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Preface 

The c++ lAnguage System Release Notes describe Release 3.0.1 of the C++ Language System. This release 
corrects some problems which were found with the implementation of templates in Release 3.0. The only 
changes to this manual relate to those fixes. These include the removal of some known problems from 
Appendix A, the addition of some "Not Implemented" messages to Appendix C, and a note in the CC 
manual page indicating that the -ptt option is obsolete. Chapters 7 and 8 of the Selected Readings have 
also been updated to reflect changes in the template implementation. 

This manual is part of a set of four documents that are supplied with your C++ Language System. The 
other documents are: 

• the Product Reference Manual, which provides a complete definition of the C++ language supported by 
Release 3.0 of the C++ Language System 

• the Selected Readings, which contains papers describing aspects of the C++ language 

• the Library Manual, which describes the three C++ class libraries and tells you how to use them. 

The Release Notes consist of four chapters and two appendices, which describe how to install and use the 
translator, changes in the C++ language for this release, and other information you need to know: 

• Chapter 1 is a general description of the C++ Language System and new features that are part of this 
release. You should read this chapter as a general introduction to the release. 

• Chapter 2 is a description of the contents of Release 3.0. This chapter includes a diagram of the con­
tents of the tape from which you install the C++ Language System. You can use this diagram and 
the accompanying descriptions as a reference when you install and use the C++ Language System. 

• Chapter 3 tells you how to install the C++ Language System and how to port it to machines for 
which it is not directly supported. 

• Chapter 4 covers compatibility between different releases of the C++ Language System; it describes 
things that have changed and might require you to make changes in code written for previous 
releases. This chapter discusses the following release changes: 

o upgrading from Release 2.0 or Release 2.1 to Release 3.0 

o future compatibility - changes and enhancements that are planned for the next major release of 
the C++ Language System 

This chapter contains detailed discussions of new features and changes included in the release, and, 
as such, should be an important reference for all users. 

• Appendix A describes known problems with the C++ Language System which are of general interest 
to C++ programmers, and suggests workarounds for these problems. 

• Appendix B describes implementation specific behavior. 

• Appendix C is a list of "not implemented" messages issued by Release 3.0.1 
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Preface 

• Appendix 0 contains manual pages for the C++ Language System. 

To make the best use of the Release Notes, you must be familiar with the C programming language and the 
C programming environment under the UNIX operating system. 
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1 Introduction 

Introduction 
The C++ Language System 

• New Features Introduced in Release 3.0 
Hardware 
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Introduction 

The C++ Language System 

The C++ Language System, Release 3.0, translates C++ source code to C source code. It supports the C++ 
programming language (as described in the C++ Language System Product Reference Manual). The cc com­
mand invokes the Language System, which does semantic and syntactic checking on the C++ input pro­
gram and translates the C++ program to C language. The cc command then invokes the C compiler on 
your machine to compile the resulting C program and run related processes such as linking function 
libraries. 

Figure 1-1 shows the operation of the cc command and the processes it invokes: 
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Figure 1-1: Operation of the CC Command 
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The C++ Language System can run on most UNIX systems with a C compiler that supports the following 
features: 
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• long variable names (of at least 31 characters) 

• structures as arguments to functions and return values from functions 

See UInstallation Procedures" for detailed prerequisites and information on porting. 

New Features Introduced in Release 3.0 
Release 3.0 is a release of the C++ Language System, which is source- and link-compatible with Release 
2.0 and Release 2.1. Release 3.0 provides the following new or enhanced features: 

• The major feature for the release is Template classes and functions. For a definition and description 
of how to use this feature, please refer to Stroustrup, "Parameterized Types for C++" in the Selected 
Readings as well as Chapter 14 of the Reference Manual, by Margaret Ellis and Bjarne Stroustrup 
(Addison-Wesley, 1990). This implementation conforms to the draft submitted to and preliminarily 
accepted by the ANSI C++ standards committee. However, users should note that there continues to 
be much discussion in the ANSI committee about the precise details of syntax and semantics regard­
ing templates. While we do not expect major, incompatible changes in the definition of templates, it 
is likely that various refinements and extensions to the feature will be made in the course of the stan­
dardization activity. Users should be aware that any such refinements and extensions will be 
reflected in future releases of the AT&T USL C++ Language System. 

The Templates implementation is based on work originally done at Object Design Inc., in which they 
implemented template classes based on Stroustrup's initial design. We have licensed this initial tem­
plates implementation from Object Design and evolved it to include function templates, and have 
extended the class implementation to provide support for various language features such as friends 
and static members. 

• Release 3.0 completes the implementation of true nested scopes introduced in Release 2.1. The transi­
tion model is no longer supported. Code that compiled warning-free under Release 2.1 will correctly 
reflect the new nested semantics. 

• Release 3.0 begins a phased approach to improving the architecture of cfront. This release includes 
reworking of the front end symbol table, type checking, function matching, operator overloading and 
user-defined conversions. 

• Release 3.0 implements various Release 2.1 Reference Manual upgrades, including allowing construc­
tors in which all parameters have default arguments to be used as the default constructor in initializ­
ing arrays, overloaded prefix and postfix increment and decrement, extension of dominance to data, 
and use of constructor syntax for built-in types and protected derivations. 

• Release 3.0 treats as errors most anachronisms which were warned about by default in Release 2.1. 
Those that were +w only warnings are generally being warned about by default in Release 3.0 and 
will be disabled in the release following 3.0. 

Additional information about these improvements is provided in Chapter 4. 
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Hardware 

The c++ Language System Release 3.0 can be installed on the following machines: 

• AT&T WE 32000-based 3B2 Series Computers 

• AT&T 6386 WGS 

• DEC VAX line of Computers (including V AX BSD machines) 

• SUN 2, SUN 3, and SUN 4 Workstations 

The Language System has also been successfully ported to other machines, including: 

• Motorola 68000-based Apollo and HP workstations 

• Amdahl UTS Computer 

• Intel 80286 large model and 80386-based machines 

• Hewlett-Packard 9000 series 800 and series 300 HP-PA based machines 

• IBM RT Personal Computer 

• Data General MV Computers running AOS/VS and DG/UX 

• MIPS machines 

The C++ Language System can also be ported to other machines not on this list. Porting to machines 
besides the AT&T 3B series, AT&T 6386 WGS, DEC VAX line of computers, and SUN 2/3/4 workstations 
requires that you have access to an AT&T 3B series, AT&T 6386 WGS, DEC VAX, or SUN 2/3/4 computer, or 
that you have access to an existing working C++ Language System. For information about porting, see 
Chapter 3, under ''Porting the C++ Language System." 
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Contents of the Release 

This chapter intentionally removed. 
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Installing the Compiler 

This chapter intentionally removed. 

For instructions on installing HP C++, see the HP C++ Release Notes you received with 
HP C++. 
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Overview 

This chapter describes compatibility issues that pertain to both Release 2.1 and Release 3.0. If you are 
currently using Release 2.1 and want to know about upgrading to Release 3.0, you can read the section 
''Upgrading from Release 2.1 to Release 3.0". If you are currently using Release 2.0, you should begin with 
''Upgrading from Release 2.0 to Release 2.1." In either case you should also read the last section, "Future 
Compatibility Issues," to learn about changes that will occur in the next major release of the C++ Language 
System. 
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Upgrading from Release 2.1 to Release 3.0 

This section describes differences between Release 2.1 and Release 3.0. 

This section provides information on the following topics: 

• Header Files 

• New Features 

• Language Related Fixes 

Recompilation of Release 2.1 Code 

Code which compiled warning-free under Release 2.1 will not need to be recompiled. Code which uses 
nested types and which was not upgraded to use the transition model of Release 2.1 will need to be recom­
piled: 

struct A ( 

struct B ( 
void fO i 

) i 

} i 

typedef A::B Ti 

void T::foo() (}i II encoded as f __ 1BFv in 2.1 
II encoded as f __ Q2_1A1BFv in 3.0 

However, code which used the new nesting semantics in Release 2.1 will continue to link correctly: 

struct B (}i 

struct A ( 

struct B 

II force new nesting semantics 

void fO i 

) i 

} i 

typedef A::B Ti 

void T: : f 0 () i II encoded as f __ Q2_1A1BFv in 2.1 and 3.0 

Refer to the section below on Nested Types for further information. 
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Header Files 

The as makefile variable has been updated to accomodate SunOS 4.1and UNIX System V Release 4. See 
the discussion of the as makefile variable in Section 3 Installing the Compiler in this manual for further 
information. 

New Features 

The major new feature for the release is the implementation of Templates. Various new features introduced 
in the Release 2.1 Reference Manual have also been implemented. 

Templates 

The major enhancement in this realease is the implementation of Templates. Both template classes and 
functions are supported. Automatic instantiation of templates is also provided. For a description of the 
feature and its uses, see Chapter 14 of the C++ Language System Product Reference Manual, and "'Parameter­
ized Types for C++", B. Stroustrup, in the Selected Readings manual. For information about support for 
automatic instantiation, refer to the Selected Readings Chapter 7, 'Template Instantiation in C++ Release 3.0, 
Overview", G. McCluskey and R. B. Murray, which presents an overview and technical rationale for the 
instantiation mechanism and Chapter 8, "Template Instantiation, Users Guide", G. McCluskey, which 
presents various examples of use of the automated support for instantiations. 

This implementation conforms to the draft submitted to and preliminarily accepted by the ANSI C++ stan­
dards committee. However, users should note that there continues to be much discussion in the ANSI 
committee about the precise details of syntax and semantics regarding templates. While we do not expect 
major, incompatible changes in the definition of templates, it is likely that various refinements and exten­
sions to the feature will be made in the course of the standardization activity. Users should be aware that 
any such refinements and extensions will be reflected in future releases of the AT&T USL C++ Language 
System. 

Implementation of Template Function Matching 

During Release 3.0 beta testing, the restrictive function matching rules specified in the Reference Manual 
were found to be too restrictive for practical use. We have, therefore, implemented extensions to the strict 
function matching rules in the Reference Manual. It is likely that the ANSI definition will at least be relaxed 
to allow these extensions and may extend the definition to encompass full function matching. This is 
currently an active topic of discussion within the ANSI committee. In the meantime, we have made the 
smallest set of extensions we found feasible. 

The first extension allows the consideration of trivial conversions when searching for an exact match. This 
implies that for a template function declared as follows: 

template <class T> rnax( const T*, int )i 
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the following call is legal in the Release 3.0 implementation: 

in t ia [ 10 ] = { •.• } i 

I I error in the Reference Manual 
II accepted by 3.0 
int best = max( ia, 10 )i 

The second extension allows the conversion of derived classes to public base classes in calls of template 
functions. This is necessary to ensure that template functions support object-oriented programming. For 
example, under the strict rules the following calls of function print_vector () fail: 

template <class T> void print_vector(const Vector<T>&)i 

template <class T> 
class BoundedVector public Vector<T> { ... }i 

template <class T> 
class SortedVector : public Vector<T> { ... }i 

BoundedVector<int> bVi 
SortedVector<int> SVi 

print_vector (bv) i I I error in Reference Manual 
II accepted by 3.0 

print_vector (sv) i I I error in Reference Manual 
II accepted by 3.0 

and separate print functions for each class derived from Vector<T> must be written. Permitting the 
conversions of BoundedVector<int> and SortedVector<int> to Vector<int> allows the use of the 
polymorphic print_vector () function. 

These extensions are designed to be interim solutions until the ANSI committee votes on a full resolution to 
the template function matching issue. 

Template Instantiation Support 
An important aspect of the Release 3.0 implementation is support for automatic instantiation of template 
class and template function references. The Release 3.0 implementation provides an instantiation mechan­
ism designed to free the programmer from direct manual intervention. Manual overrides for complicated 
systems are provided to customize and tailor instantiation support for specialized applications. 

As discussed above, papers describing template instantiation are included in the Selected Readings with this 
release. These papers make clear that some assumptions are made about coding style and conventions: 

4-4 Release Notes 



Upgrading from Release 2.1 to Release 3.0 

• A class or function template is declared in a .h header. For a function template this declaration 
looks like a forward function declaration: 

template <class T> void f(T)i 

The template .h header should include headers, with multiple-include guards, for "unbound", i.e., 
non-template-arg types that it uses. 

• A class or function template is implemented in a .c header. 

• Template arguments of non-fundamental type are declared in . h header files. These files should be 
self-contained, i.e., include other files they need using multiple-include guards. 

Here is a simple example to get started with: 
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II Sample.h 
template <class T> class Sample ( 

char* Pi 
pUblic: 

} i 

Sample(char* s) : p(s) {} 
char* get()i 
char* get2() (return T::f()i} 

II Sample.c 
template <class T> char* Sample<T>::get() 
( 

return Pi 
} 

II A.h 
struct A 

static char* f () (return II II i} 

} i 

II application 
#include <stdio.h> 
#include "Sample.h" 
#include "A.h" 

Sample<A> a( II Hello" ) i 

main() 
( 

Sample<A> b( "world") i 

printf("%s%s%sO, a.get(), a.get2(), b.get())i 

This is a complicated way of printing "Hello world". To compile this example, you would create the vari­
ous files noted above and say: 

$ CC app.c 

It is instructive to look in the directory . Iptrepository after such a compile. There are three files there 
whose use is fully explained in the paper: 

4-6 

xxx. c - the instantiation file 
xxx.o - the instantiation itself 
xxx.cs - the checksum used for dependency management 
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Nested Types 
Release 3.0 also completes the implementation of true nested scopes introduced in Release 2.1. The transi­
tion model is no longer supported. Code that compiled warning free under Release 2.1 will correctly reflect 
the new nested semantics. Please note that code that generated warnings under Release 2.1 may produce 
results under complete nested semantics that differ from Release 2.0 behavior: 

class A { 
class B { 

} i 

} i 

B bvari 

II 2.1: warning: use A:: to access nested class type B (anachronism) 

II 3.0: error: B bvar : B is not a type name 
II error: type expected for bvar 

Support for deeply nested classes is also now provided: 

class A { 
class B { 

class C { 

} i 

} i 

} i 

Reference to the inner class C is now possible: 

A: :B::C cvari 

Default Constructors 
The Release 2.0 Reference Manual explicitly stated that a default constructor is a constructor with no formal 
parameters, thereby excluding constructors that can be called with no arguments by virtue of having 
default arguments. The Release 2.1 and Release 3.0 versions of the Reference Manual lift this restriction; the 
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constructor in the example below is now considered a default constructor. 

struct 5 { 
5(int = 0); 

} ; 

Release 2.1 does not conform to this rule. Instead, it adheres to the old definition of default constructor. 
Here are some examples: 

5 sl[2]; 
5 s2 [2] = { 1 }; 

struct X { 
5 s[2]; 

} ; 

void f () { 

II legal, OK in 3.0, error in 2.1 
II legal, OK in 3.0, sorry in 2.1 

II legal, OK in 3.0, error in 2.1 

5* P new 5[2]; II legal, OK in 3.0 and 2.1 

Release 3.0 correctly conforms to this rule. 

Explicit Type Conversions with Empty Initializers 
The Release 2.1 and 3.0 versions of the Reference Manual allow you to specify an explicit type conversion 
with an empty initializer, as in the following examples: 

int i = int () ; 

struct Empty {}; 
Emptye = Ernpty(); 

Release 2.1 does not implement this capability and reports an error instead. 

line 1: error: value missing in conversion to int 
line 4: error: cannot make a Empty 

Release 3.0 implements this capability. 
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Prefix and Postfix Increment and Decrement Operators 

The Release 2.0 Reference Manual provided no way to distinguish user-defined prefix increment and decre­
ment operators from postfix increment and decrement operators. The Release 2.1 and 3.0 versions of the 
Reference Manual specify a separate syntax for defining prefix and postfix increment and decrement opera­
tors. The prefix increment and decrement operators take one argument (the implicit this argument for a 
member function), whereas the postfix version takes two arguments (including the implicit this argument). 
For example, 

struct s ( 
operator++(); 

operator++(int); 

} i 

II 2.0: prefix or postfix 
II 2.1: prefix, but not implemented as such 
II 3.0: prefix, implemented as such 
II 2.1: postfix ++, not implemented 
II 3.0: postfix ++, implemented 

However, Release 2.1 does not recognize the new syntax. Use of the postfix form results in the following 
error message: 

line 4: error: s:: operator ++() takes no argument 

Release 3.0 correctly handles these operators. 

Extension of Dominance Rule to Objects 

The Release 2.1 Reference Manual extended dominance to data and enumerators as well as functions. 
Release 2.1 did not implement this. Release 3.0 does: 

enum E {a,b}; 
struct V (void f(); int x; E Y;}i 

struct B: public virtual V (void f(); int x; E Y;}; 
struct c: public virtual V{}; 

struct D: public B, public C {void g();}; 

void D: :g() 

Compatibility 

x++; II ambiguous in 2.0/2.1 
II ok in 3.0, refers to B::x 

Y = a; II ambiguous in 2.0/2.1 
II ok in 3.0, refers to B::y 

f(); II ok in 2.0/2.1 and 3.0, refers to B::f 
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Protected Derivation 

The Release 2.0 Reference Manual explicitly disallowed the use of protected as an access specifier for a base 
class. The Release 2.1 Reference Manual lifts this restriction. However, Release 2.1 does not implement the 
new behavior. 

struct B {}i 

struct D : protected B {}ill legal, but rejected by 2.1 
II accepted by 3.0 

Release 3.0 correctly implements the new behavior. 

