
HP 3000 INTERNATIONAL
USERS GROUP

1982 HP 3000 INTERNATIONAL CONFERENCE
COPENHAGEN OCTOBER 25-29
SCANDINAVIA HOTEL
COPENHAGEN, DENMARK

STAFF

William Crow . • . . • • • • . . • • • • • ·. Executive Publisher/
Association Manager

Renaye Lee . . • . • • • • • . . • • • Conference Manager

John Knapp • • • . . . • • • • . • • • • • . • . • • . .Publisher

Sandra Hawker ••••••.•.••••••••• Managing Editor

CO!'JTENTS

Page

1 HP 3000 Computer Network Man.'lg•?ment
Haye Swa.rt, Thomassen B. Drijv<?r

8 Managing ,Jobs and Operating in a University Computing Center
G.P. Raabe, G.F. Rueck, R. Knott,

Uni versi taet Passau

11 Low-Budget Site Renovation
WaynP. E. Holt, Union College

19 Local Area Networking: A Tutorial Overview
Paul T. Antony, l~wlett-Packard/Business Computer Group

28 Local Area Networking Simplified with a Data Pl-\BX
C. H. "Bill" Sk;iug

41 The Control of the Intc~grated Office
Christopher M. Spottiswoode, Synergy Computing

57 Random Data Entry Using a Graphics Tablet
Dr. Wolfgang Matt

63 The Interactiv<:'! Office--Tr~chnology and People
Jack C. Armstrong, Jack Armstrong & Associates

71 Graphics Syn<?rgy
Stephen ,1, Wilk, Hewlett-Pack"l.rd

93 Multi-lingual C3.pabi1ities of HPWORD
Alma C. Rodoni

104 Electronic M.1il in the Interactive Office
Ian J. Fuller, Hewlett-Packard

13B Business Gri'l.phics: J\n Integri'l.1 Part of the Electronic Office
Shi risl1 S. H<;irdikar, l·fowlett-Parkard.

153 Increased Performance anc1 Productivity for 3270-Emulation
Rolf Fryd,~nberg, Fj•?rnan.ta

169 Chan cter versus Block Mod•~: Termina 1 Tnput on the HP 3000
Kurt Sager, Software Systems

] 7 o, MIMER: A Computer Type~ Indep,endent DRMS
Sven G. Johansson, Uppsn la Uni. ve rsi ty DR ta Center

188 The Use of IF'PS Using HP 3000 in thf~ Norcem Group
T. W. An<:'ln•assen and .J. Drevdnl

191 :'.:ntrod.ucing HP Financi;1l Managrw~nt Systems

?OP TPfl--Tnter rict i vc P} Anning cind BmlgPting Product ion
Plilnninq by tl,~cins of Morell ing I,-in<Junqe

??'i Thro Fim\nciill ~10d8l Proce~ssor

Professor Tr. G'"'org~s Schepens, Fcicultes TJniv<"rsitnir<>.s
Mot re Dam'"~ de la Pu ix

243 Us.i ng Chriracter Mode Effici<>.ntly
J . Van Damm·?

249 15 !dens on Improving MPB Security
Norman P. Wright, TJ. S. Offic'~ of P(~rsonnP.l Miln.cig·~ment

2'i5 Systc~m Securi+:y in iln Operatorless F:nvjronment
Mike Pc)chul is, Hewlett-Pnckilrd

271 SECURITY/1110(): A N~w Approach to IDGON Security
F:ng<>.ne Volokh, VESOF'r Consultants

275 Practicality in the D(>.sign of SoftwcirP. Testing Tools
Gary E. Marcos, llewlett-Pcick'lrd./rnformation Networks Division

?ql IMAGF. Introduces an End to the Rroh:!n Cha""i_n
,Jorge~ Guerrero, llewl_f~tt-Pockilrd/Information N·~tworks Division

298 KSAM Design Guidelines for Optimiziltion
Jorg·~ Guerrero, Hewl<?tt-P;i.ckard/Informotion Networks Division

316 Using Interprocess Communication
Greqory A". Grimr.1, HewJytt-Packnrd/Com[)uter Systems Division

3?4 The~ Structure of Application Program Samples (APS).'3000
Ahbos Rafii, fl,~wlett-Packard/Computer SystAms Division

340 Future DirecU ons of th:~ Dnti'l Diction;'lry
Alan Pare, Hewlett-Packard

349 !".Very Scholarly Discussion of thr~ Effect of Synonyms on
Performance

t:ug·ene Volokh, VESOFT Consultants

36? Introduction to Step by Step
Michael Kohen

372 Transaction Processing Using V/PLUS
Michael A. Casteel, Computing Capabilties Corporation

:'l85 HP TOOLSET: An Jnsi(t<:! View
Lynn Smith, Hewlett-PackFJrd/Information ~l~tworks Division

39.l Using V/PLUS from Pascal
David J. GrPer, Robc?lle Consulting Ltd.

413 Syst~!m D'~velopr.i.0>.nt on HP 300(') Standord Pr<?mis0 s
Erik Buchwald Christnnsen

ABSTRACT:

HP-3000 COMPUTER NETWORK MANAGEMENT

Haye Swart Ir ,Information Manager Thomassen &
Drijver - Verblifa N.V. Deventer The Netherlands

Management, organization and control of a network of 8 HP-3000
minicomputers located at 7 different locations within the
Netherlands and Belgium, serving 10 different production plants. The
network operates 'in a decentralized environment with central control
and development. It supports on a highly interactive way the day to
day operations and it is used for (central) batch processing as
well. This paper deals with the functional and technical control of
the application systems ,the hardware at the different locations and
the organisational consequences of same. It goes into the back-up
and security measures and the way the internal usage charges and
resource utilization is administrated.

INTRODUCTION:

- company overview

THOMASSEN & DRIJVER -VERBLIFA N.V.,TDV is a major Benelux
manufacturer in the packaging field. The main products are
tinplate containers and glassclosures for the beer and
beverages, food and non-food markets. Besides it manufactures
steel drums and pails as well as all types of plastic
containers and vending machine cups. TDV is a daughter of the
Continental Can Corporation, the packaging division of the
Continental Group Inc. Stamford,USA. The headoffice of TDV is
located in Deventer the Netherlands with a fiscal Belgium
headoffice near Antwerp.TOY has 9 production plants within the
Benelux and a Deventer based machine shop. Its personnel
numbers over 5800, while net sales in 1981 passed the 1
billion dutch guilders mark.

- network (plan) 1976-1982

In 1976 a plan was approved to gradually install a
minicomputernetwork with roughly as main objectives:

to replace the central batch processing and the decentral
magnetic ledger processing,

to introduce where practical interactive processing
throughout the company as a whole ,and

to decentralize responsibility for non-redundant input.

A network concept was chosen instead of a mainframe concept,
because it would allow to store and handle bulkdata at the
place of origin.In addition we would have a gradual hardware
expansion(sliding investment)and we did not have to close

2

our shop because of a gigantic conversion effort. As a
matter of fact the old batch processor will be released for
retirement in the first quarter of 1983.

result: We have more than benefited from the new
improvements in hardware and software during the
birthcycle.We installed for instance last may the HP- 3000-
64 instead of the originally planned two HP-3000-III
computers. For 4 years we had nearly time to do more than
necessary maintenance on existing systems because we .were
always busy redesigning the old batch systems for the new
environment.

- typical decentral operation

The raw materials and finished goods movements are monitored
by computer from planning into production (orders),quality
control and warehouses.Storage locations are registrated
with aid of printed barcode labels. Personnel attendance is
monitored by timereporting terminals at the plant entrances.
This provides input to the personnel and the payroll
systems. Furthermore data input preparation is done locally
for all other central or decentral systems, such as
financial reporting.

Typical hardware configuration: HP-3000-III with tape and
MB internal- and 120/240 MB external - memory, 35-40
video-,printer-,barcodereader-, timereporting -terminals,
DS-3000, INFORM-3000 and future MM-3000 software.

- strategies

The philosophy behind the automation within TDV can be
summarized as follows:

.high user involvement, therefore users responsibility

.uniform systems,but with a local face .onetime input of
data,but simplicity above (super) integration .no local
EDP groups,but user friendly retrieval tools

The result of above strategy is that development time tends
to become relatively long. However, the degree of user's
acceptance is high. Quick short haul successes occur very
seldom.

ORGANISATION AND CONTROL

- strategic planning

strategic committee The company has formed a strategic
committee that advises the board in all matters concerning
information processing ing. EDP is a major part of this.
This committee is formed by line- and staff-managers at one
level below the board. Chairman is boardmember and V.P
Finance and Administration. It convenes at a two to three
month interval.

The major tasks of this group are to set rules,to initiate
and review (middle) long term planning for investments and
application development. It channels decisions thru the
lineorganization and forms a possible sounding board for
unsatisfied or impatient users.

result: The automation is an integral part of the
organisation. It allows EDP to enforce for users impopular
decisions. It enforces EDP at the other hand to make more
elaborate groundwork before decisions can be made.

- project organization

project groups For all automation projects larger or smaller
project teams are formed.They are composed of users and the
necessary specialists,including one systems designer. The
latter on his turn is EDP internal projectleader of a team
of analysts and programmers. The projectgroup is lead in
all instances by a user, preferable from the TDV line
organization.

result: Users in the group are forced to take responsibility
for the system concepts. They are however seldom made
sufficiently free from other duties.

steering committee Two steering committees are in operation
to monitor the different major projects. The fixed members
are chosen from the strategic committee. The
systemsdevelopment manager is permanent member. Depending of
the project a different user manager is added. The steering
group takes decisions towards the. project group involved and
prepares decisions to be taken by the strategic committee.
It reports in the latter about progress.

result: Projectprogress is greatly enhanced since this
committees are placed between projectgroups and strategic
committee.

- (application) systems organization

systems controllers As soon as an application system is
implemented and accepted by the user, the functional control
of that system is put into their hands. Somebody within the
user organization is made responsible. He guides the users
how to work with the system, teaches its (im)possibilities
and prepares user documentation. All contacts concerning
this system with EDP such as requests for change(development
group) and processing requests(data centre/network) are
approved and channeled thru him. He contineously needs to
evaluate the cost/benefit and the appropriateness to the
organization. Yearly he prepares together with EDP the
budgets for the next year. Monthly he receives an account of
the actual cost breakdown.

data controllers In a decentralized environment with
different computers on which run "cloned systems with local
faces" ,it is man- datory to install only one system
controller per system to prevent divergence.It is physical
impossible for him to have a daily control over the
processing at the different locations. He therefore

3

4

delegates part of his respon- sibilities to a local data
controller. He in fact has the EDP processing contacts and
guides the local users.

result: Correct use of a system is made a user
responsibility For every system there is only one focalpoint
between EDP and the users. There are many focalpoints with
different attitudes and background. System control is an
additional task and :does not always gets the attention it
deserves.

- network organization

network controller He is'the "geographically stretched"
datacentre manager. His main task is to maintain an optimal
functioning network He acts in case of failures and/or
breakdown of any component within the network. He is
responsible for adequate backup and recovery procedures. He
is functional responsible for the local network
coordinators.

network coordinators There is no need for local
computeroperators, but at every location with a computer, a
network coordinator is appointed. This coordinator is
responsible for operational tasks. such as physical security,
measures, file reorganisations. He at the same time supports
the local datacontrollers and the users on technical matters
concerning the hardware. He reports hierarchical to line
management,but for the for the network tasks functionally to
the networkcontroller.

result: The network is centrally controlled by decentral
non-EDP personnel, so a responsibility of the plant
management. It is found sometimes difficult to convince
local management for the need, but in practice it proves
them to be an absolute necessity. The organisation structure
from the outside looks "non- transparent", but it proofs to
be very "user friendly".

- so~ware control

The software control is centralized in the Technical Support
Group.They support the network organization as a whole.They
alone have SM capabilities and are responsible for
datasecurity. They prepare users UDC's and install or change
(on systemscontrollers request) user passwords.

result: Network security is brought down to a small group of
centrally controlled people.

SECURITY AND BACK-UP

- account structures There are some basic rules applied to
TDV's account structure,such as:

do not allow application production from the systems
account • allow in the production accounts data files
only • put locked programs into one separate group in

the sysaccount • donot allow development people to the
production accounts •• provide for a separate
development account • have a separate "play account" for
the software group • and allow
non-production/development personnel on a harmless "demo
account" only

interactive systems There are only a few large accounts
within the computer systems. Every systems controller has
access to his particular part of the account. He controls
his users and the facilities they are entitled to. The
systems manager e.g.also accountmanager, translates this
into UDC's at logon time. By means of this UDC the user can
choose from a menu of programs he is allowed to use.

batch systems With exception of the development computer,all
(production) jobstreams for all computers in the network are
made by the schedulingsection of the central datacentre.
Operators and networkcontrollers (or in special cases users)
have an execution capability only.

result: User capabilities within the accounts are" program
defined" therefor no file- or data element-looks are
necessary. The necessary separation of functions is
achieved. The accountstructure is not very transparant, but
probably an optimum between processing and datasecurity is
reached.

- systems back-up and recovery

systemdumps Besides the normal generation procedures for
application systems in the batch environment, every night
short sysdumps and every week total sysdumps are made of all
on-line files at all locations. The tapes are stored in
fireproof vaults near the computer and at least once a week
in a vault at a location separated from the computer.

manual datalogging Recovery is done from dump and renewed
manual input. There is not provided for automatic logging.
All input documents are filed for at least one week, besides
in some instances a simple sequence store of specific input.

result: Simple backup and recovery procedure,without
complicated resource(overhead) intensive programs. Users
responsiblity for "manual" logging is necessary and not
always proven to be watertight.

- hardware back-up

datacom fallbaok The datacom installation at the central
site is equiped with a Racal Tester. This allows the network
controller to determine at failures the actual source.,wether
it had to be the oomputer,modem or the leased line. In the
latter case an alternate dial-up connection to the central
site is always standby.

computer back-up The central site development computer is a
general standby in case of a computerbreakdown for more than
24-48 hours. Every decentral site can be connected by a
standby multiplexor to the development computer for 8

5

6

predetermined crucial terminals in the plant. For the
centralcomputer it is assumed that inp's and peripheral
devices can be rearranged. In the event of a real disaster
in which both the central and the development computer
brteak down,we will have a problem that can be felt for
weeks to come.

result: Cumbersome procedures and constructions are made
which have to be tested. It gives users management and the
automation manager a feeling of security at the expense of
the conscience of the software specialists.

RESOURCE UTILIZATION CHARGES AND ADMINISTRATION

-,capital investments capital investments are budgetted and
made by the EDP department.Line management has approval
authority on users requests for hardware expansion
e.g.terminals,disks a.s.o. All costs such as
depreciation,maintenance, insurance of hardware are incurred
by EDP. The total EDP costs (budgets) must balance against
the (internal) EDP charges to the users.

variable charges The network as a whole including
lines,datacom and com- puters up and thru the (async)
terminal ports are con- sidered to be one source of costs in
the costprice of the unitoperation. Charged are actual unit
operations such as CPU sec.,spool lines,disk and tape I/O's
which are on a weighted basis converted to "Computer Units"
(GE's).

fixed charges Terminals are purchased by EDP and leased on a
fixed monthly basis to the users. The latter have to account
for that in their costbudgets.

result: The users get billed there own unit operations,which
can be billed,regardless on which computer they are made.
EDP is free to alter the hardware configurations at the
locations.Users are not always costconscious enough about
their hardware demands from the EDP departement.

- monthly EDP accounting

Once a week the logfiles of every computer within the
network is decentrally condensed and stored. Once a month
this information is processed centrally. Some of the
information stored per job and session is:

time in/out,computer,account,user,device no, appl. system
code,tape/disk I/O's,spoollines, CPU sec.

computer utilization It is obvious that from this detail
information several reports can be made such as computer
utilization per system, unit operations per system per
computer, elapsed time, terminal utilization per device port
etc.

billings The invoice is prepared on the basis of :
computer/account/user" converted to "ayatemcode /client".
Coatreporting is per system and per department. In the same
invoice project development coats and testing GE's are
merged.

result: The system responsible aytema controller and the
budget responsible user receive all information necessary to
at least monitor and/or influence coats/benefits. The
network controller assesses the usage of "his" computer and
the terminals within "his" location.

RESUME

Within Thomassen & Drijver - Verblifa the automation is a very
user controlled activity. Thia is proven to be very effective to
achieve full supported user oriented systems. In such an
environment it is necessary to have an organisation in which
responsibilities are defined and controlled and where the
necessary security steps are provoked. A ful1time professional EDP
auditor within our company scrutinizes all our actions, even this
paper.

7

8

MANAGING JOBS AND OPERATING IN A UNIVERSITY COMPUTING CENTER.

G.-P. Raabe, G.-F. Rueck. R. Knott

Universitaet Passau, Rechenzentrum
Postfach 2540, D-8390 Passau. Fed.Rep. of Germany

INTRODUCTION

The University of Passau is the youngest University in Germany, it started by the winterse­
mester 1978/79. So it is the latest and as it looks like the last foundation oi a new university
in Germany. Atpresent the university of Passau has about 1800 students and four faculties:
Theology. Law. Humanities, and Economics. A Faculty for Mathematics and Informatics will
start with research and lectures by the end of next year.

The computing center serves as a central service department for the whole university and at
present runs a HP 3000/111.

Due to the variety of usage of the computer by students and research staff it has become
more and more necessary to have a better means for managing batch jobs and the operating.
What we need is the possibility to impose several rules on the processing of jobs.

So we planned and wrote some programs which are started by the operator service program
called OPSER. This program has to run on the operator's console and serves for system
supervision. OPSER gets information about other programs and system status from other
programs, such as BATMAN. which inspects appropriate system tables. OPSER handles a
variety of commands which are forwarded to MPE or to subsystems. As a speciality all
commands, also MPE commands. may be abbreviated to any degree, the abbreviation only
must be unique in that context.

OPSER starts other programs as son-processes: These are BATMAN, HAMMER and plan­
ned are several spool-processes.

BATMAN and UBA TCH

BATMAN manages all batchjobs by collecting them, classifying them into queues, starting
them for execution and keeping track of them until execution will be terminated success­
fully.

Users create batchjobs by writing a control sequence as usual under MPE. These files may
be .EDIT /3000 keep-files or QEDIT-files. The new command SUBMIT starts the program
UBA TCH. UBA TCH corresponds with BATMAN by Message-Files. All UBA TCH-processes
write their needs for service into a single MSG-file, which is read by BATMAN. When an
UBA TCH process, associated with an individual user, requests for service BATMAN creates
a special Job-File into which UBATCH copies the job-sequence. UBATCH c.hecks all
job-commands for correctness. The coordination between BATMAN and each UBA TCH
process is maintained in the direction from BATMAN to UBA TCH by individual MSG-Files, for
each UBA TCH-process one, which are established by UBATCH.
After UBA TCH closed the jobfile it can only be accessed by BATMAN. A user may obtain
information about his jobs and their status by the command LIST JOBS. This command gives
information only about his own jobs. resp. about all jobs according to his capabilities. With
the command CANCEL a user may abort his Jobs.

BATMAN manages several queues: up to 10 freely defined and 3 standard queues which
exists all ways. These 3 standard queues are:

AFTER:
Jobs which are to be executed after a certain time. defined by a timestamp with
date, hour. minute.

DEPENDENCY:

READY:

The user defines a dependency counter in the range of 0 to 127. The dependency
counter must be managed by the user himself. Only jobs with a dependency
counter equal to O will be executed. This is a mechanism for planning and mana­
ging a series of jobs with interdependencies.

Into this queue all jobs are classified for which no suited freely defined queue
could be found. (e. g. requiring Mag Tape when no such access is allowed). Jobs
in the READY queue must be expl1citely waked up for execution, either by the
user or by the operator.

DEFINED QUEUES:
With the program QDEFINE up to ten queues may be established with the following
parameters:

CPU-time: min·· max
Printed Lines : .max
Operator-Action: YES/NO (e.g. REPLY for Mag Tape Access)
Schedule : YES/NO (NO means that no more jobs will be accepted for this

queue; queue closed).
Run: YES/NO. (YES says that the Jobs from this queue will be exe­

cuted. NO says that Jobs are only collected into this queue).
Max-Jobs : max. number of jobs from this queue which are allowed to run

at the same time.

According to the parameters of the queues and according to the attributes of a job BATMAN
decides about the classification of each job.
The attributes for a job are set up in this sequence:

1. Standard Attributes
2. Parameters from the JOB-card.
3. Parameters of the SUBMIT-command.

Jobs may have the following attributes:

CPU=
AFTER=
DEPE~DENCY =
OPERATOR=
RESTART=
UNIQUE=

PRIORITY=
(planned)

CPU-time in seconds (or unlimited).
date, time of day
0 ... 127
YES/NO
YES/NO (if necessary a restart is managed by BATMAN)
YES/NO (If YES any other jobs of the same user must not run at
the same time; e.g. when the access to data files is EXC.)
0 ..•. 127, with 0 highest. (These priorities will only have effect
on jobs from the same user, no influence on the overall exe­
cution.)

According to the queue parameters BATMAN selects jobs for execution and starts them by
the sequence

STREAMS ON
STREAM job-file
STREAMS OFF

BATMAN knows all jobs it started. If anybody would succeed in streaming a Job with the
MPE-stream-command within this small window between STREAMS ON and OFF, BATMAN
will find a job in the system tables he did not know and all these jobs will be kicked out by
BATMAN.
Every 0.5 sec (may be changed easily) BATMAN looks for job requests in the MSG-File.
After n1 such cycle1;1 (normal n1 = 120 or 1 min.) the queues are inspected. After n2 cycles
the AFTER queue will also be inspected.
From the CPU-time demand a priority is derived which in each queue defines the order in
which jobs become candidates for execution.
After successful execution the jobs will be removed from the queue and the jobfiles will be
purged.

9

10

OPSER

As mentioned above OPSER runs as the operators session and starts all other processes. It
forwards commands to several subsystems and to MPE. Via special commands OPSER acts
on BATMAN: aborting jobs, putting jobs to higher priority, suspending and continuing jobs.
To a certain extend the parameters of the queues may be modified: Changing the number of
max jobs, setting the RUN and SCHEDULE parameters.
A new SHOW JOB command gives more and better readable information, such as CPU-Time
consumed by a job or session. The list is sorted first sessions then jobs and in each group
sorted by number. Also a new SHOW OUT command produces a more informative listing of
spooled output.
OPSER will act on the planned Spoolers, too, for aborting, putting forth, suspending, and
continuing output and for managing the devices.
Another feature is a modified WELCOME, which reads the welcome messages from files. So
these texts can be better prepared and often used texts may be kept in files.

HAMMER

This program is also started by OPSER as a son-process. The HAMMER aborts all sessions
and/or jobs at a specified time. With the EXCLUDE or INCLUDE lists this may be restricted to
specified groups, which are defined by ldev-numbers or by user .acct, whereby wild card
characters are allowed. It is planned to provide these features by a OPSER procedure.

CONCLUSIO"!

The programs are written in PASCAL 3000 with the exception of a few SPL routines and the
HAMMER which was written in FORTRAN about 1 1/2 years ago, when PASCAL 3000 was not
available. At present the system is in the test phase and it is planned to get it released for
final usage by october/november of this year.

11

Low-Budget Site Renovation by Wayne E. Holt
Director of Computer Services
Union College

Introduction

The Union College Computer Center was established in 1962

to service the needs of the students, the faculty, and the
administration. During the 20 years of its existance, it

has grown and expanded in a relatively unplanned manner.
While the intentions of those responsible for each phase of

growth were reasonable, the end result over time has produced
a facility with noticeable problems in physical site security,
office work flow, and general working c.~·mdi tions. The problems

would have been exacerbated by the acquisition of three new

mini-computers unless immediate steps were taken to provide the
proper environment.

The situation at Union is not unusual for the industry.
Whether large or small, new or old, it seems that many sites
suffer from the malady of po'or planning. When this problem

is recognized, there is usually a further problem: namely,
that of little or no budget to accomplish improvements.

This paper will outline the issues used to evaluate the
Union College site with regard to changes in layout for work
flow improvement, increased site security, better utilization

of existing space, and adequacy of air and power supplies for
..

new and existing computers. A limiting factor in the evalu-
ation was the budget for such rennovation. Hence, the thrust

of the paper will be to emphasize what can be done with a

minimal budget.

12

The problems in the Union Computer Center can be broken into

two general areas; that is, those of the actual layout, ie.

arrangement of walls and doors, and those of the environment,

ie. the power and air. The former can lead to serious personnel

problems, while the latter can cause difficulties with the
various computer vendors.

The attached diagram "A" shows the layout of the Center as it
appears before the renovation, while diagram "B" details the

current configuration. Various elements have been noted in

order to assist in following the textual discussion.

The Center is located in an older building, originally used as

an engineering laboratory. Thus, all interior walls are of

sheetrock construction, and are not load-bearing. This fact

(one common to many small shops) means that decisions to move

walls are primarily restrained by cost only.

Structural Problems

Like most older shops, Union's was layed out with a distinct

operations area separate from systems and programming. The

times changed, but the facilities did not. The following

problems are representative of those almost any shop might

encounter:

o Growth in systems and programming overflowed into operations.
Walls were not changed to account for this, resulting in
wasted space and decreased security of output listings (A3),
Further, the two entrances (Al)(A2) confused the public,
since it was difficult to determine where someone would
be located.

o The traffic pattern through data entry (A4) included activity
not at all related to operations, but rather to offices
loca~ed beyond this "bottleneck".

o There were no windows in the facility, even though the
original structure contained them.

o Each desk had a phone, but with a unique number, and no
central intercom or switch unit. This coupled with the
layout, made it very difficult for internal or external
communications.

o Since all of the chaff producing peripheral equipment, such
as printers, bursters, and decollaters, were located near
the main equipment frequent media problems on both tape
and disc would occur.

Figure B shows the results of moving a minimum number of walls:

o All access to the Center is controlled through one point,
where a receptionist can direct the flow of visitors (Bl).
This also allows the other old entrance to be used as an
office, and the duties of that receptionist to be re-assigned.

o The new location of Keyentry (B2) prevents unnecessary
traffic from passing through. The output bins for Staff(B3)
also mean better flow control. The service window (B4)
provides access to the public who need operations assistance
without creating traffic inside the shop.

o The new offices(B5)(B6)(B7) provide better working space
for programmers.

o The new Print Room (BB) isolates all chaff-producing
equipment from the computers, and the bins and lockers (B9)
prompt distribution of output in a secure manner.

o The new Lobby (BlO) provides good access to -~dew·:the
computing facility for public relations purposes, but
still provides as good security as before.

o The removal of two closets allowed the creation of an
interior passageway (Bll), thus uniting the two halves of
the staff. This provided an enormous moral boost, as well
as sloving a long existant problem: in Winter, all access
from one side of the shop to the other was via the main
public corridor, which was unheated.

o A window was re-opened in a lounge area, and all coffee
dispensers and other refreshments were moved to this single
location. This, too, improved moral considerably.

13

14

The total cost for this renovation, including materials and
labor, was $US 12,000. The sum is so small only because extreme
care was taken to minimize wall removal and construction.
The cost of output bins was minimized by ordering stock items,
rather than having custom installation. The impact of the cost
was softened by having the work done over time in pieces. Thus,
steady, affordable progress was the result.

Environmental Problems

As computer systems mature, growth tends to occur in an ad-hoc
fashion. A disc drive, a printer - surely this would not bother
the environment of the center?

Of course, the answer is yes, it will.

"Creeping consumption" is a plague that afflicts most computer
sites, especially in the mini-compuer environment. Power is
usually provided for in the best manner, although even this is
not always true. Most systems actually use les~: power than
the rated consumption; thus, most sites have built-in slack if
the original power supply me~ power specifications for the
original equipment.

This is less true of the air handling equipment. Problems with
inadequate air are frequently manifested in unusual hardware
failures, typically intermitant in nature. Rarely does the

problem reach up and slap you.with an alarm bell. Most sites
measure temperature and humidity close to the air handling unit
rather than around the equipment or below the floor where the

air is drawn up into the computer.

The situation at Union was typical. Over the years, equipment

changes had placed a "rated" 90Kva load on a 75Kva isolation

transformer. Worse yet, the main campus feed was loaded with

heavy compressors and other equipment that caused "brownouts"

for the Center, resulting in frequent computer halts.

The original plan for air handling called for two units, each

with two compressors. The full original load only required

two of the four compressors, so the site was considered fully

redundant. However, over the years the equipment changed - three

compressors were eventually needed to handle the load. That

meant that if a compressor failed, the unit had to be taken down

to fix it, thus rendering both compressors in the unit inoperable.

So, with only two compressors left, the computer had to shut

down.

15

Because of the growth in the number of computers, Union was able

to solve these problems as part of the "growth" budget, rather

than as a special problem. The most noteworthy aspect of the

effort to improve the environment was the discovery that new

technology has driven the cost of "conditioned" power down to

levels affordable by sites that have mini-computers. Good quality

motor generators or magnetic power management devices can be

purchased for $US 10,000 to $US 15,000.

With the change in computer technology, it is becoming clear

that the simple isolation transformer is inadequate. Sites should

better protect the new generation of mini's and resist following

the "plug it into the wall" syndrome. If your power supply is

not adequate, it will cause untold problems for future maintenance.

16

Conclusions

Many sites are content to suffer with "minor" problems in
the·layout of their shop, their power supply, and air supply.
It is usually felt that change will be expensive and hard to
justify. However, sites ~ be renovated at a minimum cost
if management is wiiling to tackle the 'problem in a reasonable
way.

The environment affects the way in which people work; better
productivity usually results when people are more comfortable
with where and how they work. Even if a renovation project
must be developed in stages because of costs, it can still
pay off if each step results in improvements.

The key is planning.

17

Fl(;uRE 8

18

LOCAL AREA NETWORKING: A TUTORIAL OVERVIEW

Paul T. Antony
Hewlett-Packard
Business Computer Group
19447 Pruneridge Avenue
Cupertino, California 95014

A B S T R A C T

Although Local Area Networking technology is still at an early
stage, it is already enjoying rapid growth. Computing environments
increasingly require the interworking of many different data
processing devices, each with its own degree of intelligence, each
with its own advantages in terms of functionality and cost, each
capable of operating more or less independently of any other system
component, and, increasingly often, each supplied from a different
source in order to take advantage of the rapid developments in
information processing technology. Providing such an environment
through integration within a local area network will offer the users
of mini computer based systems new power and versatility, with which
they will be able to offer a real price/performance challenge to
traditional mainframe based systems. An integrated system based on
a LAN also offers the hope of a smoother path for upgrading overall
systems capability through replacement of individual functional
units as newer and more powerful facilities become available.

This paper provides a tutorial introduction to Local Area
Networking concepts (broadband, baseband, etc.) and will illuminate
some of the important issues and challenges related to local area
communications networks.

19

20

Few areas in the data communications world have seen as much recent
technological innovation and new commercial offerings, as the area of
Local Area Networking.

As the cost of individual processing components falls, organizations
are aquiring greater numbers of separate "specialized" computer-based
systems. Each system focused on meeting user needs for higher worker
productivity, better computer accessibility, and faster responsiveness.
This in turn is leading to a greater awareness (at both the individual
and organizational level) of the benefits of convenient interconnection
of systems to achieve coordinated access both to common resources (such
as databases, analysis programs, development tools, and office style
memos and reports) and to sophisticated or specialized (and often
expensive) resources, such as high speed printers, large plotters, etc.

A local area network is a data communications system that
used to provide the level of interconnection described above.
general characteristics of this type of network are:

can be
Some

o SINGLE ORGANIZATION OWNERSHIP - LAN's are usually wholly owned
by a single organization, with gateways to allow communications
to other organizations.

o LIMITED GEOGRAPHICAL COVERAGE - Distances can vary from a few
hundred feet to several miles. Generally, LAN's span less than
two kilometers.

o FLEXIBLE TOPOLOGY - You can readily modify a network as the
organization expands. You can attach, disconnect, and delete
stations without operational changes.

o HIGH DATA RATES - One megabit/sec or higher. Usually, near
10 megabits/sec. To allow fast, multiple station access with
transparent network operation.

o LOW TRANSMISSION ERROR - Networks realiably accomodate heavy
data transmission traffic. Should an error occur, a network
station can detect it and institute a recovery.

o SUPPORT LARGE NUMBER OF USERS - LAN's can support hundreds of
users and are not constrained by organizational growth.

o ECONOMICAL CONNECTION - Connection cost should not exceed 10 to
20 per cent of station equipment cost.

o RELIABLITY AND HIGH AVAILABILITY - Networks can remain
unaffected by individual failures or removals for service.

There are a broad spectrum of LAN products available, and finding
the one that best suits your particular needs can be difficult. In
practice, LAN's fall into three distinct cost/performance categories:

1) Low cost, low performance systems using twisted wire pairs as
the transmission medium.

2) Medium cost, medium performance systems using shielded BASEBAND
coaxial cable as the transmission medium.

3) High cost, high performance systems using shielded BROADBAND
coaxial cable as the transmission medium.

Anticipated use will determine which network type best matches your
application requirements. For example, some applications such as office
automation, entail text editing and file processing, which can occur at
adequate rates over short (room) connection distances using low cost
desktop computers. On the other hand, general purpose data and message
communication applications, with or without office automation, demand
more expensive minicomputers interconnected over relatively long (floor)
distances. Finally, for very high speed, complex engineering and
scientific computations, you might need costly superminicomputers
interconnected to nodes scattered throughout one or more buildings.

Whatever the application, you must evaluate several key LAN
technology factors:

- Geographical layout (2.0 km or less, in most cases)
- Transmission topology (bus or ring)

Transmission medium (twisted wire pair, baseband coaxial cable or
broadband coaxial cable)

- Operation type (asynchronous or synchronous}
- Maximum data rate (O.lM to 50M bps}
- Traffic load utilization (bursty or regulated}
- Maximum number nodes (computers and/or intelligent workstations)
- Maximum and minimum node to node separation
- Maximum number of data channels
- Transmission delay restrictions (bounded/deterministic, or

unbounded/probabilistic}
- Access control scheme (token passing or collision sense multiple

access with either collision avoidance or collision detection)
- Software requirements
- Maintenance, test and error detection/correction
- Safety conditions (cable flammability, radiated interference, and

grounding rules)
- Interactions or gateways with other local networks, as well as

long haul networks.

You must define your application thoroughly and select the products
that will meet your present needs, and allow you to plan for future
growth.

21

22

LOCAL AREA NETWORK TOPOLOGIES

A) STAR

A star network consists of a central node to which each of the host
system devices are connected. The central node acts as a routing switch
for data arriving at the central node from each of the host connections.

A star network simplifies access control and routing decisions
required within attached hosts. However, throughput performance and
reliablility of the entire network relies on the operation of the
central node.

B) RING

A ring topology seeks to eliminate the dependency on a central,
controlling node of the star network without sacrificing the relative
simplicity of the otner nodes.

In a ring network a single communications path is shared amongst,
all attached nodes. This path is unidirectional and provides for the
transfer of discrete packets of data. Each packet of data is injected
into the ring from one node to the next in a predefined direction. There
are no routing decisions to be made in this topology. The sending node
simply transmits its message towards its next neighbor node in the ring
and the message then passes round the ring until it reaches the node for
which it was intended.

Each node acts as a regenerative repeater of receiving packets,
generally introducing one or more bits of delay as it does so. The only
routing requirement made of each node is that it be able to recognize
those messages that are intended for it, by examination of the node
address contained in each data packet. Then, dependent on the control
strategy and implementation, the receiving node may remove the packet
from the ring or pass the packet on back to the transmitting node with
an acknowledgement field marked to indicate whether or not the packet
was accepted. In this case, the original transmitting node removes the
packet from the ring.

The inherent weakness in this structure is that the transmission
path relies not only on the integrity of the tranmission medium, but
also on that of the ring interface which is an active component of the
network. A failure in either of these two areas could paralyze the
entire network. Recently, techniques have been devised which detect
repeater failures and switch those units out, while allowing the
remainder of the network to function normally.

C) LOOP

Loops are essentially ring style networks with centralized control.
The topology of a loop is identical to that of a ring but a polling
technique is generally used to provide the appropriate degree of access
control.

D) BUS

The bus or broadcast network structure is conceptully simpler than
that of the ring. The basic structure is linear and derives essentially
from traditional computer architecture of input/output channels.

The bus medium itself is passive and allows bidirectional transfer
of messages. Like the ring, the bus structure does not require any of
the attached nodes to make routing decisions. A message simply flows
away from the originating node in both directions towards the ends of
the bus. The intended destination node must be able to recognize
messages that are intended for it and then read the message as it passes
by.

Each node is attached to the bus medium in a 'T' fashion so that
the message signal continues to propagate down the bus whatever the
action in or by the attached nodes; there is therefore no requirement
for a bus node to absorb and regenerate the message, and no modification
or delay is imposed on the information in transit.

It is this intrinsic feature of the bus topology which offers the
great attraction of simplicity and 'fail safe' operation.

In practice, most LAN's employ the serial BUS topoplogy, with a few
manufacturers prefering the RING topology for higher transfer speeds.
They are used primarily because they utilize decentralized or distributed
control. In contrast to the centralized approach of the STAR and LOOP
topologies.

NETWORK ACCESS METHODS

Currently, two dominant but widely varying network access control
schemes have proved successful: carrier sense multiple access with
collision detection (CSMA/CD) and token passing.

Although used predominantly in ring networks, token passing also
finds use in some bus networks. By design only the node that holds the
token at any time can transmit on the network; therefore, no access
control conflicts can arise.

In a ring network, a message token passes from node to node in one
direction during the idle network periods. Under strict timing rules,
any node wanting network access must acquire the token within a defined
interval by altering one of the token's bits on the fly. This node then
transmits its message.

Additionally, in ring networks, the sending node also serves as the
rece1v1ng node for token acknowledgement purposes and recreates the
token for recirculation to furnish network access to other nodes.

In bus networks, the token goes from node to node in predetermined
fashion. Each node knowing from which node a message comes from and
where it is going.

Token passing is highly deterministic and predictable. One can
calculate the maximum delay that a station will encounter in gaining
network access (this is not possible with CSMA methods, whose channel
access times fluctuate randomly).

23

Another token passing advantage stems from the high transmission
etticiehc;V' acheived for varied message/packet sizes and data rates.
Other key advantages include guaranteed maximum access times to
accomodate real time applications, reliable operation under all load
conditions and media independence without collision detection
mttchanisms.

However, tokens travel only in one direction in a ring network; if
a node misses a token, it must wait until the token makes a complete
ring revolution. Additionally, a break in the enclosed ring opens the
circuit and destroys the token. The asynchronous operation of token
passing can allow message tokens to get lost, destroyed, or degraded in
a distributed control topology. Furthermore, strict timing requirements
trans1ate into design. complexity.

Just as token passing dominates in control accessing ring networks,
the Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
method governs virtually all bus networks. It 'involves two major
o:p&rational rules. First when the bus or data channel is busy -­
attending to a node&'s message transmission needs -- all other nodes
must wait until the channel clears before trying to send their own
messages. Then, multiple nodes might attempt to transmit simultaneously,
resulting in message interference or collision. To avoid this situation,
the second rule stipulates that these nodes stop transmitting and wait
for varying delay times before transmitting again~

This access method's chief advantages lie in 1) its simplicity -
reflected in lower costs per node because the scheme needs no complex or
ex:pensive priority access circuits, and 2) its variable length message
handling efficiency - more than 99 percent of all messages get through
in bursty or intermittent applications (such as office automation).
Conversely, for heavy traffic applications such as busy data or
reservation processing systems, CSMA/CD incurs higher message collision
levels, longer access delays and reduced thoughput as maximum node to
node distance increases (for a given data rate). Moreover, it doesn't
suit real time needs because no priority mechanism exists: Messages with
different degrees of importance compete equally for bus access. In the
ultimate worst lockout condition, a node's message continually collides
with those of competing nodes and never gains bus access.

Several bus networks do not use the collision detection aspect of
CSMA/CD because their lightly loaded applications result in extremely
low collision rates. Using collision avoidance instead, these networks
save cost and complexity in their bus interface boards.

In collision avoidance, message collisions get detected by the
11•nding and receiving nodes' circuits. In a common detection technique,
the receiving node delivers an acknowledgement signal back to the
sender. Should the sender not receive the acknowledgement, it usually
retransmits until successful.

TRANSMISSION MEDIA

As mentioned earlier, transmission media vary from low cost twisted
pair, to expensive fiber optic cable. In some applications, even low
cost telephone or ac-power wiring prove adequate. But the systems
that use such wiring can be complex, expensive, and offer limited
performance. For example, digital PBX systems use telephone wires for
both voice and data switching, but their high cost ($100,000 or more),
low data rates (S6K bps) and centralized control limit their usefulness
in most local networks -- except for large busy corporations.

Other applications employ shielded twisted pair wiring. This
inexpensive, easily installed medium effectively ties together limited
numbers of microcomputers (normally under 100) operating at ·moderate
speeds (250K to 2M bps) over distances to several thousand feet.

Although currently exhibiting the highest transmission medium price
fiber optics possesses inherent point to point performance capabilities
that outclass all other transmission media. Its key characteristics
include virtually unlimited bandwidth, high gigabit per second, data
transmission speeds, insensitivity to electromagnetic interference,
complete electrical ground isolation between transmitter and receiver,
high voltage isolation, nonelectronic radiation, small size and light
weight. Despite these impressive properties, though, fiber optics is
still too costly for multitapped connections.

Compared with low cost twisted pair wiring, shielded coaxial
cable's moderate cost, high performance, ready availability, easy
configurability and wide bandwidth make it the most popular transmission
medium for interconnecting local networks. Because it maintains low
level capacitance in lengths to several miles, coax allows high megabit
per second data rates without signal regeneration, echoes or distortion.
These features reflect a field proven technology with more than 20 years
of use in data communication networks and CATV applications.

Two major types of coax exist, baseband and broadband. Physically,
and in price, they differ only slightly. Connections to baseband coax
can be made two ways -- inline and via a clamping tap. When a clamping
tap is used, systems can be easily and quickly connected to or
disconnected from a baseband coax at any location without disturbing
network operations. To make an inline connection to baseband coax, one
must shut down the network in order to sever the cable -- or else attach
to the end of a cable segment.

Currently, connections to broadband coax must be inline. Therefore,
one should plan ahead by installing extra interface units. Otherwise,
the cable must be cut while making new connections, resulting in segment
shutdown.

Broadband's principle advantage lies in its immense information
handling capacity: One braodband cabled local network accomodates many
thousands of connected nodes, handling nearly a.11 the word, data, voice,
video, and image communications generated by a busy high traffic system.
These communications might include broadcast and closed circuit TV,
video surveillance, telephone calls, facsimile, word messages, and data
transactions.

26

However, broadband has two major shortcomings. In addition to
requiring network and station interfaces, it uses expensive fixed
frequency or frequency agile modems costing $500 to $1200. Not only
does this double the broadband interface cost, but tunable RF modems
prove difficult to check, maintain, and adjust because they are usually
installed behind walls and above ceilings. They also limit the
broadband coax's data throughput.

The second major shortcoming centers on the need for incorporating
a central transmission or head end in a single cable network. This
facility acts as the network's technical control center. It filters
incoming RF signals from multidropped sending nodes and retransmits them
at higher frequencies to receiving nodes. This central transmission
facility represents a point that, if it fails, can deactivate the entire
network.

Overall a baseband network exhibits a considerably lower price tag
both in network startup and in network interface costs, than a broadband
network.

FUTURE ISSUES FOR LOCAL AREA NETWORKS

NETWORK MANAGEMENT - As larger numbers of systems connect to the LAN,
having the tools to allow effective resource management and
planning will become increasingly important.

SECURITY - Most organizations want to protect the confidentiality of
traffic flowing over the network. In some ways a LAN provides more
security than conventional office communications, such as phone or
interoffice mail. Converting voice and paper information to
electronic signals makes them less accessible to the ordinary
office worker. On the other hand, a communications network is a
powerful tool in the hands of a sophisticated information thief or
saboteur.

TECHNOLOGY IMPROVEMENTS - The encapsulation of LAN communication systems
onto VLSI silicon chips will contribute significantly to the
promotion and general acceptance of LAN facilities. THe VLSI will
1) reduce the LAN component prices and 2) enforce a level o.f
LAN standardization through market volume.

STANDARDIZATION - ANSI? ISO? IEEE? XEROX "ETHERNET"? Ring or Bus ..• or
both? Broadband and baseband standards ... how compatible? The
number of organizations involved in working with LAN specifications
is large and their interests and motivations are diverse.

BRIDGES AND GATEWAYS - The creation and use of LAN facilities will
demand the development of mechanisms to 1) interconnect various
LAN's to each other and 2) interconnect LAN's to long haul networks
to allow long distance informational exchange and resource sharing.

SUMMARY

The creation and effective implementation of a local area network
is the key to unlock the full potential of the "information age". A LAN
should be used to bind the distributed systems within an organization
into a unified resource. The effectiveness of this total resource will
then be measured by added capability and the degree of coherence that it
achieves. This is turn will depend on the care and foresight put into
the design of the network and the development of standards for
interworking of systems at all levels.

REFERENCES

1) Heard, K., Local Area Networks, Gartner Group Special Report,
February 1982.

2) Hopkins, G. and Meisner, N., "Choosing between broadband and
baseband local networks," MINI MICRO SYSTEMS, June 1982, pp 265-274

3) Kinnucan, P., "Local Networks Battle for Billion Dollar Market,"
HIGH TECHNOLOGY, November/December 1981, pp 64-72

4) Kotelly, G., "Local Area Networks - Technology", EON, February 17,
1982, pp 109-119

27

28

LOCAL AREA NETWORKING SIMPLIFIED
WITH A DATA PABX

By C. H. "Bill" Skaug

Micom Systems is a rapidly growing manufacturer of data
communications equipment for minicomputer users. Two years
ago, when the company was less than a third of its present
size, we met our data processing requirements by using
service bureaus. Today, we have six in-house systems in a
local network, another system on order, and we still use
outside services.

Soon after we began installing our in-house systems, we
recognized the need for local networking. We chose a data
PABX approach, and time has shown that it was the right
choice, as the system has easily grown to accommodate more
machines and users. We think our experiences are typical of
many growing organizations, and of other computer users with
dynamically changing systems.

We also believe that our evolution into local networking--from
dial-up lines, to data concentrators, to dedicated in-house
links, to a data PABX, and finally to multiple interlinked
local nets--is typical of the direction others will take
over the next several years, in spite of many glamorous
alternatives.

Beginning with dial-up access

Starting in 1980, we used two major computing services, Xerox
Computer Services and General Electric Information Services
Company (GEIS CO). Xerox supplied standard "canned" business
applications, while GEISCO was used on a more ad hoc basis
for engineering and management applications. Due to the
different usage patterns of the two services, different
communications techniques proved appropriate.

For the quick or intermittent problem-solving performed by a
large user base accessing GEISCO, we used dial-up lines,
allowing the engineer or manager to reach the system from a
terminal in his (or her) office. Dial-up access is one of
the simplest forms of data communications, requiring only a
modem to supplement the user's terminal, and this is the way
many organizations begin their dp. We were no different.

Concentrating on leased lines

We used the Xerox service bureau for the day-to-day commer­
cial applications, which typically were accessed by a smaller
group in the accounting and manufacturing departments. These
users were on-line all day, or at least a great part of it.
This meant that a leased, rather than dial-up, line would
be most cost-effective.

To further keep telephone line costs under control, we in­
stalled 8-channel (later 16-channel) data concentrators at
each end of the leased line. These concentrators (sometimes
called statistical multiplexors) let us run up to 16 terminals
while paying for only one telephone line.

In some ways, using concentrators and a leased line is at least
as simple as dial-up access, since the amount of data communi­
cations hardware is reduced. Instead of 16 moderns and 16
phone lines, our communications link had one concentrator
with an integral modem at each end of the single telephone
line. (And the concentrators could pay for themselves in
a matter of months in savings on telephone line charges.)
This worked well for us--for awhile.

Driving an in-house system

Then, about two years ago, when we were a $15 million company,
our growing size and DP requirements finally sent us looking
for our first in-house computer. We hoped for a single
system that could handle all our dp needs: administrative,
financial, engineering software support, customer service,
and CAD/CAM. We didn't choose an HP 3000, as this audience
might expect; we installed a Prime 750, mainly due to software
considerations.

However, by the time the Prime was up and running, we had
already outgrown it. We proceeded to order our first HP 3000,
a Model 44 (again chosen due to its software), along with
another, smaller, Prime to handle CAD/CAM on a dedicated basis.
By this time, we had decided to put financial and manufacturing
applications, including MRP and Bills of Material, on the
HP, leaving the Primes for use by our customer service and
engineering departments.

29

30

Fortunately for us, with the installation of our first
computer, the Prime, we made a data communications policy
decision which is with us today: unless the terminal is in
the same room as the computer, we use line drivers to connect
the terminals to their hosts. For those who are not familiar
with them, line drivers are functionally analogous to moderns
but much less expensive. Capable of operating over distances
of a few miles, they condition the signals going between com­
puters and terminals in order to ensure reliable transmission
beyond the EIA RS232C-specified maximum cable run of 50
feet.

While people routinely exceed the SO-foot limit without moderns
or line drivers, we didn't want to risk the problems of
cross-talk or electrical interference when our walls and
ceilings got more crowded with active data links. In fact,
we even use line drivers to connect terminals to nearby data
concentrators if there is any chance of a problem.

All of this worked well while we had only a single computer
supporting those rapidly multiplying terminals.

Accessing.multiple computers

When our second computer, the HP 3000, arrived, we faced a new
problem, one which would compound as we added more machines.
While we had successfully managed to split applications
between HP and Prime systems, many users needed access to
both. So much for "best laid plans •• ~~-

Faced with providing one user access to two computers, we had
several choices. We could have added extra wires through
walls and ceilings for each multi-machine user, and asked
the user to plug his terminal to the appropriate set as
needed, or we could have--even more rnagnanirnously--installed
a second terminal for each of these folks. Neither solution
was economically viable, particularly when we envisioned the
consequences of adding more people and more machines to
cover our continuing growth.

Instead, we left the wiring and terminal situation as it was,
and made our move in the computer room, where we installed a
data PABX. With the data switch, as it is often called, we
have in essence a private telephone system that can connect
any authorized user to any available computer port. And, if
a port isn't ava ilable--say all the HP ports are tied up
with accounting business at the end of the quarter--then
the user asking for an HP port is told (in effect) "They' re
all busy. Wanna wait? You'll be number three in line." This
is the data PABX equivalent of camp-on busy in a voice exchange.

The advantages of a data PABX

The primary advantage of a data PABX, although it has many,
is its ability to connect any terminal to any requested
resource (subject to security considerations programmed into
the switch). This means we can hardwire a terminal to the
data switch, and from the terminal keyboard a user can request
a port on one of our HP systems, one of the Primes, a Zilog
development system our engineers use, or whatever we may
acquire in the future. We can add more computer systems and
terminals as we grow. We can even let users call outside,
through the switch, to reach one of the service bureaus.

We also benefit from a "statistics log" feature of the switch
which provides detailed reports of all switch activity (a
function which would require a dedicated processor in other
proposed networking plans). And our network easily supports
remote users and remote computers.

The switch also lets us save money by using leased lines,
while still providing "dial-up like access" to several com­
puters. And nothing keeps us from "remoting" some of the
CPU's, heightening that dial-up parallel.

An example may help to illustrate the degree of flexibility we
realize by combining data concentrators, leased lines, and
the switch. Say one user at Micom Car ibe, our Puerto Rican
facility, needs to use one of the HP systems. He simply
turns his terminal on, and the switch, which is in our
headquarters in Chatsworth, California, automatically asks
him where he wants to be connected. He can answer with a
symbolic name, in our case with an "H" for one of the HPs
or with an "M" for the HP running MANMAN, or whatever, and
the data PABX makes the connection.

A few ~inutes later, an engineer in Puerto Rico may turn on
his terminal and ask for one of the Primes. Al though both
active terminals are on the same leased line, each user gets
the same service he would on his own unshared line. For
that matter, either of these two users can log off one machine
and ask for another without affecting the transmission of
the other user on the line.

Perhaps it's inevitable that our version of local networking
using a data PABX is continually compared to others which
use more exotic technologies. We don't mind. We show up
well in the comparisons. For example, the new proposed local
networks which use coaxial cable or fiber optics offer one very
appealing feature in their ability to support many users on
the same physical medium. But we can do the same by adding
a few new twists to plain old telephone technology. In our
corporate headquarters we've begun using a new type of line

31

32

driver that can multiplex up to eight asynchronous terminals
over the same two pairs of wire that might otherwise be used
for a single telephone or terminal. This saves us time,
money, and effort. We already have our offices wired for
terminals, so now we can use the same wiring to connect several
terminals in one room to the data PABX. In addition to
saving us the time and cost, and disruption of stringing new
wires, it also reduces the number of line drivers we need by
as much as a factor of eight.

Growing the network

As might be expected, as our data processing capabilities have
grown, so has the data PABX. Luckily, the switch is easy to
expand with the addition of simple plug-in interface card
modules. These provide four line or port interfaces per
card slot, and each bay has up to 32 slots, which works out
to 128 lines or ports (intermixed) per 19-inch bay.

As we fill a bay, we simply add another. Once we had our
first HP 3000 and Prime pair connected to the switch, it
took about 30 days before we added our second bay~ 60 days
later we put in bay number three. We've already ordered our
fourth, and we can continue to put them in until the raised
floor collapses from the weight.

All of this can lead to a massive set of cables for local and
remote terminals, we found. We have about 250 terminals in
our Chatsworth facilities, and another 30 to 40 in the field.
To simplify the wiring of the nearly 300 RS232C connections
coming into the computer room, we have adopted a technique
called "group termination." All incoming lines go to a
wal !-mounted telephone block~ cables with 50-pin connectors
attach the block to the switch. Each of the cables handles
either six terminals (with EIA control signals) or 12 terminals
(data only).

Of course this greatly reduces the snarled wiring behind our
switch, and decreases the cabling under our flooring. It
also makes connecting to the data PABX quicker, as we can
attach as many as 12 terminals when we plug in a single
50-pin connector. (The group termination technique we use
should not be confused with another that uses similar wall­
mounted blocks but omits the 50-pin connectors, leaving the
user with a fistful of loose wires that must be connected to
screw terminals on the switch.)

Growing new networks

Another advantage of basing local networks on data PABXs comes
from the transparency of the network and the flexibility for
adding new network components, While our switch grew, we
acquired a pair of used HP 3000 Series III systems. One has
been traded up to a Model 64. The other has been earmarked for
Micom Caribe, with installation there slated for the first few
months of next year. The machine destined for Caribe is
already operating in Chatsworth, and users in Puerto Rico
already access it through the switch. This allows them to
follow our progress in implementing their applications, and
to offer feedback. It allows us, in turn, to maintain cen­
tralized control over the system without flying liaison
staff members back and forth between the two sites.

When it comes time, we see two ways to make the cut-over. We
may temporarily move the Caribe applications to one of our
other HP 3000s, tell the switch to put Caribe users on the
new host, and ship the Series III to Puerto Rico. We could
then fly the latest SYSDUMP of their work to Puerto Rico over
a weekend, and complete the cut-over. The real location of
the hardware, thanks to the data PABX, is transparent to the
users. The second alternative would be to acquire still
another HP 3000, endearing us to our friends in Palo Alto,
and as in the first case, pull a SYSDUMP at the start of a
weekend, fly it to Puerto Rico, and complete the cut-over in
time for the start of a new week.

In either case, we could retain a leased telephone line
between Puerto Rico and our California data PABX, which would
give users at each site access to each other's computer
systems and data bases. Should the workload in Puerto Rico
ever warrant it, we could also install a data PABX there, to
attain still another degree of flexibility.

And there's more. We may also bring our British subsidiary,
Mic om-Borer on-line soon, and one day could plant a small
network there as well.

In spite of the many miles involved, including possibly a
trans-oceanic hop, we'd still have "local" networks in most
senses of the term1 those local networks would just happen
to be interlinked.

33

34

Networks within networks

we• re also expanding the scope of our networking in another
way. Our fourth HP 3000 will be expected to support DS/3000.
The new machine wil 1 connect to our data PABX and through a
high speed link to one of the other 3000s. our-reason for
going to DS/3000 is one of response time for our many users
in finance, manufacturing, and sales support who make inquiries
against a large IMAGE data base now residing on one of the
3000s.

Initially we expect to put MANMAN and Accounts Payable on one
of the linked 3000s, General Ledger, Accounts Receivable,
and Order Management applications on the other. Files unique
to each host will become more readily available to our users,
and common files will be kept synchronized through the
facilities of DS/3000.

Because of the transparency of the data PABX, we don't fore­
see any problems with the two networking systems operating
together. Additionally, if someone needs to switch applica­
tions, say from A/R to A/P, it will be more efficient to
reconnect to the appropriate host through the switch, as
opposed to using the high speed interprocessor link and
stealing capacity from DS/3000.

Conclusions

As we've grown our network, we've learned a few things, the
most important of which is just how right we were to start
with a data PABX. Unless your users stick to a single com­
puter, or don't mind marching off to a centralized terminal
room, it's difficult to see how to manage without one.

Granted, telephone technology is not as exotic or glamorous
as working with coax or glass fibers, but it more than makes
up for its lack of sexiness. Its technologies are proven,
and relatively standardized in a de facto sense. Twisted-pair
wiring or in-house telephone wiring is inexpensive, and in
most offices, it's already in place. Likewise, using line
drivers with RS232C interfaces provides a standard method of
connecting to the network and avoids any special programming
considerations.

In contrast, networks using coaxial cable or fiber optics run
up increased costs due to the expense of the medium. In most
buildings the installing of the broadcast medium also runs
costs up very quickly, as well as disrupting everyone's
work. Then too, the interfaces to the media are more ex­
pensive--by an order of magnitude--than line drivers, and
are basically unstandardized, incompatible devices today.

A pioneering user who adopts one of these new and exotic
networking technologies may well be casting his decision in
concrete before the industry is ready for that. A mistake
on his part is likely to become an expensive embarassment
down the road. We're not going to have that problem. When
those new technologies mature and users can install them
with confidence, we won't be left behind1 we can connect to
them too.

35

36

U)

m
ii!
Q

w
z
::i

BLDG2

D
D
D

REMOTE
TERMINALS

BLDG 3

D
D
D

REMOTE
TERMINALS

CONCENTRATORS

BLDG 1

CPU

CONCENTRATOR

REMOTE

BLDG 4

c:J
c:J
c:J

(,)
....i

BLDG 2

D
D
D

REMOTE
TERMINALS

BLDG 3

D
D
D

REMOTE
TERMINALS

CONCENTRATORS

BLDG 1

CPU

CONCENTRATOR

BLDG 4

REMOTE
TERMINALS d

d
d

w
(XI

TO BLDG 2 r ,_
-._ r
_f l
l _J

TO BLDG 3

.....,

i
i
COMPUTER
SYSTEMS

c::J

J L

II L _I

J -._
: l J
: J -i

L _I

DATA
PABX r-

r-

J
COMPUTER
SYSTEMS

c:::J c:J c::J
LOCAL TERMINALS

TO SERVICE BUREAU

TO PUERTO RICO

TO BLDG 4

:J

w
a>

XEROX
COMPUTER
SERVICES r---,

I
I
I
I

I I

~--------NORDHOFF FACILITY----------.

PRIME

~-
P-550

16 Ports

ZILOG

Z·Lab
8 Ports

HP

3000·64
60 Ports

HP

3000-44
36 Ports

HP PRIME

GE
INFORMATION

SERVICES r----, HJ l l
3000·111 I I P-750 I I

24 Ports 32 Ports I I

L-~~

~
-~L_J

....----------~ etiiro~
PLUMMER FACILITY

Terminals

CONCENTRATOR
MODEM

LINE
DRIVER

Q
~
To 180

Terminals

'0 -.,:_/

~
Dial Network To 16

To All Terminals
U.S. Sales Offices

MICOM'S "LOCAL" NETWORK

~o~
u\a\ ~e-----------

SUNBURST FACILITY

To 16

~
Terminals

CONCENTRATO
MODEM

PUERTO RICO

~
0

Synergy Computing (Pty) Ltd 1119
Cartwrights Corner Adderley
Street Cape Town 8001 South
Africa

Telephone (27) (21) 46-2167 Telex
57-27566

August 1982

For the Proceedings of the Hewlett-Packard General Systems
International Users Group Congress Copenhagen, October 1982

**
* * * THE CONTROL OF THE INTEGRATED OFFICE *
* *
**

by

Christopher M. Spottiswoode

INTRODUCTION
============

As D.P. applications multiply, especially with word-processing
being integrated, the following problems become more important:
access security; coordination of end-user activities, whether
computer-based or manual; resource-usage efficiency; operator
and program interaction, especially at the system-wide level;
adaptation of the system as requirements change. There are many
partial solutions, requiring skills in various sub-systems and
tending to result in a mix which is difficult to maintain or
learn.

In this paper a simple conceptual framework for a total approach
is built up, resulting in a consistent and general-purpose way
of addressing many of the above-mentioned system-level problems.
In fact, a wholly new computer language is born: not just
another programming language, but a system design and control
language for work-processing systems.

The approach adopted in this written version is rather
theoretical, being intended to emphasize the scope and
well-foundedness of the concept. The talk on the other hand
will revolve more around a practical example, copies of which
will be available at the time.

Slides will be shown (though are not included here) which take
an integrated data- and word- processing application from its
initial definition and simple implementation, through various
enhancement steps, to a degree of easy sophistication that would
not be practical without this new language and control system.

The structure of a product containing the compiler, its run-time
system, and various utilities is described. Some design

41

42

considerations are mentioned. The relationships with other
current products and directions of software development are
discussed. The launching strategy for the product is explained,
which, because of the potential of the language as a standard,
is rather unconventional.

PROBLEM AREA
============

The overall problem area is system management, where the data and
program components have to be fitted together in a flexible way. The
following aspects are now briefly discussed, with reference to the
shortcomings of some current methods on the HP3000.

(A) Design for integration (B) Shared database design (C)
Control of processing (D) Integration of components (E)
On-line help (F) System changes

(A) DESIGN FOR INTEGRATION

The analysis and design of a complex system produces a welter of facts
and proposed methods that are difficult to organize and consult. It
is difficult to steer between the extremes of too much and too little:
what you are looking for may be there but you can't find it in all the
detail, or else you can read the specifications but what you need
simply isn't there.

Then the consequences of the proposed methods are not clear at all:
there are probably holes in the design that will only come to the fore
when the system is being implemented. There tend to be mismatches
between the requirements of one procedure and the output of a prior
operation. The synchronization of manual and computerized activities
is particularly difficult to picture so that one might foresee
potential problems.

Work Study, 0 & M, and Critical Path Methods can be applied, but the
first two are frequently rather hit-or-miss, and CPM is usually based
on specifications that are difficult to set up, even more difficult to
maintain, and bear no relation to the eventual computer system
specifications.

(B) SHARED DATABASE DESIGN

There is just one aspect of shared database design that I must mention
here, namely that which concerns the availability of the right
information at the right time (This is in fact almost a restatement of
the timing problem of the last two paragraphs above). Now at first
glance there is no problem: if the database is maintained in real
time, everything is always up to date, so there can be no
unavailability of information. One might call this "naive real-time".
It has one major and fatal problem, which also leads to one major and
saving opportunity.

The problem is the painfully obvious one: to maintain all the needed
views of data in real-time places an intolerable load on a computer.
Adding chains to a detail file in IMAGE is notoriously bad for
performance (though for efficient provision of access paths, we are
quite well off on the HP3000). Increasing computer power is no way
out of the general problem: it sooner or later creates new needs, as
Parkinson's Law would lead us to expect (Requirements expand as fast
as opportunities). So views cannot be maintained in real-time and
must be created when they are required. Even though we can do this
super-efficiently with aids such as SUPRTOOL from Robelle Consulting,
we have a design and control problem, as in (A) above and (C) below.

The saving opportunity is to be found not in any clever implementation
technique, but by considering the real nature of integrated office
applications. The fact is that though real-time is seductive, good
old batch processing will always be required by all but the simplest
data-processing applications. Why? The first reason that comes to
mind is that exception reports form a significant portion of the
output requirements from so-called real-time systems, and they are
most often best produced by batch processes.

Now this comment points to the tip of an iceberg: an exception report
only has meaning if its reader knows what data has gone into it (e.g.
unless you know that all stock receipts up to a defined point have
been entered into the system, what can you do with the out-of-stock
report?). So a cut-off point must be part of the end-user's
understanding, and for us computer people that means a close, Such a
close is a synchronization of end-user processing and computer
processing: we have a batch run (a technical concept) that has
end-user meaning, so the end-user must reject naive real-time (even
though he did originally expect everything to be at his fingertips in
his new computer!).

This point can fruitfully be taken further. A cut-off point may also
be quite independent of the computer: for example there must be a
cut-off point to reconcile a monthly physical stock count with the
accounting records. So when such areas are computerized and become
integrated data-processing systems, we become involved in the
synchronization of the activities of three departments: warehouse,
accounts, and computer. Cut-offs and their associated batch processes
are thus an opportunity for us to survive well despite limited
computer power.

We end up with a requirement/opportunity that will never go away as
long as organizations are divided into separate departments whose
activities must be organized, programmed, and coordinated: we will
have batch runs associated with the interfaces between departments.
These we think we know how to handle efficiently (At least we are
better at it than at real-time updates). But we will have to plan and
control the mix of processing that results on the computer.

This last point clearly leads us on to (C) below, but first a
restatement of this apparently rather artificial argument about
real-time will be a start to a picture that will be useful to us
later. Our "naive real-time" results in a database that exists in
space but not in time: it retains the same structure as time advances
(Just look for a time component in any of those data-base diagrams!).
In fact each department of an integrated office works in its own
real-time, largely independent of other departments' real-times. It
is only during cut-offs and closes that the different real-times are

43

44

synchronized and coincide. (It was precisely this issue of
synchronization of otherwise independent departments' requirements
that led to the splitting up of the once integrated database recounted
in "A DataBase Story" by J,J, Sobozak in Datamation of Sept 1977).
Now if the specification and control of this strange time component of
data can be improved, then clearly we will end up with better
organization-wide shared data-bases and hence better applications.

{C) CONTROL OF PROCESSING

There are several large classes of problem here:

* Access control * Serial processing control * Concurrent processing
control * Optimization of physical resource usage * Robustness,
restartability, recovery.

Access control is traditionally implemented using passwords. Systems
like SECURITY/3000 from VESOFT do it a better way. But it is largely
immaterial how it is implemented. The problem is how the access is
structured: in whatever way the access paths are opened, they must
lead further in a logical fashion, determined by application
considerations and not by physical structures such as groups and
accounts and physical database subsets. Validated access paths may
also have to vary with time after the path has been opened by sign-on
or other gateway.

Serial processing control (e.g. do not clear the transaction file
before the audit trail has been printed) is easily managed by
jobstreams, but not if interactive activity is also involved. So
systems such as SLS exist in the Contributed Library, and programs
start having control routines built in to them to communicate between
themselves to ensure that everything happens in the appropriate
sequence.

Concurrent processing control (e.g. do not post transactions while the
transaction file is being cleared) is sometimes solved by locking of
physical resources such as files and building in tests for the
resulting unavailability. More often, however, the possibly competing
programs have to have yet more control routines built into them, and
control files, whether core or disc, start getting more complicated.

Optimization is a very broad field, and major areas such as program
language and disc management are certainly not addressed here - our
target is the system level! We want to optimize concurrency of
processing by launching just the right amount of simultaneous
processing, within application constraints. Under MPE IV we know that
2 or 3 jobs might profitably be run together, but queue management is
sadly deficient in MPE. So systems like BEACON and MBQ (and many
others!) are to be found to help out. But we still need to take
account of potential application conflicts. And a standard job, when
running alone, should frequently be decomposable into parallel parts,
but no handy way of doing so exists.

Optimization of interactive functions by increased concurrency is also
frequently reduced because it is too easy, for example, simply to lock
out all interactive functions while a close or recovery is in
progress.

Optimization by better use of idle capacity can be obtained by
time-launching of processing with systems such as SLEEPER from the
Contributed Library. Once again, one must comment that a single
physical resource such as time should not be the only factor in the
decision: other, probably application-related, factors such as the
up-to-dateness of data-entry should also be brought into the decision.

Robustness, restartability, and recovery are frequently the poor
cousins of end-user specified requirements: it may even be left to
those midnight calls to bring home the fact that these qualities
should be built into applications right at the beginning.

Robustness is the ability to withstand shocks such as system failures,
disc errors, program crashes, manual aborts, and of course terminal
operator inventiveness. No prior planning will provide complete
robustness, but a system with restartability and controlled recovery
should eliminate most of those midnight calls. How? The RESTART
option on the JOB command is hardly even the start of a solution. A
total physical database recovery using standard IMAGE recovery or
other conventional approaches is time-consuming and seldom necessary
after a crash. The tools should be there to address the problem
during the early stages of an application design, and the directions
for the provision of robustness right down to the lower program levels
should be provided.

The Application Monitor of MM/3000 is directed at many of the problems
addressed here, and strongly shows up the need for an Automated
Application Control System. As a report of the Technical Interface
Committee of the IUG showed, there is some considerable pressure on HP
to make this Application Monitor available for other applications.
The response from HP was however that there is no way this Monitor can
be generalized for any application.

Another approach to automated control is not to do it at all! This has
the advantage of K.I.s.s. and may be quite valid in a small
centralized shop with technical skills permanently on hand. But the
requirements of continuity as staff changes make such an approach a
very short-term solution.

(D) INTEGRATION OF COMPONENTS

The obvious area here is menu specification and presentation. Some of
the more common techniques on the HP3000 use V/3000 or MPE commands to
interpret or load soft-keys, needing programs or UDCs to specify the
options. But these methods get very clumsy when one starts building
variability into the menus: menu options and/or allowed choices should
depend on user, security level, state of processing, and other
system-level factors.

The next problem is the effecting of the choices: one finds multiple
RUN commands, sub-programs, process-handling, and no doubt a hundred
ways of managing each method by means of parameter files.

The troubles of system management really start, however, when these
issues join up with the problem area of (C) above, and control
variables of different kinds have to be passed between menu and
program and between programs themselves. Disc files, mail, message
files, global or local RINs, IMAGE or file locks, STREAM-file creators
to plug in parameters, variables passed or received, each with their

45

46

own special subroutines or copylib coding, soon clutter up programs
and technical and standards manuals. A newcomer to an established
D.P. department has to spend more time learning the local
peculiarities in this area than learning about the HP3000 (the usual
poor documentation of such home-grown specials perhaps being the major
reason!). And this is quite apart from his problems of learning about
the end-user's needs.

(E) ON-LINE HELP

Pity the poor end-user! If systems departments so frequently have
problems knowing how a whole system ties together, how is the end-user
to make out? The usefulness of reading the specifications was
questioned in (A) above, and by the time the system is implemented the
specifications are probably out of date.

On-line help is clearly a fashionable solution to the problem, but how
is it to be provided? The usual way is to build information displays
into programs. This is fine for help on the immediate situation (e.g.
"Y =OK, update the record, N =I want to change my mind"), but
program help is no good for problems that have to do with system-wide
issues (e.g. What will be the consequences if I don't balance my batch
now?).

The next step is to have an external file which may be consulted by
means of calls to subroutines from within programs. The QHELP
sub-system from Robelle Consulting is one neat way of structuring and
accessing such an external file. But it remains difficult to provide
for the needs of the various types of user, and there is always the
danger that the help-file will diverge from the system it is meant to
describe.

(F) SYSTEM CHANGES

End-user documentation or help, technical documentation or help,
jobstreams, parameterized control files: how are all these
system-level descriptions to be kept streamlined, accessible, and up
to date? Various types of cross-reference (field/file, file/program,
etc) may be available, though they are probably incomplete and
inaccurate. Data dictionaries (now usually "generalized") are
increasingly accepted in principle (though the degree to which they
are actually used, especially in a generalized form, is probably still
very low indeed), but appropriate structural principles have yet to be
invented.

So the first problem in changing a system is finding out what the
current system is. The next problem is establishing the implications
of desired changes. A method of making Impact Analyses systematically
is desirable. It would be even nicer to be able to ask "what if"
questions and model considered changes before being committed to their
implementation. I am not aware of any generalized system-level
solutions here which do not force the designer into a straightjacket,
though there are ways of easily prototyping changes in limited areas
(V/3000, various high-level macro or non-procedural programming
languages).

Then let us assume that the appropriate changes are planned and are
ready for implementation. Now some existing files may need to be

reformatted or otherwise transformed. (And what a pity, but how
understandable at the moment, that ADAGER requires exclusive access to
the database being transformed!) New versions of programs have to be
activated at the right moments. New documentation as well as
information on the changes must be made available. Especially if the
system is distributed, it is sometimes no easy matter to schedule and
control this phasing-in of changes.

Clearly a system designed to ease the problems of (A) to (E) above
should be capable of assisting with this formidable task.

SOLUTION
========

(I) THE BASIC IDEA

It is convenient to pretend that a top-down development of this
proposed solution took place (though of course it did not): therefore
let us start with the fictional idea that it looks as if we need AN
APPLICATION-ORIENTATED JOB-CONTROL LANGUAGE INTEGRATED WITH A
GENERALIZED DATA-DICTIONARY. Such at least is what I hope the above
problem-statement can be seen to be aiming at .••

But this is too much of a mouthful, so let us start with something
familiar: a plain vanilla job-control language (JCL). Just think of
your own favourite JCL (or, if you have worked on IBM mainframes, your
most hated one). A command interpreter reads your JCL and executes
your commands, the most interesting of which invoke your programs.
After program execution the Command Interpreter is reactivated and is
ready to interpret more commands.

Generally what happens is that the simple commands define some aspects
of the execution environment for your programs (e.g. a FILE command
may specify what type of access your program has to an MPE file and
what its real name on disc is). It is only a short step to the idea
that a more complete system-wide application environment of a user
program could be specified in a JCL of some sort. Concurrent
application program compatibility could then be deduced and managed.

Such an extended JCL, with embedded comments, could easily be made
available, if suitably structured, as on-line system-level help. This
is in fact what is proposed. The extended JCL, suitably structured,
becomes the system design, specification, and documentation for
end-user and technical staff alike.

The immediate advantage of the integration of the documentation and
on-line help with execution control specifications is that the two may
not diverge so easily.

The structure of the system documentation and help, set up
non-redundantly, is based on a coherent set of cross-reference and
conditional mechanisms (this is where the data-dictionary features
enter the picture). In order to link together what belongs together,
and to provide for efficient execution, the JCL is compiled. The

47

48

compilation of the JCL takes place independently of the live
application and at the right moment the compiler output is linked to
the live system under application supervisor control. The command
interpreter reads the complete compiled form and invokes user programs
as specified.

Because the control system can now know more about the run-time
environment of user programs, it can provide many more services than
are normally available to address the problems of processing
conditioning, scheduling, recovery, restarting, multi-processing, etc.

The command interpreter also has many menu and help functions, while
user programs can call simple system subroutines to make the on-line
documentation available as required.

Error and help messages may now be meaningful and relate to the
application. In fact, this is where the name of the language comes
from: it is IDIOM, which denotes a language tuned to a particular
situation. We will see in due course how the system designer in a
very fundamental way sets up the IDIOM to match the idiom of the
end-user organization, and the computer system will talk in that
idiom. (At the same time, of course, the programmer may conduct his
sessions in the normal way and continue to talk to the computer in
computer-orientated terms.)

As might be expected, IDIOM is also an acronym: it stands for
Interpretable Design for Integrated Operation and Management. The two
meanings of the word "idiom" are so appropriate that the name has been
kept (despite the fact, as my partner in Synergy Computing, Robert
Gibson, laughingly suggested when the name was first proposed, that it
may be thought to lead naturally to "interpretable design for
integrated operation and tears!"). The name IDIOM has also been
trademarked.

We now have a setup where the system definition is written in a
heavily-commented language, called IDIOM. The IDIOM for an
application, or parts thereof, is compiled using IDCOMP (pronounced
"eye-dee-comp") and linked into the live application system model
called IDSYS ("eye-dee-sys"). The linking is performed by an
Application Supervisor using the many-facetted program IDMGR. Any
required transformation jobs, containing their own scheduling
information, will be linked in at the same time. IDSYS is interpreted
by a super-command-interpreter called IDEXEC ("eye-dee-exec") which
interacts with the terminal operators. The operators' commands will
usually result in the execution of user programs which will then
function in the usual fashion.

This setup has system management advantages whose general nature is, I
hope, by now fairly clear. The main advantage to the programmer is
that his program is more clearly situated in its overall system
context and all the system control and help coding may be removed.
This particularly simplifies the use of so-called fourth-generation
programming techniques using non-procedural languages (such as QUICK,
QUIZ, and QTP from Quasar Systems). And conversely, since programming
using such techniques is so spectacularly easy, we end up with more
and bigger and more integrated applications, which in their turn
require better system management tools!

So far there is nothing striking in these ideas. They are in fact so
banal that one must only conclude that they have not yet been made

into a widely-used system because the approach after a while usually
tends to become messy, causing more bother than benefit. To turn them
into a useful system requires some important concepts that will lead
us to the appropriate structures and the big pay-offs in the area of
application system operational control and management. These will now
be developed.

(II) THE KEY CONCEPTS

So varied are the requirements and possibilities that face us that we
must base the whole structure on simple and highly general concepts.

The first important point is that since we are trying to be end-user
orientated, our concepts must be independent of the hardware and
system software that we happen to have.

We start with the basic concept of an end-user who uses a computer,
and thereby performs some work for the user organization. We have a
collection of "operators" working at "work stations".

The work is split up into separate and interdependent "jobs",
interactive and batch, and the operator and the computer work together
at these jobs.

How does the computer perform its portion? On instructions from the
operator, it initiates processing on "processors" using "resources".

It is the task of the system designer to identify and define all
relevant factors as IDIOM resources so that resource conflict during
"multi-processing" cannot occur.

The mapping of IDIOM resources onto the actual physical ones is
discussed in (III) below. All that need be said now is that this
operation is well isolated, and in the present implementation it is
kept to a minimum, precisely because it is machine-dependent and the
end-user application is the real object of interest.

The concept of a resource is the key to IDIOM. The system designer
will define all kinds of things as resources: processors, classes of
processors, peripherals, databases, files, subsets of files, sets of
files, queues, file access modes, control parameters, conditions or
states of any of the above, events, end-user supervisor directives,
security levels, operator capabilities, user views, etc, etc.

Such may be the real physical resources that will be identified as
IDIOM or "virtual" resources, but how does IDIOM regard them? After
all, we may ignore for the moment what they really refer to (just as
MPE does not know much from a FILE command about the data that is in
the file), but they must mean something to IDEXEC.

An IDIOM resource may be available or not. This is denoted by a
Boolean value, true or false. Thus if the r·esource • Customer master
file. (this is the "title" of the resource) is true, the physical file
is available or on-line. If the resource .Want to close for the day.
is true, we have a condition whose truth may enable some jobs and
hence also be an available resource in an understandable if somewhat
unconventional way.

49

50

A resource is there to be "used". It may be used exclusively or in
shared mode. The false state of a resource may also be used or relied
on. So we have the main IDIOM resource status changing verbs CREATE,
DESTROY, LOCK, SHARE, and RELEASE. A job to enter data with
master-file verification may "share .customer master file.". A job
that is run when the engineer wants to work on a real device may
"share not .document printer." where the document printer has already
been put off-line to IDIOM. Subsequently the C.E. job will "create
.document printer."

Other access types, such as MPE's EAR access (Exclusive, Allow Read),
are implemented by associating new resources with the basic
file-related resource. Thus we define a new resource, say .May add to
history file., which may be locked independently of a possibly shared
.history file. Such an arrangement does not look physically
watertight, and indeed it is not, unless some firm identification of
real resources with our "virtual" IDIOM ones can be made. These
issues are dealt with separately under "Resource Binding" below.

An IDIOM resource may denote the occurrence of an event, such as
.Month-end run is in progress. The resource is merely a description
of the state that is true after the event, the state's being CREATEd
is the event. Subsequently the state is DESTROYed: this way of
representing events fits well with the cyclical nature of
work-processing systems.

The execution path of a job may be varied according to any logical
combination of resources, or a job may WAIT for such a combination to
come true (or false), i.e. for that event. There is also an IDEXEC
facility for the "creation" of resources which are dependent only on
time.

A resource may consist of a set of other resources. This idea is
reasonable, considering that a file, for example, may be regarded as a
set of records or other subsets of the file. In IDIOM this raises
further possibilities. Thus it is arbitrarily declared that any IDIOM
resource may be or become or be regarded as a "set", and any resource
may be INSERTed into another (if various conditions are met) or
REMOVEd again. Queue management is just one very useful by-product of
this structure.

The logical interpretation of the IDIOM resource can now be extended
to such sets. The truth-value of a set is the logical product of the
truth-values of the members, i.e. the members' truth-values AND-ed
together. The logical sum of a set, i.e. the members OR-ed, is true
if "one of" the set is true. Thus a process may be run concurrently
as a background task if (but not only if) it is possible, for example,
to "lock one of .background processors.".

The definition of a set of resources is not only useful for dealing
with conventional computer-type sets of objects. It is especially
used to relate end-user states of the application to finer details of
the application. For example, in a simple stock application the
resource .may post stock movements. can be defined as the set of
".stock master. and .stock movement file. and .stock not being
counted." If the operator is prevented by the unavailability of this
resource from posting stock movements, he may find out why, and if he
is curious and allowed to do so, he may find out how long the
situation is likely to last or how to change it.

The hierarchy of resource sets may be extended down to more
implementation-dependent or physical resources. Clearly, the
maintenance on-line of resource statuses up and down the hierarchies
might start getting complex and inefficient. However, without going
into the details here, it can be stated that there is a simple and
efficient solution that derives from the very way IDIOM resource sets
are intended to be used: IDEXEC always follows logical consequences
upwards, but never downwards.

The final key concept that makes IDIOM as powerful as it should be,
given the variety of problems that it addresses, is yet another one
based on the IDIOM virtual resource. It is in fact a slight softening
of the hard abstract nature of the virtual resource: any resource may
have data fields attached to it. At last we can start fleshing-out
the dry logical skeleton!

IDIOM data fields are used to contain conventional control data such
as close dates, operator names, passwords, control totals, and the
like (but not other conventional control data such as processing
status!). String and numeric and logical expressions using data
fields and/or resource statuses are available, as well as various
built-in functions.

A resource that has for example a password associated with it, might
not refer to any other real object, but one and the same resource may
be associated with a file and contain a file control total in a data
field, much as if in a user label on the file. In either case the
effect on the resource of the resource status changing verbs (lock,
create, etc) is carried through to the associated data fields.

But there is a further use within IDIOM for resource data fields. It
is to identify members of a set. Thus to multi-process a job may
involve a statement such as "lock one of {priority=batchpri of
.accounting department.} of .batch processors." (Such a statement
would typically be part of a standard macro-style "define", as in
SPL.)

We are now encountering some very powerful statements. It is time for
some reassurance that the provision of such facilities, along with all
the others mentioned along the way, does not add up to an impossible
project.

It turns out that the implementation and use of IDIOM is relatively
easy: the entities and structures required by the language, and the
routines in IDEXEC to deal with them, are mostly based on an ordered
list structure. This is true of resource sets and of the various
kinds of cross-reference maintained automatically: resource I job,
called-job I calling-job, field I resource, field I job, and a few
others. IDIOM shares with IMAGE the advantage of having its logical
structure mirrored by its own internal representation. The use of
IDEXEC soon makes this very plain.

Since general list handling routines are there, they are also used to
provide a few extra documentation and on-line help facilities. Using
them, the system designer can better keep to the ideal of
non-redundancy of documentation by linking facts together in different
contexts. This is part of the task of defining fully and maintainably
the application and run-time context of end-user work.

51

52

Let us continue with the overall picture. Various flow control
statements are available, as well as facilities for system-level
checkpoints, restarts, and reruns. The distinction is made between
global and local resources. Thus IDEXEC is in control of all of the
system-level factors that determine job conditioning, sequencing,
compatibility, and rescheduling.

End-user work is invoked by means of one general-purpose IDIOM
statement: a "run" statement, which passes control to an
implementation-dependent run-statement handler, which in the present
HP3000 implementation resides in an SL and may run programs, call
dynamic subprograms, execute MPE commands, and is easily expandable to
do anything else the system manager may wish to permit. It may also
be passed parameters by IDEXEC, which may contain resource or data
references or routines written in IDIOM as part of the IDIOM job, for
the dynamic changing of the program's application context.

Thus a very general and powerful JCL facility is built up, which is
integrated with the data-dictionary-like documentation and help
facilities.

Now because a strict system-level top-down approach to system design
is encouraged, with user programs being well defined and isolated in
their contexts, it is possible to model the application system without
the programs.

IDEXEC has a run-statement or user program simulator which can do
anything to the IDIOM resources and their data fields that a user
program can. Using this, an operator can, during live processing put
a WS (i.e. work station) into "what if" mode so that he can, for
example, test alternative scheduling strategies. An operator, perhaps
specified with more special capabilities, may also model several WS's
with only one WS to test their interactions, all in one "what if"
session.

In order to have robustness in its own processing, IDEXEC logs all
changes it makes to IDSYS. Resource usage statistics are a useful
by-product. A further useful facility could be based on them (but is
unfortunately not there yet!): the IDIOM model together with the
history of job times and resource usage, contains all the information
needed for a formal simulation and optimization of all computer-based
end-user work. Since it is a trivial matter to add non-processing
jobs to represent purely manual activities and their relations with
computer-based activities, an entire work-processing system can be
modelled. We are hoping to have a project working soon on defining a
formal network representation of the IDIOM model of the end-user
organization, to be used for formal rationalization and optimization.

Let us now start looking at the technical aspects of the
implementation of IDIOM. If you are still with me after this long
story, you must be asking yourself how one can implement IDIOM in an
existing installation and how it interfaces with systems such as MPE
and IMAGE. This raises some important design considerations in the
current implementation of IDIOM which are now discussed.

(III) RESOURCE BINDING

Resource binding refers to the association during actual IDEXECution
of IDIOM resources with real resources. For example, how do we relate
or "bind" an IDIOM resource .Customer master file. with the actual
physical object and the actual accessibility we wish to grant to that
object?

There are two policies here, which one might call "tight binding" and
"loose binding". In a tightly bound IDIOM implementation IDEXEC would
be supplied with the information required to, for example, open the
file or dataset. An MPE FILE equation goes part of the way towards
tight binding, while IMAGE goes a bit further. If IDIOM had some of
this FILE or IMAGE information it too could bind a program more
tightly to the actual physical resource.

