
Starbase Device Drivers
Library Manual

Volume 1

HP 9000 Series 300/800 Computers

HP Part Number 98592-90018

Flin- HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © 1989 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b)(3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

(

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and contain
replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

September 1989 ... Edition 1. This Edition supersedes manual part number
98592-90016.

iii

Contents

Introduction and Device Comparison
Organization.

Introduction Chapter
Manual Organization

Structure of Starbase .
Driver Compatibility with High-Level Starbase

Graphics Libraries Supported Within Windows.
Graphic Escape Functions (gescapes)

INTRO-COMP-I
INTRO-COMP-I
INTRO-COMP-2
INTRO-COMP-2
INTRO-COMP-8
INTRO-COMP-18
INTRO-COMP-20

Contents-1

INTRO-COMP
Introduction and Device Comparison

This manual documents the Starbase device drivers for the HP 9000 Series 300
and Series 800 computers. The manual assumes that you understand the Starbase
graphics library and have access to the following documents:

• Starbase Graphics Techniques

• Starbase Reference

• Manuals provided with your graphics devices

Organization

Introduction Chapter

The "Introduction and Device Comparison" has a number of tables to help
you find and compare driver information. They contain contain the following
information:

• The products that are supported for each device driver.

• The software revisions that effect each driver.

• The revisions that effect each formatter.

• The drivers supported on each Series 300/800 computer.

• The graphics libraries that are supported on each window system.

INTRO-COMP-1

Manual Organization

This manual contains an introduction section and a section for each device driver
and formatter. The appendix contains the graphics escape (gescape) calls that
are used in two or more drivers.

For each device, the following information is provided:

• Device Description-Key device features relative to using Starbase.

• Setting up the Device-Hardware and software configuration.

• Device Initialization-The device's default parameters, how to open the
device in a program, etc.

• Starbase Functionality-How Starbase works on the device, what graphic
escape sequences (gescapes) are provided, etc.

Structure of Starbase

Conceptually, Starbase has two levels (device independent and device dependent):

high-Level Storbose Code Device independent code

HP-GL HP-HIL HP 98721

Device Device ... Device Device dependent code

Driver Driver Driver

Figure INTRO-COMP-1.

The high-level Starbase code provides user procedures that are device indepen­
dent. The Starbase device drivers contain the code which drives the graphics
devices. Because different devices have different requirements, the drivers are de­
vice dependent. Note that a driver (for example, the HP-GL driver) may support
several similar devices (for example, the HP 7475, HP 7550 plotters, etc.).

These two levels show the necessity for linking both device-independent code and
device-dependent code to generate a usable program.

The absolute path name for the HP Terminal Driver file is:

INTRO-COMP-2

/usr/lib/libddhpterm.a

The same driver can be specified using the -1 format with:

-lddhpterm

If we were to compile the C program example. c to run on an HP 2627 terminal
using the "-1" format, the following command line would be appropriate:

cc example.c -lddhpterm -lsb! -lsb2

It is necessary to use this order of parameters.

The files sb1 and sb2 are the high-level Starbase code.

The first table provides a reference list of supported products and device
information to be used with them.

Table INTRO-COMP-1. Product Support Information

Device Supported Device Device Run-Time
Type Product Path Driver Library 300 800

HP-GL HP7440A /dev/hpgl hpgll or libddhpgl.a X X
HP7470A hpgIs2 and Ii bdvio . a
HP7475A
HP7550A
HP7570A
HP7575A
HP7576A
HP7580A/B
HP7585B
HP7586B
HP7595A
HP7596A
HP9111A
HPC1600A12
HP C1601A12

INTRO-COMP-3

Device
Type

HP-GL
CADplt

HP-GL/2
CADplt2

HP-CGM

Table INTRO-COMP-1. Product Support Information
Continued

Supported Device Device Run-Time
Product Path Driver Library

HP 7510A /dev/hpgl CADplt libddCADplt.a
HP7550A
HP7570A
HP7575A
HP7576A
HP7580B6

HP7585B6

HP7586B
HP7595A
HP7596A
HP C1600A12
HPC1601A12

HP 7595B /dev/hpg12 CADplt2 libddCADplt.a
HP7596B
HP7599A
HPC1600A
HPC1601A
HPC1602All
HPC1620A
HPC1625A
HPC1627A
HPC1629A
HPC1631A

hpcgm libddhpcgm.a

INTRO-COMP-4

300 800

X X

X X

X X

Device
Type

HP-HIL
Buttons

HP-HIL
Keyboard

HP-HIL
Knobs

HP-HIL
Mouse

IIP-HIL
Tablets

HP-HIL
1)-ack ball

K(~yboards

XU Windows

XIO Windows

Table INTRO-COMP-1. Product Support Information
Continued

Supported Device Device Run-Time
Product Path Driver Library

HP46086A / dev /hilx or hp-hil libddhil.a
/dev/hilx_x

HP46020A /dev/hilx or hp-hil libddhil.a
HP4602lA /dev/hilx_x

HP46083A /dev/hilx hp-hil libddhil.a
HP46084A or/dev/hilx_x

HP46060A /dev/hilx or hp-hil libddhil. a
HP46060B /dev/hilx_x
HP46095A
with
HP46094A

HP4591lA /dev/hilx hp-hil libddhil.a
HP 46087A
HP46088A

HP80409A /dev/hilx or hp-hil libddhil.a
/dev/hilx_x

HP46020A /dev/tty kbd libddkbd.a
HP4602lA and
HP ASCII libddlkbd.a
Terminals

XII server /dev/screen/ sox11 libddsox11.a
ptyfile

XIO server /dev/screen/ Xn libddXn.a
ptyfile

300 800

X X

X X

X X

X X

X X

X X

X X

X X

X X

INTRO-COMP-5

Device
Type

HP Graphics
Terminals

HP 300
Hi-Res
Display

HP300
Lo-Res
Display

HP98550

HP98556

HP987003

Table INTRO-COMP-1. Product Support Information
Continued

Supported Device Device Run-Time
Product Path Driver Library

HP I50A /dev/tty hpterm libddhpterm.a
HP 150II
HP2393A
HP2397A
HP2623A
HP2627A
HP2625A
HP2628A

HP318M /dev/crt hp300h libdd300h.a
HP98544
HP98545
HP98547
HP98549
Windows/9000
XII

HP98542 /dev/crt hp3001 1 i bdd300 1. a
HP98543
HP3I0
Windows/9000
Xll

HP319C+ /dev/crt hp98550 libdd98550.a
HP98548
HP98549
HP98550
Windows/90008

XII

HP98549 /dev/crt hp98556 libdd98556.a
HP98550
Windows/90008

XII

HP98700 /dev/crt hp98700 l,ibdd98700.a
Windows /9000

INTRO-COMP-6

300 800

X X

X

X

X X5

X X5

X

Table INTRO-COMP-1. Product Support Information
Continued

Device Supported Device Device
Type Product Path Driver

HP 98710 HP98700 /dev/crt hp98710
with HP 98710

HP 987204 HP98720 /dev/crt hp98720
HP319SRX
Xll

HP98720W4 HP98720 /dev/crt hp98720w
Windows /90008

HP 3l9SRX

HP9872l HP98720 /dev/crt hp98721
with HP 98721
HP3l9SRX

HP 987309 HP98730 /dev/crt hp98730
Windows/90008

X1l

HP9873l HP9873l /dev/crt hp98731
Windows/90008

XlI

HP-GL devices with HP-IB interface.
HP-GL devices with RS-232 interface.
With or without HP 98710 accelerator.
With or without HP 98721 accelerator.

Run-Time
Library

libdd98710.a

libdd98720.a

libdd98720w.a

libdd98721.a

libdd98730.a

libdd98731.a

300 800

X

X X

X X

X X

X XlO

X XlO

1

2

3

4

5 Only the HP 98550 Display Board is supported and only on Model 825 and
835 computers.
For plotters with serial number 2402 or higher.
Only supported on the Model 825 computer.

6

7

8

9
Windows/9000 is only supported on the Series 300 computers.
With or without HP 98731 accelerator.

10 Supported only on the Model 825 and 835 computers.
11 With HP-GL/2 plug-in cartridge.
12 Only in emulate mode.

INTRO-COMP-7

Driver Compatibility with High-Level Starbase
Starbase drivers are developed in concert with a particular release of the high­
level Starbase code; thus, compatibility between drivers and the high-level code
is assured. In the future, however, new drivers may be released without re­
releasing the high-level code. To permit determining high-level Starbase and
driver compatibility, the code modules each contain a revision number. The
revision numbers can be found by using the what command. The following is an
example of how this call can be used:

$ what /usr/lib/libsb1.a
/usr/lib/libsb1.a:

41.2 1/17/86 libsb1.a
$ what /usr/lib/libsb2.a
/usr/lib/libsb2.a:

41.2 1/17/86 libsb2.a
$ what /usr/lib/libddhil.a
/usr/lib/libddhil.a:

41.2 1/17/86 libhil.a
$

Figure INTRO-COMP-2.

INTRO-COMP-8

The following table indicates compatibility between the high level Starbase code
and the Starbase driver code for the Series 300 computers.

In the following table the Starbase and Driver Revision numbers correspond to
the following HP-UX Release numbers:

Note An "x" in the following tables indicates all versions of that
number are applicable. Example: 50.x indicates 50.1, 50.2, etc.

Table INTRO-COMP-2.

Revision HP-UX
Numbers Release
28.1 5.0
39.1 5.1
50.x 5.18
65.x 5.2
65.1.1.x 5.3
65.1.3.1 5.5
110.1 6.0
150.1.2.1 6.2
250.1.2.1 6.5
300.1.2.1 7.0

INTRO-COMP-9

Table INTRO-COMP-3. Series 300 Driver and Revision Numbers

Device Driver Driver Released Starbase
Section Library Revisions

HP-GL Device Driver libddhpgl. a 28.1, 39.1, 50.x, 65.x, 65.1.3.1,
110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

CADplt Device Driver libddCADplt.a 110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

CADplt2 Device Driver libddCADplt.a 300.1.2.1

CGM Device Driver libddhpcgm.a 150.1.2.1, 250.1.2.1, 300.1.2.1

HP -HIL Device Driver libddhil. a 28.1,39.1, 50.x, 65.x, 65.1.1.x,
65.1.3.1, 110.1, 150.1.2.1,
250.1.2.1, 300.1.2.1

HP Keyboard Device Driver libddkbd.a 28.1, 39.1, 50.x, 65.x, 65.1.1.x,
65.1.3.1, 110.1, 150.1.2.1,
250.1.2.1, 300.1.2.1

HP Locator Keyboard libddlkbd.a 110.1, 150.1.2.1, 250.1.2.1,
Device Driver 300.1.2.1

HP Starbase libddSMDpix.a 65.x, 65.1.1.x, 65.1.3.1,
Memory Driver libddSMDplane.a 110.1, 150.1.2.1, 250.1.2.1,

300.1.2.1

HP Starbase-on-X11 libddsoxll.a 150.1.2.4, 250.1.2.1, 300.1.2.1
Device Driver

HP Terminal libddhpterm.a 39.1, 50.x, 65.x, 65.1.1.x,
Device Driver 65.1.3.1, 110.1, 150.1.2.1,

250.1.2.1, 300.1.2.1

HP Windows/9000 libddbyte.a 65.x, 65.1.1.x, 65.1.3.1, 110.1,
Device Driver 150.1.2.1, 250.1.2.1, 300.1.2.1

INTRO-COMP-10

Table INTRO-COMP-3. Series 300 Driver and Revision Numbers
Continued

Device Driver Driver Released Starbase
Section Library Revisions

HP 300H Device Driver libdd300h.a 28.1, 39.1, 65.x, 65.1.1.x,
65.1.3.1, 110.1, 150.1.2.1,
250.1.2.1, 300.1.2.1

HP 300L Device Driver 1 i bdd300 1. a 28.1, 39.1, 65.1.1.x, 65.1.3.1,
110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

HP 98700 Device Driver libdd98700.a 28.1, 39.1, 65.x, 65.1.3.1,
110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

HP 98710 Device Driver libdd98710.a 28.1, 39.1, 65.x, 65.1.3.1,
110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

HP 98550 Device Driver libdd98550.a 65.1.3.1, 110.1, 150.1.2.1,
250.1.2.1, 300.1.2.1

HP 98556 Device Driver libdd98556.a 110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

HP 98720 Device Driver libdd98720.a 50.x, 65.x, 65.1.1.x, 65.1.3.1,
110.1, 150.1.2.1, 250.1.2.1,
300.1.2.1

HP 98720w Device Driver libdd98720w.a 50.x, 65.x, 65.1.3.1, 110.1,
150.1.2.1, 250.1.2.1, 300.1.2.1

HP 98721 Device Driver libdd98721.a 50.x, 65.x, 65.1.3.1, 110.1,
150.1.2.1, 250.1.2.1, 300.1.2.1

X10/Xn Windows libddXn.a 65.1.3.1, 110.1, 150.1.2.1,
Device Driver 250.1.2.1, 300.1.2.1

HP 98730 Device Driver libdd98730.a 150.1.2.1, 250.1.2.1, 300.1.2.1

HP 98731 Device Driver libdd98731.a 150.1.2.1, 250.1.2.1, 300.1.2.1

INTRO-COMP-11

The following table indicates compatibility between the high level Starbase code
and the Starbase driver code for the Series BOO computers.

In the next table (Series BOO Drivers and Revision Numbers) the Starbase and
driver revision numbers correspond to the following HP-UX release numbers:

Note An "x" in the following tables indicates all versions of that
number are applicable. Example: 4B.x indicates 4B.1, 48.2, etc.

Table INTRO-COMP-4.

Revision HP-UX
Numbers Release

4B.x 1.0
BO.x 1.1
83.x 1.2
120.x 2.0, 2.1
200.1.10.1 3.0
270.1.2.1 3.1
300.1.2.1 7.0

INTRO-COMP-12

Table INTRO-COMP-5. Series 800 Driver and Revision Numbers

Device Driver Driver Released Starbase
Section Library Revisions

HP CADplt Device Driver libddCADplt.a 120.x, 200.1.10.1, 270.1.2.1,
300.1.2.1

HP CADplt2 Device Driver libddCADplt.a 300.1.2.1

HP-GL Device Driver libddhpgl.a 48.x, 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP-HIL Device Driver libddhil.a 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2., 300.1.2.1

HP Keyboard Device Driver libddkbd.a 48.x, 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP Locator Keyboard libddlkbd.a 120.x, 200.1.101, 270.1.2.1,
Device Driver 300.1.2.1

HP Starbase Memory Driver libddsmdpix.a 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP Starbase Memory Driver libddsmdplane.a 120.x, 200.1.10.1, 270.1.2.1,
300.1.2.1

HP Starbase-on-X11 libddsox11.a 200.1.10.1, 270.1.2.1,
Device Driver 300.1.2.1

HP Terminal Device Driver libddhpterm.a 48x, 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP Terminal Device Driver libdd262x.a 48.x, 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP X10/Xn Windows libddXn.a 80.x, 83.x, 120.x,
Device Driver 200.1.10.1, 270.1.2.1, 300.1.2.1

INTRO-COMP-13

Table INTRO-COMP-S. Series 800 Driver and Revision Numbers
Continued

Device Driver Driver Released Starbase
Section Library Revisions

HP 98550 Device Driver libdd98550.a 83.x, 120.x, 200.1.10.1,
270.1.2.1, 300.1.2.1

HP 98556 Device Driver libdd98556.a 120.x, 200.1.10.1, 270.1.2.1,
300.1.2.1

HP 98720 Device Driver libdd98720.a 80.x, 83.x, 120.x, 200.1.10.1,
270.1.2.1, 300.1.2.1

HP 98720w Device Driver libdd98720w.a 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP 98721 Device Driver libdd98721.a 80.x, 83.x, 120.x,
200.1.10.1, 270.1.2.1, 300.1.2.1

HP 98730 Device Driver libdd98730.a 200.1.10.1, 270.1.2.1, 300.1.2.1

HP 98731 Device Driver libdd98731.a 200.1.10.1, 270.1.2.1, 300.1.2.1

HP-CGM Device Driver libddhpcgrn.a 200.1.10.1, 270.1.2.1, 300.1.2.1

Note An "x" in the following tables indicates all versions of that
number are applicable. Example: 50.x indicates 50.1, 50.2, etc.

INTRO-COMP-14

Table INTRO-COMP-6. Series 300 Formatter and Revision Numbers

Formatter Formatter Starbase Formatter
Section Library Revision Revision

HP Printer Control Language libfmtpcl. a 65.x, 65.1.3.1, 65.x, 65.1.3.1,
(PCL) Formatter 110.1, 150.1.2.1, 110.1, 150.1.2.1,

300.1.2.1 300.1.2.

HP Printer Control libfmtpcl. a 300.1.2.1 300.1.2.1
Language (PCL) with
imaging extensions

Versatec C2500 Formatter libfmtvers.a 50.XI 2.x

1 The Versatec Formatter works with all versions of Starbase after 50.x.

Note The Versatec C2500 Formatter is not part of Starbase and is
obtained by ordering the HP 98053A product. The HP 98053A
product requires a HP 98622A GPIO card which must be ordered
separately.

The HP 9000 Model 310 should be used to drive only the C2552,
or C2562 200 dpi Versatec plotters. The HP 9000 Models 320,
330, 350, 360, or 370 may be used to drive any of the Versatec
C2552, C2558, C2562, or C2568 plotters.

INTRO-COMP-15

Note An "x" in the following tables indicates all versions of that
number are applicable. Example: 80.x indicates 80.1, 80.2, etc.

Table INTRO-COMP-7. Series 800 Formatter and Revision Numbers

Formatter Formatter Starbase Formatter
Section Library Revision Revision

HP Printer Control Language libfmtpcl. a 80.x, 83.x, 80.x, 83x,
(peL) Formatter 120.x, 120x,

200.1.10.1, 200.1.10.1,
300.1.2.1 300.1.2.1

HP Printer Control libfmtpcl.a 300.1.2.1 300.1.2.1
Language (PCL) with
imaging extensions

Note No direct connection of the HP 9000 Series 800 to Versatec
plotters is supported by Hewlett-Packard. Versatec hardcopy
for Series 800 is supported indirectly by spooling to an HP 9000
Series 300. peL color hardcopy is supported by the pel trans
command and the libfontpel. a formatter.

INTRO-COMP-16

Table INTRO-COMP-S. Starbase Device Drivers Supported on Series 300

Drivers 310 318 319C+ 319SRX 320 330 340 350 360 370

HP-CGM No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP-HIL No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP-GL No Yes Yes Yes Yes Yes Yes Yes Yes Yes
CADplt

HP-GL/2 No Yes Yes Yes Yes Yes Yes Yes Yes Yes
CADplt2

HP Keyboard No Yes Yes Yes Yes Yes Yes Yes Yes Yes
HP Locator Keyboard

Memory No Yes Yes Yes Yes Yes Yes Yes Yes Yes

SOX11 No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP Terminal No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP Windows/9000 No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP 300H No Note! No No Yes Yes Note! Yes Yes Yes
HP 300L

HP 9836A No No No No Yes Yes No Yes Yes Yes

HP 98550 No No Note2 No No Yes Yes Yes Yes Yes
HP 98556

HP 98700 No No No No Yes Yes No Yes Yes Yes
HP 98710

HP 98720 No No No Yes Yes Yes Yes Yes Yes Yes
HP 98720w
HP 98721

HP 98730 No No No No No No No Yes Yes Yes
HP 98731

X10/Xn Windows No Yes Yes Yes Yes Yes Yes Yes Yes Yes

HP 300H monochrome only.
2 HP 98549 only (HP 98556 is not supported.)

INTRO-COMP-17

Note The 7.0 release of Starbase does not support the Series 310 CPU.

Table INTRO-COMP-9. Starbase Device Drivers Supported on Series 800

Drivers 815 825 835 840 850/855

HP-CGM Yes Yes Yes Yes Yes

HP-HIL Yes Yes Yes Yes Yes

HP-GL Yes Yes Yes Yes Yes
CADplt

HP-GL/2 Yes Yes Yes Yes Yes
CADplt2

HP Keyboard Yes Yes Yes Yes Yes
HP Locator Keyboard

Memory Yes Yes Yes Yes Yes

SOX11 No Yes Yes Yes Yes

HP Terminal Yes Yes Yes Yes Yes

HP 98550 Yes Yes Yes No No
HP 98556

HP 98720 Yes Yes Yes Yes No
HP 98720w
HP 98721

HP 98730 Yes Yes Yes No No
HP 98731

X10/Xn Windows No Yes Yes Yes Yes

Graphics Libraries Supported Within Windows

The following table shows which graphics libraries run in the different window
systems that are supported on the the HP 9000 Series 300 and Series 800
workstations.

INTRO-COMP-18

Table INTRO-COMP-10. Graphics Libraries Supported
in the Different Window Systems

Starbase
Window and Starbase AGP/
Systems Display List DGL HP-GKS

Raw Mode Yes Yes Yes

HP Win- Yes Yes Yes
dows/9000
(Series 300
only)

XIO Yes, via the Xn No No
driver

XII Yes, via the SOXII No Yes, via the SOXII
(revision driver driver
A.OO)

XII Yes, via the SOXll No Yes, via the SOXII
driver or the Starbase driver or the Starbase
Display Drivers Display Drivers

Xlib
Graphics

No

No

Yes

Yes

Yes

INTRO-COMP-19

Graphic Escape Functions (gescapes)
The Starbase graphics library provides a very broad range of capabilities;
however, there are cases where a particular device has capabilities not directly
supported by Starbase. In this case, a graphics escape sequence procedure
(gescape) may be provided to permit access to these capabilities. The gescape
procedures should be used with care. Each driver section contains a list of
supported gescape procedures plus complete details on those procedures unique
to that driver. Details of the non-unique procedures are provided in the appendix.

Note A gescape capability that is currently supported on a device
may not be supported on future devices in that same class (e.g.,
high-resolution displays). Furthermore, for a particular device,
gescape operations may change depending on other system
requirements. For example, offscreen display memory is used
differently with and without windows; therefore, direct access to
this memory using gescapes may return different data.

INTRO-COMP-20

Contents

The CADplt Device Driver
Device Description . .
Setting Up the Device .

Switch Settings
HP-IB Interfacing
Serial RS-232 Interfacing

Special Device Files (mknod)
For the Series 300

HP-IB Interface
Serial RS-232 Interface

For the Series 800
HP -IB Card Device File
Serial Interface Card Device File

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Example

Device Defaults
Color Table . . .
Red, Green, and Blue Values .
Device Coordinates . . .
Device Coordinate Origin
Device ID ...
Line Types
N umber of Pens
PI and P2 .. .
Timeouts .. .

Starbase Functionality
Hardware Character Sets

CADPLT-I
CADPLT-3
CADPLT-3
CADPLT-3
CADPLT-3
CADPLT-5
CADPLT-5
CADPLT-5
CADPLT-5
CADPLT-6
CADPLT-6
CADPLT-6
CADPLT-6
CADPLT-7
CADPLT-7
CADPLT-8
CADPLT-8
CADPLT-8
CADPLT-9
CADPLT-9
CADPLT-9
CADPLT-IO
CADPLT-IO
CADPLT-IO
CADPLT-II
CADPLT-12
CADPLT-12
CADPLT-12

Contents-1

Error Reporting and Buffer Mode
Hardware Polygon Support
Hardware Rectangle Support .
Hardware Text Support ...
Pen Selection
Roll Paper, Autoloading and Rasterizing
New Device Support
Exceptions to Standard Starbase Support

Commands Not Supported (no-ops) .
Commands Conditionally Supported

Parameters for gescape

Contents-2

CADPLT-13
CADPLT-14
CADPLT-15
CADPLT-16
CADPLT-16
CADPLT-17
CADPLT-18
CADPLT-19
CADPLT-19
CADPLT-20
CADPLT-20

CADPLT
The CAD pit Device Driver

Device Description
The CADpIt Device Driver is an HP-GL command set driver. This driver is
contained in the Ii bddCADpl t . a library. This driver provides hardware support
for certain areas of functionality for Starbase graphics. Hewlett Packard has
tested and supports the following HP-GL devices with HP-IB and serial RS-232
interfaces.

• HP 7510A color film recorder

• HP 7550A plotter

• HP 7570A plotter

• HP 7580B plottert

• HP 7585B plottert

• HP 7586B plotter

• HP 7595A plotter

• HP 7596A plotter

• HP C1600A plotter

• HP C1601A plotter

• HP 7575A plotter

• HP 7576A plotter

t For plotters with serial number 2402 or higher

CADPLT-1

Although this device driver and the libddhpgl. a device driver both access HP­
GL devices, there are major differences between them. These differences are listed
in the following table.

Table CADPLT -1. CAD pit and HPGL Driver Features

Feature CADplt HP-GL

Supports all HP-GL devices no yes

Supports input operations no yes

Hardware polygon support yes no

Hardware rectangle support yes no

Hardware text support yes no
(FLOAT_XFORM interface only)

Roll paper support yes no

Isotropic spooling yes no

HP -G L error checking yes no

CADPLT-2

Setting Up the Device

Switch Settings

HP-IB Interfacing

The HP-IB address of the device must correspond to the device file minor number,
see "Special Device Files (mknod)" in this chapter.

Serial RS-232 Interfacing

The serial interface on the device must be set as follows:

• 8-bit character size

• no parity

• desired baud rate

• one stop bit if baud rate is greater then 110, otherwise two bits

The device driver Ii bddCADpI t . a will automatically set the Operating System
IIO interface for the serial device to the following configurations:

1. device handshaking

• XON /XOFF protocal with de 1 and de3 signals

• ";" command terminator

• (newline) response terminator

2. device interface, termio(4)

• 8-bit character size

• XON /XOFF protocal

• no parity

CADPLT-3

Note

Note

• disabled INTR and QUIT signals

• 2400 baud rate if initially 300 1

• no postprocessing

• canonical processing

• undefine ERASE and KILL symbols

There must not be a getty running on the serial device file. The
following command will sleep a getty:

sleep 1000000 < /dev/plts &

If the device is in SPOOLED mode, the device interface termio(4)
will not be automatically configured for the user. It is the users
responsibility to configure the interface correctly as below:

Given a freshly opened device interface with the following
defaults:

300 cs8 cread hupcl

The following commands will correctly configure the device
interface:

sleep 1000000 < /dev/plts &
stty (bau~ ixon ignbrk icanon isig clocal < /dev/plts
stty erase -- kill -- < /dev/plts

where (baud) is the baud rate of the device and /dev/plts is the
device file for the serial device.

1 The default baud rate for a serial interface is 300 baud when the device file is
freshly opened. If the default is still in effect, then the device driver will change
the baud rate to 2400 as this is what many serial devices are run at. However, if
the baud rate has been changed from the default value of 300 by the user, then
the driver assumes the user has purposely changed it and will not modify it.

CADPLT-4

Special Device Files (mknod)

The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mlmod(1M) command in
the HP- UX Reference manual for further information. The name of this special
device file is passed to Starbase in the gopen procedure. Since superuser or root
capabilities are needed to create special device files, they are normally created
by the system administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device file. The following examples will create a special
device file for this device. Remember that you must be the superuser or root to
use the mlmod command.

For the Series 300

HP-IB Interface

The mlmod parameters should create a character device file with a major number
of 21 and a minor number of Ox(sc)(ad)OO(where (sc) is the select code and (ad)
is the device's HP-IB address.

mlmod /dev/plt c 21 Ox(sc)(ad)OO

Serial RS-232 Interface

The mlmod parameters should create a character device file with a major number
of 1 and a minor number of Ox(sc)(ad)04 where (sc) is the select code and (ad)
is the port address.

mlmod /dev/plts c 1 0x(sc)(ad)04

CADPLT-5

For the Series 800

HP-IB Card Device File

The mknod parameters should create a character device file with a major number
of 21 and a minor number of OXOO(lu) (ad) where (lu) is the hardware logical unit
and (ad) is the device's address.

mlmod /dev/pIt c 21 OXOO(lu)(ad)

Serial Interface Card Device File

The mknod parameters should create a character device file with a major number
of 1 and a minor number of OxOO (lu) (ad) where (lu) is the hardware logical unit
and (ad) is the port address.

mknod /dev/pIts c 1 OxOO(lu) (ad)

Linking the Driver

This device driver is located in the /usr /Ii b directory with the file name
libddCADpIt. a. This device driver may be linked to a program by using the
absolute path name /usr/Iib/IibddCADplt. a, an appropriate relative path
name, or by using the -lddCADpl t linking option. If you link in Ii bddCADpl t . a,
you must also link in Iibdvio. a as below:

cc exarnple.c -lddCADplt -lsbl -lsb2 -ldvio

CADPLT-6

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, Mode.

Path

Kind

Driver

Mode

This is the name of the special device file created by the mknod
command as specified in the section "Special Device Files" such as
/dev/plt.

This indicates the I/O characteristics of the device. This parameter
may only be OUTOEV.

This is the character representation of the driver type. This must be
CAOplt.

This is the mode control word which consists of several flag bits which
are or ed together. Listed below are the flag bits and their device
dependent actions:

o
INIT

open the device but do nothing else

open and initialize the device in a device dependent
manner. For this device driver the INIT mode will
send the HP-GL command OF to the device. This
command will not change the following:

• PI and P2

• pen speed, force and acceleration

• 90 degree rotation or axis alignment

CADPLT-7

RESET_DEVICE open and completely initialize the device. For this
device driver the RESET_DEVICE mode will send the
HP-GL command IN to the device. This command
will reset the device's configuration including PI and
P2.

SPOOLED

THREE_D

Syntax Example

For C programs:

open the device for spooled operation.

open the device for three-dimensional primitives.

fildes = gopen(1I /dev/plt ll . OUTDEV. IICADpltll. RESET_DEVICE);

fildes = gopen(lIspoolfile ll . OUTDEV. IICADpltll. RESET_DEVICE SPOOLED) ;

For Fortan 77 programs:

fildes = gopen('/dev/plt'//char(O). OUTDEV. 'CADplt'//char(O). INIT)

fildes = gopen('/dev/plt'//char(O). OUTDEV. 'CADplt'//char(O). 0)

For Pascal programs:

fildes := gopen('/dev/plt'. OUTDEV. 'CADplt'. RESET_DEVICE+THREE_D);
fildes := gopen('spoolfile'. OUTDEV. 'CADplt'. RESET_DEVICE+SPOOLED);

Device Defaults

Color Table

The HP-GL default color table is the same as the Starbase default color table.
To read the current color table values, use the inquire_color _ table procedure.
The official color table is stored in the device driver allowing different color tables
to be used for different devices in the same program. The default color map has
eight entries as shown in the following table.

CADPLT-8

Table CADPLT -2. Default Color Map

Pen Color Red Green Blue

0 white (pen up) 0.0 0.0 0.0
1 black 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0

You can change the color table values with the define_coloT_table procedure.

Red, Green, and Blue Values

Functions that pass red, green, and blue values are supported. The pen most
closely corresponding in value to the red, green, and blue values is selected using
the current color table entries. A "square root of sum of squares" algorithm is
used to identify the pen.

Device Coordinates

The default number of millimeters per device coordinates is 0.025. If the gopen
mode is not SPOOLED, the device driver will inquire the device and use the value
returned.

Device Coordinate Origin

The device coordinate origin (0,0) is device dependent. The user should consult
his device hardware manual to get the origin. In general, the origin is normally
centered between the PI and P2 extent so that there are an equal number of
negative and positive device coordinates on each side of the origin. The one
known exception is the HP 7550 plotter which places the origin in the lower left
corner of the paper.

CADPLT-9

Device ID

If the device is not in SPOOLED mode, the device driver will send the HP-GL
command or and use the returned string as the device ID. If the device is spooled,
the device ID will be CADpl t.

Line Types

The following table shows the default line types that are available.

Table CADPLT -3. Line Types

Index Type
0 SOLID
1 DASH
2 DOT
3 DASH_DOT
4 CENTER_DASH_DASH
5 LONG_DASH
6 CENTER_DASH
7 CENTER_DASH_DASH

Number of Pens

The default number of pens is 8. The number of pens may be specified using the
HPGL_SET _PEN_NUMBER gescape.

CADPLT-10

P1 and P2

The values for PI and P2 are device dependent and will vary depending on the
gopen mode that was used when accessing the device as below:

• INIT or 0 mode

The values of PI and P2 will be equal to the current values the device is set
to. The device driver will inquire these values and use them unmodified.
When a device is opened in this mode, it is the user's responsibility to
insure that appropriate PI and P2 values are currently established.

• RESET_DEVICE mode

The HP-GL command IN will be sent to the plotter. This will cause the
device to reset PI and P2 to take advantage of the full size of the paper
that is currently loaded. The device driver will then inquire these values
and use them. This mode insures that the current values of PI and P2
will match the paper size that is loaded.

• SPOOLED mode

Note

Since the device driver cannot inquire the PI and P2 values from the
device, the driver assumes the limits are as below:

P1 x: -23144. P1 y: -17048
P2 x: 23144. P2 y: 17048

which are the limits for HP 7596A 36-inch roll paper. The device driver
will then put the HP-GL command SC in the spool file. This will cause
the device to scale the assumed PI and P2 values to the actual PI and P2
values in effect when the spooled file is dumped to the device. The affect
of the scaling command is to cause the entire drawing to be expanded
or compressed so that it will fill the PI and P2 extent that the device
currently has. In order to turn off the scaling function, the Starbase
procedure set_pl_p2 with METRIC units must be called.

Some devices will not guarantee isotropic scaling when you spool
to them. Check your device hardware manual to see if the HP-GL
command SC supports the fifth parameter for isotropic scaling. If
it does not, then the PI, P2 aspect ratio must match the default
PI, P2 ratio above, or the drawing will be distorted.

CADPLT-11

Timeouts

An initial timeout of 10 seconds is used when the procedure gopen is called. If
the device is accessed correctly by the gopen call within the timeout, then the
timeout is removed completely for all further action. Should the device be taken
off line or fail after a successful gopen call, the device driver can indefinitely
"hang" during operation.

Starbase Functionality

Hardware Character Sets

When performing hardware generated text, this device driver will recognize the
following character sets for the call designate_character _set. The device
driver will then instruct the device to load that specific character set. If the
designated character set is not supported, an error mayor may not be reported
according to the state of the buffer mode flag (see "Error Reporting and Buffer
Mode" in this section). You should check the device hardware manual to see
if the device will support the designated character set. At this time the device
driver does not support variable width characters.

Note

CADPLT-12

Hardware character sets are not supported when the device is
. gopened with INT _XFORM.

Table CADPLT -4. Hardware Character Sets

Font # CHSET name Description
0 usascii ANSI ASCII
1 9825 9825 Character Set
2 french French
2 german German
3 scandinavian Scandinavain
4 spanish Spanish/Latin American
5 special Special Symbols
6 jisascii JIS ASCII
7 hproman Roman Extensions
8 katakana Katakana
9 iso_irv ISO Inter. Ref. Verso
30 iso_swedish_1 ISO Swedish
31 iso_swedish_2 ISO Swedish for Names
32 iso_norway_v1 ISO Norway, Version 1
33 iso_german ISO German
34 iso_french_v1 ISO French
35 iso_united ISO United Kingdom
36 iso_italian ISO Italian
37 iso_spanish ISO Spanish
38 iso_portugues ISO Norway, Version 2
39 iso_norway_v2 ISO Norway, Version 2
60 iso_french_v2 ISO French
99 iso_drafting Drafting Symbols
100 kanji_v1 Kanji, part 1
101 kanji_v2 Kanji, part 2

Error Reporting and Buffer Mode

This device driver has two states for reporting errors depending on the buffer
mode, as set by the procedure buff er _mode.

• Buffering On

When buffering is enabled, the device driver will buffer all commands in
an internal buffer before sending them to the device. All HP-GL errors

CADPLT-13

generated by the device will be masked out. Regular Starbase errors will
still be reported as normal.

• Buffering Off

When buffering is disabled, the device driver will send each command to
the device as it receives it. After each command is sent, the device driver
will then inquire the device's status and report any HP-GL errors that
occured. This mode should only be used when debugging an application.

When the gopen mode is SPOOLED, the spooled file will mask out all HP-GL errors
generated, regardless of the buffer mode.

Hardware Polygon Support

All Starbase polygon interiors and borders are drawn by using the device's
hardware support for polygons. This will normally result in an increase in
rendering speed and a decrease in the size of spooled files. Polygon hardware
support conforms to Starbase specifications as defined in the Starbase Graphics
Techniques manual. Hardware support is provided through the use of the HP­
GL commands PM, FP, and EP. The user can not turn off hardware support of
polygons.2

The number of vertices supported is device dependent. For some devices, the
default number of vertices supported can be modified by adjusting the size of the
memory partitions through software control. There are two methods of changing
the memory partition: through use of the HP-GL command GM and use of the
HP-GL escape function "ESC. T". Users should refer to the device's programming
manual on using these commands. The following table summarizes the default
number of vertices supported and if that default can be changed using the HP-GL
command GM or "ESC. T" .

2 The present exception to this is for polygons drawn with the interior_style
parameter INT _HATCH. At this time, hatching is performed only through software.

CADPLT-14

Table CADPLT -5. Polygon Vertex Support

Device #-Vertices GM ESC.T
HP 7596A 219 yes yes
HP 7595A 219 yes yes
HP 7586B 218 no yes
HP 7585B 218 no yes
HP 7580B 218 no yes
HP 7570A 93 yes yes
HP 7550A 127 yes yes
HP 7510A 495 yes yes

HP C1600A 1500t no no
HP C1601A 1500t no no
HP 7575A 93 yes yes
HP 7576A 93 yes yes

t The plotter has 16 900 bytes of available memory allocated to the downloadable
character buffer as needed, the rest goes to the polygon buffer. For example,
dividing 16900 by 8 equals 2112.5. If you allow some extra for fill types, you can
estimate that a polygon with up to 1500 points easily fits in the polygon buffer.

Hardware Rectangle Support

All Starbase rectangle interiors are drawn by using the device's hardware support
for polygons. This will normally result in an increase in rendering speed and a
decrease in the size of spooled files. Rectangle hardware support conforms to
Starbase specifications as defined in the Starbase Graphics Techniques manual.
Hardware support is provided through the use of the HP-GL commands PM, FP

and EP. The user can not turn off hardware support of rectangles. 3

3 The present exception to this is for polygons drawn with the interior _style
parameter INT _HATCH. At this time, hatching is performed only through software.

CADPLT-15

Hardware Text Support

Starbase text can be drawn by using the device's hardware support for text. This
support is conditional on use of the Starbase procedure text_precision with a
precision parameter of STRING_TEXT. This will normally result in an increase in
rendering speed, a decrease in the size of spooled files, and an increase in text
quality. Since this support is user selectable, not all of those devices supported
through this device driver support all those features of Starbase text. Differences
between device hardware generated text and Starbase software generated text
are listed below:

Table CADPLT -6. Hardware Text Support

Starbase Call Parameter Group 1 Group 2 Group 3
text_precision STRING_TEXT yes yes no

text_path PATH_LEFT no no no
text_path PATH_UP no no no
text_path PATH_DOWN yes no no

text_font_index (index) = 2 no no no
text_alignment TA_CONTINUOUS_HORIZONTAL no no no
text_alignment TA_CONTINUOUS_VERTICAL no no no
text_alignment TA_CAP no no no
text_alignment TA_BASE no no no
text_line_path (all) no no no

• Group 1 = HP 7575A, HP 7576A, HP 7595A, HP 7596A.
• Group 2 = HP 7586B, HP 7585B, HP 7580B, HP 7550A, HP 7510A,

HP C1600A, and HP C1601A.
• Group 3 = HP 7570A.

Pen Selection

If a program specifies a pen number that is larger then the number of pens the
device has, the device driver will perform a "mod" 4calculation to define the
actual pen to be used. If the mod calculation returns a value of zero, then the
largest pen number will be used instead.

4 The mod function is a remainder function. For example, 8 mod 3 = 2.

CADPLT-16

If pen number 0 is selected, then a device dependent action will occur and the
user should consult his device hardware manual. In general, pen 0 will cause most
devices to not select any pen at all when performing any drawing operation.

Roll Paper, Autoloading and Rasterizing

The device driver will attempt to set the paper size and perform a page feed using
the HP-GL commands PS and PG when the Starbase procedure gelose is called.
This will cause those devices using roll paper or having autoloading capabilities
to feed the current drawing out. For those devices that accept HP-GL commands
and then rasterize the data for output, this will cause the rasterization to occur
and the drawing to be feed out. Devices supporting this functionality are shown
below:

• HP 7596A
• HP 7586B
• HP 7550A
• HP 7510A
• HP C1600A
• HP C1601A

CADPLT-17

New Device Support

This driver uses a subset of the HP-GL command language. When attempting
to use this device driver with unsupported devices, that device should support
those HP-GL commands as required below:

Table CADPLT -7. HP-GL Command Support

CMt DF DIt DSt
Dvt EPt ESt FPt
1M IN IP Ivt
LBt LOt LTt DE
OF 01 OP PAt
Dt PG§ PMt PS§

PTt put sc SRt
SLt sPt VS

t This command is only required for hardware text. If Starbase software
generated text is used, the device does not need to support this command.

:\: This command is used for generating polygons, rectangles and lines. The
device must implement this command for correct primitives.

§ This command is used for support of roll paper, autoloading and rasterizing
devices.

CADPLT-18

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

await_retrace
backface_contro
background_color
background_color_index
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
block_move
block_read
block_write
clear_control
dbuffer_switch
dcblock_move
dcblock_read
dcblock_write
define_raster_echo
define_trimming_curve
depth_cue
depth_cue_color

depth_cue_range
display_enable
double_buffer
drawing_mode
fill_dither
hidden_surface
intblock_move
intblock_read
intblock_write
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
intline_width
light_ambient
light_attenuation
light_model
light_source
light_switch
line_endpoint
pattern_define
shade_mode
shade_range
surface_model
surface_coefficients
viewpoint
write_enable
zbuffer_switch

CADPLT-19

Commands Conditionally Supported

The following commands are supported under the listed conditions:

hatch_spacing

interior_style

vertex_format

Indicates a new page on devices with automatic
paper feeders.5

updates software color table only (an operator must
physically change the pens).

care should be taken to specify spacings greater than
or equal to one pen width.

only the INT_SOLID, INT_HATCH, and INT_HOLLOW
styles are supported.

the (use) parameter must be zero, any extra coordi­
nates supplied will be ignored.

Parameters for gescape
The following gescape functions are common to two or more drivers and are
discussed in the ·appendix of this manual:

HPGL_READ_BUFFER

HPGL_SET_PEN_NUM

Allows you to read data from the device.

Set plotter number of pens.

HPGL_SET_PEN_SPEED Set plotter pen velocity.

HPGL_SET_PEN_WIDTH Set plotter pen width.

HPGL_WRITE_BUFFER Permits direct communication of HP-GL commands to
supported devices.

5 Some plotters will only eject the paper if it has been plotted on.

CADPLT-20

Contents

The CADplt2 Device Driver
Device Description . .
Setting Up the Device .

Switch Settings
HP-IB Interfacing
Serial RS-232 Interfacing

Special Device Files (mknod)
Series 300

HP-IB Interface . . .
Serial RS-232 Interface

Series 800
HP-IB Card Device File.
Serial Interface Card Device File

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Example .
For C programs: .
For Fortan 77 programs: .

For Pascal programs: .
PCL Context Switching .
Encoded Polyline Command (PE)

Device Defaults
Color Table
Red, Green, and Blue Values.
Device Coordinate System
Device ID .
Line Types
P1 and P2 .

CADPLT2-1
CADPLT2-2
CADPLT2-2
CADPLT2-2
CADPLT2-3
CADPLT2-5
CADPLT2-5
CADPLT2-5
CADPLT2-5
CADPLT2-6
CADPLT2-6
CADPLT2-6
CADPLT2-6
CADPLT2-6
CADPLT2-6
CADPLT2-7
CADPLT2-7
CADPLT2-8
CADPLT2-8
CADPLT2-8
CADPLT2-8
CADPLT2-8
CADPLT2-8
CADPLT2-10
CADPLT2-11
CADPLT2-11
CADPLT2-11
CADPLT2-12

Contents-1

Timeouts
Starbase Functionality

Hardware Character Sets
Typefaces

Error Reporting and Buffer Mode
Hardware Polygon Support
Hardware Text Support

Support of Starbase Font Typefaces.
Supported Combinations of text_path and

text_line_ path
Pen Selection
Roll Paper, Autoloading and Rasterizing
New Device Support
Exceptions to Standard Starbase Support

Commands Not Supported (no-ops) .
Commands Conditionally Supported

Parameters for gescape
HPGL2_ADAPTIVE_LINES

C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . . .

HPGL2_CUTTER_CONTROL
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example .

HPGL2_FONT_POSTURE ..
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . .

HPGL2_FONT _ TYPEFACE
C Syntax Examples. . . .
FORTRAN77 Syntax Examples
Pascal Syntax Examples .

HPGL2_FONT_WEIGHT ...
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . . .

HPGL2_LOGICAL_PEN_ WIDTH

Contents-2

CADPLT2-13
CADPLT2-14
CADPLT2-14
CADPLT2-15 I

CADPLT2-17
CADPLT2-17
CADPLT2-18
CADPLT2-18

CADPLT2-19
CADPLT2-20
CADPLT2-20
CADPLT2-20
CADPLT2-21
CADPLT2-21
CADPLT2-22
CADPLT2-23
CADPLT2-24
CADPLT2-24
CADPLT2-24
CADPLT2-25
CADPLT2-26
CADPLT2-26
CADPLT2-26
CADPLT2-27
CADPLT2-28
CADPLT2-28
CADPLT2-28
CADPLT2-29
CADPLT2-30
CADPLT2-30
CADPLT2-30
CADPLT2-31
CADPLT2-32
CADPLT2-32
CADPLT2-32
CADPLT2-33
CADPLT2-34

C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example

HPGL2_REPLOT
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example .

HPGL2_SET _CMAP _SIZE . .
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . .

HPGL2_SET_MEDIA_TYPE .
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example

HPGL2_SET_QUALITY ...
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . . .

CADPLT2-34
CADPLT2-34
CADPLT2-35
CADPLT2-36
CADPLT2-36
CADPLT2-36
CADPLT2-36
CADPLT2-37
CADPLT2-37
CADPLT2-37
CADPLT2-38
CADPLT2-39
CADPLT2-39
CADPLT2-39
CADPLT2-40
CADPLT2-41
CADPLT2-41
CADPLT2-41
CADPLT2-42

Contents-3

CADPLT2
The CADplt2 Device Driver

Device Description
The driver library libddCADplt. a contains the CADplt2 Device Driver as well
as the CADplt Device Driver. The command plotter language for the CADplt2
driver is HP-GL/2.

The CADp1t2 driver provides hardware support for certain areas of functionality
for Starbase graphics. Hewlett Packard has tested and supports the following
HP-GL/2 devices with HP-IB and serial RS-232 interfaces.

• HP CI600A B/W Electrostatic, D-size (HP 7600 Model 240D)

• HP CI60IA B/W Electrostatic, E-size (HP 7600 Model 240E)

• HP 7595B DraftMaster SX (single sheet)

• HP 7596B DraftMaster RX (roll feed)

• HP 7599A DraftMaster MX (multi-user, roll or sheet)

• HP CI602A PaintJet XL with HP-GL/2 plug in cartridge

• HP CI620A Color Electrostatic (HP 7600 Model 355)

• HP CI625A B/W Electrostatic, US D-size (HP 7600 Model 250)

• HP CI627A B/W Electrostatic, US E-size (HP 7600 Model 255)

• HP CI629A B/W Electrostatic, EUROPE AI-size (HP 7600 Model 250)

• HP CI63IA B/W Electrostatic, EUROPE AO-size (HP 7600 Model 255)

CADPLT2-1

The following table displays the features of the CADplt2 driver.

Table CADPLT2-1. CADplt2 Device Driver Features

Feature

Supports all HP-GL devices
Supports input operations
Hardware polygon support
Hardware rectangle support
Hardware text support
(FLOAT_XFORM interface only)
Roll paper support
Isotropic spooling
HP-GL/2 error checking
Starbase widelines
Encoded spool files
HP-GL/2, PCL context switching
Extended font selections
Single quadrant coodinate system
Color map support

t Supported if device contains desired fonts.
:j: Supported on color electrostatic plotters.

Setting Up the Device

Switch Settings

HP-IB Interfacing

CADplt2

no
no
yes
yes
yes

yes
yes
yes
yes
yes
yes
tyes
yes
:j:yes

The HP-IB address of the device must correspond to the device file minor number,
see "Special Device Files (mknod)" in this chapter.

CADPLT2-2

Serial RS-232 Interfacing

The serial interface on the device must be set as follows:

• 8-bit character size

• no parity

• desired baud rate

• one stop bit if baud rate is greater then 110, otherwise two bits

The CADpl t2 driver will automatically set the Operating System I/O interface
for the serial device to the following configurations:

1. device handshaking

• XON/XOFF protocal with de1 and de3 signals

• ";" command terminator

• (carriage return) response terminator-Serial RS-232 interface.

• (carriage return) (line-feed) response terminator-HP-IB inter­
face.

2. device interface, termio(4)

• 8-bit character size

• XON /XOFF protocal

• no parity

CADPLT2-3

Note

Note

• disabled INTR and QUIT signals

• 2400 baud rate if initially 300 1

• no postprocessing

• canonical processing

• un define ERASE and KILL symbols

There must not be a getty running on the serial device file. The
following command will sleep a getty:

sleep 1000000 < /dev/plts &

If the device is in SPOOLED mode, the device interface termio(4)
will not be automatically configured for the user. It is the users
responsibility to configure the interface correctly as below:

Given a freshly opened device interface with the following
defaults:

300 csB cread hupcl

The following commands will correctly configure the device
interface:

sleep 1000000 < /dev/plts &
stty (bau~ ixon ignbrk icanon isig clocal < /dev/plts
stty erase -- kill -- < /dev/plts

where (baud) is the baud rate of the device and /dev/plts is the
device file for the serial device.

1 The default baud rate for a serial interface is 300 baud when the device file is
freshly opened. If the default is still in effect, then the device driver will change
the baud rate to 2400 as this is what many serial devices are run at. However, if
the baud rate has been changed from the default value of 300 by the user, then
the driver assumes the user has purposely changed it and will not modify it.

CADPLT2-4

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) command in
the HP-UX Reference manual for further information. The name of this special
device file is passed to Starbase in the gopen procedure. Since superuser or root
capabilities are needed to create special device files, they are normally created
by the system administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file. The following examples will create a special
device file for this device. Remember that you must be the superuser or root to
use the mknod command.

Series 300

HP-IB Interface

The mknod parameters should create a character device file with a major number
of 21 and a minor number of Ox(sc)(ad)OO(where (sc) is the select code and (ad)
is the device's HP-IB address.

mknod /dev/plt c 21 Ox(sc) (ad)OO

Serial RS-232 Interface

The mknod parameters should create a character device file with a major number
of 1 and a minor number of Ox(sc) (ad)04 where (sc) is the select code and (ad)
is the port address.

mknod /dev/plts c 1 0x(sc)(ad)04

CADPLT2-5

Series 800

HP-IB Card Device File

The mknod parameters should create a character device file with a major number
of 21 and a minor number of OxOO(lu) (ad) where (lu) is the hardware logical unit
and (ad) is the device's address.

mknod /dev/plt c 21 OxOO(lu)(ad)

Serial Interface Card Device File

The mknod parameters should create a character device file with a major number
of 1 and a minor number of OxOO (lu) (ad) where (lu) is the hardware logical unit
and (ad) is the port address.

mknod /dev/plts c 1 OXOO(lu) (ad)

Linking the Driver

This device driver is located in the /usr/lib directory in the library libddCAD­
pI t. a. This device driver may be linked to a program by using the absolute path
name /usr/lib/libddCADplt. a, an appropriate relative path name, or by using
the -lddCADpl t linking option. If you link in libddCADpl t . a, you must also link
in libdvio. a as below:

cc examp1e.c -lddCADp1t -lsb! -lsb2 -ldvio

Device Initialization

Parameters for gopen

The gop en procedure has four parameters: Path, Kind, Driver, Mode.

Path This is the name of the special device file created by the mknod
command as specified in the section "Special Device Files" such as
/dev/plt.

CADPLT2-6

Kind

Driver

Mode

This indicates the I/O characteristics of the device. This parameter
may only be OUTDEV.

This is the character representation of the driver type. This must be
CADplt2.

This is the mode control word which consists of several flag bits which
are or ed together. Listed below are the flag bits and their device
dependent actions:

o
INIT

open the device but do nothing else

open and initialize the device in a device dependent
manner. For this device driver the INIT mode will
send the HP-GL/2 command DF to the device. This
command will not change the following:

• PI and P2

• media type and quality level

• 90 degree rotation or axis alignment

RESET_DEVICE open and completely initialize the device. For this
device driver the RESET_DEVICE mode will send the
HP-GL/2 command IN to the device. This command
will reset the device's configuration including PI and
P2.

SPOOLED open the device for spooled operation.

THREE_D open the device for three-dimensional primitives.

Syntax Example

For C programs:

fildes ;;;; gopen(lI/dev/plt ll
, OUTDEV, II CADplt2 II , RESET_DEVICE);

fildes ;;;; gopen(lIspoolfile ll
, OUTDEV, IICADplt211, RESET_DEVICE SPOOLED) ;

CADPLT2-7

For Fortan 77 programs:

fildes = gopen('/dev/plt'//char(O). OUTDEV. 'CADplt2'//char(O). INIT)

fildes = gopen('/dev/plt'//char(O). OUTDEV. 'CADplt2'//char(O). 0)

For Pascal programs:.

fildes := gopen('/dev/plt'. OUTDEV. 'CADplt2'. RESET_DEVICE+THREE_D);

fildes := gopen('spoolfile'. OUTDEV. 'CADplt2'. RESET_DEVICE+SPOOLED);

PCl Context Switching

The CADplt2 driver can be used with devices that support HP-GL/2 and PCL
(Printer Control Language). The driver will context switch the device into HP­
GL/2 mode by sending the escape sequence Ec%-IB before sending any HP-GL/2
commands. On devices which do not support PCL (pen plotters) the context
switch command will be ignored.

Encoded Polyline Command (PE)

The CADplt2 driver makes extensive use of the HP-GL/2 command PE. This
command provides move, draw, pen-up, pen-down, and select pen functionality
in an encoded format. Spoolfile size is reduced depending on the mix of output
primitives, and disc space is saved.

Device Defaults

Color Table

The HP-GL/2 default color table is the same as the Starbase default color table.
The exception to this is that entry 0 is white (no pen) and entry 1 is black2 . To
read the current color table values, use the inquire_color _ table procedure.

Color output results may differ depending on the device used. The color
electrostatic plotter will achieve the truest color reproductions. It can reproduce
a wide spectrum of colors since it has an arbitrary number of definable pens.

2 Electrostatic plotters can plot white (no pen) over an area already plotted in
another color

CADPLT2-8

Black and white electrostatic plotters can only reproduce color map entries 0 for
white and 1 for black. Any other color selection will result in either white or
black.

Pen plotters may produce different results based on the colors the device has
available. Pen plotters have a set number of physical pens. The color map
should be resized and redefined to reflect the physical number of pens and pen
colors in the following steps.

1. gop en the device.

2. Set the color map size using the gescape HPGL2_SET_CMAP _SIZE (Nine
pens, 0 equals no pen, 1-8 are real pens).

3. Set the color map entries with the Starbase routine
define_coloT_table to the red, green and blue values of the physical
pens of the device.

Note If colors are selected by red, green and blue values, Starbase will
try to match the actual color map values as closely as possible.

The default color map has 64 entries with 17 shown in the following table (entries
18-63 are various color shades defined by Star base).

CADPLT2-9

Table CADPLT2-2. Default Color Map

Pen Color
0 white
1 black
2 red
3 yellow
4 green
5 cyan
6 blue
7 magenta
8 10% gray
9 20% gray
10 30% gray
11 40% gray
12 50% gray
13 60% gray
14 70% gray
15 80% gray
16 90% gray
17 white

You can redefine the default color map size and contexts using the gescape
HPGL2_SET_CMAP _SIZE and the Starbase routine define_color_table.

Defining, redefining, and sizing the color map will not increase the size of the
spooled files.

Red, Green, and Blue Values

Functions that take red, green, and blue values as arguments are supported.
Starbase chooses the pen that most closely corresponds in value to the red, green,
and blue values selected using the color map entries and sends the color map index
to the driver. A "square root of sum of squares" algorithm is used to identify the
pen.

Each Starbase routine that selects color has two variants: (a) one takes a color
map, and (b) the other takes a red, green, and blue triplet. See Starbase Reference
manual for more information on color selection routines.

CADPLT2-10

Device Coordinate System

HP-GL/2 is a single quadrant coordinate system, as opposed to HP-GL which
is a four quadrant system. The default Pl, P2 limits for the CADplt2 driver
operating in this coordinate system are Pl=O, 0; P2=35376,24000 (equal to the
D-sized paper in a 7600/240D electrostatic plotter). Since plotter-unit size is not
device dependent, these coordinates are correct for any HP-GL/2 plotter with
D-sized paper .

• Non-spooled

When opening the device directly (non-spooled), the driver will inquire
the device's Pl, P2 limits and use them unmodified. You may use
set_p1_p2 to change the Pl, P2 limits .

• Spooled Mode

If the device is opened in a spooled mode, the driver will put the
plotter into scaled mode, isotropically scaling the D-sized coordinates into
the maximum plotting area available. Again, clipping will be avoided.
However, if you use set_p1_p2 with the metric option while in spooled
mode, the scaling will be turned off and clipping may result.

Device ID

If the device is not in SPOOLED mode, the device driver will send the HP-GL/2
command or and use the returned string as the device ID. If the device is spooled,
the device ID will be CADpl t2.

Line Types

All the Starbase line types are supported in the CADplt2 driver. (Index 4,
DASH_DDT_DOT, not supported in the CADplt or HP-GL driver, is supported in
the CADplt2 driver.)

The following table shows the default line types CADplt2 supports.

CADPLT2-11

Table CADPLT2-3. Line Types

Index Type

0 SOLID
1 DASH
2 DOT
3 DASH_DOT
4 DASH_DDT_DOT
5 LONG_DASH
6 CENTER_DASH
7 CENTER_DASH_DASH

The gescape HPGL2_ADAPTIVE_LINES3 selects either fixed (default) or adaptive
line types. An adaptive line type "fits" the pattern between endpoints to insure
an integer number of patterns; thus, endpoints always have a line drawn to them.
Fixed line types resemble lines on a raster display, where the pattern is not fitted
but wrapped around the object. In this configuration, endpoints could show up
in a "move" rather than "draw" region of the pattern.

P1 and P2

The values for Pi and P2 are device dependent and will vary depending on the
gopen mode that was used when accessing the device as below:

• INIT or 0 mode

The values of Pi and P2 will be equal to the current values the device is set
to. The device driver will inquire these values and use them unmodified.
When a device is opened in this mode, it is the user's responsibility to
insure that appropriate Pi and P2 values are currently established .

• RESET_DEVICE mode

The HP-GL/2 command IN will be sent to the plotter. This will cause
the device to reset Pi and P2 to the hard clip limits to take advantage
of the full size of the paper that is currently loaded. The device driver

3 Warning: Adaptive line types may produce solid-looking lines when used with
primitives such as circles, which are rendered by using many small line segments.
The pattern will "adapt" to each small line segment.

CADPLT2-12

will then inquire these values and use them. This mode insures that the
current values of PI and P2 will match the paper size that is loaded .

• SPOOLED mode

Note

Since the device driver/ cannot inquire the PI and P2 values from the
device, the driver assumes the limits as:

P1 x: 0, Pi y: 0
P2 x: 35376, P2 y: 24000

The limits are the same for HP 7600/240D electrostatic plotter. The
device driver will then put the HP-GL/2 command SC in the spool file.
This will cause the device to scale the assumed PI and P2 values to the
actual PI and P2 values in effect when the spooled file is dumped to the
device. The affect of the scaling command is to cause the entire drawing
to be expanded or compressed isotropically so that it will fill the PI and
P2 extent that the device currently has. In order to turn off the scaling
function, the Starbase procedure set_pl_p2 with METRIC units must be
called.

HP-GL/2 devices will scale isotropically, yielding no distortion of
the plot in spooled mode.

Timeouts

An initial timeout of 10 seconds is used when the procedure gop en is called. If
the device is accessed correctly by the gopen call within the timeout, the timeout
is removed completely for all further action. Should the device be taken off line or
fail after a successful gopen call, the device driver can indefinitely "hang" during
operation.

CADPLT2-13

Starbase Functionality

Hardware Character Sets

The CADplt2 driver supports hardware generated text through the Starbase
designate_character_set subroutine. Check the device hardware manual to
see if the device will support the designated character set. The recognized
character set names appear in the following lists.

Note Hardware character sets are not supported when the device is
gopened with INT_XFORM.

Table CADPLT2-4. Hardware Character Sets for CADplt2

ansi_B hpkanaB iso16_portuguese
apI_bit hpkatakana iso17_spanish
apI_typewriter hpkoreanB iso21_german
arabic hplarge iso25_french
ascii_cyrillic hplatinspanish iso2_irv
cyrillic hplegal iso57_chinese
default hpline iso60_norwegian
denmark_pcB hpmath7 iso61_norwegian
ecma...,..latinl hpmathB iso69_french
hparabicB hppi isoB4_portuguese
hpblock hpromanB isoB5_spanish
hpeurospanish hpromanext iso4_united
hpgerman hpspanish line_drawB
hpgl_download hpthaiB norway_pcB
hpgl_drafting hpturkishB ocr-a
hpgl_symbols isol0_swedish ocr-b
hpgreekB isoll_swedish ocr-m
hphebrew7 iso13_katakana oem_l
hphebrewB usi14_jisascii us_pcB

hphpl iso15_italian

CADPLT2-14

Note

Typefaces

Table CADPL T2-5. Character Set Names Common
to the CAD pit and CADplt2 drivers

usascii katakana
french iso_irv iso italian
german
spanish
special

iso_swedish_1 iso_spanish
iso_swedish_2 iso_portugues
iso_norway_v1 iso_norway_v2

jisascii iso_german iso_french_v2
hproman iso_french_v1 iso_drafting

The following character set names are not available In the
CADplt2 driver, but are available in the CADplt driver:

9825
scandinavian
kanji_vi
kanji_v2

By using the gescape HPGL2_FONT _ TYPEF ACE you may select from the following
list of font typespaces supported by HP-GL/2. The number in the left column is
the gescape argument required to select that particular typeface.

CADPLT2-15

Table CADPLT2-6. HP-GL/2 Typefaces

gescape
Argument

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

gescape
Typeface Argument

line_draw 43
pica 44
elite 45
courier 46
helv 47
tmsrmn 48
letter_gothic 49
script 50
prestige 51
caslon 52
orator 53
presentations 54
helv_condensed 55
serif a 56
futura 57
palatino 58
itc_souvenir 59
optima 60
itc_garamond 61
cooper_black 62
ribbon 63
broadway 64
bauer_bodini_condensed 65
century_schoolbook 66
university_roman 67
helv_outline 68
futura_condensed 69

CADPLT2-16

Typeface
itc_papf_chancery
clarendon
itc_zapf_dingbats
cooper
itc_bookman
stick
hpgl_drafting
hpgl_arc
gil_sans
univers
bodini
rockwell
melior
itc_tiffany
itc_clearface
amelia
park_avenue
handel_gothic
dom_casual
itc_benguiat
itc_cheltenham
century_expanded
franklin_gothic
franklin_gothic_condensed
franklin_gothic_extra_condensed
plantin
trump_mediaeval

Table CADPLT2-6. HP-GL/2 Typefaces
Continued

gescape gescape
Argument Typeface Argument Typeface

27 itc _korinna 70 (available)
28 naskh 71 itc_american_typewriter
29 cloister_black 72 antique_olive
30 itc_galliard 73 antique_olive_compact
31 itc_avant_garde 74 itc_bauhaus
32 brush 75 century_oldstyle
33 blippo 76 itc_eras
34 hobo 77 friz_quadrata
35 windsor 78 itc_Iubalin
36 helv_compressed 79 eurostile
37 helv_extra_compressed 80 eurostile_expanded
38 peignot 81 itc_serif_gothic
39 baskerville 82 signet_roundhand
40 itc_garamond_condensed 83 souvenir_gothic
41 trade_gothic 84 stymie
42 goudy_old_style 85 univers_condensed

Error Reporting and Buffer Mode

The CADplt2 driver implements buffer mode by sending an output error
command to the device during the make_picture_current driver entrypoint.
If buffer mode is enabled, upper-level Starbase will automatically call
make_picture_current after every logical set of output primitives, thus,
checking for errors periodically.

Hardware Polygon Support

All Starbase polygon interiors and borders are drawn by using the device's
hardware support for polygons. This will normally result in an increase in
rendering speed and a decrease in the size of spooled files. Polygon hardware
support conforms to Starbase specifications as defined in the Starbase Graphics
Techniques manual. Hardware support is provided through the use of the HP­
GL/2 commands PM, FP, and EP. The user can not turn off hardware support

CADPLT2-17

of polygons.4 Consult your device's hardware manual for the actual number of
vertices supported.

Hardware Text Support

Starbase text can be drawn by using the device's hardware support for text. This
support is conditional on use of the Starbase procedure text_precision with a
precision parameter of STRING_TEXT. This will normally result in an increase in
rendering speed, a decrease in the size of spooled files, and an increase in text
quality. Features supported by device hardware generated text and Starbase
software generated text appear in the following table.

Table CADPLT2-7. Hardware Text Support

Starbase Call Parameter CADplt2
text_precision STRING_TEXT yes

text_path PATH_LEFT tyes
text_path PATH_UP tyes
text_path PATH_DOWN tyes

text_font_index (index) = 1,2,4,6,8 +yes
text_alignment TA_CONTINUOUS_HORIZONTAL no
text_alignment TA_CONTINUOUS_VERTICAL no
text_alignment TA_CAP no
text_alignment TA_BASE no
text_line_path (all) tyes

t See the table: Supported Combinations of test_path and test_line_path

:j: See the table: Starbase Support of Font Typeface

Support of Starbase Font Typefaces

Starbase supports font typeface selection but only in a limited way. Through the
call text_font_index, the index passed to the function indicates the following
combinations of typeface, font spacing, and stroke weight. The CADplt2 driver
supports the Starbse font indices in the following table; however, for a more

4 The present exception to this is for polygons drawn with the interior _style
parameter INT_HATCH. At this time, hatching is performed only through software.

CADPLT2-18

extensive font typeface selection, use the gescape provided to access all the
HP-GL/2 typefaces.

Table CADPLT2-8. Hardware Support of Text Font Indices

Font Description
1 Stick font, fixed
2 Stick font, proportional

t4 Sans serif, proportional, normal stroke

t6 Sans serif, proportional, bold stroke

t8 Serif, proportional, bold stroke

t The HP-GL/2 language does not have sans serif or serif typefaces. Requesting
sans serif will select Helv and serif will select Tms Rmn.

HP-GL/2 supports proportional fonts if they are present in the device. If a
proportional font is selected, inquire_text_extent will return the bounding
rectangle of a fixed font.

Supported Combinations of
text_path and text_line_path

Other features of Starbase include text_path and text_line_path. Text path
specifies which way to move the current position after each character. Text line
path specifies the movement of the current position after a line-feed is encounted.
Each path type has four possible values: up, down, left, and right. The following
table is a quick reference for supported combinations of both text and line path.

Table CADPLT2-9. Supported Combinations of
text_path and text-line_path

text_line_path
text_path path_right path_left path_up path_down
path_ritht no no yes yes
path_left no no yes yes
path_up yes yes no no
path_down yes yes no no

CADPLT2-19

Pen Selection

See the section called "Color Table" under "Device Defaults" in this chapter for
a detailed discussion about pen selection.

Roll Paper, Autoloading and Rasterizing

The device driver will attempt to set the paper size and perform a page feed
using the HP-GL/2 commands PS and PG when the Starbase procedure gelose
is called. This will cause those devices using roll paper or having autoloading
capabilities to feed the current drawing out. Some devices use the PG command
as a signal to begin rasterization. Devices supporting this functionality are shown
below:

• HP Cl600A
• HP C1601A
• HP C1600A B/W Electrostatic, D-size (HP 7600 Model 240D)
• HP Cl60lA B/W Electrostatic, E-size (HP 7600 Model 240E)
• HP Cl620A Color Electrostatic (HP 7600 Model 355)
• HP C1625A B/W Electrostatic, US D-size (HP 7600 Model 250)
• HP Cl627 A B/W Electrostatic, US E-size (HP 7600 Model 255)
• HP Cl629A B/W Electrostatic, EUROPE Al-size (HP 7600 Model 250)
• HP Cl63lA B/W Electrostatic, EUROPE AO-size (HP 7600 Model 255)

New Device Support

All of the following HP-GL/2 commands are used by the CADplt2 driver. When
attempting to use this device driver with unsupported devices, be sure the device
implements the same commands.

CADPLT2-20

Note

Table CADPLT2-10. HP-GL/2 Command Support

AD IN OP RP
CR IP PC SA
DF LB PE SC
DI LO PG SD
DV LT PM SR
EC MT PS SL
EP NP PW SS
ES DE QL VS
FP 01

The PE command encapsulates the functionality of the following
commands: PA, PR, PU, PD, and SP; thus, they are no longer
needed.

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

await_retrace
backface_contro
background_color
background_color_index
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
block_move
block_read
block_write
clear_control
dbuffer_switch
dcblock_move

depth_cue_range
display_enable
double_buffer
drawing_mode
fill_dither
hidden_surface
intblock_move
intblock_read
intblock_write
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
intline_width
light_ambient
light_attenuation
light_model
light_source
light_swi tch
pattern_define
shade_mode

CADPLT2-21

dcblock_read
dcblock_write
define_raster_echo
define_trimming_curve
depth_cue
depth_cue_color

shade_range
surface_model
surface_coefficients
viewpoint
write_enable
zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

hatch_spacing

interior _style

vertex_format

Indicates a new page on devices with automatic
paper feeders. 5

Updates software color table only. An operator must
physically change the pens on a pen plotter-color
electrostatic plotters support this fully.

Care should be taken to specify spacings greater than
or equal to one pen width.

Only the INT_SOLID, I NT_HATCH, and INT_HOLLOW
styles are supported.

The (use) parameter must be zero, any extra coordi­
nates supplied will be ignored.

5 Some plotters will only eject the paper if it has been plotted on.

CADPLT2-22

Parameters for gescape
The following gescape functions are common to two or more drivers and are
discussed in the appendix of this manual:

HPGL_READ_BUFFER

HPGL_WRITE_BUFFER

Allows you to read data from the device.

Permits direct communication of HP-GL/2
commands to supported devices.

Allows you to change pen velocity.

The following gescape functions are unique to this driver and a detailed
discussion of each concludes this chapter.

HPGL2_ADAPTIVE_LINES

HPGL2_CUTTER_CONTROL

HPGL2_FONT_POSTURE

HPGL2_FONT_TYPEFACE

HPGL2_FONT_WEIGHT

HPGL2_LOGICAL_PEN_WIDTH

HPGL2_REPLOT

HPGL2_SET_MEDIA_TYPE

HPGL2_SET_QUALITY

Determines adaptive or fixed line types.

Enable/ disable paper cutter.

Indicates upright or italic font posture.

Selects typeface.

Sets the font stroke weight independent of
Starbase.

Determines the logical pen width.

Indicates number of replots for the com­
mand buffer.

Indicates the size of the color map: num­
ber of pens available.

Determines the type of media to be used.

Indicates the quality level of the output.

CADPLT2-23

The (op) parameter is HPGL2_ADAPTIVE_LINES.

The argl parameter contains a single flag. If TRUE, adaptive line types are
enabled; if FALSE, adaptive lines are disabled.

The arg2 parameter is ignored.

Adaptive line types scale the repeat pattern fitting an integer number of patterns
between line segment endpoints. Adaptive line types are more suited to drafting
standards because the endpoints are seen.

Fixed line types "wrap" the repeat pattern around the sides of a polygon without
scaling. Fixed line types may not draw the endpoints because the pattern is in
the "move" rather than the "draw" region.

Note Arcs, circles, etc. drawn by Starbase using many tiny line
segments will look like solid lines rather than the selected line
type when adaptive line types are enabled. Therefore, a thorough
understanding of your application and enable/disable adaptive
line types is suggested.

C Syntax Example

1* gescape_arg is defined in starbase.c.h. *1

gescape_arg argl. arg2;

1* Enable adaptive line types *1

argl.i[O] = TRUE;
gescape(fildes.HPGL2_ADAPTIVE_LINES.&argl.&arg2);

FORTRAN77 Syntax Example

integer*4 argli(64). arg2i(64)
c
C Enable adaptive line types
C

arg1i(l) = 1
call gescape(fildes.HPGL2_ADAPTIVE_LINES.argli.arg2i)

CADPLT2-24

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }
var

arg1, arg2 : gescape_arg;

begin

{ Enable adaptive line types }

arg1.i[1] := 1;
gescape(fildes,HPGL2_ADAPTIVE_LINES,arg1,arg2);

CADPLT2-25

The (op) parameter is HPGL2_ CUTTER_ CONTROL.