Exception Handling Syntax 

Release 3.0 does not include an implementation of exception handling. However, the ANSI C++ committee 
has preliminarily accepted the exception handling scheme as described in Chapter 15 of The Annotated C++ 
Reference Manual. In Release 2.1, reserved words were added for exception handling. In Release 3.0, the 
likely syntax for exception handling has been incorporated into the grammar and a "sorry not imple­
mented" message is generated for uses. Again, code that compiled warning free under Release 2.1 will con­
tinue to compile and execute correctly under Release 3.0. Please note that Release 2.1 code that compiled 
with warnings about use of reserved words may result in surprising error messages under Release 3.0: 

int try; 

II 2.1: warning: try is a future reserved keyword 

II 3.0: sorry, not implemented: try 
II error: syntax error 

Language-Related Fixes 

The focus of development for Release 3.0 has been to implement the Templates feature and to reengineer 
selected portions of the implementation. The reengineering focus has been on function matching, operator 
overloading, user-defined conversions, type checking and reworking the front end symbol table. We know 
of no bugs in the function matching or operator overloading and many of the scoping and name reuse bugs 
that existed in previous releases have been fixed. The reworking of type checking has uncovered previ­
ously existing bugs that are now fixed. Please note, some of these fixes may change the behavior of pro­
grams for which Release 2.0 or Release 2.1 incorrectly accepted illegal code or produced incorrect results. 

Section numbers (§) following a heading identify the section of the Release 3.0 Reference Manual that 
describes the correct behavior. 
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Declarations in for Initializers (§6.5.3, 6.7) 

The Release 2.0 Reference Manual stated that a for statement containing a declaration in its for-init-statement 
was not allowed to be the statement after an if, else, switch, while, do, or for. In other words, this 
code was illegal: 

void f(int i) { 
if (i) 

for (int j 

} 

i; j; j--) /1 error 

This restriction was an error not enforced by the Release 2.0 implementation, and the Release 2.1 Reference 
Manual omits it. 

The Release 2.1 Reference Manual, however, does specify a related restriction: nAn auto variable constructed 
under a condition is destroyed under that condition and cannot be accessed outside that condition." 

Here is an example: 

int g(int i) 
if (i) 

for (int j = 5; j; j--) 

return j; II error 

In the above code, j cannot be accessed at the point of the return statement because the return statement 
is outside the body of the if statement. According to the Release 2.1 Reference Manual, an error should be 
reported, but Release 2.1 quietly accepts this code. Release 3.0 correctly reports the error. 

Enforcement of Return from Value-Returning Functions (§6.6.3) 

In C++, unlike C, it is an error to fail to return a value from a value-returning function. See Section 6.6.3 of 
the Reference Manual. Earlier releases of the compiler warned about failure to return a value. For Release 
3.0, these warnings are errors for all member functions and all function templates. For non-member func­
tions, failure to return a value when a return type is explicitly specified is an error; warnings will continue 
to be generated for non-member functions that implicitly return ints. As with previous releases, we will 
continue to warn about failure to return from main only under +w: 
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main () {/* ••. * I} i 

fO { 1* ... *1 }i 

int f20 { 1* ... * I } i 

struct A { 
fO {/* ..• */}; 

II no return from main 
II +w warning in 2.0, 2.1 and 3.0 

II no return, implicit return type 
II warning in 2.0, 2.1 and 3.0 

II no return, explicit return type 
II warning in 2.0, 2.1 
II error in 3.0 

II no return, implicit return type 
II warning in 2.0, 2.1 
II error in 3.0 

int f2() {/* ... */}i II no return, explicit return type 
II warning in 2.0, 2.1 
II error in 3.0 

} ; 

canst Typedefs (§7.1.6) 

Previous releases failed to unwind const typedefs correctly: 

typedef char *Ti 

const char *Pi 
const T CPi 

II P is a pointer to a const char 
II cp is a constant pointer to char 

Previous releases incorrectly evaluated cp as a pointer to const char. 

Scope of a Class Member's Initializer (§8.4) 

The Release 2.1 Reference Manual states explicitly that an initializer for a static member is in the scope of the 
member's class. This rule was not explicitly given in the previous Reference Manual. 

Release 2.1 does not apply this rule consistently. For example, in 
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const int a = 5; 

struct X { 

static int a; 
static int b; 

} ; 

int X: :a = 1; 
int X::b = a; 

the correct behavior is implemented: X: : b is initialized with X: : a. 

However, default arguments for member functions are not resolved within the scope of the class. In the 
following code, 

const int y = 2; 

struct Y { 

} ; 

static int y; 
static int f(int); 

int Y::f(int i = y) { return i; } 

Release 2.1 incorrectly detennines that the default argument for Y: : f () is global y, not y: :y. 

Release 3.0 correctly resolves the argument. 

Reference Initializers (§8.4.3) 

The Release 2.0 Reference Manual allowed a reference to be initialized with a temporary, as in the following 
declaration: 

int& r = 5; 

However, the Release 2.1 Reference Manual has tightened the rules for reference initializations so that only 
const references may legally be initialized with non-Ivalues. This means that, instead of the previous 
declaration, you must use the following: 

const int& cr = 5; 

The Release 2.0 C++ Language System already treated temporary initializers for non-const reference ini­
tializations at global scope as errors, although it allowed them at local scope. To provide a smooth transi­
tion to the more restrictive rules, Release 2.1 issues an anachronism warning, under control of the +w 
option, for non-const reference initializations that were accepted by Release 2.0 but are now illegal. 

Here are some examples: 
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int& r1 = 5; II illegal, error in 2.0, 2.1 and 3.0 

struct A { A(int); -A(); }; 
A& a1 = 5; II illegal, sorry in 2.0, error in 2.1, 3.0 
const A& a2 = 5; II legal 

int& f1 () ; 
int& r2 = f1 () ; II ok, 'f()' returns an lvalue 

const int& r3 5; II ok, 'r3' is 'const int&' 

int f2(int&); 
int j = f2 (5) ; 

void x() { 

int& r1 = 0; II 

A& a1 = 5; 

const A& a2 = 5; 
int j = f2(5); 

struct 81 {}; 
struct 82 { 

operator 81 () ; 
} ; 

II illegal, error in 2.0 and 2.1 

illegal, 2.1 warns under +w 
II illegal, 3.0 warns by default 
II illegal, 2.1 warns under +w 
II illegal, 3.0 warns by default 
II legal, accepted by 2.0 and 2.1 
II illegal, 2.0 and 2.1 warn under +w 
II illegal, 3.0 warns by default 

void f3(81&); 
void y (82 s2) 

f3 (s2) ; II illegal, 2.0 and 2.1 warn under +w 
Ilillegal, 3.0 warns by default 

Release 3.0 issues an unconditional warning, or an error if the +p option is in effect. 

The anachronism warnings tum into errors if the +p option is specified to the cc command. 

Calls to Non-canst Member Functions from canst Objects (§9.3.1) 

Calling a non-const member function on a const object has been illegal since Release 2.0. However, to 
ease transition to this new rule, calling a non-const member function on a const object was flagged with a 
warning in Release 2.0 and Release 2.1. This type of call is an error in Release 3.0. 

The obvious example of the effect of this change is the simple changing of a warning to an error as in the 
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following case: 

struct A { 

A(); 
void foo(); 

} ; 

const A a; 
a. foo(); II a warning in 2.0 and 2.1 

II an error in 3.0 

Upgrading from Release 2.1 to Release 3.0 

However, this change may also cause more subtle changes of behavior in code using function matching, 
operator overloading, or conversion functions. For example, a non-const member function is now elim­
inated from consideration in a call to an overloaded member function using a const object. For example: 

struct A 
A(); 
void foo(int); II #1 
void foo(char) const; II #2 
void foo(const A*); II #3 

} i 

const A a; 
a.foo(l) ; 

a. foo (&a) ; 

II used to call #1 with warning 
II now will call #2 
II used to call #3 with warning 
II now flagged as no match error 

Similarly, non-const user-defined operators are not considered for calls with const objects, and no non­
const conversion operators will be applied to const objects. 

An example with conversion operators: 

class B { 
public: 

B(); 
operator int(); 

} ; 

const B bi 

int i = hi II error in 3.0 

New errors that occur as a result of all usable functions being non-const should issue messages that include 
that information. For example, the program above gives the following error in Release 3.0: 
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·prog.c·, line 8: error: bad initializer type const B for i (int expected) 
(no usable const conversion) 

Enforcement of canst in canst Member Functions (§9.3.1) 

As with calls to non-const member functions from const objects, the enforcement of const within const 
member functions was introduced via warnings in Release 2.0 and Release 2.1. In Release 3.0, the const 
rules are strictly enforced. The release correctly reports errors for assignment to data members or calls to 
non-const member functions from within a const member function. It is also illegal for const member 
functions to return non-const references to a data member if the member is a class object. If the data 
member being returned is a built-in type, however, Release 3.0 still incorrectly reports this with just a warn­
ing. 

4-16 

struct B{ } i 

struct A { 

int ii 
B bi 

int& f() {return ii}i 

void fl(int j) const { 
i = j i 

i fOi 

} 

II ok, non-const member 

II warning in 2.0/2.1 
II error in 3.0 

II warning in 2.0/2.1 
II error in 3.0 

int& f2() const {return ii} II warning in 2.0/2.1 
II error in 3.0 

B& f3() const {return bi} II warning in 2.0/2.1/3.0 
} i 
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Static Data Members of Local Classes (§9.4) 

The Release 2.1 Reference Manual states that static data members are not allowed for local classes. Previ­
ously, a local class could have a static data member only if no explicit initialization was required. 

Release 2.1 does not enforce the new restriction properly. If a static data member of a local class is 
declared but never used, a warning is reported but the program links successfully. 

int main() { 
struct S { 

static int i; 
} ; 

II 
return 0; 

r 
( line 2, warning, static member 8"i in local class 8 (anachronismi 

~ 

Release 3.0 enforces this restriction, and correctly reports an error. 

Access Specifiers in Unions (§11) 

The Release 2.1 Reference Manual allows access specifiers in unions. Formerly, these were forbidden. 

union U { 
pUblic: 

U(); 
int i; 

private: 
double d; 

protected: 
float f; 

} ; 

U U; 
float f = u.f; 

II legal 

II legal 

II legal 

II protection violation 

Release 2.1 accepts the definition of U shown above but does not report the protection violation. 

Release 3.0 correctly flags the protection violation. 
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Access to Static Members of Private Base Classes (§11.2) 

The Release 2.1 Reference Manual states that a private derivation of a base class does not restrict access to 
the static members of the base class. Without this rule, a member function would have less access to a base 
class's static members than a global function. 

Release 2.1 does not implement this rule consistently. For access to a static member of an immediate base 
class, some illegal accesses are not reported: 

struct B { 
static void f 0 ; 

} ; 

struct D : private B {} 

struct E : private D { 

} ; 

void gO ( 
fO; 
this->f(); 
B::f(); 

II illegal, reported by 2.1 and 3.0 
II illegal, reported by 2.1 and 3.0 
II legal, OK in 3.0, rejected by 2.1 

In the above code, the calls f () and this->f () are illegal because they refer to f () via the this pointer, 
and thus the access protection for private members is applied. The call B: : f () is legal because it refers 
to f () directly, just as a global function could refer to B: : f ( ) . 

Release 3.0 enforces the rule consistently. If multi-level derivation is involved, both Releases 2.0 and 2.1 are 
overly conservative; they report an error for X: : f () even though it is legal. 

struct X 
static void f(); 

} ; 

struct Y : private X {}; 
struct Z : public Y { 

} ; 

void gO { 

} 

fO; 
this->f 0 ; 
X: :fO; 

II illegal, error in 2.0, 2.1 and 3.0 
II illegal, error in 2.0, 2.1 and 3.0 
II legal, error in 2.0 and 2.1 

Scope of Friend Functions (§11.4, 9.7) 

The Release 2.1 Reference Manual states that a friend function defined within a class declaration is in the 
lexical scope of that class, just like a member function. 
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In general, Release 2.1 does not implement this rule. Consider the following example: 

extern int Sj 

extern int ej 

struct S { 
static 
enum { 

int 
e = 

friend f () 

Sj 

5 } j 

{ return 
friend void g(int = 

} j 

ej } II which 'e'? 
s) { } j I I which 's'? 

According to the Release 2.1 Reference Manual, f () returns s: : e and the default argument for g () is S: : s. 
Instead, both Release 2.0 and 2.1 incorrectly resolve these names to :: e and :: S respectively. 

Release 3.0 resolves these names correctly. 

Constructor and Destructor Declarations (§ 12.1, § 12.4, §9.3.1,) 

The Release 2.1 Reference Manual specifies that constructors and destructors cannot be declared const, 
volatile, or static. Release 2.1 correctly reports an error for constructors and destructors that are 
declared static, but it incorrectly allows constructors and destructors to be declared const. Release 2.1 
does not implement volatile member functions at all; these are rejected with a Unot implemented" mes­
sage. 

struct S { 

} j 

static S()j 
static -S()j 

struct T { 
T() constj 

-T() constj 

T(char*) volatilej 

} j 

Release 3.0 correctly reports these errors. 

Compatibility 

II illegal, error in 2.0, 2.1 and 3.0 
II illegal, error in 2.0, 2.1 and 3.0 

II illegal, but accepted by 2.1 
II rejected by 3.0 

II illegal, but accepted by 2.1 
II rejected by 3.0 

II illegal, sorry in 2.1 
II rejected by 3.0 
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Destructors for Built-In Types (§12.4,) 

The Release 2.1 Reference Manual allows explicit destructor calls for any built-in type, as in the example 
below. However, Release 2.1 does not implement this syntax. 

void f(int* p) { 
p->int: : -int () ; 

} ; 

Release 3.0 correctly implements this syntax. 

Delete Operator (§12.5) 

II legal, but error in 2.1 
II legal, handled properly in 3.0 

The Release 2.1 Reference Manual tightens the rules for the delete operator. Only one operator delete ( ) 
may be declared per class, and the global operator delete () may not be overloaded. Release 2.1 does 
not enforce these restrictions. 

For example, the second declaration of the delete operator in each scope below is illegal, but the code is 
accepted by both Release 2.0 and 2.1. 

typedef unsigned int size_t; 

void operator delete(void*); 
void operator delete(const void*); 

struct S { 
void* operator new(size_t); 
void* operator new(size_t, void*); 
void operator delete(void*); 

II error, correctly reported in 3.0 

void operator delete(void*, size_t); II error, correctly reported in 3.0 
} ; 

Release 3.0 correctly reports these errors. 

Argument Matching Rules (§13.2,) 

Several details about the function matching rules have changed. 

• In the Release 2.0 Reference Manual there was a rule that a call needing only standard conversions is 
preferred over one requiring user-defined conversions. This rule has been eliminated in the Release 
2.1 Reference Manual and the new semantics have been implemented in Release 2.1. For example, 
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struct Complex { Complex(double)i }i 

void f2(int, Complex)i 
void f2(double, double)i 

void y2 () { 
f2 (3, 4) i I I ambiguous 

For this code, Release 2.1 and 3.0 correctly report an ambiguity. 

• The second function matching change involves the treatment of arguments of type T that require tem­
poraries. The Release 2.0 Reference Manual specified that a match with conversions requiring tem­
poraries was a legal match. So, for example, the call to f3 (char&) in the following code was legal 
and was accepted by Release 2.0: 

void f3 (char&) ; 
void x3 () { 

f3 ( , c' ) i II illegal, 2.1 warns under +w 
II illegal, 3.0 warns by default 

Furthermore, since standard conversions were preferred to conversions requiring temporaries, the 
Reference Manual specified that the call to f4 () below would be resolved to f4 (int). Instead, 
Release 2.0 resolved it to f4 (char&) : 

void f4(int)i 
void f4(char&); 
void x4 () ( 

f4('c')i II illegal, 2.1 warns under +w 
II illegal, 3.0 warns by default 

Under the new rules, the calls to f3 () and f4 () are in error because a non-const reference cannot 
be initialized with a non-Ivalue (see §8.4.3). However, Release 2.1 and 3.0 allow this behavior, with 
warnings, to provide the opportunity to migrate old code. 

Release 3.0 correctly warns by default in both case. Release 2.1 warns under +w. 

Improved Operator Overloading (§ 13.4) 

Operator overloading and the resolution of operator expressions has been more clearly specified for Release 
3.0, notably in the area of choosing between user-defined operators and built-in operators using conversions 
to basic types. For instance, given the following class definition: 
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class Foo { 
pUblic: 

operator int(); 
int operator+(const Foo&,int); 

} ; 

and an object of class Foo, foo, the expression foo + 1 could be resolved two ways. It could be resolved 
as operator+ (foo, 1) by calling the user-defined + operator, or as operator int (foo) + 1 by using the 
built-in + operator on integers after applying the user-defined conversion to into 

For Release 3.0, the operator overloading algorithm has been updated to match the function matching algo­
rithm. Therefore, argument matching is used to compare built-in operators to user-defined operators. 

The only exceptions to this rule are operators which MUST be defined as members, i.e., operator= ( ) , 
operator [ ], operator-> (), operator () (). For expressions involving these operators, the user-defined 
version of the operator is always preferred. 

The effect of this clarification is that some expressions involving operators which used to call a user-defined 
operator will now be ambiguous. Other expressions which used to give an ambiguity error will now be 
resolved. For example, 
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class String { 
pUblic: 

String(char)i 
friend String operator+(String&,char)i 

} i 

class MyClass 
public: 

} ; 

operator int(); 
friend int operator+(MyClass&,int); 
int operator[] (unsigned int); 

main () 
{ 

MyClass a; 
int ii 

i = a + 3; II 1: used to call operator+(MyClass&,int); 
II still does 

i = a + 3.2; II 2: used to call operator+(MyClass&,int); 
II now ambiguous 

i a [3] ; II 3 : used to call operator[] (unsigned int)i 
II still does 

i = 3 + a; II 4: used to be ambiguous 
II now calls built-in + 

In callI, Release 3.0 uses argument matching and chooses the user-defined operator. The best match on 
the first operand is the user-defined operator+ ( ) ; the best matches on the second operand are both the 
user-defined operator+ () and the built-in operator+ () on integers. Thus, the intersection of best match 
functions is the user-defined operator+ (). 

Changing the right operand to a double makes call 2 ambiguous when using argument matching because 
the best match on the second operand will now be the built-in operator+ () on doubles. 

