. Sanford — User Documentation: The New Approach
ROSENBERG, Ivan — User Friendly Software Development

RYPMA, Ted — HPMAIL On Public Data Networks

SABEAN, Christine — User Friendly Is Great! But What About Us Operators?

SCAVULLO, Robert — The Lion and the Mouse — How The HP3000 and
Personal Computers Work Together

SCHULZ, Duane — Making the Most of HP Software Support Services

SCROGGS, Ross — Everything You Wanted to Know About Interfacing
to the HP3000 — The Inside Story

SIEGER, Christopher — Making The User Feel Pampered: How To Do It
and Why It Pays Off

SIMMONS, Dr. Ernest — A Psychologist Looks at the DP Shop

SMITH, Wanda — State of the Art Human Factors in User-Friendly Systems
STAMPS, Bob — Guidelines for Migration to Future HP3000 Systems
SWETE, Stan — The User’s Role In Software Design

THOMAS, Ray — Entity Relationship Analysis — A Methodical Technique
For Implementing Relational Data Base On The HP3000 With IMAGE

TSE, Ann — Guidelines for Migration to Future HP3000 Systems
TSUI, Douglas — HP Distributed Systems Network — Strategy for the 80's
VOLOKH, Eugene — MPE Programming

WALKER, Bill — Planned Performance and Capacity Enhancements for
HP3000 Systems

WERTHEIM, David — Benchmark Techniques for Characterizing
Application Performance

WERTHEIM, David — Optimizing System Performance
WILCOX, Patricia — Planning and Implementing an Automated Office

WILSON, Thomas A. — A Checklist of Ten Factors to Keep in Mind
When Evaluating a Software Package

WOMACK, Robert — The Future of Applications Development or
Programmers Are Users Too

ZUFALL, Mike — Application of Message Files and Their Performance
Characteristics

72
73
74

38

76

77

78

79
80
82
83

87
83
89
90

91
92

93

94

36

95

INDEX OF PRESENTATIONS — BY CATEGORY

COMMUNICATIONS
BRAWN, Mel — Performance Characteristics of HP/DSN (DS/3000)
DEMOS, N.M. — Synchronous Communications on the HP3000

FRYDENBERG, Rolf — Implementing Distributed Applications
in a Mixed IBM — HP Environment

RYPMA, Ted — HPMAIL On Public Data Networks

HERNANDEZ, Suzanne — Using X.25 Communications For
Networking Applications

BRAWN, Mel; HIBBARD, Carol — Selection Criteria for Choosing Bisync
or X.25 Protocols for Use With DSN/DS

TSUI, Douglas — HP Distributed systems Network — Strategy for the 80’s

DATA BASE SUPPORT

BERRY, Joseph — Another IMAGE Article — Using DBSTAT2
as a Data Base Analysis Tool

COLWELL, Nancy — IMAGE Strategy — Where are we going?
DYHDALO,Nestor — IMAGE Logging Performance Revisited

HASLING, Bill — An Introduction to Relational Data Base
Technology for the HP3000

MATHESON, Wendy — IMAGE/3000 Designing for Performance
and Maintainability

THOMAS, Ray — Entity Relationship Analysis — A Methodical
Technique For Implementing Relational Data Base On The
HP3000 With IMAGE

GREEN, Robert; HEIDNER, Dennis — Transaction Logging Tips

GIOSCIA Walt; HEIDNER, Dennis — IMAGE/3000 — Planniong & Testing

LANGUAGE SUPPORT
ELLIOT, Dave — HP Business BASIC: The Early Years

KRAMER, Jim — Performance Testing of Five Languages

19

34

38

43

44

89

13

24

41

57

87

96

98

28

52

MANAGEMENT

CINTZ, Simon — Making The Most Out of Self-Paced Training
For Office Software

COLLINS, Melissa — Signing The Dotted Line: An Updated
Perspective of Computer Law

COPELAND, Jane — Quality Assurance; Keys To Higher
Performance and Profit

DeVRIES, Doug — How Much Security is Enough?. . .
A Method for Determining Appropriate Levels of Protection

DUDLEY, T.K. — Are Computer Graphics Just Another Pretty Face?

FLEISCHMANN, Catherine — Beyond DSG/3000: Comprehensive Decision

Support Systems Using Graphics
FONTAINE, Richard — Hiring Programmers For The HP3000

HAUGSOEN, Rune — Better Business Planning Through System
Integration

KILPATRICK, lan — The Imperatives of Computer Audit In The 80’s

MOORE, Ronald — Using VPLUS as a Driver for Computer
Assisted Instruction

ROSE, Bill — Is The Fourth Generation Software
Living Up To Its Expectations

SIEGER, Christopher — Making The User Feel Pampered:
How To Do It and Why It Pays Off

SIMMONS, Dr. Ernest — A Psychologist Looks at the DP Shop
SMITH, Wanda — State of the Art Human Factors in User-Friendly Systems

WILCOX, Patricia — Planning and Implementing an Automated Office

PERIPHERAL SOFTWARE

MILONE, Victor — Technical Aspects of the Private Volume Facility

PRODUCTIVITY TOOLS

CASTEEL, Michael — Advanced Techniques Using VPLUS
COLWELL, Nancy — Data Dictionary/3000 — An Inside View