But as long as IDIOM is an "add-on" to an operating system and a DBMS,
it would appear that a policy of loose resource binding should be
followed. That is, there is no physical connection between a virtual
IDIOM resource and the actual physical resource (if indeed there is a
physical equivalent), It is the system designer's responsibility to
identify and specify all virtual resources that represent the relevant
interactions between the jobs, while it is the programmer's
responsibility to ensure that his programs perform consistently with
the system designer's IDIOMatic specifications.

If this appears to be a pity, if not a shortcoming, it is well to
consider the crudeness of existing binding. After all, one of the
reasons for DBMS is make more program/data binding alternatives
available to the system designer, and IMAGE at least is far from
perfect. Having access to an item on an IMAGE dataset may permit more
than the program needs: perhaps the program should only have access to
the subset of records that has a certain value in that field,

The main justification for the current loose binding is however that
the IDIOM is supposed to describe and interrelate the end-user or
application objects, not the physical objects. It may even be argued
that the IDIOM should certainly not set itself the task of describing
the physical equivalents, and should even scrupulously avoid doing so.

Such an approach would be consistent with the aim of the "conceptual
schema" of the ANSI/SPARC DBMS proposals. Like IDIOM, the conceptual
schema is supposed to describe the end-user organization in end-user
terms, but it differs from IDIOM in going right down to the finest
level of application data definition. IDIOM in its current form is
not intended to go down that far, though it may well be that it does
provide a suitable starting-point and structure for such definition,
especially in the light of the discussion about the real nature of
"real-time" in (B) above. (Charles Bachman in his ACM Turing Award
lecture in 1973 mentioned the "Copernican revolution" brought about by
DBMS: the programmer is now a navigator in the database instead of
being program-centred. Maybe DBMS needs an Einsteinian revolution: a
way of describing the database in a way that adequately incorporates a
time dimension? IDIOM does not pretend to do so, but the IDIOM
structure does cater for the time factor: the potential of Critical
Path-type methods using the IDIOM model, the representation of an
event by an IDIOM resource, the "real-time" transformations implied by
departmental cut-offs - all stress time. However, possible ways of
extending the IDIOM approach down to the level of detail data
definition are beyond the scope of this paper.)

53

54

Given the loose binding policy adopted in the initial implementation,
it is easy to IDIOMatize an existing installation. This can be done
on an application by application basis. Though IDEXEC with its
implementation-independence does not need the MPE JOB facility, the
system designer can incorporate the streaming of existing jobstreams,
even though probably at the expense of some concurrency and control
over background queuing and dispatch. The minimum requirement that
IDEXEC places on a user program is that the program must terminate
normally by invoking a standard SL routine (though even this could be
forced by an intermediate subroutine). Migration from an existing
hard-coded control setup to IDIOMatic control could if necessary be
done on a gradual basis, but in most cases a more rapid elimination of
non-IDIOMatic system control (assuming that there is any automatic
control!) would be worth-while.

In the current HP3000 implementation, IDEXEC supports applications in
a process structure in one session or working as multiple sessions.
It implements the IDIOM "virtual" processors using normal
process-handling. There are ways of warning about potential physical
deadlocks, but with loose resource binding there is no foolproof way
of making them impossible.

CURRENT PROJECT STATUS
======================
The IDIOM language syntax was defined in Backus Naur Form, and checked
for ambiguities using GSA1100, Univac's General Syntax Analyser.
IDCOMP is written in Standard Pascal, and generates a transportable
intermediate code. IDMGR is similar, IDSYS being a plain MPE file.
IDEXEC is also in Pascal, though the implementation-independence is a
matter of degree. The aim was to keep all interaction with the host
software at the lowest practical modular level.

IDIOM is currently in alpha test. Volunteers for beta test are
welcome to apply!

It is clear that the move from loose to tighter binding is desirable,
but cannot be done without the active cooperation O'f designers and
suppliers of software systems such as code generators, non-procedural
languages, and sub-systems for the physical support of peripherals,
e.g. flexible terminal spoolers. In fact very little such cooperation
is required, since IDIOM interfaces very easily with programming
tools, and for device support provides highly flexible queuing
facilities, only the physical support functions being missing.

Interfacing with current data-dictionary systems is more complicated.
In a loose binding implementation an IDIOMatic design can happily
coexist with a lower-level data dictionary such as Dictionary/3000 or
Quasar's D~ctionary-plus. An integration of the two levels is
certainly desirable, but can well be carried out in later stages of
development, with due consideration (and no doubt refinement of
IDIOM).

What is the benefit of cooperation for these various classes of
suppliers? Firstly it must be clearly stated that there is no
competition between IDIOM and these products. The main advantage,
however, is that IDIOM provides a standard system-level matrix or

support system for them. There is tremendous potential for some
synergy here.

Our marketing strategy will be orientated to encourage such synergy
with other vendors and users. We see such a large eventual market,
because of the generality and hardware and software independence of
the concept of IDIOM, that we shall aim for quantity at a lower price.
Such a strategy will not work without many partners in the venture.
Here too you are invited to volunteer!

Eventually we hope that the market pressure will be created to extend
the tighter binding by more detailed interfaces with basic software
such as machine operating systems and DBMS's. The advantages to the
user community of such standardization are clear for all to see: even
IBM has announced that they are seeking a standard consistent end-user
interface for their small and medium machine range. IDIOM is well
suited to be such an interface for work-processing systems, as its
name implies.

ACKNOWLEDGEMENTS
================
I must acknowledge the major roles played in this development by my
colleagues at Synergy Computing, especially Robert Gibson for his
patient support and encouragement, and Stephen Davies for his
contributions to the design and for most of the programming. Our
thanks also to Alan O'Regan and his team of Fiona Main and Jon
Schapiro at the University of Cape Town, who carried out the compiler
project.

55

56

RANDOM DATA ENTRY USING A GRAPHICS TABLET

Dr. Wolfgang Matt
Industrieanlagenbetriebsgesellschaft Einsteinstr. 4
D 8012 Ottobrunn

1. Introduction,

When goods requiring detailed specification are ordered by telephone
standard data entry solutions cannot be adopted, The problen arises
from the fact that the caller normally gives the specification in
random order and the operator has to follow the caller's flow of
speech. A solution was found using a graphics tablet on whic.h an
oversized keyboard is painted. This keyboard is formed by a grid of
labelled squares.The operator touches these squares in the caller's
order with a pen similar to a ball pen. The graphics tablet is
connected to a HP125 which acts as a preprocesseor. It displays the
data entered and transmits them in a fixed order to the HP 3000.

In this paper we describe a simplified data entry problem, design the
layout of the keyboard on the graphics tablet, and show what kind of
preprocessing has to be done by the HP 125. It will be shown that
accepting orders can be continued even if the HP 3000 is down. It will
be explained how several HP 3000 can share one floppy disc drive, thus
reducing hardware cost, We conclude by mentioning two other
preprocessing problems now running on a HP 2645 terminal which will be
converted for the HP 125 shortly,

2. Description of the data entry problem.

The system described here was developed for a manufacturer of optical
glasses. Optical glasses differ from each other so much that the
opticians usually do not have them on stock but oder them by telephone
from the manufacturer,

Since most of you are not familiar with optical terms the principle of
operation is demonstrated using a more common example of a screw
manufacturer. Screws are specified by the type of thread, the
material, the length, the diameter, the type of head and the quantity
ordered, Now imagine you are accepting orders by telephone. Some
customers start the specification with the type of thread, others with
the material others with the quantity. This is what we mean when
saying that data are given in random order.

It is not practical to design a form for V/3000 since the operator
does not have the time to position the cursor to the correct field.
One could use an identification tag for each field type, but it is
questionable whether the operator can enter the data fast enough, The
customer usually talks very fast since costs for the telephone call
are running away.

Using function keys could be a solution. A terminal has eight function
keys, but you need several hundred for a real application. Such a
keyboard can be realized using a graphics tablet.

57

58

3. The graphics tablet.

A graphics tablet can be visualized as an inverse plotter. You touch a
point on a sensitive area with a pen and the instrument gives you the
coordinates of this point. The pen has the shape of a ball-pen writer
with a thin cable connected to it. The coordinates of the last point
pinned are returend on request of a computer via HP-IB bus.

We now can realize our keyboard. We draw a grid of horizontal and
vertical lines on a sheet of paper and label the individual squares
(see fig. 1). We use one column for the type of thread, the second for
the material, the third for the diameter, the fourth for the length
etc. Within each column we label each square by the value of it's
contents, e.g. all available diameters. Some fields can be enhanced by
colour or shade since we are using ordinary paper.

The basic operation of data entry for one item is to pin one square
for the type of thread, one for the material, diameter, length, type
of head and quantity, i.e. 6 keystrokes for one complete item. This
operation is now very fast and the great advantage is that the pinning
can be done in the same order as the customer gives the specification.
Corrections can also be done very easily. Assuming the customer
corrects a diameter of 3 mm to 4 mm, the operator just pins the 4 mm
square.

Some specifications which are rar€ly used, e.g. extremely thick
screws, are not explictly listed on the tablet in order to keep its
structure clear and comprehensive. For such cases a numeric column is
provided to allow individual digit entry. To define the meaning of
the digits we need squares labelled "diameter" or "length". These
labels can simultaneously serve as column headings. To enter a
diameter of 65 mm the operator would pin "diameter", 11 611 and "5".

There also exists a column of function keys in the usual sense, like
"end of item", "end of order" etc. A very useful function key is the
square "ditto". It repeats all specifications of the current item,
which can then be individually changed. This is the case when the
customer says "the same with diameter 5 mm". The operator pins "ditto"
and "5"in the diameter column. That is all.

3. The HP 125 as preprocessor.

As mentioned above the.graphics tablet sends the coordinates of the
pinned point to a computer. Instead of sending the coordinates
directly to the HP 3000, we use an "intelligent terminal" as
preprocessor which displays the pinned squares in a readable form to
the operator, does some plausibility checks, and sends the data in
ordered sequence to the HP 3000.

For this purpose the HP 125 was chosen (1). The HP 125 is a
combination of a terminal and a CP/M personal computer. As a terminal
it operates as a HP 2621, but can be extended in it's capabilities by
downloading firmware to work with V/3000. As CP/M computer it can
execute stand alone applications like Visicalc, Graphics or Wordstar
using a floppy or hard disc as storage medium. Both features can be
combined as it is done by LINK/125. LINK/125 uses program to program
communication with FCOPY or QUERY running on the HP 3000.

In our application the HP 125 works in the same way. A CP/M program
executing the preprocessing functions runs parallel to a communication
program in the HP 3000. The CP/M program is written in 8080 assembler
language, the communication is written in SPL. While assmbler language
is nesseary on the HP125 side to provide the required speed, any
programming language can be used on the HP 3000 side.

The preprocessing starts with the interface to the graphics tablet HP
9111A. The hardware connection is done via the HP-IB bus. Though the
HP 125 uses HP-IB for communication with disc, printer or plotter, the
HP-IB driver is not documented. With the help of HP we got the
subfunction 117 working. The HP 125 continuously monitors the graphics
tablet for the pen to be pressed on its surface and asks for the
coordinates.

The next step is to transform the coordinates into row and column of
the square. When the coordinate is found to lie within a small strip
along the boundary of two squares, an error beep is generated. The
same is done for unused squares. The sound is generated by the
graphics tablet. We use a beep for an error and a short blob as
confirmation of a good coordinate.

Having determined the meaning of the square the contents are displayed
in a readable form to the operator on the 24th row. The screen is
rolled up as new items are entered. Each specificatin (e.g. diameter)
is shown at a fixed column on the screen independent of the order the
data is entered. The 25th row (usually containing the fuction key
labels) is used to label the columns. In some cases individual labels
are enhanced, e.g. when the square "diameter" is pinned for digit
entry the label "diameter" is enhanced.

Parallel to displaying the specifications on the screen, a record is
to be transmitted to the HP 3000 later. The record contains the same
information in more condensed form, also in fixed format. The record
could be transmitted after each item, but we have chosen to delay it
until the end of the order for reasons described below.

5. On-line application.

Besides transmitting complete orders two other communications are
implemented.The first one is the matchcode, the second a stock
inquiery. The match code consists of two letters of the name, the city
and the street name and is entered via the normal keyboard of the HP
125. The HP 3000 returns the address to the screen directly and the
customer number (which the operator does not need to know) to the CP/M
program. (We used the I/O mapping feature of the HP125 to implement
this.) The operator makes the correct choice by pressing a function
key. This operation cannot be done fast enough while the customer is
on the telepone, but it is done immediately afer the end of the call.
Since we want each record transmitted to contain the customer number,
we delay the transmission until the call is finished.

The other on-line communication, the stock inquiery, can be done at
the end of each item. It is only done in cases the customer wants to
know the delivery time. In this case he is willing to wait for the end
of HP 3000 transaction,

59

60

6. Off-line application.

We have seen that one complete order is stored in the HP 125 before it
is transmitted to the HP 3000. Since the HP 125 has 64K of memory we
can continue to store orders in cases the HP 3000 is not ready for
transmission, i.e. in cases of maintenance or component failure.
Except for total power failure the operator can work almost as normal.
The only difference is that the operator has to enter the customer
number instead of the match code using a list of customers. Stock
inquieries are not possible. All orders are saved until the HP 3000 is
up again. At this point the ordes are transmitted as fast as the HP
3000 can accept them. (By the way, this can be used to measure
transaction time.) We estimated that in the application of the optical
glasses the workload of one day can be stored.

7. Operation without disc.

Our application does not use any data files on the disc of the HP 125.
The only time we use the disc is to load the CP/M operating system and
the application program. If this program never terminates the disc is
no longer needed (except when a power failure occurs) and can be
physically disconnected. This means that several HP 125 installed in
one location can share one floppy disc drive, thus reducing hardware
cost.

When the operator pins "end of program" a code is sent to the
communication program telling it to terminate, but the CP/M program
does not terminate. Instead it completely blanks the screen including
cursor and function key labels and goes into a wait loop until the
return key is pressed. The power of the grapics tablet can be switched
off. A message is displayed when at restart the graphics tablet is
without power.

A problem arises when we want to use the HP 125 alternatively as
dialog terminal with V/3000. The standard procedure is to load the
block format program from disc, run the V/3000 application, switch to
local mode afterwards and load the local application program. This
method is not practical when the disc is not permanently connected.
The solution we found is to start with a slightly modified block
format program as WELCOME program. After loading the firmware into the
terminal part, the HP 125 is not set into local mode but the data
entry program is loaded automatically and starts execution. At this
point we achieved what we wanted. We have the block mode firmware
loaded and a running CP/M program. The disc is no longer needed. At
the beginning and whenever the operator pins the square "dialog", the
CP/M program sets the HP 125 into remote mode and goes into a
waitloop. The HP 125 now works as a dialog terminal and any V/3000
application can be run. When the communication program is run, it
sets the HP 125 back into local mode, which causes the CP/M program to
exit the waitloop and to accept digitizings.

9. Conclusions.

It was shown in this paper how a special data entry problem can be
solved by using a graphics tablet as an input medium and the HP 125 as
a preprocessor. The layout of the "keyboard" can be easily adapted for
the individual application, since the design is made on paper. The
adaptation of the CP/M program is relatively easy since grid
coordinates, square labels, starting columns on screen and in the
record are kept in tables. Plausibility checks have of course to be
programmed individually,

The preprocessing facility of the HP 125 is not restricted to the
graphics tablet. It can also be useful for normal keyboard entry to
check and manipulate data before they are transmitted to the HP 3000,
Two applications realized on the HP 2645 terminal will be rewritten
for the HP 125.

The first application is a keypunch replacement. The operater is
guided by field labels and checks on field length and type are made on
a character by character basis. The program contains a verifying punch
facility which makes a comparison with the original punch on a
character by character basis. All this is done without any delay
caused by transmission or transaction time, since transmission is done
parallel to data entry,

The second application realized on the HP 2645 terminal is a
formatting routine as part of a text management system. The text
entered is reformatted between left and right margins and asks the
operater for hyphenation before the text is transmitted to the HP
3000. This reduces the load on the HP 3000 and provides immediate
response for the operator.

Literature

(1) MATTHEN O'BRIAN, Distributed Processing - A Hewlett Packard Solution
Proceedings of the 1981 Berlin International Meeting

61

62

!type of !material! diameter! length I type ofl quan-1
I thread I I mm I mm I head I tity I

!bolt
I

!iron
I

I 1 I 1.5 I 3 I 5 I hexa-
1 I I I lgoanl

10

lbolt withlnickle I 2 I 2.5 I
!shank !plated I I I

8 110 I hexag. I
I lw. colarl

20 I 2
I

!wood
I

lpress­
lwood

!chrome I 3 I 3,5 I 12 115 I cheese I 50 3
I plated I I I I I I

I 4 I 5 I 20 130 I round I 100 I 4
I I I I I I I

I 6 I 8 I 40 150 I counter I 200 I 5
I I I I I sunk I I

ditto

end of I
item I

end of I
order I

end of I
program I

dialog I
program I

match I
code I

110 I 12 I 60 l~O I
I I I I I

I 6 I custom.

115 I 20 1100 11501
I I I I I

125 I 30 1200 12501
I I I I I

I I number I

7

8

--
140 I 50
I I

Fig, 1 Layout of the keyboard.

I 9
I

The Interactive Office - Technology and People
by Jack C. ArMstrong

Jack C. ArMstrona & Associates
Portola State Park Road
Star Route 2, Box 245
La Honda, California

USA 94020

Abstract
IMplaMentation of interactive offica technologies utilizing
Hewlett Packard aquipMent, as viewed by the coauthor of the
LARC Editor/Scribe svsteM, (now TDP/3000). A brief survey
of intaractiva office functions, with eMphasia on coMplete
inforMation processing -- data processing, text and graphics
processing, ManageMent decision support systaMs,
coMMunications, and autoMation of routine office tasks.
ExaMination of currently available hardware and software,
and a look at future possibilities. A Major discussion of
the huMan side of office autoMation - the iMpact on office
and DP staff, organization and ManageMent changes. Based on
experiences consulting at Hewlett Packard sites in tha
United States and Europe, as well as the Hewlett Packard
office autoMation research and devalopMant facility in
Pinewood, England.

63

In 1975 1 when I first participated in the design of word processing
software for the HP3000, I chose the naMe 'Scribe' for the text
forMatter I was iMpleMenting. In retrospect, I now wonder if I wasn't
paying hoMag~ to the first word processors the Madieval scholars
who forMatted words for those unable to do so theMselves.

Careful exaMination of the role played by the early scribes brings to
light a nuMber of startling observations. First, their job was to
iMprove coMMunications. Initially, I'M sure this was viewed as a
convenient novelty, but quickly bacaMe a necessity as the pace of
huMan interaction increased -- due in no &Mall part to their efforts.
Another, More oMinous parallel to Modern day ~ay also be observed. As
tha service provided by these individuals becaMe indispensable, they
becaMe a new 'elite', jealously guarding their profession and
carefully proMoting an aura of Mystery about their talants. They
often elevated theMsalves to positions as adviaors to those in high
places, although their priMary qualifications ware liMitad to skills
in their own narrow field. Sound faMiliar?

It is interesting to note that the deMisa of the early scribes was
brought about by two things -- education and autoMation. It is MY
belief that our Modern society has allowed a new elite to develop <wa
call theM data processing professionals), and these saMa two factors
will cause a radical change in their futures. The Most coMpetent of
the ancient scribes survived, indeed flourished, by joining the new
wave of education and autoMatian of printing. Those who chose to
resist vanished into obscurity.

64

Invention of Movaabla typa in tha early 15th century was probably
viewed as a disaster by scribes put out of work, but the More
farsighted accepted it for what it was, a draMatic iMproueMmnt in
huMan COMMunications -- and Moved on to bacoMe tutors, authors, or
worked within the new printing industry. Every subsequent iMprovaMant
in huMan coMMUnications -- telephone, voica recording, typewriters,
and now Modern office aquipMent -- has had its share of detractors and
proMoters, but each, where its usefulness has bean daMonstrated, has
advanced to positions of absolute necessity,

The advent of the industrial revolution, with its ovarwhelMing iMpact
on society, often obscured the parallel developMant of industry's
necessary partner -- the office. As the pace of Manufacturing
increased, so did the need for control of its operations, product
distribution, personnel ManageMent, finances, and tha Myriad of other
factors which now coMplicate our lives. As the siMple craft shop
becaMe a factory, its owner becaMa a Manager, whose job quickly
required the aid of accountants and additional staff to record data
for his use in Making ManageMent decisions. With increasing growth,
the priMary function of this additional personnel becaMe buried in
what now seaMS to be their only function -- paperwork.

Great strides in productivity were Mada in the Manufacturing portion
of these naw industries, but corresponding increases in office staff
efficiency failed to appear. In the Middle of the 17th century, when
Blaise Pascal inventad the Pascalina, a quite usable calculator, it
failed to gain acceptance, for raasons all too faMiliar to those
atteMpting to Markat office autoMation equipMent a few years ago.
SoMe resistance caMa froM clerks and accountants who feared that
widespread acceptance of the devices would place their jobs in
jeopardy, but the priMary factor was aconoMics. The device was
relatively axpensive to purchasa, was Mechanical, and required
frequent repair and Maintenance. Further, the work it would hava
taken ovar was being accoMplishad by very inaxpensiva office staff,
Given the salaries being paid at the tiMe, there was little financial
incentive to ease the life of drudge accountants, so why waste Money
on thaM?

EMployars who persist in the philosophy of using expansive Machinery
to support inexpensive &Mployaes are in for a shock. Dua to tha
staggering advances in efficient fabrication of Modern electronic
devices, coupled with soaring wage incraasas, an antirely new sat of
rulas apply. Today, we Must provide our office staffs with tools
which both increase their productivity, and allow theM to return to
thair priMary function -- gathering tha data necessary for intelligent
decisions, and Making these decisions. More than any other single
factor, this Means providing thaM with iMproved coMMunications.

To understand how coMMUnications can iMprova office productivity, one
Must understand the rola of an office in the life of an entarprisa,
the people in the office, and the work parforMed there. This
understanding is vital, because the key to an organization's ovarall
productivity May well be hidden in the office. Increasingly,
productivity probleMs lie not aMong production or factory workers, but

65

aMong office worker&. In the United States, there are 52 Million
office workers -- the largest segMent of the work force and growing at
nearly 2 Million per year. Undertaking to autoMate an office with an
eye towards iMproving the production of paper output and later
reducing eMployMent levels i• short-•ighted in the extreMe. Office
workers whose tasks May be aM~nable to this sort of cost reduction
(typists, clerks, etc.> coMprise slightly More than half of the total
office staff, but account for only one third of all office salary
costs.

Of all the advances in office tools, the telephone has unquestionably
had the largest iMpact, priMarily because of its draMatic iMproveMent
in huMan coMMUnication. At the turn of this century caMe tabulating
Machines, usable calculators, typewriters, and later dictation
equipMent. That the priMary function of telephones, typewriters, and
dictation equipMent is coMMunications should be obvious, but what of
the calculators and tabulating Machines? Their function was to assist
in the collection and assessMent of data -- today we would call theM
decision support tools. It does no harM, however, to also view theM
as cOMMUnication devices -- coMMunicating inforMation in a forM Most
useful to the decision Makers.

For soMe tiMe now, advances in office technology have concentrated on
one narrow aspect of office life -- word ~rocessing. FroM the first
Mechanical typewriters we progressed thru electric typewriters, to
devices with Magnetic storage capability, to Modern single function,
single station word processors. EconoMics played a role in the
introduction of clustered work stations, but these offered nu
substantial increased functions beyond those available to the single
station units. Along the way, we succeeded in reducing the tiMe
required to produce a printed page, but a Major goal was Missed. Much
of the inforMation needed on that printed page existed in another
device -- the data processing systeM which had grown froM the early
tabulating Machines into the Modern coMputer center.

There existed soMe econoMy in utilizing the large coMputer to perforM
word processing functions -- both MainfraMe and terMinals could be
shared with other users, but the Major iMpetus for a shift to
tiMe-shared word processing systeMs was derived froM the ability to
integrate data processing and word processing. This ability was not
always delivered as advertised, and was not always utilized when it
did exist, but the rationale is sound, and reMains a valid objective.

Tu Meet these objectives at an HP3000 site, there appeared a nuMbar of
software products, EDIT/3000 and a contributed prograM <GALLEY>, was
used with Mixed success at Many sites, generally proving the concept,
but failing to Meet day-to-day needs. The LARC Editor/Scribe systeM
was Much More suited to this task, as were several coMpetitive
editor/forMatter systeMs. In 1980) Hewl•tt Packard purchased the LARC
systeM and released it as TDP/3000. There quickly followed SLATE and
WORD/3000. These products coMing froM the vendor have not
substantially slowed the introduction of other coMpeting syateMs,
which offer full screen editors, forMatters, and nuMerous other useful
features. Unfortunately, Many of these systeMs, including those froM

66

Hewlett Packard, exhibit a tower of babble syndroMe, with poor
coMMunication between theMselves, and poor coMMunication with the rest
of the syste~ software.

Alongside the ~ush to word processing, new decision ManageMent tools
were appearing -- again both froM Hewlett Packard and froM other
software vendors. l~e introduction of HPMAIL, with electronic Mail
and Messag~ capabilities adds another diMension to the abilitv to
autoMate office coMMunications. New office autoMation tools seeM to
be announc~d daily, but one is forced to wonder at the seeMingly total
lack of integration of these systeMs with any other systeMs, even with
each other.

To add to the confusion, new hardware devices ha~e been introduced -­
new terMinals, graphics plotters, laser printers ... the li•t grows and
grows. All of theM are intriguing, and we are besieged with ruMors of
new technologies just around the corner -- facsiMile transMission,
digitized voice store and forward systeMs, touch screens, even voice
recognition. The low initial cost of new Microprocessor systeMs <and
frequently excellent decision ManageMent software available for theM),
has lured Many to eatablish isolated islands of processing
capabilities within their organizations. What we are witnessing is an
atteMpt to push technology into the office -- often siMply for the
sake of the technology. Meanwhile 1 back at the office, the paperwork
continues to stack up to the ceiling. <Ever higher, as we acquire
faster printers!)

The terM "Office AutoMation" is an unfortunate choice of wo~da, but
seeMs destined to stay with us for soMe tiMe, What is needed is not
an autoMated office 1 but an 'intelligent' one. Current office
procedures have grown out of a coMbination of tradition and
expediency. In the past, there were very real constraints on what an
office worker could accoMplish 1 given the liMited set of tools at
the:l.r disposal, These constr.1ints are b1»in~~ reMt1v1itd by new
technological advances, but the force of tradition is guiding the
application of these new technologies down old, well worn paths.

Several facts seeM to have escaped the ~ttention of the designers of
Modern office systeMs. First, their perception of who will .use their
systeMs appears to be drawn froM a Charles Dickens novel. The old
stereotype• of "clerks don't Make decisions", and "Managers don't
type", are clearly obsolete in Modern offices. Many systeMs appear to
be oriented towards a level of intelligence which borders on insult
with endless Menus, proMpts, and an effort to Make theM 'siMple' to
the point where they are incapable of perforMing Many necessary, but
nontrivial, functions. Modern office workers are increasingly
intelligent, and have an ever higher degree of discretion concerning
what tasks are to be perforMed 1 and in what order.

Another, More subtle factor, is that the shape of office organizations
is changing -- in large part because of the possibilities offered by
the new technologies, which Modern Managers appear to be More aware of
than Many vendors give the.11 credit for. New coMMunications facilities
allow offices to be geographically dispersed. Modern offices May be

67

organized along functional lines, and May shift forM rapidly, to Maat
Modern dynaMic changes.

If wa stand back and taka a detached, objactive viaw of the functions
which an office staff is intandad to perforM, wa sea other ways in
which people can work. Wa should note that the priMary function of
offica workers is decision Making. What we sea theM doing today is an
inordinate aMount of 'paperwork' which is not a priMary function, but
rather a support function. In axaMining current office operations,
start at the top - what does tha Manager do? Ask where the Manager
obtains the inforMation necessary for his decisions, how does ha
arrive at his deci&ions, and how are these decisions recorded and
acted upon. If the office is viewed as a decision Making body, then
we Map exaMine haw bast to support this procas&.

We will find that what i& needed are 'clusters' of capabilities, not
in terMs of physically proxiMate hardware units, but acce&s to coMMon
capabilities by MeMbers of a coMMon task force. This Must first and
foreMost include coMMunications, than the data relevant to thair
operations, and finally the ability to analyze and Manipulate this
inforMation. All of this is a support function, to allow tha group to
parforM their priMary Mission -- Make decisions. Uae of this systaM
will be nothing Mora than an ancillary part of their job -- like using
a telephone is today.

The central coMputar facility MU&t change froM an isolated data
processing center into an integral part of a Major COMMUnications
network, providing a facility for storage and large-scale processing
of inforMation, while acknowledging that other, independent processing
centers are contributing and withdrawing inforMation. That it will
provide a Means of controlling and securing inforMation flow should
for the MOSt part ba invisible to the end user and his systeM.

Future data processing staffs MUSt function as inforMation Managers
for the entire organization. CoMpanias Must realize that the data
processing departMent should operate as an integral part of all
corporate activities, not as an in-house service bureau funded by
departMents on tha basis of services rendered. Intarnal DP people
should becoMe soMething like an in-house OEM -- providing others with
the Means to do things with their own equipMant and systeMs -- not
providing the total service.

That other, local inforMation processing 'canters' will appear as
nodes in this network will discoMfit Many data processing dapartMant
Managers, but is inevitable. The introduction of Microprocessors and
other &Mall coMputara into daily life is not to be denied, Many of
the reasons for using these local systaMs are facetious, and in
reality May be for reasons of personal ago, paranoia, and other
equally unresolvable huMan reasons. A signal feature of the new aga
of office autoMation is that Many decisions will be Made for reasons
which are political and tactical, not strictly based on rules of
logic.

68

An office is not a factory, but a society, with coMplex structures and
seaMingly Meaningless rulas of huMan interaction. What MU&t be
squarely facad and dealt with is that thara exist Major differences in
cognitive and psychological styles. Different individual& perforM
batter using those Modes of operation which suit thaM bast, and
daMonstrating an alternative which you find prafarabla May not convert
theM to your techniques. Forcing thaM to adopt your techniques will
quickly laad to thair adopting their own alternative -- abandonMant of
the systeM. The naw users of office technologies are not the captive
audience data processing Managers are accustoMad to dealing with.
Like custoMers in an open, free Market systeM, they will only 'buy'
what they want -- not what they are told to use.

Individual adoption and use of any office technology will soon be
basad on whether or not the user perceives it to be an enhanceMant of
his or her daily work experience. Increasingly, higher wages will
cease to offset undesireable working conditions. More iMportantly, as
individuals becoMe More valuable to an organization, it bacoMes
critical to support their work style in order to not only enhance
their work, but to deter high eMployaa turnover. The trend will be
towards More iMportant eMployees, as office technology gives theM
increased powers. Be cautious of the thought that autoMation, with
greater ease of use, will lead to Mora easily replaceable eMployees.
Machine 'operators' May be easier to replace, owning to less eMphasi•
on physical skills such as high-speed typing, but the valuable offica
worker of th• future will parforM More intellectual tasks, and it is
their knowledga, not skill, which will be difficult to replace.

To assure the adoption of new office systeMs by office workers, they
Must be allowed to participate in the design of their own tools. It
is the office worker who knows the task to be perforMed, and a systeMs
designer who proves a syMpathetic listener will soon learn what these
are. Beyond the basic necessary functions, are two More points -- how
the systeM works, and what control the user has over it. Individual
preferences Must be catered to, and as tha user learns to utiliza the
new capabilities, ha or she Must be able to 'expand' its
functionality, by specifying the order of tasks to be perforMed.
Thesa systaMs Must be capable of levering the intellect, to allow the
user to excel in new and More productive way&.

Users are in tha bast position to iMproue their own productivity. All
too oftan, it is corporate decisions <or non-decisions> which gat in
the way. They also can bast discriMinate between two types of tasks
-- those soul destroying, Mechanical jobs which quickly bacoMe arror
prone and should definitely ba taken over by a Machine, and those
which require a degree of latitude and intelligent choice which should
always reMain tha option of the user. This is often an extreMely
difficult decision for a systeM designer to Maka. As we shift froM
Mechanizing routine office tasks to augManting the user's intellect,
we will find these users utilizing the systeM in new and innovative
ways never iMagined by its designer. If a workable link has bean
forged between the user and tha designer, wa will find the user
suggesting More and Mora creative enhancaMents to the systaM.

69

What we will find' ourselves doing, in addition to Mechanizing soMe
office functions such as text preparation, is extending processing
power to all parts of the organization, and linking these functions in
an inforMation network. With intellectually acceptable interfaces to
this natwork, each office worker will becoMe a valuable coMponent of
an iMMensely productive inforMation center. As users becoMe skilled
in the usa of this systeM, accessing data theMsalves, forMatting their
own reports, forMulating trial analyses of data, currant data
processing staffs will be frae to pursue the developMant of still More
creative tools for their use.

What I aM predicting is a draMatic shift in the application of
coMputers -- froM Mechanizing old rigid Methodologies, to use as an
extension of Man's intellect: as a general purpose, powerful tool
with which to explore and experiMent. If this seeMs too extraMe, I
would ask you to carefully exaMine the interactive report generators
currently available, tha electronic spread sheet prograMs, and soMe of
the better designed word processing systeMs which allow users to
forMulate and store a sequence of frequently used cOMMands. Many of
these systeMs and features are being used today to perforM extraMely
coMplex operations, by individuals who would be terrified if you
suggested that they 'prograM' soMething. Yet that is precisely what
they are doing -- often in aMazingly clever and useful ways.

For soMe tiMe now, people have spoken of the 'software gap', Meaning
that the advances of new hardware davalopMants have outstripped our
ability to produce new software, A new 'gap' is now appearing -­
between the user and the power of the new technologies. We have
developed Maruelaus new applications, which obviously fill real needs
of Modern industry. However, access to these applications raMains out
of reach of Many users, due to liMited and inappropriate user
interfaces. The physical aspects of ergonoMics are being handled -­
nonglare CRT screens, coMfortable keyboards, chairs, work stations,
and the like -- but the area of psychological ergonoMics has barely
been touched.

The successful office systeM will address these neads only after
systeM designers take a vary careful look at who the users are, how
they chose to work, and what they are likely to use the systeM for.
Even after such a study, a systeM which cannot be Molded and extended,
<by the user>, will face liMited acceptance. The successful data
processing Manager of the future Must viaw the new users as his Most
valuable resource. He Must study their habits and their needs, and ha
Must cultivate their value as high-level systeM designers -- by
providing theM with educational opportunities which train thmM in the
possibilities inherent in the new technologies. Thay already
understand the tasks to be perforMed, and if they can be shown the
possibilities which new tools Might provide, they will specify which
tools they need, and how they wish to Make use of theM.

70

GRAPHICS SYNERGY

Stephen J. Hille
Business Computer Group
Hewlett-Packard Company
Cupertino, California
USA

71

72

OUTLINE

I. Information Explosion

II. Graphics Market

III. Understanding the Functioning of the Brain
(Is a picture worth 1000 words?)

IV. The Different Types of Graphics

V. HPJOOO's Business Graphics Products

VI. Synergy of Text, Data, Graphics

VII. Implementation Considerations

73

I. Infol'lllltion Explosion

Millions or pieces of information are created daily. If we were to docu­
ment all or the information stored since the beginning of mankind, 75% of
that information has been developed in the last 10 years. In the United
States, for example, over 240 billion pages of computer printout was cre­
ated in 1980, up 25% over 1979. If your having difficulty coping with the
information explosion today, imagine how much greater the problem may be­
come in the future. For the amount or information available today will
double in 5 years and quadruple in 10 years!

One or the challenges or the 80's is to take that raw data and convert it
into meaningful information for managers and business professionals to
make sound decisions. Note the distinction between data and information.
There is an excessive amount of untimely and irrelevant data available to
most managers today which explains why so many computer printouts go un­
read. Information, on the other hand, may be a summary or only the most
important elements that affect the company's business.

Today, very few organizations view information as a corporate resource .
.And yet, the ability to manage information will be the measure of success
or business organizations during the 1980s. In fact, some consultants
predict that information will become the next major asset or a company,
surpassed only by people, material, and financing. Looking into the fu­
ture, I think most businessmen agree that computerization in business will
continue and the control or business is going to increasingly depend on
how well the manager can interact with that computer to get the informa­
tion he needs, whether it be for the shop floor, Purchasing, Production,
Personnel, etc. The challenge for the data processing professionals, is
to provide easier access or data stored on the computer to the decision
maker, the manager.

74

II. Graphics Market

Up until now, businesses have concentrated on automating the routine
aspects in business. During the 1970's, corporate expenditures were fo­
cused on the increasing the productivity of the blue collar and farm
worker. In a study performed by Arthur D. Little, Inc., productivity
gains clearly relate to the capital investment in productivity tools:

Office Horker
Industrial

Horker
Farm Horker

Capital Investment

$2,000 U.S.
$25,000 U.S.

$J5,000 U.S.

Productivity Gain

4"
90"

185"

The 1980s is the decade of the white collar worker. Already, productivi­
ty gains are being realized by the increasing use or word processors and
personal computers. .And business computer graphics is the next major
thrust in increasing the productivity of the business professional.
Listed below are summarzations or studies performed by BP's Product
Marketing Group at Information Networks Division.

Size

According to Frost and Sullivan, business computer graphics will sustain
a 40" annual growth rate moving from a $400 million (U.S.) market this
year to $1.6 billion (0.S.) in 1985. Some forecasts predict a 59" annual
irowth in business graphics with a total computer graphics market reach­
ing $7.5 billion by 1985. In addition, the slide making market will grow
to $J.5 billion in 1985. Although market projections vary, none leave
any doubt that the growth will be explosive. These numbers compare quite
favorably with the growth of the clustered word processing market from
$1.5 billion to $6.5 billion in 1985.

!!!!
A recent survey-by International Resources Development, Inc. revealed
that 71" of the respondents planned to enhance their graphics capabili­
ties in the coming year. This report found that applications are
numerous in corporate and financial planning, market plannning, opera­
tions analysis, and the boardroom environment. It is also interesting to
note that the most common use of computer generated graphics (85" of
respondents) was for presentations. This underscores the demand for high
quality output which is one of the three major trends in the business
graphics market.

Future Trends

In the tuture, customers will be looking for:

l.) Higher quality output (more character fonts, fat lines, etc.) on
high quality media (35mm) which will reduce their dependence on time con­
suming and expensive professional graphics services or reduce the cost of
these services.

2.) Improved access to data that will make graphics a more valuable tool
to non-computer professionals.

).) Faster, more interactive, lower cost multi-function workstations.

75

76

III. Understanding the Functioning of the Brain
(Is a picture worth 1000 words?)

The information in this section is discussed in much greater detail in a
paper by Marv Patterson entitled "Graphic Representation of Numeric
Data". Ma~v is a R & D Section Mgr. at HP San Diego Division and has
been studying how human perceive information as well as helping develop
new graphical interfaces between humans and canputers. The paper is
fairly technical in nature, and provides many references to support the
conclusions we will rapidly draw here.

Let's take a look at communications from a human point of view. That is,
how can we as humans interact with the computer? In doing this, we would
like to talk about our human data channels, not the computers. In others
words,. our five senses, the capacity of these senses, and the processing
power or these channels.

or the five senses or channels that humans have for receiving information
from the outside world, we will not consider - smell, touch and taste.
They will not be considered primarily because they are very slow for in­
formation transfer. Also technologically, they haven't been utilized yet
in computers with the possible exception of touch where there has been
some pioneering work done with the blind. Hearing and sight are the two
senses that we will be concentrating on. So first let's consider the
sense of hearing.

Hearing

Ne listen at the rate of 150 - JOO words per minute depending, of course,
on who's talking and who's listening. Looking at the ability to read at
600 - 1200 words per minute would indicate that the hearing sense may not
be the most efficient c011U11unications channel. Although listening is not
an efficient way to get information from the computer today, it is a very
natural and friendly way to c011U11unicate. Because or this, voice and
musical notes are becaning more and more popular in new computer systems.

OUr visual channel, the eyes, is characterized by high resolution, the
ability to detect many colors and shades, and by very high speed. Sight
is the most powerful channel that we as humans have. He are able to in­
take and process a tremendous amount or data in a very short amount of
time.

OUr visual capacity is established by three characteristics:

- First, is the number or smallest indivisible part or a picture that
our eye can detect, the pixel. Each optic nerve has approximately 1 mil­
lion elements. Two eyes, therefore provide two million picture elements.

- Second is the number or colors that we are able to perceive. Tests
show the average person can detect approximately 160 colors and shades.

- Third, is the number of individual pictures per second that we can
discern. Tests have .shown this to be approximately 7 pictures per
second.

Adding these numbers together, 2 million picture elements, plus 160
colors plus 7 pictures per second permit us to draw a startling conclu­
sion. In other words, to store one picture detected by the eye with the
same resolution as the eye would require 114,000 words of computer memo­
ry. THAT'S RIGHT, A PICTURE IS NOT HORTH 1000 HORDS AS HE HERE T'AUGHT,
BUT IS HORTH 114,000 HORDS.

Now that we have the information in the brain, let's take a look at how
this information is processed. Although there is still some controversy
as to how our brain actually processes data, the view expressed here is
certainly widely held (as Marv Patterson's paper describes). The find­
ings state that a different class of functions are performed in the left
hemisphere of the brain than are performed in the right hemisphere.
Also, except for at a very young age, there is no functional redundancy
in the brain. That is, each portion of the brain has specific and exclu­
sive tasks to perform that are performed nowhere else. Let's take a look
at this lateralization of functions.

The left hemisphere or the left side or the brain controls language func­
tions, math, arithmetic, music theory, reading, logic, and sequential
analysis. This is the logic and symbolic center of the brain.

The right hemisphere controls visualization of spactial and geometric
images, contains simple language, mostly nouns , musical expression, and
non-verbal ideation, a concept we will return to in a moment. Let me
give you an example of the use of right hand side of the brain. Picture
a J inch black cube with an orange strip around it suspended in space.
Now rotate this cube slowly in space. In the process of doing this, you
are utilizing the function or the right hemisphere of your brain - the
spactial side.

On the other hand, it would be difficult to use spactial visualization to
represent this symbolic relationship, E=MC2. He must not under emphasize
the importance of the left side of the brain. Symbols and numbers are
important to us all. He do, however, need to better understand and uti­
lize the right side of the brain as part of this man-computer dialogue.

In conclusion, the ideal computer system needs both text and graphical
capabilities - text for the symbolic communication and graphics for the
visiospactial communication. Now that man can utilize graphical data,
the right side or his brain, to enhance communication with computers,
let's talk about how your management can more effectively analyze your
data.

77

78

IV. The Different T)'Pes of Graphics

There are three different kinds of computer graphics available in indus­
try today:

l. Design Graphics - where computers and graphics peripherals are used
to aid engineers in the design process. He will not be addressing design
graphics in today's session.

2. Real Time Display Graphics - this consists of application.$ such as
radar, and online process control, where operators make decisions while
viewing real time graphics. Although HP makes some real time display
graphics products, we will not be addressing this aspect of computer
graphics in today's session either.

J. Data Display Graphics - this is the area of graphics that we would
like to discuss today. By this we mean data that is collected and dis­
played in aiay of the following forms:

a. Bar and pie charts. Both can be used to show total values (by
the size of bar or pie), as well as component values, such as break­
downs of (say) 'sources of money received' and 'where the money was
spent'.

b. Scatter diagrams. These show the (imperfect) relationship
between two variables, such as the number of air travelers that fly
on Mondays, on Tuesdays, etc.

c. Time series charts. These are perhaps the most widely used form
of graphics, showing the value of one or more variables versus time.
The value scale can be linear or logarithmic.

In addition to Data Display Graphics, there are many other t)'Pes of
graphics that can be found in business and industry:

- Text - Text plays a critical role in graphics - for listing points
that the speaker is discussing, for showing subject titles, and for
identifying components and values of a chart.

- Hierarchy charts - such as organization charts and module charts, are
widely used. '

- Sequence charts - such as flow charts, may not be quite as popular as
they once were, but they still have a role to play.

- Maps - both two-dimensional and three-dimensional.

- Layouts of rooms, buildings, shopping centers, etc. convey much infor
mation in relatively simple diagrams.

V. HPJOOO's Business Graphic Products

Hewlett-Packard's user objectives for Buisness Graphics are the same as
for our Office Systems. In general, they are to:

1. Increase individual productivity
2. Decrease direct cost
J. Increase effectiveness or value added capability
4. Improve job satisfaction

Since our users span many key professionals in both the office environ­
ment and the applications development environment, let's take a look at
some of his/her activities which can utilize computer graphics
assistance.

Graphics-User Activities

Create, modify or update a graph, slide, text/graphics document, or
organization chart, GANT or PERT chart
Plot or print a graph, slide
Store a graph, slide, text/graphics documents
Send a graph, slide and track it
Retrieve and update graphs and slides
Check, annotate, forward and dispose of graphs, slides, text/
graphics document
Present graphs, slides at meetings
Analyze numerical data through graphs
Prepare a rough draft of visual aids
Prepare a manual master with text, graphs, and slides
Develop graphics application programs using a graphics language
Querying data files and displaying data in picture form
Mailing graphs, slides, and text/graphics document
Display a room layout indicating scheduled meetings

The above list shows the need of computer graphics in each of our four
broad office areas or Document Management, Organizational Communication,
Decision Support and Personal Management as well as in the four areas of
application development. The following figure tell the Hewlett-Packard
business graphics story.

As you can see, "HP offers a wide-choice of business graphics products
that will improve the productivity of a broad range of users from the
smallest,least sophisticated systems to the largest HPJOOOs available."

79

THE INTERACTIVE OFFICE
USER PERSPECTIVE

DOCUMENT
MANAGEMENT

- CREATION & REVISION
- PRODUCTION
- FILING & RETRIEVAL

+ HP 2680
GRAPHICS PACKAGE

PERSONAL
SUPPORT

- PERSONAL COMPUTING

USER

ORGANIZATIONAL
COMMUNICATION

- MESSAGE TRANSMISSION
- DOCUMENT DISTRIBUTION
- MEETINGS
- PHONE TRANSACTIONS
- PRESENTATIONS

+ HPDRAW

x

0 DECISION ~,()

ri"c§l SUPPORT '

- TIME MANAGEMENT

~
f·f'I;

~V:­
f,~

()'3 - DATA RETRIEVAL 1-~)'
X - DATA ANALYSIS

- DESK AIDS

x

+ HEWLETT-PACKARD PRODUCTS

- MODELING & FORCASTING
- DATA FILING &

MAINTENANCE
+ MULTIPLOT

Q)
0

VI. Spera or Text, Data, Graphics

A look to the f'uture

The use or computer graphics is sure to increase, and rapidly. He re­
cently aaw projections which indicated that by 1990, 95~ or the CRTs for
use in business (for terminals, personal computers, etc.) will use color,
which iaplies graphics. Hardware prices are falling and intense competi­
tion ia occurring in the software markets. So users will find graphics
becoming more and more economical.

Hewlett-Packard's Direction - Integrated Inforll8tion Management

In 1982, Hewlett-Packard strengthened its business graphics offerings
with the introduction or three new products;

BPDRAH - a graphics presentation text and figure design
package

BPEASYCBART - a simple, easy to use chart maker for any office
user to produce line charts, bar charts, pie charts,
and scattergrams interactively within 10-15 minutes
- no computer knowledge is necessary

EPOC - G the merging or graphics and text on the 2680 laser
printer

By allowing text, data and graphics to merge into a single document,
Hewlett-Packard has taken the best or both the left and right hemispheres
or the brain and make them available for improved decision making. The
examples shown on the next pages are actual documents produced at BP
during the introduction or HPDRAH, HPEASYCBART, and EPOC-G last June.

81

82

SYNERGY EXAMPLES

(.,.! .

2. Data

••• on NPT Summer Spectacular •••

• • • a HOT one scheduled for the first day of summer •

• • • dedicated to the proposition that the whole la gntater than the aum of the porta • • •

• • • and HP'a got ft All. TOGETHER better than the real • • • •

Now RECRUITING for

83

the SYNERGY SYN GERS
• • • and SYNERGE'TTES* • • •

• • • a rlbold bond of wondering mlnetrele dedicated to the propoeltlon that • • •

Jdp Q)• .. what you lock In VIRTUOSO you ;:i malut up for In GUSTOI ~

' ' ~ I..! - ;:::::;b
~ U Come SIN I\ with us! ~ O' d '

See you local RECRUITER today:

Dawn Chesk, 47U, x4291

•Steve Schield, 48N, x3086

Susan Grant, 485, x4351

Jim Geers, 48N, x4084

Debi Smith, 43U, x3852

84

FROM:

Fl:'I HEWLETT
~~PACKARD
INFORMATION NETWORKS DIVISION • 19420 Homestead Road, Cupertino, California 95014, Telephone 408 725-8111

Marilyn Johnson - Cupertino
Chris Kocher - Cu~rfino
Shirish Hardikar - Pinewood

DATE: 2June1912

TO: Business Computer
Group Sales Center

sUSJEcT: HP Business Graphics -­
The Competitive Edge cc: Divisional Marketing

Another HP First!
Information Networks Division introduces new business graphics 10ftware products which
provide the HP 3000 users with the strongest graphics capallihties of any of HP's competitors
today - graphics for the manag_er secretary and EDP ,Professional. With these products from
IND and new firmware for the ~p 2680A Laser Printing System from Boise Division the HP
3000 now has the capabilit)' to inteJ:rate the processing of words., data and graJ)hics! Everyone
in the customer's organization now has simple access to lntegrateo Information Management.

No other vendor can offer this today!

To You Today .••
The attached Field Training Manual introduces you to the use of business graphics for
Integrated Information Management. You'll see the new HP 3000 Business Graphics Package
with HPEASYCHART, HPDRAW and enhanced DSG/3000, complete with data sheets. The
Sales Reference Manual from Boise Divisio!'.1.. mailed separately, will give JOU the details on
merging words, data and graphics on the nr 2680 LPS using the new HP 2680 GraphiGS
Package and firmware up_grade. Together these two manuals will Jlrovide you with detailed
information on selling tfie HP 3000's newest capabilities. Additional technical product
information will be sent in a separate mailing to the SEO prior to announcement.

••• and Then to the World •••
HP will make a world-wide announcement of these products on June IS at the National
Computer Graphics Association Exposition in Anaheim, CA. NCGA is a major graphics
exposition highlighting the leading edge in graphics technologies and applications.

..,,Q.
cco
0 1111-,,

:i: Ill
04(...
UIQ:: >
00 _Q.,,

:i:
.. .cc
0
CJ; CL

During the SYNERGY teleconference on June 22 and the European NPT we will discuss and
demo the new capability to merge words, data and graphics. You will really see how easily all
~~oducts can work together and how quickly they can work for you 1n selling more HP

85

4/30/82 From: Pat Wilcox (?Ji
To: BCSC Team Subject: E ['{j\iQ

Chris Kocher
Marilyn Johnson
Shirish Hardikar
Ruann Pengov

y.nur .own
r.nndu.si.nn.s

Come hear about our upcoming GRAPHICS
introductions! The Office Product Champions
(... with a little help from product
management ...) will fill you in on details on
Tuesday, May 18th @ 9:00 in the STANFORD
room.

The products we will cover include:

HPDRAW
HP EASY CHART
DSG Update
Laser Graphics

These new products will really fly!

FIXED OVERHEAD COSTS DOWN

15%

With the Introduction
of new production
line :

* DEPRECIATION
ALLOWANCE UP

* MAINTENANCE
DOWN TO $90K

* PROPERTY TAXES
KEPT AT $1 OOK

• Chart prepared by DSG/3000 • Text prepared by HPDRAW

• Text & Chart merged by HPDRAW

CX>
en

4.0 Introduction

The following paragraphs describe
the production cost reductions asso­
ciated with the 2680 Laser Printer
toner loader lid. The location of
the toner loader lid in the 2680 is
shown in the highlighted area in
Figure 4-1.

Figure 4-1. Toner Loader Lid Location

4.1 Toner Loader Lid

The Toner Loader Lid (See Figure
4-2) was previously produced using
a vendor casting process plus an
in-house machining and painting
procedure. A recent production
change order changed the process
to a 100\ numerically controlled
vendor machined part. Details of
the machined part arc, shown in
drawing D-2682-20182-1.

_,A~!'----- 201 -----~...-

24.__~ __ " _~
IEk----- 204 ----)1111"//

Figure 4-2. Toner Loader Lid

87

SECTION 4
Production Cost Reductions

4.2 Cost Analysis

The factory cost for the comple­
ted lid using the previous pro­
cess was $104.31. In addition
there was considerabl~ rework
cost due to the· 30\ reject rate.
The new process gives a completed
cost of $60.92, resulting in a
cost saving of approximately $43
per part. Another benefit of the
new process is that the reject
rate has gone to 0\, providing
additional cost savings.

The bar chart in Figure 4-3 shows
the breakdown of the costs before
and after the process change.

120
~LLAU

100

IO

IO

..

..

11WllU!AL$

~

IEfOflf

PRODUCTION COST COMPARISON
TN~ LOAOO: LID

LMOll TOTAL

~ ~

M'l£1t

Figure 4-3. Cost Analysis Breakdown

Service Manual Update 4-1
2/15/82

88

VII. lllplementation Considerations

Getting started with graphics

Hhen an organization first considers using computer graphics, from what
we gather in our discussions, their initial interest is in continuing to
produce the same types of graphics that they have been producin~ - but
faster and at less cost. There is just no comparison in the speed with
which drawings, slides, foils, etc. can be produced by computer in con­
trast t9 manual methods. And, depending upon volume, the cost of com­
puter graphics can be substantially less than manual graphics.

From a management standpoint, this means that the charts displayed in a
management chart room can be much more up-to-the-minute. It also means
that different formats, scales, colors, etc. can be tested out economi­
cally, to see which format gives the best comprehension of the informa­
tion, for a particular chart.

There is still another big benefit in computer graphics for management.
Their speed and relatively low cost make the answering of many 'what if'
questions feasible, such as, "Hhat would our expense picture have looked
like over the past year if we had ..• ?" Management can ask questions
questions like that and the new charts can be displayed very rapidly.

Hardware

The necessary elements of a graphics system are: 1.) a processor and
its memory (generally lots of memory), 2.) disc storage plus a file
management or database management system for handling the stored data,
J.) a display (usually a CRT), 4.) graphics software, 5.) probably
some provision for hardcopy output, and 6.) possibly a data communica­
tions facility for obtaining data from another computing system.

There are several alternatives for acquiring computer graphics capabili­
ties. The graphics system can be a self-contained, stand-alone system
with all the elements required, often designed especially for graphics
use. Or it can consist of a device connected to a general-purpose host
computer. The host can be either a mini-computer or mainframe, and can
be in-house or at a time-sharing service bureau.

Graphics Software

Graphics software is another important consideration when looking at a
computer graphics system. On some of the larger computer systems
graphic software offers many powerful features. Some systems allow cus­
tomizing of the output to meet the specific needs of the users.
Capability of customizing reports is highly desireable because managers
from different areas may want to review the same data base but from dif­
ferent points of view, and in different formats. A computer system also
should allow data base access and ability to update the information.
One must analyze the graphics needs before deciding on a graphics
system.

Graphics software can be based on a large computer system or on a com­
puter terminal where the data might be stored in a small cassette.

1. Computer based software consideration.

These are the large mainframe computers with graphics software
packages that allow you to look at the state of your business from
your data base graphically. Some things to consider are: initial
implementation, hardware flexibility, how easy it is to modify the
software application programs to meet your particular net!ds and how
large a staff you need to implement the system.

2. Terminal based software consideration.

If your needs are for much smaller system where you can input your
own data at the local terminal, you may want to consider a terminal
based graphics software package. The advantages of those are: a)
that they allow local control, b) existing application programs will
work and c) your central computer resources are not used. No matter
what kind of graphics software you choose, one of the overriding
considerations is ease of use. How much programming, formatting and
inputting of data is required to turn your tables of numbers into
usable graphis and charts?

Supporting business graphics

Summarized below is a very pondensed excerpt of a 39 page pamphlet enti­
tled, "Choosing the Right Chart" by Paller, Szoka and Nelson, price $8.50
U.S., available from:

AUI Data Graphics
1701 K Street N.H.
Hashington, D.C. 20006
U.S.A.

Paller, Szoka and Nelson say that users' views of their graphics needs
can, and often do change quite dramatically once they begin to receive
graphic output. They will ask to have more elaborate charts, such as
'exploded' pie charts, stacked bar charts, charts with double scaling,
and so on. Many companies that start with a limited package soon find
that they must purchase another, more flexible one, because the users
really did not know their needs until they started using the system.
Thus starting out with a time-sharing service may be wise, just to get
needs better defined.

Paller, in his seminar, said that a company planning to start offering
business graphics, using their existing mainframe or mini-computer,
should be prepared to spend about $30,000 for a flexible graphics
package. In addition, they will need to spend about $40,000 tor medium
to high resolution output devices, plus an additional $40,000 for support
for the first year. This comes to a total of about $110,000. A more
modest start can be made for about one-half this amount, but the software
will probably not provide enough flexibility for longer-term use, he
believes.

If an organization chooses to 'start small', a micro-computer system can
cost less than $10,000 for the graphics hardware and software. Such a
system can be suitable for use within a single department, for instance,
and generally no special people are needed. This option provides a

89

90

limited number of charting options, and the quality may be satisfactory
for presentation graphics.

Supporting business graphics is a lot like supporting end user program­
ming. But business graphics has a few differences which we should point
out.

As far as graph quality is concerned., what seems obvious when you look at
someone else's graph is not always so obvious when creating your' own
charts from scratch. So companies that are going to let end users create
their own charts need to first teach them some rules for generating good
graphs. "Choosing the Right Chart", gives some useful ideas on this
subject.

Solle Objections

Before a computer graphics system is installed., or during the early days
of its use, a new user organization is likely to encounter one or more of
the following objections to it:

l. Management resistance - some may find it too costly; or they say they
prefer to see the actual reports, because they feel more comfortable
with numbers than with graphs.

2. Rising expectations - some organizations may start with an inexpen­
sive computer graphics system, but may soon become dissatisfied. with it.
For one thing, the quality may not be adequate; diagonal lines show up as
'staircases' rather than straight lines, or curves are distorted.. Or
they may want to make what they feel are simple changes to the system -
such as showing two time series with two scales on the same chart, or
showing two charts on the same page or screen - only to find that it is
impractical to make those changes with their inexpensive system. So they
get frustrated. with the new system.

J. Need programmer help - creating new graphics formats may require the
use of a graphics programmer. This means that managers and other users
are back in the familiar scene of waiting for the programmer to become
available, waiting for the program to be written, finding that the new
format if not quite what was wanted, and ending up with a non-trivial
cost.

4. Not familiar with graphics - the problem may be as simple as a poor
choice of scales. If the scale is too small, viewers may miss signifi­
cant variations in values. If the scale is too big, mountains will be
made out of molehills. If someone uses a logarithmic scale, a quite­
different interpretation of the data may be drawn as compared. with the
use of a linear scale. Another problem area is the choice of colors for
a particular graph. A poor choice of colors can adversely affect the
viewers' reaction to the graph, regardless of how important its message
is. If used well, color can add to the message, not detract from it.
Also, some users may not be too familiar with the common graphical tech­
niques. For instance, one such method is the 'overlay' technique. A
chart is shown, giving sane information. Then an overlay is added, which
adds more information. A second overlay adds still more information, and
so on, so that the observer receives information gradually and can thus

ccmprehend it more easily. Further, blinking can be used on a CRT dis­
play, to draw attention to acme value. And numbers can be displayed next
to critical high or low points en a rraph, so that viewers see not only
trends and relationships, but also actual values. Thus, while users may
be unhappy with their early use of computer graphics, as they get more
'professional' graphics, satisfaction should increase.

91

92

REFERENCES

1. "A Brief Perspective on Business Graphics" by Marilyn Johnson and
Chris Kocher, November 7, 1981, of HP's Information Networks
Division.

2. "Computer Graphics for Business", February 1982, Vol.20, No. 2 of
EDP Analyzer.

J. "Business Graphics - An Effective Means of Improving Managerial Pro­
ductivity", by Chris Kocher of HP's Information Networks Division.

4. "Business Graphics - One Picture May Be Horth 1000 Pages of Computer
Printout", by Bill Fuhner, May 1982, of HP's San Diego Division.

Multi-lingual Capabilities or HPWORD

by Alma C. Rodoni

93

94

Introduction

As computer solutions expand into the off ice and to new end user
levels we have seen a number of new pressures on vendors who sup­
ply products. One of these is the move to integrate all of an
organization's information so that it may be easily accessible by
anyone, at anytime, in the form in which they need it.

Not only must this information be highly integrated but it must
also be easily communicated to the next desk, the next building
or to the other side of the world.

As multi-national companies expand into worldwide markets these
information needs become more critical. From an end user's view,
one can further expand these information needs to a list of of­
f ice activities for which an innovative end user might consider
computer assistance.

These activities can be categorized into four broad areas: Docu­
ment Management, Organizational Communication, Decision Support,
and Personal Support (see the figure below). This discussion
will focus on the Document Management area, however it is impor­
tant to recognize that it is only a portion of the total informa­
tion solution, that is getting information to all members o·f the
organization, when they need it and in the right form.

THE INTERACTIVE OFFICE

USER PERSPECTIVE

DOCUMENT MANAGEMENT

MERGE WORDS, DATA, & GRAPHICS
CREATE & EDIT
FORMAT & PRINT
FILE & SEARCH

PERSONAL SUPPORT

MAINTAIN CALENDAR
PREPARE "TO DO" LIST

ORGANIZATIONAL COMMUNICATIONS

SEND A MESSAGE OR DOCUMENi
PHONE, LEAVE A MESSAGE
PRESENT INFORMATION AT A MEETING

8
DECISION SUPPORT

ACCESS ORGANIZATIONAL DATA
ANAL VZE/MANIPULATE DATA
GRAPH INFORMATION

95

Multi-lingual Capabilities

This paper will focus on what will be referred to throughout as
Multi-lingual capabilities of HPWORD. HPWORD is Hewlett­
Packard' sword processing product targeted for secretar>al use
for general business correspondence. At this point it is impor­
tant to define Multi-lingual. Multi-lingual is the capability to
run the HPWORD subsystem in different language versions simul­
taneously on the same HP 3000. This is to be distinguished from
~imply having a number of native language versions (i.e. English,
German, French) which are discrete packages that could not be run
simultaneously on the same system.

Let's briefly describe a customer scenario that might require
this capability. A company like HP, based in the United States,
with organizations in Germany, Switzerland and France must com­
municate to these entities on a frequent basis. Given that a
large portion of the European market speaks at least two lan­
guages, this capability is important for communications between
countries in Europe, but also for communications to the company
headquarters in the United States.

For example our group in Boeblingen, Germany may want to create a
document"in English to be sent to the United States for review.
The Multi-lingual capabilities would allow Germany to create the
document in English on the same HP 3000 using their German native
language terminal. This would also allow the the United States
to receive German and English documents.

As a supplier of Office Systems products, Hewlett-Packard has
made a committment to worldwide markets. Worldwide markets are a
major focus for our software development and it is HP's philoso­
phy that the software design take place in the country where the
product is to be used. We believe the user and marketplace ex­
pertise lies in these locations. Therefore the HPWORD develop­
ment team in the U.S. has worked closely with each software cen­
ter group in the localization of HPWORD.

Software Considerations

The actual software localization can be made simpler if the prod­
uct has been designed with worldwide markets in mind. It is im­
portant that this be a priority in the design and development.
Part of this can be accomplished by identifying those code seg­
ments that require language specific changes- these should be
isolated for modularity. Whenever possible it is best to use
table references with these code segments instead of hard coded
instructions.

The following discussion will focus in detail on the two code
segments within HPWORD that have been identified as key elements
for localization purposes. The first is what is called the
Document Language and the second is the Interface Language.

96

Document Language- When using HPWORD users at a single installa­
tion are allowed to create and edit documents in various lan­
guages. The document language field will appear as a new entry
on the HPWORD "create document" menu. This gives users the
choice of various supported languages. They are allowed to se­
lec·t the desired language right on the HPWORD menu. The primary
reason for selecting the document language is to ensure that
automatic hyphentation will be performed correctly. The hyphen­
ation exception dictionary maintenance task has been enhanced to
allow modification of exception dictionaries in any supported
language.

Perhaps the most important benefit is that users can create docu­
ments in other languages using their native language terminal.
This can be accomplished by using the control (CTRL) key to ini­
tiate the special character sequence which allows muted charac­
ters for such things as accented words. To use this ~apability
there are no additional hardware requirements.

It may not be possible to ~ all foreign language special
characters on your terminal screen; however, you can produce the
relevant characters from the same keyboard. Also the italics
enhancement for Roman Extension characters is not visible on your
terminal screen (they are shown as underline).

The supported document languages are:

Language

American English
British English
German
French
Canadian French

Recommended Keyboard

USASCII
UK
DEUTSCH
FRANCAIS azM
FRANCAIS qwM

The document language is distinguished from the language of the
user interface. Therefore users can use their native interface
language (described below) to view or edit any foreign language
document.

GERMANY

Germon Document

Germon Interface ~

DODD DODD

/'
/

' /

Native language
version- Germon
HPWORD and
HP 2626W

UNITED STATES

Germon Document

English Interlace ~

DODD DODD

Native language
version-English

HPWOR:J ond
HP 2626W

I

In addition to various document languages, an HPWORD user can run
in any of several interface languages. This is defined as
follows:

Interface Language- The interface language determines the lan­
guage used for all messages, menus, date formats and softkeys.
Users can run in any of the languages listed above.

Each installation has a "primary" interface language, and option­
al "alternate" interface languages. The primary interface lan­
guage is selected during installation. All of the HPWORD utili­
ties will run in the "primary" interface language (with the ex­
ception of the hyphenation maintenance task which may edit the
hyphenation dictionary for any available language). By running
HPWORD.PUB.SYS at the primary entry point, the primary interface
language will be used~

97

98

For each language supported, however, there is an alternate entry
point, that can be accessed by typing:

run hpword.pub.sys,language.

The interface languages and entry points available for HPWORD are
shown in the following table:

Language

American English
British English
German
French
Canadian French

Entry Point

AMERICAN
BRITISH
GERMAN
FRENCH
CANADIAN'FRENCH

For localization purposes then, HPWORD can be described by three
different modules; the supporting code, the document language and
the interface language. Technically the software is structered
for maximum flexibility in this regard. The only constraint or
dependency is that to run an interface language the document lan­
guage must also be installed on the system.

The local software centers develop the code for their language
version for the document and interface language, and integrate
that with the lower level code structure or the supporting code.

HPWORD Native Language Version

Lower Level
Supporting
Code

Document
Language

+

Interface
Language

+

+

+

+

Hardware Considerations

To provide a total solution, a word processer must really be a
combination of several pieces, including hardware and s~ftware.
That is, having software alone is not a word processing solution,
a user needs a terminal (CRT) and some output device, preferably
letter quality.

99

As other language versions were developed, a number of hardware
issues had to be addressed. The terminal must be an integrated
piece for a true word processing solution; from an end user point
of view it must be accurate in keyboard design, layout and screen
presentation. As we began the expansion of HPWORD to other lan­
guages we found each language presented unique problems with
respect to keyboard translation and layout. These ranged from
the simple to the very complex. For example with the German ver­
sion when we initially recieved the actual keyboard translation
from the German software center we found the words (for the syn­
tactic keypad) were too long to fit on the keycaps.

One of the design objectives as mentioned earlier was to allow
users to create a document in any language from their native lan­
guage terminal. This presented some unique problems and required
several changes to the HP 2626W to allow access to Roman Exten­
sion characters (and displaced USASCII characters from foreign
keyboards), these are outlined below:

An invariant mute accent keystation was assigned for all di­
acritical marks (umlaut, A' ',', tilde). Each mute accent is
accessible using CTRL+[optional SHIFT]+{mute accent key}. The
only key stations prohibited are those associated with current
"blue dot" HPWORD functions (i.e. discretionary hyphen and re­
quired space).

Invariant key stations were assigned to all Roman Extension
characters and displaced USASCII characters that cannot be pro­
duced using mute accents. Each of these characters will be ac­
cessible using CTRL+[optional SHIFT]+{key station).

This is in addition to any mute or Roman Extension access avail­
able on any foreign keyboard. This means that special characters
(the 'e' on French keyboards) will be available in two ways: as a
single keystroke and as a mute character.

A single template will be printed in the manuals which will docu­
ment the key stations to use to form Roman Extension or displaced
USASCII characters not directly accessible from the keyboard.

The more complex problems
tive language terminals.
ferent keyboa:rd layout or
cented characters). This
the terminal.

came with the keyboard layouts for na­
Many European languages required a dif­
special keys (French upper case ac­
often required some firmware changes in

100

The French version required program ROM changes for the shifted
top row numerics the Bold/Bold Roman Extension character set ROMS
will be used for all non-USASCII keyboards primarily because of
Canadian French needs.

As a result of these hardware issues HP has formed a standards
committee to address keyboard layout issues across our product
lines.· This task force assisted in the standardization of the
Roman Extension set for foreign language terminals.

Of course equally important for a true word processing solution,
users must be provided with good letter quality output.

The HP 260lA environment files are used to specify what set of
print wheels should be used for printing a document to an atten­
ded HP 2601. The environment files also contains a mapping from
HPWORD internal codes to output codes for each print wheel, so
that HPWORD can accomodate foreign and non-standard print wheels
without printing nonsense for characters that do not exist, or do
exist, but at a non-standard position on the print wheel.

Three environment files are supplied by HP: PICAOl, ELITEOl, and
PROPOl. These files describe the most commonly used print wheels
for 10-pitch, 12-pitch, and proportional printing on the 2601.

An environment file will describe four character sets, one for
each of the Roman, Bold, Italic and Bold Italic fonts known to
HPWORD.

Training and Documentation

As we continue to meet new users in markets like those present in
the office, training and documentation needs become more and more
important, in fact, the self paced training and documentation is
an integral part of HPWORD. Very often the translation, typeset­
ting and reproduction of this material required the most time and
effort.

HPWORD has a reference guide, a quick reference guide and a self­
paced training kit which contains nine training modules. These
materials include pictures of the screen showing relevant text
and screen labeled keys, all of which must be reproduced with the
appropriate presentations in the proper language.

Packaging

Certainly with this new Multi-lingual capability there are
marketing consideratons. How should this Multi-lingual capabili­
ty be packaged? Where is the percieved value for our customers?

With very tew technical limitations, these capabilities could be
packaged in a variety of ways. The document languages and inter­
face languages could be packaged seperately for ultimate
flexibility or they could be packaged as a unit.

101

Before discussing the packaging analysis it would be very useful
to furth~r define "Multi-lingual capabilities of HPWORD" from a
customer's point of view. Given our initial defintion of Multi­
lingual, (the capability to run the HPWORD subsystem in more than
one language on the same HP 3000), it became necessary ~o define
just what the term "run the HPWORD subsystem" meant. Was it just
the ability to run many different document languages? Did it
mean different interface languages? Did it imply that both were
together? How would support issues be addressed?

As described earlier a word processing solution is really the
combination of several elements: the software, a terminal, a
printer and the necessary training. If it requires all of these
elements to make up a word processing solution the language it­
self really becomes less relevant. All of the pieces must be
translated and useable.

The Multi-lingual capability, therefore is everything that HPWORD
represents- the supporting code, the interface language, the
document language, the training, the documentation, the terminal
and the printer.

Multi-lingual
capabilities
of HPWORD

Documentation

0
Software

Terminal

Interface
Language

Document
Language

Lower Level
Supporting
Code

Ultimately, then, we believe the customer's perceived value is in
the entire solution.

102

Presently HPWORD is available in English, German, British/
English, French and Canadian French (the latter two have an eight
to ten week delivery).

The English version of HPWORD has just been enhanced to include
many new capabilities and support many new configurations includ­
ing the Multi-lingual capability. These capabilities include the
integration of text and graphics, four function math, column ma­
nipulation, double underline, template documents, asynchronous
remote support (using Bell 202/212 modems), and DSN/DS support.

During the first quarter of 1983 those versions listed above will
complete localization with the second release features and at
that time HPWORD will have complete "Multi-lingual" capabilities
(the price of this capability is yet to be determined) as
described earlier. Concurrently, additional language versions of
HPWORD are under development.

Electronic Mail In the Interactive Office

HP MAIL

Commercial Systems Pinewood
England

IF170982
....
0
(,)

104

Title:

Author:

Abstract:

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

ELECTRONIC MAIL IN TIIE INTERACTIVE OFFICE

Ian J. Fuller,
Commercial Systems Pinewood,
Hewlett Packard Limited,
Nine Mile Ride,
Easthampstead,
Wokingham,
Berkshire,
England,
RGll 3LL

Telephone: Crowthorne (STD 034 46) 3199.

This paper will explain some of the design considerations behind the
implementation of Electronic Mail on the HPJOOO and will show how these
were implemented in the product. Particular attention will be paid to the
design of the User Interface and the thinking behind the facilities
provided in the first release.

There will be some discussion of the design and implementation of the
HPMAIL Transport System which enables messages to be exchanged in a network of
HP3000s with minimal impact on the user.

Ian Fuller, Friday, September 17, 1982
Page: 1

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

Topics to be coVered:

1. Functional overview of the product:

Accepting mail
Addressing users
Store mail
Sorting incoming and outgoing mail
Moving the mail
Delivering mail to recipients
Notifying recipients
Tracking mail progress
User features - editing, filing etc.

2. Implementation:

Major Modules in the Product
Mail Procedures
IPC Files
Tracing and Error Reporting

J. The HPMAIL Data Bases:

Function of the data bases: directory, storage and composition.
Reasons tor using IMAGE.
Overview of data base design.

4. The User Interface.

User Interface overview for those not familiar with the product.
HPMAIL "areas" - the "electronic desk".
User Interface Structure.
Reasons for adopting a command based interface.

5. Transport System overview

How we tackled the implementation of a store & forward system.
Concepts behind Transport System components.
Why use PTOP?

6. Conclusion.

Ian Fuller, Friday, September 17, 1982
Page: 2

105

r-~·-­

~

~ ~-··-~,-~·~

1 .

2.

3.

4.

5.

--,
A~-~-s: t§ ___ 9 __ f ______ t1 EJit6L L

t _..
i 0
1 O'>

Functional Overview

Implementation

HPMAIL Data Bases

User Interface

Transport System

Figure 0 !

IF170982 i
--- -·-·-··-·---·-·-··· __ ___J

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

Figures Required:

Title Slide.

0. Summary of what is to be covered.

1. Functions of a Mail System.

2. Major software components of the product.

J. Schema diagram for Local Data Base.

4. Schema diagram for Global Data Base.

5. HPMAIL Object Hierarchy diagram.

6. User Interface structure diagram.

7. Data and control flow for Transport Mechanism

Ian Fuller, Friday, September 17, 1982
Page: J

107

108

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

l. Functional Overview of the Product.

HPMAIL is an electronic mail system based on the Hewlett Packard 3000 range
computers. It is designed to enable users, who may not be familiar
with computers and their associated technology, to interchange information
~ffectively throughout their organisation. This paper provides an over­
view of the design of the product, the data structures and program code
modules that make up the product and some insight into the reasoning behind
some of the design decisions that we had to make as we developed the product.

The basic facilities required of any electronic mail system are summarised in
Figure 1 and explained further in the following sections.

ACCEPT MAIL

With HPMAIL we made the decision that the product would transmit any infor­
mation that could be held on the HP3000 system. This could range from a few
lines of simple text to a complex report containing, perhaps, reports
producted by a word processor such as HPWORD, graphics produced by DSG/
3000 or HPDRAW and even MPE program and data files. We decided to adopt as
flexible a structure for these items as possible, enabling the user to or­
ganise them into "Packages" of logically related items. At the same time,
we realised that the majority of HPMAIL messages would be simple text and
made it very simple for this type of message to be accepted into the
system.

ADDRESS USERS

HPMAIL can be implemented as a multi-computer system, but it is important
in the office market that users be shielded from the details of the
configuration of their particular network. To this end we implemented an
addressing scheme where HPMAIL users are registered with the system in such
a way that a sender of a message does not need to know whether recipients
are located on their computer or on one many miles away, connected
through a complex network. It also allows the administrator of a HPMAIL
network to re-configure i.t without users having to change the way in which
they address other users.

STORE MAIL

The system must be able to store mail, before transmission, on inter­
mediate computers in a store and forward network and on the behalf of users.
Because of the potentially large space requirements for messages on a
system HPMAIL has adopted the strategy of "sharing" information wherever
possible; thus when a message is delivered to several users on the same
computer only one copy is stored and pointers are set up linking the message
to each user's In Tray.

SORT THE MAIL

Mail in transit must be sorted into queues for transmission to the required
destination and for distribution at the destination computer, a process anal­
ogous to the operation of a sorting office in a manual mail system. This can
be a time-consuming process, involving the analysis of large distribution

Ian Fuller, Friday, September 17, 1982
Page: 4

---·-·----·-----·----···----·-·--·--------·--·--··-.. -------~----------·-· .. ·--····-··~·-----i
Functions of a Mail system I

··--------------------·------ I

1. Accept mail l !
2. Address users . User 1

I

3. Store mail J Interface

4. Sort outgoing mail J Mailroom

5. Move the mail] Transport

6. Sort incoming mail] Mailroom

7. Deliver to recipients
8. Notify recipients

HPMAIL also:

9. Track mail progress

1 0. Provide a flexible &

l User
J Interface

l Mailroom

l User
t

powerful user interface I Interface i
. - I
] Agul'9 1 I I~ ~ ~--·-----·-·---------.. -.. -····-----··--··.------· ---·--·----~--. ..._. ______________ _

......
0
<O

110

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

lists and so we decided to have this function performed by a background
process, called the Mailroom.

MOVE THE MAIL

Mail must be transported between computers as economically as possible.
HPMAIL uses the Program to Program (PTOP) communication facility pro­
vided by DS/3000 for this task. These potentially lengthy and error-prone
operations are, again, handled by autonomous processes known as the Trans­
port Manager; Master and Slave Trucks.

DELIVER TO RECIPIENTS

Once arrived at its destination computer, mail must be delivered to its
recipients and the recipients must be notified of their new mail if possible.
This work is also handled by the Mailroom program.

These are the basic facilities that should be offered by any computer-based
messaging system. HPMAIL offers some additional features to the user, amongst
which are:

TRACK MAIL PROGRESS

In order for users to have confidence in the operation of the Mail System
they must be able to track the progress of messages that they have sent.
HPMAIL provides five acknowledgement levels that users can put on a message
and the Transport System will keep users informect of the progress of their
messages according to the acknowledgement level that they have set.

PROVIDE USER FEATURES

The HPMAIL User Interface provides users with powerful facilities to create
and store messages on their "Electronic Desk", making HPMAIL far more than a
simple message system. Examples of the facilities provided are a Work Area
in which items may be constructed prior to incorporating them in messages, a
Filing Cabinet in which users may store messages for future retrieval in
Folders named by themselves and a Distribution List Area where they can
keep distribution lists of users with whom they correspond for easier
compilation of messages. When we designed the HPMAIL User Interface we
placed considerable stress on "ease of use" for the non-technical user while
maintaining the capability for the product to be used from any terminal
that can log on to the HPJOOO. This enables users to access their mail
even when they are away from their office if they have a portable terminal and
access to a telephone.

Ian Fuller, Friday, September 17, 1982
Page: 5

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

2. The Implementation of HPMAIL

111

One of our principal design objectives in implementing HPMAIL was that the
product should be easy to maintain, test, debug and update. To this end we
decided upon a "layer concept" for the software, with each layer communicat­
ing via rigidly defined interfaces. This enabled development of the Trans­
port Mechanism to proceed relatively undisturbed while the details of User
Interface design were refined through a series of tests, prototypes and
evaluations. The task of integrating these components, often a major
headache in software projects, proved to be a relatively simple task with
HPMAIL and the software has proved to be very robust in use.

Figure 2 shows the major software components of the product.
lows a brief explanation of the functions of each component.

USER INTERFACE

There fol-

The User Interface program is repsonsible for all the user interaction in
the product and provides the user with the "Electronic Desk" described
previously.

MAILROOM

The Mailroom is a background job streamed by the system operator and is
charged with the sorting and delivery of local mail, that is, mail that is
destined for users on the same computer.

TRANSPORT MANAGER

The Transport Manager is reesponsible for scheduling the communication of
messages between HPMAIL computers according to the current message load and
the availability schedule set up by the HPMAIL . System Administrator.

MASTER & SLAVE TRUCKS

The Master Truck is controlled by the Transport Manager and is
responsible for the set-up and control of the DS/JOOO connection with a
remote computer where it uses the Slave Truck program to receive the mail
and put it onto the remote data base.

CLOCK TICK GENERATOR

This runs as a son process of the Transport Manager and provides it with a
"tick" every fifteen minutes to cause Transport Manager to re-schedule its
transmission priorities as necessary.

CONFIGURATOR

The configurator is a VPLUS/3000 application program used by the HPMAIL Sys­
tem Administrator to build and configure the HPMAIL data bases. Facili­
ties are provided so that the Administrator does not need to have any
detailed knowledge of IMAGE/3000 to control HPMAIL.

Ian Fuller, Friday, September 17, 1982
Page: 6

~

n

~il

Major Components of HPMAIL
_ .. ,------··• • ·-·~·-·-~-~---·-----••--•" -- -•~;--.- -0-----~.--·•••o--·~~··~-------~--~---~·--•·~·--------~- -~----"~- -----~-·~--···--

user-I
i I l

l~~e~~:~-\\
~ ,-----~ J::igurat.or] _J'

--
/

I

IMoin;enance I

~
---------<' r Moint~;ance I

HPMAIL _J I { k

DATA .L Program I. B~c BASES _______ p
->------r-

_.,.,..,...-

----1 I Manager I
J:nroom ! I Truck _J ---~ ··--
l _J L __ ... Ff ·05. /3~oo \c;-.:,-;;-. k Tickl L_.__ I~ !

["Sl~ve 1 ~ne~~t~ !
I ,,._ 2 I Truck I · ___ ".:'-_ J

- - ·~-~---·---···--- -- -·-- --------- -~~~-~~'~ -·-~--~~------ ..

-"

J°Perato~ ·-

l Interface r
L-·-~--d·-~----:__J

.....
I\)

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

OPERATOR INTERFACE

This is a set of functions, invoked by User Defined Command (UDC) to en­
able the system operator to control HPMAIL and determine its status. Examples
of operator commands provided are: MAILON and MAILOFF to enable and disable
the system; MAILSTATUS to provide a status display for the system;
MAILSHOWNODE to display the number of messages awaiting transmission to remote
computers and MAILMAINT to start the Maintenance Program.

MAINTENANCE & REPORT PROGRAM

The Maintenance Program is run periodically to provide verification of the
intactness of the HPMAIL data bases, to collect garbage and to generate
statistics which are formatted and printed by the Report Program. Regular
running of the Maintenance Program is a vital part of maintaining a reliable
HPMAIL system.

Ian Fuller, Friday, September 17, 1982
Page: 7

113

114

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

The programs mentioned were developed simulteneously over a period of eighteen
months and in order for this work to proceed reliably a set of techniques was
derived before detailed design began to ensure that this work could proceed
smoothly.

Three techniques we adopted in the development of the product deserve men­
tion here as being important to the way in which the product evolved. These
are the use of "Mail Procedures" to access the data bases, IPC or "pipe"
files to communicate between the components of the product and the standar­
dised tracing and error reporting mechanism used throughout the product.

MAIL PROCEDURES

The HPMAIL software is based around two IMAGE/3000 databases, called LOCAL
and GLOBAL, which· are discussed in the next section. The application
programs that access the data bases, for example the User Interface, Mail­
room, Transport Manager and the Trucks, .do so through a set of intrinsics
called "Mail Procedures". These Mail Procedures are on a Segmented Library
and so are accessible to all the programs. They perform the low-level
data base access functions and insulate the programs that call them from
the details of the Data Base structure; in fact the Transport programs do not
have a single IMAGE call in them, all interaction is done through these
procedures. Examples of the Mail Procedures we implemented include:

MOPEN - to open the Mail Data Bases.

MCREATE - to create a new item.

MEXPLODE to return information about the contents of an
item, for example the messages in a user's In Tray.

MATTACH - to attach one item to another, for example, to
attach a new message to a user's In Tray when delivering it.

MDELETE - to delete an item.

MCLOSE - to close the Mail Data Bases.

Other Mail Procedures were implemented to perform common functions required by
different modules, for example comparing two names. In all about thirty Mail
Procedures exist on the HPMAIL Segmented Library.

These procedures were designed, tested and made available before any
coding was done on the programs that would use them, so providing a firm base
upon which development could proceed.

Ian Fuller, Friday, September 17, 1982
Page: 8

IPC FILES

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

115

As well as using the two IMAGE data bases, the various components of
HPMAIL communicate with each other using the Inter Process Communication (!PC)
or "pipe" facility provided by the MPE- IV Operating Sys tern. This method of
communication has the advantages of being very well defined and "sparse",
reliable and provides an "interrupt" mechanism, whereby a program can wait
for a message on its pipe telling it what to do next. Once again this con­
vention aided the product implementation as modules were able to be tested
using simple test harnesses before attempting to integrate them. In fact
early test versions of the product were tested on the MPE-III operating sys­
tem which did not have the !PC facility by using standard sequential MPE files
and the !PC files were introduced as soon as MPE-IV was installed on our
development machine.

There are three IPC files defined in HPMAIL:

MRIPCIN the Mailroom Input Pipe which is written to by
the User Interface when a user "MAILs" a message instruct·
ing the Mailroom to collect it from the User's Out Tray
and deal with it. It is also writ ten to by the Slave
Truck when it receives mail from a remote computer bound for
the local computer, alerting the Mailroom to deliver it.

TMIPCIN - the Transport Manager Input Pipe which is written
to by the Mailroom to inform it about new Mail bound for remote
computers which it should attempt to send and also by the
Clock Tick process which runs as a "son" of the Transport
Manager and send it a message on this pipe every fifteen mi­
nutes to cause it to re-schedule itself to take account of any
change in the availability of routes out of the local computer.

MTIPCIN the Master Truck Input Pipe. The Transport Man­
ager sends instructions such as "open a DS line to computer
X" to a Master Truck which attempts to perform this opera­
tion, then reports back to the Transport Manager on its
Input Pipe the success or failure of the operation. The
Transport Manager can support up to eight Master Trucks simul­
teneuosly and each has a separate Input Pipe, referred to as
MTIPCINO, MTIPCINl etc.

Ian Fuller, Friday, September 17, 1982
Page: 9

116

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

TRACING AND ERROR REPORTING

Since HPMAIL consists of a number of inter-communicating programs and each
program consists of a large number of modules, each separately compiled,
it is important that status information about the success of each operation
is returned to the caller. It is also important to have a trace facility
built into the product so that errors can be traced and diagnosed with minimum
trouble.