Call 3 still calls the user-defined operator+ () because the user-defined version of operator [] is always 
preferred, since it must be defined as a member. 

The last call (4) was ambiguous in pre-Release 3.0 versions of C++ because the call of the built-in opera­
tor+ () on integers conflicted with operator+ (String&, char). Using argument matching, the call 
resolves to the built-in operator+ () as the user would expect. 
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Miscellaneous Fixes & Enhancements 

• Classes with destructors are now permitted in I I and && expressions. 

• The limit on the size of inlines has been increased so that larger inline functions should now be laid 
down inline. 

• The number of nested include files that cfront can handle has been made dynamic. The limit in 
Release 2.0/2.1 had been 127. Note that, of course, local cpps may vary in the limit they can process. 

• Significant improvements have been made and extensive testing has been performed on the +al 
(ANSI) option. 

• Error messages for ambiguous function calls have been enhanced. The error message now lists the 
set of overloaded functions which were equivalently good. 

• All known line numbering bugs are fixed. 

Return Value Optimization 
Release 3.0 supports a return value optimization which may avoid the copying of potentially large data 
structures which are returned from functions. 

For instance, given the following class definition and function declaration: 

class T { 

pUblic: 
T(const T&); 

} ; 

T foo(); 

An object of class T may be initialized with the return value of foo () as follows: 

T x = fOO()i 

Such a function, foo ( ) , will often have a definition something like the following: 
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T foo() 
{ 

T result; 
II do stuff to result 
return resulti 

This means that in order to do the above initialization, a copy will be done of result into x. If instead the 
function and the initialization had been written to look as follows: 

void foo(T& result) 
{ 

II construct result 
II do stuff to result 
return; 

T Xi 

foo(x) ; 

the copy would be avoided altogether while achieving the same results. 

Under certain conditions, cfront will now perform a transformation from the original, more natural, 
definition of foo () to the second definition automatically, thus avoiding the copy on the return. 

This return value optimization is done under the following conditions: 

• The function returns an object of type T, where T has a copy constructor, and 

• The function creates a local variable of type T, say result, which is declared and returned at the top 
block of the function. 

• The function does not return anything but result, from anywhere in the function between the 
declaration and return of result. 

This optimization can eliminate the non-intuitive tricks that programmers often use to avoid copying of 
large objects on returns. 
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Release 2.1 of the C++ Language System is source compatible with Release 2.0. That is, a legal C++ pro­
gram that compiled and executed correctly with Release 2.0 will continue to compile and execute correctly 
with Release 2.1. 

In addition, Release 2.1 is link compatible with Release 2.0. This means that libraries that were compiled 
using Release 2.0 do not need to be recompiled before linking with programs compiled with Release 2.1. 

This section lists changes in Release 2.1. Most of these changes are bug fixes that have been made so that 
Release 2.1 more accurately reflects the definition of the C++ language given in the Reference Manual. 

This section covers the following topics: 

• IIBuilding the Compiler" - tells you information you must know before installing the C++ compiler 

• IIHeader Files" - tells you about changes to the header files in Release 2.1 

• IIChanges to the cc Command" - tells you about changes in options to the cc command, macro 
name changes, and other changes in functionality 

• IlLanguage-Related Fixes" - tells you about fixes to the compiler that enforce language rules more 
accurately 

• IIReference Manual Changes" - describes differences between the Release 2.0 Reference Manual and 
the Release 2.1 Reference Manual. 

• ''New Warning Messages" -lists warning messages that have been added for Release 2.1 

• IILibrary Changes" - describes changes to the libraries supplied with Release 2.1 

Recompilation of Release 2.0 Code Not Required 

Code compiled using Release 2.0 does trot need to be recompiled. 

You might, however, want to recompile your old code using Release 2.1 anyway, as Release 2.1 enforces 
some language rules that were not enforced by Release 2.0. If you recompile your code, you will find' out if 
it makes use of constructs that are illegal. 

Building the Compiler 

s zal Output Format 
The format of the output of the szal program has been improved for Release 2.1. The new output is in the 
same format as the entries in the src lsi ze . h file. This change makes it easier to add new systems to 
src/size.h. 

For example, the commands: 
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when executed on an AT&T 3B2 computer yield the following output: 

#define DBI_IN_WORD 32 
#define DBI_IN_BYTE 8 
#define DSZ_CHAR 1 
#define DAL_CHAR 1 
#define DSZ_SHORT 2 
#define DAL_SHORT 2 
#define DSZ_INT 4 
#define DAL_INT 4 
#define DSZ_LONG 4 
#define DAL_LONG 4 
#define DSZ_FLOAT 4 
#define DAL_FLOAT 4 
#define DSZ_DOUBLE 8 
#define DAL_DOUBLE 4 
#define DSZ_LDOUBLE 8 
#define DAL_LDOUBLE 4 
#define DSZ_STRUCT 4 
#define DAL_STRUCT 4 
#define DSZ_WORD 4 
#define DSZ_WPTR 4 
#define DAL_WPTR 4 
#define DSZ_BPTR 4 
#define DAL_BPTR 4 
#define DLARGEST_INT "2147483647" 
#define DF_SENSITIVE 0 
#define DF_OPTIMIZED 1 

PLUSA Makefile Variable 

Upgrading from Release 2.0 to Release 2.1 

) 

You can now use the PLUSA variable in the makefile to set the +a cc command option to the desired 
default setting before executing the build procedure. The build procedure will then generate a CC com­
mand that will use the specified setting for +a as the default. The default setting can, of course, be overrid­
den on the command line when invoking the cc command. The default value for PLUSA in the makefile 
is +aO. 
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patch 

The file BSDpatch.c has been modified so that patch works under BSD Release 4.3 running on DEC VAX 
computers. 

Header Files 

Header File Bug Fixes 

Bug fixes made to header files for Release 2.1 fall into several categories: 

- missing prototypes were added, 

- prototypes for functions specified by the ANSI C standard were updated to match the prototypes in 
the ANSI specification, 

- some headers that were missing for certain platforms have been added. 

stdlib.h and libc.h 

In Release 2.0, stdlib.h and libc.h were similar, but not identical. In Release 2.1, they are identical. 
stdlib.h is the ANSI C-specified header file used to declare many standard C library functions previously 
undeclared in C header files. libc. h is retained for compatibility with previous releases of the C++ 
Language System. 

curses. h Proto-Headers Reorganized 
Because of the great differences between various versions of curses. h, the proto-header for curses. h has 
been divided into three separate files: one for SVR2 (proto-headers/curses .svr2), one for SVR3 (proto­
headers/curses.svr3), and one for all the other systems supported (proto-headers/curses.h). 

In addition, the curses. h header for SVR3 has been upgraded to SVR3.2. 

Changes to the cc Command 

a . out File Permissions 

Under Release 2.0 the cc command left the resulting a . out file with executable permission even if the 
munch or patch step of the compilation process failed. The Release 2.1 cc command does not make the 
a. out file executable if the patch or munch step of the process fails. 
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+L Option 

The +L option had no effect in Release 2.0 because the compiler always generates source line information 
using the format #line %d. The +L option has therefore been removed from the cc man page for Release 
2.1. 

-Fe Option 

The -F and -Fe options produce identical results in Release 2.0 and Release 2.1. They both run only the 
preprocessor and the compiler on the source files and send the generated C source code to the standard 
output. Therefore the -Fe option has been dropped as a separate option on the cc man page for Release 
2.1, although it is still implemented. 

Position-Independent Options 

Options such as -Y, +a[Ol], -E, -F, -c, -P, -H, -s, -e, -I, -D, -u and -g are no longer position­
dependent on the command line. Instead, they apply to all files specified on the command line. For exam­
ple, under Release 2.1 the command: 

~ cc foo.c -DDEBUG bar.c ) 
defines the macro DEBUG for both foo. e and bar. e, whereas in Release 2.0 DEBUG was only defined for 
bar.e. 

Not all options have been made position-independent, however. The +d, +p, and +w options are still 
position-dependent, as they were in Release 2.0. These options affect only those files named after the 
option is specified; the files named before the option are not affected. For example, the following command 
causes the +w option to be applied only to y. e, and not to x. e. 

~ cc x.c +wy.c ) 
The +e [ 01] options are also still position-dependent. Each +e option applies to all files listed before the 
next +e option is encountered. For example, in the case below +eO is applied to the files x. e and y . e, 
whereas +el is applied to z. e: 

~ cc +00 x.c y.c +el z.c ) 
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The +a option specifies whether "Classic" C code or ANSI C-conforming code should be produced. 
Because the cc command invokes a single C compiler, it is assumed that only one setting of the +a option 
is appropriate. If multiple +a [ 01] options are specified on the command line, the last option is the one 
actually used, and it is applied to all files. For example, the following command causes the +al option to 
be applied to x. c, y .c, and z .c. 

~cc x.c +aO y.c +al z.c ) 
Partial Compilation Options 

If the options specified to the cc command contain a combination of the - P (run only the preprocessor 
step), -8 (stop after creating the assembler input), and -c (compile but do not link) options, the option 
referring to the earliest stage of compilation is chosen and the others are ignored. For example, the follow­
ing invocation causes the cc command to perform the preprocessing step only on the three files: 

~cc x.c -p y.c -8 z.c ) 
Virtual Table Optimization Improved 

Release 2.1 provides the same virtual table strategy that was provided by Release 2.0. 

Release 2.1 provides a further improvement on the treatment of virtual tables. Under Release 2.0, each vir­
tual table had a companion pointer variable, which was used to hold housekeeping information necessary 
for the virtual table optimization. Under Release 2.1 these pointers are allocated in an array, rather than 
one per virtual table, so that only one symbol table entry is required in the generated object file. This 
change reduces the symbol table size (but not the runtime data size) of programs compiled with Release 
2.1. 

The new optimization is link compatible with Release 2.0. 

More Debugging Information Generated Under the -g Option 

Under Release 2.0, the -g option, which causes additional debugging information to be generated, was only 
passed to the underlying C compiler; it did not affect the behavior of the compiler itself. Under Release 
2.1, however, the -g option also affects the behavior of cfront. If -g is specified, the compiler produces C 
code for every declaration in the compilation, rather than only for those declarations that are actually 
needed or used. This additional information allows for easier debugging, but it also increases the size of 
the object file because the symbol table is larger. 
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Warnings about Inline Functions Issued under the +w Option 
Several customers have noted that Release 2.0 did not treat consistently inline functions that cannot be suc­
cessfully inlined. Release 2.1 addresses this problem by providing more consistent information about 
whether inline functions are actually being inlined. 

There are several cases: 

• If an inline function is seen for which dront cannot generate inline code, and dront cannot recover 
from the error condition, a Hnot implemented" message is reported. (The "not implemented" mes­
sages are described in Appendix D of the Release 2.1 Reference Manual.) 

• If an inline function is seen which cannot be inlined for some other reason (e.g., it is too long or it is 
a virtual function), and cfront can recover, the function will not be inlined and a warning message 
will be issued if the +w option is specified. 

• If a call to an inline function is seen and, because of the characteristics of the call site, the particular 
call cannot be generated inline, a warning message will be issued if the +w option is specified. 

• If the address of an inline function is taken, a warning message will be issued if the +w option is 
specified. 

Because the inline keyword is a Hhint" to the compiler, and because the C++ Language System issues 
warnings unconditionally only about constructs that are almost certainly serious problems, warnings about 
inlines are issued only if the +w option is specified. 

The following code illustrates the treatment of inlines: 

inline int f(int) { return i; 

int g(int i) { return f(i); } 

inline void h() { 
static int i 5; 
/ / ... 

struct S { 
virtual void f() {} 

} ; 

If you compile this code using cc +w you get the following output: 

Compatibility 4-31 



Upgrading from Release 2.0 to Release 2.1 

For more information about inline functions, see Chapter 8 of the Selected Readings. 

Language-Related Fixes 

This section describes bug fixes in Release 2.1 that may break some code that used to be accepted, but 
should never have been accepted. Section numbers (§) following a heading identify the section of the 
Release 2.1 Reference Manual that describes the correct behavior. 

Implicit Conversions of POinters to Members (§4.8) 

Release 2.0 incorrectly permitted several kinds of implicit conversions involving pointers to members. 

• Implicit conversions between pointers to members of unrelated types were permitted: 

struct X { int i; }; 
struct Y { int ii }i 

int X::*prnXi = &Y::i; II error 

• Conversions from pointers to objects to pointers to members were also allowed: 

struct Z { int i; }; 
int i; 
int Z::*pmZi = &i; II error 

• Finally, conversion from a pointer to member of a base class to a pointer to member of one of its 
derived classes was permitted: 

struct B { int ii }; 

struct D : B { int i; }; 
int B::*pmBi = &D::i; II error 

Release 2.1 correctly enforces these rules and reports an error in these cases. 

Casts of Pointer Types (§5.4) 

The Reference Manual states that a pointer may be explicitly converted to any integral type large enough to 
hold it. If the integral type is not large enough, the conversion is illegal. Release 2.1 enforces this rule; 
Release 2.0 did not. 

char *p; 
unsigned short us = (unsigned short) p; II error 
unsigned short usl = (unsigned short) (int) Pi II ok 
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Better Enforcement of canst (§7.1.6) 

Release 2.0 did not always realize that a member of a const object is itself a const. For example, the 
assignment to b. a . i in the code below was permitted, even though b is const and therefore its members 
are also cons t . 

struct A { 
int i; 

} ; 

struct B ( 
A a; 

B(); 
} ; 

void f () { 
const B b; 
b.a.i = 5; II error 

Release 2.1 issues the following message: 

7' 
( line 10, error, assignment to member A"i of canst B 

~ 

Initialization of canst Class Objects (§7.1.6) 

The Reference Manual states that all const objects not explicitly declared to be extern must be initialized. 
Although Release 2.0 enforced this rule for built-in types, it did not require explicit initializations for const 
class objects, such as al in the example below: 

struct A { int ai }i 

struct B ( B(); }i 

const A ali II error, no initializer 
const A a2 = { 1 }i II ok, explicit initialization 
const B bl; II ok, implicit initialization by constructor 
A a3; II ok, non-const 

Release 2.1 generates the following error for this code: 

~line 3, error, uninitialized canst "al 

Compatibility 
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Linkage Specifications (§7.4) 

Release 2.0 did not enforce all the constraints on the use of linkage specifications. For example, it allowed a 
function declaration without a linkage specification to precede one with a linkage specification. This error 
is flagged by Release 2.1. 

int f () ; 
extern IIC II int f (); I I error 

7 
[ line 2, error, inconsistent linkage specifications for f(1 

~ 

Local Variables in Default Arguments (§8.2.6, §10.4) 

The Reference Manual forbids the use of local variables in default argument expressions. For example, 

void f(int i) { 
void g(int = i); 
II ... 

causes Release 2.1 to report the following error: 

line 2: error: local i used as default argument 

This error was not reported by Release 2.0. 

Braced Initializers for Aggregates (§8.4.1) 

The Reference Manual states that braced initializers may be used to initialize aggregates, which by definition 
cannot have private or protected members, constructors, base classes, or virtual functions. Release 2.0 did 
not enforce this rule for classes with private members, or for aggregate members that were not themselves 
aggregates. For example, Release 2.0 incorrectly allowed both initializations shown below. 
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class A { 
int a; 

} ; 

struct B { 

A obj; 
} ; 

Aa = { 5 } ; II error 
B b { 5 } ; II error 

Release 2.1 correctly generates errors for the initializations of a and b: 

line 9: error: cannot initialize ::a with initializer list 
line 10: error: cannot initialize ::b with initializer list 

canst Violations in canst Member Functions (§9.3.1) 

Upgrading from Release 2.0 to Release 2.1 

Release 2.0 did not consistently detect const violations in const member functions. For example, the fol­
lowing code is illegal because the value of this, which has type const S *const, is assigned to an object 
of type S *const. Because this code was accepted, illegal assignments to members within const member 
functions, such as the assignment to i, were not detected. 

struct S { 
int i; 
void f () const { 

} 

} i 

S *const p = this; II error 
p->i = 5; 

Release 2.1 correctly reports the following error for this code: 

line 4: error: S::f() const: assignment of S::this (const struct S *const) to S *const 

volatile Member Functions Not Implemented (§9.3.1) 

Release 2.1 issues a li'not implemented" error message if a volatile member function is seen. Release 2.0 
silently ignored the keyword volatile when applied to a member function. 
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Member Functions in Local Classes Must Be Defined Inline (§9.8) 

When a class is defined within a function definition (that is, a local class), all member functions of the class 
must be defined within the class definition itself or not at all. 

For example, the following code declares the function f2 () but fails to define it: 

void f () { 
struct Local { 

} i 

int fl() { return Oi } 
int f2 (int) i 

Local vari 

Release 2.0 quietly accepted the above code. Release 2.1, however, issues the following warning: 

line 6: warning: f2() must be defined inline within local class Local 

Protection Violations of Anonymous Union Members (§11) 

Release 2.0 did not enforce access protection for members that are anonymous unions. For example, the 
following code was silently accepted: 

class S { 
union { int ii double di }i 

} i 

void f () { 
S Si 

s.i = 5i II error 
} i 

Release 2.1 correctly reports an error for the assignment to s. i because i is declared in the private part of 
s. 

Friend Declarations Cannot Be Class Definitions (§11.4) 

The syntax for declaring a class to be a friend of another class allows the use of an elaborated-type-specifier, 
but not a complete class definition, in the declaration. Therefore, the first friend declaration in the example 
below is legal, but the second is not. 

class C { 
friend struct Ai II ok 
friend struct B { int f()i }i II error 

} i 

Release 2.0 did not recognize the error in the friend declaration for B, but Release 2.1 issues the following 
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error message: 

~line 3, error, friend .truct B ( ... J ) 
Access to Protected Members (§11.5) 

The Reference Manual states that a derived class may refer to a protected member of a base class only if the 
reference is through a pointer to, reference to, or object of the derived class. For example, in the code 
below, although class D is derived from class B, D:: f () cannot call the protected function B: :g() 

through a B pointer. The same rules apply to constructors, making the calls to B: : B () in D: : f () illegal. 

class B { 

B (int) i 
void g (int) i 

protected: 
B()i 

void g() i 

} i 

class D : public B { void f()i }; 
void D: :f() { 

B bi 
B* bp = new Bi 

bp->g () ; 

II error 
II error 
II error 

In general, Release 2.0 reported the protection violations in code such as this. In some cases, however, no 
errors were reported. Such cases generally involved overloaded functions, one of which was protected, as 
shown in the above example. 