DAUGHERTY, Roger — Programming & Productivity Tools as
Pathways To User Satisfaction

12

15

20

25

45

33

42

49

62

72

79

80

82

93

60

14

17

DOWLING, James — RAPID is a Relative Term
KARLIN, Robert — Optimizing TRANSACT Code

PUCKERING, Gary — Data Dictionaries: A New Era

SYSTEM MANAGEMENT

BEASLEY, Dave — HP3000 Data Recovery
BURCH, Marc — Introduction to Local Area Networks

BUSCH, John R.; KONDOFF, Alan — MPE Disc Caching:
A Technical Overview

BYRNE, Jeff; WALKER, Bill — Planned Performance and
Capacity Enhancements for HP3000 Systems

CLAAR, Doug — Security Issues: How Secure is YOUR System?
DIEHL, Richard — Central Site Support: A Case Study
DITOMMASO, Ingrid — Using OPT and APS For Performance Optimization

EHRHART, Rick — MPE I/O System Overview or
Where Do We Go After LDEVS?

GOERTZ, Jason — The MPE Memory Dump

GROSSLER, Jorg — Concepts of Tape Management in the
HP3000 Environment

JONEZ, James — Improving Backup Performance — A Model
MEARS, David — User Control of Terminal Type Characteristics
NAZARI, Reza — Implementation of Tree Structures in MPE

POTTENGER, Linda — Setting Up Shop —
Getting and Keeping On The Right Track

ROSEN, Dr. Sanford — User Documentation: The New Approach

SABEAN, Christine; DOWLING, James — User Friendly is Great!
But What About Us Operators?

SCHULZ, Duane — Making the Most of HP Software Support Services

SCROGGS, Ross — Everything You Wanted to Know About
Interfacing to the HP3000 — The Inside Story

23

48

71

10
21

22

26

39

40

47

59

64

70

73

75

77

78

WERTHEIM, David — Benchmark Techniques for Characterizing
Application Performance

WERTHEIM, David — Optimizing System Performance

WILSON, Thomas A. — A Checklist of Ten Factors to Keep in
Mind When Evaluating a Software Package

CLIFTON, Roy — QMIT: The MPE Quality MIT

USER APPLICATIONS

BIGLARDERI, Karen; OFSLAGER, Nancy — Efficiency and
Optimization of VPLUS from an Ergonomic Perspective

COLE, Tipton — Supply Side Programming

DEMOS, N.M. — Design and Program Optimization to Support
Over 300 Terminals

ELLIOT, Tom — Lest We Forget... The End-User

FLOYD, Nanci; FLOYD, Terry H. — Introducing Novice Users
to Friendly On-Line Systems Through Games

GAFFEY, Thomas — Modular Construction of On-Line
Transaction Systems

GARVEY, Robert; WOMACK, Robert — The Future of
Applications Development or Programmers Are Users Too

HULME, John — The Block-Mode Conspiracy — A Case of
Ignoring User Input?

KOSOLCHARQEN, Mike — How To Get The Most Out of Your MRP System

LARSON, Orland — Software Prototyping: Today's Approach to
Information Systems Design and Development

LEEPER, Kim — System Optimization At The Programmer Level
LESSEY, Ken — A Wrong Angle Lense

LUEDEMAN, Joel — Freedom/Screen — A Screen Processing System
For ANSI X3.64

MAY, Jim — Programming for Performance (Paper 58A & 58B)
MEARS, David — User Control of Terminal Type Characteristics

MINTON, Vaughn — Name Index Subsystem for User Applications

91

92

94

97

11

18

29

32

35

36

46

51

53

54

55

56

58

59

61

NICHOLS, Paul — Creating Reliable Software Through Automated Testing

ONALFO-WYBRANT, Sylvia — User Friendly Really Can Be Friendly —
If Finding the Answers Isn’t A Hassle

PARNIGONI, Harold — IPC Files: Why haven’t You Used Them Yet?
ROSENBERG, Ivan — User Friendly Software Development

SCAVULLO, Robert — The Lion and the Mouse — How The HP3000
and Personal Computers Work Together

STAMPS, Bob; TSE, Ann & HEWER, Alan — Cuidelines for
Migration to Future HP3000 Systems

SWETE, Stan — The User’s Role in Software Design
VOLOKH, Eugene — MPE Programming

ZUFALL, Mike — Application of Message Files and Their
Performance Characteristics

65

67

68

74

76

83

85

90

95

HP3000 DATA RECOVERY

David R. Beasley
Systems Engineer
Hewlett-Packard Company

Everyone who manages a computer installation realizes that no
matter how well you schedule system backups, there will
inevitably come a time in which the backup tapes have parity
errors, or the disc has a head crash or drive fault, or the
system crashes prior to the daily backup, or someone simply
halts the machine on the way up frem a COOLSTART! Each of
these cases present some unique problems to overcome, but one
common problem is that valuable data may be lost. Or is it?
Has the data been physically destroyed, or has MPE become
logically inoperable due to the corrupticn of some key data
structure such as the system directory? Most data can be
"physically" recovered given enough time, the know how, the
proper tocls for the situation, the equipment, and the pa-
tience. There are certain questions to be asked in all
situations involving "lost" data. Can the data be re-entered
from scratch? How long will it take? Can the data be phys-
ically removed from the storage media? Can you afford to
lose the Data? Is the amount of time required to recover the
data more valuable than the data itself? Once you have
decided that an attempt must be made to retrieve the data,
you must understand how the data is organized and what tcols
are available to help you in saving all or part of the data.