This gescape will enable/disable the paper cutter.6

The arg1 parameter contains a single flag. If TRUE, the cutter IS enabled; if
FALSE, the cutter is disabled.

The arg2 parameter is ignored.

C Syntax Example

1* gescape_arg is defined in starbase.c.h *1

gescape_arg arg1, arg2;

1* Enable cutter *1

arg1.i[O] = TRUE;
gescape(fildes,HPGL2_CUTTER_CONTROL,&arg1,&arg2) ;

FORTRAN77 Syntax Example

integer*4 arg1i(64) , arg2i(64)
c
C Enable cutter
C

arg1i(1) = 1
call gescape(fildes,HPGL2_CUTTER_CONTROL,arg1i,arg2i)

6 Some devices may not have a paper cutter. Consult the device's reference manual.

CADPLT2-26

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ Enable cutter }

arg1.i[1] := 1;
gescape(fildes,HPGL2_CUTTER_CONTROL,arg1,arg2) ;

CADPLT2-27

The (op) parameter is HPGL2_FONT _POSTURE.

The single integer argument in arg1 indicates the desired font posture. In HP­
GL/2 there are two choices:

• O-Upright (default)

• i-Italic

The font posture is independent of Starbase.

The arg2 parameter is ignored.

C Syntax Example

#define NORMAL_POSTURE 0
#define ITALIC_POSTURE 1

1* gescape_arg is defined in starbase.c.h */

gescape_arg argl, arg2;

1* Select italic posture */

argl.i[O] = ITALIC_POSTURE;
gescape(fildes,HPGL2_FONT_POSTURE,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argli(64) , arg2i(64)
c
C Select italic posture
C

arg1i(l) = 1
call gescape(fildes,HPGL2_FONT_POSTURE,argli,arg2i)

CADPLT2·28

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }
var

arg1. arg2 : gescape_arg;
begin

{ Select italic posture}

arg1. i [1] := 1;
gescape(fildes.HPGL2_FONT_POSTURE.arg1.arg2);

CADPLT2-29

The (op) parameter is HPGL2_FONT _ TYPEFACE.

This gescape allows a selection from more than 80 font typefaces supported by
HP-GL/2; however, this function is dependent on which typefaces are present in
the device via soft fonts or cartridge. The font must be present in order to select
it.

The arg1 parameter contains the integer corresponding to the desired typeface.7

The arg2 parameter is ignored.

C Syntax Examples

#define PRESENTATIONS 11

/* gescape_arg is defined in starbase.c.h */

/* Select presentations typeface */

argl.i[O] = PRESENTATIONS;
gescape(fildes, HPGL2_FONT_TYPEFACE,&arg1,&arg2);

FORTRAN77 Syntax Examples

integer*4 argli(64) , arg2i(64)
C

C Select presentations typeface
C

argii (1) = 11
call gescape(fildes,HPGL2_FONT_TYPEFACE,argli,arg2i)

7 See the table "Typefaces" earlier in this chapter for recognized typefaces for
HP-GL/2.

CADPLT2-30

Pascal Syntax Examples

{ gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ Select presentations typface }

arg1. i [1] : = 11;
gescape(fildes,HPGL2_FONT_TYPEFACE,arg1,arg2);

CADPLT2-31

HPGL2_FONT _WEIGHT

The (op) parameter is HPGL2_FONT _WEI GHT.

This gescape enables the font stroke weight to be set independent of Star base.

The arg1 parameter indicates the single integer argument for the weight number
as defined in the HP-GL/2 language. Weight numbers range from -7 (very light)
to 0 (normal) to +7 (very bold). Using 9999 when the stick font typeface is
selected will cause the current pen width to be used.

The arg2 parameter is ignored.

C Syntax Example

#define MEDIUM_BOLD 3

1* gescape_arg is defined in starbase.c.h *1

gescape_arg arg1, arg2;

1* Select medium bold weight *1

arg1.i[O] = MEDIUM_BOLD;
gescape(fildes,HPGL2_FONT_WEIGHT, &arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64) , arg2i(64)
c
C Select medium bold weight
C

argti (1) = 3
call gescape(fildes,HPGL2_FONT_WEIGHT,arg1i,arg2i)

CADPLT2-32

Pascal Syntax Example

{ gescape_arg is defined in starbase.pl.h }

var
argl, arg2 gescape_arg;

begin

{ Select medium bold weight }

arg1.i[l] := 3;
gescape(fildes,HPGL2_FONT_WEIGHT,argl,arg2);

CADPLT2-33

Note Logical pen width provides a wideline capability separate from
Starbase widelines.

The arg1 parameter is the pen number or color map entry. 8

The arg2 parameter indicates the width in millimeters.

Each pen can be set to a different logical width. If the pen number parameter
in arg1 is -1, all the pens are set to that width. The device will determine the
physical pen width and make the appropriate number of strokes to emulate the
logical pen width.

C Syntax Example

/* gescape_arg is defined in starbase.c.h */

gescape_arg arg1, arg2;

/* Set pen #3 to stroke out 6.0 rnm lines */

arg1.f[O] = 6.0;
arg2.i[0] = 3;
gescape(fildes,HPGL2_LOGICAL_PEN_WIDTH,&arg1,&arg2);

FORTRAN77 Syntax Example

C

real argif (64)
interger*4 arg2i(64)

C Set pen #3 to stroke out 6.0 rnm lines
C

argif(1) = 6.0
arg2i (1) = 3
call gescape(fildes,HPGL2_LOGICAL_PEN_WIDTH,arg1i,arg2i)

8 Whether arg1 represents a physical pen number or a color map entry depends
on the device. Electrostatic plotters have no physical pens.

CADPLT2-34

Pascal Syntax Example

{ gescape_arg is defined in starbase.pl.h }

var
argl. arg2 gescape_arg;

begin

{ Set pen #3 to stroke out 6.0 rnm lines}

argl.f[l] := 6.0;
arg2.i[l] := 3;
gescape(fildes.HPGL2_LOGICAL_PEN_WIDTH.argl.arg2) ;

CADPLT2-35

HPGL2_REPLOT

The (op) parameter is HPGL2_REPLOT.

This gescape allows you to replot the command buffer, eliminating the need to
re-transmit data for each copy.

The arg1 parameter contains the number of replots (copies) desired.

The arg2 parameter is ignored.

C Syntax Example

1* gescape_arg is defined in starbase.c.h *1

gescape_arg arg1, arg2;

1* Make 2 copies of the plot *1

arg1. i [0] = 2;
gescape(fildes,HPGL2_REPLOT,&arg1,&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64) , arg2i(64)
c
C Make 2 copies of the plot
C

arg1i(1) = 2
call gescape(fildes,HPGL2_REPLOT,arg1i,arg2i)

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ Make 2 copies of the plot }

arg1 . i [1] : = 2;
gescape(fildes,HPGL2_REPLOT,arg1,arg2);

CADPLT2-36

!
I

"

)

\
)

~./

The (op) parameter is HPGL2_SET_CMAP _SIZE.

This gescape allows you to resize the default color map. It can be used as
many times as needed for electrostatic plotters; however, for pen plotters, use
this gescape once at the beginning of the application to set the color map to the
number of physical pens in the carousel.

The argl parameter contains the color map size.

The arg2 parameter is ignored.

Resizing the color map will de-allocate the current color map. Therefore, all
changes to the color map entries made by the Starbase call define_color_table
will be lost. The color map entries are re-initialized to their default values.

C Syntax Example

/* gescape_arg is defined in starbase.c.h */

gescape_arg argl, arg2;

/* My pen plotter only has 8 pens + 1 (no pen) = 9 */

arg1. i [0] = 9;
gescape(fildes,HPGL2_SET_CMAP_SIZE,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argii (64)., arg2i (64)
C
C My pen plotter only has 8 pens + 1 (no pen) = 9
C

argii(l) = 9
call gescape(fildes,HPGL2_SET_CMAP_SIZE,argli,arg2i)

CADPLT2-37

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ My pen plotter only has 8 pens +1 (no pen) = 9 }

arg1.i[1] := 9;
gescape(fildes,HPGL2_SET_CMAP_SIZE,arg1,arg2);

CADPLT2-38

/

'\

/

/

The (op) parameter is HPGL2_SET_MEDIA_TYPE.

This gescape allows you to choose from various types of media. The plotter will
optimize plotting speed and force based on the media selected.

The argi parameter can contain the following integers:
O-paper
i-transparency
2-velum
3-polyester film
4-translucent paper
5-special paper

The arg2 parameter is ignored.

C Syntax Example

#define PAPER 0
#define TRANSPARENCY 1

/* gescape_arg is defined in starbase.c.h */

gescape_arg arg1, arg2;

/* Set to plot on a transparency */

arg1.i[O] = TRANSPARENCY;
gescape(fildes,HPGL2_SET_MEDIA_TYPE,&arg1,&arg2) ;

FORTRAN77 Syntax Example

integer*4 arg1i(64) , arg2i(64)
C
C Set to plot on a transparency
C

argii (1) = 1
call gescape(fildes,HPGL2_SET_MEDIA_TYPE,arg1i,arg2i)

CADPLT2-39

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ Set to plot on a transparency }

arg1.i[l] := 1;
gescape(fildes,HPGL2_SET_MEDIA_TYPE,arg1,arg2);

CADPLT2-40

The (op) parameter is HPGL2_SET_QUALITY.

This gescape takes a single integer parameter in argl between a and 100 which
indicates the desired quality level of the output. The primary effect is on pen
velocity.

The arg2 parameter is ignored.

Note This gescape should only be invoked once per plot-after a
rasterizing command (PG or RP) of the previous plot and before
the first command that causes marks on the media for the current
plot. Use of this gescape during the plot body will result in any
error.

C Syntax Example

#define DRAFT_COPY 0
#define MEETING_COPY 50
#define FINAL_COPY 100

/* gescape_arg is defined in starbase.c.h */

gescape_arg arg1. arg2;

/* Need a preety good copy to present */

arg1.i[O] = MEETING_COPY;
gescape(fildes.HPGL2_SET_QUALITY.&arg1.&arg2);

FORTRAN77 Syntax Example

integer*4 arg1i(64). arg2i(64)
C
C Need a pretty good copy to present
C

arg1i (1) = 50
call gescape(fildes.HPGL2_SET_QUALITY.arg1i.arg2i)

CADPLT2-41

Pascal Syntax Example

{ gescape_arg is defined in starbase.p1.h }

var
arg1, arg2 gescape_arg;

begin

{ Need a pretty good copy to present }

arg1.i[1] := 50;
gescape(fildes,HPGL2_SET_QUALITY,arg1,arg2);

CADPLT2-42

Contents

HP CGM Device Driver
Device Description . .

Functionality and Encodings
Precisions
Mode
Picture

Linking the Driver
Initialization . . .

Parameters for gopen
Syntax Examples ..

For C Programs: .
For Fortran 77 Programs:
For Pascal Programs:

Driver Default . . .
Default Color Map . .

Starbase Functionality
Commands Not Supported (no-ops) .
Conditionally Supported

Parameters for gescape . .
CGMESC_APPL_DATA

C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_ENCODING
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_ESCAPE_ELT
C Syntax

HPCGM-l
HPCGM-l
HPCGM-2
HPCGM-2
HPCGM-2
HPCGM-3
HPCGM-3
HPCGM-3
HPCGM-4
HPCGM-4
HPCGM-4
HPCGM-4
HPCGM-4
HPCGM-5
HPCGM-7
HPCGM-7
HPCGM-7
HPCGM-8
HPCGM-IO
HPCGM-IO
HPCGM-IO
HPCGM-ll
HPCGM-12
HPCGM-12
HPCGM-12
HPCGM-12
HPCGM-13
HPCGM-13

Contents-1

FORTRAN Syntax
Pascal Syntax . .

CGMESC_FONT _IX
C Syntax
FORTRAN Syntax
Pascal Syntax . .

CGMESC_MESSAGE
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_MET _NAME
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_PIC_NAME
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_ TOP _MODE
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGMESC_ VDC_PREC
C Syntax
FORTRAN Syntax .
Pascal Syntax . . .

CGM Elements Produced by the HP CGM Driver
Delimiter Elements
Metafile Descriptor, Picture Descriptor, Control Elements

Unconditionally Included
Unconditionally Excluded

Graphical Primitives
Included
Excluded

Primitive Attributes
Included
Excluded

External and Escape Elements

Contents-2

HPCGM-13
HPCGM-14
HPCGM-15
HPCGM-15
HPCGM-15
HPCGM-15
HPCGM-16
HPCGM-16
HPCGM-16
HPCGM-16
HPCGM-17
HPCGM-17
HPCGM-17
HPCGM-17
HPCGM-18
HPCGM-18
HPCGM-18
HPCGM-18
HPCGM-19
HPCGM-19
HPCGM-19
HPCGM-19
HPCGM-20
HPCGM-20
HPCGM-20
HPCGM-20
HPCGM-21
HPCGM-21
HPCGM-21
HPCGM-21
HPCGM-22
HPCGM-23
HPCGM-23
HPCGM-23
HPCGM-24
HPCGM-24
HPCGM-24
HPCGM-26

HPCGM
HP CGM Device Driver

Device Description

This device driver produces an ANSI/ISO standard Computer Graphics Metafile
(CGM). The CGM is a metafile for capturing and storing device independent
picture descriptions. It may contain multiple pictures.

Functionality and Encodings

The CGM standard defines nineteen primitives (lines, markers, text, circles, etc.)
and thirty-five primitive attributes (text color, line pattern, interior style, etc.)
for describing the contents of pictures. The CGM standard describes these
capabilities in an abstract manner and defines three methods of encoding the
elements. The hpcgm device driver supports the following three encoding methods
(see also "Parameters for gescape," CGMESC_ENCODING later in this driver).

• The Binary encoding is reasonably compact and is optimized for CPU effi­
ciency in generating and interpreting CGMs, but it is not human readable
and may cause difficulties in some communications environments.

• The Clear Text encoding is human readable (for example, CIRCLE
(573.721) 95;) and can be produced with a normal text editor. It is
good for debugging and quick demonstrations but is not compact. It is
relatively inefficient for CPUs to generate and interpret code using this
method.

• The Character encoding method codes all data as ASCII characters. It
is compact and good for communications, and probably lies between the
Binary and Clear Text in CPU efficiency.

More information on CGM may be found in the standards, ANSI X3.122-1986
and ISO 8632/1-4.

HPCGM-1

Precisions

The CG M defines elements for varying the precisions, types, and modes of data
in a metafile. The hpcgm driver encodes coordinate data as type integer, and
allows selection of low or high precision (16 bits or 32 bits per coordinate) See
"Parameters for gescape," CGMESC_VDC_PREC later in this driver).

Mode

The CGM allows such things as marker size (as well as line width and edge width)
to be expressed in one of two modes: scaled or absolute. Absolute mode means
that size (width) is measured in coordinate units. Scaled mode means that the
given size is a scale factor to be applied to the nominal marker size of the device
upon which the CGM is displayed. CGM only allows one mode per picture. The
hpcgm driver uses scaled mode. Any absolute sizes received from Starbase are
converted to a scale factor.

The CGM standard also allows color to be selected either by index into a table
(and provides a color table definition element) or by an RGB (Red, Green, Blue)
triple. The hpcgm driver maps all Starbase color requests into RGB triples.

Picture

A CGM consists of one or more logically independent pictures. A picture consists
of the graphical actions that occur between Starbase clear_view_surface calls.
The hpcgm driver responds to a clear_view_surface call by terminating the
current picture and initiating a new picture.

HPCGM-2

Linking the Driver

The hpcgm driver is located in the /usr/1ib directory with the file name
1ibddhpcgm. a. This driver may be linked to a program by using the absolute
path /usr/lib/libddhpcgm. a or an appropriate relative path name, or by using
the -1 option -1ddhpcgm. For example, to compile and link a program for use
with this driver, use:

cc example.c -lddhpcgm -lsb! -lsb2 -0 example
fc example.f -lddhpcgm -lsb! -lsb2 -0 example
pc example.p -lddhpcgm -lsb! -lsb2 -0 example

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

The name of the file that will be created by Starbase and to which
hpcgm will write the metafile.

May be OUTMETA or OUTDEV. If OUTDEV, the file named by path must
already exist unless SPOOLED is specified in Mode.

The character representation of the driver type. This is hpcgm
modified to meet the syntax of the programming language used.
Namely:

II hpcgm II

'hpcgm'//char(O)

'hpcgm'

for C.
for Fortran 77.
for Pascal.

The mode control word consisting of several flag bits that can be
or ed together. Listed below are the flag bits which have device
dependent action .

• SPOOLED-Allows specifying Kind equal to OUTDEV without
having Path already in existence.

HPCGM-3

• 0 (zero)-No flag causes the device to be initialized anyway
(including color map initialization).

Syntax Examples

The following examples open and initialize the hpcgm driver and put the metafile
into a file named example. cgm:

For C Programs:

fildes = gopen(lIexample.cgm ll , OUTMETA, IIhpcgmll, INIT);

For Fortran77 Programs:

fildes = gopen('example.cgm'//char(O), OUTMETA, 'hpcgm'//char(O), INIT);

For Pascal Programs:

fildes = gopen('example.cgm', OUTMETA, 'hpcgm', INIT);

Driver Default

There are a number of driver options that may be manipulated with the gescape
function. See the "Parameters for gescape" section in this driver for the defaults
and options.

HPCGM-4

Default Color Map

While the hpcgm driver produces a metafile with color selection mode direct
(RGB), it also maintains an internal color map to convert indexes to RGB. This
map has 256 entries and is initialized to the default values shown below.

Table HPCGM-1. Default Color Tabrle

Index Color Red Green Blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

18to255 shaded colors

HPCGM-5

Selection of TOP mode (see CGMESC_TOP _MODE gescape later in this driver)
changes the value of the default color table.

Table HPCGM-2. Top Mode Default Color Table

Index Color Red Green Blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 green 0.0 1.0 0.0
4 blue 0.0 0.0 1.0
5 yellow 1.0 1.0 0.0
6 magenta 1.0 0.0 1.0
7 cyan 0.0 1.0 1.0

8-255 repeat colorst

t Index numbers 8 through 255 repeat the colors listed in index 0-7.

When INIT is used in the shade_mode procedure call, the color map initialization
is based on the value of the mode parameter.

CMAP_NORMAL mode

CMAP_MONOTONIC mode

CMAP_FULL mode

HPCGM-6

Same as the Default Color Table.

The color map is initialized as shades of gray.

The color Llap is initialized as shades of color with
three bits allocated for red, three bits allocated for
green, and two bits allocated for blue.

Starbase Functionality

Commands Not Supported (no-ops)

The following Starbase commands are not supported and are ignored.

await_retrace
backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
block_move
block_read
block_write
clear_control
dbuffer_switch
dcblock_move
dcblock_read
dcblock_write
dcecho_type
dcecho_update
define_raster_echo
define_trimming_curve
depth_cue
depth_cue_color
depth_cue_range
display_enable
double_buffer

Conditionally Supported

drawing_mode
echo_type
echo_update
fill_dither
hidden_surface
inquire_hit
inqiure_pick_depth
inquire_pick_window
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
pattern_define
set_hit_mode
set_pick_depth
set_pick_window
shade_range
surface_coefficients
surface_model
track
track_off
viewpoint
write_enable

zbuffer_switch

The following Starbase commands are supported under the listed conditions:

The color map mode is selected but shading cannot
be turned on.

HPCGM-7

vertex_format

clear view_surface

The use parameter must be zero. Any extra coordi­
nates that are supplied are ignored.

This causes completion of a previous picture and
begins a new picture in metafile.

Parameters for gescape
The hpcgm driver recognizes a number of gescape functions. Following are the
supported functions and definition of when they may be invoked.

After gopen, but before any other graphical activity:

• CGMESC_ENCODING-Selects CGM encoding.

• CGMESC_MET _NAME-Defines metafile name.

• CGMESC_TOP _MODE-Selects TOP mode for metafile generation.

• CGMESC_ VDC_PREC-Selects VDC integer precision.

Anytime after gop en:

• CGMESC_APPL_DATA-Generates CGM application data element.

• CGMESC_ESCAPE_ELT-Generates CGM escape element.

• CGMESC_FONT_IX-Allows application to select fonts.

• CGMESC_MESSAGE-Generates CGM message element.

• CGMESC_PIC_NAME-Defines picture name.

The gescape function allows the application program to input or output to a
device in a device dependent manner. The syntax for the gescape function is:

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl. arg2;

gescape (fildes. ESCAPE_OP_CODE. &argl.'&arg2);

HPCGM-8

A fildes is the file descriptor of the device to be accessed (returned by the
Starbase call gopen).

The (op) is the opcode that specifies the action to be performed.

The argl and arg2 parameters provide information needed by a gescape.

The following sections give details on each of the gescape functions.

HPCGM-9

The (op) parameter is CGMESC_APPL_DATA.

This gescape generates a CGM application data element.

CGM has an element that has no graphical effect at all but can be used to insert
documentation or other private data into the metafile. With a clear text metafile
generation, for example, you can use this gescape to insert comments into the
metafile (as debugging aids). This clarifies the correspondence between high level
Starbase calls and clear text CGM elements.

The CG M application data element has two parameters: an application data ID
and a data record. The ID is a label for the application data element. The data
record contains parameters.

The arg1 parameter contains:
an integer application data ID
one or more blanks
a data record substring (commencing with the first non-blank character)

The arg2 parameter is ignored.

C Syntax

gescape_arg arg2;

gescape(fildes, CGMESC_APPL_DATA,
"10 APPLICATION move/draw", &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes, CGMESC_APPL_DATA,
+ '10 APPLICATION move/draw'//char(O), arg2)

HPCGM-10

Pascal Syntax

var arg1. arg2: gescape_arg;

arg1.c := '10 APPLICATION move/draw'#O;
gescape(fildes. CGMESC_APPL_DATA. arg1. arg2);

HPCGM-11

CGMESC_ENCODING

The (op) parameter is CGMESC_ENCODING.

This gescape selects the CGM encoding style.

CGMs may be encoded in one of three style: binary, character, or clear text (see
"Functionality and Encodings" earlier in this chapter).

The arg1 parameter contains one of the one-letter strings "B", "C", or "T" to
select binary, character, or clear text encodings, respectively.

The arg2 parameter is ignored.

The default encoding is binary.

C Syntax

gescape_arg arg2;

gescape(fildes, CGMESC_ENCODING, "T", &arg2);

FORTRAN Syntax

character arg2(255)

:call gescape(fildes, CGMESC_ENCODING, 'T'//char(O), arg2)

Pascal Syntax

var arg1, arg2: gescape_arg;

arg1.c[1] := 'T';
gescape(fildes, CGMESC_ENCODING, arg1, arg2);

HPCGM-12

The (op) parameter is CGMESC_ESCAPE_ELT.

This gescape generates a CGM escape element.

The CGM contains an escape element that defines non-standardized graphical
operations. For example, one could define an escape element that suppressed
the clearing of the view surface when the metafile is interpreted; hence, pictures
would be overlaid. (This example is a registered escape of the TOP application
profile standard.)

Because the CGM escape contents are inherently non-standard, portability of the
resulting metafiles is inherently reduced by using this element.

The CGM escape element has two parameters: an escape ID and an escape data
record. The ID is an opcode, and the data record contains parameters.

The arg1 parameter contains:
an integer opcode.
one or more blanks
an escape data record substring (commencing with the first non-blank
character)

The arg2 parameter is ignored.

C Syntax

gescape_arg arg2;

gescape(fildes, CGMESC_ESCAPE_ELT, "-302 1.0 0.0 0.0 0.22", &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes, CGMESC_ESCAPE_ELT,
+ '-302 1.0 0.0 0.0 0.22'//char(0), arg2)

HPCGM-13

Pascal Syntax

var arg1. arg2: gescape_arg;

arg1.c := '-302 1.0 0.0 0.0 0.22'#0;
gescape(fildes. CGMESC_ESCAPE_ELT. arg1. arg2);

HPCGM-14

The (op) parameter is CGMESC_FONT_IX.

The CGM contains an element to set the current font index. This is an index
into the interpreter font table which allows selection of the font to be used for
subsequent text display. There is no way to directly define this font index in
Starbase. Hence, this gescape allows the application to select different fonts in
the metafile.

The argl parameter contains the integer index encoded as a string.

The arg2 parameter is ignored.

The default font index is 1.

C Syntax

gescape_arg arg2;

gescape(fildes. CGMESC_FONT_IX, 1112 11 , &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes, CGMESC_FONT_IX, '12'//char(0), arg2)

Pascal Syntax

var argl. arg2: gescape_arg;

arg1.c := '12'#0;
gescape(fildes. CGMESC_FONT_IX, argl, arg2);

HPCGM-15

CGMESC_MESSAGE

The (op) parameter is CGMESC_MESSAGE.

This gescape generates a CGM message element.

The CGM contains an element to pass a message to an operator at the other end,
i.e., at the interpretation process. Such a message might inform the operator
that a certain kind of paper is required in the plotter for the next pictures. This
gescape allows the application to generate a CGM message element.

The arg1 parameter contains the string that comprises the message.

Note The CG M element has an action flag as a parameter. This
gescape always generates message elements with the value
no_action for this flag.

The arg2 parameter is ignored.

C Syntax

gescape_arg arg2;

gescape(fildes. CGMESC_MESSAGE. "Next is the move/draw polygon". &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes. CGMESC_MESSAGE.
+ 'Next is the move/draw polygon'//char(O). arg2)

Pascal Syntax

var argl. arg2: gescape_arg;

argl.c := 'Next is the move/draw polygon'#O;
gescape(fildes. CGMESC_MESSAGE. argl. arg2);

HPCGM-16

The (op) parameter is CGMESC_MET _NAME.

This gescape defines a metafile name.

Each CGM begins with an element BEGIN METAFILE having an ID string as a
parameter. This gescape defines the name that appears in the metafile ID string.

The arg1 parameter contains the ID string that is used.

The arg2 parameter is ignored.

The default value is the null string.

C Syntax

gescape_arg arg2;

gescape(fildes, CGMESC_MET_NAME, "HP-CGM metafile name II , &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes, CGMESC_MET_NAME,
+ 'HP-CGM metafile name'//char(O), arg2)

Pascal Syntax

var arg1, arg2: gescape_arg;

arg1.c := 'HP-CGM metafile name'#O;
gescape(fildes, CGMESC_MET_NAME, arg1, arg2);

HPCGM-17

The (op) parameter is CGMESC_PIC_NAME.

This gescape defines the picture name.

In the CGM each picture begins with a BEGIN PICTURE element that contains an
ID string to name the picture. This gescape defines the name that appears in
the picture ID string for the next picture to be started in the metafile.

The argl parameter contains the picture ID string that is used.

The arg2 parameter is ignored.

The default value is the null string.

C Syntax

gescape_arg arg2;

gescape(fildes. CGMESC_PIC_NAME. "Picture name". &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes. CGMESC_PIC_NAME.
+ 'Picture name'//char(O). arg2)

Pascal Syntax

var argl. arg2: gescape_arg;

arg1.c := 'Picture name'#O;
gescape(fildes. CGMESC_PIC_NAME. argl. arg2);

HPCGM-18

CGMESC_ TOP _MODE

The (op) parameter is CGMESC_TOP _MODE.

This gescape selects the TOP mode for metafile generation.

The resulting metafile will conform to the MAP/TOP V3.0 Application Profile
(AP) of CGM. This is a specification which limits the ranges of attributes to a
predictable set, changes the default color map, and limits the lengths of primitives
to 1024 points. The purpose of the AP is to promote predictable interchange of
CGM by removing some ambiguities that exist in the CGM standard itself.

The default color map, starting at index 2, is redefined to red, green, blue, yellow,
magenta, cyan, black, and white. This pattern of colors is repeated until the entire
256-element color map is filled. Indexes 0 and 1 are not redefined; hence, they
are black and white.

There are no parameters for this gescape.

The arg1 and arg2 parameters are ignored.

The default mode is non-TOP.

C Syntax

gescape_arg argl.arg2;

gescape(fildes. CGMESC_TOP_MODE. &argl. &arg2);

FORTRAN Syntax

character argl(255). arg2(255)

call gescape(fildes. CGMESC_TOP_MODE. argl. arg2)

Pascal Syntax

var argl. arg2: gescape_arg;

gescape(fildes. CGMESC_TOP_MODE. argl. arg2);

HPCGM-19

The (op) parameter is CGMESC_ VDC_PREC.

This gescape selects the VDC integer precision.

Coordinate data in a CGM may be either high or low precision (see "Precisions").

The parameter arg1 contains one of the one-letter strings "H" or "L" to select
high or low precision coordinates for graphical primitives and attributes. In low
precision, coordinates range from zero to +32,767. In high precision, coordinates
range from zero to + 1,000,000,000.

The parameter arg2 is ignored.

The default precision is low.

C Syntax

gescape_arg arg2;

gescape(fildes, CGMESC_VDC_PREC, "L", &arg2);

FORTRAN Syntax

character arg2(255)

call gescape(fildes, CGMESC_VDC_PREC, 'L'//char(O), arg2)

Pascal Syntax

var arg1, arg2: gescape_arg;

:arg1.c[1] := 'L';
gescape(fildes, CGMESC_VDC_PREC, arg1, arg2);

HPCGM-20

CGM Elements Produced by the HP CGM Driver

Delimiter Elements

Every CGM created by hpcgm contains the following delimeter elements.

BEGIN METAFILE

BEGIN PICTURE

BEGIN PICTURE BODY

END METAFILE

END PICTURE

The metafile ID can be specified by a gescape.
((op) parameter set to CGMESC_MET _NAME)

The picture ID can be specified by a gescape.
((op) parameter set to CGMESC_PIC_NAME)

Metafile Descriptor, Picture Descriptor, Control Elements

Unconditionally Included

The following Metafile Descriptor, Picture Descriptor, and Control Elements are
included in all hpcgm metafiles. The descriptions of some of the precisions refer
to the encoding-dependent nature of the parameters (binary, character, or clear
text).

BACKGROUND COLOR

CHARACTER CODING ANNOUNCER

COLOR INDEX PRECISION

COLOR PRECISION

COLOR SELECTION MODE

COLOR VALUE EXTENT

Value according to most recent applica­
tion request to Starbase, or 0, 0, ° if no
requests have been made.

Always basic 7-bit.

Always 8-bit (or closest equivalent sup­
ported by the selected encoding).

Always 8-bit (or closest equivalent sup­
ported by the selected encoding).

Always "direct".

Always (0,0,0), (255,255,255).

HPCGM-21

INDEX PRECISION Always 16-bit (or closest equivalent sup­
ported by the selected encoding).

INTEGER PRECISION Always 16-bit (or closest equivalent sup-
ported by the selected encoding).

LINE WIDTH SPECIFICATION MODE Always "scaled".

MARKER SIZE SPECIFICATION MODE Always "scaled".

MAXIMUM COLOR INDEX Always 255.

METAFILE DEFAULTS REPLACEMENT Unconditionally sets the proper VDC in­
teger precision (to 16-bit or 32-bit, or clos­
est equivalent supported by the encoding).

METAFILE DESCRIPTION Always contains the substring Hewlett­
Packard CGM (HP-CGM) 1987.

METAFILE ELEMENT LIST Contains drawing set.

METAFILE VERSION Version fixed at 1.

REAL PRECISION

SCALING MODE

VDC TYPE

Unconditionally Excluded

Always 32-bit (or closest equivalent sup­
ported by the selected encoding). Fixed
point is used.

Always "abstract"

Always an integer.

The following descriptor and control elements never appear in a hpcgm metafile.

AUXILIARY COLOR

CHARACTER SET LIST

CLIP INDICATOR

CLIP RECTANGLE

EDGE WIDTH SPECIFICATION MODE

FONT LIST

TRANSPARENCY

HPCGM-22

(

VDC EXTENT

VDC INTEGER PRECISION

VDC REAL PRECISION

Graphical Primitives

Included

The following CG M graphical primitives may be generated as a result of user
Starbase calls. Polylines may reflect such things as stroke precision text which
will be simulated by Starbase.

POLYGON

POLYGON SET

POLYLINE

TEXT

Excluded

The following CGM graphical primitives will never be generated by the hpcgm
driver.

APPEND TEXT

CELL ARRAY

CIRCLE

CIRCULAR ARC CENTRE

CIRCULAR ARC CENTRE CLOSE

CIRCULAR ARC 3 POINT

CIRCULAR ARC 3 POINT CLOSE

DISJOINT POLYLINE

ELLIPSE

ELLIPTICAL ARC

ELLIPTICAL ARC CLOSE

HPCGM-23

POLYMARKER

RECTANGLE

RESTRICTED TEXT

Primitive Attributes

Included

The hpcgm driver may put the following CGM primitive attribute elements into
a metafile as a result of application calls to Starbase functions.

CHARACTER EXPANSION FACTOR

CHARACTER HEIGHT

CHARACTER ORIENTATION

CHARACTER SPACING

FILL COLOR

INTERIOR STYLE

LINE COLOR

LINE TYPE

TEXT ALIGNMENT

TEXT COLOR

TEXT FONT INDEX

TEXT PATH

Excluded

Hollow or solid may be output.

Starbase 0 ... 4 are mapped to CGM
1 ... 5. Starbase values greater than 4
are mapped to CGM -(value+ 1).

Continuous alignment is always used.

May be included as a result of gescape.
(The op parameter is set to
CGMESC_FONT _IX.)

The following CGM primitive attribute elements will never be output by the
hpcgm driver.

ALTERNATE CHARACTER SET INDEX

HPCGM-24

ASPECT SOURCE FLAGS

CHARACTER SET INDEX

COLOR TABLE

EDGE BUNDLE INDEX

EDGE COLOR

EDGE TYPE

EDGE VISIBILITY

EDGE WIDTH

FILL BUNDLE INDEX

FILL REFERENCE POINT

HATCH INDEX

LINE BUNDLE INDEX

LINE WIDTH

MARKER BUNDLE INDEX

MARKER COLOR

MARKER SIZE

MARKER TYPE

PATTERN INDEX

PATTERN SIZE

PATTERN TABLE

TEXT BUNDLE INDEX

TEXT PRECISION

HPCGM-25

External and Escape Elements

The CGM external and escape elements may be output by hpcgm by gescape
calls to Starbase.

APPLICATION DATA

ESCAPE

MESSAGE

HPCGM-26

((op) parameter is set to CGMESC _APPL_DAT A)

((op) parameter is set to CGMESC_ESCAPE_ELT)

Only available with (noaction). ((op) parameter
is set to CGMESC_MESSAGE)

Contents

The HP-GL Device Driver
Device Description . .
Setting Up the Device. .

Switch Settings
Special Device Files (mknod)
Series 300

HP -IB Card Device File . .
Serial Interface Card Device File

Series 800
HP-IB Card Device File. . . .
Serial Interface Card Device File

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Examples. .

For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs:

Device Defaults
Color Table
Red, Green and Blue Values
Device Coordinate Origin Default
Direct Output . .
Echo Types ...
Line Type Defaults
N umber of Pens .
Plotter Units
PI and P2 Defaults .
Spooled Output

HP-GL-l
HP-GL-2
HP-GL-2
HP-GL-3
HP-GL-4
HP-GL-4
HP-GL-4
HP-GL-4
HP-GL-4
HP-GL-4
HP-GL-5
HP-GL-6
HP-GL-6
HP-GL-7
HP-GL-7
HP-GL-7
HP-GL-8
HP-GL-8
HP-GL-8
HP-GL-8
HP-GL-9
HP-GL-9
HP-GL-9
HP-GL-9
HP-GL-IO
HP-GL-IO
HP-GL-IO
HP-GL-IO

Contents-1

Timeouts
Starbase Functionality

Plotter Input
HP 9111A/T Input .
Pen Selection
Exceptions to Standard Starbase Support

Commands Not Supported (no-ops) .
Commands Conditionally Supported

Parameters for gescape

Contents-2

HP-GL-ll
HP-GL-ll
HP-GL-ll
HP-GL-12
HP-GL-12
HP-GL-13
HP-GL-13
HP-GL-13
HP-GL-14

HP-GL
The HP-GL Device Driver

Device Description

The Hewlett-Packard Graphics Language (HP-GL) Device Driver is a least­
common-denominator HP-GL command-set driver. All standard HP-GL com­
mand set devices should work properly with this driver. Hewlett-Packard has
tested and supports the following HP-GL devices with HP-IB interfaces and se­
rial (RS-232) interfaces for plotters:

• HP 9111A tablet
• HP 7440A plotter
• HP 74 70A plotter
• HP 74 75A plotter
• HP 7550A plotter
• HP 7570A plotter
• HP 7575A plotter
• HP 7576A plotter
• HP 7580A plotter
• HP 7580B plotter
• HP 7585B plotter
• HP 7586B plotter
• HP 7595A plotter
• HP 7596A plotter
• HP C1600A plotter
• HP C1601A plotter

HP-GL-1

Setting Up the Device

Switch Settings

For operation of a device with HP-IB interface, the HP-IB address must be the
same as the device file address (see "Special Device Files (mknod)").

For operation of this device with RS-232 the plotter must be configured by the
user where applicable as follows:

• 8-bit character size

• No parity

• Desired baud rate

• One stop bit if baud rate is greater than 110, otherwise two bits

The device driver "Ii bddhpgl . a" automatically configures the plotter to the
following:

• XON /XOFF protocol with de 1 and de3 signals

• ";" command terminator

• \ newline) response terminator

The device driver "libddhpgl. a" also sets the termio(4) structure for the device
interface to the following:

• 8-bit character size

• XON /XOFF protocol

• No parity

• Disable signals INTR and QUIT

• 2400 baud rate if initially 300

• No postprocessing

• Canonical processing

• Turn off ERASE and KILL symbols

HP-GL-2

Note

Note

There must not be a getty running on the serial device file. The
following command will sleep a getty:

sleep 2000000000 < /dev/plts

If the device is a SPOOLED file, the termio(4) structure for the
device interface will not be automatically configured, and the
user must configure the interface.

The default values for a newly opened interface are:

300 cs8 cread hupcl (see termio(4) , stty(l))

The following commands will correctly configure the device
interface that already has the above defaults:

sleep 2000000000 < /dev/plts &
stty (baud)

ixon ignbrk icanon isig clocal < /dev/plts
stty erase -- kill -- < /dev/plts

where (baud) is the baud rate of the device (600, 1200, 2400,
etc.), and / dev /pl t s is the device file for the serial plotter.

Special Device Files (mknod)

The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mlmod(lM) information
in the HP- UX Reference manual for further information. The name of this
special device file is passed to Starbase in the gopen procedure. Since superuser
capabilities are needed to create special device files, they are normally created
by the system administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file. The following examples will create a special
device file for this device. Remember that you must be the su peruser (the root
user) to use the mlmod command.

HP-GL-3

Series 300

HP-IB Card Device File

The mknod parameters should create a character device file with a major number
of 21 and a minor number of Ox(sc) (ad)OO where (sc) is the select code and (ad)
is the device's address.

mknod /dev/plotter c 21 Ox(sc)(ad)OO

Serial Interface Card Device File

The mknod parameters should create a character device file with a major number
of 1 and a minor number of Ox(sc)(ad)04 where (sc) is the select code and (ad)
is the port address.

mknod /dev/plotter c 1 Ox(sc)(ad)04

Series 800

HP-IB Card Device File

The mknod parameters should create a character device file with a major number
of 21 and a minor number of OxOO(lu) (ad) where (lu) is the hardware logical unit
and (ad) is the device's address.

mknod /dev/plotter c 21 OXOO(lu)(ad)

Serial Interface Card Device File

The mknod parameters should create a character device file with a major number
of 1 and a minor number of OxOO(lu) (ad) where (lu) is the hardware logical unit
and (ad) is the port address.

mknod /dev/plotter c 1 OXOO(lu)(acf)

HP-GL-4

(
\

Linking the Driver

The HP-GL Device Driver has a file name of libddhpgl. a and is located in the
/usr /li b directory. This device driver may be linked to a program by using the
absolute path name /usr/lib/libddhpgl. a, an appropriate relative path name,
or by using the -1 option as in -lddhpgl. If you use (link) Ii bddhpgl . a, you
must also include (link) the libdvio. a file. For example, to compile and link a
program for use with this driver, use:

cc example.c -lddhpgl -ldvio -lsb1 -lsb2 -0 example
fc example.f -lddhpgl -ldvio -lsb1 -lsb2 -0 example
pc example.p -lddhpgl -ldvio -lsb1 -lsb2 -0 example

depending upon the language being used.

HP-GL-5

Device Initialization

Parameters for gopen

The gop en procedure has four parameters: Path, Kind, Driver, Mode.

Path The name of the special device file created by the mlmod command
specified in the last section (for exam pIe, / dev /hpgl.)

Kind Indicates the 110 characteristics of the device. This parameter may

Driver

Mode

HP-GL-6

be one of the following:

• OUTDEV-output only

• INDEV-input only

• OUTINDEV-input or output

The character representation of the driver type. This must be either
hpgl or hpgls, e.g., on HP-IB devices:

"hpglll for C.
'hpgl' / /char(O) for FORTRAN77.
'hpgl' for Pascal.

The following is an example on RS-232 devices:

"hpgls"
'hpgls'//char(O)
'hpgls'

for C.
for FORTRAN77.
for Pascal.

The mode control word, consisting of several flag bits or ed together.
Listed below are the flag bits which have device-dependent actions:

o open the device, but do nothing else.

Note

INIT

RESET_DEVICE

SPOOLED

open and initialize the device in a
device-dependent manner. For plotters, INIT is
a DF command. The following are not changed:

• PI and P2

• Current pen number and position

• Pen speed, force and acceleration

• 90 degree rotation or axis alignment

open and completely initialize the device. For
plotters, this is an IN command. The values of
PI and P2 are set equal to the paper limits of the
plotter.

open the device for spooled operation. Only an
OUTDEV may be spooled.

open the device and set Starbase to
three-dimensional mode

Spooling with the HP-GL driver automatically scales PI and P2
to the plotting surface area. In order to turn off the scaling
function, the Starbase command set_pl_p2 with METRIC units
must be called.

Syntax Examples

For C Programs:

To open and initialize an HP-IB HP-GL device for output:

fildes = gop en ("/dev/plotter" , OUTDEV, "hpgl", IN IT) ;

To open and initialize an RS-232 HP-GL device for output:

fildes = gopen("/dev/plotter", OUTDEV, "hpgls", INIT);

For FORTRAN77 Programs:

To open an HP-IB HP-GL device for spooled output:

fildes = gopen('myfile'//char(O), OUTDEV, 'hpgl'//char(O), SPOOLED);

HP-GL-7

To open an RS-232 HP-GL device for spooled output:

fildes = gopen('myfile'//char(O), OUTDEV, 'hpgls'//char(O), SPOOLED);

For Pascal Programs:

To open and initialize an HP-IB HP-GL device for spooled output:

fildes := gopen('myfile', OUTDEV, 'hpgl', INIT+SPOOLED);

To open and initialize an RS-232 HP-GL device for spooled output:

fildes := gopen('myfile', OUTDEV, 'hpgls', INIT+SPOOLED);

Device Defaults

Color Table

The HP-GL default color table is the Starbase default color table. To read the
current color table values, use the inquire_color_table procedure. The official
color table is stored in the device driver, allowing different color tables to be used
for different devices in the same program. The default color map has eight entries
as shown in the table below:

Table HP-GL-1. Default Color Table

Pen Color Red Green Blue
0 white (pen up) 0.0 0.0 0.0
1 black 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0

(
\

You can change the color tables values with the define_color_table procedure. ~

Red, Green and Blue Values

Functions that pass red, green and blue values are supported. The pen most
closely corresponding in value to the red, green and blue values is selected using

HP-GL-8

the current color table entries. A square-root-of-sum-of-squares algorithm is used
to identify the pen.

Device Coordinate Origin Default

The device coordinate origin (0,0) is device dependent. Use the hardware manual
provided with your HP-GL device to get the range of device coordinate values
and coordinate orientation.

Direct Output

The result of a inquire_id procedure call is the value returned by an or
command, i.e., the device is interrogated.

Echo Types

Both tracking and echo update use the current echo type as defined as follows:

Table HP-GL-2. Current Echo Type

Type Description

0 Pen Up
1 Pen Up
2 Pen Down

Line Type Defaults

The following table shows the predefined line types.
information is listed after the table.

Device dependent

HP-GL-9

Table HP-GL-3. Predefined Line Types

Index Name Approximate Pattern

0 SOLID Solid
1 DASH 0.25, 0.50, 0.25
2 DOT 4-8 dots per repeat length
3 DASH_DOT 0.4, 0.1, dot, 0.1, 0.35
4 DASH_DDT_DOT 0.35, 0.1, dot, 0.1, dot, 0.1, 0.35
5 LONG_DASH 0.375, 0.25, 0.375
6 CENTER_DASH 0.35, 0.1, 0.1, 0.1, 0.35
7 CENTER_DASH_DASH 0.25, 0.1, 0.1, 0.1, 0.1, 0.1, 0.25

HP-GL plotters do not support line type 4; line type 7 is substituted.

Number of Pens

The default number of pens is 8. The number of pens may be specified using
the HPGL_SET _PEN_NUM gescape. The gescape commands unique to this device
driver are discussed later in this section.

Plotter Units

If the device responds to an OF command, plotter units are set to that response.
Otherwise, the plotter units parameter is set to a default value of 0.025 millimeter
per plotter unit.

P1 and P2 Defaults

The values for Pi and P2 are device dependent. When you power up the plotter
the values of Pi and P2 will equal the paper limits. Afterwards Pi and P2
will not change unless the user changes them from the plotter's front panel, the
device is opened in RESET_DEVICE mode, or the Starbase command set_p1_p2 is
performed. If the paper size on the plotter is changed, it is the user's responsibility
to ensure that the values of Pi and P2 are correct.

Spooled Output

The result of an inquire_id procedure call, when using spooled output, is always
"HP-GL" (with a terminating '\0').

HP-GL-10

The values used for PI, P2 and plotter resolution are the default values for the
HP 7580B plotter with "D" size paper. A scaling command (HP-GL command
SC) is automatically done to the spool file so that the default PI and P2 are
mapped onto the actual device. This means that the full VDC extent will be
fitted to the plotting surface, and the entire picture will be plotted.

If the values of PI and P2 are changed using the Starbase command set_p1_p2
with METRIC units while in SPOOLED mode, the scaling will be turned off. The
setting of PI and P2 with FRACTIONAL units will not change the scaling.

Note

Timeouts

Spooling with the HP-GL driver automatically scales PI and P2
to the plotting surface area. To turn off the scaling function, the
Starbase command set_p1_p2 with METRIC units must be called.

If the Starbase command set_p1_p2 with METRIC units is to
be used while spooling, it must occur before any primitives are
drawn or undesired results will occur.

A timeout of 10 seconds is used for the initial status read of the device (if not
spooled), after which the timeout is 0 seconds (no timeout).

Starbase Functionality

Plotter Input

Each HP-GL plotter can be considered a locator device in digitizer mode. Three
values are located: X, Y, and Z. The X and Y values specify an absolute Cartesian
location on the plotter's scaled plotting area in Virtual Device Coordinates. The
Z value equals the maximum Virtual Device Coordinate if the pen is down, and
the minimum Virtual Device Coordinate if the pen is up.

When in digitizer mode, the plotter displays its "enter" indicator. The I Enter I
button is used to trigger either an event or request.

Sample calls will not cause the plotter to display its enter indicator.

HP-GL-11

Note Not all plotters are capable of indicating an enter condition.
Consult your plotter manual for further information.

HP 9111 AIT Input

The HP 9111A/T Graphics Tablet can be considered a locator device and a choice
device.

The 16 "soft keys" defined on the tablet can be used as choice input buttons.

The tablet's digitizing surface is the locator area. Three values are located: X, Y,
and Z. The X and Y values specify an absolute Cartesian location on the tablet's
surface. The location is in Virtual Device Coordinates. The Z value equals the
maximum VDC if the stylus is pressed, and the minimum VDC if the stylus is
not pressed.

Pen Selection

The following set of rules are used to select the pen the plotter will actually use.

If the program specifies a pen number that is zero, the plotter does a PEN UP.

If the program specifies a pen number that is less than or equal to the number
of pens the device driver recognizes, that pen number is sent to the plotter. If
the plotter has a pen with that number, it is used. If the plotter does not have a
physical pen with that number, a device-dependent action will occur. Either the
plotter will use the pen with the largest number, or a MOD calculation is made
and the resulting pen number is used.

If the program specifies a pen number that is larger than the number of pens
the device driver recognizes, the device driver does a MOD calculation to define
the pen number to send to the plotter. If the MOD calculation returns a non­
zero value, the driver sends that calculated pen number to the plotter. If the
MOD calculation returns a zero value the device driver makes an exception from
sending pen number 0, and sends the largest pen number.

HP-GL-12

Exceptions to Standard Starbase Support

Commands Not Supported (no-ops)

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

await_retrace
backface_control
background_color
background_color_index
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
block_move
block_read
block_write
clear_control
dbuffer_switch
dcblock_move
dcblock_read
dcblock_write
define_raster_echo
define_trimming_curve
depth_cue
depth_cue_color

Commands Conditionally Supported

depth_cue_range
display_enable
double_buffer
drawing_mode
fill_dither
hidden_surface
intline_width
intblock_move
intblock_read
intblock_write
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
line_endpoint
pattern_define
shade_mode
shade_range
surface_model
surface_coefficients
viewpoint
write_enable
zbuffer_switch

The following commands are supported under the listed conditions:

clear_view_surface New page on devices with automatic paper feeders.1

define_color_table Updates software color table only (an operator must
physically change the pens).

1 Some plotters will only eject the paper if it has been plotted on.

HP-GL-13

hatch_spacing

interior_style

text_precision

vertex_format

Care should be taken to specify spacings greater than or
equal to one pen width.

Only the INT_SOLID, INT_HATCH, and INT_HOLLOW styles
are supported.

Only STROKE_TEXT precision is supported.

The "use" parameter must be zero, any extra coordinates
supplied will be ignored.

Parameters for gescape
The following gescape functions are common to two or more drivers and discussed
in the appendix of this manual.

• HPGL_SET _PEN_NUM-Set plotter number of pens.

• HPGL_SET _PEN_SPEED-Set plotter pen velocity.

• HPGL_SET_PEN_WIDTH-Set plotter pen width.

• HPGL_WRITE_BUFFER-Permits direct communication of HP-GL com­
mands to supported devices.

HP-GL-14

Contents

The HP-HIL Device Driver
Device Description . . .
Setting Up the Device. .

Special Device Files (mknod)
For the Series 300
For the Series 800

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Examples . .

For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Starbase Functionality

Locator Devices . . .
Relative Positioning
Absolute Positioning

Choice Devices
HP-HIL Keyboards ..
Devices Without Triggers

Parameters for gescape . .
DISABLE_AUTO_PROMPT

C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . .

ENABLE_AUTO_PROMPT. .
C Syntax Example
FORTRAN77 Syntax Example

HP-HIL-l
HP-HIL-2
HP-HIL-2
HP-HIL-2
HP-HIL-3
HP-HIL-3
HP-HIL-4
HP-HIL-4
HP-HIL-4
HP-HIL-4
HP-HIL-4
HP-HIL-5
HP-HIL-5
HP-HIL-6
HP-HIL-6
HP-HIL-6
HP-HIL-7
HP-HIL-7
HP-HIL-7
HP-HIL-8
HP-HIL-9
HP-HIL-IO
HP-HIL-IO
HP-HIL-IO
HP-HIL-IO
HP-HIL-ll
HP-HIL-ll
HP-HIL-ll

Contents-1

Pascal Syntax Example
IGNORE_PROXIMITY .

C Syntax Example ..
FORTRAN77 Syntax Example
Pascal Syntax Example

PROMPT_OFF
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example

PROMPT_ON
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example

REPORT _PROXIMITY
C Syntax Example ..
FORTRAN77 Syntax Example
Pascal Syntax Example

SET _ACCELERATION. . . .

Contents-2

C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . . .

HP-HIL-ll
HP-HIL-12
HP-HIL-12
HP-HIL-12
HP-HIL-12
HP-HIL-13
HP-HIL-13
HP-HIL-13
HP-HIL-13
HP-HIL-14
HP-HIL-14
HP-HIL-14
HP-HIL-14
HP-HIL-15
HP-HIL-15
HP-HIL-15
HP-HIL-15
HP-HIL-16
HP-HIL-16
HP-HIL-16
HP-HIL-16

HP-HIL
The HP-HIL Device Driver

Device Description

The Hewlett-Packard Human Interface Link (HP-HIL) Device Driver is used to
provide graphics input from the following devices:

• HP 45911A HP-HIL Graphics Tablet

• HP 46020A HP-HIL Keyboard

• HP 46021A HP-HIL Keyboard

• HP 46060A HP-HIL Mouse

• HP 46060B HP-HIL 3-Button Mouse

• HP 46083A HP-HIL Knob

• HP 46085A HP-HIL Control Dial Module

• HP 46086A HP-HIL 32-Button Box

• HP 46087 A HP-HIL A-Size Digitizer

• HP 46088A HP-HIL B-Size Digitizer

• HP 46089A HP-HIL 4-Button Cursor for the HP 46087/88A Tablets

• HP 46094A HP-HIL Quadrature Box

• HP 46095A HP-HIL Quadrature 3-Button Mouse

• HP 80409A HP-HIL 3-Button Track Ball

HP-HIL-1

Setting Up the Device

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is hill for the first device on the hil loop, hi12 for the next device, etc.

There may be up to seven devices connected to a single HP-HIL driver board
allowing device file names of the form hi 11, hi 12, ... ,hi 17 .

(

The HP 46085A HP-HIL Control Dial Module must have three device files created \,
for it since each set of three dials in a row acts as a HP-HIL device.

The following examples will create a special device file for this device. Remember
that you must be superuser or root to use the mknod command.

For the Series 300

The mknod parameters should create a character device with a major number
of 24 and a minor number of OxOOOO(ad) where (ad) is the device's two digit
address (position on the HP-HIL loop from the computer interface card).

mknod /dev/hilx c 24 OxOOOO(ad)

HP-HIL-2

For the Series 800

The mknod parameters should create a character device with a major number of
24 and a minor number of OxOO(lu)(ad) where (lu) is the two-digit hardware
logical unit and (ad) is the device's two-digit address (position from the
computer interface card). Note that the Ox causes the number to be interpreted
hexadecimally.

mknod /dev/hilx c 24 OxOO(lu)(ad)

or

mknod /dev/hil_(lu). (ad) c 24 OXOO(lu)(ad)

Linking the Driver

The HP-HIL Device Driver is located in the /usr/lib directory with the file
name libddhil. a . This device driver may be linked to a program by using the
absolute path name /usr/lib/libddhil. a, an appropriate relative path name,
or by using the -1 option as in -lddhil. For example, to compile and link a
program for use with this driver, use:

cc example.c -lddhil -lsb1 -lsb2 -0 example
fc example.f -lddhil -lsb1 -lsb2 -0 example
pc example.p -lddhil -lsb1 -lsb2 -0 example

depending upon the language being used. To use this device driver in an
XII window, the libraries /usr/lib/libXwindow. a, /usr/lib/libXhp11. a and
/usr/lib/libX11. a must also be linked to the program. For example, to compile
and link a program for use in an XII window, use:

cc example.c -lddhil -lXwindow -lsb1 -lsb2 -lXhp11 -lXl1 -0 example
fc example.f -lddhil -lXwindow -lsb1 -lsb2 -lXhp11 -lXl1 -0 example
pc example.p -lddhil -lXwindow -lsb1 -lsb2 -lXhp11 -lXl1 -0 example

HP-HIL-3

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

When opening a device for exclusive access, this parameter is the
name of the special device file created by the mlmod command as
specified in the last section, that is, /dev/hil1. When opening
a device for shared access in an XII environment, this parameter
describes a device/window combination. Please refer to the
chapter "Input Operation" in the Starbase Programming with Xll
manual.

Indicates the I/O characteristics of the device. This parameter must
be INDEV for this driver.

The character representation of the driver type. This is hp-hil
modified to meet the syntax of the programming language used,
namely:

"hp-hil"
'hp-hil'//char(O)
'hp-hil'

This parameter is ignored.

for c.
for FORTRAN77.
for Pascal.

Syntax Examples

To open and initialize an HP-HIL Mouse device at the second position on the
loop for input:

For C Programs:

fildes = gopen(l/dev/hil2".INDEV."hp-hil".INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/hil2'//char(O). INDEV. 'hp-hil'//char(O) .INIT)

HP-HIL-4

For Pascal Programs:

fildes = gopen('/dev/hi12' ,INDEV, 'hp-hil' ,INIT);

Special Device Characteristics

At each HP-HIL address there can be:

• 0, 1 or 2 locator devices (each can return X,Y,Z values)

• 0 or 2 choice devices

Enabling events with class = ALL will enable all of the above that are present.
If a choice device is present, you will get two choice events for each button press.
One is the button number, the other is the 32-bit wide bit map.

Some locator devices, such as the HP 46085A HP-HIL Control Dial Module 9-
Knob Box, have no buttons on them. This means that they can only be sampled.
Request and event functions have no meaning for these devices.

HP-HIL-5

Starbase Functionality

Locator Devices

There are several defaults created at gopen time.

Relative Positioning

For some HP-HIL locator devices, position location is relative to the initial
position of the locator device (0,0,0).

For example, the initial "position" of a mouse is (0,0,0). Any move by the mouse
is with respect to that position. All relative devices have a default PI, P2locator
area that is 20 centimeters square. Movement of relative devices beyond the
PI, P2 limits is ignored and the device remains located at the point the device
crossed the PI, P2 boundary.

If you move beyond the PI, P2 limits and then move the relative device in the
reverse direction, the device position immediately starts to change. All motion
beyond the clip limit is forgotten, and the reversal point becomes the new limit
position.

If the procedure set_pl_p2 is executed with the FRACTIONAL parameter, the
fraction is with respect to 20 centimeters.

If the procedure set_pl_p2 is executed with the METRIC parameter, the limit
values are unlimited and can be larger than 20 centimeters.

The initial position of relative devices such as a mouse can be set via the
set_locator procedure.

Movement of the mouse is converted from device units to virtual device coordinate
values. The size of a device unit can be found using the inquire_sizes function.
To change the reference point, use the set_locator procedure. All location
coordinates are clipped to the rectangle defined by PI and P2.

The default PI, P2 area for relative hil devices is square. To get a mapping from
the full range of the input device to the full range of the output device, either
call set_pl_p2 with METRIC parameters that have an aspect ratio equal to the
aspect ratio of the output device or call mapping_mode (DISTORT) .

HP-HIL-6

Absolute Positioning

For some HP-HIL locator devices, position is absolutely defined. Information
concerning the limits of these devices is provided with the manuals for these
devices.

To find the resolution of the device, use the inquire_sizes procedure.

Input values are not clipped, and absolute devices may return points outside of
the VDC extent.

Choice Devices

Choice devices are divided into two groups .

• Ordinal I-Reports the button number as an integer. Pressing a button
returns a positive value. By default, releasing a button will return zero. If
the geseape TRIGGER_ON_RELEASE has been executed, releasing a button
will return a negative valued button number .

• Ordinal 2-Reports a 32-bit wide bit mask. The least significant bit
equals button 1 and the most significant bit equals button 32. A one
value indicates that the button is pressed. Buttons greater than 32 will
trigger this report, but will not affect the bit mask returned. Releasing a
button will cause the corresponding bit to be reset to zero.

HP-HIL Keyboards

If an HP-HIL keyboard is accessed using the Starbase gopen call, the keyboard
will no longer report to the terminal emulator. Be sure to leave a way to gelose
since the break key will not stop the program.

All keyboards are considered to be USASCII keyboards. When a key is depressed,
the USASCII integer value of that key is returned. Exceptions are [IT] thru
[][] plus the four unmarked keys in the upper-right corner of the keyboard
representing keys 1 thru 12 respectively.

HP-HIL-7

Table HP-HIL-1. Keys and Their Values

Key Value Key Value Key Value

Break 232 Delete line 240 System 248
Reset 233 Clear line 241 User 249
Stop 234 Clear display 242 Prev 250
Extend char (left) 235 Menu 243 Next 251
Extend char (right 236 HOME 244 up arrow 252
Insert char 237 Select 245 down arrow 253
Delete char 238 Enter 246 right arrow 254
Insert line 239 Print 247 left arrow 255

Devices Without Triggers

Some devices provide location data, but have no buttons. Since they have no
trigger action, special rules apply to them.

• All requests are invalid.

• inquire_request_status is never TRUE (1). This means use sample
procedures only.

• There is no way to generate an event.

HP-HIL-8

Parameters for gescape
The following gescape functions are common to multiple device drivers. Detailed
information about these functions can be found in Appendix A.

• IGNORE_RELEASE-Trigger when button pressed.

• TRIGGER_ON_RELEASE-Trigger when button released.

These gescape functions are unique to this driver and are presented only in this
section.

• DISABLE_AUTO_PROMPT-Disable HP-HIL auto prompt.

• ENABLE_AUTO_PROMPT-Enable HP-HIL auto prompt.

• IGNORE_PROXIMITY-Ignores stylus proximity.

• PROMPT _OFF -Switch prompt indicator off.

• PROMPT _ON-Switch prompt indicator on.

• REPORT_PROXIMITY-Reports stylus proximity.

• SET_ACCELERATION-Set acceleration and threshold values.

HP-HIL-9

The (op) parameter is DISABLE_AUTO_PROMPT.

This gescape disables the auto prompt facility enabled by the previously
discussed procedure. The prompt indicator will not be activated automatically
after this gescape is executed. You can manually turn the prompt indicator on
and off with the PROMPT_ON and PROMPT_OFF escape codes described next.

The arg1 and arg2 parameters are ignored.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h */
gescape_arg argl. arg2;
gescape(fildes.DISABLE_AUTO_PROMPT.&argl.&arg2);

FORTRAN77 Syntax Example

integer*4 argl(64).arg2(64)
call gescape(fildes.DISABLE_AUTO_PROMPT.argl.arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl. arg2 : gescape_arg;
begin

gescape(fildes.DISABLE_AUTO_PROMPT.argl.arg2);

HP-HIL-10

(
\

The (op) parameter is ENABLE_AUTO_PROMPT.

Some HP -HIL devices have an indicator to inform the operator that the device
is being accessed. This gescape enables this indicator whenever a request starts
or events are enabled. If a specific device does not have such an indicator, this
procedure is ignored. This is the default condition.

The argl and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl, arg2;
gescape(fildes,ENABLE_AUTO_PROMPT,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argl(64),arg2(64)
call gescape(fildes,ENABLE_AUTO_PROMPT,argl,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;
begin

gescape(fildes,ENABLE_AUTO_PROMPT,argl,arg2);

HP-HIL-11

The (op) parameter is IGNORE_PROXIMITY.

This gescape causes the device not to generate a choice input and a locator input
when the device's stylus is close enough to the device to register input activities.
This is the default state.

The argl and arg2 parameters are ignored.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h */
gescape_arg arg1. arg2;
gescape (fildes. IGNORE_PROXIMITY. &arg1. &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64). arg2(64)
call gescape (fildes. IGNORE_PROXIMITY. arg1. arg2);

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}
var

arg1. agr2: gescape_arg;
begin

gescape (fildes. IGNORE_PROXIMITY. arg1. arg2);

HP-HIL-12

PROMPT_OFF

The (op) parameter is PROMPT_OFF.

This gescape manually deactivates the prompt indicator on the specified device
(if the device has one).

The argl and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl, arg2;
gescape(fildes,PROMPT_OFF,&argl,&arg2);

FORTRAN77 Syntax Example

integer*4 argl(64),arg2(64)
call gescape(fildes,PROMPT_OFF,argl,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;
begin

gescape(fildes,PROMPT_OFF,argl,arg2);

HP-HIL-13

PROMPT_ON

The (op) parameter is PROMPT_ON.

This gescape manually activates the prompt indicator on the specified device (if
the device has one).

The argl and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl, arg2;
gescape(fildes,PROMPT_ON,&argl,&arg2) ;

FORTRAN77 Syntax Example

integer*4 argl(64),arg2(64)
call gescape(fildes,PROMPT_ON,argl,arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;
begin

gescape(fildes,PROMPT_ON,argl,arg2);

HP-HIL-14

REPORT _PROXIMITY

The (op) parameter is REPORT _PROXIMITY.

This gescape causes the device to generate a choice input (with value 8) and a
locator input (the locators current position) when the device's stylus comes close
enough to the device to register input activities. If TRIGGER_ON_RELEASE is set,
the device will also trigger a choice input and a locator input when the device's
stylus goes too far away from the device to register inputs. REPORT _PROXIMITY is
only supported on HIL devices that have the ability to detect proximity (touch
bezels, and some tablets). The default value is for proximity detection to be
ignored.

The arg1 and arg2 parameters are ignored.

C Syntax Example

/* gescape_arg is type defined in starbase.c.h */
gescape_arg argl. arg2;
gescape (fildes. REPORT_PROXIMITY. &argl. &arg2);

FORTRAN77 Syntax Example

integer*4 argl(64). arg2(64)
call gescape (fildes. REPORT_PROXIMITY. argl. arg2);

Pascal Syntax Example

{gescape_arg is defined in starbase.pl.h}
var

argl. agr2: gescape_arg;
begin

gescape (fildes. REPORT_PROXIMITY. argl. arg2);

HP-HIL-15

SET _ACCELERATION

The (op) parameter is SET_ACCELERATION.

This gescape causes motion to be multiplied by the acceleration multiplier when
the movement per sample (in device coordinates) exceeds the threshold value.
The sample rate for HIL is 60 hertz.

arg1. i [0]

arg1. i [1]

= The acceleration multiplier.
= The threshold value.

The arg2 parameter is ignored.

C Syntax Example

1* gescape_arg is type defined in starbase.c.h *1
gescape_arg arg1. arg2;
arg1.i[0]=2; 1* Set acceleration multiplier to 2. *1
arg1.i[1]=4; 1* Accelerate when the movement exceeds 4

device coordinates per sample. *1
gescape(fildes.SET_ACCELERATION.&arg1.&arg2) ;

FORTRAN77 Syntax Example

integer*4 arg1(64).arg2(64)
arg1(1) =2
arg2(2)=4
call gescape(fildes.SET_ACCELERATION.arg1.arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}
var

arg1. arg2 : gescape_arg;
begin

HP-HIL-16

arg1. i [1] : =2;
arg1. i [2] : =4 ;
gescape(fildes.SET_ACCELERATION.arg1.arg2) ;

Contents

The HP Keyboard Device Driver
Device Description . .
Setting Up the Device .

Special Device Files .
Linking the Driver .

Device Initialization
Parameters for gopen
Syntax Examples . .

For C Programs: .
For FORTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Starbase Functionality

KBD-l
KBD-l
KBD-l
KBD-l
KBD-2
KBD-2
KBD-2
KBD-2
KBD-2
KBD-2
KBD-3
KBD-3

Contents-1

KBD
The HP Keyboard Device Driver

Device Description
This driver allows an Hewlett-Packard keyboard to be used as a choice device.
When an event occurs, the ordinal ASCII value of the key depressed is returned.

Setting Up the Device

Special Device Files

The device file used for the key board that you are logged into is in the
/dev directory with the file name tty. For other keyboards on your system,
your system administrator may set up different device files. See your system
administrator for information about those files.

Linking the Driver

The keyboard device driver is located in the /usr /Ii b directory with the file
name 1ibddkbd. a. This device driver may be linked to a program by using the
absolute path name /usr/1ib/1ibddkbd. a, an appropriate relative path name,
or by using the -1 option -1ddkbd. For example, to compile and link a program
for use with this driver, use:

cc example.c -lddkbd -lsb! -lsb2 -0 example
fc example.f -lddkbd -lsb! -lsb2 -0 example
pc example.p -lddkbd -lsb! -lsb2 -0 example

depending upon the language being used.

KBD-1

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

This is the name of the special device file created by the mknod
command as specified in the last section. For example, / dev /tty.

This indicates the I/O characteristics of the device. The parameter
must be INDEV for this driver.

This is the character representation of the driver type. For this
driver, use keyboard or kbd modified to meet the syntax of the
programming language used. For example, use one of the following
appropriate for the language being used:

IIkeyboard ll

II kbd II

'keyboard'//char(O)
'kbd'//char(O)

'keyboard'
'kbd'

This parameter is ignored.

for c.
for c.
for FOR TRA N77.
for FORTRAN77.
for Pascal.
for Pascal.

Syntax Examples

To open and initialize a keyboard device for input:

For C Programs:

fildes = gopen(1I /dev/ttyll, INDEV, IIkbd ll , INIT) ;

For FORTRAN77 Programs:

fildes = gopen('/dev/tty'//char(O),INDEV, 'kbd'//char(O),INIT)

For Pascal Programs:

fildes = gopen('/dev/tty',INDEV,'kbd',INIT);

KBO-2

Special Device Characteristics

• The keyboard driver only supports one choice subdevice.

• No locator functions are currently supported.

• To get access to local keys (such as arrow keys), the transmit function's
escape code should be sent to the tty before accessing the tty with the
gopen command. These functions are Ec&slA to transmit local functions,
and Ec&sOA not to transmit local functions.

• The HP-HIL driver can also be used to access the HIL keyboard, but
only one driver (HIL or keyboard) can access the keyboard with a gopen
command at anyone time.

• The keyboard driver and the terminal driver cannot be used simultane­
ously for input from the same device because they interfere with each
other's operation.

Starbase Functionality

Since tty devices do not generate key transitions (key up and key down),
sample_choice command gives it best approximation. When events are enabled,
the choice value returned (if any) is the last key pressed in the last one half second.
If events are not enabled, the choice value returned (if any) is the last key pressed
since the last sample_choice command or choice request.

At gopen time, the keyboard driver performs several tasks that should be noted.
It saves and replaces any signal handlers with its own handlers (except for the
SIGKILL, non-terminating, and ignored signals). Then the current state of the
tty (see tty(4)) is inquired and saved. The state of the tty is then changed (to
Canonical Input, No Echo, One character blocking reads, etc.) using ioctl and
fcntl. If a signal is received by the current process, one of the keyboard signal
handlers is called. This signal handler restores the old state of the tty and then
calls the signal handler that was present at gopen time.

If events are enabled and the current process gets killed by any signal, the
Starbase daemon program will also restore the state of the tty. This is done

KBO-3

in case a SIGKILL was received. If events are not enabled and the current process
gets killed, the tty is left in a bad state. To fix this try typing:

I CONTROL I J stty hp I CONTROL I J

Sophisticated users that need to use their own signal handlers and/or change the
state of the tty should be aware of these operations and program around them.

KBO-4

Contents

The HP Locator Keyboard Device Driver
Device Description
Setting Up the Device.

Special Device Files (mknod)
Linking the Driver
Terminfo Support Required

Initialization
Parameters for gopen . . .

Syntax Examples
Special Device Characteristics

Starbase Functionality
Choice Devices .
Locator Devices
Limitations . .

Parameters for gescape
ENABLE_ACKNOWLEDGE

C Syntax
FORTRAN77 Syntax . . .
Pascal Syntax

DISABLE_ACKNOWLEDGE
C Syntax
FORTRAN77 Syntax .
Pascal Syntax . . .

LKBD-l
LKBD-l
LKBD-l
LKBD-2
LKBD-2
LKBD-4
LKBD-4
LKBD-5
LKBD-5
LKBD-6
LKBD-6
LKBD-6
LKBD-8
LKBD-8
LKBD-9
LKBD-9
LKBD-9
LKBD-9
LKBD-IO
LKBD-IO
LKBD-IO
LKBD-IO

Contents-1

LKBD
The HP Locator Keyboard Device Driver

Device Description
This driver allows a Hewlett-Packard keyboard to be used as a choice input
device. Arrow keys can be used as a locator device if they are described in the
t erminf 0 (4) data base.

The keyboard is treated as an ASCII device and is accessed via the termio(7)
interface. The HP-HIL Device Driver provides raw access to HIL keyboards.

Setting Up the Device

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. Refer to the mknod(lM) entry
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. The special
device file /dev/tty always refers to the keyboard at which you are logged in to
the system. For other keyboards on your system, your system administrator may
set up different device files. Normally, for a terminal keyboard, the device file
used to access the terminal can be used, but a getty(lM) process also running on
the terminal will interfere with correct behavior of the keyboard device. Logging
in to the other terminal and executing a long sleep(l) is one way to temporarily

LKBD-1

disable the getty process; the sleep can normally be terminated with the I BREAK I
key. For the same reason, a program cannot concurrently get both user textual
input and graphics input from the same keyboard.

The following example will create a / dev /tty special device file. Remember
that you must be superuser to use the mknod command. This file usually exists
and therefore does not need to be created.

mknod / dev /tty e 2 OxOOOOOO I RETURN I

Note that the leading Ox causes the number be interpreted hexadecimally.