Release 2.1 correctly generates the following messages for this code: 

line 11: error: D::f() cannot access B::B(): protected member 
line 12: error: D::f() cannot access B::B(): protected member 
line 13: error: D::f() cannot access B::g(): protected member 
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Redundant Initializers (§12.6.1) 

The following code was accepted by Release 2.0 but is incorrect because it specifies two initializers for the 
same object. Release 2.1 reports an error. 

struct Point { Point (int, int); }; 
void f () { 

Point p(l, 2) = Point(3, 4); 
} 

Illegal Function Overloading (§13) 

II error 

The Reference Manual states that functions with parameter types that differ only with respect to const or 
volatile may not have the same name. Release 2.0 did not enforce this rule consistently and accepted 
code such as the following: 

void f(int *); 
void f(int *const); II error 

Release 2.1, however, correctly reports an error for the second declaration of f () . 

(7' line 2, error, the over loading mechanism cannot tell a void (int '} from a void (int 'const } ~) 
~ h 

"Intersection Rule" Applied to Function Matching (§13.2) 

Release 2.0 did not fully implement the "intersection rule" for function matching described in § 13.2 of the 
Reference Manual. For example, the following code was accepted and a call to f (double, double) was gen­
erated. 

double f(double, double); 
double f(float, float); 
double d = f(double(l.O),float(l.O»; II ambiguous 

According to §13.2, however, this call is ambiguous. If you look for possible matches, parameter by param­
eter, you see that the set of best matches for the first parameter has only one element, f (double, double), 
and the set of best matches for the second parameter also has only one element, f (float, float). The 
intersection of these sets is empty, so the call is ambiguous. 

For this example, Release 2.1 correctly issues the following message: 
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v 
( line 3, error, ambiguous call of f(); double (double, double) and double (float, float) 

~ 

This change in behavior may affect class libraries that provide functions that overload system functions. 
For example, suppose you define a type String and then overload the system function read () to handle 
objects of type String: 

struct String { 
String (char*) ; 
I I ... 

} ; 

int read(int, String&, int)i 

However, you do not notice that the last parameter of the system read () function is an uns igned rather 
than an int: 

int read(int, void*, unsigned); II system Jread()' 

Because Release 2.0 did not correctly implement the intersection rule, calls to the library's read () were 
considered unambiguous. Under Release 2.1 they are ambiguous because the intersection rule is strictly 
applied: 

void g(int fd, char* cp) { 
(void) read (fd, cp, 3); II ambiguous 

The point here, especially for library writers, is to be careful when overloading system functions. The types 
of the parameters that are intended to be the same should match exactly. 

Restrictions on Overloaded Operators (§ 13.4) 

The Reference Manual places a number of restrictions on the ways in which operators can be overloaded. 
For example, operator= () must be a non-static member function. Release 2.1 enforces these rules more 
strictly than Release 2.0 did. 

struct S { 
static operator=(int); II error 

} ; 

Release 2.1 reports the following error for the above example: 
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line 2: error: S::operator=() cannot be a static member function 

Reference Manual Changes 

Release 2.1 provided a new, revised Reference Manual, which incorporated hundreds of customer comments 
on the draft Reference Manual distributed with Release 2.0. The Release 2.1 Reference Manual clarified the 
wording and intent of the language definition, corrected errors, and removed inconsistencies. In a very few 
cases, the language rules were deliberately changed, in response to feedback from programmers using C++. 
The revised Reference Manual was submitted to the American National Standards Institute (ANSI) and has 
been accepted as the basis for standardizing the C++ language. An annotated version of the new Reference 
Manual, entitled The Annotated C++ Reference Manual, was published in early 1990 by Addison-Wesley. 

This section lists the changes in the Release 2.1 Reference Manual, ordered by section of the Reference 
Manual. To help you determine quickly which changes might impact your code, each change has been 
classified into one of the following categories: 

• extension, which is implemented in Release 2.1 

• restriction, also implemented in Release 2.1 

• clarification, which makes a language rule more explicit and which does not affect the behavior of the 
C++ Language System 

• change, for which no corresponding change has yet been made to the C++ Language System 

Release 2.1 will continue to compile successfully every legal C++ program that compiled under 
Release 2.0. As usual, you will get a warning message if you use a construct that is no longer legal, 
but your program will still compile just as it did under Release 2.0. If your program compiles without 
any anachronism warnings, then it will work the same way when the new rules are completely 
phased in and the old rules are completely phased out. Remember that some anachronism warn-
ings appear only if +w is specified. 

New Keyword try (§2.4, restriction) 

There is a new keyword, t:ry, for exception handling. Although Release 2.1 does not implement exception 
handling, a warning message is issued if an identifier named t:ry is encountered. 

int t:ry; 
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v 
( line 1, warning' try is a future reserved keyword 

~ 
) 

~ Release 3.0 recognizes the full exception handling syntax, but issues a "sorry, not implemented" message. 

y 
One Definition of an Inline Member Function (§3.3, change) 

According to the Release 2.1 Reference Manual, an inline member function must have exactly one definition 
in a program. In other words, an inline member function cannot legally have different definitions in dif­
ferent files. Previously, this restriction was not explicitly stated. 

This rule might be easily enforced in a C++ environment where a library manager keeps track of all 
definitions in a program, but the C++ Language System does not enforce this rule. 

Character Types (§3.6.1, clarification) 

The Release 2.1 Reference Manual states that the types char, unsigned char, and signed char are three 
distinct types. This corrects a misstatement in the previous Reference Manual and conforms with the ANSI C 
standard. 

Because the C++ Language System ignores the keyword signed, Release 2.1 provides two character types: 
char and uns igned char. 

Qualified Name Syntax for Nested Types (§5.1, §9.7, extension) 

The Release 2.1 Reference Manual extends the qualified name syntax to apply to type names as well as class 
members. This new syntax allows a nested type to be named outside the class in which it is defined. 

For example, to refer to the enumeration type E outside the definition of Outer, the syntax OUter: : E 
should be used, as shown below. 

struct OUter { 
enurn E { e }ill nested type 

} i 

Outer::E varli II use of a nested type 

To provide compatibility with Release 2.0, Release 2.1 also allows you to refer to a nested type name 
without qualification, as in the following declaration: 

E var2i 
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Release 2.1 issues a warning message, however, for this use: 

r 
( line 1, warning' use OUter" to access nested enum type E (anachronism) 

~ 

The qualified name syntax is recursive, but Release 2.1 does not implement qualified names with more than 
two identifiers: 

struct 31 { 
struct 32 { 

typedef int Ti 

} i 

} i 

31: :32::T var3i II legal, sorry in 2.1 

For this code, the following message is issued: 

line 7: not implemented: class names do not nest, use typedef x::y y_in_x 

True nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no 
longer supported. 

Class Arguments to f ( ... ) (§5.2.2, extension) 
The Release 2.0 Reference Manual specified that it was illegal to pass an object of a class with a constructor 
to a function with an ellipsis formal parameter. This restriction is lifted in the Release 2.1 Reference Manual 
and the new behavior is implemented in Release 2.1. The following code, which produced an error under 
Release 2.0, compiles without complaint under Release 2.1. The copy constructor is not invoked to pass the 
argument. Instead, a bit-wise copy is done. 
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struct S { 
S(); 
S(const S&); 

} ; 

void f( ... ); 

void g(S s) { 
f (s) ; 

} 

II legal, accepted by 2.1 

Explicit Type Conversions with Empty Initializers (§5.2.3, change) 

The 2.1 Reference Manual allows you to specify an explicit type conversion with an empty initializer, as in 
the following examples: 

int i = int () ; 

struct Empty {}; 
Empty e = Empty(); 

Release 2.1 does not implement this capability and reports an error instead. 

line 1: error: value missing in conversion to int 
line 4: error: cannot make a Empty 

~ Release 3.0 implements this capability. 

y 
Size of a Function (§5.3.2, restriction) 

In C++, as in ANSI C, you are allowed to apply the sizeof operator to a pointer to a function but not to 
the function itself. For example, this code is legal: 

void f (); 
int i = sizeof(&f); 

but this is not: 

int j = sizeof(f); 

Release 2.1 enforces this restriction. 
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Access Protection for operator new ( ) (§5.3.3, restriction) 

Release 2.0 did not check access protection for calls to class-specific operator new ( ). The Release 2.1 
Reference Manual explicitly extends access protection to calls to class-specific operator new ( ) , and Release 
2.1 implements this behavior. For example, the following code compiled without error under Release 2.0, 
but produces an error message under Release 2.1. 

#include <stddef.h> 
class C { 

void* operator new(size_t}; 
void operator delete(void*); 

pUblic: 
CO; 

} ; 

void f () { 
C *cp = new C; II illegal, error in 2.1 

Release 2.1 issues the following diagnostic for this code: 

line 8: error: f() cannot access C::operator new(): private member 

Empty Initializers for operator new () (§5.3.3, clarification) 

The Release 2.1 Reference Manual explicitly allows the initialization expression in an allocation expression to 
be empty, as in the following examples: 

double* dp = new double(); 

struct Complex { 
Complex() ; 
I I ... 

} ; 

Complex* cp = new Complex(); 

For a built-in type, this means that an object with an undefined value is created. For a class type, this 
means that the default constructor is called. If there is more than one default constructor, an error is 
reported because the call is ambiguous. If there is no default constructor, an object with an undefined 
value is created. 

Both Releases 2.0 and 2.1 implement this behavior correctly. 
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Deleting an Array (§5.3.4, extension) 

It used to be necessary to specify the number of elements when deleting an array. For example, you were 
required to specify the expression 10 when deleting the array pointed to by p in the following code: 

struct S { S(); -S(); }; 
void fl () { 

S *p = new S[10]; 
I I ... 
delete [10] p; 

With Release 2.1 this is no longer necessary, and the following code is now accepted: 

void f2 () { 
S *p = new S[10]; 
I I ... 
delete [] p; II no size necessary 

Use of the old syntax is considered an anachronism, and Release 2.1 issues the following diagnostic if the 
+w option is specified to the cc command: 

line 4: warning: v in Idelete[v] I is redundant; use Idelete[] I instead (anachronism) 

This capability frees the programmer from having to keep track of array sizes. It also prevents subtle prob­
lems caused by discrepancies between the number of allocated elements and the number of deleted ele­
ments. 

Release 3.0 issues an unconditional warning if this syntax is detected. 

When an array is created using the placement version of operator new, destruction and deletion of that 
array are the user's responsibility. For example: 
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class T { 
TO; 
-T() ; 

I I ... 
} ; 

T* 
create_T_array_in_buffer(void* buff, int n) 
{ 

return new (buff) T[n]; 

void foo() 

pv = malloc(sizeof(T)*5); 
T* pT = create_T_array_in_buffer(pv, 5); 
delete [] pTi II does not work!!! 

Here are some approaches the user can take to this problem: 

delete [5] pT; 

This (anachronistic) syntax will run the destructor on the objects in the array and free the storage using the 
global operator delete. Possibly this syntax should be resurrected. 

T* ppT = pT + 5; 
while (pT <= --ppT) 

ppT->T: : -T () i 

This loop destroys the objects in the array but does not free the storage, appropriate in case the storage is 
managed by specialized code. 

Type Definitions in Casts (§5.4, clarification) 

The Release 2.1 Reference Manual clearly states that it is illegal to define a type in a cast. For example, the 
following declaration is illegal and is rejected by the C++ Language System: 

enurn E { el = (enurn { z = 10 } ) 3, e2 }; II error in 2.0 and 2.1 
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Declarations in for Initializers (§6.5.3, §6.7, clarification) 

The Release 2.0 Reference Manual stated that a for statement containing a declaration in its for-init-statement 
was not allowed to be the statement after an if, else, switch, while, do, or for. In other words, this 
code was illegal: 

void f(int i) { 
if (i) 

for (int j = i; j; j--) II error 

This restriction was an error not enforced by the Release 2.0 implementation, and the Release 2.1 Reference 
Manual omits it. 

The Release 2.1 Reference Manual, however, does specify a related restriction: "An auto variable constructed 
under a condition is destroyed under that condition and cannot be accessed outside that condition." 

Here is an example: 

int g(int i) 
if (i) 

for (int j = 5; j; j--) 

return j; II error 

In the above code, j cannot be accessed at the point of the return statement because the return statement 
is outside the body of the if statement. According to the Release 2.1 Reference Manual, an error should be 
reported, but Release 2.1 quietly accepts this code. 

~ Release 3.0 correctly reports the error. 

9 
Another example: 
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struct 8 { 
8(int); 
-8 () ; 

operator int(); 
8& operator--(); 

} ; 

int h(int i) 
if (i) 

for (S s = 5; s; s--) 

return s; II error 

The destructor for s is invoked at the end of the if statement. Release 2.1 (correctly) issues the error mes­
sage 

~line 11, error, s undefined ) 
at the return statement. 

Globallnline Functions Are Static (§7.1.2, §7.1.1, §3.3, change) 

The Release 2.0 Reference Manual allowed a non-member inline function to have extemallinkage. The 
Release 2.1 Reference Manual specifies, however, that a name of global scope that is declared inline is local 
to its file. 

Release 2.1 does not conform to these rules. For example, the following code is accepted by Releases 2.0 
and 2.1: f () is treated as a static function, and a static definition of f () is laid down. 

extern int f(int); 
inline int f(int i) { return ii } 
int i = f(O); 
int (*pf) (int) = &f; 

II error, not reported 

Instead, the C++ Language System should report an error that f () cannot be redeclared as inl ine after 
being declared extern. 

Use of typedef Name as Synonym for a Class Name (§7.1.3, clarification) 

The Release 2.0 Reference Manual was not explicit about where a typedef name could be used in place of a 
class name. The Release 2.1 Reference Manual clarifies this: ''The synonym may not be used after a class, 
struct, or union prefix and not in the names for constructors and destructors within the class declaration 
itself." These restrictions have not been implemented by Release 2.1. 
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struct S { 
SO; 
-S () ; 

} ; 

typedef struct S T; 
S a = T(); II legal, accepted by 2.0 and 2.1 
struct T *p; II illegal, but accepted by 2.0 and 2.1 

class c; 
typedef class C U; 
struct U {}; II illegal, but accepted by 2.0 and 2.1 

Because typedef names cannot be used in the names of constructors, both Release 2.0 and 2.1 treat the use 
of a typedef name in a member function declaration as introducing an ordinary member function of that 
name, not a constructor. Since this is likely to be an error, the C++ Language System should, but does not, 
issue a warning. However, both Release 2.0 and 2.1 correctly reject the use of a typedef name in a des­
tructor: 

typedef struct X Y; 
struct X { 

X(); 
Y(int); 
-yo; 

} ; 

II constructor 
II illegal, accepted by 2.0 and 2.1 
II illegal, detected by 2.0 and 2.1 

Scope of a Nested Enumeration (§7.2, §9.7, extension) 

In conjunction with the introduction of nested types, the name of an enumeration type declared within a 
class declaration is local to the class. This marks a change from the Release 2.0 semantics. As a result of 
this change, the scope of an enumerator declared within a class is the same as the scope of its enumeration 
type. 

struct S { 

} ; 

enum E { e1, e2 }; 
I I ... 

S::E var = S::e1; II 'E' and 'e1' have the same scope 

canst Functions (§8.2.5, restriction) 

The Release 2.1 Reference Manual restricts the use of the const and volatile qualifiers to non-static 
member functions. Release 2.1 implements this restriction. Release 2.0 accepted the declarations of g () 
and x () below, whereas Release 2.1 correctly rejects them: 
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class C ( 
int f () const; II legal 
static int g() const; II illegal, error in 2.1 

} ; 

void x () const; II illegal, error in 2.1 

Default Arguments Illegal for Overloaded Operators (§8.2.6, §13.4, restriction) 

The Release 2.1 Reference Manual explicitly states that default arguments are illegal for user-defined opera­
tors. Release 2.1 implements this rule. The code below was accepted by Release 2.0 but is rejected by 
Release 2.1. 

struct S ( 

} ; 

friend int operator+(S, int = 0); 
I I ... 

II illegal, error in 2.1 

Scope of a Class Member's Initializer (§8.4, clarification) 

The Release 2.1 Reference Manual states explicitly that an initializer for a static member is in the scope of the 
member's class. This rule was not explicitly given in the previous Reference Manual. 

Release 2.1 does not apply this rule consistently. For example, in 

const int a = 5; 

struct X { 

} ; 

static int ai 

static int bi 

int X::a = 1; 
int X::b = a; 

the correct behavior is implemented: X: : b is initialized with X: : a. 

However, default arguments for member functions are not resolved within the scope of the class. In the 
following code, 
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struct Y { 

} ; 

static int y; 
static int f(int); 

int Y::f(int i = y) { return i; } 
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Release 2.1 incorrectly determines that the default argument for Y: : f () is global y, not Y: :y. 

~ Release 3.0 correctly resolves the argument. 

~ 
Reference Initializers (§8.4.3, restriction) 

The Release 2.0 Reference Manual allowed a reference to be initialized with a temporary, as in the following 
declaration: 

int& r = 5; 

However, the Release 2.1 Reference Manual has tightened the rules for reference initializations so that only 
const references may legally be initialized with non-Ivalues. This means that, instead of the previous 
declaration, you must use the following: 

const int& cr = 5; 

The Release 2.0 C++ Language System already treated temporary initializers for non-const reference ini­
tializations at global scope as errors, although it allowed them at local scope. To provide a smooth transi­
tion to the more restrictive rules, Release 2.1 issues an anachronism warning, under control of the +w 

option, for non-const reference initializations that were accepted by Release 2.0 but are now illegal. 