There are manry different ways to organize data, such as IMAGE
files, KSAM files, or simply a standard MPE file. 1In many
cases, this is a critical factor in deciding how much effert
should be spent in an attempt to get the data back. Because
of the sometimes complex interrelationships between the data,
it is nct always "good enough" to retrieve some, but not all
of the data. For example, saving a KSAM key file, but fail-
ing to save the corresponding data file may not gain any-
thing. Another example is when you fail to restore one of
IMAGE's dataset files. At first, you might think that all
you need to do is get that one file from a previous backup
tape set, but that could leave you with a logically corrupt
data base. In such situations, it may be necessary to accept
the loss of one file, or to even "bite the bullet", RELOAD
MPE, and re-enter the data. It is for this reason that
transaction logging and saving daily transacticens in hard
copy format are scmetimes recommended. Let me add a word of
caution to those users who do partial Sysdumps on a daily
basis. If you have IMAGE data bases, all of the files may
not be STORE'd to the tape because scme of the datasets may
not have been accessed. This is ok unless you run inte
trouble later on down the line trying to re-construct your
data base due to lost data. If ycu are extremely careful,

and if you make sure that you restore the files in the cor-
rect order, you will not have a problem, but why give your-
self a chance to make an unnecssary mistake. It isrecom-
mended you do a DBSTORE of your databases to keep all of the
datasets together. Some people may argue that this takes more
time. This is true, but how much time do you have to recover
you database if a failure occurs? Each application is dif-
ferent, so thinking of these issues, and planning for di-
saster recovery will help you avoid losing critical

data.

Although data can be logically organized in a variety of
ways, it is simply a "bunch of bits" to the computer hard-
ware. This fact is not new to anyone who understand com-
puters, but is it vitally important to remember when you need
to recover "lost" data! The mass storage devices such as the
disc drives and tape drives do nothing more than physically
record the data that the software tells it to. These periph-
erals aren't responsible for understanding the logical orga-
nization of the data. Suppose that MPE can't find a par-
ticular file because the area of disc occupied by the system
directory is unreadable due to a bad track. The file is
still on the disc, it is simply unaccessible in the logical
way MPE expects to locate it. There are utilities for such a
case to assist you in retrieving that file. (You may reed to
write your own sometime). It is almost always possible to
retrieve the physical record of data from the peripheral and
its media, unless of course the media has been mutilated and
destroyed. However, if the peripheral was broken at the time
ir which the data was written to it, the data may be garbage
when it is read back. In this situation, you need to eval-
uate whether or not the data can be "repaired" once physical-
ly retrieved or is re-entering the data the best approach.

Assuming that you have made the decision to attempt to re-
trieve the data from the physical media as opposed to return-
ing to a previous known good copy of the data and re-entering
your work, there are several useful utilities available to
you. Some of these are supported by Hewlett-Packard and
others are not. The syntax of the utilities will not be
focused on since these are documented in the Hewlett-Packard
System Utilities Manual (30000-90044) or in other places such
as the User Contributed Library. For most of these util-
ities, an understanding of the HP3000, equivalenrt to that
which is taught in the System Manager's class offered by
Hewlett-Packard is sufficient to allow the user to use these
utilities with confidence. During the discussion of the
utilities and the situations in which they can be used, an
understanding of the disc organization and some key disc
resident data structures must be understocod. You may refer
to the MPE System Tables Manual (32002-90003) for a descrip-
tion of these table layouts. (Appendix A provides table
layouts for some of these disc resident tables).

What can be saved? Disc files and files from bad SYSDUMP/
STORE tapes are the most common types of files necessary to
recover, Let's discuss disc files first. Disc files are
located by MPE by finding a pointer to the LDEV and sector
address of the file label. (Note that the LDEV pointer is
really a volume table index). Each file has a file label
which contains a description of the characteristics of the
file such as the record size, the block size, the EOF point-
er, ete.,, and it also contains an extent map which points to
the LDEV and sector address of the other extents which make
up the entire file. Note that all extents do not necessarily
reside on one particular disc. If the system crashes and
catches you without a good set of backup tapes and if MPE is
logically inoperable due to data structure corruption, a
utility called SADUTIL can be very useful. SADUTIL stands
for Stand Alonre Disc Utility. It is supported by HP, ard is
documented in the System Utilities Manual. SADUTIL does not
run under the control of MPE. It is cold locaded similarly teo
the way MPE is locaded as a.stand alone utility. SADUTIL will
allow you to save files to tape which otherwise would be lost
if a RELOAD of MPE was necessary. SADUTIL expects some data
structures on disc to be intact, however. Each mounted
system volume must have a good volume label, (sector 0). If
the system directory is intact ard the correct address of the
directory is valid in the Cold Load Information Table, (sect-
or 28), and if the Volume Table is good, you will be able to
save files with the €.8.8, 6.8.acct, or @.group.acct cption.
If the above data structures are invalid, you may attempt to
re-build them with the EDIT furctions in SADUTIL. Another
option would be to use the FIND command which scans the
entire disc looking for file labels. There is no guarantee
that the data will be valid, however. After successfully
saving the files to tape, a RELOAD of MPE will be necessary
along with ary other apprepriate action required to correct
the original problem. Once MPE is running again, a program
called RECOVER2, which is also supported by HP, can be run to
retrieve the files from the SADUTIL tapes and re-create them
in the system directory. Note that the data in the files is
not guaranteed to be valid and garbage free!