Linking the Driver

The locator keyboard device driver is located in the /usr/lib directory with the
file name libddlkbd. a. This device driver may be linked to a program by using
the -1 option -lddlkbd. The driver also requires the eurses(3) library to be
linked. For example, to compile and link a program for use with this driver, use:

or

ce example.e -lddlkbd -lsb1 -lsb2 -leurses -0 example

fe example.f -lddlkbd -lsb1 -lsb2 -leurses -0 example

pc example.p -lddlkbd -lsb1 -lsb2 -lcurses -0 example

Terminfo Support Required

The locator keyboard driver uses the terminfo(5) data base and eurses(3) to
enable and recognize the escape sequences sent by the terminal arrow keys. In
order to do this, the terminfo data base entry for your current terminal (as
indicated by the TERM environment variable) must include the necessary items. If
these items are not present, the choice device will still function, but the locator
device will not work properly.

Modifying a t erminf 0 entry should be done in several steps:

1. The current entry can be placed in a text file for editing by using untie,
which reverses the effect of the tie(lM) processing program:

untie $TERM >myentry

2. The following items must be added to the entry if not present:

LKBO-2

(

Table LKBD-1.

Capability Description Capability ID
enable keypad smkx
disable keypad rmkx
up arrow. kuul
down arrow kcudl
right arrow kcufl
left arrow kcubl
scroll up kind
scroll down kri
home up khome
home down kll

For example, to extend the standard Hewlett-Packard terminal, the entry
must include the following items (the first six of which are usually included
in the terminfo entry as shipped with HP-UX):

smkx=\Eks1A
rmkx=\EksOA
kcuu1=\EA
kcud1=\EB
kcuf1=\EC
kcub1=\ED
kind=\ES
kri=\ET
khome=\Eh
kll=\EF

3. You should set your TERM INFO environment variable to a local directory
for testing purposes. The system will look in this directory first when
attempting to set up a terminal interface.

For the C shell:

setenv TERMINFo /users/joe/term

For the Bourne shell:

TERMINFo=/users/joe/term
export TERM INFO

LKBD-3

4. The tic(lM) processor is used to compile the modified entry. The tic will
use the current value of TERMINFO as the base directory for its output. Be
forewarned-tic creates subdirectories as necessary in the base directory.

tic -v myentry

5. Finally, the entry should be tested to make sure it is correct. When that
has been determined, the entry can be recompiled (by the superuser) into
the system default base directory, /usr/lib/terminfo. This should not
be done until it is absolutely certain that the entry is correct and that no
information has been lost from the original. After the entry is placed in
the default location, the TERMINFO environment variable need no longer
be set to gain access to the modified entry.

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

LKBD-4

The name of the special device file created by the mknod command
as specified in the last section, e.g. /dev/tty.

Indicates the I/O characteristics of the device. This parameter must
be INDEV for this driver.

The character representation of the driver type. This is lkbd
modified to meet the syntax of the programming language used,
namely:

"lkbd"
'lkbd'//char(O)
'lkbd'

for c.
for Fortran 77.
for Pascal.

The mode control word (consists of several flag bits or ed together).
For this driver, the mode parameter is ignored. The driver always
starts with default values for locator position and resolution as
described in the following examples.

Syntax Examples

To open and initialize a keyboard device for output:

For C programs:

fildes = gopen("/dev/tty".INDEV."lkbd".INIT);

For FO RTRAN77 programs:

fildes = gopen('/dev/tty'//char(O). INDEV. 'lkbd'//char(O).INIT)

For Pascal programs:

fildes = gopen('/dev/tty'.INDEV.'lkbd'.INIT);

Special Device Characteristics

The locator keyboard driver replaces handlers for most signals with its own
cleanup routine in order to restore your keyboard processing to its state before
gopen was called. If you have specified handlers for any signals, they will be
called after the cleanup. Cleanup is not done for SIGPWR, SIGKILL, SIGCLD, or
SGWINDOW. Your handler is restored at gelose.

Input processing is set to canonical, no echo, one-character non-blocking reads
while the driver is opened. Should the driver be killed in such a way that it
cannot clean up, the tty may be left in a bad state. To fix this, try typing:

I CONTROL I J stty hp I CONTROL I J

Sophisticated users that need to use their own signal handlers and/or change the
state of the tty should be aware of the locator keyboard driver behavior and
program accordingly.

LKBD-5

Starbase Functionality

Choice Devices

The driver supports one choice device. When used as a choice device, the ordinal
ASCII value of the key depressed is returned. Since key transitions cannot be
detected, sample_choice will return the key pressed most recently in the last
0.1 second. If a tenth of a second has elapsed since a keypress, the choice value
returned will be zero. An exception to this rule is the ASCII I escape I key. The
curses routines, in attempting to recognize escape sequences sent by the keypad,
will wait one second before deciding that the I escape 1 key (value 27) has in fact
been pressed. Escape sequences that are not recognized (due to their absence from
the terminfo data base entry) will be interpreted as two or more keypresses, the
first is I escape I.

Locator Devices

When the locator is enabled, the alphanumeric keypad arrow keys change the
locator position one unit in the appropriate direction. Certain other keys have
been defined to change the locator position by ten units rather than one. The
supported set of locator keys is:,

up arrow
down arrow
right arrow
left arrow
scroll up
scroll down
home up
home down

increment y by one unit
decrement y by one unit
increment x by one unit
decrement x by one unit
increment y by ten units
decrement y by ten units
increment x by ten units
decrement x by ten units

These functions do not map to the same keys on all keyboards. Some keyboards
may not support the second set of four keys. This will not prevent the arrow
keys from functioning properly as long as the terminfo entry describes them.

LKBO-6

On the ITF keyboard normally used with Series 300 systems, the four fast
locator keys are mapped as follows:

fast up
fast down
fast right
fast left

shift + up arrow
shift + down arrow
shift + home
home

One locator device is supported. The locator position is relative to the initial
position of the device; the default is (0,0,0). The initial position can be set by
the set_locator procedure.

The initial resolution of the locator is 1024x 1024. The resolution of the locator
can be changed by calling set_p1_p2. One keystroke corresponds to a motion of
one device unit in X or Y, and also is defined as one millimeter for purposes of
the set_p1_p2 call with the METRIC parameter. If the FRACTIONAL parameter is
used, the fractions will be multiplied by the 1024x 1024 device extents. If METRIC
is used, the number of millimeters exactly specifies the number of units in the
locator limits. This allows mapping of any desired number of clicks to the display
being used during tracking.

Movement of the locator beyond the current P 1, P2 limits is ignored; the device
remains located at the point at which the P1, P2 limit is reached. To get a
mapping from the full range of the input device to the full range of the output
device, call either set_p1_p2 with METRIC parameters that have an aspect ratio
equal to the aspect ratio of the output device, or call mapping_mode with the
(distort) parameter TRUE.

The arrow keys provide no natural trigger for locator events and requests.
Consequently, any ordinary key is considered a trigger for the locator. This
means that if both a choice request and a locator request are pending, both will
be satisfied at the time of the choice input. However, the locator request may
timeout if no key is pressed. Similarly, locator events are captured at the time
of a choice keypress. If both locator and choice events are enabled, the choice
keypress will cause two simultaneous events to be queued, one from the locator
and one from the choice device.

LKBD-7

Limitations

Due to the serial processing used on keyboard inputs and the operation of some
keyboards, some combinations of input functions are not possible. For example,
simultaneously tracking from the locator device and sampling the choice device
does not work well because most keyboards do not operate in a continuous rollover
mode. In other words, holding down one of the arrow keys and a choice key will
not cause a stream of alternating arrow and choice keystrokes to be sent to the
host computer. Instead, the last key pressed, or perhaps the first key in the
scanning sequence built into the keyboard, will be sent repeatedly. In general,
continuous high-speed sampling of a serial device is not advisable.

The lkbd, kbd, and hpterm drivers will interfere with each other if any
combination is used simultaneously for input from the same terminal.

Parameters for gescape
The following gescape functions are unique to this driver and are discussed in
this section:

• ENABLE_ACKNOWLEDGE-Allows bell character when request/event is sat­
isfied .

• DISABLE_ACKNOWLEDGE-Disables bell function.

LKBD-8

ENABLE_ACKNOWLEDGE
The (op) parameter is ENABLE_ACKNOWLEDGE.

Most keyboards have associated with them a tone generator (bell) that can be
used to indicate to the operator that an input has been received. This gescape
causes the driver to write a bell character (7) to the device whenever a request
or event is satisfied.

The default condition is acknowledge disabled.

argl and arg2 are ignored.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

gescape(fildes,ENABLE_ACKNOWLEDGE,&arg1,&arg2);

FORTRAN77 Syntax

integer*4 arg1(64),arg2(64)
call gescape(fildes,ENABLE_ACKNOWLEDGE,arg1,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
gescape(fildes,ENABLE_ACKNOWLEDGE,arg1, arg2);

LKBO-9

DISABLE_ACKNOWLEDGE

The (op) parameter is DISABLE_ACKNOWLEDGE.

This gescape disables the acknowledge function described under gescape
ENABLE_ACKNOWLEDGE.

The default condition is acknowledge disabled.

arg1 and arg2 are ignored.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

gescape(fildes,DISABLE_ACKNOWLEDGE,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64) ,arg2(64)
call gescape(fildes,DISABLE_ACKNOWLEDGE,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
gescape(fildes,DISABLE_ACKNOWLEDGE,argl, arg2);

LKBD-10

/
\,

Contents

The Terminal Device Driver
Device Description . .
Setting Up the Device. . .

Swi tch Settings
Special Device Files (mknod)

For the Series 300
For the Series 800

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Examples ..

For C Programs: .
For FORTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Screen Resolution
Polygons

Device Defaults
Default Color Map
Dither Default . .
Line Types

Starbase Functionality
Commands Not Supported (no-ops) .
Conditionally Supported
Text
Terminal Device Access
Raster Operations
Input
Echo for the HP 2623

HPTERM-l
HPTERM-l
HPTERM-l
HPTERM-2
HPTERM-2
HPTERM-3
HPTERM-3
HPTERM-4
HPTERM-4
HPTERM-6
HPTERM-6
HPTERM-6
HPTERM-6
HPTERM-7
HPTERM-7
HPTERM-7
HPTERM-7
HPTERM-7
HPTERM-8
HPTERM-9
HPTERM-10
HPTERM-10
HPTERM-ll
HPTERM-ll
HPTERM-12
HPTERM-12
HPTERM-12
HPTERM-12

Contents-1

Echo for Other Terminals
Drawing Mode . . .

Parameters for gescape
HPTERM_640x400 .

C Example
FORTRAN77 Example
Pascal Example

HPTERM_PRINT _ESC
C Example
FORTRAN77 Example
Pascal Example

Contents-2

HPTERM-12
HPTERM-13
HPTERM-14
HPTERM-15
HPTERM-15
HPTERM-15
HPTERM-16
HPTERM-17
HPTERM-17
HPTERM-17
HPTERM-18

HPTERM
The Terminal Device Driver

Device Description
The hpt erm driver supports the following terminals:

• HP 2623A

• HP 2627A

• HP 150A, HP 150-II

• HP 2625A, HP 2628A

• HP 2393A

• HP 2397A

The driver name hp262x can also be used with this driver for backward
compatibility with earlier releases of Starbase.

Setting Up the Device

Switch Settings

To succeed, proper communication must be established with the terminal before
using the terminal driver. The correct settings for the baud rate, parity, etc., must
be made. To do this, consult the terminal manuals supplied with your equipment,
the HP- UX System Administrator Manual and the system administrator for your
system.

HPTERM-1

Note The IndHndShk(G) and Inh DC2(H) straps are automatically set
to YES before inquiries are made to establish correct handshaking.
The Xmi tPace and RecvPace fields in the terminal's datacomm
configuration menu should be set by hand to Xon/Xoff.

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the terminal. See the mknod(lM) information in the
HP- UX Reference for further details. Since superuser capabilities are needed to
create special device files, they are normally created by the system administrator.

Although special device files can be made in any directory of the HP-UX File
System, the convention is to create them in the / dey directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is ttyxx for a terminal directly connected to your HP-UX System and
ttydxx for a remote terminal (dial-up port) connected to your system with a
modem.

For the Series 300

When the terminal is a typical hardwired port connection, the mknod command
should create a character device file with major number 1 and minor number
Ox(sc)(ad)04, where (sc) is the two-digit select code and (ad) is the two-digit
port address:

mknod /dev/tty26 c 1 Ox(sc)(ad)04

Note that the leading Ox causes the number to be interpreted hexadecimally.
When the terminal is a dialup modem port, the mknod command should create
a character device file with major number 1 and minor number Ox(sc)(ad)Ol,
where (sc) is the two-digit select code and (ad) is the two-digit port address:

mknod /dev/ttyd41 c 1 Ox(sc)(ad)Ol

A getty(lM) process must be active on a port before it can be used to log in.

HPTERM-2

For the Series 800

When the terminal is a typical hardwired port connection, the mkned command
should create a character device with major number 1 and minor number
OxOO (lu) (ad), where (lu) is the two-digit hardware logical unit and (ad) is the
two-digit mux port address:

mkned /dev/tty3p2 c 1 OxOO(lu)(ad)

Note that the leading Ox causes the number to be interpreted hexadecimally.

A getty(1M) process must be active on a port before it can be used to log in.

Note When opening a terminal using gepen with the driver as hp262x
or hpterm, the terminal processing for the HP-UX system will
temporarily be set for canonical processing. This is done to
ensure that the device can respond quickly enough to an inquiry
from the driver. Following the inquiry, the previous processing
state is restored. The same action is done for the other inquiries
during gepen.

Linking the Driver

The driver is located in the /usr/lib directory under both file names libddh­
pterm.a and libdd262x.a. It may be linked to a program by using the absolute
path name /usr/lib/libddhpterm. a or /usr/lib/libdd262x. a, an appropriate
relative path name, or by using one of the -1 options -lddhpterm or -ldd262x.
To compile and link a program for use with this driver use:

cc example.c -lddhpterm -lsb! -lsb2 -0 example
fc example.f -lddhpterm -lsb! -lsb2 -0 example
pc example.p -lddhpterm -lsb! -lsb2 -0 example

HPTERM-3

Device Initialization

Parameters for gopen

The gopen call has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device file created by the mknod command
(for example, /dev/ttyxx.) For the terminal at which you are logged
in, the pseudo-device /dev/tty can be used and is recommended for
programs intended to plot only on the invoker's terminal.

Kind Parameter which indicates I/O characteristics of the device. This

Driver

HPTERM-4

parameter may be one of the following:
• OUTDEV-Output only
• INDEV-Input only
• OUTINDEV-Input and Output

The functionality of the driver may be specified directly by using a
character string that identifies the type of Hewlett-Packard terminal
in use, or it may be determined indirectly by allowing the terminal
to identify itself. The following strings may be used to specify the
terminal type directly:

"hp2623"
"hp2627"
"hp150"
"hp2625" or "hp2628" (functionally equivalent)
"hp2393"
"hp2397"

The following two strings may be used to indicate that the terminal
should identify itself. The strings are functionally equivalent, but
should not be used for a spooled output configuration.

"hpterm"
"hp262x"

/

I

\,

Mode

Note

The terminal is expected to respond to a device ID inquiry with a
sequence of characters beginning with one of the following:

2623
2627
_150 (Terminal ID contains a prepended significant blank)
2620 (For HP 2625 and HP 2628 Terminals)
2393
2397
2390 (For HP 2393 or HP 2397)

Characters appended to these base ID numbers are ignored (for
example, 2627 A is acceptable). Terminals with variable device IDs
should be configured to an appropriate ID from the above list. If
the response from the terminal is not recognized, an error will be
generated and the gopen call will fail.

If the terminal is configured with the 2390 ID, a color capability
inquiry is performed to determine whether the terminal is an HP 2393
or an HP 2397.

The mode control word consists of several flag bits or ed together.
Listed below are those flag bits which have device-dependent actions.
Those flags not discussed below operate as defined by the gopen
procedure.

• O-open the device, but do nothing else.
• INIT -open and initialize the device.
• SPOOLED-open the device for spooled operation.

Because device inquiries are not possible when output is spooled,
the driver type should be selected directly; an error will result
and the gopen will fail if either "hpterm" or "hp262x" is specified
when SPOOLED is also specified.

HPTERM-5

Syntax Examples

For C Programs:

To open an HP Graphics Terminal:

fildes = gopen("/dev/tty", INDEV, II hpt erm II , INIT);
fildes = gopen(lIspool_file ll

, OUTDEV, "hp2623 II , SPOOLED);
fildes = gopen(1I /dev/tty", OUTDEV, "hp2627 II , 0);

For FORTRAN77 Programs:

To open an HP Graphics Terminal:

fildes=gopen('spool_file'//char(O), OUTDEV,
'hp2393'//char(0), SPOOLED)

or

or

fildes=gopen('/dev/tty'//char(O), INDEV,
'hp2393'//char(0), IN IT)

fildes=gopen('/dev/tty'//char(O), OUTDEV,
'hp2393'//char(0), IN IT)

For Pascal Programs:

To open an HP Graphics Terminal:

fildes := gopen('spool_file', OUTDEV, 'hp2393', SPOOLED);

or

fildes := gopen('/dev/tty', INDEV, 'hp2393', INIT);

or

fildes := gopen('/dev/tty', OUTDEV, 'hp2393', INIT);

HPTERM-6

Special Device Characteristics

Screen Resolution

Each of the terminals support a screen resolution of 512x390. Additionally, the
HP 2393 and HP 2397 Terminals support a resolution of 640x400 that is selectable
in the global config menu. When SPOOLED is not specified at gopen, a terminal
inquiry will be performed for these two terminals to determine its resolution. It is
assumed that this resolution will remain unchanged until after gelose is called.

The higher resolution can be selected for the HP 2393 and HP 2397 when SPOOLED
is specified with a geseape using (op) HPTERM_640x400. The two geseape
arguments are ignored. Since the determination of the screen resolution is
normally performed during gopen time, the user is required to call set_pl_p2
with appropriate parameters immediately after the call to geseape to reset the
default transformation matrix.

Polygons

Polygons are generated in software for the HP 2623 and are not limited by the
driver in the number of supported vertices. A warning is generated, however, for
polygons containing more than 255 vertices.

The driver supports polygon generation for the other terminals in hardware.
Because of existing hardware limitations, the driver limits the number of
supported vertices. For the HP 2625, HP 2628 and HP 150 terminals the limit
is 105 vertices. For the HP 2627, HP 2393 and HP 2397 terminals the limit is 145
vertices. If more vertices are specified than allowed by the limit, the polygon will
be truncated and a warning will be generated.

Device Defaults

Default Color Map

The HP 2623, HP 150, HP 2625, HP 2628 and HP 2393 terminals use a monochrome
software color map.

HPTERM-7

The HP 2627 terminal uses three bits to define eight colors in a software color map.
(Colors may be changed in the color map with a call to define_color_table
before they are written to the display, but once written remain fixed.) The default
color table contains the first eight colors of the standard Starbase Color Map.

Table HPTERM-1. Default Color Table

Pen Color Red Green Blue

0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0

The HP 2397 Terminal also has an 8-color color table (or, "palette 0") that is
initialized to the standard Starbase Color Map when INIT is specified in the
gopen procedure. The pre-existing color map is used when INIT is not specified.
The map, however, uses six bits per color, allowing each of the 8 colors in the
color map to be set to one of 64 possible values. Because the color map is
implemented in hardware, previously written colors may change with calls to
define_color_table.

The RGB colors passed to define_color_table are rounded according to the
color resolution of the terminal. Colors for monochromatic terminals are rounded
to black or white, colors for the HP 2627 are rounded to the closest of 8
possible values and colors for the HP 2397 are rounded to the closest of 64
possible values. The rounding will be reflected in the RGB values returned by
inquire_color_table.

Dither Default

Dithering is supported in hardware by two color terminals, HP 2627 and HP 2397,
with dithering mode off by default. Selecting the number of dither colors to be
2, 4, 8 or 16 selects the terminal's hardware dithering capability to be on when
direct-filling polygons with RGB fill colors. Dithering is turned off by setting the
number of dither colors to 1 using the fill_ditherO procedure.

HPTERM-8

Dithering on the HP 2397 Terminal assumes that the hardware color map contains
power-on color assignments. Unfortunately, these do not correspond to the
standard Starbase Color Map (assigned to the HP 2397 when INIT is specified at
gopen time). To make dithering results accurate on the HP 2397, the color map
needs to be assigned the following values:

Table HPTERM-2. HP 2397 Power-up Color Table

Pen Color Red Green Blue

0 black 0.0 0.0 0.0
1 red 1.0 0.0 0.0
2 green 0.0 1.0 0.0
3 yellow 1.0 1.0 0.0
4 blue 0.0 0.0 1.0
5 magenta 1.0 0.0 1.0
6 cyan 0.0 1.0 1.0
7 white 1.0 1.0 1.0

Note that color map assignments are not important when dithering on an HP 2627
since its hardware pen assignments are always fixed (the color map is in software
and dithering is in hardware). It is recommended that this difference between the
HP 2627 and the HP 2397 be accounted for, however, when using both dithered
fills and indexed color selections in applications intended for both terminals.

Line Types

Line types are defined in HP- UX Reference, "Procedure LINE_TYPE (3g) " .

The default line type is line type 0, i.e. solid.

This device driver defines line type 7 to be the same as line type 4.

This device driver defines line type 6 to be the same as line type 3.

This device driver defines line type -1 as terminal line type 11 (point
plotting).

This device driver defines line type -2 the same as terminal line type 9.

HPTERM-9

Starbase Functionality

Commands Not Supported (no-ops)

The following commands are not supported. An error will not be generated if
any of these commands are called.

await_retrace
backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficient
bf_surface_model
block_move
block_read
block_write
dbuffer_switch
dcblock_move
dcblock_read
dcblock_write
define_raster_echo
define_trimming_curve
depth_cue
depth_cue_color
depth_cue_range
display_enable
double_buffer
hidden_surface

HPTERM-10

intblock_move
intblock_read
intblock_write
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
intline_repeat_length
intline_ width
intperimeter_repeat_length
light_ambient
light_attenuation
light_model
light_source
light_switch
line_endpoint
line_rep eat_length
pattern_define
perimeter_repeat_length
shade_mode
shade_range
surface_model
surface_coefficients
track
track_off
viewpoint
write_enable
zbuffer_switch

Conditionally Supported

The following commands are supported under the listed conditions:

echo_type

fill_dither

interior_style

line_type

set_locator

vertex_format

Text

Except for the HP 2397, only the software color map
may be defined.

Some types are defaulted.

Supported only on the HP 2627 and the HP 2397.

Only the INT_SOLID, INT_HOLLOW, and INT_HATCH
styles are supported.

Some line types are approximated.

Hewlett-Packard Terminals do not support indepen­
dent echo and locator positions. Therefore, in order
to preserve the echo's position, the set locator call
sets only the Z coordinate of the locator's position.

The (use) parameter must be zero. Any extra
coordinates will be ignored.

Hardware-generated text may be selected by setting the text preCISIon to
STRING_TEXT. One of eight possible character sizes may be selected by specifying
an approximate height or width. The results returned by inquire_text_extent
will be affected by the character slant but will not be affected by special characters
such as a tab, carriage return or line feed. Text alignment default is device
dependent. To alter the alignment for STRING_TEXT, use the gescape functions
HPTERM_PRINT _ESC or HP26_PRINT _ESC to send the control string to the device.
Your terminal reference manual contains the details of the control strings for
altering device dependent alignment.

HPTERM-11

Terminal Device Access

Note that only one program can access the terminal driver at a time or the
terminal will get confused. Also note the program can only gopen the terminal
once or the terminal will again get confused.

Raster Operations

This device driver does not support block_read, block_write and
block_move. Starbase calls to perform these operations are treated as no-ops.

Input

Tracking from a terminal is not supported. Continuously sampling a terminal
in a loop without significant delay can exceed the terminal's ability to execute
commands; therefore, the terminal should not be continuously sampled. Sampling
during a request or while events are enabled may cause a keypress to be missed.
Therefore, sampling while requesting or while events are enabled is discouraged.

The same terminal status request is used for device requests or for locator
requests. This causes the graphics cursor to appear while in choice request mode.
The keyboard driver and the terminal driver cannot be used simultaneously for
input from the same device because they interfere with each other's operation.

Echo for the HP 2623

Echo types 0 and 3 are supported. Echo types specified as other values are
mapped into echo type 3.

Echo for Other Terminals

Echo types 0, 3 and 4 are supported. Echo types specified as other values are
mapped into echo type 3.

The terminal graphics cursor is not visible while the terminal is plotting lines.
Consequently, a rapid loop that alternates between drawing and updating the
echo position may cause the cursor to flicker or disappear altogether.

HPTERM-12

Drawing Mode

The driver approximates Starbase drawing modes with those supported by the
terminals. See your terminal's reference manual for further details. Monochro­
matic terminals support five drawing modes, NOP, CLEAR, SET, COMPLEMENT and
JAM. Color terminals support eight drawing modes, NOP, CLEAR 1 , JAM1, COMP1,
JAM2, OR, COMP2 and CLEAR2. The following table shows the mapping from Star­
base drawing modes to terminal drawing modes.

Table HPTERM-3. Drawing Mode Replacement Rule

Starbase Replacement
Rule for drawing_mode Monochromatic Color

Command Replacement Rule Replacement Rule

Number Mnemonic Number Mnemonic

0 1 CLEAR 1 CLEARI

1 4 JAM 7 CLEAR2

2 4 JAM 7 CLEAR2
3 (default) 2 SET 2 JAMI

4 4 JAM 7 CLEAR2

5 0 NOP 0 NOP

6 3 COMPLEMENT 6 COMP2

7 2 SET 5 OR

8 4 JAM 7 CLEAR2

9 3 COMPLEMENT 6 COMP2

10 3 COMPLEMENT 3 COMPI

11 2 SET 5 OR
12 1 CLEAR 1 CLEARI

13 2 SET 5 OR
14 4 JAM 7 CLEAR2

15 4 JAM 4 JAM2

If the Starbase drawing mode is changed from the default (3) value for
monochromatic terminals, no color attributes changes will be recognized. You
must be in drawing mode 3 to change color attributes, e.g., line_color,
fill_color, etc.

HPTERM-13

When the drawing mode is set to a complement mode, a condition may
exist where line end-points are drawn twice, resulting in some endpoints
being complemented twice. This condition can occur when performing a non­
line block operation (for example, setting an attribute) between successive
move/ draw /polyline operations.

Parameters for gescape
The READ_COLOR_MAP gescape is common to two or more devices and discussed
in Appendix A.

The following gescape functions are unique for this driver and discussed on the
next pages .

• HPTERM_640x400-Set high-resolution spooled output

• HPTERM_PRINT _ESC or HP26_PRINT _ESC-Send terminal control (escape)
strings

HPTERM-14

HPTERM_640x400

The (op) parameter is HPTERM_ 640x400.

The graphics display resolution for the HP 2393 and the HP 2397 is normally
determined at gopen time with a terminal inquiry. However, such an inquiry is
impossible when the output is spooled. In this case, a resolution of 512x390 is
assumed. This gescape is provided to change the transformation matrix to use
the 640x4QO resolution possible with these two terminals.

The gescape call should immediately follow the call to gopen and should be
followed by an appropriate call to set_pl_p2 to reset the transformation matrix.

Both argl and arg2 are ignored.

C Example

/* gescape_arg is defined in starbase.c.h */

int fildes;
gescape_arg argl. arg2;

fildes = gopen("/dev/tty". OUTDEV. Ihp2393". INIT I SPOOLED);
gescape(fildes. HPTERM_640x400. &argl. &arg2);
set_pl_p2(fildes. FRACTIONAL. 0.0. 0.0. 0.0. 1.0. 1.0. 1.0);

FORTRAN77 Example

integer*4 fildes.argl(64).arg2(64)

fildes = gopen(l/dev/tty"//char(O). OUTDEV. Ihp2393"//char(0).
INIT I SPOOLED)

call gescape(fildes.HPTERM_640x400.argl.arg2)
set_pl_p2(fildes.FRACTIONAL.0.0.0.0.0.0.l.0.l.0.l.0)

HPTERM-15

Pascal Example

{gescape_arg is defined in starbase.pl.h}

var
fildes:integer;
argl,arg2:gescape_arg

begin
fildes := gopen("/dev/tty", OUTDEV, "hp2393 " , IN IT I SPOOLED);
gescape(fildes, HPTERM_640x400, argl, arg2);
set_pl_p2(fildes, FRACTIONAL, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0);

HPTERM-16

(

The (op) parameter is HPTERM_PRINT_ESC or HP26_PRINT_ESC.

NULL-terminated strings (those which end with a char (0)) containing terminal
escape sequences can be sent to the terminal using this gescape.

The arg1 parameter is the string you wish to send.

The arg2 parameter is ignored.

The following examples show one way to clear the alpha display.

C Example

#include <starbase.c.h>
maine)
{

int fildes, status;
gescape_arg arg2, sequence;

/* gescape_arg from starbase.c.h */
strcpy(sequence.c, "\033h\033J");

}

fildes = gopen("/dev/tty", OUTDEV, II hpt erm" , INIT);
gescape(fildes, HPTERM_PRINT_ESC, &sequence, &arg2);
status = gclose(fildes);

FORTRAN77 Example

include '/usr/include/starbase.f1.h'
program gesc
integer*4 fildes, status
include '/usr/include/starbase.f2.h'
fildes = gopen('/dev/tty'//char(O),

OUTDEV, 'hpterm'//char(O) , INIT)
call gescape(fildes, HPTERM_PRINT_ESC,

+ char(27)//'h'//char(27)//'J'//char(O) , ' ,)
status = gclose(fildes)
end

HPTERM-17

Pascal Example

program gesc;
$include '/usr/include/starbase.p1.h'$
var

fildes. status: integer;
arg2. sequence: gescape_arg;

$include '/usr/include/starbase.p2.h'$

begin
fildes := gopen('/dev/tty'. OUTDEV. 'hpterm'. INIT);
sequence.c[1] chr(27);
sequence. c [2] 'h' ;
sequence.c[3] chr(27);
sequence. c [4] 'J' ;
sequence.c[5] chr(O);
gescape(fildes. HPTERM_PRINT_ESC. sequence. arg2);
status gclose(fildes);

end.

HPTERM-18

Contents

HP Windows/9000
Device Description
Architecture . . .
Setting Up the Device .

Special Device Files .
Linking the Driver .

Device Initialization
Parameters for gopen

C Syntax
FORTRAN77 Syntax
Pascal Syntax . . .

Performance of Starbase Windows
Input From Graphics Windows ..
Performance of Starbase Input in Windows
Fast Alpha and Font Manager Functionality
Parameters for gescape

WIN9000-1
WIN9000-3
WIN9000-4
WIN9000-4
WIN9000-4
WIN9000-6
WIN9000-6
WIN9000-7
WIN9000-8
WIN9000-8
WIN9000-8
WIN9000-12
WIN9000-13
WIN9000-14
WIN9000-14

Contents-1

WIN9000
HP Windows/9000

Device Description

HP Windows/9000 supports two types of windows:

• the Terminal Window Type

• the Graphics Window Type

HP Windows/9000 is only supported on the Series 300 and Series 500 computers.

This chapter discusses graphics windows (also called Starbase windows), that are
supported by the following Starbase display drivers:
hp300h HP 300 High-resolution Device Driver
hp3001 HP 300 Medium-resolution Device Driver
hp98550 HP 98550 Device Driver
hp98556 HP 98556 Device Driver
hp98700 HP 98700 Device Driver
hp98720W HP 98720w Device Driver
hp98730 HP 98730 Device Driver
hp98731 HP 98731 Device Driver

Note

Note

Only the HP 98720w Device Driver supports HP Windows/9000.
The HP 98720 and HP 98721 drivers do not support windows,
although they can be used with windows. See the appropriate
driver sections for more information.

The hp98730 driver can be used with either normal graphics win­
dows or image graphics windows, a special kind of graphics win­
dow. See HP Windows/9000 Documentation for more informa­
tion on image graphics windows.

WIN9000-1

Note The hp98731 driver can only be used with image windows.

To use graphics windows with any of the above drivers, an additional module
called libwindow. a must be linked into your program. Furthermore, to support
retained rasters for obscured windows, the module libddbyte. a or libddbi t. a
must also be linked into your program. Linking procedures are discussed in the
"Linking the Driver" segment of this section.

Using graphics windows has performance implications as well as implications on
how each process should share the display and display resources (for example,
the color map) so that other processes aren't adversely affected. Both of these
topics are discussed later in this section.

Device coordinate location (0, 0) is the upper-left corner of the device, regardless
of whether the device is a graphics window type (hereafter referred to as window)
or the normal (hereafter referred to as raw) device. The axes are the same
whether you are using a window device or the raw device, with the exception
that the lower-right corner is dependent on the window's width and height when
created. That is, the location of the lower-right corner in a window will be
(width-I, height-I).

Unlike a single graphics process running to a raw device, a window graphics
process must be a "good citizen" in the graphics world. Since the Window
Manager and TermO Server are built on the Starbase Graphics Library, they
will cooperate with other graphics processes that are also "good citizens."

A "bad citizen" is a process that changes global resources that are not process
dependent. Examples of these resources are:

• color map values

• planes displayed

• planes blinking

For example, if you set up Windows/9000 to use one set of color map entries,
and a second process changes those color map entries to a different set of colors,
the new colors may make Windows/9000 difficult to use (for example, black
characters on a black background).

WIN9000-2

Good processes generally have the following characteristics:

• Use gescapes sparingly and in a way that is considerate to other processes.

• Do not change the values of the color map.

• Do not blink planes.

• Do not turn Starbase clipping off, since this will allow access outside the
window boundaries, and could, in rare circumstances, cause the window
manager to abort. The exception here is when the user is positive the
vdc_extent/device-bounds will never be exceeded.

You may want to use double buffering in a graphics program. If so, first ensure
that the Ox 10 bit in the WMCONFIG environment variable is set. You should verify
this using wminquire(3W) (see the HP Windows/9000 Documentation). When a
gopen is performed by the program, the mode argument should not include INIT
or the color map will reset. By convention, do a dbuff er _swi tch only while the
output window is the selected window.

If you are not going to use double buffering in your program, but double buffering
in WMCONFIG is set, modify the color indexes the program uses so that the visible
color for the graphics output of the program will not change when the display
enabled planes are modified by a Starbase program using double buffering. This
will prevent your graphics output from blinking when other programs output
double buffered programs. The mode used in gopen should not include INIT in
the argument. (See the HP Windows/9000 User's Manual for more information.)

Architecture

The Window Manager accesses the display hardware in creating and moving
windows. The following diagram shows how Starbase operaties in parallel with
the HP Windows/9000 window manager. This architecture permits Starbase to
render directly to the display through the display drivers without interacting with
the Window Manager, similar to the Xll architecture.

WIN9000-3

Application Program

Starbase Library.
-Isb 1 & -lsb2

Starbase Display
Driver, for example.

libdd98550.a

Figure WIN9000-1. Access Display
Hardware

Setting Up the Device

Special Device Files

Consult the HP Windows/9000 Reference and the HP Windows/9000 Program­
mer's Manual for details on how special files are created for graphics windows.

See the chapter for the device driver you wish to use for information on setting
up the device.

Linking the Driver

These device drivers are flexible and can be linked for three different levels of
capabilities.

WIN9000-4

Table WIN9000-1. Linking Requirements

Capability Libraries Required

Application to raw device only Device Drivers
libsbl
libsb2

Application to raw device or window that refreshes its Device Drivers
output occasionally (vector list) and hence does not care if Window Library
information in window gets lost when window is partly obscured. libsbl

libsb2

Application to raw device or window that does not refresh Device Drivers
its output and hence wants any information in obscured parts Byte Driver or
of window to be remembered. Bit Driver

Window Library
libsbl
libsb2

Device drivers are any combination of the Starbase device drivers.

• Iibsbl means /usr/Iib/Iibsbl. a

• libsb2 means /usr/Iib/Iibsb2. a

• Byte Driver means /usr/Iib/Iibddbyte. a

• Bit Driver means /usr/Iib/Iibddbi t. a

• Window Library means /usr/Iib/Iibwindow. a

The link order is important and should be done as follows:

1. Application object file(s)-required

2. Device driver(s)-at least one required

3. Byte driver and/or bit driver-optional

4. Window library-optional

5. Iibsbl-required

6. Ii bsb2-required

WIN9000-5

Important Use the bit driver instead of the byte driver when using windows
on a monochrome display where memory is constrained.

Both the bit driver and the byte driver provide retained raster
support for graphics windows. However, the byte driver allocates
one byte per pixel while the bit driver allocates one bit per pixel.
Thus, the byte driver can use up to eight bits of memory to
contain the color information for each pixel. On monochrome
displays, only one bit of each byte is used.

Because the bit driver uses a bit per pixel format, eight times less
memory is used when monochrome images are stored using this
driver. Only monochrome images are stored using the bit driver.

An exam pIe of the above note is:

The byte driver will allocate 199,680 bytes of memory to support a raster that is
512x390 pixels on a monochrome display.

The bit driver will only allocate 24,960 bytes to support the retained raster for
the same display.

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device file created by the mknod command,
or by creating a new graphics window. (For the example following
this list, the window device file name / dey / screen/windowl will be
used.)

WIN9000-6

Window device files are located in the Windows/9000's directory
(normally /dev/screen or the value of $WMDIR, an environment
variable), while other Starbase device files, sometimes called raw
device files, are normally located in the / dey directory.

Kind Specifies the I/O characteristics of the device. This parameter can

Driver

Mode

be one of the following for this device:

• INDEV-Input only

• OUTDEV-Output only

• OUTINDEV-Input and Output

The character representation of the driver type. This parameter is
the same for both raw devices and window devices; that is, the driver
type for a window is the same as the driver type of the raw device
that the window is on.

The mode control word that consists of several flag bits or ed
together. This parameter is the same for either a raw or window
device.

• a-same

• INIT -Differences for windows are:

1. Only window area cleared.

2. If the color map is not its default values because some
application changed it, then this resets the color map
and keeps a color map dependent application from
producing what is intended.

3. Since Windows/9000 is already running, the display
is already enabled.

4. Should not be used if WMCONFIG has the double
buffering color mode bit of Ox 10 set.

For example, to open and initialize a window for output and input with the
directory "/dev /screen" set up to be the directory containing the window device
files, and Windows/9000 is running on a HP 98720 display, use:

C Syntax

fildes = gopen("/dev/screen/windowl".OUTINDEV."hp98720w".INIT);

WIN9000-7

FORTRAN77 Syntax

fildes = gopen('/dev/screen/windowl'//char(O),OUTINDEV,
'hp98720w'//char(O) ,INIT)

Pascal Syntax

fildes := gopen('/dev/screen/windowl',OUTINDEV,'hp98720w',INIT);

Defaults do not differ between a window device and the raw device.

Performance of Starbase Windows
If the graphics window being drawn to is not obscured by any other objects on
the screen, there will be almost no performance degradation when compared to
drawing to the raw device. If the window is obscured, however, each graphics
generation must be clipped to the seen and unseen rectangles for that window.
The amount of overhead for this clipping varies with the operation being done.
The greater the number of rectangles a window is divided into, the more overhead
to do output in that window.

When a window is shrunk smaller than its raster's size, it becomes self-obscured
and is divided into three rectangles. If this window is then panned so that none
of its edges are seen, it is divided into 5 rectangles.

WIN9000-8

Figure WIN9000-2. Totally Unobscured
Window (1 Rectangle)

UNSEEN

z
w
w
Ul
Z
=::)

Figure WIN9000-3. Unobscured Window
Reduced Size (3 Rect­
angle)

WIN9000-9

WIN9000-10

z
w
w
(f)

z
=:)

UNSEEN

UNSEEN

z
w
w
(f)

z
=:)

Figure WIN9000-4. Unobscured Window
Reduced and Panned

(5 Rectangle)

Window 1 Window 2

Window 3

Figure WIN9000-S. Overlapping Windows Divided into
Rectangles

WIN9000-11

Input From Graphics Windows
Graphics windows may be used as input devices, allowing the window system
locator device to be shared among applications in different windows. When a
graphics window is used for input it has one locator device and two choice devices.

The window locator device reads locations based on the position of Windows/gOOD
sprite. The window locator device has .the same physical limits as the window
size, and therefore has the same resolution as the window. The larger a window
is, the greater will be the resolution of input values within the window. If the
locator is sampled it may return values either inside or outside the window,
based on the position of the sprite inside or outside the window. Sampling does
not require that the window be selected. Alternatively, the request and event
mechanisms wait for a trigger. The trigger for a window device is a button press
over the window while the window is selected. The window locator device may be
tracked to the same window or any other display. Once tracking from a window
is requested, selecting the window will cause the sprite to turn off while over the
window and will begin tracking the sprite position to the target display. If the
window is not selected, the sprite will remain on over the window and no tracking
will occur.

The window choice devices provide two different formats of the same information.

• Choice ordinal 1

This selection returns button numbers ranging from one to the number of
buttons. If the TRIGGER_ON_RELEASE gescape is enabled, a button release
causes choice ordinal 1 to return a negative value of the same magnitude
as the button number.

• Choice ordinal 2

This selection returns a 32 bit wide bit-map. The least significant bit
equals button 1 and the most significant bit equals button 32. A one (1)
value in a bit indicates that the corresponding button is currently pressed.

WIN9000-12

Performance of Starbase Input in Windows
Starbase input uses the window library routine wgetlocator to get the locator's
position. This routine is available to any application that knows it is running
in a window. An application doing sampling will get better performance in a
window if it uses the wgetlocator routine directly, rather than going through
the additional Starbase input layer.

Starbase tracking of a window to itself will have lower performance then the
window system sprite. An application that tracks a window to itself can get better
performance with less cpu usage by using the sprite instead of the track call. The
window system call wsetecho can be use to change the sprite's appearance inside
a window. The sprite can take on the same echo types Starbase provides.

Note When using the HP 98549A or HP 319C display, do not use a
different driver to draw to the windows than is used by the
window manager.

For example: Do not use an HP 98550 driver when the window
manager uses an HP 300h driver (or vice versa). The drivers
manage offscreen frame buffer memory differently and will
interfere with each other. The wminquire(3W) procedure can
be used to programmatically determine what driver the window
manager is using.

WIN9000-13

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

Parameters for gescape
The following gescape functions are common to other drivers and are discussed
in the appendix.

• IGNORE_RELEASE-Trigger when button pressed.

• R_FULL_FRAME_BUFFER-Accesses off-screen area of frame buffer memory.

• R_GET_WINDOW_INFO-Returns window location and status.

• R_LOCK_DEVICE-Locks the specified device.

• R_UNLOCK_DEVICE-Unlocks the specified device.

• SWITCH_SEMAPHORE-Controls semaphore operations.

• TRIGGER_ON_RELEASE-Trigger when button released.

WIN9000-14

Contents

The HP 300H Device Driver
Device Description

Offscreen Memory
HP 9S549A and HP 319C+

Setting Up the Device.
Switch Settings
Special Device Files (mknod)
Linking the Driver .

Initialization
Parameters for gopen

Syntax Examples .
For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

Number of Color Planes
Dither Default . . .
Raster Echo Default
Color Plane Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green and Blue

HP300H-l
HP300H-2
HP300H-3
HP300H-3
HP300H-3
HP300H-3
HP300H-4
HP300H-4
HP300H-4
HP300H-5
HP300H-5
HP300H-5
HP300H-5
HP300H-6
HP300H-6
HP300H-6
HP300H-6
HP300H-6
HP300H-6
HP300H-7
HP300H-7
HP300H-S
HP300H-S

Contents-1

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

Fast Alpha and Font Manager Functionality
Parameters for gescape
Performance Tips
Cautions

Contents-2

HP300H-9
HP300H-9
HP300H-9
HP300H-I0
HP300H-ll
HP300H-ll
HP300H-12

HP300H
The HP 300H Device Driver

Device Description
This device driver is used with Hewlett-Packard Series 300 high-resolution display
systems. See the table in the introduction for supported configurations.

The video board for each of these display systems fits in a SPU system slot.
These display systems have a resolution of 1024x768 pixels. The monochrome
display system has a single plane of frame buffer. The HP 98545A Color Display
System has four planes of frame buffer to provide 16 simultaneous colors. The
HP 98547 A, HP 98549A, and HP 319C+ Color Display Systems have six planes
for 64 colors. A color map provides 8 bits per color (for red,. green and blue),
providing a color palette of over 16 million colors.

These display systems are bit-mapped devices with special hardware for:

• Write enabling planes.

• Displaying planes.

• Writing pixels to the frame buffer with a given replacement rule (see
drawing_mode) .

• Blinking planes.

• Moving a block of pixels from one place in the frame buffer to another.

The monochrome and color displays are organized as an array of bytes, with each
byte representing a pixel on the display. For the monochrome display, the Least
Significant Bit (LSB) of each byte controls the display with 0 for black (pixel off)
and 1 for white (pixel on).

For the color displays, the 6 (4 for HP 98545A) LSBs of each byte determine the
color, providing color values from 0-63 (0-15 for HP 98545A). These values are
used to address the color map. The color map is a RAM table that has 64 (16 for
HP 98545A) addressable locations and is 24 bits wide (8 bits each for red, green

HP300H-1

and blue). Thus, the pixel value in the frame buffer addresses the color map,
generating the color programmed at that location.

Typically, the user does not need to read or write pixels directly into the frame
buffer. However, for those applications which require direct access, Starbase
provides the gescape function R_GET_FRAME_BUFFER which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed in
the appendix. Frame buffer locations are then addressed relative to the returned
address. The first byte of the frame buffer (byte 0) represents the upper left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the first (left-most) pixel on
the second line from the top. The last (lower right corner) pixel on the screen is
byte number 786,431 (767x 1024+ 1023).

Offscreen Memory

The frame buffer is 1024x 1024 bytes. The last 256 lines of the frame buffer are
not displayed and are referred to as offscreen memory. Offscreen memory may
be accessed via the gescape function R_FULL_FRAME_BUFFER documented in the
appendix. Care should be taken when using this gescape since other processes,
Starbase and window systems, access the frame buffer offscreen memory.

The HP 300H Device Driver allocates a portion of offscreen memory for fill
patterns and echo storage. In a raw environment, the first 16 lines are reserved
for Starbase fill patterns and each raster echo will use a 64x 192 pixel rectangle.
In Windows/9000, the first 32 lines are reserved for the Windows/9000 sprite,
the last 16 lines are reserved for Starbase fill patterns. In general, the remaining
portions of offscreen are allocated from top to bottom. Note: Windows/9000,
Fast Alpha and Font Manager also allocate offscreen memory for font storage.

XII uses offscreen for its sprite, fonts, pixmaps and window backing store
(retained rasters). In general, XII uses offscreen memory intensively; therefore,
usage of offscreen memory while running XII is not recommended.

After reading this chapter, refer to the "Windows/9000 Device Driver" section
to find out how this device driver can be used with Windows/gOO~. Refer to
the Starbase Programming with Xll manual for information on how this device
driver can be used with XII.

HP300H·2

HP 98549A and HP 319C+

The HP 98549A and HP 319C+ display may also be accessed using the HP 98550
driver. It has higher performance than the HP 300H driver. Applications using
the HP 300H driver should not be run simultaneously with applications using the
HP 98550 driver on the same display nor should the HP 300H driver be used in
an X11 window. The drivers manage offscreen frame buffer memory differently
and will interfere with each other. This also applies to the HP Windows/9000
window manager and the X11 server which will (by default) use the HP 98550
driver. However, the Windows/9000 window manager can be directed to use
the HP 300H driver by setting environmental variable WMDRIVER to hp300h.
The X11 server cannot be told to use the HP 300H driver. Note also that the
HP 98549A and HP 319C+ display is only supported by the HP 300H driver when
it is configured as the internal display.

Setting Up the Device

Switch Settings

There are no switches to set on the video boards for these devices. However,
when these video boards are used with the HP 310 Processor Board, the display
disable switch on the processor board must be set. Look at the four switch group
near the back plate. If the third switch from the back plate is set such that the
dot closest to the display board's edge is down, the internal display is disabled.
Refer to the Upgrade Video Output Board Installation Note (HP Part Number
98547-90600) for more details.

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(lM) information
in the HP- UX Reference for further details. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

HP300H-3

The mknod parameters are character device with a major number of 12 and a
minor number of o. Although special device files can be made in any directory
of the HP-UX file system, the convention is to create them in the I dey directory.
Any name may be used for the special device file, however the name that is
suggested for these devices is crt. The following example will create a special
device file for this device. Remember that you must be superuser or root to
use the mknod command. Note that the leading Ox causes the number to be
interpreted hexadecimally.

mknod /dev/crt c 12 OxOOOOOO

Linking the Driver

The HP 300H Device Driver is located in the lusr/lib directory with the file
name libdd300h. a. This device driver may be linked to a program using the
absolute path name lusr IIi b/li bdd300h . a or an appropriate relative path
name, or by using the -1 option -ldd300h. For example, to compile and link a
program for use with this driver use:

cc example.c -ldd300h -lsb1 -lsb2 -0 example
fc example.f -ldd300h -lsb1 -lsb2 -0 example
pc example.p -ldd300h -lsb1 -lsb2 -0 example

depending upon the language being used.

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device file created by the mknod command
as specified in the last section, e.g. Idevlcrt.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

HP300H-4

Driver

Mode

The character representation of the driver type. This is hp300h
modified to meet the syntax of the programming language used,
namely:

Ihp300h"
'hp300h'//char(O)

'hp300h'

for c.
for FORTRAN77.
for Pascal.

The mode control word consisting of several flag bits which are
or ed together. Listed below are those flag bits which have device­
dependent actions. Those flags not discussed below operate as
defined by the gopen procedure.

• SPOOLED-Cannot spool raster devices.

• 0 (zero)-Open the device, but do nothing else. The software
color map is initialized on monochrome monitors.

• INIT-Open and initialize the device as follows:
1. Frame buffer is cleared to zeros.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 300H device for output:

For C Programs:

fildes = gopen("/dev/crt l ,OUTDEV,lhp300h",INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O) ,OUTDEV, 'hp300h'//char(O) ,INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'hp300h',INIT);

HP300H-5

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1023,767).

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 1, 4 or 6. The device driver
then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8x8 array:

15 15 15 15 0 0 0 0
15 15 0 0 0 0 0 0
15 0 15 0 0 0 0 0
15 0 0 15 0 0 0 0
0 0 0 0 15 0 0 0
0 0 0 0 0 15 0 0
0 0 0 0 0 0 15 0
0 0 0 0 0 0 0 15

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

Color Plane Defaults

All planes display enabled. All planes write enabled.

HP300H-6

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table HP300H-1. Default Line Types

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

HP300H-7

Default Color Map

If the fourth gop en parameter is zero (0), the current hardware color map is
used on color displays. If the fourth gopen parameter is INIT or RESET_DEVICE,
the current color map is initialized to the default values shown below. For a
black and white display, only color map indices 0 and 1 are used. For the 4-plane
color display, only the indices 0 through 15 are used. For a 6-plane color display,
the entire table is used, plus use the inquire_color_table procedure to see the
remaining 46 colors.

Table HP300H-2. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Red, Green and Blue

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.

HP300H-8

For Starbase procedures that have parameters for red, green and blue, it is the
color table that is searched for the closest color.

It is usually more efficient to select a color with an index rather than specifying a
color with red, blue and green values because of the time it takes for the driver to
figure out which pen in the color table most closely matches the specified color.

Selecting a color with the non-index version procedure will allow dithering for
filled areas.

Starbase Functionality

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color

depth_cue~range

hidden_surface
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_model
surface_coefficients
viewpoint
zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read,
block_write

Note: When using raw mode, be careful not to do
a block_read or block_write outside the devices
limits.

HP300H-9

text_precision

vertex_format

When using raw mode without using the R_BIT _MODE
gescape, no clipping is performed. See the
R_BIT _MODE gescape in the appendix of this manual
for more information.

On black and white devices, this command defines a
software color map, since there is no hardware color
map.

On black and white devices, this command returns
the software color map values.

The color map mode may be selected but shading
can not be turned on.

Only STROKE_TEXT precision is supported.

The use parameter must be zero; any extra coordi­
nates supplied will be ignored.

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

HP300H-10

Parameters for gescape
The following gescape functions are common to many of the Hewlett-Packard
displays supported by Starbase. Detailed information about these functions can
be found in Appendix A.

• SWITCH_SEMAPHORE-Semaphore control.

• READ_COLOR_MAP-Read color map.

• BLINK_PLANES-Blink display (blink rate is 2.4 Hz for this device). Not
supported in an Xll window.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_GET_WINDOW_INFO-Returns frame buffer address of Windows/9000
window.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_LOCK_DEVICE-Lock device.

• R_UNLOCK_DEVICE-Unlock device.

• R_BIT_MODE-Bit mode.

• R_BIT_MASK-Bit mask.

• R_DEF _FILL_PAT-Define fill pattern.

Performance Tips
Horizontal and vertical lines are faster than diagonal lines on these devices
since the hardware block mover is used to generate the pixels. The procedure
block_move is faster then block_read or block_wri te since the hardware frame
buffer block mover can be used.

HP300H-11

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using gescape) should be done with care, since other processes
access this region.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only
be rationally used by one graphics process at a time, the driver sets a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while
process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when done processing output.
Some of the gescape functions listed in this chapter allow the user to
change this locking mechanism and should be used with great caution.

HP300H-12

Contents

The HP 300L Device Driver
Device Description . .

Offscreen Memory
Setting Up the Device .

Switch Settings
Special Device Files (mknod)
Linking the Driver .

Initialization
Parameters for gopen

Syntax Examples .
For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green and Blue

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

Fast Alpha and Font Manager Functionality
Parameters for gescape

TC_HALF _PIXEL

HP300L-l
HP300L-3
HP300L-3
HP300L-3
HP300L-4
HP300L-5
HP300L-5
HP300L-5
HP300L-6
HP300L-6
HP300L-6
HP300L-6
HP300L-6
HP300L-6
HP300L-6
HP300L-6
HP300L-7
HP300L-7
HP300L-7
HP300L-7
HP300L-8
HP300L-8
HP300L-9
HP300L-9
HP300L-IO
HP300L-IO
HP300L-ll
HP300L-12

Contents-1

C Syntax
FORTRAN77 Syntax
Pascal Syntax

Performance Tips
Cautions

Contents-2

HP300L-12
HP300L-12
HP300L-12
HP300L-13
HP300L-13

HP300L
The HP 300L Device Driver

Device Description
This device driver is used with Hewlett-Packard Series 300 medium-resolution
display systems. See the table in the introduction for supported configurations.

The HP 310 processor board has a built-in medium-resolution monochrome
display system. The HP 98542A and HP 98543A video boards fit in an SPU
system slot. The monochrome display systems have a single plane of frame
buffer. The color display system has four planes of frame buffer to provide 16
simultaneous colors. A color map provides eight bits per color (for red, green and
blue), providing a color palette of over 16 million colors.

All three systems have a resolution of 1024x400 pixels; however, this driver
treats the display systems as having a resolution of 512x400 pixels since each
pixel in the frame buffer has an aspect ratio of 2 to 1. By writing two pixels
for every dot to be displayed, square pixels are produced. Some applications
or subsystems such as HP Windows/9000 may use the higher resolution. The
gescape function Te_HALF _PIXEL, documented later in this section, can be used
to allow block_read and block_write access to the full resolution.

HP300L-1

These display systems are bit-mapped devices with special hardware for:

• Write enabling planes.

• Displaying planes.

• Writing pixels to the frame buffer with a given replacement rule (see
drawing_mode) .

• Blinking planes.

• Moving a block of pixels from one place in the frame buffer to another.

Both the monochrome and color displays are organized as an array of bytes, with
each byte representing a pixel on the display. For the monochrome display, the
Least Significant Bit (LSB) of each byte controls the display, with 0 for black
(pixel off) and 1 for white (pixel on).

For the color display, the four LSBs of each byte determine the color, providing
color values from 0-15. These values are used to address the color map. The
color map is basically a RAM table that has 16 addressable locations and is 24
bits wide (eight bits each for red, green and blue). Thus, the pixel value in the
frame buffer addresses the color map, generating the color programmed at that
location.

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed in
the appendix. Frame buffer locations are then addressed relative to the returned
address. The first byte of the frame buffer (byte 0) represents the upper left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the first (left-most) pixel on
the second line from the top. The last (lower right corner) pixel on the screen is
therefore byte number 409599 (399x1024+1023).

HP300L-2

Offscreen Memory

The frame buffer is 1024x5l2 bytes. The last 112 lines of the frame buffer are
not displayed and are referred to as offscreen memory. Offscreen memory may
be accessed via the gescape function R_FULL_FRAME_BUFFER documented in the
appendix. Care should be taken when using this gescape since other processes,
Starbase and window systems, access the frame buffer offscreen memory.

The HP 300L Device Driver allocates a portion of offscreen memory for fill
patterns and echo storage. In a raw environment, the first 16 lines are reserved
for Starbase fill patterns, and each raster echo will use a 64x384 byte rectangle
(64x192 square pixels). In Windows/9000, the first 32 lines are reserved for the
Windows/9000 sprite, the last 16 lines are reserved for Starbase fill patterns. In
general, the remaining portions of offscreen are allocated from top to bottom.
Note: Window /9000, Fast Alpha and Font Manager also allocate offscreen
memory for font storage.

XII uses offscreen for its sprite, fonts, pixmaps and window backing store
(retained rasters). In general, XII uses offscreen "memory very intensively;
therefore, usage of offscreen memory while running XII is not recommended.

After reading this section, refer to the section "Windows/9000 Device Driver" to
find out how this device driver can be used with Windows/9000. Refer to the
Starbase Programming with Xll manual for more information on how this device
driver can be used with Xll.

Setting Up the Device

Switch Settings

There are no switches to set on the video boards for these devices. However, when
the HP 98542A or HP 98543A video boards are used with the HP 310 proces~or
board, the display disable switch on the processor must be set. Look at the four
switch group near the back plate. If the third switch from the back plate is set
such that the dot closest to the display board's edge is down, the internal display
is disabled. Refer to the Upgrade Video Output Board Installation Note (HP Part
Number 5958-4342) for more details.

HP300L-3

Special Device Files (mknod)

The mknod command (see mknod(8) man page), creates a special device file which
is used to communicate between the computer and the peripheral device. The
name of this special device file is passed to Starbase in the gopen procedure. Since
superuser capabilities are needed to create special device files, they are normally
created by the system administrator.

The mknod parameters are character device with a major number of 12 and a
minor number of O. Although special device files can be made in any directory
of the HP-UX file system, the convention is to create them in the /dev directory.
Any name may be used for the special device file; however, the name that is
suggested for these devices is crt. The following example will create a special
device file for this device. Remember that you must be superuser or root to
use the mknod command. Note that the leading Ox causes the number to be
interpreted hexadecimally.

mknod / dey / crt c 12 OxOOOOOO

HP300L-4

Linking the Driver

The HP 300L Device Driver is located in the /usr/lib directory with the file
name libdd3001. a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd3001. a, an appropriate relative path name,
or the -1 option -ldd3001. For example: to compile and link a program for use
with this driver, use:

cc example.c -ldd3001 -lsb! -lsb2 -0 example
fc example.f -ldd3001 -lsb! -lsb2 -0 example
pc example.p -ldd3001 -lsb! -lsb2 -0 example

depending upon the language being used.

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path

Kind

Driver

Mode

The name of the special device file created by the mknod command
as specified in the last section, e.g., / dey / crt.

Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

The character representation of the driver type. This is hp3001
modified to meet the syntax of the programming language used,
namely:

Ihp3001"

'hp3001'//char(O)
'hp3001'

for c.
for FOR TRA N77.
for Pascal.

The mode control word consisting of several flag bits or ed together.
Listed below are those flag bits which have device-dependent actions.
Those flags not discussed below operate as defined by the gopen
procedure.

• SPOOLED-cannot spool raster devices.

HP300L-5

• O-open the device, but do nothing else. The software color
map is initialized on monochrome monitors .

• INIT -open and initialize the device as follows:
1. Frame buffer is cleared to Os.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 300L device for output:

For C Programs:

fildes = gopen(l/dev/crt l ,OUTDEV,lhp300l" ,INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O), OUTDEV, 'hp300l'//char(O) ,INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',OUTDEV,'hp300l' ,INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (511,399).

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 1 or 4. The device driver
then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

HP300L-6

Raster Echo Default

The default raster echo is the 8 x 8 array:

15 15 15 15 0 0 0 0
15 15 0 0 0 0 0 0
15 0 15 0 0 0 0 0
15 0 0 15 0 0 0 0
0 0 0 0 15 0 0 0
0 0 0 0 0 15 0 0
0 0 0 0 0 0 15 0
0 0 0 0 0 0 0 15

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

Color Planes Defaults

All planes display enabled. All planes write enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns as shown in the following
table.

Table HP300L-1.

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

HP300L-7

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays. If the fourth gopen parameter is INIT or RESET_DEVICE, the
current color map is initialized to the default values shown below. For a black
and white display, only color map indices 0 and 1 are used.

Table HP300L-2. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8

Red, Green and Blue

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.
For Starbase procedures having parameters for red, green and blue, it is the color
table that is searched for the closest color.

It is usually better (more efficient) to select a color with an index rather than
specifying a color with red, blue and green values due to the time it takes for

HP300L-8

the driver to figure out which pen in the color table most closely matches the
specified color.

Selecting a color with the non-index version procedure will allow dithering for
filled areas, desirable in some cases.

Starbase Functionality

Commands Not Supported

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color

depth_cue_range
hidden_surface
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_model
surface_coefficients
viewpoint
zbuffer_switch

HP300L-9

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read,
block_write

text_precision

shade_mode

vertex_format

Note: When using raw mode, be careful not to do
a block_read or block_write outside the device's
limits.

When using raw mode without the R_BIT _MODE
gescape, no clipping is performed. See the
R_BIT_MODE gescape in the appendix of this manual
for more information.

Since there is no hardware color map on black and
white devices, this command defines a software color
map.

On black and white devices, this command returns
the software color map values.

Only STROKE_TEXT precision is supported.

The color map mode may be selected, but shading
can not be turned on.

The use parameter must be zero; any extra coordi­
nates supplied will be ignored.

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

HP300L·10

Parameters for gescape
The following gescape functions are common to many of the Hewlett-Packard
displays supported by Starbase. Detailed information about these functions can
be found in the appendix.

• SWITCH_SEMAPHORE-Semaphore control.

• READ_COLOR_MAP-Read color map.

• BLINK_PLANES-Blink display (blink rate is 2.4 Hz for this device.) Not
supported in an XII window.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_GET _WINDOW_INFO-Returns frame buffer address of Window /9000
window.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_LOCK_DEVICE-Lock device

• R_UNLOCK_DEVICE-Unlock device.

• R_BIT _MODE-Bit mode.

• R_BIT _MASK-Bit mask.

• R_DEF _FILL_PAT-Define fill pattern.

The gescape function TC_HALF _PIXEL is unique to this driver and is presented
next in this section.

HP300L-11

The (op) parameter is TC_HALF _PIXEL.

This gescape allows access to half pixels during block_read and block_write
procedures. Each time it is called, the definition is changed to the other
possibility. Initially, it is 1 byte per pixel. After the first call, it is 2 bytes
per pixel. The second call returns it to 1 byte per pixel, etc.

This gescape will allow more detailed raster operations. When 2-bytes per pixel
is enabled, a block_read or block_write call must pass a pointer to a storage
area sufficient for the operation. Each row will occupy 2*dx bytes. So the storage
required is dy*2*dx bytes.

The arg1 and arg2 parameters are ignored.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */
gescape_arg argl, arg2;
gescape(fildes,TC_HALF_PIXEL,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64),arg2(64)
call gescape(fildes,TC_HALF_PIXEL,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}
var

argl, arg2 : gescape_arg;

begin
gescape(fildes,TC_HALF_PIXEL,argl,arg2);

HP300L-12

Performance Tips
Horizontal and vertical lines are faster then diagonal lines on these devices
since the hardware block mover is used to generate the pixels. The procedure
block_move is faster then block_read or block_write since the hardware frame
buffer block mover can be used.

Cautions
The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using the gescape function) should be done with care since other
processes access this region.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while
process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when finished processing
output. Some of the gescape functions listed in the appendix allow the
user to change this locking mechanism but should be used with great
caution.

HP300L-13

Contents

The HP 9836A Device Driver
Device Description . .
Setting Up the Device. . .

Switch Settings
Special Device Files (mknod)
Linking the Driver .

Initialization
Parameters for gopen

Syntax Examples .
C Syntax Examples.
FORTRAN77 Syntax Examples
Pascal Syntax Examples. .

Special Device Characteristics
Device Defaults

N umber of Color Planes
Dither Default . . .
Raster Echo Default
Semaphore Default
Line Type Defaults
Default Color Map

Starbase Functionality
Exceptions to Standard Starbase Support
Commands Not Supported

9836-1
9836-2
9836-2
9836-2
9836-2
9836-3
9836-3
9836-3
9836-3
9836-4
9836-4
9836-4
9836-4
9836-4
9836-4
9836-4
9836-5
9836-5
9836-5
9836-5
9836-5
9836-6

Contents-1

HP9836A
The HP 9836A Device Driver

Device Description
This device driver is used to provide graphics output on the Series 300 HP 98546A
Display Card. This display is a bit-mapped device which has a resolution of
512x390 pixels with a single plane frame buffer. A separate non-bit mapped
alpha plane allows text and graphics to be manipulated independently.

This display card provides compatibility with programs written for HP 9836A
Series 200 models and for HP 98204B displays.

The interface for this device plugs into an I/O slot of supported SPUs. See table
1-8 in the introduction of this manual for the SPUs which support this device.

The display is organized as an array of bytes, with each byte representing 8 pixels
on the display. Typically, the user does not need to directly read or write pixels
in the frame buffer. However, for those applications which require direct access,
Starbase provides the gescape R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer (this gescape is discussed
in the appendix).

Frame buffer locations are addressed relative to the returned address. The first
byte of the frame buffer (byte 0) represents eight pixels in the upper left corner
of the screen. The Most Significant Bit (MSB) of that byte holds the pixel in
the upper left corner of the display. The Least Significant Bit (LSB) of the first
byte holds the right-most pixel in the byte (that is, pixel number 8). Byte 1 is
immediately to its right. Byte 63 holds the last 8 pixels on the top line. Byte 64
hold the 8 pixels below the first line. The last (lower right corner) set of 8 pixels
on the screen is in byte number 24,959 (389x64+63).

This display does not support Windows/9000 or the XWindows system.

HP9836A-1

Setting Up the Device

Switch Settings

For normal operation of this device, there are no switches to set.

Special Device Files (mknod)

The mknod command (see mknod in the man pages), creates a special device file
which is used to communicate between the computer and the peripheral device.
The name of this special device file is passed to Starbase in the gopen procedure.
Since superuser capabilities are needed to create special device files, they are
normally created by the system administrator.

The mknod parameters are the character device with a major number of 12 and
a minor number of O. Although special device files can be made in any directory
of the HP-UX file system, the convention is to create them in the / dev directory.
Any name may be used for the special device file; however, the name that is
suggested for these devices is crt. The following example will create a special
device file for this device. Remember that you must be superuser or root to use
the mknod command.

mknod /dev/crt c !2 Oxoooooo

Linking the Driver

The HP9836A Device Driver is located in the /usr/lib directory with the file
name libdd9836a. a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd9836a. a, an appropriate relative path name,
or the -1 option -ldd9836a. For example: to compile and link a program for use
with this driver, use:

cc example.c -ldd9836a -lsb! -lsb2 -0 example

fc example.f -ldd9836a -lsb! -lsb2 -0 example

pc example.p -ldd9836a -lsb! -lsb2 -0 example

HP9836A-2

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

The name of the special device file created by the mknod command
as specified in the last section, e.g. / dev / crt.

Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

The character representation of the driver type. This is hp9836a,
hp98546a, or hp98204b modified to meet the syntax of the
programming language used, namely:

II hp9836a II

'hp9836a'//char(O)

'hp9836a'

for c.
for Fortran 77.
for Pascal.

The mode control word consists of several flag bits which are or ed
together. Listed below are those those flag bits which have device­
dependent actions. SPOOLED flag bits have no affect for this driver.
Those flags not discussed below operate as defined by the gopen
procedure.

• SPOOLED-cannot spool raster devices.

• O-open the device and initialize the software color map

• INIT -open and initialize the device as follows:
1. Frame buffer is cleared to Os.
2. The color map is set to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 9836A device for output:

C Syntax Examples

fildes = gopen (II / dev / crt II • OUTDEV • "hp9836a II • IN IT) ;

HP9836A-3

FORTRAN77 Syntax Examples

fildes = gopen('/dev/crt'//char(O) , OUTDEV, 'hp9836a'//char(O),INIT)

Pascal Syntax Examples

fildes = gopen('/dev/crt',OUTDEV, 'hp9836a' ,INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (511,389).

Device Defaults

Number of Color Planes

This display supports one frame buffer plane.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8x8 array:

1 1 1 1 0 000
1 1 000 000
1 0 1 0 0 0 0 0
100 1 000 0
o 0 0 0 1 000
o 0 000 100
o 0 0 0 0 0 1 0
o 0 0 0 0 0 0 1

The maximum size allowed for a raster echo is 64 x 64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

HP9836A-4

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown. The Starbase
default line type is SOLID, line type o.

Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Default Color Map

Table HP9836A-1. HP9836A Default Color Table

Index Color Red Green Blue

0 Black 0.0 0.0 0.0
1 White 1.0 1.0 1.0

Starbase Functionality

Exceptions to Standard Starbase Support

The following commands are supported under the listed conditions:

block_read, block_write When the raw parameter is set to TRUE, it in­
dicates that DATA is arranged with 8 pixels/byte.
The data rounds to a pixel in the X-axis direction
that aligns with a byte or word boundary. Clip­
ping of the data is not performed in raw mode.

HP9836A-5

interior_style

text_precision

await_retrace

Commands Not Supported

Since there is no hardware color map, this com­
mand defines a software color map on black and
white devices.

This command returns the software color map
values on black and white devices.

Only the INT_SOLID, INT_HATCH, and INT_HOLLOW
styles are supported.

Only STROKE_TEXT precision is supported.

This routine has no effect on this display.

The following commands are not supported. If one of these commands is used
by mistake, it will not cause an error.

bank_switch
backface_control
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color

HP9836A-6

depth_cue_range
hidden_surface
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_model
surface_coefficients
viewpoint
zbuffer_switch

Contents

The HP 98550A Device Driver
Device Description

Overlay Planes and Image Planes.
Interactions with the ITE
Windows Operation in the Overlay and Image Planes
Windows with and without Retained Rasters
Retained Raster Support

Multiple-Plane Bit/Pixel Support
Pixel Replication
16x 16 Fill Pattern
Three-Operand Raster Combinations

Three-Operand Raster Operations
Frame Buffer Access

HP 98548A Display
HP 98549A and HP 319C Displays
HP 98550A Display . .
Series 800 Dependency

Setting Up the Device. .
Switch Settings
Special Device Files (mknod)
Linking the Driver .

Initialization.
Parameters for gopen

Syntax Examples .
C programs: . . .
FORTRAN77 programs: .
Pascal programs:

Special Device Characteristics
Device Coordinate Addressing

HP98550A-1
HP98550A-2
HP98550A-3
HP98550A-3
HP98550A-4
HP98550A-5
HP98550A-6
HP98550A-6
HP98550A-6
HP98550A-7
HP98550A-7
HP98550A-10
HP98550A-11
HP98550A-11
HP98550A-13
HP98550A-13
HP98550A-14
HP98550A -14
HP98550A-16
HP98550A-18
HP98550A-18
HP98550A-18
HP98550A-20
HP98550A -20
HP98550A -20
HP98550A -20
HP98550A -20
HP98550A -20

Contents-1

Offscreen Memory Usage
Device Defaults

Dither Default . . .
Raster Echo Default
Plane Mask Defaults
Semaphore Default .
Line Type Defaults .
N umber of Color Planes .
Default Color Map .
Red, Green and Blue .

Starbase Functionality
Unsupported Procedures
Conditionally Supported Procedures

Fast Alpha and Font Manager Functionality .
Parameters for gescape
Performance Tips

Contents-2

HP98550A-20
HP98550A-21
HP98550A-21
HP98550A-21
HP98550A-21
HP98550A-21
HP98550A-22
HP98550A-22
HP98550A~22

HP98550A-23
HP98550A-24
HP98550A-24
HP98550A-24
HP98550A-25
HP98550A-26
HP98550A-27

HP98550A
The HP 98550A Device Driver

Device Description
This device driver is used with Series 300 and Series 800 systems. See the table
in the introduction for supported configurations.

The HP 98548A display is supported only on some Series 300 SPUs. This display
has a resolution of 1280x 1024 pixels. It provides a single frame buffer plane.

The HP 98549A Color Display Board is supported only on some Series 300 SPUs.
It has a resolution of 1024x768 pixels and 6-color planes. The color planes can
also be soft-configured as four image planes and two overlay planes.

The HP 319C is functionally equivalent to the HP 98549A display.

The high resolution HP 98550A display is supported on both Series 300 and Series
800 SPUs. This display has 1280x 1024 pixels. It has eight color planes for 256
colors, plus two full-time overlay planes.

In this color system, a color map provides eight bits per color (for red, green and
blue), providing a color palette of over 16 million colors.

These display boards fit in a Series 300 SPU system slot, or in a Series 800
A1020A Bus Converter. They are bit-mapped devices with special hardware for:

• Generating vectors.

• Filling polygons.

• Write enabling planes.

• Displaying planes.

• Writing pixels to the frame buffer with a given replacement rule.