Here are some examples: 
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int& r1 = 5; II illegal, error in 2.0 and 2.1 

struct A ( A(int); -A(); }; 
A& a1 = 5; II illegal, sorry in 2.0, error in 2.1 
const A& a2 = 5; II legal, sorry in 2.0, bad code in 2.1 

int& f1 () ; 
int& r2 = f1 () ; 

const int& r3 

int f2 (int&) ; 
int j = f2 (5) ; 

void x() ( 

II ok, 'f()' returns an lvalue 

5; II ok, 'r3' is 'const int&' 

II illegal, error in 2.0 and 2.1 

int& r1 = 0; II illegal, 2.1 warns under +w 
A& al = 5; II illegal, 2.1 warns under +w 
const A& a2 = 5; II legal, accepted by 2.0 and 2.1 
int j = f2(5); II illegal, 2.0 and 2.1 warn under +w 

struct 81 {}; 
struct 82 ( 

operator 81(); 
} ; 

void f3(81&); 
void y(82 s2) 

f3 (s2) ; II illegal, 2.0 and 2.1 warn under +w 

Release 3.0 issues an unconditional warning, or an error if the +p option is in effect. 

The anachronism warnings tum into errors if the +p option is specified to the cc command. 

Reuse of a Class Name by its Members (§9.2, clarification) 

The Release 2.1 Reference Manual limits the ways in which a class name can be reused by members of the 
class. The rule is that a static data member, enumerator, member of an anonymous union, or nested type 
may not have the same name as its class. 
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Release 2.1 does not enforce these restrictions completely. An error is reported if an enumerator or nested 
type has the same name as its enclosing class, but a static data member or member of an anonymous union 
are not caught. 

struct 81 { 
static int 81; II illegal, no error in 2.0 or 2.1 

} ; 

struct 82 { 
union { int i; float 82; }; II illegal, no error in 2.0 or 2.1 

} ; 

Static Data Members of Local Classes (§9.4, change) 

The Release 2.1 Reference Manual states that static data members are not allowed for local classes. Previ­
ously, a local class could have a static data member only if no explicit initialization was required. 

Release 2.1 does not enforce the new restriction properly. If a static data member of a local class is 
declared but never used, a warning is reported but the program links successfully. 

int rnain() { 
struct 8 { 

static int i; 
} ; 

II 
return 0; 

~ 

( line 2, warning, static member 8"i in local class 8 (anachronism) 

~ 

~ Release 3.0 enforces this restriction, and correctly reports an error. 

y 
If the static data member is used, the program usually cannot be linked. 
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int main() { 
struct S { 

static int i; 
} ; 

S::i = 5; 
I I ... 
return 0; 

When the above code is compiled and linked, the following messages are reported on UNIX System V. 
They indicate that the static member s: : i was declared but never defined: 

CC x.c: 
line 2: warning: static member S::s in local class S 
cc -Wl,-L/c++/cfront/cycle16 x.c -lC 
illldefined first referenced 

syrnbo 1 in file 
S __ main __ Fv __ Ll::s /usr/tmp/CC.28949/x.o 
ld fatal: Symbol referencing errors. No output written to a.out 

No Virtual Functions in Unions (§9.5, clarification) 

Because a union cannot be used as a base class, it makes no sense for member functions of unions to be 
declared virtual. The Release 2.1 Reference Manual states this restriction explicitly, and Release 2.1 imple­
ments it. 

union U 

} ; 

int i; 
double d; 
virtual int f(); II error 

Release 2.1 reports the following error for this code: 

line 3: error: f(): cannot declare virtual function within illlion 
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Introduction of True Nested Types (§9.7, extension) 

The Release 2.1 Reference Manual introduces true nested types. In previous versions of the C++ language, 
as well as in C, nested classes are treated as a lexical convenience; they are ''hoisted'' to the scope of the 
enclosing class. With Release 2.1, however, all names declared within a class definition are local to the class 
and are not hoisted. The new rules provide greater consistency, improved modularity, and more intuitive 
behavior. In addition, they remove some of the anomalies that previously occurred with nested local 
classes. 

To avoid breaking code that worked under Release 2.0, Release 2.1 implements a transition model for 
nested types, which is designed to preserve the behavior of existing programs while allowing a smooth 
transition to the new semantics. The old Release 2.0 behavior is now considered anachronistic. 

~ True nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no 
~ ~ngersupported. 

Briefly, the transition model consists of three rules: 

• Programs that are legal under the old rules and mean something else under the new rules (legal or 
illegal) continue to follow the old rules, and a warning is issued. For example, the use of the nested 
type E below is illegal under the new rules, but because it was legal under Release 2.0, Release 2.1 
issues a warning rather than an error. 

class X { 
enum E { } i 

} i 

E ei II legal in 2.0, warning in 2.1 

Release 2.1 issues the following warning for the above declaration of e: 

warning: use X:: to access nested enum type E (anachronism) 

If the +p option (which disallows anachronistic constructs) to the cc command is specified, the 
anachronism warning turns into an error. 

Here is an example of code that is legal under both old and new rules, but means different things: 

extern int ii 
struct S { 

static int ii 
struct Embedded 

int f() { return ii 
} i 

} i 

Under Release 2.0, Embedded: : f () returned global: : i, whereas under the new nested types rules, it 
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should return S: : i. In this case Release 2.1 issues a warning 

line 6: warning: i , accessed within nested class Embedded, is visible both globally 
and within enclosing class S -- using ::i (anachronism) 

and preserves the old behavior. 

The +p option has no effect on this example; the warning does not tum into an error. 

• Programs that are legal and mean the same thing under both sets of rules behave the same. 

• Programs that are legal under the new rules and illegal under the old rules follow the new rules. For 
example, the new qualified name syntax was illegal under Release 2.0, but is legal under Release 2.1. 

X::E xei 1/ syntax error in 2.0, legal in 2.1 

There is one case that causes difficulty for the transition model. Consider the following program, which is 
illegal under the old rules because the class Nested is defined twice: 

struct S { 
class Nested {}; 

} i 

void f (Nested) ; 

struct T { 
class Nested {}; II old rules in effect; illegal in 2.0 and 2.1 

} i 

This program fails under the transition model for a subtle reason. When the compiler sees the declaration 
of f ( ) , it does not know whether Nested should be treated under the old or the new rules. It has to know 
so that it can decide how to encode the function name in the generated C code. For compatibility, it must 
assume the old rules. Thus when it sees the second definition of Nested, it reports an error. 

To allow this program to compile, you must do something early on to force the program to be considered 
unquestionably illegal under the old rules. The easiest way to do this is to define a global class with the 
same name as the nested class before the nested class definition. In the example below, Inner is the nested 
type that is defined within two global classes and thus requires a dummy global definition: 
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struct Inner {}; II dummy class; tells the compiler 
II to use the new nested types semantics 

class C { 
class Inner { 1* ... *1 }; I I legal in 2.1, error in 2.0 

} ; 

void g (C: : Inner) {} II legal in 2.1, error in 2.0 

class D { 
class Inner { 1* ... *1 };II legal in 2.1, error in 2.0 

} ; 

void g(D: : Inner) {} II legal in 2.1, error in 2.0 

The above code compiles and links properly. 

To preserve link compatibility with libraries compiled under Release 2.0, you should 1Wt force your pro­
grams to use the new rules, as is done with Inner in the example above. If the new rules are applied, then 
function names are encoded differently, and new code will not link with old libraries. 

Nested Local Types (§9.7, §9.8, extension) 

The transition model for nested types guarantees that code that is legal under both the old and new rules 
but that changes meaning under the new rules preserves its former meaning. In this situation, Release 2.1 
issues an anachronism warning. 

Full nested types are implemented in Release 3.0, and the transition model supplied in Release 2.1 is no 
longer supported. 

Here is an example that involves nested local types: 
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struct Nested { int ii }i 

typedef int Ti 
enum E { e } i 

void f () { 
struct Local { 

} i 

struct Nested { int i, ji }i 

typedef double Ti 
enum E { e }i 

Nested n1i 
T t1i 
E eli 

In this example, n1 had type Local: :Nested under Release 2.0 because the declaration of Local: :Nested 
was exported into the scope of f (). Similarly, t1 had type double. Release 2.0 incorrectly reported an 
error for the declaration of E within Local, so e1 was also reported as an illegal declaration. 

Release 2.1 preserves this behavior (except for the bogus error) and issues the following messages: 

line 11: warning: Nested occurs at global and nested local class scope; using class type 
Local: :Nested 

line 12: warning: T occurs at global and nested local class scope; using typedef Local::T 
line 13: warning: E occurs at global and nested local class scope; using enum type Local::E 

Under the +p option to the cc command, the behavior does not change: Local: : Nested, Local: : T, and 
Local: : E are still used. You are encouraged, however, to change your declarations to 

Local::Nested n1i 
Local::T t1i 
Local::E eli 

to ensure that your code continues to have the same meaning after nested types are fully implemented. 

Protected Derivation (§10, change) 

The Release 2.0 Reference Manual explicitly disallowed the use of protected as an access specifier for a base 
class. The Release 2.1 Reference Manual lifts this restriction. However, Release 2.1 does not implement the 
new behavior. 

struct B {}i 

struct D : protected B {}ill legal, but rejected by 2.1 
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~ Release 3.0 correctly implements the new behavior. 

y 
Extension of Dominance Rule to Objects and Enumerators (§10.1.1, change) 

The Release 2.0 Reference Manual restricted the concept of dominance to apply only to functions. That is, 
dominance was used only when disambiguating function names in an inheritance hierarchy involving vir­
tual base classes. With the Release 2.1 Reference Manual, the dominance concept is extended to data 
members and enumerators. However, Release 2.1 does not implement the new semantics. In the following 
example, Release 2.1 incorrectly considers the use of x to be ambiguous, even though B: : X dominates 
V::x. 

struct V 
struct B 
struct C 

struct D 

void D: :g() 

void f()i int Xi }i 
public virtual V { void f()i int Xi }i 
public virtual V {}i 

public B, public C ( void g()i }i 

X++i II legal, but rejected by 2.0 and 2.1 
f()i II legal, accepted by both 2.0 and 2.1 

~ The extension of dominance to objects is implemented in Release 3.0. 

y 
Inheritance of Pure Virtual Functions (§10.3, extension) 

The Release 2.0 Reference Manual required that a derived class define or declare pure every pure virtual 
function in its immediate base. This restriction is lifted in the Release 2.1 Reference Manual; pure virtual 
functions are now inherited as pure virtual functions. The new behavior is implemented in Release 2.l. 

For example, the following code is legal under Release 2.1, but produced an error under Release 2.0: 

struct A ( II abstract class 
virtual void f() = Oi 

} i 

struct A2 : public A (}i 

Although f () is not redeclared as pure virtual in A2, Release 2.1 (but not Release 2.0) considers A2 to be an 
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abstract class because A: : f () is inherited as pure virtual. 

Access Specifiers in Unions (§11, change) 

The Release 2.1 Reference Manual allows access specifiers in unions. Formerly, these were forbidden. 

union U { 
pUblic: 

U(); 
int i; 

private: 
double d; 

protected: 
float f; 

} ; 

U U; 

float f = u.f; 

II legal 

II legal 

II legal 

II protection violation 

Release 2.1 accepts the definition of U shown above but does not report the protection violation. 

~ Release 3.0 flags the protection violation. 

y 
Access to Static Members of Private Base Classes (§11.2, change) 

The Release 2.1 Reference Manual states that a private derivation of a base class does not restrict access to 
the static members of the base class. Without this rule, a member function would have less access to a base 
class's static members than a global function. 

Release 2.1 does not implement this rule consistently. For access to a static member of an immediate base 
class, some illegal accesses are not reported: 
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struct B { 
static void f () ; 

} ; 

struct D : private B {} 
struct E : private D { 

} ; 

void g() { 
f(); 
this->f () ; 
B::f(); 

II illegal, not reported by 2.0 or 2.1 
II illegal, not reported by 2.0 or 2.1 
II legal, rejected by 2.0 and 2.1 
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In the above code, the calls f () and this->f () are illegal because they refer to f () via the this pointer, 
and thus the access protection for private members is applied. The call B: : f () is legal because it refers 
to f () directly, just as a global function could refer to B: : f () . 

~ Release 3.0 implements the rule consistently. 

y 
If multi-level derivation is involved, both Releases 2.0 and 2.1 are overly conservative; they report an error 
for X: : f () even though it is legal. 

struct X 
static void f()i 

} ; 

struct Y : private X {}; 
struct Z : public Y { 

} ; 

void g() { 
f(); 
this->f () ; 
X::f(); 

II illegal, error in 2.0 and 2.1 
II illegal, error in 2.0 and 2.1 
II legal, error in 2.0 and 2.1 

Access Declarations (§11.3, clarification) 

The Release 2.1 Reference Manual explicitly imposes the following restriction on access declarations: an 
access declaration may not adjust the access to a base class member if the derived class also defines a 
member of the same name. 

This rule is implemented by both Releases 2.0 and 2.1: 

struct B { 
int i; 

} ; 

struct D : private B { 
B: :i; 

int i; II error 
} ; 
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Linkage of Friend Functions (§11.4, restriction) 

The Release 2.1 Reference Manual specifies that the default linkage for friend functions is extern. For 
example, 

static f()i 

struct S { 

} i 

friend f()i 
friend g()i 

static gO; 

II ok, internal linkage 
II 'g()' has external linkage 

II illegal, error in 2.0 and 2.1 

Release 2.1 warns about static friend functions such as f () in the example above because, although legal, 
these could in principle be used to subvert the protection system. Release 2.1 issues the following messages 
for the example above: 

line 3: warning: static f() declared friend to class S 
line 8: error: g() declared as both static and extern 

Friendship Is Not Inherited (§11.4, clarification) 

The Release 2.0 Reference Manual incorrectly stated that friendship is inherited. The Release 2.1 Reference 
Manual corrects this mistake. In Release 2.1, as in previous releases of the C++ Language System, friend­
ship is not inherited. 

Friendship Applies to Non-Functions (§11.4, clarification) 

The Release 2.1 Reference Manual makes it explicit that class friendship extends to all members of the class 
- not just to functions. Release 2.0 and Release 2.1 both implement this behavior. For example, 
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class X { 

} i 

enurn { e = 100 }i 

friend class Yi 

class Y 
in t arr [X: : e] i 

} i 

class Z { 
int arr [X: : e] i 

} i 

II legal, accepted by 2.0 and 2.1 

II error, 'X::e' is private 
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Scope of Friend Functions (§11.4, §9.7, change) 

The Release 2.1 Reference Manual states that a friend function defined within a class declaration is in the 
lexical scope of that class, just like a member function. 

In general, Release 2.1 does not implement this rule. Consider the following example: 

extern int Si 

extern int ei 

struct S { 

} i 

static int Si 

enum { e = 5 }; 
friend f() { return ei} II which lei? 
friend void g(int = s) { }; II which lSi? 

According to the Release 2.1 Reference Manual, f () returns s: : e and the default argument for g () is s: : s. 
Instead, both Release 2.0 and 2.1 incorrectly resolve these names to : : e and: : s respectively. 

~ Release 3.0 resolves these names correctly. 

y 
If the declaration of a friend function within a class declaration uses a nested type, however, the nested 
type name is resolved according to the new semantics. 

typedef void* T; 
struct X { 

} i 

typedef int T; 
friend T h(T t)i 

In the above example, Release 2.1 treats h() as having type int (int), not void* (void*). 

Default Constructors (§12.1, change) 

The Release 2.0 Reference Manual explicitly stated that a default constructor is a constructor with no formal 
parameters, thereby excluding constructors that can be called with no arguments by virtue of having 
default arguments. The Release 2.1 Reference Manual lifts this restriction; the constructor in the example 
below is now considered a default constructor. 

struct S { 
S(int = 0); 

} i 

Release 2.1 does not conform to this rule. Instead, it adheres to the old definition of default constructor. 
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Here are some examples: 

8 sl[2]; 
8 s2 [2] = { 1 }; 

struct X { 
8 s[2]; 

} ; 

void f 0 { 

II legal, sorry in 2.0, error in 2.1 
II legal, sorry in 2.0, sorry in 2.1 

II legal, sorry in 2.0, error in 2.1 

8* P = new 8[2]; II legal, error in 2.0 and 2.1 

~ Release 3.0 correctly conforms to this rule. 

y 
Constructor and Destructor Declarations (§ 12.1, § 12.4, §9.3.1, clarification) 

The Release 2.1 Reference Manual specifies that constructors and destructors cannot be declared const, 
volatile, or static. Release 2.1 correctly reports an error for constructors and destructors that are 
declared static, but it incorrectly allows constructors and destructors to be declared const. Release 2.1 
does not implement volatile member functions at all; these are rejected with a Unot implemented" mes­
sage. 

4-64 

struct 8 { 

} ; 

static 8(); 
static -8 () ; 

struct T { 

} ; 

T() const; 
-TO const; 
T(char*) volatile; 

II illegal, error in 2.0 and 2.1 
II illegal, error in 2.0 and 2.1 

II illegal, but accepted by 2.1 
II illegal, but accepted by 2.1 
II illegal, sorry in 2.1 

Release 3.0 correctly reports these errors. 
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Upgrading from Release 2.0 to Release 2.1 

Destructors for Built-In Types (§12.4, change) 

The Release 2.1 Reference Manual allows explicit destructor calls for any built-in type, as in the example 
below. However, Release 2.1 does not implement this syntax. 

void f(int* p) ( 
p->int: : -int () ; 

} ; 

II legal, but error in 2.1 

Release 3.0 correctly implements this syntax. 