In HPMAIL a single data structure, called the "Mail Common Area", is
used to communicate shared data such as completion status, file numbers and
user information between the various procedures in a program and with the
Mail Procedures. This is very much in line with products such as
VPLUS/3000 or IMAGE/3000.

Each procedure in the product {and there are over 300) takes the Mail Com­
mon Area as its first, and sometimes only, parameter. The convention was
established that all the procedures call a Mail Procedure called MTRACE
immediately upon entry and before exit. MTRACE registers the procedure's
identity in the Mail Common Area and can also be made write a log message to a
file if required.

Error reporting is centralised in another Mail Procedure, MERROR, which
interprets the status words in the Mail Common Area and can produce a cus­
tomised error message from the message catalogue for each error, together
with as much additional information as can be deduced. Since all the trace
messages are derived from the message catalogue they can, if necessary, be
translated to other languages.

The tracing level of these procedures can be varied by setting a Job Con­
trol Word {JCH) or by passing a run-time parameter {PARM) to the program.
Thus, when debugging a program, the engineers can easily cause full trace
information to be generated and errors can be located more easily. This level
of control was particularly important in testing the Transport Programs,
where it was not practical to use the MPE DEBUG facility. These tracing
facilities have remained in the released product, but cause little perfor­
mance penalty since they are normally disabled.

Ian Fuller, Friday, September 17, 1982
Page: 10

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

J. The HPMAIL Data Bases

HPMAIL uses two IMAGE/JOOO data bases to contai~ the user and network direc­
tory information as well as the users' "Electronic Desks", all maintained
securely and reliably.

All the HPMAIL programs on a single computer work with the same data base set.
Items that are simul teneously "owned" by more than one user, for example a
message delivered to two In Trays, are held physically only once per system,
with pointers to assert individual ownership.

The HPMAIL "GLOBAL" data base is a directory of all users known to this sys­
tem. The "LOCAL" data base contains local directory information about the
users supported there, network directory information to control inter-computer
transmission and mail items. Mail items can be anything from In Trays, mes­
sages, queues of messages, individual text items, distribution lists or MPE
files "imported" onto the data base - in fact nearly anything a HPJOOO can
store.

The HPMAIL data bases perform three functions: directory, storage and item
composition.

DIRECTORY

The directory function enables HPMAIL to identify a user when they si.gn on and
determine those i terns that they can access. The directory also identifies
users on mail distribution lists and enables user names as entered to be ex­
panded to the full "canonical" form of name, locatoion and sub-location. The
network directory functions enable HPMAIL to determine which computers to con­
tact to send mail to a given location, how and when to contact the computers,
and what telephone number or Public Data Network (PDN) node name to specify.

STORAGE

The storage functions enable HPMAIL to hold everything in the IMAGE data bases
so that the information is always available. Thus HPMAIL will take a HPHORD
document and "import" it onto the Local data base so that at some later time
the Transport Sys tern will be able to send it to another computer without
requiring access to the sending user's MPE Group, or having to worry if the
user deleted it.

COMPOSITION

The composition functions enable HPMAIL to handle "hybrid" message types and
have the same message in several In Trays or Filing Cabinet Folders at the
same time, and to operate queues of messages destined for different locations
in the network. This leads to the important concept in HPMAIL that the
simplest message contains two parts: a Distribution List and some (usually
textual) content. The message itself is a single item which "contains" these
two others. This split enables the Transport Mechanism to refer to the mes­
sage as a whole, while the Mailroom can access the Distribution List, its
primary concern, without having to scan the text. The end users also derive
the benefit that they do not have to read the message distribution list but
can go straight to the text.

Ian Fuller, Friday, September 17, 1982
Page: 11

117

118

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

HPMAIL uses ihe IMAGE/3000 data base management system for many reasons, of
which almost the least important is that it is a data base management system.

The first reason is that it is solid and well-established and provides a firm
foundation for a reliable product.

It also offers its own space managment, allocating new space as required and
handling direct access problems transparently.

Due to the "hybrid" nature of most HPMAIL items, the chain management system
of IMAGE is very important, handling pointer chains very easily.

IMAGE uses shared data storage and shared buffering, adding to efficiency and
performance. It has a good locking mechanism to prevent unreliable operation
due to multiple updates of the same item.

Finally, an IMAGE data base can be dumped for security purposes very much
faster than many MPE files.

The main drawback to using IMAGE is that it is not designed to hold non­
structured items such as MPE files, and getting them in and out of the data
base ("importing" and "exporting") is a fairly lengthy process. We estimate,
however, that the time required to implement the project would have nearly
doubled if the facilities of a system like IMAGE had not been available.

Ian Fuller, Friday, September 17, 1982
Page: 12

r---···-·-·--· -··-·------------------------~-------- ------~--------------------------------------- ------· --· --,
I ;

: HPMAIL LOCAL Database !
i
' '

\ ITEM -; -~ ITEM // \L.ocAL // \ -----·-7
\ STRUCTURE ;1--- \~EADE~/ \ USER /------'\ DESIGNATE /

\ _J \I \ . _J \---~-- / . y \ ___ _
_,/'/ !

/ !
/ i

\ ~~-;~~T1 \ N0~~-7 \ us};~;_--7 ~NAME-7
\ /1 \ .-/ ----4.. J---~- INDEX // \ \,y \ _/ -., /

\ . '\ \ \ /

\--.... --1 \------ ',v/
I

!
I

"\""":--------~ --~-----~
\COMPUTER I \ I

\,_ 1,L--..-----\ ROU:JE
'_.. I 'i

·,\ /' \

v \-.---

··----------·--7
\\ LOCAL

\ CONTROL /

_ _ _}

LM Figure 3 i
IF170lll2 I

--- ~ -~-~~ - -- -~· -~··--~~--

. -------·-· ____________ .. ___________ .. _________________________________ ___!

.......

.......
<O

120

. r----·-······-~- ----····------··-----··----···--·--·-·----·-··--·--·-····-·· -------·--------·-···-----·- ···-·---·····-·-~--;i

I . ' ~I
, I

r

Q)
Cf)

0
...0
ot
-ol
ol

I

_)
<(I

~ l;ffi
I ~ ~ >------·----------· ··-----i g ~ v/ /J"/

·"'/v

I ~I ·· .. ,_
I J:I ., '•,
I ~ ·,,~

I I ~ "" ' I ts I I 5 >-----··-· --------- --------1 ~

'· .. l!// L/~/ 1 1

l _______ ···'·--······----· -·-····--------··--··----·········-···••"··-· .. ···--·--·-·---------~

,--····-·-···· I

>-[I- w"'

, ~! 11~:~1
Li I
(J) i I

~: r-L
o I I ,. 2 f------
(J); i LUO::: , :n: L!:: ki ~

o! ' - --
_J

< -.:::::::: :
...:::::::: !
()_ j

I!
\
I

\

\

I

~
i 0::: LU 11
l ~LU:::>~ . a::::::::>
I w o
i L __

L ____ _

[:r
·o::::>LUr--
10LU0 z :::::> _J

121

122

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

DATA BASE DESCRIPTIONS

Figures 3 and 4 show the schemas for the two data bases . There follow two
examples of the way in which HPMAIL uses the data bases in the execution of
common functions, item storage and name searching.

HPMAIL ITEM STORAGE

The most important data sets to the understanding of HPMAIL's item storage are
the ITEM-HEADER, ITEM-STRUCTURE and ITEM-CONTENT data sets on the Local Data
Base. Items in HPMAIL are considered to be either "basic", meaning that ·they
can be represented by a single MPE file (for example a Distribution List or a
HPHORD Document), or "composite", which have no MPE file form as such but are
composed of a number of basic items. An In Tray is an example of such a com­
posite item, consisting of a header linking it to the messages in that par­
ticular In Tray.

Every Mail Item, basic or composite, has a Type (e.g. User Folder, Message,
Text), a creator and a subject. This information is kept in its Item Header.
The Item Structure data set maintains the links between items that go to make
up composites. For example, a Message consists of a Message Header, linked by
two Item Structure Records to the headers of its Distribution List and Con­
tent. The content of a basic item, the MPE file content, is held in the Item
Content data set, linked by IMAGE pointers to its Item Header.

In HPMAIL, every item is linked to at least one other, except for the "root"
item, which we term Item Zero. If an item becomes detached from all its
parents, which happens for example when a message is deleted from the In Trays
of all the users who received it, it becomes an "orphan" item and will be
physically deleted from the data base by the Maintenance Program.

Figure 5 shows the HPMAIL "Object Hierarchy" in more detail. Al though super­
ficially quite complex it is, in fact, quite efficient and lends itself very
well to processing by IMAGE, via the Mail Procedures.

Ian Fuller, Friday, September 17, 1982
Page: 13

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

SEARCHING FOR NAMES

123

Every time a user enters the name into the user interface program, whether he
is entering his own name during the HPMAIL sign-on, or entering names on a
Distribution List HPMAIL searches its Directory for that name, or a similar
match. Names in HPMAIL are held in what we call "canonical form", which is:

<SURNAME>,<FIRST NAME> <MIDDLE NAME>/<LOCATION>/<SUB-LOCATION>

where:

surname
first name
middle name

location

sub-location

add up to no more than 36 characters

is up to six characters long

is two characters

Canonical names are all in upper case, converted by means of an internal
translation table to take care of national character sets.

For example, the canonical form of user Ian John Fuller, location HP1600, sub­
location 01 is:

FULLER,IAN JOHN/HP1600/0l

HPMAIL does not insist that the user types in the full name, just sufficient
to identify it uniquely on the data base. Thus if there are no other users
with the surname FULLER defined on the data base, the FULLER will be suffi­
cient. If any doubt exists, the User Interface gives a choice of those avail­
able and asks the user to choose one. Of course, user names must be unique to
a mail node (location+ sub-location).

When HPMAIL searches the data base for a name, it does so first by making a
"name probe" from the surname supplied. The name probe consists of the first
letter of the surname, followed by the next three non-repeating consonents.
So, for example, the surname "FULLER" yields the name probe "FLR". This probe
is taken as the key to a search of the NAME-INDEX Master Data Set which will
give a chain of names that have this probe. The User Interface scans down
this chain comparing each with the canonical form of the input name. There
may be several degrees of match: all components agree, first names differ,
locations differ etc. If a perfect, non-ambiguous match occurs, then the user
is not troubled further. Otherwise he is given a choice of those available.
The use of the name probe means that a slight mis-spelling of a user's name
can sometimes, but not always, yield a choice that reveals the correct spel­
ling of the name the user was looking for. For example, if the user types the
surname "COALMAN" in mistake for "COLEMAN", then the program will be able to
give a choice of the correct name since both names result in the name probe of
"CLMN".

In the case of the user sign-on process, the Local data base is searched for
the name, since this holds the name information for the users supported on
that computer. For the construction of Distribution Lists, the Global Data
base is searched since this contains the directory of all the users known to

Ian Fuller, Friday, September 17, 1982
Page: 14

124

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

that computer, but not necessarially supported on it. The user has no need to
know where another is supported in order to communicate with him; this is
sorted out automatically. The name searches are done in a similar way on both
data bases by Mail Procedures.

Ian Fuller, Friday, September 17, 1982
Page: 15

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

4. The User Interface.

OVERVIEW

The HPMAIL User Interface provides the user with an "environment" in which to
use the product which is designed to mirror the concepts familiar to office
users. In broad outline, the user is provided with:

An In Tray - into which his incoming messages are delivered by the
Mailroom.

An Out Tray - in which messages the user sends are assembled and from
where they are collected by the Mailroom for transmission and
delivery.

A Pending Tray - which hold messages awaiting acknowledgements. The
user can find the acknowledgement status of any message in the Pend­
ing Tray by reading its Distribution List.

A Work Area - which allows the user to create items and assemble them
into "Packages" before incorporating them into messages.

A Distribution List Area - which holds lists of users with whom the
user may wish to communicate. These lists can be used on messages
with a minimum of trouble.

A Filing Cabinet - in which the user can "file" messages for future
reference in folders that he has created. The system provides the
users with two folders as standard, an "incoming Day Folder" and an
"Outgoing Day Folder" which can serve as a complete record of all
messages sent and received.

The Administration Area - which gives users extra commands to do such
utility functions as defining or changing their password and setting
up "Designates" who may work on their behalf.

COMMANDS

The command set of HPMAIL is designed to reflect the terminology used in
offices. Examples of HPMAIL User Interface commands are:

The
the

READ to display an item on the user's terminal.

PRINT to print an item on the system line printer.

SEND to start to send a message.

MAIL to commit a message for transmission.

FILE to "copy" an item to a folder in the Filing Cabinet.

REPLY to send a reply to a message in the In Tray.

function keys of Hewlett Packard terminals are used if possible to
user an easy method of finding his way around the product. Function

Ian Fuller, Friday, September 17, 1982
Page: 16

give
keys

125

,---··-· ··-· ---- ··----·~·

l
i

HPMAIL User Interface structur~- - ----,
,,~-·-·-->-·""'"~- ,,.--. --·~·-

1-·-------i
l Outer!
' '
! I
I Block1 L:: ____ T __ :_:j

I
!

r-----·---~>,.·----·-·r--"·-------- -------1-------- --· -----· .•. ·----------------1
I I I I

Initialization Signon Signoff Shutdown

1· ·····-·r··------- ·-··· l ·-· -·-·-------,----~-~- r------ -----l- ------- ---1·---- --·-1
Main IN OUT PENDING Work List Filing Admin

i Menu Tray Tray Tray Area Area Cabinet

Figure 6

;

!

j

LM F170882 I
~-~,~-·--~--~ ----~-- ~ ··~- ~- -~-~-~·~~-~· ~--~~-- ~~----~~-

......
I\)
O>

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

127

<fl> to <f7> select entry to each of the "areas" listed above, with <f8> al­
lowing the user to leave HPMAIL.

The "prompt" displayed by HPMAIL is another aid to the user in finding his way
round his desk. This changes according to the area he is in. The In Tray
prompt is "IN TRAY >", the Filing Cabinet prompt "CABINET >" etc. When the
user has OPENed a folder the prompt changes to the first word of the folder's
label, so a folder with the label "User Group Presentation" will, when OPENed,
give the prompt "User >".

HELP FACILITY

The User Interface also offers an extensive Help facility which is organised
on three levels. Typing the HELP command by its elf gives the user general
help about the area he is in. For example, HELP in the Filing Cabinet will
give the new user some idea of the purpose of this area and suggest some like­
ly commands. The command HELP followed by another command name will give the
user specific help about that command as it is used in that area. For exam­
ple, typing HELP MAIL while composing a message will explain the meaning of
the command and how to use it. Finally, typing a question mark (?) in any
area will give the user a brief list of the commands available as an aid to
memory.

TRANSLATION TO OTHER LANGUAGES

The whole of HPMAIL was designed to be translated easily into other languages
without the translator needing to have knowledge of the internal workings of
the product or access to the source code. To this end, all messages produced
by the product come from a central message catalogue (which is currently about
4,000 lines long) while the HELP displays come from another catalogue which is
even longer.

All user input (except the content of messages) is parsed by common parsing
routines and commands are recognised by reference to a Dictionary. The
development team wrote a special utility to build this Dictionary, which goes
under the name of "Webster". This is available to Hewlett Packard Country
Software Centres world-wide for them to adapt the product to their local lan­
guage. Synonyms and common abbreviations for commands can be built into the
dictionary as required for each language.

Local character sets are handled by a Translation Table as part of the Dictio­
nary so that users may, in their local versions, use commands containing their
local characters. One limitation to the use of local character sets in
HPMAIL, however, is that user names, locations and sub-locations have to be in
the standard USAASCII code. This is because a HPMAIL network can span
countries, not all of which may use the same conventions regarding extensions
to the character set.

Ian Fuller, Friday, September 17, 1982
Page: 17

128

1982 HPJOOO International Users.Group Conference,
Copenhagen, 25-29 October.

USER INTERFACE STRUCTURE

The HPMAIL User Interface program is a direct analogue of the data structures
it supports in the Local Data Base. It is a direct result of the maxim:
"Design the data structures correctly and the applications programs will al­
most design themselves". The program is a "tree structure", as shown in Fig­
ure 6 which follows the object structure quite closely.

The Outer Block of the User Interface controls all the other components which
can broadly be broken down into:

Initialisation

User Sign-on

Environment Handlers

Signorr

Shutdown

The Initialisation module opens the data bases, the user's input and output
files, the mesaage catalogue and reads the dictionary from a disc file onto
the user's stack. It initialises the Mail Common Area will all the relevent
data and generally prepares the program for execution. It is also responsible
for checking that the software has not been stolen and that incompatible ver­
sions or the software are not being used. The last task it performs is to
print the HPMAIL "banner" on the user's terminal.

The User Sign-on module is the first that actually solicits input from the
user (by asking for his name). The name enables the user's User Record to be
located in the LOCAL-USER data set of the Local data base and from that point
on the User Interface can latch on to a specific point in the object hierarchy
shown in Figure 5.

After a successful sign-on, control is passed to the "Main Menu" processor,
the first, and simplest, of the Environment Handlers. This simply displays
the list or options available to the user, along with the number or newly de­
livered messages he has in his In Tray. · The user is then prompted for his
choice of area (environment) to enter next. This choice can be made by press­
ing a function key or by typing the corresponding number.

The other environment handlers, for the In Tray, Out Tray, Pending Tray, Hork
Area, List Area and Filing Cabinet are very similar in structure. They con­
sist or five basic "states":

Initialisation.

Building a "List File" as a temporary MPE file or the
current contents of the area (e.g. all the messages in
the In Tray) .

Producing an initial "LIST" of the area to give the user
the information about its contents.

Ian Fuller, Friday, September 17, 1982
Page: 18

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

Prompting the user for a command.

Executing the command.

129

Each command (READ, FILE etc.) has its own "executor" which handles the opera­
tion of that command in all areas. Once the environment handler has recog­
nised that a certain command has been entered by the user it passes control to
the command executor for that command. It is the responsibility of the execu­
tor to determine whether the command is correct, possibly asking the user for
additional information if necessary. If the command is correctly formed then
the executor passes control to the "action procedure" for the command. This
is often just a simple Mail Procedure. For example, the task of the FILE com­
mand executor is to determine what the user wishes to file, and where he
wishes to file it. This is resolved internally into a pair of internal item
numbers (in the ITEM-HEADER data set). These are presented to the action pro­
cedure for the FILE command, the Mail Procedure MATTACH, whose task it is to
perform the required attachment, linking say, an In Tray message to the Incom­
ing Day Folder in the user's Filing Cabinet.

Ian Fuller, Friday, September 17, 1982
Page: 19

130

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

COMMAND BASED USER INTERFACE

He are frequently asked why we adopted a command based user interface for
HPMAIL when many of Hewlett Packard's Interactive Office products have stan­
dardised upon "point and push" interfaces, often using VPLUS/3000.

This question caused a considerable amount of heart-searching in the develop­
ment and marketing teams during the design phase of the product and we finally
came down in favour of an "unspohisticated" command based interface for two
main reasons.

First, we realised that many of the potential users of our product would be
managers, working away from their desks, perhaps in hotel rooms, on hard copy
terminals connected to their office HP3000 by a slow speed telephone line. He
thought that these users would derive a major benefit from using HPMAIL and so
we designed our product to be no more demanding of a terminal than it be
"Teletype Compatible". He would not go so far as to claim that the HPMAIL
User Interface works well on every terminal that can be connected to HP3000,
for we have not tried them all. However, we would be very interested to know
of any upon which it does not work.

The other main reason for adopting the command based interface is that, for
regular users, such an interface is far quicker to use than one where you have
to cycle through several screens just to access the menu you require. Users
often comment that, as long as you are not making errors, the User Interface
is extremely "terse". It does not usually ask for confirmation of actions,
nor indulge in long dialogue about exactly what to do. This squares with our
belief that an electronic mail system is of little use to an occasional user
and to derive major benefit- from it, it must be used regularly. Otherwise
users would cease to rely on it as a timely communication medium. Regular
users, we believe, do not want verbose or long-winded user interfaces, they
know what they want to do and want the software to get in the way as little as
possible.

Ideally, of course, we would have written a user interface for every level of
user who might encounter our product, tailoring it exactly to his or her
specific needs. However, we compromised with one which we thought . would
please the maximum number of people most of the time.

One drawback with a command-based user interface is that it is often percieved
as being harder to learn initially than "point-and-push" interfaces. Many of
our users are busy managers who have no time to go on long product training
courses or to wade through long manuals just in order to learn how to send a
simple message. I was told once while I was testing the product with some
Hewlett Packard managers in the United States that if they could not learn the
essentials of the product in a maximum of thirty minutes it would not be ac­
cepted. To this end we developed an on-line training package for the product,
known as the Interactive Training Facility (ITF). This gives users the oppor­
tunity to learn about those aspects of the product they need to use at their
own speed in their own time. He find this to be an extremely valuable facili­
ty in getting the product used throughout the company.

It is interesting to note while discussing User Interfaces that the HPMAIL
Configurator program uses an entirely VPLUS/3000 based user interface. He
felt that the Configurator was an ideal application for such an interface and

Ian Fuiler, Friday, September 17, 1982
Page: 20

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

131

makes the potentially complex process of data base build, configuration,
modification and expansion far easier to achieve for System Administrators.

Ian Fuller, Friday, September 17, 1982
Page: 21

132

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

5. Transport System Overview.

As stated previouslj, one of the major product objectives for HPMAIL was to
provide a system where the end user did not need to become involved with the
intracies of message routing and transmission, understanding DS/3000 or deal­
ing with line failures, message congestion or any of the hundred other prob­
lems that can befall a multi-computer based messaging system.

Once a user MAILs a message it is removed from his Out Tray by the Mailroom
and handed over to the Transport System for sorting, transmission and deliv­
ery. He can track the progress of the message by setting an acknowledgement
on the message and monitoring it in his Pending Tray while it is sent to all
the recipients, wherever they may be.

Figure 7 shows an overview of the data and control flow required to implement
the store and forward system used in HPMAIL.

The Transport System is implemented by background jobs communicating via IPC
files. The jobs are known as the Mailroom, Transport Manager, at least one
Master Truck, each communicating with a Slave Truck on a remote computer.

MA II.ROOM

The Mailroom has two basic functions to perform. First, to collect messages
from users' Out Trays. Second to deliver incoming messages to recipients on
message Distribution Lists where the users are supported on the same computer.
It also handles Delivery Acknowledgements, Auto-Forward and Auto-Answer. The
Mailroom is structured internally in two halves. The Outgoing half deals with
mail collection and sorting, the Incoming half deals with local mail delivery.

Outgoing mail originates from the User Interface via MAILing a message created
by the SEND, FORHARD or REPLY commands. The IPC message sent to the Mailroom
when a message is MAILed identifies the specific message in an Out Tray that
has been commited for transmission. The Mailroom responds by accessing the
message and scanning its Distribution List. It builds an internal list of the
number of unique mail nodes (local or remote) that the message is bound for
and then attaches the message to the node queues for the correct destination
nodes. For locally bound messages the Outgoing Mailroom sends an IPC message
to its Incoming "half" to deal with the deli very. For remote messages it
sends a message to the Transport Manager alerting it of the new mail to shift.
If an Outgoing message requires any acknowledgement the Mailroom will attach
the message to the sending user's Pending Tray, ready to receive the
acknowledgements as they come in. The last action it performs is to detach
the message from the sending user's Out Tray.

The Incoming half of the Mailroom deals with mail originating from two
sources. First, the local messages sorted by the Outgoing half. Second, the
Incoming Mailroom receives !PC messages from a Slave Truck operating on its
computer to handle messages received from a remote computer and to be deliv­
ered here.

In each case, the Incoming Mailroom examines the message Distribution List to
determine to whom the message is to be delivered. It then locates the re­
quired users' In Trays on the Local Data base and attaches the message to
them. It also has to handle the various types of acknowledgement that can be

Ian Fuller, Friday, September 17, 1982
Page: 22

,---·-·
I

-------·----·-· - -~-· ··-·--- -·- ---

HPMAIL Data & Control Flow
!
i

i
'

-------·· ·-. c -· ,_. ____ ,_ ~------·--

USER INTERFACE
~ '• \
I

I
I ,., ,.,

OUT Tray------:-> Mail Procedures-----~> IN Tray
I
I
I
I \,,

\II

,-------------------------- Mai I room -~-=-----------------,
I ' I I
I I I I
I I I I
I I I I

\I/ I I \I I
\II \I/ I 'Ip'

\II I

Remote Transport : Local
' , I

Queue
Node r-----;;> Man a 9 er <-,------1 Node

: ,~, ! Queue
II\
II\

Clock
tick--

I I
I I

\I I I
\jl I

Master Truck
I ' I /(>
I / I\
I I
I DS/3000 I
I I

: PTOP :
I I
I I

\ (I I
\jl I

II\
II\

SI ave Truck ______ L _________ _.

·- -----,
I

Flgure 7 1 lfiJ ___ _,,.,... ,. _____ -~--. - - - -~ -........... --~ - -- - --·~··- -~ -~··-- HH.• •• ----··· •• ..,~ I

.....
(.,)
(.,)

134

1982 HP3000 International Users Group Conference,
Copenhagen, 25-29 October.

received, amending the user's Pending Tray copy of the message with the fact
that the acknowlendgemet has been received. Its other main tasks are to
generate delivery acknowledgements for the message if necessary and to action
any Auto-Forward or Auto-Reply that a receiver has set.

TRANSPORT MANAGER

The Transport Manager is another background job whose function is to control
and schedule the operation of HPMAIL in sending mail to remote computers.

It maintains tables of mail-nodes for which mail is waiting and the possible
routes that it can use to move the mail. This information is derived from the
HPMAIL system configuration specified using the Configurator program. Every
fifteen minutes the Transport Manager receives a "Clock Tick" from its son
process, the Clock Tick generator. This causes it to re-examine its priori­
ties and re-schedule the Master Trucks under its control if necessary.

The Transport Manager is constantly striving to ensure that the remote mail
nodes with the highest priority mail to send are being serviced by the avail­
able Master Trucks. Once it selects an available Mail Node, together with an
available route to another computer to send it, it will send an !PC message to
a free Master Truck instructing it to establish a DS connection with another
HPMAIL computer. Once the Master Truck has reported back that it has done
this successfully the Transport Manager will instruct the truck to clear a
certain remote node queue. Once this has been done the Master Truck will re­
port back, ready to receive further instructions.

The Transport Manager is capable of controlling up to eight Master Trucks
simulteneously, although it would be a very ambitious network that required
this level of resource.

MASTER AND SLAVE TRUCKS

The Master Truck receives IPC instructions from the Transport Manager and han­
dles all the interaction with DS/3000 and PTOP to physically move mail between
computers.

The first instruction received by an idle Master Truck is one to establish
connetion with a certain remote computer (identified by name) using a
specified DS Line and, if necessary, telephone number or PDN Node name. It
uses a MPE :DSLINE command to open a line to the remote computer, followed by
a MPE :REMOTE HELLO comand to establish a remote session. It will then at­
tempt to create and activate a Slave Truck on the remote computer, using the
DS/3000 intrinsic POPEN. If the Slave Truck is successfully awoken the Master
Truck will determine that it is, in fact, communicating with the correct
remote computer by interrogating the Slave for its computer name. Once this
protocol has been observed the Master Truck will report back to the Transport
Manager "truck idle with DS line open" and await further instructions.

The next command received by the Master Truck in the message transmission
operation is the "move mail" command. This instructs the Master Truck to
transmit mail from a given remote node queue on the Local data base. It is
responsible for "serialising" messages from the data base and packing them
into transmission buffers for sending to the remote computer via the PHRITE
PTOP intrinsic.

Ian Fuller, Friday, September 17, 1982
Page: 23

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

135

At the other end of the communication link the Slave Truck will, if possible,
ACCEPT these transmissions and re-create the message on its computer. Once
the message has been completely transmitted the slave truck will "deserialise"
the message onto its data base. Depending on the ultimate destination of the
newly received message the Slave Truck will either alert the Mailroom for lo­
cally bound messages, or its own Transport Manager for messages that are des­
tined for onward transmission. Once the Master Truck has sent a complete mes­
sage successfully it will detach that message from the remote node queue as
responsibility for it has now passed to the next computer in the chain.

This process will be repeated for all the messages that the Master Truck has
to send. Once the Master Truck has complied with its instructions to move
mail it will send another report back to the Transport Manager "truck idle
with DS line open". The Transport Manager will either respond with an in­
struction to begin transmitting messages bound for another mail node, so
taking advantage of the open DS line, or it will instruct the Master Truck to
terminate the link if there is no more mail to be sent on that route.

The main challenge in designing the Transport Mechanism was to provide for all
the failures that can take place during transmissions over communications
lines. Examples of the type of problems that have to be handled are:

Inadvertent connection to the wrong computer, due perhaps to an
incorrectly dialled telephone number.

Finding that the remote data base cannot accomodate the message
to be sent, either temporarily due to congestion, or semi­
permanently due to the data bases not being built sufficiently
large.

Configuration errors resulting in transmissions being refused or
an infinite loop being set up.

Line failure during any stage of the process.

Since detachment from a node queue is the last operation that the Master Truck
performs, and only after it has determined that the message was transmitted
successfully, it is unlikely that messages will be lost due to line failure.
It is, however, quite possible that HPMAIL will send messages twice in some
circumstances.

WHY USE PTOP?

We chose the Program to Program intrinsics provided by DS/JOOO in preference
to the other methods of transmit ting files across DS connections for four
reasons.

First, PTOP ensures that there is a communicating process at the other end of
the DS line to receive the mail. Without it, we would have had to implement
yet another level of IPC communication to ensure that the remote computer was
aware of the mail being delivered to it.

Second, the performance of PTOP is superior to, for example Remote Data Base
Access (RDBA) since, in good circumstances, the Master Truck can be assembling
transmission buffers for the next transmission at the same time as DS is

Ian Fuller, Friday, September 17, 1982
Page: 24

136

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

taking care of the transmission of the previous buffer over the line. This
makes optimum use of the communications line.

Third, PTOP provides very good control for the application program over the
communication activity with the provision of a "tag field" in the PTOP intrin­
sics which can be used to send status, control and block-level acknowledge­
ments at the same time as the buffer transmissions.

Lastly, the PTOP intrinsics are implemented on other Hewlett Packard com­
puters, for example the HPlOOO Technical Computer range, giving us the option
of using these machines as mail nodes in a mixed DS network.

By removing the Transport Mechanism to a completely separate layer of the
product we will be able to take advantage of enhancements to Hewlett Packard's
data communications products as they become available with minimal disruption
to the product's users.

It is notable that the HPMAIL Transport Mechanism uses only supported features
of DS/3000 and works entirely in user-mode. This, we feel, contributes great­
ly to the robustness of the product. This remark applies to the product as a
whole; in fact the only line of Privileged code in the product is one where
the System Cold Load Identity is obtained. This is required to maintain sys­
tem integrity as we have to know if there has been a system restart since the
data bases were last accessed. Needless to say, we actively exploring ways of
removing even this excursion from conventional programming practice.

Ian Fuller, Friday, September 17, 1982
Page: 25

1982 HPJOOO International Users Group Conference,
Copenhagen, 25-29 October.

6. Conclusion.

137

Unfortunately I have been unable to cover all the a$pects of HPMAIL in this
presentation. Only cursory treatment has been given to such vital areas such
as Configuration, Maintenance and Operator Control, but I hope that this paper
gives a overview of the sort of problems we faced when we looked at implement­
ing a multi-computer messaging system on the HPJOOO. The solutions we arrived
at were, as always, compromises between what we would like to have done, given
infinite time and infinite money, and whac was practically possible given
finite resources.

He are always looking at ways to improve HPMAIL and make it a more effective
tool in the Interactive Office. I would be very pleased to hear any sugges­
tions for enhancements in any area.

Ian Fuller, Friday, September 17, 1982
Page: 26

138

BUSINESS GRAPHIC~
An Inte6rai Purt Of TDe Electronic Office

Shir1sh s. Hardikar
Product Manager
Commercial Systems Pinewood
Hedle~L-PacKHrJ Co.
~okingha~, United ~ingdo~.

Good :nor11i11~. 'fou:iy I am scil,Jdu1cJ to tall< to you at>ouc

busi11css grapnics; •nord specific..illy, "Busin"ss Grapnics -

&n in&e15rc1l parl.. Of L.lle dleC<.rvnL.: offic..; 11 ~O let.. n1:; uegin

oy taking <> closer looK at this title. 11 Business 15rapl1ics"

is d term '..ill.l.<..!ll we l1c;vc all ~;t:.:::n useJ frequ,;~nc.1y to d:Jscr.1.0"

cllurts, graphs, etc. whicn represent l..ables 01' nw11l>crs

i!Jcipdically clno uici t-u<: Jec:i.s:i.on-rnaking proc0ss oy su111111c.r is­

ing f;,1cts and focusing on key poinr..s. But. :;rapllics are no&

!le\; nor is Lo,:; reolisar..ion ;;f t.l:H:ir effectiveness in com­

municating ideas; out until quite recently tney were not easy

to crear..e. Computers, new firmware and s0ftware has cnangcd

this. New and growing nc1mber of "Jrapnics solutions" are

costs are driven down and &heir creation is mad~ easier;

complex infor~ation, iJeas and :i.nterprc~at1ons cun now be

communicated with 3raphic illustrations as naLurally ana

easily clS we do with words dnJ UciLa.

Tnis growin~ awareness of graphics as an esaential Lool in

r'o;.:u.:;ing on cinJ unJersl..cttJdinJ t>usin;;ss f~ct.s i:lnd fit,;ur0s l!a;;;

l;;:d to a oootn in tne graphics industry. Tha proole111 now is

nut ·wi·1et.l1er to use bus1n0ss gr<:q,.,c11cs, ouc (1ow to .1.u1pL~;nent

it. Quite naturally I have some definite views on this, but

Lh:for..; I lay r.hem .1.n front.. of you lot •ne our.line l1ow I ar­

rived at tnese.

Business graphics proJucc.s ~re orientated l..Owara com~arcial

applications wh~re it is nelpful to aisplay important

139

140

u1for1nc.c1on v isue;;lly. But prof(~ssionc.ls, :lldlla6ers ;,,no

executives have long been using manually and photo~raphically

prouuc..::o c;rapinc.s c:ff\Jc",,ively anJ iL ls noL L11t11ed1ciLely ob­

vious how to invesc in graphics sysce,ns to noticably imp1·ove

productivity &nd :11ost i;nportanc, scive n,irJ ccJSil : Jollars­

and-ccnts, pound-and-pence, DM's-and-pfenings. What we do

know ls ch.Jt ches..:: p..::ople n00d grdpnics in ti1<~ir daily 1-.Jork -

for presentation, rapid understanding of facts, analysis and

decision-waking. BuL, i,o loog for tne uesc way to 1wplewenc

graphics for ci1eir use 1ve need to understand three areas :

tlie Jiffercnc i,ypes oi' Jrdµi1,cs tkl<:JL. are u::;'-::d; 1my 1:P'dJJi"lics

are used; and now (or wnen) graphics are used.

In general, business gra~nics is used by all executives,

managers and professionals in an organisation whichever

dep"Jrt-mc:nc tney cnciy b·;;; in. Two rnore c:onw1on fcJctors c1re Wil~t

graphics tney use and why they use chem. Chart-s, scnematics,

diagrorns and jusc plain c.0xt c1re the ;nose couunon g,raptiics

used to bett-er understand and present data. They are used

for the benefit of external audiences - auring formal presen­

tations and when included in reports and other documents -

and ll<:'!re L.t12 qudlit,y of the ,;raµn1c.:s is n.ccessarily high.

They are also used internally to illust.rdte data and i1nprove

comt11un1.::ations; ofc.cn u1 suci1 u3.; tne grcq.Jllics µreduction

quality need not be very high and expensive.

on tm~ir cost-d'feutive production. '>ie need'to cake cl looK

hv\I cOUCil gr<.q.JillCS is W'.mted. Let's go bdck to tnc ldst slide

prouuceo in the Graphic Art Department. Even tocLiy c11osc

tion. Designers and artists cut and paste urtwork together

produced, out this is not all ..• u lot of time 1s spent

dev-clop.1.ng lit.,•2rature - broc:nures dlld Jocuu1eiltc; for internc1l

and external use. As cl result, t:,ney jusl.. cannot. cater for

requireo to muke! Frequently I used to spenJ evenings with a

culculal..or·, t~rapl1 papcr, ~, ruler and nulti-co-'-oured pen::.>

drawing charts and writing-up my cornncnts for presentation

r'irsc, L:1in.g ttk l'ollovHng d1orn1n5!

But, if you nave tine, ~here nave always been alternatives

service uureaux t1ave tradlt,10D3lly cou1ple111enteJ tne in-nouscc

bcin~ used to help provide faster, oet~er service , buL I

O•.::le1ve t,n1c:y sc.1li full snort :il' 1-1tLJt ci .tldll:JJ,er, 2xecu'c,ive or

professional wants.

141

142

The custon-~rapnics-ar&-nouses off~r full scrvicds tnat cJn

take t~e rough design to top quality finished products. In

adaicion, they .::an proviJe design consult.i.ll6 for

sophisti12ated, nigh quality graphics. This is parti12ularly

us~rul for form~l presentations for external audiences wnen

visual iwp3ct and creative design and COill~unication are es­

sential. Bu& I think you will aJree tnat these ara 'one­

offs' anJ their high quality is not required for the daily

us~ of.uusinass gra~hics •••• the costly revisions, 2-J week

turnaround, and total cost cannot justify it.

The first seep for wosc or~anisations towards auto~ating tne

graphics- generation process is usually through a service

bureau. Timesnaring is a very popular way to implement

graphics in an organisation. In addition to the usual

production service many oureaux also offer access ~o Indus~ry

databases •.• market infor,nation, comu1uni ty indexes, price

fluctudtions, and ~uch wore •• all ~~sily accessable. A very

valuable service indeed! But tnis hasn't resolved the ques­

tion of now a illanager can use graphics daily dnd easily when­

ever wanted - on demand. This type of &lmeshare graphics ls

cnaracterised by haruware leasing - one or two grapnics

workstations hooked-up througn dial-up facilities. Dut as­

sociac.eJ with tl11s arc~ conne;;;tion cos1;s, spor<Hiic turnar·ound,

dependancy on phone lines and nest availability.

before ?Urchase. As volume increases and quick turnaround is

Tnc use of Doto these alternatives is growing out I beleive

strong i y ti 1 at n e i t:. th~ r c :rn 111 e,.; t i:, i 1 e real <1:.: u1 ands of bus in e ;_; s

graphics. I see tnese demands as: ease of use, the ability to

use pee son di ;:rnJ c·o,n:nLrnit..y dJ'G<..1, and tn"' dlliii ty to r11el'Je

text and graphics (everyone - managers, professionals, execu­

tives anu secre~aries - communicate wi~h written Jocuments.

You have to oe able to include raphics in the body of these

rcport/u1aouals/etc. wit<1out :11anual, t1.11e-consuming effort !

...• but I'll talk about this aspect in more depth later).

But tlk Key J,;,nand of business grapi1ics is for imuwJi<.it.e ac-

cess and results.

No11, the nee-1 to offer this 11iJe accc:ssaDili cy und

functionality (in terms of workinG with, even integrating

with, words <.JnJ daca) way not at first glance seem ac <.ill

necessary. Ahy noc ju~c focus on ~raphics-made-easy?

del.:., let':> t..aice a 1001<. One good solut1on for tt1is is ttie

stand-alone graphics workstation. It is a single-User system

.nuc11 liKe pers0t1al cotnputer/:uicrocowputer systems. dowever,

its op,erating systems and languages are opcimised for

t,raptii0S Jlid Offer powerful c;r<.JptllCS Cdp.JbillLlCS, witn

costs ran~ing from as little as tBK to $100K ut tne top-end,

trrese syst:::.ns are ;nuet1 favoured. So:ue offer 35mm c::.,nera

at~uchmen~ und highly interactive colour CRT's with light

143

144

pens. These nigher cost systems are often a hybrid

alternative to having graphics produced entirely offsite or

having a large, expensive production facility onsite. Even

nicer, several workstation vendors* maintain service centres

to receive trdnsmitted grapnics designed at the custowar's*

workstation. These centres provide for processing into 35mm

slides, colour prints or transparencies. The average cost of

an overhead transparency produced by such a system is ap­

proximately $50.

This is all well and good for presentations, but is expensive

if what I want is ten or twelve charts immediately so that I

can analyse some data, prepare a report and/or reccomenda­

tions based on my analysis, and then throw away the charts

Business graphics needs also to be disposable !

This thinking maybe runs against the grain today when

graphics offerings are full of technology •..•• 3-dimensional

representations, rotating figures, purpose-built (high cost)

terminals, etc. Their use is valuable for periodic analysis

and review - like quarterly & annual business consolidations,

assessment of corporate achievements, and similar; but I am

not sure they are cost-effective for my very real need for

simple ad-hoc graphics. On the other hand, why should they

be ? The answer is, I maintain, simple. If you beleive, as

I do, that business grapnics is an invaluable tool in

communicating and analysing facts and ideas, then it should

*Xerox, Computer Pictures, Comshare, Dicomed, GE.

be made available to me in my normal, daily working

environment. In this, I don't need very high quality

graphics, but rather graphics for rough-note projections of

trends, quick analysis of changing data, and similar that

only circulate, if at all, in-house; a complement to the way

I use otner tools - wnen I want, how I want!

More recently, the electronic data processing department has

become an organisa~ion's graphics centre. Computer generated

graphics began here with large, complex, CPU intensive

graphics programs. Even today, the majority of ousincss

graphics software is found on mainframe computers. As many

of these packages are third-party supplied as are vendor sup-

plied and offer high-quality and high flexibility graphics.

In general, all these proaucts are programmer-oriented; of-

fering FORTHAN libraries, high-level languages and simple

commands to generate business graphics. But, there are also

reports that mainframe supported grapnics softare are so CPU

intensive tnat Fortune 5000 type users are running up costs

in the area of $25,000 per month to support their use!**

EDP graphics specialists often act as an in house graphics

service bureau, providing completed charts and visuals for

analysis and presentation. However, with demand increasing

these specialists are finding that their major focus is on

maintaining exis~ing applications. Ad-hoc graphics requests

are getting low priority.

*1931 Survey User Ratings of Graphics • 1fcware Packages, AUI
Data Graphics, (Aian Paller).

145

146

This is not " .synJrorne unique to g1-apnics. The 'persorldl'

needs of the professional or administrative support staff are

increas1nc;ly outgrowin::; tt1e centrn11sed resouroes ,udde iJVdil­

able to them. As a result we have seen the growth of the

personal and mini cowpu~er distributed tnroughout organisa­

tions to satisfy individual and departmental requirelilents.

TlH; pc.:rsonal compu.~cr off0rs ex<.!e1lent c;rcipt1ics capabilities

and int.er faces for tt1e 'office user', out this is not its

only function. It and business grapnics are used and useful

because the personal computer can also be used for general

app1icat1ons - grapnics is a valuable.colllplement to L.he oLner

office functions ...• tnis and ease of accessibility, I

beleive, ensure tne continued and increasing use of grapnics

by almost all personal computer users in an organisation.

But; one more seep 1-iould oe nice! Most personal computers can­

not offef easy, efficient access (local or remote) to com­

munity informa(.1on - documents, uata and grapnics are not

e::isily shared.

~he other grow(.h area is that of the general purpose minicom­

puter. v-lit;1 the increasing p(i)wer of minicomputers ,nany

grapnics applications are being transferred from mainframes

to minis. The biggest problee11 iias b0en that the software has

remaineJ ED?-orientat>ed ,mile t.n,2 :ninieompuLer has ,11oved inc.o

c.he offices of f~nctional departments, such as tne Finance,

Person:1el, MarKeting and otiler dep0rLrnents

Until recently, these functional departments in an

or;;anL:iadon were relying 011 tt·ie grapi1ics artists or tne EDP

departments co satisfy t~eir ~raph1cs needs. Long lead

times, niJh expense anJ poor response ~o ad-hoc requests are

now making them look for better ways to satisfy these

requ:::sts w!ulst, 1.iaintaining tne mucn-necueu service provided

by the EDP centre for complex grapnics witl1 direct database

access anu programmatic features to access and manipulate

centralised information. With new, easy-to-use business

grapr11cs sofc.w<:ire, vendors sucn as bewlet,c-PackurJ are begin­

ning to meet this demand by moving graphics directly into the

nands of the professionals, as well as offerinJ tne founda­

tion of sohistlcatea business grapnics witnln tne EDP centre.

Tne HP]000 Business Grdphics Puckag0 provides a comprehen­

sive working solution for the ~raphics needs of tne mana~er,

secretary and EDP professional. It packages Logetncr tnree

products, !IPEAS:t"CHART, HPDRAw and HP DSG/3000, whict1 are

designed to worK and fit to~etner and extend ~raph1cs

capabilities from the EDP centre to the office end-users.

HPEASYCHAftT is Hewlett-Packard's coi:.ally ne••

''No-experience-necessary" Chdrt~aker for business profes­

siondls anu secretaries alike. for a long time now we have

all wanted a 'easy-to-use/friendly/simple' graphics system,

but these ,uucb-used clic(1:;s ure open to ill <:;er pratac1on and

few systems achieve this, HPEASYCHART was designed to

overco,ne i:.his : a picture-orientaL.ed .tLoiin :aenu ilelps users

147

148

select a chart by its visual appearance on the screen ••••. I

don't n·eed to kno'w ,-;l1cit ci vertical cluster bar cl1ifft is;

s i 111 ply t. ha t " I want to 1n a k e a ch art t nut looks like t n at

one"! By ti1e pi1ilosopny of 'point"' pusn' a cnart cun oc

selected. Once selection is made, you can view a pre-defined

chart of that type with sample data

wnere to type the numbers and words •..•• cype in your own

dat<:. over ct1e exa:nplc, uno tll811 plot ttie c11art. All of ti1is

with just three screens (two, if you plot to the screen)!

This tool for tne professionals is ideal for the •scratcn­

pad' graphics capaoilities I spoke about earlier. However,

it needs to be backed-up oy more complex grapnics

capaoilities to meet growing needs. DSG/3000 introduced in

1980, is HP's "full caµability" ci1art desi6n and production

system to satisfy this demand. Its advanced capabilities

provide for periouic, dut.Odldtic generat:.ion of cnart.s, daca

transformation (mathematical operations may be specified and

DSG/3000 will perform &ne calculations and chart the

results), and access to Jata files on the HP 3000. In addi­

tion, DSG/3000 provLdes greater flexibility dnd qual1tf by

offering a selection of fonts, colours, text sizes, legends

and tne ability to uirectly ennance cnarcs produced by

HPEASYCHART. Tn1s last feature is key to the integrated of­

ferinJ and I will outline it briefly a lit~le later.

The tnird link in tne HP 3000 Business Graphics Package is

HPDRA;"· It is tne solution for tnat. other grapilics

requirement - presentations. HPDHAW comes into its own here

by providin5 the means ·co prouuce t1igh-quality textual visual

aids in various fonts, illustrate thew with charts prepared

with HPEASYCHAHT or DSG/3000 or from <.i library or· cornmonly

used symbols and basic geometric snapes ••••• boxes, arrows,

macnines, plants, flowchart symools, star shapes, and ~any

more! Ideal for quick, professional overhead transparencies

for professional presentations.

In addition, and most important, all ti1ree graphics products

worK togetner to provi~e an effective solution for all HP

3000 users. HPEASYCHAHT charts produced oy managers and

profess1onals on ·an ad-noc oasis Cdn be directly al!C!essed by

EDP profesionals for enhancement and inclusion in periodic

reports; charcs produced by both can be inC!luded directly in

HPDRAW drawings; and all charts and drawings can be output to

a plotter or included in a printed document usin~ TDP/3000 or

HPWORD and the HP2630 Laser Printing System without the need

for •cut-anJ-pasL.e'.

The HP 3000 Business Graphics Pal!Kage tnus distr1outes

grapnics to all users. By aoing this it should reduce the

worl<lodu frot11 ct1e EDP u,::;parcci1enl for t1,ne-consu1ning, ad-!1oc

requesLs and <H. the sa1ne tiu1e offer "grapr1ics on de111and" to

tne manager, professionals and secretaries.

149

150

It is here, in the offices (of function:il deparc;1nents), that

the full benefits of business graphics will be best realised.

The offices are the decision and communications centre of an

organisation and graphics is one, but important, complement

to the different tools used &here. Business professionals,

managers and executives interact wich information and people

daily. Their success relies on effective control and manage­

ment of people and data. Business graphics is a significant

aid in this, but only if it complements the other office com­

munication tools at the disposal of these people - viz. word

processing, report generation, telephone, meetings, 'what if'

analysis, etc.

Just as Visicalc is used oy the profession.il to "play with

numbers", scratch-pad grapl1ics can help him interpret quicKly

the implications of eacn change he maKes. Also, while new

ideas are Deing Jevelopea, these scratch-pad graphics can be

used to promote his or her analysis better, professionally,

at meetings. Whatsmore, just consider the benefits for a

1 project-group' tllat regularly needs to communicate, but:. is

physically distributed throughout an organisation : for ex­

ample, the marketeer, tne accoun~an&, tne design engineers

and production people - all involved together in, say, intro­

ducing a new product. It is usually llard enough to keep in

touch, let alone be able to exchange infor~ation and in­

uividual analysis without appointments and .uee&ings needing

to oe scneduled. But help is at nand; the growing use of

elec&ronic mail systems is an invaluable aid to solving this

problem. With the ability to send graphics and attached

analysis for review oy any or <:ill members of the ;;roup,

information flow and understanding is improved. Graphics,

with such tools, gives the manager control - control of ousi­

ness facts, of rapid communication of tne facts, and most im­

portcrntly of t1is time.

But there's more - graphics are also extensively used within

many documents. Often tne secretary has to use •cut-and­

paste' method to include graphics in reports, and such like.

I think it would be nice if this manual, time-consuming exer­

cise is cut-out.

Because of all these uses of graphics, I beleive business

grapnics is not just a tool for periodic use, but a fundamen­

tal part of the working office environment. By distributing

graphics throughout an organisation and placing it at the

fingertips of t11e real end-user, Hewlett-Packard's HP 3000

Business Graphics Package, is one example of this. rt is a

part of the Hewlett-Packard 'Interactive Office' - an in­

teJruted set of tools for decision support, dbcument manage­

men'~, P'ersonai suµport and or;;anisa tional couHnunication. The

value there is in integrating the organisation's information

needs - not just with data processing, but word processing

and graphics, and communicat.ions capabilities to tie it all

together on a sinJle family of compJtible computer syst.ems.

151

152

I really beleive that the need for integrated information

management is growing. It is of greater need to be able,

from a single workstation, for a professional to access

information without the need for a programmer, interpret

data quickly and present decisions effectively with graphics,

prepare reports with the aid of simple word or text process­

ing, (even merge those charts with text !), and send that

report/chart/information to others in the organisation! This

may sound futuristic, but it is not! With software products

to match specific needs, the right capabilities should be

distributed to the right people. For successful, cost­

effective and acceptable implementation,· business graphics

cannot stand by itself - it needs to be an integral part of

the 'electronic office'.

Business graphics aids the decision-making process, word/text

processing documents it, and electronic mail distributes it!

All together can offer a working solution with integrated in­

formation management.

INCREASED PERFOffi4ANCE AND PRODUCTIVITY FOR 3270-EMULATION

Rolf Frydenberg, M.Sc., Data Comm. Consultant,
Fjerndata A/S, N-1322 Hovik, Norway

1. ABSTRACT

DSN/IMF Distributed Systems Network/Interactive Mainframe
Facility) is Hewlett Packard's system for emulation of IB'13270
control units and terminals. Many users have discovered that
using DSN/IMF terminal-emulation (called PASSTHRU) implies long
response-times, and that using the DSN/IMF intrinsics means
extensive reprogramming on the HP3000. The Interactive Mainframe
Access System (IMAS/3000) was developed in order to reduce
response time for 3270-terminal emulation. IMAS uses less
CPU-time than PASSTHRU, and has a number of enhancements aimed at
increasing user productivity. Among the major enhancements are:
Multiple sets of user-defined function keys (and labels),
user-definable preprogrammed dialogues that take the drudgery
out of data entry, print-output to terminal-attached printer, and
batch execution of preprogrammed dialogues (in order to use an
existing data entry system on the HP3000 together with new online
applications on the mainframe) • This paper will present
IMAS/3000, and discuss this product with reference to DSN/IMF
PASSTHRU.

2. BACKGROUND

Fjerndata is one of the largest ca:nputer service bureaus in
Norway. Our main ca:nputers are:

1 I!J13081
1 IB'1370/168
1 UNIVAC 1100/62

Our datacanmunications network connects almost 2000
interactive terminals and 250 batch terminals to our central
site. Most of the batch terminals, and an increasing number of
interactive terminals, are really mini- or micro-computers. The
total transmission capacity of our data network is 650 to 700
kilobits per second, through a number of timedivision,
statistical and intelligent multiplexors.

Fjerndata is a cooperative venture. Among our owners - and
users - are some of the largest industrial ca:npanies in Norway.
The Fjerndata-group (as it is called) consists of the following
members:

The Aker Group shipbuilding, offshore
Dyno Industries - explosives, chemicals
Kongsberg Vaapenfabrikk - manufacturing, metals,

electronic products
Kvaerner Industries - manufacturing, shipbuilding,

offshore
Norcem - cement, chemicals

153

154 Aardal og Sunndal Verk - aluminium

Det Norske Veritas
Data-Ship

shipping and offshore surveyors
- data processing for shipping

companies

Norwegian Petroleum Consultants (NPC
The Norwegian Scientific Research Council (NTNF)

NPC and NTNF are users only.

The total number of employees in the Fjerndata-companies is
45 thousand, and the expected revenue for 1982 is approximately
$ 3500 million.

Fjerndata has during the last two to three years established
itself in distributed processing, by supporting three of the most
popular local computers among our users: The IEM8100, the ND100
from Norsk Data, and Hewlett Packard's HP3000 series. The
Fjerndata users have 10 HP3000's installed as of this moment.

3, HEWLETT PACKARD'S DSN/IMF PRODUCT

Let us take a look at Hewlett Packard's system for IB:~3270-
emulation, to see what it is, and what it isn't.

IML/3000, the Interactive Mainframe Link, was introduced in
early 1980. !ML allows programs running on the HP3000 to access
an IH1370-type mainframe interactively, This product has later
been enhanced and renamed. It is now called DSN/IMF
(Distributed Systems Network/Interactive Mainframe Facility).
DSN/IMF consists of four basic components. These components are:

The driver - which handles the line protocol, either BSC
or SDLC. The driver is in a "download" file for the INP
board. It is called CSDIMF.

The monitor - which does the actual emulation of the
I!M3274 control unit. This is a special program called
'I'I'S40N (Thirty'!'wo Seventy MONitor).

The intrinsics - which make it possible for HP3000
programs to access the driver program. These intrinsics
access a datasegment which contains the screen image
received from the mainframe.

PASSTHRU (in !ML it was called IDF) - which perfonns
actual terminal emulation for HP CRTs and printers.
PASSTHRU makes HP terminals capable of emulating the
functions of 134327713278 screen terminals, or 3284/3286
printing terminals.

These four ccxnponents may be considered as "layers", such as
those standardized by the International Standards Organization
(ISO) in its Reference Model for Open Systems Interconnection
(OSI). In exhibit A a comparison between the 7 OSI layers and
the 4 DSN/IMF layers is shown graphically.

The comparison in exhibit A is not exact, since DSN/IMF
internally is quite different from the OSI reference model, The
exhibit is intended merely to illustrate the basic "layer-like"
structure of most cc:mmunication systems.

The three lower levels of DSN/IMF (driver, monitor and
intrinsics) are difficult to replace by user-developed programs.
Nor is there any specific reason for replacing them: They are
well-designed cc:mponents that perform their tasks very well.
PASSTHRU, on the other hand, is a user-level application program,
and may therefore be replaced by user-developed applications. It
is also PASSTHRU that potentially limits user capabilities
compared to standard I8'13270-terminals.

Some of the characteristics of PASSTHRU, that could be
changed in order to increase performance and productivity, are
listed below:

Block Mode terminal-to-HP3000 communications is used,
which increases the amount of data transmitted between
the HP3000 and the terminal.

The 8 function keys have fixed IEM-functions, which means
that all PF keys require two interactions between the
user and PASSTHRU.

The address (or terminal number) of the emulated 3270-
unit, and the name of the DSN/IMF configuration file must
be typed in by the user.

The user must leave PASSTHRU to perform local HP
functions, and run other HP3000 programs.

PASSTHRU supports HP block-mode terminals only.

4. THE DEVELOPMENT OF IMAS/3000

Most of the HP3000-users who ordered the DSN/IMF product were
primarily looking for the PASSTHRU functions. Quite a lot of
them wanted to replace real IB'-13270-terminals and cluster
controllers with HP-terminals connected to HP3000-systems.
DSN/IMF had been "presold" to some extent, by suggesting that it
could replace IB13270s for data entry and other applications.
What we, as users were not aware of, was the fact that data entry
through DSN/IMF did NOT mean using PASSTHRU, but instead it meant
that we would have to write our own data entry progra~s on the
HP3000, and call DSN/IMF intrinsics to access the mainfr~ne.

Rather than writing our own data entry programs for every
application that we wanted to reach through distributed HP3000
systems, we decided to write our own IB'-13270-emulator, i. e. a
replacement to DSN/I~F PASSTHRU.

There were four major participants in the development of
this alternative to PASSTHRU. '!'hey were:

Aktuelldata Norway (through an ex-HP data comm. expert)
Fjerndata (the coordinator)
Dyno Industries (the end-user representative)

155

156 Hewlett Packard Norway

IMAS/3000 - Interactive Mainframe Access System - is a two­
part system for replacing DSN/IMF PASS~HRU. L~AS uses the
DSN/IMF intrinsics, monitor and driver, and therefore can not
replace DSN/IMF.

Design considerations.

When we designed IMAS, tVK) considerations were in focus:

-> The HP3000 is NOT an IEM327X cluster control unit. It
is much more canplex, and runs significantly more complex
software.

-> Data transfer between IEM3270-terminals and control
units takes place at very high speed (hundreds of
kilobits per second), while it is low- to medium-speed
between the HP3000 and its terminals (up to 9.6 kilobits
per second) •

For these two reasons, an HP3000-based 3270-emulation package
must have additional features, that IEM3270-control units do not
have.

In order to be able to add these advanced features, we
decided to build a two-part system. The first part comprises the
"standard" features (i. e. the actual screen terminal
emulation) , while the second part contains the "advanced"
functions that can only be found in IMAS.

Advanced features.

We investigated three possible methods for implementing
advanced features in the TI4AS/3000 system:

£1. Local screen processing,
locally, possibly in the
reducing response time.

by storing screen
terminal itself,

formats
thereby

£2. Writing data-entry programs on the HP3000 that stored
the data in a file while another process transmitted the
data to the mainframe (possibly in batch mode).

£3. "Hooks" into IMAS, that could allow flexible
programmatic access to the mainframe under user control.

The users told us that method £1 was infeasible, because of
the large number of different screens that they used.

Method £2 would force us to write quite a few specific
programs, and modifying these whenever the host programs they
communicated with were modified. We would also have to write new
programs for each new user.

So we were left with method £3. We found that these "hooks"
could most easily be implemented if the programmatic access could
be performed at a "higher" level than ordinary programming. From

this root grew the concept that we now call "automatic
dialogues".

5. IMAS/3000 TEIMINAL EMULATION

When we designed the screen terminal emualtion of IMAS/3000,
we followed the following guidelines:

1. Reduce response-time canpared to PASSTHRU.
Through:
- Character-mode terminal C<Xlllllunications
- Write updated fields to the screen only

2. Make function key usage more efficient and user-oriented.
Through:
- User-assigned functions for the function-keys
- User-defined function-key labels
- ~ultiple sets of function keys

3. Add local functions.
- MPE interface (including RUN command
- Screen copy to system or terminal-attached printer
- Trace facility

4. Include character translation for native character-sets.

5. Flexibility and adaptability.
Through:
- Parameters specified in configuration file.
- All files backreferenced to :FILE-equations.

Terminal handling.

The terminal handling has been significantly enhanced
compared to PASSTHRU, by avoiding HP block-mode data
transmission. Character-mode has two significant advantages:
First, data input fran the keyboard is sent to the HP3000
immediately, so that there is no delay after the user presses
<ENTER>. Secondly, data output to the terminal need not erase
the whole screen, but can be transmitted as "updated fields
only". For these two reasons, data tran&nission delays are
significantly shorter for IMAS users than those experienced when
using PASSTHRU.

Input/output operations under MPE require quite a lot of CPU­
time. By keeping the amount of data transmitted between the
terminal and the HP3000 to a minl.lllum, total CPU-time per
transaction is reduced canpared to PASSTHRU. This was not a
design objective, but is still an important feature in L~AS.

In the bar-chart in Exhibit B, response-times and CPU-times
for IMAS and PASSTHRU are canpared. '!'he canparison covers 6
different transactions of three basic types, each transaction was
run 10 times, and average CPU- and response-times calculated fran
this sample.

I.6'13270 functions and keys.

157

158
IBM3278 screen terminals have 24 Program Function keys (PF1

through PF24), three Program Attention keys (PA1, PA2, PA3),
and an host of other special-function keys (Erase End Of Field,
Erase End Of Input, CLEAR, RESET, SYS REQUEST, etc.). HP262X
terminals have only 8 user-definable function keys (f1 through
f8), and a limited number of fixed-function keys (clear line,
clear-display, roll-down, roll-up, etc.). These differences
between IBM- and HP-terminals imply that a direct mapping
between HP- and !IM-function keys is infeasible.

In IMAS we have allocated a two-digit function number from
-3 to 99) to each IIM or local function that can be performed.
A list of these functions may be found in Appendix A. These
function numbers are assigned in groups of eight (a "key-set") ,
to the eight function keys on the HP262X terminal. There are
also special function numbers for switching from one key-set to
another. For each defined function, a label may also be defined.
This label is displayed by IMAS in the special label-field of
HP262X terminals (lines 25 and 26 on the screen).

Local functions.

One of the most important local functions of IMAS is the MPE
MODE. This function allows the user to enter standard MPE
commands, including the RUN command, without leaving the IBM
session. Local programs may therefore be run while the IBM
session is still active. The user can return to IMAS by using
the RESl.M E command •

There are also local functions for a variety of other
purposes. Some examples are changing key-sets, turning the trace
facility on and off, printing the current screen image, and
starting automatic dialogues.

Configuration file.

It is of high importance to be able to adapt IMAS to
different users, and environments, without having to change the
actual program. This is achieved through the use of an IMAS
configuration file, where all relevant parameters are defined.
The configuration file may be specific for the individual user,
or for a group of users. The configuration file is
backreferenced to a :FILE-equation, making it extremely easy to
implement account- and system-wide defaults through the MPE User
Defined Command facility.

Parameters that are defined in the configuration file
include: Which IMF configuration file to use, which of the
emulated IH13270-terminals to open, what to trace when the trace
facility is invoked, when to use autodialogues, and what
functions and labels are in which key-set.

6. IMAS/3000 AU'J'CMATIC DIALOGUES

The chosen method for user-oriented programmatic access to 159
the mainframe is through a symbolic "language" for describing
user-application dialogues. IMAS interprets and executes the
statements written in · this language, thereby emulating a user
entering data through his keyboard. We call this feature of the
IMAS/3000 system "automatic dialogues".

Autodialogues reside in standard 'T'DP or EDITOR files. One
autodialogue file can contain up to 9 separate autodialogues.
Each autodialogue describes a sequence of operations on one or
more screen images received from the mainframe.

Autodialogue functions.

In the current version of IMAS (called ON
functions may be performed by autodialogues:

the following

Data may be INPUT to a specific field in the screen image.
The source for this input data may be the keyboard, an MPE file
or hard-coded in the autodialogue itself.

Data may be OUTPUT from any field in the screen image, either
to the terminal, or to an MPE file.

There are a number of control statements, such as IF-type
statements, GOTOs, and SUBROUTINEs. There are also statements
for defining which files to access on the HP3000, turning the
IMAS/3000 TRACE-facility on and off, displaying messages on the
user's screen, terminating autodialogues or the whole IMAS/3000
session, etc.

Developing autodialogues

Autodialogues are written and edited using standard editors
such as EDIT/3000 and TDP/3000. EDIT/3000 is directly callable
from IMAS/3000 for editing the current autodialogue file. File
format for autodialogues is standard numbered or unnunbered ascii
files, where each autodialogue statement is terminated by a
semicolon. Only one autodialogue statement is allowed on each
line.

Autodialogues are called by the IMAS/3000 user in the same
manner as other IMAS/3000 functions, i. e. identified by a
function number. This function could be implemented directly
through a soft-key, in one of the key-sets defined in the
configuration file.

Autodialogues are in general user-specific, but system- or
account-wide defaults may be implemented through the MPE User
Defined Command facility, since the autodialogue file is accessed
through a :FILE-equation for the file IMASAUTO.

An autodialogue "compiler" is under development. This
compiler will make autodialogue development simpler, and will
allow the design of more advanced autodialogues than can be
achieved at present. The compiler will be able to handle
variables (STRINGs and INTEGERS), LABELs and PROCEDUREs. The
result of the "canpilation" will be an autodialogue file which
L~AS will interpret just like any other such file.

160 Some autodialogue examples.

To illustrate the possibilities that autodialogues give the
user, we will describe a set of autodialogues that were developed
for users of an electronic message switching system (EMSS),
that is available on our mainframes. This system enables
collillunication between the more than 2000 interactive Fjerndata
users. The complete listing of these autodialogues can be found
in Appendix C.

Dialogue no. 1: Log on to EMSS.

This dialogue will log the user on to EMSS. The dialogue
consists of the following steps:

1. Enter fu'1SS.
2. Query user for ID and password, and enter these.
3. Return control to the user.

Dialogue no. 2: Copy a messa~~ to an HP3000 file.

This dialogue copies the current message to an HP3000
fixed record-length ascii file. The user is prompted for
the filename. If the file doesn't exist, it will be
created for the user. This dialogue performs the
following steps:

1. Open the HP3000 file.
2. Copy each page (there are 4 pages, with no END OF

MESSAGE delimiter).
3. Return control to the user.

Dialogue no. 3: Copy message from an HP3000 file.

A message is read from an HP3000 file, and written into
the El1SS. The user may specify which file the message is
in through a :FILE command. If this file doesn't exist,
the user is prompted for a filename. This dialogue
performs the following steps:

1. Open HP3000 file.
2. Read EMSS destination-id and message title.
3, Read from file, write to EMSS until END-OF-FILE or

four pages have been filled.
4. Transmit message, return to user mode.

Dialogue no. 4: Log off from EMSS.

The user is logged off from the electronic mail system,
and may access other mainfra~e applications or leave
IMAS/3000 entirely.

When using this message switching system, an IMAS-user will
ordinarily only need two IB-13270 function keys, PF7 and PF8,
for retrieving the previous/next page of a message. He will also
need the four autodialogues mentioned above, and possibly the MPE
MODE f'or entering MPE commands or running HP3000 programs. -:he
In Exhibit C the difinition of this key-set (from the IMAS

configuration file), and the resulting labels on the screen 161
terminal, are shown.

7 • CONCLUSIONS

This has been a very quick walk-through of the IMAS/3000
system, where we have outlined the basic similarities and
differences of DSN/IMF PASSTHRU and IMAS. We have pointed out
some of the perfonnance and productivity benefits that IMAS users
may experience over PASSTHRU users. Let us try to sum up some of
these benefits:

IMAS has significantly better performance than
PASSTHRU, making it much more suitable for direct
replacement of IEM3270-type terminals.

IMAS is more flexible and adaptable than PASSTHRU,
through its more advanced function-key usage, and
configuration file parameters.

Il~AS can contribute to significant productivity
enhancement for data processing users, through the IMAS
automatic dialogue facility.

Programmatic access to IEM370-type host systems is
made very easy by using IMAS automatic dialogues.

For those users who want these advantages, but are sceptical
about bying crucial data communications software from a third
party, it is important that there is a large organization behind
the product. This organization - F jerndata - is committed to
keeping IMAS compatible with future hardware and software
releases fran Hewlett Packard.

APPENDIX A: IMAS FUNCTION NUMBERS

Below is the current list of the numbers associated with specific
local and IEM-type functions in IMAS.

< -3 - -1) PA3 - PA1
< 0) ENTER
< 1 - 24) PF1 - PF24

< 30 - 33) CHANGE TO KEY-SET NO. 0 - 3

< 50 > PR0'1PT USER FOR FUNCTION

< 66) PRINT SCREEN ON SYSTEM PRINTER
< 67 > PRINT SCREEN ON 2621P PRINTER
< 68) COPY SCREEN TO HP2624/HP2626 PRINTER

< 71 > ERASE INPUT
< 72 > ERASE FIELD

162 < 73 >
< 74 >

CLEAR
RESE'!'

< 80 > USE 'NEXT' AUTODIALOGUE
< 81 - 89 > USE AUTODIALOGUE NO. 1 - 9

< 91 >
< 92 >
< 93 >
< 94 >
< 95 >
< 96 >
< 97 >
< 98 >
< 99 >

RESE'!' TERMINAL I REPAINT
REPAINT
TEST MODE
STAR'!' LOGGING
STOPP LOGGING
SI'!'UATION LOGG
EDITING OF MASAUTO
MPE MODE
TERMINATION

APPENDIX B: THE !MAS AUTQ~ATIC DIALOGUE SYSTEM

Below is a list of the syntax of !MAS automatic dialogue commands.

CHECK
ERROR
EXIT ;
FUNCTION
GO
GOSUB
INPUT
MESSAGE
READ
RECEIVE
REOF
RETURN ;
RF ILE
TRACE.;
TRACEOFF ;
TRACEON ;
TRANSMIT
USER ;
WAIT
WFILE
WRITE

func

field "string"
line

func
line
line ;
field "string" ;
"string" ;
field iE"prompt"A

line ;

"filename"

func

secs ,
"filename" ;
field k:charsA

rline rline

/EcharsA

= !MAS function number
field = Number of field in screen image

Line number in autodialogue file line
rline
chars
secs

=
=
=
=

Relative line number (from the current line
Number of characters to READ or WRITE
Number of seconds to wait before proceeding

APPENDIX C: AUTODIALOGUE EXAMPLES

Below is the complete listing of the autodialogues used in the

example in chapter 6 of this paper. Autodialogue execution
starts at line 2 for function number 81, line 3 for function
nunber 82 etc. Lines 6 through 10 are dummies in this example.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

MASAUTOO;
GO 025;
GO 078;
GO 132;
GO 173;
GO 016;
GO 016;
GO 016;
GO 016;
GO 016;
*

test record)
81 > Logging on to the EMSS application
82 > Copy a message to an HP3000 file
83 > Copy a message from an HP3000 file to EMSS
84 > Log off from the EMSS application
85 > NO SUCH DIALOGUE
86 > NO SUCH DIALOGUE
87 > NO SUCH DIALOGUE
88 > NO SUCH DIALOGUE
89 > NO SUCH DIALOGUE

* *£££
*
*
MESSAGE "Invalid AUTODIALOGUE number - hit <RETURN> ";
*
wait 000;
USER;
*
* *PAGE £££
*A U T 0 D I A L 0 G U E for logging on to E M S S.
*
CHECK 001 "THIS TERMINAL" +03 +00;
message " You are not in the 'LOO ON' screen. 11 ;

wait 010;
RETURN;
*
MESSAGE "Am entering the EMSS system!";
*
INPUT 000 "EMSS";
TRAN3'1IT 000;
*
*
CHECK 001
RETURN;
* RECEIVE;
CHECK 001
RETURN;
*
MESSAGE
*

II LOGON ACCEPTED" +02 +00;

---- Get next screen image.
"SELECT FUNCTION" +02 +00;

"You are now in EMSS";

INPUT 002 117
TRAN3'1IT 000;

...
'

Function 7 (MEMO SWITCHING) selected.

*
CHECK
RETURN;

003 "SIGN ON" +02 +00;

*
INPUT 008
RFILE
READ 023
READ 026
TRANS'1IT 000;
*
RETURN;
*
*

" "· ' "$S"'DIN "; Get Identification from user
"What is your user ID? ";
"What is your password? ";

163

164 60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
15
76
77
78
(9
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

*PAGE ££
* S U B R 0 U T I N E for copying
* one page of a message to an HP3000 file.
WRITE 031;
WRITE 032;
WRITE 033;
WRITE 034;
WRITE 035;
WRITE 036;
WRITE 037;
WRITE 038;
WRITE 039;
WRITE 040;
* Have now written one page (i.e. 10 lines).
RE'lURN;
*PAGE ££
* A U T 0 D I A L 0 G U E for copying a 4 "page"
* message to an HP3000 file.
MESSAGE "I am now copying the message to the HP3000.";
*
CHECK 003 "PRIMARY MENU" +00 +03 i
INPUT 043 "S";
TRAN!:MIT 000;
•
CHECK 003 ''MESSAGE RETR" +02 +00;
USER;
*
WFi:LE; ---- Prompt user for filename.
* WRITE 007;
WRITE 009;
* GOSUB 063;
* *Get next page - £2
TRAN!:MI'l' 008; •
GOSUB 063;
* *Get next page - £3
TRAN!:MIT 008;
* GOSUB 063;
* *Get next page - £4
TRAN!:MIT 000;
*
GOSUB 063;
INPUT 013 "P"; ---- Return to primary menu.
TRAN!:MI'!' 000;
USER;
* *PAGE £££
* S U B R 0 U T t N E for copying ten lines
* from an HP3000 file to an EMSS "page".
READ 036 072;
READ 037 072;
READ 038 072;
READ 039 072;
READ 040 072;
READ 041 072;
READ 042 072;
READ 043 072;
READ 044 072;
READ 045 072;

125
12b
127
12tl
129
130
131
132
153
134
135
136
137
138
139
140
141
142
143
144
145
146
147
14tl
149
150
151
152
1?3
154
155
156.
157
158

·159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190
191
192
193

* One page copied fran HP3000 to EMSS.
RETURN;
*PAGE £££
* A U T 0 D I A L 0 G U E for copying a
* message of up to 4 pages from an HP3000 file
* (referenced by FILE REAll'1SG=<filename>) to EMSS.
lt

<~ESSAGE "Copying a message from HP to EMSS.";
11

RFILE "*REACMSG ";
*
INPUT 007 "C";
TRANs-IIT 000;
*
CHECK 003 "MESSAGE TRANS" +02 +00;
USER;
*
READ 008 008; ---- USERID for destination
READ 012 014; ---- ~I~LE of message.
*
REOF 163; Skip to line 163 when EOF is detected.
*
GOSUB 115;
*Skip to next page.
TRANs-1 IT 008;
11

GOSUB 115;
*Skip to next page.
TRANs-II'l' 008;
* GOSUB 115;
*Skip to next page.
'l'RAN.:M I'l' 008;
* GOSUB 115;
* Have read page no. 4, and the message may be transmitted.
* * The autodialogue will be directed here on EOF as well.
TRANa.lI'l' 000;
INPU'l' 021 "'I'"; ---- Select option "TRAN;:MI~".
'l'RAN;:MI~ 000; ---- "Press" ENTER.
*
USER; ---- Return control to USER.
*PAGE £££
*
*
*

Log off from the EMSS application.

*
MESSAGE "Logging off from EMSS. 11 ;

*
CHECK 003 "PRIMARY MENU" +03 +00;
MESSAGE "You MUS'!' be in PRIMARY MENU. II;
WAI'!' 000;
USER;
*
INPU'! 007 "X";
TRANa.lIT 000;
*
CHECK 001 "SELEG'!' rnNCTION" +03 +00;
MESSAGE "Error occurred - this screen is unknown."
WAIT 000;
USER;
*
INPUT 002 "1 ";
TRANS-II'.!' 000;

* RETURN;
*
* END OF AUTODIALOGUE FILE FOR E '.~ S S USERS.

165

166

IBM to HP3000
response time

~

HP3000/III
CPU-time -

HP3000 to terminal
data transfer time

W//A
(2400 bps l

TRANSACTIONS (#1 and #2: data entry, #3 and #4: menus, #5 and #6: editing)
All figures are averages for ten identical transactions

Exhibit B: !MAS and PASSTHRU response times.

Definition in the !MAS configuration file:

* LINE #1
81 LOG ON
82COPY MS
83COPY MS
84LOG OF
07 PF 7
08 PF 8
98 MPE
30 MAIN

LINE #2
EMSS

TO HP
FROM HP

EMSS
PREVpage
NEXTpage

MODE
KEY SET

Resulting labels on the HP262X screen:

167

IL:: I lc:V :SI I= MS;l IL~MSSOFFI ~ ~ ~ ~
Exhibit C: Function keys for an IMAS/EMSS user.

168

o s I Reference Model

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

LINK

PHYSICAL

D S N I I M F

PASSTHRU

INTRINSICS

TTSMON - monitor

CSDIMF - driver

Exhibit A: The levels (layers) of OSI and DSN/IMF.

Character versus Block Mode
Terminal Input on the HP/3000

by

Kurt Sager SWS Software Systems AG Schoenauweg 8
CH-3007 Bern I Switzerland

169

170

C o n t e n t s

Summary

1. Programming techniques for dialogs between terminal users and
application programs running on the HP/3000 system

2. Comparison of Character Mode versus Block Mode Terminal Input

3, Design Goals for a Character Mode Screen Form Handler

4. Comparison of two Screen Form Handlers: - V/3000 operating in
Block Mode - ITA/3000 operating in Character Mode

Summary

Most user-friendly online software packages use the screen forms
technique to display questions on a CRT terminal. The user then only
fills in the blanks or overwrites the default values on the form.
Hewlett-Packard offers V/3000 to create and to maintain forms and to
use them in the application programs. V/3000 reads ALL input fields in
the form at maximum speed each time the user presses the ENTER key:
this method is called 'block mode'. The HP-3000 computer architecture
has been designed for character mode operation, however. To overcome
some serious disadvantages of block mode input several screen form
handlers operating in character mode has been developped during the
last few years. As an example, the design principles, outstanding
features and performance results of the Interactive Terminal Access
procedure ITA/3000 are compared to V/3000.

The most important advantages of ITA/3000: - forms design and
maintenance using an editor - national terminals equally well
supported - account or system wide defined field enhancements -
current input field can be highlighted - every input is checked
immediately - no peak input rates for the HP-3000 - very easy
programming, just one procedure - much better control over user input

typed-in characters are transmitted only

1. Programming techniques for dialogs between terminal users and
application programs running on the HP/3000 system

On the HP/3000 system, as on most interactive computer systems, two
basically different techniques for the man-machine dialog are used in
computer programs:

(1) 'question I answer sequence'

(2) 'show a form & fill in the blanks'

The first method, 'question I answer sequence', is historically the
older technique used in interactive programs. This method is quite
easy to program and the necessary instructions are part of most
programming languages, e.g. DISPLAY/ACCEPT in COBOL, WRITE/READ in
FORTRAN, PRINT/INPUT in BASIC etc. The terminal operator sees one
question at a time and gives the appropriate answer. Then the program
displays the next question on the screen, which usually depends on the
previous user input. The 'question/answer sequence' technique is
appropriate for:

short dialogs, e.g. a few parameter values to start a batch
program,

technical and scientific programs with few input variables and a
lot of computations,

one-shot applications, typically such as BASIC programs,

computer science education,

very complex dialog structures (see ELIZA [1]), where the actual
answer determines the next question.

This way of man-machine interaction gives the terminal user the
feeling to be very 'close' to the computer program. It allows the
programmer to realise very flexible programs but at the additional
risk of more difficult maintenance. It is indeed often not easy to see
all possible dialog steps from a program listing.

Method (2), 'show a form & fill in the blanks', has become more and
more used for standard data processing applications. It is

appropriate for well defined and often used applications,

the typical dialog technique on display terminals for commercial
applications,

similar to the traditional paper work,

well-suited for unskilled people and occasional users,

easy to see the relations between many fields to be filled in, e.g.
dozens of descriptive and quantitative inputs for a new stock item
to be entered.

Using method (2), an entire form is displayed on the terminal screen,
typically showing a title, some explanations, a selection of options,
and questions followed by distinctly enhanced fields for the user

171

172

input. The cursor is positioned at the beginning of an input field,
ususally the first one. The user has time to read the instructions on
the screen, to understand all the questions·to be answered. Generally
it helps a lot to see all related questions on the same page, The user
then answers the first question. If the first input field is completly
filled, or if a defined 'termination key' is pressed, the cursor jumps
automatically to the beginning of the next input field. If the user
types a formally or logically invalid answer, an error message
explaining the problem is displayed as soon as possible, and the user
is.asked to correct his input.

Technically speaking the second method, 'show a form & fill in the
blanks', is realized as follows:

In the first step the screen form is named and designed using a
kind of editor, then stored in a forms library.

The programmer puts a call to the appropriate screen handling
procedure in his interactive program for each form to be displayed,
erased, read from, •••

At execution time the forms are displayed and the user input is
returned to the calling program as individual fields or as a block
of all concatenated field data of the current screen form.

Method (2) has the following main advantages over method (1):

It looks more professional to show entire forms on the terminal
screen and to let the user fill in the blanks,

It is easier for the terminal user to know what kind of input is
expected,

Possibly the user has the option to check his input in all fields
by re-reading his input, and to correct any bad values. Finally he
'sends' the whole block to the program for processing.

Forms are displayed at once and then remain motionless on the
screen until an other form is needed, This is much more agreeable
to the operators eye's than the frequent jumping up of lines as
with method (1),

How can you use method (2) on your HP/3000 computer? HP says: "That's
easy, you just use V/3000, which has been delivered as part of the
fundamental system software, and order some of our block mode
terminals". BLOCK MODE? What is that? Are there terminals without
block mode? Yes, the low cost HP2621. Are block mode terminals always
working in block mode? No, if you logon to the system your terminal
works in CHARACTER MODE. The same is true if you use EDITOR, TDP,
DICTIONARY/3000, the MPE command interpreter, or most HP utilities.
Every time you terminate an input by pressing the RETURN key the
program you are using works in CHARACTER MODE.

However, for many HP/3000 users the 'show a form & fill in the blanks'
technique is synonym to block mode data transmission. Why? Because the
tool proposed by HP, V/3000, to realise this technique needs BLOCK
MODE terminals.

The V/3000 requirement of block mode transmission does not imply
though that method (2) can only be done in block mode. Several screen
form handlers, operating in character mode, have been developped by
independent software companies and proposed on the HP/3000 software
market as a promising alternative to V/3000 ([2],[3],[4]).

Why develop a screen form handler with many man-months effort? Why
decide many dp managers to BUY an other screen form handler instead of
using HP's V/3000 which is FREE of charge?

The secret is: Thanks to the numerous advantages of CHARACTER mode
operation over BLOCK mode the investement for an other screen form
handler may be paid back in a few months!

But let us now see what the differences between CHARCATER mode
operation and BLOCK mode operation are.

2. Comparison of Character versus Block Mode Terminal Input

Character mode terminal input can be described in a simplified way as
follows:

(a) The user sees a question or item name ('PART-NR?') at the left of
the blinking cursor. The program has issued a read command to the
terminal port.

(b) Each character the user types on the terminal keyboard is
immediately transmitted to the computer over the communication
line, normally echoed back to the terminal screen at the current
cursor position, processed within the computer by the terminal
driver (a piece of system software, part of MPE) and stored in a
memory resident table called terminal buffer.

(c) If the character count of the read command is satisfied, or if a
special termination character (normally the code generated by
pressing the RETURN key) is detected, no more characters are
accepted. The characters already entered are then moved from the
terminal buffer to the programs read buffer.

(d) The user program does the necessary formal and logical checks to
verify the input data (e.g. is it numeric? not more than 2
decimals? is there a stock item having this PART-NO already in the
data base?)

(e) If the user input is not correct an error message (e.g. "This
stock item does not exist") is sent to the terminal, and the
program restarts at point (a).

The maximum character input rate added accross all connected terminals
is approximately

(number of terminals) times (maximum typing speed),

or for 20 terminals about 100 to 200 characters per second. The
terminal driver processes all these incoming characters, and therefor

173

174

needs to interrupt the CPU about every 5 to 10 milliseconds.

The more terminals send input to the terminal ports at human typing
speed the more uniform the character flow to be processed by the
terminal i/o driver is (due to statistical reasons).

But how does BLOCK mode input affect the HP/3000 system?

(a) The terminal user types his input, every character typed is shown
on the screen and stored in the terminal memory. NO transmission
to the computer occurs at this time. If a field is full or if a
special termination character is pressed (TAB) the cursor jumps to
the next field. Already filled in data can be corrected by tabbing
aroung the form and using the local edit keys. Eventually many
hundred characters are stored this way in the local terminal
memory.

(b) While the user fills in field by field the dumb terminal processor
cannot detect invalid input data, except the more expensive HP2624
where some limited local field editing is possible.

(c) When the user finally presses the ENTER key the contents of all
input fields including trailing blanks and field separator
characters are sent to the HP/3000 at maximum transmission speed
(up to 9600 baud for the 30/33/40/44/64, 2400 baud for the older
Series II/III).

Once the initial hand-shaking between the terminal controller and the
terminal is done there is no possibility for a busy terminal driver to
stop the incoming data flow before the end-of-block sign. Worse, the
computer hardware/software must be able to digest the AGGREGATE data
flow of all connected terminals in the worst case, when all users
press the ENTER key within the same one to two second intervall! An
interruptable block mode transfer could be imagined, but has never
been realised on the HP/3000,

The maximum character input rate in BLOCK mode operation is

(number of terminals) times (maximum transmission speed)

or for 20 terminals about 20'000 characters per second! This is a more
than 100 times higher input rate than by CHARACTER mode. BLOCK mode
transmission is characterized by peak rates, some times very high,
followed by quiet periods. Data overruns are quite frequent, which
lead to retransmission of the faulty data block. Worse even: faults
may occur (e.g. by transmission over a noisy telephone line) which are
not detected and never seen by the user, because the HP/3000 doesn't
echo his input when working in block mode. Many low-end models with 10
or more terminals cannot be operated properly at 9600 baud with block
mode transmission. Solution: drop down the terminal speed to 4800 or
2400 baud!

The discussion above shows that while the 'show a form & fill in the
blanks' technique is often prefered, its implementaion using block
mode input (V/3000) has some serious drawbacks on the HP/3000 system.

In fact the HP/3000 system is not built to handle block mode input.
The way it reads blocks of data is by simulation of the block mode
technique with the existing hardware features and system software.

Every character received at any terminal port interrupts the CPU as in
standard character mode but at a much higher frequency. Possibly this
is not true any more for the new top model 64.