• Blinking planes.

• Moving a block of pixels from one place in the frame buffer to another.

HP98550A-1

• Pixel replication.

• Three-operand raster combinations with a 16x 16 tiling mask.

• Independent overlay planes with transparency.

Note Series 300 Only

The HP98549A display board and HP 319C display may also be
accessed by the HP 300H driver, but only if it is configured as the
internal display. The HP 300H driver provides lower performance
than the HP 98550 driver (in most operations). Applications
using the HP 300H driver should not be run simultaneously with
applications using the HP 98550 driver on the same display.
The drivers manage offscreen frame buffer memory differently
and will interfere with each other. This also applies to the
HP Windows/9000 window manager which will (by default) use
the HP 98550 driver. However, it can be directed to use a different
driver by setting environment variable WMDRIVER to that driver.
This also applies to the X Window System, which automatically
uses the hardware in a way compatible with the HP 98550 driver,
but not with the HP300H driver.

Overlay Planes and Image Planes

The color displays supported by this driver have both image and overlay planes.

There are two overlay planes in the HP 98550A system, and two planes of the
HP 98549A or HP 319C may be configured by software as overlay planes. The
overlay planes are in front of the image planes. An independent 4-entry color
map is provided for the overlay planes. Denote the four colors provided by the
overlay planes as colors 0, 1, 2 and 3. Colors 1, 2 and 3 are dominant and are
always displayed for the corresponding pixels, regardless of what is in the image
planes. Color 0, however, may be made "transparent," allowing the image planes
to show through. For example, a cursor might be drawn in the overlay planes
with color 1. If color zero is transparent and specified everywhere else in the
overlay planes, the cursor will be dominant but independent of any image in
image planes.

HP98550A-2

This is a fast way of drawing cursors because a cursor drawn directly in the image
planes must be removed before drawing a new object. The driver may avoid
these cursor-remove and -replace steps if the cursor is in the overlay planes. The
gescape, R_OVERLAY _ECHO, can be used to control cursor placement.

A gescape, GR2D_OVERLAY_TRANSPARENT, may be used to make overlay color a
dominant. This will cause a1l4-overlay plane colors to be displayed and the image
planes to be entirely obscured. The default mode is transparent.

Use of the gescape is not recommended when running in a window environment.

There are 4-,6-, or 8-image planes. The image planes index the main color map.

Interactions with the ITE

The Internal Terminal Emulator (ITE) operates in the image planes but not
the overlay planes. There may be interactions if graphics and the ITE are active
simultaneously in the image planes. The ITE treats the HP 98549A and HP 319C
as 6-plane devices.

On all displays, a hard ITE reset (shift-control-reset) will clear all planes. This
hard reset operation will also clear up any bad hardware states that may occur
if a graphics process is aborted.

Windows Operation in the Overlay and Image Planes

The HP Windows/9000 system is only supported in the image planes, not in the
overlay planes. Windows in the image planes behave in the usual way. The
overlay planes must be transparent to see windows (or any data) in the image
planes. Starbase overlay planes are not supported when in HP Windows/9000
windows.

Note Windows/9000 is supported only on Series 300 computers.

The HP Windows/9000 system operates in all six planes of the HP 98549A and
HP 319C display by default.

HP98550A-3

The X Window System is supported in various configurations and modes on the
devices supported by the HP 98550 driver. See the Starbase Programming with
Xll manual for a complete discussion of X Window support.

Windows with and without Retained Rasters

Consider a graphics window that is partially obscured by another window. What
happens when you try to draw graphics to the part of the window that is
obscured? There are two options:

• Draw only to the visible parts of the window and ignore any parts that
are obscured. In HP Windows/9000, an application that does this will
typically monitor the SIGWINDOW signal and repaint the entire image when
obscured parts of a window are made visible. See the HP Windows/9000
Programmer's Manual and signal(2) in the HP-UX Reference manual.
In X Windows System, an application will receive and handle exposure
events.

• For those parts of the window that are obscured, draw the image to
memory instead of the frame buffer. When the affected portion of the
window is made visible (unobscured), the window system updates the
display with the appropriate graphical data from memory. Graphical
data stored (retained) in memory is called a retained raster or backing
store.

HP Windows/9000 and the X Window System support both options. Support for
retained rasters is provided by /usr/lib/libddbyte.a (called the byte driver).
The graphics window must be created with a retained raster. Linking the byte
driver allows Starbase to draw images to memory for obscured parts of the window
and allows the window system to update the screen from memory if previously
obscured parts of the window are made visible. Review the "HP Windows/9000
Device Driver" chapter of this manual for more information about retained
rasters. See the Starbase Programming with Xll manual for more information
on retained rasters in X Windows.

The /usr/lib/libddbit. a (bit driver) is supported on the HP98548A only.

HP98550A-4

I

(
"

Retained Raster Support

In general, those Starbase operations that draw to the display are also supported
as a retained raster by the byte driver (/usr/lib/libddbyte. a). There are,
however, some exceptions that you should be aware of. These exceptions all
involve use of the gescape operation to access device-dependent features. When
the gescape operations listed below are used with a retained graphics window,
they will have the desired effect for the visible portion of the window but may
cause the retained raster for obscured parts to be altered in inconsistent ways.
The features involved (along with the names of the affected gescape operations)
are listed below. For more details on the gescape operations, refer to later sections
in this chapter.

Note Because the gescape operations are device-dependent, the excep­
tions discussed below may be removed in future drivers. Also, if
the exceptions to retained raster support discussed below prove
troublesome in your application, it is recommended that you con­
sider not using retained rasters but instead detect window events
and repaint the window when a previously obscured portion of
a window is made visible. See the section "Event Detection" in
the Windows/gOOD Programmer's Manual for more information
about HP Windows/gOOD.

HP98550A-5

Multiple-Plane Bit/Pixel Support

When block_read or block_write is used with the raw parameter TRUE, and
raw mode is enabled by the R_BIT_MODE gescape, the driver supports bit/pixel
frame buffer access to single planes.

The gescape operation R_BIT _MASK defines a plane mask to the driver and is used
for bit/pixel access to a single plane in the frame buffer. As in other device drivers,
only the plane corresponding to the highest bit set in the mask is transferred.
This gescape is supported for retained rasters; i.e. the correct data is returned
from the retained raster for those parts of the window that are obscured.

The gescape operation GR2D_PLANE_MASK defines a mask that allows multiple
planes to be read or written. This gescape is not supported in retained rasters.
It returns the correct data from the visible portions, but not from the obscured
portions.

Pixel Replication

GR2D_REPLICATE triggers operations to do pixel replication in the frame buffer.
This is a complicated operation involving multiple hardware block_moves; the
retained raster will not be affected.

16 X 16 Fill Pattern

GR2D_FILL_PATTERN sets a 16x 16 fill pattern used by the driver as a source to
fill polygons until the fill pattern is redefined, either by a call to fill_color or
fill_color _index or to the gescape R_DEF _FILL_PAT or GR2D_FILL_PATTERN.
The retained raster only supports the R_DEF _FILL_PAT 4x4 pattern. The
pattern_define routine for Starbase is recommended instead of this gescape.

HP98550A-6

Three-Operand Raster Combinations

Note For a discussion of replacement rules, review the "Drawing
Modes" section of the "Frame Buffer Control & Raster Oper­
ations" chapter of the Starbase Graphics Techniques manual.

There are several gescape operations associated with the use of three-operand
raster support:

• GR2D_DEF_MASK

• GR2D_MASK_ENABLE

• GR2D_MASK_RULE

Since these gescape operations alter the rule and pattern used for block_write
and block_move, the retained raster will be affected during later raster operations
and the results will not be consistent with what appears on the screen.

Three-Operand Raster Operations

The Starbase drawing_mode procedure defines a set of replacement rules
(drawing modes) that may be used when primitives are drawn to the screen.
Each of these rules represents one of the sixteen possible truth tables that may
be generated from two logical operands, and defines the results that will be
obtained when combining a source bit and a destination bit. The resulting bit
becomes the new value in the frame buffer. For example, the most often-used
rule is SOURCE, that is, the value to the source bit dominates, and is defined by
the following truth table:

HP98550A-7

Table HP98550A-1.

Source Destinationt Result:!:
0 0 0
0 1 0
1 0 1
1 1 1

t Destination means current frame buffer content.

t Result means final frame buffer content.

Three logical operands may be combined to generated 256 different three-operand
rules. The third operand will be referred to as the "mask" operand, and although
it does not have to be considered a logical mask, it is often used that way in
common applications. Some literature refers to the third-operand as a pattern
operand, but we will avoid this to prevent confusion with the "dither pattern" or
"fill pattern" that is used as a source operand during polygon fill.

Shown below is the truth table for the rule "use (source) if (mask) = 1, keep
(destination) if (mask) = 0."

Table HP98550A-2.

Mask Source Destinationt
0 0 0
0 0 1

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

t Destination means current frame buffer content.

t Result means final frame buffer content.

Result:!:
0
1
0
1
0
0
1
1

When filling or copying an area of the frame buffer, a source region is combined
with a destination region according to the current drawing mode. This means that
each bit of each pixel from the source region is combined with the corresponding

HP98550A-8

bit of the corresponding pixel of the destination according to the drawing mode.
The most general form of a three-operand capability would involve a third region
representing the mask operand.

The supported displays provide hardware support for three-operand drawing
modes, but there is a restriction on the mask operand: it is defined as a 16x 16-
pixel rectangle that is repeated across the entire raster in both X and Y, starting
at the upper left comer (that is, the mask tiles the raster). For example, this
restriction precludes the use of the mask operand to trim the edges of a large
irregular figure, but it is convenient in imposing a pattern on the source during
a block_move or block_write operation. Hardware tiling is tied to device
coordinates, so the same primitive drawn to different locations on the screen
may not appear exactly the same.

For example, suppose a raster rectangle is to be copied to another area on the
screen using block_move. In normal, two-operand mode, the source data is
applied (unchanged) to the destination area according to the current two-operand
drawing mode. In three-operand mode, however, the mask operand could be
defined as a checkerboard that truly masks the source, producing a checkerboard
effect in combining source and destination. The following figure shows how this
might look:

~-~ -
tiling mask ~ •

/ result raster

source raster

destination raster

Figure HP98550A-1. Three-Operand Mode Dithering

Access to the hardware capability is provided through three gescape operations:

• GR2D_DEFINE_MASK defines the 16x 16 mask operand

• GR2D _MASK_RULE defines the three-operand rule

HP98550A-9

• GR2D _MASK_ENABLE enables or disables the three-operand combination

When the feature is disabled, the current two-operand rule is in effect.
When enabled, the mask operand and three-operand rule may be applied to
block_write and block_move operations, or to these plus raster text operations.

Frame Buffer Access
The supported displays provide hardware support for frame buffer access in both
plane-major and pixel-major modes. Pixel-major access views the frame buffer
as an array of bytes, one byte per pixel, with n significant bits each byte. The
normal operation of Starbase procedure block_read and block_write treat the
frame buffer in pixel-major mode. Plane-major mode addresses the frame buffer
as a set of n planes, each consisting of a packed array of bits, one bit per pixel.
This may be used, for example, to transfer data quickly from one plane to another
or from a data array to a plane. In this driver, plane-major access may be made
with the block_read and block_write procedure by setting the raw parameter
to TRUE and enabling raw mode using the R_BIT_MODE gescape. (Not all drivers
provide this capability.) Details of this form of access are provided below in the
section entitled "Starbase Functionality."

Starbase support for double-buffering by planes may be used to aid in smooth
animation. This is done using write_enable and display_enable masks; there
is no direct hardware support for double buffering.

Note

HP98550A-10

Series 800 Dependency

When writing to 10 space, accesses must be on word (32 bit)
boundaries. The frame buffer is mapped as one word per pixel.
Therefore, pixels should be addressed on word boundaries when
directly accessing the frame buffer. Also, the pixel value is in the
least significant byte of the word.

HP 98548A Display

The HP 98548A display has a resolution of 1280x 1024 pixels and provides I-image
plane. There are no overlay planes.

Creation of a special device file is discussed in the next section.

The physical frame buffer is 2048 x 1024 bytes. The last 768 bytes of each line of
the frame buffer (to the "right" of the screen) are not displayed and are used for
cursor, font and working storage.

The first byte (byte 0) of the frame buffer represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the (right-most) pixel
on the top line. The next 768 bytes are not displayable. Byte 2048 is the first
(left-most) pixel on the second line from the top. The last (lower right corner)
pixel on the screen is byte number 2,096,383 (1023x2048+1279).

For normal block_read and block_write operations, the data is in the least
significant bit of each byte.

HP 98549A and HP 319C Displays

The HP 98549A display board and HP 319C display have a resolution of 1024x768
pixels and provide six planes of frame buffer. These six planes of frame buffer
may be configured by the driver in one of two modes:

• One logical device that has a full six planes and provides 64 simultaneous
colors. This is referred to as "6-plane mode" .

• Two logical devices, providing 4-image planes (16 simultaneous colors)
and 2-overlay planes (four simultaneous colors). This is referred to as
"4+2-plane mode".

The HP 98549A color display is supported by the hp98550 and hp98556 device
drivers. It may only be used with the Series 300 Models 319, 320, 330, 350, 360,
and 370 SPUs.

Creation of the special device files used to access the device in these modes is
discussed below. Selection of the mode is done when a file is opened with the
gop en procedure.

HP98550A-11

Note Do not open an HP 98549A or HP 319C simultaneously in
both 6-plane mode and 4+2-plane mode. Doing so will cause
indeterminate results. You may simultaneously open the overlay
planes and the 4-image planes using two different file descriptors.
If graphics are being done in the overlay planes, do not use the
gescape R_OVERLAY_ECHO to move the cursor from the image
planes into the overlay planes since this will interfere with the
overlay graphics.

The X Window System only supports the 6-plane mode.

The physical frame buffer is 1024 bytes wide and 1024 bytes high. The last 256
lines of the frame buffer (below the screen) are not displayed and are used for
cursor, font, and working storage.

The first byte (byte 0) of the frame buffer represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1023 is the last (right-most)
pixel on the top line. Byte 1024 is the first (left-most) pixel on the second line
of the screen. The last (lower right corner) pixel on the screen is byte number
786,431 (767x 1024+ 1023).

For normal (non-raw) block_read and block_write operations, the data is in
the least significant bits of each byte. The number of valid bits depends on the
logical device opened (2, 4, or 6 valid bits).

R_GET _FRAME_BUFFER returns the virtual memory address of the beginning of
the frame buffer. Caution is necessary if the HP 98549A or HP 319C is opened
in 4+2-plane mode, because the frame buffer address returned for the 4-image
planes is the same as the address for the 2-overlay planes. To ensure that you
only access the planes that are opened, R_LOCK_DEVICE (using the file descriptor
for the appropriate planes) should be used to lock the device before reading or
changing the frame buffer. Note that your program must shift each data byte
to the left by four bits in order to directly write it to the overlay planes (this
shifting is done automatically when block_write is used). UseR_UNLOCK_DEVICE
to unlock the device after the access.

HP98550A-12

HP 98550A Display

The HP 98550A display has a resolution of 1280x 1024 pixels and provides eight
image planes, plus two dedicated overlay planes.

Special device files may be created to access:

• The eight image planes .

• The two overlay planes.

Creation of the special device files is discussed below. Selection of the plane
access mode is done when one of these files is opened with the gopen procedure.
The two logical devices may be opened simultaneously, but moving the image
planes cursor into the overlay planes may interfere with graphics in the overlay
planes.

The physical frame buffer is 2048 X 1024 bytes. The last 768 bytes of each line of
the frame buffer (to the right of the screen) are not displayed and are used for
cursor, font and working storage.

The first byte (byte 0) of the frame buffer represents the upper left corner pixel
of the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right­
most) pixel on the top line. The next 768 bytes are not displayable. Byte 2048 is
the first (left-most) pixel on the second line from the top. The last (lower right
corner) pixel on the screen is byte number 2,096,383 (1023x2048+1279).

For normal (non-raw) block_read and block_write operations to the image
planes, the data is in all 8 bits of each byte. For the 2-overlay planes, data is in
the lower 2 bits of each byte.

Series 800 Dependency

When using R_GET_FRAME_BUFFER for direct user access to the frame buffer, cor­
rect access can only be assured by using R_LOCK_DEVICE and R_UNLOCK_DEVICE.

R_LOCK_DEVICE should be used just prior to direct frame buffer access.

R_UNLOCK_DEVICE should be used directly after the frame buffer access and before
any other Starbase commands.

HP98550A-13

Setting Up the Device

Switch Settings

The board has a bank of eight switches. The default switch settings configure
the display as the internal (console) display. If the most significant bit is set,
the board is configured in the 32-bit address space (not supported on the Model
320). The first four settings in the 32-bit space are not supported.

Table HP98550A-3. Switch Settings Supported on Series 300

Switches Select Code Comment
00000001 Internal Default
00000010 Not Supported

01111111 Not Supported
10000000 Not Supported

10000011 Not Supported
10000100 132 Supported
10000101 133 Supported

11111111 255 Supported

The HP 319C display has no switches and is always at the internal select code.

HP98550A-14

B

G

R

Figure HP98550A-2. Series 300 Default Switch Settings

HP98550A-15

The only Series 800 configuration supported is with the switches set to the
position shown in the following figure.

B

G

R

Figure HP98550A-3. Series 800 Default Switch Settings

Special Device Files (mknod)

The mknod command (see mknod(8) in the HP-UX Reference manual), creates
a special device file that is used to communicate between the computer and the
display device. The name of this special device file is passed to Starbase in the
gopen procedure. Since superuser capabilities are needed to create special device
files, they are normally created by the system administrator.

The Series 300 mknod parameters are:

Character device with a major number equal to 12 and a minor number equal to
OxOOOOOO (internal) or Ox(sc)0200 (externally).

The Series 800 mknod parameters are:

Character device with a major number equal to 14 and a minor number of the
form OxOO(lu)OO where (lu) is the logical unit of the A1020A graphics subsytem.
Note, the leading Ox causes the number to be interpreted hexadecimally.

HP98550A-16

(
\

Although special device files may be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device file, however the name that is suggested for the
default device is crt.

The normal device file (last digit of the minor number is zero) will cause the
HP 98549A or HP 319C driver to open the display in 6-plane mode.

The following example will create a special device file for the Series 300 internal
display. Remember that you must be su peruser or root to use the mknod
command.

mknod /dev/crt c 12 OxOOOOOO

The next example creates a device file for an external configuration:

mknod /dev/crt c 12 Ox(sc)0200

The next example will create a special device file for the Series 800. Again, you
must be superuser or root to use the mknod command.

mknod /dev/crt c 14 OxOO(lu)OO

To open the driver to the 2-overlay planes, the last digit of the minor number
must be one. Similarly, to access only the image planes, the last digit of the minor
number must be two. Use of either of these device files will cause the HP 98549A
or HP 319C to be placed in the 4+2-plane mode.

For the HP 98548A, these files are equivalent to the normal / dey / crt.

For the Series 300:

mknod /dev/ocrt c 12 Ox000001 for the overlay planes
mknod /dev/icrt c 12 Ox000002 for the image planes

For the Series 300 external configuration:

mknod /dev/ocrt c 12 Ox(sc}0201 for the overlay planes
mknod /dev/icrt c 12 Ox(sc}0202 for the image planes

HP98550A-17

For the Series 800:

mknod /dev/ocrt c 14 OxOO(lu)01 for the overlay planes
mknod /dev/icrt c 14 OxOO(lu)02 for the image planes

Linking the Driver

The HP 98550A Device Driver is located in the /usr /li b directory with the file
name libdd98550. a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd98550. a or an appropriate relative path
name, or by using the -1 option -ldd98550. For" example: to compile and link a
program for use with this driver, use:

cc example.c -ldd98550 -lsb! -lsb2 -0 example
fc example.f -ldd98550 -lsb! -lsb2 -0 example
pc example.p -ldd98550 -lsb! -lsb2 -0 example

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

This is the name of the special device file created by the mknod
command as specified in the last section, e.g. /dev/crt.

This parameter must be OUTDEV, unless used for a graphics window,
in which case OUTINDEV may be used.

The character representation of the driver type. This is hp98548,
hp98549, or hp98550 modified to meet the syntax of the programming
language used, namely:

"hp98550"
'hp98550'//char(O)

'hp98550'

for C.
for FOR TRA N77.
for Pascal.

The driver will correctly open any of the supported displays if any of
the strings hp98548, hp98549, or hp98550 are used. An inquire_id

HP98550A-18

Mode

(3g) call following the gopen will indicate which display was actually
found.

The mode control word consists of several flag bits or ed together.
Listed below are flag bits that have device-dependent actions. Those
flags not discussed below operate as defined by the gopen procedure.
See Starbase Programming with Xll manual for a description of
gopen actions when accessing an X Window.

SPOOLED

MODEL_XFORM

o (zero)

INIT

RESET_DEVICE

Raster devices cannot be spooled.

Shading is not supported for this device. However,
opening in MODEL_XFORM mode will affect how
matrix stack and transformation routines are
performed.

Open the device, but do nothing else. The
software color table is initialized from the current
state of the hardware color map. The special
device file's minor number determines the number
of color planes used.

Open and initialize the device as follows:
1. Frame buffer is cleared to as.
2. The color map is reset to its default values.
3. The display is enabled for reading and

writing.
4. The overlay planes are configured with as

transparent.

Open and initialize the device as follows:
1. The hardware state is reinitialized to its

boot-up state.
2. Frame buffer is cleared to as (all overlay

and image planes).
3. The color maps are reset to default values

(overlay and image).
4. The display is enabled for reading and

writing.
5. The overlay planes are configured with as

transparent.

HP98550A-19

Note SPOOLED and MODEL_XFORM flag bits have no device dependent
effects.

Syntax Examples

To open and initialize an HP 98550A device for output:

C programs:

fildes = gopen(1I /dev/crt ll
• OUTDEV. IIhp98550 1l

• INIT) ;

FORTRAN77 programs:

fildes = gopen('/dev/crt'//char(O).OUTDEV.'hp98550'//char(O).INIT)

Pascal programs:

fildes := gopen('/dev/crt' .OUTDEV.'hp98550' .INIT);

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1279,1023) for the HP 98548A
and HP 98550A displays, and (1023,767) for the HP 98549A or HP 319C display.

Offscreen Memory Usage

The HP 98550A Device Driver allocates a portion of offscreen memory each time
it is opened for things like fill patterns and raster echo storage. The first 32 lines
of offscreen frame buffer memory are reserved for the driver and Windows/9000 or
X server. The remaining lines may be allocated for raster font bitmaps, or by the
driver for raster echo storage. When the driver does allocate offscreen memory for
cursors, it consumes 64 lines at a time. Storage needed by font optimization varies
with the font size. The X Windows System also uses offscreen for temporary and
client pixmaps.

HP98550A-20

In general, off screen frame buffer memory is allocated by the system from top
to bottom (i.e., from low offsets to high). Refer to the "Window Device Driver"
chapter for further information on HP Windows/9000 use of frame buffer memory.
Also review the descriptions of the gescape operations R_OFFSCREEN_ALLOC
and R_OFFSCREEN_FREE in this manual. Use of offscreen while the X Windows
Systemis running is not recommended.

Device Defaults

Dither Default

The number of colors allowed in a dither cell is 1, 2,4, 8 or 16. The default value
is 2.

Raster Echo Default

The default raster echo is the 8x8 array. Displays with less than eight color
planes use the appropriate part of this pattern.

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0
0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size for a raster echo is 64x64 pixels. The default drawing mode
for the raster echo is 7 (a logical OR).

By default, all echo types are written to the open planes. The location of
raster and non-raster echoes may be changed using the gescape operation
R_OVERLAY _ECHO.

Plane Mask Defaults

All accessible planes display enabled. All accessible planes write_enabled.

Semaphore Default

Semaphore operations are enabled.

HP98550A-21

Line Type Defaults

The default line types are created with the bit patterns shown below. The
Starbase default line type is SOLID, line type o. See the following table.

Table HP98550A-4.

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Number of Color Planes

When the gopen procedure is called, this driver identifies the device. Based
on this and the desired configuration as determined by the special device minor
number, the device driver then acts accordingly. Only the planes opened (1, 2,
4, 6, or 8) may be accessed by most Starbase primitives. The only exception is
for cursors (see the gescape operation R_OVERLAY _ECHO).

Default Color Map

If the fourth gopen parameter is zero (0) then the current hardware color map is
used on color displays.

If the fourth gop en parameter is IN!T, then the current color map is initialized
to the default values shown below. For the HP 98549A or HP 319C display, the
color map is initialized to the first (2, 16, or 64) entries of the Starbase default
color map. For the monochrome device, only the first two entries are used. For
2-overlay planes, only the first four entries are used. For 8-image planes 256
entries are used.

Overlay transparency affects the meaning of the zero entry in the overlay color
map. If both overlay planes are display_enable, only the zero entry in the color
map is potentially transparent. Display-disabling a plane is equivalent to zero in

HP98550A-22

that bit position. For example, if the least-significant overlay plane is disabled,
only the 0 and 2 entries in the color map are active.

Table HP98550A-5. Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_map procedure to see the rest of the colors.

Red, Green and Blue

Each file descriptor opened as an output device has a software color table
associated with it. If multiple file descriptors are open to the same device, the
software color tables and the hardware color map may not always be identical.
The color table does not track the color map if the device's color map is changed
via another file descriptor path.

It is usually more efficient to select a color with a color map index rather than
specifying a color with red, blue and green values because of the time it takes
for the driver to figure out which pen in the color table most closely matches the
specified color.

HP98550A-23

Selecting a color with the fill_color procedure will allow dithering for filled
areas when desired.

Starbase Functionality

Unsupported Procedures

The following procedures are not supported for use with this driver. Calls to
these procedures will have no effect:

backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color

depth_cue_range
hidden_surface
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_model
surface_coefficients
viewpoint
zbuffer_switch

Conditionally Supported Procedures

The following procedures are supported under the listed conditions:

block_read,
block_write

HP98550A-24

The raw parameter for the block_read and block_write
commands is used by this driver to do plane-major reads
and writes. It is enabled by the gescape R_BIT _MODE. The
storage supplied by the user as the source or destination
must be organized as follows. The data from each plane
will be packed, eight pixels per byte. Each row must
begin on a byte boundary. The size of the rectangle
as specified by the (length_x) and (length_y) parameters
will thus need (((length_x) +7)/8)x(length_y) bytes. The
data from the next plane will begin on the following byte

(

\

boundary. Clipping is done to the screen limits. The first
pixel in the source rectangle is placed in the high-order bit of
the first byte in each plane region. If clipping is done, part of
each plane region will not be read (block_read) or altered
(block_write).

A bit mask selects the planes to be read or written. The
initial value of this mask is 1 (one), indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK
gescape. GR2D_PLANE_MASK is discussed in the appendix
of this manual. The planes selected by the mask are
expected to reside in consecutive plane locations in the user
storage area. This reduces the storage requirements to
exactly what is needed, but also presents the potential for
addressing violations or undesirable results. For example, if
the plane mask is changed to specify more planes between
a block_read and a following block_write from the same
location, the block_write will attempt to access storage
for planes that were not read (and perhaps not allocated).
The application program must ensure consistency in these
operations.

shade_mode The color map mode may be selected but shading cannot be
turned on.

text_precision Only STROKE_TEXT precision is supported.

vertex_format The (use) parameter must be zero, any extra coordinates
supplied will be ignored.

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

HP98550A·25

Parameters for gescape
The following gescape functions are common to two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_PLANES-Blink display (blink rate is 3.75 Hz for this device).

• GR2D _DEF _MASK -Defines mask.

• GR2D_FILL_PATTERN-Define 16x 16 dither and fill pattern.

• GR2D_MASK_ENABLE-Enables mask rule and current mask.

• GR2D _MASK_RULE-Set three-operand drawing mode.

• GR2D_OVERLAY_TRANSPARENT-Turns on/off transparency of 0 pixels.

• GR2D_PLANE_MASK-Overrides the mask.

• GR2D_REPLICATE-Allows square pixel replication.

• R_BIT _MASK-Bit mask.

• R_BIT _MODE-Bit mode.

• R_DEF _ECHO_ TRANS-Turns on transparency.

• R_DEF _FILL_PAT-Define fill pattern.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_LOCK_DEVICE-Lock device.

• R_OFFSCREEN_ALLOC-Allocates offscreen frame buffer memory.

• R_OFFSCREEN_FREE-Frees allocated offscreen frame buffer memory.

• R_OVERLAY_ECHO-Allows cursor in overlay or graphics planes.

HP98550A-26

Note Using R_OVERLAY _ECHO to move the cursor into the overlay planes
will interfere with graphics done directly to those planes. Overlay
cursors are not supported in all window system configurations.

• R_UNLOCK_DEVICE-unlock device

• READ_COLOR_MAP-read color map

• SWITCH_SEMAPHORE-semaphore control

Performance Tips

• A solid color for polygon fill (set by fill_color_index), in either two­
operand or three-operand mode, will fill faster than a dither or fill pattern
(set by fill_color or one of the fill-pattern gescape operations).

• Certain two-operand drawing modes may be done faster than others. The
absolute modes (ZERO (0) and ONE (15)) are the fastest. Rules dependent
only on one operand (e.g., (source) (3) or not (dest) (10)) are somewhat
slower. Rules dependent on both operands (e.g., xor (6)) are the slowest.

• Placing the Starbase echoes in the overlay planes may improve perfor­
mance because the driver does not have to "pick up" the cursor to draw
to the image planes.

• Buffering of graphics operations is done in this driver to enhance
performance. If buff er _mode is turned off or many calls are made to
make_picture_current then performance may decrease.

• Performance optimizations have been made so that sequential calls of
the same output primitive with no intervening attribute change or call
to a different primitive are processed faster. For example, the se­
quence polygon, polygon, polyline, polyline is faster than poly­
gon, polyline, polygon, polyline. The line_color, polyline,
polyline calls are faster than line_color, polyline, line_color,
polyline.

HP98550A-27

• For the best performance when using bit/pixel block write (raw mode
TRUE, R_BIT_MODE enabled), the following conditions must be met:

Note

1. Source rows should be an even number of whole bytes (that is, dx
should be a multiple of 16).

2. Destination rows should be aligned on 8-pixel boundaries (that is,
x should be a multiple of 8).

3. Source rows should be aligned.

When drawing in a graphics window, drawing and filling perfor­
mance will be significantly lower if the window raster extends
more than 1024 device coordinates outside the screen in any di­
rection, either because of its size or its current position on the
screen. There is a significant additional performance cost associ­
ated with drawing to a retained rather than an unretained raster.

HP98550A-28

/
\

"

Contents

The HP 98556 Device Driver
Device Description .
Hardware Overview. . . .

Frame Buffers
The HP 9S549A Display .
The HP 9S550A Display .
Color Map
Windows on the HP 9S556 .

Starbase Echo Operation
Setting Up the Device. . . .

Switch Settings
Special Device Files (mknod)

Series 300
Series SOO
Series 300
Series SOO

Linking the Driver
Initialization

Parameters for gopen
Syntax Examples .
C Syntax Example
FORTRAN77 Syntax Example
Pascal Syntax Example . .

Offscreen Memory Usage
Special Device Characteristics
Device Defaults

N umber of Planes
Dither Default . .
Raster Echo Default

HP9S556-1
HP9S556-2
HP9S556-2
HP9S556-3
HP9S556-4
HP9S556-5
HP9S556-5
HP9S556-6
HP9S556-7
HP9S556-7
HP9S556-7
HP9S556-S
HP9S556-S
HP9S556-S
HP9S556-S
HP9S556-S
HP9S556-9
HP9S556-9
HP9S556-10
HP9S556-10
HP9S556-10
HP9S556-10
HP9S556-11
HP9S556-11
HP9S556-11
HP9S556-11
HP9S556-11
HP9S556-12

Contents-1

Plane Defaults . .
Semaphore Default
Line Type Defaults
Default Color Map
Red, Green and Blue

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

Fast Alpha and Font Manager Functionality
Parameters for gescape

GR2D_CONVEX_POLYGONS
C Syntax
FORTRAN77 Syntax
Pascal Syntax

Performance Tips
Cautions

Contents-2

HP98556-12
HP98556-12
HP98556-12
HP98556-13
HP98556-14
HP98556-15
HP98556-15
HP98556-15
HP98556-17
HP98556-17
HP98556-19
HP98556-19
HP98556-19
HP98556-19
HP98556-20
HP98556-23

HP98556
The HP 98556 Device Driver

Device Description
The HP 98556 Device Driver is used to interface the Starbase Graphics Library
with the HP 98556 Graphics Accelerator Board. The HP 98556 Graphics
Accelerator is an optional printed circuit board which can mate with either
the HP 98549A 1024x768 Display Board, or the HP 98550A 1280x 1024 Display
Board. The accelerator board is plugged into the display board, which is then
inserted in a system slot. The accelerator is supported on the HP 9000 Series 300
workstations and the Series 800 workstations (see table 1-8 in the Introduction
section of this manual). This configuration allows for use of multiple high speed
windows on HP 9000, HP Windows/9000 and the X Window system.

The HP98556 driver should be used when speed is very important and integer
or de graphics operations are performed. When speed in graphics operation
performance is not as important, the HP 98550 driver should be used. The
HP 98556 driver only supports 31 simultaneous gopens. Any additional gop ens
must be to the HP 98550 driver.

The HP 98556 Graphics Accelerator has hardware and micro-code support for
the functions of the HP 98549A and HP 98550A workstations, plus fast two­
dimensional and integer transformations, clipping, and primitive drawing. The
HP 98556 Device Driver allows use of the features of the HP 98556 accelerator.

HP98556-1

Hardware Overview

Frame Buffers

The display supported by this driver possesses both image and overlay planes.
A major difference between image and overlay planes is depth. The HP 98549A
board supports either four image planes and two overlay planes or six image
planes. The HP 98550A board supports eight image planes and two overlay
planes. The two overlay planes index their own four-entry color map, while
the image planes index the main 256-entry color map. The overlay planes can be
thought of as being "on top of" the image planes.

The four colors provided by the overlay planes are denoted as colors 0, 1, 2, and
3. Colors 1, 2, and 3 in the overlay planes are always dominant and displayed
for the corresponding pixels, regardless of what is in the image planes. Color 0,
however, may be made transparent, allowing the image planes to show through.

For example, a cursor might be drawn in the overlay planes with color 1. If zeroes
are found everywhere else in the overlay planes and they are transparent, the
cursor will be dominant but independent of the image. This speeds up drawing
because a cursor drawn directly in the image planes (by complementing the image
for example) must normally be removed before drawing. The driver may avoid
these steps if it knows the cursor is not in the image planes.

The gescape GR2D_OVERLAY_TRANSPARENT may be used to make overlay color 0
dominant, i.e., all four overlay plane colors are displayed and the image planes
are entirely obscured. The default mode, color 0, is transparent.

Typically, the user does not need direct access to pixels in the frame buffer.
However, for applications that require direct access, Starbase provides the
gescape R_GET_FRAME_BUFFER that returns the virtual memory address of the
beginning of the frame buffer (this gescape is discussed later in more detail).
Frame buffer locations are then addressed relative to the returned address, III

byte-per-pixel mode.

HP98556-2

Series 800 When writing to 10 space, accesses must be on word (32 bit)
boundaries. The frame buffer is mapped as one word per pixel;
therefore, pixels should be addressed on word boundaries when
directly accessing the frame buffer. Also, the pixel value is in the
least significant byte of the word.

To ensure valid direct frame buffer access, the user must precede
the R_GET_FRAME_BUFFER gescape with the R_LOCK_DEVICE
gescape. After completing the frame buffer access and prior
to any other Starbase commands, the user must call the
R_UNLOCK_DEVICE gescape.

The HP 98549A Display

The HP 98549A Display System has six image planes (or four image plus two
overlay planes, definable through the minor number in the device file). Resolution
is 1024x768 pixels.

The frame buffer is 1024x 1024 bytes. The bottom 256 lines of the frame
buffer are not displayed and are used for temporary storage of graphical items.
This off-screen portion of the frame buffer may be accessed via the gescape
R_FULL_FRAME_BUFFER documented later. Care should be taken when using this
gescape since other processes, Starbase, and the window system also access the
frame buffer off-screen memory.

The first byte (byte 0) of the frame buffer represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1023 is the last (right-most)
pixel on the top line. Byte 1024 is the first (left-most) pixel on the second line
from the top. The last (lower right corner) pixel on the screen is byte number
786,431 (767x 1024+ 1023).

Creation of the special device files used to access the device in these modes follows.
Selection of the mode is done when the file is opened with the gopen procedure.

Note Do not open the HP 98549A simultaneously in both 6-plane mode
and 4+2-plane mode. Doing so will cause indeterminate results.
You may simultaneously open the overlay planes and the 4-
image planes using two different file descriptors. If graphics
are being done in the overlay planes, do not use the gescape

HP98556-3

R_OVERLAY _ECHO to move the cursor from the image planes into
the overlay planes becaues this will interfere with the overlay
graphics. Only the 6-plane mode is supported by the X windows
system.

For normal (non-raw) block read and write operations, the data is in the least
significant bits of each byte. The number of valid bits depends on the logical
device opened (2, 4, or 6 valid bits).

The gescape R_GET_FRAME_BUFFER returns the virtual memory address of the
beginning of the frame buffer. Caution is necessary if the HP 98549 is opened
in the 4+2-plane mode, because the frame buffer address returned for the 4-
image planes is the same as the address for the 2-overlay planes. To ensure that
you only access the planes opened, the R_LOCK_DEVICE gescape (using the file
descriptor for the appropriate planes) should be used to lock the device before
reading or changing the frame buffer. Note that your program must shift each
data byte to the left by four bits in order to write it to the overlay planes. Use
the R_LOCK_DEVICE gescape to unlock the device after the access.

The HP 98550A Display

The HP 98550A display has eight image planes, and two overlay planes.
Resolution is 1280x 1024 pixels.

The frame buffer is 2048 x 1024 bytes. The right most 768 columns of the frame
buffer are not displayed but used for temporary storage of graphical items.
This off-screen portion of the frame buffer may be accessed via the gescape
R_FULL_FRAME_BUFFER documented later. Care should be taken when using this
gescape since other processes, the Starbase driver, and the window system also
access the frame buffer off-screen memory.

The first byte (byte 0) of the frame buffer represents the upper left corner pixel
of the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right­
most) pixel on the top line. The next 768 bytes are not displayable. Byte 2048 is
the first (left-most) pixel on the second line from the top. The last (lower-right
corner) pixel on the screen is byte number 2,096,383 (1023x2048+1279).

HP98556-4

Color Map

The frame buffer of the display system is organized as a set of planes. For the
HP 98549A Display Board, the six (or four) LSBs of each byte determine the
color, providing color values from 0--63 (or 0-15). For the HP98550A display,
each byte (8 bits) is used to provide color values from 0-255. These color values
are used to address the color map. The color map is a RAM table that has 16,
64, or 256 addressable locations and is 24 bits wide (8 bits each for red, green,
blue). Thus, the pixel value in the frame buffer indexes the color map, generating
the color programmed at that location.

Windows on the HP 98556

Note Windows/9000 is supported on the Series 300 computers only.

The HP 98556 driver supports hardware accelerated windows. Clip information
for each window that is gopened with the HP 98556 driver is downloaded to
the HP 98556 accelerator by the window manager or server. This enables the
HP 98556 accelerator to clip output to the visible parts of the window. The clip
information for each window consists of a list of visible rectangles. Performance
of output to an obscured window will degrade linearly as a function of the number
of visible rectangles.

The HP 98556 driver imposes a limit of 32 simultaneous gopen's of the HP 98556
device. This limit also applies to the window system. The window manager
will gopen the HP 98556 device, allowing up to 31 windows to use the HP 98556
driver. Once a window is gopened with the HP 98556 driver, it counts against
this 31 window limit until the window is closed.

If an open of the HP 98556A is performed when 31 open commands of the
HP 98556A are currently active, a Star base error is generated and the open
command will fail. When one of the previous HP 98556A opens is closed, the
first open command can be tried again.

The HP Windows/9000 window manager will default the WMDRIVER environment
variable to the HP 98556 driver if the HP 98556 is installed. If you want it to use
the HP 98550 driver instead, set WMDRIVER to HP 98550.

HP98556-5

When the window manager or X server uses the HP 98556 driver, graphics
windows can be gopened with both the HP 98550 and HP 98556 drivers. Windows
that are gopened with the HP 98550 driver are not counted against the limit
of 31 accelerated windows. (The terminal emulator windows use only the
HP 98550 driver to make all 31 accelerated windows available to your programs.)
Note that the HP 98556 driver cannot be used to open a window when the
HP Windows/9000 window manager has the WMDRIVER environment variable set
to HP98550.

When a graphics image is drawn to the obscured portion of the window,
only the visible parts of the window are drawn to; the obscured parts are
ignored. An application should monitor the SIGWINDOW signal (see the HP
Windows/9000 Programmer's Manual and signal(2)) and repaint the entire
image when previously obscured parts of the window become visible. In the
X Windows System, the application should handle exposure events.

The HP 98556 driver does not support retained windows. Output to obscured
parts of a retained window will not affect the retained raster. In order
to be compatible with older applications that require retained rasters, the
HP 98556 driver behaves as follows when it is used to gopen a retained window
(HP Windows/9000 only):

1. If the HP 98550 driver is also linked into the user program, Starbase will
substitute the HP 98550 driver for the HP 98556 driver during gopen.
A Starbase warning of "Driver name substituted on gop en" will be
generated during the gop en.

2. If the HP 98550 driver is not linked into the user program, Starbase
will use the HP 98556 driver. A Starbase warning of "Driver doesn't
support retained rasters" will be generated during the gopen. The
gopen will succeed, but remember that output to the obscured parts of a
window will not be saved in the retained raster.

The Windows/9000 system can be opened only in the image planes. Windows in
the image planes behave in the usual way. Of course, the overlay planes must be
transparent to see windows (or any data) in the image planes.

Starbase Echo Operation

Only one Starbase echo is supported in a window by the HP 98556 driver. When a
window is opened multiple times by the HP 98556 driver, only one of these opens

HP98556-6

should specify a Starbase echo because the HP 98556 driver can "pick up" only
one Starbase echo and one XII cursor. When a window is opened twice by the
HP 98556 driver and each open specifies a Starbase echo, the first invocation of
the driver will not be able to pick up the echo generated by the second invocation
of the driver.

Setting Up the Device
The HP 98556 Device Driver can only be used if the display is configured
in external address space. The HP 98556 accelerator card will plug into an
HP 98549A or HP 98550A display controller board.

Switch Settings

No switches on the HP 98556 board need to be set. For the switch settings of the
HP 98549A/HP 98550A board, see the "HP 98550 Device Driver" chapter.

Special Device Files (mknod)

The mknod command (see mknod(8) man page), creates a special device file that
is used to communicate between the computer and the display device. The name
of this special device file is passed to Starbase in the gopen procedure. Since
superuser capabilities are needed to create special device files, they are normally
created by the system administrator.

The Series 300 mknod parameters are character device (c) with a major number
of 12 and a minor number of Ox(sc)020(d), where (sc) is a two digit select code
and (d) is a single digit denoting which planes should be opened by the driver.
The Series 800 mknod parameters are character device (c) with a major number of
14 and a minor number of OxOO(lu)O(d) where (lu) is the logical unit number of
the AI020A graphics subsystem, and (d) is a single digit denoting which planes
should be open by the driver. Although special device files can be made in any
directory of the HP-UX file system, the convention is to create them in the / dev
directory. Any name may be used for the special device file, however the name
that is suggested for these devices is crt. Note, the leading Ox causes the number
to be interpreted hexadecimally.

HP98556-7

The normal device file (the last digit at the minor number is zero) will open the
driver to the image planes (creating a special device file that uses all six of the
planes for the HP 98549A device as image planes).

Series 300

mImod /dev/crt c 12 Ox(sc)0200

Series 800

mImod Idev/crt c 14 OxOO(lu)OO

To open the driver for the 2-overlay planes only, the last digit of the minor
number must be 1. Similarly, to access only the image planes (a HP 98549A 4+2
configuration or HP 98550A), the last digit of the minor number must be 2.

Series 300

mknod /dev/ocrt c 12 Ox(sc)0201 (for the overlay planes)
mknod /dev/icrt c 12 Ox(sc)0202 (for the image planes)

Series 800

mknod /dev/ocrt c 14 OxOO(lu)01 (for the overlay planes)
mknod /dev/icrt c 14 OxOO(lu)02 (for the image planes)

You must be superuser or root to use the mknod command.

Linking the Driver

The HP98556 Device Driver is located in the lusr/lib directory with the file
name libdd98556. a. This device driver may be linked to a program using the
absolute path name lusr IIi b/li bdd98556 . a, an appropriate relative path name,
or the -1 option -ldd98556. For example: to compile and link a program for use
with this driver, use:

cc example.c -ldd98556 -lsb1 -lsb2 -0 example
fc example.f -ldd98556 -lsb1 -lsb2 -0 example
pc example.p -ldd98556 -lsb1 -lsb2 -0 example

HP98556-8

(
\

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Note

Mode

The name of the special device file created by the mknod command
as specified in the last section, e.g. / dev / crt.

Indicates the I/O characteristics of the device. This parameter
must be OUTDEV, unless used for a graphics window, in which case
OUTINDEV may be used.

The character representation of the driver type. This is hp98556
modified to meet the syntax of the programming language used,
namely:

II hp98556 II

'hp98556'//char(O)

'hp98556'

for C.
for FORTRAN77.
for Pascal.

In HP Windows/9000, the HP 98550 driver will be used if an
attempt is made to open an HP 98556 driver to a retained
window. Retained rasters are not supported by the HP 98556
driver.

The mode control word consists of several flag bits that are or ed
together. Listed below are those flag bits that have device-dependent
actions. Those flags not discussed below operate as defined by the
gopen procedure. (See Starbase Programming with Xll manual for
a description of the actions of gopen in an X window.)

• SPOOLED-Cannot spool to raster devices.

• O-Open the device, but do nothing else. The software color
map is initialized from the current hardware color map. The
special device file's minor number specifies the number of
image planes that are used.

• INIT -Open and initialize the device as follows:
1. Image planes and/or overlay planes are cleared to Os.

HP98556-9

2. The color map is reset to its default values, if using
the image plane configuration.

3. The display is enabled for reading and writing.
4. The overlay planes are configured such that O's are

transparent.

• RESET _DEVICE-Open and initialize the device as follows:
1. The hardware state is reinitialized to its boot-up

state.
2. Frame buffer is cleared to O's (all image and overlay

planes).
3. The color maps are reset to their default values

(overlay and image.)
4. The display is enabled for reading and writing.
5. The overlay planes are configured such that O's are

transparent.
6. Download the transform engine's microcode.

• INT _XFORM-Open and initialize the device to allow for fast
integer transformations.

• MODEL_XFORM-Shading is not supported for this device. The
MODEL_XFORM matrix stack definition is supported.

Syntax Examples

To open and initialize an HP 98556 device for output:

C Syntax Example

fildes = gopen(l/dev/crt",DUTDEV,lhp98556",INIT);

FORTRAN77 Syntax Example

fildes = gopen('/dev/crt'//char(O), DUTDEV, 'hp98556'//char(O) ,INIT)

Pascal Syntax Example

fildes := gopen('/dev/crt' ,DUTDEV, 'hp98556' ,INIT);

HP98556-10

Offscreen Memory Usage

On the Series 300 computers, each time the HP 98556 Device Driver is opened,
it allocates a portion of offscreen memory. This memory is used for such things
as raster echo storage. The allocation and storage is as follows.

The first 32 lines of offscreen frame buffer memory are reserved for the
Windows/9000 sprite. The remaining lines may be allocated by Windows/9000
for raster font bitmaps or by the driver for raster echo storage. When the driver
allocates offscreen memory, it consumes 64 lines at a time. Storage required by
font optimization varies with the font size.

In general, offscreen frame buffer memory is allocated by the system from top
to bottom (i.e., from low offsets to high). Please refer to the "Window Device
Driver" chapter in the Starbase Device Drivers Library for further information
on HP Windows/9000 use of frame buffer memory. Also, see the descriptions of
the gescapes R_DFFSCREEN_ALLDC and R_DFFSCREEN_FREE.

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the HP 98549A display is (1023,767) while the
lower-right corner of the HP 98550A display is (1279,1023).

Device Defaults

Number of Planes

For the HP 98549A display, there will be either four image plus two overlay planes,
or six image planes (definable by the special device file). For the HP 98550A
display there are eight image plus two overlay planes.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

HP98556-11

Raster Echo Default

The default raster echo is the 8 x 8 array (displays with less than eight image
planes use the appropriate number of least significant bits of this pattern):

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64 x 64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR). By default, all echo types are written
to the open planes. The location of raster and non-raster echoes may be changed
by using the R_OVERLAY_ECHO gescape.

Plane Defaults

All planes being used are display enabled and write enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below. The
Starbase default line type is SOLID, line type o.

Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

HP98556-12

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown below. For two overlay planes, the first 4 entries are used
to initialize their independent color map (that is, 1 = white, 2 = red, 3 = yellow,
and 0 defaults to transparent). For four image planes, 16 entries are used; for
six image planes, 64 entries are used; and for eight image planes, 256 entries are
used.

Overlay transparency affects the meaning of the zero entry in the overlay color
map. If both overlay planes are display-enabled, only the zero entry of the color
map is potentially transparent. Display-disabling a plane is equivalent to zero in
that bit position. For example, if the least-;significant overlay plane is disabled,
only the 0 and 2 entries in the color map are active.

A gescape (GR2D_OVERLAY _TRANSPARENT) can be used to make overlay color 0
dominant. Then, all four overlay plane colors are displayed and the image planes
are entirely obscured. The default mode, color 0, is transparent.

HP98556-13

Table HP98556-1. Default Color Table

Index Color Red Green Blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the available colors.

Red, Green and Blue

Each file descriptor opened as an output device has a software color table
associated with it. If multiple file descriptors are open to the same device, the
software color table and the hardware color map may not always be identical.
The color table does not track the color map if the device's color map is changed
by another file descriptor path.

It is usually more efficient to select a color with a color map index rather than
specifying a color with red, green and blue values. It takes longer for the driver to
figure out which pen in the color table most closely matches the specified color.

HP98556-14

Starbase Functionality

Commands Not Supported

These procedures are ignored.

backface_control
bank_switch
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue

hidden_surface
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_model
surface_coefficients
viewpoint

depth_cue_color
depth_cue_range

zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read,
block_write

The raw parameter for the block_read and
block_wri te commands is used by this driver to per­
form plane-major reads and writes. It is enabled by
the gescape R_BIT_MODE. The storage supplied by
the user as the source or destination must be orga­
nized as follows. The data from each plane will be
packed, 8-pixels per byte. Each row must begin on a
byte boundary. The size of the rectangle as specified
by the (length_x) and (length_y) parameters will thus
require (((length_x)+ 7)/8)x(length_y) bytes. The
data from the next plane will begin on the following
byte boundary. Clipping is done to the screen lim­
its. The first pixel in the source rectangle is placed
in the high-order bit of the first byte in each plane
region. If the plane region gets clipped, part of each

HP98556-15

shade_mode

text_precision

vertex_format

HP98556-16

plane region will not be read (block_read) or altered
(block_write).

A bit mask selects the planes to be read or writ­
ten. The initial value of this mask is 1 (one), indi­
cating that only plane 0 is to be accessed. The value
of the mask may be changed using the R_BIT _MASK
or GR2D_PLANE_MASK gescape. GR2D_PLANE_MASK is
discussed later in this chapter. The planes selected
by the mask are expected to reside in consecutive
plane locations in the user storage area. This reduces
the storage requirements to exactly what is needed
but also presents the potential for addressing viola­
tions or undesirable results. For example, if the plane
mask is changed to specify more planes between a
block_read and a following block_write from the
same location, the block_write will attempt to ac­
cess storage for planes that were not read (and per­
haps not allocated). The application program must
ensure consistency in these operations.

When running in the overlay planes, this command
returns the software color map values.

The color map mode may be selected, but shading
cannot be turned on.

Only STROKE_TEXT precision is supported.

The (use) parameter must be zero, and extra coor­
dinates supplied will be ignored.

(
\

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

Parameters for gescape
The following gescape functions are common to two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_PLANES-Blink display (blink rate is 3.75 Hz for this device).

• GR2D _DEF _MASK-Defines mask.

• GR2D_FILL_PATTERN-Define 16x 16 dither and fill pattern.

• GR2D_MASK ENABLE-Enables mask rule and current mask.

• GR2D _MASK_RULE-Set three operand drawing mode.

• GR2D_OVERLAY_TRANSPARENT-Turns on/off transparency of 0 pixels.

• GR2D_PLANE_MASK-Overrides the mask.

• GR2D_REPLICATE-Allows square pixel replication.

• R_BIT_MASK-Bit mask.

• R_BIT_MODE-Bit mode.

• R_DEF _FILL_PAT-Defines the current 4x4 pixel dither cell.

• R_FULL_FRAME_BUFFER-Map in offscreen.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_LOCK_DEVICE-Lock device.

• R_OFFSCREEN_ALLOC-Allocates offscreen frame buffer memory.

• R_OFFSCREEN_FREE-Frees allocated offscreen frame buffer memory.

• R_OVERLAY _ECHO-Select plane to contain cursor.

HP98556-17

• R_UNLOCK_DEVICE-Unlock device.

• READ_COLOR_MAP-Read color map.

• SWITCH_SEMAPHORE-Semaphore control.

The following gescape function is unique to this driver. It is discussed in the
next section.

• GR2D_CONVEX_POLYGONS-Enables convex polygons to be drawn at a
higher speed.

HP98556-18

The (op) parameter is GR2D_CONVEX_POLYGONS.

This gescape enables convex polygons to be drawn at a higher speed than they
would normally be with the gescape not enabled. This extra speed is achieved
at the expense of not being able to draw non-convex polygons when this gescape
is enabled. If an application attempts to render non-convex polygons while this
gescape is enabled, they will be filled incorrectly.

The default mode is that the convex polygons mode is not enabled.

The arg1 parameter enables (if TRUE (1)) and disables (if FALSE (0)) the
convex polygon mode.

The arg2 parameter is ignored.

The following examples enable the convex polygons mode.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

argl.i[O]=TRUE;
gescape(fildes ,GR2D_CONVEX_POLYGONS , &argl ,&arg2) ;

FORTRAN77 Syntax

integer*4 argl(64),arg2(64)

argl(l)=TRUE;
call gescape(fildes,GR2D_CONVEX_POLYGONS,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl, arg2 gescape_arg;

begin
argl.i[l] :=TRUE;
gescape(fildes,GR2D_CONVEX_POLYGONS,argl,arg2);

HP98556-19

Performance Tips

1. A solid color for polygon fill (set by fill_color_index), in either two­
operand or three-operand mode, will fill faster than a dither or fill pattern
(set by fill_color or pattern_define).

2. Certain two-operand drawing modes may be performed faster than others.
The absolute modes (ZERO (0) and ONE (15)) are the fastest. Rules
dependent on only one operand (e.g., (source) (3) or not (dest) (10))
are a bit slower. Rules dependent on both operands (e.g., xor (6)) are
the slowest.

3. Placing Starbase echoes in the overlay planes will improve performance
because the driver does not have to "pick up" the cursor to draw to the
image planes.

4. Buffering of graphics operations is done in this driver to enhance
performance. If buffer_mode is turned off or many calls are made to
make_picture_current, performance may decrease.

5. Performance optimizations have been made so that sequential calls of the
same output primitive with no intervening attribute change, or call to a
different primitive, are processed faster. For example, the sequence poly­
gon, polygon, polyline, polyline is faster than polygon, polyline,
polygon, polyline. In a similar way, line_color. polyline. poly­
line is faster than line_color. polyline. line_color. polyline.

6. Buffer polylines.

Each Starbase call requires a certain amount of overhead. If a number of
primitives can be bundled into a single Starbase call (like a polyline, for
instance), the amount of system overhead required per primitve will be
significantly reduced.

HP98556-20

Therefore, you should try to convert individual move/draws into polylines.
Likewise, the larger you can make a polyline (that is, the more vertices it
contains) the faster the system will draw it.

For example, the following:
move
draw
draw
rectangle
draw
move
draw
circle
move
draw

could be done faster as:
polyline (containing the moves/draws)
rectangle
circle

7. Convert primitives to polylines.

Poly lines are the fastest primitive. By converting other primitives to
polylines, you will be able to draw them at the polyline rate. Examples
of primitives that could be converted to poly lines would be; edged non­
filled rectangles, edged non-filled polygons, etc. An exception to this
is polycircles, which are always faster than constructing circles out of
poly lines (polycircles are only available for the 6.5 and later releases).

8. Minimize attribute switching.

Setting up the system for new primitive attributes (fill colors, line colors,
fill styles, line types, etc.) is a fairly expensive operation, timewise.
Therefore, avoid redundant attribute switching. Try to group primitives
with similar attributes together.

HP98556-21

Take for example the following sample calls:

fill_color_index(white)
rectangle A
fill_color_index(red)
rectangle B
fill_color_index(white)
rectangle C
fill_color_index(red)
rectangle D
fill_color_index(white)
rectangle E

This could be done much more effeciently as:

fill_color_index(white)
rectangle A
rectangle C
rectangle E
fill_color_index(red)
rectangle B
rectangle D

9. Limit the use of polygons.

Polygons are a relatively slow primitive. Whenever possible, try to convert
hollow polygons to polylines, or failing that, use rectangles.

10. Use convex polygons as opposed to concave polygons whenever possible.

Convex polygons will be drawn faster than concave polygons, so use them
whenever possible. This is especially true if the GR2D_CONVEX_POLYGONS
gescape available in the Series 300 6.5 release, Series 800 3.1 release
and later releases is used. This gescape improves performance by taking
advantage of optimiaztions made in the HP 98556 device firmware.

11. Make use of polycircle and polyrectangle commands. (6.5 release and
later only)

Whenever possible, use the polycircle and polyrectangle commands.
Remember however, that many consecutive, edged, non-filled rectangles
will still be drawn faster as polylines. Use the largest polycircles and
polyrectangles (that is, greatest number of primitives) practical for your
application.

HP98556-22

Here again, the larger you make the polyrectangle or polycircle, the less
time per primitve is spent on system overhead.

12. Group rectangles, circles, and text together.

From the Series 300 6.5 and Series 800 3.1 releases and on, the HP 98556
device is designed to have a significant performance advantage in grouping
rectangles with other rectangles and text with other text. Also, try to
group circles of the same radius together. Failing that, group circles
of different radii together. To take full advantage of this feature, do not
change attributes (that is. fill_color, interior_style, etc.) between
the primitives. The most dramatic performance improvements from this
technique are seen in 6.5 and later releases; however, some improvement
will be seen in earlier releases, too.

13. Use a display list whenever possible.

Your overall system performance will not be any faster than the slowest
element in the pipeline. For many applications, the HP 98556 system is
capable of processing primitives significantly faster than the application
can send them. To alleviate this situation, the use of a display list (such
as Hewlett-Packard's Starbase Display list) is recommended.

Cautions
The Internal Terminal Emulator (ITE) operates in the image planes only, not
the overlay planes. There can be interactions if graphics and the ITE are active
simultaneously in the image planes.

The HP 98556 hardware only supports 31 accelerated simultaneous gop ens across
all processes. If more than 31 gopens are desired, those that need not be
accelerated should use the HP 98550 Device Driver.

Polygons of up to 255 vertices are supported. If a polygon has more than 255
vertices, only the first 255 vertices are displayed.

HP98556-23

Contents

The HP 98700 Device Driver
Device Description . .
Setting Up the Device. . .

Switch Settings
Special Device Files (mknod)

For the Series 300
Linking the Driver .

Initialization
Parameters for gopen
Syntax Examples ..

For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green and Blue

HP98700-1
HP98700-3
HP98700-3
HP98700-4
HP98700-4
HP98700-5
HP98700-5
HP98700-5
HP98700-6
HP98700-6
HP98700-6
HP98700-6
HP98700-6
HP98700-7
HP98700-7
HP98700-7
HP98700-7
HP98700-7
HP98700-7
HP98700-8
HP98700-8
HP98700-9

Contents-1

Starbase Functionality
Commands Not Supported
Conditionally Supported

Fast Alpha and Font Manager Functionality
Parameters for gescape
Performance Tips
Cautions

Contents-2

HP98700-10
HP98700-10
HP98700-10
HP98700-11
HP98700-11
HP98700-12
HP98700-12

HP98700
The HP 98700 Device Driver

Device Description
Two device drivers are provided to access the HP 98700 display:

• HP 98700-used to access the graphics display without using the optional
graphics accelerator .

• HP 98710-used to access the graphics display using only the optional
graphics accelerator.

This section covers the HP 98700 Device Driver; see the "HP 98710 Device Driver"
section for information on the HP 98700 with the optional graphics accelerator.

The HP 98700H Graphics Display Station includes a high-resolution 19-inch color
display, a display controller, an optional keyboard, and an optional graphics
accelerator (see "HP 98710 Device Driver" section). An interface is provided for
this device which plugs into an I/O slot on the Series 300 SPUs.

The display has a resolution of 1024x768 pixels. The color display system comes
standard with four planes of frame buffer to provide 16 simultaneous colors. An
optional four additional planes of frame buffer may be installed providing 256
simultaneous colors. A color map provides 8 bits per color (for red, green and
blue), providing a color palette of over 16 million colors.

HP98700-1

The display system is a bit-mapped device with special hardware for:

• write-enabling planes

• displaying planes

• writing pixels to the frame buffer with a given replacement rule (see
drawing_mode)

• blinking planes

• moving a block of pixels from one place in the frame buffer to another on
4-pixel boundaries

The display is organized as an array of bytes, with each byte representing a pixel
on the display. With four planes installed, the four Least Significant Bits (LSBs)
of each byte determine the color, providing color values from 0-15. When eight
planes are installed, color values range from 0-255. These values are used to
address the color map. The color map is basically a RAM table that has 16 or
256 addressable locations and is 24 bits wide (8 bits each for red, green and blue).
Thus, the pixel value in the frame buffer addresses the color map, generating the
color programmed at that location.

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed in
the appendix. Frame buffer locations are then addressed relative to the returned
address. The first byte of the frame buffer (byte 0) represents the upper-left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the first (left-most) pixel on
the second line from the top. The last (lower-right corner) pixel on the screen is
byte number 786,431 (767x 1024+ 1023).

The actual frame buffer is 1024x 1024 bytes. The last 256 lines of the frame buffer
are not displayed and are used for temporary storage of graphical items. This
off-screen portion of the frame buffer may be accessed via the gescape function
R_FULL_FRAME_BUFFER, also documented in the appendix. Care should be taken
when using this gescape since other processes (for example, Starbase and the
window system) access the frame buffer off-screen memory. Starbase uses the
first and last line of off-screen memory.

HP98700-2

After reading this section, refer to the section "Windows/9000 Device Driver" to
find out how this device driver can be used with Windows/9000.

Setting Up the Device

Switch Settings

On the Series 300, the HP 98700 may be configured as an external display. This
is done by setting switch two (SW-2) on the HP 98287 A interface card. SW-2 is
the eight-switch group. Place the interface card on an anti-static surface with the
external connector and dust cover plate away from you and the bus connection
pads toward you. This orientation is the same as the example shown below. If the
third switch from the left is set to 1 (set toward you), then the next five switches
give the binary value of the HP 98700's select code. If the third switch is set to
0, the HP 98700 is an internal device (the default condition). For example, the
following figure shows the switch settings necessary for the HP 98700 to be used
as an external device, at select code 25.

Figure HP98700-1. HP 98287 A Switch
Setting

HP98700-3

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(lM) information
in the HP- UX Reference for further details. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is crt.

The following example will create a special device file for this device. Remember
that you must be superuser or root to use the mknod command.

For the Series 300

When the device is at an internal address (see "Switch Settings"), the mknod
parameters are: Character device with a major number of 12 and a minor number
of o.

mknod /dev/crt c 12 OxOOOOOO

When the device is at an external address (see "Switch Settings"), the mknod
parameters are: Character device with a major number of 12 and a minor number
of Ox(sc)0200 where (sc) is the two-digit external select code. Note that the
leading Ox causes the number to be interpreted hexadecimally.

mknod /dev/crt c 12 Ox(sc)0200

HP98700-4

Linking the Driver

The HP 98700 Device Driver is located in the /usr /li b directory with the file
name Ii bdd98700 . a. This device driver may be linked to a program using the
absolute path' name /usr/lib/libdd98700. a or an appropriate relative path
name, or by using the -1 option -ldd98700. For example, to compile and link a
program for use with this driver, use:

cc example.c -ldd98700 -lsb1 -lsb2 -0 example
fc example.f -ldd98700 -lsb1 -lsb2 -0 example
pc example.p -ldd98700 -lsb1 -lsb2 -0 example

depending upon the language being used.

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path

Kind

Driver

Mode

This is the name of the special device file created by the mknod
command as specified in the last section, e.g., /dev/crt.

This indicates the I/O characteristics of the device. This
parameter must be OUTDEV for this driver.

This is the character representation of the driver type. This
is hp98700 modified to meet the syntax of the programming
language used, namely:

Ihp98700"

'hp98700'//char(O)
'hp98700'

for C
for FORTRAN77
for Pascal

This is the mode control word, which consists of several flag
bits which are or ed together. Listed below are those flag
bits which have no affect for this driver and those which have
device-dependent actions. Those flags not discussed below
operate as defined by the gopen procedure.

HP98700-5

SPOOLED

o

INIT

Cannot spool raster devices.

Open the device, but do nothing else.
The software color map is initialized on
monochrome monitors.

Open and initialize the device as follows:
1. Frame buffer is cleared to Os.
2. The color map is reset to its default

values.
3. The display is enabled for reading

and writing.

Including SPOOLED in the mode parameter has no affect on
this driver. Including 0 or INIT causes a device-dependent
action.

Syntax Examples

To open and initialize an HP 98700 device for output:

For C Programs:

fildes = gopen(1I /dev/crt", DUTDEV, "hp98700", INIT) ;

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O), DUTDEV,'hp98700'//char(O),INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',DUTDEV,'hp98700',INIT);

Special Device Characteristics

For Device Coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1023,767).

HP98700-6

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either four or eight. The device
driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8 by 8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logicalOR).

Color Planes Defaults

All planes are display-enabled; all planes are write-enabled.

Semaphore Default

Semaphore operations are enabled.

HP98700-7

Line Type Defaults

The default line types are created with the bit patterns in the following table.
The Starbase default line type is SOLID, line type O.

Table HP98700-1.

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays.

If the fourth gop en parameter is INIT, the current color map is initialized to show
the following default values.

HP98700-8

Table HP98700-2. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the 255 colors.

Red, Green and Blue

Each file descriptor opened as an output device has a software color table
associated with it. If multiple file descriptors are open to the same device, the
software color table and the device's color map may not always be identical. The
color table does not track the color map if the hardware color map is changed by
another file descriptor path. For Starbase procedures that have parameters for
red, green and blue, it is the color table that is searched for the closest color.

It is usually more efficient to select a color with an index rather than specifying
a color with red, blue and green values due to the time it takes for the driver to
figure out which pen in the color table most closely matches the specified color.

Selecting a color with the non-index version procedure will allow dithering for
filled areas which is desirable in some cases.

HP98700-9

Starbase Functionality

Commands Not Supported

The following commands are not supported and will be ignored:

bank_switch
backface_control
bf_control

intline_width

bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue

interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
line_endpoint
pattern_define
shade_range
surface_model
surface_coefficients
viewpoint

depth_cue_color
depth_cue_range
hidden_surface

Conditionally Supported

zbuffer_switch

The following commands are supported under the listed conditions:

interior_style

text_precision

shade_mode

vertex_format

block_read,
block_write

HP98700-10

Only the INT_SOLID, INT_HATCH, and INT_HOLLOW
styles are supported.

Only STROKE_TEXT precision is supported.

The color map mode may be selected but shading
can not be turned on.

The use parameter must be zero; any extra coordi­
nates supplied will be ignored.

The raw parameter for the block_read and
block_wri te commands is normally ignored by this
device driver. To use the raw mode, you must call
the gescape function R_BIT_MODE which is discussed
in the appendix of this manual.

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

Parameters for gescape
The following gescape functions are common to many of the HP displays
supported by Starbase. Detailed information about these functions can be found
in Appendix A.

• SWITCH_SEMAPHORE-Semaphore control.

• READ_COLOR_MAP-Read color map.

• BLINK_DISPLAY-Blink display (blink rate is 2.4 Hz for this device).

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_LOCK_DEVICE-Lock device.

• R_UNLOCK_DEVICE-Unlock device.

• R_BIT_MODE-Bit mode.

• R_BIT_MASK-Bit mask.

• R_DEF _FILL_PAT-Define fill pattern.

HP98700-11

Performance Tips

The procedure block_move is faster when the block has a width and height that
are a multiple of four, located on an origin that is a multiple of four from the upper
left corner of the display. This performance increase is seen since the hardware
block mover can be used on 4 X 4 boundaries, otherwise software routines must
be used.

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using gescapes) should be done with care, since other processes
access this region. The guidelines for using this area are:

• If you're using Starbase without Windows/gOO~, all off-screen
frame buffer is available except the first and last five lines.

• If you're using Starbase with Windows/gOO~, refer to the section
"HP Windows Device Driver" for the window driver's utilization of
the off-screen frame buffer. Again, Starbase still uses the bottom
five lines of the frame buffer.

2. SWITCH_SEMAPHORE should be used with caution since it bypasses pro­
tection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while
process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when done processing output.
Great caution should be used with this gescape.

3. Make sure when using R_FRAME_BUFFER that R_LOCK_DEVICE and
R_UNLOCK_DEVICE bracket direct frame buffer accesses. Also make sure

HP98700-12

\
';

there are no intervening Starbase attributes or primitive calls. Failure to
follow this protocol can result in bus errors.

HP98700-13

Contents

The HP 98710 Device Driver
Device Description . .
Setting Up the Device. . .

Switch Settings
Special Device Files (mknod)

For the Series 300
Linking the Driver .

Initialization
Parameters for gopen
Syntax Examples ..

For C Programs .
For FO RTRAN77 Programs
For Pascal Programs . . .

Special Device Characteristics
Device Defaults

N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default .
Line Type Defaults .
Line Repeat Length
Default Color Map .
Red, Green and Blue

Starbase Functionality
Commands Not Supported (no-ops)
Conditionally Supported

Vertices Per Polygon . .
Matrix Stack Limitations

HP98710-1
HP98710-3
HP98710-3
HP98710-4
HP98710-4
HP98710-5
HP98710-5
HP98710-5
HP98710-6
HP98710-6
HP98710-6
HP98710-6
HP98710-6
HP98710-7
HP98710-7
HP98710-7
HP98710-7
HP98710-7
HP98710-7
HP98710-8
HP98710-8
HP98710-8
HP98710-9
HP98710-10
HP98710-10
HP98710-10
HP98710-10
HP98710-11

Contents-1

Block_read, Block_write.
Fast Alpha and Font Manager Functionality
Parameters for gescape
Performance Tips
Example Program - Using 98710 with Windows
Cautions

Contents-2

HP98710-11
HP98710-11
HP98710-12
HP98710-13
HP98710-13
HP98710-22

HP98710
The HP 98710 Device Driver

Device Description
Two device drivers are provided to access the HP 98700 Display:

• HP 98700-used to access the graphics display without using the optional
graphics accelerator .

• HP 98710-used to access the graphics display using only the optional
graphics accelerator.

This section covers the HP 98710 Device Driver; see the "HP 98700 Device Driver"
section for information on using those devices.

The HP 98700H Graphics Display Station includes a high-resolution 19-inch color
display, a display controller, an optional keyboard, and an optional graphics
accelerator the HP 98710. The accelerator plugs into the bottom of the HP 98700
and provides additional performance. This driver provides an interface to the
HP 98700H Graphics Display Station utilizing the optional graphics accelerator.
For details on using the HP 98700H Graphics Display Station without the graphics
accelerator, refer to the "HP 98700 Device Driver" section.

The interface for this device plugs into an I/O slot of supported SPUs. See table
1-8 in the introduction to this manual for the SPU s which support this device.

The display has a resolution of 1024x768 pixels. The color display system comes
standard with four planes of frame buffer to provide 16 simultaneous colors. An
optional four additional planes of frame buffer may be installed providing 256
simultaneous colors. A color map provides 8 bits per color (for red, green and
blue), providing a color palette of over 16 million colors.

HP98710-1

The display system is a bit-mapped device with special hardware and microcode
for:

• write enabling planes

• displaying planes

• writing pixels to the frame buffer with a given replacement rule (see
drawing_mode in Starbase Reference manual)

• blinking planes

• moving a block of pixels from one place in the frame buffer to another

• scan conversion (vector to raster) and eli pping

• two-dimensional and three-dimensional transformations

• polygon clipping and filling

The display is organized as an array of bytes, with each byte representing a pixel
on the display. With four planes installed, the 4 Least Significant Bits (LSBs)
of each byte determine the color, providing color values from 0-15. When eight
planes are installed, color values range from 0-255. These values are used to
address the color map. The color map is basically a RAM table that has 16 or
256 addressable locations and is 24 bits wide (8 bits each for red, green and blue).
Thus, the pixel value in the frame buffer addresses the color map, generating the
color programmed at that location.