Delete Operator (§12.5, change) 

The Release 2.1 Reference Manual tightens the rules for the delete operator. Only one operator delete () 
may be declared per class, and the global operator delete () may not be overloaded. Release 2.1 does 
not enforce these restrictions. 

For example, the second declaration of the delete operator in each scope below is illegal, but the code is 
accepted by both Release 2.0 and 2.1. 

typedef unsigned int size_t; 

void operator delete(void*); 
void operator delete(const void*); 

struct S ( 

} ; 

void* operator new(size_t); 
void* operator new(size_t, void*); 
void operator delete(void*); 
void operator delete(void*, size_t); 

Release 3.0 correctly reports these errors. 

Compatibility 

II error, not reported 

II error, not reported 
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Generating the Default Assignment Operator (§12.8, clarification) 

The Release 2.1 Reference Manual states the condition under which a default assignment operator is gen­
erated differently from the old Reference Manual. Formerly, the condition was the following: 

IIIf a class X has any X: : operator= () defined, even one that takes an argument of a type unrelated 
to x, X: :operator= (const X&) will not be generated." 

The Release 2.1 Reference Manual says 

"If a class X has any X: : operator= () that takes an argument of class X, the default assignment 
will not be generated." 

The new description reflects the behavior of Release 2.0 and 2.1. 

Argument Matching Rules (§ 13.2, clarification) 

Several details about the function matching rules have changed. 

• In the Release 2.0 Reference Manual there was a rule that a call needing only standard conversions is 
preferred over one requiring user-defined conversions. This rule has been eliminated in the Release 
2.1 Reference Manual and the new semantics have been implemented in Release 2.1. For example, 

struct Complex { Complex(double); }; 
void f2(int, Complex); 
void f2(double, double); 

void y2 () { 
f2(3, 4); / / ambiguous 

For this code, Release 2.1 correctly reports an ambiguity. 

• The second function matching change involves the treabnent of arguments of type T that require tem­
poraries. The Release 2.0 Reference Manual specified that a match with conversions requiring tem­
poraries was a legal match. So, for example, the call to f3 (char&) in the following code was legal 
and was accepted by Release 2.0: 
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void f3(char&); 
void x3 () { 

f3 ( 'c' ) ; 

Furthermore, since standard conversions were preferred to conversions requiring temporaries, the 
Reference Manual specified that the call to f4 () below would be resolved to f4 (int). Instead, 
Release 2.0 resolved it to f4 (char&) : 
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void f4(int)i 
void f4(char&)i 
void x4 () { 

f4('c'); 

Upgrading from Release 2.0 to Release 2.1 

Under the new rules, the calls to f3 () and f4 () are in error because a non-const reference cannot 
be initialized with a non-Ivalue (see §8.4.3). However, Release 2.1 does not report these errors and 
instead preserves the Release 2.0 behavior by resolving the calls to f3 (char&) and f4 (char&) 
respectively. 

~ Release 3.0 correctly reports errors in this situation. 

y 
Prefix and Postfix Increment and Decrement Operators (§13.4.7, change) 

The Release 2.0 Reference Manual provided no way to distinguish user-defined prefix increment and decre­
ment operators from postfix increment and decrement operators. The Release 2.1 Reference Manual specifies 
a separate syntax for defining prefix and postfix increment and decrement operators. The prefix increment 
and decrement operators take one argument (the implicit this argument for a member function), whereas 
the postfix version takes two arguments (including the implicit this argument). For example, 

struct s { 
operator++(); 

operator++(int)i 
} i 

II 2.0: prefix or postfix 
II 2.1: prefix, but not implemented as such 
II 2.1: postfix ++, not implemented 

However, Release 2.1 does not recognize the new syntax. Use of the postfix form results in the following 
error message: 

line 4: error: s:: operator ++() takes no argument 

~ Release 3.0 correctly recognizes this syntax. 

y 
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Upgrading from Release 2.0 to Release 2.1 

ANSI C Preprocessing (§16, change) 

The description of preprocessing in the Release 2.1 Reference Manual reflects the rules of ANSI C rather than 
of K&R C. Because the C++ Language System does trot include a preprocessor, the actual preprocessing 
behavior of Release 2.1 depends on the preprocessor resident on the host machine. 

New Warning Messages 

"Not Used" Warning Messages Reported More Consistently 

Release 2.1 issues warning messages more consistently if an object is declared but not used. 

For example, Release 2.0 did not issue a Unot used" message for the following code: 

int f () { 
in t array [ 5] ; 
return 0; 

Release 2.1 issues a warning that array is not used. 

Warning for Pure Virtual Destructors (§10.3, §12.4) 

Release 2.1 issues a new warning if a pure virtual destructor is declared but not defined. For example, the 
code 

struct B { 
II ... 
virtual -B() 0; 

} ; 

elicits the warning 

line 1: warning: please provide an out-of-line definition: B::~B() {}; which is needed 
by derived classes 

to remind you that a definition of B: : -B () is required. 

To understand why a pure virtual destructor of an abstract class must be defined, consider what happens 
when a class D is derived from the class B defined above: 
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struct D : B { 

} ; 

I I ... 
virtual -D 0 ; 

D::-DO { 1* ... */ } 
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Upgrading from Release 2.0 to Release 2.1 

The Reference Manual says that base class destructors are implicitly executed after the destructors for their 
derived classes (§12.4). This means that the compiler will generate code to call B: : -B () at the end of 
D: : -D ( ). Therefore B: : -B () must have a definition; otherwise, a link-time error will occur because the 
definition is missing. 

Why doesn't the compiler implicitly generate an empty definition for B: : -B ()? The reason is that it is 
legal for the user to define a B: : -B () that is not empty! If the compiler generated an empty B: : -B () in 
one compilation and the user defined a non-empty B: : -B () in another compilation, then there would be 
two different definitions of the destructor. Although this inconsistency would probably be detectable at 
link time, it is preferable to avoid the inconsistency altogether by requiring the user to define the destructor 
explicitly. 

Anachronism Warning Messages 
Release 2.1 issues warning messages for all uses of anachronisms. The section "Future Compatibility 
Issues" in this chapter describes these messages in more detail. 

Library Changes 

iostrearn: : get () and iostrearn: : put () Now Inline 
The Release 2.0 version of the iostream library declared iostream: :get () and iostream: : put () to be 
inline, but both functions were too complex to be successfully inlined. The Release 2.1 implementations 
of these functions have been changed so that most calls can be generated inline. For example, the call to 
is .get () is inlined by Release 2.1: 

#include <iostream.h> 
void f () { 

istream is(O); 
char c; 
is.get(c); 

Task Library Ported to Amdahl UTS Computers 
For Release 2.1 the task library has been ported to a new platform, Amdahl UTS. To build the task library 
for the Amdahl UTS computer, either set MACH=uts in the top level rnakefile or specify it on the command 
line when building the task library. For example, 

~make MACH=uts libtask.a ) 
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patch 

The file BSDpatch.c has been modified so that patch works under BSD Release 4.3 running on DEC VAX 
computers. 
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Future Compatibility Issues 

Anachronisms 

The C++ Language System provides several extensions to the C++ language to enable users to make a gra­
dual transition from previous versions of the C++ language to the current definition, which is specified in 
the Reference Manual. In general, these extensions allow constructs to be used that are no longer legal under 
the current definition, but were previously legal. The +p option disables most of these extensions so that 
only the IIpure" language is accepted. 

The following set of extensions were provided in Release 2.0 and 2.1, and most have been phased out in 
Release 3.0. Most of these extensions are listed and explained in §B.3 of the Reference Manual. The complete 
list appears below, with additional references to sections of the Reference Manual and example programs 
that demonstrate each anachronism. 

Release 2.1 reports uses of these extensions, except the last two, by issuing a warning message, as shown. 
Each of these messages has the string (anachronism) at the end. All of the anachronism warnings are 
issued unconditionally, except as noted. 

In most cases, anachronisms that were warned about by default in Release 2.1 are considered errors by 
Release 3.0. Anachronisms that produced warnings only when the +w option in effect in Release 2.1 are 
now warnings by default and will be disallowed in the next release . 

• use of the overload keyword (§2.4) 

overload f; 

Release 2.1 - warning under the +w option 

line 1: warning: 'overload' used (anachronism) 

Release 3.0 - unconditional warning, or error if the +p option is in effect 

• use of . instead of :: for scoping (§S.l) 

struct S { 
int f () ; 

} ; 

int S.f() { return 0; } 

Release 2.1 - warning 
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Future Compatibility Issues 

v 
( line 4, warning, ' , used for qualification; please use 

~ 

Release 3.0 - error 

• use of the delete [n] syntax (§5.3.4) 

struct S { S()i -S()i }i 
void f () { 

8* P = new 8[10]i 

II ... 
delete [10] Pi 

Release 2.1 - warning under the +w option 

'::' (anachronism) 

line 5: warning: v in 'delete [v] , is redundant; use 'delete[], instead (anachronism) 

Release 3.0 - warning under the +p option 

• cast of a bound pointer (§5.4, §B.3.4) 

struct S { 

int f () i 

} Si 

typedef int (*PF) ()i 
PF pf = (PF) &S.fi 

Release 2.1 - warning 

line 5: warning: address of bound function (try using "8 ::*" for 
pointer type and "&8 ::f" for address) (anachronism) 

Release 3.0 - error 

• assignment of a value of integral type to an enumeration type (§7.2) 
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enum E { el, e2 }i 

void f(int i) { 
E local = ii 
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Release 2.1 - warning 

r 
( line 3: warning: int assigned to enum E (anachronism) 

~ 

Release 3.0 - error 

• non-const reference initializer not an lvalue (§8.4.3) 

void f () { 
int& r = 5; 

Release 2.1 - warning under the +w option 

I( 

( line 2, warning, initializer for non-canst reference not an lvalue (anachronism) 

~ 

Release 3.0 - unconditional warning, or error if the +p option is in effect 

• non-const member function called for a const object (§9.3.1) 

struct S 
int f () ; 

) ; 

extern const S s; 
int i = s. f () ; 

Release 2.1 - warning 

line 4: warning: non-canst member function S::f() called for canst object (anachronism) 

Release 3.0 - error 

• static data member declared within a local class (§9.4) 

int main ( ) { 

struct S { 

static int i; 
} ; 

II 
return 0; 

Release 2.1 - warning 
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r I line 3: warning: static member s::i in local class S (anachronism) 

~ 

Release 3.0 - error 

• use of an unqualified nested type name outside its enclosing class definition (§9.7) 

struct Enclosing { 
enum Nested { el, e2 }; 

} ; 

Nested var; 

Release 2.1 - warning 

r I line 5: warning: use Enclosing:: to access nested enum type Nested (anachronism) 

~ 

Release 3.0 - error 

• use of an identifier that is declared at global and local scope within a nested type definition (§9.7) 

int i; 
struct S ( 

static int i; 
struct Nested 

static int f() { return i; 
} ; 

} ; 

Release 2.1 - warning 

Release 3.0 - accepted under complete nested semantics 

• use of a type name that is declared at global scope and within a local nested class (§9.7) 
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typedef int Ti 

void fO { 
struct Nested { 

typedef char Ti 

} i 

T vari 

Release 2.1 - warning 

line 7: warning: T occurs at outer and nested local class scope; 
using typedef Nested::T (anachronism) 

Release 3.0 - accepted under complete nested semantics 

• first parameter of operator new() not of type size_t (§12.5) 

• second parameter of operator delete () not of type size_t (§12.5) 

struct S 
void* operator new(long)i 
void operator delete(void*, long)i 

} i 

Release 2.1 - warning 

line 2: warning: operator new() first argument should be size_t (anachronism) 
line 3: warning: operator delete()'s 2nd argument should be a size_t (anachronism) 

Release 3.0 - error 

• operator= () declared as a global function (§13.4.3) 

struct S { /* ... */ }i 

S& operator=(S&, S&)i 

Release 2.1- warning 
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v 
( line 2, warning' non-member operator =(1 (anachronism) 

~ 

Release 3.0 - error 

• use of the "Classic C" style function definition syntax (§B.3.1) 

int f(i) 
int ii 

return ii 

Release 2.1 - warning 

line 1: warning: old style definition of f() (anachronism) 

Release 3.0 - remains a warning to maintain "Classic C" compatibility 

• use of an old-style base class initializer in a constructor definition (§B.3.2) 

class B ( 
int bi 

public: 
B(int i) (b = ii 

) i 

struct D : public B ( 
D(int i) (i) () 

) ; 

Release 2.1 - warning 

line 7: warning: name of base class B missing from base class initializer (anachronism) 

Release 3.0 - remains a warning to allow portability between Release 2.0 and Release 3.0. 

• assignment to this (§B.3.3) 
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extern void* myalloc(unsigned int)i 
struct X { X()i }i 

X::X() { 

if (this == 0) 

else 

this = (X*) myalloc(sizeof(X))i 
II 

this thisi 
I I ... 

Release 2.1 - warning under the +w option 

line 3: warning: assignment to this (anachronism) 

Release 3.0 - unconditional warning, or error if the +p option is in effect 

• use of the c-plusplus preprocessor macro (§16.1) 

• static data member declared but never defined (§9.4) 

Future Compatibility Issues 

~ This anachronism is enforced for template classes, and will be disallowed in the next release. 

9 
The last two extensions - use of the c-plusplus preprocessor macro and implicit definition of a static 
data member - are difficult for the compiler by itself to detect, and do not produce warning messages. 
Uses of c-plusplus are generally known only to the preprocessor, and implicit definitions of static data 
members can only be detected at link time, or after linking has taken place. You can look for uses of 
c-plusplus by scanning your source code for that pattern. On some systems you can also find implicit 
definitions of static data members by examining the executable file produced by the linker for instances of 
uninitiaIized data with class-scope names. 
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The Old Stream Library 

The old stream library, which is available as lib ostream.a in Release 2.1, is not provided with this 
release of the C++ Language System. 
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Known Problems 

The following sections describe specific problem areas that remain in the C++ Language System. Where 
appropriate, the related sections of the Reference Manual are noted. 

Multiple Definitions (§3.3) 

• In K&R C and in the ANSI C standard, implementations are free to decide how to treat multiple, 
uninitialized definitions of objects with external linkage at global scope. 

In C++ exactly one definition, initialized or uninitialized, may occur in a single program. In order to 
enforce this rule, the C++ Language System initializes most global variables to o. However, in order 
to reduce object file space, no initialization is done for global arrays. Similarly, since most K&R C 
compilers reject such code, no initialization is done for unions or for classes or arrays of classes 
whose first element is a union. 

Users should be aware that invalid multiple definitions for these cases may go undetected. 

• For compatibility with previous releases of the C++ Language System, static data members of non­
template classes are implicitly defined. This means that multiple definitions of the same static 
member in multiple files will result in multiple calls to the constructor. 

For example, suppose that the header file a. h defines a class with a static member: 

struct A { A()i }i 

struct B { static A abi }i 

and file a . c contains the definition of the static data member: 

#include "a.h" 
A B: :abi 

as does file main. c: 

#include "a.h" 
A B: :ab; 
main ( ) { / * ... * / } 

When these files are compiled and linked together, the duplicate definitions of B: : ab will not be 
reported and the constructor for B: : ab will be called twice. 

Global Inline Functions Are Static (§7.1.2, §7.1.1, §3.3) 

The Release 2.0 Reference Manual allowed a non-member inline function to have external linkage. The 
Release 3.0 Reference Manual specifies, however, that a name of global scope that is declared inline is local 
to its file. 
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Known Problems 

Release 2.1 and Release 3.0 do not confonn to these rules. For example, the following code is accepted by 
Releases 2.0, 2.1 and 3.0: f () is treated as a static function, and a static definition of f () is laid down. 

extern int f(int); 
inline int f(int i) { return i; } 
int i = f(O); 
int (*pf) (int) = &f; 

II error, not reported 

Instead, the C++ Language System should report an error that f () cannot be redeclared as inline after 
being declared extern. 

Reuse of a Class Name by its Members (§9.2) 

The Release 3.0 Reference Manual limits the ways in which a class name can be reused by members of the 
class. The rule is that a static data member, enumerator, member of an anonymous union, or nested type 
may not have the same name as its class. 

Release 3.0 does not enforce these restrictions completely. An error is reported if an enumerator or nested 
type has the same name as its enclosing class, but a static data member or member of an anonymous union 
are not caught. 

struct 51 { 
static int 51; II illegal, no error 

} ; 

struct 52 { 
union { int i; float 52; }; II illegal, no error 

} ; 

Unions (§9.5) 

A-2 

• The c++ Language System invalidly allows union members of a type which contains a user defined 
assignment operator. It correctly detects union members of a type with a constructor or destructor: 
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struct assign { 
I I ... 
assign& operator =(const assign&); 

} i 

struct ctor { 

} ; 

I I ... 
ctor () ; 

struct dtor { 

} i 

union U 

} i 

I I ... 
-dtor(); 

assign ai 

ctor bi 
dtor Ci 

The following correct errors are reported 

II undetected error 
II correctly detected 
II correctly detected 

line 16: error: member U::b of class ctor with constructor in union 
line 16: error: member U::c of class dtor with destructor in union 

but there should be a similar error 

~ 

( line 16, error, member U"a of class assign with operator= in union 

~ 

Nested Types (§9.5) 

Known Problems 

) 

This release completes the introduction of true nested types. There are two known problems in the new 
implementation: 

• The C++ Language System generates invalid C code for uses of nested classes as virtual base classes: 
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struct Outer { 

} ; 

struct InnerBase { 
I I ... 

} ; 

struct InnerDerived public virtual Outer::lnnerBase { 
I I ... 

} ; 

• Protection has not yet been implemented for nested types: 

class A 
enum E {/* ... */}; II private 
II ... 