3. Design Goals for a Character Mode Screen Form Handler

The design goals for a character mode screen form handler as an
alternative to V/3000 can be classified in three categories:

(a) Design goals to satisfy the terminal user:

It is less-error prone to terminate every input sequence by the
same 'termination character', the RETURN key, in all
situations: in the :HELLO command, :RUNning a program, and to
terminate the input data in a long input field of a form. If an
input field of visually defined length is completely filled the
input operation should automatically terminate.

It is mandatory that all input data is immediately checked at
least for formal correctness (e.g. numeric, number of
decimals). If logical checks are necessary (e.g. does this
PART-NO exist?) they should be executed by the application
program just after reading the input field(s) concerned.

Error messages should be displayed in a special window line in
the local language (implementation parameter), possibly even
with different languages on the same system, depending on the
actual users mother tongue!

The following 'standard' functions should be executable by
defined control characters: screen refresh, hardcopy to the
attached/built-in terminal printer, hardcopy to the system
printer, special interrupt with command input, cursor back to
previous field.

Usage of the local terminal memory, today present on EVERY HP
display terminal, for very quick change between terminal
resident forms.

Input fields of type 'no echo' for secret input, such as
passwords.

Numeric data should be right justified immediately, possibly
missing decimals completed by zeros.

Different types of form fields (display-only, optional input,
required input, current input field) should be enhanced the
same way in different forms and programs. This goal will best
be achieved by defining system or account wide defaults or
standards which automatically take effect.

(b) Design goals to satisfy the dp manager:

Data transfers between terminal and computer should be in
character mode only, to minimize and smooth the average input
rate to the terminal controller and terminal driver.

175

176
Response times for the users should be better then by using
V/3000: less overhead for forms handling, no transmission of
trailing blanks, only data really typed in!

It should be possible to use ANY HP display terminal without
any change in the application program, inlcuding the low cost
2621.

The development time for interactive programs should be much
shorter than with V/3000: if possible have only ONE procedure
with few parameters to display the form, read the user input,
and with automatic type conversion.

Except for simple formal checks (numeric/non-numeric, number of
decimals) all field processing and logical testing should be in
the application program only, and not dispersed partly in the
forms definition (field processing in V/3000 forms) and partly
in the application program (maintenance problem!).

(c) Design goals to satisfy the programmer:

Forms should be designed using a simple editor, like EDITOR,
QEDIT, TDP, •. by typing in exactly what the final user will
see. Special signs can be used for field definitions and field
types.

National terminals (Swedish/Danish, French, German) should
equally well be supported.

Time-consuming forms compilations should be avoided.

It should be possible to check and demonstrate the forms by a
utility program.

A forms documentation utility would be very helpful.

Buffer declarations for the major programming languages should
be generated automatically.

Programming should be easy: few procedures, simple parameter
constructs.

High flexibility to control the input process is important to
have: control is to be returned to the applicati<:m program
after the data of one, of several, or of a11 fields is entered.

The cursor can be positioned at any input field on the form.

All HP/3000 data types should be supported, and additionally
the most common date formats.

The conversion from the external ASCII format to the specified
internal data types should be automatic.

Function keys must be supported, data entered before pressing a
function key must be available.

A duplicate function for typical data entry applications would
be nice.

The time-out feature (back to program after x seconds without
user input), a special command window, and an error message
window are important.

All error messages should be stored in a message catalog, which
could be extended by program specific messages.

Program testing should be easy: additional test output to the
same display terminal by standard DISPLAY statements.

It should be possible to prepare test input on a disk file
using an editor. The screen handler procedures should then be
redirected to read from this file instead from the terminal
keyboard.

The HP/3000 standard DEBUG facility should be easy to use.

4. Comparison of two Screen Form Handlers: - V/3000 operating in
Block Mode - ITA/3000 operating in Character Mode

Based on the design principles presented in the preceeding section the
terminal screen handler ITA/3000 (Interactive Terminal Access) has
been developed by SWS Software Systems AG, and is available as a fully
supported vendor product. ITA/3000 works in character mode and es
satisfies most of the features discussed above. The following table
shows a comparison to V/3000:

*

*
*
*

*

*
*
*

*

transmission mode terminal to computer

immediate input checking

error messages in local language

instantanous forms change
only

number of forms resident in local memory

no-echo fields for passwords

use of local edit keys

automatic & immediate right justification
numeric data

softkeys supported

ITA/3000 V/3000

character

yes

yes

yes

2

yes

no

yes

yes

block

no

no

2624

1, up to
5 in
2624

no

yes

no of

yes

177

178

*

*
*

*
•
*

*

*

*
•
*
*
*
*

time-out feature

special 'current field' enhancement

system/account wide defaults & standards

'visual' forms design by

maximum number of fields per form

number of procedures to remember

forms compilation
consuming

field processing specifications
progr.

automatic type conversion

runs on low cost terminal HP2621

test input optionally from disc file

mixing forms and standard writes

program development time

automatic buffer declaration (COBOL,SPL)

References

yes yes

yes no

yes no

QEDIT/EDITOR FORMSPEC

unlimited 128

24

none time

progr. only forms &

yes no

yes no

yes no

yes yes

short longer

yes no

[1] J. Weizenbaum, Computer Power and Human Reason. From Judgement to
Calculation, 1976, W.H. Freeman & Company

[2] IT~/3000, by SWS Software Systems AG, Schoenauweg 20, CH-3007
Bern, Switzerland

[3] SCREEN MANAGER, by Avantech Informatique, 2020 University, Suite
1628, Montreal, Quebec H3A 2A5

[4] ESP/3000, by Intertec Diversified Systems Inc., 2625 Park
Boulevard, Palo Alto, Cal. 94306

[5] R.M. Green, Optimizing On-line Programs, Technical Report, 1981,
Robelle Consulting Ltd. (see p. 49)

[6] A.R. Morris, V/3000 failed at the CCSSRD, Newsletter HP Bonneville
Regional Users Group, 1982

MIMER, A COMPUTER TYPE INDEPENDENT DBMS

Sven G Johansson
Uppsala University Data Center, Box 2103, S-750 02 Uppsala, Sweden

A general DataBase Management System, DBMS, could be characterized by
the admittance of a wide independence between application programs and da­
ta. Many computerized information systems of today are dynamic enough to
handle modifications in, or expansion of the database structure without affec­
ting the existing application programs. Unlike the majority of existing
DBMSs, MIMER admits, in addition, a wide independence between DBMS
and different computer brands, as well as different general programming
languages.

For different reasons, computer hardware and software used to be sold to­
gether by the same supplier, which tied up an application system to a speci­
fic brand of computer. In present time, it is obvious that hardware type inde­
pendence brings only advantages.

To make the implementation of MIMER on any type of computer system is
remarkably easy. MIMER software is split in two parts: One is dependent of
computer type and/or operative system, one is independent. The latter part,
written in standard Fortran, comprises around 98 percent of the total soft­
ware.

The portability of the system is attained by making the integrated program
modules very simple and well-structured, with their critical computer depen­
dent parts well defined and separated. In this way, the computer dependent
parts are easily and rapidly redesigned to an optimal fit of a specific compu­
ter type. The coding of the computer dependent routines for a new installa­
tion is done, by experience, in a month or two.

A computer application is likely to change over time. When you finally have
finished a complex system analysis and accomplished the corresponding pro­
gramming work to build up an application, you definitely want it to run and
function as long as possible without doing any major modifications on it -
even if you changed to a new type of computer. Our environment is dynamic
and constantly changing. Therefore we need a simple way to define and rede­
fine the database structure since parts of our environment are mapped into
the database.

MIMER is general in the sense of application independence. MIMER is applic­
able in small projects, for instance research studies, as well as modest size
projects. It is also applicable in large systems like overall information sys­
tems including management and administation functions.

MIMER is used for many types of applications. For example:

- economy, budget and planning systems
- pay-roll system

information systems for governmental agencies
- medical information systems
- medical laboratory systems
- education tool in universities

179

180

MIMER is now installed on the following computer types:

BURROUGHS
CONTROL DATA
DEC 10/20
ECLIPSE
HONEYWELL-BULL
HP
ICL

IBM
NORD
NOVA
PDP-I I serie
PRIME
UNIVAC
VAX

The structure of MIMER - the relational model

Data to be handled by MIMER are organized in tables (relations) according to
the relational data model. Every table has a specific table name and consists
of a certain number of columns. These columns have names and type attribu­
tes. A table must have a defined primary key which is defined by one, two or
several columns. A primary key value is unique in a table.

Example:

PRODUCT

PRODNO PNAME MANNO

Pl PNAMEl M4
P2 PNAME2 M2
P3 PNAME3 M4
P4 PNAME4 M2

MANUFACT

MANNO MNAME

M2 MNAME2
M3 MNAME3
M4 MNAME4

PRODCOMP

PRODNO SUBSTNO PWEIGHT

Pl S2 5MG
Pl S4 4MG
P2 SI
P2 S4

SUB5TANC

SUBSTNO SN AME

SI SN A MEI
52 SNAME2
53 5NAME3
S4 SNAME4

Data in a table refer to certain fixed phenomena, that is actual facts, in an
activity. In the table PRODUCT we have data about

identities of products (PRODNO)
names of products (PNAME)
manufacturer of products (MANNO)

All data items in this table describe in different ways PRODUCT. "Products"
is the object class described in the table PRODUCT. The object class compri­
ses many objects, that is many different products, all with one thing in com­
mon - they go as "products". Each object of the class is described in the sa­
me form in the table - that is with the same set of characteristics, PROD­
NO, PNAME and MANNO. In a similar manner, every other table in the data­
base is a description of a certain object class. In this example we also have
the following object classes:

- product composition On the table PRODCOMP)
- substances (in the table SUBSTANC)
- manufacturers (in the table MANUFACT)

Data describe different attributes of the objects. In the relational database,
we see the characteristics as columns in the table comprising a certain ob­
ject class.

The table PRODUCT contains data describing product identities. These may
be represented by current numbers (PRODNO). By the current number, each
object in the PRODUCT table is identified unambiguously. PRODNO consti­
tutes the primary key in the table PRODUCT. Every table in MIMER must
have a primary key which unambiguously identifies the objects of the table.
The primary key is represented by one characteristic (column) or made up by
several characteristics (as for instance PRODNO and SUBSTNO in the PROD­
COMP-table).

Thus, in a MIMER database, we have data about:

objects, which are members of different object classes, where each ob­
ject class is represented by a table, and where you find data about a
certain object on a certain row in the table

characteristics of the object, where every characteristic of a certain ob­
ject class is represented by a column in the table of this object class

identities of the object - primary keys.

Between the different tables there are semantic connections which means
that one characteristic of one table also is member of another table. In this
way, you find the characteristic MANNO, identity of a manufacturer in the
MANUFACT-table. Between PRODUCT and MANUFACT there is a clear con­
nection via MANNO. As MIMER uses the relational model, the connection is
legitimate, because the information about MANNO in both tables, is received
from the same domain. We could easily call the column MANNO something
else in the PRODUCT table and yet maintain the semantic connection. What
is important is that we store the same data in the two columns, not the iden­
tical naming of the two columns.

181

182

MIMER MODULES

A database handler with interface to general programming languages to
create data independent application programs.

A query language to define and build databases, manipulate and extract
data.

A report generator to structure reports, including statistical calculations.

A forms management system which makes data entry operations a simple
and reliable matter.

A program generator which converts defined reports and queries to a
conventional programming language, thus creating an application program.

Utility programs to execute frequent operations against the database.

The data base handler

The nucleus of the system. It handles the physical structure of the database,
the mappings needed between logical and physical structures and the main­
tenance of data and metadata. The physical data organization is of no con­
cern to other subsystems. That is why redefinition of the database is possible
without making any modifications of existing application programs. You get a
good data independence

For instance, if the data values of PRODNO in the previous ly defined data­
base are stored as binary integers in two bytes is of no concern to the user.
He only states that the program wants the PRODNO-data as a character
string of length 10 (for instance). This automatic format conversion is handled
by the database handler.

One very important task of the database handler is to maintain the database.
To update the database, the user does not have to say how to do it, just what
to do.

The primary physical organization is based upon the B-tree technique with an
additional facility to define secondary indices.

The physical database is continuously reorganized by 'updating operations in
order to optimize retrieval operations and by direct re-use of free space on
the secondary memory. No overflow technique is used.

When several users at the same time perform operations on the database,
the database handler subsystem prevents confrontations to happen, thus offe­
ring a reliable database.

MIMER supports a multi-user environment. If, one day, a system crash is a
fact, MIMER uses its recovery facilities to restore the database in a valid
state.

The programming language interface

The programming language interface gives you the possibilities to create your
own application programs written in a host language, for instance Fortran,
Cobol, Pascal, Lisp, using the MIMER system as a database handler.

The application programs are highly data independent. Just the names of the
columns and the names of the tables are used for communications.

The programmer operates with defined routines which may be embedded in
the programming language.

Two types of routines exist:
- Row-oriented operations
- Set-oriented operations

Row-oriented operations is used to operate on a record-by-record basis,
where one row at the time in a table will be investigated.

Set-oriented routines allow more powerful operations.

UNION
INTERSECTION
DIVIDE
DIFFERENCE
JOIN

are examples of set-oriented functions.

The command language MIMER/QL

Very often, the user has demands on fast answers to his questions without
any programming. A fairly simple method is using MIMERs built-in £Q!!1=
mand language - MIMER/QL - which comprises some twenty different
commands. This sub-system can be used by non-programmers or parametric
users and is primarily working from a terminal, with a display screen or
type-writer terminal.

Knowing the MIMER/QL syntax you

define new databanks
define new tables
load tables with data
retrieve stored data
change or delete stored data
add new data in the tables
redefine old tables
pre-define a number of commands for repetitive use and make use of
these defined command procedures

To define the table PRODUCT in databank PRODUCTDB:

DEFINE TABLE PRODUCT (PRODNO IS 12: PNAME IS C40,
MANNO IS 12) IN PRODUCTDB;

To load or unload data between the table PRODUCT and operative system
files:

COPY PRODUCT FROM 'SEQ.INPUT';
COPY PRODUCT TO 'SEQ.OUTPUT';

183

184

To define the range of table identifiers:

ALIAS PRODUCT (P,Q);
ALIAS MANUFACT (M);

Now the identifiers P and Q are both alias to the table PRODUCT and M to
the table MANUFACT.

To put a query on the database: Find the product name and manufacturer
name manufactured by companies in UPPSALA:

CET P.PNAME, M.MNAME WHERE M.ADDRESS EQ
UPP SALA AND P .MANNO EQ M.MANNO;

To store the answer in a new table instead of getting it on the terminal:

GET NEWTAB (P.PNAME, M.MNAME) WHERE M.ADDRESS
EQ UPPSALA AND P.MANNO EQ M.MANNO;

The contents of the new table, NEWTAB, is displayed by GET NEWTAB.*.

To insert a new row in the table MANUFACT:

INSERT MANUFACT (MANN0='101', MNAME='UPPSALA
DATACENTER', ADDRESS='UPPSALA');

To replace values of some columns for every row where some condition is
fulfilled:

UPDATE P (PNAME='NE W-PRODUCT-NAME') WHERE
P.PRODNO EQ 75;

To delete rows in a table fulfilling a specified condition:

DELETE P WHERE M.MNAME EQ 'CRASHED COMPANY'
AND P .MANNO EQ M.MANNO;

To remove a complete table:

REMOVE TABLE NEWTAB;

MIMER/QL procedure$

To make use of MIMER/QL even simpler, it is possible to predefine sequences of
commands combined with prompting on the terminal. When a number of
MIMER/QL-commands are regularly run it is practical to bundle them up in one
procedure. By using one MIMER/QL-command and stating the procedures name
the whole predefined sequence is then executed. You are simply turned from
a command mode to a simpler prompting mode, where the user only answers
ready-made questions.

You also have the possibility to direct the execution through a ~
command, which offers at the terminal, different possible operations to
be initiated by the user. The procedures are always executed in a predefined
status with incomplete MIMER/QL-commands, to which the user answers,
when prompted. During the procedure run, the MIMER/QL-commands get
completed and executed.

In addition to the standard MIMER/QL-commands, you have within a procedure,
special procedure commands with functions like:

substitution
assignment
conditional go-to
loop facilities
menue facilities

For example, a procedure, say FIND-PRO can be built for answering the
query:

"Find those products which have a specific substance."

The user will execute one (or several) procedure(s) by typing the command:

EXEC PROCLIB(procedure);

If the above mentioned procedure FIND-PRO has been defined and stored in a
procedure library called PLIB the example could be:

? EXEC PLIB(FIND-PRO);

THIS PROCEDURE GIVES YOU THE NAMES OF THOSE
PRODUCTS AND THE CORRESPONDING MANUFACTURER
CONSISTING OF A SPECIFIC SUBSTANCE

GIVE SUBSTANCE NAME: S4

PNAME
PNAMEl
PNAME2

2 ROWS FOUND

MNAME
MNAME4
MNAME2

GIVE SUBSTANCE NAME:

This example shows that the procedure contains one initialization phase for
describing the function of the procedure. Then the user is asked what sub­
stance name he/she is interested in, whereafter the query is evaluated and
the result is displayed. The user may also have this procedure repeated to
give a new substance name. Leaving the procedure is done by giving
(exclamation marks).

185

186

MIMER/PG - a data language handler for pilot and production applications

Using the query language alone, the output layout will be made in a standar­
dized form. However, when this is not satisfying, a report generator is con­
nected to the query language to specify a wanted output layout.

The report generator of MIMER/PG is used to define a wanted layout and to
connect a specified report with a query during execution time. In MIMER/PG you
are all the time working in a LISP-system in an interpretative mode, thus
making it easy for you, to change the definition and execute it again.

The performance of this system will not be acceptable in routine work but is
quite sufficient during the development and test phases.

When finally the wanted specifications run as they should, you may use the
program generator module of MIMER/PG. This module will generate application
programs out of the generated reports, store the programs in the user library
for later executions.

MANLIST M.MNAME, P.PNAME WHERE P.MANNO EQ
M.MANNO

A previously defined report identified by MANLIST is connected to the query
language to make manufacturer name (MNAME) and product name (PNAME)
to be transferred to the report. What will happen with these names is defined
inside the MANLIST report. The report output may look like:

COMPILATION OF MANUFACTURERS AND THEIR PRODUCTS

MANUFACTURER

MAN I

NO OF PRODUCTS: 3

MAN 2

NO OF PRODUCTS: 4

PRODUCT

Pl
P6
P3

PIO
P7
P2
P4

TOT NO OF PRODUCTS: 7

During the definition of the report you may directly test it in an interpreta­
tive mode. A user often wants to modify the report definition. This is a
simple operation as well as the re-test of the report. When the defined report
is satisfactory you let the program generator compile the definitions into
application programs in Fortran or Cobol. These programs will be stored in a
user program library for routine work.

You may, whenever you want, implement new functions in the report genera­
tor. The only condition is a know-how of using the LISP programming langua­
ge.

The MIMER/PG system will decrease the conventional programming effort for
simple listings, tabulations and statistical operations.

The myth behind the name

Long ago, it is said, in the heathen times, there was a giant, who lived far up
in the North. He was master of a remarkable well, which was brimful of wis­
dom. When the giant drank out of this well he could instantly give the cor­
rect answer to any question. Everybody came to have their problems taken
care of, and the giant had a prompt solution for them all. His name was
MIMER.

It is also said that the giant lived where Uppsala is now. So, when we found
both the geographical and the functional connection between this heathen
giant and our database management system, we could not resist to call it
MIMER.

187

188

HP 3000 IUG K¢benhavn 1982

Presentation by T.W. Andreassen/J. Drevdal

"THE USE OF IFPS USING HP3000 IN THE NORCEM GROUP

Sivil¢konom Tor Wallin Andreassen, Department of Finance

1. Presentation of the Norcem group

2. Historical background for the EDP development in Norcem

- technical
- Nor¢k, Plancode

3. Why IFPS? Choosing and evaluating a DSS tool.

4. What is done so far

- Financial reporting (models, reports, menudriven
cmdfiles, database, registering, and extracting data
from the base).

- adhoc analysis
- an overhead demonstration of some menudriven systems.

5. Our future goals

- Financial reporting
- adhoc analysis
- organizing for a DSS group
- DSS philosofy
- IFPS user training
- Norcem's IFPS hotline

One of the main reasons why we looked for a new modelling
language was a recognition of the fact that EDP-personnel
in the future would be a scarce commodity and thus represent
a bottleneck in the development and spreading of EDP in the
group.

If we could transfer the programming or building of models
to where the needs was felt, we would make ourselves more
independent of this bottleneck.

When looking for a modelling language which would cover our
needs we scanned the market and ended up with two competiting
alternatives. After having established a few key checkpoints
we had the two products installed on our own HP/3000, the
designing of a new reporting system started. Based on the
large amount of data that would be handled in the system we
decided to design everything around a large database where
all the reported data would be stored.

Around this database we made several Cobol programs, and we
integrated all functions (extracting and registering data,
IFPS-interface etc.).

In IFPS we started to build several separate models and
reports based on ~enu-driven commandfiles which we at a
later stage integrated into a complete tree-structured
system.

Through one (1) command the user will be introduced to the
system and may go in any direction from there.

With regard to adhoc analysis we have so far made models for
investment analysis, three years budgetting models, liquidity
management, working capital management, one year budgetting
models.

What we are working on today is trying to distribute the
registering of data to where the datas originate (business
unit level) and through machine networks communication

189

transfer these data to the group's central database. We marketing
this concept for all our business units worldwide.

Through a special IFPS commandfile system called KRIB (again
integrated with the same database concept) we allow the business
units to test the data which it is about to transfer to the
group and may discover inconsistencies in the data before they
are transferred to the group.

After an agreed deadline where all subsidiaries have transferred
their data to the group's central database, the Department of
Finance may start consolidating these data. The time used for
consolidation is through this concept reduced by at least two
days.

At the business unit level we are introducing a new interactive
accounting software package which we plan to integrate with IFPS.

At the group's headoffice we are working for establishing a new
Decision Support Group, inhouse IFPS user training and the setting
up an IFPS-hotline.

Sivil¢konom Jarle Drevdal, EDP-Department

1. The choosing and evaluation of IFPS.

2. What is done regarding EDP-technical aspects.

- Data base system and related programs for the Financial
Consolidation system and related programs for the Financial
Consolidation system (NORRAPP) . Use of the machine network
system DS/3000.

- User defined Fortran subroutines. Integration with other
systems (query language, full screen editor, ledger system
etc.).

Early spring 1981 we started looking for a software tool which
could solve two main objectives:

First to be general DSS tool, second to perform financial
consolidation, the evaluation was summerized on seven points:

't90

1. How good is the system as a DSS tool?
2. How well does the system perform general consolidation?
3. How easy is data input from different sources?
4. How are reports generated?
5. How user friendly is the system for non DP personnel?
6. Vendor aspects.
7. Price.

IFPS is now installed on 6 of our HP3000 machines.

The general consolidation demand for several hundreds of
sequential files each period (13 periods a year). To avoid
this, we built a system based on one (IMAGE) database. Each
plant or department deliver their data for consolidation directly
into this database via a (COBOL)· program providing a full screen
facility (V/3000 based). On the other side of the database, data
can be extractedon a large set of criteria, and a number of IFPS
datafiles are generated. These files are mass purged after use.
By using the machine network system DS/3000, data delivered on
different machines all end up in the same database on the same
(central) machine immediately.

The HP3000 system allow the operative system (MPE) commands to
be performed via calls (intrinsics) in programming languages
like COBOL, FORTRAN, BASIC etc. This makes it possible to execute
other systems like databased inquiery (QUERY/3000), full screen
editor (TDP/3000) graphics system (DSG/3000), ledger systems etc.
From inside IFPS via.user written FORTRAN subroutines. Such sub­
routines are useful for a lot of other purposes too. One example
is to pick up specific data items from ledger or other databases
directly.

Introducing HP
Fmancial Accounting
HP Financial Accounting is a series of eight
software products for the HP3000 which
offer you a range of solutions and can be
tailored to fit your financial accounting
needs. HP Financial Accounting applications
are based on Hewlett-Packard's proven
customization technology.

HP General Accounting is positioned for
companies who have standard accounting
and bookkeeping requirements. It is a
low-cost, integrated application combining a
comprehensive set of general ledger,
accounts payable and accounts receivable
functions.

HP General Ledger, HP Accounts Payable
and HP Accounts Receivable can be
installed separately and include additional
screen and data base customization
capability not offered in HP General
Accounting.

Features in HP Dual Ledger and HP
Allocator expand the functions of HP
General Ledger to address the needs of
organizations with more sophisticated ledger
requirements. HP Allocator provides a
simple automated way of performing
sophisticated cost allocations. HP Dual
Ledger provides a secondary set of books for
automatically maintaining and r~conciling
management reporting requirements.

And, to help shape these products to your
environment, Hewlett-Packard offers two
additional customization tools. HP Report
Facility and HP Interface Facility provide
simple, cost effective solutions for all your
financial accounting reporting and interfacing
requirements.

Evaluating HP Fmancial
Accounting
To help you evaluate HP Financial
Accounting, general descriptions as well as
information about Hewlett-Packard's SUJ>port
services for standard application products are
available in this manual. Product Evaluation
Guides are also available from your Sales
Representative for a more detailed evaluation
of functions, screens and reports.

You can best evaluate HP Financial
Accounting when you have completely
defined your financial accounting
requirements . This includes an extensive
analysis of your current system,
organizational environment, plans for future
expansion, deficiencies of your current
accounting system, whether manual or
automated, and a clear definition of
additional features desired. Hewlett-Packard's
Financial Specialists are available to help you
define your requirements and match them to
the features and benefits of HP Financial
Accounting.

_..
co _..

HP General Accounting HP General Accounting is an integrated
general accounting solutbn consisting of the
comprehensive feature set and benefits
available in HP General Ledger, HP
Accounts Payable and HP Accounts
Receivable. This application is designed to fit
the needs of customers with standard general
accounting requirements who may have
unique reporting and interfacing
requirements, but do not need customization
of screens and data base structure.

HP General Accounting is a low-cost
application providing ease of implementation
and integration into your accounting
environment And, because it is offered by
Hewlett-Packard, HP General Accounting
can be easily upgraded to provide more
sophisticated accounting capabilities when
your needs change.

.....
<O
I\)

C')
O> .-

HP General Ledger
HP General Ledger automates the collection,
organization. and summarization of your
financial information. This is the heart of
your financial system and must be flexible
enough to support your current organization
as well as any future organizational and
policy changes.

HP General Ledger provides you with this
flexibility to define charts of accounts, cost
centers or other organizational units.

You decide how you want to see the
management and financial information
needed to run your business. You can review
summary information with the detail backup
available either on-line or in hard-copy
reports. This kind of visibility helps you
control expenses and keeps you informed
about your financial position. Three separate
budgets are maintained by account and/or
cost center for measuring performance and
for responsibility reporting.

Accounting entries generated within HP
Financial Accounting are automatically
posted to the general ledger. You can
automate input of accounting entries from
other systems using HP Interface Facility.
Central validation assures that all data,
whether entered on-line into HP General
Ledger or from outside systems, is correct.
The integrity of your financial information is
protected.

HP General Ledger is an integrated
application module within HP Financial
Accounting. By itself, it provides the kind of
financial control you need. Coupled with the
advanced features available in HP Allocator
and HP Dual Ledger, HP General Ledger
solves the problems of more sophisticated,
multi-national companies.

HP General Ledger Features

* On-line or batch data entry, validation and
posting

* Multiple companies with unique charts of
accounts, cost center organizations,
security, fiscal year and parameters.

* Total flexibility in defining charts of
accounts and cost centers

* Three separate budgets kept by account,
cost center, or account within cost centers.

* Responsibility reporting and on-line
analysis of expenses.

* Accruals provide automatic reversal
bookings.

* Standard vouchers automatically posted
each period.

* Ability to post to future or past periods.

* Automatic period and year-end closing
procedures.

HP General Ledger Reports and
Reviews

* Voucher Review

* Balance Sheet

* Subsididary Journal Review

* Profit and Loss Statement

* Account Summary Review

* Statement of Financial Position

* Account Detail Review

* Trial Balance Review

* Trial Balance

* Management Information

* Responsibility Reports

* Audit Reports

* Batch Status

* Maintenance Reports

....
co
~

LO
O>

HP Accounts Payable
HP Accounts Payable controls your liabilities
and helps reduce the amount of operating
capital needed to offset those liabilities. Cash
requirement projections, coupled with
flexible disbursement policies, allow you to
simulate your cash position for optimal cash
flow.

Automatic payment proposals are generated
based on your specific policies regarding
discounts, terms of payments, and due dates.
These proposals can be made against
multiple banks and are available for your
review, modification, and approval before
disbursements are actually made.

Automated bank reconciliations are designed
so your cash accounts accurately reflect the
bank balance. Payments which have not yet
cleared the bank can be assigned to a
reconciliation account for better cash
management.

To safeguard working capital, extensive
security and validation mechanisms are
incorporated into HP Accounts Payable.

As a stand-alone product, HP Accounts
Payable can be easily interfaced to your
existing general ledger and/or purchase
order management system. (For further
interfacing information, please read about
HP Interface Facility in this section).

As an integrated part of HP Financi!ll
Accounting, all accounting distributions will
be posted into HP General Ledger. Invoices
and cash disbursements may be recorded in
any currency, and currency gains or losses
will be automatically posted to your
appropriate general ledger accounts.

In addition to regular check payment
methods, HP Accounts Payable handles
bank transfers.

HP Accounts Payable Features:

* On-line vendor review and analysis with
quick access to vendors by a short name.

* Automatic voucher numbering.

* Corporate vendor turnover information for
better visibility of total turnover with
several vendors from same corporation.

* Effective discount analysis for better cash
control.

* Automatic payment proposals with on-line
maintenance, review, and approval of the
proposals.

* Cash or accrual methods.

* Recurring payments automatically booked
in each period.

* Automatic Use Tax, Value Added Tax,
discount, and due date calculations.

* Flexible accounting distribution with
system controlled balances.

* Multiple banks and multiple currencies
with automatic reconcillations.

* Automatic booking of any currency gain or
loss.

HP·Accounts Payable Reviews and
Reports:

* Corporate Review

* Summary Aged Trial Balance

* Vendor Review

* Detail Aged Trial Balance

* Single Open Item

* Open Item Register

*Open Items by Vendor

* Open Item Ranking

* Open Item Detail

* Trial Balance

* Reconciliation

* Cash Requirements Forecast

* Recurring Payments

* Discounts Taken/Lost

* Payment Proposal

* Audit Report

* Bank Reconciliation

*Vendor Listing

* Tax Reports

* Payment Register

<O
O>

l'--
0>

HP Accounts Receivable
HP Accounts Receivable interactively
records and controls the indebtedness of
your customers. Increased cash inflow and
better credit control directly affect the
liquidity of your company. To better manage
your cash resources, HP Accounts
Receivable provides sophisticated aging
methods, flexible cash application and close
credit and collection control.

HP Accounts Receivable is designed with
special capabilities for better cash
management, easier data entry and better
visibility into your business relationships. By
maintaining customer turnover information
by month for both the current and past year,
you are able to analyze historical trends and
project future business turnover.

To effect timely distribution of overdue
invoices, special attention has been given to
automatic printing of delinquency notices
which can be written at up to five levels of
severity. Exception reports are available to
focus more effectively on the areas of
particular concern, especially in the sensitive
areas of credit and collection control. HP
Accounts Receivable helps you maintain that
sensitive balance between optimized cash
inflow and good customer relationships.

Used stand-alone, HP Accounts Receivable
can be easily interfaced with external
ledgers, sales analysis, or sales order systems.

As an integrated part of HP Financial
Accounting, all accounting distributions will
be automatically posted into HP General
Ledger. Invoices and cash receipts may be
recorded in any currency, and currency gains
or losses will be automatically posted to
appropriate general ledger accounts.

Automated bank reconciliation capabilities
ensure that your cash accounts accurately
reflect the bank balance. Receipts which
have not yet cleared the bank can be
assigned to a reconciliation account for
better cash visibility.

HP Accounts Receivable Features:

* On-line customer review and analysis with
quick access to customers by a short name.

* Corporate turnover infom1ation for better
control of accumulated credit limits with
several customers from the same
corporation.

* Automatic discount calculation and
write-offs.

* Flexible aging by due date, invoice date, or
estimated payment date, based on
customer's actual payment history.

* Flexible automatic or manual cash
application features.

* Recurring invoices booked in any future
period.

* Delinquency notices automatically printed
in any language with records of dates sent
and severity level used.

* Direct debiting features.

* Handles multiple payment methods with
automatic bank reconciliation.

* Multiple currencies with automatic
booking of currency gain or loss.

HP Accounts Receivable Reviews and
Reports:

* Corporate Review

* Summary Aged Trial Balance

* Customer Review

* Detailed Aged Trial Balance

* Open Items by Customer

* Open Item Register

* Open Item Review

* Open Item Ranking

* Open Item History

* Trial Balance

* Bank Reconciliation

* Credit Limit Listing

* Payment History Analysis

* Audit Report

* Bank Reconciliation

* Customer and Corporate Listing

* Recurring Entries

* Customer Statements

*Delinquency Notices

* Unearned Discounts

......
co
00

O> en

HP Dual Ledger
HP Dual Ledger is designed for companies
that need to provide different sets of
financial infom1ation for accounting and
management purposes. This is especially
useful if your company operates in more
than one country or if you have complicated
intra-corporate reporting requirements.

HP Dual Ledger is an expansion of HP
General Ledger. Both sets of books may be
kept in the same currency, or in two
different currencies. If they are kept in
different currencies, HP Dual Ledger
provides an automatic revaluation of the
accounts based on changes in currency rate.
This revaluation is done by account, so that
special inventory or depreciation accounts
can be handled separately.

Your charts of accounts may be completely
different in the two sets of books. Each
accounting entry is made only once. If
different currencies are used, the entries are
automatically converted into the appropriate
currency of your secondary books.

HP Dual Ledger Features
* Two charts of accounts per company.

* Entries may be automatically created in
both books with one entry.

* Automatic reconcilation of both books.

* Automatic currency revaluation based on
individual accounts.

* Simulation capability to analyze future
financial position based on fluctuating
currency rates.

* Automatic posting of currency gains or
losses.

* Historical currency analysis.

* The same reports and on-line reviews
which are available for HP General Ledger
are provided for the secondary ledger.

N
0
0

T"""

0
C\I

HP Allocator
HP Allocator is an advanced cost allocation
svstem for use with HP Financial
Accounting. Sophisticated allocation criteria
may be defined using simple data entry
screens. Easy auditability assures control
over allocations in companies with
complicated organizational structures.

Allocation criteria which are not account
based (such as number of employees,
number of square feet, etc.) may be
automatically entered from external systems
or entered interactively.

You can allocate both budgeted and actual
amounts from any group of accounts and/or
cost centers and from either chart of
accounts when HP Dual Ledger is installed.
HP Allocator supports up to 99 levels of
allocations, or you can use a sequential
allocation process.

Allocation criteria are interactively defined
and can be based on fixed amounts or
percentages, variable amounts or relative
percentages. Simulating allocations allows
you to analyze the effect of your allocation
criteria and methods before automatically
booking the allocated amounts to your
general ledger accounts.

HP Allocator Features:
* Allocates actual amounts and budgets.

* User defined allocation criteria, methods
and bases.

*Allocates amounts from primary and/or
secondary ledger

* Supports both multi-pass or sequential
processes.

* Provides simulation capability for control
and audit.

* Automatically books allocations to HP
General Ledger.

I\,)
0
I\,)

C')
0
C\I

HP Report Facility
HP Report Facility is a powerful report
writer which you can use to either modify
the standard reports provided as part of HP
Financial Accounting or to define completely
new reports.

Because HP Report Facility is designed for
accountants, your accounting staff can easily
get the information they need without any
special programming or data base
knowledge. Reports can be designed using a
simple "check the box" approach.

The most typing involved is the report title.
You can define simple, ad-hoc reports within
minutes. More complex, production type
reports can be easily defined by accessing
additional definition screens.

HP Report Facility was used to design all
standard reports provided with HP Financial
Accounting. Therefore you can make
changes to standard report formats easily.
Pre-printed forms such as checks and
statements are easy to define - no need to
change the format of your business forms.

Consolidation reporting, responsibility
reporting, financial and management
reporting are all easily defined within HP
Report Facility. And you can use the same
report format for analyzing different sets of
data.

HP Report Facility Features

* Designed for Accountants.

* Consolidated Statements.

* Exception Reporting.

* Responsibility Reporting.

* Ad-hoc and complex reporting capabilities.

* Pre-printed forms easily defined.

* On-line and hard-copy reports available.

* Simple page and line formatting.

* Report formats easily copied from other
reports.

* Sample layouts printed.

I\:>
0
.j>,

LO
0
C\I

HP Interface Facility
With HP Interface Facility your
programming staff will not need to write
those tedious but important interface
programs required for a truly integrated
system. HP Interface Facility uses simple
on-line screen definitions of external files to
automatically generate the necessary
interface files.

HP Interface Facility is a customization tool
designed to assist your systems personnel in
interfacing HP Financial Accounting to your
external systems. We know that accounting
systems seldom stand alone, and that your
EDP environment is often a mix of several
hardware and software solutions.

With HP Interface Facility your analysts can
easily modify the standard interfaces
provided with HP Financial Accounting or
add totally new ones to integrate HP
Financial Accounting into your systems
environment - without programming.

Data from other systems can be easily
interfaced with HP Financial Accounting.
Using simple data entry screens, your
systems analyst can describe these external
files to HP Interface Facility. They are then
converted into the format needed by HP
Financial Accounting or your external
systems and processed according to your
needs.

HP Interface Facility greatly increases the
productivity of your programming staff and
reduces the amount of time necessary for
implementation. HP Interface Facility also
increases your flexibility to add other
application solutions later.

HP Interface Facility Features

* Interactive data specification for files going
to or corning from HP Financial
Accounting applications.

* Automatic restructuring of data within the
files.

* Data conversion (ASCH to EBCDIC or
vice versa)

* Sorting and summarization capabilities on
data within the files for better audit
control.

* Standard interface files pre-defined by HP.

* Capability to select individual records for
processing.

I\)
0
Cl>

.....
0
C\J

Customization
Customization is a unique application
technology developed by Hewlett-Packard to
allow you to easily tailor our business
applications to fit the requirements of your
environment. Customization features are
extensive and include the capabilities needed
to tailor your screens, reports, interfaces,
data bases and even processing specifications
to your business environment.

Customizing Data

Data structures can be modified by:

* Adding data sets.

* Adding new data items.

* Deleting non-critical data items.

* Changing the length or type of data items.

System
administrator

Customizing Screens
Data entry and retrieval screens can be
modified by:

* Changing existing screens.

* Designing new screens.

* Changing function key definitions.

* Changing the sequence in which screens
are displayed.

Customizing Reports and Interfaces

When HP Report Facility and HP Interface
Facility are installed, you may alter standard
reports and interfaces or create totally new
reports and interfaces.

Expanded Customization
Expanded customization may be necessary
for handling processing specific to your
operation for such things as additional
validation through ·external systems or
updating external systems with financial
information. This processing may be tailored
to your business through special COBOL
programs written by your analysts. These
programs are accessed and executed at
specified times within HP Financial
Accounting.

System user

r._1
\~I .. -

Application
dictionary

Application
code /

~ • 1--~~~~~--1

All
customizable
information

~ .
Program

logic

~ .
'

208

IPB is a so called decision support system. This is a relatively new
word for systems specially designed to support decision makers at
all levels in the organization. DSS differs from management
information systems in several ways. Where MIS focuses on
information aimed at middle management, DSS focuses on decision
aimed at managers. Where MIS is based on structured information
flow, DSS emphasizes flexibility, adaptability, and quick response.
Where MIS tries to integrate EDP jobs by business function, such as
production MIS, marketing MIS etc., DSS is user initiated and
controlled, and where MIS supplies inquiry and report generation
usually with a data base, DSS supports the personal decision making
style of individual managers.

In order to give an idea and understanding of what DSS stands for,
let us look at some of the characteristic ways of using DSS.

DSS tends to be used at less well structured, unspecified problems
that managers typically face, usually in a search learning process,
where the decision maker works directly with the computer in a
dialogue.

DSS attempts to combine the use of models or analytic techniques
with traditional data access and retrieval functions.

DSS specifically focuses on features which make them easy to use by
non computer people in an interactive mode, and

DSS emphasizes flexibility and adaptability to accomodate changes in
the environment and the decision making approach of the user.

Another characteristic of DSS is how the work with DSS is organized
in the organization. This can be described in the following figure:

+--)

!
Adaptive
feedback

+--)

0
•

0

0 0 0 0 User
• • •
• • • • Intermediary

• • +---------------+
DSS generator

+---------------+
Technical support

0 0 0 0 Toolsmith

The USER is the person facing the problem or decision - the one that
must take action and be responsible for the consequences.

The INTERMEDIARY is the person who helps the user, perhaps merely as
a clerical assistant to push the buttons of the terminal, or perhaps
as a more important staff assistant to interact and make
suggestions.

The TECHNICAL SUPPORTER is responsible for the hardware and that the

209

DSS generator is available and will run on the computer.

The TOOLSMITH develops new technology and new facilities for the DSS
generator. He shall be ahead of the user's problems and have new
tools available before the user recognizes the problem.

After this short introduction to DSS in general, I should like to go
into more details with a specific decision support system, IPB,
which stands for Interactive Planning and Budgeting. IPB is like
most other DSS based on a table structure. The IPB table has 30
columns and up to 100,000 lines. The IPB language allows the user to
do all kinds of manipulations with the data in IPB tables. There is
no prior definition of calculation rules or meaning to the data in
IPB tables. It is completely up to the user to define the rules of
calculation and the meaning, which should be given to the data in a
table. Each line in a table has a text part, where the user can
describe what the line stands for followed by figures. It might be
sales forecast per month for the next two years or it might be
recipes, where each column shows the use of different compnonents to
produce final products. It could be anything you might think of that
can be given a numeric value. IPB allows the user to do all kinds of
calculations by rows, by columns, and by elements and to create new
rows or new columns from existing rows and columns or to create new
tables from already existing tables.

The IPB command language is built up in a hierarchical way, which
means that the higher you come up in the hiearachy the more powerful
the commands become. At the lowest level you have the commands:

DATA
UPDATE
ALTERNATIVE
MODEL - BUILD

which all operate on lines and/or columns in data tables.

The command DATA is used to access or create tables. Under the
command DATA you can add or delete lines to a table, modify existing
lines, and move lines or columns from one place to another.

The command UPDATE is a very powerful and user friendly command for
updating existing data tables. The command allows you to specify
which columns and lines should be updated in an interactive mode.
For instance, when you want to add some new periode budget figures
to an existing budget, you will normally use UPDATE.

The command ALTERNATIVE is used to analyse the consequences of
changes in the restraints. E.g. what happens to our liquidity and
earning if we increase the price by 10 per cent, expect an increase
in unit cost of Dkr• 280 per unit, and change the terms of credit
from 45 days to 60 days. Problems of that type are known to any
manager and will normally require tedi~us calculations and very
seldom more than one alternative will be analysed. By IPB you can
let the computer do all the calculations in a few seconds and the
manager can consentrate on his real task, which is to generate
suggestions and alternatives and decide which actions should be
taken.

The command MODEL in IPB is used to access models, which are sets of
calculation rules that should be applied to a data table. Under the

210

command MODEL you can define all types of calculations including
IF---ELSE constructions. Moreover, the command MODEL allows you to
use the !PB function library, which has a number of financial
functions available, such as internal rate of return, net present
value and so forth+ In IPB the data tables and models, e.g. set of
calculation rules, are separated, which means that the same model
can be applied on a number of data tables and a data table can be
used as input to several models.

First when you use the command BUILD, you define which set of
calculations should be carried out and which data table should be
used as input. The result of a BUILD command is a new data table
with the same structure as all other data tables, containing the
results of the calculations as spe- cified in the model.

At the next command level you will find a number of commands which
operate on complete data tables or on specified parts. Commands as
ADD, SUBTRACT, MULTIPLY, and DIVIDE allow you to add, subtract,
multiply, or divide whole data tables, element by element, in one
command. Each of these four commands can handle up to 20 IPB data
tables in one blow.

Another very powerful command at this level is the MATRIX command by
means of which you can carry out a number of different operations on
one or more data tables. For instance, if you have one table with
sales forecasts for final products, another table with recipes for
the products, the command MATRIX can give you a complete requirement
plan, periode per periode, for all the components used to produce
the final products.

The command REFERENCE is used to connect several lines in different
data tables. It could be all lines depending on oil price. In case
of a change in oil price all relevant lines in all tables can be
updated in one command.

The REPORT and WRITE commands are closely related, almost in the
same way as MODEL and BUI.LD. Under REPORT the user can specify in
details what his report should look like. Again the report layout
and actual data are separated, so that different data tables can be
printed with the same layout specification, and a specific data
table can be printed with different layouts. First when the command
WRITE is used, a data table will be related to a report layout
stored under the command REPORT.

The last command at this level is SCHEME, which fro~ a data file can
create a reporting scheme. The scheme will have the text part from
all the specified lines, but instead of figures there will be fields
in which new figures can be filled. The schemes can be distributed
in the organization and for instance new budget figures can be
filled in. The command UPDATE can then be used to update the
relevant data table with the new figures.

Apart from the already mentioned commands, which all operate on data
or data tables, IPB has a set of utility commands. The first two,
MERGE and GET, can be used on any IPB file type, e.g. data tables,
models, or report structures in order to create new files from those
already existing. MERGE is used to merge two existing files to a new
file, whereas GET is used to pick out parts from several existing
files and put the pieces together to a new file.

211

COPY will m&ke & copy of any IPB file. A useful command in
connection with alternative generation, where the user does not want
to destroy his base case.

PURGE will remove any IPB file from the system and finally STOP will
stop an IPB session.

The highest command level in IPB is the strategy level. The command
STRATEGY allows the user to set up a strategy file, holding all IPB
commands and instructions. The contents of the strategy file can
then any time be executed by the command AUTO followed by the name
of a strategy file.

AN EXAMPLE

A shipowner has among other a 15-year-old bulk carrier. The vessel
was built in "the good old days" before escalating oil prices.

It is possible by changing the stern <to a bulp stern) and by
changes of the engine of the vessel to reduce cost for bunker oil.
The changes of the engine will cause a minor increase of maintenance
cost. More specific we have:

Fuel expence savings
Increase maint. cost

US$ 1,900,000 P•Y•
US$ 200,000 P•Y•

A shipyard will make the changes at a price of US$ a,soo,ooo.
The shipowner's bank will finance this amount on the following
conditions:

Loan
Interest rate <~>
Term of loan

us• a,soo,ooo
12

B

Positive cash flow achieved by the investment can be invested
at 15~ interest per year. Financing of a negative cash flow
will cost 17~ yearly interest.

Uncertain factors are:
Inflation rate on

oil prices
- maintenance cost

Development in interest rates

Analyse an a-year-period as to pay back period and Internal
Rate of Return.

Given this problem we can start by setting up a data table with all
the assumptions and restraints. This is done by the command DATA
INVDA, where IHVDA is a user defined name for the data table and the
response from IPB is that a new file is created. The user can now
start to fill in his information. In this example the first B lines
are used for comments. An asterisk as first character on a line will
in all IPB files mark the line as a comment line. IPB will
automatically assign line numbers to all lines, using the numbers
1.90, a.oo, 3.00, 4.0o,---. This later allows the user to add up to
99 lines between two already existing lines, using the decimal part

212

of the line number. The user can also at any time change the
generation of line numbers by the instruction INTERVAL. This is done
on line 9.00t where the next line number is defined to 10.00 and the
step to 1.00 in order to have all the savings from line 10.00 and
onwards. The two lines 10 and 11 define the savings. They consist of
a text part describing the type of saving, an equal sign to separate
the text from numerical informationt and finally, the numeric value
of the saving. The last figure will automatically be repeated for
all columns. After the two saving lines the line number generation
has again been changed to start on line 19.1 with steps of 0.1, and
a new set of comments is given before the terms of loan are placed
on line 20 and onwards. Finally, after some new comments, the
internal parametres are placed on line 30 and onwards. To finish the
building of a data table the instruction READY is used to close the
table and store it on the disc.

We can now define the rules of calculation which should be used on
the data table. As for the data table there is a number of comment
lines in the model to explain what is going on in the different
parts. Also the structure of the model follows ·the principles from
the data table with different types of calculation placed at certain
line intervals. All calculations concerning savings and repayment of
loan are from line 20 and onwards. The calculation of cash flow
starts on line 30 and continues to line 36, whereas the calculation
of key figures to evaluate the investment has been placed from line
50 and onwards.

The first real model line is line 20 1 where total savings are
calculated as the sum of data lines 10 to 19. In this way the model
becomes more general and in case of other savings than the two
already in the data table the new savings can just be placed in the
data table from line 13 and onwards. They will automatically be
taken into consideration without changing anything in the model. On
line 21 the yearly repayment is calculated as total loan divided by
number of years. This calculation should only be carried out for B
years. This is controlled by C=l,B. Accumulated instalment is
calculated on line 22 as last year's figure, L22C-1>, plus last
year's repayment L21C-1>. Rest loan on line 23 is total loan, data
line 22 or D22, minus accumulated instalment, L22, as long as the
difference is positive, after that the rest is zero. The interest to
be paid is rest loan 1 L23, multiplied by interest, D20, and divided
by 100. Finally, total debt service can be calculated as instalment
plus interest.

The annual cash flow from savings and repayment of loan is specified
on line 30. Hereto comes interest on cash flow and on accumulated
cash flow. Cash surplus can be reinvested at 15,, whereas deficit
has to be financed at 17,. The calculation rule on line 31 therefore
says that for positive cash flow the interest given on data line 30
is used, whereas data line 31 is used, if the cash flow is negative.
On line 32 the interest on accumulated cash flow is calculated
according to the same rule. The problem here is only that total
accumulated cash flow is not yet defined. We only state that it will
be calculated on line 34, and that we want to base our interest
calculation on accumulated cash flow from last periode, L34C-1>. IPB
will then take care of the correct sequence of calculations. Total
yearly interest can now be defined on line 33 as the sum of the two
foregoing lines. Total accumulated cash flow is defined on line 34
as accumulated figure of last periode, L34<-1>, plus this periode's
contribution plus interest. Finally, the final annual cash flow is

213

calculated on line 35 as annual cash flow plus interest.

On line 50 we ask for the internal rate of return based on a cash
flow, where only savings and repaymnet of loan are taken into
account. To get the internal rate of return we use the IPB function
INTERNAL and simply refer to the model line by which the cash flow
is defined, L30. On line 51 we calculate the internal rate of
return, when reinvestment of positive cash flow and financing of
negative cash flow have been taken into account. The next two model
lines give net present value for the same two cash flows, using the
interest stated in data line 30, column 1, D30CC1>, for discounting.

The last executable model line is line 200, which says PLACE
D10-D19. This instruction will simply transfer data line 10 to 19
directly from the input table to the output table. The purpose of
this instruction will normally be that the user wants to show some
of the basic assumptions in the final report. The last instruction,
READY, will close the model and store the cal- culation rules on the
disc.

In order to have the calculations carried out, the user must define
a name for the output table and state which model and which input
table should be used. In this example the command could be

BUILD INVRE FROM INVMO AND INVDA

and when the calculations are finished IPB returns with

READY FOR COMMAND

We might now look into the output table using the command DATA and
just ask for a raw listing, but normally we want to design a report
layout, which is done under the command REPORT. Under REPORT the
user can define headings, choose the columns from the data table
that he wants to see, and define subheadings that will be placed
over each column. He can define the number of decimals that he
wants, make underlinings, put in text lines, and pick out the lines
from a data table in the sequence that he wants.

When the results are ready and the report layout has been defined,
the command for writing a report is WRITE. In this example the full
command would be

WRITE INVRE AFTER INVLA 51 SUPPRES

where 51 gives the number of lines available per page on the output
unit and SUPPRES will replace all zeroes by blanks.

The result of the investment analysis should for internal rate
return and net present value be read in the following way: If
project stops in one of the years of 1982 to 1989, the internal
of return and net present value are then shown for each of
years.

of
the

rate
the

214

IPB ver 3.2, May 1982.
GIVE NUMBER OF CHARACTERS PER LIKE
BO
READY FOR COMMAND

1.00 DATA IKVDA
OLD FILE 29 LIKES LAST LIKE 33.00
COLUMNS 1,30

34.00 LIST T
1.00 ******************************
2.00 * *
3.0o * DATA FILE FOR INVESTMENT *
4.00 ******************************
5.oo * *
6.00 * SPECIFICATION OF SAVINGS *
1.00 ******************************
e.oo *

10.00 FUEL EXPEKCE SAVINGS C1000$)
11.00 MAIKTEKAKCE SAVINGS <1000$)
19.10 *
19.20 ******************************
19.30 * *
19.40 * TERMS OF LOAM *
19.50 ******************************
19.60 *
20.00 INTEREST OH LOAN
21.00 TERM OF LOAN
22.00 LOAN
29.10 *

<*>
<HOS>
(1000$)

29.20 ******************************
29.30 * *
29.40 * INTERNAL PARAMETERS *
29.50 ******************************
29.60 *
30.00 INTEREST OH POSITIVE CF <*>
31.00 INTEREST OH NEGATIVE CF <*>
32.00 *
33.00 *
34.00 READY

READY FOR COMMAND

MOH, SEP 6, 1982, 11:11 AM

= 1900
= -200

= 12
= B
= 8500

= 15
= 17

1. 00 DATA INVMO
OLD FILE 41 LINES LAST LINE 211.00
COLUMNS lt30

212.00 LIST
1.00 ******************************
2.00 * *
3.00 * INVESTMENT MODEL *
4.00 ******************************
5 .. 00 *

20.00 TOTAL SAVINGS
21.00 INSTALMENT ON LOAN
22.00 INSTALMENT ACC.
23.00 REST LOAN
24.00 INTEREST ON LOAN
25.00 TOTAL DEBT SERVICE
29.10 *
29.20 ******************************
29.30 * *
29.40 * CASH FLOW CALCULATION *
29.50 ******************************
30.00 ANUAL CASH FLOW EXCL. INT.
31.00 INTEREST ON ANNUAL CF
32.00 INTEREST ON ACC. CF
33.00 INTEREST ON CASH FLOW
34.00 ACCUMULATED CASH FLOW
35.00 ANNUAL CASH FLOW
49.10 *
49. 20 **********************.********
49.30 * *
49.40 * INVESTMENT ANALYSIS *
49.50 ******************************
49.60 *
50.00 IRR IF NO INTEREST ON CF
51.00 IRR WITH INTEREST ON CF
52.00 NPV IF NO INTEREST ON CF
53.00 NPV WITH INTEREST ON CF
54.00 *

199.10 ******************************
199.20 * *
199.30 * SPECIFICATIONS *
199.40 ******************************
199.50 *
200.00 PLACE D10-D19
210.00 *
211.00 *

212.00 READY
READY FOR COMMAND

215

MON, SEP 6t 1982t 11:11 AM

SUM<Dl 0-Dl 9)
D22/D21 C=l,8
L22<-1> + L21<-1> C=2t10
D22 - L22 IF D22-L22 GE 0 ELSE 0
L23*D20/100
L21 + L24

L20 - L25
L30*D30/100 IF L30 GT 0 ELSE L30*
L34<-1>*D30/100 IF L34(-1) GT 0 E
L31 + L32
L34(-1) + L30 + L33
L30 +L33

INTERNAL L30
INTERNAL L35

= CAPITAL L30,D30<C1>
CAPITAL L35,D30<Cl)

216

1.00 BUILD INVRE FROM INVMO AND INVDA
READY FOR COMMAND

1.00 REPORT INVLA
OLD FILE 24 LINES LAST LINE 24.00 MON, SEP 6, 1982, 11t13 AM

25.00 LIST
1.00 HEADING I N V E S T M E N T - A N A L Y S I S
2.00 HEADING INVESTMENT IN BULP STERN ON M/S MARY
3.00 SEQUENCE TEXT<30) Cl-CS
4.00 SUBHEADING 1982,1983,1984,19851 1986,1987,1988,1989
5.00 DECIMAL 0
6.oo LINE -
7.00 TEXT SAVINGS
e.oo D200-D210
9.00 LINE -

10.00 D20
11. 00 LINE 2
12.00 D21,D24
13.00 LINE -
14.00 D25
15.00 LINE 2
16.00 D30-D32
17.00 LINE -
18.00 D35
19.00 LINE 2
20.00 D34
21. 00 LINE 2
22.00 D50-D53
23.00 LINE
24.00 LINE =
25.00 READY

READY FOR COMMAND

217

i.oo WRITE INVRE AFTER INVLA 51 SUPPRESS

SAVINGS
FUEL EXPEHCE SAVINGS (1000$)
MAINTENANCE SAVINGS (1000$)

TOTAL SAVINGS

INSTALMENT OH LOAN
INTEREST ON LOAN

TOTAL DEBT SERVICE

ANUAL CASH FLOW EXCL. INT.
INTEREST OH ANNUAL CF
INTEREST OH ACC. CF

ANNUAL CASH FLOW

ACCUMULATED CASH FLOW

IRR IF NO INTEREST ON CF
IRR WITH INTEREST ON CF
NPV IF NO INTEREST ON CF
NPV WITH INTEREST ON CF

READY FOR COMMAND

1.00

I N V E S T M E N T - A N A L Y S I S
INVESTMENT IN BULP STERN ON M/S MARY

1982 1983 1984 1985 1986 1987 1988

--
1900 1900 1900 1900 1900 1900 1900
-200 -200 -200 -200 -200 -200 -200

--
1700 1700 1700 1700 1700 1700 1700

1063 1063 1063 1063 1063 1063 1063
1020 893 765 638 510 383 255

--
2083 1955 1828 1700 1573 1445 1318

-383 -255 -128 128 255 383
-65 -43 -22 19 38 57

-76 -140 -189 -221 -234 -223
--

-448 -374 -289 -189 -74 60 216

-448 -822 -1111 -1300 -1374 -1314 -1098

***** ***** ***** ***** ***** -16
***** ***** ***** ***** ***** ***** *****

-333 -525 -609 -609 -546 -436 -292
-389 -672 -862 -970 -1007 -981 -900

==

218

1. INTRODUCTION

IPB <Interactive Planning and Budgeting> is a modelling language
which originally was developed for budgeting and financial plan­
ning purposes on the HP3000. During the last 2 years an increasing
interest for IPB has been registgered from a number of production
companies.

The one thing these companies have in common, is that the product­
ion planning proces involves many changes and several iterations.
At the same time the planners usually want the possibility of
planning on a 'bottoms-up' basis, that is on a product-by-product
basis.

Our recent development activitites within IPB has focused on these
applications.

The following presentation will be separated in two parts

- first a brief discussion of our goals and
a presentation of a small example and

secondly a description of practical use in
a major production company.

2. THE GOALS OF THE DEVELOPMENT.

The three most important goals of our recent development
aimed at production planners were to:

1. Enable the planner to - in an easy way - model his
production system on the HP3000. All the fundamental
modelling facilities of course allready existed in
IPB, but especially the handling of large recipes and
list of parts were improved.

2. Facilitate the boring and tedious 'musts' of production
planning, like updating of product calculations, combin­
ing sales forecast with recipes and rawmaterial require­
ments, etc.

3. Enable the planner to - THROUGH AN INTERACTIVE LEARNING
PROCES WITH HIS HP3000 - improve his understanding of
the production system and improve plans.

In addition it is an obvious advantage to be able to use the same
system for different planning functions <production, purchase/
stock, financial, budgetary etc.>, i.e. eliminate the 'systems
interface problem'.

219

IPB enables you to set up a 'man-machine-system' which supports
the decision making through an interactive learning process.
Or in other words, makes it possible for an intelligent
person to use the HP3000 as a qualified sparring partner.

3. AN EXAMPLE

As illustration of some of the possibilities consider the
following example, where complexity and number of data have
been reduced due to presentation rather than systems limit­
ations.

A candy producer makes four candy products which involves
7 different types of raw material as well as some product­
ion equipment and labour.
Recipes, sales forecast and buying prices are described in
following three tables:

RECIPE:
RECIPES, LABOUR AND EQUIPMENT USE

PER 100 KILOS FINISHED GOODS

* PRODUCTION REQUIREMENTS

LIQUORICE <KILOS>••••••••••
WHEAT FLOUR <KILOS>••••••••••
SUGAR <KILOS>••••••••••
GOLDEN SYRUP <KILOS>••••••••••
SALT <KILOS>••••••••••
SAL AMMONIAC <KILOS>••••••••••
GUM ARABIC <KILOS>••••••••••

LABOUR <HOURS>••••••••••

MIXER EQUIPM <HOURS>••••••••••

SFCAST:

* FIGURES IN KILOS

CANDY THINGS••••••••••••••••••
CANDY GIZMOS••••••••••••••••••
CANDY WIDGETS•••••••••••••••••
CANDY MEN•••••••••••••••••••••

CANDY
THINGS

50
10
10
10
10

10

10

10

CANDY
GIZMOS

10
40
10

10
10
20

20

5

CANDY
WIDGETS

50
10

5
10
10

15

35

10

CANDY
MEN

10
10

5
5
5

65

5

30

SALES FORECAST t CANDY PRODUCTS.

FIRST
QUARTER

1983

9700
4400
1200
3400

PLANNING YEAR 1983.

SECOND
QUARTER

1983

10200
4800
1400
3500

THIRD
QUARTER

1983

8950
5580
1700
3700

FOURTH
QUARTER

1983

9500
4700
2500
3600

220

BUYPRIC:
PRICES.

RAW MATERIALS AND LABOUR.

LIQUORICE <KILO> 9.85
WHEAT FLOUR <KILO> 1.05
SUGAR <KILO> 4.65
GOLDEN SYRUP <KILO> 0.10
SALT CKILO>••.... 0.60
SAL AMMONIAC <KILO> 13.25
GUM ARABIC <KILO> 9.00

LABOUR <HOUR> 52.75

Product calculations.

Based on the above assumptions a product self cost calculation and
printing of result could be formulated like:

MULTIPLY RECIPE BUYPRICE TO COST
BUILD SLFCOST FROM MODEL1 AND COST
WRITE SLFCOST AFTER LAYOUTl

which leads to

SELF COST. CANDY PRODUCTS.
PER 100 KILOS FINISHED GOODS.

LIQUORICE•••••••••••••••••••••
WHEAT FLOUR•••••••••••••••••••
SUGAR+••••••••••••••••••••••••
GOLDEN SYRUP••••••••••••••••••
SALT••••••••••••••••••••••••••
SAL AMMONIAC••••••••••••••••••
GUM ARABIC••••••••••••••••••••

TOTAL MATERIALS ••••••••••••••
LABOUR ••••••••••••••••••••••••

TOTAL COST••••••••••••••••••••

CANDY
THINGS

492.5
10.5
46.5
81.0
6.0

90.0

726.5
527.5

1254.0

CANDY
GIZMOS

98.5
42.0
46.5

6. 0
132.5
180.0

505.5
1055.0

1560.5

CANDY
WIDGETS

492.5
10.5
23.3
81.0
6.0

135.0

748.2
1846.2

2594.5

CANDY
MEN

98.5
10. 5
23.3
40.5
3.0

585.o

760.7
263.7

1024.5
=======================================

or on a product by product basis

BUILD CSTPROl FROM MODEL2 AND COST
WRITE CSTPROl AFTER LAYOUT3

SELF COST+ CANDY PRODUCTS.
PER 100 KILOS FINISHED GOODS+

LIQUORICE •••••••••••••••••••••
WHEAT FLOUR+••••••••••••••••••
SUGAR++•••••••••••••••••••••••
GOLDEN SYRUP+•••••••••••••••••
SALT+•••••••••••••••••••••••••
GUM ARABIC++••••••••••••••••••

TOTAL RAW MATERIALS ••••••••••
LABOUR++••••••••••••••••••••••

TOTAL

CANDY
THINGS

492+5
10.5
46+5
81+0
6.0

90+0

726+5
527.5

1254.0

Combining sales forecasts with recipes.

" OF
TOTAL

39.3
o.a
3.7
6.5
0.5
7.2

57.9
42+1

100.0

Consequences of sales forecasts as to use of raw materials,
labour and production equipment can be analyzed on a product
by product basis. For instance, what are the production input
requirements based on the sales forecast for CANDY WIDGETS?

This leads to

MATRIX RECIPE<C3> * SFCAST<L3) TO CONSEQl
WRITE CONSEQl AFTER LAYOUT2

221

USAGE OF RAW MATERIALS, LABOUR AND EQUIPM.
BASED ON SALES FORECAST FOR CANDY WIDGETS.

* PRODUCTION REQU IREMEN:TS

LIQUORICE <KILOS>••••••••••
WHEAT FLOUR (KILOS>+•••••••••
SUGAR <KILOS)+•••••••••
GOLDEN SYRUP <KILOS>+•••••••••
SALT (KILOS)+•••••••••
GUM ARABIC <KILOS>••••••••••

LABOUR <HOURS>••••••••••

MIXER EQUIPM <HOURS>••••••••••

FIRST
QUARTER

1983

600
120

60
120
120
180

420

120

SECOND
QUARTER

1983

700
140

70
140
140
210

490

140

THIRD
QUARTER

1983

850
170

85
170
170
255

595

170

FOURTH
QUARTER

1983

1250
250
125
250
250
375

875

250

222

One way to continue with an analysis for all four products
would be to add the consequences of each of the products to
a total, build some keyfigures and finally print the result.
Formulation:

ADD CONSEQl CONSEQ2 CONSEQ3 CONSEQ4 TO TOTAL
BUILD PRODREQ FROM MODELS AND TOTAL
WRITE PRODREQ AFTER LAYOUT4

USAGE OF RAW MATERIALS, LABOUR AND EQUIPM.

* PRODUCTION REQUIREMENTS

LIQUORICE
WHEAT FLOUR
SUGAR
GOLDEN SYRUP
SALT
SAL AMMONIAC
GUM ARABIC

<KILOS>••••••
<KILOS>••••••
<KILOS>••••••
<KILOS>••••••
<KILOS>••••••
<KILOS>••••••
<KILOS>••••••

LABOUR <HOURS>••••••
LABOUR HOURS AVAIL. ••••••

LABOUR SURPLUS/DEFICIT

MIXER EQUIPM <HOURS>••••••
MIXER HOURS AVAIL•••••••••

MIXER SURPLUS/DEFICIT ••••

BASED ON SALES FORECAST FOR ALL CANDY PROD.

FIRST SECOND THIRD FOURTH
QUARTER QUARTER QUARTER QUARTER TOTAL

1983 1983 1983 1983 1983

--

6230 6630 6253 6830 25943
3190 3430 3667 3440 13727
1640 1745 1723 1725 6833
1260 1335 1250 1380 5225
1700 1815 1808 1850 7173

440 480 558 470 1948
4240 4465 4671 4605 17981

2440 2645 2791 2945 10821
2600 2600 2600 2600 10400

--
160 -45 -191 -345 -421

2330 2450. 2454 2515 9749
2600 2600 2600 2600 10400

270 150 146 85 651

223

4. AN IMPLEMENTATION

4.1 PROBLEM

Canner Ltd. is a company which produces and sells 1200 different
kinds of articles within canned products. After having been
introduced to IPB the company chose to use 'modelling language'
to the solution of a longstanding problem in the production
planning+

The production is divided into a number of different production
lines in 5 different factories. The pre-treatment and the pack­
ing of the products are manually operated, and the sealing of
the packing is done by machinery.

The manning can to a certain degree be adjusted at 3 months'
sight. The importance of the company in the regional community
and retraining problems when new staff is employed imply
however, that a fairly stable staff is desirable.

The problems are thus:

- Tactical staff planning at 3-12 months' sight

- Production planning, consequences from 1 to 3 months
as a basis for the production planning at the
operational level.

The basis of the production planning is a 12 months' forecast
for the different articles. These forecasts are revised each
month. They are transferred from the finance/forecast system to
IPB through a special program. At the same time information
about the stock at the beginning of the month are transferred
after the end of each month.

The stocking policy is described as percentages of estimated sales
the following months. Consequently the calculation of the product­
ion plan is mathematically simple but the quantity of data
is too high for being manually operated.

The production plans are calculated for each factory and are
converted into personnel units, by multiplying production plans
in lOOO's by personnel unit factors per article.

The available labour expressed as personnel units is calculated
with a basis in the temporary manning plans, and the supply/
need totally and for each factory are related as to provide
the basis for a manual correction of manning plans, stocking
policy or distribution between factories.

New iterations are carried out and are thus the principal
element in the learning process until reasonable stocks and
manning plans are established.

224

First of all the system is directed towards production planning
but the further applications of the established structure are
evident:

Sales forecasts and unit prices can immediately produce
sales budgets.

- Production plans and unit costs can immediately be
combined to unit cost budgets.

- Production plans can be related to already established
list of parts/recipes for purchase planning.

- Optimizing of stock for raw materials as well as
manufactured goods can be developed when the historical
data for forecast uncertainties and times of delivery
are systemized.

**) PERSONNEL UNIT FACTOR: Coefficientt expressing use of labour
per 1000 produced articles, specified
per article.

4.2 SOLUTION

Presentation of system structure, relations to other planning
functions and 'key reports' will be based on overhead slides.

225
6 SEP. t982

IJcl .. ~ SYSTEMS M

gouverneur verwilghensingel 4 B-3500 hesselt

tel.: +32-11.227701

THE FINANCIAL MODEL PROCESSOR
paper> pr>esented at 1IP 3000 User>s Meeting

Copenhagen, October> 82

AUTHORS:

pro f.lr. ge orges schepens
Facuites Univer>sitair>es Notr>e Dalne de Z.a Pak
NAMUR • BELGITM

/.luc beyers
Managing Dir>ector> BEYERS & PARTNERS
BRASSCHAAT, BELGIUM

1he FINANCIAL MODEL PROCESSOR F.M.P.

AUTOMATIC PILOT

FILE PROCESSOR

ar>e pr>0ducts froom Beyer>s & Par>tner>s
Michielssendr>eef 26
B 2130 Br>asschaat
BELGIUM
Tel. 03/651.91.14 - 03/234.11.08

~ho take car>e of - fur>ther> developrzent and maintenance
- documentation
- management cour>ses and suppor>t
- licences to final user>s or> softwr>e houses.

226

1. GENERAL OVERVIEW

The F.M.P. and its complementary packages

\ The Financial Model Processor (F .M.P.) is .an interactive system
for financial modelling. It was conceived for managers and busi­
ness students, who understand the internal logic of a financial
problem, but lack the expertise and especially the time to convert
it into a computer based simulation program.

The F.M.P. allows one to conceive his own financial models and to
process them on a computer without any previous exposure to compu­
ter programming. This is achieved by a permanent dialogue guiding
the user through all procedures and providing extra comment if
desired, or corrective action if an erroneous answer is detected.

We are definitely talking about 'Computer assisted Financial
Analysis', since

YOU are conceiving the model and the reports and defining the
data that will~ used in. the analysis of alternative
scenario's

and THE COMPUTER is doing all the computations, is providing sto­
rage and printing capacity, but also guides you step by step
through the process.

The heart qf F.M.P. is its very powerful and applications-oriented
model definition language, exhibiting functions like:

TAXABLE
LIFO
FIFO
EXPONENTIATION
logical operations

The user has the possibility to build and adapt his own financial
models with a limited number of simple but powerful instructions,
also understandable to non-F.M.P.-users.
This means that the F.M.P. allows the manager to work by himself
on the computer, without being dependent on classical programming
languages.

Since every task is performed in dialogue with the computer, no
programming effort is required to modify models, generate reports,
enter data and update files. ·

The 'Financial Model Processor' includes preprogrammed modules for
- discounted cash flow calculations,
- funds flow analysis,
- backward computations,
~ stochastic simulations.

The F.M.P. also allows one to store models, report definitions or
data on disk. Consequently not every user has to conceive his own
models. He can also rely on standard models, permanently stored on
file (e.g. for the analysis of financial statements, budgetting, •••).

The strength of such a package lies in the possibility to perform
extensive sensitivity analysis, with hardly any extra effort,
using simple procedures for model or data modifications.

F.M.P. also allows consolidation of different models, by making
transfers of data from one model to another one simple.
Its 'File Processor' extension adds many data handling features,
including selective data retrieval and update in files.

Its 'Automatic Pilot' extension, allows easy and fast processing
of complex consolidations.

227

228

Its Implementation

The F.M.P. is written in a high-level language, close to the FOR­
TRAN 77 standard.

The F.M.P. and its complementary packages are availabl~ in
English, Dutch, German and French, on a wide range of computers,
among whom the HP 1000 and HP 3000.

Modeldefinitions, originally written in another language, are auto­
matically translated.

The F.M.P. works as an interpreter for user-written models. There­
fore a model modification never requires recompilation. Considera­
ble time savings can thus be realised.

The authors

The concepts of the 'FINANCIAL MODEL PROCESSOR (F.M.P.)' origina­
ted from a close co-operation between professor Georges SCHEPENS
(Facult~s Universitaires Notre-Dame de la Paix of Namur,
F.U.N.D.P.) and Luc BEYERS (managing director of Beyers & Partners
pvba) when both lectured at Prof. Vlerick's Management Center at
the State University of Ghent (R.U.G.). G.Schepens lectured on
Operations Research and Information Systems and L.Beyers on Busi­
ness Planning & Control.

Scientific Support

The publication of papers on specific subjects (e.g. analysis of
financial statements, investment analysis, •••) and the organisa­
tion of training programmes is done in collaboration with Prof. E.
DE LEMBRE (R.U.G.), Prof. M. GUILLAUME (F.U.N.D.P.), Prof. H.

,OOGHE (R.U.G.) and Prof. C. VAN WYMEERSCH (F.U.N.D.P.).

Applications

The use of F.M.P. is spreading fast in two distinct areas.

Business and Industry, where more than 80 user contracts were al­
ready granted. The main fields of applications are:

- analysis of financial statements
- balance sheet
- income statement
- funds flow statement
- ratio analysis

- long range planning
- investment analysis
- budgetary planning and control
- liquidity planning
- inventory simulation and control
- consolidation
- project evaluation
- lease or buy decisions
- sales analysis and projectfons
- market simulation
- breakeven analysis

Users range from small companies upto important banks and indus­
trial groups.

Education, where several universities have a user licence, among
whom the universities of Ghent, Leuven and Namur in Belgium, Eras­
mus in the Netherlands and Vaxjo in Sweden.

Key points of the F.M.P. in education are

- the very high degree of user friendliness of the F .M.P. ,
which shortens the specific training of the user to a cou­
ple of hours.

- and the fact that the F.M.P. allows to focus a course on
the definition of the financial logic and the conception of
alternative scenarios (and away from the computational
burden).

Licences

Licences to final users or software houses are exclusively granted by

BEYERS & PARTNERS pvba
Michielssendreef 26
B 2130 Brasschaat BELGIUM
Tel. 03/651.91.14 - 03/234.11.08

229

230

2.BRIEF DESCRIPTION OF THE F.M.P.

The data matrix

The input data and computational results we will be working on,
are stored in a two-dimensional table. A typical F.M.P. matrix
size on an HP 3000 is 150 lines and 24 eolumns. Special sub­
systems enable you to transfer information from one model to an­
other, allowing a ·modular approach to complex problems.

The Model

A model is a series of instructions, defining lines and columns.

Each instruction consists of:

- line or column number

- line or column label

- status: every line or column can be defined as being

- either an INPUTLINE: for this line we will provide
external data

- or a COMPUTATION LINE: this line will be calcu­
lated on the basis of one or more other lines.

Ex. Ll2=UNITS SOLD=INPUT
L15=PRICE PER UNIT=INPUT

Ll8=SALES=L12 * Ll5

Cl=l98l=INPUT
C2=1982=INPUT

C5=GROWTH=C2-Cl

INPUT LINES

COMPUTATION LINE

INPUT COLUMNS

COMPUTATION COLUMN

Since the F.M.P. was conceived and is being mainly used for finan­
cial applications, the columns will normally represent time pe­
riods (years,quarters,months, •••).

The menu

The choice of the task to be executed is done by means of the so­
called 'Menu', i.e. a list of all the tasks the F.M.P. is able to
execute, as there are: input and modification of data, modifica­
tion of the model, printing or creation of a file of the model,
data or reports, printing out a plot, and a number of more speci­
fic tasks, that will be discussed further on. After the execution
of a task, the F.M.P. returns to this Menu, enabling you to choose
the next task. Once within a task, the F.M.P. will get all addi­
tional specifications by means of a question and answer system.

The data

Interactive data entry can be done:
- either on a line per line basis
- or on a column per column basis

In the former case several input modes are possible, such as:
- specific values in one or more periods
- constant values
- linear evolutions
- exponential evolutions
- linear, degressive, sum of the digits, or accelerated deprecia-

tion methods

The reports

To define a report one has to introduce a title and the desired
column and line numbers. The F.M.P. extracts the corresponding da­
ta elements from the matrix and produces the report, either on
screen or on paper. It is possible to insert subtitles, underline
data, even to overwrite parts of the numerical data.

231

232

Input and Modifications

The input of models, report definitions and data is fully
computer-controlled, for manual input as well as for input from
files.

Specific subsystems allow the user to modify models, report defi­
nitions and input data very easily.

Specific subsystems

Four subsystems in the F.M.P. refer to specific application
fields:

- DISCOUNTED CASH FLOW calculations. It includes the computation
of the "internal rate of return", the "net present value" and
the "equivalent period values".

- FUNDS FLOn' analysis. By answering a questionnaire the user defi­
nes references to the balance sheet and the cash flow elements,
enabling the F.M.P. to compute the corrected sources and uses of
funds for a given time period.

- ITERATIVE MODULE. It offers the possibility to reach a target
value (e.g. profit) by adapting a specified free variable (e.g.
units sold).

- STOCHASTIC SIMULATION. The user can define statistical instead
of deterministic information for several elements. He can also
define which results have to be captured and displayed in the
form of frequency distributions, after a number of simulations
(Monte-Carlo).

3. FILE PROCESSOR AUTOMATIC PILOT

when using the F.M.P. to handle large financial problems requiring
a vast amount of data, one may come up with two suggestions.

1. It would be nice to go beyond the present transfert file system
and to provide a data retrieval system where the simple fact of
writing Ll2=PROFIT=INPUT and C4=1980, would retrieve the profit
of 1980 from the corresponding file, and enter it in the requi­
red slot of the F.M.P. matrix ..••

2. The conversational mode is an ideal way to guide the user step
by step through the F.M.P., while taking corrective action
whenever inappropriate input is encountered. But when it boils
down to rerun for the n-th time a sequence of several models,
with all the file handling this may requir.e, it would be nice
to be able to define this sequence of commands as a jobstream
and launch it with a single command ••..

These ideas have gone their way, and result into two complementary
products to the F.M.P., with whom they are fully compatible.

The first idea led to the FILE PROCESSOR (F.P.).

It facilitates the exchange of data between the F .M.P. model
and large files on disk by allowing selective data retrieval
and update.

The file handling section of the FILE PROCESSOR takes care of
file - prin.ting, total or partial duplication of files, conca­
tenation, elimination, conversion to and from formatted files.
This last feature is meant to ease the integration of the
F.M.P. with other computer applications.

233

234

The second idea led to what we nicknamed the AUTOMATIC PILOT
(A.P.).

It accepts a jobstream, this is a sequence of F.M.P.
commands that have been previously entered in a file.
cution of a jobstream is launched by a single command
the F.M.P. menu.

and F.P.
The exe­
gi vei:i in

Thus the AUTOMATIC PILOT may be seen as a "BATCH" extension of
the F .M.P ..

But there is more •••

The name automatic pilot originates from one of its commands,
called 'FMP', that allows the user to interrupt the automatic
control at a given point and switch back to conversational
mode, where he recovers the full potential of F.M.P. and F.P.
tasks. At any time he can switch back to automatic control and
proceed within the jobstream where he left it.

When running the AUTOMATIC PILOT from a terminal, interactive
control will also be returned to the user as soon as inappro­
priate commands are encountered. The user may then stop the
session or take correct! ve action in conversational mode and
subsequently return to automatic control.

PINA!ICJAL PLANNING FOR A WHOLESALE TRADE

As an exampZe we wiZZ consider a whoZesaZe trade and buiZd a modeZ for
its financiaZ pZanning. For the sake of simpZicity we wiZZ Zimit the
tT'ade to a singZe product. This modeZ incZudes a PY'ofit & Loss State­
ment and a Cash Flow Statement.

CoZwrm definition

We wish to obtain the results for 6 mdnths of activity and also the
ovePaZZ mid-year resuZts. Since we wiZZ have to enter an initial si­
tuation for some of the data, we wiU use 8 colwrms. The fi'Y'st 7 co­
Zwrms are input coZwrms, the 8th coZumn is a computation column:

Data

Cl=INITIAL SIT.=INPUT
C2=JANUARY•INPUT
C3=FEBRUARY=INPUT
C4•MARCH=INPUT
CS=APRIL•INPUT
C6•MAY=INPUT
C7zJUNE=INPUT
C8•MID-YEAR=TOTAL OF L2 TO L7

1. Sates:
- units soZd in each pe'Y'iod
- saZes 'Y'ice in each e'Y'iod
- ter'l'rls o payment: net 30, end of month, CO'Y''Y'esponding to an ave'Y'a-

ge collection period of 45 days or 1.5 pe'Y'iods.

2. Pu.'Y'chases:
- considering that we have to incZude a suppZement of 2% the pu'Y'cha­

sed goods, in o'Y'de'Y' to provide f o'Y' Zosses caused by theft, acci­
dents etc., the consumption of goods in each month wiZZ be 2%
above sales. Assuming immediate re-o'Y'de'Y'ing and a deZivery time of
tbXJ weeks, purchases are equal to consumption, but shifted ove'Y'
haZf a period. Purchases a'Y'e paid with another deZay of tbXJ weeks
O'Y' haZf a period.
purchase price in eve'Y'y period
inventory-vaZuation method: Last-in, First-out
initiaZ invento'Y'y in units (price pe'Y' unit is 'pu'Y'chase p'Y'ice' in
initiaZ period)

3. Fixed costs

4. _Depreciation

235

236

5. Cash balance in . in~t_i!!l1>£Piod

6. J:,osses caPPied_[o_r'Wa_,,._d f Pom pPevious yeaps

?. Results of accounts ~eceivable and accounts payable fPom pPeceding
pePiods: casl'l flow f Pom past

8. Negative cash balances will be financed with a bank loan, at an
intePest Pate of 1.5% peP month, payable at the end of each
quaPteP.

9. Taxes: Income tax Pate of 48%, payable in eVePy pePiod.

PaPt of these data can be considePed as being st-ructuPal, fixed for'
the company, such a:s inventoPy losses and payment tePms. IntePest
Pate, though bei1:g an external element, wilt atso be considePed as
pPe-detePmined for' this Dr'oblem, since we consider' that it is not sus­
ceptible to negotiation, and thus cannot be changed.
These infomations :JiU be buiit in into the model. Other' data (the
above undePlined ones) aPe external to the model,, and will be adapted
fop the analysis of alternative situations. They ape defined as being
INPUT UNES:

Ll=UNITS SOLD
L2=SALES PRICE
Ll=PURCHASE PRICE
cA=INITIAL INVENTORY
L5=FIXED COSTS
L6=UEPRECIATIONS
L7=INITIAL CASH BALANCE
L8=LOSSES CARRIED FORWARD
L9=CASH FLOW FROM PAST

=INPUT
=INPUT
=INPUT
=INPUT
=INPUT
=INPUT
=INPUT
=INPUT
=INPUT

111 it!r> having defined and entePed the model, we will specify the data,
:or• all lines and columns defined as being INPUT LINES and INPUT
c:OUJ/'.JNS. As mentioned befoPe, we can enter' a value for' evePy pePiod,
f!ut also a linear' Or' exponential evolution, whePe we specify the star'­
t ing value and the gPowth Pate per' pePiod. The data that aPe used for'
this example aPe shown on the next page.

t-­
M
C\I

DATA
INITIAL JANUARY FEBRUARY MARCH APRIL MAY JUNE

--
1. UNITS SOLD o. 1000. 1050. 1100. 1150. 1200. 1250.
2. SALES PRICE o. 20000. 20000. 20000. 20000. 20000. 20000.
3. PURCHASE PRICE 12000. 12360. 12731. 13113. 13506. 13911. 14329.
4. INITIAL INVENTORY 800. o. o. o. o. o. o.
5. FIXED COSTS o. 5500000. 5500000. 5500000. 5500000. 5500000. 5500000.
6. DEPRECIATIONS o. 125000. 93750. 70313. 62500. 62500. 62500.
7. INITIAL CASH BALANCE 1000000. o. o. o. o. o. o.
8. LOSSES CARRIED FORWARD -8800000. o. o. o. o. o. o.
9. CASH FLCM FROM PAST o. 3000000. 4000000. 3500000. 250000. o. o.