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER which returns the virtual
memory address of the beginning of the frame buffer (this gescape is discussed in
the appendix). Frame buffer locations are then addressed relative to the returned
address. The first byte of the frame buffer (byte 0) represents the upper left
corner pixel of the screen. Byte 1 is immediately to its right. Byte 1023 is the
last (right-most) pixel on the top line. Byte 1024 is the first (left-most) pixel on
the second line from the top. The last (lower right corner) pixel on the screen is
byte number 786,431 (767x 1024+ 1023).

The actual frame buffer is 1024 bytes by 1024 bytes. The last 256 lines of the
frame buffer are not displayed and are used for temporary storage of graphical
items. This off-screen portion of the frame buffer may be accessed via the gescape
function R_FULL_FRAME_BUFFER also documented in the appendix. Take care

HP98710-2

when using this gescape since other processes and Starbase access the frame
buffer off-screen memory. For example, Starbase uses the first line of off-screen
memory and a 64x128 area with an upper left corner at (960,896).

Note

Note

The optional graphics accelerator is not used by
HP Windows/9000 or the X Window systems. In addition,
output from the HP 98710 driver may not be directed to a
window in the HP Window /9000 or the X Window systems.
However, the HP 98710 driver may open the raw display device
while the Hewlett-Packard window systems are running. This
allows the graphics accelerator to be used to write to the screen
(while the Hewlett-Packard windows are running). An example
demonstrating the HP 98710 driver used in this way is given near
the end of this section.

The HP 98710 driver does not support multiple gopens of the
same physical device.

Setting Up the Device

Switch Settings

On the Series 300 the HP 98700 and HP 98710 may be configured as an external
display. This is done by setting switch two (SW-2) on the HP 98287 A interface
card. SW-2 is the eight-switch group. Place the interface card on an anti-static
surface with the external connector and dust cover plate away from you and
the bus connection pads toward you. This orientation is the same as the example
shown below. If the third switch from the left is set to 1 (set toward you), the next
five switches give the binary value of the HP 98700 and HP 98710's select code. If
the third switch is set to 0, the HP 98700 and HP 98710 is an internal device (the
default condition). For example, the following figure shows the switch settings
necessary for the HP 98700 and HP 98710 to be used as an external device, at
select code 25.

HP9871 0-3

Figure HP98710-1. Switch Settings

Special Device Files (mknod)

The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(lM) information
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gop en procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser or root to use the mknod command.

For the Series 300

When the device is at an internal address, see "Switch Settings", the mknod
parameters are the character device with a major number of 12 and a minor
number of 0 as in the following.

mknod /dev/crt c 12 OxOOOOOO

HP9871 0-4

When the device is at an external address, see "Switch Settings", the mknod
parameters are the character device with a major number of 12 and a minor
number of Ox(sc)0200 where (sc) is the two-digit external select code. Note, the
leading Ox causes the number to be interpreted hexadecimally.

mknod Idev/crt c 12 Ox(sc)0200

Linking the Driver

The HP 98710 Device Driver is located in the lusr IIi b directory with the file
name libdd98710. a. This device driver may be linked to a program using the
absolute path name lusr/lib/libdd98710. a, an appropriate relative path name,
or by using the -1 option -ldd98710. For example: to compile and link a program
for use with this driver, use:

cc example.c -ldd987!O -lsb! -lsb2 -0 example
fc example.f -ldd987!O -lsb! -lsb2 -0 example
pc example.p -ldd987!O -lsb! -lsb2 -0 example

depending upon the language being used.

Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device file created by the mknod command
as specified in the last section, e.g., / dey I crt.

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver The character representation of the driver type. This is hp98710
modified to meet the syntax of the programming language used,
namely:

Ihp987!O"

'hp987!O'//char(O)

for c.
for FORTRAN77.

HP9871 0-5

Mode

'hp98710' for Pascal.

The mode control word consists of several flag bits or ed together.
Listed below are those flag bits which have device-dependent actions.
Those flags not discussed below operate as defined by the gopen
procedure.

• SPOOLED--cannot spool raster devices.

• O-open the device, but do nothing else. The software color
map is initialized on monochrome monitors.

• INIT -open and initialize the device as follows:
1. Frame buffer is cleared to Os.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.

Syntax Examples

To open and initialize an HP 98710 device for output:

For C Programs

fildes = gopen("/dev/crt" ,OUTDEV, "hp98710" ,INIT);

For FORTRAN77 Programs

fildes = gopen('/dev/crt'//char(O) ,OUTDEV, 'hp98710'//char(O),INIT)

For Pascal Programs

fildes = gopen('/dev/crt' ,OUTDEV,'hp98710' ,INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1023,767).

When the driver is opened, the microcode for the graphics accelerator is down
loaded from the files located in /usr/lib/starbase/hp98710. Only one process
may access (have opened with the gopen function) the HP 98710 device at a time.

HP9871 0-6

Polygons of up to 255 vertices are supported. If a polygon has more than 255
vertices, only the first 255 vertices will be displayed.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 4 or 8. The device driver
then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8 x 8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

Color Planes Defaults

All planes are display-enabled. All planes are write-enabled.

Semaphore Default

Semaphore operations are enabled.

HP9871 0-7

Line Type Defaults

The default line types are created with the bit patterns shown in the following
table. The Starbase default line type is SOLID, line type o.

Table HP98710-1.

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4t 1111111110110110
5 1111111111100000
6 1111111111110110
7 1111111110110110

t Due to hardware differences, this line type is not the same for the HP 98700
Device Driver. Line type 4 is identical to line type 7 for the HP 98710 Device
Driver.

Line Repeat Length

The maximum repeat length for lines is 1/3 the default VDC extent.

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values in the following table.

HP9871 0-8

Table HP98710-2. Default Color Table

Index Color red green blue

0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the 255 colors.

Red, Green and Blue

Each file descriptor opened as an output device has a software color table
associated with it. If multiple file descriptors are open to the same device, the
software color table and the hardware color map may not always be identical.
The color table does not track the color map if the device's color map is changed
by another file descriptor path. For Starbase procedures that have parameters
for red, green and blue, it is the color table that is searched for the closest color.

It is usually more efficient to select a color with an index rather than specifying
a color with red, blue and green values due to the time it takes for the driver to
figure out which pen in the color table most closely matches the specified color.

Selecting a color with the non-index version procedure will allow dithering for
filled areas which is desirable in some cases.

HP98710-9

Starbase Functionality

Commands Not Supported (no-ops)

The following commands are not supported. They will not generate an error if
they are called.

bank_switch
backface_control
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color
depth_cue_range
hidden_surface

Conditionally Supported

interior_style (INT_OUTLINE)
interior_style (INT_OUTLINE)
intline_width
light_ambient
light_attenuation
light_model
light_source
light_switch
line_endpoint
pattern_define
shade_range
surface_model
surface_coefficients
viewpoint
zbuffer_switch

The following commands are supported under the listed conditions:

interior_style

text_precision

shade_mode

vertex_format

Vertices Per Polygon

Only the INT_SOLID, INT_HATCH, and INT_HOLLOW
styles are supported.

Only STROKE_TEXT precision is supported.

The color map mode may be selected, but shading
can not be turned on.

The use parameter must be zero; any extra coordi­
nates supplied will be ignored.

The number of supported visible polygon vertices per polygon is 256. The
hardware will truncate all vertices after the 256 limit.

HP9871 0-10

(
\,

Matrix Stack Limitations

The number of supported matrices in the matrix stack is 20. If the device driver
is opened in MODEL_XFORM mode, the number of supported matrices in the matrix
stack is only 18. The hardware will ignore matrices pushed on the stack after the
stack is full.

Block_read, Block_write

The raw parameter for the block_read and block_write commands is normally
ignored by this device driver. To use the raw mode, you must use the gescape
function R_BIT _MODE discussed in the appendix.

Fast Alpha and Font Manager Functionality
This device driver does not support raster text calls from the fast alpha and font
manager library.

HP98710-11

Parameters for gescape
The following gescape functions are common to many of the Hewlett-Packard
displays supported by Star base. Detailed information about these functions can
be found in the appendix.

• SWITCH_SEMAPHORE-semaphore control

• READ _ COLOR_MAP-read color map

• BLINK_DISPLAY-blink display (blink rate is 2.4 Hz for this device.)

• R_GET_FRAME_BUFFER-read frame buffer address

• R_FULL_FRAME_BUFFER-full frame buffer

• R_LOCK_DEVICE-Iocks device

• R_UNLOCK_DEVICE-unlocks device

• R_BIT _MODE-bit mode

• R_BIT_MASK-bit mask

• R_DEF _FILL_PAT-define fill pattern

HP98710-12

Performance Tips
Much higher performance can be obtained by using large polylines with this
device rather than using move/draw procedures. Also, turning off semaphores
yields a significant improvement in performance.

It should be noted that very little time is spent in Starbase when a polyline or
polygon procedure is called for this device. Maximum performance will only be
reached if the application program also takes very little time in preparing the
data to send to Starbase.

The procedure block_move is faster when the block has a width and height with
a multiple of four and are located on an origin with a multiple of four from
the upper left corner of the display. This performance increase is seen since
the hardware block mover can be used on 4x4 boundaries, otherwise software
routines must be used.

Example Program - Using 98710 with Windows

wgade.c

1*
This is a Starbase graphics program that accesses
HP Windows using the HP 98710 graphics accelerator. the
key points are that the window must always be unobscured.
the program is actually accessing the raw device.
but is keeping it operations within a graphic window.
*1
#define TRUE 1
#define FALSE 0

#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <starbase.c.h>
extern int errno;

HP98710-13

static int max_pen=255;
static int winx,winy;
float rawxm, rawym, res_x, res_y;

Name: Lock device
Purpose: This procedure is used to lock the window, and make sure

it is unobscured. It is called before each Starbase call.
The window needs to be unobscured because the 98710 driver
does not understand about the obscured portion. Once it is
locked, this is the only process that can access the
device.

Algorithm:
Get the window's current position and sizes
Lock the window
While the window is obscured Do

Unlock the window (so wm can change it)
If the window is an icon, 'un'icon it
If the window is not on top, move it on top
(The next 3 operations can be done 2 different ways,
either make the window completely visible, or set the
clip rectangle to the current window boundaries, I
chose the latter)

If the viewport is not the upper left corner, move it there
If the window is partially off screen, move it back on
If the window is not full size, make it full size
Get the current position, and sizes
Lock the window

Done While
Turn off semaphores
Set P1 & P2 to the new window position

HP98710-14

(

Options: Instead of using wpan, wmove and wsize to make the
window full size, you could use w, h, dx, dy and the
dc_to_vdc Starbase call (using rawdev) to set the
clipping rectangle. This will cause the window to
work much like a non-retained window (nothing will
be written into obscured areas). When using this
option, do not use a R_GET_WINDOW_INFO since the
window (when at a smaller size) will be obscured by
its self.

Bugs: One problem with this procedure is that you cannot tell
if a 'softkey' bar is causing the window to be obscured.
It would be possible to determine the limit by trial and
error (not in a program), at using that as the maximum y
setting (ym).

*1
LOCK_device(rawdev,sbwdev)
int rawdev,sbwdev;
{

int x,y,w,h,dx,dy,rw,rh;
int arg1[2] ,arg2[2];
float p1_x,p1_y,p1_z,p2_x,p2_y,p2_z;

wgetcoords(sbwdev,&x,&y,&w,&h,&dx,&dy,&rw,&rh);
arg1[O]=1; 1* must be 1 to pick up the sprite if necessary *1
gescape(sbwdev,R_LOCK_DEVICE,arg1,arg2);
gescape(sbwdev,R_GET_WINDOW_INFO,arg1,arg2);

HP98710-15

}

while (arg2[1]==O) {

}

arg2[1]==1;
gescape(sbwdev.R_UNLOCK_DEVICE.argl.arg2);

if (wiconic(sbwdev.-l»
wiconic(sbwdev.O) ;

if (Iwtop(sbwdev.-l»
wtop(sbwdev.l);

if (dxl=O I dyl=O)
wpan(sbwdev.O.O);

if (x+rw > rawxm)
if (y+rh>rawym)

wmove(sbwdev. (int)rawxm-rw. (int)rawym-rh) ;
else

wmove(sbwdev.(int)rawxm-rw.y);

if (w<rw I h<rh)
wsize(sbwdev.rw.rh);

wgetcoords(sbwdev.&x.&y.&w.&h.&dx.&dy.&rw.&rh) ;
argl[O]=l;
gescape(sbwdev.R_LOCK_DEVICE.argl.arg2);
gescape(sbwdev.R_GET_WINDOW_INFO.argl.arg2);

argl[O]=O;
gescape(rawdev.SWITCH_SEMAPHORE.argl.arg2);
gescape(sbwdev.SWITCH_SEMAPHORE.argl.arg2);

if (xl=winx I yl=winy) {

}

winx=x;
winy=y;
pl_x=x*res_x;
pl_y=(rawym-(y+rh»*res_y;
pl_z=O.O;
p2_x=(x+rw)*res_x;
p2_y= (rawym-y) *res_y ;
p2_z=1.0;
set_pl_p2(rawdev.METRIC.pl_x.pl_y.pl_z.p2_x.p2_y.p2_z);

HP98710-16

1*
Name: Unlock device
Purpose: Unlock the window display.

Algorithm:
Flush the Starbase buffer
Turn on semaphores
Unlock the device

*1
UNLOCK_device(rawdev,sbwdev)
int rawdev,sbwdev;
{

}

1*

int x,y,w,h,dx,dy,rw,rh;
int arg1[2] ,arg2[2];

make_picture_current(rawdev);
arg1[O]=1;
gescape(rawdev,SWITCH_SEMAPHORE,arg1,arg2);
gescape(sbwdev,SWITCH_SEMAPHORE,arg1,arg2);
gescape(sbwdev,R_UNLOCK_DEVICE,arg1,arg2);

Name: Main
Purpose: Main program to do graphics to the screen.

Algorithm:
Open the window manager
Create a window
Open the graphics window
Open the raw device
Move the window to the top
Set clear control to vdc limits (can't clear to

device limits because we will clear the full
window system)

Get the raw device size
Get the window device size (for graphics)
Lock the device (must be done before Starbase calls)
Set various options
Clear the device
Unlock the device (so other processes can do things)
Do some polygons (using LOCK_device and UNLOCK_device)
Do some vectors (using LOCK_device and UNLOCK_device)
Do some text and rectangles (using LOCK_device and UNLOCK_device)
close the window and raw devices

HP98710-17

Required: The only required operations are to open both the window and
the raw device. Device limits should be based on the window.

with the raw limits used by set_p1_p2 in the LOCK_device
procedure. Clear control should be either CLEAR_VDC_EXTENT
or CLEAR_CLIP_RECTANGLE never CLEAR_DISPLAY_SURFACE. You
must do a winit on the window. so 'w' calls work. You should
do LOCK_device and UNLOCK_device around each Starbase call
that accesses the device. Some calls don't access the device.
such as character_height. or clear_control. but when in doubt
it is better to lock the device. When using device coordinates
remember to offset the values by the current window location.

main(argc.argv)
int argc; char *argv[];
{

HP98710-18

int fildes.fildes2.wmfd;
int curr_color.error.mode=O;
int n.loops=2;

float xm.ym;
float x.y.inc=40.0;
float ri.imax;
float pts[20];
float *ptr;
int has_edges;
float pl[2] [3] .res[3] .p1[3].p2[3];

char wmname[100] ;
wmpathmake(IWMDIR". "wm". wmname);
wmfd = open(wmname. O_RDWR);
if (wmfd == -1)

perror("Can't open wm"). exit(1);
if (winit(wmfd»

perror("Can't winit wm"). exit(1);

winx=(-l) ;winy=(-l);
error = wcreate_graphics(wmfd,"/dev/screen/gwindow",150,100,\

500,400,500,400,1,1) ;
fildes2 = gopen(II /dev/screen/gwindow", OUTDEV, "hp98700" ,mode) ;
fildes = gopen("/dev/gcrt ll ,OUTDEV,"hp98710",mode);

/*fildes2 = gopen("/dev/screen/gwindow" ,OUTDEV, "hp300h" ,mode) ;
fildes = gopen("/dev/crt" ,OUTDEV, "hp300h" ,mode); */
if (fildes2 == -1)

fprintf(stderr, II could not open window device\n");
if (fildes == -1)

fprintf(stderr, II could not open raw device\n");
if (winit(fildes2»

perror("Can't winit fildes2"), exit(l);
if (wtop (fildes2, 1) == -1)

perror("Could not wtop fildes2"), exit (1) ;

clear_control(fildes,CLEAR_VDC_EXTENT);
mapping_mode(fildes,DISTORT);

inquire_sizes(fildes,pl,res,pl,p2,&max_pen);
if (pI [1] [1] ==0.0) pI [1] [1] =pl [0] [1] ;

rawxm=pl[l] [0]; rawym=pl[l] [1];
inquire_sizes(fildes2,pl,res ,pi ,p2,&max_pen) ;

if (pl[l] [1]==0.0) pl[l] [1] =pl [0] [1];
xm=pl [1] [0] ; ym=pl [1] [1] ;

res_x=res[O] ;
res_y=res [1] ;
LOCK_device(fildes,fildes2);

vdc_extent(fildes,O.O,O.O,O.O,xm,ym,O.O);
clip_rectangle(fildes,O.O,xm,O.O,ym) ;
imax = (xm > ym ? ym / 2 : xm / 2);

background_color_index(fildes,2 % max_pen);
clear_view_surface(fildes);

/* TRY POLYGONS */
interior_style(fildes,INT_SOLID,TRUE);
UNLOCK_device(fildes,fildes2);

for (n=O; n < loops; n++) {
LOCK_device(fildes,fildes2);
make_picture_current(fildes);
clear_view_surface(fildes);
curr_color = 0;

HP98710-19

HP9871 0-20

perimeter_color_index(fildes,l);
UNLOCK_device(fildes,fildes2);
has_edges = FALSE;
for (x=5; x<=(xm+inc); x=(x+2*inc» {

if (x>xm/2) has_edges = TRUE;

}

for (y=5; y<=(ym+inc); y=(y+2*inc» {
ptr = 8i;pts [0] ;

}

*ptr++ = x; *ptr++ = y+inc;
if (has_edges) *ptr++ = TRUE;
*ptr++ = x+inc; *ptr++ = y;
if (has_edges) *ptr++ = FALSE;
*ptr++ = x; *ptr++ = y-inc;
if (has_edges) *ptr++ = TRUE;
*ptr++ = x-inc; *ptr++ = y;
if (has_edges) *ptr++ = FALSE;
*ptr++ = x; *ptr++ = y+inc;
if (has_edges) *ptr++ = TRUE;

LOCK_device(fildes,fildes2);
fill_color_index(fildes,(curr_color++) % max_pen);
polygon2d(fildes,pts,4,has_edges);

UNLOCK_device(fildes,fildes2) ;

sleep(5);
curr_color = 0;
has_edges = FALSE;
if (n) {

}

LOCK_device(fildes,fildes2);
clear_view_surface(fildes) ;
UNLOCK_device(fildes,fildes2);

for (x=5; x<=(xm+inc); x=(x+2*inc» {
if (x>xm/2) has_edges = TRUE;
fot (y=5; y<=(ym+inc); y=(y+2*inc» {

ptr = 8i;pts[O] ;
*ptr++ = x; *ptr++ = y+inc;
if (has_edges) *ptr++ = FALSE;
*ptr++ = x+inc; *ptr++ = y;
if (has_edges) *ptr++ = TRUE;
*ptr++ = x; *ptr++ = y-inc;
if (has_edges) *ptr++ = FALSE;
*ptr++ = x-inc; *ptr++ = y;

if (has_edges) *ptr++ = TRUE;
*ptr++ = x; *ptr++ = y+inc;
if (has_edges) *ptr++ = FALSE;
LOCK_device(fildes.fildes2) ;
if (!has_edges)

line_color_index(fildes.(curr_color++) %

else
background_color_index(fildes.2 % max_pen);

polyline2d(fildes.pts.5.has_edges);
UNLOCK_device(fildes.fildes2);

}

}

sleep(5);
} I*for n*/

background_color_index(fildes.6 % max_pen);
for (n = 0; n < loops; n++) {

LOCK_device(fildes.fildes2);
clear_view_surface(fildes);
UNLOCK_device(fildes.fildes2);
for (ri = 0; ri <= imax; ri++) {

}

LOCK_device(fildes.fildes2);
line_color_index(fildes.(int)ri % max_pen);
move2d(fildes.ri. ri);
draw2d(fildes.xm-ri. ri);
draw2d(fildes.xm-ri. ym-ri);
draw2d(fildes.ri. ym-ri);
draw2d(fildes.ri. ri);
UNLOCK_device(fildes.fildes2);

} /*for n*1
LOCK_device(fildes.fildes2);
clear_view_surface(fildes) ;
character_height(fildes.20.0);
character_width(fildes.15.0);
UNLOCK_device(fildes.fildes2) ;
for (y=O; y<ym-inc; y=y+inc) {

LOCK_device(fildes.fildes2);
rectangle(fildes.y-5.0.y-5.0. y+(4.0*inc) .y+(2.0*inc));
text_color_index(fildes.(int)(y+l) % max_pen);
text2d(fildes.y.y."abcdefghijkxyzABC".0.0) ;
UNLOCK_device(fildes.fildes2);

}

sleep(6);
gclose(fildes);

HP98710-21

}

Cautions

gclose(fildes2);
exit (0) ;

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using the gescape function) should be done with care, since other
processes access this region.

2. If the HP 98710 is configured in external I/O space (SW-2 switch at
pin 3 set to 0 on HP 98287 interface) the graphics accelerator should be
initialized (after power-up) before a program using the HP98700 driver
or HP Windows/9000 with the HP 98700 driver is run to that device. The
following method is recommended for HP 98710 users:

Enter following program:

#include <starbase.h.c>

main(argc.argv)
int argc;
char *argv[];
{

}

int fildes;
if (argc > 1) {

fildes = gopen(argv[1].OUTDEV."hp98710".INIT);
if (fildes == -1) exit(-1);
gclose(fildes);

else printf("ERROR:us-er must specify device file\n");
}

3. Store program as te_ini t . c and execute

cc -0 te_init te_init.c -ldd98710 -lsb1 -lsb2

4. Move te_init to /usr/lib/starbase/hp98710 (Consult system admin­
istrator to do this.)

HP98710·22

5. Edit / etc/rc file and insert following line:

/usr/lib/starbase/hp98710/te_init /dev/crt

6. Be sure to use the correct device file name for the HP 98710. The above
example uses crt as an example device file name. Consult your system
administrator for the name that is applicable to your system.

7. Make sure the R_LOCK_DEVICE and R_UNLOCK_DEVICE gescape functions
bracket direct frame buffer accesses when the R_GET_FRAME_BUFFER
gescape is used. Make sure there are no intervening Starbase attribute
or primitive calls. Failure to follow this protocol can result in bus errors.

HP9871 0-23

Contents

The HP 98720 Device Driver
Device Description
Setting Up the Device On Series 300

Switch Settings
Example Program To Reset HP 98720

Setting Up the Device On Series 800 . .
Special Device Files (mknod) On Series 300
Special Device Files (mknod) On Series 800
Linking the Driver . .
Device Initialization

Parameters for gopen
Syntax Examples ..

For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Offscreen Memory Usage

Device Defaults
N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green, and Blue

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

HP98720-1
HP98720-5
HP98720-5
HP98720-7
HP98720-7
HP98720-8
HP98720-9
HP98720-10
HP98720-11
HP98720-11
HP98720-12
HP98720-12
HP98720-12
HP98720-12
HP98720-12
HP98720-12
HP98720-13
HP98720-13
HP98720-13
HP98720-14
HP98720-14
HP98720-14
HP98720-14
HP98720-15
HP98720-17
HP98720-18
HP98720-18
HP98720-19

Contents-1

block_read, block_write
Fast Alpha and Font Manager Functionality
Parameters for gescape
Performance Tips
Cautions

Contents-2

HP98720-19
HP98720-19
HP98720-20
HP98720-21
HP98720-23

HP98720
The HP 98720 Device Driver

Device Description
The graphics display station includes a high resolution 19 inch color display, an
HP 98720A Display Controller, and an optional graphics accelerator. The display
controller plugs into an I/O slot of the SPUs. (See the "Introduction" section of
this manual for systems supporting this controller.)

Three device drivers are provided to access the HP 98720 display:

• HP 98720-used to access graphics windows with the X Window system
or the graphics display without using the optional graphics accelerator.

• HP 98720w-used to access graphics windows with HP Windows/9000,
or the graphics display without windows. The latter is useful for doing
fast alpha or font manager operations to the graphics display.

• HP 98721-used to access the graphics display using only the optional
graphics accelerator.

This section covers the HP 98720 Device Driver, see the "HP 98720w Device
Driver" or the "HP 98721 Device Driver" sections in this manual for information
on using those device drivers.

The display has a resolution of 1280 by 1024 pixels. The standard color display
system has four planes of frame buffer to provide 16 simultaneous colors. You can
add optional memory in banks of eight planes each. A fully configured system
consists of three banks of frame buffer for full 24 bit per pixel color, one bank for
full Z-buffer capability (with graphics accelerator), and four overlay planes for
non-destructive alpha, cursors, or graphics.

An 8-plane configuration allows 256 colors to be displayed simultaneously from
a palette of 16 million. A 16 plane system is like two 8-plane frame buffers
where only one 8-plane buffer is displayed. This configuration is useful for double
buffering. When three banks of frame buffer are installed, the system may be

HP98720-1

configured to display eight bits red, eight bits green, and eight bits blue per pixel.
Double buffering may also be achieved at a resolution of four bits red, four bits
green, and four bits blue.

The display system is a bit-mapped device with special hardware for:

• Write enable/disable individual planes.

• Video enable/disable individual planes.

• Memory writes with specified replacement rule. (see drawing_mode)

• Video blinking of individual planes.

• Video blinking of individual color map locations.

• Arbitrary sized rectangular memory to memory copies.

The display is organized as an array of bytes, with each byte representing a pixel
on the display. With four planes installed, the four least significant bits of each
byte determine the color, providing color map indices from 0-15. When eight
planes are installed, color map indices range from 0-255. The color map is a
RAM table that has 16 or 256 addressable locations and is 24 bits wide (8 bits (
each for red, green, and blue). Thus, the pixel value in the frame buffer addresses \
the color map, generating the color programmed at that location.

If you add optional banks of frame buffer memory to the minimal system, the four
standard image planes function as overlay planes. These overlay planes have their
own unique color map, separate from the color map used for the newly installed
image planes. This color map consists of sixteen 4-bit entries. These four bits
correspond to transparent, red, green, and blue (in order of Most Significant Bit
(MSB) to Least Significant Bit (LSB). If the transparent bit (the MSB) is set to
zero, the pixel color will be the color of the image planes "behind" the overlay
planes. If the transparent bit is set to one, the pixel color is forced to the color
specified by the red, green, and blue bits in the color map entry. Thus pixels in
the overlay planes can be any combination of the primary colors or transparent.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the HP 98720 is used on the system console, the Internal Terminal
Emulator (ITE) uses three of the overlay planes for alpha information. This way
there is no interaction between ITE text and images in the graphics planes.
Windows/9000 also runs in the overlay planes. Refer to the "HP 98720w Device
Driver" section of this manual for more information. The X Window system

HP98720-2

runs in configurations involving both image and overlay planes. See the Starbase
Programming with Xll manual for more information. To do graphics in the
overlay planes the HP 98720 Device Driver may be opened directly to the overlay
planes as if they were a separate device. Refer to the segment "Setting up the
Device" in this section for more information.

One overlay plane is reserved for graphic cursors. When Starbase cursors are in
the overlay plane performance is enhanced, since it it not necessary to "pick up"
the cursor each time the frame buffer is updated. You can think of the overlay
plane used for cursors as a separate cursor plane. Any data in the cursor plane
will be displayed over data in the graphics planes. Data in the other three overlay
planes will be displayed over data in the graphics planes and the cursor plane.
For example, suppose a graphics application is running in the graphics planes
while the window manager is running. If the application has a Starbase cursor
in the overlay cursor plane, the cursor will always be visible inside regions of see­
thru because the cursor has display priority over the graphics. (Refer to the "HP
Windows/9000 See-Thru Color" section in the "HP 98720w Device Driver".) If
the cursor is moved outside the graphics window boundary, it is not visible since
the window desktop environment is drawn to the overlay planes, which have
display priority over the cursor plane.

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed
in the appendix of this manual. Frame buffer locations are then addressed relative
to the returned address. The first byte of the frame buffer (byte 0) represents
the upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame buffer are not displayable. Byte 2048 is the first (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

If more than one bank of optional frame buffer is installed, bank switching must
be used to access the additional memory. A number of Starbase calls may set the
bank register so it is advisable to call bank_switch just prior to making accesses
to the frame buffer pointer to ensure desired results.

HP98720-3

The off-screen portion of the frame buffer may be accessed via the gescape

function R_FULL_FRAME_BUFFER. Use this gescape carefully since other processes,
Starbase, and Windows/9000 access the frame buffer off-screen memory.

Series 800 On the Series 800 computers, a write to I/O space must be on the
word boundaries. The frame buffer is mapped as integer (32bits)
per pixel. Therefore, when you write directly to the frame buffer
on the HP 98720 Graphics Display Station, each pixel is written
with an integer access.

HP98720-4

If writing to the HP 98720 image buffer and not in CMAP _FULL

color map mode, only one bank can be written at a time. The
bank to be written must be established by a call to bank_switch.

Then, to write to bank n, place the pixel value to be written into
byte n of the interger, where n can be 0, 1, or 2, and the LSB is
byte O.

All three banks for one pixel can be written simultaneously by
packing all three bank values for the pixel into the integer value
and having the color map mode as CMAP _FULL before writing.

Setting Up the Device On Series 300
The HP 98720 Device Driver can be used if the display is configured in either
internal or external address space. Refer to the Configuration Reference Manual
for a description of internal and external address space.

Note If the HP 98720 is configured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that device.
Since it is the ITE that normally initializes the display, external
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It
may also be necessary to run this program after running an
application which manipulated the overlay color map, such as
windows. An example program, which could be called from
/ etc/rc during power-up, is given at the end of this section.
For more details concerning the effects of RESET_DEVICE, see the
"Device Initialization" segment of this section.

Switch Settings

The Graphics Interface card has a single 6-bit address select switch. One bit,
labeled FB, determines the frame buffer location, while the other five switch bits,
labeled CS, determine the location within the DIO memory map of the HP 98720
control space. Silkscreening on the printed circuit board indicates the meaning
of the bits.

The frame buffer consumes two Mbytes of II a address space, starting at FB_BASE.

The switch bit labeled FB determines the address of FB_BASE as shown below.

Table HP98720-1. HP 98720 Frame Buffer Locations

FB FB_BASE (hex)

0 $200000

1 $800000

Typical systems will map the frame buffer to $200000. However, some systems
which have multiple displays may map the frame buffer address to $800000.

HP98720-5

When the frame buffer address is set to $800000, the HP Series 300 Model 320
SPU memory limit is reduced from 7.50 Mbytes to 5.75 Mbytes. This occurs
since the frame buffer is mapped into the upper two Mbytes of memory address
space.

The control space requires 128 Kbytes starting at CTL_BASE. The five switch bits
labelled CS, determine the address of CTL_BASE. The HP 98720 may be configured
as an external or internal display. Since only 64 Kbytes are normally allotted for
external I/O select codes, two consecutive select codes will be consumed if the
device is configured as an external display. The control space may be located
at any of 32 positions. Sixteen positions are reserved in internal I/O space and
sixteen are in external I/O space (with five reserved). The table below lists the
binary switch setting with the corresponding values of CTL_BASE for external I/O
settings, as well as the select code spaces consumed.

Table HP98720-2. Control ~pace Settings (External I/O)

CS Setting CTL_BASE (hex) Select Codes
01011 $560000
10101 $6AOOOO 10-11
10110 $6COOOO 12-13
10111 $6EOOOO 14-15
11000 $700000 16-17
11001 $720000 18-19
11010 $740000 20-21
11011 $760000 22-23
11100 $780000 24-25
11101 $7AOOOO 26-27
11110 $7COOOO 28-29
11111 $7EOOOO 30-31

If the HP 98720 is configured as the system console, CTL_BASE needs to be placed
at $560000, which is an internal I/O setting. If the device is not used as the
system console, the control space should not be placed in internal I/O space,
since it is likely to overlap the address space of other system hardware. In this
case, an external I/O space setting should be selected with two consecutive select
codes which are unused by the system.

HP98720-6

Example Program To Reset HP 98720

/*
* Starbase program: reset98720.c
* Compile: cc -0 reset98720 reset98720.c -ldd98720 -lsb1 -lsb2
* Destination: /usr/bin
* Execute: add line to the /etc/rc - "/usr/bin/reset98720 /dev/crt.external"

*
* Example program to be put in /etc/rc for resetting an external HP 98720
* device during power-up.
*/
#include <starbase.c.h>

main(argc.argv)
int argc; char *argv[];
{

int fildes;

if ((fildes = gopen(argv[1] .OUTDEV."hp98720".INITIRESET_DEVICE» < 0)
printf("External HP 98720 %s initialization failed.\n".argv[1]);

}

else

}

printf(IIExternal HP 98720 %s initialization succeeded.\n".argv[1]);
gclose(fildes);

Setting Up the Device On Series 800
Up to four HP 98720 devices can be connected to a Series 800 Model 825 or
835 SPU. However, it is recommended that only two HP 98720 devices have the
Internal Terminal Emulator (ITE) or window systems running on them.

Only one HP 98720 device can be connected to a Series 800 Model 840.

HP98720-7

Special Device Files (mknod) On Series 300
The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for further details. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP -UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however the name that is suggested for the
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When the device is at the internal address (refer to the "Switch Settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of o.

mknod / dev / crt c 12 OxOOOOOO

When the device is at an external address (refer to the "Switch Settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of Ox(sc)200 where Bc is the two-digit external
select code. Note that the leading Ox causes the number to be interpreted
hexidecimally.

mknod /dev/crt c 12 Ox(sc)0200

The HP 98720 Device Driver may also be opened to the overlay planes in graphics
mode if they are present. Since one plane is still reserved for cursors, the graphics
device will look like a three plane device in this mode. Since the terminal emulator
and window system operate in the overlay planes also, there will be interactions
with these processes if a graphics driver is opened in this manner while these
processes are present. To open the HP 98720 Device Driver to the overlay planes
instead of the graphics planes, the last byte of the minor number must be 1.

HP98720-8

For example, when the device is at an internal address, the mknod parameters for
the overlay device should create a character special device with a major number
of 12 and a minor number of 1.

mknod / dev / ocrt c 12 Ox00001

When the device is at an external address (refer to the section on "Switch
Settings") the mknod parameters for the overlay device should create a character
special device with a major number of 12 and a minor number of Ox(sc)0201
where (sc) is the two-digit external select code.

mknod /dev/ocrt c 12 Ox(sc)0201

Special Device Files (mknod) On Series 800
The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
the HP- UX Reference for further details. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the.convention is to create them in the /dev directory. Any name may
be used for the special device file, however the names that are suggested for the
devices are crt, crtO, crt1, or crt2.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When creating the device file the mknod parameters should create a character
special device with a major number of 14 and a minor number of the format
below (where (lu) is the two digit hardware logical unit number). Note that the
leading Ox causes the number to be interpreted hexadecimally.

mknod /dev/crtx c 14 OxOO(lu)OO

The HP 98720 Device Driver may also be opened to the overlay planes in graphics
mode if they are present. Since one plane is still reserved for cursors, the graphics

HP98720-9

device will look like a three plane device in this mode. Since the terminal emulator
and window system operate in the overlay planes also, there will be interactions
with these processes if a graphics driver is opened in this manner while these
processes are present. To open the HP 98720 Device Driver to the overlay planes
instead of the graphics planes, the last byte of the minor number must be 1.

For example, the mknod parameters for the overlay device should create a
character special device with a major number of 14 and a minor number of
the format indicated below (where (lu) is the two digit hardware logical unit
number):

mknod /dev/ocrtx c 14 OxOO(lu)01

Linking the Driver

The HP98720 Device Driver is the file 1ibdd98720. a in the /usr/1ib direc­
tory. This device driver may be linked to a program using the absolute path
name /usr/1ib/1ibdd98720. a, an appropriate relative path name, or by using
the -1 option -1dd98720. For example, to compile and link a program for use
with this driver, use:

cc example.c -ldd98720 -lsb! -lsb2 -0 example
fc example.f -ldd98720 -lsb! -lsb2 -0 example
pc example.p -ldd98720 -lsb! -lsb2 -0 example

depending upon the language being used.

HP98720-10

(
\,

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

The name of the special device file created by the mknod command
as specified in the last section (for example, / dev / crt.)

Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver unless a window is being opened, in which
case it may be OUTINDEV.

This is the character representation of the driver type. This must be
hp98720. For example:

Ihp98720"

'hp98720'//char(O)

'hp98720'

for c.
for FOR TRA N7'l.
for Pascal.

The mode control word consisting of several flag bits which are
or ed together. Listed below are those flag bits which have device­
dependent actions. Those flags not discussed below operate as
defined by the gopen procedure. See the Starbase Programming with
Xll manual for a description of the gopen function of an X window.

• SPOOLED-cannot spool raster devices.

• MODEL_XFORM-Shading is not supported for this device.
However, opening in MODEL_XFORM mode will affect how
matrix stack and transformation routines are performed.

• O-open the device, but do nothing else. The software color
map is initialized on monochrome monitors.

• INIT -open and initialize the device as follows:
1. Clear frame buffer to as.
2. Reset the color map to its default values.
3. Enable the display for reading and writing.

HP98720-11

• RESET _DEVI CE-open and reset the device as follows:
1. Clear frame buffer and overlays to as.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. Reset the graphics accelerator.

Note that the RESET_DEVICE flag bit should be used with
caution: it will adversely affect any other processes using the
device. This flag bit is intended to reset a device completely.
This should only be necessary for devices in an unknown state
such as a device powered up in an external I/O space. Most
programs should not use this flag bit.

Syntax Examples

To open and initialize an HP 98720 device for output:

For C Programs:

fildes = gopen("/dev/crt",DUTDEV,"hp98720",INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O) , DUTDEV, 'hp98720'//char(O) ,INIT)

For Pascal Programs:

fildes = gopen('/dev/crt',DUTDEV, 'hp98720' ,INIT);

Special Device Characteristics

For Device Coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279,1023).

Offscreen Memory Usage

Each time the HP 98720 Device Driver is opened it allocates a portion of offscreen
memory. This is used for fill pattern storage, raster echo definitions, and other
functions. The size of the areas used are 64x 192 pixels and 32x4 pixels. If the

HP98720-12

driver has been opened to the overlay planes, the offscreen area used is in the
overlay planes; otherwise the area used is in the graphics planes. Up to ten of
these offscreen areas may be allocated. One is reserved for the HP 98721 Device
Driver and the other nine are for HP 98720 Device Drivers. This means that
no more than one HP 98721 Device Driver and nine HP 98720 Device Drivers
may be opened to a device at the same time. If nine HP 98720 Device Drivers are
opened to the graphics planes, another nine may be opened to the overlay planes.
However, only one HP 98721 Device Driver may be opened to a device at any time
to either graphics or overlay planes. The XII server uses a similar cursor area
and also uses offscreen for client pixmaps. Accessing offscreen memory while the
XII server is running is not recommended.

See the "HP 98720w Device Driver" and "HP 98721 Device Driver" sections for
more information on offscreen memory usage.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 (for the overlay planes) or
4, 8, 16, or 24 (for the image planes). The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16. For devices having 24 or more
planes in CMAP _FULL mode (see shade_mode) dithering is not supported since full
24-bit color is available. If you are double buffering with 12 planes per buffer
then the number of colors allowed in a dither cell is 1, 2, or 4.

HP98720-13

Raster Echo Default

The default raster echo is the 8 x 8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0
0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

By default the raster echo is written to the graphics planes. All other echo types
are written to an overlay plane. The location of raster and non-raster echoes can
be changed using the gescape function R_OVERLAY_ECHO.

Color Planes Defaults

The default configuration is a 4- or 8-plane color mapped system regardless of
the number of frame buffer banks installed.

All planes in the first bank are display enabled. All planes in the first bank are
write enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below:

HP98720-14

Table HP98720-3.

Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays.

If the fourth gopen parameter is IN!T, the current color map is initialized to the
default values shown below.

HP98720-15

Table HP98720-4. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the 255 colors.

When IN IT is used in the shade_mode procedure call the color map initialization
is based on the value of the mode parameter and the number of frame buffer banks
installed.

mode=CMAP_NORMAL Only one bank of the first two can be displayed at a
time. If a third bank is installed it can not be displayed
in this mode.

mode=CMAP _MONOTONIC The color map will be initialized as:

for (i=O; i<256; i++) {

HP98720-16

cmap[i] .red = cmap[i] . green = cmap[i] .blue = i/255.0;
}

Only one bank of the first two can be displayed at a
time. If a third bank is installed it can not be displayed
in this mode.

mode=CMAP_FULL

Red, Green, and Blue

With less than three banks installed the color map will
be initialized as three bits red, three bits green and two
bits blue. The three most significant bits are red and
the two least significant bits are blue. Only one bank of
the first two can be displayed at a time.

With three or more banks installed the color map will
be initialized as the CMAP _MONOTONIC case above but
now the first bank of eight will go through the blue
portion of the color map, the second bank goes through
the green portion, and the third bank goes through the
red portion. In this mode the color map is transparent
and the eight bits from each bank drives the appropriate
video color level. The color map could be subsequently
modified in this mode to perform functions like gamma
correction or double buffering of four bits per color.

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.

For Starbase procedures that have parameters for red, green, and blue, the way
the actual color is chosen depends on the current shade_mode setting.

mode=CMAP_NORMAL The color map is searched for the color that is closest in
RGB space to the one requested. That color map index
is written to the frame buffer for subsequent output
primitives. It is more efficient to select a color with
an index rather than specifying a color with red, blue,
and green values in this mode because it takes extra
time to figure out which index in the color table most
closely matches the specified color.

mode=CMAP _MONOTONIC The red, green, and blue value is converted to an
intensity value using the equation:

O.30*red+O.59*green+O.ll*blue

HP98720-17

This intensity is converted to an index value by map­
ping intensity 0.0 to the minimum index set by
shade_range, and intensity 1. 0 to the maximum index
set by shade_range. This mode is useful for displaying
a high-quality monochrome picture on an 8-plane sys­
tem from data that produces a high quality color picture
on a 24-plane system.

mode=CMAP_FULL The color values will be mapped directly to an index
with the assumption the color map is setup to a
predefined full color state.

Starbase Functionality

Commands Not Supported

The following commands are ignored.

backface_control
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color
depth_cue_range

HP98720-18

hidden_surface
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_coefficients
surface_model
viewpoint
zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

pattern_define 4x4 is the largest supported pattern.

text_precision

vertex_format

block_read, block_write

The color map mode may be selected but
shading can not be turned on.

Only STROKE_TEXT precision is supported.

The use parameter must be zero, any extra
coordinates supplied will be ignored.

The "raw" parameter for the block_read and block_write commands is
normally ignored by this device driver. To use the raw mode, you must call
the gescape function R_BIT _MODE discussed in the appendix of this manual.

Fast Alpha and Font Manager Functionality
The HP 98720 Device Driver supports raster text calls from the fast alpha and
font manager libraries. These calls may be made while running in the overlay
or image planes. See the Fast Alpha/Font Manager's Programmer's Manual for
further information.

HP98720-19

Parameters for gescape
The following gescape functions are common to two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_INDEX-Alternate between HP 98720 hardware color maps.

• BLINK_PLANES-Blink display (blink rate is 3.75 Hz for this device).

• R_BIT_MASK-Bit mask.

• R_BIT_MODE-Bit mode.

• R_DEF _ECHO_TRANS-Define raster echo transparency.

• R_DEF _FILL_PAT-Define fill pattern.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_LINE_TYPE-Define line style and repeat length.

• R_LOCK_DEVICE-Lock device.

• R_OV _ECHO_COLORS-Select overlay echo colors.

• R_OVERLAY_ECHO-Select plane to contain cursor.

• R_TRANSPARENCY_INDEX-Specify HP98720 transparency index.

• R_UNLOCK_DEVICE-Unlock device.

• READ_COLOR_MAP-Read color map.

• SWITCH_SEMAPHORE-Semaphore control.

HP98720-20

Performance Tips

1. If only one process is accessing the graphics display, it is safe to turn off
the semaphore operations. See the SWITCH_SEMAPHOR.E gescape. With
semaphores turned off you can increase your program's speed 10 to 20
percent. If a tracking process is initiated, semaphores will automatically
be turned on. See "Cautions" below for more information.

2. As with any driver, buffering is done to enhance performance. Perfor­
mance can be degraded substantially if buffer_mode is turned off or an
inordinate amount of make_picture_current calls are done.

3. Performance optimizations have been made so that sequential calls of the
same output primitive with no intervening attribute changes or different
primitive calls go faster. For example, the sequence pOlygon. poly­
gon. polyline. polyline is faster then polygon. polyline. poly­
gon. polyline. Also line_color. polyline. polyline is faster than
line_color. polyline. line_color. polyline. So grouping by prim­
itive and subgrouping primitives by attribute can give some performance
improvements.

4. If Starbase echoes are in the overlay plane, graphics performance is
significantly better since it is not necessary to "pick up" the cursor each
time the frame buffer is updated.

5. Screen clears will be significantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128-pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc
to convert the bounds of the clear rectangle to device coordinates. Screen
clears to the default vdc_extentwill be aligned. Screen clears are also
much faster when the background color index is zero. Screen clears with
a non-zero index require two passes resulting in slower performance.

6. Polygons are filled faster when the drawing mode is (source),
(noLsource), ZERO, or ONE.

7. Horizontal and vertical lines are faster than diagonal lines on this device
since the hardware block mover is used to generate the pixels.

8. The procedure block_move is faster than block_read or block_write
since the hardware frame buffer block mover can be used.

HP98720-21

9. Performance of block_read and block_write is significantly better if
both the source and destination begin on the same byte boundary (since
data can be transferred 32 bits at a time rather than one byte at a time).
For example, one way to ensure this condition is to define pixel arrays as
type short (l6-bit integers) and then start block_read and block_write
on even pixels only. This can more than double performance.

HP98720-22

!
\
'<

Cautions
The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using gescape) should be done with care, since other processes
access this region. See the section on offscreen usage for details.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while
process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when done processing output.
Some of the gescape functions listed in the appendix for this manual
allow the user to change this locking mechanism and should be used with
great caution. Semaphores should never be turned off when operating in
a window environment.

3. When using the HP 98720 device with a graphics accelerator it is possible
for illegal operations to cause the transform engine or scan converter
hardware to enter an unknown state. If this happens, Starbase will report
an error the next time it tries to use the hardware. The user will see this
as a Transform engine timed out or Hardware/scan_converter time
out error. These are Starbase errors 14 and 52 respectively. This is a
very serious error condition. If the HP 98721 device driver is being used,
then this is a fatal error. When this error is discovered, Star base reports
the error and aborts execution.

If an application needs to take some emergency action before an untimely
termination, (such as saving valuable data) the application should check
for these error conditions and take appropriate measures. Errors may be
caught by an application using the gerr_control procedure described in
the Starbase Reference manual.

HP98720-23

It is also possible to avoid the termination completely if the application's
error handler does not return control to Starbase. It is impossible,
however, to proceed with any graphics efforts using the accelerator.

If the HP 98720 or HP 98720w drivers are being used to access the
hardware and if they detect such an error; they will report the error
condition, reset the transform engine, and continue (since they do not use
the accelerator hardware).

HP98720-24

Contents

The HP 98720w Window Device Driver
Device Description
U sage and Restrictions

HP Windows/9000 See-Thru Color .
Setting Up the Device On a Series 300

Switch Settings
Example Program

Setting Up the Device On Series 800
Special Device Files (mknod)
For Series 300 .
For Series 800 . .

Linking the Driver .
Device Initialization

Parameters for gopen
Syntax Examples . .

For C Programs: .
For FORTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

N umber of Color Planes .
Dither Default . . .
Raster Echo Default
Color Plane Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green, and Blue

Star base Functionality

HP98720W-l
HP98720W-4
HP98720W-4
HP98720W-5
HP98720W-5
HP98720W-8
HP98720W-8
HP98720W-9
HP98720W-9
HP98720W-I0
HP98720W-I0
HP98720W -10
HP98720W -10
HP98720W-ll
HP98720W-ll
HP98720W-ll
HP98720W -12
HP98720W -12
HP98720W-12
HP98720W -12
HP98720W -12
HP98720W-12
HP98720W -12
HP98720W-13
HP98720W -13
HP98720W-13
HP98720W-14
HP98720W-15

Contents-1

Commands Not Supported
Commands Conditionally Supported . .

Fast Alpha and Font Manager Functionality
Parameters for gescape
Performance Tips
Cautions

Contents-2

HP98720W-15
HP98720W -15
HP98720W -16
HP98720W -16
HP98720W-17
HP98720W -17

HP98720W
The HP 98720w Window Device Driver

Device Description
The HP 98720 Graphics Display Station includes a high-resolution 19-inch color
display, a display controller, and an optional graphics accelerator. See the table
in the introduction for the SPUs that support this display.

Three device drivers are provided to access the HP 98720 Display:

• HP 98720~used to access graphics windows with the X Window system
or the graphics display without using the optional graphics accelerator.

• HP 98720w-used to access graphics windows with HP Windows/9000, or
the graphics display without windows. The latter is useful for doing fast
alpha or font manager operations to the graphics display.

• HP 98721-used to access the graphics display using only the optional
graphics accelerator.

This chapter covers the HP 98720w Device Driver. Refer to the "HP 98720 Device
Driver" or "HP 98721 Device Driver" sections of this manual for information on
using those device drivers.

Use the HP 98720w Device Driver to access HP Windows running on the HP 98720
Graphics Display Station (Series 300 only), or to use the fast alpha or font
manager on the HP 98720 device.

This driver will not use the optional graphics accelerator, even if it is present. If
you wish to use the graphics accelerator use the HP 98721 Device Driver. It also
does not support X Windows; use the HP 98720 driver for that.

The display has a resolution of 1280x 1024 pixels. The standard color display
system has four-image planes. You can add optional memory in banks of eight­
planes each. A fully configured system consists of three banks of image planes
for full 24-bit per pixel color, one bank for full Z-buffer capability (with graphics

HP98720W-1

accelerator), and 4-overlay planes for non-destructive alpha, windows, cursors, or
graphics.

If you add optional banks of frame buffer memory to the minimal system, the
four standard image planes function as overlay planes. These overlay planes have
their own unique color map, separate from the color map used for the newly
installed image planes. This overlay color map consists of sixteen 4-bit entries.
These four bits correspond to transparent, red, green, and blue (in order of Most
Significant Bit (MSB) to Least Significant Bit (LSB). If the transparent bit (the
MSB) is set to zero, the pixel color will be the color of the image planes behind
the overlay planes. If the transparent bit is set to one, the pixel color is forced
to the color specified by the red, green, and blue bits in the color map entry.
Thus, pixels in the overlay planes can be any combination of the primary colors
or transparent.

This driver, unlike the HP 98720 Device Driver and the HP 98721 Device Driver,
supports only four planes in a combination of image or overlay planes. In the
minimum system this driver provides full access to the four image planes allowing
16 colors to be displayed simultaneously from a pallet of 16 million. If your system
has overlay planes, this driver uses only three overlay planes, which can display
seven colors. These colors (indexes 0-7) are normally black, white, red, yellow,
green, cyan, blue, and magenta, respectively. One of these colors must be reserved
as see-thru to enable the user to see through objects in the overlay pla'nes and
into the frame buffer planes. By default index three, or yellow, is reserved as
see-thru. This feature is discussed in more detail later. The HP 98720 and
HP 98721 Device Drivers use the fourth plane to generate cursors.

The display system is a bit-mapped device with special hardware for:

• Video enable/disable individual image planes.

• Write enable/disable individual image and overlay planes.

• Memory writes with specified replacement rule (refer to drawing_mode).

• Video blinking of individual image planes.

• Arbitrary sized rectangular frame buffer to frame buffer copies.

The display is organized as an array of bytes, with each byte representing a
pixel on the display. The four least significant bits of each byte determine the
color, providing color map indexes from 0-15. The image plane color map is a
RAM table that has 16 addressable locations and is 24 bits wide (8 bits each for

HP98720W-2

red, green, and blue). Thus, the pixel value in the image plane addresses the
color map, generating the color programmed at that location. When four overlay
planes are installed, the 3 least significant bits of each byte determine the color,
providing color map indices from 0-7. The overlay plane color map is static.

Typically, the user does not need direct access to pixels in the frame buffer.
However, for those applications which do require this, Starbase provides the
gescape function R_GET_FRAME_BUFFER, which returns the virtual memory
address of the beginning of the frame buffer. This gescape is discussed in the
appendix of this manual. Frame buffer locations are then addressed relative to
the returned address. The first byte of the frame buffer (byte 0) represents the
upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame buffer are not displayable. Byte 2048 is the first (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

This off-screen portion of the frame buffer may be accessed via the gescape func­
tion R_FULL_FRAME_BUFFER documented in the appendix. Care should be taken
when using this gescape since other processes, Starbase, and Windows/9000
access the frame buffer off-screen memory.

After reading this chapter, refer to the chapter "HP Windows/9000 Device
Driver" to find out additional information on how this device driver is used with
HP Windows/9000.

Series 800 On the Series 800 computers, a write to I/O space must be on
the word boundaries. The frame buffer is mapped as integer (32
bits) per pixel. Therefore, when the user is writing directly to

. the frame buffer on the HP 98720 Graphics Display Station, each
pixel is written with an integer access, and the pixel value is in
the LSB of the integer value.

HP98720W-3

Usage and Restrictions

Windows/9000 and graphics applications that want to talk to a graphics window
use this device driver. This driver does not support:

• bank switching

• Z-buffering

• double buffering

• shading

• the transform engine

• color map alterations in the overlay planes

HP Windows/9000 See-Thru Color

If you have installed optional frame buffer memory in the HP 98720 Graphics
Display Station, Windows/gOOD runs in the overlay planes. This allows the
following:

• Applications can run in the image planes independent of Windows/9000.

• Applications using the transform engine in the image planes see no direct
performance reduction by using Windows/9000 in the overlay planes.

• Windows/9000 can provide both opaque and transparent backgrounds.

The see-thru facility allows you to create a transparent window. Refer to the
windows(l) information in the HP Windows/9000 Reference manual for details
concerning this command.

By default index three, or yellow, is reserved as see-thru. The HP 98720w Device
Driver recognizes a new Starbase environment variable SB_OV _SEE_ THRU_INDEX
that will allow the user to set the see-thru color map index to some other value.
This environment variable will only have an effect when using Windows/9000
or when running the program on the raw device. Programs running in graphics
windows use the SB_OV _SEE_THRU_INDEX value in effect at Windows/9000 startup
time. Resetting this variable has no affect on programs using this driver. Any
value outside the range 0-7 will be ignored. If this environment variable is not
set or is set to an illegal value, the driver will default to using index three as
see-thru.

HP98720W-4

Since the TermO Server, Graphics Server, and Window Manager all use the
HP 98720w driver to talk to this display, this environment variable also affects
them. For example, the following situation will cause your TermO text to seem
to disappear:

1. a program sends color escape sequences to TermO to get yellow-on-black
characters

2. the see-thru index corresponds to what used to be yellow (3)

3. the image planes are cleared to black so that see-thru shows black

In another example, suppose your Windows/9000 environment variables are set
up to have your window borders cyan-on-black. The borders will appear invisible
if:

1. you set SB_DV_SEE_THRU_INDEX=5 (cyan) before powering up Win­
dows/9000

2. the image planes are cleared to black so that see-thru shows black

Setting Up the Device On a Series 300
The HP 98720w Device Driver can be used with the graphics display configured
in either internal or external address space. Refer to the Configuration Reference
Manual for a description of internal and external address space. If the device is
configured as an external display, there will not be an Internal Terminal Emulator
(ITE) for that device.

The Graphics Interface Card may be installed in any DIO slot in the computer's
backplane or in any I/O slot of the expander.

Switch Settings

The Graphics Interface Card has a single 6-bit address select switch. One bit,
labelled FB, determines the frame buffer location, while the other five switch bits,
labelled CS, determine the location within the DIO memory map of the HP 98720
control space. Silkscreening on the printed circuit board indicates the meaning
of the bits.

HP98720W-5

The frame buffer consumes two Mbytes of I/O address space starting at FB_BASE.
The switch bit labelled FC determines the address of FB_BASE as shown below.

Table HP98720W-1. Frame Buffer Locations

FB FB_BASE (hex)
0 $200000
1 $800000

Typical systems will map the frame buffer to $200000. However, some systems
which have multiple displays may map the frame buffer address to $800000.
When the frame buffer address is set to $800000, the HP Series 300 Model 320
SPU memory limit is reduced from 7.50 Mbytes to 5.75 Mbytes. This occurs
since the frame buffer is mapped into the upper 2 Mbytes of memory address
space.

The control space requires 128 Kbytes starting at "CTL_BASE". The five switch
bits labelled CS determine the address of "CTL_BASE". The HP 98720 may
be configured as an external or internal display. Since only 64 Kbytes are
normal allotted for external I/O select codes, two consecutive select codes will
be consumed if the device is configured as an external device. The control space
may be located at any of 32 positions. Sixteen positions are reserved in internal
I/O space and sixteen are in external I/O space (with 5 reserved). The table
below lists the binary switch settings with the corresponding values of CTL_BASE
for external I/O settings, as well as the select code spaces consumed.

HP98720W-6

Table HP98720W-2. Control Space Settings (External I/O)

CS Setting CTL_BASE (hex) Select Codes
01011 $560000
10101 $6AOOOO 10-11
10110 $6COOOO 12-13
10111 $6EOOOO 14-15
11000 $700000 16-17
11001 $720000 18-19
11010 $740000 20-21
11011 $760000 22-23
11100 $780000 24-25
11101 $7AOOOO 26-27
11110 $7COOOO 28-29
11111 $7EOOOO 30-31

If the HP 98720 is configured as the system console, CTL_BASE needs to be placed
at $560000, which is an internal I/O setting. If the device is not used as the
system console then the control space should not be placed in internal I/O space,
since it is likely to overlap the address space of other system hardware. In this
case, an external I/O space setting should be selected with two consecutive select
codes which are unused by the system.

Note This display driver does not know how to reset the device's
hardware when the control space is configured for an external
display. Hence, you must first do a gopen to the device with a
mode of RESET_DEVICE using either the HP98720 or HP 98721
driver before using the HP 98720w driver or running windows on
this device. A small and simple program called from /etc/rc
during power up which resets the device is a good solution. As
example program that accomplishes this reset follows.

HP98720W-7

Example Program

(To reset HP 98720 on Series 300 external select code)

/*
* Starbase program: reset98720.c
* Compile: cc -0 reset98720 reset98720.c -ldd98720 -lsbl -lsb2
* Destination: /usr/bin
* Execute: add line to the /etc/rc - "/usr /bin/reset98720 /dev/crt.external"

*
* Example program to be put in /etc/rc for Resetting an external HP 98720
* device during power up. This is done so that the window system or any
* other application that uses the HP 98720w device driver can be run to
* the HP 98720 display. This is necessary because the HP 98720w does not
* know how to reset the external device.
*/

#include <starbase.c.h>

main(argc.argv)
int argc; char *argv[];
{

}

int fildes;

if ((fildes = gopen(argv [1]. OUTDEV. Ihp98720" • INIT I RESET_DEVICE» < 0)
printf("External HP 98720 %s initialization failed. \n" .argv[l]);

else {

}

printf("External HP 98720 %s initialization succeeded.\n".argv[l]);
gclose(fildes) ;

Setting Up the Device On Series 800
Up to four HP 98720 devices can be connected to most supported Series 800
SPU s, but it is recommended that only two of these have an Internal Terminal
Emulator (ITE) running on them.

Only one HP 98720 device can be connected to a Series 800 Model 840.

HP98720W-8

Special Device Files (mknod)

See the Windows/9000 Reference for details on how special files are created for
windows.

The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mlmod(1M) information
in the HP- UX Reference for further details. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files. These files are normally created by the
system administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however, the name that is suggested for these
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mlmod command.

For Series 300

When the device is at the internal address (refer to the "Switch Settings" segment
of this section) the mlmod parameters would create a character special device with
a major number of 12 and a minor number of o.

mlmod / dev / crt c 12 OxOOOOO

When the device is at an external address (refer to the "Switch Settings" segment
of this section) the mlmod parameters would create a character special device with
a major number of 12 and a minor number of Ox(sc)0200 where (sc) is the two­
digit external select code. Note that the leading Ox causes the number to be
interpreted hexadecimally.

mlmod /dev/crt c 12 Ox(sc)0200

HP98720W-9

For Series 800

When creating the device file, use mknod with a major number of 14 and a minor
number as indicated below (where (lu) is two-digit the hardware logical unit
number).

mknod /dev/crt c 14 OxOO(lu)OO
«or»
mknod /dev/crtx c 14 OxOO(lu)OO

Linking the Driver
The HP 98720w Device Driver is the file 1ibdd98720w. a in the /usr/1ib
directory. This device driver may be linked to a program using the absolute
path name /usr/1ib/1ibdd98720w. a, an appropriate relative path name, or by
using the -1 option -ldd98720w. For example, to compile and link a program
with this driver use:

cc example.c -ldd98720w -lsb1 -lsb2 -0 example
fc example.f -ldd98720w -lsb1 -lsb2 -0 example
pc example.p -ldd98720w -lsb1 -lsb2 -0 example

depending upon the language being used.

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

Path The name of the special device file created by Windows/9000 as
specified in the last section (for example, /dev/screen/crt).

Kind Indicates the I/O characteristics of the device. This parameter may
be one of the following:

• INDEV-Input only

HP98720W-10

(

Driver

Mode

• OUTDEV-Output only
• OUTINDEV-Input and Output

The character representation of the driver type. This must be
hp98720w. For example:

"hp98720w"
'hp98720w'//char(O)
'hp98720w'

for c.
for FORTRAN77.
for Pascal.

The mode control word consisting of several flag bits or ed together.
Listed below are those flag bits having device-dependent actions.
Those flags not discussed below operate as defined by the gopen
procedure. This control word has no effect on the color map when
using the overlay plane configuration; the software color map is
always initialized to the appropriate values.

• SPOOLED--cannot spool raster devices.

• MODEL_XFORM-Shading is not supported for this device.

• O-open the device, but do nothing else. The software color
map is initialized from the current hardware color map.

• INIT -open and initialize the device as followsr:
1. Clear image planes, overlay planes, or graphics win­

dow to Os.
2. Reset the color map to its default values, if using the

image plane configuration.
3. Enable the display for reading and writing.

Syntax Examples

To open and initialize an HP 98720w device for output:

For C Programs:

fildes = gopen(" /dev/crt" ,OUTDEV, "hp98720w" , INIT) ;

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O) ,OUTDEV,'hp98720w'//char(O) ,IN IT)

HP98720W-11

For Pascal Programs:

fildes = gopen('/dev/crt' ,DUTDEV, 'hp98720w' ,INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is (1279,1023).

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 or 4 depending on the
hardware configuration. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8x8 array:

15 15 15 15 0 0 0 0
15 15 0 0 0 0 0 0
15 0 15 0 0 0 0 0
15 0 0 15 0 0 0 0
0 0 0 0 15 0 0 0
0 0 0 0 0 15 0 0
0 0 0 0 0 0 15 0
0 0 0 0 0 0 0 15

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

Color Plane Defaults

The minimum configuration is a color mapped system with 4-image planes.
Extended configurations are static color mapped systems with 3-overlay planes.

HP98720W-12

The latter can occur regardless of the number of image plane banks installed. All
planes being used are display enabled and write enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the following bit patterns:

Table HP98720W-3.

Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on color displays. Indexes 0-7 of the table shown below are the values assigned to
the software color map configured with overlay planes. One entry must be set to
see-thru, either by default or by setting the SB_OV _SEE_ THRU_INDEX environment
variable.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown below. Again, all but one of the 0-7 indexes apply in the
overlay plane configuration.

HP98720W-13

Table HP98720W-4. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the available colors.

Red, Green, and Blue

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.

HP98720W-14

(

Starbase Functionality

Commands Not Supported

backface_control
bank_switch
bf_control

double_buffer
hidden_surface

bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_Iength
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
dbuffer_switch
define_trimming_curve
depth_cue

interior_style (INT_OUTLINE. INT_POINT)
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_mode
shade_range
surface_model
surface_coefficients
viewpoint

depth_cue_color
depth_cue_range

zbuffer_switch

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read,
block_write

display_enable

pattern_define

text_precision

The "raw" parameter for the block_read and
block_wri te commands is normally ignored by this
device driver. To use the "raw" mode, you must call
the gescape function R_BIT_MODE. The Appendix A
discusses the gescape functions common to several
drivers.

When running in the overlay planes, this command
has no effect.

When running in the overlay planes, this command
has no effect.

When running in the overlay planes, this command
returns the software color map values.

4x4 is the largest pattern supported on this device.

Only STROKE_TEXT precision is supported.

HP98720W-15

vertex_format The use parameter must be zero. Any extra coordi­
nates supplied will be ignored.

Fast Alpha and Font Manager Functionality
This device driver supports raster text calls from the fast alpha and font manager
libraries. See the Fast Alpha/Font Manager's Programmer's Manual for further
information.

Parameters for gescape
The following gescape functions are common to many of the Hewlett-Packard
displays supported by Starbase. Detailed information about these functions can
be found in Appendix A.

• SWITCH_SEMAPHORE-semaphore control

• READ_COLOR_MAP-read color map

• BLINK_DISPLAY-blink display (Blink rate is 3.75 Hz for this device and
only when gopened as a 4-plane device.)

• R_GET_FRAME_BUFFER-read frame buffer address

• R_FULL_FRAME_BUFFER-full frame buffer

• R_LOCK_DEVICE-Iock device

• R_UNLOCK_DEVICE-unlock device

• R_BIT _MODE-bit mode

• R_BIT_MASK-bit mask

• R_DEF _FILL_PAT-define fill pattern

HP98720W-16

Performance Tips

1. Horizontal and vertical lines are faster than diagonal lines on these devices
since the hardware block mover is used to generate the pixels.

2. The procedure block_move is faster than block_read or block_write
since the hardware frame buffer block mover can be used.

3. As with any driver, buffering is done to enhance performance. If
buffer_mode is turned off or if you make many calls to
make_picture_current then performance can decrease.

4. Performance optimizations have been made so that sequential calls of
the same output primitive with no intervening attribute changes or
different primitive calls go faster. For example the sequence poly­
gon, polygon, polyline, polyline is faster the polygon, polyline,
polygon, polyline. Also line_color, polyline, polyline is faster
than line_color, polyline, line_color, polyline. So grouping
by primitive and subgrouping primitives by attribute can give some per­
formance improvements.

Cautions

1. Use care when accessing the off-screen portion of the frame buffer (via
gescape functions), since other processes access this region. The first
32 lines of off-screen frame buffer memory are used by Windows/9000
for its sprite and by this device driver for polygon fills. The rest of the
off-screen frame buffer memory can be consumed by font bit maps when
Windows/9000 is running.

2. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, only one graphics process should access
a hardware resource at any time. To enforce this the driver activates a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while

HP98720W-17

process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when it is finished processing
output. Some of the gescape functions listed in this section allow the user
to change this locking mechanism and should be used with great caution.

3. When using an HP 98720 device having a graphics accelerator, it is possi­
ble for illegal operations to cause the transform engine or scan converter
hardware to enter an unknown state. If this happens, Starbase will report
an error the next time it tries to use the hardware. The user will see this
as a Transform engine timed out or Hardware/scan_converter time
out error. These are Starbase errors 14 and 52 respectively. This is a
very serious error condition. If the HP 98721 Device Driver is being used,
this is a fatal error. When this error is discovered, Starbase reports the
error and aborts execution.

If an application needs to take some emergency action before an untimely
termination (such as saving valuable data), the application should check
for these error conditions and take appropriate measures. Errors may be
caught by an application using the gerr_control procedure described in
the Star base Reference manual.

It is also possible to avoid the termination completely if the application's
error handler does not return control to Starbase. It is impossible to
proceed, however, with any graphics efforts using the accelerator.

If the HP 98720 or HP 98720w drivers are being used to access the
hardware and such an error is detected, they will report the error
condition, reset the transform engine, and continue (since they do not
use the accelerator hardware).

HP98720W-18

I

\,

Contents

The HP 98721 Device Driver
Device Description
Setting Up the Device On Series 300

Switch Settings
Example Program to Reset the HP 98720

Setting Up the Device On Series 800 . . .
Special Device Files (mknod) On Series 300
Special Device Files (mknod) On Series 800
Linking the Driver . .
Device Initialization

Parameters for gopen
Syntax Examples . .

For C Programs: .
For Fa RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default
Line Type Defaults .
Default Color Map .
Red, Green and Blue

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

block_read, block_write

HP98721-1
HP98721-5
HP98721-5
HP98721-7
HP98721-7
HP98721-8
HP98721-9
HP98721-10
HP98721-11
HP98721-11
HP98721-12
HP98721-12
HP98721-12
HP98721-12
HP98721-12
HP98721-13
HP98721-13
HP98721-13
HP98721-13
HP98721-13
HP98721-14
HP98721-14
HP98721-15
HP98721-16
HP98721-18
HP98721-18
HP98721-18
HP98721-19

Contents-1

Splines
Fast Alpha and Font Manager
Parameters for gescape

ZBUFFER_ALLOC
C Syntax
FORTRAN77 Syntax
Pascal Syntax . .
Exceptions

ZSTATE_RESTORE
C Syntax
FORTRAN77 Syntax
Pascal Syntax

ZSTATE_SAVE .. .
C Syntax
FORTRAN77 Syntax
Pascal Syntax

Performance Tips
Cautions

Contents-2

HP98721-19
HP98721-19
HP98721-20
HP98721-22
HP98721-23
HP98721-23
HP98721-23
HP98721-23
HP98721-24
HP98721-26
HP98721-26
HP98721-27
HP98721-28
HP98721-30
HP98721-30
HP98721-30
HP98721-31
HP98721-33

HP98721
The HP 98721 Device Driver

Device Description
The HP 98721A is an optional graphics accelerator for the HP 98720A controller.
The controller plugs into an I/O slot of the SPUs. (See the "Introduction" section
of this manual for systems supporting this controller and accelerator.)

Three device drivers are provided to access the HP 98720 display:

• HP 98720-used to access graphics windows in the X Window system or
the graphics display without using the optional graphics accelerator.

• HP98720w-used to access graphics windows with HP Windows/9000, or
the graphics display without windows. The latter is useful for doing fast
alpha or font manager operation to the display.

• HP 98721-used to access the graphics display using only the optional
graphics accelerator.

This chapter covers the HP 98721 Device Driver; see the "HP 98720 Device
Driver" or "HP 98720w Device Driver" chapters for information on using those
device drivers.

The display has a resolution of 1280x 1024 pixels. The standard color display
system has four planes of frame buffer to provide 16 simultaneous colors. You
can add optional memory in banks of eight planes each. A fully configured system
consists of three banks of frame buffer for full 24 bit per pixel color, one bank for
full Z-buffer capability, and 4-overlay planes for non-destructive alpha, cursors,
or graphics. In order to use the HP 98721 Device Driver, the system must be
configured with a graphics accelerator and at least one bank of eight planes.
Four-plane systems are not supported with the graphics accelerator.

An 8-plane configuration allows 256 colors to be displayed simultaneously from a
palette of 16 million. A 16-plane system is like two 8-plane frame buffers where
only one 8-plane buffer is displayed at any time. This configuration is useful for

HP98721-1

double buffering. When three banks of frame buffer are installed, the system may
be configured to display eight bits red, eight bits green, and eight bits blue per
pixel. Double buffering may also be achieved at a resolution of four bits red, four
bits green, and four bits blue.

The display system is a bit-mapped device with special hardware for:

• Write enable/disable individual planes.

• Video enable/disable individual planes.

• Memory writes with specified replacement rule (see drawing_mode III

Starbase Reference manual).

• Video blinking of individual planes.

• Video blinking of individual color map locations.

• Arbitrary sized rectangular memory to memory copies.

• Write enable/disable of pixels in 4x4 cell for "screen door" transparency.

• Bit-slice processor with hardware floating point for high speed three­
dimensional transformations.

• NMOS III scan converter with six axis interpolation for Gouraud shaded,
z-buffered vectors and polygons.

The display is organized as an array of bytes, with each byte representing a
pixel on the display. With four planes installed, the 4 LSBs of each byte
determine the color providing color map indices from 0-15 (this is not a supported
configuration). When eight planes are installed, color map indices range from 0-
255. The color map is a RAM table that has 16 or 256 addressable locations and
is 24 bits wide (eight bits each for red, green, and blue). Thus, the pixel value
in the frame buffer addresses the color map, generating the color programmed at
that location.