} ; 

A::E evar; II undetected error, 
II A::E should not be accessible 

Pure Virtual Functions (§10.3) 

• The c++ Language System fails to detect the use of a pure virtual function inside the class's own des­
tructor. Other invalid uses of a pure virtual function are correctly detected: 

A-4 

struct Base { 
Base 0 ; 
-Base(); 
virtual void f() =0; 

} ; 

Base: : -Base ( ) 
fO; 

} ; 

Base: : Base ( ) { 
fO; 

} ; 

Base f()ill correctly detected 

II undetected error 

II correctly detected 

f(Base)i II correctly detected 

The following errors are correctly reported 
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line 13: error: call of pure virtual function Base::f() in constructor Base::Base() 
line 15: error: abstract class Base cannot be used as a function return type 
line 15: Base::f() is a pure virtual function of class Base 
line 16: error: abstract class Base cannot be used as an argument type 
line 16: Base::f() is a pure virtual function of class Base 

but there should be a similar error reported for the case involving the destructor. 

Friendship -(§ 11.4) 

Known Problems 

• The C++" Language System invalidly extends friendship throughout the class hierarchy in a multiple 
inheritance lattice: 

class basel 
friend void foo(); 

protected: 
int i; 

} ; 

class base2 { 
protected: 

int j; 
} ; 

class derived : public basel, public base2 { 
protected: 

int k; 
public: 

derived(); 
} ; 

void foo() { 

derived der; 
der.i 1; 
der.j 2; 
der.k = 3; 

} ; 

The following correct error is reported: 

Appendix A 

II ok, foo is friend of basel 
II undetected error 
II detected error 
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line 23: error: foo() cannot access derived::k: protected member 

but there should be a similar error for the assignment to der .j: 

line 22: error: foo() cannot access derived::j: protected member 

Static Members (§11.5) 

A-6 

• Release 3.0 is too restrictive in its treatment of protected static members of a base class when they are 
accessed by friends of a derived class. The following example should compile without complaint: 

class 81 { 
protected: 

static int s; 
} ; 

struct 82 : public 81 ( 
friend int f1 () 
friend int f2 ( ) 

} ; 

return 81::s; 
return 82::s; 

Instead, the following errors are incorrectly reported: 

error: f2() cannot access Sl::s: protected member 
error: fl() cannot access sl::s: protected member 

II legal 
II legal 

This problem can be circumvented by referring to the base class's static member through an object of 
the derived class: 

friend int f3(const 82& s2) { return s2.s; } 

• Section 11.5 of the reference manual states that "a friend or a member function of a derived class can 
access a protected static member of a base class" and section 12.5 specifies that "An X::operator newO 
[deleteO] for a class X is a static member". The C++ Language System fails to allow the implied 
access to static members new and delete: 
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typedef unsigned int size_t; 

class base { 
protected: 

void * operator new(size_t); 
void operator delete(void *); 
void static_memf(); 

} ; 

class derived : public base { 
public: 

} ; 

void fO { 
base *b = new base(); 
delete b; 
static_memf(); 
} ; 

Produces the following invalid errors: 

II invalidly rejected 
II invalidly rejected 
II correctly allowed 

line 10: error: derived::f() cannot access base::operator delete(): protected member 
line 10: error: derived::f() cannot access base::operator new(): protected member 

Known Problems 

~ A 

Access control and constructors and destructors (§12.3) 

• The reference manual stipulates that normal access control is applied to constructors and destructors. 
This implies that making a destructor private or protected disallows automatic and static allocation of 
such objects since they could never be destroyed. The C++ Language System correctly enforces this 
rule in most situations. However, it invalidly creates temporaries of such types when passing argu­
ments as const references and then invalidly calls the private destructor: 
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A-a 

class Ai 

struct B { 

B()i 
-B () i 
void foo (A const&) i 

} i 

class A { 
private: 

-A() i 
void operator=(A&); 
A(A&)i 

public: 
A(B)i 

} i 

main() 
B bi 

A a(b) i 
A al = A(b) i 

b.foo(b) i 
b. foo (A(b) ) i 

} i 

The following correct errors are reported: 

II correctly detected 
II correctly detected 

II undetected error 
II undetected error 

line 21: error: main() cannot access A::-A(): private member 
line 22: error: main() cannot access A::-A(): private member 

but there should be similar errors for the calls to b.foo . 

• The C++ Language System also fails to detect invalid calls to operator delete for classes with a 
private destructor: 
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class B ( 

-B() i I I private 
} i 

main ( ) 
B hi II correctly detected 

B* bp = new Bi II legal 

delete bPi II undetected error 
} i 

Protection and Destructors (§12.4) 

• If a base class has a private destructor, only member and friend functions of that class may destroy 
objects of that class. However, Release 3.0 fails to enforce this protection for derived classes that do 
not redefine the destructor at the same protection level. Thus, protection can be overridden by a 
derived class that simply fails to declare a destructor or by a derived class that declares a destructor 
with less restrictive protection. 

For example, the following code compiles without complaint: 

class B ( 
private: 

-B() ; 

} i 

class D: public B {}i 

class D2: public B 
public: 

} ; 

void f () 

-D2 () { } 

D d; 

D2 d2i 
II undetected error 
II undetected error 

Instead, f () should not be able to create objects of type D or D2. 
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Template Classes (§14.2) 

• In processing templates, the C++ Language System builds up internal representations of template 
classes and functions but does not type check or otherwise validate user code until a template is 
instantiated. For example, in the code below, the definition of the non-existent static member y is not 
detected until an object of the template type A is declared: 

template <class T> struct A { 
static int X; 

} ; 

template <class T> int A<T>::y = 37; II error not detected until 
II an object of type A< ... > 
II is declared 

It is a good idea, therefore, when developing code that defines template classes or functions to 
include simple references to the template type to force instantiation time type checking and other 
semantic checking. For example, if the above code had been compiled with a use of template A, the 
error would have been correctly reported: 

template <class T> struct A { 
static int X; 

} ; 

template <class T> int A<T>::y 37; 

Produces the following correct error messages: 

~ 

( line S, error, y, only static data members can be parameterized 

~ 

Template Declarations{§14.5) 

• If two class templates refer to each other, one referring to the other only via a pointer or reference, 
and the other referring to the first in a way that requires the full definition to be known, the C++ 
compiler may produce errors depending on the order in which uses of the templates appear in user 
code. For example: 
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template <class T> class B; 

template <class T> class A { 
B<T>* ptr; 

} ; 

template <class T> class B { 
A<T> not_a-ptr; 

} ; 

A<int> something; //Causes error 

produces the following invalid errors: 

line 9: error: A undefined, size not known 
line 9: error detected during the instantiation of B <int > 
line 9: 
line 3: 
line 12: 

the instantiation path was: 
template: B <int > 

template: A <int > 

Known Problems 

If a use of A<int> is seen before a use of B<int>, the instantiation will either fail, or produce invalid 
C code. If a reference to B<int> is seen first, there are no errors. 

The workaround is to add a dummy reference to B<int> before the first reference to A<int>: 

typedef B<int> dummy; 
A<int> something; 

Member Function Templates (§14.6) 

• In processing templates, the c++ Language System builds up an internal representation for the tem­
plate, but does not actually process instantiations until the end of the file. This is to allow for correct 
processing of template specializations. However, this approach has several side effects with respect 
to processing inline member function templates. To be inlined, member functions must be defined 
inside the class definition. For example, the Vector constructor in the following code will be laid 
down out of line in each file rather than being inlined: 
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template<class T> class Vector ( 
public: 

inline Vector(int size); 
T& operator[] (int i) {return vec[i]i} 

private: 

} ; 

int size; 
T* vec; 

ternplate<class T> 
inline Vector<T>::Vector(int sz) 

main () 
( 

typedef char *String; 

String a = "foo_bar"; 
Vector<String> str_vec(2); 
str_vec[O] = a; 

vec(new T[size=sz]) {} 

Similarly, errors will be reported if a member function is not declared to be inline in the class tem­
plate but is subsequently defined as inline. For example: 

template <class T> class A ( 
public: 

void f(T t); 
} ; 

template <class T> inline void A<T>::f(T t) 
{ 

} 

main () 
( 

A<int> a; 

a.f(O) ; 

produces the following errors: 
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line 7: error: A <int>::f() declared with externallinkage and called before definedasinline 
line 7: error detected during the instantiation of A <int > 
line 24: is the site of the instantiation 

Preprocessing (§16) 

• The c++ Language System does not include a version of cpp, but instead uses the cpp resident on 
the host machine. Many cpps do not recognize C++ comments. This can sometimes lead to surpris­
ing results. 

For example, if your preprocessor has not been modified for C++, C++-style comments (j I) in a 
macro definition will not be ignored: 

#include <stream.h> 
#define A 5 II define something 

mainO { 
cout « A; 

The comment in the macro definition results in the following error message: 

line 6: error: Ii' missing after statement 

Similarly, use of a macro name within a I I comment 

#include <generic.h> 

main() { 
int a; 
float fi 

II declare variables 

sends many preprocessors into an infinite loop expanding the macro declare, which is defined in 
generic.h. Note that generic.h may be included by other files as well. For example, stream.h 
indirectly includes generic. h. 

Finally, interactions between C comments and C++ comments should be noted. For example, 
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//** this looks like a C-style block comment to cpp 
#include <stddef.h> 
/* this is a C-style block comment */ 
main() 
{ 

char *c = NULL; 

results in the following error message if cpp does not properly handle C++-style comments: 

line 1: error: synrax error 
line 4: error: NULL undefined 

Incompatibilities with the ANSI C Standard 

• Release 3.0 fails to accept ANSI C-conforming declarations for functions taking function arguments. 
For example, 

void f (int () ) ; 

produces the following error: 

(line 1, error, bad base type, void f 

If a function pointer is specified as a parameter, like this, 

void f (int (*) () ) ; 

the code is accepted. 

Missing or Extraneous Warnings 

) 

• The c++ Language System is sometimes too cautious in deciding when it is necessary to generate 
code to invoke a destructor. As a result, unreachable code containing destructor invocations is some­
times generated, and some C compilers warn about this unreachable code. For example: 
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struct A { 
A(); 
-A() ; 

} ; 

void f(int i) {\ 
switch (i) 
case 0: { 

A a; 

} 

break; 
} ; 

This code may result in the C compiler warning 

~line 6, warning, statement not reached 

which can be safely ignored. 

Known Problems 

) 
• Similarly, for the following case, destructors are properly called on each return path, but also at the 

end of the function: 

struct A { 
A(); 
-A() ; 

} ; 

int f(int i) 
A a; 

if (i) 

else 
return i; 

return i; 

• C++ allows conversions that may involve loss of information. Because such conversions are likely to 
introduce errors in the user's code, the C++ Language System should warn about shortening conver­
sions. In general, such conversions are diagnosed only when assigning a float, double, or long 
value to one of the smaller integral types. The following shortening conversions are accepted without 
complaint: 
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extern char c; 
extern short s; 
extern unsigned char uc; 
extern unsigned short us; 
extern int i; 
extern long 1; 
extern float f; 
extern double d; 

void x() { 

f = d· , 
c i· , 
1 = d· , 
1 = f· , 
c = s· , 
s = i· , 
uc i; 
us = i; 

• Some instances of "used before set" warnings are invalid. For example, the code below causes the 
C++ Language System to warn incorrectly that s is used before set. 
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struct S 

} ; 

void f () 

short a; 
short bi 

s s; 
s.a = s.b = 0; II invalid "used before set" warning 

Use of the sizeof operator also leads to invalid "used but not set" warnings, as in the following 
code: 

void g() ( 
char *p; 
int i = sizeof(p); Ilinvalid "used but not set" warning 

} 
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Other Problems with Compiling and Linking 

• Single files compiled directly to an a.out which contain specializations of templates will occasionally 
fail. For example: 

extern "C" void printf( ... ); 
template <class T> int foo(T) { return 1; } 

main ( ) 
{ 

int i = 3; 
printf("%d\n", foo(i»; II should print 0 

int foo(int) { return 0; } 

Invalidly produces the following error from the c compiler: 

~line 11, redeclaration of foo __ Fi ) 
This is because the single file case is optimized to avoid automated instantiation support and the sys­
tem invalidly instantiates the template version of foo(int). When the subsequent specialization is 
seen, the template instance has already been created. This problem can be avoided either by ensuring 
that all specializations preceed any use: 

extern IIC" void printf( ... ); 
template <class T> int foo(T) { return 1; } 

int foo(int) { return 0; } 

main ( ) 
{ 

} 

int i = 3; 
printf("%d\nll, foo(i»; II should print 0 

or by compiling CC -ptn which ensures that full automated instantiation support is invoked . 

• At present, function templates declared in header files have only the raw name extracted and added 
to the name mapping files. So for: 

template <class T, class U> void f(T, int, U); 

f will be extracted. This works for many simple cases, but fails in some cases where two different 
headers declare a function template with the same or different formal arguments. 
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• For compatibility with previous releases, the argument type of _vec_new and vee_delete under the 
+al ANSI option are incorrect. Strict ANSI compliance would declare these functions as: 

__ vec_new(void*, int, int, void(*)(»; 
__ vec_delete(void *, int, int, void(*) (), int, int); 

However, doing so would lead to bootstrapping problems when building the compiler using libC 
compiled with earlier releases. 

• For compatibility with previous releases, static class members and static template class members 
created from a template specialization are not initialized to o. This may lead to problems with link­
ers that do not pull in object files from an archive if there are no initialized external references. If a 
file exists whose only external dependency is an uninitialized static data member or an uninitialized 
global array, these linkers will fail to include the object file and a runtime error will occur. 
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For example, suppose ab. h defines a class with a static data member: 

II file "ab.h" 
struct A { 

int i; 
A() {i 3;} 

} ; 

struct B { 

static A a; 
} ; 

and file ab. c defines the static member 

II file lab.C" 
#include "ab.h" 
A B: :a; 

and file main. c refers to the static member 

II file "m:tin.c" 
#include <stdio.h> 
#include "ab.h" 

main () { 
printf ("%d\n", B::a.i); 
I I ... 
return 0; 

If these files are directly compiled and linked, the expected output of 3 is printed on the standard 
output. However, if the file ab. c is compiled and stored in a library and later linked with main. c, 
then the program prints 0 if a linker that does not resolve uninitialized data is used. 

Release Notes 



Known Problems 

• When two files are compiled separately in separate directories, but contain identically named objects 
of the same class, problems will occur when an attempt is made to link the two object files. 

For example, suppose you have a header file x. h in your current directory, and you have two sub­
directories a and b, each of which contains a file named x. c. 

II file "x.h" 
struct X { 

virtual void f() {}; 
} ; 

II file "a/x.c" 
#include II •• Ix.h" 

void f () { 
X x; 

} 

II file "b/x.c" 
#include II •• Ix.h" 

mainO { 
X x; 

I I ... 
return 0; 

If these files are compiled separately and an attempt is made to link them together, 

they will fail to link, and messages similar to the following will be generated by the linker: 

Appendix A 

ld: Symbol _vtbl_1X_x_c in b/x.o is multiply defined. First defined in a/x.o 
ld: Symbol ---ptbl_1X_x_c in b/x.o is multiply defined. First defined in a/x.o 
ld fatal: Error(s). No output written to a.out 
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These errors occur because the names of the virtual tables and associated housekeeping information 
for the x objects in files a/x.c and b/x.c are encoded identically, so the symbols are multiply 
defined. 

A workaround for this problem is to rename one of the files or to use a longer pathname when com­
piling these files. 

Library Problems 

• The implementation of the task library limits the number of levels of derivation from class task to 
one. That is, a class derived from class task may not have derived classes. However, use of multi­
level inheritance is not detected and usually results in an unexpected runtime core dump. 
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One possible workaround for this limitation is to put the required complex structures in a class not 
derived from task. Then derive a trivial class from task whose constructor executes the coroutine in 
the complex task. For example: 

class Task_base { 
virtual int Main{)i 

} i 

class Runner : public task 
Task_base* Pi 

pUblic: 
Runner{Task_base*)i 

} i 

Runner::Runner{Task_base* fp) 
( 

resultis{p->Main{))i 

p{fp) 

Oass Task_base is the base class from which the user should derive whatever additional classes and 
structures are needed. 
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Implementation Specific Behavior 

This appendix describes implementation specific behavior of the C++ Language System. Implementation 
specific behaviors can be categorized as follows: 

1. behavior that the Reference Manual defines as "'implementation dependent" 

2. behavior that depends on the underlying C compiler or preprocessor used with Release 3.0 

3. properties that are defined in the standard header files stddef .h, limits .h, and stdlib.h 

4. translation limits 

5. language constructs that are not implemented in this release 

This appendix addresses categories 1,2,4, and 5. For details about properties defined in the standard 
header files (category 3), see the headers themselves. Additional information about constructs that are not 
implemented is provided in Appendix C, which contains an alphabetical listing of the Unot implemented" 
error messages. 

The ordering and numbering of sections in this appendix corresponds to the order and numbering of the 
related sections in the Reference Manual. The section entitled "Translation Limits" (which does not have a 
corresponding section in the Reference Manual) precedes the numbered sections. 

Translation Limits 

Release 3.0 of the AT&T C++ Language System imposes the following translation limits: 

• 50 nesting levels of compound statements 

• 10 nesting levels of linkage declarations 

• 4088 characters in a token 

• 22222 virtual functions in a class 

• 10000 identifiers generated by the implementation 

These limits can be changed by recompiling the translator. Additional translation limits may be inherited 
from the underlying C compiler and preprocessor. 

Identifiers (§2.3) 

Identifiers reserved by Release 3.0: Release 3.0 reserves identifiers that contain a sequence of two under­
scores for its own use. In addition, identifiers reserved in the ANSI C standard are also reserved by Release 
3.0. Under the +w option, identifiers with double underscores result in a warning in Release 3.0 
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Character Constants (§2.5.2) 

Value of multicharacter constants: The Reference Manual states that the value of a multicharacter constant, 
such as 'abcd' , is implementation dependent. Release 3.0 passes these constants to the underlying C com­
piler, which determines their values. A multicharacter constant containing more characters than 
sizeof (int) is reported as an error by Release 3.0. 