While we are on the subject of SADUTIL, let's consider a case
where someone halts the system during a system start up, such
as a COOLSTART or COLDSTART. INITIAL is the program which,
when bootstrapped into memory, executes to build MPE and
MPE's tables and data structures. There are several disc
resident data structures which INITIAL depends on (unless
doing a RELOAD) such as the Cold Load Information Table.
INITIAL locates other critical data structures on disc from
this table. Some examples of the disc residenrt tables re-
quired are the system directory, the Veoclume Table, and a

file named CONFDATA which contains configuration informaticn.
The format of these tables are in the System Tables manual.

In order to protect the integrity of the operating system,
there is also something known as a Cold Load ID. This Cold
Load ID is incremented by INITIAL on each start up in order
to ensure that all volumes belonging to the system are mount-
ed together as a set. This Cold Load ID is kept in each
system volume label, (sector 0), in the Cold Load Informatior
Table, (sector %34), and in the Volume Table. This Cold Lecad
ID is also kept in each file label. When FOPEN opens a file,
the Cold Load ID in the file label is compared with the
"current" Cold Load ID so that the file system will know if
certain kinds of information are current, such as; is the
file currently open and shared?; is the FCB vector valid?; are
the STORE bits valid?; ete. In this way, FOPEN knows if the
file was open during a system crash. If you halt INITIAL
during a start up, the Cold Load ID's may get cut of synch
and INITIAL will not allow you to subsequenty start the
system, but instead will give you the infamous message of
"MOUNT CORRECT VOLUMES OR RELOAD"., With SADUTIL you can EDIT
the dises in the correct locations to get the Cold Load ID's
back in synch. The precise locations are in word 7 of each
system volume label (sector 0), word %12 of the Cold Load
Information Table (sector %34), and in words 1 and 3 of the
Volume Table which is pointed to by words %124, %125 of
sector %34. By modifying these words, you may save valuable’
data by allowing MPE to be restarted and a STORE to take
place. It should be roted that anytime you have to "re-
build" ary table for MPE, it should only be donre with the
intent to save the data. Since you can never be certain as
to what else is not correct, a RELOAD should always follow
this procedure to ensure operating system integrity.

DISKED2 is another supported utility which can be used to
read or modify any area of the disc under the control of MPE.
However, DISKED2 is not under the control of the file system
so you must use this utility with great caution., FLUTIL3 is
an unsupported utility which will allow you to modify certain
words of a file label if it becomes corrupt for any reason.

Let's turn our attention to bad SYSDUMP/STORE tapes. It is
not uncommon for tapes to have several parity errors or to
develop "bad spots" over time., GETFILE2 is a very useful,
although unsupported utility to help you read past bad spots
on a tape and recover files that MPE's RESTORE will not allow
you to get. Another scenari¢ for which GETFILE2 is very
handy is as follows. Suppose someone does an FCOPY of a
small file onto ore of your STORE tapes by mistake. Well,
obviously, the data which was overwritten is lost, but the
data beyond the new logical end of tape is still there even
though RESTORE does not recognize the format of the tape.
GETFILE2 will allow you to read the entire tape lcoking for
files labels. FCOPY is also a good tool at times to recover
files from tape.

There are a couple of other unsupported utilities that I
would also like to mention. STAN (Store tape analyzer) and
TAPLIST. Either of these can be used to look at the direc-
tory at the beginning of a STORE tape if you're not sure
what's on the tape, or if you're having trouble RESTORE'ing a
file because of an incorrect accounting structure.

One more utility that you should be aware of is IOCDPNO.
This program is not for the novice and will require a thor-
ough understanding of MPE's I/0 system. IOCDPNO allows that
user to specify any or all of the parameters to ATTACHIO.
ATTACHIO is a procedure in MPE which interfaces the file
system to the I/0 system. With IOCDPNO, you can totally
bypass the file system, and you can request any function code
that the driver recognizes for whichever device you are
accessing. If the data you are trying to recover canr be
physically read from the media, IOCDPNO will let you do it.
Let me emphasize that great caution should be used with this
utility. A "typo" could be catastrophic even when you are
simply reading from a device. For example, if someone is
FCOPY'ing a tape file, and I accidentially specify the wrong
ldev, (the tape drive), in my parameters to ATTACHIO, I will
have just "blown away" the user doing the FCOPY. He'll end
up one record short. It could be worse than this. Suppose
I'm trying to read the volume label, (sector 0), of the
system disc, just because I'm the curious type. If a write
function is specified by mistake, it could be RELOAD time
tonight! This utility is very powerful, but very dangerous!