If you add optional banks of frame buffer memory to the minimal system, the
four standard image planes function as overlay planes. These overlay planes have
their own unique color map, separate from the color map used for the newly
installed image planes. This overlay color map consists of sixteen 4-bit entries.
These four bits correspond to transparent, red, green, and blue (in order of MSB
ot LSB.) If the transparent bit (the MSB) is set to zero, the pixel color will be
the color of the image planes behind the overlay planes. If the transparent bit is

HP98721-2

set to one, the pixel color is forced to the color specified by the red, green, and
blue bits in the color map entry. Thus, pixels in the overlay planes can be any
combination of the primary colors or transparent.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the HP 98720 is used as system console, the Internal Terminal
Emulator (ITE) uses three of the overlay planes for alpha information. This
way there is no interaction between ITE text and images in the graphics planes.
Windows/9000 also runs in the overlay planes (refer to the "HP 98720w Device
Driver" chapter for more information). To do graphics in the overlay planes the
HP 98721 Device Driver may be opened directly to the overlay planes as if they
were a separate device (refer to the section "Setting up the Device" for more
information). One overlay plane is reserved for graphic cursors.

When Starbase cursors are in the overlay plane performance is enhanced since it
it not necessary to pick up the cursor each time the frame buffer is updated. You
can think of the overlay plane used for cursors as a separate "cursor plane." Any
data in the cursor plane will be displayed over data in the graphics planes. Data
in the other three overlay planes will be displayed over data in the graphics planes
and the cursor plane. For example, suppose a graphics application is running in
the graphics planes while the window manager is running. If the application has
a Starbase cursor in the overlay cursor plane, the cursor will always be visible
inside regions of see-thru because the cursor has display priority over the graphics.
(Refer to the "HP Windows/9000 See-Thru Color" section of the "HP 98720w
Device Driver" .) If the cursor is moved outside the graphics window boundary
it is not visible since the window desktop environment is drawn to the overlay
planes (which have display priority over the cursor plane).

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape procedure R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed in
the appendix of this manual. Frame buffer locations are then addressed relative
to the returned address. The first byte of the frame buffer (byte 0) represents
the upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame buffer are not displayable. Byte 2048 is the first (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

HP98721-3

If more than one optional frame buffer bank is installed, bank switching must be
used to access the additional memory. A number of Starbase calls may set the
bank register so it is advisable to call bank_switch just prior to making accesses
to the frame buffer pointer to ensure desired results.

The off-screen portion of the frame buffer may be accessed via the gescape
procedure R_FULL_FRAME_BUFFER documented in the appendix of this manual.
Use this gescape carefully since other processes, Starbase, X Windows, and
HP Windows/9000 access the frame buffer off-screen memory. This driver
is not supported running concurrently in the same planes as X Windows or
HP Windows/9000.

Series 800 On the Series 800 computers, a write to 10 space must be on
the word boundaries. The frame buffer is mapped as integer
(32bits) per pixel. Therefore, when the user is writing directly to
the frame buffer on the HP 98720 Graphics Display Station, each
pixel is written with an integer access.

HP98721-4

If writing to the HP 98720 image buffer and not in CMAP _FULL
color map mode, only one bank can be written at a time. The
bank to be written must be established by a call to bank_switch.
The following conditions exist at the time of writing the pixel
value:

• When writing to bank 0, the pixel value is in the LSB of
the integer value.

• When writing to bank 1, the pixel value is in byte position
1 of the integer value (where the LSB is byte position 0).

• When writing to bank 2, the pixel value is in byte position
2 of the integer value.

All three banks for one pixel can be written simultaneously by
packing all three bank values for the pixel into the integer value
and having the color map mode as CMAP _FULL before writing.

Setting Up the Device On Series 300
The HP 98721 Device Driver can be used with the graphics display configured
in either internal or external address space (refer to the Configuration Reference
Manual for a description of internal and external address space.)

Note If the HP 98720 is configured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that. device.
Since it is the ITE that normally initializes the display. External
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It may
also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows
application program. An example program which could be called
from / etc/rc during power-up is given at the end of this section.
For more details concerning the effects of RESET_DEVICE, see the
"Device Initialization" information in this section.

The Graphics Interface card may be installed in any DIO slot in the computer's
backplane or in any 110 slot of the expander.

Switch Settings

The Graphics Interface Card has a single 6-bit address select switch. One bit,
labeled FB, determines the frame buffer location, while the other five switch bits,
labeled CS, determine the location within the DIO memory map of the HP 98720
control space. Silkscreening on the printed circuit board indicates the meaning
of the bits.

The frame buffer consumes 2 Mbytes of 110 address space, starting at FB_BASE.
The switch bit labeled FB determines the address of FB_BASE as shown below.

Table HP98721-1. Frame Buffer Locations

FB FB_BASE (hex)

0 $200000
1 $800000

HP98721-5

Typical systems will map the frame buffer to $200000. However, some systems
which have multiple displays may map the frame buffer address to $800000. When
the frame buffer address is set to $800000, the Hewlett-Packard Series 300 Model
320 SPU memory limit is reduced from 7.50 Mbytes to 5.75 Mbytes. This occurs
since the frame buffer is mapped into the upper 2 Mbytes of memory address
space.

The control space requires 128 Kbytes starting at CTL_BASE. The five switch bits
labelled CS determine the address of CTL_BASE. The HP 98720 may be configured
as an external or internal display. Since only 64 Kbytes are normally allotted for
external I/O select codes, two consecutive select codes will be consumed if the
device is configured as an external display. The control space may be located at
any of 32 positions. In internal I/O space 16 positions are reserved. There are
16 in external I/O space with 5 reserved. The table below lists the binary switch
settings with the corresponding values of CTL_BASE for external I/O settings, as
well as the select code spaces consumed.

Table HP98721-2. Control Space Settings (External I/O)

CS Setting CTL_BASE (hex) Select Codes
01011 $560000
10101 $6AOOOO 10-11
10110 $6COOOO 12-13
10111 $6EOOOO 14-15
11000 $700000 16-17
11001 $720000 18-19
11010 $740000 20-21
11011 $760000 22-23
11100 $780000 24-25
11101 $7AOOOO 26-27
11110 $7COOOO 28-29
11111 $7EOOOO 30-31

If the HP 98720 is configured as the system console, CTL_BASE needs to be placed
at $560000, which is an internal I/O setting. If the device is not used as the
system console, the control space should not be placed in internal I/O space
since it is likely to overlap the address space of other system hardware. In this
case, an external I/O space setting should be selected with two consecutive select
codes which are unused by the system.

HP98721-6

Example Program to Reset the HP 98720

/*
* Starbase program: reset98720.c
* Compile: cc -0 reset98720 reset98720.c -ldd98720 -lsbl -lsb2
* Destination: /usr/bin
* Execute: add line to the /etc/rc - "/usr/bin/reset98720 /dev/crt.external"

*
* Example program to be put in /etc/rc for resetting an external HP 98720
* device during power-up.
*/
#include <starbase.c.h>

main(argc,argv)
int argc; char *argv[];
{

int fildes;

if «fildes = gopen(argv[1],OUTDEV,lhp98720",INITIRESET_DEVICE)) < 0)
printf("External HP 98720 %s initialization failed.\n",argv[l]);

else {

}

}

printf("External HP 98720 %s initialization succeeded.\n",argv[l]);
gclose(fildes);

Setting Up the Device On Series 800
Up to four HP 98721 devices can be connected to most supported Series 800
SPU s. However, it is recommended that only two of these have an Internal
Terminal Emulator or window system running on them.

Only one HP 98721 device can be connected to a Series 800 Model 840.

HP98721-7

Special Device Files (mknod) On Series 300
The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When the device is at the internal address (refer to the "Switch settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of O. Note that the leading Ox causes the
number to be interpreted hexadecimally.

mknod / dev / crt c 12 OxOOOOOO

When the device is at an external address (refer to the "Switch settings" section)
the mknod parameters should create a character special device with a major
number of 12 and a minor number of Ox(sc)0200 where (sc) is the two-digit
external select code.

mknod /dev/crt c 12 Ox(sc)0200

The HP 98721 Device Driver may also be used for the overlay planes in graphics
mode (if they are present.) Since one plane is still reserved for cursors, the
graphics device will look like a 3-plane device in this mode. Note that since the
terminal emulator and window system operate in the overlay planes also, there
will be interactions with these processes if a graphics driver is opened in this
manner while these processes are present. To open the HP 98721 Device Driver
to the overlay planes instead of the graphics planes, the last byte of the minor
number must be 1.

HP98721-8

For example, when the device is at an internal address, the mlmod parameters for
the overlay device should create a character special device with a major number
of 12 and a minor number of 1.

mknod /dev/ocrt c 12 Ox000001

When the device is at an external address (refer to the section on "Switch
Settings") the mknod parameters for the overlay device should create a character
special device with a major number of 12 and a minor number of Ox(sc)0201
where (sc) is the two-digit external select code.

mlmod /dev/ocrt c 12 Ox(sc)0201

Special Device Files (mknod) On Series 800
The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mlmod(1M) information
in HP- UX Reference for further information. The name of this special device file
is passed to Starbase in the gopen procedure. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device file, however the names that are suggested for these
devices are crt, crtO, crt1, or crt2.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When creating the device file, the mlmod parameters should create a character
special device with a major number of 14 and a minor number of the format
below (where (lu) is the two-digit hardware logical unit number):

mlmod /dev/crtx c 14 OxOO(lu)OO

The HP 98721 Device Driver may also be used for the overlay planes in graphics
mode (if they are present.) Since one plane is still reserved for cursors, the
graphics device will look like a 3-plane device in this mode. Note that since the

HP98721-9

terminal emulator and window system operate in the overlay planes also, there
will be interactions with these processes if a graphics driver is opened in this
manner while these processes are present. To open the HP 98721 Device Driver
to the overlay planes instead of the graphics planes, the last byte of the minor
number must be 1.

For example, the mknod parameters for the overlay device should create a
character special device with a major number of 14 and a minor number of
the format indicated below (where (lu) is the two-digit hardware logical unit
number):

mknod /dev/ocrtx c 14 OxOO(lu)Ol

Linking the Driver

The HP98721 Device Driver is the file named libdd98721. a in the /usr/lib
directory. This device driver may be linked to a program using the absolute path
name /usr/lib/libdd98721. a, an appropriate relative path name, or by using
the -1 option -ldd98721. For example, to compile and link a program for use
with this driver, use:

cc example.c -ldd9S721 -lsb1 -lsb2 -0 example
fc example.f -ldd9S721 -lsb1 -lsb2 -0 example
pc example.p -ldd9S721 -lsb1 -lsb2 -0 example

depending upon the language being used.

HP98721-10

Device Initialization

Parameters for gopen

Note Because the transform engine is not multi-tasking, only one
HP 98721 driver may be opened to a device file. Other HP 98720
drivers may be opened to that device file if multiple Starbase
drivers are needed.

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device file created by the mlmod command
as specified in the last section (for example, / dev / crt.)

Kind Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

Driver

Mode

The character representation of the driver type. This must be
hp98721. For example:

"hp98721II

'hp98721'//char(O)
'hp98721,

for c.
for FORTRAN77.
for Pascal.

The mode control word consisting of several flag bits which are
or ed together. Listed below are the flag bits which which have
device-dependent actions. Those flags not discussed below operate
as defined by the gopen procedure.

• SPOOLED-cannot spool raster devices.

• O-open the device, but do nothing else. The software color
map is initialized on monochrome monitors.

• INIT -open and initialize the device as follows:
1. Clear frame buffer to Os.
2. Reset the color map to its default values.
3. Enable the display for reading and writing.
4. Download the transform engine's microcode.

• RESET_DEVICE-open and reset the device as follows:

HP98721-11

1. Clear frame buffer and overlays to Os.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. Download the transform engine's microcode.

Note that the RESET_DEVICE flag bit should be used with
caution: it will adversely affect any other processes using the
device. This flag bit is intended to reset a device completely.
This should only be necessary for devices in an unknown state
such as a device powered up in an external 110 space. Most
programs should not use this flag bit.

Syntax Examples

To open and initialize an HP 98721 device for output:

For C Programs:

fildes = gopen (II / dev / crt II ,OUTDEV , IIhp98721II , INIT) ;

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O) ,OUTDEV, 'hp98721'//char(O) ,INIT)

For Pascal Programs:

fildes = gopen('/dev!crt',OUTDEV,'hp98721',INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279,1023).

HP98721-12

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3(in overlays), 8, 16, or
24. The number 4 is not a supported configuration. The device driver then acts
accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

Raster Echo Default

The default raster echo is the 8x8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (a logical OR).

By default the raster echo is written to the graphics planes. All other echo types
are written to an overlay plane. the location of raster and non-raster echoes can
be changed using the R_OVERLAY_ECHO gescape.

Color Planes Defaults

The default configuration is an 8-plane color mapped system regardless of the
number of frame buffer banks installed.

All planes in the first bank are display enabled. All planes in the first bank are
write enabled.

HP98721-13

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table HP98721-3.

Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

HP98721-14

Default Color Map

If the fourth gopen parameter is zero (0) then the current hardware color map is
used on color displays.

If the fourth gopen parameter is INIT, then the current color map is initialized
to the default values shown below.

Table HP98721-4. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the 255 colors.

When IN IT is used in the shade_mode procedure call the color map initialization
is based on the value of the mode parameter and on the number of frame buffer
banks installed.

mode=CMAP_NORMAL Same as the previous table above. Only one bank
of the first two can be displayed at a time. If a
third bank is installed it can not be displayed in
this mode.

HP98721-15

mode=CMAP_MONOTONIC

mode=CMAP_FULL

Red, Green and Blue

The color map will be initialized as:

for (i=O; i<256; i++) {
cmap[i] .red = cmap[i].
green = cmap[i] .blue = i/255.0;

}

Only one bank of the first two can be displayed
at a time. If a third bank is installed it can not
be displayed in this mode.

With less than three banks installed the color
map will be initialized as three bits red, three
bits green, and two bits blue. The three most sig­
nificant bits are red and the two least significant
bits are blue. Only one bank of the first two can
be displayed at a time.

Note: this driver requires at least eight planes in
CMAP _FULL mode, or at least 16 planes if double
buffered.

With three or more banks installed the color
map will be initialized as the CMAP _MONOTONIC
case above, but now the first bank of eight
will go through the blue portion of the color
map, the second bank goes through the green
portion, and the third bank goes through the
red portion. In this mode the color map is
transparent and the eight bits from each bank
drive the appropriate DAC. The color map could
be subsequently modified in this mode to perform
functions such as gamma correction or double
buffering of 4 bits per color.

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.

HP98721-16

(

For Starbase procedures that have parameters for red, green and blue, the way
the actual color is chosen depends on the current shade_mode setting.

mode=CMAP_NORMAL

mode=CMAP_MONOTONIC

mode=CMAP_FULL

The color map is searched for the color that is
closest in RGB space to the one requested. That
color map index is written to the frame buffer
for subsequent output primitives. It is more
efficient to select a color with an index rather than
specifying a color with red, blue, and green values
in this mode because it takes extra time to figure
out which index in the color table most closely
matches the specified color.

The red, green, and blue value is converted to an
intensity value using the equation:

O.30*red+O.59*green+O.ll*blue

This intensity is converted to an index value
by mapping intensity 0.0 to the minimum index
set be shade_range and intensity 1.0 to the
maximum index set by shade_range. This mode
is useful for displaying a high quality monochrome
picture on an 8-plane system from data that
produces a high quality color picture on a 24-
plane system.

With less than three banks installed, the color is
converted to a color map index by the equation:

index=(round(red*32767»>7) & OxEO
(round(green*32767»>10) & OxlC I
(round (blue*32767) »13)

This equation will be used in this mode regardless
of whether the user has modified the color map.

With three or more banks installed, the red, green
and blue values are each multiplied by 32,767,
converted to an integer, shifted right seven places,
then written to the appropriate bank.

HP98721-17

Starbase Functionality

Commands Not Supported

These procedures are ignored.

bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients

bf_surface_model
depth_cue_color
depth_cue_range
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_attenuation
surface_coefficients

Commands Conditionally Supported

The following commands are supported under the listed conditions:

backface_control

interior_style

light_model
light_source
light_switch

pattern_define

text_precision

HP98721-18

Backface color is supported only if shading is on as
set by shade_mode. Also, backface_color does not
work correctly for spline surfaces when VERTEX_FORMAT
specifies normal per vertex.

If the polygon fill is INT _HATCH, the following functional­
ity will not work correctly.

• Hidden surface removal.
• Shading and lighting.
• Depth cueing.
• Backfacing attributes and culling.
• Splines, quadralateral meshes, and triangle strips,

will not be hatched.

Performance is also degraded in this mode.

Supports nine light
sources; one ambient and eight positional or directional.

4 X 4 is the largest pattern supported on this device.

Only STROKE_TEXT precision is supported.

vertex_format The use parameter cannot be greater than three(3); no
more than three extra coordinates per vertex can be
interpreted by this device. Extra values can only be
rgb triplets, vertex normals, or vertex intensity values.
Values of use greater than three will cause the extra data
per vertex to be ignored.

block_read, block_write

The "raw" parameter for the block_read and block_write commands is
normally ignored by this device driver. To use the raw mode, you must call the
R_BIT_MODE gescape discussed in the appendix of this manual. If the "RAW"
parameter is TRUE, no clipping will be done.

Splines

QUARTIC and QUINTIC splines (that is, fifth and sixth order splines) are not
su pported on this driver.

The commands that are affected are spline_curve2d, spline_curve3d, and
spline_surface.

Fast Alpha and Font Manager
This device driver does not support raster text calls from the fast alpha and font
manager library.

HP98721-19

Parameters for gescape
The following gescape functions are common to· two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_INDEX-Alternate between HP 98720 hardware color maps.

• BLINK_PLANES-Blink display (blink rate is 3.75 Hz for this device).

• LS_OVERFLOW_CONTROL-Sets options for overflow situations.

• PATTERN_FILL-Fill polygon with stored pattern.

• R_BIT_MASK-Bit mask.

• R_BIT _MODE-Bit mode.

• R_DEF _ECHO_TRANS-Define raster echo transparency.

• R_DEF _FILL_PAT-Define fill pattern.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_LINE_TYPE-Define line style and repeat length.

• R_LOCK_DEVICE-Lock device.

• R_OV _ECHO_COLORS-Select overlay echo colors.

• R_OVERLAY_ECHO-Select plane to contain cursor.

• R_TRANSPARENCY_INDEX-Specify HP 98720 transparency index.

• R_UNLOCK_DEVICE-Unlock device.

• READ_COLOR_MAP-Read color map.

• SWITCH_SEMAPHORE-Semaphore control.

• TRANSPARENCY-Allow "screen door" for transparency pattern.

• ZWRITE_ENABLE-Allows creation of 3D cursors in overlay.

The following gescape functions are unique to this driver and are discussed in
the following pages.

HP98721-20

• ZBUFFER_ALLOC-Allocates frame buffer memory for Starbase.

• ZSTATE_RESTOR-Allows creation of 3D cursors in overlay.

• ZSTATE_SAVE-Allows creation of 3D cursors in overlay.

HP98721-21

ZBUFFER_ALLOC

The (op) parameter is ZBUFFER_ALLOC.

The HP98721 device uses offscreen frame buffer memory for Z-buffering. This
gescape controls offscreen Z-buffer usage so it is only valid to use on systems
which do not have dedicated Z-buffers.

Starbase uses off-screen memory to keep data to make various primitives go as
fast as possible. When the HP 98721 driver in opened with the gopen command,
a strip 128 bytes wide and 1024 lines high in the right-most part of the frame
buffer is allocated for Starbase storage. The strip between the left edge of the
undisplayed region and the left edge of Starbase storage in each of the frame
buffers and any undisplayable banks is allocated to Z-buffer area.

The following table shows the maximum number of pixels that can be rendered
in one pass in the default case:

Table HP98721-5. Default Off-Screen Buffer Allocation

Configuration Resolution Comments

8-planes 320x 1024 pixels
16-planes 1280x 1024pixels 8 planes single buffer
16-planes 640xl024 pixels 8 planes double buffer
24-planes 1280x 1024 pixels 8 planes single buffer
24-planes 1280x 1024 pixels 8 planes double buffer
24-planes 960 xl 024 pixels 24 planes single buffer
32-planes 1280 xl 024 pixels 24 planes single buffer

For configurations shown in the table that occupy less than the full screen, the
actual number of pixels that can be rendered in one pass may be less than what is
shown in the table. It depends on the actual physical limits of the viewport area.
If Z-buffer memory is smaller than the amount needed to render the area within
the viewport limits, the primitive data must be sent to Starbase more than once.

This gescape also allows you to allocate off-screen memory for other uses or to
use the Starbase storage area for Z-buffer.

Pass in arg1 the number of 128 byte by 1024 line strips in the displayable banks
to be used for Z-buffering. The minimum number is 1, the maximum number is
6, and the default is 5.

HP98721-22

The arg2 parameter is ignored.

The following example allocates all of the off-screen memory for Z-buffer (this
will wipe out any graphics raster cursors and other raster storage used by this or
other drivers).

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg argl, arg2;

argl.i[O]=6;
gescape(fildes,ZBUFFER_ALLOC,&argl,&arg2);

FORTRAN77 Syntax

real argl(64),arg2(64)
arg1(1)=6
call gescape(fildes,ZBUFFER_ALLOC,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
arg1.i[l] := 6;
gescape(fildes,ZBUFFER_ALLOC,argl,arg2);

Exceptions

The HP 98721 driver uses off screen memory for storing raster cursor information
and FILL_COLOR in CMAP _NORMAL mode. See "Cautions" section of the device
driver for more information. Do not use the storage area if either of these
functions are used. Other drivers may use this area as well. See the appropriate
driver manual.

HP98721-23

ZSTATE_RESTORE

The (op) parameter is ZSTATE_RESTORE.

The HP 98721 device uses offscreen frame buffer memory for Z-buffering. On
devices which have a dedicated Z-buffer, offscreen frame buffer memory is not
used for Z-buffering. Therefore, this gescape is not needed and will have no
effect.

The way off-screen memory is allocated depends on:

• the cmap mode parameter of shade_mode

• whether double buffering is on or off.

• how many banks of memory are installed.

• viewport area.

• the ZBUFFER_ALLOC gescape setting.

This gescape was designed specifically to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, you need to draw a
primitive in the overlay planes to use the same Z-buffer used to draw the object in
the image planes. When the HP 98721 driver is opened to the overlay planes and
hidden-surface is turned, on the driver will use only the memory in the off-screen
part of bank 0 by default. This gescape allows you to save a couple of internal
variables that specify the current Z-buffer allocation in the image planes then
restore that allocation in the overlay planes. Of course this method will only
work if there is enough off-screen memory to support a one pass Z-buffer.

To get a three-dimensional cursor effect, this gescape must be used in conjunction
with another gescape. The gescape ZWRITE_ENABLE allows the primitives to be
drawn using the Z-buffer, but they do not modify the Z-buffer.

HP98721-24

The following sequence must be observed for the overlay cursors to work properly:

/* open driver in image planes */

fildes=gopen(lI/dev/crt ll ,OUTDEV,"hp9872l ll ,INITITHREE_DIMODEL_XFORM);

/* setup commands that affect zbuffer allocation */
view_port(fildes,x1,y1,x2,y2); /* if desired */
shade_mode(fildes,mode,shade); /* if desired */
double_buffer(fildes,on,planes);
gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1);
pass=hidden_surface(fildes, 1 ,cull) ;

/* if desired */
/* if desired */

/* pass must be 1 */
/* zbuffer now setup. Save state */
gescape(fildes,ZSTATE_SAVE,&arg1,&arg2); /* arg2 has info */

/* don't forget to clear zbuffer */
zbuffer_switch(fildes, 1) ;
draw_complex_object() ;
gclose(fildes);

/* open driver in overlay planes */
fildes=gopen(lI/dev/overlayll ,OUTDEV, IIhp98721 II ,INITITHREE _DIMODEL_XFORM);

/* Setup commands that effect zbuffer allocation */
view_port(fi1des,x1,y1,x2,y2); /* exactly as above */
gescape(fildes,ZBUFFER_ALLOC,&arg1,&arg1); /* exactly as above */

/* use following for double bffered cursors, otherwise not necessary */
double_buffer(fildes,TRUEIINIT,1);

/* set the bactground to see thru to image planes */
/* must happen after double buffer for correct effect */
arg1[O]=O;
gescape(fildes,R_TRANSPARENCY_INDEX,&arg1,&arg1);

hidden_surface(fildes,1,cull);

HP98721-25

1* zbuffer now setup. Now restore state *1
1* must corne after hidden surface turned on */
gescape(fildes.ZSTATE_RESTORE.&arg2.&arg2); /* arg2 has info *1

1* disable zbuffer writes. *1
arg1[O]=O;
gescape(fildes.ZWRITE_ENABLE.&arg1.&arg1);

draw_cursor 0 ;
gclose(fildes) ;

The gescape ZSTATE_SAVE must occur after hidden_surface is turned on. After
the call, arg2 contains two integers: arg2 [0] contains a bit mask of the banks
used in the primary Z-buffer, and arg2 [1] contains the bit mask for the secondary
Z-buffer.

The gescape ZSTATE_RESTORE must occur after hidden_surface is turned on.
The arg1 parameter should contain the two integers that were returned in arg2
of the ZSTATE_SAVE gescape.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1. arg2;

gescape(fildes.ZSTATE_SAVE.&arg1.&arg2);
arg1.i[O]=arg2.i[O] ;
arg1.i[1]=arg2.i[1] ;
gescape(fildes.ZSTATE_RESTORE.&arg1.&arg2);

FORTRAN77 Syntax

integer*4 arg1(64).arg2(64)

call gescape(fildes.ZSTATE_SAVE.arg1.arg2)
arg1(1) =arg2 (1)
arg1(2)=arg2(2)

call gescape(fildes.ZSTATE_RESTORE.arg1.arg2)

HP98721-26

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl.arg2:gescape_arg;

begin
gescape(fildes.ZSTATE_SAVE.argl.arg2);
argl.i[l] :=arg2.i[1];
argl.i[2] :=arg2.i[2];
gescape(fildes.ZSTATE_RESTORE.argl.arg2);

HP98721-27

The (op) parameter is ZSTATE_SAVE.

The HP 98721 device uses offscreen frame buffer memory for Z-buffering. On
devices which have a dedicated Z-buffer, offscreen frame buffer memory is not
used for Z-buffering. Therefore, this gescape is not needed and will have no
effect.

The way off-screen memory is allocated depends on:

• the cmap mode parameter of shade_mode.

• whether double buffering is on or off.

• how many banks of memory are installed.

• viewport area.

• the ZBUFFER_ALLOC gescape setting.

This gescape was designed specifically to allow the creation of three-dimensional
cursors in the overlay planes. To accomplish this objective, one needs to get a
primitive drawn in the overlay planes to use the same Z-buffer used to draw the
object in the image planes. When the HP 98721 driver is opened to the overlay
planes and hidden_surface is turned on, the driver will use only the memory in
off-screen part of bank 0 by default. This gescape allows you to save a couple of
internal variables that specify the current Z-buffer allocation in the image planes
then restore that allocation in the overlay planes. Of course this method will
only work if there is enough off-screen memory to support a one pass Z-buffer.

To get a three-dimensional cursor effect, this gescape must be used in conjunction
with another gescape. The gescape ZWRITE_ENABLE allows the primitives to be
drawn using the Z-buffer but, they do not modify the Z-buffer.

The following sequence must be observed for the overlay cursors to work properly:

/* open driver in image planes */
fildes=gopen("/dev/crt",OUTDEV,"hp9872l",INITITHREE_DIMODEL_XFORM);

/* setup commands that affect zbuffer allocation */
view_port(fildes,xl,yl,x2,y2); /* if desired */
shade_mode(fildes,mode,shade); /* if desired */
double_buffer(fildes,on,planes); /* if desired */
gescape(fildes,ZBUFFER_ALLOC,&argl,&argl); /* if desired */

HP98721-28

pass=hidden_surface(fildes,l,cull); /* pass must be 1 */
/* zbuffer now setup. Save state */
gescape(fildes,ZSTATE_SAVE,&argl,&arg2); /* arg2 has info */

/* don't forget to clear zbuffer */
zbuffer_switch(fildes,l);
draw_complex_object();
gclose(fildes);

/* open driver in overlay planes */
fildes=gopen(lI/dev/overlayll,OUTDEV, IIhp98721 II ,INITITHREE _DIMODEL_XFORM);

/* Setup commands that effect zbuffer allocation */
view_port(fildes,xl,yl,x2,y2); /* exactly as above */
gescape(fildes,ZBUFFER_ALLOC,&argl,&argl); /* exactly as above */

/* use following for double bffered cursors, otherwise not necessary */
double_buffer(fildes,TRUEIINIT,l) ;

/* set the bactground to see thru to image planes */
/* must happen after double buffer for correct effect */
argl[O]=O;
gescape(fildes,R_TRANSPARENCY_INDEX,&argl,&argl);

hidden_surface(fildes,l,cull) ;

/* zbuffer now setup. Now restore state */
/* must come after hidden surface turned on */
gescape(fildes,ZSTATE_RESTORE,&arg2,&arg2); /* arg2 has info */

/* disable zbuffer writes. */
arg1[O] =0;
gescape(fildes,ZWRITE_ENABLE,&argl,&argl) ;

draw_cursor 0 ;
gclose(fildes);

The gescape ZSTATE_SAVE must occur after hidden-surface is turned on. After
the call, arg2 contains two integers: arg2 [0] contains a bit mask of the banks
used in the primary Z-buffer, and arg2 [1] contains the bit mask for the secondary
Z-buffer.

HP98721-29

The gescape ZSTATE_RESTORE must occur after hidden_surface is turned on,
and argl should contain the two integers that were returned in arg2 or the
ZSTATE_SAVE gescape.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg argl, arg2;

gescape(fildes,ZSTATE_SAVE,&argl,&arg2);
argl.i[O]=arg2.i[O] ;
argl.i[1]=arg2.i[1] ;
gescape(fildes,ZSTATE_RESTORE,&argl,&arg2);

FORTRAN77 Syntax

integer*4 argl(64),arg2(64)

call gescape(fildes,ZSTATE_SAVE,argl,arg2)
argl (1) =arg2 (1)

argl(2)=arg2(2)
call gescape(fildes,ZSTATE_RESTORE,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
gescape(fildes,ZSTATE_SAVE,argl,arg2);
argl.i[l] :=arg2.i[1];
argl.i[2] :=arg2.i[2];
gescape(fildes,ZSTATE_RESTORE,argl,arg2);

HP98721-30

Performance Tips

1. If only the HP 98721 driver and the ITE are accessing the graphics device
it is safe to turn off the semaphore operations. This can result in a 10 to
20 percent speed increase. If a tracking process is initiated, semaphores
will automatically be turned on. While in most cases the system will work
with the tracking process running and semaphores turned off, there is a
chance that continuous movement of the cursor could halt the graphics
accelerator for a significant period of time. If this is not a problem,
semaphores may be turned off after tracking is initiated.

2. As with any driver, buffering is done to enhance performance. If
buffer_mode is turned off or if an inordinate amount of
make_picture_current calls are done then performance can be degraded
su bstantially.

3. Performance optimizations have been made so that sequential calls of
the same output primitive with no intervening attribute changes or
different primitive calls go faster. For example, the sequence poly­
gon, polygon, polyline, polyline is faster the polygon, polyline,
polygon, polyline. Also, line_color, polyline, polyline is faster
than line_color, polyline, line_color, polyline. So grouping by
primitive and sub grouping primitives by attribute can give substantial
performance improvements.

4. Screen clears will be significantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128 pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc
to convert the bounds of the clear rectangle to device coordinates. Screen
clears to the default vdc_extent will be aligned. Screen clears are also
much faster when the background color index is zero. Screen clears with
a non-zero index require two passes, resulting in slower performance.

5. When doing shaded polygons, the fewer the features, the faster the poly­
gon generation. Positional viewpoint and light sources can significantly
degrade performance.

6. If Starbase echoes are in the overlay plane then graphics performance is
significantly better since it is not necessary to "pick up" the cursor each
time the frame buffer is updated.

HP98721-31

7. The procedure block_move is faster than block_read or block_write
since the hardware frame buffer block mover can be used.

8. The performance of block_read and block_write is significantly better
if both the source and destination begin on the same byte boundary since
data can be transferred 32 bits at a time rather than one byte at a time.
For example, one way to ensure this condition is to define pixel arrays
as type short (16-bit integers) and start block_read and block_write
actions on even pixels only. This can more than double performance.

9. With dithering, shading, and Z-buffering off, the SRX rendering engine
runs at full speed while rendering flat shaded polygons. These three
rendering techniques slow the rendering of polygons on the SRX. This is
especially noticeable on large polygons. Turning on anyone of the three
could noticeably lower the rendering performance.

When using the full 24 planes, dithering is turned off by default, and 12/12
double buffering will turn dithering on by default. To turn dithering off
again, use fill_dither (fildes, 1).

Using the pattern gescape or replacement rules that require extra reads
of the frame buffer (e.g. (source) or (destination)) will also degrade
performance. It takes time to do the extra reads.

10. Typically, the SRX rendering engine renders primitives from its internal
buffer as the system CPU is doing other things. Substantial performance
benefits can be realized from this parallel processing.

However, certain operations will cause the CPU to wait for the SRX to
finish emptying its buffer. An example of this wait is the
make_picture_current operation. Also, any operation that reads
information from the SRX will cause this wait to occur. Following are
some typical operations that read values from the SRX:

HP98721-32

a. Many two-dimensional primitives used in three-dimensional mode
read the Z value from the SRX. The following primitives are exam­
ples: text2d, polymarker2d, arc, ellipse, and spline_curve2d.
The solution is to always use three-dimensional primitives when
in three-dimensional mode.

b. Two operations read the matrix values from the SRX:
pop_matrix2d and pop_matrix3d. If the values in the popped

(
\

Cautions

matrix are not needed, use pop_matrix, which does not cause any
information to be read from the SRX.

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using the gescape functions) should be done with care since
other processes access this region. The HP 98720 and HP 98721 drivers
use a 128x1024 strip of off-screen memory that begins at (1920,0).
The -HP 98721 driver in particular uses the rectangular area of 64x 196
located at (1984,828). This area is used to store the fill pattern when in
CMAP _NORMAL mode and three 64 x 64 areas for storing the raster cursor,
raster cursor transparency pattern, and the saved raster. If the HP 98721
driver is not being used in CMAP _NORMAL mode, raster cursors are not
being used in the graphics planes and no HP 98720 drivers are opened to
the graphics planes, the area can be safely used for more zbuffer or other
purposes. If the HP 98721 driver is opened to the overlay planes, it is not
recommended that any of the overlay off-screen be used. The overlay off­
screen contains the ITE font (which is regenerated when control-shift-reset
is done on the ITE keyboard) and may contain any number of window
system fonts depending on the current window usage.

2. Polygons of up to 255 vertices are supported. If a polygon has more than
255 vertices, only the first 255 vertices are displayed.

3. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures,
for example, that process A will not change the replacement rule while
process B is in the middle of filling a polygon. It also prevents the terminal
(tty) driver from overwriting any graphics processes that are outputting
to the device. The driver unlocks the device when finished processing
output. Some of the gescape functions listed in this chapter allow the

HP98721-33

user to change this locking mechanism and should be used with great
caution.

4. When using the HP 98720 device with a graphics accelerator it is possible
for illegal operations to cause the transform engine or scan converter
hardware to enter an unknown state. If this happens, Starbase will report
an error the next time it tries to use the hardware. The user will see this
as a Transform engine timed out or Hardware/scan_converter time
out error. These are Starbase errors 14 and 52 respectively. This is a
very serious error condition. If the HP 98721 Device Driver is being used,
this is a fatal error. When this error is discovered, Starbase reports the
error and aborts execution.

If an application needs to take some emergency action before an untimely
termination, such as saving valuable data, the application should check
for these error conditions and take appropriate measures. Errors may be
caught by an application using the gerr_control procedure described in
the Starbase Reference manual.

It is also possible to avoid the termination completely if the application's
error handler does not return control to Starbase. It is, however,
impossible to proceed with any graphics efforts using the accelerator.

If the HP 98720 or HP 98720w drivers are being used to access the
hardware and if they detect such an error, they will report the error
condition, reset the transform engine, and continue (since they do not use
the accelerator hardware).

HP98721-34

Contents

The HP 98730 Device Driver
Device Description
Setting Up the Device On Series 300

DIO-I Switch Settings.
DIO-II Switch Settings

Example Program to Reset the HP 98730
Setting Up the Device on the Series 800 . .
Address Space Usage On Series 300
Special Device Files (mknod) On Series 300 .
Special Device Files (mknod) On the Series 800
Linking the Driver . .
U sage and Restrictions

Transparency Index.
HP Windows/9000 See-Thru Color
X Window System See_ Thru Color
Cursors

Device Initialization
Parameters for gopen
Syntax Examples ..

For C Programs: .
For FORTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Offscreen Memory Usage

Device Defaults
N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults

HP98730-1
HP98730-4
HP98730-4
HP98730-6
HP98730-9
HP98730-9
HP98730-10
HP98730-10
HP98730-12
HP98730-13
HP98730-14
HP98730-15
HP98730-15
HP98730-16
HP98730-16
HP98730-18
HP98730-18
HP98730-20
HP98730-20
HP98730-20
HP98730-20
HP98730-20
HP98730-20
HP98730-21
HP98730-21
HP98730-21
HP98730-21
HP98730-22

Contents-1

Semaphore Default
Line Type Defaults
Default Color Map
Red, Green and Blue

Starbase Functionality
Commands Not Supported
Commands Conditionally Supported

Fast Alpha and Font Manager Functionality
Parameters for gescape
PerformanceA Tips
Cautions

Contents-2

HP98730-22
HP98730-22
HP98730-23
HP98730-24
HP98730-26
HP98730-26
HP98730-26
HP98730-27
HP98730-27
HP98730-28
HP98730-30

HP98730
The HP 98730 Device Driver

Device Description
This graphics display station includes an HP 98730A Graphics Controller, a
high resolution 16 or 19 inch color display (purchased separately), an optional
accelerator and Z-buffer, and optionally 8, 16, or 24 planes of frame buffer
memory. The graphics controller plugs into an I/O slot of the SPUs. (See the
"Introduction" section of this manual for systems supporting this controller.)

Two device drivers are provided to access the HP 98730 display:

• HP 98730-The HP 98730 Device Driver is used to access the graphics
display without using the optional graphics accelerator. Access can be
with or without HP Windows 9000 and the X Window System .

• HP 98731-The HP 98731 Device Driver is used to access the graphics
display using only the optional graphics accelerator, with or without
HP Windows/9000 and the X Window System.

This section covers the HP 98730 Device Driver, see the "HP 98731 Device Driver"
section for information on using the HP 98731 driver.

The display has a resolution of 1280x 1024 pixels. The standard color display
system has eight planes of frame buffer to provide 256 simultaneous colors. You
can add optional memory in banks of eight planes each. A fully configured system
consists of three banks of frame buffer for full 24 bit per pixel color, dedicated
boards for full 16 bit Z-buffer capability with graphics acceleration, and four
overlay planes for non-destructive alpha, cursors, or graphics.

An 8-plane configuration allows 256 colors to be displayed simultaneously from
a pallet of 16 million. A 16-plane system is like two 8-plane frame buffers where
only one 8-plane buffer is displayed at any time. This configuration is useful for
double buffering. When three banks of frame buffer are installed, the system may
be configured to display eight bits red, eight bits green and eight bits blue per

HP98730-1

pixel. Double buffering may also be achieved at a resolution of four bits red, four
bits green and four bits blue.

The display system is a bit-mapped device with special hardware for:

• Write enable/disable individual planes.

• Video enable/disable individual planes.

• Memory writes with specified replacement rule (see drawing_mode In
Starbase Reference manual).

• Video blinking of individual planes.

• Video blinking of individual color map locations.

• Arbitrary sized rectangular memory to memory copies.

• Pixel pan and zoom.

• Analog blending of frame buffer outputs.

• Raster and vector cursors.

The display is organized as an array of bytes, with each byte representing a pixel
on the display. (On Series 800 systems the display can be accessed on a 32-bit
word/pixel basis.) When eight planes are installed, color map indexes range from
0-255. The color map is a RAM table that has 16 or 256 addressable locations
and is 24 bits wide (eight bits each for red, green and blue). Thus, the pixel value
in the frame buffer addresses the color map, generating the color programmed at
that location. (32-bit word/pixel basis.) When eight planes are installed, color
map indexes range from 0-255. The color map is a RAM table that has 16 or 256
addressable locations and is 24 bits wide (eight bits each for red, green and blue).
Thus, the pixel value in the frame buffer addresses the color map, generating the
color programmed at that location.

In addition to the frame buffer banks of eight planes each, 4-overlay planes are
provided. These overlay planes have their own unique color map, separate from
the color map used for the image planes. This color map consists of sixteen 24-bit
entries, allowing the user to select sixteen colors from the full pallette of over 16
million choices. In addition, each entry in the overlay color map may be set to
be dominant, non-dominant, or blended with the image planes.

A dominant entry causes all pixels in the overlays set to that value to display
the color in the overlay map, regardless of values in the image planes "below"

HP98730-2

/
\

it. A non-dominant entry causes pixels with that value to display the color in
the image planes "below". A blended entry will cause the analog color output
from the overlays to be summed with the analog output from the image planes.
Color values are clamped to their full value of 1.0 if the sum would exceed this
saturation value.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, on displays that run it, the Internal Terminal Emulator (ITE) uses
three of the overlay planes for alpha information. This way there is no interaction
between ITE text and images in the graphics planes. Windows/9000 also runs
in the overlay planes. The X Window system uses both the overlay and image
planes. To do graphics in the overlay planes the HP 98730 Device Driver may be
opened directly to the overlay planes as if they were a separate device (refer to
"Setting up the Device" in this driver for more information).

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase does
provide the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer (this gescape is discussed in
the appendix of this manual). Frame buffer locations are then addressed relative
to the returned address. The first byte of the frame buffer (byte 0) represents
the upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame buffer are not displayable. Byte 2048 is the first (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

If more than one bank of optional frame buffer is installed then bank switching
must be used to access the additional memory. A number of Starbase calls may
set the bank register so it is advisable to call bank_switch just prior to making
accesses to the frame buffer pointer to ensure desired results.

The off-screen portion of the frame buffer may be accessed via the gescape
function R_FULL_FRAME_BUFFER also documented in the appendix. Care should
be taken when using this gescape since other processes, Starbase, and the window
system access the frame buffer off-screen memory.

HP98730-3

Setting Up the Device On Series 300
The HP 98730 Device Driver can be used with the graphics display configured in
either internal or external DIO-I address space, or in DIO-II address space. Refer
to the Configuration Reference Manual for a description of internal and external
DIO-I address space and DIO-II address space.

Note If the HP 98730 is configured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that device.
Since it is the ITE that normally initializes the display, external
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It may
also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows
application program. An example program which could be called
from / etc/rc during power-up is given at the end of this section.
For more details concerning the effects of RESET_DEVICE, see the
"Device Initialization" information in this section.

The Graphics Interface card may be installed in any DIO slot in the computer's
backplane or in any I/O slot of the expander.

010-1 Switch Settings

The graphics interface card has a single 8-bit address select switch. Looking
at the switches so that the dot is in the lower left corner, the leftmost switch
is labeled DIOl to the bottom (0), and DI02 to the top (1). To configure the
system in DIO-I space, this switch must be set to the DIOl (0) position. The next
switch to the right is labeled INT and determines if the HP 98730 workstation is
configured as an internal or external display. In addition, the next six switches
to the right are labeled for select code determination (five of the six switches are
actually used for the select code). There is also a jumper labeled JPl.

HP98730-4

The frame buffer uses two megabytes of I/O address space, starting at FB_BASE.
The jumper (JP1) determines the address of FB_BASE.

JP1 is set to $200K FB_BASE address is $200000

JP 1 is set to $800K FB _BASE address is $800 000

Systems which use the HP 98730 display as a DIO-I system console will map the
frame buffer to $200000; systems which use the display as an external DIO-I
device will map the frame buffer to $800000.

The control space requires 128 Kbytes of space, starting at CTL_BASE. The six
switches labeled SC determines the address of CTL_BASE. The HP 98730 may be
configured as an external display or as' an internal display. Since only 64 Kbytes
of space is normally allotted for external I/O select codes, two consecutive select
codes will be used when configuring the device as an external display.

The following table lists the binary switch settings with the corresponding values
of CTL_BASE for external I/O settings. The table also lists the select codes that
are used for each setting.

Table HP98730-1. 010-1 Control Space Settings (External I/O)

Switch Setting DIO-I
MSB to LSB CTL_BASE Select Code

01101010 $6AOOOO 10-11
01101100 $6COOOO 12-13
01101110 $6EOOOO 14-15
01110000 $700000 16-17
01110010 $720000 18-19
01110100 $740000 20-21
01110110 $760000 22-23
01111000 $780000 24-25
01111010 $7AOOOO 26-27
01111100 $7COOOO 28-29
01111110 $7EOOOO 30-31

For a system console (internal) the switch setting is 01010110 and the CTL_BASE
is $560000.

HP98730-5

If the HP 98730 is configured as the system console, the CTL_BASE needs to be
placed at $560000 and the JP1 must be open (no jumper-or jumper is on one
pin), which is an interal I/O setting. If the device is not used 3;S the system
console, then the control space should not be placed in internal I/O space. It
is likely to overlap the address space of other system hardware. In this case, an
external I/O space setting should be selected with two consecutive select codes
which are not used by the system.

010-11 Switch Settings

If the left-most switch is set to DI02 (1), the HP 98730 device can be used in
DIO-II address space. In this mode, the next seven switches determine the DIO­
II select codes to be used. An HP 98730 device will use three DIO-II select codes.
Both the frame buffer and control space reside in the select code areas, so the
jumper JP 1 is ignored.

The control space requires 4 Mbytes of space, starting at CTL_BASE. The seven
switches labeled "se" at the top of the select switch determine the address of
CTL_BASE. The frame buffer requires 8 Mbytes of space, starting at FB_BASE.

HP98730-6

(
\

Table HP98730-2. 010-11 Control Space Settings

Switch Setting DIO-II
MSB to LSB CTL_BASE Select Code FB_BASE

10000101 $01400000 133 $01800000
10001001 $02400000 137 $02800000
10001101 $03400000 141 $03800000
10010001 $04400000 145 $04800000
10010101 $05400000 149 $05800000
10011001 $06400000 153 $06800000
10011101 $07400000 157 $07800000
10100001 $08400000 161 $08800000
10100101 $09400000 165 $09800000
10101001 $OA400000 169 $OA800000
10101101 $OB400000 173 $OB800000
10110001 $OC400000 177 $OC800000
10110101 $OD400000 181 $OD800000
10111001 $OE400000 185 $OE800000
10111101 $OF400000 189 $OF800000
11000001 $10400000 193 $10800000
11000101 $11400000 197 $11800000
11001001 $12400000 201 $12800000
11001101 $13400000 205 $13800000
11010001 $14400000 209 $14800000
11010101 $15400000 213 $15800000
11011001 $16400000 217 $16800000
11011101 $17400000 221 $17800000
11100001 $18400000 225 $18800000
11100101 $19400000 229 $19800000
11101001 $1A400000 233 $1A800000
11101101 $1B400000 237 $1B800000
11110001 $1C400000 241 $1C800000
11110101 $1D400000 245 $1D800000
11111001 $1E400000 249 $1E800000
11111101 $1F400000 253 $1F800000

DIO-II displays may be used as the system console or as external displays. In
order to use the display as system console, it must be configured as the first

HP98730-7

DIO-II display in the system, and there must be no DIO-I console, or remote
terminals. Being the first DIO-II device means that it has the lowest DIO-II
select code in the system. In order to use a HP 98730 device as a DIO-II system
console, select code 133 is recommended.

Note It is necessary to increase some of the HP-UX tunable system
parameters due to the size of the DIO-II mapping of an HP 98730
device. For details on how to reconfigure your kernel, refer
to the HP- UX System Administrator Manual (particularly the
"Configuring HP-UX" section in "The System Administrators
Toolbox" and the "System Parameters" appendixes.

It is essential that you consult the above referenced HP-UX
documentation before you attempt to reconfigure your system.
It is possible to adversely affect your HP-UX system if a mistake
is made. Ensure you have an understanding of these procedures
before proceding.

In order to run an HP 98730 device in DIO-II the following system parameters
must have these minimum values:

shmmax Oxcooooo

shmmaxaddr Ox1800000

dmmin 16

dmmax 1024

dmtext 1024

dmshm 1024

HP98730·8

Example Program to Reset the HP 98730

/*
* Starbase program: reset98730.c
* Compile: cc -0 reset98730 reset98730.c -ldd98730 -lsbl -lsb2
* Destination: /usr/bin
* Execute: add line to the /etc/rc - "/usr/bin/reset98730 /dev/crt.external"

*
* Example program to be put in /etc/rc for resetting an external HP 98730
* device during power-up.
*/
#include <starbase.c.h>

main(argc,argv)
int argc; char *argv[] ;
{

int fildes;

if «fildes = gopen(argv[l] ,OUTDEV, "hp98730" ,INITIRESET_DEVICE» < 0)
printf("External HP 98730 %s initialization failed.\n",argv[l]);

else {

}

}

printf("External HP 98730 %s initialization succeeded. \n" ,argv[l]);
gclose(fildes);

Setting Up the Device on the Series 800
Up to four HP 98730 devices can be connected to a Series 800 SPU using four
AI017 A interface cards. However, it is recommended that only two HP 98730
devices have the Internal Terminal Emulator (ITE) or window systems running
on them. With the AI047 A interface, only two devices can be connected, both
of which may run an ITE.

The Series 800 ITE supports power-fail recovery on the HP 98730 device, but
Starbase does not support this feature. If you want to support power fail, you
must catch the power-fail signal and save any Starbase state needed. Then,
gelose the device and gopen the device again when the power turns on.

HP98730-9

Address Space Usage On Series 300
The HP 98730 device is memory mapped into a processes virtual address space,
starting at the value specified by the environment variable SB_DISPLA Y _ADDR.
If this variable is not set, then mapping defaults to OxBOOOOO. The control
space starts at this address and grows towards larger address values. After the
control space comes the frame buffer, then shared memory mapped for Starbase
drivers. The size of the address space used for control space and the frame buffer
depends on whether the device is used in DIO-I or DIO-II. In DIO-I, control
space consumes 128 Kbytes and the frame buffer uses 2 Mbytes. In DIO-II,
control space is 4 Mbytes and the frame buffer is 8 Mbytes. The size of the
Starbase drivers' shared memory is always the same, and is slightly less than 300
Kbytes.

If your application maps memory pages to specific addresses, or needs a large
stack, then you may need to adjust SB_DISPLAY _ADDR to avoid conflicts.

Special Device Files (mknod) On Series 300
The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mlmod(1M) information
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however the name that is suggested for these
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mlmod command.

When the device is at the internal DIO-I address (refer to the "Switch Settings"
section) the mlmod parameters should create a character special device with a

HP98730-10

major number of 12 and a minor number of O. Note that the leading Ox causes
the number to be interpreted hexadecimally.

mknod / dev / crt c 12 OxOOOOOO

When the device is at an external DIO-I or any DIO-II address (refer to the
"Switch Settings" section) the mknod parameters should create a character special
device with a major number of 12 and a minor number of Ox(sc)0200 where (sc)
is the two-digit external select code in hexadecimal notation.

mknod /dev/crt c 12 Ox(sc)0200

The HP 98730 Device Driver may also be used for the overlay planes in graphics
mode. The minor number may be set to cause Starbase drivers to use either
three or four overlay planes. When running to three planes, one plane is still
reserved for cursors. When running to all four overlays, only the hardware cursor
is available for Starbase graphics echoes. If more than one echo is requested,
or if another process is using the cursor, the request for another echo will fail.
Note that since the terminal emulator and window system operate in the overlay
planes also, there will be interactions with these processes if a graphics driver is
opened in this manner while these processes are present. To open the HP 98730
Device Driver to three overlay planes instead of the graphics planes, the last byte
of the minor number must be one. To run to all four overlays, the last byte of
the minor number must be three.

For example, when the device is at an internal DIO-I address, the mknod
parameters for the overlay device, with one plane reserved for cursors, should
create a character special device with a major number of 12 and a minor number
of 1.

mknod / dev / ocrt c 12 Ox000001

To create a device file for all four overlays, the command would be:

mknod /dev/o4crt c Ox000003

HP98730-11

When the device is at an external DIO-I address or any DIO-II address (refer
to the section on "Switch Settings") the mknod parameters for the same device
should create a character special device with a major number of 12 and a minor
number of Ox(sc)0201 or Ox(sc)0203 where (sc) is the two-digit select code.

mknod /dev/ocrt c 12 Ox(sc)0201

or

mknod/dev/ocrt c 12 Ox(sc)0203

Special Device Files (mknod) On the Series 800
The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for further details. Since superuser capabilities are
needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP -UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file, however, the names that are suggested for the
devices are crt, crtO, crt 1, or crt2.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When creating the device file the mknod parameters should create a character
special device with a major number of 14 and a minor number of the format
below (where (lu) is the two-digit hardware logical unit number):

mknod /dev/crtx c 14 OxOO(lu)OO

The HP 98730 Device Driver may also be opened to the overlay planes in graphics
mode. If the last byte of the minor number is one, 3-overlay planes are used for
graphics (and the fourth plane is reserved for cursors for processes running in
the image planes). If the last byte of the minor number is three, 4-overlay planes
are used for graphics. Since the ITE and window system operate in the overlay

HP98730-12

planes also, there will be interactions with these processes if a graphics driver is
open in this manner while these processes are present.

To open all 4-overlay planes when the device is at the internal address, the mlmod
parameters should create a character special device with a major number of 14
and a minor number of three.

mlmod /dev/ocrt4 c 14 OxOO(lu)03

To open three overlay planes when the device is at the internal address, the mlmod
parameters should create a character special device with a major number of 14
and a minor number of one.

For example, the mlmod parameters for a 3-plane overlay device should create
a character special device with a major number of the format indicated below
(where (lu) is the hardware logical unit number):

mlmod /dev/ocrtx c 14 OxOO(lu)Ol

Linking the Driver
The HP 98730 Device Driver is located in the /usr /li b directory with the file
name Ii bdd98730 . a. This device driver may be linked to a program using the
absolute path name /usr/lib/libdd98730. a or an appropriate relative path
name, or by using the -1 option -ldd98730. For example: to compile and link a
program for use with this driver, use:

cc example.c -ldd98730 -lsb1 -lsb2 -oexample
fc example.f -ldd98730 -lsb1 -lsb2 -oexample
pc example.p -ldd98730 -lsb1 -lsb2 -oexample

HP98730-13

Usage and Restrictions
When a device file for the overlay planes is used at gopen time. Bank switching
is not supported.

Windows/9000 and graphics applications that want to talk to a graphics window
may use this device driver. If the graphics window is in the overlay planes, this
device driver does not support:

• Bank switching.
• Z-buffering.
• double buffering when using three overlay planes. (Double buffering in a

window in the overlay planes is supported to 4-overlay planes. Refer to
HP Windows/9000 Documentation for double buffering in windows.)

• Shading.
• The transform engine.

If the graphics window is in the image planes, this device driver does not support:
• Z-buffering.
• Shading.
• The transform engine. ~

Refer to the HP Windows/9000 Programmer's Manual for information on
graphics windows in the image plane.

Graphics applications that want to talk to a local X window can use this device
driver. If the window is in the overlay planes, this device driver does not support:

• Bank switching.
• Z-buffering.
• Double buffering.
• Shading.
• The transform engine.

If the graphics window is in the image planes, this device driver does not support:
• Z-buffering.
• Shading.
• The transform engine.

HP98730-14

Transparency Index

There are four overlay planes in the HP 98730 display. Even though these planes
can display 16 colors simultaneously, only 15 are available because one color
is reserved for the transparency color. By default, this color is index 7 or 15,
depending on the overlay depth. When the transparency color's index is written
into the overlay planes, the observed color is that of the image planes. The
transparency color is set when the X 11 server is started and cannot be changed
until the server is shut down.

HP Windows/9000 See-Thru Color

Windows/9000 runs in the overlay planes on the HP 98730 Display Station and
provides the following:

• Applications can run in the image planes independent of Windows/9000.

• Applications can create windows in the image planes via Windows/9000
and also have graphics windows in the overlay planes. (Graphics windows
created in the image planes still have their borders in the overlay planes).
Refer to the HP Windows/gOOD Programmer's Manual for information on
creating windows in the image planes.

• Windows/9000 can provide both opaque and transparent backgrounds.

The see-thru facility allows you to create a transparent window. Refer to the
see-thru information in Windows/9000 documentation.

By default index 3 (yellow) is reserved as see-thru. The HP 98730 Device
Driver recognizes the Starbase environment variable SB_OV _SEE_ THRU_INDEX that
will allow the user to set the see-thru color map index to some other value.
This environment variable will only have effect when using Windows/9000 or
when running the program on the raw device. Programs running in graphics
windows in the overlay planes use the SB_OV _SEE_ THRU_INDEX value in effect at
Windows/9000 startup time. Resetting this variable has no effect on already
active programs using this driver. Any value out of the range 0-7, (or 0-15) if
the window system was started to four overlay planes instead of three) will be
ignored except for -1. The value -1 can be used to force no see-thru color map
entries to be defined. If this environment variable is not set, or is set to an illegal
value, the driver will default to using index 3 as see-thru.

HP98730-15

When running the raw device, an explicit call to define_color_table will cause
see-thru entries to be set back to dominant. When running to an overlay graphics
window, an explicit call to define_color_table will preserve the see-thru entry
currently defined to the window system.

Since the TermO Server, Graphics Server, and Window Manager all use the
HP 98730 driver to talk to this display, this environment variable also affects
them. For example, the following situation will cause your TermO text to seem
to disappear:

1. A program sends color escape sequences to TermO to get yellow-on-black
characters.

2. The see-thru index corresponds to what used to be yellow (3).

3. The image planes are cleared to black so that see-thru shows black.

In another example, suppose your Windows/9000 environment variables are set
up to have your window borders cyan-on-black. The borders will appear invisible
if:

1. You set SB_DV_SEE_THRU_INDEX=5 (cyan) before powering up Win­
dows/9000.

2. The image planes are cleared to black so that see-thru shows black.

X Window System See_ Thru Color

The X Window system always uses color 7 (15 for 4-plane devices) as the see-thru
color. This cannot be changed.

Cursors

If no processes have opened all four overlay planes, then the fourth overlay plane is
used for overlayed software cursors either by the HP 98730 or the HP 98731 drivers
running in the image planes. The HP 98730 driver running in the overlay planes
never uses the fourth overlay plane for cursors. Instead, either the hardware
cursor or all three (four) overlay planes are used for cursors.

You can think of the fourth overlay plane used for cursors as a separate "cursor
plane". Any data in the cursor plane will be displayed over data in the graphics
planes. Data in the other three overlay planes will be displayed over data in the
graphics planes and the cursor plane. For example, suppose a graphics application

HP98730-16

is running in the graphics planes while the window manager is running in three
of the overlay planes. If the application has a Starbase cursor in the overlay
cursor plane, the cursor will always be visible inside regions of see-thru because
the cursor has display priority over the graphics. If the cursor is moved outside of
regions of see-thru, it is not visible since the non-see-thru regions in the overlay
planes have display priority over the cursor plane.

The HP 98730 Display Station also supports a hardware cursor that supports all
Starbase echo types. The hardware cursor is drawn to a fifth and sixth overlay
plane accessible only by the hardware cursor. There is only one hardware cursor
available. Usage of the hardware cursor is defined as follows:

1. If an application is running in a Starbase environment only (that is,
Windows/9000 or the X Window system is not running), the hardware
cursor is given to the first process that attempts to use cursors.

2. The X Window system sprite always uses the hardware cursor.

3. By default, if Windows/9000 is active then the window system sprite gets
usage of the hardware cursor. The user may prevent the window system
from using the hardware cursor by setting the WMCONFIG environment
variable appropriately. See the HP Windows/9000 documentation for
details.

4. Via the geseape R_ECHO_CONTROL, there is a mechanism for the user to
control usage of the hardware cursor. This geseape is discussed in the
appendix.

If the hardware cursor is already being used by another process, then software
cursors are used by the HP 98730 driver. The user can control if the software
cursors are overlayed in the fourth overlay plane or reside in the same planes
currently being used for graphics by the geseape R_OVERLAY_ECHO. Refer to the
appendix for a discussion of this geseape.

If a users application never uses cursors, the driver will never attempt to allocate
the hardware cursor. However, once the driver has allocated the hardware cursor,
the driver does not relinquish usage of the hardware cursor until gelose time.

If allocation of the hardware cursor was not successful, resources for the software
cursor area are allocated (that is, offscreen areas for raster echo definitions).
Once resources for software cursors have been allocated, the driver always uses
software cursors and never again attempts to use the hardware cursor.

HP98730-17

The following functions will cause the driver to attempt to allocate cursor
resources (that is, either the hardware cursor or software cursor resources):

• echo_type or define_raster_echo .

• any of the gescapes R_DEF _ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, andR_OV_ECHO_COLORS.

Device Initialization

Parameters for gopen

The gop en procedure has four parameters: Path, Kind, Driver, and Mode.

Path The name of the special device file created by the mknod command
as specified in the last section, e.g. / dev / crt.

Kind Indicates the I/O characteristics of the device. This parameter may

HP98730-18

be one of the following:
• INDEV, Input only.
• OUTDEV, Output only.
• OUTINDEV, Input and Output.

Input may be done with this driver only when opened to an
HP Windows/9000 or X Window system window.

Driver

Mode

The character representation of the driver type. This must be
hp98730. For example:

"hp98730"

'hp98730'//char(O)

'hp98730'

for c.
for Fortran 77.
for Pascal.

The mode control word consisting of several flag bits or ed together.
Listed below are those flag bits which have device-dependent actions.
Those flags not discussed below operate as defined by the gopen
procedure.

• SPOOLED, cannot spool raster devices.

• MODEL_XFORM-Shading is not supported for this device.
However, opening in MODEL_XFORM mode will affect how
matrix stack and transformation routines are performed.

• O-Open the device without clearing the screen. This will set
the color map mode to CMAP _NORMAL, but will not initialize
the color map itself. This will also disable blending if it was
left enabled. This mode will not affect pixel panning and
zooming.

In an X Window the color map mode is initialized consistent
with the X color map.

• INIT -open and initialize the device as follows:
1. Clear frame buffer to Os.
2. Reset the color map to its default values.
3. Enable the display for reading and writing.
4. Restore pixel pan and zoom hardware for normal

viewing, if opened to the image planes.
5. In an X Window a new color map is created.

• RESET_DEVICE-open and reset the device as follows:
1. Clear frame buffer and overlays to Os.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. Restore pixel pan and zoom hardware for normal

viewing, if opened to the image planes.

HP98730-19

6. Reset the graphics accelerator.

Note that the RESET_DEVICE flag bit should be used with
caution: it will adversely affect any other processes using the
device. This flag bit is intended to reset a device completely:
this should only be necessary for devices in an unknown state,
such as a device powered up in an external I/O space. Most
programs should not use this flag bit.

Syntax Examples

To open and initialize an HP 98730 device for output:

For C Programs:

fildes = gopen(" /dev/crt", DUTDEV, "hp98730", INIT) ;

For FORTRAN77 Programs:

fildes = gopen('/dev/crt'//char(O),DUTDEV, 'hp98730'//char(O) ,INIT)

For Pascal Programs:

fildes = gopen('/dev/crt' ,DUTDEV, 'hp98730' ,INIT);

Special Device Characteristics

For Device Coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279,1023).

Offscreen Memory Usage

Offscreen memory is managed by a global resource manager to insure that
multiple processes do not step on each other when using the offscreen. Offscreen
is used by the device driver for:

• polygon fill patterns
• raster fonts
• raster echo definitions (if software cursors are used)

The offscreen memory is not allocated for any of the above functions unless the
function is used. Therefore, if an application never does filled polygons, never

HP98730-20

uses software cursors, and never uses raster fonts; the driver does not use the
offscreen memory. Refer to the gescape R_OFFSCREEN_ALLOC for information on
using the offscreen areas for personal use.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 or 4 (if running to the
overlay planes), 8, 16, or 24. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16. For devices having 24 or more
planes in CMAP _FULL mode (see shade_mode) dithering is not supported since full
24-bit color is available. If you are double buffering with 12 planes per buffer
then the number of colors allowed in a dither cell is 1, 2, or 4.

Raster Echo Default

The default raster echo is the 8x8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64x64 pixels. The default drawing
mode for the raster echo is 7 (or).

If the driver does not have access to the hardware cursor, by default the raster
echo is written to the same planes currently being used for graphics. For example,
if the HP 98730 driver was opened to the image planes, the image planes are used
for raster cursors. If the HP 98730 driver was opened to three overlay planes, the
those three overlay planes are used for raster cursors. The location of software

HP98730-21

raster and software non-raster cursors can be changed using the gescape function
R_OVERLAY _ECHO.

Color Planes Defaults

In a raw display or HP Windows/gOOD window, the default configuration is an
8-plane color mapped system regardless of the number of frame buffer banks
installed. In an X Window the color plane definition is consistent with the X
color map.

All planes in first bank are display enabled. All planes in first bank are write
enabled.

Semaphore Default

Semaphore operations are enabled.

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table HP98730-3.

Line Type Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

HP98730-22

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware color map is used
on raw or HP Windows/9000 color displays. On X Windows the windows current
color map is used.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown in the following table.

Table HP98730-4. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_calor_table procedure to see the rest of the 255 colors.

When INIT is used in the shade_mode procedure call the color map will be
initialized dependent on the mode parameter and the number of frame buffer
banks installed.

mode=CMAP_NORMAL Only one bank of the three banks can be displayed at
a time, unless video blending is enabled.

HP98730·23

mode=CMAP_MONOTONIC

}

mode=CMAP_FULL

Red, Green and Blue

The color map will be initialized as:

for (i=O; i<256; i++) {
cmap[i] .red = cmap[i] .green = cmap[i] .blue = i/255.0;

Only one bank of the three banks can be displayed at
a time, unless video blending is enabled.

With less than three banks installed the color map
will be initialized as three bits red, three bits green
and two bits blue. The three most significant bits are
red and the two least significant bits are blue. Only
one bank of the three banks can be displayed at a
time.

With three or more banks installed the color map
will be initialized as the CMAP _MONOTONIC case above,
the first bank of eight will go through the blue
portion of the color map, the second bank goes
through the green portion and the third bank goes
through the red portion. In this mode the color
map is transparent and the eight bits from each bank
drives the appropriate DAC. The color map could be
subsequently modified in this mode to do things like
gamma correction or double buffering of four bits per
color.

Each file descriptor opened as an output device has a color table associated with
it. If multiple file descriptors are open to the same device, the color table and the
device's color map may not always be identical. The color table does not track
the color map if the device's color map is changed by another file descriptor path.

For Starbase procedures that have parameters for reci, green and blue, the way
the actual color is chosen depends on the current shade_mode setting.

mode=CMAP_NORMAL

HP98730-24

The color map is searched for the color that is
closest in RGB space to the one requested, and that
color map index is written to the frame buffer for
subsequent output primitives. It is more efficient to

select a color with an index rather than specifying a
color with red, blue and green values in this mode due
to the time it takes to figure out which index in the
color table most closely matches the specified color.

mode=CMAP_MONOTONIC The red, green and blue value is converted to an
intensity value using the equation:

O.30*red+O.59*green+O.11*blue

This intensity is converted to an index value by
mapping intensity 0.0 to the minimum index set
by shade_range and intensity 1.0 to the maximum
index set by shade_range. This mode is useful for
displaying a high quality monochrome picture on an
8-plane system from data that produces a high quality
color picture on a 24-plane system.

mode=CMAP_FULL The color values will be mapped directly to an index
with the assumption the color map is setup to a
predefined full color state.

Note Multiple gopen parameters of an X Window will share a single
color map definition. See the Starbase Programming with Xll
manual for more information.

HP98730-25

Starbase Functionality

Commands Not Supported

The following commands are ignored.

backface_control
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue

depth_cue_range
hidden_surface
light_ambient
light_attenuation
light_model
light_source
light_switch
shade_range
surface_coefficients
surface_model
viewpoint
zbuffer_switch depth_cue_color

Commands Conditionally Supported

The following commands are supported under the listed conditions:

block_read, block write

pattern_define

shade_mode

text_precision

vertex_format

HP98730-26

The raw parameter for the block_read and
block_wri te commands is normally ignored by
this driver. To use the raw mode, you must
call the R_BIT _MODE gescape discussed in the
appendix of this manual.

4x4 is the largest supported pattern.

The color map mode may be selected but shading
can not be turned on.

Only STROKE_TEXT precision is supported.

The use parameter must be zero, any extra
coordinates supplied will be ignored.

Fast Alpha and Font Manager Functionality
The HP 98730 Device Driver supports raster text calls from the fast alpha and
font manager libraries. These calls may be made while running in the overlay or
image planes. Since raster fonts consist of one byte per pixel, image plane raster
text is written only to the currently selected bank. This is similar to the operation
of other raster functions such as block_wri teo Fast alpha and font manager fonts
can be optimized. See the Fast Alpha/Font Manager's Programmer's Manual for
further information.

Parameters for gescape
The following gescape functions are common to two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_INDEX-alternate between HP 98730 hardware color maps. This
gescape is not supported while image blending is active. Refer to the
IMAGE_BLEND gescape.

• BLINK_PLANES-blink the display (blink rate is 3.75 Hz for this device)

• IMAGE_BLEND-control analog blending of image plane frame buffer output

• OVERLAY _BLEND-control analog blending of overlay plane frame buffer
output

• PAN _AND _ZOOM-do pixel panning and zooming

• R_BIT _MASK-bit mask

• R_BIT _MODE-bit mode

• R_DEF _ECHO_ TRANS-define raster echo transparency

• R_DEF _FILL_PAT-define fill pattern

• R_DMA_MODE-changes definition of raw for block writes

• R_ECHO_CONTROL-control hardware cursor allocation

• R_ECHO_FG_BG_COLORS-define cursor color attributes

HP98730-27

• R_ECHO_MASK-define a raster echo mask pattern

• R_FULL_FRAME_BUFFER-full frame buffer

• R_GET_FRAME_BUFFER-read frame buffer address

• R_GET_WINDOW_INFO-returns frame buffer address of window

• R_LINE_TYPE-define line style and repeat Length

• R_LOCK_DEVICE-lock device

• R_OFFSCREEN_ALLOC-allocates offscreen frame buffer memory

• R_OFFSCREEN_FREE-frees allocated offscreen frame buffer memory

• R_OV _ECHO_COLORS-select overlay echo colors

• R_OVERLA Y _ECHO-select plane to contain cursor

• R_TRANSPARENCY_INDEX-specify HP 98730 transparency index

• R_UNLOCK_DEVICE-unlock device

• READ_COLOR_MAP-read color map

• SET _BANK_ CMAP-define bank color map to be used for image blending

• SWITCH_SEMAPHORE-semaphore control

PerformanceA Tips

1. If only one process is accessing the graphics display, it is safe to turn off
the semaphore operations (see the SWITCH_SEMAPHORE gescape), and a 10
to 20 percent speed improvement can be obtained. If a tracking process
is initiated, then semaphores will automatically be turned on.

2. As with any driver, buffering is done to enhance performance. Perfor­
mance can be degraded if buffer_mode is turned off or an inordinate
amount of make_picture_current calls are done.

3. Performance optimizations have been made so that sequential calls of
the same output primitive, with no intervening attribute changes or

HP98730-28

different primitive calls, go faster. For example the sequence line_color,
polyline, polyline is faster than line_color, polyline, line_color,
polyline. So grouping by primitive and subgrouping primitives by
attribute can give some performance improvements.

4. If Starbase echos are overlayed (i.e. in the fourth overlay plane), or
hardware cursors are used, graphics performance is significantly better
since it is not necessary to "pick up" the cursor each time the frame
buffer is updated.

5. Screen clears will be significantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128-pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc
to convert the bounds of the clear rectangle to device coordinates. Screen
clears to the default vdc_extent will be aligned. Screen clears are also
much faster when the background color index is zero. Screen clears with
a non-zero index require two pases, which result in slower performance.

6. Polygons are filled faster when the drawing mode is (SOURCE),
NOT_SOURCE, ZERO, or ONE.

7. Horizontal and vertical lines are faster than diagonal lines on this device
since the hardware block mover is used to generate pixels.

8. The procedure block_move is faster than block_read or block_write
since the hardware frame buffer block mover can be used.

9. Performance of block_read and block_write is significantly better if
both the source and destination begin on the same byte boundary (since
data can be transferred 32 bits at a time rather than one byte at a time).
For example, one way to ensure this condition is to define pixel arrays as
type short (16-bit integer), and start block_read and block_write on
even pixels only. This can more than double performance.

10. block_write on Series 800 machines with the A1047 A interface can go
faster by using DMA. See R_DMA_MODE gescape.

HP98730-29

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using a gescape function) should be done with care, since other
processes access this region. See the section on offscreen usage for details.