238

The computations wP W'ish to execute are scheduZ.ed beZ.OIJJ:

C(J.fPUTATIONS

SaZ.es=units soZ.d * sales price
shifted over 1.5 period

Purchases
Consumption=units sold * 1.02
Purchases=inventory replenishment=con­

sumption shifted over o.5 periods
Purchase payment=purchases*purchase
price shifted over 0.5 periods

Ma teriaZ. costs=consumption* (LIFO­
purchase price)

Fixed costs
Depreciations
Interests

Bank Z.oan=Z.ast month's cash baZ.ance
if negative

Interest=bank loan * 0.015
Payment interest=sum of interests
per 3 months

Total. costs=f ixed costs+depreciation
·-+material. cost+inte-,.est

Cr·O_!J!!_ profit=saZ.es - total. costs

acome taxes= 0.48 * gross profit if
--p-os[iive;-if negative carried fortJard

iu nf;Xt period, 1Jhich al.so happens

RESULT IN
P & L STAT.
=-------
SALES

MATER. COSTS

FIXED COSTS
DEPRECIATION

INTEREST

TOTAL COSTS

GROSS PROFIT

RESULT IN
CASH FLOW

RECEIPTS

PAYM.MATERIAL

FIXED COSTS

PAYM .INTEREST

"·or 1.osses from the preceding periods INCOME TAXES INCOME TAXES

~e!.P!:...<!f..f:!=gross profit - income taxes NET PROFIT

1.,·ash fZ.o1J month=receipts - payments
-({n~-(.f-,.om past periods) CASH FLOW MONTH

Cash lialance=cash balance last month + CASH BALANCE
·--eash-·fZOIJ of the month

~.:E_I!_1'esent vaZ.ue=NPV of Cash nOIJJ in NET PRES.VALUE
period 0, discount rate z.5 3 per
month

These computations ape tr>anslated into the following COMPUTATION LINES
in the Fl1P-Model:

LlO=SALES =Ll*L2
Lll=RECEIPTS =SHIFT LlO OVER 1.5
Ll2=CONSUMPTION •l.02*Ll
Ll3=INVENTORY REPLENISHMENT =SHIFT Ll2 OVER 0.5
Ll4=PURCHASE MATERIALS =Ll3*L3
LlS=PAYMENT MATERIAL •SHIFT Ll4 OVER 0.5
Ll6=SUPPLY FOR LIFO •L4+Ll3
Ll7=MATERIAL COSTS •LIFO: SUPPLY Ll6,PRICE L3,CONSUMPTION Ll2
Ll8=BANK LOAN =RE-ACCESS TO L31
Ll9=INTEREST =0.015*Ll8
L20=PAYMENT INTEREST =SUM OF Ll9 FROM C2 TO C7 PER 3
L2l=TOTAL COSTS =L5+L6+Ll7+Ll9
L22=GROSS PROFIT =Ll0-L21
L23=TAXABLE RESULT =L22+L8
L24=TAXABLE BASIS
L25=INCOME TAXES
L26=NET PROFIT
L27=CASH FLCM MONTH
L28=CASH MUTATION
r:29=CASH BALANCE
L30=BANK LOAN
L3l=NET PRESENT VALUE

=TAXABLE OF L23
=0.48*L24
=L22-L25
=Lll+L9-Ll5-LS-L25-L20
=L7+L27
=CUMULATIVE SUM OF L28
=COMPARE L29 TO O. AND GET (-L29,LO,LO)
=NET PRESENT VALUE OF L27 WITH 1.5 % IN Cl

f"op the PepoPts we wish to include subtitles, undePUning, etc ••
PoP this puPpose we include some TEXT LINES in the model:

T32=5, 'CONSUMPTION'­
T33=5, 'SUPPLY'-
T34=5, 'MATERIAL COST'­
T35=43, 7' ----------'
T36=3,'EARNINGS'­
T37=3, 'COSTS'-
T38=3, 'PROFIT'­
T39=33,96'-'
T40=31,8' **********'
T41=+45,'IN REFERENCE PERIOD 0, DISCOUNT RATE OF 1.5 % PER MONTH',100,32' '
T42=+31,' - I

T43=+43,6'
T44=+103, I - I

239

SCENARIO : FINANCIAL PLANNING FOR WHOLESALE TRADE

REPORT 1 : INVENTORY

CONSUMPTION

1.UNITS SOLD
12.CONSUMPTION

SUPPLY

4.INITIAL INVENTORY
13.INVENTORY REPLENISHMENT
16.SUPPLY FOR LIFO

MATERIAL COST

3.PURCHASE PRICE
17.MATERIAL COSTS

INITIAL

800.

800.

12000.

JANUARY

1000.
1020.

510.
510.

12360.
12423600.

FEBRUARY

1050.
1071.

1045.
1045.

12731.
13616051.

MARCH

1100.
1122.

1096.
1096.

13113.
14684102.

APRIL

1150.
1173.

1147.
1147.

13506.
15804256.

MAY

1200.
1224.

1198.
1198.

13911.
16978680.

JUNE

1250.
1275.

1249.
1249.

14329.
18209620.

l'\J
~
0

,....
"<!"
C\J

SCENARIO FINANCIAL PLANNING FOR WHOLESALE TRADE

REPORT 2 : PROFIT & LOSS STATEMENT
JANUARY FEBRUARY MARCH APRIL MAY JUNE ~ID-YEAR

--
EARNINGS

!.UNITS SOLD 1000. 1050. llOO. USO. 1200. 12SO. 67SO.
2.SALES PRICE 20000. 20000. 20000. 20000. 20000. 20000.

10.SALES 20000000. 21000000. 22000000. 23000000. 24000000. zsoooooo. 13SOOOOOO.

COSTS

17.MATERIAL COSTS 12423600. 136160Sl. 14684102. 1S804256. 16978680. 18209620. 91716309.
5.FIXED COSTS ssooooo. ssooooo. ssooooo. ssooooo. ssooooo. ssooooo. 33000000.
6.DEPRECIATIONS 12SOOO. 937SO. 70313. 62SOO. 62SOO. 62SOO. 476S63.

19.INTEREST 0. 69777. 89379. 21928. 22Sl. 0. 18333S.

21.TOTAL COSTS 18048600. 19279S78. 20343794. 21388684. 22S43430. 23772120. 125376207.

PROFIT

22.GROSS PROFIT 19Sl400. 1720422. 16S6206. 1611316. 1456570. 1227880. 9623793.
ZS.INCOME TAXES o. o. o. o. 0. 395421. 395421.
26.NET PROFIT 19Sl400. 1720422. 16S6206. 1611316. 1456570. 832459. 9228372.

********** ********** ********** ********** ********** ********** **********

SCENARIO FINANCIAL PLANNING FOR WHOLESALE TRADE

REPORT 3 : CASH FORECAST (IN MIO. FR)
INITIAL

11. RECEIPTS -
9.CASH_FLa.' FROM PAST -

15.PAYMENT MATERIAL -
5.FIXED COSTS -

20.PAYMENT INTEREST -
25. INCOME TAXES -

,JANUARY FEBRUARY

o.ooo 10.000
3.000 4.000
3.152 9.807
5.500 5.500
o.ooo o.ooo
o.ooo o.ooo

MARCH· APRIL MAY JUNE

20.500 21.500 22.500 23.500
3.500 0.250 o.ooo o.ooo

13.844 14.938 16.085 17 .288
5.500 5.500 5.500 5.500
0.159 o.ooo o.ooo 0.024
0.000 o.ooo o.ooo o.395

--
27.CASH FLa.' M9NTH - -5.652 -l. 307 4.497 1.312 0.915 0.292

29.CASH BALANCE 1.000 -4.652 -5.959 -1.462 -0.150 0.764 1.057

30.BANK LOAN - 4.652 5.959 1.462 0.150 o.ooo o.ooo

31.NET PRESENT VALUE -0.184 IN REFERENCE PERIOD 0, DISCOUNT RATE OF 1.5 % PER MONTH

l\J
~
l\J

USIHG CHARACTER MODE EFFICIEHTLY

BY J, VAN DAMME SYDES H.V.
A. GOSSETLAAN 30A
1720 GROOT-eIJGAARDEN
BELGIUM

243

The discussion on whether to use block mode or character mode
terminals often stops on the difficulty to implement screen design in
character mode.

This lecture presents a solut~on to this problem that is both easy t6
implement and computer-resource friendly.

This text 1s prepared and printed using FSEDIT ((C) SYDES N.V,)

244

COMPARING BLOCK MODE VERSUS CHAPACTER MODE

Whether to choose block mode or character mode depends largelv on the
type of application. In general the following advantages and disadvanta­
ges of both systems should be considered:

- BLOCK MODE ADVANTAGES:

only one response time per screen transaction
all terminal features can be used (such as 'delete character')
the process, handling the terminal can be swapped out during
input, while in character mode the process has to be present after
entering each field.
This may lead to excessif swapping on overloaded systems.

- CHARACTER MODE ADVANTAGES:

each field is immediately processed as it is entered. This
improves the interactivity of the system.
each field has to be handled only once, while in block mode, the
full screen is handled each time an error was entered on a field.
features, not available on the terminal can be emulated by
software.
disc accesses to read data from disc can be made concurrently with
terminal output.

245

THE CLASSICAL lMPLEMENlATlON

In a classical character mode impleffientation, the screens used are not
or almost not formatted. This is because formatting is to be done by
the application program itself, using escape sequences and keeping
track of the row and column positions of each field.

Each field is tested aqainst tables and/or files as it is entered, but
once a field is accept;d by the program, it is not possible to correct
that field.

Error messages are often intermingled with the input an output.

If a screen has to be slightly redesigned - say a line has to be
inserted - then a lot of code must be modified in order to reflect the
new positions of all the subsequent fields.

246

THE SYDAlD lMPLEMENTATlOH

SYDAID uses a new approach towards implementation of interactif
programs.

An application 1i seen as a set of screen formats. Each screen format
is composed of one or more fields and ~ach field has a set of
specifications. These specifications indicate what has to be done
when that field is entered.

The designer first creates a screen format by drawing it on the screen
using the standard MPE EDITOR or any other text editor. Subsequently
she add~ a one-lin~ specification to -each line of the format
indicating the start position of the fields and the screen
enhancements

Then.each tiel~ is further specified:

- comparing the field to other fields, values or tables
- looking up and modifying data-bases and files,
- modifying the sequence in which the fields are sho~n.
- manJpulating data by computation or concatenation.
- issuing error and warning messages under certain conditions.
- modifying the sequence in which screens are handled.
- dynamicaly using the programmable function keys.

ln most cases no further programming in COBOL.or any other programming
language is necessary, but still a po~erfull .and easy to use interface
w~s designed to ~ommunicate with any host language.

A screen, designed with SYDAID, is totally independ~nt of ~he external
data-bas~. -~hi~ means that- the data~base may be r~structured in
several ways whithout modifying or even re~compiling the screen.
These-structure changes include:

- changing a fields type or length.
- changing a master data-set into a detail data-set.

247

THE SYDAID IMPLEMENTATION

The terminal user of a screen, de~ioned with SYDnlD, has the best of
character mode and block mode availabie:

- lhe user can move the cursor fortJard and backward over the fields.
- fields can be modified using special feature& including character

deletion and insertion.
- Real interactivity, on a field by field basis.

248

15 IDEAS ON IMPROVING MPE SECURITY
NORMAN B. WRIGHT

U.S. OFFICE OF PERSONNEL MANAGEMENT

A few years ago, when the number of Hewlett Packard 3000 sites
was somewhat less than one thousand, it used to be sufficient to
put a few passwords and lockwords on key accounts and files. We
could then take refuge from our worried management behind the mythical
"technically knowledgeable user". "The system is secure," we would
say, "except from the technically knowledgeable user who is intent
upon breaking its security". For many installations, this provided
a moderate degree of safety. We could be relatively certain who the
few technically knowledgeable users were who would be capable of
breaking security. We could also take steps to assure that these
users were not maliciously intent on circumventing security. At
worst, we could keep a very close eye on them.

No more! The user community at most Hewlett Packard 3000 sites
has outgrown the ability of one system or security manager to be
personally in touch with each member. Furthermore the sophistication
and knowledge of even casual users has now grown to such a point
that very few of us can take refuge in the myth of the "knowledgeable
user". Most users can be assumed to have had previous exposure to
computers, and to be in some degree acquainted with operating systems
and utilities. The widespread use of microcomputers is proliferating
this knowledge to a point where most of us have users who are not
professional programmers, but who nonetheless know enough to
attempt disk dumps, system crashes, and security breaches of considerable
ingenuity. Since the movie TRON, every system can be said to be fair
game for this sort of attempr:---

The following ideas are offered, not as an exhaustive checklist
of security measures, but as a list of workable ideas which you
may wish to consider in setting up or improving the security of
your HP3000 installation.

l. Establish control over the physical security of the computer
itself. While the advent of the minicomputer brought a
breath of fresh air to the large "closed shop" environment,
the growth to "super" minis has brought us back full circle.
We have met the enemy and he is us. Most HP3000 i nsta 11 ati ons
now deal with information which is far too valuable or sensitive
to afford the luxury of the "open shop". At a minimum the
computer, and its tape and disk library should be in a secured
environment with only those persons absolutely required for
its operation able to enter.

249

250

2. Appoint a security manager. Have this person spend a certain
amount of time thinking about security each month, in proportion
to the amount of potential loss at stake. One of the key points
in your security program should be that it is always changing,
and continually improving. The security manager should carry on
a continuing risk analysis, pinpointing current vulnerabilities
of the installation. He or she should be inventive enough
to consider all potential motivations: financial gain,
malicious sabotage, corporate embarassment, and mischievous
fun. Your best source of what is vulnerable on your system
will always be your own in-house technically knowlegeable
users. Keep them thinking regularly about security problems
on your system. There are always going to be holes and
weak points. Concentrate on the ones that are the most obvious
with the highest potential loss to the installation.

3. Make your personnel security conscious. Make certain that they
understand the sensitivity of certain data and are following
established procedures in dealing with it. The greatest security
risks, of course, involve your own personnel who must have
day-to-day contact with sensitive or valuable information.
Fortunately, this is also your first line of defense. Make
certain that the need for security is known and understood
by all employees. Check frequently to see that established
procedures are being followed, not being pushed aside in the
crush of day-to-day business. Make sure that your employees
feel free to report even accidental or casual security violations
to the security manager.

4. Establish manual or automated cross-checking procecures for
information which is particularly valuable or sensitive. As
with money, it is usually better to have at least two people
involved in the handling of sensitive data so that collusion
between them would be necessary for fraud or theft to be
perpetrated.

5. Pay particular attention to the movement of magnetic tape, disk,
and other media. Regardless of how elegant and effective
your online security techniques might be, they could always
be rendered useless by the theft of a single system dump or
backup tape from your installation. The only way to protect
against this (short of data encryption) is to establish very
tight controls on the removal of such media. Dump tapes in
particular may need to be kept under lock and key and bulk
erased after they have expired. If you have tape or disk media
which are routinely shipped or taken from the site, you may
want to establish a program of cross checking their contents.
At any rate, insist upon accurate logs for all information on
magnetic media which leaves your computer room, including a
record of what was taken, who took it, where it went, and for
what purpose.

6. Store sensitive data separately. Due to the storage and
handling problems with dump tapes, you may wish to consider
backing up and storing particularly sensitive or critical
data seperately from your SYSDUMP procedures. Backup media
for the sensitive data can then be subjected to additional
cross checking, perhaps even placed in custody of someone
who will take overall responsibility for its security.
Since it is on independent media, it can be placed under
seperate lock and key, and purged from the system prior to
all SYSDUMP procedures. If you wish to make doubly sure the
data is destroyed from the disk, overwrite it instead of
purging it. The program "BLATFILE" in the User's Group
Library performs this function.

7. Lock up the key capabilities of the system and check them
frequently. It is well known on the Hewlett Packard 3000
system that users with privileged mode capability (PM) or
with system manager (SM) can easily break almost all
security mechanisms. Reserve the use of these capabilities
to a few users and make certain that extra precautions are
excercised over them. If your system account structure is
highly volatile, you may wish to set up auditing procedures
to check, at periodic intervals, to make certain that these
capabilities have not "leaked" out to other users. Privileged
mode is notorious for doing this since it is also, by some
quirk of MPE, required for restoring data bases. The CS
capability for using the distributed systems lines, is another
one which you should consider restricting if your installation
uses this facility.

8. Use the MPE password system or a good alternative. MPE password
protection at both the account and user levels has some
excellent advantages, if used correctly. Making your passwords
randomly generated strings of letters and numbers affords
a measure of increased security which is highly recommended.
You should plan on changing passwords periodically, at
irregular intervals, perhaps to coincide with the departure
of key personnel such as programmers or operators. Remember
that these personnel frequently gain privity to passwords
other than those authorized to them. Using MPE's double
password system allows you to change the global account
passwords and leave the user passwords the same. Changing
passwords has the twofold advantage of requiring the security
manager to keep up to-date-records of the user population
and requiring the user population to keep close touch with
the security manager. Users who no longer have current need
for access to the system, but who have failed to notify the
security manager, will be automatically excluded by these
periodic changes.

251

252

9. Get the passwords out of your streams. In order to change
passwords easily and painlessly, you must develop methods
for removing them from job stream files used as a regular
part of development and production. There are a variety
of packaged programs and utilities available to help with
accomplishing this. They include the extended stream
facility of Vesoft's MPEX, and at least two programs
available free in the Users Group Library -- JES and
STREAMER. All of these programs depend upon programmatic
insertion of the passwords into the job stream file before
it is streamed. The password is usually obtained from
a password file or from the system itself at run time.
If one of these packages does not have enough flexibility
for your installation, it will pay you to write a simple
one yourself. The requirement for passwords in the job
stream file is a major security problem in MPE which will
also make changing passwords regularly a forbiddingly
burdensome task.

10. Use the LOGON,NOBREAK UDC to control users. This is
particularly applicable for users who are dedicated to
only a few different functions on the system, such as
payroll or inventory clerks. A properly constructed UDC
can tightly restrict what such a user could do on the
system, allowing him or her to access only those functions
which are authorized. The UDC can be set to automatically
log off the user upon completion of the specific function.
Setting the UDC on an account-wide basis (;ACCOUNT) will
alleviate the time-consuming task of having to log onto
each newly created user id. For those few users whom
you wish to allow privileged access on the account, you
can set UDC's with an overriding command at the user level
which will deactivate the LOGON,NOBREAK facility.

11. Consider writing your own security screening program. This
program could be used in conjunction with a system or
account-wide UDC to check for a variety of user defined
security violations. Many installations may wish to restrict
certain users to specific terminals (logical devices), or
to specific time peri ads during the day or week. In
designing such a program you may find the seldom-used
LOCATTR attribute of the user id useful for futher screening
and restricting user capabilities. A user-written security
screening program can also do additional password or
protection prompting, and logging for installations where
several users are using the same user id. An interesting
example of this type of program is found in the KMGR
program in the Users Group Library which provides extra
logon security for privileged accounts. A security screening
program, coupled with the LOGON UDC provides good capability
for customized sign-on protection.

12. Consider disabling the :LISTF command entirely. MPE's
:LISTF command has been faulted frequently because it
gives all users the capability of listing the file directory
contents of the entire system. Thus, for example, when the
user sees the program DISKED2.PUB.SYS, the temptation to
experiment can prove almost overpowering. Particularly on
college campuses, where some of the most severe security
problems of this kind exist, locking up the :LISTF
capability and a variety of other capabilities based on it
(LISTDIR2, PURGEFILE, etc) seems to be a good precaution.
Alternative commands for listing the user's group and account
fileset can, of course, be provided. Almost any use of the
UDC in a security program, it should be added, will mean
that the :SETCATALOG command itself will also have to be
disabled at the user level. Otherwise the user will easily
learn to circumvent the UDC commands with an overriding UDC.
A good program of system and account UOC's can frequently
alleviate the need for numerous user UDC's anyway. You
may wish to abandon the many problems of MPE's UDC facility
entirely, in favor of a programmatic capability designed
as an integral part of the security screening program.

13. Consider using private volumes to enhance your security.
Much has been written about the use of the private volume
capability in terms of increased data handling flexibility
and backup. However, private volumes also provide one of
the best methods for tightly restricted access to key data
on the system. Data such as a payroll account or other
critical information can be physically removed from the system
when not in use on line. When the information is required
on line, it is protected from unauthorized tampering by
the necessity of UV (use private volumes) capability which
can be granted only to the authorized users.

14. Program security into your applications. Regardless of what
measures you take to restrict access to the system, you are
also going to have to protect against the inside job --
the authorized user who uses the data in unauthorized ways.
As we mentioned earlier, your best line of defense will
always be other personnel and system cross checks designed
to prevent this. However, most users find they must also
look at the applications programs or packages themselves to
further identify restrictive mechanism which can be implemented.
A key feature to all sensitive applications should be some
form of logging facility to track what transactions were
made and by whom. The logging capability could be a built-in
one, such as IMAGE's transaction logging, or it might be
one which is designed into the application. Logging
capabilities frequently serve a variety of useful functions
in addition to the security function.

253

254

15. Establish a vigorous random auditing program. Your entire
security edifice will collapse without constant monitoring
to determine if and when security breaches are being attempted.
The security manager should bring into play everything that
he knows about the system to periodically monitor activity.
Use the log files and programs which manipulate them (LISTLOG2,
READLOG, CENSOR, etc.); use online monitors (OPT3000, SOOIV);
use programmatic or manual checks on other logs such as
DBAUDIT for IMAGE data base logging, or monitoring your own set
of logs from security or transaction screening programs. The
auditing program should check for application·defined "unusual",
"excessive", or "special" conditions. Try to make the
programmatic definitions of these terms parameterized so that
they can be varied. One crucial element of the auditing
program is that it must be constantly changing and improving.
As quickly as one check or audit is permanently installed
and performed on a regular basis it can be assumed that
another way will be found to circumvent the existing checks.
Only by constantly changing and improving the security system
faster than the sophistication of your average user ·· a
sophistication which is itself constantly increasing ··
can you hope to offer any assurance of ·a secure system.

################ h
############# h
########## h
######### hhh
######### h h
######### h h

#################
############

##########
PPP #########

p p #########
p p #########

P PPP ######### ######### h h
#####+I####
############

p ##########
p ############

######+1####### p ####################

COMPUTER SYSTEMS DIVISION
Accounting Systems Group
19447 Pruneridge Ave.
Cupertino, Ca. 95014
(408) 725-8111 x 4348

Mike Pechulis, Senior Programmer Analyst

**

255

The MIS group supports the accounting function within the
Computer Systems Division of Hewlett-Packard. We have had an
operatorless, multi-machine, networking environment for three
years. This paper will discuss various techniques we have used
to enhance our system's security and integrity. Topics presented
will include:

MONITOR
Complete sys;tem security, app l :i cation control and
friendly user interface in a single online program.

PRIVATE VOLUMES
How private volumes can be used to insure data integrity.

DATA BASE AUDIT

GET BASE

An online program for analysis of Image log files.

A program which provides a secure interface between
applications and data bases in a networking system.

OMNI/3000
A program from the contributed library which has been
modified to regenerate your account ~tructure and list
the attributes of specified accounts, groups, users, and
files.

256

The MIS group handles all accounting data processing

within the Computer Systems Division CCSYI of Hewlett-Packard.

Our role within the accounting department is two-fold:

11 we support and develop computerized accounting systems.

21 we test many of HP's new hardware and software products.

This includes pre-release testing for reliability

and functionality.

Our philosophy centers around the use of HP software and hardware

i. n a "di r..;tl'" i buted" data pr"ocessi n~i en vi. ronment; an en vi 1· .. cmment

in which the computing power is where the people and the

problems are located. This includes addressing the problems of

operatorless computers and system security.

Currently, our local network of three HP3000 systems fits

into a larger CSY network of seven HP3000 systems in three

different locations. The three local systems Ca Series 64, 44,

and a 40SXl are linked together by the X.25 Protocol of ns:;:.ooo.

All three machines are running on the MPE IV Operating System.

The 64 handles our cost accounting and prog1r·am

development, the Series 44 handles our general accounting, and

the Series 40 is dedicated to the GA/3000 Accounts Payable

modulE?. The Series 40, along with its accompanying disc drives

and terminals, is located directly in the user's area.

do the users handle their own software applications,

257

Not only

but they

also handle many of the operator's tasks such as backup.

We have seventeen disk drives spread across the network

for a total of 2200 Mb of disc storage. On each machine, there

is only 100 Mb of system domain. The remaining space consists of

private volumes. These include four HP7935H 404 Mb drives

currently being alpha-tested. One 2619A does the printing for

three machines by using the DS/DSN X.25 Protocol to copy

spoolfiles from the Series 44 and 40. Our systems group of tan

professionals supports an accounting department of 40 people.

258

ti Q ~ .! I Q 8

With today's emphasis on distributed proc:essii ng,

computers and their associated peripherals are being placed in

open user environments. Here there are no lo~ked doors for

security or experienced operators to help monitor .the system. In

this environment, the system itself must be used to secure its

own data and Accounting Structure.

Our approach was to develop a secure, network interface

between the computer user and the MPE operating system. We

called this interface "Monitor" because it controls what a user

can access. Each Monitor controls a single account and provides

access to the groups within that account.. When a user logs on to

a group, he is automatically captured by Monitor and is presented

with a menu screen of options. Each opt.ion runs an online

application program or streams a particular batch job. The menu

of options available to the user depends on the group or

user/group log-on. After successful completion of an option,

control is returned to Monitor and the user is p~ompted for

another input.

Applications are run through Monitor so that no user,

except sy•tems personnel, ever needs to get to the Op~rating

System <see figure 1.0J. To stream a batch job or run a p~ogram

259

anline no longer requires a user ta know all the necessary file

equations and MPE parameters. The local network Monitor data

base automatically provides this information ta the system.

Depending on the user log-on, Monitor can automatically

issue additional file equations, remote lag-ans, or other

environment set-ups required before a certain application can

r~. Each Monitor option can also request a sequence of multiple

commands. This is helpful when an online application needs

several different file equations in order to execute

successfully. A help facility which explains the Monitor options

is available far each group log-on.

Monitor provides the system with some additional security

features:

Lag-ans can be selectively disallowed by account,
group, user, or combination.

Besides being able to place passwords on each group,
the user can also customize his own password for
each Monitor option.

All passwords kept in the Monitor data base are
encrypted for added security.

The NOBREAK option and the Job Control Words (JCWI
within the User Defined Command CUDCI prevent
unauthorized termination of Monitor by lagging the
session off.

There is no need to use Query to access and update
the Monitor data base. Maintenance and reporting is
done through an online, View-driven interface
program. For audit purposes, the program generates
a report listing all the capabilities, UDCs,
commands and access flags associated with each group
and user.

260

Monitor is independent of any logical device and can be

run in non-block mode from any terminal. This system can be

installed on an HP3000 running stand-alone or one linked to other

HP3000 computers in a netwbrk.

*
* * * * * *

* TERMINAL *

* * * * *************************

************************* **
* JI(*** *** * MONITOR * * MONITOR *
* PROGRAM *<----------->* DATA *
* * * BASE *
************************* *** ***

**

MPE APPLICATIONS----------------------------------->

Figure 1.0 Monitor Overview

261

A private volume is a removable disc pack whose data does

not reside in the system domain. A serial disc is a type of

private volume which, like a tape, is a serial device. In mc:ivinq

to a multi-machine, networkinq environment, private volumes have

proven their worth in several key areas.

Since our qroup functions as both an experimental test

center and an accountinq production center, we protect our data

from system failures (hardware or software) by keepinq all of our

accounting application files on private volumes.

domain consists only of the SYS account, spooler space, the

system directories, and the operating system. Durinq our regular

backup, we create a Cold Load tape which c~1tains only MPE and

the files in the SYS account. Since major system failures almost

never affect information on private volumes, a Reload in our

environment simply means restoring the latest Cold Load tape. We

have reduced our Reload from an average of nine tapes to only one

tape and our Reload time to 30 minutes. In addition, we never

lose any user-inputted data. When we were alpha-testing the

a five month period. Not once did we lose any accounting data.

Partial system dumps that used to be done to tape are now

done to private volumes <serial discs). Each HP7925 disc pack

262

can hold about three 1600 bpi tapes worth of information and an

HP7935H disc pack can hold more than ten. By using serial discs,

we have reduced our backup time by a third. Not only are

multiple tape mounts eliminated, but also private volumes do not

suffer from missing load points on HPIB tape drives or from

parity errors that frequently plague older tapes.

Processing that used to go to tape now goes to private

volumes. We gain the advantage of fast disc access in combination

with the same ease of removability and storage of tapes. By

having data files on a private volume, the production jobs

control the file access. It is no longer possible for an

operator to mount the "wrong'' tape and thereby write over

important data. If the wrong private volume is mounted, the

program will not be able to access the file. No important data

will have been over-written and lost. With multiple private

volwne disc packs, we also gain a great deal of flexibility. In

our environment, we run online applications during the morning

and afternoon, a system backup at lunch, and batch processing at

night. Over the course of one day, one disc drive may have had

several different disc packs. During down-time on one system,

private volumes can be moved to another machine with a similar

accounting structure. This enables us to move our development

and testing files off of the downed system and onto another

machine in our network.

263

e Y Q ! I Q B

The need to maintain both the security and integrity of

data bases is crucial in any production environment. Data

security centers on the ability to determine who accessed a data

base, when this access took place, what was done, and what

program was used to permit the access. Data integrity requires

the ability to completely and accurately recover a corrupted

database.

In terms of data security, the current DBRECOV utility

has only limited auditing capability with no flexibility for

specifying data parameters such as who, when, and what program.

The user 1~ould be allowed to set specific search values on these

parameters. With these capabilities, full auditing control is

maintained over the databases.

To insure data integrity during a normal recovery, the

DBRECOV utility must go to the beginning of the log file and

work its way through to the end. There are only limited

allowances for partial recovery. Partial recovery should give

the user the option of specifying multiple start and stop times

(ie. time windows>. In the present system, partial recovery is

enabled only to the extent of starting at the first record of the

log file and then stopping at a given time stamp. A system that

would allow partial recovery plus the examination of IMAGE

commands in the log file would allow a more complete and accurate

recovery of corrupted data bases.

264

Our· Dat,,.base Audit system gives a user increased

flexibility in both auditing and partial recovery. I~ user can

now selectively examine database log files and then do a partial

recovery with multiple time windows. This examination looks at

or al 1, of the characteristics of the fil• (who accessed

it, what they did, when they did it, and what program was used).

ThE? parameter£; that the program uses are input in the form of

c:ommands. In batch mode, these c:ommands can also c:ome from an

editor file.

chosen,

The output of the system will depend on the applic:ation

In the audit mode, a report will be generated with the

information requested by the user. The user will also have some

flexibility as to the format of the report. The standard output

device for this report will be the system line printer. In thE1

partial recovery mode, the output will be a disc file that

contains log records (see figure 2.01. These records will be

exact copies of the records from the master log file,

according to the criteria given by the user. This file will be

used for rec:overy in place of the master log file.

265

* * * * * * * * TERMINAL *
* * * * *************************

************************* *****************
* * * * * DATA BASE *<-------* MASTER *
* AUDIT PROGRAM * * LOG FILE *
* * * * ************************* *****************

\!/

\!/

* * * * * AUDIT * * NEW * * REPORTS * * LOG FILE *
* * * * ********* *******************

Figur-e 2.0 Audit Pr-ogr-am Over-view

266

With network-oriented systems, data bases can be spread

across various groups and accounts on several different machines.

Because of the dynamic nature of a network, it is not desirable

for each application to have hard-coded data base access

routines. This would considerably decrease the flexibility of

the application. Such an approach requires hard-coding the

fully-qualified base-name, the data base password, and the access

mechanism for remote machines. Application programs should only

have to supply the data base name and then let a network program

determine the location of the database Cgroup, account, and

machine>, set-up the access path, and provide the necessary

password to open the data base.

To accomplish this, we developed a subroutine called

Getbase which acts as an interface between an application program

and a network. Each machine in the network has a local data base

which contains all the necessary information for opening data

bases on all machines (see figure 3.0l. A call to Getbase by an

application program does the following:

determines the location !name, group,
machine> of the target data base.

opens up any needed dslines.

account, and

logs-on to the remote computer containing the target
data base.

provides the file equations necessary to point the
application program to the correct data base.

returns to the calling program the correct data base
name and password.

267

Maintenance for all the local Getbase data bases will be

provided by an online block-mode program. This program allows

you to add, delete, or update information concerning your

production data bases. The user can change the location of a

data base !group, account, and machine), the dslines to each

machine, and the passwords. Data base passwords are all

encrypted for added security. The maintenance program runs on

the host computer and can be used to update all of the remote

data bases simultaneously.

By centralizing our passwords in one database, we have

gained both fle>:ibility and security in our data base network.

* * * APPLICATION * * PROGRAM *
* * **************************

/!

\!/

************************* **
* * *** *** * GETBASE * * GETBASE *
* PROGRAM *<----------->* DATA *
* * * BASE *
************************* *** ***

**

Figure 3.0 Getbase Overview

268

Q ~ N l L ~ Q Q Q

One of the primary responsibilities of a System Manager

is to monitor the attributes of his account structure <MPE

capabilities, access, private volume name, passwords, etc ...).

This insures that no unauthorized changes have been made to the

system. In addition, the system directories must be maintained

by adding or deleting certain groups/accounts off of one Private

Volume and onto another.

accomplish these tasks,

To gather the necessary information to

a System Manager must go through the

LISTDIR2 utility and individually check each group, user, and

account. When dealing with even a few entries, the tedium of the

job makes it easy to bypass a security risk. Also, when

information has to be taken off of one private volume and put on

another, the System Manager must manually recreate the account

structure for the new disc.

Our approach was to develop OMNI/3000, an automated way

of helping System Managers maintain and monitor their account

structure. It can be run in either batch or online mode and will

generate reports for either the terminal or line printer. The

program has three main functions: one function recreates the

account structure of either a private volume or an entire system,

the second function reports on the attributes of specified

accounts, groups, users and files, and the third function

compares the account structure found on the system with a master

copy found in a database and makes any appropriate corrections.

<see figure 4.0).

269

When recreating the account structure for a private

vol um~?, OMNI/3000 reads in the old account structure and creates

a job file containing the appropriate ALTACCT, ALTGROUP, and

ALTUSER commands. The user need only input the new private

volume name and then stream the newly created job file. For use

on a "null" system, OMNI/3000 c:an also be used to generate the

entire account structure of a machine.

OMNI/3000 allows the user to scan an account structure

for certain values and then print out the results in a clear,

concise format. In addition to the search criteria provided in

the LISTDIR2 utility, a System Manager can also ask fol'" the

following information:

Find all accounts, group,
Manager, Account Manager,
capability.

users, with
or Privilaged

System
Mode

Find all accounts and groups on a private volume,
even if the pr· i vate volume is not mounted.

Find all files with a percentage utilization of less
than "X" percent.

Find all files gr·eater than "X" sectors.

Find all groups and accounts greater than "X"
sect.ors, or "X" i:pu seconds, or "X" elapsed time.

Find all groups and accounts near their limit of
disc: space, CPU seconds, or elapsed time.

Instead of LISTDIR2's block format, OMNI/3000 uses a print format

similar to MPE's ":REPORT" command. The groups, users, and

accounts are printed down the page and the attributes (ie.

capabilities, access, passwords, etc ... ~ are printed across the

1 ine. This allows the user to quickly scan the data for any

discrepancies.

270

The OMNI/3000 data base holds all the attributes of each

user·, group, and account on the system. The program compares the

attributes in the data base with the attributes on the actual

system. The program uses the database as a "master" copy of the

account structure. When there is a difference, the program

generates a listing of the error and then automatically corrects

the problem. This data base is maintained by an online, block-

mode program.

* * * * * * * * TERMINAL *
* *

* * *************************
/!

\!/

************************* **
* * *** *** * OMNI3000 * * OMNI3000 *
* PROGRAM *<---------->* DATA *
* * * BASE *
************************* *** ***

**

\!/

\!/

* * * * * MAINTENANCE * * ACCOUNT * * REPORTS * * STRUCTURE *
* * * JOB FILE *
********* *******************

Figure 4.0 DMNI3000 Overview

271

SECURITY/3000: A NEW APPROACH TO LOGON SECURITY
by Eugene Volokh,
\.'F;:'.::~01::·T Con~;!J 1 t.::tnt:s

506 N. Plymouth Blvd.
Los Angeles, CA 90004 USA

(~':13) 464--?~523

With the advent of computers, a new age in information processing
dawned, And, together with it, a new threat to information security
was born -- the threat of computer crime. This paper will tell you
why you should buy SECURITY/3000, VESOFT Consultants 9nswer to at
least one part of the security problem -- logon security.

THE f'f<:OE:L Erl

'.:::i:::cur it.~)
oP t.he

is the art of restricting access to certain entities. One
fundamental aspects of all security systems is accessor

identification, i.e. determining who the person who wants to access a
given entity really is. In computer security, this form of security
is called logon security. Once this level of security is passed, the
accsssor is no longer Joe Smith, but rather JOE.PAYROLL (with the
underlying assumption that JOE.PAYROLL really is Joe Smith). If John
Doe can sian on as JOE.PAYROLL, the computer will still think that he
'i. :.::: 1 .. !c1~::: :::mi -1:.h) .::,,nd 1.o.1 i 11 11:~:t hi rn do .an;:..'th i ng t.h.:::1t .Jo1:-;: c:.~:1n dQ ..
ri?;9.ardles;::: of· .=in'.:.-1 f1 . ..11· .. ·t.ht7::r 1~2vi:::~l:::: i::if s~::curit::.-1 t.h~st. i::::::l::::t on 1:.ht:::
system. Thus, if your logon security
additional layers of security can help
any would-be computer criminals.

S'.:··'S:t.~~m i ::::
vi:::our :?.:'.:..iSt!:~:rn

in -~~1c!ec1u-:;:;t.1-2 .• r"10
is: 1,..1id;:.::: c:1p~:::n to

Thus, a good logon security system must ensure user id integrity,
and, if a violation is detected, it must take proper measures to
inform appropriate people (e.g. the system manager and the console
ope:r .. ~tcir) c1f t.h1::: '" i i::.i l .:.::1t ion, Furt.t·1i:.:.:rmi:::ire / it must. r)rt:".11:.i:::.ct. .;:.:i'J-::1 i n::~:t
internal tampering with the security system by maintaining a clear
audit trail of all security modifications. And, it m3y also be of
ben•fit for it ~o prevent user access at times and from places in
1.:.:hich it. i:::: i::::-::tsiE.:::::+:. 1:-o pi::-::ni::::i:r.::tt..E: s::-':::;.t.i:~:m -::.:t-:;:i::i . .Ji·-·ii~.'.:.-' (e:.9, or·1 i .• .it::~~ke.:nd:~~ ..
. :::.i·f·t.t:"?.:r· hc:iurs .. 0\•''2r t.~.:.:lephoni:.:: 1 ine:s .. e:tc, >,

Unfortunately (for you, but fortunately for us vendors), HP's logon
::::ecurit.~:..i S'.~-1 st.E:rn dc~:2: ni:1t. meet:. t.h~::: .?.\bO'</i?..: re:q1.Jir1:~mi::::nt~::. [··-ii:::i timi:-~ i:::if

day, day of week, or terminal number security is provided; no audit
trail of password removals, additions, or modifications is kept• only
the console operator is informed of any violations (via a message
that is virtually indistinguishable from a number of other messages
sent to the system console); ano, as we will demonstrate below, user
id integrity is easily compromised.

In order to ensure user id integrity, HP's logon security system uses
passwords. However, these passwords provide only an illusion of
security, because:

272

There is only one password for each or
gr1:;up) of ::rE:c:ur i i::.~:.-1 . Th1_1s: .. k ni:::i1 ... : i nq password guarantees
that you can penetrate that level of security,

* Many paopla treat passwords as a dispensable nuisance, and thus
readily reveal their passwords to unauthorized people. To a
pe:r$•Jn 1 .•. 1ho d1::i-i:~::-::: ni:-:it p€:rct~ i \/i=~~ i:.hE: ::.::•::cur i t~:..i '•l·~=J 1 ui:.:: i::1f .3 p.:::t:~:s·i.Jord .• it.
is much easier to tell someone the password rather than to
question whether that someone should really know it, Similarly,
people have no qualms about writing passwords down if they have
trouble r•membering them (in one casa, the usar actually wrote
th• p.!lss1,,1ord do1,m .:;ind stuck it. to her te1'·rr1in.;;l ! >,

* Passwords are stored in the system in clear text. Thus, thei• may
be readily found in job streams, discarded LISTDIR2 listings. on
:SYSDUMP tapes, etc.

Thus, if you are relying on HP's logon security system, you and your
information can easily fall prey to computer crime.

THE :::ouJTION

USER ID INTEGRITY

Inst•ad of conventional passwords, SECURITY/3000
profile passwords -- answers to personal questions

user t=·.e:r$on.:al
such as "WHAT IS

YOUR MOTHER'S MAIDEN NAME?", "WHAT CITY WAS YOUR GRANDFATHER BORN
IN?", etc. (If you don't like our questions, you can configure your
own.) Instead of asking the same question all the time, SECURITY/3000
askz a random one out of a number of questions (up to 30,
use.r· ... c:r:.•nf i 91 . ..1r·ab l 1=: >, ~ind,, i nst.i:taci
clear text, it encrypts them using
system, through which the answers can

of keeping the answers stored in
a special one-way encryption

not be decrypted by anybody.

Thuz, passwords are automatically imbued with ~ psychological
security significance; knowledge of all passwords is required to be
sure of being able to access the system, even though the user is
asked only one at logon time; and, passwords are made impossible to
determine. Thus, SECURITY/3000 avoids the disadvantages of HP's
logon security system.

VIOLATION REPORTING

Unlike HP's logon security system, which reports security violations
only to the system console, SECURITY/3000 reports them to the system
console (in inverse video, to distinguish them from ordinary console
messBgs3), prints a user-definable memo to the system line printer,
and logs them tn its own log file for future reference (thus
providing a permanent record for further interrogation), This
'' t.hr-=:\:::~-a 1.:irm ~S~:.-1::::·1:',}o:::m i; m.3k e:~:: ::::ur·f:~ t.t .. 1.;at. at t .. s:mp t.i:::d ::::~ecur it.'.:} \•' i o 1 at.ions
are acted upon, not ignored.

273

Although an account manager should be able to add, change, or remove
user security within his own account, there must be some means
provided to keep track of his actions. Under HP's logon security
system, an ~ccount manager can create a fictitious user id, log on to
the system under it, and do something that he shouldn't be doing
without being afraid of getting caught. With SECURITY/3000, all user
additions, changes, and deletions arft logged to the SECURITY log
file, thus allowing an auditor or system manager to determine who
cre~ted, altered, or removed a given user id.

TI ME OF DA'(.. DAY OF l.1IEEK, AND TERM J W4L t~l.l!'IEiER ~:>EC URI T'l

Most security violations will not occur on Tuesday at 2:30 in the
m!ddle of your payroll department; they will most likely be done in
the dead of night on a weekend across a telephone lina. If your
payroll clerks work only on weekdays from 9 to 5 on terminals 31, 32.
33, and ~o. any dttempt to access the payroll account at any othar
tims from any other placm is inherently a security violation. Does
HP's logon security system protect you against this? No. Does
SECURITY/3000? Yes.

In ~hort, SECURITY/3000 gives you what HP's logon security system
doesn't give -- security.

COtKL.USION

If you are an average HP shop, you have tens of millions of dollars
flO\,•ing t.hrot..1gh ~/O\.!r ci::•mpute:r. If vo•.1 (.;.;:int. to ke:e:p tho:;;e t.e:ns of
millions of dollars, what you need is SECURITY/3000.

274

Practicality in the Design of Software Testing Tools

Gary E. Marcos
Information Networks Division

Hewlett-Packard
Cupertino, California

Most software testing tools do not recover their initial costs. They are
built during the worst part of the product lifecycle, the testing phase, where
expectations are high and pressure to release the product is great. This causes
two significant problems: (!) An attitude that software testing tools are a poor
investment because they are poorly designed, undocumented, unmaintainable,
unextensible and short-lived. And (2), that the choice of testing tool is a dif­
ficult decision to make, with its benefits being unclear. These problems can
be overcome by designing software testing tools early in a product's lifecycle.
By doing so the investment will be recaptured many times over.

This paper addresses the successful design of software testing tools. The
design takes place in three steps. The first step, planning testing objectives
early, identifies resources to be allocated to the testing effort. It also sets the
objectives of the testing effort. The second step, determination of the feature
set, identifies the features that the software testing tool must have in order to
recapture its investment. Features such as ease of use, maintainability, and
extensibility are discussed. The third step, determination of services of the
software testing tool, identifies the area of testing that will be enhanced
through the tool's use. Typically, software testing tools provide services in
those areas of testing that can be automated, such as functional testing,
reliability testing and performance testing. Two case studies are provided
when the discussion is complete.

TESTING and SOFTWARE TESTING TOOLS

Software testing provides many crucial services designed to reduce costs and
ensure end-user satisfaction. For example, costs are reduced by identifying
software failures within the lab rather than in the field, where failures are
significantly more expensive to identify and resolve. To find and fix a soft­
ware bug in the field can be fifteen times more expensive than to find and
fix it in the lab [Daly77]. End-user satisfaction is increased by delivering a
product that meets the design objectives and is of high quality. This can ac­
count for an increase in sales by establishing the reliability, quality and over­
all image of the product [Miller81]. Software testing tools are mechanisms of
applying the advantages of software on itself. Thus the benefits of automa­
tion, cost reduction, are applied to the testing process. Manual labor is
reduced, the time in the testing cycle is reduced, test cases become easily
repeatable and testing is more thorough. The final results are increased en­
gineer productivity, lower costs and a higher degree of quality. The need for
automating the mechanisms of testing stem from the fact that much of the
testing effort is mechanical. There is the repetitive cycle of running tests,
determining test success or test failure and genera ti on of test cases. Manual

275

276

testing is error prone, hard to duplicate and time consuming. Through
automation, software testing tools can make significant contributions to the
mechanics of testing.

THE PROBLEMS

Unfortunately, software testing tools have acquired a reputation as a poor
investment. This has held back the progress of producing quality software
due to the lack of such tools. The primary reason that software testing tools
are viewed as a poor investment by managers and engineers alike stems from
the fact that most software testing tools are built and not designed. At some
point during the coding phase, debug phase or testing phase the software en­
gineer (whose primary responsibility is to get the product released) deter­
mined the need for a testing loo! and has built it. The tool may aid in the the
product's release but the investment in the tool itself may be Jost. For ex­
ample, expendiblity is often equated with software testing tools; the tool is
useful in a particular environment, the environment changes slightly and the
tool is no longer useful. Or, the few people (or person) who knew how to use
the tool are no longer available and the new engineers avoid the tool due to
it's complexity or Jack of documentation. These are experiences which do not
have much visibility during product development and product release.
However, when resources are requested, these experiences are recalled and
give rise to the philosophy that investing in software testing tools is a poor
investment.

A well recognized problem in the software community is our present in­
ability to quantify software quality. It somehow manages to elude our best
efforts. This problem is also a major obstacle in the acceptance of software
testing tools. Managers are forced to weigh the cost of the software tool
against the intangible benefits derived from the tool's use. This problem does
not prevent us from recognizing the value of software tools which enable us
to build even more software, for example, compilers, editors, cross-referencers,
cross-assemblers and symbolic debuggers. It should not be a problem in
recognizing the value of software testing tools. Just as automation is being
applied to the production of software through the use of compilers and
editors the same process of automation should be applicable to the testing
process.

THE SOLUTION: DESIGN

Testing takes place in the phases of a product's lifecycle that account for
seventy-five percent of the product's cost. Twenty-five percent occurs
during the testing phase prior to product release and fifty percent occurs
during the maintenance phase after product release [Myers76]. In order to
recover the costs of building software testing tools the tools must be designed
to survive passage from the testing phase into the maintenance phase, where
we have the most to gain by reducing manual labor and improving the
quality of the testing effort. Myers states in his book ~ft~~...B!tli3...bili.1Y
rI!!!.<iPk§..ll_!!_d_l'_ggices, "The best way to dramatically reduce software costs
is to reduce the maintenance and testing costs." [Myers76]. In order to survive
the passage, the software testing tool must be designed to meet the needs of
not only the testing phase but also the needs of the maintenance phase. This

is actually quite an easy task, as there are many similarities between the two
phases. They are related through the fact that adding enhancements to the
product or fixing bugs both require that the product be tested again.
Preserving the usefulness of the testing tool over the lifespan of the product
might appear to be obvious. However, it is a perspective that is usually lost in
the pressure to release the product. Typically, the scope of software testings
tools has been to aid in the certification and release of the product. The ef­
fect of this approach is to build a tool very narrow in scope and one whose
usefulness after product release is minimal. The key to designing successful
software testing tools is not to forget that SO percent of the costs associated
with the product will be spent after the product is released.

PLAN TESTING OBJECTIVES EARLY

Successful software testing tools need to be designed to survive passage
from the testing phase into a useful life in the maintenance phase of a
product. There are three steps to be considered in the design. The first step is
to PLAN TESTING OBJECTIVES EARLY. This step is the most important as
it will clearly define the resources available in which the software testing
tool is to be built. Most important, in this step, is the time allocated to design
the software testing tool. Before an engineer can design, the engineer needs
to be allocated time in which to accomplish that task. Software testing tools
which fail are usually those tools which have been designed and built in the
testing phase by the engineers responsible for releasing the product. This is
not surprising, as the testing phase is the last phase before product release,
usually the most pressured and therefore the worst time to make design deci­
sions. Not all of the time available to the testing phase can be spent on soft­
ware testing tools. Some forms of testing such as ease of use, documentation,
portability and adherence to standards do not lend themselves to automated
means of testing. They require qualitative decisions. By planning the testing
objectives some decision will be reached on the resources necessary to ac­
complish the task. From that available pool of resources will come the valu­
able time to design your successful and practical software testing tool or tools.

DETERMINE THE FEATURE SET

The second factor in designing a successful software testing tool is to
DETERMINE THE FEATURE SET of the tool. The proper feature set will
preserve the initial investment in the tool once the product enters the main­
tenance phase. Choosing the correct feature set depends heavily on the
product being produced and the environment in which it is being produced.
In all cases careful evaluation must be given to the features desired in the
testing phase and then in the maintenance phase. Certain features are more
important than others. As an example, the following scenario is presented.
The engineers who have written software for the product (and may have
written the software testing tool itself) most likely will move on to other
projects. Thus, it is common in the maintenance phase to have new engineers
supporting the product now released. Important features to be included in
the feature set of the software testing tool in this case are "ease of use" and
"adequate documentation". Because most software projects follow the above
trend and because some tools may not be easy to use "adequate documenta­
tion" is the most important feature of any software testing tool. If the
product under test will be subject to major enhancements in its lifecycle then

277

278

extensibility, "the degree to which .it is possible to extend the original design
so as to accommodate enhancement, new features and new options" [QMT81],
may be a major fea.ture in the feature set of the software testing tool.
.Featu·res to be considered are those of any well designed product: documenta­
tion, ease of use, maintainability, e!\hanceabil~ty, on time delivery, reliability,

··performance; portability and functionality. · ·

The environment within which the software testing tool is developed
usually has little to do with the product under test or the testing methodol­
ogy. The environment is a function of the resources that are required to ex­
ecute the software testing tool. For example, in the testing ofIMF/3000 the
author was responsible for writing a program which could be transported to
more than one IBM host. This tool was designed to exercise the functionality
of IMF/3000. One of the main objectives of this tool was portability, i.e., the
ability to move the program from one host to another with a minimum of
code modifications. Regardless of what proportions of the feature set are
determined by the testing methodology or the environment, the key to design­
ing a successful software testing tool rides on the preservation of the features
of the tool from the testing phase into the maintenance phase where the costs
of the tool can be recovered.

DECIDE ON SERVICES

The third step in designing a successful software testing tool is to DECIDE
ON THE SERVICES that the software testing tool will provide. Most soft­
ware testing tools aid in functional testing, reliability testing, and perfor­
mance testing, reducing the amount of manual labor involved. This step is
perhaps the easiest step of all because the engineers who will be designing,
implementing and testing the product already recognize from experience that
many aspects of the testing process are laborious, unrewarding and most iike­
ly will have to be repeated several times (most likely late at night and on
weekends) before and after the product has been released. Thus, the incentive
already exists to identify those areas of testing that can be automated in or­
der to reduce the inefficiencies associated with manual testing. Some tools,
considerably closer to being state of the art in the field of software testing,
examine the internal characteristics of the software product under test (white
box testing) and report on the degree of testing thoroughness. They give a
simple measurement of the branches in the code that were exercised by a test
case. More importantly, they report on the branches that were not executed,
informing the engineer that there are untested portions of code. Within
Information Networks Division such a tool already exists under the name of
Path Flow Analyzer and is being used to improve the thoroughness of the
testing effort.

One should choose the services of a software testing tool with considera­
tion that the services must be useful in both the testing phase and the main­
tenance phase of the project. For those who wish to know more on the sub­
ject there are many excellent text books and tutorials on testing and software
testing tools (some of which are mentioned in the bibliography) which explain
the many different types of testing, their area of application, benefits and
drawbacks, and even case histories.

SUMMARY

Software testing tools are going to be built to aid in the testing phase and
maintenance phase of a product's lifecycle. Certainly there will be some risks
in investing in software testing tools from the view of recapturing their in­
vestment. For example, resources will have to allocated earlier in the
product's lifecycle to design the testing tool. Surely, this is a better approach
than not planning for software testing tools whatsoever, and losing the in­
vestment in the few tools that are built. By approaching the subject of soft­
ware testing tools as specified in this document you can not only recapture
the investment in the tool but you may significantly reduce the costs as­
sociated with maintaining software once it has been released to the
marketplace.

279

280

CASE STUDY 1

In this case study we will examine a software testing tool that embodies
many of .the features discussed in this paper. The testing tool is called
IML TEST. It is used to exercise the IMF /3000 intrinsics (Interactive
Mainframe Facility /3000). IML TEST due to its feature set, fills the needs of
both the testing phase and the maintenance phase. It does so by providing
flexibility in designing test cases during the testing phase and by providing
automation of test cases during the maintenance phase. IMLTEST also
demonstrates design techniques that can be used as the basis for any software
testing tool which is responsible for exercising a set of intrinsics or user call­
able procedures. The design concepts behind IML TEST are presently being
applied to future testing tools which will exercise products whose user inter­
face is a set of intrinsics.

IMLTEST has the following feature set: ease of use, a wide range of func­
tional capabilities, ease in automating test cases and excellent documentation.
From this feature set the following benefits have been realized:

* IML TEST greatly reduces the effort expended in calling a set of intrinsics.

* IMLTEST enables progressing from the testing phase into the maintenance
phase easily by providing the means to automate functional tests. Testing
for compatibility and ensuring that regressions have not taken place due to
bug fixes or enhancements becomes a significantly less labor intensive task.

* IML TEST enables the rapid transition of continued testing and main­
tenance from one engineer to another through its ease of use.

IML TEST was designed to aid in the areas of functional and reliability
testing. Functional testing ensures the existence of a set of features as
described in the design documents. Reliability testing ensures the correct ex­
ecution of functions under a variety of conditions such as a heavily loaded
system or mean time between failure. IML TEST was designed, coded and
debugged in six months. IML TEST provides the following services:

* Interactively call all the IMF intrinsics

* Develop test cases very fast by freeing the user from having to write
programs, thus eliminating the overhead of declaring variables, debug­
ging syntax, checking return codes, etc.

* Read the commands from a file instead of a terminal in order to auto­
mate the process of testing.

* Easily determine how the product is to be used and become almost im­
mediately productive developing a test case.

* Supply legal and illegal parameter values to any intrinsic

* Ensure the consistency of output regarding test success or failure.

During the testing phase, flexibility, that is, the ability of the testing tool
to exercise a wide range of functions of the product under test was
determined as a major component of the test tool. Some of the product
specific commands in IMLTEST which address functional testing are:

OPEN #NUM =CONFIGURATION FILE, WAIT
Opens a particular device using the configuration file specified. If WAIT
is specified all I/O is waitio. Calls IMF intrinsic OPEN3270.

CLOSE
Closes a particular device. Default device is the one last used. Calls IMF
intrinsic CLOSE3270.

READ (#FIELD,#MAXIMUM)
Reads and prints the contents of the field specified. Calls IMF intrinsic
READFIELD.

WRITE #FIELD
Specifies that data after the WRITE command is to be written to the field
specified. Calls the IMF intrinsic WRITEFIELD.

RECV
Informs IMF to await the arrival of data from the IBM host. Calls the
IMF intrinsic RECV3270.

TRANS KEY
Calls IMF TRAN3270 intrinsic with key specified. KEY may be anyone of
ENTER, PAX, PFXX, SYSREQ, etc.

To demonstrate the ease in which a test case can be written a sample test case
which logs on to an IBM host and logs off again is provided.

EXAMPLE A

@**
@ Sample test case of logging on to a host application
@ and logging off again.
@ NOTE: statements beginning with
@ the"@" sign are comments.
@**

@ Open the IBM 3270 device emulating 3277 device I.
OPEN #1 =CONFIG31,W

@ Receive the IMF banner
RECV

@Receive the logon screen from the host
RECV (line I)

@ Put logon message in field 5
WRITE #5
logon applid(dcp3271)

(line 2)
(line 3)
(line 4)

281

282

@ Send message to host
TRANS ENTER

@ Receive screen from host
RECV

@ Logoff from host
WRITE #1
logoff

(line 5)
(line 6)

(line 7)
(line 8)

(line 9)
(line 10)

(line 11)

@ Transmit logoff message to host
TRANS ENTER

(line 12)
(line 13)

@ Close device 1
CLOSE

@****************************
@ END OF EXAMPLE
@****************************

Automation plays the most important role during the maintenance phase.
It is in this phase that most cost savings associated with testing can be
recovered. IML TEST provides many commands to aid in the automation of
test cases. Its also provides commands which aid in the management of test
cases. A sample of commands is provided in the following example along
with a demonstration of the ease in which a test case, once developed, can be
automated for reliability testing.

FILE = FILENAME
IML TEST opens the file specified and reads commands from that file un­
til end of file is encountered. The file is then closed. This command en­
ables automation of testcases and the generation of reliability scripts ... see
FLOOP command.

FLOOP #ST ART #END
This command initializes IML TEST for looping from ST ART to END for
the file specified in the FILE command. The file is opened, the commands
read and executed until end of file is detected. The file is then closed.
This process continues END - START+ 1 times. Using this mechanism a
series of commands can be executed any number of times. Having many
devices using the FLOOP command is a means of generating reliability
and stress test cases.

CMPFILE =FILE
Failures during the testing effort are not always catastrophic and easily
detectable. This command will compare one or more received screen im­
ages to a file where screen images of known correctness are stored. This
almost eliminates the manual effort of verifying that incoming screens
have not been incorrectly processed. The only manual labor involved is to
build the file of screen images that are known to be correct.

NAME =TESTNAME
This command sends a message to $STDLIST or the console to indicate the
start of a new test case. It is part of the test management logging facility.

Its purpose is to clearly show what test case is executing, error conditions
that arise, and upon test case completion, a message indicating success or
failure of the test.

XPECT #ERROR NUMBER
This commands informs IML TEST that the next intrinsic call should
return the specified error number. This is the means of automating error
cases.

The following example uses the test case developed in EXAMPLE A and
creates a reliability script. The reliability script causes IMLTEST to log on
and off an IBM host 20 times. While this is only an example of a single
device logging on and off, IMLTEST has the capability of spawning up to 32
devices, each with a different device number, each logging on and off 20
times and all of them sharing a single script file very similar to the one
below.

EXAMPLE B

@***************************************
@ Example of FLOOPing
@ Log on and off the host twenty times
@***************************************

@ Identify the name of this test case
NAME •testcase 1 example

@Open the IBM 3270 control unit device 1.
OPEN #1 •CONFIG31,W

@ Receive the IMF banner.
RECV

@ Loop twenty times on file "LOOP20".
@ LOOP20 is a file which contains lines
@ 1 through 13 from EXAMPLE A.
@
@ Input file to read commands from.
FILE =LOOP20

@ Now loop 20 times
FLOOP #1 , #20

@ IML TEST has finished looping. Close the device.
CLOSE

@**
@END OF EXAMPLE B
@**

283

284

ALTElfNATIVES

The most obvious alternative to building a test tool was to write in­
dividual test programs calling the intrinsics to be tested. This approach had
several drawbacks.

Overhead -- Each program would have to duplicate variable names, data
structures and intrinsic declarations all associated with just trying
to make the intrinsic call.

Complexity -- The intent of the test case, even if documented, would be
lost in the program structure and elements necessary to support
the intrinsic calls.

Management -- A proliferation of programs whose individual testing ob­
jectives are unclear, whose dependencies and side affects are
unknown when running together. Programmers usually design
their own output messages on test success or failure. Over time,
with test ca8es being designed by many different programmers,
there would arise a mu~titude of output test messages, inconsis­
tent and often confusing.

Leverage -- Future test cases could leverage very little off previous work.
Reduction of manual labor in the development of new tests
would be minimal.

Another approach is to design a product that uses all the intrinsics.
Pass-Thru is an example of such a tool, using almost all the IMF/3000 intrin­
sics. Pass-Thru is that portion of IMF/3000 which maps IBM display formats
into HP display formats enabling users to use HP terminals and printers to
emulate IBM terminals and printers. This approach does not provide an
adequate design. It does not provide for flexibility during the testing phase,
nor does it provide for automating test cases during the maintenance phase.
It does provide instant access to the large number of IBM 3270 screens that
are available. It also provides instant feedback if a particular screen should
cause an error within the IMF/3000 intrinsics.

IMLTEST has been in use for approximately 3 years. It is considered an
extremely valuable testing tool by those involved in the maintenance of IMF.
It is also invaluable in the testing of major enhancements to IMF such as
IMF/SDLC. The design of IMLTEST has greatly reduced the time it takes to
oall the IMF intrinsics. It also has made significant cost savings in the auto­
mation of test cases. Software testing tools being developed in the
Datacommunications lab today are leveraging from the contributions of
IMLTEST.

CASE STUDY 2

In this case study we will examine a test management tool that focuses
only on the maintenance phase. The purpose of presenting this tool is to con­
trast how tools can be effectively designed to meet the needs of the testing
phase, maintenance phase or both phases.

The software tool to be discussed, called Test Logging Facility, solves many of
the problems associated with test management. The Test Logging Facility's
contribution is the automated means in which it standardizes the output of
all test cases regardless of whether the product under test is an opera ting sys­
tem, compiler, or data base management system. It aids in answering the two
most important questions in managing a set of tests. First, has a test or series
of tests run to completion? Secondly, did the test output indicate test success
or test failure?

The test logging facility aids in the reduction of labor and the encouragement
of automation of test cases by handling all output related to test commence­
ment, test progress, error conditions and test termination. The information is
passed to the logging facility through intrinsic calls or, alternatively, depend­
ing on the product under test, by running programs that call the intrinsics.
There are five basic message types in the standard. They are (1) test, (2) test
unit, (3) test subunit, (4) comment, and (5) error. Each one of the message
types is associated with a standard method of reporting.

In order to standardize the output of tests, definitions had to be given to
the terms used. The following is the essence of the definitions. A test is a
collection of test subunits designed to exercise a product. There should be
only one test per product. A test subunit is a single program or one or more
commands (such as file equations if file equations were being tested).
Therefore, in order to test a compiler, one might have several separate
programs which exercise the various functions of the compiler. The collec­
tion of programs is considered a test. A subunit was defined to provide a
means of checkpointing large programs which tested many functions of a
product all within a single program. A comment is any information the user
wishes to post in the output file. It may not contain information on error
conditions. The error message contains information regarding any failures
detected.

Test monitoring is the last phase of the testing effort. It consists of ap­
plication of tests, recording test output results, determination of success or
failure of test cases, and all supporting documentation. Management of the
testing effort, especially during the monitoring phase, can become extremely
complex when test cases become automated (as they should) in the main­
tenance phase. The problems arise from a lack of standards governing the
output of test cases. A lack of standards in a large testing effort (such as the
scope of a quality assurance department or any large project) results in a
major difficulty in determining the success or failure of a test or series of test
cases. Some tests are considered successful if they end with no output mes­
sages. Some tests output information as they execute, as a normal part of
their operation. In either case, to anyone but the author of the test cases, the
success or failure of the tests can be shrouded in mystery. The lack of stan­
dards has two significant side effects. Firstly, it locks the engineer who wrote
the tests into running the tests, as the engineer is the only one who can

285

286

accurately decipher their output. Secondly, it prevents the smooth transition
of bringing in a new engineer as the test output must be explained in detail.
The test output may vary dramatically from product to product, but also,
even within the same product.

The benefits derived from the test logging facility are:

* Creation of standard test execution history

* Reducing test engineers monitoring efforts. Efforts can then be chan­
neled into test specification and development.

* Highlighting features of test, such as commencement, checkpoints, errors,
and termination.

The following intrinsics are provided by the test logging facility. They
may be called from any language. By following the examples provided in the
appendix the reader can match the intrinsic call to the message it creates.
Two examples are provided. The first contains examples of all output mes­
sages. The second is the output of a typical test.

LOGST ART(TESTMSG)
This must be the first intrinsic called. It creates the output file and the first
message labeled "START". Time stamps are posted and the testmsg is printed.

LOGBEGIN(LOGINFO, UNIT'NAME, UNIT'TITLE)
This message marks the beginning of a test unit. The user passes a unique in­
teger as a log identifier, a test unit name and a test unit title. The message
associated with this intrinsic call begins with "BEGIN".

LOGERR(LOGINFO, UNIT'NAME, ERROR'MSG)
This intrinsic logs the occurrence of an error condition. It posts two messages.
Both begin with the word "ERROR". They are designed to be highly visible.
A short description of the error is printed from the parameter ERROR'MSG.

LOGERR2(LOGINFO, UNIT'NAME, ERROR'DESCRIPTION)
This intrinsic enables the user to post any other relevant information about
the error detected. It is provided as a means of supplementing error informa­
tion but is not intended to be used for dumps, long listings, etc. The message
associated with this intrinsic call begins with "ERR2". LOGERR must be cal­
led before LOGERR2.

LOGCKPT(LOGINFO, UNIT'NAME, MESSAGE)
This intrinsic prints a checkpoint message identifying the progress of the test
unit. The message associated with this intrinsic call begins with "CKPT".

LOGCOMM(LOGINFO, UNIT'NAME, COMMENT)
This intrinsic prints a comment to aid in the identification of a test or test
cases. It is not used to log error information. The message associated with
this intrinsic call begins with "COMM".

LOGEND(LOGINFO, UNIT'NAME, SELFCHECK)
This intrinsic will log the end of a test unit. If the test unit produces errors
the number of errors detected is printed if the selfcheck parameter is set to
true. The message associated with this intrinsic call begins with "END".

LOGS TOP
This intrinsic is called at the completion of the test. It posts the message
beginning with "STOP". It prints several items which summarize the result of
the test.

SUMMARY

The test logging facility has been in use within the Quality Assurance
department since 1979. New test cases are designed to use the intrinsics while
older test cases have been retrofitted to include them. This effort has sig­
nificantly reduced the labor involved in test monitoring. It has also con­
tributed to the distribution of the test cases outside the Quality Assurance
department as the output of test cases are standarized and easily understood,
regardless of the product under test.

287

START TEST LOG TUE, AUG 3, 1982, 9:48 AM Pascal test for logging

BEGIN
CKPT

Test 1
Test 1

09:48:27.0
09:48:27.1

Start of first test
Checkpoint message

ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR

ERROR Test 1 1 09 48 27.4 Th s s an error message
ERR2 Test 1 1 09 48 27.4 Th s s an err2 message
COMM Test 1 1 09 48 27.5 Th s s a comment message

END Test 1 1 09 48 27.6 ET 0 0:00:00.6

STOP TEST LOG TUE, AUG 03, 1982, 09:48 AM ET:O:O TOTAL TEST UNITS l COMPLETED l

APPENDIX

(example of every Test Logging Facility message)

ERRORS=

TOTAL DETECTED ERRORS=

I\)
CX>
CX>

CJ)
CXl
C\J

START TEST LOG TUE, AUG 3, 1982, 9:44 AM Testing summary log

BEGIN FI LE COMPARE 09:44:02.2 Comparison of Files ztest2 and ztest

ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR

ERROR
ERR2
ERR2
ERR2
ERR2

FILECOMPARE
FILECOMPARE
FILECOMPARE
FILECOMPARE
FILECOMPARE

09 44 03.0
09 44 03.0
09 44 03.2
09 44 03.4
09 44 03.5

Records fail to match at record
Test =

Xl,X3: BOOLEAN;
Master= (record 3)

Xl,X2: BOOLEAN;

3, byte 7

ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR

ERROR
ERR2
ERR2

FILECOMPARE
FILECOMPARE
FILECOMPARE

09:44:04.5
09:44:04.8
09:44:05.0

Extra record in test file at record
Test =

{This is an extra line}

4

ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR

ERROR
ERR2
ERR2
ERR2
ERR2

FILECOMPARE
FILECOMPARE
FILECOMPARE
FILECOMPARE
FILECOMPARE

1 09 44 06.9
1 09 44 07.7
1 09 44 08.4
1 09 44 08.7
1 09 44 09.0

Records fail to match at record
Test =

X3 := FALSE;
Master= (record 13)

X2 := FALSE;

11, byte 4

ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR**ERROR

ERROR FILECOMPARE 1 09 44 09.5 Missinf record in test file at record 12
ERR2 FILECOMPARE 1 09 44 15.3 Mas er= (record 14)
ERR2 FILECOMPARE 1 09 44 15.5 WRITELN (OUTPUT,Xl,X2);

END FILECOMPARE 1 09 44 15.7 ET: 000:00:13.5

STOP TEST LOG TUE, AUG 03, 1982, 09:44 AM ET:O:O TOTAL TEST UNITS 1 COMPLETED

APPENDIX

(example of Test Logging Facility in live example)

ERRORS= 4

TOTAL DETECTED ERRORS= 4

290

Bibliography

[Daley77] Daly, Edmund B., "Management of Software Development" IEEE
Transactions on Software Engineering, May 1977

[Miller8t] Miller, Edward. , Howden, William E. "Tutorial: Software Testing &
Validation Techniques", Second Edition, 1981. Published by IEEE
Computer Society Press. ·

[Myers76] Myers, Glenford J., "Software Reliablility Principles & Practices",
John Wiley & Sons, New York, 1976.

[QMT81] Quality Management Team. "Software Quality (working defini­
tion)", Revision 2.0. Information Networks Division, 1981.

IMAGE INTRODUCES AN END TO THE BROKEN CHAIN

.JORGE GUERRERO
HEWLETT-PACKARD COMPANY
INFORMATION NETWORKS DIVISION

ILR-1

291

292

IMAGE INTRODUCES AN END TO THE BROKEN CHAIN

An IMAGE product enhancement by the name of Intrinsic Level Recovery,
or ILR for short, is being released with IMAGE version B.04.00 This
feature depends on the Q-mit (C.01.00 or D.01.00) or later versions of
MPE and will enable IMAGE to patch-up automatically any broken data
chains that might have been caused by a system failure.

A broken chain might occur in the synonym chain of a master data set or
in any data path (chain) in detail data sets.

Since this feature adds some overhead (more about that later) it has
been implemented in such a way that it can be enabled or disabled at any
time. When this feature is disabled (which is the normal state) IMAGE
operates as before with no added overhead.
When this feature is ENABLED with DBUTIL (there is another flag added
to the root file) IMAGE will copy all of the buffers that will be
modified to a special log file. This privilege mode file is created
by DBUTIL at the time the data base is enabled for ILR. Its name is
derived from the root file name with two zeroes added at the end. For
instance, a data base named STORE will have the ILR log file name
STOREOO. If the data base was enabled for ILR and is later disabled,
the ILR log file is automatically purged by DBUTIL. Also, since the
ERASE function of DBUTIL is to leave the data base in a state similar
~'just-created' state, it will purge the ILR log file and reset all
flags.
Once the data base is enabled for ILR, only the intrinsics that modify
pointers are logged onto the ILR log file. These intrinsics are DBPUT
and DBDELETE. Remember that DBUPDATE only modifies the data portion of
an entry, not the key/search or sort items. In order to log these
changes, IMAGE creates an additional control block at DBOPEN time only
if the data base is enabled for ILR.

This control block, named the ILCB, is nothing more than an extra data
segment that is utilized as an intermediate staging area for the buffers
that will be modified. Its operation is as follows: when an intrinsic
(DBPUT or DBDELETE) starts its execution, IMAGE will detect all of the
buffers that will be modified by the intrinsic. These buffers get
posted to the ILCB (before modification) and then modified in the
DBCB. When all of the buffers are modified in the DBCB, and before
posting to .the actual data sets, the information in the ILCB is posted
to the ILR log file. After posting the modified buffers to the data
sets, the intrinsic-in-progress flag is turned off in the ILR log file.

Pictorially, it looks like this:

MEMORY

DBCB ILCB
lheaderl}

\ I \ I

I . . I }
I I . . I } I

\ I
\/

1->I. .l}----------->l.ILR .I
I I I} I I. Log . I
I I .File. I
I 1. . I

__ I I I

ILR-2

\ I
_!

\ I
\/

293

The ILR log file gets overlayed with the latest intrinsic information,
so the information found there is only for the intrinsic in progress
and not for all of the intrinsics or transactions that have occurred
in the data base. If the intrinsic never ends its execution due to a
system failure, the next time the data base is DBOPENed, the ILR log
file is checked. If an intrinsic was in progress, the before-modifica­
tion buffers get posted to the data sets and the data base structural
integrity is restored.

The overhead incurred to perform this function consists of the
following:

one shared priv mode file (ILR log file)
one shared extra data segment (ILCB)
disc I/O to post info from ILCB to ILR file

To analyze this overhead, the STORE data base, documented in sections II
and III of the IMAGE manual, is utilized here as an example.

\CUSTOMER I \PRODUCT I \SUP-MASTER/
\ I \ I \ I
\ I /\ /\ \ I
\ I I \ I \· \ I

\ I I \ I \ \ I
I\/ I \/ \ \/I
I I \ I
I I \ I
I I \ I

\DATES I
\SALES I ~ L \INVENTORY I
\ I \ I

\ I \ I \ I
\ I \ I \ I

\/

Schematic Diagram of the STORE Data Base

The ILR log file is composed of three parts wich are:

- ILR log file header
- data sets user labels
- data sets buffers

The header area is 50 words long and is utilized to keep track of the
intrinsic in progres flag, intrinisc type, data set number, etc.

The data sets user labels area follows immediately after the header area
and occupies 6 words per data set.

The data sets buffers area starts on a sector boundary after the two
previously mentioned areas, and it should hold as many buffers as can be
modified by one intrinsic.

ILR-3

294

The number of buffers that can be modified depends on the structure of
the data base. For a master data set, whether manual or automatic, the
maximum number of buffers that can be modified is 4. On a detail data
set is equal to 4 times the number of paths from an automatic master
pointing to it, plus 3 tjmes the number of paths from a manual master
pointing to it, plus one or:

Max'mod'buffs = (4 * Autos) + (3 * Manuals) + 1

The maximum number of buffers that can be modified is greater for a
detail than for a master data set. The exception would be for detail
data sets with no paths which would be only one, but if it does not
have any paths then it does not have any pointers and no broken chains
can be generated.

The maximum number of buffers is only utilized for the case that all of
the entries that need to be modified reside in different blocks.~his
number includes the migrating secondaries case in automatic masters and
sorted data chains in the 8.ssociated detail data set. However IMAGE
will try to accomodate synonyms in the same block in master data sets
and, periodic chained DBUNLOADs and DBLOADs should position detail data
entries within the same blocks. For this reasons the maximum number of
modified buffers might not ever be reached.

On the STORE data base, the maximum number of buffers that can be
modified by a DBPUT or DBDELETE intrinsic is 15, since the SALES detail
data set has 2 paths from an automatic master and 2 paths from manual
masters. The maximum size of the buffers is governed by the DBSCHEMA
command, BLOCKMAX, which has a default value of 512 words. The actual
size is calculated by DBSCHEMA and reported on the TABLE portion of the
output list generated by DBSCHEMA. For the STORE data base the
calculated buffer length is shown in Figure 3-5 (Section III) of the
IMAGE manual and its value is reported as 511 words. Since each buffer
has a 10 word overhead, for a total of 521 words per buffer, each will
occupy 5 sectors in the ILR logfile. The ILR log file size calculations
for the STORE data base are:

A) Record size:

(10 + 511) I

B) ILR log file

50 + (6 * 6)

10 + buff er len

128 = 5 sectors/rec
or

640 words/rec

header and

86 words
or

ulabels:

86/640 = 1 record

50 +

C) Total records and size:

(15 + 1) * 5 sectors/rec 80 sectors

Add 5 sectors for the file label.

(6 * sets)

Since this file only holds the buffers for the last intrinisc it is not
necessary to make it any larger. The space occupied by this file is
negligible compared to the spaced occupied by the data base itself.

ILR-4

295

~he ILCB size depends on the structure of the DBCB. It should hold as
many buffers as can be modified in the DBCB before posting to the data
sets. The DBCB should hold at least as many buffers as can be modified
(by a put or delete operation) to minimize buffer 'roll-over', thus
minimizing disc I/O to the ILR log file.
For the STORE data base, the number of buffers in the DBCB should be
set to at least 15 buffers. That would be the maximum number of buffers
that can be modified as shown in the previous example. More buffers can
be set in the DBCB to increase IMAGE's performance but 15 will increase
ILR's performance. The number of buffers in the DBCB can be set with
DBUTIL's SET command to maximize performance for this enhancement.

As far as the number of disc I/Os from the ILCB to the ILR log file is
concerned, the overhead is as follows. At the beginning of the intrin­
sic, one disc I/O is done to record date, time, data set number and
other flags, including an 'intrinsic-in-progress-flag' which will be
turned off at the end of the intrinsic. The additional disc I/O will
depend on the number of buffers that the DBCB can hold. For instance,
if the DBCB can hold only 8 buffers and 15 buffers have to be modified,
some of the buffers will have to be posted before they are overlayed. On
the other hand, if the DBCB can hold 20 buffers then we can wait until
the end of the intrinsic to start posting the modified buffers. Once
these modified buffers get posted to the data sets, an additional I/O
has to be performed on the ILR log file to turn off the 'intrinsic-in­
progress-flag'.
So the minimum number of additional disc I/Os is 3 and, the maximum will
depend on the maximum number buffers that have to be modified and the
number of times that the DBCB buffer area has to be 'rolled-over'. The
following table shows the number of disc I/Os from the ILCB to the ILR
log file for number of buffers in the DBCB vs maximum number of modifia­
ble buffers. The number of disc I/Os shown in the table do not include
the disc I/O to turn 'on' and 'off' the intrinsic-in-progress-flag. An
additional value of 2 should be added to the values found in the table.

ILR-5

296

4
B 6
u .§.
F 10
F 12
E 14
R 16
s 18

20
22

I 24
N 26

28
30

D 32
B 34
c 36
B 38

40
42
44
46
48
50
52
54
56
581
601

NOTE:

DISC I/Os (FROM ILCB TO THE ILR LOG FILE)
BUFFERS IN DBCB VS MAXIMUM NUMBER OF MODIFIABLE BUFFERS

MAXIMUM NUMBER OF MODIFIABLE BUFFERS (worst case)

Max'mod'buffs = (4 * Autos) + (3 * Manuals) + 1

I
I
I
I

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 651
2 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 171
1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 111

·1 · ·1 · .g .. g .. J .. J .. J .. .!!_ •• .!!. •. .!!_ •• .5_ •• .5_ •• _§_ •• _§_ •• _§_. ·1 · .1. · 1· . .§. .. .§. • • _2 I
1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 7 71
1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 61
1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 51
1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 51
1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 41
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 4 41
1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 31
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 31
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 31
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 31
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 31
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 31
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 21

Add 2 to the values show in the body of the table.
The values shown here are for the worst case situation.
The minimum number of modifiable buffers is given by

Min'mod'buffs = (Autos) + (Manuals) + 1

I
I
I
I
I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-I 



297 

~t is of paramount importance to set the number of buffers in the DBCB 
to a value that will minimize buffer rollover and hence, disc I/O. 
Don't forget to utilize the previously mentioned formula to calculate 
the maximum number of buffers that can be modified in a put or delete 
operation and set them in your data base. 

Other miscellaneous information about this enhancement: 

- DBSTORE/DBRESTOR has been modified to store/restore the ILR 
log file. 

- DBINFO has an added mode to find out if the data base is 
enabled for ILR and was recovered automatically upon DBOPEN. 

- Since this enhancement forces the posting of buffers, it is 
not compatible with output deferred. If the data base is 
enabled for ILR, an attempt to turn on output deferred 
(DBCONTROL with mode=l) will fail. So it is necessary to turn 
the ILR flag off (disabled) if you need to execute in output 
deferred mode. 

- The creator of the ILR log file is always the creator of the 
data base, regardless of the creator id that enables the data 
base. 

- If the data base is released before enabling for ILR, the log 
file is released automatically at creation time. 

This enhancement will greatly improve your IMAGE data base integrity 
and will save you a lot of time in unloading/loading to recover from 
a system failure. 

ILR-7 



298 

KSAM DESIGN GUIDELINES FOR OPTIMIZATION 

JORGE GUERRERO 
HEWLETT-PACKARD COMPANY 
INFORMATION NETWORKS DIVISION 

10 



299 

KSAM-2 

KSAM DESIGN GUIDELINES FOR OPTIMIZATION 

Objective. 

The objective of this presentation is to familiarize you with the 
different ways to optimize the design of a KSAM file set. This will be 
achieved by analyzing the overhead utilized by KSAM when a file set is 
accessed. 

At the end of this presentation you should be able to optimize the 
design of a KSAM file set. 

Introduction to topic: KSAM file set design 

In order to understand how to optimize the design of a KSAM file set it 
is necessary to analyze what it is that needs to be optimized. 
First of all, we want to optimize (minimize) the resources used by KSAM 
when it is active. 
These resources are: 

1. Key and data file space. 
2. One private extra data segment per file open. 
3. Disc I/O to access data. 

The data file disc space utilized can be reduced by choosing a blocking 
factor that makes the data block size as close as possible to a sector 
boundary. This minimizes wasted space at the end of each data block. 
Sometimes there will be more than one blocking factor that gives the 
same utilization and the task of choosing a value becomes uncertain. 
For instance, a record size of 80 bytes with a blocking factor of 16 
yields the same space utilization than a blocking factor of 32. For 
every situation the blocking factor chosen should be large enough to 
hold all of the records that are introduced in a logical transaction. 
If the logical transaction includes writing 19 records then the larger 
blocking factor of 32 should be chosen to minimize buffer roll-over. 

The key file size is optimized by KSAM when the file is built. The key 
blocks are created with their own key blocking factor to optimize disc 
space utilization. 

The other resources that need to be optimized are, the size of the extra 
data segment and the number of disc I/Os to access the data. 

The extra data segment (XDS) size should be optimized for systems with 
low memory configurations since there is one XDS created for every file 
open, even if the same process opens the file more than once. 



300 

KSAM-3 

If the file is opened many times, the resources that are utilized could 
exceed the available memory and a problem of excesive swapping would be 
created. The problem of memory shortage in a system can be simply 
resolved by acquiring more memory. However, if this is not an 
appropriate solution, the XDS size should be optimized to minimize 
memory resources. 

To fully understand how to optimize the XDS size it is necessary to 
understand the different components that come into play when it is 
created. These components are: 

1. data file record size 
2. data file block size 
3. key file block size 
4. number of levels in the B-tree 

The data file record size is difficult to optimize since the data 
record would have to be compressed, or some fields within it suppressed 
in order to reduce it. 

The data file block size can be reduced by choosing a smaller blocking 
factor. However, that value has already been chosen to optimize disc 
space utilization and disc I/O per transaction. Reducing it here would 
hinder that effort. 

The next item to analyze is the key file block size. The size of the 
block can be reduced by choosing a smaller key blocking factor; 
however, that could increase the number of levels in the B-tree, which 
is the 4th point to analyze. Since the XDS will try to have one block 
for each level, reducing the block size might cause more levels to be 
created. If that is the case, the target of reducing the XDS size is 
not reached. Also, more levels generate more I/O. Remember that the 
number of levels indicates the maximum number of I/Os to get to the key 
entry. Once the key entry is obtained, an additional I/O get the data 
record. 

If it is assumed that the same space in the XDS is retained regardless 
of the key blocking factor, then what has to be optimized is th~ number 
of levels in the B-tree, so that less I/O is g,enerated. 
To understand how to generate fewer levels, a brief analysis of the 
B-tree is presented here. 

A B-tree will hold as many keys as there are active records in the data 
file. Whenever a data record gets added to or deleted from the data 
file, the corresponding keys are also added or deleted to/from the 
B-tree. When a key gets added or deleted the B-tree might expand or 
contract its number of levels accordingly. 



301 

KSAM-4 

When a KSAM file set is being loaded with data records in either 
sequential or random fashion, it will start creating different levels 
in the B-tree of the key file. Thus there is more disc I/O to get to 
the key entry. This means that to optimize the design, from the I/O 
side, it is important to know when a level will be created in the 
B-tree. In other words, how many key entries (active records) can be 
held at each level? The answer to this question is complex since a 
level can hold a range of entries before it creates another level. So, 
there is a minimum and a maximum number of entries in a level. 

The minimum number of key entries (MinK) in any level is calculated 
with the formula: 

Mink = 2 * (F/2 + l)**(L-1) - 1 

where F is the key blocking factor and 
Lis the number of levels. 

The following figure illustrates how to find the minimum number of keys 
in a level. The figure is a 2 level (L) B-tree with a key blocking 
factor (F) of 4. 

root-> [*]300[*]\\\[*]\\\[*]\\\[*] 
I I 
I [*J400[*J5oo[*J\\\[*J\\\[*J <-leaf 
I 

[*]100[*]200[*]\\\[*]\\\[*] <-leaf 

Notice that since all of the leaves are half empty, the deletion of any 
key will cause the B-tree to contract one level. 

The maximum number of key entries (MaxK) in any level is calculated 
by the formula: 

MaxK = (F + l)**(L) - 1 

where F and L are the same as before 

To illustrate the maximum number of keys in a level, see the following 
figure. 



302 

KSAM-5 

root-> [*] 5[*] 10[*] 15[*] 20[*] 
I I I I I 
I I I I [*) 21[*] 22[*] 23[*] 24[*] <-leaf 
I I I I 
I I I [ *] 16[*] 17[*] 18[*] 19[*] <-leaf 
I I I 
I I [ *] 11 [ *] 12[*] 13[*] 14[*] <-leaf 
I I 
I [ * l 6[*] 7[*] 8[*] 9[*] <-leaf 
I 

[*] 1[*] 2[*] 3[*] 4[*] <-leaf 

Notice that since all of the blocks are full, adding a key creates 
another level. 

However, a given level does not have to be full before creating another 
level. There is a critical point in the B-tree, before it reaches the 
maximum value, where it might split and create another level. So there 
is another concept to explore and that is the critical number of keys 
that can be held at any level before creating another level. 

The critical number of keys (CritK) is calculated with the formula: 

CritK = 2 * (F/2 + l)**(L) - 2 

where F and L are the same as before 

This formula is obtained by subtracting 1 from the minimum value of the 
next higher level. And, once again, to illustrate the critical number 
of keys in a B-tree see the following figure. 

root-> [*] 30[*] 60[*) 90[*]120[*] 
I I I I I 
I I I I [*]130[*]140[*]150[*]160[*] <-leaf a 
I I I I 
I I I [*]100[*]110[*]\\\[*]\\\[*] <-leaf b 
I I I 
I I [*] 70[*] 80[*]\\\[*]\\\[*] <-leaf c 
I I 
I [*] 40[*] 50[*]\\\[*]\\\[*] <--leaf d 
I 

[* l 10[*] 20[*]\\\[*]\\\[*] <-leaf e 

Notice that if a key is added to leaf 'a', it splits and its middle 
value migrates to the root block. This will cause the root block to 
split and generate another level. However, no spliting occurs if a key 
is added to the other leaves. 



303 

KSAM-6 

Since the B-tree does not split until it reaches the critical value, it 
can be loaded with keys up to the critical value without creating 
another level. Once the B-tree has rPached the critical number of keys, 
it can split any time a key is added up to the maximum number of keys. 
Since the number of keys for any level depends on the key blocking 
factor and what has to be optimized (minimized) is the number of levels, 
the appropriate blocking factor must be chosen to give the least number 
of levels. 
To facilitate the task of chosing a blocking factor, the tables in 
appendix A should be of help. 
Table A-1 shows the allowable blocking factors for different key lengths 
vs key block sizes. The key lengths shown range from 2 to 50 bytes long 
and are of even sizes only. It is not necessary to show 
values for odd key lengths since all of the key entries are allocated 
on word boundaries. For instance, a key length of 3 bytes will occupy 
4 bytes in the key file, and the calculations for block sizes should be 
done with 4 bytes or 2 words. The default blocking factors are also 
shown. The default values are those calculated by KSAM when the files 
are built and no blocking factors are specified. 