It is beyornd the scope of the paper to present all of the
information you need to throughly understand in order to be
considered a "data recovery specialist"; however, I hope you
have been somewhat enlightened as to the types of issues that
must be considered and what types of tools are presently
available to assist you. Remember that planning for data
recovery and a good "prevent defense" will save more data
than all the tools you can imagine!

Appendix A
(Excepts rom System Tables Manual)

(P/N 32002-90003)

31

CHAPTER 3 DISC LAYOUT

SECTOR #
DISC LABEL |o
... |
DEFECTIVE TRACKS TABLE 11
... I
Cold Load Channel Program for /30, /33, /il |2
Mem Dump Channel Program for /30, /33, /il |3
1%\
--- |
15 |
---------------------------------- I
16 |
------------ CODE FOR =m-==-meemmmeemn| |
INITIAL PROGRAMS | |
------------ "BOOTSTRAP" ----=c-cecmeeee| |
SEGMENT .
------------------------------- |
|
---------------------------------- | >
I
--- |
(.
--- Lo
[
--- |
I
--- I
(.
--- |1
{ /
LOW CORE (CST POINTER, QI, 2I, POINTER) | <--

Variable
Length

Follows
immediately
after
Bootstrap
Segment

SYSTEM DISC LAYOUT (CONT.)

|
I
|
VIRTUAL MEMORY AREA I
|
|
I

|

|

|

I

|

|

I

|

|

|

I INITIAL PROGRAM SEGMENTS |
| (EXCEPT BOOTSTRAP SEG) |
I

| SYSTEM FILES

| (FROM COLD LOAD TAPE)
|

|

|

|

|

|

|

|

|

|

SYSTEM TABLES

* LFDT

* LDT

* VOLUME TABLE

* DEVICE CLASS TABLE
INITIAL PROGRAM STACK

3-3

---> Note: Initial
tries to allocate
directly after
the Free Space
Table. However,
this may vary
depending on
deleted or
reassigned tracks

DEFECTIVE TRACKS TABLE (Sector 1 of Disc)

e e ccsc e e r R e e, - — - ———————

01 2 3 4 5 6 7 8 9101112131415

[-= ==l ==]==]==]==] == | == | ==} == == | == |-= | -] == | -5

o|
|
1]
|
2|
|
3|
|
Lj

o wum

7

-
o

-
[

-
n

I
|
|
I
|
I
I
|
|
|
|
I
|
|
|
|
|
|

165|
1661
167}

OF DEFECTIVE TRACK ENTRIES (N) o
... I
DEFECTIVE TRACK NUMBER | orc |1
... |
DEFECTIVE TRACK NUMBER | DTC |2
... '
DEFECTIVE TRACK NUMBER | pTC |3
DEFECTIVE TRACK NUMBER | oTC |4
T T TR |
15
|
16
|
. 17
|
18
!
. 19
|
120
I
.
|
l.
|
I
I
|
. |
|
|
DEFECTIVE TRACK NUMEER | pIC |117
DEFECTIVE TRACK NUMBER | oTc |118
DEFECTIVE TRACK NUMBER | DTC |119

3-10.

120 DEFECTIVE
TRACKS MAXIMUM

DISC COLD LOAD INFORMATION TABLE (SECTORS 28-29)

0} pointer to table information | FAEFTR L
W pointer to venporary OS5 imte | scsrom

o Ty o etrien v end on dive woid toea | wrEAD
3Ty ot e semmente i mvinTAL T (—

W T T oh e | vz

of T e J—

o T W 2 | iz
A e -

o T T s e | nrs
e R
wl T e | corp'Lor" 1o
al T o cide maver 7 e———
P Girectory diae T :

| | DIRADR
13| address |
wl T Tiev 1 vireenl memeny T l

| | VIRMEMADDR
15} disc address]
I § oo pmocs T :
wl T T |
o) T niw waae T }

| | RINADR
19} disc address |
T PP —
21} Teecions in vistass memery revion of TRV 1 | SECTORS IN LDEVL WM
o wusmn T |
Y RN vaie sine T R
al T P | aoxs

3-12

DISC COLD LOAD INFORMATION TABLE (CONT.)

| SIZE IN WORDS | FAEFTR+M4
f=mmmmmm e |
| MEMORY ADDRESS *CTABO |
e R ik b L LEE L L LI |
| DISC ADDRESS |
R it it |
| SIZE IN WORDS | FAEFTR+8
|===mmmmmmee e |
| MEMORY ADDRESS *CTAB |
Jommmmm e |
| DISC ADDRESS |
[emmmmmmmmer e |
| SIZE IN WORDS . | FAEFTR+12
T e L R COMMUNICA- |
| MEMORY ADDRESS TION SUB- |
Jommm e ek SYSTEM |
| DRIVER |
| DISC ADDRESS TABLE |
| |
e ittt e DL DL DD DL L DR |
] SIZE IN WORDS * | FAEFTR+16
R D E T COMMUNICA- |
| MEMORY ADDRESS TION SUB- |
R e e L SYSTEM |
| DEFINITION|
| DISC ADDRESS TABLE |
| |
R e DL I L EL L L L LR L LR |
| SIZE IN WORDS | FAEFTR+20
L T e P P PR PP P COMMUNICA- |
| MEMORY ADDRESS SUBSYSTEM |
R LT LR PR PP PP TABLE |
| |
| DISC ADDRESS |
| |
R Rt e R L L L L D il |
| SIZE IN WORDS | FAEFTR+24
[e m e e LOGICAL- |
| MEMORY ADDRESS PHYSICAL |
Jmmmm e eeeeeeee DEVICE |
| TABLE |
|
|

3-14

DISC COLD LOAD INFORMATION TABLE (CONT.)