2. Certain gescape functions should be used with caution since they
bypass protection mechanisms used to prevent multiple processes from
interferring with each other. For example, since the hardware resources
can only be rationally used by one graphics process at a time, the driver
activates a semaphore and locks the device before doing any output. This
ensures, for example, that process A will not change the replacement rule
while process B is in the middle of filling a polygon. It also prevents
the terminal (tty) driver from overwriting any graphics processes that
are outputting to the device. The driver unlocks the device when done
processing output. Some of the gescapes listed in this chapter allow
the user to change this locking mechanism and should be used with great
caution.

HP98730-30

Contents

The HP 98731 Device Driver
Device Description
Setting Up the Device On Series 300

DIO-I Switch Settings.
DIO-II Switch Settings

Example Program to Reset the HP 98730
Setting Up the Device On the Series 800
Address Space Usage On Series 300
Special Device Files (mknod) On Series 300 .
Special Device Files (mknod) On the Series 800
Linking the Driver
U sage and Restrictions

HP Windows/9000 See-Thru Color
Cursors

Device Initialization
Parameters for gopen
Syntax Examples . .

For C Programs: .
For FO RTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Offscreen Memory Usage

Device Defaults
N umber of Color Planes
Dither Default . . .
Raster Echo Default
Color Planes Defaults
Semaphore Default
Line Type Defaults .

HP98731-1
HP98731-5
HP98731-5
HP98731-7
HP98731-10
HP98731-11
HP98731-11
HP98731-12
HP98731-13
HP98731-14
HP98731-15
HP98731-15
HP98731-15
HP98731-17
HP98731-17
HP98731-18
HP98731-18
HP98731-19
HP98731-19
HP98731-19
HP98731-19
HP98731-19
HP98731-19
HP98731-19
HP98731-20
HP98731-20
HP98731-20
HP98731-21

Contents-1

Default Color Map .
Red, Green and Blue

Starbase Functionality
Exceptions to Standard Starbase Support
block_read, block_write . .

Fast Alpha and Font Manager
Parameters for gescape

CLIP _OVERFLOW
C Syntax
FORTRAN77 and Pascal Syntax

GAMMA_CORRECTION .
C Syntax
FORTRAN77 Syntax . .
Pascal Syntax

POLYGON_TRANSPARENCY
C Syntax
FORTRAN77 Syntax
Pascal Syntax

Performance Tips
General ...
Screen Clears
Rendering ..
Raster Operations

Cautions
Opening Windows .
The Hardware Cursor .
Z Buffer

Contents-2

HP98731-21
HP98731-23
HP98731-25
HP98731-25
HP98731-25
HP98731-26
HP98731-26
HP98731-29
HP98731-29
HP98731-30
HP98731-31
HP98731-32
HP98731-32
HP98731-33
HP98731-34
HP98731-34
HP98731-36
HP98731-36
HP98731-37
HP98731-37
HP98731-37
HP98731-38
HP98731-38
HP98731-40
HP98731-41
HP98731-42
HP98731-43

HP98731
The HP 98731 Device Driver

Device Description
The HP 98731A is an optional graphics accelerator and Z-buffer for the HP 98730A
Display Controller. The graphics controller plugs into an I/O slot of the SPUs.
(See the "Introduction" section of this manual for systems supporting this con­
troller and accelerator.)

Two device drivers are provided to access the HP 98730 display:

• HP 98730-used to access the graphics display without using the optional
graphics accelerator, with or without HP Windows/9000 or the X Window
system .

• HP 98731-used to access the graphics display using only the optional
graphics accelerator, with or without HP Windows/9000 or the X Window
system.

This section covers the HP 98731 Device Driver; see the "HP 98730 Device Driver"
section for information on using the HP 98730 driver.

The display has a resolution of 1280x 1024 pixels. The standard color display
system has eight planes of frame buffer to provide 256 simultaneous colors. You
can add optional memory in banks of eight planes each. A fully configured system
consists of three banks of frame buffer for full 24-bit per pixel color, a dedicated
board for full Z-buffer capability, and 4-overlay planes for non-destructive alpha,
cursors, or graphics. In order to use the HP 98731 Device Driver, the system
must be configured with the graphics accelerator boards and at least one bank
of eight planes.

An 8-plane configuration allows 256 colors to be displayed simultaneously from
a pallet of 16 million. A 16-plane system is like two 8-plane frame buffers where
only one 8-plane buffer is displayed at any time. This configuration is useful for
double buffering. When three banks of frame buffer are installed, the system may

HP98731-1

be configured to display eight bits red, eight bits green, and eight bits blue per
pixel. Double buffering may also be achieved at a resolution of four bits red, four
bits green, and four bits blue.

The display system is a bit-mapped device with special hardware for:

• Write enable/disable individual planes.

• Video enable/disable individual planes.

• Memory writes with specified replacement rule. (see drawing_mode)

• Video blinking of individual planes.

• Video blinking of individual color map locations.

• Arbitrary sized rectangular memory to memory copies.

• Write enable/disable of pixels in 4x4 cell for "screen door" transparency.

• Up to three VLSI NMOS III processors with hardware floating point for
high speed three-dimensional transformations.

• NMOS III scan converter with six axis interpolation for Gouraud shaded,
Z-buffered vectors and polygons.

• Pixel pan and zoom.

• Analog blending of frame buffer outputs.

• Raster and vector cursors.

• Pixel clipping for full speed graphics to obscured windows.

• Dedicated 2K by 1K 16-bit zbuffer.

The display is organized as an array of bytes, with each byte representing a pixel
on the display. When eight planes are installed, color map indexes range from
0-255. The color map is a RAM table that has 256 addressable locations and is
24 bits wide (eight bits each for red, green, and blue). Thus, the pixel value in
the frame buffer addresses the color map, generating the color programmed at
that location.

In addition to the frame buffer banks of eight planes each, four overlay planes
are provided. These overlay planes have their own unique color map, separate
from the color maps used for the image planes. This overlay color map consists
of sixteen 24-bit entries, allowing the user to select 16 colors from the full pallette

HP98731-2

of over 16 million choices. In addition, each entry in the overlay color map may
be set to dominant, non-dominant, or blended with the image planes.

A dominant entry causes all pixels in the overlays set to that value to display the
color in the overlay map, regardless of values in the image planes "below".

Aa non -dominant entry causes pixels with that value to display the color in the
image plane "below".

A blended entry will cause the analog color output from the overlays to be
summed with the analog output from the image planes. Color values are clamped
to their full value of 1.0 if the sum would exceed this saturation level.

By default, the HP 98731 Device Driver sets all overlay color map entries to be
dominant when opened to the overlays. Entries may be set to be non-dominant
with the Starbase gescape R_TRANSPARENCY_INDEX. Entries may be set to blend
with the image planes by using the Starbase gescape OVERLAY_BLEND. See the
descriptions of these gescape functions for more details.

You can use overlay planes for non-destructive alpha, graphics, or cursors. For
example, when the HP 98730 is used as system console, the Internal Terminal
Emulator (ITE) uses three of the overlay planes for alpha information. This
way there is no interaction between ITE text and images in the graphics planes.
Windows/9000 also runs in the overlay planes. The X Window system uses
both the image and overlay planes. To do graphics in the overlay planes,
HP 98731 Device Driver may be opened directly to the overlay planes, as if they
were a separate device (refer to the section "Setting up the Device" for more
information) .

The HP 98730 display system provides one hardware cursor which supports all
Starbase echo types. If more than one cursor is needed, one overlay plane can be
used for graphic cursors. You can think of the overlay plane used for cursors as a
separate "cursor plane." Any data in the cursor plane will be displayed over data
in the graphics planes. Data in the other three overlay planes will be displayed
over data in the graphics planes and the cursor plane.

For example, suppose a graphics application is running in the graphics planes
while the window manager is running. If the application has a Starbase cursor
in the overlay cursor plane, the cursor will always be visible inside regions of
see-thru because the cursor has display priority over the graphics. If the cursor is
moved outside the graphics window boundary, it is not visible since the window

HP98731-3

desktop environment is drawn to the overlay planes, which have display priority
over the cursor plane.

Typically, the user does not need to directly read or write pixels in the frame
buffer. However, for those applications which require direct access, Starbase
provides the gescape function R_GET_FRAME_BUFFER, which returns the virtual
memory address of the beginning of the frame buffer. This gescape is discussed
in the appendix of this manual. Frame buffer locations are then addressed relative
to the returned address. The first byte of the frame buffer (byte 0) represents
the upper left corner pixel of the screen. Byte 1 is immediately to its right. Byte
1279 is the last (right-most) pixel on the top line. The next 768 bytes of the
frame buffer are not displayable. Byte 2048 is the first (left-most) pixel on the
second line from the top. The last (lower right corner) pixel on the screen is byte
number 2,096,383.

If more than one frame buffer bank is installed, bank switching must be used
to access the additional memory. A number of Starbase calls may set the bank
register so it is advisable to call bank_switch just prior to making accesses to
the frame buffer pointer to ensure desired results.

If you are attempting to access the hardware directly while other processes are
also using it (such as Starbase programs or window systems), you must obey
semaphore protocols and save/restore any hardware registers you alter. See the
description of the LOCK_DEVICE gescape for details on semaphore protocol.

The off-screen portion of the frame buffer may be accessed via the gescape
procedure R_FULL_FRAME_BUFFER, documented in the appendix of this manual.
Use this gescape carefully since other processes, Starbase, HP Windows/9000,
and the X Window system, access the frame buffer off-screen memory.

HP98731-4

Setting Up the Device On Series 300
The HP 98731 Device Driver can be used with the graphics display configured in
either internal or external DIO-I address space, or in DIO-II address space. Refer
to the Configuration Reference Manual for a description of internal and external
DIO-I address space and DIO-II address space.

Note If the HP 98730 is configured as an external display, there will
not be an Internal Terminal Emulator (ITE) for that device.
Since it is the ITE that normally initializes the display, external
devices must be reset after power-up by running a simple Starbase
program with a mode of RESET_DEVICE in the gopen call. It may
also be necessary to run this program after running an application
which manipulated the overlay color map, such as a windows
application program. An example program which could be called
from / etc/rc during power-up is given at the end of this section.
For more details concerning the effects of RESET _DEVICE, see the
"Device Initialization" information in this section.

The Graphics Interface card may be installed in any DIO slot in the computer's
backplane or in any I/O slot of the expander.

010-1 Switch Settings

The graphics interface card has a single 8-bit address select switch. Looking
at the switches so that the dot is in the lower left corner, the left-most switch
is labeled DI01 to the bottom (0), and DI02 to the top (1). To configure the
system in DIO-I space, this switch must be set to the DI01 (0) position. The next
switch to the right is labeled INT and determines if the HP 98730 workstation is
configured as an internal or external display. In addition, the next six switches
to the right are labeled for select code determination (five of the six switches are
actually used for the select code). There is also a jumper labeled JPl.

HP98731-5

The frame buffer uses two megabytes of I/O address space, starting at FB_BASE.
The jumper (JP1) determines the address of FB_BASE.

JP1 is set to $200K FB_BASE address is $200000

JP 1 is set to $800K FB_BASE address is $800000

Systems which use the HP 98730 display as a DIO-I system console will map the
frame buffer to $200000; systems which use the display as an external DIO-I
device will map the frame buffer to $800000.

The control space requires 128 Kbytes of space, starting at CTL_BASE. The six
switches labeled "se" determines the address of CTL_BASE. The HP98730 may be
configured as an external display, or as an internal display. Since only 64 Kbytes
of space is normally allotted for external I/O select codes, two consecutive select
codes will be used when configuring the device as an external display.

The following table lists the binary switch settings with the corresponding values
of CTL_BASE for external I/O settings. The table also lists the select codes that
are used for each setting.

Table HP98731-1. 010-1 Control Space Settings (External I/O)

Switch Setting DIO-I
MSB to LSB CTL_BASE Select Code

01101010 $6AOOOO 10-11
01101100 $6COOOO 12-13
01101110 $6EOOOO 14-15
01110000 $700000 16-17
01110010 $720000 18-19
01110100 $740000 20-21
01110110 $760000 22-23
01111000 $780000 24-25
01111010 $7AOOOO 26-27
01111100 $7COOOO 28-29
01111110 $7EOOOO 30-31

For a system console (internal) the switch setting is 01010110 and the CTL_BASE
is $560000.

HP98731-6

If the HP 98730 is configured as the system console, the GTL_BASE needs to be
placed at $560 000 and the JP1 must be open (no jumper-or jumper is on one
pin), which is an interal I/O setting. If the device is not used as the system
console, the control space should not be placed in internal I/O space. It is likely
to overlap the address space of other system hardware. In this case, an external
I/O space setting should be selected with two consecutive select codes which are
not used by the system.

010-11 Switch Settings

If the left-most switch is set to DI02 (1), the HP 98730 device can be used in
DIO-II address space. In this mode, the next seven switches determine the DIO­
II select codes to be used. An HP 98730 device will use three DIO-II select codes.
Both the frame buffer and control space reside in the select code areas, so the
jumper JP1 is ignored.

The control space requires 4 Mbytes of space, starting at GTL_BASE. The seven
switches labeled "se" at the top of the select switch determine the address of
GTL_BASE. The frame buffer requires eight Mbytes of space, starting at FB_BASE.

HP98731-7

Table HP98731-2. 010-11 Control Space Settings

Switch Setting DIO-II
MSB to LSB CTL_BASE Select Code FB_BASE

10000101 $01400000 133 $01800000
10001001 $02400000 137 $02800000
10001101 $03400000 141 $03800000
10010001 $04400000 145 $04800000
10010101 $05400000 149 $05800000
10011001 $06400000 153 $06800000
10011101 $07400000 157 $07800000
10100001 $08400000 161 $08800000
10100101 $09400000 165 $09800000
10101001 $OA400000 169 $OA800000
10101101 $OB400000 173 $OB800000
10110001 $OC400000 177 $OC800000
10110101 $OD400000 181 $OD800000
10111001 $OE400000 185 $OE800000
10111101 $OF400000 189 $OF800000
11000001 $10400000 193 $10800000
11000101 $11400000 197 $11800000
11001001 $12400000 201 $12800000
11001101 $13400000 205 $13800000
11010001 $14400000 209 $14800000
11010101 $15400000 213 $15800000
11011001 $16400000 217 $16800000
11011101 $17400000 221 $17800000
11100001 $18400000 225 $18800000
11100101 $19400000 229 $19800000
11101001 $1A400000 233 $lA800000
11101101 $1B400000 237 $1B800000
11110001 $lC400000 241 $1C800000
11110101 $lD400000 245 $lD800000
11111001 $lE400000 249 $lE800000
11111101 $lF400000 253 $lF800000

D I 0-II displays may be used as the system console or as external displays. In
order to use the display as system console, it must be configured as the first DIO-

HP98731-8

II display in the system, and there must be no DIO-I console or remote terminals.
Being the first DIO-II device means that it has the lowest DIO-II select code in
the system. In order to use a HP 98730 device as a DIO-II system console, select
code 133 is recommended.

Note It is necessary to increase some of the HP-UX tunable system
parameters due to the size of the DIO-II mapping of an HP 98730
device. For details on how to reconfigure your kernel, refer
to the HP- UX System Administrator Manual (particularly the
"Configuring HP-UX" section in "The System Administrators
Toolbox" and the "System Parameters" appendix.

It is essential that you consult the above referenced HP-UX
documentation before you attempt to reconfigure your system.
It is possible to adversely affect your HP-UX system if a mistake
is made. Ensure you have an understanding of these procedures
before proceding.

In order to run an HP 98730 device in DIO-II the following system parameters
must have these minimum values:

shmmax Oxcooooo
shmmaxaddr Ox1800000

dmmin 16
dmmax 1024
dmtext 1024
dmshm 1024

HP98731-9

Example Program to Reset the HP 98730

/*
* Starbase program: reset98730.c
* Compile: cc -0 reset98730 reset98730.c -ldd98730 -lsb1 -lsb2
* Destination: /usr/bin
* Execute: add line to the /etc/rc - "/usr/bin/reset98730 /dev/crt.external"

*
* Example program to be put in /etc/rc for resetting an external HP 98730
* device during power-up.
*/
#include <starbase.c.h>

main(argc,argv)
int argc; char *argv[];
{

}

int fildes;

if ((fildes = gop en (argv [1] ,OUTDEV,"hp98730",INITIRESET_DEVICE» < 0)
printf("External HP 98730 %s initialization failed. \n" ,argv[1]);

else {

}

printf("External HP 98730 %s initialization succeeded.\n",argv[1]);
gclose(fildes);

HP98731·10

Setting Up the Device On the Series 800
Up to four HP 98730 devices can be connected to a Series 800 SPU using four
A1017 A interface cards. However, it is recommended that only two HP 98730
devices have the Internal Terminal Emulator (ITE) or window systems running
on them. With the A104 7 A interface, only two devices can be connected, both
of which may run an ITE.

The Series 800 ITE supports power-fail recovery on the HP 98731 device, but
Starbase does not support the feature. If you want to support power fail, you
must catch the power-fail signal and save any Starbase state needed. Then,
gelose the device and gop en the device again when the power turns on.

Address Space Usage On Series 300
The HP 98730 device is memory mapped into a processes virtual address space,
starting at the value specified by the environment variable SB_DISPLAY_ADDR.
If this variable is not set, mapping defaults to OxBOOOOO. The control space
starts at this address and grows towards larger address values. After the control
space comes the frame buffer and then shared memory mapped for Starbase
drivers. The size of the address space used for control space and the frame buffer
depends on whether the device is used in DIO-I or DIO-II. In DIO-I, control
space consumes 128 Kbytes and the frame buffer uses 2 Mbytes. In DIO-II,
control space is 4 Mbytes and the frame buffer is 8 Mbytes. The size of the
Starbase drivers' shared memory is always the same and slightly less than 300
Kbytes.

If your application maps memory pages to specific addresses, or needs a large
stack, you may need to adjust SB_DISPLAY_ADDR to avoid conflicts.

HP98731-11

Special Device' Files (mknodlOn Series 300
The mknod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for further information. The name of this special device
file is passed to Starbase in the gopen procedure. Since superuser capabilities
are needed to create special device files, they are normally created by the system
administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dev directory. Any name may
be used for the special device file; however, the name that is suggested for these
devices is crt.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mknod command.

When the device is at the internal DIO-I address (refer to the "Switch Settings"
section) the mknod parameters should create a character special device with a
major number of 12 and a minor number of O.

mknod /dev/crt c 12 OxOOOOOO

When the device is at an external DIO-I or any DIO-II address (refer to the
"Switch Settings" section) the mknod parameters should create a character special
device with a major number of 12 and a minor number of Ox(sc)0200 where (sc)

is the two-digit external select code in hexadecimal notation.

mknod /dev/crt c 12 Ox(sc)0200

The HP 98730 driver may also be used for the overlay planes in graphics mode.
The minor number may be set to cause Starbase drivers to use either three or
four overlay planes. When running to three planes, one plane is still reserved for
cursors. When running to all four overlays, only the hardware cursor is available
for Starbase graphics echoes. If more than one echo is requested, or if another
process is using the cursor, the request for another echo will fail. Note that since
the terminal emulator and window system operate in the overlay planes also,
there will be interactions with these processes if a graphics driver is opened in
this manner while these processes are present. To open the HP 98731 Device
Driver to three overlay planes instead of the graphics planes, the last byte of the

HP98731-12

minor number must be 1. To run to all four overlays, the last byte of the minor
number must be three.

For example, when the device is at an internal DIO-I address, the mlmod
parameters for the overlay device, with one plane reserved for cursors, should
create a character special device with a major number of 12 and a minor number
of 1.

mlmod / dey / ocrt c 12 Ox000001

To create a device file for all four overlays, the command would be:

mlmod / dey / o4crt c Ox000003

When the device is at an external DIO-I address or any DIO-II address (refer
to the section on "Switch Settings") the mknod parameters for the same device
should create a character special device with a major number of 12 and a minor
number of Ox(sc)0201 or Ox(sc)0203 where (sc) is the two-digit select code.

mlmod /dev/ocrt c 12 Ox(sc)0201

Special Device Files (mknod) On the Series 800
The mlmod command creates a special device file which is used to communicate
between the computer and the peripheral device. See the mknod(1M) information
in the HP- UX Reference for details. The name of this special device file is passed
to Starbase in the gopen procedure. Since superuser capabilities are needed to
create special device files, they are normally created by the system administrator.

Although special device files can be made in any directory of the HP-UX file
system, the convention is to create them in the / dey directory. Any name may
be used for the special device files, however the names that are suggested for the
devices are crt, crtO, crt1, or crt2.

The following examples will create a special device file for this device. Remember
that you must be superuser (the root login) to use the mlmod command.

HP98731-13

When creating the device file the mlmod parameters should create a character
special device with a major number of 14 and a minor number of the following
format (where (lu) is the two-digit hardware logical unit number):

mknod /dev/crtx c 14 OxOO(lu)OO

The HP98730 Device Driver may also be opened to the overlay planes in graphics
mode. If the last byte of the minor number is one, three overlay planes are used
for graphics (and the fourth plane is reserved for cursors for processes running
in the image planes). If the last byte of the minor number is three, four overlay
planes are used for graphics. Since the ITE and window system operate in the
overlay planes also, there will be interactions with these processes if a graphics
driver is opened in this manner while these processes are present.

To open all four overlay planes, the mlmod parameters should create a character
special device with a major number of 14 and a minor number of three.

mlmod /dev/ocrt4 c 14 OxOO(lu)03

To open three overlay planes, the mlmod parameters should create a character
special device with a major number of 14 and a minor number of one.

mlmod /dev/ocrtx c 14 OxOO(lu)01

Linking the Driver

The HP98731 Device Driver is the file named 1ibdd98731. a in the /usr/1ib
directory. This device driver may be linked to a program using the absolute path
name /usr/1ib/1ibdd98731. a, an appropriate relative path name, or by using
the -1 option -ldd98731. This driver also requires the math library to be linked
with C programs. For example, to compile and link a program for use with this
driver, use:

cc example.c -ldd98731 -lsb1 -lsb2 1m -0 example
fc example.f -ldd98731 -lsb1 -lsb2 -0 example
pc example.p -ldd98731 -lsb1 -lsb2 -0 example

depending upon the language being used.

HP98731-14

Usage and Restrictions
When a device file for the overlay planes is used at gopen time, bank switching,
shading, and depth cueing are not supported.

Graphics applications that want to talk to an HP Windows/gaDa graphics window
may use this driver, if the window was created with the - N option (this designates
the window as an IMAGE graphics window). Refer to the HP Windows/9000
documentation for more details.

Graphics applications that want to open a local X window may use this driver if
the window is in the image planes.

Up to 32 HP 98731 device drivers may be opened to the same device simultane­
ously from any combination of one or more processes.

HP Windows/9000 See-Thru Color

This device driver ignores the SB_OV _SEE_THRU_INDEX. For more details on its
usage refer to the "HP 98730 Device Driver" section.

Cursors

The HP 98731 Device Driver implements cursors using either the hardware cursor
or overlayed software cursors. If no processes have opened all four overlay planes,
the fourth overlay plane is used for overlayed software cursors either by the
HP 98730 or the HP 98731 drivers.

You can think of the fourth overlay plane used for cursors as a separate "cursor
plane". Any data in the cursor plane will be displayed over data in the graphics
planes. Data in the other three overlay planes will be displayed over data in the
graphics planes and the cursor plane. For example, suppose a graphics application
is running in the graphics planes while the window manager is running in three
of the overlay planes. If the application has a Starbase cursor in the overlay
cursor plane, the cursor will always be visible inside regions of see-thru because
the cursor has display priority over the graphics. If the cursor is moved outside
of regions of see-thru then it is not visible since the non-see-thru regions in the
overlay planes have display priority over the cursor plane.

HP98731-15

The HP 98730 Display Station also supports a hardware cursor that supports all
Starbase echo types. The hardware cursor is drawn to a fifth and sixth overlay
plane accessible only by the hardware cursor. There is only one hardware cursor
available. Usage of the hardware cursor is defined as follows:

1. If an application is running in a Star base environment only (that is,
neither Windows/9000 nor X Windows is not running), the hardware
cursor is given to the first process that attempts to use cursors.

2. The X Window system always uses the hardware cursor for the X sprite.

3. By default, if Windows/9000 is active, the window system gets usage of
the hardware cursor. The user may prevent the window system from
using the hardware cursor by setting the WMCONFIG environment variable
appropriately. See the HP Windows/9000 documentation for details.

4. Via the gescape R_ECHO_CONTROL, there is a mechanism for the user to
control usage of the hardware cursor. This gescape is discussed in the
appendix.

If the hardware cursor is already being used by another process, overlayed
software cursors are used by the HP 98731 driver. If the fourth overlay plane
is not available for cursors, an error will be generated when any attempts are
made to turn on the cursors. In an X window, cursors may be available even
when the fourth overlay plane is not. See Starbase Programming with Xll for
more information.

If a users application never uses cursors, the driver will never attempt to allocate
the hardware cursor. However, once the driver has allocated the hardware cursor,
the driver does not relinquish usage of the hardware cursor until gclose time.

If allocation of the hardware cursor was not successful, resources for the software
cursor area are allocated (that is, offscreen areas for raster echo definitions).
Once resources for software cursors have been allocated, the driver always uses
software cursors and never again attempts to use the hardware cursor.

The following functions will cause the driver to attempt to allocate cursor
resources (that is, either the hardware cursor or software cursor resources):

• echo_type or define_raster_echo .

• Any of the gescapes R_DEF _ECHO_TRANS, R_ECHO_MASK,
R_ECHO_FG_BG_COLORS, andR_OV_ECHO_COLORS.

HP98731-16

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver, and Mode.

Path This is the name of the special device file created by the mknod
command as specified in the last section (for example, /dev/crt.)

Kind This indicates the I/O characteristics of the device. This parameter

Driver

Mode

may be one of the following:
• INDEV-input only.
• OUTDEV-output only.
• OUTINDEV-input and output.

Input may be done with this driver only when opened to an
HP Windows/9000 image window or an X Window system window.

This is the character representation of the driver type. This must be
hp98731. For example:

"hp98731II

'hp98731'//char(O)

'hp98731 '

for c.
for FORTRAN77.
for Pascal.

The mode control word consistng of several flag bits which are or ed
together. Listed below are the flag bits which have device-dependent
actions. Those flags not discussed below operate as defined by the
gopen procedure.

• SPOOLED-cannot spool raster devices.

• O-open the device, but do nothing else. This will set the
color map mode to CMAP _NORMAL but will not initialize the
color map itself. This will also disable blending if it was
left enabled. This mode will not affect pixel panning and
zooming. In an X window the color map mode is initialized
to be consistent with the X color map.

• INIT -open and initialize the device as follows:
1. Clear frame buffer to as.
2. Reset the color map to its default values.

HP98731-17

3. Enable the display for reading and writing.
4. Initialize the transform engine's microcode.
5. Download the transform engine's microcode (if it has

not already been done).
6. Restore pixel pan and zoom hardware for normal

viewing, if opened to the image planes.
7. In an X window, a new color map is created, and the

color map mode is initialized to be consistent with
the X color map .

• RESET_DEVICE-open and reset the device as follows:
1. Clear frame buffer and overlays to Os.
2. Reset the color map to its default values.
3. Clear the overlay color map.
4. Enable the display for reading and writing.
5. Download the transform engine's microcode.
6. Initialize the transform engine's microcode.
7. Restore pixel pan and zoom hardware for normal

viewing, if opened to the image planes.
8. In an X window, a new color map is created, and the

color map mode is initialized to be consistent with
the X color map.

Note that the RESET_DEVICE flag bit should be used with
caution: it will adversely affect any other processes using the
device. This flag bit is intended to reset a device completely:
this should only be necessary for devices in an unknown state,
such as a device powered up in an external I/O space. Most
programs should not use this flag bit.

Syntax Examples

To open and initialize an HP 98731 device for output:

For C Programs:

fildes = gopen(lI/dev/crt ll ,OUTDEV,lIhp98731 I1 ,INIT);

HP98731-18

For FORTRAN77 Programs:

fildes ='gopen('/dev/crt'//char(O),DUTDEV,'hp98731'//char(O),IN IT)

For Pascal Programs:

fildes = gopen('/dev/crt',DUTDEV, 'hp98731',INIT);

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
screen with X-axis values increasing to the right and Y-axis values increasing
down. The lower-right corner of the display is therefore (1279,1023).

Offscreen Memory Usage

Offscreen memory is managed by a global resource manager to insure that
multiple processes do not step on each other when using the offscreen. Offscreen
is used by the device driver for:

• polygon fill patterns

• raster echo definitions (if software cursors are used)

The offscreen memory is not allocated for any of the above functions unless the
function is used. Therefore, if an application never does filled polygons, and never
uses software cursors, the driver does not use the offscreen memory.

Refer to the gescape R_OFFSCREEN_ALLOC for information on using the offscreen
areas for personal use.

Device Defaults

Number of Color Planes

When the gopen procedure is called, this driver asks the device for the number
of color planes available. This number can be either 3 or 4 (in overlays), 8, 16,
or 24. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16.

HP98731-19

Raster Echo Default

The default raster echo is the 8x8 array:

255 255 255 255 0 0 0 0
255 255 0 0 0 0 0 0
255 0 255 0 0 0 0 0
255 0 0 255 0 0 0 0
0 0 0 0 255 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 255 0
0 0 0 0 0 0 0 255

The maximum size allowed for a raster echo is 64 x 64 pixels.

By default, all echo types are written using the dedicated hardware cursor. If
the hardware cursor is not available, cursors are written in the fourth overlay
planes. If no overlay plane is reserved, cursors are not available. In an X window,
cursors may be available even when the cursor plane is reserved. See the Starbase
Programming with Xll manual for more information.

Color Planes Defaults

The default configuration is an 8-plane color mapped system regardless of the
number of frame buffer banks installed.

All planes in the first bank are display enabled. All planes in the first bank are
write enabled.

Semaphore Default

Semaphore operations are enabled.

HP98731-20

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table HP98731-3.

Pattern
0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

In addition, a point plot line type is supported. This is accessed by using a line
type of -1. This line type will cause one pixel to be plotted at each vertex of the
line segment.

Default Color Map

If the fourth gopen parameter is zero (0), the current hardware or X window
system color map is used on color displays.

If the fourth gopen parameter is INIT, the current color map is initialized to the
default values shown in the following table.

HP98731-21

Table HP98731-4. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_calor_table procedure to see the rest of the 255 colors.

When INIT is used in the shade_mode procedure call the color map initialization
is based on the value of the mode parameter and on the number of frame buffer
banks installed.

mode=CMAP _NORMAL Same as the table above. Only one bank can be
displayed at a time, unless video blending is enabled.

mode=CMAP _MONOTONIC The color map will be initialized as:

HP98731-22

for (i=O; i<256; i++) {
cmap[i] .red = cmap[i] .green = cmap[i] .blue = i/255.0;

}

Only one bank can be displayed at a time, unless video
blending is enabled.

mode=CMAP_FULL

Red, Green and Blue

With less than three banks available, the color map will
be initialized as three bits red, three bits green, and two
bits blue. The three most significant bits are red, and
the two least significant bits are blue. Only one bank of
the first two can be displayed at a time.

Note: This driver requires at least eight planes in
CMAP _FULL mode, or at least 16 planes if double
buffered.

With three or more banks available, the color map
will be initialized as the CMAP _MONOTONIC case above
but now the first bank of eight will go through the
blue portion of the color map, the second bank goes
through the green portion, and the third bank goes
through the red portion. In this mode the color map is
transparent and the eight bits from each bank drive the
appropriate DAC. The color map could be subsequently
modified in this mode to perform functions such as
gamma correction or double buffering of 4-bits per color.

With a raw device or HP Windows/9000, each file descriptor opened as an output
device has a color table associated with it. If multiple file descriptors are open
to the same device, the color table and the device's color map may not always be
identical. The color table does not track the color map if the device's color map
is changed by another file descriptor path.

For Starbase procedures that have parameters for red, green and blue, the way
the actual color is chosen depends on the current shade_mode setting.

mode=CMAP_NORMAL The color map is searched for the color that is closest in
RGB space to the one requested. That color map index
is written to the frame buffer for subsequent output
primitives. It is more efficient to select a color with
an index rather than specifying a color with red, blue,
and green values in this mode because it takes extra
time to figure out which index in the color table most
closely matches the specified color.

HP98731-23

mode=CMAP _MONOTONIC The red, green, and blue value is converted to an
intensity value using the equation:

O.30*red+O.59*green+O.ll*blue

This intensity is converted to an index value by mapping
intensity 0.0 to the minimum index set be shade_range

and intensity 1.0 to the maximum index set by
shade_range. This mode is useful for displaying a high
quality monochrome picture on an 8-plane system from
data that produces a high quality color picture on a
24-plane system.

mode=CMAP_FULL With less than three banks installed, the color is
converted to a color map index by the equation:

Note

HP98731-24

index=(round(red*32767»>7) & OxEO
(round(green*32767»>10) & OxlC I
(round (blue*32767) »13)

This equation will be used in this mode regardless of
whether the user has modified the color map.

With three or more banks installed, the red, green and
blue values are each multiplied by 32,767, shifted right
seven places, then written to the appropriate bank.

When using an X window, some color map sharing between gop en

functions is possible. See the Starbase Programming with Xll
manual for more information.

Starbase Functionality

Exceptions to Standard Starbase Support

The following commands are supported under the listed conditions:

interior_style

text_precision

block_read, block_write

An HP 98730 device running the HP 98731
Device Driver will report image_banks as
5 if the system has 24 display planes and
the dedicated Z-buffer. If the dedicated Z­
buffer is installed in this way, it is possible to
access it with block_write, block_read, and
block_move. The Z-buffer may be selected for
read/write using bank_switch. The Z-buffer
may not be displayed. The Z-buffer cannot be
rendered to by the graphics accelerator. If less
than 24 planes are installed, the presence of a
Z-buffer will not be reported.

If the polygon fill type is INT_HATCH then the
following functionality will not work correctly:

• hidden surface removal.
• shading and lighting.
• depth cueing.
• backfacing attributes and culling.
• splines, quadrilateral meshes, and tri­

angle strips will not be hatched.

Performance is also degraded in this mode.

Only STROKE_TEXT precision is supported.

The raw parameter for the block_read and block_write commands is normally
ignored by this device driver. To use the raw mode, you must call the R_BIT _MODE
or R_DMA_MODE gescapes discussed in the appendix of this manual. If the raw
parameter is TRUE, then no clipping will be done.

HP98731-25

When running to a window, the window offsets from the upper left hand corner
of the screen will be added to block_write and block_read start locations. If
you do not want this offset added, you should subtract the offsets from your
start point. These offsets can be computed by calling the gescape functions
R_GET_FRAME_BUFFER and R_GET_WINDOW_INFO. Using the frame buffer pointers
returned by these routines, the window offsets are:

y_offset=(window_ptr-fb_ptr)/2048

This would be useful, for example, if you wished to write a polygon fill pattern
offscreen to a frame buffer absolute address while running in a window.

Fast Alpha and Font Manager
This device driver does not support raster text calls from the fast alpha and font
manager library.

Parameters for gescape
The following gescape functions are common to two or more of the Hewlett­
Packard displays supported by Starbase. Detailed information about these
functions can be found in Appendix A.

• BLINK_INDEX-Alternate between HP 98730 hardware color maps.

• BLINK_PLANES-Blink display (blink rate is 3.75 Hz for this device.)

• IMAGE_BLEND-Enable/ disable video blending.

• LS_OVERFLOW_CONTROL-Sets options for overflow situations.

• OVERLAY _BLEND-Control blending of overlay plane frame buffer.

• PAN_AND_ZOOM-Pixel pan and zoom.

• PATTERN_FILL-Fill polygon with stored pattern.

HP98731-26

• R_BIT _MASK-Bit mask.

• R_BIT _MODE-Bit mode.

• R_DEF _ECHO_TRANS-Define raster echo transparency.

• R_DEF _FILL_PAT-Define fill pattern.

• R_DMA_MODE-Changes the definition of raw for block writes.

• R_ECHO_CONTROL-Control hardware cursor allocation.

• R_ECHO_FG_BG_COLORS-Define echo attributes.

• R_ECHO_MASK-Define cursor mask.

• R_FULL_FRAME_BUFFER-Full frame buffer.

• R_GET_FRAME_BUFFER-Read frame buffer address.

• R_GET_WINDOW_INFO-Returns frame buffer address of window.

• R_LINE_TYPE-Define line style and repeat length.

• R_LOCK_DEVICE-Lock device.

• R_OFFSCREEN_ALLOC-Allocates offscreen frame buffer memory.

• R_OFFSCREEN_FREE-Frees allocated offscreen frame buffer memory.

• R_OV _ECHO_COLORS-Select overlay echo colors.

• R_TRANSPARENCY_INDEX-Specify HP 98720 transparency index.

• R_UNLOCK_DEVICE-Unlock device.

• READ_COLOR_MAP-Read color map.

• SET _BANK_ CMAP-Set frame buffer bank color maps.

• SWITCH_SEMAPHORE-Semaphore control.

• TRANSPARENCY-Allows "screen door" for transparency pattern.

• ZWRITE_ENABLE-Allows creation of 3D cursors in overlay.

The following gescape functions are unique to this driver and are presented in
the following section.

• CLIP _OVERFLOW-Change X Window system hierarchy.

HP98731-27

• GAMMA_CORRECTION-Enable! disable gamma correction .

• POLYGON_TRANSPARENCY-Define front facing and backfacing polygon
transparency patterns.

HP98731-28

CLIP _OVERFLOW

The (op) parameter is CLIP _OVERFLOW.

This gescape allows the user to provide the hp98731 driver a routine to change
the X Window system window hierarchy when the window that the hp98731
driver is using becomes too obscured by other windows. It takes a single
parameter, which is the address of the routine to call'.

The argl parameter points to the address.

The arg2 parameter is ignored.

The hp98730 transform engine has the ability to clip against a limited number of
obscuring rectangles. When too many rectangles obscure a window, by default,
the hp98731 driver prints a Starbase warning and waits for the situation to
change. It will continue to print warnings until the number of obscuring rectangles
is fewer than 31.

With the CLIP _OVERFLOW gescape, it is possible for the user to provide the driver
a routine to call instead of printing the warning. This will allow the application to
fix the problem immediately. To put the driver back in the default state (printing
warnings), call CLIP _OVERFLOW with a null address.

When calling the user routine, the hp98731 driver will pass in two parameters:
the display the window is on, and the window the driver is writing to. It is
possible to use these parameters in X Window system calls. The user routine
should not call any Starbase routines.

Here is an example of how to use the CLIP _OVERFLOW gescape:

C Syntax

void fixit(display,window)
Display *display;
Window window;
{

/* This routine will try to raise the window to the top if possible. */

XRaiseWindow(display,window);

}

main()

HP98731-29

{

int fildes;
gescape_arg arg1.arg2;

fildes = gopen(...• OUTDEV. "hp98731" .0);
arg1.i[0] = (int) fixit;
gescape(fildes.CLIP_OVERFLOW.&arg1.&arg2);

Do drawing

gclose(fildes);
}

FORTRAN77 and Pascal Syntax

Since FORTRAN77 and Pascal cannot get the address of a procedure, this
gescape does not directly support those languages.

HP98731-30

GAMMA_CORRECTION

The (op) parameter is GAMMA_CORRECTION.

This gescape allows the user to enable or disable GAMMA_CORRECTION in the
HP 98730 hardware.

The user passes in a flag which is set to 1 to enable GAMMA_CORRECTION, or a to
disable GAMMA_ CORRECTION.

The arg1 parameter points to the flag.

The arg2 parameter is ignored.

When enabled with this gescape, GAMMA_CORRECTION will be performed in
the hardware on subsequent primitives rendered in CMAP _FULL mode (see
shade_mode) when using the following display modes:

• 8-planes single buffered with dithering (three bits red, three bits green,
three bits blue)

• 16-planes double buffered (eight planes per buffer) with dithering (three
bits red, three bits green, two bits blue)

• 24-planes single buffered (eight bits red, eight bits green, eight bits blue)

• 24-planes double buffered (12 planes per buffer) with dithering (four bits
red, four bits green, four bits blue)

If the color map or display modes are not in the above set, primitives will be
rendered as normal. If the modes are later changed into one of the above cases,
GAMMA_CORRECTION will be automatically engaged. Therefore, it is possible to
enable GAMMA_CORRECTION with one call to this gescape and switch in and out
of modes which will use it.

The GAMMA_CORRECTION hardware is actually a pre-computed, look-up table
which accepts la-bit intensity inputs for each color from the scan conversion
hardware and outputs 8-bit gamma corrected values. This means that the actual
values written to the frame buffer are modified. The color map is unchanged,
so previously rendered primitives are unaffected. Also, raster operations such as
block_wri te are unaffected by GAMMA_CORRECTION.

GAMMA_CORRECTION has no effect on performance.

HP98731-31

The following example shows how to use Starbase to enter and exit the
GAMMA_CORRECTION mode.

C Syntax

/* gescape_arg is typedef defined in starbase.c.h */

gescape_arg arg1, arg2;

arg1.i[0] = 1; 1* enable gamma correction *1
gescape(fildes,GAMMA_CORRECTION,&arg1,&arg2) ;

Render gamma corrected primtives here. Be sure to set the
correct color map and display modes (see shade_mode,
double_buffer, and fill_dither.)

arg1.i[0] = 0; 1* disable gamma correction *1
gescape(fildes,GAMMA_CORRECTION,&arg1,&arg2) ;

FORTRAN77 Syntax

integer*4 arg1(4),arg2(1)

arg1(1)=1
call gescape(fildes,GAMMA_CORRECTION,arg1,arg2)

Render gamma corrected primtives here. Be sure to set the
correct color map and display modes (see shade_mode,
double_buffer, and fill_dither.)

arg1(1)=0
call gescape(fildes,GAMMA_CORRECTION,arg1,arg2)

HP98731-32

/
\\

Pascal Syntax

{gescape_arg is defined in starbase.p1.h}

var
arg1,arg2:gescape_arg;

begin
arg1. i [1] : = 1;
gescape(fildes,GAMMA_CORRECTION,arg1,arg2);

Render gamma corrected primtives here. Be sure to set the
correct color map and display modes (see shade_mode,
double_buffer, and fill_dither.)

arg1. i [1] : = 0;
gescape(fildes,GAMMA_CORRECTION,arg1,arg2);

HP98731-33

POLYGON_TRANSPARENCY
The (op) parameter is POLYGON_TRANSPARENCY.

This gescape allows the user to define separate "screen door" transparency
patterns for frontfacing and backfacing polygons. The user may define patterns
that disable writes to any pixels within a 4x4 cell. This cell is duplicated over
the entire screen.

The user passes in a bit mask where a 1 means the corresponding pixel is write
enabled and a 0 means write disabled. Table 1-5 shows the 2 byte bit pattern
that is passed in by the user, and table 1-6 shows how that pattern is turned into
a 4x4 dither pattern.

The arg1 [0] parameter contains the mask to be used for front facing polygons.

The arg1 [1] parameter contains the mask to be used for back facing polygons.

Table HP98731-5.

Table HP98731-6.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The following examples would produce a green square with a 50% transparent
red rectangle in front. Backfacing polygons remain opaque. Remember to set
both of the transparency patterns back to opaque when done.

C Syntax

1* gescape_arg is typedef defined in starbase.c.h *1

gescape_arg arg1, arg2;

HP98731-34

fill_color(fildes,O.O,1.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75);
arg1.i[O] = OxAAAA;
arg1.i[1] = OxFFFF;
gescape(fildes ,POLYGON_TRANSPARENCY , &arg1 ,&arg2) ;
fill_color(fildes,1.0,O.O,O.O);
rectangle(fildes,O.O,O.25,1.0,O.75);
arg1.i[O] = OxFFFF;
arg1.i[1] = OxFFFF;
gescape(fildes ,POLYGON_TRANSPARENCY , &arg1 ,&arg2) ;

HP98731-35

FORTRAN77 Syntax

integer*4 argl(4),arg2(1)

fill_color(fildes,O.O,l.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75) ;
argl (1) =Z' AAAA'
argl (2):tz, FFFF '
call gescape(fildes,POLYGON_TRANSPARENCY,argl,arg2)
fill_color(fildes,l.0,O.O,O.O);
rectangle(fildes,O.O,O.25,l.0,O.75);
arg1(1) =Z' FFFF '
argl(2)=Z'FFFF'
call gescape(fildes,POLYGON_TRANSPARENCY,argl,arg2)

Pascal Syntax

{gescape_arg is defined in starbase.pl.h}

var
argl,arg2:gescape_arg;

begin
fill_color(fildes,O.O,l.0,O.O);
rectangle(fildes,O.25,O.25,O.75,O.75);
argl.i[l] := hex('AAAA');
arg1. i [2] : = hex('FFFF') ;
gescape(fildes,POLYGON_TRANSPARENCY,argl,arg2);
fill_color(fildes,l.0,O.O,O.O);
rectangle(fildes,O.O,O.25,l.0,O.75);
argl.i[l] := hex('FFFF');
argl.i[2] := hex('FFFF');
gescape(fildes,POLYGON_TRANSPARENCY,argl,arg2);

HP98731-36

Performance Tips

General

1. As with any driver, buffering is done to enhance performance. If
buff er _mode is turned off or if an inordinate amount of
make_picture_current or flush_buffer calls are done, performance can
be degraded substantially.

2. Performance optimizations have been made so that sequential calls of the
same output primitive with no intervening attribute changes or different
primitive calls goes faster. For example, the sequence polygon, poly­
gon, polyline, polyline is faster than polygon, polyline, poly­
gon, polyline. Also line_color, polyline J polyline is faster than
line_color, polyline, line_color, polyline. So grouping by
primitive and sub grouping primitives by attribute can give substantial
performance improvements.

3. Typically, the HP 98731 rendering engine renders primitives from its
internal buffer as the system CPU is doing other things. Substantial
performance benefits can be realized from this parallel processing.

However, certain operations will cause the CPU to wait for the HP 98731
to finish emptying its buffer. An example of this wait is the
make_picture_current operation. Also, any operation that reads
information from the HP 98731 may cause this wait to occur. Two
operations read the matrix values from the HP 98731: pop_matrix2d and
pop_matrix3d. If the values in the popped matrix are not needed, use
pop_matrix, which does not cause any information to be read from the
HP 98731. Also, block_read and block_write will also cause the driver
to use it.

Screen Clears

1. Screen clears will be significantly faster if the area to be cleared starts on
a 128-pixel boundary and is some multiple of 128 pixels wide. This can be
checked by using the Starbase routines transform_point and vdc_to_dc

HP98731-37

to convert the bounds of the clear rectangle to device coordinates. Screen
clears to the default vdc_extent will be aligned.

2. For programs which use zbuffer hidden surface removal with the dedicated
zbuffer, it is much faster to clear the zbuffer simultaneously with
screen clears than to do the clears sequentially. This is accomplished
by calling clear_control with CLEAR_ZBUFFER or ed into the mode
word. When this is done, subsequent calls to clear _ view_surface and
dbuff er _swi tch will cause the zbuffer to be cleared also. See the manual
page for clear_control for more details.

Rendering

1. When doing shaded polygons, the fewer the features, the faster the poly­
gon generation. Positional viewpoint and light sources can significantly
degrade performance.

2. With shading, and Z-buffering off, the HP 98731 rendering engine runs at
full speed, when rendering flat shaded polygons. These two rendering
techniques slow the rendering of polygons on the HP 98731. This is
especially noticeable on large polygons. Turning on anyone of these
could noticeably lower the rendering performance.

Using the pattern gescape or replacement rules that require extra
reads of the frame buffer (e.g. source or destination) will also degrade
performance. It takes time to do the extra reads.

3. Rendering mode commands such as hidden_surface, shade_mode, and
double_buffer can be slow. These should not be unnecessarily called.
For example, it is not necessary to repeatedly call hidden_surf ac e from
an animation loop; it is intended that these routines be called to initialize
a rendering mode and are only called again to change it.

Raster Operations

1. The procedure block_move is faster than block_read or block_write
since the hardware frame buffer block mover can be used.

2. The performance of block_read and block_write is significantly better
if both the source and destination begin on the same byte boundary, since

HP98731-38

data can be transferred 32-bits at a time rather than one byte at a time.
For example, one way to ensure this condition is to define pixel arrays as
type short (16-bit integers) and then start block_read and block_write
actions on even pixels only. This can more than double performance.
Note that the bite boundaries are relative to the screen address, not the
window address.

3. block_write on Series 800 machines with the AI047 A interface can go
faster by using DMA. See R_DMA_MODE gescape.

HP98731-39

Cautions

The following cautions are provided in using this driver:

1. As mentioned previously, accessing the off-screen portion of the frame
buffer (using gescape functions) should be done with care, since other
processes access this region. The overlay off-screen contains the ITE
font (which is regenerated when control-shift-reset is done on the
ITE keyboard) and may contain any number of window systems fonts
depending on the current window usage.

2. Polygons of up to 255 vertices (after clipping) are supported. If a polygon
has more than 255 vertices, only the first 255 vertices are displayed.

3. Certain gescape functions should be used with caution since they bypass
protection mechanisms used to prevent multiple processes from interfering
with each other. For example, since the hardware resources can only be
rationally used by one graphics process at a time, the driver activates a
semaphore and locks the device before doing any output. This ensures, for
example, that process A will not change the replacement rule while process
B is in the middle of filling a polygon. It also prevents the terminal (tty)
driver from overwriting any graphics processes that are outputting to the
device. The driver unlocks the device when done processing output. Some
of the gescape functions listed in this chapter allow the user to change
this locking mechanism and should be used with great caution.

4. When using the HP 98730 device with a graphics accelerator it is possible
for illegal operations to cause the transform engine or scan converter
hardware to enter an unknown state. If this happens, Starbase will report
an error the next time it tries to use the hardware. The user will see this
as a Transform engine timed out or Hardware/scan_converter time
out error. These are Starbase errors 14 and 52 respectively. This is a
very serious error condition. If the HP 98731 Device Driver is being used,
this is a fatal error. When this error is discovered, Starbase reports the
error and aborts execution.

If an application needs to take some emergency action before an untimely
termination, such as saving valuable data, the application should check
for these error conditions and take appropriate measures. Errors may be

HP98731-40 .

/
\

caught by an application using the gerr_control procedure described in
the Starbase Reference manual.

It is also possible to avoid the termination completely if the application's
error handler does not return control to Star base. It is, however,
impossible to proceed with any graphics efforts using the accelerator until
it is reset.

Opening Windows
The HP 98731 accelerated driver can open a number of windows in the image
planes. The limits placed on these windows are:

1. The HP 98731 driver supports up to 31 accelerated windows operating
simultaneously. Furthermore, it permits an accelerated window to be
obscured by, at most, 31 other rectangles (for example, corners of
windows).

2. When an image plane window is rendered to by the accelerator and
is obscured by more than 31 rectangles, rendering is halted until that
window has moved up enough in the window stack to be obscured by
fewer than 31 rectangles. It is possible for a program to detect when this
occurs by passing a procedure address to the Star base gescape procedure
with opcode CLIP _OVERFLOW. This procedure is then called whenever the
clip list overflows. Refer to the HP 98730 chapter in this manual for
information on this gescape opcode.

3. When a window is about to become obscured by more than 31 windows
and the accelerator hardware is currently rendering to that window,
the window system is locked until the accelerator is finished with the
current set of primitives. The calling process will become blocked and
the CLIP _OVERFLOW procedure will be called by Starbase.

The above guidelines only apply to windows in the image planes. For example, in
combined mode, overlay plane windows which overlap image plane windows do
not count against the limit of 31 obscuring rectangles. The limit only applies to
image-plane windows which overlap other image-plane windows. We recommend
that non-graphical windows (for example, terminal emulator windows) and

HP98731-41

graphical windows that don't need to use the graphics accelerator be placed
in the overlay planes.

Note that accelerated overlay windows are not supported with the HP 98731
driver.

The Hardware Cursor
The HP 98731 color map supports a single, independent hardware raster or vector
cursor. The hardware cursor is a 64x64x2 bit raster pattern that is conceptually
in front of the overlay planes. It is defined with a 64x64 bit/pixel color pattern
and a 64x64 bit/pixel transparency pattern. When the X11 server is started, it
uses the hardware cursor for the window cursor.

As with the overlay planes, one of the colors is a transparency color used to see
through to the overlay and image planes. This means that a raster cursor can
have no more then two significant colors (one additional color is used for the
transparency pattern). The two colors used by the cursor are based on 24-bit
RG B values and are independent of the other color maps.

When the X11 server is using the hardware cursor and a program defines a
Starbase echo in an image window, the echo is placed by default in the cursor
plane. When a cursor plane is not available, the HP 98730 driver renders the
cursor in the image planes. The echo colors will be chosen from the color map
associated with that window. When it is an image plane window, the X standard
color map is used. This means that when an image plane window is the focused
window, the X standard color map will be loaded into the overlay plane hardware
color map.

HP98731-42

Z Buffer
For graphics operations that require a Z buffer such as hidden-surface removal, a
dedicated Z buffer board must be installed in the HP 98731. When the Z buffer
board is installed and an accelerated image-plane Xll window is opened, the Xll
server also associates a corresponding portion of the Z buffer with the window.
This Z-buffer allocation is automatically moved and resized as the window is
moved and resized. It is also obscured by other windows in the image planes.

HP98731-43

Contents

The Starbase Memory Driver
Device Description . .
Setting Up the Device. . .

Switch Settings
Special Device Files (mknod)
Linking the Driver .

Device Initialization
Parameters for gop en
Syntax Examples ..

For C Programs: .
For FORTRAN77 Programs:
For Pascal Programs: . . .

Special Device Characteristics
Device Defaults

Number of Color Planes
Dither Default . .
Semaphore Default
Line Type Defaults
Default Color Map
Red, Green, and Blue

Starbase Functionality
Commands Not Supported
Conditionally Supported
Configuration

Fast Alpha and Font Manager
SMD Errors
Parameters for gescape . .

SMD_DEFINE_DEPTH
Syntax

SMD-l
SMD-2
SMD-2
SMD-2
SMD-2
SMD-3
SMD-3
SMD-4
SMD-4
SMD-4
SMD-4
SMD-5
SMD-5
SMD-5
SMD-5
SMD-5
SMD-6
SMD-6
SMD-8
SMD-9
SMD-9
SMD-ll
SMD-ll
SMD-12
SMD-12
SMD-15
SMD-16
SMD-17

Contents-1

SMD_DEFINE_XY.
Syntax

SMD_SUPPLY _MEM_BUFF
Syntax

SMD_GET _MEM_REQUIRED
Syntax

SMD_ALLOCATE_MEMORY
Syntax

Index

Contents-2

SMD-18
SMD-19
SMD-21
SMD-21
SMD-22
SMD-22
SMD-23
SMD-23

(
I,

SMD
The Starbase Memory Driver

Device Description

The Starbase Memory Driver (SMD) permits the user to treat memory like a
frame-buffer device and direct Starbase operations to it. The SMD can be used for
quick pop-up menus from offscreen, shadow buffering (creating images offscreen
and then move rapidly to on-screen), etc. See the chapter "The Starbase Memory
Driver" in the Starbase Graphics Techniques manual for further information on
what the SMD is and how to use it.

The SMD driver supports three modes:

• SMDpixel mode (pixel-major packing format with one bank)

• SMDpixe13 mode (pixel-major packing format with three banks)

• SMDplane mode (plane-major packing format with 1,2, or 3 banks)

SMD-1

Setting Up the Device

Switch Settings

Switch settings are not applicable to a memory-resident frame buffer.

Special Device Files (mknod)

No special device file need be created when using the SMD, since the gopen path
name used is /dev/null.

Linking the Driver

SMDpixel and SMpixe13 is the file libddSMDpix. a in the directory /usr/lib.
This device driver may be linked to a program using the absolute path name
/usr/lib/libddSMDpix. a, an appropriate relative path name, or by using the
-1 option -lddSMDpix. For example, to compile and link a program for use with
this driver use:

cc example.c -lddSMDpix -lsb! -lsb2 -0 example
fc example.f -lddSMDpix -lsb! -lsb2 -0 example
pc example.p -lddSMDpix -lsb! -lsb2 -0 example

Which example you use depends on the language being used.

SMDplane is the file libddSMDpln. a in the directory /usr/lib. This driver is
linked the same way as SMDpixel.

If you are using raster fonts, you must also link in the libfontm. a library as the
following examples shows:

SMD-2

cc example.c -lfontm -lddSMDpix -lsb! -lsb2 -0 example
cc example2.2 -lfontm -lddSMDpln -lsb! -lsb2 -0 example2

Device Initialization

Parameters for gopen

The gopen procedure has four parameters: Path, Kind, Driver and Mode.

fildes = gopen(Path. Kind. Driver. Mode);

Path

Kind

Driver

Mode

Always /dev/null when using the Starbase memory driver.

Indicates the I/O characteristics of the device. This parameter must
be OUTDEV for this driver.

The character representation of the driver type. This must be either
SMDpixel, SMDpixe13, or SMDplane. For example:

II SMDpixel II

'SMDpixel'//char(O)
'SMDpixel'

for c.
for FORTRAN77.
for Pascal.

SMDpixel is for byte-per-pixel with a depth of 8, and SMDpixe13 is
for byte-per-pixel and three banks, giving a depth of 24.

SMDplane is for bit-per-pixel with a depth of up to 24 planes.

The mode control word consisting of several flag bits which can be
or ed together. Listed below are those flag bits which have no affect
for this driver and those which have device-dependent actions. Flags
not discussed below operate as defined by the gopen procedure.

The SMD supports mode values of the RESET_DEVICE, INIT, THREE_D,
and MODEL_XFORM flags. For MODEL_XFORM, shading and hidden­
surface removal are not supported. However, opening in MODEL_XFORM
mode affects how matrix stack and transformation routines are per­
formed.

For all modes, the software color map is automatically initialized .

• The SPOOLED flag bit causes an error for this driver and
cannot spool memory buffers .

• The following flag bits have device dependent actions:

SMD-3

Syntax Examples

o O-open the device, but defer memory buffer alloca­
tion until explicitly requested through gescape or un­
til the first graphics primitive is called.

o INIT and RESET_DEVICE-open and initialize the
device as follows:

1. The memory buffer is allocated.

2. Clear memory buffer to Os.

3. Reset the color map to its default values.

To open and initialize an SMD device (SMDpixe13 may be substituted for
SMDpixel if you desire a three-bank memory buffer; SMDplane may be substituted
for bit-per-pixel memory applications.):

For C Programs:

fildes = gopen (" / dev /null ", OUTDEV, "SMDpixel", INIT);

For FORTRAN77 Programs:

fildes = gopen('/dev/null'//char(O) , OUTDEV, 'SMDpixel'//char(O) , INIT)

For Pascal Programs:

fildes = gopen('/dev/null', OUTDEV, 'SMDpixel', INIT);

SMO-4

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper-left corner of the
memory buffer with X-axis values increasing to the right and Y-axis values
increasing down. The lower-right corner of the buffer is therefore xmax, ymax,
where xmax and ymax are 1 less than the X-size and Y -size specified for the
memory buffer. The size can be set through calling the gescape procedure
SMD _DEF INE_XY.

Device Defaults

Number of Color Planes

You can specify the number of planes of depth for the memory buffer if using
SMDpixel or SMDplane. The valid values for SMDpixel are 1, 3, 4, 6, or 8.
The valid values for SMDplane are 1, 3, 4, 6, 8, 16, or 24. The default depth for
SMDpixel is 8 planes. The default depth for SMDplane is 1 plane. For SMDpixe13,
the depth is fixed at 24. The device driver then acts accordingly.

Dither Default

The default number of colors searched for in a dither cell is 2. The number of
colors allowed in a dither cell is 1, 2, 4, 8 or 16. For devices having 24 or more
planes in CMAP _FULL mode (see shade_mode) dithering is not supported since full
24-bit color is available. If you are double-buffering with 12 planes per buffer,
the number of colors allowed in a dither cell is 1, 2, or 4.

Semaphore Default

There are no semaphore operations supported on a memory buffer.

SMD-5

Line Type Defaults

The default line types are created with the bit patterns shown in the following
table:

Table SMO-1.

Line Types Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Default Color Map

The number of entries in the color map is is the number of planes in the memory
buffer. The color map, as far as it goes, is initialized to the default values shown
in the following table.

SMO-6

Table SMD-2. Default Color Table

Index Color red green blue
0 black 0.0 0.0 0.0
1 white 1.0 1.0 1.0
2 red 1.0 0.0 0.0
3 yellow 1.0 1.0 0.0
4 green 0.0 1.0 0.0
5 cyan 0.0 1.0 1.0
6 blue 0.0 0.0 1.0
7 magenta 1.0 0.0 1.0
8 10% gray 0.1 0.1 0.1
9 20% gray 0.2 0.2 0.2
10 30% gray 0.3 0.3 0.3
11 40% gray 0.4 0.4 0.4
12 50% gray 0.5 0.5 0.5
13 60% gray 0.6 0.6 0.6
14 70% gray 0.7 0.7 0.7
15 80% gray 0.8 0.8 0.8
16 90% gray 0.9 0.9 0.9
17 white 1.0 1.0 1.0

Use the inquire_color_table procedure to see the rest of the 255 colors.

SMD-7

When INIT is used in the shade_mode procedure call, the color map initialization
is based on the value of the mode parameter and the number of frame buffer banks
requested.

mode = CMAP_NORMAL Same as the previous table.

mode = CMAP _MONOTONIC The color map is initialized as:

for (I = 0; I < 256; 1++)

mode CMAP_FULL

Red, Green, and Blue

cmap[1] .red = cmap[1] . green = cmap[1] .blue = 1/255.0;

With 24 planes specified, the color map is initialized
as the CMAP_MONOTONIC case above; but now the
first bank of 8 goes through the blue portion of
the color map, the second bank goes through the
green portion, and the third bank goes through the
red portion. The color map could be subsequently
modified in this mode to perform functions like
gamma correction or double buffering of 4 bits per
color.

For Starbase procedures that have parameters for red, green, and blue, the way
the actual color is chosen depends on the current shade_mode setting.

mode = CMAP_NORMAL

SMO-8

The color map is searched for the color that is closest
in RGB space to the one requested. That color map
index is written to the frame buffer for subsequent
output primitives. It is more efficient to select a color
with an index rather than specifying a color with red,
blue, and green values in this mode because it takes
extra time to figure out which index in the color table
most closely matches the specified color.

mode = CMAP _MONOTONIC The red, green, and blue value is converted to an
intensity value using the equation:

mode CMAP_FULL

0.30xred+0.59xgreen+0.llxblu€

This intensity is converted to an index value by
mapping intensity 0.0 to the minimum index set
by shade_range, and intensity 1.0 to the maximum
index set by shade_range. This mode is useful
for displaying a high-quality monochrome picture on
an 8-plane system from data that produces a high
quality color picture on a 24-plane system.

The color values are mapped directly to an index
with the assumption that the color map is set up to
a predefined full color state.

Starbase Functionality

Commands Not Supported

This section notes which standard Starbase capabilities are not supported by the
SMD:

• An SMD memory buffer is an output-only device. Thus, the following
Starbase input-related calls are not supported (no action is taken if they
are called):

await_event
define_raster_echo
disable_events
echo_type
echo_update
enable_events
initiate_request
inquire_request_status
read_choice_event

read_locator_event
request_choice
request_locator
sample_choice
set_locator
set_signal
track
track_off

A call to inquire_input_capabili ties indicates that there are no input
capabilities.

SMD-9

• The SMD's memory is never visible; you can never see the image with
your eyes. Thus, these two visibility-related calls are ignored for the SMD.

await_retrace display_enable

• The SMD does not emulate features provided by device hardware. For
example, the Z-buffer hidden-surface removal and shading that can
be done by the HP 98720 transform engine driver are not supported.
Explicitly, the functions not supported are:

SMD-10

backface_control
bf_control
bf_fill_color
bf_interior_style
bf_perimeter_color
bf_perimeter_repeat_length
bf_perimeter_type
bf_surface_coefficients
bf_surface_model
define_trimming_curve
depth_cue
depth_cue_color
depth_cue_range

hidden_surface
intline_width
interior_style (INT_OUTLINE)
interior_style (INT_POINT)
light_ambient
light_attenuation
light_model
light_switch
line_endpoint
shade_range
surface_coefficients
surface_model
viewpoint
zbuffer_switch

Conditionally Supported

Routines which are partially supported are:

vertex_format

Configuration

For SMDpixel mode, this call is ignored. For SMDpixe13
and SMDplane, this call is supported.

The color map mode may be selected, but shading cannot
be turned on

The user can call this routine, but the driver does not
recognize any extra coordinates.

• A packing format to emulate the full l024x400 resolution of the Series
300 medium-resolution frame buffer (driver 3001 is not supported).

Note The 3001 driver normally does vector generation turning on
two pixels at a time. This is because its resolution is actually
1024x400, but Starbase treats the device as 512x400. There
is a gescape operation that lets you treat the 3001 resolution
as 1024x400 during block_write and block_read operations.
When using this mode, the driver does not skip every other byte
of input (or output).

• Windows/9000 cannot run in an SMD memory buffer. However, SMD
supports the capabilities of the "Font Manager Library" section of Fast
Alpha/Font Manager's Programmer's Manual.

• The SMD driver does not provide locking and unlocking capabilities that
permit shared access to a single memory buffer.

• The HP 98720 driver supports 8 planes, 16 planes, or 24 planes of frame
buffer. If using the 16 planes, only 8 planes are displayabled at a
time (double-buffered). With 24 planes, you can double-buffer with two
sets of 12 planes. Thus, these modes are intended for double-buffering
applications. SMDpixe13 always emulates a full 24 planes and does not
emulate 8 or 16 planes. You can use these 24 planes to double-buffer with
either 8 or 12 planes per buffer.

SMD-11

• SMDplane emulates exactly the number of planes specified:

o 1, 3, 4, 6, or 8 planes: 1 bank.

o 16 planes: 2 banks (8 planes, double-buffered).

o 24 planes: 3 banks.

Fast Alpha and Font Manager
The SMD supports raster text calls from the "Fast Alpha and Font Manager
Libraries" as documented in Fast Alpha/Font Manager's Programmer's Manual.
Since raster fonts consist of one byte per pixel, raster text is written only to the
currently selected bank when the SMD is being used in SMDpixe13 mode. This
is similar to the operation of other raster functions like block_write.

SMD Errors
The general philosophy of SMD error reporting is that when a Starbase function
is invoked which is not supported by SMD a no-op is performed, but no error or
warning is issued.

Errors are issued for operations that will not work, for example, input on an
output-only device.

Harmless errors (a color map index out of range) cause warnings to be issued.

SMD reports the following errors:

• SMD opened with SPOOLED, OUTINDEV, or INDEV specified.

• The user supplies an address to a block of memory for the memory buffer
after the memory buffer has already been allocated. Or the user supplies
the NULL pointer in the SMD_SUPPLY_MEM_BUFF parameter of the gescape
call.

• The user tries to redefine the depth via gescape on an SMDpixe13 format.

SMD-12

• The user supplies an invalid gescape opcode.

• After frame buffer resizing, either by a depth redefinition or X, Y
redefinition, the frame buffer is greater than 232_1 bytes (4 gigabytes).
This is the maximum size that a frame buffer can be.

• User tries to redefine the depth for a SMDpixel memory buffer beyond 8
planes or some value other than 1,3,4,6, or 8.

• User tries to define the depth for a SMDplane memory buffer beyond 24
planes or some value other than 1, 3, 4, 6, 8, 16, or 24.

• User specifies an X or Y value in R_DEFINE_XY larger than 216_1 (65,535).

• The memory buffer could not be allocated. One possible reason is that the
size causes the application to exceed its current address space limitation.
The maximum amount of memory that can be allocated depends on the
amount of swap space available to the system, the maximum data segment
size per process in the system, and the number of processes running.
The total address space (used by all currently running processes) cannot
exceed the amount of swap space available in the system.

If the SMD is unable to allocate the amount of memory requested, it
returns what it can allocate depending on the amount asked for. If the
allocation happens via gescape, this information is returned in arg2.
If the allocation happens at gopen or at the time of the first graphics
primitive, this information is reported to stderr.

The amount SMD claims it can allocate will fluctuate, since it is
dependent on the number of other processes running at that time.

It is your responsibility to size down your application or other processes
to be able to get' the memory you are requesting. Possible methods of
sizing down the application are:

o If Windows/gOOD is being run with the application, either elimi­
nate it from the application, or modify the windows environment
to use less shared memory per application. See the Windows/9000
Programmer's Manual, "Programming Environment" for more in­
formation.

SMD-13

SMO-14

D Decrease the number of other bitmapped display drivers that are
running with the application. Each driver maps the frame buffer
into the address space.

D Decrease how much memory is being requested from the SMD.

D Reconfigure your system with more swap space or a larger data
segment size per process (refer to the system's configuration
manual).

D Decrease the number of other processes running in the system
concurrently. This will give more address space to the SMD
application program.

Parameters for gescape
The following gescape functions are common to two or more devise drivers and
discussed in the appendix of this manual.

• R_BIT_MODE-bit mode (supported by SMDpixel and SMDpixe13).

Note R_BIT _MODE is always true for SMDplane.

• R_BIT_MASK-bit Mask (supported by SMDpixel and SMDpixe13).

• DEF _FILL_PAT-define fill pattern (supported by SMDpixel and SMD­
pixe13).

• R_GET_FRAME_BUFFER-get frame buffer pointer (supported by all SMD
drivers).

• R_LINE_ TYPE-define line type

The following gescape functions are unique to this driver and are discussed here.

• SMD_DEFINE_DEPTH-define memory buffer depth

• SMD_DEFINE_XY-define X, Y dimensions

• SMD_SUPPLY_MEM_BUFF-supply memory buffer

• SMD _ GET _MEM_REQUIRED-determining memory requirements

• SMD _ALLOCATE_MEMORY -allocate frame buffer

SMD-15

The (op) parameter is SMD_DEFINE_DEPTH (supported by SMDpixel and SMDplane
only).

This gescape call allows definition of the logical depth (number of planes) when
using the SMDpixel packing format and the physical depth for SMDplane (the
physical depth always remains 8). If the user called gopen with SMDpixel driver,
the valid logical depth values are 1, 3, 4, 6, or 8. The physical depth values for
SMDplane are 1, 3, 4, 6, 8, 16, or 24.

Changing the depth of the frame buffer changes the size of the color table. The
color table size is equal to 2 raised to the number of frame buffer planes up to
256 entries. For example, 28 = 256. This gescape always causes the color table
to be reinitialized to the Starbase default values.

The SMD treats the color table assuming that the resulting device used to display
the memory buffer has a hardware color map. This means that when the SMD
gets an index value for the color of a primitive, it uses this index for writing into
the frame buffer. This is different from drivers for monochromatic displays (the
hp300h and hp300l drivers1).

This gescape call can occur at any time, but if the memory buffer has not been
allocated, this gescape will not allocate the memory buffer. The memory buffer
is allocated in the following situations:

• Graphics primitives are done to the memory buffer,

• SMD_ALLOCATE_MEMORY gescape is called, or

• R_GET_FRAME_BUFFER is called.

1 The hp300h and hp300l drivers look at the color map definition for the index
provided from Starbase and determine if that index represents "color" or "no
color." If it represents color, the driver uses a pen value of one. If it represents
no color, the driver uses a pen value of zero. For example, application drawing
to a monochromatic 300h changes the color table definition such that index 0 is
white and index 1 is black. It specifies line_color _index with index O. The
driver does not write index 0 values into the frame buffer. Instead, it determines
that the color at index 0 in the color table is white and writes index value 1 into
the frame buffer because monochromatic devices do not have a hardware color
map.

SMD-16

If the memory buffer has already been allocated, the current memory buffer is
not altered by this gescape; however, subsequent graphics primitives are done
with the new range of color indexes.

Syntax

gescape(fildes, SMD_DEFINE_DEPTH, &argl, &arg2);

arg1. i [0] contains the number of planes.

arg2. i returns the following information:

• arg2. i [0] is success or failure. Failure can occur if the user specifies an
invalid depth value.

• arg2. i [1] is the current frame buffer pointer.

• arg2. i [2] is the number of bytes currently required by the frame buffer.

If failure is indicated, the application must call inquire_gerror to know the
complete nature of the error. If the error was 6 (IMPROPER_VALUE), the user
passed in an improper depth value.

If the depth definition was for an invalid depth value,

• arg2. i [0] is returned indicating failure,

• arg2. i [1] contains the current memory buffer pointer (this pointer is

• NULL if the memory buffer has not yet been allocated), and

• arg2. i [2] is the number of bytes required for the memory buffer.

SMO-17

The (op) parameter is SMD_DEFINE_XY (supported by all SDM drivers).

This gescape lets the user define the X, Y dimensions of the memory buffer. The
memory buffer still uses the packing format indicated in the gopen call. The
redefinition can occur at any time.

If a memory buffer is currently defined (not a NULL pointer), and the redefinition
requires a larger buffer, the current buffer is deallocated, and a new buffer is
allocated. Graphics primitives the user may have done are not retained. This
gescape works on memory buffers supplied by the user (see "User-Supplied
Memory Buffers"), but you should be aware that if your new X, Y definition
requires reallocation of the buffer, your supplied memory is deallocated and a
new memory region is allocated instead. Thus, the local copy of the pointer to
the supplied memory region is no longer valid.