The allowable blocking factors can be read across on table A-1. As an 
example for a key length of 10 bytes, the allowable blocking factors 
are shown on the same row and the default blocking factor is 112 which 
produces a key block of 8 sectors. Note that if a blocking factor 
of 120 is given to KSAM when the file is built, a value of 126 will be 
chosen, since 126 will give better space utilization. So, only the 
allowable blocking factors are shown in this table. 

The next item to analyze is the number of levels created by such a key 
(10 bytes). First, it is necessary to know how many active entries or 
records are going to be in the stored in the data file. For this 
example, a value of 10,000 is chosen. 

Table A-2 shows the minimum, critical, and maximum number of records 
that can be held at different levels for a given blocking factor. So, 
for a blocking factor of 112 (which is the default for a key length of 
10 bytes), more than 12,000 records can be held at 2 levels. However 
the B-tree might split any time a key is added beyond the 6,496th key, 
since this is the critical value as shown in the table. The next step 
is to choose a blocking factor that will produce fewer levels. The next 
highest blocking factor taken from table A-1 is 126. Upon examining the 
tables it is noticed that this blocking factor also produces 3 levels, 
so the next value should be used, which is 140. Finally, a blocking 
factor that will produce 2 levels only is found. As the table shows, up 
to 10,080 records can be held in two levels. 

Choosing a key blocking factor larger than 140 would seem appropriate, 



304 

KSAM-7 

however, there would be no reduction in the number of levels, as shown 
in the table. Instead, an increase in the XDS size would be obtained 
and that is one of the resources that needs to be reduced. Hence the 
smallest key blocking factor that produces the minimum number of levels 
should be chosen to minimize I/O and XDS size. 



305 

KSAM-8 

C. SUMMARY. 

To optimize the design and resources that a KSAM file set utilizes the 
appropriate blocking factors for both the data file and the key file 
should be chosen. 
For the data file chose a blocking factor that minimizes disc space and 
disc I/O per transaction. 
For the key file, a key blocking factor that minimizes the number of 
levels in the B-tree should be chosen. This key blocking factor can be 
obtained by using tables A-1 and A-2. 

A-0 



306 

A 
A A 

A A 
A A 
A A 
AAAAAAA 
A A 
A APP PPP PPP 
A A P P 

p p 
p p 
PPPPPPP 
p 
p 
p PPPPPPPP 

PPP p p 
p p 
p p 
ppppppp 
p 
p 
p 

PPP 
EEEEEEEE 
E E 
E 
E E 
EEEEEE 
E E 
E 
E ENN 
EEEEEEEE NN 

***************************** 
* * * MISCELLANEOUS KSAM TABLES * 
* * 
***************************** 

A 
A A 

A A 
A A 
A A 
AAAAAAA 
A A 
A A 
A A 

N N 
N N 
N N 
N 
N 
N 

NNN 

A 
A A 

A A 
A A 
A A 
AAAAAAA 
A A 
A A 
A A 

***************************** 
* * * MISCELLANEOUS KSAM TABLES * 
* * ***************************** 

NNN 
N 
N 
N 
N 

N N 
N N 

NN DDDDDDD 
N D D 

D D 
D D 
D D 
D D 
D D 
D D IIIIIII 

DDDDDDD I 
I 
I 
I 
I 
I 
I XX 

IIIIIII X 
x 

xx 
x 

x 
x x 
x 

x x 
x x 

x x 
xx xx 

A-1 



307 

K S A M Table A-1 

KSAM BLOCKING FACTOR FOR KEY LENGTH VS BLOCK SIZE 

_I BLOCK SIZE IN SECTORS 
IBFI I lK 2K 

~I 1 2 3 4 12~ 6 z : 8: 9 10 11 12 13 14 15 16 
21 24 50 74 100 152 178 :202: 228 254 280 306 330 356 382 408 

K 41 20 40 62 84 104 126 148 :168: 190 212 232 254 276 296 318 340 
E 61 16 34 54 72 90 108 126 :144: 162 182 200 218 236 254 272 290 
y 81 14 30 46 62 78 94 110 :126: 142 158 174 190 206 222 238 254 

101 12 26 42 56 zo 84 98 :112: 126 140 154 lZO 184 198 212 226 
L 121 12 24 36 50 62 76 88 :100: 114 126 140 152 164 178 190 204 
E 141 10 22 34 46 56 68 80 92: 104 114 126 138 150 162 174 184 
N 161 10 20 30 42 52 62 74 84: 94 106 116 126 138 148 158 170 
G 181 8 18 28 38 48 58 68 78: 88 98 106 116 126 136 146 156 
T 201 8 16 26 36 44 54 62 z2: 80 90 100 !08 118.126 136 144 
H 221 8 16 24 32 42 50 58 66: 76 84 92 102 110 118 126 136 

241 6 14 22 30 38 46 54 62: 70 78 86 94 102 110 118 126 
I 261 6 14 22 28 36 44 52 58: 66 74 82 90 96 104 112 120 
N 281 6 12 20 28 34 42 48 56: 62 70 76 84 92 98 106 112 

JOI 6 12 18 26 32 40 46 52: 60 66 72 80 86 

*~ 
100 106 

B 321 6 12 18 24 30 38 44 50: 56 62 70 76 82 94 102 
y 341 4 10 18 24 30 36 42 48: 54 60 66 72 78 84 90 96 
T 361 4 10 16 22 28 34 40 46: 52 56 62 68 74 80 86 92 
E 381 4 10 16 22 26 32 38 44: 48 54 60 66 72 76 82 88 
s 401 4 10 14 20 26 30 36 42: 46 52 58 62 68 74 78 84 

421 4 10 14 20 24 30 34 40: 44 50 56 60 66 70 76 80 
441 4 8 14 18 24 28 34 38: 44 48 52 58 62 68 72 78 
461 4 8 14 18 22 28 32 36: 42 46 50 56 60 66 70 74 
481 4 8 12 18 22 26 30 36: 40 44 50 54 58 62 68 72 
501 4 8 12 16 20 26 30 ;34: 38 42 48 52 56 60 66 70 

default value 

NOTE: 
The key length is only shown in even number of bytes since the key 
entries are allocated on word boundaries. 

A-2 



308 

K S A M TABLE A-2 

MINIMUMLCRITICALLMAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

IMin I 
ICrit 11 B-tree level I 
IMax 11 I 
~l_l_I 2_1 3_1 4_1 5_1 

I 11 51 171 531 1611 
IK 4 41 161 521 1601 4841 
I -- 41_ 241_ 1241_ 6241_ 3,1241 
E 11 71 311 1271 511 I 

6 61 301 1261 5101 2,0461 
y 61_ 481_ 3421_ 2,4001_ 16,8061 

11 91 491 2491 1,249 
8 81 481 2481 1,2481 6,248 

81_ 801_ 7281_ 6,5601_ 59,048 
B 11 111 711 4311 2,591 

10 101 701 4301 2,5901 15,550 
L __ lOI_ 1201_ 1,3301_ 14,6401 161,050 

I 11 131 971 6851- 4,801 
0 121 121 961 6841 4,8001 33,612 

_ I_ 121_ 1681 _ 2,1961_ 28,5601_ 371,292 
c I 11 151 1271 1,0231 8,191 

141 141 1261 1,0221 8,1901 65,534 
K I 141 2241_ 3.3741_ 50,6241_ 759,374 
-1- 11- 171 1611 1,457 13,1211 

161 161 1601 1,4561 13,120 118,0961 
_I_ 161_ 2881_ 4,9121_ 83,520 - 1,419,8561 

F I 11 191 1991 1,999 19,9991 
181 181 1981 1,9981 19,998 199,9981 

A _I_ 181_ 3601_ 6,8581 130,320 2,476,0981 
I 11 21 2411- 2,661 - 29,2811 

c 201 201 240 2,6601 29,280 322,100 
_I_ 201_ 440 9,2601 194,480 - 4,084,100 

T I 11 23 2871- 3,455 41,471 
221 221 286 3,4541 41,470 497,662 

o _I_ 221_ 528 - 12,1661_ 279,840 - 6,436,342 
I 11 25 3371 4,3931 57.121 

R 241 241 336 4,3921 57,1201 742,584 
_I_ 241_ 624 15,6241_ 390,6241_ 9,765,624 

I 11 27 3911 5,4871 76,831 
261 261 390 5,4861 76,8301 1,075,646 

_I""'" 261_ 728 - 19,6821 531,4401_ 14,348,906 
I 11 291 4491- 6,7491 101,249 

281 281 4481 6,7481 101,2481 1,518,748 
_ I_ 281_ 8401 _ 24,3881_ 707,2801_ 20'511,148 

I 11 311 5111 8,1911 131,071 
301 301 5101 8,1901 131,0701 2' 097.150 

_ I_ 301_ 9601_ 29,7901_ 923,5201 _ 28,629,150 
I 11 331 5771 9,8251 167,041 

321 321 5761 9,8241 167,0401 2,839,712 
_ I_ 321_ 1,0881 _ 35.9361_ 1,185,9201_ 39,135.392 

I 11 351 6471 11,6631 209,951 
I 341 341 6461 11,6621 209,9501 3.779,134 
1 __ 1_34 l_l, 224 I __ . _42' 874 l __ l, 500' 6241 __ 52' 521, 874 

A-3 



309 

K S A M TABLE A-2 

MINIMUMLCRITICALLMAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

IMin I 
ICrit 11 B-tree level I 
IMax 11 I 
~l_l_ 2_1 3_ 4_1 

260,6h I 1 371 721 13' 717 
K 361 36 7201 13,716 260,640 4,952,196 

_I_ 36 _ 1,3681_ 50,652 - 1,874,160 - 69,343,956 
E I 1 391 799 15,999 319,999 

381 38 7981 15,998 319,998 6,399,998 
y _I_ 38 - 1,5201_ 59,318 2,313,440 - 90,224,198 

I 1 411 881 - 18,521 388,961 
401 40 8801 18,520 388,960 8,168,200 

_I_ 40 - 1,6801_ 68,920 2,825,760 - 115,856,200 
B I 1 431 967 - 21,295 468' 511 

421 42 9661 21,294 468,510 10,307,262 
L _I_ 42 - 1,8481_ 79.506 3,418,800 - 147,008,442 

I 1 451 1,057 24,333 559,681 
0 441 44 1,0561 24,332 559,680 12,872,684 

_I_ 44 - 2,0241_ 91,124 - 4,100,624 - 184,528,124 
c I 1 471 1,1511 27,647 663,551 

461 46 1,1501 27,6461 663,550 15,925,246 
K _I_ 46 - 2,2081_ 103,8221 4,879,680 - 229,345,006 

I 1 491 1,2491- 31,249 781,249 
481 48 1,2481 31,2481 781,248 19,531,248 

_ I_ 48 - 2,4001_ 117,6481 _ 5,764,800 - 282,475,248 
F I 1 511 1,3511 35,151 913,951 

501 50 1,3501 35,1501 913,950 23,762,750 
A _I_ 50 _ 2,6001_ 132,6501 6,765,200 - 345,025,2501 

I 1 531 1,4571- 39,365 1,062,8811 
c 521 52 1,4561 39,3641 1,062,880 28,697,8121 

_I_ 52 _ 2,8081_ 148,8761 7,890,480 - 418,195,4921 
T I 1 551 1,5671- 43,903 1,229,3111 

541 54 1,5661 43,9021 1,229,310 34,420,7341 
0 _I_ 54 - 3,0241_ 166,3741 9,150,624 - 503,284,3741 

I 1 571 1,6811- 48, 777 1,414,561 
R 561 56 1,6801 48,7761 1,414,560 41,022,296 

_ I_ 56 _ 3,2481_ 185,1921 _ 10,556,000 - 601,692,056 
I 1 591 1,7991 53,999 1,619,999 

581 58 1,7981 53,9981 1,619,998 48,599,998 
_ I_ 58 _ 3,4801_ 205,3781 _ 12' 117' 360 - 714,924,298 

I 1 611 1,9211 59.581 1,847,041 
601 60 1,9201 59,5801 1,847,040 57,258,300 

_ I_ 60 - 3,7201_ 226,9801 _ 13,845,840 - 844,596,300 
I 1 631 2,0471 65,535 2,097,151 

621 62 2,0461 65.5341 2,097,150 67,108,862 
_ I_ 62 - 3,9681_ 250,0461 _ 15,752,960 - 992,436,542 

I 1 671 2,311 I 78,607 2,672,671 
661 66 2,3101 78,6061 2,672,670 90,870,846 

_ I_ 66 - 4,4881_ 300,7621 _ 20,151,120 _1,350,125,106 
I I 1 691 2,4491 85,749 3,001,249 
I 681 68 2,4481 85,71181 3,001,2118 105,0113,748 
l __ I_ 68 _l!,7601 __ 328,5081 __ 22,667,120 _1,564,031,348 

A-4 



310 

K S A M TABLE A-2 

MINIMUMLCRITICALLMAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

!Min I 
ICrit 11 B-tree level I 
!Max 11 I 
~l_l_I 2 3_ 4 5_1 

11 7l 2,591 93,31l 3,359,2311 
K 70 701 2,590 93,310 3,359,230 120,932,3501 

- - 701_ 5,040 - 357,910 - 25,411,680 _1,804,229,3501 
E 11 73 2,737 101,305 3,748,3211 

72 721 2,736 101,304 3,748,320 138,687,9121 
y - - 721_ 5,328 - 389,016 - 28,398,240 _2,073,071,5921 

1 75 2,887 109,743 4,170,2711 
74 74 2,886 109,742 4,170,270 158,470,3341 

- - 74 - 5,624 - 421,874 - 31,640,624 _############## 
B 1 77 3,041 118' 637 4,626,8811 

76 76 3,040 118' 636 4,626,880 180,448,3961 
L __ 76 _ 5,928 - 456,532 - 35,153,040 _############## 

1 79 3,199 127,999 5,119,9991 
0 78 78 3,198 127,998 5' 119' 998 204,799,9981 

I - - 78 ;_ 6,240 - 493,038 - 38,950,0801_############## 
IC 1 81 3,361 137,841 5,651,5211 
I 80 80 3,360 137,840 5,651,520 231,712,4001 
IK __ 80 - 6,560 - 531,440 - 43,046,720 _############## 
I 1 83 3,527 148,175 6,223,3911 
I 82 82 3,526 148,174 6,223,390 261,382,4621 
I 82 6,888 - 571,786 - 47,458,320 _############## 
IF 1 85 3,697 159,013 6,837,6011 
I 84 84 3,696 159,012 6,837,600 294,016,8841 
A 84 7,224 - 614,124 - 52,200,624 _############## 

1 87 3,871 170,367 7,496,1911 
c 86 86 3,870 170,366 7,496,190 329,832,4461 

86 7,568 - 658,502 - 57,289,760 _############## 
T 1 89 4,049 182,249 8,201,2491 

88 88 4,048 182,248 8,201,248 369,056,2481 
0 88 7,920 - 704,968 - 62,742,240 _############## 

1 91 4,2311 194,671 8' 954' 911 I 
R 901 90 4,230 194,6701 8,954,910 411,925,9501 

_I_ 90 _ 8,280 - 753,5701_ 68,574,960 _############## 
I 1 93 4,4171 207,6451 9,759,3611 

921 92 4,416 207,6441 9,759,3601 458,690,0121 
_I_ 92 _ 8,648 - 804,3561_ 74,805,2001_############## 

I 1 951 4,6071 221,1831 10,616,8311 
941 94 4,6061 221,1821 10,616,8301 509,607,9341 

_I_ 94 _ 9,0241_ 857,3741_ 81,450,6241_############## 
I 1 971 4,8011 235,2971 11,529,6011 

961 96 4,8001 235,2961 11,529,6001 564,950,4961 
_ I_ 96 _ 9,4081 _ 912,6721_ 88,529,2801_############## 

I 1 991 4,9991 249,9991 12,499,9991 
981 98 4,9981 249,9981 12,499,9981 624,999,9981 

_I_ 98 - 9,8001_ 970,2981_ 96,059,6001_############## 
I 1 1011 5,2011 265,3011 13,530,4011 

1001 100 5,2001 265,3001 13,530,4001 690,050,5001 
__ 1_100 _10,2001_ 1,030,3001_104,060,4001_############## 

A-5 



311 

K S A M TABLE A-2 

MINIMUM[CRITICALiMAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

!Min I 
ICritl B-tree level I 
!Max I I 
___i _l_ 2 3_1 4 5_1 

1 103 5,4071 281,215 14,623,2311 
K 102 102 5,406 281,2141 14,623,230 760,408,0621 

- _102 - 10,608 1,092,7261_ 112,550,880 - ############## 
E 1 105 5,6171 297,753 15,780,9611 

104 104 5,616 297,7521 15,780,960 836,390,9841 
y - _104 - 11,024 - 1, 157. 624 I_ 121,550,624 _############## 

1 107 5,8311 314' 927 17,006,1111 
106 106 5,830 314,9261 17,006,110 918,330,0461 
- _106 - 11,448 1,225,0421_ 131,079,600 ############## 

B 1 109 6,0491 332,749 18,301,2491 
108 108 6,048 332,7481 18,301,248 l,006,568,7481 

L --108 - 11,880 1,295,0281_ 141,158,160 _############## 
1 111 6,271 I 351,231 19,668,9911 

0 110 110 6, 270 351,2301 19,668,990 1,101,463,5501 
--110 - 12,320 - 1,367,6301_ 151,807,040 ############## 

c 1 113 6,4971 370,385 21,112,0011 
112 112 6,496 370,3841 21, 112' 000 1,203,384,1121 

K __ 112 _ 12,7681_ 1,442,8961_ 163,047,360 _############## 
1 115 6,7271 390,223 22,632,9911 

114 114 6,726 390,2221 22,632,990 1,312,713,5341 
- _114 - 13, 224 1,520,8741_ 174,900,6241_############## 

F 1 117 6,9611 410,7571 24,234,7211 
116 116 6,960 410,7561 24,234,7201 1,429,848,5961 

A --116 13,688 - 1,601,6121_ 187,388,7201_############## 
1 119 7, 199 I 431,9991 25,919,9991 

c 118 118 7,198 431,9981 25,919,9981 1,555,199,9981 
--118 14,160 - 1,685,1581_ 200,533,9201_ ############## 

T 1 121 7, 4411 453,9611 27,691,6811 
120 120 7,440 453,9601 27,691,6801 1,689,192,6001 

0 120 14,640 - 1,771,5601_ 214,358,8801_############## 
1 127 8,1911 524,287 33,554,4311 

R 126 126 8,190 524,2861 33,554,430 2,147,483,6461 
- _1261_ 16,128 - 2,048,3821_ 260,144,640 _############## 

11 137 9,5211 657' 017 45,334,2411 
136 1361 9,520 657,0161 45,334,240 ############## 
- _1361_ 18,768 - 2,571,3521_ 352,275,360 _############## 

ll 139 9,7991 685,999 48,019,9991 
138 1381 9,798 685,9981 48,019,998 ############## 
- _1381_ 19,320 2,685,6181_ 373,301,040 _############## 

ll 141 10,0811 715,821 50,823,3611 
140 1401 10,080 715,8201 50,823,360 ############## 
- _1401_ 19,880 2,803,2201_ 395,254,160 _############## 

I 11 143 10,3671 746,495 53' 747, 711 I 
1421 1421 10,366 746,4941 53,747,710 ############## 
_1_1421_ 20,448 - 2,924,2061_ 418,161,600 ############## 

I 11 145 10,6571 778,033 56,796,4811 
1441 1441 10,656 778,0321 56,796,480 ############## 

__ 1_1441_21, 024 _3, 048, 6241_442, 050' 624 ############## 

A-6 



312 

K S A M TABLE A-2 

MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

!Min I 
I Crit I I B-tree level I 
IM.filLI I I 
~l_l_ 2_1 3_ 4_1 5_1 

I I 1 147 10,951 810,4471 59,973,1511 
IK 1461 146 10,950 810,446 59,973,1501 ############## 
I I 146 21,608 3,176,522 466,948,8801 ############## 
IE - - 1 - 149 - 11,249 - 843,7491- 63,281,2491 
I 148 148 11,248 843,748 63,281,2481 ############## 
IY 148 22,200 3,307,948 492,884,4001 ############## 

- - 1 - 151 - 11,551 - 877,9511- 66,724,3511 
150 150 11,550 877,950 66,724,3501 ############## 

150 22,800 3,442,950 519,885,6001 ############## 
B - - 1 - 153 - 11,857 - 913,0651- 70,306,0811 

152 152 11,856 913,064 70,306,0801 ############## 
L __ 152 _ 23,408 _ 3,581,576 _ 547,981,2801 ############## 

1 155 12,167 949,103 - 74,030,1111 
0 154 154 12,166 949,102 74,030,110 ############## 

154 24,024 3,723,874 577,200,624 ############## 
C -I- 1 - 157 - 12,l~81 - 986,077 - 77,900,1611 

1561 156 12,480 986,076 77,900,160 ############## 
K I 156 24,648 3,869,892 607,573,200 ############## 
-1- 1 - 159 - 12,799 - 1,023,999 - 81,919,9991 
1581 158 12,798 1,023,998 81,919,998 ############## 

I 158 25,280 4,019,678 639,128,960 ############## 
F -1- 1 - 163 - 13,447 - 1,102,735 - 90,424,3511 

1621 162 13,4461 1,102,734 90,424,350 ############## 
A I 162 26,5681 4,330,746 705,911,760 ############## 
-1- 1 - 1651- 13,777 - 1,143,573 - 94,916,6411 

c 1641 164 13,7761 1,143,572 94,916,6401 ############## 
I 164 27,2241 4,492,124 741,200,6241 ############## 

T -1- 1 - 1691- 14,449 - 1,228,2491- 104,401,2491 
1681 168 14,4481 1,228,248 104,401,2481 ############## 

0 _1_168 - 28,5601_ 4,826,808 - 815,730,7201 ############## 
I 1 1711 14,791 1,272,1111- 109,401,6311 

R 1701 170 14,7901 1,272,110 109,401,6301 ############## 
_l_l'lO _ 29,2401_ 5,000,210 _ 855,036,0801 ############## 

I 1 1751 15,487 1,362,9431- 119,939,0711 
1741 174 15,4861 1,362,942 119,939,0701 ############## 
_1_174 - 30,6241_ 5,359,374 - 937,890,6241 ############## 

I 11 1791 16,1991 1,457,9991- 131,219,9991 
1781 1781 16,1981 1,457,9981 131,219,9981 ############## 

I 1781 32, o4o I 5, 735, 3381 1, 026, 625, 680 I ############## 
-1- 11- 1831- 16,9271- 1,557,3751- 143,278,5911 
1821 1821 16,9261 1,557.3741 143,278,5901 ############## 

I 1821 33, 4881 6, 128, 4861 1, 121, 513, 120 I ############## 
-1- 11- 1851- 17,2971- 1,608,7131- 149,610,4011 
1841 1841 17, 2961 1, 608, 7121 149, 610, 400 I ############## 

I 1841 34,2241 6,331,6241 1,171,350,6241 ############## 
-1- 11- 1911- 18,4311- 1,769,4711- 169,869,3111 
1901 1901 18,4301 1,769,4701 169,869,3101 ############## 

~~l_l90l_36,480l_6,967,870l_l,330,863,3601_############## 

A-7 



!Min I 

K S A M TABLE A-2 

MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

ICritl B-tree level I 
!Max I I 
~ _1_ 2 I 3_1 li 5_1 

1 199 19,9991 1,999,999 199,999,9991 
K 198 198 19,998 1,999,9981 199,999,998 ############## 

198 39,600 7,880,5981 1,568,239,200 ############## 
E - - 1 - 201 - 20,l!Oll- 2,060,601 - 208,120,8011 

200 200 20,l!OO 2,060,6001 208,120,800 ############## 
y 200 l!0,400 8,120,6001 1,632,2li0,800 ############## 

- - 1 - 203 - 20,8071- 2,122,415 - 216,486,4311 
202 202 20,806 2,122,41lil 216,486,430 ############## 

202 41,208 8,365,4261 1,698,181,680 ############## 
B - - 1 - 205 - 21,2171- 2,185,453 - 225,101,7611 

20li 204 21,216 2,185,li521 225,101,760 ############## 
L 204 42,024 8,615,12lil 1,766,100,624 ############## 

- - 1 - 207 - 21,6311- 2,249,727 - 233,971,7111 
0 206 206 21,630 2,2li9,7261 233,971,710 ############## 

206 42,848 8,869,7421 1,836,036,800 ############## 
c - - 11- 213 - 22,8971- 2,450,085 - 262,159,2011 

212 212 22,896 2,li50,08lil 262,159,200 ############## 
K 212 45,368 9,663,5961 2,058,346,160 ############## 

- - 1 - 219 - 24,1991- 2,661,999 - 292,819,9991 
218 218 2li,198 2,661,9981 292,819,998 ############## 
- _218 - li7,960 _10,503,li581_##############_############## 

F 1 223 25,0871 2,809,8551 314,703,8711 
222 222 25,086 2,809,8541 314,703,8701 ############## 

A __ 222 _ 49,728 _11,089,5661_##############_############## 
1 227 25,9911 2,963,0871 337.792,0311 

c 226 226 25,990 2,963,0861 337,792,0301 ############## 
- _226 - 51,528 _11,697,0821_##############_############## 

T 1 229 26,4li91 3,041,7li91 349,801,2li91 
228 228 26,448 3,041,7481 349,801,2li81 ############## 

o __ 228 _ 52,4lio _12,008,9881_##############_############## 
1 233 27,3771 3,203,2251 374,777,4411 

R 232 232 27,376 3,203,2241 374,777,li40I ############## 
232 54,288 12,649,3361 ############## ############## 

-1- 1 - 237 - 28,3211- 3,370,3171- 401,067,8411 
2361 236 28,320 3,370,3161 liOl,067,8401 ############## 
_1_236 - 56,168 _13,312,0521_##############_############## 

I 1 239 28,7991 3,455,9991 414,719,9991 
2381 238 28,798 3,li55,9981 lilli,719,9981 ############## 

I 238 57,120 13,651,9181 ############## ############## 
-1- 1 - 255 - 32,7671- li,194,3031- 536,870,9111 
2541 254 32,766 4,194,3021 536,870,9101 ############## 

I 254 65,024 16,581,37lil ############## ############## 
-,- 1 - 273 - 37.5371- 5,142,7051- 704,550,7211 
2721 272 37,536 5,142,7041 70li,550,720I ############## 

I 272 7li,528 20,346,4161 ############## ############## 
-,- 1 - 277 - 38,6411- 5.371,2371- 746,602,0811 
2761 276 38,640 5.371,2361 746,602,0801 ############## 

~~1_276 _76,728 _21,253,9321_##############_############## 

313 

A-8 



314 

K S A M TABLE A-2 

MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

IMin I 
I Cr it I B-tree level I 
IMax I I 
~ ~1_1 2 3_1 4_1 5_1 

ll 281 39,7611 5,606,4411 790,508,3211 
K 280 2801 39,760 5,606,4401 790,508,3201 ############## 

2801 78,960 22,188,0401 ############## ############## 
E - - 11-- 291 - 42,6311- 6,224,2711- 908,743,7111 

290 2901 42,630 6,224,2701 908,743,7101 ############## 
y 290 84,680 24,642,1701 ############## ############## 

- - 1 - 297 - 44,4011- 6,615,8971- 985,768,8011 
296 296 44,400 6,615,8961 985,768,8001 ############## 

B 296 88,208 26,198,0721 ############## ############## 
- - 1 - 307 - 47,431 - 7,304,5271-1,124,897,3111 

L 306 306 47,430 7,304,526 1,124,897,3101 ############## 
- _306 - 94,248 _28,934,442 _##############_############## 

0 1 319 51,199 8,191,9991 1,310,719,9991 
318 318 51,198 8,191,998 1,310,719,9981 ############## 

c 318 101,760 32,461,758 ############## ############## 
- - 1 - 331 - 55,111 - 9,148,5911-1,518,666,2711 

K 330 330 55,110 9,148,590 1,518,666,2701 ############## 
330 109,560 36,264,690 ############## ############## 

- - 1 - 341 - 58,481 - 10,000,4211-1,710,072,1611 
F 340 340 58,480 10,000,420 1,710,072,1601 ############## 

340 116,280 39,651,820 ############## ############## 
A - - 1 - 357 - 64,081 - 11,470,6771-2,053,251,3611 

3561 356 64,080 11,470,676 2,053,251,3601 ############## 
c _1_356 _127,448 _45,499,292 _##############_############## 

I 1 383 73,727 14,155,7751 
T 821 382 73,726 14,155,774 ############## 

I 382 146,688 56,181,886! ############## 
0 -1- 1 - 409 - 84,0491- 17,230,2491 

4081 408 84,048 17,230,2481 #############I 
_R~_l_408 _167,280 _68,417,9281_#############1 

A-9 



315 

The minimum value is the absolute minimum number of keys that a B-tree 
can hold for a given level, if a key is deleted then the B-tree will 
contract one level. An example is shown in the following figure of a 2 
level (L) B-tree with a key blocking factor (F) of 4 and with minimum 
number of keys. 

[*]300[*]\\\[*]\\\[*]\\\[*] 
I I 
I [*]400[*]500[*]\\\[*J\\\[*J 
I 

[*]100(*]200[*]\\\[*]\\\(*] 

The minimum number of keys (MinK) is given by the formula: 

Mink = 2 * (F/2 + l)**(L-1) - 1 

The 'critical' value is the minimum number of keys that the B-tree can 
hold on a given level before splitting and creating another level. This 
value is given by subtracting 1 from the minimum value of the next 
higher level. 

[ * l 30(*] 60(*] 90[*]120[*] 
I I I I I 
I I I I [*]130[*]140[*]150[*]160[*] 
I I I I 
I I I [*]100(*]110(*]\\\(*]\\\[*] 
I I I 
I I [ * l 70[*] 80[*]\\\[*]\\\[*] 
I I 
I [*] 40(*] 50(*]\\\[*]\\\[*] 
I 

[*] 10[*] 20[*]\\\[*]\\\[*] 

The critical number of keys (CritK) is given by the formula: 

CritK = 2 * (F/2 + l)**(L) - 2 

The maximum value is the maximum number of keys that the B-tree could 
hold if it would be possible to load it with no 'holes' whatsoever. 
An illustration of this concept is shown below on a 2 level B-tree 
with a key blocking factor of 4 and maximum number of keys. 

[*] 5[*] 10[*] 15[*] 20(*] 
I I I I I 
I I I I (*] 21(*] 22[*] 23(*] 24[*] 
I I I I 
I I I [ * l 16(*] 17[*] 18[*] 19(*] 
I I I 
I I [ * l 11 [ *] 12[*] 13[*] 14[*] 
I I 
I [*] 6[*] 7[*] 8[*] 9[*] 
I 

[ * l 1(*] 2[*] 3[*] 4[*] 

The maximum number of keys (MaxK) is given by the formula: 

MaxK = (F + l)**(L) - 1 

A-10 



316 

Using Interprocess Communication 

Gregory A. Grirrrn 

HP Computer Systems Division 
MTS Development Engineer 

19447 Pruneridge Ave. 
Cupertino California 95014 

With the advent of the file system Inter-process Communication (!PC) 
facility, Users of the HP3000 computer system under MPE have more tools 
available to them than ever before for the development of applications. 
This paper will examine !PC as a whole; therefore both message files 
and software interrupts will be included in the discussion. 

The examination of !PC is focused in three main areas: firstly, the 
possible reasoning behind the use of !PC is dicussed including system 
management and actual process to process communication. Second, the 
current tools (Intrinsics) available to the user is discussed in enough 
detail so that they will become comfortable to use. Lastly, an example 
of the use of !PC in an application environment is discussed leaving 
the user with a better understanding of file system !PC and its use in 
solving application problems. 

File system !PC uses a special file called a message file. A message 
file can be thought of as a FIFO queue. When one reads the first 
record from the file (queue) it is logically deleted from the file. 
Writing a record to the message file logically adds the record to the 
end of the file (queue). Since !PC is part of the file system, any 
operations on the message file use file system intrinsics. 

File system !PC is a tool that is used by application programmers to 
overcome previous constraints found on the HP 3000 of the following 
general types. The first type of problem is that of system management. 
The HP 3000 running under MPE IV can cause restrictions such that the 
applications programmer may not be able to get the most out of his 
machine. The first and probabally the largest example of this is the 
problem of the 32K stack. 

The HP3000 has a maximum stack size of 32K minus the amount that is 
used by the operating system. This can severely hamper the programmer 
so that he/she cannot fit the applications program into the machine at 
one time. There are two solutions to this problem. The first is for 
the programmer to use extra data segments along with his stack. The 
programmer then has to learn a new set of intrinsics to manage the 
extra data segments. These intrinsics, GETDSEG, DMOVEIN, DMOVEOUT, 
etc. are different than any file system intrinsics that have been used 
so far. In addition these intrinsics cause high instruction overhead. 

A second solution to the problem is the use of the !PC facility in the 
MPE file system. There are three main advantages to using the !PC 
facility. The first is that to use !PC one only needs to know how to 
use the file system instr ins ics. The familiar FOPEN, FREAD, FWRITE, 



Using Interprocess Coirrnunication 

FCONTROL and FCLOSE are used instead of a new set of intrinsics. The 
second advantage is that file system !PC is less complex than using 
extra data segments. The last advantage is that most application 
programs that are written using a top-down structured approach should 
be able to use the !PC facility with few problems. The top-down 
modular approach requires that each module be a self contained part of 
the program with a clearly defined interface between each modules. 
Figure 1 shows the top 2 levels in the hierarchy chart of an 
application program that is ideal to use !PC. 

MAIN ROUTINE 

l 1 
SUB PROCEDURE 1 SUB PROCEDURE 2 

Figure 1 

File system !PC uses a special kind of file called a message file in 
order to communicate between processes. Each module in our hierarchy 
chart in figure 1 would become a process on their own. Of course each 
process (or module) would have its own stack thus solving the stack 
size problem. The clearly defined interface for each module would 
become message files. Each message file would be uni-directional thus 
insuring that no other program would distroy the parameters to each 
module. This is shown in figure 2. 

317 



318 

Using Inte:r>pl'Ocess Comnunication 

MAIN PROCESS 

MSGl __.___ MSG2 

SON PROCESS 1 SON PROCESS 2 

Figure 2 

For each procedure interface two message files would be used. The 
first would contain all the values that are being passed to the 
procedure. The second message file would contain all the values that 
are being passed back to the caller.' Since a module could be called 
from more than one place there must be mechanisim to determine where 
the procedure was called from. This mechanisim is provided through IPC 
message files via writer IDs. 

In addition to stack size limitations some performance problems in 
application programs can also be addressed such as input devices that 
require constant attention. With the use of IPC message files and 
separate processes each of the input devices can have its own process 
constantly reading from the device and convey the need for some 
processing by a separate process via message files. This allows the 
process that is attending the input device to do only that and not get 
slowed down by doing other processing. Thi3 process stops only if it 
can not write to the message file (extended wait). This can be 
prevented by using nowai t I/O with message files and by making the 
message files larger than is likely to be needed. In this way the 
input device process never needs to be waited. 

Another performance problem can be solved by having the different 
modules (processes) on different machines. Each node of a data 
communications network can do one small task of the whole job. In this 
way each process can compete for resources on his own machine. An 
additional advantage to this set-up is the fact that if one machine 
goes down the whole application does not. In fact one could program 
redundancy into the application so that the application could survive 
up to one half of the machines to crash. 

Another common problem that modules in a computer program have is the 
tendency for them. to ace identally write over each other' s important 
data. This problem can be partially solved by the use of !PC. Since 
each module has his own stack, another module (process) cannot write on 
his own stack. This allows important data to be protected by the 
module that owns the data. Of course this will not protect the data if 



Using Interprocess Corrmuniaation 

there is a bug in the module its elf; however each module is small 
enough to verify its correctness. 

!PC is very useful during the development phase of an. application 
program for program testing. There are generally two types of testing 
methods: top-down and bottom-up testing. With top-down testing the top 
level modules are tested first, the bottom level are tested last. When 
the bottom level is tested the application program is finished. 
Bottom-up testing is a strategy in which the bottom levels of a program 
are tested first. This is done by writing driver programs to test each 
module or set of modules. This approach is often mixed with top-down 
testing to get what is sometimes called middle-out testing. Using 
middle-out testing allows the use of top-down testing for most of the 
modules but uses bottom-up testing for critical modules near the bottom 
of the hierarchy chart. 

File system !PC facilitates bottom-up testing. Since the calling 
sequence is done through message files, it is an easy matter of 
producing test cases for the module by using simple editor files. To 
check the results of the module all one need do is verify that the 
contents of the outgoing message file is correct. Figure 3 shows this 
relationship. 

Msgl (in) Msg2 (out) 

TEST PROCEDURE 

Figure J 

The only difficulty to this method of testing involves a module that 
does some type of updating of a disc resident data structure. To 
insure correctness of the module, the data structure must be verified 
to be correct after the test run of the module. 

Another very useful way of applying file system !PC is using soft 
interrupts. When an I/O is started (no wait) to a message file, an 
interrupt handler is set up and when the I/O completes, MPE interrupts 
the process that started the I/O. 

The final category of problems solved by file system !PC is actual 
process to process communication. For applications that can be 
partially overlapped in time, the applications programmer needs a 
method to synchronize the processes. The easiest way to do this is to 
use !PC message files. In order to check point two processes that run 

319 



320 

Using Interprocess Corrmunioation 

concurrently all that needs to be done is to have two message files. 
Each process opens up one file as a reader and one file as a writer 
(the file opened as a reader would be opened as a writer by the other 
process). When a process is ready to check point, it writes a record 
to the message file it has open as a writer. It then issues a read on 
the file it has opened as a reader (with wait option). When the other 
process is ready to check point he writes a record to the file which is 
now read by the other process. At this point each process is off and 
running. If additional information had needed to be exchanged between 
the two processes it could have been done during these operations. 

To use file system IPC the application programmer must master file 
system intrinsics. The following is a summary of what each intrinsic 
will do (more information can be gained from your Intrinsic Manual or 
your File System Reference Manual): 

FOPEN: 

FREAD: 

FWRITE 

Establishes the connection to the message file. 

A process will be identified as a reader (one who reads 
from the message file) or as a writer (one who writes to 
t:1e message file). Care must be taken to correctly set the 
AOPTIONs and FOPTIONs of the file. In addition the 
condition code should always be checked (as in all 
intrinsic calls). 

Logically deletes one record from the message file and returns 
it to the user. 

If the process tries to read from an empty file which has 
at least one writer open, the process will be blocked until 
there is a record written to the file or all writers have 
closed the file. If no writers had the file open when the 
reader reads from the empty file, CCG will be returned 
unless it is the first read after opening the file or 
extended wait is in effect. 

Logically adds one record to the end of the message file. 

If the process tries to write to a full file which has at 
least one reader open, the process will be blocked until 
there is one record read. If no readers have the file open 
when the writer wrote to the full file, CCG will be 
returned unless it is the first write after opening the 
file or extended wait is in effect. 



Using Interprocess CoTm!W'lioation 

FCONTROL Sets control functions to a message file. 

* 
* 

* 

* 

Disable/Enable extended wait (see FREAD/FWRITE) 
Disable/Enable reading the writer ID (each writer 
is uniquely identified and when a reader can read 
the writer ID he can determine who wrote the current 
record) 
Disable/Enable Non distructive read (a reader can read 
the next record without logically deleting it from 
the file) 
Arm/Disarm soft interrupts (way to pass the address 
of the trap handler for soft interrupts). 

FINTSTAT Enables soft interrupts for the process. 

FINTEXIT Exits from a soft interrupt trap handler. 

FFILEINFO Returns status information. 

FCLOSE 

* 
* 
* 

Number of readers 
Number of writers 
Plabel of the soft interrupt trap handler 

Breaks the connection to the message file. 

More detail of each file system intrinsic can be found in the 
Intrinsics Manual or the File System Reference Manual. 

Finally, an example of using !PC in an application is presented below. 

A customer has a set of n I/O devices that will cause some data to be 
updated. These I/O devices need constant attention. If we do not 
clean up an I/O before another comes, we will lose the first I/O. We 
can assume that there is enough time between I/Os on the I/O devices 
to complete up to two FWRITEs to a message file. We cannot count on 
any more time than that. The data consists of an IMAGE data base on 
one HP3000 with a set of MPE files that also need be updated on 
another HP3000. The customer has a separate HP3000 that will moniter 
the I/O devices. 

This application has a solution using !PC. Let us discuss the solution 
in terms of data flow. Each I/O device requires a process devoted to 
reading data from it. When the process (and the device) is started up 
it opens up a message file on the computer that is monitoring the 
devices. To avoid data over-flow the message file must be created 
large enough. Once the message file is opened the process reads (with 
wait) from the device and writes the result to a message file. The 
data that has been taken from the device is now cannot be lost due to 
over-writing. This message file is the raw data file. 

321 



322 

Using Interprocess Comnunication 

on one of the other two machines there is a process that reads from all 
the raw data files (one for each I/O device) and determines what kind 
of transaction needs to be done. It then writes the data into a 
transaction message file. Each type of transaction has a transaction 
file. 

Each transaction has a process on the MPE file machine which reads the 
data from the transaction message file and update the MPE files. It 
then writes the data to a IMAGE message file. In this way a process on 
the IMAGE machine can read the data from the IMAGE message file and 
update the IMAGE data base. Figure 4 shows how this all fits together. 

In this way we could solve the customer's problem by using file system 
IPC. Each of the processes discussed here would be fairly simple to 
write, thus increasing our chances of few bugs. 

File system Interprocess Communication is a powerful tool that can be 
used to solve many application problems on the HP3000. In addition it 
has the following advantages: most of the machine. 

* usable by high level languages 

* uses file system security 

* debugging ease 

* remote file access 

These advantages make IPC helpful in many applications. 



HP3000 

HP3000 

HP3000 

Using Interpr>0cess Conmunication 

Device 
I/O 

Device 
Process 

Raw Data 
Msg File 

Driver 
Process 

Transactionl 
Msg file 

Transaction 
Process 

IMAGE 
Msg File 

IMAGE 
Process 

l 
J 

Read data from device and 
write it to msg file 

Send data to proper 
Transaction file 

Update MPE files 

Update IMAGE data base 

Figure 4 

323 



324 

THE STRUCTURE OF APPLICATION PROGRAM SAMPLER (APS)/3000 

ABSTRACT: 

Abbas Rafii 

Hewlett-Packard 
Computer Systems Division 
19447 Pruneridge Avenune 

Cupertino, Ca. 95014 
(408)-725-8111 

Application Program SAMPLER (APS/3000) is a friendly interactive 
performance measurement software product for tuning application 
programs on the HP 3000. This program can be used to produce program 
CPU and wait time profiles at several levels of detail in terms of 
logical structures of the source program such as segments, procedures 
and address regions. A unique feature of the product permits the 
programmer to see both the time spent in the user code and the time 
spent executing system (an SL) code on behalf of calls from user code. 
This tool can be used with most major languages. In this paper the 
design, internal structure and application of APS/3000 are 
presented. A status sampling technique is discussed. Direct and 
indirect cost components are defined. Certain interesting aspects of 
data analysis and on-line data presentation techniques are described. 
Finally, a case study is presented. 

1. Introoduction 

Performance evaluation tools are increasingly being used to determine 
the dynamic behavior of various software systems, ranging from 
application programs to the components of complex operating systems. 
The measurement results are normally used to locate the system 
bottle-necks for tuning purposes. Additionally, performance profiles 
can highlight possible logical errors in a program when the actual 
dynamic behavior of the program does not conform to the expected 
results. 

Software performance tools report their results in terms of either 
number of events or percentages of resource utilization (1,2,3]. 
Examples of events are number of reads, writes, process launches, 
interrupts, etc. Utilization figures are normally given for CPU, IO 



325 

channels, network channels, etc. 

APS/3000 provides CPU utilization profiles of software systems 
under normal load without the need for special program 
instrumentation [4,5,6). In a typical application of the tool, the 
user runs the program under study through the SAMPLER interface. 
After the measurement is completed, the user is first presented with 
an overview of the behavior of his program, and then more detailed 
profiles of various sections of the program can be obtained 
interactively. With a little assistance from compilers and the 
segmenter, precise performance profiles can be produced in terms of 
programmer defined entities such as code segments, procedure names, 
procedure relative source line numbers and procedure relative absolute 
addresses. Graphic on-line summary reports can also be produced as 
the measurement progresses. 

In the following sections of this paper, we give a brief overview of 
the architecture and program structure of the HP/3000 for a better 
understanding of the measurement mechanism and performance profiles. 
The measurement mechanism is then described. The concept of direct and 
indirect CPU utilization, which provides a very informative view of 
program execution cost, is given. Data reduction techniques and the 
requirements imposed by the interactive nature of the user interface 
are discussed. We conclude with a few remarks on the implementation 
and by presenting a case study using the tool. In the following text, 
the APS/3000 commands which relate to the topics being discussed are 
shown within{} marks [Ref. 10). 

2. Machine and PPogPam 0Pganization 

The HP/3000 is a 16-bit stack operation machine [7,8). Process address 
space consists of separate variable size code and data segments. Each 
process executes a program file. Processes can share up to 192 global 
code segments. Part of the global code segments are permanently 
allocated to operating system (MPE) [9] functions (e.g. file system, 
memory manager, scheduler, network handler, etc.). The remaining 
segments can be dynamically allocated to frequently shared code such 
as compiler libraries, utilities and data base services. Each program 
file has up to 63 local (non-sharable) code segments. Therefore, the 
total code space of a program consists of 63 local code segments 
(containing the code a user writes) and 192 global segments. In 
addition to code segments, each process has its own set of data 
segments (including at least one stack segment). 

A process is defined in the system by a Process Identification Number 
(PIN) and the program file it is executing. Since code and data are 
separate, processes can easily share the same program file. 

The state of a program is kept in a four word stack marker (Figure 1). 
Stack markers are chained to reflect the history of procedure 
invocations up to the present. A stack marker defines the procedure 



326 

return address which consists of a code 
displacement within the segment. 

X - REGISTER 

DELTA-P (P.C.) 

STATUS -1 Seg. No. 

TO LAST MARKER (DQ) 

Figure 1 A stack marker 

3. MeasUPement Mechanism 

segment number and 

As the name implies, APS/3000 uses a sampling technique to collect its 
data. It is driven by a programmable software clock. The clock can be 
instructed to interrupt the system at fixed intervals (ranging from 5 
to 1000 milliseconds). A clock interrupt is a high priority event. 
Therefore, when the external interrupts are not disabled, it can 
pre-empt any programs, and record (sample) the status of the system 
just prior to the interrupt. The status information provides us with 
the segment number and address of the interrupted instruction. In a 
multi-programming system, however, there is no guarantee that every 
time the clock ticks it interrupts the program we wish to monitor. 
Therefore, a screening of the samples must take place either at 
sampling time or later at data reduction time. For this reason, we 
need to indentify the name of the interrupted program and the process 
number (PIN) of the correspoding interrupted process. If we screen the 
samples based on the program identification {AM}, we are actually 
studying the shared execution of a program by all processes running 
that program. This is useful for programs such as editors, compilers, 
etc. If we screen the samples based on the process identification 
{RM}, the resulting data can be used to provide the behavior of a 
program with a single user for a specific set of input data. The 
latter option is useful for tuning application programs. APS/3000 is 
fairly flexible in the screening of its data. Screening can be done at 
measurement time and/or later at data reduction time. Any combination 
of process number and/or program name can be used as screening 
parameters. It is therefore possible to measure the execution of 
several programs at once. For the casual user, the choice of screening 
parameters is done automatically. 

In Figure 2, the organization of APS/3000 is shown. It consists of 
four internal modules, each independent but communicating processes, 
called SAMPLER, LOGGER, DISPLAY and ANALYZER. SAMPLER module sets up 
the measurement and operates the sampling mechanism. The clock 
interrupt receiver contains the logic necessary to identify the 
processes or programs under study. It compares the status of the 



327 

interrupted system with the data stored in a known data segment. If 
any component of the system under study is found to have been active 
just prior to the interrupt, the system status is sampled. Each 
sample contains sufficient information to allow the reconstruction of 
the system's activity later at data reduction time. Among other 
things, a sample contains a process number, code segment number, 
interrupted instruction address within the segment and some control 
information. Samples are collected in buffers ln a data segment. When 
a buffer is filled, the LOGGER module is activated to store the buffer 
on disk or tape via the file system. Because of the real time 
constraints of the measurement, the file system must be fast enough to 
complete its operation before the other buffer (in a double buffering 
scheme) is filled. The timing can be controlled by the degree of 
buffering and sampling interval. These parameters are pre-tuned for 
the user. 

)~.i 
~~~ 

ON-LINE­
DISPLAY

Data
Buffers

SAMPLER

LOGGER

.q Data Path

-control Path (samples) !)-----.!_--~

Figure 2 Organization of Application Program SAMPLER/3000

328

In addition to storing raw data, the clock interrupt receiver prepares
sununary statistics of the ongoing measurement. This is done by
incrementing a set of counters in a designated data segment. There
are sets of counters corresponding to all program code segments,
process numbers, program file numbers, etc. These counters can be
displayed for the user by the DISPLAY module {OD} while the
measurement is in progress. In fact, for some applications, these
summary reports are sufficient to give an overview of the CPU
utilization of the system under study. When the measurement is
completed (or stopped), the ANALYZER module {RE} is invoked to prepare
a variety of program profiles under user control.

4. Di:rect and Indi:rect CPU Utilization

An application program frequently calls for the services of the
operating system during its execution. Usual system calls are I/O
requests, library accesses, general resource requests, etc. The true
CPU cost of running a program, therefore, consists of the time the CPU
directly executes user code plus the time it exercises the operating
system routines invoked as the result of calls originating from the
user code. We refer to these two program cost components as direct
and indirect CPU times, respectively. Before discussing the many ways
direct and indirect CPU times can be presented to give a realistic
performance profile of a program, we describe the measurement
technique to determine indirect costs.

In the HP/3000 execution environment under MPE operating system,
system services are provided either by explicit calls to pre-defined
procedures (called intrinsics) or by implicit system procedure calls
generated by compilers to simulate high level language statements
(e.g. PASCAL file operations).

As mentioned earlier, the global MPE segments and othe SLs occupy a
known separate area in the address space of a program, namely the
lower 192 code segments. When the sampling mechanism inspects the
status of the system at a clock interrupt, it can determine if the
interrupted code segment is a system or user segment. Focusing only
on the samples for a given process number, one can obtain the
distribution of program time over user segments and system segments
executing on behalf of the user program. (This gives a direct CPU
time profile).

The direct CPU time profiles do not, however, show what percentage of
system code execution can be associated with the requests (calls)
originating from user code. In other words, we would like to determine
the actual processing cost of calls to the operating system functions
embedded in the user source statements. We refer to this as the
indirect cost (or CPU utilization) of program statements.

329

In order to obtain indirect cost samples we need to produce a new set
of measurements, in addition to our usual samples of interrupted
program status. The procedure stack markers help us to backtrack and
inspect the procedure invocation history of the interrupted program
[Figure 3). The algorithm to get both direct and indirect samples
is as follows: At each clock interrupt determine if the program
under study is interrupted. If so, record the status of the
interrupted program: <seg><displacement>. This is the direct cost
sample. Then determine if the <seg> is a system or user code segment.
If it is a user code segment the indirect cost does not apply. If it
is a system code segment, search the procedure invocation chain of the
interrupted program starting from the most recent marker. Stop
searching either when the chain is exhausted or when a user segment is
found along the way. In the latter case, sample the the status(i.e.
point of call) in the user segment: <seg' ><displacement'>.

Point of Call
to a System Function

Intermediate Markers

Most Recent Marker
user seg.

syst. seg . .. syst. seg.

'---t-

Figure 3 Procedure invocation chain leading to a user segment

The string of samples obtained in this way consist of two-tuples
(<direct>, <indirect>) measurements. The <indirect> sample only
applies when the <direct> sample is a system segment. In the
following string of samples a, b, c, d's are user segments and x, y,
z's are system segments:

Time: tl t2 t3 t4 t5 t6 t7 tB
Direct: a x b c y z d x

Indirect: a d c d

At time t5, for instance, system segment y is active and it is invoked
by a sequence of one or more calls originating from the user
segment d.

The string of samples which is obtained in this way could be processed
to give a variety of information about the execution behavior of a
program and its demand on the system services. The direct samples can
be used to produce the usual direct CPU utilization profiles of
various areas of a program. The combination of direct and indirect

330

samples can give profiles where the total cost of operating system
services requested from an area in the user code is super-imposed on
the direct cost of executing the user code in the same area. These
profiles give a more realistic representation of a programs's cost.
Additionally, the indirect cost originating from a given area in the
user code can be expanded in terms of the elements in the system code
involved in servicing the user calls. The latter technique can be
used in the following way. A part of the user code (e.g. a user
segment) can be selected as a window into the internals of the
operating systems. Those parts of the operating systems which are
exercised to service the requests from the window can be determined by
presenting their utilization profiles. {IS}. This type of profile is
easily obtained by fixing on the direct samples of a section of the
user code and including into the analysis all the corresponding
indirect samples.

The following example should clarify these concepts. Consider a
program section preparing and doing a WRITE operation via the file
system:

040 MOVE BUF :•"DISPLAY MESSAGE";
063 FWRITE (TOFILE, BUF, LEN, CONTROL);
070 IF ERROR THEN EXIT (WITH_ERROR_NUM);

Let us assume that the direct CPU measurement shows that 5% · of the
total program time was spent directly executing the code generated by
these statements {D}. This is actually only a part of the cost of
these program lines. The direct cost of FWRITE is negligible. It
consists only of the code to set up the parameters and a procedure
call to the system function FWRITE. The indirect cost analysis shows
that 15% of total program time was spent servicing the call {I}.
Therefore, the realistic cost of these statements is 20% of total
program time. Furthermore, one might be interested in using the FWRITE
statement as a window into the file system and obtain the distribution
of the 15% indirect cost over the file system code regions which were
exercised in order to service this particular FWRITE request.

Wait times can be estimated inexpensively by counting .the number of
clock interrupts between two successive samples. This count is kept as
part of each sample. ANALYZER has commands {W, WR} which produce
direct+ indirect+wait times of a program. These profiles essentially
provide the response time of program statements at the time of the
measurement.

5. Measuzoement Accuroacy and Sampling Over-head

The choice of the sampling rate is a tradeoff between the desired
measurement accuracy and the sampling overhead. Our experiments show

331

that collecting a sample for every 10000 program instructions provides
a balance between the two factors.

The sampling overhead is the amount of CPU time used by the sampling
mechanism at every clock interrupt to collect the status of the
interrupted program. In addition to CPU usage, each time a data buffer
is filled, a process wake-up and a file system WRITE are generated to
log the samples. The latter events are relatively infrequent (once
every 210 sample).

The average CPU time overhead is a function of the type of the sample
(direct or direct+indirect), the sampling rate, the fraction of time
an interrupt produces a sample and some other minor factors related to
the operating systems detail.

In typical applications, the sampling apparatus should not cause any
perturbation on the probability of finding the program counter in a
certain location. As seen by the program which runs under SAMPLER,
the processor is merely slowed down by a certain percentage. The only
time bias may be introduced in the measurement is when the external
interrupts are kept disabled for relatively long periods of time. If a
clock time out occurs while the interrupts are disabled, SAMPLER tends
to sample the code at the point where interrupts are re-enabled.
The effect is not considered critical in general system and
application programs which do not heavily deal with interrupts.

In Tables 1 and 2, the sampling overhead are presented for different
members of HP/3000 family of computers. Table 1 gives the actual CPU
time from the point the clock interrupt handler is entered until the
exit from this routine with a sample. An interrupt which does not
produce a sample has a very low overhead (about 1/lOth. of time to
take a sample). Table 2 gives the average CPU usage of the sampling
mechanism where at every clock interrupt a direct sample is taken
under no load condition (dispatcher is being sampled constantly).
In order to maintain uniform levels of accuracy and overhead accross
different CPU's, SAMPLER adjusts its default sampling rate based on
the speed of the underlying processor.

Type I HP3000 I HP3000 I HP3000 I HP3000 I

1Series331 III I 44 I 64 I

---------1--------1--------1--------1--------1
Direct I 2 msec I 1 I 0.6 I 0.3 I

Sample I I I I I

---------1--------1--------1--------1--------1
Dir+Indirl 3 I 1.5 I 0.9 I o.4 I

sample I I I I I

---------+--------+--------+--------+--------!
Table 1: Approximate time to take one sample

in milliseconds

332

Sampling I Series Series I Series Series
Interval I 33 III I 44 64
---------!-------- --------!-------- --------

5 msec I 25% 13% I 8% 4%
~--------!-------- --------!-------- --------

10 I 14% 7% I 5% 2.5%
---------!-------- --------!-------- --------

20 I 7% 4% I 2% 1%
---------+-------- --------!-------- --------

25 I 6% 3% I 1.8% 0.9
---------1-------- --------!-------- --------

50 I 2. 5% 1. 3% I o. 7% o. 3
---------!-------- --------!-------- --------

100 I 1% 0.5% I 0.3% 0.1
---------+--------+--------+--------+--------
Table 2: Average sampling overhead in percent

of real time (one direct sample per
clock interrupt and no load on system)

6. UseP IntePface and ExtePnal Dependencies

The user interface is designed with the objective of providing a
systematic and simple dialogue for solving typical user problems
(while being flexible enough to meet the requirements of advanceq
users). It consists of a hierarchy of command environments. At each
level a menu of v~lid commands guides the user to set up and perform
the needed measurement. Although internally the measurement, data
logging, on-line display and data analysis are independent modules,
externally the user is given an integrated and uniform view of all
these functions.

When a measurement completes and data analysis (data reduction) is
invoked, an overview of the measurement is presented first. Then a
menu of commands is displayed which guides the user to obtain the
performance profile of his program at several levels of detail. The
direct or direct/indirect performance profiles can be obtained for
program segments, procedures within a segment, and procedure (or
segment) relative address regions down to the level of every machine
instruction in the program. [Internally, a multi level bucket
(counter) structure is set up for each user request and the buckets
are searched and filled as samples are read from the log file.
Finally, the counters are plotted (using the character enhancement
capabilities of HP terminals) together with appropriate labels].

There are certain services that Segmenter and compilers can provide
for a performance measurement tool of this type. Since the source
level entities such as procequre names, block names, line numbers,
etc., loose their identity after the translation and transformation
phases, it would be impossible for the measurement tool to relate run
time data (i.e. absolute addresses) to the source level entities
without their aid. A performance profile which does not readily

333

relate to the source program is difficult to interpret and requires
tedious re_mapping calculations by the reader. APS/3000 uses the PMAP
information which is provided by the segmenter to produce profiles in
terms of procedure names and procedure relative addresses. The new
FPMAP option of PREP command appends the PMAP data to the prepared
program file. After a measurement completes, this data is extracted
and recorded in the log file. During the analysis, the PMAP data is
used to determine the procedure names and boundaries in each segment.

A different class of program profilers exists which can produce the
execution frequencies of the source statements. This is accomplished
by instrumenting the code. There are several techniques to instrument
a program: a) extra code is generated at compile time for each
statement or branch, b) a preprocessor adds source level counters
before each statement[[6] for Fortran] and then the resulting code is
compiled, c) the object code is modified, etc. The profiles which are
produced from such tools are useful for path flow analysis and
coverage testing. They have a few drawbacks, however, when used for
performance evaluation: i) the relative execution cost of each
statement cannot be determined (the cost of executing an assignment
statement N times, for instance, is much less than executing a complex
expression the same number of times), ii) the indirect cost and wait
time cannot be obtained, iii) they cannot be used on production
(already compiled) programs, ii) they are usually language dependent.

7. A Case Study

In this example we consider a Pascal program called INDEX. This
program generates a sorted list of all unique words (tokens) in a text
file. It first opens an Ascii input file, reads the text line by
line, uses a scanner routine to break down each line into words and
enters the words into a table using a hashing technique. Finally,
when the input text is exhausted, it compresses the table, sorts the
entries and prints the sorted list. We use this example to
demonstrate a number of APS/3000 profiles.

Figure 4 gives an overview of the code segment utilization of INDEX
program. The symbolic segment names appear on the left column.
Segment SEG' (the bottom line) is the only user segment of this
program and shows a 55.7% utilization. The remaining time is used by
the Pascal library and operating system (e.g. file system) segments
which were called from this program. For instance, 30.8% of time was
spent in the run time library PASCAL'LIBRARY3. When we trace the
library calls to our program we note frequent calls to the string
handling procedures of Pascal.

Next we study the procedures within segment SEG'. Figure 5 shows the
direct and indirect execution profile of the procedures in this
segment. We quickly observe that procedure BUBBLESORT accounts for
74% of the total segment time (since there is only one user segment
this is equivalent to 74% of the total program time). The indirect

334

part of each bar shows the fraction of time a library or operating
system segment was exercised from calls originating from that
procedure. Procedure SCAN is next in line with 14.33 utilization.

As the first step to optimize this program we replace the BubbleSort
Algorithm with the more efficient QuickSort Algorithm. The other
procedures remain unchanged. We use the same input data and obtain
the procedure profile of the modified INDEX program. Figure 6 gives
the direct and indirect execution profile after BubbleSort is replaced
by QuickSort. Our first observation is that the program now runs
three times faster with the given data set. This improvement factor
can be derived by comparing the total number of samples before and
after modifying the program (assuming identical sampling interval).
The bottleneck of the program is no longer the sorting step. The
procedure SCAN now has the highest relative utilization. The next
obvious optimization step is to try to make the latter procedure more
efficient.

Figure 7 is the source listing of procedure SCAN. The compiler
generates a table of code offsets at the end of the procedure listing.
Figure 8 is the procedure relative address profile of procedure SCAN.
At offset range 3207-3217 we note a peak of mostly indirect cost
components (I's). Using the code offset table, we can map this range
to statements 3 to 5 of the listing which includes a READ statement.
The other highly visible bar corresponds to offset range 3330-3340.
(Figure 8). The mapping table leads us to statement 16 of the
procedure wnich contains a call to the Pascal library procedure
STRMOVE. From this point on, the optimization effort can continue in
many directions and may involve re-writing parts of the code, and
reducing calls to the expensive library calls.

B. Conclusion

In this paper we presented the general structure, a number of features
and application of a performance evaluation tool. We defined the
direct and indirect execution cost components of a program. We
discussed the measurement mechanism, overhead and data analysis
functions. The services of Segmenter and compilers in assisting this
tool was described. We discussed a systematic approach to optimizing
an application program, and demonstrated the power of APS/3000 to
pinpoint the CPU execution cost of all parts of a software system.

REFERENCES:

1. HP3000 Computer Systems: "on-line Performance Tool/3000 Reference
Manual", Part No. 32238-90001

2. IBM, MF/1 System Activity Measurement Facility of MVS

3. Holtwick, G.M. "Designing a Commercial Performance Measurement
system", Proc. of ACM-SIGOPS Workshop on System Performance
Evaluation, Harvard University, April 1971

4. Bussel, B. and Koster, R.A. "Instrumenting computer systems and
Their Programs", AFIPS Conf. Proc. FJCC 1970, Vol. 17

5 . Huang, J. C . "Instrumenting Programs for symbolic-Trace Generation" ,
Computer Magazine, December 1980

6. Stucki, L. G. and Walker, H. D. "concepts and Prototypes of ARGUS",

335

(DYNA Dynamic Analyzer, page 67), Software Engineering
Environments, Edited by Horst Hunke, North Holland Publishing, 1980

7. Blake, R. P. "Exploring Stack Architecture", Computer Magazine,
May 1977

8. HP3000 Computer Systems: "system Reference Manual", Part No.
30000-90020

9. HP3000 Computer Systems: "MPE commands Reference Manual",
Part No. 30000-90009

10. HP3000 Computer Systems: "Application Program SAMPLER/3000
Reference Manual and User Guide", Part No. 32180-90001

ACKNOWLEDGEMENTS:

Cliff Jager has given his administrative and technical support to the
project. Danny Ku wrote the programmable clock interface.

336

(C) HEWLETT-PACKARD 32!60A.Ol .OO Application Program· SFIMPLER/3000

Meuurement Title: BUBBLESORT ALGORITHM IS USED
Begin: SUN, RUG 22, 1982, 10:25 RM

Anal~~~; Sug~~iJ~~G ~~SEl~~2, 10:25 RM
Program(s): !NDEX.~RFl!.PERF
Log· File: SFIMPLOG1 Version: A.01.00

~::;~~=~:gi ~e~!~n: §¥~e~r~~5r~~o~R~~~a~~U f~~ecorrrnandJ
~~~g;~n~fl~~~1:;; ~s~I LLISECONOS 

On I CS Samples: 21 
Machine: SERIES 64 
Memory Size: 1024 Kilo Words 
MPE Version: MPE: D.00.20 BASE: D.00.20 

TODAY: SUN, AUG 22, 1962, 3:27 PM 

: GLOSSARY 

Octal Numbers .. , . 

~s:~e~e~~~!~t5':: 
c~u Time ••.•.•••• 
Direct CPU Time •. 
System Call ..... . 
Indirect CPU Time: 

Wait Time .... ,,.. 

Program Time .... . 
Turnaround Time .•• 
OnICS Samples 

Fill base 8 numbers start with the symbol """ 
Segment numbers %301 through "377 
~ecPG"~t ~~T~:~i0~1. t ~p~u~~ 5~2~7 c~~o(~a~hat this range includes the programs' s SL segments too) 

~m~~~l ~~o~i~eu;:~ ~!~~~~P't~x:c~~~~e~u~:c1~0 ~ ~~s;e~r~~r::gment or pro ram's SL segment 
Amount or time CPU executes system aegments on behalf of the sys.tern calls originating from a 
a section of the user code 
Real (Clock) time between the interruption and resumption of a program section (Note that waits incurred 
during the el'.ecution of system segments are attributed to the last sampled user code section) 

~~!i 1 t ~~~ }~~~ei~:i~~~i~~i~9 e~~c~~!0 ~e ~~T~a~fo~ g~o~r~~o ram 
An operating system code was running on Interrupt Contro~ Stack under PIN of the program under study 

HEWLETT-PACKARD 32180R.Ol .OO Application Program SAMPLER/3000 (ANALYZER) TODAY: SUN, RUG 22, 1982, 3:28 PM REPORT ti 

· Measurement Tit le: BUBBLE SORT ALGORITHM IS USED 
. Sub-Title: CASE I; 

Meuurement Date: SUN, AUG 22, 1982, 10:25 AM 

;i Program Name(•): INDEX.RRF!l.PERF 

[ .. } !~~ ~; ~~~~;~~~-~ri-~ ~ :!~; _~f~ -~ :~ ~ ~~~1 ~~~-~~~:-~=: _~!~~~~1 ~-!.~~~ -~~T~:!~-= .. ! ~f :~~~~~-~~f :~ -~~~~:~ r L_ --- -- -1-- .. ------1 ·--CNT---Y.- -r.c uM-
~~ 1 FILESYS1'5! ! 1 .1 .1 
~!! FILESYS2'7! J 1 .1 .2 

r
;I! F!LESYS4'6R! ! 3 .3 .6 
i 1! FILESVS3'6!00 I 11 1.3 1.8 
I! UTILITY1'2! ! 1 .1 2.0 
·f~'1 OIRC'CHECK! ! 1 .1 2.1 
'I! KC'MISCSEG!DDDD ! 24 2.8 4.9 

!J ! MOR'RIN'ABOP! ! 1 .1 5.0 l'i! FILESYSIR!DDDDO ! 27 3.1 8.1 
. I HRRORES!DDDD ! 20 2.3 10.4 

1! POMANAGR! ! 3 .3 10.8 
! TERMHON!O ! 9 1.0 11.8 

~: i· H~a~~~g~i i 1 :1 n:~ 
!' ~~m: U~~~mggDDDDoDoDoDoDDDDDDDDoDDDoDooDDDDDDDDDDoDDDDoDoDDDDoDoD l 2~~ 3U !U 
I
' PASCAL'Ll6RRRY! ! 1 .I 44.3 

: ~- -- ------~~~ ~6 ~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~?~~~~~~~~~? l. -c~~~ -~i: ~"~sg: 
.

1

'. rinimum bar threohold Is .O" 

Figure 4 Segment utilization profile 
!: 

t'. 



337 

( C) HEWLETT- PACKARD 321SOA.01. 00 Application Program SAMPLER/3000 (ANALYZER) TODAY: SUN, AUG 22, 1982, 3:50 PM REPORT 16 

Measurement Title: 
Sub-Tit le: 

Measurement Date: 
Program Name: 

BUBBLESORT ALGORITHM IS USED 
CASE 1 
I~8E/~gFfhm2, 10:25 AM 

Segment: Y.301 SEG' - Direct & Indir. Time Over Procedures(841 Seg, Samples= 57.31% Dir. & 42.SSY. lndir. 
+- -------- -- - -o---------! --- - - ---- ! ---------! -- -------! -------- -1------- -- ! ------ -- -! ------ --- ! ---- -- - - - ! - ------ --! 
! OB'!DDII 
! PRINTINOEX!llllI 
! BUBBLESORT ! DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDDDDDDDDDDDDDDDDDDDI I I I I I I I I I I I I I I I I I I I 11III111 I I I I I I I I I I I 
! COMPRESS! 
! PLACEINTABLE! 
! ISITNElJ.JORO!DDD 
! COMPUTEKEY ! 0 
! SCAN!DDDDDDDIIIIIlllIIII 
+ - - - - - - -- - - - - -o- -- -- --- - ! - - - - - - -- - ! -- - - - - - - - ! - - - - - - - - - ! - - - - -- -- - ! --- -- -- - - ! - - - - - - -- - ! --- - - - - - - ! -- -- - - - - - ! - - - - - - - - - ! 
Minimum bar threshold is .O" 

Figure 5 Procedure profile of segment SEG' (BubbleSort case) 