DISC ADDRESS

(MORE SEGMENTS OF INITIAL)

3-16

LOGICAL
DEVICE
TABLE

..

INITIAL's
STACK

B D R L T T R R Y

INITIAL's
SEGMENTS

D e T R e -

FAEFTR+36

FAEFTR+U40

FAEFTR+4kL

TCSTPIR

12

1L

15|

TYPICAL SYSTEM VOLUME ENTRY

cemcccr e cc e c e e e e r .- -

NUMBER OF SECTORS RESERVED FOR VM ON VOLUME
(0 if none)
LOGICAL DEVICE # | | VMS|UN|NS|SC
(=0 IF NOT MOUNTED) | | [|
|VSET VTABX | MVTABX

3-25

[=)

n

o v W

o

|
I
19
I
|10

I
[11

indexed by

volume #

NS

- NON-SYSTEM
DOMAIN

- SCRATCH

- UNREADABLE/
UNFORMATTED

- VIRTUAL MEMORY
SUPPORTING

13

Another IMAGE Article

by Joseph Wm. Berry
Consultant
1800 S. Robertson Blvd.
Bldg 6, Suite 2000
Los Angeles, CA 90035

Introductory Remarks

Why indeed do we need another article about IMAGE data
bases? In the last few years, many articles have been
presented both in the local, national, as well as interna-
tional HP Users’ Group Meetings. By this time everyone
knows that capacities should be prime, that alphanumeric
keys are generally better than numeric keys, etc., etc.
With respect to that statement, I would like to make two
remarks. First, having been a systems specialist for
Hewlett-Packard trained in both performance consulting as
well as data base consulting, time and time again I have
seen users making these same mistakes when implementing
their data bases. I am referring even to "knowledgeable"
users. It is my opinion that a majority of all performance
problems can be traced to bad data base design, bad data
base design implementation, or badly designed/implemented
programs that access a data base. Second, there have been
very few tools available to the user community (or for that
matter to Hewlett-Packard systems engineers) for analysis
of data bases in order to verify suspicions that a data
base was a significant factor in performance degradation.

As a result of this feeling of hopeless frustration, know-
ing in one’s heart that the data base was at fault, but
being unable to prove it, three systems engineers wrote a
program known as DBSTAT2. This program is not to be con-
fused with other programs with similar names (e.g., DBSTAT
in the users’ 1library that is written in FORTRAN). Very
simply, this program presents a detailed pictorial of the
contents of a master data set as well as of a detail data
set, along with various statistics about the contents of
the data set. This program was authored by Ed Splinter (of
InfoCraft Inc.), Ted Dickens (HP, North Hollywood), and Joe
Berry.

In the next few pages, I would like to describe some of the
uses I have made of this program to help identify user data
base problems. It will be obvious (if it isn’t already)
that this program serves a real need. Unfortunately, it
does require the use of privileged mode (PM) capability.
And as a result, Hewlett-Packard does not warrant the use
of this program on anyone’s system (too badl).

Performance Problems?

There are three major resources on the HP3000 that are
potential 1limiting factors to good performance. These
resources are (1) CPU speed, (2) memory, and (3) I/O
throughput. With the release of the HP3000 Series 64,
Hewlett-Packard has introduced a CPU-powerful computer to
the user community. For companies requiring CPU intensive
operations, such as solving differential equations, etec.,
the horsepower of the series 64 is available to provide
such solutions.

What about memory? The Series U40/UY4 can be configured with
up to four megabytes of memory while the Series 64 comes
with as much as eight megabytes of memory! That’s quite an
improvement over the days when the maximum amount of memory
available was two megabytes. Again hardware presents an
easy solution to what used to be a rather difficult
problem. Of course, if you don’t wish to spend the money
on the extra hardware, then some work, usually programming,
will be required. But, at any rate, there is a fast "dol-
lars and cents" solution.

When it comes to disc I/Os, the picture changes somewhat.
Hewlett-Packard has not announced any markedly improved
disc I/0 devices for its products. This is not to say that
one cannot get a fast number of I/Os through a system. I
have personally seen HP3000 systems producing 60, 70, and
over 80 I/Os a second on live applications. Unfortunately,
this is not the norm. Whenever I see an HP3000 that is I/O
bound (again, which is most of the time), I immediately
begin by examining the data bases that are in use (in one
notable instance, however, the user presented me with an
I/0 intensive KSAM application!).