If the memory buffer has not yet been allocated or if the memory buffer is
currently undefined, the memory buffer pointer is NULL. This gescape does not
allocate the memory buffer. The memory buffer is allocated in the following
situations:

• Graphics primitives are being done to the memory buffer,

• SMD_ALLOCATE_MEMORY gescape is called, or

• R_GET_FRAME_BUFFER gescape is called.

The X and Y indexes in a frame buffer each have to be 216 _1 (65,535) or less.
This is because the vector generation algorithms can only handle up to 16 bits
of addressing along each axis.

The maximum size of a frame buffer is discussed further in "The Starbase Memory
Driver" in the Starbase Graphics Techniques manual.

By redefining the size, the Virtual Device Coordinate to Device Coordinate
(VDC-to-DC) mapping is recomputed. The current VDC extent definition
remains the same; however, PI and P2 are set back to FRACTIONAL 0, 0, ° to
1, 1, 1. Redefinition of the memory buffer causes the memory buffer to be
cleared to the background color if the user opened with mode containing INIT

or RESET_DEVICE.

SMD-18

Syntax

gescape(fildes. SMD_DEFINE_XY. &argl. &arg2);

arg1 contains two integer values, maximum X and maximum Y. If you want
a memory buffer 512x512 pixels in size, arg1. i [0] =512 and arg1. i [1] =512.
Thus, the maximum DC (X, Y) you can reference is 511, 51l.

arg2. i contains the following return information:

• arg2. i [0] is success or failure. Failure can occur if the user specifies
X or Y range values that are invalid; or the X, Y redefinition required a
reallocation of the memory buffer, and the amount of memory now being
requested cannot be allocated.

• arg2. i [1] is the current pointer to the frame buffer or NULL if no frame
buffer has been allocated.

• arg2. i [2] depends on the nature of the failure.

D If the failure was due to the X or Y size exceeding 65,535,
arg2 . i [2] is the number of bytes for the frame buffer (based
on the previous definitions of X and Y).

D If the failure was due to being unable to allocate the memory based
on the new X, Y size, arg2. i [2] contains the size (in bytes) of the
buffer which could have been allocated had the user requested that
SIze.

The application must do an inquire_gerror if failure is indicated to know the
complete nature of the error. If the error number is 2049, Starbase was unable
to allocate the memory buffer. If the error number is 6 (IMPROPER_VALUE), then
the X and/or Y values were invalid.

If arg2. i [0] returns indicating failure, a Starbase error is also issued to stderr.

If the device is gopen ed with the INIT or RESET _DEVICE bits set, the memory
buffer is allocated at this time. If the user redefines the X, Y size too large to be
allocated,

• failure is returned to the user in arg2. i [0] , and

• arg2. i [1] is the NULL pointer.

SMD-19

This happens because the SMD deallocates the first buffer before attempting to
allocate the second, larger one. But since the SMD is unable to allocate the
required amount of memory, arg2. i [1] is returned with the NULL pointer.

If a user's application then redefines the X, Y size to something smaller (since
the current memory buffer pointer is now NULL), the SMD does not allocate the
memory at the time of that SMD_DEFINE_XY gescape call. SMD returns

• success in arg2 . i {O} (provided the X and Y dimension values were valid),

• a NULL pointer in arg2. i [1], and

• the number of bytes required in arg2. i [2] .

At this point, the user should call gescape with SMD_ALLOCATE_MEMORY to force
allocation of the memory buffer. This insures that the SMD can allocate the
required memory. The user could choose not to allocate the memory through
SMD _ALLOCATE_MEMORY letting the memory buffer be allocated at the time of the
first graphics primitive. However, if the X, Y is still such that the SMD cannot
allocate the memory, a Starbase error is generated at the time of the graphics
primitive, and the user has no way of knowing how many bytes are available at
allocation time.

SMD-20

The (op) parameter is SMD_SUPPLY_MEM_BUFF (supported by all SMD drivers).

This gescape allows the user to pass a pointer to a block of memory for the SMD
to use as its memory buffer.

The SMD, by default, allocates its own memory buffer at gopen time if you open
with (mode) equal to INIT or RESET_DEVICE. If you open with (mode)=O, the
buffer is not allocated, and Starbase expects either

• allocating the buffer by supplying a pointer to the buffer, or

• a gescape to force allocation of the buffer (see "Allocate a Frame Buffer"
or "Get Frame Buffer Pointer").

It is your responsibility to understand the format of the memory buffer and the
amount of memory required. (See "Determining Memory Requirements") If you
do not allocate enough memory, a system error may occur when the SMD tries
to write beyond the memory area.

When supplying a memory buffer that is not going to use the default X, Y
(dimensions and depth), you should define X, Y dimensions via SMD_DEFINE_XY
and SMD_DEFINE_DEPTH respectively before supplying the memory buffer to the
SMD. Otherwise, the SMD assumes the frame buffer X, Y size and depth as the
defaults and set up its VDC-to-DC transformation accordingly.

The user-supplied buffer is not initialized to the background color by the driver.

Syntax

gescape(fildes, SMD_SUPPLY_MEM_BUFF, &arg1, &arg2);

arg1. i [0] contains the pointer to the memory buffer to be used by the SMD.

arg2. i [0] returns success or failure.

arg2. i [1] returns the current pointer to the memory buffer.

arg2. i [2] returns the number of bytes currently required by the frame buffer.

An inquire_gerror call should be made to determine the exact nature of the
error. If the error was 11 (NULL_PTR), the user passed in a NULL pointer. If the
error was 6 (IMPROPER_VALUE), the user tried to supply a memory buffer after
the memory buffer had already been allocated.

SMD-21

The (op) parameter is SMD_GET_MEM_REQUIRED (supported by all SMD drivers).

This gescape determines the amount of memory required for a memory buffer
based on the current packing format and X, Y dimensions. Use this value to
malloc the memory to be supplied to the SMD in the SMD_SUPPLY_MEM_BUFF

gescape call.

Syntax

gescape(fildes, SMD_GET_MEM_REQUIRED, &argl, &arg2);

arg2. i [0] is returned with the number of bytes required for the memory buffer.

SMD-22

SMD_ALLOCATE_MEMORY

The (op) parameter is SMD_ALLOCATE_MEMORY (supported by all SMD drivers).

This gescape forces allocation of the memory buffer. The memory buffer is
allocated according to the current X, Y and depth definitions. The gescape
examines the current X, Y dimensions and the current depth to determine the
size of the buffer allocation. If the memory buffer has already been allocated,
this gescape determines if a new, larger buffer is required.

Syntax

gescape(fildes. SMD_ALLOCATE_MEMORY. &arg1. &arg2);

arg2. i contains the following return information:

• arg2. i [0] is success or failure. Failure occurs if the memory buffer cannot
be allocated.

• arg2. i [1] is the current pointer to the frame buffer.

• If arg2. i [0] indicates success, arg2. i [2J is the number of bytes allo­
cated for the memory buffer. If arg2. i [0] indicates failure, arg2. i [2]
is the number of bytes that are available.

SMD-23

Table of Contents

The Starbase-on-Xl1 Device Driver
Device Description ... 1
Setting Up a soxll Environment 1
Linking the soxll Driver with an Application 2
Programmatic Initialization 2

Gopen Parameters .. 3
Special Device Characteristics 7
Device Defaults .. 7

Starbase Functionality ... 8
Commands Not Supported (NO-OPS) 8
Gescapes .. 9
Input Model .. 9

Programming Strategy ... 11
Window Resize .. 11
Starbase Echo ... 11
X Cursor .. 11
Polygon Fills .. 11
Window Mapping .. 11
Double Buffering 12
Raster Text ... 12

The Starbase-on-X11 Device Driver

Device Description
The Starbase-on-Xll (soxll) device driver library, l ibddsox11.a, allows an application to
use Starbase functions within version 11 of the X Window System. The soxl1 driver
implements the device-dependent Starbase routines by calling the Xl1library, Xlib, and
may be described as an implementation of Starbase "on top of" Xll.

The implementation allows Starbase applications to use the features of version 11 of the X
Window System. This includes running applications over the network, where the
application runs as a client on one machine while using the Xll display server to perform
I/O either on another machine or locally. A Starbase application can use any HP 9000
series 300 or 800 machine running Starbase as its Xll client machine, while the same
application may use any accessible hardware running an Xll server to perform all I/O
operations. Thus an Xll window serves as a virtual device for Starbase.

Not all Starbase calls (for example, 3D solids-modeling calls) can be translated into Xlib
calls because this driver does not support full Starbase functionality. However, since Xlib
works over the network between a client and a server, the soxll driver permits Starbase to
work over the network, but with reduced functionality and performance compared to
Starbase running with the Starbase display drivers.

Note that the Xll server performing I/O for the application need not necessarily be
running on HP equipment, however, differences in behavior can result if such non-HP
equipment is used.

Setting Up a sox11 Environment
The soxll driver can be used on any machine once Starbase and version 11 of the X
Window System have been installed. No special installation need be performed, and no
special nodes need to be made in order to use the soxll driver. As long as Starbase and
XlI have been installed on the system, applications may run on any accessible display
being controlled by an Xll server.

The Starbase-on-Xl1 Device Driver 1

Linking the sox11 Driver with an Application
The name of the soxll driver is l ibddsox11.a. This driver may be linked into your
application using an absolute path name to the driver, or by using the -L option -Lddsox11.
Xlib (-Lx11) and the HP extension library (-lXhp11) must also be linked into the
application. The absolute path name of the driver is lusr IL i b/L i bddsox11 . a. For example,
to compile and link a program for use with this driver, depending upon the source
language used (C, Fortran, or Pascal):

cc example.c -0 example -lddsox11 -lsb1 -Lsb2 -LXhp11 -lX11

fc exampLe.f -0 exampLe -Lddsox11 -Lsb1 -Lsb2 -LXhp11 -LX11

pc exampLe.p -0 exampLe -Lddsox11 -Lsb1 -Lsb2 -LXhp11 -LX11

Note that l ibsb1.a and L ibsb2.a must be linked before the Xlllibraries and that
L i bXhp11. a must be linked before L i bX11 . a.

Both Xlllibraries are necessary for proper functionality. The l ibX11.a library allows you
to make calls to X, while the L ibXhp.a library adds HP's extended calls.

Programmatic Initialization
In order to use Starbase functionality within an Xll window, you must perform a gopen()
call on an existing targeted Xll window. The window may be of any size and location on a
device controlled by an Xll server. Multiple processes may gopen() the same window (as
long as only one process gopen()s a window as an INDEV), and a single process may
gopen() multiple windows.

An Xll window for use with the soxll driver is easily created in either of two ways:

• From outside a program by executing xwcreate from a terminal window command line.
The use of xwcreate is documented in the Using the X Window System manual.

• From within a program by calling XcreateWindowO and using make_X11_gopen_stringO
to create a string to pass to gopenO. The use of XcreateWindowO is documented in the
Programming with Xlib manual. The use of make_X11_gopen_string() is documented in
the Starbase Reference manual.

2 The Starbase-on-Xll Device Driver

Gapen Parameters
The gopen() procedure has four parameters: Path, Kind, Driver, and Mode.

Path

Kind

Driver

Mode

The pathname of the window as specified to the xwcreate
command or the string returned by the make_X11_gopen_stringO

command.

The I/O characteristics of the device. This parameter may be
OUTDEV, INDEV, or OUTINDEV for this driver. If OUTDEV
is used, then only the output display routines will be available to
the application. If INDEV or OUTINDEV is used, then XII will
present a virtual input device interface where a keyboard is present
as a CHOICE device and a three button pointer may be accessed
as both a CHOICE device and a LOCATOR device.

Note

Due to the nature of the XII protocol, only one process may open a
window as INDEV at a time. If more than one process tries to
access a window as INDEV, an error will result.

The name of the driver type. The name of this driver is sox11.
The exact string used for this argument depends on the
programming language being used. For example:

Isox11"

'sox11'//char(O)

'sox11'

for C.
for FORTRAN77.
for Pascal.

The mode control word, which consists of several flag bits which
are OR'd together. The RESET DEVICE and INIT flags clear
the window and cause the default Starbase colormap to be set for
the soxll window, but do not cause any hardware to be reset in
the devices.

Gopen Examples

An XII window must first exist before trying to use gopen() with XII. The xwcreate

command creates a window and a pty file. The file can be used as a device file by gopen()
to access the window. The name of the file is the name of the window supplied to xwcreate

prefixed by the file path. The default path is /dev/screen. See the xwcreate manual page
for details.

The Starbase-on-Xl1 Device Driver 3

Three methods for a C program to create and gopen() an XII window follow. These
examples create a 15Ox150 window named wi ndow1 at location 5,5 on the default display.
They then gopen() window1 for an output application. Method #2 is identical to method
#1 except that the xwcreate command has been moved inside the program. Method #1:

}

#include <starbase.c.h>
#include <stdio.h>

main(argc, argv)
int argc;
char **argv;
{

int fildes; /* Starbase graphics descriptor */

fildes = gopen(argv [1], OUTDEV, argv [2], INIT);
if(filedes == -1) exit(1);
ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7);
make_picture_current(fildes)i
sleep(10)i
gclose(fi ldes);

If the above program is called "myprog," then it would be run using the following
commands:

xwcreate -geometry 150x150+5+5 window1
myprog /dev/screen/window1
xwdestroy window1

4 The Starbase-on-XII Device Driver

Method #2:

}

#include <starbase.c.h>
#include <stdio.h>

mainO
{

int fildes; 1* Starbase graphics descriptor *1

system(lIxwcreate -geometry 150x150+5+5 window1");
fildes = gopen("/dev/screen/window1 11 , OUTDEV, IIsox11", INIT);
if(filedes == -1) exit(1);
ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7);
make_picture_current(fildes);
sleep(10);
gclose(fi ldes);

The Starbase-on-Xl1 Device Driver 5

Method #3:

}

#include <starbase.c.h>
#include <X11/Xlib.h>
#include <stdio.h>

mainO
{

Display *Xdisplay;
Window window;
XEvent event;
int fi ldes;
extern char *make_X11_gopen_string()i

/* X display connection */
/* X window identifier */
/* Holds X server events */
/* Starbase graphics descriptor */

if «Xdisplay = XOpenDisplay(NULL» == NULL) (
fprintf(stderr, "Can't open %s\nll, XDisplayName(NULL»i
exit(1);

}

window = XCreateSimpleWindow(Xdisplay, /*Create the window */
DefaultRootWindow(Xdisplay),
5, 5, 150, 150, 2,
WhitePixel(Xdisplay, DefaultScreen(Xdisplay»,
BlackPixel(Xdisplay, DefaultScreen(Xdisplay»);

XSelectInput(Xdisplay, window, StructureNotifyMask);

XMapWindow(Xdisplay, window);
XSync(Xdisplay, 0);

do (/* Make sure window is visible */
XNextEvent(Xdisplay, &event); /* Before writing to it */

} while (event.type != MapNotify II event.xmap.window != window);

fildes = gopen(make_X11_gopen_string(Xdisplay, window), /* Gopen window */
OUTDEV, IIsox1111, INIT);

ellipse(fildes, 0.3, 0.4, 0.5, 0.5, 0.7); /* Render a picture */
make_picture_current(fildes);
sleep(10);
gclose(fi ldes);
XCloseDisplay(XdisplaY)i

6 The Starbase-on-Xl1 Device Driver

Special Device Characteristics

For device coordinate operations, location (0,0) is the upper left corner of the window at
the time the window is gopen(>'d. Values along the horizontal axis increase to the right.
Values on the vertical axis increase in a downward direction.

Device Defaults

The device defaults depend upon the defaults for the display device on which the window is
located. These defaults are determined by the Xll server for that display device. For
example, an Xll server on a monochrome display defaults to only having one plane of
color, black and white, while an Xll server on a pseudo-color display utilizes as many
planes of color as the display allows.

Some virtual device defaults are determined by the software driver, l i bddsox 11 • a. These
are as documented below.

Line Type Defaults

Default line types are shown in the table below:

Table 1. Default Line 1YPes

Line Type Bit Pattern Line Pattern (repeated twice)

0 1111111111111111
1 1111111100000000
2 1010101010101010 ----------------
3 1111111111111010 - -
4 1111111111101010 - - - -
5 1111111111100000
6 1111111111110110 - -
7 1111111110110110 -- --

Color Map Defaults

When an XII window is gopen'd without an INIT flag set, the XII colormap for the
window is read into the Starbase color map. A call to inquire_color_table provides
information about the color map. The XII server and direct calls to the X11library
arbitrate over the allocation of color cells.

define_color _table is supported. The default color table is set up if a device is opened with
the INIT flag set. Note that the color scheme of all the windows will change when this call
is made and the window receives "colormap focus" (see below).

define_color _table will define a virtual colormap for the window. Anytime the "colomap
focus" is given to the window by the window manager, that window's virtual colormap will

The Starbase-on-X11 Device Driver 7

be installed in the hardware colormap. In the HP Window Manager (hpwm), colormap
focus can be set in three ways:

pointer

explicit listener

tracked keyboard input

Anytime the pointer enters the window, that window is
given the colormap focus.

Anytime the window receives a button click, it is given
colormap focus.

Any window that has input focus has colormap focus.

Be aware that the same color may have different values in different colormaps and that
switching colormaps affects every window on your screen. For example, if you want to run
Starbase on Xll, you could run into the following situations.

• If you use the Xll colormap, your X environment has the proper colors, but the
Starbase window is strangely colored.

• If you use the Starbase colormap, the Starbase window has the proper colors, but your
X environment is strangely colored.

Input Defaults

The keyboard input is by default set to "cooked" mode. This mode returns National
Language Support (NLS) values for the full range of ASCII representable keys. Other
special function keys return keycodes defined by the reference page for XrInitMap(3X).

Also, by default, only key presses and button presses are reported.

An application can request to be sent raw keystrokes or key and button releases through
gescapes. See the section describing the input gescapes for details.

The Xll pointer is CHOICE device ordinal one, a mask of all buttons pressed is CHOICE
device ordinal two, the Xll keyboard is CHOICE device ordinal three, and the Xll
pointer position is LOCATOR device ordinal one.

Starbase Functionality

Commands Not Supported (NO-OPS)

The following commands are not supported. These commands will not generate Starbase
errors.

8 The Starbase-on-Xll Device Driver

await retrace
bf control
bf perimeter color
be surface coeficients
define _ tri~ming_ curve
depth cue range
light _ ~ttenuation
light_source
shade_range
viewpoint

Gescapes

backface control bank switch
bf fill cOior bf interior style
b(perimeter _ type b(perimet~r _ repeat}ength
bf surface model dbuffer switch
dejpth_cue- depth cue color
hidden surface light ambient
interio~ style (INT OUTLINE,INT POINT)light-model
light sWitch - - shade mode
surf~e coefficient surfac~ model
zbuffer -switch

The following gescapes are supported by the soxll driver.

The following gescapes, which are common to many display drivers, are documented in
appendix A:

• READ COLOR MAP - -
• R BIT MASK

• R BIT MODE

• R DEF FILL PAT - - -
• TRIGGER ON RELEASE

• IGNORE RELEASE

All other gescapes are used to control the input model. These gescapes are described in
the following section, Input Model.

• XN INPUT RAW - -
• XN KEY RELEASE - -
• XN BUTTON RELEASE - -

Input Model

A Starbase application is free to gopen an Xll window with the OUTDEV flag and utilize
the Xlllibrary calls to perform input. The Starbase application may also choose to use
Starbase library input routines if the INDEV or OUTINDEV flags are used as arguments
to gopen. A program should use exclusively either Xll input routines or Starbase input
routines. Using both within the same application may cause an XError.

The soxll input model represents Xll as a virtual device including a keyboard and an Xll
pointer. The keyboard is accessed as a CHOICE device while the Xll pointer is accessed
as a CHOICE and a LOCATOR device.

The Starbase-on-Xll Device Driver 9

The default mode returns HP Roman-8 keycodes for all keystrokes. Special function keys
return keycodes as defined by the Xrlib routine, XrlnputMap(3X). This is the "cooked"
mode for input keystrokes. This input model works correctly for HP-HIL language
keyboards.

"Raw" input for this driver consists of an integer composed of two parts. The first half (or
upper two bytes) specify the state of the keyboard at the time of the button or key press
(ie. an "Extend char" or "CTRL" key is depressed at the time of the event). The lower half
(or last two bytes) is a server dependent key symbol which, for this server, identifies each
key or button.

In "cooked" mode the X11 pointer buttons are represented by values one through five,
corresponding to the X11 pointer button used. Button one typically represents the left­
hand button, two represents the middle button, etc. In "raw" mode the value returned by a
button is determined by the "raw" value returned by the X11 server for that button.

The X Window System input device can also return raw keycodes. These codes are the
unmapped keycodes and the keyboard state information returned by the X11 server. The
input model can be placed in "raw" mode using the XN INPUT RAW gescape with a
value of TRUE in the first argument of the gescape. Si~ilarly the input model can be
reset to the default "cooked" mode using the XN INPUT RAW gescape with the first
argument containing the value of FALSE. - -

By default the sox11 driver returns only events associated with the key press and button
press input. An application can request input events associated with both presses and
releases of keys or buttons. Requesting the release events associated with X11 pointer
buttons or keys can be controlled independently.

An application can request events associated with both button presses and button releases
by using the XN BUTTON RELEASE gescapes. The value returned by a button release
event is the negative value of the corresponding button press event.

An application can request to be sent events associated with both key presses and key
releases using the XN KEY RELEASE gescape. The value returned by a key release
event is the negative value of the corresponding key press event.

Both of these gescapes are set by sending a first argument of TRUE. Both gescapes are
reset by sending a first argument of FALSE.

HP-HIL pointing devices controlled by the X11 server are mapped into the virtual X11
pointer device represented by the input model. The X11 pointer cannot be controlled by
both the X11 server, sox11, and the HP-HIL device driver, l ibcldhi l.a, at the same time. If
the pointer device is to be controlled by the Starbase HP-HIL device driver, then the
pointer must be excluded from the X11 server.

10 The Starbase-on-X11 Device Driver

Programming Strategy

Window Resize

A widow resize event will have no effect on the space that the driver runs in. At the time
of the gopen(), the driver determines window size and it will run in that space until the
window is gopen()' d again.

Starbase Echo

When a Starbase echo is used, it is removed before every series of Starbase primitives and
placed back in the window after drawing is finished. This increases performance
dramatically compared to putting the echo back after every primitive, but it means that,
after every series of draws, make_picture_currentO should be called so that the echo will
reappear in the window.

X Cursor

When a window is created within a Starbase application by making a call to
XCreate~HndowO or XCreateSimpleWindowO, no default X cursor is defined for the window.
Instead, the window inherits its cursor from its parent.

If a window is created via the xwcreate command, however, the white left arrow cursor is
installed by sox11 at gopen time.

This allows maximum flexibility for applications creating their own window. Any cursor
may be defined for the window using any of the Xlib cursor calls, and that cursor won't be
changed by sox11.

Polygon Fills

The sox11 driver uses the following polygon fill algorithm: A border pixel is drawn only if
the polygon is to the right of or underneath the border pixel. This allows two polygons
using the exclusive OR rule to be drawn next to each other without any loss of continuity.

Window Mapping

When running in a "window smart" environment, be sure to map the created window and
do an XSync before gopening sox11. This ensures that your window exists, and that no
drawing calls will be lost. In order to ensure all drawing calls are displayed, you must
create a retained window or trap all exposure events and redraw the portion that was
previously occluded or unmapped.

The Starbase-on-X11 Device Driver 11

Double Buffering

Double buffering is accomplished by modifying the colormaps for the Starbase window.
See the "Colormap Defaults" section for details. Be aware, however, of the problems that
can occur when a virtual colormap is changed.

Note that double buffering is not supported in CMAP _FULL mode.

Raster Text

If you wish to get the most efficient performance from calls to fm_write, set the colormode
flag to FALSE. See the fast alpha/font manager documentation for details.

The following fast alpha/font manager calls are not supported when rendering to a remote
window:

fm_kjfontinfo
fm_rasterfontinfo

Raster text to non-HP equipment is not supported.

12 The Starbase-on-X11 Device Driver

Table of Contents

The XIO Windows Device Driver
Device Description ... 1
Setting Up a StarbasejXI0 Environment 1
Linking the StarbasejXn Driver with an Application 2
Programmatic Initialization 2

Gopen Parameters .. 3
Device Dependent Characteristics 5
Device Defaults .. 5

Starbase Functionality ... 7
Commands Not Supported (NO-OPS) 7
Gescapes .. 8
Input Model .. 9

Programming Strategy ... 10
Directly calling the XI0 library 10
Window Resize .. 11
Multiple Displays ... 11

The X1 0 Windows Device Driver

Device Description
The Starbase XIO device driver library, l ibcIdXn.a, allows an application to utilize Starbase
functions within the XIO window system. This driver implements the device dependent
Starbase routines by calling the XIO Window library. This may be described as an
implementation of Starbase "on top of" X.

This implementation allows Starbase applications to utilize the features of the XIO
Window System. This includes running applications over the network, where the
application runs as a client on one machine while using the XIO display server to perform
I/O either on another machine or locally. This allows a Starbase application to use any
HP 9000 machine running Starbase as its XIO client machine, while the same application
may use any accessible hardware running an XIO server to perform all I/O operations.
Note that the XIO server performing I/O for the application need not necessarily be
running on HP equipment. Thus an XIO window serves as a virtual device for Starbase.

Setting Up a StarbasejX10 Environment
The Starbase/XIO driver can be used on any machine once Starbase and the XIO Window
System have been installed. No special installation need be performed, and no special
nodes need to be made in order to use the Starbase/XIO driver. As long as Starbase has
been installed on the system, applications may run on any accessible display being
controlled by an XIO server.

The Starbase/XIO driver also works in concert with HPWindows-X. If an application
makes HP Windows-X calls, and the HP Windows-X environment has been started using
the wmstart command, or alternatively the wxstart command, the Starbase/XIO driver will
work using knowledge of the HPWindows-X design. Again no special nodes or
installation need to be done in order to effect this functionality.

The XIO Windows Device Driver 1

Linking the Starbase/Xn Driver with an Application
The name of this Starbase/Xl0 driver is l ibcldXn.a. This driver may be linked into your
application using an absolute path name to the driver, or by using the -l option -lddXn.
The absolute path name of the driver is /usr/l ib/l ibddXn.a. For example, to compile and
link a program for use with this driver, depending upon the source language used ("e",
Fortran, or Pascal):

cc example.c -0 example -lddXn -lsb1 -lsb2 -lXr -LX

fc example.f -0 example -lddXn -lsb1 -lsb2 -lXr -LX

pc example.p -0 example -lddXn -lsb1 -lsb2 -lXr -LX

Note that it is necessary to link in the l ibXr.a and l ibX.a libraries. Note also that l ibXr.a
must be linked in before l i bX. a.

Programmatic Initialization
In order to use Starbase functionality within an Xl0 window, you must perform a gopen()
call on the existing targeted Xl0 window. The window may be of any size and location on
a device controlled by an Xl0 server. Multiple processes may gopen() the same window,
and a single process may gopen() multiple windows.

In order to gopen() an Xl0 window, there must exist a file associated with the targeted
window. The name of the file is then used as the first argument to the gopen() routine.

An Xl0 window to be used with the Starbase/Xl0 driver can easily be created using one of
two methods. Firstly, the Xl0 window to be gopen'ed may be created using the
HPWindows-X commands or the wcreate_graphicsO routine. This provides source code
compatibility with previous implementations of HP Windows 9000 and Starbase. Secondly,
a Starbase application not utilizing HP Windows-X can call one of the utility routines
provided l ibXhp.a, such as XhpCreateO. These utilities are provided as library routines
within l i bXhp. a. For example, XhpCreate() serves to create an Xl0 window of specified
size and location, on a specified display. Refer to l ibXhp(3X) for further details regarding
l ibXhp.a.

2 The Xl0 Windows Device Driver

Gopen Parameters
The gopen() procedure has four parameters: Path, Kind, Driver, and Mode.

Path The nature of the path name used as an argument to gopen() is
dependent on the environment in which the application is running.
Essentially an application can execute dependent on the
HP Windows-X environment or an application can execute in a
stand alone environment without needing HP Windows-X.

In the case where an application is using the HPWindows-X
environment, the path name supplied to gopen is the path supplied
to the wcreate_graphicsO call. In this case the path name is
effectively a link to a pty node. The StarbasejXIO driver later
utilizes that path name to the pty node to acquire information
about the window from HPWindows-X. Note that one can use
the wcreate command, instead of the wcreate_graphicsO routine.

When an application is executing without using the HP Windows­
X environment, the path name may be supplied by the application
or generated within one of the routines of l ibXhp.a. For example,
if the XIO window was created using the XhpCreate() routine and
no path name was supplied as an argument to XhpCreate(), a path
name is generated by XhpCreateO. This path name should be used
as an argument to gopen(). The path name returned by
XhpCreate() is simply the name of a regular file whose contents
represent the display name and windowId of the window to be
gopen'd. The Starbase jXIO driver in this case reads the contents of
the file to obtain information about the window to be gopen'd.

Note that the application could also supply a desired path name to
the utility, XhpCreate(). In this case the path name supplied by the
application to the XhpCreate() routine is also used as an argument
to gopen(). After the call to XhpCreate() this file will contain the
windowId and the display name of the window targeted to be
gopen()'d.

Lastly there is nothing to prevent an application from using a
utility of its own to create an XIO window to be gopen'd. If an
application uses its own window creation scheme then the utility
routine XhpFi LeO, found in l ibXhp.a, will prove useful in creating
a file used as the argument to gopen(). Given a windowId and an
optional display name XhpF i le() will create a regular file
containing the information needed during the gopen() call. The
path name of this file, returned by XhpFi le(), is used as the path

The XIO Windows Device Driver 3

Kind

Driver

Mode

Gopen Examples

argument to gopen(). See XhpFi le(3x) for details.

This indicates the I/O characteristics of the device. This
parameter may be OUTDEV, INDEV, or OUTINDEV for this
driver. If OUTDEV is used then only the output display routines
will be available to the application. If INDEV or OUTINDEV are
used then the XI0 Window System will present a virtual input
device interface where a keyboard is present as a CHOICE device
and a three button mouse maybe accessed as both a CHOICE
device and a LOCATOR device.

This is the name of the driver type. The name of this driver is Xn.

The exact string used for this argument depends on the
programming language being used. For example:

"Xn"
'Xn'llchar(O)

'Xn'

for C.
for FORTRAN77.
for Pascal.

This is the mode control word, which consists of several flag bits
which are OR'd together. The RESET DEVICE and INIT flags
do not cause any hardware to be reset iii the devices.

An Xl0 window must first exist before trying to use gopen() with X. The library routines
in l ibXhp.a have been supplied to help prepare an XI0 window ready to be gopen()'d. For
example, the XhpCreate() routine creates an XIO window with the requested size and
attributes on a specified display, and returns a path name to a file whose contents
represent the display and windowlD of the recently created XIO window.

One way for a C program to create and gopen() an XIO window:

4 The XI0 Windows Device Driver

#include <sys/types.h>
#include <X/Xhp.h>

int fildes;
char w_name[801;
XhpArgItem arglist[l =

{

XhpENDLIST, 0
};

XhpICreate(w_name, arglist);

fildes = gopen(w_name, OUTDEV, IXn",INIT);

where the variable names are described as:

w name the path name to a regular file associated with the XIO window to
be used by Starbase.

arglist This array of type/value pairs describes the attributes of the
window to be created. See the manual pages for l i bXp(3X) for
further details in using these window utilities.

Device Dependent Characteristics
For device coordinate operations, location (0,0) is the upper left corner of the window at
the time the window is gopen()' d. Values along the horizontal axis increase to the right.
Values on the vertical axis increase in a downward direction.

Device Defaults
The device defaults depend upon the defaults for the raw device on which the window is
located. These defaults are determined by the XIO server for that raw device. For
example, an XIO server on a monochrome display defaults to only having one plane of
color, black and white, while an XIO server on a color display utilizes as many planes of
color as the display allows.

Some virtual device defaults are determined by the software driver, l ibddXn.a. These are
as documented below.

The XIO Windows Device Driver 5

Line Type Defaults

Default line types are shown in the table below:

Table 1. - Default Line Types

Line Type Pattern

0 1111111111111111
1 1111111100000000
2 1010101010101010
3 1111111111111010
4 1111111111101010
5 1111111111100000
6 1111111111110110
7 1111111110110110

Color Plane Defaults

All color planes for that physical device are enabled. You cannot disable planes through
this driver.

Color Map Defaults

When an X10 window is gopen'd, the X10 colormap is read into the Starbase color map. A
call to ;nqui re_color _table provides information about the color map. The Starbase/X10
driver does not dynamically allocate colors in the X10 colormap. The XI0 server, and
direct calls to the XI0 library, arbitrate over the allocation of color cells. It is
recommended that the utility xini tcolormap(1) be used to initialize color cells in the X10
color map to an initial set of defined colors. Refer to xi ni tco l ormap(1) manual page for
further details. Note that xi ni tco l ormap should be called as part of your X10 startup script,
.xstart.

Input Defaults

The keyboard input is by default set to "cooked" mode. This mode returns ascii values for
the full range of ascii representable keys. Other special function keys return keycodes
defined by the reference page for X r I n i tMap(3X).

Also, by default, only key presses and button presses are reported.

An application can request to be sent raw keystrokes or key and button releases through
gescapes. See the section describing the input gescapes for details.

Regardless of the relative positions of the input devices on the HP-HIL loop, the X10
mouse is CHOICE and LOCATOR device ordinal one, a mask of all buttons pressed is

6 The XI0 Windows Device Driver

CHOICE and LOCATOR device ordinal two, and the XIO keyboard is CHOICE device
ordinal three.

Starbase Functionality

Commands Not Supported (NO-OPS)

The following commands are not supported. These commands will not generate Starbase
errors.

• await retrace

• backface control

• bank switch

• bf control

• bf fill color

• bf }nterior _style

• bf yerimeter _ color

• btperimeter _ type

• btperimeter _repeatJength

• bf surface coeficients - -
• bf surface model - -
• dbuffer switch

• def color table - -
• define _ trimming_ curve

• depth_cue

• depth_cue_color

• depth_cue_range

• display_enable

• double buffer

• hidden surface

The XIO Windows Device Driver 7

• interior_style (INT _ OUTLINE, INT _POINT)

• light ambient

• light attenuation

• light_model

• light_source

• light_switch

• shade mode

• shade_range

• surface coefficient

• surface model

• viewpoint

• zbuffer switch

Gescapes
The following gescapes are supported by this StarbasejXIO driver. The gescapes that are
common to many display drivers, READ COLOR MAP, R BIT MASK, (
R BIT MODE, and R DEF FILL P A fare docu""inented iI~ Appendix A. All other
geScapes are used to co"i"ttrol the input model. These input gescapes are described in the
following section, Input Model.

• IGNORE RELEASE

• READ COLOR MAP - -
• R BIT MASK

• R BIT MODE

• R DEF FILL PAT - - -
• TRIGGER ON RELEASE

• XN INPUT RAW - -
• XN KEY RELEASE - -
• XN BUTTON RELEASE - -

8 The XIO Windows Device Driver

Input Model

A Starbase application is free to gopen an XIO window with the OUTDEV flag and utilize
the XIO library calls to perform input. The Starbase application may also choose to use
Starbase library input routines if the INDEV or OUTINDEV flags are used as arguments
to gopen. A program should use exclusively either XIO input routines or Starbase input
routines. Interchanging the two types of input calls in a single application may cause
unexpected results.

The input model represents the XIO Window System as a virtual device including a
keyboard and a three button mouse. The keyboard is accessed as a CHOICE device while
the three button mouse is accessed as a CHOICE and a LOCATOR device.

The default mode returns ascii keycodes for all keystrokes. Special function keys return
keycodes as defined by the Xrlib routine, Xr I nputMap(). These keycodes are detailed on
the reference manual page XrInputMap(3X). This is the "cooked" mode for input
keystrokes. This input model largely obeys the same behavior as the XrInputMap() routine,
thus it works correctly for most HP-HIL language keyboards. The only difference between
the codes returned by this driver and XrInputMap() are that this driver returns a full set of
ascii values. For example, the tab key generates its ascii value. This input model also
performs as expected with non-HP XIO servers.

In "cooked" mode the mouse buttons are represented by values one through three,
corresponding to the mouse button used. One represents the left hand mouse button, two
represents the middle mouse button, and the right mouse button is represented by a three.
In "raw" mode the value returned by a mouse button is determined by the "raw" value
returned by the XIO server for that button.

The XIO Window System input device can also return raw keycodes. These codes are the
unmapped keycodes returned by the XIO server. The XIO server model keymapping is
defined in the file /usr/l ;b/X/Xkeymap.defaul. The input model can be placed in "raw"
mode using the XN INPUT RAW gescape with an argument of TRUE. Similarly the
input model can be -;eset to the default "cooked" mode using the XN INPUT RAW
gescape with an argument of FALSE. - -

By default the Starbase jXIO driver returns events associated with the key presses and
button presses. An application can request input events associated with both presses and
releases of keys or buttons. Requesting the release events associated with mouse buttons
or keys can be controlled independently.

An application can request events associated with both button presses and button releases
by using the TRIGGER ON RELEASE or XN BUTTON RELEASE gescapes. The
default mode of being sent o~ly button press eve~ts can be reset using the
XN_BUTTON_RELEASE gescape with an argument of FALSE or by using the
IGNORE_RELEASE gescape. The value returned by a button release event is the

The XIO Windows Device Driver 9

negative value of the corresponding button down event.

An application can request to be sent events associated with both key presses and key
releases using the TRIGGER ON RELEASE or XN KEY' RELEASE gescape. The
default mode of being sent only the key press events can be reset using the
XN _ KEY_RELEASE gescape with an argument of FALSE or the IGNORE_RELEASE
gescape. The value returned by a key release event is the negative value of the
corresponding key down event.

Note that any HP -HIL pointing devices controlled by the X10 server are mapped into this
virtual three button mouse X10 device. Note also that using the Xdevices description file
allows a user to exclude a particular HP-HIL input device from use by the X10 server.
This allows the application to then use a different Starbase device driver (e.g. HP -HIL) to
access that excluded input device. Note, the mouse cannot be controlled by both the X10
server and the HP-HIL device driver, l ibddhi l.a. If the mouse is to be controlled by the
Starbase HP-HIL device driver then the mouse must be excluded from use by the X10
server.

One other key difference between most Starbase input device drivers and either the X10
library input routines or the input model of l ibddXn.a is that the latter do not work over a
network. Most Starbase device drivers only work on a local machine. Thus it may not
make sense to use the HP-HIL device driver if you also expect to use l ibddXn.a to access
remote X10 servers for graphics displays.

Note: The input model has been changed from previous X10 releases to be compatible
with the HP-HIL driver's behavior. For additional information on how the input portion of
the driver behaves, see the documentation on the HP -HIL driver.

Programming Strategy

Directly calling the X10 library

It is acceptable for an application using the StarbasejX10 driver to make calls directly to
the XI0 library. In fact there are many instances where direct calls to X10 are preferred.
In some cases calling an X10 library function is faster than calling a similar Starbase
routine. For example, the X10 library call to XFlushO provides the exact same
functionality as the Starbase call make.J>i cture_currentO. The call to XFlushO is more
direct and faster. Similarly Starbase device coordinate output calls may be faster when
made directly to the XI0 library.

The only case where directly calling XI0 routines may cause a problem occurs when an
application is making XI0 library input calls and also running the Starbase daemon to read

10 The X10 Windows Device Driver

input. This is equivalent to the classical problem of having two processes reading input
from a single device at the same time.

You are encouraged to make full use of the functionality of both the X window system and
Starbase. You can use Starbase for 3D graphics or world coordinate systems, while using
the X10 window system to define a cursor shape or to use an X10 font.

Window Resize

There are times when an application needs to know if the window in which it is running
has changed size. There are two ways that an application can get this information.

First, if the application is running in the HPWindows-X environment, then all interesting
window events are made available through the signal mechanism, SIGWINDOW. This
mechanism emulates the previously available functionality of the HP Windows 9000
system.

Secondly, an application is free to handle the X10 input stream itself through calls in the
X10 library, like XNextEvent(). If an application decides to handle the X10 input stream
then it should gopen the X10 window using the kind argument OUTDEV. Each
application should decide whether it wants to handle the X10 input stream itself, or
whether it wants to execute Starbase input calls thus asking the Starbase/X library,
l i bddXn. a, to handle the X10 events. If the application handles the X10 input stream itself
then it is free to act on any X10 events it deems interesting, like window exposure or
window focus change. If the Starbase /X10 library is handling the X10 events, then
interesting window events, like window exposure, are not made available to the application.

Multiple Displays

It is possible for a single process to interact with windows on multiple displays. It is
important to understand the notion used by the X10 library of currently active display. The
X10 library provides a routine, XSetDi splay(), that changes the current display for a
process. The Starbase/X10 driver never calls XSetDisplayO. Thus the burden of
controlling the current display is left to the application.

It is necessary that a window be on the current display when it is gopen()' d. Thus a
Starbase application controlling windows on multiple displays should set up a connection
with a display, using XSetDisplayO or XOpenDisplayO, and then gopenO targeted windows
on that display. If an application attempts to gopen() a window not on the current display,
then either the gopen() will fail or some memory resources will be wasted.

The X10 Windows Device Driver 11

Contents

Using Star base in Xli Windows
Chapter Uses
Description

Running Starbase in X11 .
Changes Made with 3.1/6.5 Release.

Supported Visuals and Drivers
Visuals Supported in the X11 Server Modes

HP 300 Hi-Resolution Displays . . .
HP 300 Medium Resolution Display
HP 98548A Display.
HP 98549A and 319C Displays
HP 98550A Display .
HP 98720A Display.
HP 98730A Display

Drivers Supported in the X11 Server Modes
X11 Cursors and Starbase Echoes

HP 300 Medium and High Resolution Displays
HP 98548A and HP98549A Displays
HP 98550A Display
HP 98720 Display
HP 98730 Display
HP 98731 Display

Shared Memory Usage
Window Processes .
How Do Graphics Processes Use Shared Memory?
Shared Memory Problems

Shared Memory Size
Code and Data Space . . .

A Close-Up of Shared Memory

X11-1
X11-1
Xll-2
Xll-2
Xll-2
Xll-2
Xll-3
Xll-3
Xll-3
Xll-3
Xll-4
Xll-4
Xll-5
Xll-7
Xll-8
Xll-9
Xll-9
Xll-9
Xll-9
X11-10
X11-11
Xll-12
Xll-13
Xll-14
Xll-14
Xll-14
Xll-15
Xll-16

Contents-1

Shared Memory Environment Variables
SB_DISPLAY _ADDR Variable
WMSHMSPC Variable

Changing Shared Memory
Consequences for Changing Variables

"WMSHMSPC"
Kernel Configuration Limitations

shmmaxaddr Variable ..
shmmax Variable

Example for Using Variables
Program One ("progl.c")
Program Two ("prog2.c")
Determining the Correct Value for

"SB_DISPLAY -.ADDR"
Ensuring Correct Values.

Increasing Performance by Decreasing Memory
Device Specific Characteristics . . .

Monochrome Color Map Changes .
Gescapes

Moving into XII
Moving from XIO to XII
Moving from XII Revision A.OO to XII

XII Documentation

Contents-2

XII-17
XII-17
XII-17
XII-17
XII-18
XII-18
XII-19
XII-19
XII-20
XII-20
XII-21
XII-21

XII-21
Xl1-22
XII-22
XII-23
XII-23
XII-23
XII-24
XII-24
XII-24
XII-25

X11
Using Starbase in X11 Windows

Chapter Uses
This chapter contains device specific information needed to run Starbase
programs in XII windows. If you need a general, non-device specific explanation
of using Starbase in XII windows, refer to the "Using Starbase with the X
Window System" chapter of Starbase Graphics Techniques.

Do not confuse this chapter with SOXll (the Starbase-on-Xll Device Driver).
SOXll is a driver that converts Starbase programs for use in XII windows.
Using the SOXll translater may reduce the functionality and performance of your
programs; nevertheless, they can be run over the network. This chapter describes
how to run your Starbase programs in XII windows with full functionality and
performance, however, this cannot be done over the network.

Description
With the HP 9000 Series 300 6.5 HP-UX release and the HP 9000 Series 800
HP-UX 3.1 release, Starbase graphics was integrated with the XII window
environment. This environment supports a Starbase program running inside an
XII window with full Starbase functionality and performance comparable to raw
mode (non-window) performance.

A key feature of Starbase programs operating in an XII window is that any
program can access any of the workstation input devices and use any of the
display resources without interfering with other programs which are also accessing
the same input and display resources. This ability to share the input and display
resources is beneficial because it permits independently developed applications to
run simultaneously in different XII windows without interfering with each other.

X11-1

Running Starbase in X11

When Starbase is rendered directly to an XII window, the Starbase program and
the XII server must be run on the same machine. If remote Starbase is needed,
use the Starbase-on-X Driver (described in the SOXII chapter in this manual).

Changes Made with 3.1/6.5 Release

The process /usr/lib/grmd (the graphics resource manager daemon, which man­
ages graphics resources used by Starbase, the XII server, and HP Windows/9000)
is started when the server is started or the display is opened in raw mode (ex­
cept for the hp9S36a, hp9S700, and hp9S710 device drivers) or when the HP
Windows/9000 window manager is started; it should be left undisturbed. When
the last Starbase display driver is closed and the X server terminates, the grmd
process terminates automatically.

Supported Visuals and Drivers

The following sections show the depths and visual classes supported by each
display operating in the four server modes. The table shows which Starbase
drivers can be used in the overlay and image planes for the different server
operating modes.

Visuals Supported in the X11 Server Modes

There are four server modes: overlay mode, image mode, stacked screen mode,
and combined mode. If a particular mode is not listed for a particular driver, the
driver is not supported for that mode.

Refer to the Starbase Graphics Techniques chapter "Using Starbase with the X
Window System" for more detailed information on visuals. Look in the section
"Guidelines for Visuals" for information on what modes are simultaneously
supported for different displays.

In the following descriptions, "n/n" indicates double buffering is supported, with
"n" planes in each buffer. Note that backing store is not supported in all modes
for Starbase.

X11-2

HP 300 Hi-Resolution Displays

• Image Mode

HP 318M One plane with backing store for Xlib and Starbase. Supports
StaticGray.

HP 98544A One plane with backing store for Xlib and Starbase. Supports
StaticGray.

HP 98545A 2/2 planes with backing store for Xlib and Starbase. Sup­
ports PseudoColor.

Four planes with backing store for Xlib and Starbase.
Supports PseudoColor.

HP 98547 A 3/3 planes with backing store for Xlib and Starbase. Sup­
ports PseudoColor.

Six planes with backing store for Xlib and Starbase. Supports
PseudoColor.

HP 300 Medium Resolution Display

• Image mode

HP 98542 One plane with backing store for Xlib and Starbase. Supports
StaticGray.

HP 98543 2/2 planes with backing store for Xlib and Starbase. Sup­
ports PseudoColor.

Four planes with backing store for Xlib and Starbase.
Supports PseudoColor.

HP 98548A Display

• Image mode

One plane with backing store for Xlib and Starbase. Supports GrayScale.

HP 98549A and HP 319C Displays

• Image mode

X11-3

3/3 planes with backing store for Xlib and Starbase. Supports Pseudo­
Color.

Six planes with backing store for Xlib and Starbase. Supports Pseudo­
Color.

HP 98550A Display

• Overlay mode

Two overlay planes (three colors plus transparency) with backing store
for Xlib and Starbase. Supports StaticGray.

• Image mode

4/4 planes with backing store for Xlib and Starbase. Supports Pseudo­
Color.

Eight planes with backing store for Xlib and Starbase. Supports
PseudoColor.

• Stacked Screen ~ode

Two overlay planes with backing store for Xlib and Starbase. Supports
StaticGray.

4/4 planes with backing store for Xlib and Starbase. Supports Pseudo­
Color.

Eight image planes with backing store for Xlib and Starbase. Supports
PseudoColor.

HP 98720A Display

• Overlay mode

Three overlay planes with backing store for Xlib and Starbase. Supports
PseudoColor, eight colors.

• Image mode

X11-4

4/4 image planes with backing store for Xlib and Starbase. Supports
PseudoColor.

Eight image planes with backing store for Xlib and Starbase. Supports
PseudoColor.

8/8 image planes with backing store for Xlib only. Supports PseudoColor.

12/12 image planes with backing store for Xlib only. Supports Direct­
Color.

24 image planes with backing store for Xlib only. Supports DirectColor.

• Stacked screen mode

Three overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, eight colors.

4/4 image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

Eight image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

8/8 image planes with backing store in Xlib only. Supports PseudoColor.

12/12 image planes with backing store in Xlib only. Supports Direct­
Color.

24 image planes with backing store in Xlib only. Supports DirectColor.

HP 98730A Display

• Overlay mode

Three overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 8 colors.

Four overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 16 colors.

• Image mode

4/4 image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

Eight image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

X11-S

8/8 image planes with backing store in Xlib only. Supports PseudoColor.

12/12 image planes with backing store in Xlib only. Supports Direct­
Color.

24 image planes with backing store in Xlib only. Supports DirectColor.

• Stacked screen mode

Three overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 8 colors.

Four overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 16 colors.

4/4 image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

Eight image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

8/8 image planes with backing store in Xlib only. Supports PseudoColor.

12/12 image planes with backing store in Xlib only. Supports Direct­
Color.

24 image planes with backing store in Xlib only. Supports DirectColor .

• Combined mode

X11-6

Three overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 7 colors.

Four overlay planes with backing store in Xlib and Starbase. Supports
PseudoColor, 15 colors.

4/4 image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

8 image planes with backing store in Xlib and Starbase. Supports
PseudoColor.

8/8 image planes with backing store in Xlib only. Supports PseudoColor.

12/12 image planes with backing store in Xlib only. Supports Direct­
Color.

24 image planes with backing store in Xlib only. Supports DirectColor.

Drivers Supported in the X11 Server Modes

In the following table, if a particular driver is not listed for a particular display
and server operating mode, the driver is not supported for that configuration.

Table X11-1. Supported Drivers in X11 Server Modes

Stacked
Supported Overlay Image Screen Combined

Display Driver Mode Mode Mode Mode

HP300 hp300h yes
Hi-Res
Displays

HP300 hp3001 yes
Medium
Res
Displays

HP98548A hp98550 yes

HP98549 hp98550 yes
HP319C

HP98550A hp98550 Image (raw Image Overlay
and mode only) plane (no and image
hp98556 and overlay raw mode) planes

planes

X11-7

Display

HP98720

HP98730

Note

Table X11-1. Supported Drivers in X11 Server Modes
Continued

Stacked
Supported Overlay Image Screen Combined

Driver Mode Mode Mode Mode

hp98720 Image (raw Image Overlay
mode only) plane (no and image
and overlay raw mode) (no raw
planes mode)

planes

hp98721 Image
plane (raw
mode only)

hp98730 Image (raw Image Image Image and overlay
mode only) plane (no plane (no planes (no raw
and overlay raw mode) raw mode) mode)
planes

hp98731 Image Image Image plane (no
planes (raw plane (no raw mode)
mode only) raw mode)

In image mode, raw mode access to the overlay planes is not
supported. Graphics in the overlay planes may obscure the
window system and may interfere with overlay-plane cursor
operation.

The HP 98720w driver, developed to support HP Windows/9000,
cannot be used with any server mode.

X11 Cursors and Starbase Echoes

The Starbase gescape R_OVERLAY_ECHO can be used to change the default echo
placement from the image planes to the overlay planes. The term "shares", used
for some drivers below, means the echo or cursor is rendered into the same planes
used by Starbase or Xlib for rendering.

X11-8

The following list shows default positions where the Starbase echo and XII cursor
(called echo and cursor, respectively) reside for each of the XII server operating
modes.

HP 300 Medium and High Resolution Displays

• Image Mode

Echo and cursor share the image planes.

HP 98548A and HP 98549A Displays

• Image Mode

Echo and cursor share the image planes.

HP 98550A Display

• Overlay Mode

Echo placed in opened image or overlay planes. Cursor resides in overlay
planes.

• Image Mode

Echo and cursor share the image planes.

• Stacked Screen Mode

If overlay-plane window is opened, echo and cursor share overlay planes.
If image-plane window is opened, echo and cursor share image planes.

HP 98720 Display

• Overlay Mode

If XII window overlay~plane is opened, echo shares three overlay
planes.

If image planes are opened, raster echo resides in image plane.

If image planes are opened in raw mode, vector echo resides in
cursor plane.

Cursor shares three overlay planes.

X11-9

• Image Mode

If XII window image-plane is opened:
o raster echo resides in image planes.
o vector echo resides in cursor planes.

Cursor shares image planes.

• Stacked Screen Mode

If overlay plane In XII windows is opened, echo shares three
overlay planes.

If image plane in XII windows is opened:
o raster echo resides in image planes.
o vector cursor resides in cursor plane.

Cursor:
o shares image plane for image-plane window.
o shares overlay plane for overlay-plane window.

HP 98730 Display

• Overlay Mode

If overlay-plane XII window is opened, echo shares three or four
overlay planes.

If image planes are opened and XII uses three overlay planes,
vector echo resides in cursor plane.

If image planes are opened and XII uses four overlay planes, vector
echo resides in image planes.

XII cursor uses hardware cursor.

• Image Mode

If image-plane XII window is opened, raster echo resides in image
planes and vector echo resides in cursor plane.

XII cursor uses hardware cursor.

• Stacked Screen Mode

X11-10

If image-plane XII window is opened, echo shares three or four
overlay planes.

If image-plane XII window is opened, raster echo resides in image
planes.

If XII uses three overlay planes and image planes are opened,
vector echo resides in cursor plane.

If Xll uses four overlay planes and image planes opened, vector
echo resides in image planes.

XII cursor uses hardware cursor.

• Combined Mode

If overlay-plane Xll window is opened, echo shares three or four
overlay planes.

If image-plane XII window is opened, raster echo resides in image
planes.

If image-plane XII window is opened and Xll uses three overlay
planes, vector echo resides in cursor plane.

If image-plane XlI window is opened and XlI uses four overlay
planes, vector echo resides in overlay planes.

XlI cursor uses hardware cursor.

HP 98731 Display

The hp98731 driver cannot open an XII overlay-plane window.

• Overlay Mode

If image planes are opened and Xll uses three overlay planes, echo
resides in cursor plane.

If image planes are opened and Xll uses four overlay planes, echo
is not supported.

Xll cursor uses hardware cursor.

• Image Mode

If image-plane XII window is opened, echo resides in cursor plane.

X11-11

XII cursor uses hardware cursor.

• Stacked Screen ~ode

If image planes are opened and XII uses three overlay planes, echo
resides in cursor plane.

If image planes are opened and XII uses four overlay planes, echo
is not supported.

XII cursor uses hardware cursor .

• Combined ~ode

If image-plane XII window is opened and XII uses three overlay
planes, echo resides in cursor plane.

If image-plane XII window is opened and XII uses four overlay
planes:

D vector echo resides in overlay planes.
D raster echo not supported.

XII cursor uses hardware cursor.

Shared Memory Usage

Note The "Shared ~emory Usage" section applies to Series 300
computers only.

Display frame buffers and Starbase shared memory resources use a range of
addresses on Series 300 computers. Both the virtual address space and system
shared memory are limited resources that can affect how complicated window
and graphics environments operate. This section describes how to control these
resources so your program will operate more efficiently.

A typical user graphics process on Series 300 has a virtual memory address space
as shown in the following figure.

X11-12

r Top of Virtual Address Space

Stack { I
'

t------i

Shared Memo,}, { Logical Addresses

{T''-' Code and Data -----L --
Bottom of Virtual Address Space

Figure X11-1. Virtual memory map in a graphics process

Stack space starts near the top of virtual memory, and the stack grows down
from the top. Code and data space, including the dynamically allocated data
space, or "heap", start at the bottom (address 0) of virtual memory and grow up
from the bottom. Located between these two areas is graphics and application
shared memory. The "Memory Management" section, Chapter 3, in the HP- UX
System Administrator Manual describes the organization of shared memory in
detail. This discussion assumes no space is required for shared memory allocated
by the application. Developers and users of programs that need additional shared
memory must account for it in the address and space computations they perform.

Window Processes

Before discussing why and how graphics shared memory is used, you must
understand what a graphics process is. In general, a graphics process is any
process that meets one of the following conditions:

1. The process generates Starbase graphics to a frame buffer device or a
window.

2. The process is the XII server.

X11-13

How Do Graphics Processes Use Shared Memory?

Graphics processes use shared memory to access data pertaining to the display
device and the XII resources created by the server (resources include windows,
color maps, and cursors). In addition, Starbase uses shared memory to
communicate between the main process and the asynchronous input/tracking
daemon. The physical graphics display console space and frame buffer are
mapped as shared memory so that multiple processes can share them.

The graphics process (XII server or Starbase application) that starts up first
on the system initiates an independent process called the Graphics Resource
Manager (GRM). The GRM helps the server and Starbase process manage
graphics shared memory. The G RM continues to run as long as any graphics
process is running, but terminates automatically (returning any allocated system
resources) when all graphics processes end.

Shared Memory Problems

Two common problems encountered with graphics shared memory are:

Shared memory is too small

Code and data space is too small (shared memory is positioned too low
in the virtual address space)

Shared Memory Size

Usually the contiguous block of shared memory used by the G RM is two
megabytes (2Mb) in size. One problem encountered with shared memory is that
it just isn't large enough for some applications.

When an application attempts to use more shared memory than is available (e.g.,
for retained rasters for newly created graphics windows), the shared memory
"get" fails and the application terminates. This does not affect the window
system, except that you run into a limit for the number of retained-raster graphics
windows you can create.

For example, suppose you have an application that uses many graphics windows
with retained rasters. Retained rasters are costly in terms of memory usage. Each
pixel of the raster consumes a byte of memory (except on monochrome displays).
Therefore, a window that is I024x512 pixels consumes a half-megabyte (O.5Mb)

X11-14

of memory. At this rate, graphics shared memory will be completely consumed
by four graphics windows (4 windows X O.5Mb = 2.0Mb). Also, remember to
take into account the shared memory needed for other communication with the
XII server.

You can circumvent this problem via certain environment variables which control
the size and location of shared memory, as discussed in the remaining sections of
this chapter.

Code and Data Space

Your actual graphics program resides in the contiguous block of memory
immediately below shared memory-the code and data space. By default the
code/data space is 8.75Mb in size.

Each graphics process must have a code/data space that will fit into the area
below shared memory. In other words, the shared memory must start at some
address such that the maximum code/data space of the process will not interfere
with the shared memory space.

For example, suppose you've written a C program to perform graphics in a
window. The program does many program-controlled heap manipulations, so
it must allocate (via malloc(3)) enormous amounts of dynamic data space. The
program's code is 2Mb in length, but as it runs, it consumes up to 8Mb of
dynamic data space (heap)-a total of 10Mb for both the code and its data.
This will exceed the default maximum code/data space size by approximately
1.25Mb (10Mb - 8.75Mb max size = 1.25Mb over max).

This problem can be surmounted via the SB_DISPLAY_ADDR and WMSHMSPC
environment variables (both discussed in a later section). By moving shared
memory upward, you create more room for the code/data space.

X11-1S

A Close-Up of Shared Memory

Before discussing how to change shared memory to circumvent shared memory
problems, you should understand how the shared memory is organized. The
following figure illustrates its structure.

Frame
Buffer (1.16Mb ... 12.5Mb)

Starbase (256Kb)

Graphics Shared Memory

Managed by the GRM

.. -
Increasing t

Logical
Addresses
SB_DISPLAY _ADDR

} S
ize based on

WMSHMSPC

Figure X11-2. Graphics Shared Memory

The following table briefly describes the three components of shared memory.

Table X11-2. Windows Shared Memory Close-Up.

Component Description

Frame Buffer Corresponds to the control registers and screen
of your display. This area may range from a
little over 1Mb to as much as 12.5Mb for an
HP 98730 display.l

Starbase Used by the Starbase Graphics system (uses
include the event queue, and communication
between the tracking daemon and the main
program).

GRM Shared Stores information pertinent to XII windows
Memory and shared use of the display (for example,

retained rasters for graphics windows, cursor
information, and fonts).

1 If more than one display is accessed at the same time (for example, an Xll
server with two "heads", or a Starbase program that gopens multiple displays),
you must add the space required for each.

X11-16

Shared Memory Environment Variables

Two environment variables-SB_DISPLAY_ADDR and WMSHMSPC-control the loca­
tion and size of graphics shared memory. To configure the shared memory, you
must change the value of the appropriate variable (s) before starting (or restarting)
the graphics application or XII server.

S8_DISPLAY _ADDR Variable

SB_DISPLAY _ADDR points to the address immediately above the Starbase area of
shared memory. You can change the position of the shared region by changing the
value of SB_DISPLAY_ADDR, since the shared region is positioned relative to this
address. If you do not set the value of SB_DISPLAY _ADDR, it defaults to OxBOOOOO
(11Mb), which leaves approximately 8.75Mb for code/data space.

WMSHMSPC Variable

The other environment variable for configuring shared memory is WMSHMSPC,
which determines the size of the GRM-managed area of the shared region.

It is important to know that the WMSHMSPC variable only has an effect on allocated
shared memory in the environment in which the GRM is started. For example,
if no graphics process is running and you start up the XII server, the value of
WMSHMSPC in that environment will be used in allocating the shared memory for
the GRM. Other graphics processes that will run simultaneously should be given
the same value of WMSHMSPC, however, so that they can correctly compute the
virtual address to attach the G RM shared memory.

Changing Shared Memory

If the default configuration for shared memory, as defined by the environment
variables SB_DISPLAY_ADDR and WMSHMSPC, is inadequate for your system, you
should set these variables accordingly. In general, you should use the following
rules when reconfiguring windows shared memory:

• If you have processes requiring more shared window space than the default
2Mb, increase the value of WMSHMSPC to accommodate the amount of
shared memory required.

X11-17

• If you have processes that require more code and data space than the
default 8.75Mb, increase the value of SB_DISPLAY _ADDR so the processes
will fit in the code/data space.

Consequences for Changing Variables

Because the WMSHMSPC and SB_DISPLAY _ADDR environment variables are closely
related, changing one may affect the other. Before changing a variable, you should
understand the possible side effects.

"WMSHMSPC"

If you increase the value of WMSHMSPC but do not change the value of
SB_DISPLAY_ADDR, you effectively decrease the size of the code/data space by the
increased size of the shared area because the G RM shared memory area (defined
by WMSHMSPC) resides below SB_DISPLAY _ADDR. Therefore, increasing the size of
this area while holding SB_DISPLAY_ADDR constant shrinks the code/data space,
as shown in the following figure.

~ Top Of ~ M emory
..
r'

..
SB DIS ., - PLA Y_ADDR ..

r'

Starbase Starbase

} WMSHMSPC
GRM Shored Memory

Before

WMSHMSPC .
After

GRM Shored Memory

Program/Heap Space

Program/Heap Space

•
~

... -o

Figure X11-3. Squeezing Code/Data Space via "WMSHMSPC"

X11-18

Conversely, if you decrease the size of shared memory while holding the
SB_DISPLAY_ADDR variable at a constant value, the code/data space will increase
by the change in WMSHMSPC. Certain operations may fail if you set WMSHMSPC to
a value less that O.5Mb. The minimum required value of WMSHMSPC increases as
you increase the number of XII resources and Starbase processes.

The following equation shows the relationship between code! data size and the
variables WMSHMSPC and SB_DISPLAY _ADDR.

code/data space = SB_DISPLAY_ADDR - 256Kb (for Starbase) - WMSHMSPC

You must change SB_DISPLAY_ADDR if you do not want the code/data space
to change when you change the value of WMSHMSPC. For example, if you increase
WMSHMSPC from the default 2Mb tb 3Mb, you must also increase SB_DISPLAY _ADDR
from the default 11Mb to 12Mb.

Kernel Configuration Limitations

Even though Starbase and the XII server allow you to move and change the
size of shared memory, there are still some limitations to its location and size.
These limitations are defined by kernel configuration parameters. Consult the
HP- UX System Administrator Manual for details on setting and changing these
parameters.

shmmaxaddr Variable

The maximum (highest) address allowable for any shared memory is defined by
the shmmaxaddr kernel configuration variable. By default shmmaxaddr is defined
as Ox1000000 (16Mb). This means the topmost address of all of graphics and
application shared memory cannot equal or exceed the value of shmmaxaddr, as
shown in the following figure.

X11-19

Frame Buffer

Control Info

Starbase

Window Information

..
~

...
~

..

.....

}w

..

......

Top Of Memory

This Address Must Be ~ shmmaxaddr

(16Mb by default)

MSHMSPC

o

Figure X11-4. The "shmmaxaddr" Variable and Shared Memory

The following equation gives the relationship between shmmaxaddr and the
SB_DISPLAY_ADDR variable:

SB_DISPLAY_ADDR < shmmaxaddr - stack space under shmmaxaddr
- frame buffer and control space size

shmmax Variable

The shmmax kernel configuration variable defines the maximum allowable size of
any shared memory segment. By default, this value is set to Ox600000 (6Mb).
This does not mean shared memory is limited to 6Mb maximum; it merely means
each segment is limited to 6Mb.

The shmmax variable must be set to the largest of any segment size your program
will allocate. It must be at least as large as WMSHMSPC.

Example for Using Variables

The following example should assist you in understanding how to use these
variables. Suppose you've written two C-language programs to perform Starbase
graphics with graphics windows. Program one (progl. c) will require large
amounts of code/data space when it executes-greater than the default amount.
Program two (prog2. c) won't use as much code/data space as progl. c, but

X11-20

makes heavy use of retained-raster graphics windows, and requires more G RM
area than the default. Detailed descriptions of each program follow.

Program One ("prog1.c")

When compiled, prog1. c's executable code size is just under 2Mb. For simplicity,
round the code size to 2Mb (Ox400000).

When the program executes, it allocates large amounts of dynamic data space (via
maUoe (3)). Through diligent calculations you've determined that the program
could theoretically allocate up to 6.5Mb of memory from the dynamic data space
(heap). Again, for simplicity, round this figure to 7Mb (Ox700000).

The maximum code/data space consumed by this application is 9Mb, computed
as follows:

Ox200000
+Ox700000

Ox900000

(2Mb for executable code)
(7Mb for the program's data)

(9Mb total program and data space)

Program Two ("prog2.c")

When running, prog2. c will create a maximum of four graphics windows, each
with a retained raster with dimensions 1024 by 512 pixels. The retained raster
for each window consumes 0.5Mb; therefore the maximum amount of memory
required by the retained rasters alone is 2Mb (4 windows at 0.5Mb each = 2Mb).

When determining the size of the window information area, you should also
consider that other windows will use the area also. For example,fonts for all
windows are loaded into the GRM area. To be safe, add 1Mb to the size of the
G RM area to compensate for other needs.

For this example, it gives a maximum size of 3Mb for the G RM shared memory
area-1Mb larger than the default value for WMSHMSPC.

Determining the Correct Value for "SB_DISPLAY _ADDR"

Now you know the maximum code/data space size (9Mb) and the maximum size
of the window information area of shared memory (WMSHMSPC = 3MB), so you
can determine the correct value for SB_DISPLAY_ADDR.

X11-21

SB_DISPLAY_ADDR should be computed as follows:

SB_DISPLAY_ADDR = code/data size + WMSHMSPC
+ 256Kb (for the Starbase area)

Using this equation, SB_DISPLAY _ADDR is computed to be 14.25Mb:
Ox900000 (9Mb code/data space for progl.c)

+Ox300000 (3Mb window information area-WMSHMSPC)
+Ox040000 (256Kb for the Starbase area)

Oxc40000

Ensuring Correct Values

Before actually setting these values, you should be sure the values will not cause
detrimental side effects; mainly, shared memory must be within the shmmaxaddr
value.

U sing equation 3, ensure that the window shared memory area is within the
bounds set by the shmmaxaddr kernel configuration variable:

Oxl000000 (default value for shmmaxaddr)
-Ox220000 (maximum frame buffer size)

OxddOOOO

SB_DISPLAY_ADDR also passes on this test: the window system shared memory is
located below shmmaxaddr.

Note that the actual mapped size of the frame buffer varies from display to
display. For DIO-I displays, the maximum is Ox220000. For DIO-II displays,
the maximum is OxcOOOOO.For more information on DIO-I and DIO-II displays,
refer to your display's chapter in this manual.

Increasing Performance by Decreasing Memory

The previous discussion has centered mainly on increasing memory size to ensure
that all graphics processes can execute without running into shared memory
problems. At the other end of the spectrum, you may be able to reduce virtual
memory usage, thus increasing system performance.

Decreasing memory requirements is practical when most of your graphics
processes are small and when your window shared memory requirements are
minimal. For example, if none of your processes use more than 4Mb of code/data

X11-22

space (4.75Mb less than the default amount available), and you don't need
shared memory for retained rasters, you can set SB_DISPLAY_ADDR and WMSHMSPC
to values less than their defaults, thus increasing the performance of your
applications.

IMPORTANT When computing the amount of code/data space required, keep
in mind that the XII server is also a graphics process in the same
process group as other graphics processes. Therefore, you must
leave enough code/data space for the server to execute.

Device Specific Characteristics

Monochrome Color Map Changes

When using the hp300h and hp300l device drivers in an XII window on a
monochrome display, the define_color_table routine only changes the internal
Starbase color map, and does not affect the XII color map.

Gescapes

Using the R_LOCK_DEVICE, R_UNLOCK_DEVICE, and SWITCH_SEMAPHORE gescapes
is not recommended when using an XII window. The result of using them is that
the Starbase program and the XII window system may get into a deadlocked
state. You can recover from this state by killing the Starbase program.

If you need to use these gescapes, do not call make_picture_current while the
user program has the device locked, i.e., when an R_LOCK_DEVICE gescape has
been called but no matching R_UNLOCK_DEVICE has been called. The procedure
flush_buffer is an alternative to make_picture_current for some devices.

X11-23

Moving into X11

Moving from X10 to X11

Starbase in an XIO window is only supported by the Xn driver, which converts
Starbase calls to XIO protocols. In moving a Starbase program to XII, you have
two choices:

1. Re-link with the SOXll driver. This will support remote Starbase.

2. Use Starbase directly in an XII window. You can link your Starbase
program with the 3.1/6.5 (or later) software release Starbase drivers so
that the program operates directly in an XII window. This will greatly
increase performance, but will only work when the Starbase program and
server run on the same system. You must still use the SOXll driver to
render Starbase graphics to a remove X server.

Moving from X11 Revision A.OO to X11

Starbase in an XII revision A.OO window is supported by both the Xn driver
and the SOXll driver. In moving the Starbase program to XII, you have two
choices:

1. Continue using the SOXll driver. If your approach requires remote
Starbase you will want to continue with this approach. You must use
the SOXll drivers if you only have access to the executable and cannot
link in other drivers.

2. Use Starbase directly in an XII window. You can link your Starbase
program with the 3.1/6.5 (or later) software release Starbase drivers so
that the program operates directly in an XII window. This will greatly
increase performance, but will only work when the Starbase program and
server run on the same system. You must still use the SOXll driver to
render Starbase graphics to a remote X server.

X11-24

X11 Documentation
The following references are helpful when working with Xll windows:

• A Beginner's Guide to the X Window System
• Configuring the X Window System
• Programming with the HP XWidgets and Xlntrinsics
• Programming with Xlib, Version 11
• Programming with X rlib
• Starbase Graphics Techniques
• Starbase Programming with Xl1
• Using the X Window System, Version 11
• X11 Programming Manual by O'Reilly
• X11 Reference Manual by O'Reilly
• X Window System User's Guide by O'Reilly
• Xlib Quick Reference Guide

X11-25

fold-­
I

Win an HP Calculator!
Your comments and suggestions help us determine how well we meet your needs.
Returning this card with your name and address enters you into a quarterly
drawing for an HP calculator*.

Starbase Device Drivers
Library Manual

The manual is well organized.

It is easy to find information in the manual.

The manual explains features well.

The manual contains enough examples.

The examples are appropriate for my needs.

The manual covers enough topics.

Overall, the manual meets my expectations.

You have used this product:

Less than 1 week Less than 1 year

Less than 1 month 1 to 2 years

Agree

0
0
0
0
0
0
0

Disagree

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

_ More than 2 years

Please write additional comments, particularly if you disagree with a statement
above. Use additional pages if you wish. The more specific your comments, the
more useful they are to us.

Comments: __ _

* Offer expires June 1990. (98592-90018 E0989)

Please Tare Here

Please print or type your name and address.
Name: __ ___

Company: __ __

Address: __ ___

City, State, Zip: __ _

Telephone: __ _

Additional Comments: ____________________________________ __

Starbase Device Drivers Library Manual
HP Part Number 98592-90018
E0989

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Learning Products Center
3404 East Harmony Road
Fort Collins, Colorado 80525-9988

11 •• 1.11 •••• 1. I. 111.1.1.1.1.1 •• 1.1111111.1111 •• 11 •• 1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

L

HP Part Number
98592-90018
Microfiche No. 98592-99018
Printed in U.S.A. E0989

Flin- HEWLETT
a!~ PACKARD

98592-90601
For Internal Use Only