: _tNt~ :-~~n;~~uH-
21 3.2 3.2 
34 4.0 7.3 

622 74.0 81.2 
3 .4 Sl.6 
3 .4 Sl.9 

21 2.5 84.4 
11 I. 3 SS. 7 

120 14.3 100. 
- -CNT- - -"--"CUM-

~~~~~~~--~~~~~~~~~· ~~~~~~~~ 

(C) HEWLETT-PACKARD 321SOA.Ol.OO Application Program SAMPLER/3000 (ANALYZER) TODAY: SUN, AUG 22, 1982, 3:51 PM REPORT i4

Measurement Title:
Sub-Title:

Measurement Date:
Program Name:

QUICKSORT i:ILGORITHM IS USED
CASE 2
i~8tx~~gF¥hm2, 10:23 AM

Segment: Y.301 SEG' - Direct & Indir. Time Over Procedures(287 Seg. Sample~= 49.82Y. Dir. & 50.17¥. Indir. r----------oe ;?00000000060000011Iii1111i1111 1 - -- - - - - - - i - - - - - - ---! - - - - - - - - - ! - - - - - - - - - 1 - - - - - - - - - ' - -- - - - - - - 1 - - --- -- - - 1

! PRINTINDEX !DD! I I Ill II 1111 llIIllII III I!III
! QUICKSORT ! DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDI I I I I II I I I I I I I I II I l I
! COMPRESS! DO
! PLACEINTABLE!II
! I SI TNEUJ.JORD ! DDDDDDDDODODDDDDI
! COMPUTE KEY! DDDDDDDDD
! SCAN! DDl I I 11IIIII111IlI11 I I I I I I I I I I I I I I 11 I I I I I II I I l I 11I111IIIII11
~i~ i;~;-t;; ;-th~;;;;~ id-i ~ i - - ~ o;.----! - - - - --- - - 1 - - -- - - - -- 1 - - - - -- - --! -- -- - - - -- 1 - - - - - - - - - 1 - - - - - -- - - 1 - -- -- - - -- i --- - - -- - - 1

Figure 6 Procedure profile of segment SEG'
by more efficient QuickSort)

(BubbleSort is replaced

~-t~~~:-~~~~6UM•
35 12.2 12.2
36 12.5 24.7
62 21.6 46.3

3 1.047.4
3 1.0 48.4

20 7.0 55.4
11 3.8 59.2

117 40.8 100.
• -CNT- - -"·-"CUM-

338

PAGE 4 HEWLETT-PACKARD HP32106A .00. 03 PASCAL/3000 (C) HEWLETT-PACKARD CO. 1981 SUN, AUG 22, 1982, 3:42 PM

86. 000
87. 000
88. coo
89. 000
90. 000
91 .coo
92. 000
93. 000
94. 000
95. 000
96. 000

97 .000
98. 000
99 '000

100 .000
101.000

102 .coo
103. 000
104.000
105. 000
106 .000
107.000
108. 000
109. 000
110 .coo
111.000
112 .coo
113 .000
114 .coo
115 .coo
116 .coo
117 .000
118.000
119.000
120. 000
121 .coo
122.000
123.000
124.000
125 .coo
126 .000
127.000
128.000
129. 000
130. 000

131 .000
132 .coo
133. coo
134.000
135.000
136.000
137 .coo
138 .000
139 .coo
140 .000
141.000
142. 000
143. QOO
144. 000
145 .coo
146 .000
147 .000
148. 000
149. 000
150.000
151.000
152 .000
153. 000
154.000
155.000
156. 000
157 .000
158 .coo
159 .coo
160 .000
161 .ooo
162 .000
163 .coo
164 .000
165 .000

FUNCTION SCAN(VAR F: L!NEFILE): TOKENREC;
VAR TOKEN: TOKENREC;

FUNCTION NOTALPHANUM: BOOLEAN;
BEGIN
NOTALPHANUM :•

END;

STMT P LOC
0 000013

(LINE[COLJ<'A'! AND ILINE[COLJ>'9') OR
(LINE[COLJ>'Z' AND LINE[COL]<'a') OR

1trnrngti~:a: ; OR

CODE OFFSETS

FUNCTION NOTNUM: BOOLEAN;
BEGIN
NOTNUM (LINE[COL]<'O') OR (L!NE[COL]>'9');
END;

CODE OFFSETS

STMT P LOC
0 000123

BEGIN
~E~EAr),VO rds}

COL : • COL + I;
IF LINE [COL] • EOS THEN

2 2 BEGIN
2 2 ~~ex!_ Li~e H not end of file}

I t-1--- - -iFLr~~J~t~tJ~-----JI d/
5 2 ELSE
5 3 BEGIN

'-t+------·fr~~1MixH~~l' ,.--ros-:-
s 3 END;
6 2 ENO; i i UNTIL (LINE [COL) <> I ,) ;

8 I
9 2
9 2

10 2
11 2
11 2
11 3
11 3
12 3
12 3
13 3

13 3
13 4
13 4
14 4

4... l~ !
16 4
17 4
lB 4
lB 4
19 3
19 3
19 4
19 4
20 4
21 4
21 4
22 4
23 4
24 4
24 4
25 3
25 3
25 3
26 3
27 3
28 3
29 3
28 3
28 2
29 l
29 l
30 1 ·
30 l
31 0

WITH TOKEN DO
BEGIN
IF LINE [l] • EOS {end of fl le} THEN
ELS~LASS := NOMORE {signal end of data}

~E8I~ the next token)

WORD' :;;< I I;

CASE LINE [COL] OF
'a'•• 1 Z I I

'A' .. 'Z': {Alphanum}
BEGIN

~ms'~. 0iiLPHANUM;
REPEAT

SIZE :• SIZE + l ·
mMo~;(t6 Cr~EiC6L,WORO,SIZE);

UNTIL NOTALPHANUM 6R (SIZE • MAXTOKENLEN);
END;

'0' BE~~~: {Number}

~ms'~.0 ~uM·
REPEAT I

SIZE:• SIZE;+ I•
mMo~; 1t6 C1~Ei~6L,WQRD,SIZE;);

UNTIL NOTNUM OR (SIZE • MAXTOKENLEN);
ENO;

OTH~~~~S~= f~elimeter}
CLASS :• 6ELIM;
mMOV~ ~ l c6CN~ 'I~L ,WORD, I);

ENDE7~ r)~ase>; Figure 7
ENO {W;i.th token}i

COL :• COL - I;
ENO 7cAN : ;::: TOKEN;

Source listing of
procedure SCAN

---------~------------------------'

339

(C) HEWLETT-PACKARD 32190A.01.00 Application Program SAMPLER/3000 (ANALYZER) TODAY: SUN, AUG 22, 1982, 3:52 PM REPORT #5

1e~~~n~~g~~~i ~~~~les = 49 ,g2~rg~~~~~ea~gANSO.l?Y. Indir;cto~?~~o~r!~dfI~~t CPU Utiliz. by Procedure-Relative Addresses.
(117 Procedure Samples= 17.42Y. Direct and 23.34% Indirect of Program Time~ ;.oooo i i-000021Y oo--- ----l - --- - - - - - 1 - - -- - - - - - 1 - - - - -- -- - 1 - - - - ---- - ! --- - - -- -- 1 -- - -- - - - - ! - -- -- - - - - ' - - - -- - - - - 1 --- -- - - - - i --cNr i- -"~ 9>:cu?9

Y.000022 000032 ! DDDDD 2 1. 7 2. 6
Y.000044 000054 ! DD 1 . 9 3. 4
Y.000077 000107 !DD ~ 1 , 9 4 .3
Y.000110 000120!DD 1 .9 5.1
Y.000132 000142!DD I .9 6.0
Y.000143 000153!DDDDD 2 1.7 7.7
Y.000154 000!64!DDDDDDDDDD 4 3.4 11.1

~gggm ggmrn888888DDD Read Operation (statements 3-5 of source) j U li:~
Y.000207 000217!III111 II II II I I II II I II I II II II II 11 II I IIII II II I IIII II III II II I I II I I III I II I I I I II I I 11 II I II I I II II Ill II II 111 39 33. 3 50 .4
Y.000220 000230!DDDDDDDDDD 4 3.4 53.8
Y.000231 000241 !DDDDDDDDDD 4 3.4 57 ,3
Y.000253 000263 ! DD 1 . 9 58 .1
"000264 000274 ! DD 1 . 9 59. O

~gggm gggm;gg String manipulation (statements 16-17) l :~ ~U
Y.000330 000340!DDDDDI11 IIII II II I I I If II IIII In I I I II I II I I IIII IIII 11 Illll II II II I II 25 21.4 82 .1

~gggm gggm;gg~~mDDD -.. ~ U ~U
Y.000416 000426!DD I .9 88.8
Y.000427 000437 ! DD 1 , 9 89. 7
Y.000451 000461!DDDDDIIIIIII 5 4.3 94.0
%000462 000472!DDDDD 2 1.7 95.7
Y.000473 000503!DD I .9 96.6
Y.000504 000514!00 1 .9 97 .4
Y.000515 000525 ! DDDDDDD 3 2. 6 100.
+ -__ - - - -- -- --0- - - - --- -- ! -- - - - - - - - l - --- -- - - - ! - - --- ---- ! - - -- - -- -- ! - - --- - - - - ! - - -- -- -- - ! - - - -- -- -- ! - -- - - - - - - ! - ---- - - - - ! - -CNT---r.- -Y.CUM-
Minimum bar threshold is .0%

Figure 8 Procedure relative address profile of procedure SCAN

340

FUTURE DIRECTIONS OF THE DATA DICTIONARY
Alan Pare', Hewlett-Packard
19420 Homestead Road
Cupertino, CA 95014

The data dictionary functions as a centralized controller
over information about data within its domain. Since its
emergence, it has provided the data processing community
a vehicle for delivering increased productivity and
localizing the standardization, documentation, and definition
of its resources. Hewlett-Packard recently introduced the
Rapid/3000 data dictionary which services its companion
products. This paper will differentiate between active,
passive, and in-line dictionaries and serve as an
introduction to what the presentation will focus on.

341

The terminology used to address the subject matter of data
dictionaries/directories has been done so under a variety of
terms ranging from data dictionary, information manager, data
directory, to resource manager. The concept of a data directory
refers to the function of documenting information about where
data is located and how it can be accessed. The term data
dictionary deals with the definition of what data exists in the
system and describing its corresponding attributes. For the
purpose of this paper and the presentation, the data dictionary
and data directory capability together will be referred to as
simply the data dictionary system or DDS.

The benefits to be derived from the DDS are becoming more evident
as its utilization becomes more widespread. Just as the data
base technology flourished in the mid 1960's and 70's, the 1980's
appear to be the decade for the DDS to approach maturity as an
organizations primary solution to managing its data resources.

The data dictionary is a data base which contains the set of all
attributes that describe entities such as elements, groups,
files, jobs, processes, and transactions within its domain. For
example, the set of attributes for a data element would include
its length, type, value range, edit mask, and security level.
The DDS also holds the definition of relationships between these
entities such as file to file, file to element, group to element.
Figure 1 illustrates the entity relationships for the Rapid/3000
data dictionary. The DDS therefore serves as a centralized
repository for information about descriptions and relationships
of system data resources and facilitates the better understanding
of applications and data usage. The intrinsic value of this data
about data resources, commonly referred to as metadata, is that
it can provide an organization with the ability to manage its
data resources more effectively by planning, assigning,
maintaining, utilizing, and integrating it in a more controlled
fashion. The utility of the DDS is therefore directly
proportional to the number of system components interfacing into
or out of it. The degree to which this takes place can be seen
by looking at the three roles the DDS can take on.

In its passive role, the DDS is not cognizant of other systems
and processes which operate within its domain, i.e. it does not
interact with any of the language compilers, the DBMS, or the
operating system. The active DDS role on the other hand is very
much involved with other system activities at compilation time.
It assures an organization that the data and system definitions
employed by applications and the DBMS are consistent with those
contained in the data dictionary. This is accomplished by
providing software interfaces to the data dictionary for the
language compilers, the DBMS schema processor, and the other
relevant subsystems.

In its third role, the in-line DDS, the data dictionary system is
is integrated with the execution time processes of the
application program in calling the data management services of
the DBMS and file system. The in-line DDS draws upon its data
dictionary content to generate system calls, validate data,

342

enforce security rules, edit data, and various other tasks
including run-time compiler data definition assignments for the
application program. Its total regulation of application
execution guarantees the integrity of data and application
invariance to system hardware or software changes. The
performance degradation is a critical issue in the implementation
of this DDS role. Figures 2-4 depict the various configurations
of a data dictionary system. The processor/monitor illustrated
in these figures serves as the system environment for accepting
and reporting about data resources within its domain, executing
the data dictionary maintenance utilities, and interfacing the
DDS with the operating system. Additionally, for the in-line DDS
it carries out the execution of the application program. The DDS
intrinsics pictured in figures 2-4 function as the unique access
path to the data dictionary thereby establishing system
independence from its data base structure.

If one thinks of a DDS in an application context rather than a
system one, the Rapid/3000 data dictionary is a hybrid between
the active and in-line data dictionary. Figure 5 illustrates the
data dictionary environment within the Rapid/3000 framework. In
reality, this data dictionary is a passive one since it is not
integrated with the system language compilers, DBMS schema
processor, or other subsystems outside its realm.

The topic of the presentation will focus on the attributes,
concepts, and objectives of a hybrid type system data dictionary
and the benefits it would provide.

c CATEGORY --- GROUP 0 ..-------()
ELEMENT

/
CPROCEDURE I ~FILEO

CLASS _________.,

LOCATION

Figure 1. Ropid/3000 Dato Dictionary Entity Relationships

w
.j:>.

w

APPLICATION
PROGRAM

LANGUAGE
COMPILER

DBMS
SCHEMA

PROCESSOR

DATA ABOUT H DDS
SYSTEM DATA PROCESSOR/ 1 _. 9"I
RESOURCES MONITOR

DATA
MANAGEMENT

ACCESS

DDS
SERVICES

Figure 2. Passive DDS Environment

c.v .,,. .,,.

APPLICATION
PROGRAM

LANGUAGE
COMPILER

DBMS
SCHEMA

PROCESSOR

DATA ABOUT H DDS
SYSTEM DATA . PROCESSOR/ 1.- .. 1
RESOURCES MONITOR

DATA
MANAGEMENT

ACCESS

DDS
INTRINSICS

Figure 3. Active DDS Environment

cu

""" U'I

LANGUAGE
COMPILER 14 ~

DATA ABOUT_
SYSTEM DATA
RESOURCES

APPLICATION
SOFTWARE

ATA MANAGEMEN
ACCESS

DBMS
SCHEMA

PROCESSOR

DDS
INTRINSICS

Figure 4. In-Line DDS Environment

DATA
DICTIONARY

DB

"' """' CJ)

DATA
AND SYSTEM
DEFINITIONS

TRANSACT/300
COMPILER 14 I

REPORT/3000
COMPILER

APPLICATION
PROGRAM

PROCESSOR

14 ~ INFORM/
3000

Figure 5. Rapid/3000 Data Dictionary Environment
(,)
~
.......

348

349

A VERY SCHOLARLY Dl8CUSS!ON OF THE EFt!CT OF SYNONYMS ON P!RFORMANcr
by ~ogene Volokh,
V~SOFT Cbnsultant•

S06 N. PlyMouth Blvd.
Lo• Angeles, CA 9~~04 USA

<213) 41~4·~'71'523
Pre•ented at the Fall 198! HPIUG Conference at Cbpenhagen

ABSTRACT

This paper wlll disco$• the effect of $ynonyMs bn iMAGE/~000
perforMance, in particular the av•rage noMber bf I/0$ nec•••drv to
perforM a D~CfT Mode ? <also known n• a ha•hed, calcul6ted 1 br keyed
read).

350

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

THE PROBLEM

As 1• well known, IMAGE/3000 Master datasets usa an access Method
called HASHING to lMpleMant keyed I/O against theM. The essence of
this Method is that when a DBPUT ls perforMad against a Master
dataset, the key ls translated through a special HASHING FUNCTION
Cwhlch Js explained Jn Robella Consulting'• SMUG II
Micro-proceedings> to a record nuMber within the dataset. Then the
entry to be added is inserted into the dataset at the resulting
record nuMber. Now, when a DBGET Mode 7 is perforMed with the saMa
key, the key 1• translated through the saMe hashl~g functJon to the
saMe record nuMber1 then, the entry we are looking for ls just the
record with that nuMber. Thus, we should ideally be abla to add or
retrieve any entry in just one I/O Cas opposed to considerably Mora
I/Os needed for other access Methods, such as KSAM>.

However, a probleM arises: what if two keys Map to the saMe record
nuMber Cthls condition ls known as a COLLISION>? We can't very well
put both entries into the saMe record nuMber, so we will have to put
one of these entries <known as the SECONDARY> soMewhere else, and put
a pointer to it into the other entry <known as the PRIMARY>. Now, if
we want to retrieve the secondary, we will have to perforM two I/Os:
one to retrieve the priMary, and than when we see that the priMary is
not the entry we want, a second to retrieve the secondary. A slMilar
situation arises when a key Maps to a record nuMber that already has
a priMary and a secondary attached to it; then the entry is added to
the so-called SYNONYM CHAIN for that record nuMber (the prlMary and
all its secondaries>, and we now need three I/Os to get to lt.
SiMilar things occur when a key Maps to a record nuMbar that has two
synonyMs, three synonyMs, etc.

In short, access to prlMarles requires only one I/O; however, access
to secondaries requires two or More I/Os (unless the blocking factor
ls greater than one).

It Js also well known that the More full a dataset la, the More
secondaries there are in that dataset; and, the More secondaries
there are, the More I/Os are needed Con the average) to retrieve an
entry. However, how Many More I/Os are needed, nobody knows.

This brings up an interesting question: what ls the relationship of
the average nuMber of I/Os needed to retrieve an entrv to how full
the dataset ls (THE FILL FACTOR>, Measured froM O=eMpty, to j=full.

351

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

THE SOLUTION

In thJs paper, I will attaMpt to solv• the above question
theoretlcully, 1.e. derive a general forMula that, given the flll
factor, will return the average nuMher of I/Os. In order to do this,
however, soMe slMpllfylng assuMptions Must be Made:

First of all, I will assuMa that our hashing function is "good", i.e.
regardless of the data fed to it, it will return each record nuMber
with roughly equal frequency. Thus, for instance, a hashJng function
that returns record nuMber 17 half of the tiMe, or returns odd record
nuMbars More often than even record nuMbers Js not "good".
Fortunately, IMAGE'• hashing function is a relatively good one.
<Note: If the dataset'• key ls nuMaric, e.g. I2, a not-so-good
hashina function 1• used by IMAGE; thus, these results May not be
correct for datasets with nuMeric keys).

Secondly, I wJll assuMa that the Master dataset in question has
blocking factor 1. This will perMit Me to iqnore the possibility of
a synonyM being in the saMe block as the prJMary, thus requiring no
additional I/Os when it is retrieved. I Must confess that this May
ba a quita fallacious assuMption Jn that synonyMs very often are ln
the saMe blocks as their pr1Mar1es; however, although this fact May
be decrease the average nuMbar of I/Os for a given fill factor, it
should not lnfluanca the overall nature of the function wa ara
seeking.

Now, we can get down to business. Lat us define
N nuMber of entries in the dataset,
c m capacity of the dataset,
F = fill factor = N/C,
An X-ARY •an entry that is the Xth in a synonyM chain, and thus

takes X I/Os to retrieve. Thus, a 1-ARY ls a prlMary,
and 2-ARYs, 3-ARYs, 4-ARYs, etc. are all secondaries,

E ex, I) = the expected nuMber Of X-arles in a dataset after I
entries have been added.

Let us thus ask the followlng question:

How Many priMaries can we expect in the dataset after I entries
have been added to lt, i.e. what is EC1,I>?

Well, we can expect as Many prlMaries as are expected ofter I-1
entries have been added (i.e. ECl,I-1>> plus either 0 or i More
priMarles (depending on whether the Ith entry becoMes a pr1Mary or
not>, i.e.

E<i,I) • ECl,I-1)+ [1]
i*Cprobabllity that the Ith entry becoMes a prlMary>.

352

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

What ls the probability that the Ith entry bacoMa• a prlMary? An
entry becoMes a prlMary if lt hashes to any slot ln tha dataset that
is NOT OCCUPIED BY ANOTHER PRIMARY, i.e. that is eMpty or is occupled
by a secondary! The probability that the Ith entry becoMes a priMary
ls thu!:; equal tll

(the nuMber of slots that are not occupied by another priMary)

(the total nuMber of slots that it could possibly hash to)

The total nuMber of slots that it could possibly hash to is, of
course, C. The nuMber of slots that are not occupied by another
priMary is C - <the nuMbar of slots that are occupied by a priMary),
When the Ith entry ls being added, the expected nuMber of slots that
are occupied by a prlMary ls by definition E<i,I-i>.

Thus, the probability that the Ith entry will becoMa a prlMary is

<C-E<i,I-i))/C • 1-E<1,I-il/C

Therefore, substituting £2] into Cil,

ECl,I> ~ E<l,J-i)+j.-ECi,l-1)/C -
- E<i,I-1>*<1-1/C>+t

Moreover, we know that E<i,0) •expected nuMbar of priMaries when the
dataset has 0 entries, i.e. when th1 dataset is BMpty = 0, Thus, we
have a recursive forMula for E<i,I>. FroM it we can, fllr instance,
deterMlna that E<i,1) • E<i,O)*(i-t/C)+i=O*<i··i/C)+1=1, that ECi,2> •
E<l,i)*(i-i/C)+i•i*<i-i/C)+i=2-i/C, ate.

But, wa want a non-recursive, straightforward forMulo. We can obtain
it by further substituting [3] into itself:

EC1,I> - E(i,I-i>*Ci-1/C)+i •
= <ECl,I-2>*<1-1/C)+i>*Ci-i/C)+i ~
• E<i,I-2>*<i-l/C)"2+C1-i/C)+i

The above ls what is known in MatheMatical circles as
progression, i.e. a SUM of terMs each one of which is
less than the previous one. It ls also known that the
above progression is

(j_-·1./C) "I-1

14 l

'l gaoMetr.i.c:
(j···i/C) t.i.M1?.!:;

SUM Of th<.~

----------- - ----------- - -C*((j-1/C)"I-i> ~ C*Ci-Cj-1/Cl"I> [SJ
C j, :l./C)-·1 -·1/C

Thus, ECl,I) m C*Ci-(l-1/C)"I), If what we are looking for is the
percentage of the dataset'• entries that are prlMaries, we should
consider EC1,IJ/I • CCII>*<l-Ci-1/CJ"I>.

353

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

l6l

Also, we know that when C is sufficiently large <say, in excess of
100), Cl-1/C)AC ls close to (and in fact gets closer as C increases)
the constant 1/e • 1/2.71828 ... ~ 0.367879.,,.

Thus, for large c, we have (substituting [61 into [SJ)

EC1,l)/I = CCII>*Cl-Ci-1/C)AJ) = CC/Il*Ci-(1/e)A(I/C))
= CC/1)*(1-eA(-I/C)) = (1-eA(-I/C))/(I/C).

[7]

Bo, the expected fraction of priMaries in our dataset, which contains
N entries, ls E<i,Nl/N - <1-eA(-N/C))/(N/C). But, N/C = F!
Therefore,

-F
E <1,N> 1-e
------- - [8]

N F

Ugh.

At last, we have a solid result -- we have d1terMined the expected
nuMber of prlMarles in a dataset given its fill factor. An
interesting corollary to the above ls that when the dataset ls full,
i.e. N=C or F•1, ECi,N)/N = <1-e•C-1))/1 • .632121 Thus, avan
when a dataset is full, 63% of all entries in it should be prJMarlas.

However, the battle is far froM over yet. What we are trying to do
is to deterMlne the average nuMber of I/Os needed to retrieve a given
entry. Before doing the actual derivations, let Ml axplaln the
Method th~t we are qolng to use:

The average nuMbar of I/Os needed to ratrl•v• a given entry is equal
to tha total nuMber of I/Os needed to retrieve all entries in the
dataset divided by the total nuMber of entries.

The total nuMber of I/Os needed to retrieve all entries in the
dataset is the total nuMbar of I/Os needed to retrieve all priMarles
+ the total nuMber of I/Os needed to retrieve all 2-arles +
But, the totql nuMber of I/Os needed to retrieve all X-arles ~ the
expected nuMber of X-arles * the nuMber of J/Os needed to retrieve an
X-ary. Clearly, to retrieve an X-ary we would need X l/DsJ thus, the
total nuMber of 1/0s needed to retriue all X-arles ~ X*E<X,N>.

354

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

Therefore, th• total nuMher of I/Os needed to retrieve all entrJes Jn
the dataset ls 1*EC1,N)+2*EC2,N>+3•E<3,N>+.... And, tha average
nuMbar of I/Os needed to retrieve a given entry = the nuMhar of I/Os
needed to retrieve all entries I nuMber of entries =

l*ECl,N>+2*E<2,N)+3*EC3,N)+, ..
[9]

N

We have already datarMined ECl,N>. Now, if we can only daterMine
EC2,N>, EC3,NJ, ... , wa will be alMost done. So, this ls what we
will attaMpt to do below.

How are wa going to datarMlna ECX,I> for X>l?

Well, reasoning s1Milar to the one we used for E<i,IJ indicates that

ECX,U '"' E<X,I .. ··U+ [j_()]

<probability that the Ith entry becoMes an X-aryl

Now, what ls the probability that the Ith entry becoMes an X-ary7 To
answer this, we Must ask: under what conditions would an entry becoMe
an X-arv? The answer to this is: if and onlu lf it hashes to a slot
that 1~ currently occupied by a prlMary which has a synonyM chain of
length exactly X-1, How Many entries llka this are th@re? Wall, the
dlatlnguishing faatura of this kind of entry is that it has in its
synonyM chain an <X-i)-ary but no X-arles. Thus, the nuMbar of such
priMary entries= nuMber of <X-ll-ariea nuMber of X-arles -
E<X-l,I-t> E<X,I-1). Thus, the probability that the Ith entry
becoMes an X-ary ls

E<X-1,I-i>-E<X,I-i)

c

and thu~;

E<X,I) ~ ECX,I-i)+CECX-1>,I-il-ECX,I-1))/C
= E<X,I-1J*Ci-i/Cl+ECX-l,I-1l/C

To obtain a non-recursive forMula, we expand the above into

I

\ E<X-·j.,.J'-·:i.)
E<X,I> ··· ---------- * (i-l/C)A(l-J)

I c
J::::j_

li.3]

355

A DISCUSSION DF THE EFFECT OF SYNONYMS UN PERFORMANCE

In particular, let us try to deterMine EC2 1 I) • the expected nuMber
of 2-aries after I entries have been added.

E<2,Il • SUM(J~1:I
- SUM(J•1:I
= BUM(J•1:I
m SUM(J•l:l

BUM(Jml:I
- SUM(J~O:l-1

SUM(J•i:I

E<l,J-1)/C * (i-1/C)A(I-J)) -
E<l.J)/C * (l-1/C)A(J-J)) =
C*<i-e•c-J/Cll/C * Cl-l/C)A(J-J>>
Cl-1/C)•(J-J)) -
eA(-J/C) * (i-l/C)•(I-J)) ~

I (i-i/C)AJ) -
e•(-J/G) * (i-1/C)•(I-J))

Now 1 we can observe that suMCJ=O:I-1 I <1-1/C)AJ) ls
Moreover, Cl-1/C)•(J-J) CC1-i/C)•C)A((l-J)/C)
Thus,

EC2,I) a ECl,I) - SUM(J•l:I : eA(-J/C) * eA(-(l-J)/C))
- EC1,Il - suMCJ•l:I : eA(-I/C)) =

Eli,Il - I*e•C-I/C).

So, EC2,N) = ECl,Nl-N*eA(-N/C)J furtherMore,

E C2,N> E Cl,N) -N/C E Cl,N> -F
------- - ------- - e - e

N N N

[141

just E<1,I>;
a•C-CI-J>IC>.

[15]

[161

Now 1 we con proceed to the general question: what is ECX,I> Cor 1 what
is ECX,Il/Il?

I claiM that for X>=2,

E CX,l) E CX-l,I> -I/C
------- • --------- - ----------- * e [171

I I CX-1)!

where X! ~ X factorial = 1*2*3*·. ·*X·

I will prove this claiM via a devJce known as MatheMatical inductloni
1.e. I will deMonstrate that the claiM is valid for X•2, and if it is
valid for X=A, then it is also valid for X=A+i. Clearly, this will
deMonstrate that the clalM is valid for x~2, and therefore for
X=2+1=3, and therefore also for X=3+l=4, etc.

First of all, I Must prove that the claiM is valid for X=2. In case
of X~2, the clalM says that

E <2,I> E Cl,I> -I/C E Ci,Il -I/C
------- ~ ------- - ------- * e - ------- - e

I I O! I

But 1 this was proven above Jn the derivation of EC2,I>.
know that our clalM ls valid for x~2.

[181

Thus, we

356

A DISCUBSlON Q~ tHE EFFECT OF SYNONYMS ON PERFORMANCE

Now let Os a••OMI that the ClllM is valid for X~A, l,e,

E <X,A> E CX-1,AJ CA/C)A(X~2> -A/C ------- = ---~----- - ----------- * e £191
A A X!

w~ MU•t •how that lt ls alno valid far X=A+l,

ECA+l,I> = SUM<J=l:I
= SUM<J=i:I

ECA,J-l)/C * (l-l/C)A(I~J)) = l20l

= SUM<J=i:I
8UMCJ=l1I

= ECA,l> -

CECA-l,J-l)~J*(J/C)A(A-2)/(A-l)!*eA(-J/C>>*
Cl-l/C)A(l-J)/C) *
E<A-i,J-i>*<l-1/C)ACI-J>/C) -
(J)C)A(A-1)/(A-l>!*•A(-J/C)*
Cl-1/C)A(J-J)/C) =

BUMCJ~l:I CJ/C)A(A-l)/(A-lJ!*1A(-J/C>*eAC-Cl-JJ/C)) ~

= ECA,I> -
SUMCJ=l:I I CJ/C)A(A-1)/(A-IJ!*•AC-I/C)) = = ECA 1 1) - eAC-1/CJ/CA-i>!*BUMCJ=l:I : JACA-1>>/CACA-1> =

We know that BUMCJ=i:I I JA<A-1>> = IAA/A +•Maller powerm ~f I, and
l• thus a~p~oxiMatel~ e~ual to IAA/AJ so,

ECA+i,l) ~ ECA,I> - eA(-1/C)/CA-1)!*
SUMCJ=i:I I JA(A-1))/CA(A~l) =

Thus,

E CA+l,I>

= ECA,1> - eA(-1/C)/CA-l>!*CIAA/A)/CA(A-ll =
= ECA,I) - ~A(-l/C)/Al*I*CI/C)A(A-1)

E CA,I> ([/C)A(A-1) -J./C

··------- = ------- - ----------- * •
I J. X!

[~il

[22]

Thll 1• lnde•d l~ the result predicted by our clalM for X•A+i. Thus,
we know that lf the tlGlM .ls valld for X=A, lt ls valld for X=A+1,

thus, we ~r~ Ju•tifled in saying that our clalM 1• true.
haue obtaln~d a general <albeit r•curslue> forMula for

Finally, we
E <X,J.),

N~w CdMes th• lindl phase ot our
av•rGge nuMber of 1/0~ needed
reMainder bf thl• dlscu•sion, let
tactor ~ = Nie.

proof the derivation
to retrieve a record.

um for convenience use

of the
For the

The fJll

fhe averaqe nuMber of IID• nteded to retrleu• a record is eQual to
th• tbtal nu~ber of I/Os needed to retrleve all records divided by
the nuMber of rtcords.

The total nuMber of I/Os needed to retrleve o]l record• l• equal to
<the exp•cted nuMber ~f 1-ARY•>*CI/Ds needed to retrieve a 1-ARY>+
Cthe expected nuMbar of 2-ARY•>*Cl/Os needed to retrieve o 2-ARY>+ ...

357

A DISCUSSION OF THE EFFECT Of SYNONYMS ON PfRFORMANCE

But, we know that the exp~cted nuMber of X-ARYm l• siMply E<X,N>1 the
nuMber of I/Os needed to retrieve a X-~RY ls slMply X1 and, the
nuMber of records ~· N.

Thus, the average nuMber of.I/Os needed to retrieve a record ls

i*E<1,N>+2*E<~,N)+,.. E <i,N> E <2,N)
--------------------- = j* _______ + 2*------- + . '.

N N N

We have found that

E <X,N> E <X-1,N> F"' <X·~2>
------- = --------- - ~------ * e f.:).14 l

N N <X-1>!

Thus,

E' <X,N> E < 1 , N) F"O ... , F"i. -· F' F"<X...,2> ~·F ____ _
= ---............. _ - ---*e - ---*e - -------*e t2Sl

N N 1! 2! <X-1> !

Now,

E<i,N)/N = (1-e"<-F>)IF = f.26l

So,

= e"<-F>*<e"F-1)/F = = e"<-F>*<i+(F"i)/ll+CF"2)/2!+<F"3)/J!+ ... -l)/F =
= 11" <-F>*< <F"i>/:t. !+(F"2)/c~ ! +<F"J)/;31 +,, .)/F =
~ e"<-F>*<<F"0)/i!+<F"1>12!+(F"i>l3!+ .. ,)

E<X ,N>IN .. E'.(1,N)/N - C27J
<<F"0>/1!+<F"l)/2!+., ,+(F"<X-2>>1CX-i>!>*e"<-F> =

= < <F"0)/1 !+<F'"1.>/2!+, .. >*e"<-F> -
CCF"U>lll+(F"i)/2!+,, .+(F"<X-2>)1<X-:t.>!>*e"<-F> =

= <F"<X-1>/Xl· .. F'"Xl<X+U H· .. , >*e."C-F') ;:is = suM<Y=X-1:1nfLnlty I F"Y/CY+i)!)*e"(-F)

We are trylnq to calculate

E <1,N> E <2,N> E <3,N) 1*------- + '* _______ + 3*------- + . • • ~ 1:28l
N N N

~ l*(FAO/l!+F"l/2!+F"2/3!+,, ,)*e"(-F) +
2* (fft1/2!+F"2/3!+, ,,)*eA(-FJ +
3* (f"2/3!+,, ,)*eA(-f) +

358

A DISCUSSION OF THE EFFECT OF SYNONYMS ON PERFORMANCE

How Muny tiMes will FA<Y-1)/Y! be included ln the aboue SUM for any
glven Y? Well, it will be included once in the first row, with a
factor of lJ once in the second row, wJth a factor of 2J ond so on
until the Yth row, in wh1ch it wlll occur with a ~actor of Y. In the
<Y+l>st row, it will no longer occur, because the <Y+l)st row
contains only terMs starting with CFAY)/(Y+i>! Thus, in total,
FA<Y-1>/Y! will occur in the resulting &UM with a factor of
<1+2+3+ ... +Y) = CY+i>*Y/2. Thus, the average nuMber of I/Os will be

= $UM(Y=1:inf1nlty
= SUM(Y=l:inflnlty
= suMCY=l:infinity

FACY-1>/Y!*<Y+l>*Y/2) * eA(-F) =
FA<Y-1)/(Y-l>!*<Y+i>/2> * eA<-F> =
FA(Y-1)/(Y-i>!*CY-l)/2+
FA(Y-1)/(Y-1>!*212> * eA<-F> =

= suMCY=O:lnflnity FAY/Y!*Y/2) * eAC-F> +
suMCY=O:lnflnlty FAY/Y!> * eAC-F> =

= SUMCY=l:lnflnity fAY/CY-l)!)/2 * eA(-F) +
SUM(Y=O:infinlty fAY/Y!> * e•(-F) =

= CF/2+1> * suM(Y=O:inflnlty I FAY/Y!> * eA<-F>

Here we can agaln observe that suM<Y~O:lnfJnlty
Thus, the average nuMber of I/Os ls

= CF/2+1) * suM<Y=O:inflnity I FAY/Y!> * eAC-FJ =
= CF/2+i) * eAF * eAC-F> = = i+F/2

Eureka! So,

[291

[301

THE AVERAGE NUMBER OF I/OB REQUIRED FOR A DBGET MODE 7 AGAINST AN
IMAGE/3000 MASTER DATASET WITH Bl.OCKlNG FACTOR 1 AND FILL FACTOR F
IS l+F/2,

At last.

359

A DISCUSSION OF THF fFFFCT OF SYNONYMS ON PERFORMANCE

THE APPLICATIONS

Now that oll of you haua been daz1led by the above display of
ForMulae, an iMportant Incredibly IncoMprahenslble Math&Matlcal

question coMes up:

WHY BOTHER?

As an aMateur MotheMaticlan (i.e. soMaone who ls crazy enough to
actually LIKE the above MUMbo-juMbo), I c~n answer the above with
"Why not?" or "Because Jt'• there" or "But aren't you just
overwhalMed by the incradible beauty of the result?".

However,
business
the above

For one,
dataset
datasets.
and KSAM
only 1 to

as a coMputer prograMMer who works on what
coMputer, I feel that I ought to show soMe
Mess. Well, hara they coMe.

Js essentially o
applications of

note that the forMula generated depends only on how full the
as a percentage, not on the actual nuMber of entries in the

Thus, if we coMpare the efficiency of IMAGE Mode 7 DRGETs
FREADBYKEYs, we find that IMAGE should theoretically require
1.5 I/Os, whereas KSAM requires on the order of log NI/Os,

Another point that this proves is that increasing the capacity of a
dataset will not necassarJly greatly iMprova the efficlancy of Moster
dataset access Cas Js coMMonly belleved), For lnstanca, if the
capacity of a dataset that ls 80Z full ls doubled, the average nuMber
of I/Os required for a DBGET Mode 7 against this dataset will decraase
froM i.4 to 1.2, which May not be significant enough to offset the
two-fold increasa in disc spaca usaga.

On the other hand, if you sae that the fraction of secondaries is
Much larger than i-Ci-eA(-F))/F and/or the average nuMber of I/Os ls
Much greater than t+F/2, you May have coMe across a case in which
IMAGE's hashlng algorlthM behaves badly. In this casa, changing the
capacity very slightly May cut tha nuMbar of secondarJas and the
average nuMber of I/Os draMatlcally. In one case which-I ran across,
changing the capacity by 1 cut the average nuMber of l/Os in half!
The actual nuMber of secondaries and the actual average nuMber of
I/Os May ba obtained froM various database utilities such as
DBLOADNG, DBSTAT2, or Roballe Consultlng's HowMessy.

360

A DISCUSSION OF THE EFFECT OF SYNONYMS DN PERFORMANCE

CONCLUSION

Thus, the two Major results that were derlued in this paper are:

If a dataset has fill factor <nuMber of entrles/cupaclty> F,

the expected froctlon of prlMaries ln that dataset ls:

-F
i-e

P<F>~----- £Bl
F

and the expected auerage nuMber of l/Os needed t6 retrleue an entry
Clf the dataset has blocking factor i> ls:

A<F>=i+F/2 t30l

361

A DISCUSSION OF THE EFFECT 01 SYNONYMS ON PERFORMANCE

EXPERIMENTAL EVIDENCE

The following is a table of the results that were expected and the
results that were obtained for several test datasets:

-······C········ ······-N·-·- ·-··-·F
650 ~·:) ::.~ ~':) 80 .El%
33i j 93 SB. :1/..
3:3:1 i 9 :~ S8. :~%

1.5000 :l 0 t:i8~' 70 .S%
:~:H UB ::1~:;. 6%
250 ;~()6 82.4%

--------Actual-------­
%Pr1Mar Lea Avg nuM IDs

6'7. ;:>% i. 4:\ j,

75.i% 1.337
7S.6%
71.. 0%
80. ~:>%
66. ()~{.

1.. :5B7
j • ;.:'. () :3
1.4S6

-------Expected------­
%PriMarles Avg nuM IOs

68.6% j .404

?i.B/.
04.1.%
6B .. 1./.

i, ~~rH
j,. (.'91.
i. :352
1. ' :i. '?B
3 .. 41;:>.

Of the following, soMe datasets (the one Marked +) have priMary
percentages that are significantly less than expected and average
nuMhers of I/Os that are significantly More than expected. The
datasets Marked are exact copies of those datasets with slightly
changed capacities -- their priMary percentages and average nuMbers
of I/Os are quite close to those expected:

--C-- --N-- --F--
+ 11:.'8
+ 1::~7

·- t::.'6
+ 320
·- :H9
+ 400
-· ;59<1

l./:'.:5 C/6,l~~

1.23 'tb. f.1%
t;.:~;3 'i7. 6%
;:~84 8B. 'n
;:>.84 B9, 0%
1. 58 39 . t:)%
1.58 39.6%

--------Actual-------­
%Pr1Mar iea Avg nuM IOs

7.:'5% i.:5.008
52.0% i.667
70.7% l..407
37.3% 2.810
65.5% l.444
69.6% 1..456
f.l6.1% i .. 1~:;a

-------Expected------­
%Pr 1Mar les Avg nuM IDs

64.3% i.4BO
64.0% 1.484
6~.9% l.48B
66. 3% i .. 444
66 I;:!%
Bi.~ . 6/.
n::>..6%

i. 44S
1.198
i , t '?B

These datasets ara good axaMples of instances in wh1ch slightly
altering the dataset capacity Cavan decraasino it!) can significantly
lMprove perforMance.

362

SMUG2.QMANUAL.GREEN TUE, DEC 8, 1931,

BACKGROUND

INTRODUCTION TO STEP BY STEP

By Michel Kohon, 20 Oct 81

8, route des Moines
95420 MAUDETOUR-EN-VEXIN

FRANCE

1: S 1 PH

Since we introduced the Step by Step idea, we have found some
discrepancies between what it means and what people think it
means. The objectives of this document are:

- to explain Step by Step for end users,
- to specify the Step by Step method for DP professionals,

to give Step by Step's main advantages and its possible
adverse consequences.

TOWARD STEP BY STEP

Description of Data Processing:

To understand Step by Step, it is essential to analyze tl1e DP
function. Like all tither human beings, DP personnel have to
deal with two concepts:

- the reality,
- the users' dreams (also called requirements).

The reality is a difficult thing to change, to transform or
simply to understand. The users' requirements are difficult to
change, to transform or simply to underst~ d. From the
reality, the system analyst or programmer will try to develop a
system which fulfills the users' dreams. Users can see the
impossibility of their trying to accomplish this themselves.

Packaging:

The traditional DP approach to such a problem has been:

- to obtain the users' requirements,
- to formalize the requirements, and
- to design a system which would deal with all aspects of the

requirements, and define programs covering all requirements;
- to program and implement all these programs together or, at

leas,t, to try.

This is called "packaging". Let's examine why it is likely to
fail.

363

2 SMUG2.QMANUAL.GREEN Step By Step

Getting the requirements:

- users do not know "specifically" what they want;
- users do not think enough about exceptions or specific

circumstances;
- skilled users sometimes do not exist.

One way to reduce these problems is to educate the users and to
improve the skills of the DP staff in questioning users. But
whatever is done to improve the situation, the facts obtained
from the users are only a partial statement of their
requirements.

The second way, extensively used in the "packaging" method, is
to have endless interviews and studies. This investigative
period is sometimes so long that the company changes its
product lines in the meantime, creating a high degree of
confusion in the requirements. The dreams tend to be a mirage.

Formalizing the requirements:

- From a written document, users can only visualize the general
lines of a system, not the details or the consequences.

- Specifications tend to be too detailed for parts of the
system, while lacking specificity for other parts.

- System design is likely to generate a huge amount of
paperwork consisting of the translation of users'
requirements into program specifications, data base structure
and paths of information in and out of the computer.

- Program design will include all possibilities requested by
users, from the most useful to the least, from the most
complicated to the least.

- Detailed analysis is likely to discover that new functions
are necessary, which were not seen before, meaning new
programs, an increase in program complexity or design
changes; in any case, the first delay in the project.

Programming:

- From the system analyst's specifications, the programmer will
create a program, probably to meet the technical objectives
rather than the users' objectives.

- For interactive programs, he will have to think like a user,
which is impossible because DP people are computer
professionals.

The programmer will find some errors in the analysis, which
wilL delay the whole project because an essential program
will not work correctly on time.

- Like the designer or the system analyst, the programmer would

3 SMUGl.QMA~UAL.GREEN Step By Step

lik' to have a perfe~t ~¥St~m, so h• will add beautiful b4t
useless features, This is c'lled the "galloping eleg,npe"
syndrome.

4 SMUG2.QMANUAL.GREEN

STEP BY STEP

Step By Step

As we said earlier, the users' requirements are likely to
change. Why is this so?

365

The users' requirements are determined by the type of business
they are involved with. The business can be production, sales,
marketing, service, etc. Business can vary depending on
season, crop, day or other factors. The consequences for data
processing from a change in business are new and different
information needs. One way of taking these changes into
account is. to make an exhaustive list of the possibilities and
program all of them.

We also said that it is difficult for a user to visualize the
end result of a program, and even more difficult when it is an
interactive one. Why is this so?

A program is not static. The actions it performs vary
dynamically, depending on the information that is entered. It
is a moving body and is unlikely to be adequately described
without using jargon. The same applies to mathematics or
astronomy, or films. How can we visualize a film from a
script? This is why the sooner you show the program to the
user, the better it will be for his understanding.

The following two concepts are the foundation of Step 6Y Step:

- to discover the users• actual requirements and to program all
of them;

• to give tne programs to the users as soon as possible.

Nothing really new, but keep these two concepts carefully in
mind. You will be surprised by the methods of achieving them.

Getting the requirements:

What are we really interested in? To know what a user wants.
If you ask a user "What drug do you want?", he will ans~er,
"Vitamin C". In fact, the question is too specific. What we
should ask the Oser is: "What are your problems?" He will
perhaps tell you: "I can't recover my payments quickly enough.
I have to pay too much in financing costs" .. If.he knows why,
you can start the second part of the study; otherwise, you will
have to go into a problem-solving routine. Problem-solving is
also a service; we advise you to use .some of the KEPNER &
TREGOE methodology to help you. In any case, you will have to
find out why the payments are not cashed quickly enough,

We seem to be far from data processing. Not so. W~ are only
processing non-structured information (the users' explanation)
without a computer. But you know that the computer is not the
most vital elemeqt for data processing.

Anyway, going back to the example (a real situation 1 by the
way), we still find that ~the invoices are not processed

366

5 SMUG2.QMANUAL.GREEN Step By Step

quickly enough". It appears that our user needs an invoicing
system. Mind you, if you had asked, "What do you want?", he
would probably have answered, "I want an order entry system",
because this was his overall, long-term objective, and because
it will solve his cash problem.

The confusion arises partly from mixing long-term objectives
with short-term problems. If you could provide, overnight, an
order entry system, including the invoicing package, there
would be little or no problem. You would have solved the
user's immediate problem. But, of course, you cannot implement
it overnight, not even in a fortnight. You will conduct a long
study and come back with phase one of the project ready, i.e.,
the order input. You will not solve the problem which has
created the need of your expensive intervention (the cash is
still not arriving faster).

Both you and the user will be very frustrated.

Breaking the Problem into Steps:

Obtaining the user requirements is a two-fold process:

- to identify the problems which have created the need of DP
assistance;

- to set long-term objectives as well as short-term ones.

Identifying the long-term and short-term objectives will permit
you, with the users, to draw a line of actions within an
overall strategy. You will move from point A to point Z
through points B, C, D, ... ,with each point being an objective.
But how to order these points?

To provide a solution to the top problem means that you will
give the maximum result in a minimum of time, and you will
repeat this with each successive point. Order the objectives
from the maximum payoff to the minimum. These will be your
steps. Now you can make your design and organize the system in
a structured way. Do not go into details. Remain flexible.
The document you are preparing is the final report. It
consists of:

- long-term objectiv~s,
- objectives for the first and all following st~ps,
- sub-systems or programs related to each step, and
- priorities.

When this document is approved, you must write the programs -
those of the first step, of course!

Programming a Step

A few remarks beforehand:

- The final aim is the program, not ~he analysis. So, until
the program or its results are in the hands of the user,

6 SMUG2.QMANUAL.GREEN Step By Step

nothing is completed.

There is a general law governing the whole world or any part
of it: the offer-demand law. It applies to DP, as it applies
to apples. We will see how.

A step is usually a move of two to three programs, but it could
be more. To write the programs, you will have programmers, but
never enough. Why is this so? Because the demand (user's
request) automatically adjusts itself to the offer (programmer
resources). We won't prove this here, but you can believe it.

The strange thing is that the more programmers you get, the
more complicated the resulting system will be. This is the
very well-known law stating that "adding people to a project
will delay it in direct proportion to the number of added men".
The explanation is easy to state: by increasing the offer, you
increase the demand.

The only logical way to escape this dilemma is to limit the
offer. How can we do that?

One way is to limit resolutely the number of programmers
working on a project.

This approach is already frequently used, but for different
reasons: to shorten communications and avoid misunderstandings,
and to add flexibility and improve responsibilities. This is a
method we still recommend using.

A second way is to limit explicitly the amount of time
allocated to a program or system.

Let's imagine for a moment that we've said we have two weeks to
program our step with the existing manpower. No more than two
weeks. How can we best solve the problem in the amount of time
given? The na.tural way will be to put on paper what the MUSTS
and the WANTS are. If both can be produced in two weeks, we
will program both, but that is unlikely. Therefore, how do we
determine which steps will be MUSTS and which will be WANTS?

It really depends on their nature. If they are, or some of
them are, necessary before we can program the next step, they
have to be part of the NEXT STEP MUSTS. If they are not
necessary before step X, insert them into the MUSTS of step X.
The most important objective is to find the absolute MUSTS
which can be produced with the CURRENT staff in a limited
period of two weeks.

Well! That's it! There is nothing more to Step By Step.
However, we will come back to two important questions.

How to Establish a Time Limit:

In our examples, we took two weeks, and this was not arbitrary.
We think that two weeks is a manageable period. Less is
difficult and dangerous, as stepping too quickly will permit

367

368

7 SMUG2.QMANUAL.GREEN Step By Step

neither the proper education of users nor the corrections to
the programs. Programs must still be of outstanding quality,
and, of course, you need some tools and structured design to
step correctly.

More than two weeks is too much. Generally, users do not wait
for you. They have other activities, very often repeated on a
monthly basis. Therefore, to give them the program(s), you
will need another week, which means that the program(s) will go
into operation only after three weeks.

Experience also shows that two weeks is a "manageable" piece of
time, possible and realistic.

How to Establish the Discipline:

This is the most difficult part of Step by Step, since it deals
with human willingness - both the users' and the DP team's
willingness. Here are a few tips which might help, but success
depends more on the company and personalities than on anything
else.

It is good to introduce Step by Step to the users. The more of
a selling job you do before starting a project, the easier it
will be. If the users do not want it, don't undertake the
project at all, as users without commitment will never help
you.

Use the MUSTS and WANTS method with the users. Look at all the
problems - theirs and yours. Some MUSTS are yours. Explain
why. Again, try to solve their problems. It is amazing how
often you will find that a program can be easily replaced by a
simple manual procedure.

Challenge the users. Everything is a MUST for them at the
beginning. Ask always and again - WHY? Quickly, some of these

·MUSTS will turn out to be WANTS.

Never go back on the two weeks allowed. It MUST be done in two
weeks. Try to imagine that in two weeks' time, it will be the
End of the World. Users will laugh, but they will, as well,
appreciate your concern.

8 SMUG2.QMANUAL.GREEN Step By Step

STEP BY STEP PROGRAMMING

Step by Step can also be applied to implementing a particular
program. The methodology known as "step-wise refinement" is
not very far from Step by Step.

Like step-wise refinement, Step by Step needs a structured
programming approach. Programmers can use almost any language
to program in a structured way, with or without GO TO
statements. It will be very dangerous to program Step by Step
in an unstructured way, as the code, which will constantly
change, will look lke a war theatre.

369

With Step by Step, unlike step-wise refinement, the analyst has
to bargain with the programmer to obtain a workable piece of
code in two or three days, then a second piece of code in a
similar amount of time, and so on till the end of the step.
This is a kind of sub-stepping, where the analyst has to play
the user. It requires teamwork and discipline to keep the
programmer from testing the exception module when the general
one is not yet working.

370

9 SMUG2.QMANUAL.GREEN Step By Step

One of the major bonuses for the users is that they take
control of the product as soon as possible. This means that
users can see the program reacting to their input. They can
visualize how it will work day after day. In general, users
ask for small modifications. It is a MUST, at this time, to
avoid asking for and, therefore, to avoid making modifications
which are lengthy, or which should be included in a further
step.

A request may look like a MUST; the analyst and the users
should determine whether it is. Both should remember that a
MUST means that the program will not work when put into
production. In other words, a modification needed a few days
after the scheduled implementation is not a MUST.

It is the analyst's responsibility to plan this MUST for a
further step. The users should remember that when they start
using the program, they may discover that the request was
irrelevant or inadequate. Irrelevant, because they might find
that what they have proposed will make the program very
cumbersome to use.

One of the major pitfalls with Step by Step is the possibility
of stepping forward without clear final objectives. There is
nothing more expensive than programming a step, then being
obliged to re-program it during a further step. This will
happen if the original objectives are absent or forgotten, and
the result will look like a drunken man's walk.

A second problem can come from "stepping" too quickly. If two
weeks is the agreed pace, stand firm on that. Rushing will
decrease the quality of the programs, in terms of reliability
and documentation; it will also kill DP team communication, as
few people will be aware of a step's content.

A third problem
of Step by Step
of priorities.
is aware of it,

is a switch in priorities. It is in the nature
that steps may be swapped, due to reshuffling
This is not dangerous, so long as the DP team
and organized for it.

10 SMUG2.QMANUAL.GREEN

CONCLUSION

Step By Step

371

We like to make ~~alogies between data processing and other
technologies or sciences. Analogies are very important, as you
often create a new technique in your field which is very old in
another field. Knowing this ancient technique may save you a
lot of time.

When the first rockets were launched toward the planets, they
were fully programmed. Everything was automatic and followed
an unchangeable program. It all seemed logical, as all the
parameters needed to find the target were known: the distance
between planets, their relative speed and weight, the rocket's
acceleration, weight, But the project failed. The
objectives were not reached.

The next rocket generation included a new feature. Technicians
were able to change the rocket's direction slightly during the
flight to counteract the non-programmed consequences of the
environment's reactions. This time the objectives were
reached.

Implementing an on-line system in a commercial environment is
like sending a rocket toward a moving object. You need to
adjust and control the direction. This is Step by Step.

October 20, 1981
Michel Kohon

372

Transaction Processing Using VPLUS by Michael A. Casteel Vice
President Computing Capabilities Corporation Mountain View,
California, USA

Introduction

In the.several years since the introduction of VPLUS, then called
VIEW/3000, not much has been published regarding its application or
techniques for using it. At the same time, thousands of HP3000 sites
have begun to use it, either for their own purposes or as the 'front
end' to an application package such as MM/3000. With such a population
of users, much more deserves to be said about VPLUS than has been.

This paper is about transaction processing using VPLUS. In general,
this means programmatic use of VPLUS, as opposed to data entry
applications using ENTRY and REFORMAT. The following sections describe
the use of the VPLUS intrinsics in on-line transaction proces$1ng;
where they are used and what they do. There is also a discussion of
some principles for transaction processing using VPLUS. New and
prospective users can't be blamed for puzzling over the 30-plus
intrinsics, 8 FORMSPEC menus and umpteen feature covered in the VPLUS
manual. What could they all be for? When do you use them? It is hoped
that this paper will provide a few answers.

Transaction Processing Using VPLUS

WHat is Transaction Processing?

Most HP3000 users probably have a good feeling for Transaction
Processing, but not necessarily in the context of VPLUS, Let's begin
with some very basic definitions of 'Transaction' in order to develop
a common ground for this presentation. My favorite definition of
Transaction is from the user's point of view,

Transaction: A meaningful unit of work for a computer user, e.g. 'Add
a New Customer' or 'Open a Work Order'.

This definition is most valuable as a reminder that transactions are
not just progralllllling exercises, The point is not how elegant, fast or
powerful a transaction is; the point is that it get the job done.

It's very easy to get distracted by technicalities, such as the
relative merits of Data Base Management systems, or Block mode versus
Character mode operation. As we get deeper into the_subject of
Transaction Prooessingusing VPLUS, we may even find ourselves
distracted. When one is designing or developing an on-lirie system,
however, it is essential to keep in mind that the real goal of the
system is to help people get their jobs done. Tbis is implicit in the
currently popular phrase 'User Friendly' although I prefer to use more
descriptive words such as Functionality, Flexibility, Consistency and
Predictability. We'll get into more detail later; in fact, the user's
point of view ought to be considered in every significant aspect of
system design and development.

As .we consider the topic of Transaction Processing using VPLUS a
slightly more rigorous definition could help the disctission. A useful
definition for Transaction when using VPLUS is,

Transaction: The processing of a sequence of VPLUS forms in order to
accomplish a task, e.g. 'Add a New Customer ' or 'Open a
Work Order'.

Many transactions will involve only one form. Some (hopefully few)
might need dozens. 'Add a New Customer', for example, would probably
only need one form in which to enter information about a new customer,
such as name, address and telephone number. The processing of this
form includes editing or validating the information (did the user
remember to enter the customer's name?), building a record and writing
it to the data base.

A typical system will include quite a few such simple, one-form
transactions used to maintain a number of important files,
particularly the Table or Master files common to most applications.

Files of Parts, Customers, Employees, Vendors, Codes, etc, usually
require a facility to add, display, update and possibly delete
individual records. These 'file maintenance' activities can generally
be accomplished with simple transaction~ involving one VPLUS form.
Usually, a single form will accommodate all the maintenance activities
for each file. In this context, we may have transactions such as:

373

374

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

Add Part Change Part Display Part
Add Customer
Customer

Change Customer Display Customer
Delete Part

Delete

etc.

Other transactions may involve processing a number of different forms,
usually associated with a number of related records in different
files. An Order Entry transaction, for example, may begin with the
processing of an Order Header form for entry of the usual order
information: order number, order date, customer number, etc. Once the
Order Header has been completed, the transaction advances to an Order
Line form for entry of Quantity, Price, Part Number, and so on.
Typically the Order Line form will be processed one or more times, as
an order may consist of any number of lines. Such a transaction
consists of the processing of an indefinite number of forms, i.e.

Order Header Form Order Line
Form

Form Order Line Form Order Line

Although this transaction enjoys a certain element of simplicity, in
that it only involves two different forms, there are highly complex
transactions requiring dozens of forms. Such transactions are fairly
rare, which is just as well, since few users could figure out how to
operate such a complex transaction.

Processing

The processing of each form in a VPLUS transaction naturally divides
between Form Processing and Data Processing. Form Processing includes
all the functions implemented by VPLUS: Forms management, terminal
interaction, data transmission and field processing. It can be
accomplished simply by calling the appropriate sequence of VPLUS
intrinsics.

Data Processing is a function of the application program itself. This
includes performing advanced, application-dependent edits, building or
changing data base records, and otherwise implementing the logic of
the application. Transaction processing using VPLUS is accomplished by
a suitable combination of Form and Data Processing functions.

Form Processing

There is implicit in VPLUS a natural sequence of Form Processing
operations which apply to each form used in a transaction. The steps,
and the intrinsics which implement them, are:

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

1) Obtain the form. Call VGETNEXTFORM. 2) Initialize the form. Call
VINITFORM. 3) Display the form. Call VSHOWFORM. 4) Accept input. Call
VREADFIELDS. 5) Edit the input. Call VFIELDEDITS. 6) Finish
processing. Call VFINISHFORM.

This relatively simple procedure accomplishes a lot of the work of
transaction processing. The balance, the Data Processing functions,
fit very neatly into the same procedure.

Data Processing

Transaction Processing combines Data Processing functions with the
Form Processing procedure outlined above. An expanded outline showing
the integration of Data Processing with Form Processing is as follows:

1) Obtain the form. This is accomplished with the VGETNEXTFORM
intrinsic. At the start of a transaction, it is usually desirable
to clear the terminal screen and display a particular form. The
steps to accomplish this are:

a) Move the form name to NFNAME in the Communications Area b) Clear
(move zero to) the FREEZAPP and REPEATAPP options in the
Communications Area, and to the status word (CSTATUS) c) Call
VGETNEXTFORM d) Check the status word. If not zero, there's
trouble.

In the course of the transaction, when advancing from one form to the
next, it is normally not necessary for the application program to
control NFNAME or the options in the Communications Area. These can
easily be controlled by VPLUS Form Processing using'the CHANGE verb.
Thus, the usual steps are:

a) Clear the status word b) Call VGETNEXTFORM c) Check the status
word.

2) Once the next form has been obtained, it must be initialized.
Failure to do so will cause the data from the previous form to be
displayed in the new one. Initialization is accomplished by:

a) Call VINITFORM b) Check the status word.

At this point there are often application-specific Data Processing
functions to perform. There may be special initialization required
such as moving the application program name and version number to the
form. Or, there may be some transaction processing to do. For an
inquiry or update transaction a record must be retrieved and moved
into the form. Only then is the next step appropriate:

375

376

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

3) Display the form. This is accomplished by a simple call to
VSHOWFORM. With the exception of VOPENTERM and VCLOSETERM, this is
the only intrinsic which actually writes to your terminal screen.

For certain transactions this may be all the processing required for
the form; consider a form in the middle of an appending sequence in a
transaction which displays a series of records. Once this form has
been displayed, we might just as well go on to the next (returning to
step 1 above), repeating until the screen is full.

Moat transactions require further processing of the form. Often, the
next step is to await input from the terminal user. The user may need
to fill in the form with data for a new record; type changes to a
record displayed in the form; or press a Special Function Key (f1-f8)
to invoke some other operation. In such a case, the next step is:

4) Accept input fran the user's terminal, This is done by a call to
VREADFIELDS. Note: the preceding call to VSHOWFORM is needed in
order to unlock the keyboard. If the user presses f1-f8, the
corresponding number (1-8) will be returned in the Communications
Area word LASTKEY. ENTER returns the value zero, transfers the
contents of the form from the terminal to the VPLUS buffer in the
program's data stack, and clears all the error flags for this form.
Be sure to check the status word for errors.

If the user presses a Special Function key, the next step depends on
the meaning assigned to the key. Often, the program will stop (or at
least interrupt) the processing of the form; for example, when a user
presses the key which means CANCEL or QUIT. Sometimes, the program
will read the screen anyway (Autoread) and proceed with processing,
Assuming the user made some entry which calls for continued
processing, the next step is:

5) Edit the input. Data in the form may be edited quite extensively
by calling the VFIELDEDITS intrinsic. If errors occur (NUMERRS not
zero), a suitable error message can be obtrained by calling VERRMSG
to retrieve the message text and VPUTWINDOW to move the message to
the VPLUS window line.

Additional edits might be implemented in the program, such as file
look-ups verifying numbers and codes, or complex application-specific
edits. Errors resulting fran these edits should be reported to the
user, with an appropriate message for each, using the VSETERROR
intrinsic. VPLUS will display the message associated with the first
field in the form which is in error, whether the error was found by
the program or in VPLUS processing.

Successful completion of the edits is usually a pererequisite to
continuing form processing. When errors occur, the program should
normally return to step 3, redisplaying the form with the results of
edit processing, This can actually change some of the data on the

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

screen, if the field contents were changed by the program or
VFIELDEDITS. Also, VPLUS will highlight each field in error with the
Error Enhancement specified on the FORMSPEC Globals Menu, position the
cursor at the start of the first such field, and display the error
message for that field (if you followed the above procedure). The user
will then have the chance to correct the input and try again, or, if
that's not the problem, to quit processing by pressing the assigned
Special Function key.

6) Finish form processing. Call VFINISHFORM. Just as with the field
edit processing in step 5, errors may occur. If so, you may wish
to treat these as extended edit errors, using the procedure from
step 5 and returning to step 3.

Often, the bulk of the Data Processing functions take place at this
point, before going on to the next form. In an Add New Customer
transaction, for example, now is the time to collect the edited input
from VPLUS and build a new customer record.

This concludes the normal Form Processing of a single form. The next
form in the transaction will repeat steps 1-6, and so on for each
form, To summarize the combination of Form and Data Processing
operations involved in processing one VPLUS form, I will restate the
procedure. Steps marked with an asterisk (*) are Data Processing,

(*) Next form logic. 1) Obtain the form. Call VGETNEXTFORM. 2)
Initialize the form. Call VINITFORM. (*) Initialization logic. 3)
Display the form, Call VSHOWFORM. 4) Accept input. Call VREADFIELDS.
(*) Special Function key logic. 5) Edit the input. Call VFIELDEDITS.
(*) Field Edit logic. 6) Finish processing. Call VFINISHFORM. (*)
Final processing logic,

Transaction Processing

You can see that the sequence of Form and Data Processing operations
just described is appropriate for all types of transactions: Add,
Delete, Display, etc. We are now considerably closer to understanding
transaction processing using VPLUS. To process a transaction, we
process the sequence of forms used in that transaction, one after the
other. To process each form, simply follow steps 1-6 in the previous
section. If you look closely at these steps, you'll notice that VPLUS
intrinsic calls are doing most of the work. Except for the Data
Processing requirements, you could write one program to follow those
steps and use it for al~ the transactions you care to implement. For
any transaction, use FORMSPEC to create the sequence of forms and
define the field processing logic. To execute the transaction, run
the 'universal program' and start it with the first form in the

377

378

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

transaction.

Such an idea can only work in reality if we can also solve the Data
Processing problem. What sorts of Data Processing functions are
there, and how do they tie in with this "universal VPLUS processing
cycle"?

Initialization Processing

After VPLUS form initialization processing is complete, the
application program has a chance to move data to the form before
displaying it. In an Add transaction, the program might preset some
fields to default values not known to VPLUS. These values would
automatically be placed in the next record unless changed by the user.
In a transaction which involves retrieving records, the program might
retrieve a record and move it to the form before display. See the
section on Retrieval Processing.

Field Edit Processing

In most cases, VPLUS can perform most of the needed edit processing,
but there are often a few edits which the program must perform. Quite
often, one or more of the fields entered need to be looked up in a
file or table, either to check that the value exists or to see that it
doesn't. Occasionally, there are more complex edits which require
programming beyond the capabilities of VPLUS, usually involving file
access.

Add Processing

This is perhaps the simplest type of transaction we could consider.
Once a form has been processed through Finish, we have a form full of
data edited and processed to our specifications. What remains is to
make a new record (or records) from the data in the form and write it
to the data base or file. Typically, the form is just a picture of
the record, with each data item in the record appearing as a field in
the form.

Retrieval Processing

This is more interesting. Before we can retrieve a record, we must
determine how to locate it. The usual way to locate a specific record
(or set of records) is to match a data item value; for example,
Customer Number = 24. So, we begin by processing a form in which the
user enters such values to be used for record selection. The result is
a set of values edited and processed by VPLUS. Using these values,
locate a matching record, move it into the form and display it. This
can be done during initialization of the next form in sequence, moving
the data to the form before display (step 3). This uses two forms.
Alternately, we might choose to vary the standard procedure slightly,
move the data into the same form and return to step 3, which will
re-display the form with data from the record.

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

Both techniques are useful depending on the situation. Displaying the
record in the same form is simpler, avoids the trouble of getting
another form, and eliminates the cost of displaying another form on
the terminal. On the other hand, the edits to be applied when
processing the record (say, in an Update transaction) may be quite
different from the edits appropriate for entering selection values.
Using two forms allows two different sets of edits to be applied in
VFIELDEDITS. Even in this case, much of the cost of using two forms
can be eliminated by making the two forms members of the same forms
family. This eliminates the cost of displaying a new screen, and the
program only needs to deal with a single field layout.

Update Processing

The first step in updating a record is to retrieve it. The preceding
section described the general procedure for retrieval. Once the record
is displayed, the user has the opportunity to make changes and press
ENTER, or to request some other function such as CANCEL or retrieve
the next record. On reaching the end of the processing cycle for the
form, we again have a set of values edited and processed, with the
user's changes included. Move them back into the record and update it.

Delete Processing

As in update, begin by retrieving the record. When the user requests
the function, delete the record from the data base.

Transaction Request/Menu Processing

A Menu is just a list of transactions provided for the convenience of
the user, who will usually select one of the transactions to perform
next. When a Menu form has been completely processed, the edited and
processed input identifies the desired transaction. The next step is
to proceed to processing the first form in that transaction. Note:
Field Edit processing can be provided to verify the user's authority
to perform the requested transaction, e.g. password checking.

A Programming Approach

The 'universal VPLUS processing cycle' makes a good basis for an
on-line programming standard. It is possible to program all the Form
Processing logic in a single routine to be used in almost all on-line
transactions. This one routine will perform all the form processing,
including user interaction. The points where Data Processing
operations are appropriate are quite well defined, so the standard
routine could PERFORM the (transaction-specific) logic at each such
point.

Such an approach offers a number of advantages:

379

380

Transactlort Pr-ooessinS: Using VPLUS

What is Tr-ansaotion Prooessing? Cciontinued)

1) Standardization

2) Eoonollly

3) Mc>dularity

4) Maintainability

The Ultimate Program.

• Basic pro1r11111 structure is silllilar even when
different prograilllners work. Alil important, the
ueer- interactions will tend to be consistent as
a result of using the same algorithlll in each
trahsaot:i.on.

- The basici Form Processing logic only needs to
be debugged onoe. This should be one less
problem tor all the pr-ogralilmers. In many ciases,
the Hquence of forms for a transaction can be

-processed and reviewed before any Data
Processing logic is coded,

- The suggeiilted partitioning of functions
provides a ready definition of modules for
progralilming. With the Form Processing already
operatingj many Data Processing modules can be
de'V'eloped and tested independentlt, e.g. Field
Edit processing,

- Modifications to Form Pr'ooessing logic will be
greatly aided. For example, support tor new
VPLUS features can be added to the standard
Form Processing logic and readily spread among
all transactions. This is in addition to the
extr'a ease or maintehanoe resUlting from all
programs having the sa111e basic structure.

It seem19 that the universal program is almost within our grasp. In
order to prooesa a transaotiori", this program would need to know:

1) The nallle of the first fol:'lll,

2) The TYPE of Data Processing operations to perform: Add, Retrieve,
Update, Delete,'Menu.

3) The f~e or data set with which each form is assooiated,

4) The data.item in the record with which each field is associated.,

5) File lookUp edits needed for each field.

That takes care or most tr'ansaotions. Most,- but not all. !n the
••rteral. oase, there must still be a way to insert transaction-spedifio
Data Processing logic, even if only for a few of the transaotion11.

'!'his ap~r0aoh worklll. It ila the basis for IN'S.IGM'l' II, the first
VPt..US-bued Trar)&aCltion f>r.oq~uor for the Hf>3000. Transaction
Processing Using Vf>LOS-

Transaction Processing Using VPLUS

What is Transaction Processing? (continued)

Guidelines for Better Systems

Regardless of the application, there are a few principles which can
help produce better transaction processing systems using VPLUS. For
the most part, these principles deal with various aspects of system
design rather than implementation. Experience has shown time and
again that there is no substitute for good, carefully thought out
systems design. A well-designed system is likely to survive even a
poor implementation, while all the programming tricks in the book may
not be enough to rescue a flawed design.

I wish to present here four principles which I try to apply when
developing transaction processing systems using VPLUS:

1) Remember the poor user

2) Limit the number of screens in a transaction

3) Take advantage of block mode

4) Take advantage of terminal features.

Remember the Poor User

There are a few key words to keep in mind which bear directly on the
user's perception of the system, affecting his degree of success using
the system and thereby the success of the system itself. Briefly,
these are:

Functionality - It is important that the system provide the necessary
functions to do the job. Make sure you understand
the problem before trying to provide a solution, or
your system is likely to the problem.

Consistency - Develop and adhere to standards for all your VPLUS
systems. It is essential to standardize the operation
of all the transactions in an application. The
"universal VPLUS processing cycle" presented earlier
is a step in this direction. Take the next step and
standardize each of your Transaction Processing
cycles (Add, Display, etc.). It is desirable to
standardize forms design as well. If you display the
current transaction code, date, etc. on the screen,
always put them in the same place so the user will
know where to find them. In general, use common sense
to avoid unnecessary differences between
transactions. The user has enough problems as it is.

Flexibility - I particularly recommend that you try to avoid over
editing, and give the user the greatest possible
flexibility consistent with correct system

381

382

Transaction Processing Using VPLUS

Guidelines for Better Systems (continued)

operation. The editing features of VPLUS are a great
help in maintaining the integrity of data in the data
base, but it's easy to go too far. Think about what
editing is important and what is inessential. The
world is guaranteed to change faster than than the
system. Today's extra edit may prevent next week's
work from being processed.

Predictability - This keyword is important in making the user
comfortable with the system. Too many surprises will
unsettle anyone. A consistent systems design with a
good set of standards should provide a good level of
predictability.

Almost every user will come to value two particular functions which I
believe should be included in every VPLUS system standard. I call
them EXIT and REFRESH, and assign each function Function Key.

EXIT is the user's escape hatch, and serves to CANCEL whatever is
going on. While in the midst of a transaction, the user should be able
to terminate or abort the transaction by pressing EXIT. There may be
some transactions (or parts of transactions) where you feel that EXIT
should not be allowed. That's OK, but before disabling this function,
please take another, careful look at the design of that transaction.

By REFRESH I mean a function which simply performs the VPLUS $REFRESH
operation. Any number of accidents or errors can cause damage to the
forms displayed on the terminal. If there's no predictable way to
straighten things out, the user will be at a loss to continue working.
With a REFRESH key, a problem such as a power failure can usually be
rectified by resetting the terminal and pressing REFRESH.

Limit the Number of Screens in a Transaction

Everyone who has used VPLUS at anything less than 9600 baud is aware
of the overhead involved in displaying a new form on the terminal.
Strictly from a performance point of view, it makes sense to repaint
the screen as infrequently as possible. A transaction which uses one
form to input a record key and another to display the record will
suffer if the screen continually needs to be redrawn. Either a high
data rate or a forms cache in the terminal can improve the performance
of this transaction, but even so, the alternation of displays is
likely to prove tiresome to the user. If it can be done without
cluttering the display, combining the two into a single form has an
appeal from both the performance and esthetic aspects. In this
particular example, this can even be done with a relatively minor
impact on the program by replacing the two forms with two members of a
forms family sharing the combined screen layout.

Take Advantage of Block Mode

Transaction Processing Using VPLUS

Guidelines for Better Systems (continued)

Nothing puzzles me so much as the occasional VPLUS application which
requires the user to struggle through the transaction, typing in one
field at a time and pressing ENTER. Using a series of forms containing
one field each, the system designer has used an excellent block mode
tool to create what is effectively a character mode system. While this
is surely a rare practice, I feel that it is worth pointing out that
the true VPLUS block mode approach has its own advantages, including
the ability to closely simulate character mode processing.

To me, the biggest advantage of block mode is that it gives the user
instant, local access to all the fields in the form. If the computer
flags an error in the 20th field of the form, the user can correct it
or the first field (if that's where the problem really lies) with
equal ease.

This does not require that the user fill in all the fields in the form
before pressing ENTER to request edit processing. The user can press
ENTER at any time and VPLUS (and the application program) will edit
whatever has been typed. When the screen is updated with the results,
all remaining fields which require input will be highlighted, and the
cursor will be positioned to the first one. Thus, a user who prefers
the field by field editing characteristic of character mode processing
can have it, while those who prefer can fill in the whole form without
waiting for a response from the computer. The user is in control.

To realize the full potential of VPLUS block mode, your program edits
(such as file look-ups) should be field-oriented as VPLUS edits are.
This means that the program should perform edit processing even if the
form contains VPLUS-detected errors. For this reason, I recommend
that edit routines should obtain screen data with VPLUS field access
intrinsics such as VGETFIELD or VGETINT. If VGETFIELD returns an
error, then VPLUS has already detected an error in the field, so no
further editing is needed. Go on to the next field. If VGETFIELD
returns successfully, then the program edits should be applied and any
error reported using VSETERROR. This distinction of fields containing
VPLUS-detected errors cannot be made if VGETBUFFER is used to obtain
the contents of all fields at once.

The advantage of applying the program edits at the field level is that
the user receives the full benefit from each press of the ENTER key.
Otherwise, the user will no sooner clear all the VPLUS edit errors
when the program edit errors will appear.

Take Advantage of Terminal Features

The most widely available and useful terminal feature is Screen
Labels, available on all 262x terminals as well as the 2382. Virtually
every meaningful VPLUS application has defined functions for the
labeled keys, such as:

Delete record Display Next record

383

384

Transaction Processing Using VPLUS

Guidelines for Better Systems (continued)

Exit/Cancel/Abort
Refresh screen

Display Previous record Print screen

Descriptive key labels on the screen, where they won't get lost, have
got to be a great boon to the user. Define labels in FORMSPEC, and
enable them when your program calls VOPENFORMF.

Aside from screen labels, the really useful terminal features are
mostly limited to one terminal: the HP2624B. In addition to providing
screen labels, this terminal supports:

Security Video - blanks out sensitive fields

Local Edits - the tenninal itself will test for required fields,
data types, and even justify and fill

Modified Field - the terminal only transmits the contents of fields
which were changed, not the whole screen

Forms Cache - several forms can be stored in the terminal's cache
and thereafter can be displayed at high speed since
they need not be sent from the computer.

Although the 2626 also has Security Video, and a limited Forms Cache
facility, the 2624B is clearly the terminal of choice for VPLUS
applications.

HPTOOLSET - An Inside View
Lynn Smith
Hewlett Packard - IND
19420 Homestead Rd
Cupertino, CA 95014

HPTOOLSET is an integrated collection of software tools or
subsystems, aimed at increasing programmer productivity on the HP3000.
Each phase of program development: creation, modification,
translation and execution, is simplified. HPTOOLSET minimizes the
distinction between the various tools required to do program
development, providing a friendly, uniform interface.

When HPTOOLSET was first conceived as a program development
environment, the primary objective was to provide a powerful, yet
simplified method for implementation of application programs. Beyond
this were several more goals. We needed to provide an integrated
package; the tools should blend together and have a common style of
interface. The product should be extensible; we did not want to
preclude the later addition of other tools or languages. It should
be friendly and easy to use. The interface between the user and the
system should be versatile to allow for customization, and modular to
allow for localization. Finally, we did not strive to be compatible
with existing HP products such as EDIT/3000, or MPE DEBUG. Nor was
any attempt made to simulate products provided by outside vendors.

Throughout this paper I will show how the various portions of
HPTOOLSET contribute to programmer productivity. It will become
apparent how our original objectives have influenced the character
of the different subsystems.

USER INTERFACE
The user's perception of HPTOOLSET hinges heavily on his

interaction with the product. HPTOOLSET isolates this interface into
a subsystem known as the USER INTERFACE (UI). This partitioning
yields several benefits. All of the intelligence required to do
terminal I/O is centralized in a few routines. If terminal
requirements change, the modifications are needed in only one
place, not throughout the product. The UI handles the programmable
function keys and menus. Each subsystem need not be cognizant of the
particular function key definition or menu layout at any given time.
The function key and menu definitions are stored in files. This
provides great flexibility for changing them, as well as aiding in
localization.

One way of making HPTOOLSET convenient to use is to provide
screen labelled function keys to execute commands. Generally,
pressing a function key accomplishes the same purpose as typing the
corresponding command, and the two can be used interchangeably. The
available terminals provide only eight programmable function keys;
too few for our purposes. So the function key labels are defined such
that there are always two sets of commands available. Ona set, known
as the permanent set, always remains the same. It contains functions
that are relevant throughout HPTOOLSET. The temporary set is
sensitive to the current activity. One label in every set is reserved
for ALTSET,which is used to switch back and forth between the sets.

The function key labels for at least one set of commands are
alway displayed on the terminal screen. On the 262X series of

385

386

terminals, the labels for the active set are displayed using the
predefined template at the bottom of the screen. Both the permanent
and temporary function key labels are displayed on the 264X terminals.
They appear side by side at the top of the screen with arrows
indicating which set is active. The labels are displayed in a
highlighted template, which is protected by memory lock.

The UI is divided into three basic modes of interaction:
command, menu, and visual modes. Each of these is characterized
by the particular form of user interaction. Command mode is
probably the most familiar to the user. Instructions are conveyed
by typing them in response to the double arrow prompt"»", or by
pressing equivalent HPTOOLSET defined function keys.

Menu mode occurs when HPTOOLSET has a variety of items to
present, from which the user can select one or more; or there are
default characteristics which the user can modify. The user
indicates his selection by typing a character to the left of the
desired item(s), and pressing the function key corresponding to the
operation to be performed on it. On menus that are used to define
characteristics, HPTOOLSET highlights the options that the user can
change. To modify them, the user simply types over the default
with his own choice a~d presses the SETOK function key.

Visual mode is available when. the user is reading or editing a
file. A page is displayed on the screen, and modifications are made
using the edit and cursor control keys on the terminal. HPTOOLSET
uses the concept of "marking" in visual mode. By positioning the
cursor and pressing the MARK function key, the user can indicate a
character, word, line, or lines on which future operations will be
performed. Function keys are used to operate on "marked" lines such
as in MOVE or COPY. The function keys are also used to do global
commands such as FIND or CHANGE.

A fundamental design decision for the UI was to determine which
terminal(s) HPTOOLSET should support. We could design a special
purpose terminal, perhaps allowing for code to be downloaded into
terminal memory. This was appealing since it would enable
customization of the product with the terminal it would be used on.
However, th.is approach had various drawbacks. The product would be
tied to specific, and potentially expensive, hardware. This precluded
the large existing base of 2645 and 262X terminal use~s from using the
product. Likewise, we considered supporting only the 2626 terminal,
taking advantage of windowing and other special capabilities it
provides.

The most viable alternative was to base HPTOOLSET on the 2645
terminal, and support all terminals that are 2645 compatible. This
includes the 2622, 2623, 2624, 2626, 2647 and 2648 terminals.
HPTOOLSET depends on many of the features of a 2645 such as block mode
and user definable function keys. In order to accomodate the users of
terminals that are not 2645 compatible, it was decided to provide
a rudimentary subset of HPTOOLSET that will work on any HP terminal.

HELP
A major step towards making HPTOOLSET friendly and easy to use

was the inclusion of an extensive online Help facility. The user
can obtain information on any of the commands or subsystems at any
time. Help is context sensitive, meaning the user gets different

default explanations based on what he is doing at the time he
accesses Help.

There are three methods to enter the Help subsystem. The user
can type the command "HELP" when in command mode, press the permanent
Help function key, or append a question mark at the end of a command.
If Help is accessed after a syntax error, or the question mark is
used, the correct syntax for the command is given. If Help is
requested after a non-syntax error, additional information and
possible corrective actions are given. When there was not any error,
an overview of the current subsystem is displayed.

Help is organized in a tree structure. At the root is an
overview of HPTOOLSET, with instructions on how to obtain more
information. At the next level is an overview of each subsystem.
Within each subsystem is a description of each of the commands
explaining the syntax, parameters, operation, and sample usage.
Function keys are used to traverse the tree. Like the function key
definitions and menu forms, the Help screens are stored in a file.·
This makes Help easy to modify, expand or localize.

WORKSPACE
When developing a program, the user has to keep track of a set of

files. One way that HPTOOLSET has simplified the development process
is to associate the needed files together in a directory called a
"Workspace". Through this mechanism, the user need only define the
USL and Program file when the workspace is created. Subsequently, the
appropriate file will automatically be invoked for Compile, :PREP, or
:RUN. Additionally, the workspace keeps track of information that is
pertinent for each source file. This includes the source language,
tabs, a user defined label, and version information.

A fundamental program development feature is source version
management. As a program evolves, it may change significantly.
Through version management, the user can arbitrarily "freeze" a
version of his source file. This version is protected from the
changes that are made later, yet can be referenced at any time. This
capability is provided with the SETVERSION command. The user can
designate up to thirty two active versions of any source file.

Often several people are working on the same project. This
usually requires the sharing of files. The workspace provides a
mechanism to accomodate file sharing. The user can import a file via
the USE command, or designate a specific version for others to access
with the SETREFERENCE command. In this way, a stable version of the
source file can be set aside for other users to reference, while the
owner can continue to make modifications.

TSAM
In order to implement version management, HPTOOLSET needed the

ability to store multiple versions of the same file within one
physical file. Since neither the MPE file system, or other HP3000
tools provide this capability, we designed our own access method,
TOOLSET Access Method (TSAM).

The requirements for TSAM are straight forward. It accomodates
version information, provides reasonable performance within HPTOOLSET,
and maintains the integrity of the user's file in the event of a

387

388

system failure. Rather than actually copying the file each time a
version is desired, the different versions are stored as changes to
the previous version. This results in better disc utilization, since
redundant information is not being stored. Another technique that
TSAM uses to conserve disc space is blank compression. Trailing
blanks are stripped from each line, saving as much as half the
required file space.

EDITOR
Another feature of HPTOOLSET is the full screen editor. It

displays a portion of the edit file on the screen for the user to
modify. Changes are made by simply positioning the cursor and typing
over the existing text, or by using the terminal edit keys: insert
and delete line, and insert and delete character. As modifications
are made, the file is automatically changed whenever carriage return
or a function key is pressed. The need for time consuming "text" and
"keep" operations is alleviated since the file is constantly being
updated.

Function keys are used in the editor to move from one location to
another in the edit file. They are also used to facilitate editing
functions that cannot be done with the terminal editing keys, such as
FIND, MOVE and COPY.

HPTOOLSET has integrated the READ and LISTING functions with the
full screen editor. Their appearance is the same, only the user is
restricted from making modifications. He is able to move through the
file, mark lines, or do finds in the same fashion in each. All
utilize visual mode, and therefore have a common interface.

As with many other subsystems, we had several alternative ways to
define the editor. We could have made it line oriented such as
EDIT/3000. If was felt that this method of editing was too cumbersome
for most purposes; although we have provided commands that operate
on the edit file in line mode for those occasions which it is
appropriate. We considered doing a block mode editor, but felt it
had the potential to create an undue load on the system.

PROGRAM KEY
The subsystem that is responsible for the translation phase of

program development is known as the Program Key (PK). Its purpose
is to interface with the COBOL!! compiler and the MPE Segmenter to
ready the user's program for execution. Currently, program
translation is performed through three discrete steps: compile, prep,
and run. HPTOOLSET has combined these together into a single function
referred to as GO. GO takes the indicated source file(s) and compiles
them into the default USL file. It then prepares the same USL file
into the default program file. When this is complete, it begins
execution of the progrdm. By merging these steps into a single
function, the user is relieved of the necessity of learning the
specific details of each step. Nor need he be aware of the auxillary
files, such as the USL and program file, that are required.

HPTOOLSET has implemented the time consuming compilation phase
as a background process. This means that the user is free to do
other work while the compile is executing. The compile executes in
the same system queue as batch jobs, so it is not competing with the
online sessions for system resources.

If the file being compiled is owned by the current workspace,
the COBOLII listing is saved online in a file. This way the latest
compile output is always readily available, without the need to juggle
printed listings. When the listing is displayed, the user can toggle
between it and the source file with the touch of a function key. This
is invaluable for correcting compilation errors. Likewise, the user
can use the listing when his program is executing to set breakpoints
or display data items.

SYMBOLIC DEBUG
An area of program development that was in need of simplification

was program debugging. In the past, there were many complex steps
required to debug a COBOLII program. For the most part, it was the
responsibility of the user to learn the details of these steps, as
well as the intricacies of the system architecture. To determine the
value of a data item, the user was required to perform the translation
between variable allocation and actual memory addresses, based on
information from the compiler's symbol table. He also needed to
translate the Segmenter mapping and compiler code offsets to determine
the location of a statement to set a breakpoint.

HPTOOLSET has internalized all of these translations. The user
can reference his data items and program locations symbolically. He
sets breakpoints using the Paragraph or Section name from his source,
or the compiler generated statement numbers. Data items are displayed
and modified simply by referencing them as they appear in the program.
When a data item is displayed, by default it is output in the format
defined in the COBOLII PICTURE clause. In this way the user does not
need to convert it from its internal binary or octal representation.
Data items are modified using the rules of the COBOLII MOVE statement.

HPTOOLSET provides additional capabilities to improve program
debugging. The user can monitor the flow of his program using the
TRACE command. It will display the name of each paragraph and section
as it is executed. Likewise, he can display the previous paragraphs
that were executed before reaching the current location, using the
RETRACE command. He can monitor a specific data item with the
DATATRACE command; which displays the value of the data item whenever
its value changes.

There is quite a contrast between the old style of program
debugging and HPTOOLSET's symbolic debug. HPTOOLSET provides the
features to make debugging simple and easy to understand. The user
does not need to learn the machine architecture, or be intimidated
by the complexity of the required conversions. He can think of his
program in the terms which it was written, using paragraph, section
and data item names. This is a tremendous boost to productivity.

HPTOOLSET significantly improves programmer productivity. It
provides the tools necessary for a programmer to develop and debug
COBOLII programs. Online Help makes it easy to learn. The
bookkeeping required to track all the necessary files is simplified
through the workspace. At the user's discretion, he can create
versions of his source file. Editing is quick and easy. Program
translation is unified into a single operation, most of which
is performed in the background, allowing the user to continue with
other work. Most of all, debugging is convenient and powerful. It is
.easy to set breakpoints, display and modify data items, and trace

389

390

program execution. In addition to providing a powerful set of
capabilities, HPTOOLSET integrates them together with a common
interface.

Introduction

Technical Report, August 1982, by

DAVID J. GREER

Robelle Consulting Ltd.
27597-32B Avenue
Aldergrove, B.C.
Canada VOX 1AO
(604) 856-3838

Telex 04-352848

Copyright 1982. All rights reserved.

391

This report describes the use of V/PLUS on the HP 3000 from the Pascal
language, emphasizing the achievement of "good" programming practices
through full use of Pascal's best features. Examples are drawn from
the V /PLUS ENTRY program, which the author has rewritten in Pascal.
No previous knowledge of Pascal is assumed, but a beginner's
understanding of V/PLUS will be helpful to the reader.

V/PLUS is the terminal interface system supplied by Hewlett-Packard
for their HP 3000 computer, and Pascal is a programming language that
is just coming into use on the HP 3000. Can you access V/PLUS from
Pascal? If so, what problems will you face and how can they best be
overcome? Will you find any of the special features of Pascal helpful
in simplifying V/PLUS programming?

These are the questions addressed by this report. In the process of
answering them, we will give you a good look at the programming
language Pascal and of "good" programming practices.

The structure of this report will follow the process of developing the
ENTRY program in Pascal. The ENTRY program is described in the V/PLUS
manual (HP Part 1132209-90001), but the reader is discouraged from
reading the sample ENTRY programs given in the manual. It is assumed
that the reader has used FORMSPEC to define forms and that he has
experimented with the ENTRY program.

Pascal/Robelle includes the complete source file for the ENTRY
program. If you have Pascal/Robelle Version 3.1, obtain a listing of
the ENTRY program and refer to it as you read this report.

392

Using V/PLUS from Pascal

Getting _St?._r:_~e_d.

Before accessing V/PLUS from a program, two things must happen: 1) a
formfile must be opened and 2) the terminal must be set into block
mode. The following Pascal program opens the file FORMFILE and the
terminal. Unusual bits of code (i.e., non-standard or poor
programming practices) are indicated by a comment (e.g., Note 1) and
explained below.

program vplus (INPUT,OUTPUT);
~

int= -32768 .. 32767;
var
--vcomarea = array[1 .. 60) of int; (*Note 1 *)

vfilename= packed array[1 .• 36] of CHAR;
procedu!:_~ vopenformf; INTRINSIC; (* Note 2 *)
procedure vopenterm; INTRINSIC;
procedure vcloseterm; INTRINSIC;
procedure vcloseformf; INTRINSIC;
begin

vcomarea[2) : = 5; (* Note 3 *)
. vcomarea[3) : = 60;
vfilename := 'FORMFILE ';
vopenformf(vcomarea,vfilename);
if vcomarea[1) <> 0 then
- WRITELN('Unable to open formfile. Error: ',vcomarea[1]:1)
else
begin (* Note 4 *)

vfilename := 'TERMINAL ';
vopenterm(vcomarea,vfilename);
if vcomarea[1] <> 0 then
~ WRITELN('Unable to open terminal, Error: ',vcomarea[1]:1)
else
begin

vcloseterm(vcomarea);
vcloseformf(vcomarea);

end·
end-.-'

I

end(li'vplus*),

The ~ declarations declare names for forms of data structure that
will be used in allocating several variables, or used as parameters to
£rocedures. We define int as a ~ because we will need to allocate
many single-integer variables for V/PLUS, and the format for the
standard~ INTEGER on the HP 3000 is a double word (32 bits).

The var declarations allocate the variables of the program (~
declares only the form of potential variables). Please note that each
variable is defined with a very precise~ or form (e.g., vfilename
: packed array[1 .. 36] of CHAR), but none is initialized.

A few mechanical details: comments are enclosed within special
symbols (i.e., (* Note 1 *)), external procedures must be declared,
the mainline is enclosed by a begin-end pair, statements are separated

393

Using V/PLUS from Pascal

by semicolons, colon-equals (: =) is the assignment operator, string
literals are delimited by single quotes, WRITELN prints messages on
the file OUTPUT, the program starts with a program heading defining
the name of the program and the files it willac-cess, and the program
ends with a period (i.e., end.). --

The notational conventions used in these samples are: reserved words
in underlined lower-case, pre-defined words in CAPITALS, and user
identifiers in lower--case.

(* Note 1 *)

The~ of the vcomarea (array[1 .. 60] of int) should be declared as a
separate type. As the ENTRY program grows larger, it will be
necessary to pass the vcomarea as a parameter. This CANNOT be done
unless we have a type that describes the vcomarea. There is an
additional benefit in declaring the type of the vcomarea as a separate
~: we can change the layout an-er-form of the vcomarea without
seriously affecting the rest of the program.

(* Note 2 *)

The V/PLUS intrinsics must be declared for Pascal as external
procedures. In HP Pascal, this is done by giving the procedure name,
followed by the magic word INTRINSIC. Notice that the parameters are
not declared; HP Pascal picks up those definitions from the system
intrinsic file (SPLINTR.PUB.SYS), just like the SPL or FORTRAN
compiler. Pascal/Robelle uses a slightly different convention for
external procedures. In both cases, calling the V/PLUS intrinsics is
strictly NON-STANDARD, because the V/PLUS parameters can have a
variable format. Later, we will show how to protect yourself when
using V/PLUS.

(* Note 3 *)

Pascal variables (the var part of the program) cannot be initialized
at declaration time. Therefore, you must have explicit statements to
assign them initial values (e.g., vcomarea[1] := 5). HP Pascal has an
extension for initial values, but it is non-standard, and cumbersome
to use.

(* Note 4 *)

We will use indentation to show the control-flow of the program.
Levels that are controlled by a higher-level structure will be
indented three spaces. A consistent indentation style is important
for understanding programs.

The VCOMAREA ----
The V/PLUS communication area is used with every V/PLUS intrinsic.
The current declaration of the vcomarea provides no definition
information. For example, what is the meaning of vcomarea[2]? We
have also seen that it would be useful to have a sta~dard ~ which
describes the vcomarea. The following ~ declaration improves on

394

Using V/PLUS from Pascal

our early declaration for the vcomarea:

con st
----VComlen = 60; (* Note 1 *)

vfnamelen = 16;
~

int= -32768 .. 32767;
dbl = INTEGER; (* Note 2 *)
vlangtype = (cobol,basic,fortran,spl,rpg,Pascal); (*Note 3 *)
vmodetype = (collecting,browsing);
vkeytype = (vf0,vf1,vf2,vf3,vf4,vf5,vf6,vf7,vf8);
vfnametype =packed array[1 .. vfnamelen] of CHAR;
vrepeatopt = (vrepeatnorm,vrepeat,vrepeatappend);
vfreezeopt = (vclear,vfreeze,vfreezeappend);
vcomareatype =

record (* Note 4 *)
status: int;
language: vlangtype;
length: vcomlen .. vcomlen;
extsize: 0 .. O;
mode: vmodetype;
lastkey: vkeytype;
numerrs: int;
filler1: packed array[1 .. 4] of CHAR; (*Note 5 *)
labelopt: int;
c fn ame: vfnametype;
nfname: vfnametype;
repeatopt: vrepeatopt;
freezeopt: vfreezeopt;
filler2: int;
dbuflen: int;
filler3: packed array[1 .. 4] of CHll.R;
deleteflag: BOOLEAN;
showcontrol:int;
filler4: packed array[1 .. 16] of CHAR;
numrecs: dbl;
recnum: dbl;
filler5: packed §.!:_ral[1 .. 4] of CHAR;
termfilenum: int;
filler6: packed array[1 .. 22] of CHAR;

end;

procedure initvarea(var varea : vcomareatype);
begin
-----wTth varea do

begin
-status

language
length
extsize
mode
last key
numerrs
filler1
labelopt

(* Note 6 *)

. - 0;

.- Pascal;

.- vcomlen;

. - 0;

.- browsing;

. - vfO;

. - 0;
I

• - 1 ;
I•

'

395

Using V/PLUS from Pascal

cfname . - ' ' .
' nfname . - ' ' .
' repeatopt . - vrepeatnorm;

freeze opt . - vclear;
filler2 . - 0 .

' dbuflen . - 0 .
' fil ler3 ' ' . . - ' delete flag . - FALSE;

showcontrol . - 0 .
' filler4 . - ' ' .

' numrecs . - O·
' recnum . - 0.
' filler5 . - ' ' .

' termfilenum . - 0 .
' filler6 . - ' ' . ,

end·
end---zitinitvarea*);

We now have a communications area which can be passed to procedur_e_s
and is much easier to understand. The V/PLUS communication area is