History Revisited

In order to properly appreciate DBSTAT2, I will present
some of the particulars of its history. In the spring of
1980, an HP OEM company in the downtown Los Angeles area
requested assistance from HP. They explained that one of
their user sites was having particularly bad performance
problems. They requested that HP send someone to their site
in order to help identify this HP "IMAGE bug". Their

specific problem was this: certain transactions, which
performed DBPUTs to a manual master data set, were taking
an extraordinarily long time to process.

It did not require a very sophisticated program to identify
that this data set was 99% full! (This is a fairly
"knowledgeable" customer with five HP3000s. Just how
production data base data sets "happen" to be at 99% full
is beyond me. Doesn’t anyone monitor these things?) Our
suggestion was rather obvious: increase your capacity or
decrease the number of records. The customer explained,
however, that they had done this before and that decreasing
the number of records not only did not improve response
time, it actually worsened the response! This indeed was
difficult to understand. The "slower" response time was
demonstrated with a stand-alone batch job that didn’t have
subjective response times associated with it.

So what was the problem? We developed a theory we thought
would explain the evidence. But how would we verify it?
And furthermore, how would we demonstrate to the user that
it was a data base design problem?

And so, along came DBSTAT2. The first illustration (fig.
1) at the end of this article shows the user’s data base
when it was 99% full. Details of the output will be ex-
plained later. Note, however, that very few blank spaces
exist for new records to be inserted. The second and third
illustrations (figs. 2A and 2B) show how the data set ap-
peared when it was 93% full. There are a number of inter-
esting things to note with respect to this output and the
previous one. First, it is very clear that the key used in
the data set didn’t agree very well with IMAGE’s hashing
algorithm (that is, the records weren’t randomly dis-
tributed throughout the data set). Also note the large
number of secondaries (they’re identified as dashes) oc-
cupying the first 2,000 records. The user hHad told us that
on a regular basis they delete old, dated records from this
data set. What we were seeing were the results of this
cleaning-up process. However, by comparing the two. il-
lustrations, it is clear that some records had been added
to the data set before DBSTAT2 had had a chance to examine
it. This accident provided us with the required clue to
determine why the user’s DBPUTs were now taking longer than
before. A final analysis of this example will be presented
further in the paper.

Operational Characteristics

Permit me to digress somewhat by explaining some of the
operating characteristics of DBSTAT2. Because of the way
the program accesses the data base, exclusive use of the
data base is required. Many users have found it difficult

to part with their system for the few minutes (or hours)
that DBSTAT2 requires. In order to make the program easy
to use, I have implemented a batch mode that requires only
the name of the data base as an input value. The program
makes its own assumptions about what to print out. An ex-
ample of this is as follows:

1 JOB MGR.ACCT

!RUN DBSTAT2.UTIL.SYS
DBNAME . GROUP

IEOJ

Wouldn’t it be nice if all programs executed so easily? In
this batch mode, one or more pages will be printed for each
data set in the data base. Since it frequently happens
that the user (or systems engineer) wants to see the output
as it is generated, DBSTAT2 spools each data set separate-
ly. Therefore, in order to avoid many header and trailer
pages, a HEADOFF 6 command by OPERATOR.SYS is recommended.

Master Data Sets

I will now describe some of the display fields presented by
DBSTAT2. Look at the next illustration (fig. 3) while
reading this text. (The first DBSTATZ2 illustrations were
from the original version of the program. A number of
changes have since been incorporated.)

Some identification information is presented at the very
top of each data set. Following this is the field "% SPACE
USED". This is the ratio of "# OF ENTRIES" to "CAPACITY".
Simple enough. What should this number be? Most HP IMAGE
classes say that this ratio should not exceed 75-80%. HP’s
Materials Management/3000 package (MM/3000) automatically
warns the system administrator when master data sets ex-
ceed 60% full! How serious a problem is this? The simple
answer is, "It is serious!" Let me explain with another
example. I was once asked to examine an application
program that was purchased by a customer to determine why
response on their Series Ul system was so slow (even with
just a handful of users). The customer explained to me
that the problem was in a program they had recently ac-
quired. He wanted me to "prove" that this application was
poorly designed/written. He explained that the problem was
not in the data base. I monitored the application and dis-
covered that for each order that was entered (this was an
order entry package) something Dbetween 200 and 2,000
(usually around 1,500) physical I/Os took place! No wonder
the response time was so slow. I further discovered that
all the CPU time in the application was due to one DBPUT
(courtesy of APS/3000). At that point, I knew the problem
was in the data base itself. I executed DBSTAT2, examined

the "# OF ENTRIES," and discovered the master data set
associated with the detail that the DBPUT was writing to
was 98.7% full! Had I followed my usual procedure of im-
mediately running DBSTAT2 when a data base is involved,
this problem would have surfaced much earlier.

Another very important item is the blocking factor of a
data set. Since, in general, master data sets are accessed
randomly and detail data sets are accessed serially, it is
logical for master data sets to have small blocking fac-
tors. Why read a large block of data in memory when all
you need is one record? If, on the other hand, this data
set will be frequently accessed serially, then a large
blocking factor is in order (if you will really perform a
frequent number of serial reads of a master data set, espe-
cially a 1large one, then I would be suspicious of the
design strategy for the data base itself). One must remem-
ber that the MPE file system (including IMAGE) reads a min-
imum of one sector (256 bytes) at a time. Therefore, if
the record size is small so that many records can fit into
one sector, it is not meaningful to specify a blocking fac-
tor so small that the sector isn’t completely filled.