the most important data type used in the ENTRY program.

We introduce a new concept: procedures. A procedure is a separate
entity which can be invoked by using its name (e.g.,
initvarea(vcomarea);). Parameters can be declared (e.g., var
varea:vcomarea;), and the use of var in the parameter list indicates
that changes to the parameter (i .e-.-,-varea) change the passed variable
(i.e., vcomarea). Contrast this with a value parameter declared
below.

(* Note *)

The const declarations define names for literal constant values (e.g.,
vcom~ instead of 60). Using names instead of literal values
improves readability and makes it easier to change a program.

(*Note 2 *)

As mentioned in the first sample program, the standard type INTEGER is
defined as 32 bits in HP Pascal (and Pascal/Robelle). TO!iiake it very
clear to the reader whether you want a single integer or a double
integer, we recommend creating two user ~s (int and dbl) in every
program and using them in subsequent declarations, rather than
INTEGER.

(* Note 3 *)

We declare a special SCALAR ~ for several fields in the
communications area (e.g., mode : vmodetype). A SCALAR ~ is one
consisting of explicitly named values (e.g. t vmodetype =
(collecting,browsing);) and no others. These constants can be
assigned to variables .rnd passed as constants to procedur~s (e.g.,
mode :=collecting;).

Note that using scalar typ.~s is better than using constants. In

396

Using V/PLUS from Pascal

general, we are not concerned with the numeric values associated with
the scalar type; but SCALAR types are always assigned a value starting
with zero, and incremented by one for each SCALAR ~ (e.g.,
collecting = 0 and browsing = 1). Another benefit is that the
variable 'language' can ONLY take on one of the values in 'vlangtype'
and no others (e.g., language := spl; is o.k., but language := O; is
not). This reduces the complexity of our data structures and adds
redundancy, making our programs easier to read and debug.

(* Note 4 *)

The vcomareatype is declared as a record structure; this is equivalent
to the 01-05-10 structure in COBOL, in that records may be nested
within records. The type vcomareatype is used when we want to declare
the actual V /PLUS ----cOmmunication area (e.g., var vcomarea
vcomareatype), and when the communication area rs-defined as a
parameter (see the initvarea procedure above).

(* Note 5 *)

The word "filler" has no special meaning in Pascal. We use "filler"
followed by a sequentially assigned number to represent areas of the
communication area which should never be changed.

(* Note 6 *)

The initvarea procedure initializes the passed V/PLUS communication
area to its initial values. This procedure should be called once at
the start of the ENTRY program. The with statement allows us to refer
to the individual fields of the varea. If we didn't have a with
statement, we could do each assignment by fully qualifying the name.
For example,

varea.status := O;

would be used instead of

with varea do
--status :-;-o;

Improved Error Messages

Remember our first sample Pascal program? It opened a form placed the
terminal in block mode. The initial version printed an error number
only if it was unable to open the form or the terminal, and it didn't
print any error message if it couldn't close the terminal or form. We
would like to print an English message if this happens, and there is a
V/PLUS procedure which will provide the message.

When developing a large program like ENTRY, we want to build up the
Pascal environment to support our application. We declare standard
utility procedures that enhance the Pascal environment.

(* The following procedure is called when an error occurs while
opening or closing a V/PLUS file. This procedure assumes that

Using V/PLUS from Pascal

the user is NOT in block mode; therefore, the error message
is printed on the standard output device.

*)

procedure writemessage(varea
var
--vmessbuf

vmessbuflen
vmesslen
i

begin

vbuftype;
vfixlen;
vvarlen;
1 .• vbuflen;

vmessbuf . - ' ';

vcomareatype);

vmessbuflen := vbuflen;
verrmsg(varea,vmessbuf,vmessbuflen,vmesslen);
for i := 1 to vmesslen do
--WRITE(OUTPUT,vmessbuffi]);
WRITELN(OUTPUT);

end (*writemessage*);

397

We have used some types that haven't been introduced precisely. These
are standard types required by many V/PLUS procedures, and we will
declare them below.

Like the initvarea procedure, the writemessage procedure has one
parameter: varea; but the writemessage parameter is missing the var
part. This means that the call

writemessage(vcomarea);

makes a copy of the vcomarea, and this copy is passed to writemessage.
Any changes to the varea parameter will have NO effect on the passed
vcomarea variable.

The following example is still the first program, but rewritten to be
as clear and accurate as possible. We assume that the type
declarations of the V/PLUS communication area are in a file called
VCOMAREA.VIEW, and we will include this file in our source code.

program vplusbetter (INPUT,OUTPUT);
con st
---VComlen

vfnamelen
vbuflen

= 60;
= 16;
= 128;

~
int= -32768 .. 32767;
dbl = INTEGER;

$include vcomarea.view
vbuftype =packed array[1 .. vbuflen] of CHAR;
vfixlen = vbuflen .. vbuflen;
vvarlen = 0 .. vbuflen;

var
vcomarea vcomareatype;
vfilename: vfnametype;

procedure vopenformf(var varea var vfname:
vcomareatype;
vfnametype

398

Using V/PLUS from Pascal

); INTRINSIC;

procedure vopenterm(var varea : vcomareatype;
var vfname: vfnametype

)-; -INTRINSIC;
procedure vcloseterm(var varea : vcomareatype);
procedure vcloseformf(var varea: vcomareatype);
procedure verrmsg(var varea : vcomareatype;

var buf : vbuftype;
var buflen: vfixlen;
var actlen: vvarlen

);INTRINSIC;
$include initview.view
$include wrtmess.view
begin

initvarea(vcomarea);
vfilename :: 'FORMFILE ';
vopenformf(vcomarea,vfilename);
if vcomarea.status <> 0 then ·
- writemessage(vcomarea-Y-­
else
begin

vfilename :: 'TERMINAL ';
vopenterm(vcomarea,vfilename);
if vcomarea.status <> 0 then
- writemessage(vcomarea-Y-­
else
begin

vcloseterm(vcomarea);
if vcomarea.status <> 0 then
- writemessage(vcomarea~
vcloseformf(vcomarea);
if vcomarea.status <> 0 then
~ writemessage(vcomarea~

end
end--

end---cir vplusbetter*).

INTRINSIC i
INTRINSIC;

This time, when declaring the V/PLUS intrinsics, we include the
parameters. HP Pascal will check at compile time to make sure that
the parameters passed to the V/PLUS procedures match exactly the ones
declared above. This provides the necessary security within the
Pascal program, and it will help prevent parameter-passing errors
(where the wrong variable is passed to an INTRINSIC procedure).

We will assume that all of the procedure headings are declared
correctly in a file: PROCS.VIEW. This file will be included in all
subsequent examples, just like the standard VIEW ~s.

We make 1 iberal use of subranges in declaring the vvarlen and the
vfixlen ~s. By using a subrange (e.g., 0 .. vbuflen) instead of
a generic~ (such as int), we are telling both the compiler and the
reader that any variables of ~ vvarlen can ONLY have values in the
range of 0 and vbuflen. An assignment such as

399

Using V/PLUS from Pascal

vmesslen := -1;

will be flagged as illegal at compile time, greatly reducing the
amount of time needed to debug the program.

Structure of the ENTRY Program

Before starting the actual code for the mainline of the ENTRY program,
we should specify exactly what we want the ENTRY program to do.
First, the ENTRY program must open a user-specified form file. Next,
the program must open a user-specified batch file. The terminal must
be initialized, and the program must start collecting data from the
forms in the formfile. Finally, the files must be closed and the
terminal must be reset.

At this point in the development cycle, these are all the details we
need to worry about in terms of processing. Users of the ENTRY
program know that there is another collection mode: browsing, but we
won't discuss the browse mode until we get to the discussion of the
collect procedure.

The Mainline

We decompose the program steps described above into separate parts and
we will use procedures to implement each piece. Because the opening
of files is a necessary initialization of the program, we will leave
all of that to one procedure. A possible mainline (the one we will
use) could be:

begin (* entry *)
if initentry then
begin ~~

collect;
completeentry;
WRITELN(OUTPUT,'End of Entry/Robelle');

end;
end--rr entry*).

The mainline is simple and easy to understand, but it contains all of
the processing indicated by the program structure.

Initialization

We will continue our development of the ENTRY program by writing the
initialization procedure. As we did with the mainline of the program,
we will start with the mainline of the initialization procedure:

begin (* initentry *)
initvarea(vcomarea); (*Note 1 *)
WRITELN(OUTPUT,'ENTRY/Robelle Consulting Ltd.(C) 1982');
WRITELN(OUTPUT,version);

initentry :: FALSE;

if openform then

400

Using V/PLUS from Pascal

if openbatch .then
~ if openterm then
~ initentry--:=-TRUE
else (* openterm failed *)
begin
-----VClosebatch(vcomarea);

end

if vcomarea.status <> 0 then
writemessage(vcomarea~

vcloseformf(vcomarea);
if vcomarea.status <> 0 then
~ writemessage(vcomarea~

else-- (* openbatch failed *)
begin
-----VCloseformf(vcomarea);

if vcomarea.status <> 0 then
~ writemessage(vcomarea~

end

end (* initentry *);

The mainline of initentry reflects the structure that we desire. We
must take care to close any open files when things go wrong. Remember
that the mainline does not call the completeentry procedure (which
wou~d normally close the files) if the initentry procedure fails.

(* Note 1 *)

The vcomarea is a global variable. With the call to initvarea, we
pass this global variable as a parameter. The initvarea procedure
does not know the name of the global variable, so it uses the variable
(varea) that was declared as a parameter (procedure initvarea (var
varea:vcomareatype);).

We won't show the code for the entire initentry procedure, but we will
show the code for the openform procedure. We will assume that there
is another utility procedure which will read an input line from the
terminal. This procedure always returns the number of characters read
from the terminal.

(* The following global constants and types are needed by the
openform procedure. We will show them here.

*)

con st
-----ni'i>efnamemax = 36;

inbufmax = 80;
~

mpefnametype =
inlentype =

function readline

packed array[1 •. mpefnamemax] of CHAR;
0 •.. inbufmax;
: inlentype; EXTERNAL;

(* This procedure prompts the user for a forms file. If
the user does not enter a line, FALSE is returned;

Using V/PLUS from Pascal

otherwise, TRUE is returned when a file has been
successfully opened.

*)

function openform : BOOLEAN;
var

i
filename
finished
inlen

begin
repeat
~

1 •. mpefnamemax;
mpefnametype;
BOOLEAN;
inlentype;

--rfnished :: FALSE;
WRITE(OUTPUT,'Enter Forms File Name and press RETURN: ');
PROMPT(OUTPUT); (* Note 1 *)
inlen :: readline;
if inlen = 0 then
begin --

openform ·- FALSE;
finished :: TRUE;

end
else
--if inlen > mpefnamemax then

WRITELN(OUTPUT,'Error:-Filename
else

end

b gf.
lename := ' '; (*Note 2 *)

for i := 1 to inlen do
--filenamelf] :: inbuf[i];
vcomarea.status := O;
vopenformf(vcomarea,filename);
if vcomarea.status <> 0 then
- writemessage(vcomarear--­
else
begin

openform ·- TRUE;
finished ·- TRUE;

end
end--

until finished;
end--ri-c>penform *);

too long')

401

This procedure seems to cover most of the possibil ties that could
happen with user input. Does it handle all cases? I think it does;
but there still could be cases that are not accounted for.

Notice how the procedure handles a null in~ut line: it does not try to
open the formfile; instead, it returns with openterm = FALSE. This
provides some user friendliness to the ENTRY program. If the user
forgets the formfile name, or runs the ENTRY program by mistake, he
can easily "get out", or terminate, the program.

(* Note 1 *)

402

Using V/PLUS from Pascal

The PROMPT procedure is a special procedure that is available in HP
Pascal and Pascal/Robelle. It prints out the contents of the current
WRITE, with no carriage return or line feed. This one area of
standard Pascal is very vague; individual implementors of Pascal have
chosen different schemes for implementing carriage control. The
PROMPT procedure is the convention used for carriage control on the HP
3000.

(* Note 2 *)

String literals (e.g., 'TERMINAL') can be assigned only to variables
of one precise type: packed array [1 •• n] of CHAR. The ability to
assign the filename without trailing blanks is non-standard. The
packed attribute is important here; without it, you must assign each
character of the string individually. Unlike SPL and FORTRAN, Pascal
delimits string literals with single quotes, not double quotes. There
is no standard way for taking substrings. This is why characters are
assigned one at a time from inbuf to filename.

Completeentry

Now that the initialization
opposite: completeentry.
comparison:

routine is done, we
This procedur:_e_ is

should
quite

(* Complete the ENTRY program by closing all open files.
*)

procedure completeentry;
begin
----VCloseterm(vcomarea);

if vcomarea.status <> 0 then
~ writemessage(vcomarea-r;­
vclosebatch(vcomarea);
if vcomarea.status <> 0 then
~ writemessage(vcomarea-r;­
vcloseformf(vcomarea);
if vcomarea.status <> 0 then
~ writemessage(vcomarea~

end (* completeentry *);

write
simple

its
by

When these routines were originally written, they were tested before
any other part of the ENTRY program was finished. The ENTRY program
in its initial form just opened the files and closed them; but this
early debugging found several coding errors.

Strings

Before starting the collect procedure, we need to build more of the
enhanced Pascal environment to help our development of the ENTRY
program. The first problem we solved was strings. Standard Pascal
has no easy way of handling variable-length strings. HP Pascal
includes some extensions in this area, but we are trying to stick as
close to Standard Pascal as possible.

403

Using V/PLUS from Pascal

The ENTRY program has one type of buffer: VBUFTYPE. We would like to
be able to insert short strings anywhere within a V/PLUS buffer,
including string literals. In SPL, we would use the statement:

MOVE VBUF(20) :: "Record#";

In COBOL, we could use the statement:

STRING SPACE-20, "Record#" DELIMITED BY SIZE,
INTO VBUF.

We want to develop a Pascal procedure which could be called as

insertstr('Record#',vbuf,20);

to do the same as the SPL and COBOL statements. We define a type,
string, which represents the smaller string type (i.e., a string of up
to twenty characters). Then we write the insertstr procedure as
follows:

con st
-----st"ringmax = 20;
~

string= packed array[1 .. stringmax] of CHAR;

(* Standard Pascal does not provide any way to insert

*)

substrings into bigger strings. This procedure is used to
insert a smaller string into a bigger buffer starting at a
specific position. If an error occurs, the buf is overridden
with an error message.

procedur~ insertstr(str:string; var buf:vbuftype; pos:int);
var
--len

i
begin

0 .. stringmax;
: 1 .. vbuflen;

len := stringmax;
while (len > 1) and (str[len] = ' ')do
----ren := len - -,--;-
if (pos > vbuflen) or (pos+len > vbuflen) then
- buf ·- 'Error: Trlvalid position or length in insertstr'
else
--for i := pos to pos+len do

--buf[i] := str[i-pos-iT;
end (*insertstr*);

We use defensive programming practices to ensure reasonable results
from insertstr, even if unreasonable parameters are passed. We make
sure that the position and length parameters do not result in a
position that is out of the bounds of vbuftype. When this routine was
first tested, the error message was printed several times.

404

Using V/PLUS from Pascal

More Utilities

Soon, we will get to the heart of th·~ ENTRY program: the collect
procedure. Before we do, we need some more utility procedures: first,
aprocect.ure like writemessage, which calls the verrmsg intrinsin to
obtain an error message, then displays this message in the window area
of the form. We will use this procedure whenever we have an error
returned by a V/PLUS intrinsic.

(* Call VERRMESG to obtain the current view error. Print this
error in the view window.

*)

procedure verror(varea:vcomareatype);
var
--vmessbuf

vmessbuflen
vmesslen

begin

vbuftype;
vfixlen;
vvarlen;

----vriiessbuf : = ' ';
vmessbuflen := vbuflen;
verrmsg(varea,vmessbuf,vmessbuflen,vmesslen);
varea.status := O;
vputwindow(varea,vmessbuf,vmesslen);
error :=TRUE; (*Note 1 *)

end (*verror*);

This procedure is similar to our writemessage procedure. We use our
V/PLUS type definitions to make life as easy as possible. Notice that
we only needed to declare the necessary variables to communicate with
the verrmsg and vputwindow intrinsics.

(* Note 1 *)

The variable error is defined globally. Whenever a user error (i.e.,
ENTRY error) or a V/PLUS-error is placed in the window, the error flag
is set to TRUE. This prevents us from trying to write two error
messages to the window, since there is only room for one.

Whenever we deal with a record from the batch file, we would like the
user to be able to see which record is being added or modified. To do
this, we declare a procedure that takes a passed record number and
formats it into a position in the standard V /PLUS buffer. This
procedure demonstrates how to call the dascii intrinsic.

(* The passed record number is formatted into the buffer at the
indicated position.

*)
procedure formatrecnum(num:dbl; var buf:vbuftype; pos:int);
var
--tempbuf : string;

len : int;
function dascii(num:dbl;var buf:string) int; INTRINSIC;
begin --
~mpbuf := ' ';

Using V/PLUS from Pascal

len := dascii(num,10,tempbuf);
insertstr(tempbuf,buf,pos);

end (*formatrecnum*);

405

This may seem like a small amount of code to place into one routine.
We do it this way so that the DASCII function was declared only once.
It hides some ugly details of the ENTRY program in one place, where it
will be easy to modify if we develop a better procedure than dascii.

Now that we can format the record number in the window, we would like
to format a standard status display for when there are no errors. The
following procedure can be called from either the collect or browse
procedures to format the status line.

(* Format the status line in the window display. The current
mode and the current record form the status line.

*)

procedure formatstatus(mode:vmodetype; recnum dbl);
var
~-vmessbuf vbuftype;

vmessbuflen vvarlen;
begin

vmessbuf : = ' ';
if mode = browsing then
~ vmessbuf ·- 'ENTRY/Robelle Mode: Browse'
else
~~vmessbuf .- 'ENTRY/Robelle Mode: Collect';
insertstr(version,vmessbuf,15);
insertstr('Record#',vmessbuf,60);
formatrecnum(vcomarea,recnum+1,vmessbuf,68);
vmessbuflen := 80;
vputwindow(vcomarea,vmessbuf,vmessbuflen);

end (*formatstatus*);

Some of our old friends are used again: insertstr and vputwindow. We
check the vmodetype to determine which "phase" of the ENTRY program
(i.e., browsing or collecting) to print in the status window.

We have only one more utility procedure to write! What do we do with
logical errors in the ENTRY program itself? We need to provide for
errors such as requesting the NEXT form when there is none. We define
a global type:

~
errtype = (errnonext

,errnoprev
,errnodelete
,errnotrepeating
,errnobatchrecs
, errbadprev
) ;

Next, we define a procedure that prints the appropriate error mesage
in the window area. Remember our error variable? We check to make

406

Using V/PLUS from Pascal

sure that an error has not already occ1JJ"rad, before showing our error
message (we assume that V/PLUS error messages take precedence).

(* This procedure is called to print a customized entryprogram
error message in the form window.

*)

procedure entryerror(errnum : errortype; recnum
var
--vmessbuf

vmesslen
begin

: vbuftype;
: vvarlen;

if not error then
begin --

case errornum of

dbl);

errnonext : vmessbuf ·- 'There are no more records';
errnoprev : vmessbuf ·- 'There are no PREV records';
errnodelete :

vmessbuf := ' The DELETE key only works in Browse mode';
errnotrepeating:

vmessbuf := 'NEXT not defined for a non-repeating form';
errnobatchrecs

vmessbuf ·- 'The batch file is empty';
errbadprev

vmessbuf := 'PREV only defined for Browse mode';
end;
insertstr('Record#',vmessbuf,60);
formatrecnum(recnum+1,vmessbuf,68);
vmesslen := vbuflen;
vputwindow(vcomarea,vmessbuf,vmesslen);
error := TRUE;

end;
end (*entryerror*);

Collect

Finally, we arrive at the central portion of the ENTRY program. We
have a well-developed superstructure to make life easier. To review,
we have:

verror - used for V/PLUS errors.
entryerror - used for logical ENTRY errors.
insertstr - used for inserting strings.
formatstatus - used to show the current status.

We will use all of these procedures in our development of the collect
procedure. Before writing the code for collect, we will write down
the pseudo-code that represents the mainline of the collect procedure:

initialize collect
repeat

get the next form (vgetnextform)
initialize the form (vinitform)
format the status (formatstatus)
show, read, and edit the form (showreadandedit)

407

Using V/PLUS from Pascal

until exitprogram or end of the forms.

The exitprogram variable is a global variable, initially set to FALSE.
Whenever the f8 key is pressed in either the collect or browse
procedures, we will set the exitprogram variable to TRUE.

part of
utility

have to
resulting

The vgetnextform and vinitform procedures are
intrinsics, and formatstatus is our
showreadandedit · is the only procedure we
initialization of collect is simple, so the
including error checking, is as follows:

begin (* collect *)
-----VComarea.mode := collecting;

vcomarea.deleteflag := FALSE;
repeat

vgetnextform(vcomarea);
if vcomarea.status <> 0 then
- verror(vcomarea)
else
begin
~nitform(vcomarea);

the V/PLUS
procedure:

write. -Th.e
Pascal code,

if (vcomarea.status <> O) or (vcomarea.numerrs <> 0) then
- verror(vcomarea)
else
begin
---rt' not error then

formatstatus(collecting,vcomarea.recnum);
showreadandedit;

end
end--

until exitprogram or ((vcomarea.nfname='$END') and
(vcomarea.repeatopt=O));

end (*collect*);

The showreadandedit procedure contains the rest of the complexities of
the collect procedur~. We begin with the pseudo-code:

repeat
initialize showreadandedit
show the current form (vshowform)
read the fields on the form (vreadfields)
process the V/PLUS function key

until not error or (vcomarea.lastkey = vprintkey)

The function keys in the collect
different meanings. We would like
the actual lastkey values returned
beginning of the collect procedu~~:

con st
--venter key

vheadkey
vdeletekey
vprintkey

= vfO;
= vf1;
= vf2;
= vf3;

and browse modes have slightly
to associate symbolic names with
by V/PLUS. We do this at the

408

Using V/PLUS from Pascal

vrefreshkey = vf4;
vprevkey = vf5;
vnextformkey = vf6;
vbrowsekey = vf7;
vexitkey = vf8;

For each function key, we have a procedure to do the processing of the
function. The resulting Pascal code is:

begin (* showreadandedit *)
repeat

vcomarea.status := O;
error := FALSE;
vshowform(vcomarea);
if vcomarea.status <> 0 then
- verror(vcomarea)
else
begin

vcomarea.showcontrol ·- O;
vreadfields(vcomarea);
if vcomarea.status <> 0 ~
~ verror(vcomarea)
else
~-case vcomarea.lastkey of

venterykey : enterkey;
vheadkey head key;
vdeletekey entryerror(errnodelete

end

vprintkey
vrefreshkey
vprevkey

vnextformkey
vbrowsekey
vexitkey
end

,vomarea.recnum);
printkey;
vcomarea.nfname := '$REFRESH';
entryerror(errerrbadprev

,vcomarea.recnum);
nextformkey;
browsekey;
exitprogram := TRUE;

until not error or (vcomarea.lastkey = vprintkey);
end (* showreadandedit *);

The processing for the enter key and the browse key requires some
special handling. The rest are quite straightforward, so we present
them here:

(* Process the head key. Reset the repeat and next form
options, and set the next form name to '$HEAD'.

*)

procedure headkey;
begin

with vcomarea do
begin -

repeatopt := vrepeatnorm;
freezeopt ·- vclear;
nfname := '$HEAD';

Using V/PLUS from Pascal

end;
end(lfheadkey*);

409

(* Process the print key. Print the current form (including the
data) out to the lineprinter.

*)

procedure printkey;
var
--underline

cctl
int;

: int;
begin

underline := 1;
cctl := O;
vprintform(vcomarea,underline,cctl);
if vcomarea.status <> 0 then
- verror(vcomarea);

end (*printkey*);

(* Process the next key. If the current form is non-repeating,
an error message is printed. Otherwise, the repeat option of
the comarea is reset.

*)

procedure nextformkey;
begin

if vcomarea.repeatopt = vrepeatnorm then
- entryerror(errnotrepeating,vcomarea.recnum)
else
--vcomarea.repeatopt := vrepeatnorm;

end C*nextformkey*);

The processing for the enter key is more complicated. We have to edit
the fields on the current form, finish up the form, write a batch
record, and increment the record number. If an error occurs during
editing of the fields on the form, we let V/PLUS highlight the
field(s) and format an error message. The next call to vshowform in
showreadandedit will cause the form to show the highlighted field(s)
and the error message (only the first).

C* Process the enter key. Edit the data that was input, finish
the form, and write out a batch record. This procedure also
causes the record number to be incremented.

*)

procedure enterkey;
begin
-----vf"ieldedits(vcomarea);

if (vcomarea.status <> 0) or (vcomarea.numerrs <> 0) then
- verror(vcomarea)
else
begin
-----vf"inishform(vcomarea);

if (vcomarea.status <> 0) or (vcomarea.numerrs <> 0) then
verror(vcomarea)

410

Using V/PLUS from Pascal

else
begin

vwritebatch(vcomarea);
if vcomarea.status <> 0 then
- verror(vcomarea)
else

vcomarea.recnum := vcomarea.recnum + 1;
end

end--
end-c* enterkey *);

The browse key causes the following to happen: the current status is
saved, the mode is changed to browsing, the browse procedure is
called, and, on return, the status is restored. The code, excluding
the actual browse procedure, is:

procedure browsekey;
var

saverecnum
savefname

begin

dbl;
vfnametype;

if vcomarea.numrecs = 0 then
entryerror(errnobatchrecs,vcomarea.recnum)

else
begin

end

saverecnum ·- vcomarea.recnum;
savefname .- vcomarea.cfname;
vcomarea.mode := browsing;
vcomarea.repeatopt := vrepeatnorm;
vcomarea.freezeopt := vclear;
browse(vomcarea.recnum); (*still to be written! *)
vcomarea.recnum ·- saverecnum;
vcomarea.nfname ·- savefname;
vcomarea.repeatopt ·- vrepeatnorm;
vcomarea.freezeopt ·- vclear;
vcomarea.deleteflag:= false;
vcomarea.mode ·- collecting;

end-c* browsekey *);

Overall Structure

The following chart describes the procedures that we have developed
during this report. A procedu~~ at a lower level is shown indented.

Utilities
initvarea, writemessage, verror, insertstr, formatrecnum,
formatstatus, entryerror

ENTRY
ini ten try

open form
readline, vopenformf, writemessage

.:>penbatch
readline, vopenbatch, writemessage

Using V/PLUS from Pascal

open term
vopenterm, writemessage

collect
vgetnextform, vinitform, formatstatus,
showreadanded it

vshowform, vreadfields, headkey, printkey,
enterkey,

vfieldedits, vfinishform, vwritebatch
browsekey

browse
completeentry

vcloseterm, vclosebatch, vcloseformf, writemessage

Putting .It Together

411

We now want to put all of our procedures together to form the ENTRY
program. At the start, we used the VIEW group to gather together
$INCLUDE files that would be helpful in calling V/PLUS and in coding
the ENTRY program. We have changed the files somewhat, but here is a
summary of the $INCLUDE files necessary for the ENTRY program:

const.view - global V/PLUS constants.
type.view - global V/PLUS types.
procs.view INTRINSIC declarations for all V/PLUS procedures.
util.view - our utility proced~r.~s.
init.view - ENTRY initialization procedur,~.
complete.view- ENTRY completion procedu~~·
collect.view - ENTRY collect procedure.
browse.view - ENTRY browse procedure.

The complete ENTRY program can now be written:

program entry(INPUT,OUTPUT);
con st
--sfringmax = 20;

inbufmax = 80;
version = '(Version 1.0)';

$include const.view
~

int= -32768 •. 32767;
dbl = INTEGER;
string= packed array[1 .. stringmax] of CHAR;
inlentype = 0 .. inbufmax;
errtype = (errnonext

,errnoprev
,errnodelete
,errnotrepeating
,errnobatchrecs
, errbadprev
) ;

$include type.view
var
--vco:narea : vco'nareatype;

error : BOOLEAN;

412

Using V/PLUS from Pascal

exitprogram : BOOLEAN;

inbuf: packed array[1 .. inbufmax] of CHAR;
function readline : inlentype; EXTERNAL;
$include util.view
$in0lude init.view
$include complete.view
$include browse.view
$include collect.view
begin (* entry *)
----rf initentry then

begin
collect;
completeentry;
WRITELN(OUTPUT,'End of ENTRY/Robelle');

end
end-rit entry *).

Summary

We have not shown the browse procedur~;

exercise for the reader. The complete
obtained from Robelle Consulting Ltd. by
US for 1-5 cpus).

instead we've left it as an
Pascal ENTRY program can be

ordering Pascal/Robefie ($300

We have also left one question unanswered. Can we use V/PLUS in our
applications? Our answer is 'YES'. Using the utilities and tools
described in this report, it should be possible to access V/PLUS
easily from a Pascal application. The canst.view and type.view files
should be useful to all Pascal programs that use V/PLUS. Several of
our utility procedures (e.g., verror) should also be useful.

To write applications, we must also be able to call vgetbuffer,
vgetfield, vputbuffer, and vputfield. These procedures are more
difficult to use because the parameters to these procedures are
variable (i.e., they are riot the same from procea:"Ure=ca-ll to
procedure-call).

Applications normally combine V/PLUS with IMAGE. Pascal/Robelle
includes a companion technical report, "Using IMAGE From Pascal", in
addition to the famous DBLOADNG program (which was originally written
in FORTRAN,) completely rewritten in Pascal.

Integration of V/PLUS and IMAGE through Pascal requires more research;
but that is the subject for a future report.

PiCOM/3000

*
*
*
*

SYSTE~ DEVELOPMENT
ON HP3000 STANDARD PREMISES

*
* •
*

by

Erik Buchwald Christensen, B.Sc.

Pi DATA A/S
Amaliegade 14A
DK-12?6 Kobenhavn K

Telephones: (01) 14 20 05
(02) 3b 80 25

Telex: eidatadk

413

For the Proceedings of the HP3000 International Users Group
Conference Copenhagen. October 1902.

ABSTRACT

System security is often considered to cover topics such as
security against un-authorizeo data access. security against data
loss and data inconsistency. secure ways of data recovery and so
forth. Users as well as DP-managers, however, tend to overlook
factors of risKs involved in quite other areas. namely undesired
dependency on certain members of EDP-staff having unpublic
special knowledge as well as depenaency on outside software
vendors. So far systems can be secure in any traditional way of
meaning. still hooKing you up to certain persons and vendors. To
eliminate those risks. we present a full, general concept for
developing business applications using only HP3000 standard
software and utilizing most HP3000 facilities. in a way we
assume they were designed for. Development is based on VPLUS
screenhandling, IMAGE databases as well as KSAM and other MPE
filetecnniques and is independent of programming language. It
provides logical using of accounts, groups and users,
distinguishes between real-time, interactive system parts and
background batch routines, eliminating program load time and
thereby wait time between forms and dictating a friendly user
interface. Furthermore, generic search on manual IMAGE master
data sets. back and forth. is assigned. Guidelines for placing
application subroutines in SL are discussed along with principles
for fast. short and sufficient data locking not using MULTIPLE
HINS. The concept has been used to develop a larger standard
package of business applications written in COBOL II.

Go WITH the system, go FAR.

414

1. Introduction

2. Project highlights
Minimize the need for support
Let the programs handle available disc space
Easy backup and recovery
Only use HP system software
Sound data locking strategy
System executable on any configuration
Use most HP3000 facilities
Applidation standards

3, Account structure
The PUB ~roup
The DATA group
The usergroups

4. File structure
GLOBAL files
LOCAL files
WORK files

5. Program structure
Subroutines
Stand alone. MAIN programs
Interactive SUBPROGRAMS
The FA~HER process
Utility programs

6~ Running the system
Log on
The root program in the SONS
The subprograms
Having background jobs run
Batch processing can also be real time
The length of the job queue

7. The application subroutines (SL)
VPLUS interface
BreaKing the block mode
Posting interface handling DATA LOCK and IMAGE LOG
Disc I-0 interface
Printer interface
Wnat about hard copy printers
Background job interface
Information on available disc space
Date routines

8, Using the RL

9. Backup and recovery

10. Programming hints
Easy translation to foreign language
Using FOR!>iSPEC
The COBOL copy library
How to lock KSAM and other MPE-files

11. Conclusion

12. Bibliograpny

1. Introduction

When you enter the world of HP3000 you will soon find out that
this macnine is accompanied by a huge number of HP manuals
describing all the basics with numerous texts on numerous pages.
Sometimes. when you seek knowledge that combine two or more
subjects, the answer however often seems to slip the lines.

When you ask somebody a "why" or a "how", nine out of ten will
reply "why not try it out yourself?". But, goddammit, you haven't
got all day to write small test programs with a project deadline
ticking like a bomb under you.

So if your task is to develop a COMPLE~E system from scratch and
you want to do it "right'' from the very beginning when the HP3000
still is new and un-covered, how do you get started?

This article tries to outline a full design concept covering all
relevant aspects and problems during such a project. We will
probably not present any revolutionary news to trained
connoisseurs of the HP3000, but may succeed in giving a
worthwhile overall view on the entire HP3000 environment.

Some two years ago we had finished developing a larger standard
package of business applications to a specific mini on the
turn-~ey marKet. ~he package was sold and even exported when we
for various reasons decided to implement it on HP3000.

As you will learn below, we never develop machine independent so
this was not to be yet another dull conversion project, but
having the application precisely documented down to each single
file, i tern. program, report and screen layout gave us the
upport tlii~ ty to perform an in-depth research in the new computer
alone (tne HP3000) not being disturbed by trivial problems as
what was going to be the functional ends of the system.

This article is really our findings in that research.

2. Project hignlights

Do not consiaer the following concepts as a design model for any
specific type of application, but as a general framework for
developing administrative EDP systems to HP3000. We will however,
introduce you to some of the important assumptions and features
of the project in order to give a better background for
unaerstanding many of the solutions we implemented on the HP}OOO.

The application is a
PiCOM/3000. Briefly,
Receivables and Accounts
packaged systems you
extremely important:

standard accounting package known as
it covers General Ledger, Accounts
Payables. Being a software vendor of

nave to consider the following items as

2.1 Minimize the need for support

An accounting package will be used by ordinary clerks and
booKkeepers without any special EDP knowledge. ~herefore the
package has to be user friendly to the extreme in order to avoid
each customer buying the package hiring programmers as well as in
order to minimize the time your own programmers have to spend

415

416

fixing bugs on-site. Make them more productive and satisfied by
developing new products. not debugging old ones.

The better the user interface the fewer the production stops will
tend to be and the more likely those ocpurring will be fixed
locally by the user himself. Note, that a good user interface is
a product of many conflicting factors all concerning the common
overall goal: presenting a system to the "unexperienced" user in
such a way, that he can run it in an operator-less environment.

2.2 Let the programs handle available disc space

The support problem further stresses the need for built-in
application control of available disc space. A software house
will more often than you imagine be alarmed by a call from a user
of the type "we just ran out of disc space in the middle of an
update in the general ledger bookkeeping". Funny enough, those
calls tends to reach you just before office closing time on
Fridays, the user furthermore explaining, that his management
expects updated income sheets Monday morning.

No matter how well configured the hardware seemed to be at
installation time, no matter how much disc space was provided,
sooner or later there will be no room for more data. Allways
create discfiles fully allocated (I~AGE does that always), avoid
intermediate worK and sortfiles as long as you can. In this way
the application's disc requirements will be easy to calculate and
control, - both by the user and by the programs.

2.3 Easy backup and recovery

Of course backup and recovery procedures must be simple and easy
to understand and perform. Therefore design your file structure
in such a way that all non-I~AGE files can be derived and
re-established from the databases thus allowing you to
concentrate on logging only database transactions by means of the
HP3000 I~AGE Transaction Logging and Recovery System. From a
programmer's point of view this is quite simple and will offer
the user an alternative recovery method to the well known "load
the latest cackup and start all over again" procedure.

2.4 Only use HP system software

Use only HP3000 standard software and as close to defaults as
possible in order to be able to provide the user (and yourself)
with normal system support agreements with HP. We see that as an
important part in the overall security aspect. Furthermore as a
valid sales argument, i.e. using HP software guarantees the user
benefit from future extensions and upgrades developed by HP. Thus
to our specific purpose we prefer plain machine vendor system
software instead of "better" tools from third parties.

2.5 Souna data locking strategy

Your package (or tailored application) must rely upon a design
concept where all the compromizes regarding optimizing versus
security and user interface has been solved in advance. We all
want to optimize our programs to do the fastest performing, but
sometimes this rather technical point of view will conflict with
other system requirements like the ones listed above and later
on. ~pecial considerations must be made in respect to the rather
troublesome area of data locking. Everycody can make a

single-user on-line system, many will have troubles when terminal
nu~ber two is connected and two users are working simultaneously
on the same dataset.

2.b System executable on any configuration

Marketing a package like the PiCOM/3000 you attract the smaller
companies in the low end of the HP3000 computer family. On the
other hand large HP3000 installations may reserve a small corner
somewhere in the hardware in which their bookkeeping department
can run their Accounting System. Therefore another important
design rule is to develop for smallest standard equipment in
order to support any configuration with any terminal and any
printer with no regard to special functions and options. To some
extend, though, the design concept may provide utilization of
more well equiped device models.

2.7 Use most HP3000 standard facilities

Finally, the whole project should be developed clearly on HP3000
premises. No flat industry standard COBOL with traditional
filetypes and cursor addressing screen handling (accept/display).
When somebody buys a HP3000 he is to some extent doing it for
what is in the HP sales materials - so do not give him a bulk of
programs to be :RUN in the PUE group in some account by all
users, but be sure your system utilizes the HP3000 facilities in
an expected way: structure the account in groups and users, use
IMAGE and VPLUS and all the feautures that makes HP3000 a winner.

2.b Application standards

To the above mentioned general topics of a business package we
will briefly add some of the features that characterize our PiCOM
system and which are of importance for the further discussion:

All programs are written in COBOL II.

The system
stand ara i zed .
possible.

is menu driven and all screen layouts are
Function keys are also standardized whenever

It is a true real time system without batch update. Multi company
use is supported.

To provide export care has been taken to facilitate easy
translation into any foreign user language.

Generic search is provided on all master datasets. We emphasize
this, since it turned out to be impossible to obtain within
IMAGE.

Each user may easily select and reselect output device for all
his printed reports.

Extended security functions
capability lists together
operator. All operators have
be checked out at logon.

are obtained by assigning application
with rules for terminal access per
to be known by PiCOM/3000 and will

417

418

3. Account structure

Organize the account into the following groups:

1. PUB
2. DA".'A
3. <usergroup-1>
4. <usergroup-2>

n. <usergroup-n>

Each account equals an independent company. Thus you may run n
companys on the same computer all using the same programs, but
with independent data and independent lifecycles. Create
<acct-1>, <acct-2> .••. , <acct-n>. Each account is organized into
groups as above.

Assign users to each account in the following manner:

1. MGR (home ::: PUB)
2. One user BATCH with no home group
3. <user-1> with home ::: <usergroup-1>
4. <user-2> with home ::: <usergroup-2>

n. <user-n> with home ::: <usergroup-n>

Let it be the clients' responsibility to give actual names to the
various accounts and groups and users. Assume as little as
possible about naming so that your programs maintain the highest
possible degree of flexibility regarding this aspect (avoid
re-compiles).

Our concept only assumes for each account a group named "DATA"
and a user "BATCH". "MGR" and "PUB" are of course automatically
provided by MPE. We recommend our. clients to name their users by
initials and the corresponding homegrouos as initials prefixed by
the letter "G", e.g. user ABC, homegroup GABC. None of these
names are compiled into the source code, but are placed in the
PiCOM aatabase by the client. One name, though, has to be
compiled into at least one program as a fixed constant: the
system reserved IMAGE password. !here is no way to make that one
password variable since initially the system has to open the
database to get the user's IMAGE password, which then is used to
re-open the base.

Placing the system reserved IMAGE password in a subprogram in SL,
however, makes it relatively simple for the client to change it
since a new value in the SCHEMA only needs to be followed by a
subroutine compile and an ADD to SL, - not a complete re-compile
of the entire system.

When creating
used except
programs also
have to). The

the account only default HP3000 capabilities are
for PH (Process Handling), if and only if the
has to reside within the account (which they do not
reason why is explained later.

All the program files, including SL and the forms file, is placed
where ever the customer prefers it. but the name on what is
called the <systemacct> and <systemgroup> must be found in the
database so that the system itself can determine where to run the

programs. ~his is not for the user to be concerned about. In this
way it is assured that all companys (accounts) is (can be) driven
by the same application. Furthermore, new versions of the system
can be tried out in some test account only by specifying another
<systemgroup> and <systemacct> to the test account for new system
version.

The <systemacct> must have PH.

The file contents in the various groups are as follows:

3.1 The PUB group

In PUB only a standard User Defined Command (UDC) is placed. It
must be set for the account and will only contain one command,
SETFIL, which establishes the nessesary file equations (will be
described later).

3.2 The DATA group

This group contains all GLOBAL files in the account whether they
are IMAGE databases or KSAM or other MPE files. Also database
SCHEMAS reside in DATA. If the customer runs more accounts for
multi company use, all schemas are identical exdept for the
dataset CAPACITY entries.

j.j The usergroups

Contains only LOCAL files per user. In our concept LOCAL files
will never be organized as IMAGE databases.

Each user 1s assigned a special UDC called STARTUP which of
course has OPTION LOGON so that when the user types :HELLO he is
automatically forced into the PiCOM system. Also BYE is provided
in STARTUP, i.e. making the operating syst~m entirely invisible
for the user never letting a colon occur except for hello's.

STARTUP is set on user in orcer to free MGR from it so that he
eventually can enter the usergroups maintaining full MPE control.

4. File structure

Logically we distinguish between GLOBAL and LOCAL data. In order
to get our point of view clear we will use examples from the
PiCOM system. Since it deals with ordinary accounting problems
everybody should be able to follow the terminology.

4.1 GLOBAL files

Include all databases, TAG-files and GLOBAL ~PE-files.

4.1.1 The parameters and constants database

We use two databases for functional reasons, but also due to the
limitation of max. 25b items per database. One is called SYSBAS
and contains all global company constants, flags and tables (e.g.
current year and period number, currency table, payment
conditions and so on). The SYSBAS is primarily organized into a
number of manual IMAGE masters (SYS:401, SYS:-102, •.•. SYSMnn)
wnere each taole constitutes a master dataset.

419

420

A soecial master contains company data, such as
(occurs on all screens and reports). report formats
the names on <systemgroup> and <systemacct>. the
for the user BATCH ana on/off flags to determine
GLOBAL ~PE-files are in use,

company name
(pap;e hight),
MPE- password

whether the

Also every authorized user (except for the user BATCH) must be
established in SYS5AS with a lot of crucial data.

Those are:

Operator initials which is identical to the MPE username, full
operator name, I~AGE password, number of logon terminal, name of
MPE homeciroup, name of outputdevice (LDEV). name of outputdevice
for $STDLIST. an array containing application capabilities, rules
for terminal access (all, specified numbers or temporarily
inactivated) and finally on/off flags to determine whether his
LOCAL MPE-files are in use.

4.1.2 The accounting database

The other database is called AFRBAS and contains all the
traditional bookkeeping datasets (customer master, customer
history, customer open items and so on). In general all master
datasets are created as manual I~AGE masters whereas history and
open item datasets are IMAGE details. Sorting is avoided except
for open items which are sorted on duedates.

4.1.3 The TAG-files

A TAG-file is attached to each primary AFRBAS master (vendor,
customer and general ledger) and is a KSAM file for sequential
and backwards seq~ential retrieval of master entries on a variety
of keys.

A TAG-file for the customer master (CUSMST), CUSTGl, will have
the following COBOL definitions:

SELECT CUSTG1 ASSIG:.J TO "CUSTG1"
ORGANIZATION IS INDEXED
ACCESS ~ODE IS DYNAMIC
RECORD KEY IS Al-KEY

FD CUSTG1

ALTERNATE RECORD KEY IS A1-KEY2
IHTH DUPLICATES

FILE STATUS IS WS-FSTATUS.

LABEL RECORDS ARE STANDARD.
01 Al-REC.

03 A1-KC:Y.
O~ Al-CUST~O PIG 9(14).

03 A1-KEY2.
O~ A1-REVCUSTNO PIC 9(14).

Hence, when you want to page forth and back in the customer file
you just program the appropriate START's and READ NEXT's in the
TAG-file using the A1-CUSTNO as key to the IMAGE master.

Note, that the reverse number is calculated as the complement
value of the original number, e.i. SUBTRACT A1-CUSTNO FROM
99999999999999 GIVING A1-REVCUSTNO.

Also alfanumeric fields (e.g. customer shortname) may be reversed
using a special technique when calculated (each 2-byte word has
to be redefined as PIG S9(4) CC~P and each then subtracted from
-1) •

Now reports will be produced in specified order letting the print
program perform a sequential read of the TAG-file on the proper
key. No temporary sortfile will be nessesary, i.e. no further
uncontrollable disc space gets involved.

Note. that a TAG-file is very easy to recreate since a simple
batchprograrn will perform a serial read on the IMAGE master and
write a new record in the TAG-file per master entry.

Use up to 16 alternate keys in a TAG-file and note the advantage
of compounded keys, e.g. customergroup/custornernbr. in order to
produce more sophisticated sorted reports.

A TAG-file is maintained by the same program that maintains the
masterfile to ensure the two files to be synchronously linked
together.

4.1.4 The GLOBAL ~PE-files

GLOBAL ~PE-files is defined as periodically created central user
files reflecting data already present in the database. After use
tney may be over-written. An example is the Interest Journal
(INJOUR) which will be created by the user once a month during an
automatic batchprocess. :his process will perform the proper
aatabase tipdate itself (DBUPDATE CUSMST, DBPUT CUSHST. DBPUT
CUSOP~) and write recoras to INJOUR. Afterwards INJOUR is used to
produce the Interest Notes and to printout the Interest
Transaction Journal, but the two latter jobs with no database
chan~es (always print without updates for easy ways of reprint
due to for instance paper jam or spooler failures).

GL03AL MPE-files can be either sequential files or KSAM files.
The INJOUR file is a KSAM type, the primary key being customer
number. The process creating the file will perform a serial read
on CUSMST in the database. but the resultant INJOUR will
automatically be in customer order ready for printout.

To summarize, tne GLOBAL files are divided into IMAGE databases
(SYSBAS. AFRBAS), KSAM TAG-files (e.g. CUSTG1) and GLOBAL
:1 PE- files (e.g. INJOUR) •

4.2 LOCAL files

These files are exclusively owned by each operator and thus
located in his ~roup. They are defined as the GLOBAL MPE- files
except for the fact that they are created and maintained locally.

An example is the ordinary User Posting List which contains a
recora per posted voucher in chronological order. When an
operator posts a customer invoice. PiC0~/3000 will perform a
DBPUT CUSHST DBPUT CUSOPN, DBUPDATE CUSMST and a simple write in
tne Postin~ ist (PLIST). Whenever the operator wants to have his
journal prin ed. tne Posting List may afterwards be over-written.

421

422

4. 3 wORK-files

A WORK-file is defined as a ~PE-file being used temporarily by
certain routines in one program. They will not be known by
operators and not even by MGR, since they are created, used and
purged invisibly.

PiC0:-1/3000 only uses that kind of files on two occasions and the
programs themselves will calculate the needed filesizes on
creation time. This is accomplished by reading the EOF's on the
permanent files or sets that the WORK-files must hold (see
chapter 7.9).

Thus a FILE-COMMAND followed by a COBOL OPEN OUTPUT (see chapter
5,5) will create the WORK-file in the actual user's group and
AL~AYS with NUMEXTENTS,INITIALLOC : 32,32. If the disc space
cannot be provided, operator is notified and the task will not
begin at all.

5. Program structure

All program files. the SL
<systemgroup>.<systemacct>
present in SYSBAS so that
when an operator logs on.

and the formsfile are located in
selected by the client. Both names are
PiC0~/3000 can run the prope~ programs

You may consider your programs divided into five different types:

5. 1 Subroutines

Subroutines are owned in common by the entire application and are
placed in SL (Segmented Library). A programmer recognizes them ·by
$CONTROL DYNAMIC as compiler options and they are compiled to
their own unique USL-file. After compilation this USL is added to
SL by SEG:-1 ENTER.

5.2 Stand alone MAIN programs

These programs constitute all the background jobs, primarily the
printprograms. They will have $CON~ROL USLINIT as options and are
also compiled to unique USL's. After compilation. the specific
USL is PREP'ed into a new programfile, the old one being purged.

5.3 Interactive SUBPROGRAMS

The interactive on-line parts of PiC0~/3000 consist of many
subprograms linked together around a small basic root program
(which is a MAIN program). Each on-line application is tnerefore
jus~ one large programfile to the HP3000 and may be :RUN in
ordinary way.

A subprogram will have the same compiler options as a subroutine.
When. compiled. the USL-file must be the USL common to the entire
on-line application. Afterwards that large USL is PREP'ed.

Note, that the small MAIN root program does not compile with
USLINIT for obvious reasons.

Each on-line application is really a son process under one common
father.

5.~ The FATH~R orocess

One father process will function as an umbrella (or MASTER MENU)
to tne various on-line applications. The father is just an
ordinary MAIN orogram and compiled as such except that "PH" must
be specified when PREP'ed.

There is at least one good reason for subdividing the system into
a number of son processes = on-line applications. That reason
lies in the limitations of a programfile that HP3000 imposes upon
you: b3 is the maximum number of segments in a programfile. COBOL
will by default assign 1 segment per unsegmented COBOL
subprogram, but you may rearrange more subprograms into 1 segment
using the SEGMENTER. Even so you might as well plan from the very
start to handle more than one on-line application. ~o do so, the
father process is needed to present the overall master menu and
to CREATE and ACTIVATE whatever son the operator whishes to
perform. ~hen the operator exits from that on-line application,
control is automatically returned to the father, i.e. the
operator gets the master menu again.

The main disadvantage by having more than one on-line application
is that you will experience significant wait time on the
terminals when shifting from one application to another. Once you
are inside an application you will have reasonable speed between
forms. Furthermore you cannot branch directly from one form in
one application to another form in another application. This
leads to great care when planning how to divide a logically
united system into separate on-line applications.

In PiC0~/3000 we nave two applications at the moment: one to
handle all the maintenance on the SYSBAS database and one to
hanale General Ledger, Customers and Vendors. As a matter of fact
we could actually gather all our subprograms in just one on-line
application, but it seems more realistic to start with a divide
in oraer to cope with future extensions in an easy way.

Note. that a division into more sons
underlyin~ aata structur2 and that the
follow tne applications, PiCOM/3000
formsfile. Actually, you could also
father and one for each of the sons.

5.5 Utilitypro~rams

is independent
formsfiles do not
only has one

have one forrnsfile

of the
have to

common
for the

One of the benefits of IMAGE is that it frees you from developing
all the traditional support-tools to cope with installations,
conversions. creations, disasters and the like.

PiCOM/3000 uses only two utilityprograms to be frequently used by
the end-user:

i1 An ordinary AAIN program driven by accept/display to alter
filesize on all GLOBAL non-IMAGE files.

MGR enters the DATA group and by running AFRGLOB he will be
prompted for each GLOBAL file whether to create it and if so,
the capacity and number of extents. All extents will always
be allocated. default being d if omitted.

AFRGLOE will by means of the COMMAND intrinsic issue the
relevant FILE command and a PURGE of the old file followed by

423

424

a COEOL OPEN OUTPUT
RELEASE-commands will
to all users.

and CLOSE. Finally, the SAVE- and
maKe the file permanent and available

Note, that MGR may . want to perform this when extending
filesize to match larger IMAGE sets, but also as a means to
temporarily scratch files by setting capacity = 1

£2 Another, but similiar program (AFRLOC) to alter LOCAL files,
being run in the users' groups.

The two programs may be used whenever a file is in a state where
it could be overwritten by the users.

6. Running the system

What will happen when a user logs on?

The only way he can do so is to type :HELLO <user>.<acct>, user
being his initials, e.g. ABC, and acct being the company name on
abbreviated form, e.g. Acme Company Ltd. just ACME. ~his person
will then logon with :HELLO ABC.AC~E.

~he previous mentioned STARTUP UDC (set per user) will now be in
effect. as it contains:

STARTUP
OPT IO~l ;.oGON
OPTION :JOBREAK
SETFIL
RUN AFR001.<systemgroup>.<systemacct>;LIB=G
RESET '!
BYE

If the client changes the location of tne programfiles. SL and
the formsfile, he must accordingly alter the RUN-statement in the
STARTUP UDC. ·The LIB parameter is set to "G" in order to search
the SL in the same group where the programs are run.

The SETFIL UDC is set per account and contains all necessary file
equations, e.,;.:

SETFIL
OPTION NOLIST
FILE SYSBAS=SYSBAS.DATA
FILE AFRBAS=AFREAS.DATA
FILE CUSTGl=CUSTG1.DATA;SHR;LOCK
FILE INJOUR=INJOUR.DATA;LOCK

Only the GLOBAL files (all residing in DATA) need to be equated.
Note that SETFIL is independent of account name.

Since MGR has not the STARTUP UDC set he will be able to enter a
user's group by for instance :HELLO MGR.ACME,GABC and perform
various "1PE tasks. If he is also established as an ordinary PiCOM
operator he will also be able to run the system.

6.1 Logan

As you ~ay have guessea. AFROOl is the father process in the

system (the master menu).

In short this program will perform all logon routines, such as
setting up the file equation for the formsfile (by getting the
names on <systemgroup> and <systemacct> from SYSBAS), open the
formsfile ana open the user's terminal as a file. By the "WHO"
intrinsic the ~PE username will be obtained (e.g. "ABC") and then
used as a key item to search this operator as a valid PiCO~ user
in SYSBAS.

For reasons to be discussed later an operator can only work on
one terminal at a time in PiCOM/3000. If his data in SYSBAS
already contains a value on "current active terminal". the logon
routine will not allow further process.

Finally, if the operator passes all logon tests, the master menu
is presented and the operator may hit his choice. This will cause
the father process to CREATE and ACTIVATE the selected on-line
application. Then the father closes his files which later on has
to be opened again by the son and thus explaining the wait time
at this point in the system.

6.2 The root program in the SONS

The on-line 3pplications (sons) consist of many subprograms built
around a small !nain program functioning as the root. The root
program in each application represents the entry point to the
entire programfile and will in many senses have functions
similiar to the father program.

It will first open the ~YSBAS database using the reserved IMAGE
password (the one located in SL) and get the operator's data by
means of the "WHO" intrinsic (as done by the father program). It
will then reopen SYSBAS and open AFRBAS using this operator's
n1AG2 password.

Then the formsfile and the terminal will be opened by calls to
tne VPLUS procedures "VOPENFOR'ff" and "VOPENTER~" using C0~1AREA
and the respective filename. Note, that the father has already
established these file equations for the session. which means
that the son only has to know the formal file designators
("AFHSC" for the formsfile, "SKAR~" for the terminal).

It has been mentioned, that SYSBAS contains what is called GLOBAL
FLAGS. ~hese flags determine how PiCOM/3000 is configured for
this account (this company) and thus serves as options for t·he
clients. Some may only need the system defaults and run PiCOM in
its simplest form. others may want more advanced features, for
instance whether open items should be used at all. Some global
flags can not be altered after configuration. others may be
changed freely. All global flags reside in the SYSM01 dataset of
SYSBAS and virtually every PiC0~/3000 program will have to read
the value of one or more of those flags. In order to avoid
excessive DBGET's on SYSM01 the root program initializes all
flags on the user's data stack making them available to all
subprograms through the LINKAGE SECTION.

finally the MAIN MENU for the on-line application is presented
and all global formst'ields (CO~AREA) and the global I~AGE area
(DB-AREAS) defined in WORKING-STORAGE (tne root program cannot
have a linkage section).

425

426

From that point on all that the root program does is to permit
the operator to walk back and forth in the menu hierarchy until
reachin~ a point where not a new menu. but an application form
with an associated subprogram is requested.

You may therefore consider the root program with the VPLUS menus
to be the driver of the on-line application in the sense that the
name of the subprogram being called entirely depends o~ the NEXT
FORM NAME from VPLUS (communicated through COMAREA). The menu
forms themselves does not have any associated subprograms since
they only serve as paths to the operator until he gets to a point
where a programmatic function has to be performed. Walking
through the menus is therefore very fast since it only involves
shifting of forms by the root program without any subprogram
calls.

b.3 The SUBPROGRAMS

When leaving the menu level (the root program) VPLUS already
knows the name of NEXT FORM and a called subprogram will
therefore always perform a housekeeping routine with calls to
VGETNEXTFORM, VINITFORM and VSHOWFOR~. From here on the
subprogram will loop VREADFIELDS, VGETBUFFER and <perform program
routine>. ~hen the operator terminates his task, he will return
to his offspring, i.e. the nearest lowest me~u. The name of that
menu will be set as NEXT FORM ~AME and an EXIT PROGRAM statement
in the subprogram will return proper control to the root program,
- and the menu structure is available again for the operator.

So once you are getting familiar with it, it is really not so bad
to have the programs separated from the forms! As we will discuss
later your system will improve, though, if you program your own
interface to VPLUS, i.e. make common routines for accepting and
displaying data. getting ~ new form and so on. Concentrate all
the various VPLUS calls in these common routines. because VPLUS
needs a lot of calls with a lot of testing afterwards.

Observe, that the separation between forms and
the effect to the operator that the new form
screen seconds prior to the associated program
datainput or output.

6.4 Having background jobs run

programs often has
will appear on the

being ready for

Quite often the operator wants to print a certain report as a
background job, i.e. not preventing him from further interactive
dataprocessing on the on-line applications while the report is
being prepared and actually printed.

How do you handle the communication between
application and the background batchjobs?

the on-line

Every background program will in principles need two sources
before it can be run:

£1 A STREAM file (called a "T-file" by PiCOM/3000) that among
other things will issue the nessesary file equations and the
ultimate RUN command.

£2 A program- or job-control file (called "WRK-file" by
PiC0~/3000) which is really an old fashioned punched card
since it only contains one record (more than dO characters,

though) telling the batch pro~ram exactly what to do; in
which order. on which data, with which subtotals and so on.

Primarily the WRK-file will be a copy of the screen buffer
that holds all the operator's instructions to the
batchprogram. The GLOBAL LINKAGE FLAGS are however always
added in order to free the batchprogram from those readings
in SYSBAS.

Any subprogram in an on-line application therefore calls a
specific subroutine in the PiCOM/3000 SL called "TFCREAT" using
T-file data and WRK-file data.

The TFCREAT subroutine then gathers the remaining information to
both files and first writes the WRK-file (only one job control
record) on disc and then builds up and writes all the records in
the STREAM file (the T-file). At last the subroutine will stream
the T-file (that will !RUN the desired background program) and
then PURGE the T-file afterwards.

First thing a background program will do, is to read the WRK­
file with all its program instructions and issue a COROL display
of the entire record content. In this way the HP3000 JOB-list on
asTDLIST always shows the commands from the T-file and the actual
WRK-file data. Note, that both the WRK-file and the T-file is
placed in the actual user's ~roup, but that the job is performed
by the user BATCH.

Since our design allows $STDLIST to be varied per user the
JOB-list can eitner be directed to local printers, system
printer, disc or whatever. Also LDEV is specified per user and
that is really the re~son why there is no printfile equations in
the common SETFIL UDC since this equation is first to be solved
at the time a print j~b is requested. The T-file contains that
equation given by TFCREAT. Also the actual paper format on a
certain report is variable, the information stored in the company
dataset in SYSBAS and passed to the WRK-file by TFCREAT and thus
given to the printprogram (which will further ~i·ansfer the values
to the printer interface in PiCOM/3000).

In summary, this wnole printer handling concept gives the user
maximum flexibility to have his printer environment configured
after his own needs and not dictated by the application. In a
distributed organization you may for instance choose HEAD OFF and
set $STDLIST in PiCOM/3000 to "LP,2" per user. This will print
only application output on all printers and thus give minimum
paper waste. Note, that "LP,2" will direct JOB-lists to disc due
to low value compared to OUTFENCE.

One thing to be aware of in the T- and WRK-file technique is that
every user is able rapidly to request the same background program
many times within a second by hitting the correct function key on
his terminal over and over. This mignt lead to a lot of duplicate
discfile names on the T- and WRK-files unless of course machine
time is part of those filenames. This problem is also solved by
TFCREAT that assigns the actual filenames and then equates them
properly. For instance, each background program will open and
read a file named WRKxxx (xxx being the number on the calling
subprogram in the on-line application). The WRK-files are PURGED
by a command in the T-file so that neither the T-file nor the
WRK-file will be floating around on the disc after use.

427

428

An example of the TFCREA~ process is shown in chapter 7.8.

b.S Batch processing can also be real time

We deliberately use the term "background program" instead of
"batch job'' since you also may need some on-line batchprograms in
your application, i.e. a batch process can be either background
(a HP3000 JOB) or part of the on-line application (a HP3000
SESSION). ~hen for instance PiCOM/3000 performs its period-end
routines this is done on-line and with exclusive database access
so that no other user can run PiCOM/3000 concurrently in that
account (all terminals must log off).

This routine is then an example of an on-line batch process, the
period-end request form being permanently showed on the terminal
until the process is over and the resulting output produced on
the printer. This type of program has nothing to do with the
TFCREAT subroutine, though the technique for printfile-equation
and handling may be the same.

b.6 The length of the job queue

How to cope with the time delay between a request for a given
background program and the same program actually being run?

Depending on the entire system load, considerable time may elapse
before the user has the wanted report in front of him on the
desk. This also me~ns to a real time package like the PiCOM/3000
that the data on the report will not reflect the status on print
request time, but some later status including data changes
between request and actual run.

Our approach to this problem is in fact very simple: the back­
ground printprograms will report what is in the database at run
time.

Furthermore. we do not allow a background job to wait forever to
get read .access to data, that is if a database or some datasets
are impossible to open for the printprogram in simple concurrent
read moae, PiCOM/3000 simply lets the program terminate itself
with a remark on the JOB-list. In an accounting package like
PiCOM/3000 this is rarely to nappen, but may occur, though. All
GLOBAL and LOCAL ~PE-files, for instance, are carrying all needed
master set items themselves (such as name, address, balances) so
that full printouts are produced even without database readings.

Note, that the user BATCH always gets the reserved IMAGE­
password by convenience, the operator's capability list is
determining how much he in fact can ask BATCH to do, i.e. which
types of reports ne can run.

We do not find these rules hostile to the user since they are
easily argumented and understood. Consider the design
implications if any report should be absolutely synchronous with
operator request: all batchperforming would have to be done
within the on-line application, hooking up the screen terminal
while printing occurs (as described earlier as on-line
batchprocesses). Other computers actually ~ork this way. but it
would be bad usage of the HP3000 JOB technique to do so. Not to
mention all the further problems with the max. 63
number-of-segments bottle-neck in the on-line applications caused
by moving all the stand alone main programs up as subpro~rams. In

our General Ledger/Accounts Payables/Accounts Receivables
application ~ore than half the programs are main programs.

But IF some printprogram by nature always MUST complete when
requested, take it up as a subprogram. We recommend so for the
printout of the users' Posting Lists (PLIST).

7. The application SUBROUTINES (SL)

Now we have carefully outlined the program structure concerning
FATHER PROCESS (master menu), SONS = on-line applications = many
SUBPROGRAMS linked to a root program and stand alone MAIN
PROGRAMS (background jobs).

Remaining is the common SUBROUTINES placed in SL (Segmented
Library).

By nature many of the subroutines will act as interfaces to
v~rious environments in the HP3000. Below we shall shortly
discuss how PiCOM/3000 benefits from its SL.

7.1 VPLUS interface

Program your own interface to VPL·US in SL. PiCOM/)000 manages
well with only three entry points for GET, READ and SHOW forms.

It is especially important that only the common subroutine
actually detects wnat function key is depressed and decides what
action to take. i.e. what further VPLUS calls to perform and/or
which fields to alter in COMAREA.

Use a mode parameter with the call to your VPLUS subroutine in
order to assign different functions to the f-keys.

7.2 Breakin~ the blockmode

Why would you want to
application? ~hat

character-mode.

break the blockmode
is. sometimes turn

in a VPLUS-driven
the terminal into

One example: every time the operator requests a background job
MPE will signal the job-number on his terminal using the first
available input field or fields on the current form.

If there is no input fields at all on the form, the cursor will
flicker in line 1 position 1 while beeping. If there is only one
input field of cine character, you will get the entire MPE message
letter by letter.

Certainly it would be nice to control for example line 24 to such
purposes.

Setting the terminal for character-mode (accept/display) is only
a question of displaying the correct escape sequences to turn
blockmode off. Other escape sequences have to be transmitted in
oraer to set the blockmode back on.

Since coding of escape sequences is a bit awkward, a simple
suoroutine with two entry points will solve all problems:

429

430

ENTRY "F40N".
DISPLAY "<esc>W".
EXIT PROGRAM.

ENTRY "F40FF".
DISPLAY "<esc>X".
EXIT PROGRAM.

If you want to displa·y the text MYMESSAGE on line 24 this is all
you have to do in a subprogram:

CALL "F40FF".
DISPLAY LINE24 "MY:..1ESSAGE".
CALL "F40N".

LINE24 is defined in WORKING-STORAGE as PIC
"<esc>&a23r00c''.

x (1 0)

7.3 Posting interface handling DATA LOCK and IMAGE LOG

VALUE

Also concentrate all database updates due to regular posting in
common SL subroutines. This is especially feasible in an
accounting system since posting to for instance Accounts
Receivables always performs exactly the same data processing
routine no matter in what program or in what context the posting
was done.

The far most valuable benefit from this approach is a centralized
way of handling and controlling the data locking problem.

To illustrate this. let us take a look at our subroutine for
Accounts Receivables posting (entry point CUSTUPD).

The call to CUSTUPD is accompanied by a ~ODE parameter and of
course all the data the operator typed in on the bookkeeping form
(such as customer number. date. voucher number, amount and so
on). At this point the operator has already visually been
intormed that the customer actually exists by having his name and
address displayed on the form. but this was only due to a simple
read in the database.

When CUSTUPD is called the customer will tie read again, this time
covered by an unconditionally IMAGE DBLOCK MODE5 on data entry
level rather than dataset (only causing wait time if that
specific customer is already "busy" at another operator).

The MODE parameter specifies to CUSTUPD ~hat type of transaction
it has to p~rform, i.e. must a new open item be created or shall
an existing open item adjust? To complete the transaction CUSTUPD
has to DBUPDATE CUSMST, DBPUT CUSHST, DBPUT or DBUPDATE CUSOPN.

Since multiple datasets are affected, the following rules are
implied:

£1 The lockdescriptor used with the call to DBLOCK must cover
all relevant datasets in order not to use MULTIPLE RINS, - we
consider it part of a user friendly concept that deadlocks ex
definitione is excluded from the application.

£2 Since all changes in the database are controlled by the
subroutine. let the subroutine set the DBBEGIN and DBEND
marks around the complet~. logical transaction in order to

use the IMAGE Transaction Logging And Recovery System in the
right way.

~e have earlier mentioned the need for certain on-line
batchprograms, for instance period-end routines. These
routines consider all the postings as one whole logical
transaction. but since each posting is still executed by
CUSTUPD, CUSTUPD must not do the DBBEGINS/ENDS in that
context, - this must rather be done by the subprogram at BOJ
and EOJ. In PiC0~/3000 a minus ("-") in the signed MODE
parameter tells CUSTUPD not to DBBEGIN/END.

£3 Since the subroutine knows which datasets are to be affected
by DBPUTs, let the subroutine verify in advance that ALL
datasets still hold free space for more entries.

This is easily done on I~AGE by calls to DBINFO and on
MPE-files by the FGETINFO intrinsic. If not. that is if just
one dataset or file is already full, the subroutine will
return to the calling program with an error message notifying
the operator that further posting is impossible until files
are expanded.

Note, that on-line batch-processes cannot rely on the posting
subroutines (such as CUSTUPD) checking free disc space in the
affected datasets each time they are called since it is the
successful result of ALL the postings that matters. Therefore
these programs will have to consider the total need for free
disc space, - and to check the availability of that before
they will execute.

If a batch-process does not involve postings we always drop
it down to a background joo (a stand-~lone MAIN PROGRAM),
This is ~;ie case for ordinary reports and they will not
involve disc space considerations since no sortin~ is done,
when driven by TAG-files that already specifies the sorted
order.

finally it should be mentioned, that associated writings in
GLOBAL or LOCAL non-I~AGE files must be accomplished by the
calling subprogram which opens those files, NOT the
subroutine CUSTUPD.

Furthermore, these writin~s should
CUSTUPD. IF something goes wrong.
last record in PLIST will determine
was the last to complete.

7.4 Disc I-0 interface

be done PRIOR to calls to
inspecting for instance
what database transaction

An interface betwen the programs and the disc I-0 will give
benefits to any application:

Safer and faster coding, the programmer being able to
concentrate on logics, not how data is transferred.

More releiaole and secure system when in production due to
centralized filecontrol.

Better operator-interface by means of standardized error
messages.

431

432

More machine-independent system (what type of operating
system will HP use on future 32-bit machines?).

On PiCOM/3000 the disc I-0 interface consists of:

£1 One common I-0 subroutine in SL that will
set the proper way (DBPUT, GET, UPDATE,
forth) and return what has to be returned
DB-AREAS.

access any IMAGE
OPEN, CLOSE and so

to caller using

£2 A file handler in COBOL code placed in a copy library. Each
IMAGE set has its own handler to be copied into PROCEDURE
DIVISION.

The handlers even accomplish all the links between an IMAGE
master and its TAG-file.

To perform an I-0, all the programmer has to do is to load
the key-field in DB-AREAS and then for instance PERFORM
GE~-NEXT-CUSMST. ~he handler will then deal with the proper
KSAM TAG-file readings and call the I-0 subroutine.

The number of code-lines in a handler is extremely low and
will generally decrease sizes on source files.

Any HP3COO error message from IMAGE, MPE or KSAM is channeled
through the I-0 interface allowing PiCOM/3000 to present any such
error in a consistent format for the user.

Furthermore. the I-J subroutine easily detects whether caller is
a SESSION or a JOB and then routes the error message to either
line 24 on the terminal or to $STDLIST. COBOL will interpreet the
MODE-parameter returned by a call to the "WHO" intrinsic by:

01 WHAT-ARE-YOU
d:; W-SESSION
od W-JOB

PIC S9(4) CO~P.
VALUE 0 THRU 7.
VALUE d TflRU 15.

Key, file- or setname, error code and error text are always
provided and if a session, a dummy accept is fo~ced to halt the
process until the message is discovered.

7.5 Printer interface

Use SL to hold a central interface between all appli~ation
programs and the printer(s). Do not let any program contain the
traditional OPEN, WRITE and CLOSE statements, but be sure to have
one SL sub~outine with appropriate entry-points for those
purposes.

In PiCOM/3000 these are POPEN. PWRITE, PEJECT, PCLOSE sharing a
global area (PF-AREA) containing all necessary information to let
the subroutine handle the further calls to the HP3000 intrinsics
"FOPEN", "FWRITE" and "FCLOSE". Furthermore, our subroutine keeps
track of pagenumber and linecount, freeing the printprogram from
dealing with those trivials.

Since PF-AREA among other fields contains the printfilename, name
on logical outputdevice. logical and physical pagehight, you may
recall that the TFCREAT subroutine is providing the correct

values of those fields as part of the WRK-file. When a
printprogram reads the WRK-file, it will load PF-AREA with the
given information in its housekeeping.

To write a line on the printer then only requires setting of the
lineadvance factor followed by a call to "PWRITE" using PF-AREA
and <print-image>.

A central subroutine for printer output will furthermore allow
your system to adapt easily to future (and present) advanced
printer options. e.g. those demanding special escape sequences
being transmitted to the printer in order to invoke certain
functions (compressed print, for one thing).

7.6 What about hard copy printers?

Will the PiCO'l/3000 print-device approach also manage hard copy
printers plugged in at the back of the screen terminal to produce
application print-out?

In no way at all, but we believe this is to blame on VPLUS,
rather than on the approach itself.

Since VPLUS applications open the terminal as a file you would
have to close that file in order to get application output
through the terminal and furttrnr out to the hard copy printer.

And by closing the terminal-file the entire on-line application
is taken down in some unpredictable state from which it cannot be
brought Dack, not resuming nicely from the breaking point,
anyway.

Note. that even a hard copy printer connected with an HP264x type
terminal will not produce copys of VPLUS forms using the special
yellow and 0reen function keys in copy mode.

If you are planning to use the unsupported utilityprogram
"PSCREEN" to print out VPLUS forms you will be disappointed by a
not very nice result.

Happily the built-in thermo printers on top of some HP262x
terminals provide nice copys. but since any application should be
devised with a formal procedure to print a copy of any form to
any printer this apparently has to be solved using the VPLUS
procedure "VPRINTFOR'1".

Apparently, because we have not actually tried it out yet, but it
looks like this procedure will allow us to withhold our principle
of independent printdevice per operator by means of file
equations.

7.7 Background job interface

Determine how to link the background programs to the on-line
applications and let that communication be handled by one
powerful SL subroutine like "TFCREAT", mentioned previously.

One thing to add, is that TFCREAT signals the MPE
(£Jxxx) on the terminal. Unfortunately this is
communication between the operator and the job,
therefore still lacks methods which will enable the
to ~onitor its own jobs.

job-number
the LAS'I'
PiCOM/3000

application

433

434

We can illustrate the TFCREAT process by assuming the following:

At time 10:28:04:60 TFCREAT is called by the user ABC in the Acme
Co. Ltd. from the printselect subprogram AFR071 to stream a
printout of Gen. Ledgr. statements by the main program AFR072.
ABC has his LDEV set to "LP" and $STDLIST to "LP,2". Acme gave
the user BATCH the MPE-passwor1 "NOHO~E". They have all their
programs in the PUB group within the AC~E account.

TFCREAT will perform by gathering all the above mentioned data
from SYSBA.S;

FILE WRKFILE=W02d04HO
OPEN OUTPUT WRKFILE
WRITE WK-RECORD
CLOSE WRKFILE
SAVE W02804d0
RELEASE W02d04d0

FILE TFILE=T0280480
OPEN OUTPUT TFILE
WRITE !JOB J02d0480,EATCH/NOHOME.ACME,GABC;OUTCLASS:LP.2

!TELLOP **** AFR072: GEN. LEDGR. STATEMENTS ****
!SETFIL
!FILE ~02d04dO=dRK071.GAEC
!FILE'C0090011;DEV:LP;CCTL
!FILE PICOM=*C0090011
!RUN ·AFR072.PUB.AC:1E;LIB:G
!PURGE W02c04d0
!EOJ

CLOSE TFILE
STREAM T02d04c0

DISPLAY JOB-number on line 24

PURGE T02b04dC

By cutting off the left-most time digit the risk for duplicate
filenames are as close to zero as possible.

The printprogram will open input file WRK071 and read the one
record with all the operator instructions.

The printer interface always opens a printfile called "PICO~",
but this would give very bad information on :SHOWOUT, since all
waiting reports would have the same filename.

Therefore this naming is applied:

Any report belongs to a certain PiC0~/3000 printclass, e.g. "C"
for width = do columns.

Any report has a unique PiC0~/3000 reportnumber, e.g. "009".

Any company (HP3000 account) has a unique number of its own, e.g.
"0011", determined by the client.

By this method. : SHO'JOUT will always clearly identify all
spool files.

7.d Information on available disc space

We have earlier stressed the importance of proper control
mechanisms within the application to investigate free disc space
in various file types prior to any disc consuming transaction
(whether a transaction equals one interactive single posting or
whether a whole on-line batchprocess forms one logical
transaction).

To that purpose one subroutine in SL will streamline the
programming since this one program alone deals with "DBINFO" and
all the more specialized intrinsics like "FOPEN". "FCHECK",
"FGETKEYINFO", "FGETINFO", "FCLOSE" and so on.

A global communication area (FI-ARRAY) is used by PiCOM/3000 in
calls to that subroutine in order to facilitate easy ways of
calling the routine and have the results transmitted back to
caller.

Filetype (IMAGE. KSAM. MPE), file- or datasetname
databasename must be specified and limit, eof and number of
records or entries will be returned.

and
idle

In PiCOM/3000 the "FILEINFO" subroutine also covers a comparison
between the number of entries in an I~AGE master dataset and the
number of active records in the associated KSAM TAG-file since
many crucial programs are driven by TAG-files and since this
comparison is the only feasible way to determine that the
database and the TAG-files are in fact synchronous.

To ~inimize that risk however. the period-end routines should
always recreate TAG-files from scratch.

7.9 Date routines

The PiCOM/3000 SL holds some very important date subroutines
because dates always represent important data to any accounting
system. :hus we have small routines (or entry points to a common
program) for convertin~ filed;oite format (always YY~~1'.IDD) to
useraate format (individual per company by GLOBAL FLAG setting)
and vice versa. for computing number of days between two dates
and for addin~ "n" days to a certain date (computing duedate).

d. Using the RL

What to put in RL (Relocatable Library) then?

To be frank, PiCOM/3000 does not use RL at all. In that respect
we entirely agree with bibliography (5). p. 51. ,

9. Backup and recovery

You might argue. that if the application is run with LOGGING
ENABLED. what is all the fuzz about datasets running full in the
middle of a transaction? All you have to do is aimply to recover
from the logfiles up to the latest complete transaction.

Yes and no.

435

436

For one thin~. not all users will actually want to enable logging
due to the man2ge~ent of logfiles it involves, - and the costs.
Lo~files may even run full, too!

Anyway. it is still easier co expand files only instead of
performing BOTH recovery AND expanding. Never use transaction
logging as an excuse for built-in weaknesses in your application.
but as a means to recover from outside problems, e.g. hardware or
file restraints. And be pretty sure your design fully supports
the recovery situation.

In case of a file structure
sufficient barely to recover
KSAM and other MPE-files,
reconstructed to synchronize

like the one in PiCOM/3000 it is
the global IMAGE databases, also
global or local, must easily
with the databases.

not
all

be

Any TAG-file is derived by a simple serial read on the associated
manual IMAGE masters, as pointed out earlier.

Any PiCOM/3000 MPE-file is identified by a journal number which
is also stored in all history entries in the database together
with operator initials.

Since operator initials equals MPE username and since SYSBAS
holds entries of all operators with name of homegroup. it is
actually possible to pert'orm a recovery routine laying out all
LOCAL MPE-files (e.g. PLIST) in the correct usergroups based on a
scan of the history datasets.

GLOBAL MPE-files, like the INJOUR. is restored similarly, but
always in the DATA grouo regardless of creator.

If you cannot recover the ENTIRE file structure using the HP3000
IMAGE log, but have to backup just one non-IMAGE file parallel to
the lo~ by ordinary :STORE at selected break points. you are NOT
using Transaction Loggin~ 1t all in our point of view!

To go a bit further. it is even not enough to be able to
reconstruct all the non-I~AGE files based on the database
content. The ultimate recovery technique will bring any operator
back to the very point in his session where the crash occured.
Therefore you ALSO have to provide the status of internal sum
registers per operator, so that when he enters his program again
to continue the task. that program is able to get its previous
memory status again from somewhere.

But since each operator has his own data-entry in SYSBAS, this is
where to keep and maintain that information for possible
retrieval. This however implies new updates to every interactive
posting, thus presenting new conflicts as to whether a system has
to be fast or robust and secure.

Really, the PiCOM/3000 operator datasets form a small database
within the SYSBAS database, not just holding an entry per
operator. but consisting of various sets and types of sets.

10. Programming hints

When an application design is fully jeveloped. one may argue that
all the actual programming or coding is just simple tools with
which the design ~oals is reached and that the programmer's work
is not to be concerned about by the designer.

Our experience is on the contrary that no matter how good the
design may be, the end-product will not appear as the system it
was ment to be. UNLESS the designer is very careful monitoring
the coding phase and UNLESS he sets up certain coding rules to
support the design.

437

We do not see how designing and coding can be totally separated
and suggest that the designer is also capable of programming to
some extent.

Some programming hints are hopefully already given in the
previous chapters why we shall only attend a few more areas
within this chapter of special interest to our design concept.

10.1 Easy translation to foreign user language

Consider English as the universal language for all software
experts. Tnerefore keep all your code in English.

This rule seems so self-explanatory that it hardly needs to be
mentioned, but it will actually impose some very important coding
rules upon the programmers. rules that will ensure an end product
wnich also foreign softwarehouses will buy and accept as a
marketable system in their own country.

When you export applications like an accounting package. you have
to rely on local software support and hence avoid to have to
translate tne sourcecode also.

Let all I~AGE SCHEMA oefinitions be in local language except for
those items that will be aadressed directly in the COBOL code.

Tnis will allow a foreign user to perform a free standing manual
SCHEMA translation of all (or almost all) IMAGE items and their
definitions via EDIT/3000, thus making him able to obtain full
benefit using QUERY (or the RAPID products).

In fact. the ~eneral rule is to perform all IMAGE I-O's using the
''ALLITE~" mode, i.e. always process the entire data entry, never
a single item. By doing so. any COBOL program needs only know the
DATABASE names. the DATASET names and the names on SEARCH- and
KEY-ITE~S.

Those will be the ones never to translate in the SCHE~A and hence
they are created with English naming.

This concept leads furthermore to the advantage of defining all
data entries as COBOL WORKING-STORAGE records in a COPY LIBRARY
using COBEDIT/30QO. The copy library will not have to be
translated ever since all record fields are in English like
everything else in tne source code. Remember to assign a COBOL
prefix to eacn record (= IMAGE entry) in order to solve the
qualification problem of items belongin~ to more than one set.

COBOL literals like user messages must be in local language

438

though. why exporting the sourceprograms only neea a translation
of them.

Unfortunately a formsfile cannot be accessed by a user written
program (as far as we know) and therefore no utilities can be
made to ease the replacing of screen texts by new ones in another
language. Likewise for the programmed comments in the Field
Processing Specifications.

On the other hand, the form fields themselves
are of no interest to the end-user and we
naming of them according to the standard of
record fields in the COBOL copy library.

and the field names
therefore suggest a
English naming of

Summing up, an export of the entire system will need the
following tasks to be performed:

£1 Translate the IMAGE SCHEMAS using the EDIT/3000, but do not
translate database, set, search- and key-items.

£2 Use FORMSPEC to rewrite all screen texts and comments.

£3 Run a utility program that will present all COBOL literals
and allow new values to be replaced in the source code.

10.2 Using FOH~SPEC

We have made a strong effort to design a general screen layout to
be used by any form throughout the accounting system in order to
produce a unique and pleasant user interface. As shown below each
form will occupy a standard frame on line 1 throu~h 5 and on line
23:

1
2 RED

PiCOM ACCOUNTS RECEIVABLES
PICl 10-2 23

3 ---4 CUSTOMER MAINTENANCE COMPANY: Acme Co. Ltd

5 ---6
7

22

23 ---24 <error messages>

Module name:
Template:
Form name:
Terminal number:
Routine name:
Company name:
Window:

ACCOUNTS RECEIVABLES
RED (colour identifies function keys)
PIC1102 (second form used by subprogram PIC110)
23
CUSTO~HR :HINTENANCE
Acme Co. Ltd (company in this account)
Line 24 (comments and errors)

The value of a standardized form is tnat the operator quickly
learns where on the screen to identify the present working point
within the application. The routine name will change when~ver he

enters a new subpro~ram in the application, whereas the module
name first chan~es wnen entering another main branch in the menu
tree structure (modules are Accounts Receivables, Accounts
Payables, General Ledger). The company name is constant
throu~hout the session. since it only changes by a new :HELLO to
another HP3000 account.

Having each subprogram name identified by the form name makes it
very easy to locate user reported errors simply by letting the
user give you the number showed on line 2.

We also beleive the standard frame is making the operator
confident towards the application since any routine or selection
is presented in an already familiar way. This is also true when
it comes to operating the terminal. Therefore all identical
routines are assigned the same key functions.

On the older HP264x terminals this is employed
templates of different colours to be placed
special function keys.

Examples for '1aster File Maintenance (RED) and
Accounts (ELUE) are:

b:NTR f1 f2 f3 f4 f'5 f6

RED ::3HO'tl CREATE DEL PRT REFRESH PREV NEXT

BLUE SHOW HIST/ NEW PRT REFRESH PREV "JEXT
OP I T:1 ACT

using plastic
over the eight

Statement of

f7 f.tJ

MODIFY EXIT

PAGE EXIT

A lot of forms will not conform to a standard template of course,
but will use function keys in an individual way. In these cases
PiC0~/3000 will display instructions on line 24 in order not to
use valuaole screen space within the general frame. For instance
fl =First page, fb = Next page, nl = Exit

Using a plastic template or
on line 24 of' course became
terminals were introduced
key text in softkey windows.
support the older terminals.

displaying function key instructions
ancient history when the HP262x

with the ability to display function
But still your application must

In the screen layout line 6 through 22 is available for free
design of desired texts and data fields. In this area we impose
certain simple rules in order to present a quiet, non- fatiguing
screen ima~e to the operator. All texts are half bright whereas
data are full bri~nt in normal video, input fields are underlined
and start/stop delimiters are invisible.

Never use FOHMSPEC to freeze the top cart of the screen appending
lines below, ns for instance would seem natural when producing
statement of accounts.

This approach has the following disadvantages:

£1 Slow performance.

£2 At least on HP2b4x terminals each appended line causes the
entire screen to tremble. What happens is that apparently all
lines in turn perform a rignt/left shift even causing
position .jQ on ~he line to be lost!

439

440

£3 As soon as your data in the head form chan~es, for example
when the operator wants to look at another account number,
the entire screen is cleared and the head form has to be
shown again and filled with the new data. This slows down
performance even more.

The only advantage you get is that lines beyond the screen are
appended while the upper lines roll up nicely under the frozen
head form.

Instead consider one of the stronger sides of VPLUS:

Presenting new data on R current form is done rapidly and
beautifully since VPLUS only shows the data which have changed.

Therefore always design full-size forms covering line 1 through
23 with REPEAT OPTION = R and NEXT FOR~ OPTION = C.

Even use this approach on statement of accounts and get all
posting lines into the buffer before performing a VSHOWFORM.
There will be no tremble and no intermediate screen clearing and
the overall response time will actually be improved.

10.3 The COBOL copy library

The PiC01/3000 COPY LIBRARY contains the following types of COBOL
code:

£1 WORKING-STORAGE record layouts of all IMAGE data entries.

£2 SELECT statements for all KSAM and MPE-files. Since the
SETFIL UDC establishes all file equations at logon time and
since all files are created permanently by simple utility
programs. the ASSIGN clause is very simple, for example
SELECT CUSTG1 ASSIGN ~o "CUSTG1".

£~ FD's for all KSAM and MPE-files containing the record layout.

£4 USE PROCEDURES on all KSAM and MPE-files. Since the files
will be used in all types of programs (MAIN- and
SUBPROGRAMS). you have to fi~ure out a smart way to let the
same USE PROCEDURE apply in both situations.

PiCOi1/3000 does that by letting all USE PROCEDURES have a
call to the I-0 subroutine (see chapter 7.4) which will fetch
the HP3000 error message, detect whether a SESSION or a JOB
is running and display the message accordingly.

£5 ~ORKING-STORAGE record layouts of all WRK-records since each
will be usea by at least 3 programs: a subprogram passing the
record to the TFCREAT subroutine, which writes the WRK-record
on disc to be read by a background program in order to get
the necessary runtime information.

£6 All GLOBAL LINKAGE- and WORKING-STORAGE areas that are used
by virtually all pro~rams in various calls. Examples are
CO~AREA, ~F-AREA. FI-ARAY, DB-AREAS and all the global SYSM01
flags. Most of these areas serve as parameters to any
suoprogram call. being copied into the COBOL linka~e section.
Batchprograms use working-storage duplicas to copy into the
source. These copys may be assigned COBOL VALUES, which is
not possible for the linkage section.

£7 The file handlers PROCEDURE DIVISION codings (see chapter
7. 4).

10.4 How to lock KSAM- and other MPE-files

Let us review the PiCOM/3000 file structure in regard to the
above mentioned file types. GLOBAL files are placed in the
central DATA group and owned by all users. They are either
TAG-files or GLOBAL MPE-files. LOCAL files reside in the users'
groups and are accessible only by each user.

The TAG-files are granted SHARED access, but will only be subject
to writes or rewrites or deletes in those programs that maintains
the associated IMAGE master dataset.

These programs will by means of EXCLUSIVE/UNEXCLUSIVE statements
prior and after the I-0 establish the needed lock, but always
immediatly after the database lock/unlock in order to satisfy the
overall rule of not using MULTIPLE RINS. An EXCLUSIVE is always
an unconditional lock of the entire file, - the program will
automatically wait until the lock is obtained.

If a file is SHARED, EXCLUSIVE must be used, If a file is not
SHARED, EXCLUSIVE cannot be used.

All other TAG-file access is read-only and thus containing no
lock problems.

The GLOBAL ~PE-files (like INJOUR) are not SHARED at all for
logical reasons. it has no meaning letting two users create
Interest Notes at the same time in the same Transaction File.

The LOCAL MPE-files (like PLIST) are not SHARED either. This may
seem natural, since they belong to one user only. but that user
may very well wish to look at his file from the terminal at the
same time the user BATCH is asked to perform a background
printout of the file.

We chose to have both the GLOBAL and LOCAL MPE-files not SHARED
in order to get a more robust application from a user's point of
view. When only one program is working on a file at a time, what
can go wrong? This also explains why an operator only works from
one terminal at a time. ·

How will a program (whether SESSION or JOB) detect if one of
those datafiles are in use? The reason to put that question is
that very surprisingly .we did not find any suitable way to let
MPE make that decission, for instance by returning a FILE STATUS
value to be tested upon by the programs after attempts to open.
No matter what technique used. a TOMBSTONE
(-E-'- i-1-e--I-n- f-o- r-m-a- t- i-o-n--D-i- s-p-1-a-y-) would al ways
appear. splashing all over the forms. Not even USE PROCEDURES
prevented that.

A guess is, that MR is requested or that this was a MPE III
weakness.

Instead the SYSBAS database holds information on status of all
d.atafiles ("in use" or "not in use"). The status flag for the
GLOBAL MPE-files are stored iri the company dataset and the status
flags for the LOCAL 1PE-files are of course stored together with
the other dat~ per oper8tor.

441

442

Each program will therefore first check on
reset it at EOJ/EOJ. If the file is in use
will notify on line 24, while a background
with a display on the JOB-list according to

the flag and set/
already, a subprogram

job will terminate
the PiCOM/3000 rule.

Remember. that if a background job always MUST complete when
requested. take it up in the on-line application as a subprogram.

The PiC0'.1/3000 SL holds a small subroutine, "F'ILTAKEN", that is
used to check use-status and to set/reset the proper flag in
SYSBAS.

11. Conclusion

In this ~rticle has been made a strong effort to discuss most of
the questions that will face newcomers on the HP3000 developing
business packages to be sold and installed turn key-wise to
clients with none or little EDP-experience.

We hope somebody will find it worth studying and that he will
benefit from a faster project startup than we had, - and a fewer
walk-backs. Also that trained members of the HP3000 community may
discover new angles to the computer.

Deliberately, description of ~HAT the PiCOM/3000 package actually
is capable of doing for its end-users is excluded from this
discussion of design and engineering, but could be the theme on
another occasion.

12. Bibliography

Having finished the first release of the
some time to look out at the world. It was
be aware of the International Users' Group
provided through annual proceedings and
publication.

system, we finally got
very teaching then, to
and the litterature it
through the Interact

From those sources we recommend the following writings as a
partial list of bibliography for deeper investigation in some of
the key-areas in the article:

1. Dennis Heidner, "Transaction Logging and Its Users", in HPIUG
1982 San Antonio Proceedings pp. 2-34-1.

2. David J. Greer, "I~AGE/COBOL: Practical Guidelines", in HPIUG
1982 San Antonio Proceedings pp. 4-4-1.

3. Eugene Volokh, "The Truth About Disc Files", in HPIUG 1982 San
Antonio Proceedings pp. 11-17-1.

4. Robert M. Green. "MPE Internals for Neophytes", in Interact
July/ August 19tl2 pp. 58.

5. David Brown, "Maintenance Tips for User Segments in the System
Segmenter Library", in Interact July/August 1982 pp. 48.

6. Peter Somers. "Using COBOL. VIEW and !''1AGE. A Practical
Structured Interface for the Programmer", in HPIUG 1982 San
Antonio Proceedings pp. 4-12-1.

7. Bill Vaughan, "Increased Reliability at a Lower Cost". in
HPIUG 1981 9erlin Proceedings.

443