If I have a 200-character record, and I assume random ac-
cess into the master data set, should the blocking factor
therefore be one? Is there a need for having it be any-
thing larger than one? The answer, surprisingly, is yes.
It is important to realize that with most applications
there will be some small number of secondary entries
(synonyms) in master data sets. There is a specific excep-
tion which I will discuss further down. Assume some number
of secondaries and a blocking factor of one. Whenever one
of the secondaries is retrieved or whenever a new record is
added that creates a secondary, at least two or maybe more
additional I/Os will occur because of the block size being
one record. As a general guideline, therefore, a blocking
factor of three or four should be used unless it conflicts
strongly with the 256-byte block size.

An o0ld adage says "A picture is worth a thousand words."
In data base analysis, this is particularly true. Each
character in the graph of the data set (fig. 3) represents
one location in the data set. Three characters are cur-
rently used: a blank, a minus character ("-"), and an "I".
Both above and on the left side are scalings for determin-
ing where in the data set a particular record is located.
The blank means that there is no record present (obvious,
right?). The "I" means that a record is present and that
it is a primary record. Secondaries may have mapped to
this record, but they are elsewhere. The "-" means that a
secondary record 1s occupying this location. Note the
columns of colons. This character acts as a block
separator. An interesting anomoly can be observed in the
next illustrations (figs. 4A and UuB). Only along the

left-hand edges of the block boundaries can any secondaries

(the minus signs) be found. This demonstrates the way-

IMAGE allocates secondary storage. In other words, when a
record is added to a master data set, and there is already
a record located in its proper position, IMAGE begins look-
ing for a free location for storing -that record at the
beginning of the data block that it mapped into. Many
people erroneously believe that the secondaries are stored
along side the primary. DBSTAT2 is an excellent tool for
verifying such questions.

Beneath the graphic display of the data set are the synonym
statistics. Not only are the number of secondaries versus
primaries displayed, but also the number of primaries that
have one synonym, the number of primaries that have two
synonyms, etc. A large number of secondaries is indicative
of a potential data base problem.

The last piece of information available is the path infor-
mation into the detail data sets. DBSTAT2 displays the
maximum, average, and minimum lengths of each path and
whether that path is sorted. This, too, can be very impor-
tant. I once performed an analysis on a data base and
found that the average chain length into a detail data set
was approximately 12,000 records! This wouldn’t necessari-
ly have been bad, but for the fact that it was a sorted
chain. By making the path unsorted, the customer’s 40-hour
batch run was reduced to under 5 hours!

To be totally fair, I must correct the implication of the
previous paragraph. Sorted chains have a reputation of
being bad (especially long ones). This isn’t always the
case. When a user does a DBPUT to a detail data set that
has a sorted path, IMAGE will start by examining the chain
in reverse sort sequence (bottom of the chain) first. If
the record to be added falls near the end of the chain,
only a small number of I/Os may be needed in order to place
this record. This is true even if the chain length is many
thousands of records 1long. However, 1if the records are
added in a sequence opposite the sort order in the data
set, then IMAGE may have to traverse much of the chain in
order to appropriately place the record. This second case
is what one needs to watch out for.

Detail Data Sets

Figure 5 presents sample output from a detail data set.
The characters used to graphically display the data set are
blanks (which means that there is no entry) and "D"s (which
means that there is an entry).

Before I explain the value of the detail data set output, a
small discussion of how records are physically maintained

in this data set is in order. When a detail data set is
empty, records are added in sequential order. If the data
set contains 150 records, then only the first 150 physical
records contain data. When records are deleted, a "delete
chain" in the data set is initialized to indicate where the
deleted record is located. When subsequent new records are
added, IMAGE first places records by following the delete
chain, and only after that chain is empty will IMAGE again
place records at the end of the logical file. IMAGE tries
to utilize the holes that are created when records are
deleted.

Unfortunately, this technique can sometimes result in per-
formance problems. Imagine for a moment the following ex-
ample: Assume there is a detail data set with five records
per block. Let us also assume that the chain lengths are
five ‘records long. Therefore, when a set of records is
written to the data set, one full block is utilized. On
subsequent reads (also assuming that the entire chain is
accessed), only one physical I/0 is required (assuming no
memory contention). This nice situation will continue un-
til a record is deleted. Assume that five records are now
deleted (one from each chain). When a new five-record
chain is added, these records will not be placed at the end
of the file, but rather in the five locations left vacant
by the previously deleted records. Therefore, when access-
ing this particular chain of records, five physical I/Os
will take place (one record from each block)! On the one
hand, people recommend large blocking factors for detail
data sets when accessing entire chains; on the other hand,
these blocks cannot be utilized if the delete chain jumps
from block to block.

The field "CURRENT EOD" indicates the high water mark for
the data set, or how far into the file the data has actual-
ly been stored. The field "# OF ENTRIES" means the current
number of records in the data set. If these two fields are
equal, then the delete chain has no entries. If the delete
chain contains record pointers, DBSTAT2 will follow this
chain counting the number of blocks read and report<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>