Value of (single) character constants: The Reference Manual states that the value of a character constant is 
implementation dependent if it exceeds that of the largest char. Release 3.0 accepts octal and hexadecimal 
character literals that do not fit in a char. It uses the low order bits that make up the value of the con­
stant. For example, the octal character constant' \777' , is treated as '\377'. The hexadecimal character 
constant '\x123' is treated as '\x23' . 

Wide character constants: Release 3.0 does not implement wide character constants, such as L' ab'. A "not 
implemented" error message is reported. 

Floating Constants (§2.5.3) 

Long double floating constants: When compiling with the +aO option, Release 3.0 removes an 1 or L suffix 
from a floating constant before passing the constant to the underlying C compiler. Under the +al option 
such a constant is passed unchanged to the underlying C compiler. In either case, the constant is con­
sidered to be of type long double for purposes of resolving overloaded function calls. 

String Literals (§2.5.4) 

Distinct string literals: The Reference Manual states that it is implementation dependent whether all string 
literals are distinct. Release 3.0 does not attempt to detect cases where string literals could be represented 
as overlapping objects. The underlying C compiler may, however, detect such cases and attempt to overlap 
their storage. 

Wide character strings: Release 3.0 does not implement wide character strings, such as L II abed II. A "not 
implemented" error message is reported. 

Start and Termination (§3.4) 

Type of mainO: The Reference Manual states that the type of main () is implementation dependent. Release 
3.0 itself does not impose any restrictions on the type of main ( ) , but the underlying C compiler or the tar­
get environment may impose such restrictions. 

Linkage of main(): The AT&T C++ Language System treats main() as if its linkage were extern IIC
II

• 
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Fundamental Types (§3.6.1) 

Signed integral types: Release 3.0 does not implement the type specifier signed; it issues a warning and 
proceeds as though the specifier signed had not appeared. 

Long double type: When Release 3.0 is invoked with the +aO option, the type long double is considered 
to be the same size and precision as the type double in the underlying C compiler. Under the +al option, 
long double is passed to the underlying C compiler as long double. In either case, type long double is 
considered a distinct type for purposes of resolving overloaded function declarations and invocations. 

Alignment requirements: Release 3.0 does not impose any alignment restrictions when allocating objects of 
a particular type. Such restrictions, if they exist, are enforced by the underlying C compiler. 

Integral Conversions (§4.2) 

Conversion to a signed type: When a value of an integral type is converted to a signed integral type with 
fewer bits in the representation, Release 3.0 issues a warning message if the +w option is specified. The 
runtime behavior of such a conversion depends on the treatment of the conversion by the underlying C 
compiler. 

Expressions (§5) 

Overflow and divide check: The Reference Manual states that the handling of overflow and divide check in 
expression evaluation is implementation dependent. When the second operand of a division or modulus 
operator is known to be zero at compile time, Release 3.0 reports an error. Overflow and other divide 
check conditions are handled by the underlying C compiler and execution environment. 

Function Call (§5.2.2) 

Evaluation order: The Reference Manual states that the order of evaluation of arguments to a function call is 
implementation dependent; similarly, the order of evaluation of the postfix expression, which designates 
the function to be called, and the argument expression list are implementation dependent. In both cases 
the order depends on the treatment by the underlying C compiler. 
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Explicit Type Conversion (§5.4) 

Explicit conversions between pointer and integral types: The Reference Manual states that the value 
obtained by explicitly converting a pointer to an integral type large enough to hold it is implementation 
dependent. This behavior is defined by the underlying C compiler. Similarly, the behavior when explicitly 
converting an integer to a pointer depends on the underlying C compiler. 

Multiplicative Operators (§5.6) 

Sign of the remainder: The Reference Manual states that the sign of the result of the modulus operator is 
non-negative if both operands are non-negative; otherwise, the sign of the result is implementation depen­
dent. This behavior depends on the underlying C compiler except when the values of both operands are 
known at compile time. In this case, the sign of the result is the same as the sign of the numerator. 

Shift Operators (§5.8) 

Result of right shift: The Reference Manual states that the result of a right shift when the left operand is a 
signed type with a negative value is implementation dependent. This behavior depends on the underlying 
C compiler. 

Relational Operators (§5.9) 

Pointer comparisons: According to the Reference Manual, certain pointer comparisons are implementation 
dependent. For Release 3.0, the results of these comparisons depend on the underlying C compiler. 

Storage Class Specifiers (§7.1.1) 

Inline functions: The Reference Manual states that the inline specifier is a hint to the compiler. Chapter 8 
of the Selected Readings describes the treatment of inl ine functions. 

When compiling with the +d option, Release 3.0 always generates out-of-line calls to inline functions. 
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Type Specifiers (§7.1.6) 

Volatile: Release 3.0 does not implement the type specifier volatile. If it is applied to a member func­
tion, a "not implemented" error message is issued; otherwise it is ignored and a warning message is issued. 

Signed: Release 3.0 does not implement the type specifier signed; it is ignored and a warning message is 
issued. 

Asm Declarations (§7.3) 

Effect of an asm declaration: Release 3.0 passes asm declarations to the underlying C compiler without 
modification. 

Linkage Specifications (§7.4) 

Languages supported: Release 3.0 supports linkage to C and C++. 

Linkage to functions: The effect of a II C II linkage specification (extern II C II) on a function that is not a 
member function is that the function name is not encoded with type information, as is otherwise done for 
C++ functions. Member functions are not affected by linkage specifications. 

Linkage to non-functions: The C linkage specification (extern IIC II ), when applied to a non-function 
declaration, does not affect the C code generated. 

Class Members (§9.2) 

Allocation of non-static data members: The Reference Manual states that the order of allocation of non-static 
data members across access-specifiers is implementation dependent. Release 3.0 allocates non-static data 
members in declaration order. 

Bit-Fields (§9.6) 

Allocation and alignment of bit-fields: The Reference Manual states that the allocation and alignment of 
bit-fields within a class object is implementation dependent. Responsibility for the allocation and alignment 
of bit-fields rests with the underlying C compiler. 

Sign of "plain" bit-fields: Whether the high-order bit position of a "plain" int bit-field is treated as a sign 
bit depends on the behavior of the underlying C compiler. 
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Multiple Base Classes (§ 10.1) 

Allocation of base classes: The Reference Manual states that the order in which storage is allocated for base 
classes is implementation dependent. For non-virtual base classes, Release 3.0 allocates storage in the order 
that they are mentioned in the derived class declaration. 

Argument Matching (§13.2) 

Integral arguments: The type of the result of an integral promotion (§4.1) depends on the execution 
environment, as does the type of an unsuffixed integer constant (§2.S.1). Consequently, the determination 
of which overloaded function to call may also depend on the execution environment, as illustrated by an 
example in § 13.2 of the Reference Manual. 

Exception Handling (experimental) (§15) 

Release 3.0 does not implement exception handling. The keyword catch is reserved for future use. A /lnot 
implemented" error message is reported if catch is seen. 

Predefined Names (§16.10) 

Predefined macros: The following macros are defined by Release 3.0: 

__ cplusplus The decimal constant 1. 

c-p1usplus The decimal constant 1. This macro is provided for compatibility with previous 
releases and will not be supported in the next major release. 

Other macros may be predefined by the underlying preprocessor. 

Anachronisms (§B.3) 

For compatibility with previous releases, Release 3.0 supports the anachronisms described in Appendix B. 
These anachronisms will not, however, be supported in the next major release of the AT&T C++ Language 
System. The current and future behavior are described in Chapter 4 of the Release Notes. 
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"Not Implemented" Messages 

This appendix contains the text and explanation for all Unot implemented" messages produced by the C++ 
Language System Release 3.0.1. They are listed here in alphabetical order. 

Each message is preceded by a file name and line number. The line number is usually the line on which a 
problem has been diagnosed. 

A Unot implemented" message is issued when Release 3.0.1 encounters a legal construct for which it cannot 
generate code. Because code is not generated, Unot implemented" messages cause the cc command to fail, 
and the program is not linked. Release 3.0.1 does, however, attempt to examine the rest of your program 
for other errors. 

• actual parameter expression of type string literal 

A template is instantiated with a string literal actual argument: 

template <char* s> struct S {/* •.• */}i 

S<"hello world"> svari 

7 
( 'jUe', line 3, not implemented, actual parameter expression of type string literal 

~ 

• address of bound member as actual template argument 

A template is instantiated with the address of a class member bound to an actual class object: 

template <int *pi> class x {}i 

class y { public: int ii } bi 

x< &b.i > Xii 

"file" I line 4: not irrplemented: address of bound member (& ::b . y: :i) as actual 
terrplate argument 

• & of op 
This message should not be produced. 

• 1st operand of .* too complicated 

The first operand of a function call expression involves a pointer to a member function and is an 
expression that may have side effects or may require a temporary. 
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struct S { virtual int f(); }; 
int (S::*prnf) () = &S::f; 
S *f () ; 
int i = (f()->*prnf) (); 

v 
( "file", line 5, not iJup1ementecj, 1st operand of * too e_lieated 

~ 

• 2nd operand of .* too complicated 

The second operand of a pointer to member operator is an expression that has side effects. 

struct S { int f(); }; 
int (s::*prnf) () = &S::f; 
S *sp = 
int i = 
int j 

new S; 
5; 
(sp->* (i+=5, prof» (); 

r 
( "file", line 5, not iJup1emented, 2nd operand of • too e_lieated 

~ 

• call of virtual function before class has been completely declared 

class x { 
public: 

virtual x& f () ; 
int foo(x t = pt->f(»; 

private: 

} ; 

static x* pt; 
int i; 

"fik" , line 6: not implemented: call of virtual function x::f() before class x 
has been completely declared - try moving call from argument list into function body or 
make function non-virtual 

) 
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• cannot expand inline function with for statement 

A for statement appears in the definition of an inline function. 

struct s { 
int s[100]; 
SO { for (int i = 0; i < 100; i++) sri] i; 

} ; 

"file" I line 1: not irrplemented: cannot expand inline function S::S () with 
for statement in inline 

• cannot expand inline function with return statement 

A void function contains a return statement. 

inline void f () 
{ 

main() 
{ 

return; 

fO; 

"file" I line 8: not irrplemented: cannot expand inline function f () with return statement 
1 error 

• cannot expand inline function with statement after J/return" 

A value-returning inline function contains a statement following a return statement. 

inline int f(int i) { 

Appendix C 

if (i) return i; 
return 0; 
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"fiW", line 4: not implemented: cannot expand inline function f(l with statement 
after "return" 

• cannot expand inline function with two local variables with the same name 

Two variables with the same name and different types are declared within the body of a value­
returning inline function. 

inline int f(int i) { 
{ int x = ii 
{ double x = ii 
return 0 i 

"fiW", line 5: not implemented: cannot expand inline function f(l with two local 
variables with the same name (xl 

• cannot expand inline function needing temporary variable of array type 

An inline function that contains a local declaration of an array object is called. 

inline int f(int i) 
int a[l]i 
a[O] = ii 
return ii 

int v = f(O)i 

"file", line 6: not implemented: cannot expand inline function needing 
terrporary variable of array type 

• cannot expand inline function with return in if statement 

This message should not be produced. 

• cannot expand inline function with static 

Release Notes 



"Not Implemented" Messages 

An inline function contains the declaration of a static object. 

inline void f () 
static int i = 5; 

v 
( • file' , line 2, not irrplemented, cannot expand inline flIDction with static i 

~ 

• cast of non-integer constant 

A cast of a non-integer constant as an actual parameter to a template class. 

template <int i> class X; 
int yy; 

x< (int)&yy > xi; 

7' 
( 'fiIe', line 4, not irnplEmel1ted, cast of non-integer constant 

~ 

• cannot expand inline void function called in comma expression 

A call of an inline void function that cannot be translated into an expression (that is, one that 
includes a loop, a goto, or a switch statement) appears as the first operand of a comma operator. 

int i; 
inline void f () { for (;;) ; } 
void gO { for (f(), i = 0; i < 10; i++) 

"file" I line 3: not implemented: carmot expand inline void f (} called in 
comma expression 

• cannot expand inline void function called in for expression 

A call of an inline void function that cannot be translated into an expression (that is, one that 
includes a loop, a goto, or a switch statement) appears in the second expression of a for statement. 

void inline f() { for (;i) i 

void g () { for (i i f (» i } 
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"Not Implemented" Messages 

C-6 

"fik"f line 2: not implemented: cannot expand inline void f() called in 
for expression 

• cannot expand value-returning inline function with call of 

A value-returning inline function is defined, and it contains a call to another inline function that is 
not value-returning. 

inline void f () { for (j j) j } 

inline int g() { f()j return OJ 

"fik"f line 2: not implemented: cannot expand value-returning inline g() with 
call of non-value-returning inline f() 

• cannot merge lists of conversion functions 

A derived class with multiple bases is declared and there are conversion operators declared in more 
than one of the base classes. 

struct Bl { 

operator int () j 

} ; 

struct B2 { 

operator float()j 
} j 

struct D : public Bl, public B2 { } j 

r 
( 'file', line 7, not illplemented, cannot merge lists of conversion flIDctions 

~ 
) 

• catch 

The keyword catch appears; catch is reserved for future use. 

int catch; 
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"Not Implemented" Messages 

"file", line 1: not irrplemented: catch 
"fire", line 1: warning: name expected in declaration list 

• class defined within sizeof 

A class or union definition appears as the type name in a sizeof expression. 

int i = sizeof (struct 8 { int i; }); 

"fire", line 1: not irrplemented: class defined within sizeof 
"fire", line 1: error: S undefined, size not known 

• class hierarchy too complicated 

This message should not be produced. 

• conditional expression with~e 

The second and third operands of a conditional expression are member functions or pointers to 
members. 

struct 8 { int if j; }; 
void f(int i) { 

int 8::*prni = i ? &8::i &8::j; 

7' 
( "file", line 3, not irrplemented, conditional _ression with int s,,' 
~ 

• constructor needed for argument initializer 

The default value for an argument is a constructor or is an expression that invokes a constructor. 

struct 8 { 8(int); }; 
int f(8 = 8(1)); 
int g(8 = 5); 

Appendix C 
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"Not Implemented" Messages 

C-8 

• copy of member [ ], no mernberwise copy for class 

An implementation-generated copy operation for a class X is required, but the operation cannot be 
generated because x has an array member whose type is a class with either a virtual base class or its 
own defined copy operation. The workaround is to add a memberwise copy operator to X. 

struct 81 {}; 
struct 82 : 81 { 82& operator=(const 82&); }; 
struct X { 82 m[1]; }; 
X var1; 
X var2 = var1; 

7 
( "fik" , line 5: not implemented: copy of S2[], no memberwise copy for S2 

~ 

• default argument too complicated 

A default argument in a declaration not at file scope requires the generation of a temporary. 

struct 8 { 
80; 

int f(const int &r = 1); 
} ; 

"fik" , line 3: not implemented: default argument too complicated 
"fik" , line 3: not implemented: needs temporary variable to evaluate argument 
initializer 

• ellipsis ( ... ) in argument list of template function name 

An ellipsis is used in a template function declaration: 

template <class T> f(T, ... ); 

] 
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"Not Implemented" Messages 

"fik", line 1: not implemented: ellipsis ( ... ) in argument list of template function f() 

• explicit template parameter list for destructor of specialized template class name 

Explicit template parameters are included in declaration of a specialized class' destructor: 

template <class T> struct S { /* ... */ }i 

struct S<int> { 
-S<int>()i 

} ; 

"fik", line 4: not implemented: explicit template parameter list for destructor 
of specialized template class S <> -- please drop the parameter list 

Instead, declare the specialized destructor as follows: 

template <class T> struct S { /* ... */ }i 

struct S<int> 
-S()i 

} i 

• fonnal type parameter name used as base class of template 

The formal type parameter is used as the base class of a template class: 

template <class T> struct S : public T {/* ••• */}i 

(' "file", line 1, not inplemented, formal type parameter T used as base class of tenplate ~I) 
~ ~ 

• forward declaration of a specialized version of template name 

A forward declaration of a specialized, rather than generalized template: 

template <class T> struct Si 

struct S<int>i 
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"Not Implemented" Messages 

• file", line 2: not implemented: forward declaration of a specialized version of 
template 5 <int > 

• general initializer in initializer list 

The initializer list in a declaration contains an expression that cannot easily be evaluated at compile 
time or that requires runtime evaluation. 

int f () i 

int i [ 1] = { f () } i 

line 2: not implemented: general initializer in initializer list 

• initialization of name (automatic aggregate) 

An aggregate at local scope is initialized. This message is not issued if the +al option (produces 
declarations acceptable to an ANSI C compiler) is specified. 

void f () { 

(' "file", 

~ 

int i[l] = {l}i 

line 2: not implemented: initialization of i (automatic aggregate) 

• initialization of union with initializer list 

An object of union type is initialized with an initializer list. This message is not issued if the +al 
option (produces declarations acceptable to an ANSI C compiler) is specified. 

union U { int ii float fi }i 

U u = {l}i 

) 

] 
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"Not Implemented" Messages 

(' • file' , 
~ 

line 2: not implemented: initialization of union with initializer list 

• initializer for class member array with constructor 

This message should always be accompanied by an error message. The Unot implemented" message 
is inappropriate and should not be reported. 

• initializer for local static too complicated 

This message should not be produced. 

• initializer for multi-dimensional array of objects of class class with constructor 
name 

A multi-dimensional array of a class with a constructor has an explicit initializer. 

struct S { S(int); }; 
S s[2] [2] = {l,2,3,4}; 

"fire", line 2: not implemented: initializer for multi-dimensional 
array of objects of class S with constructor ::s 

• implicit static initializer for multi-dimensional array of objects of class with 
constructor 

class x 
public: 

} ; 

main() 

x() 

static x xx[lO] [20]; 

Appendix C 

"fire", line 7: not implemented: implicit static initializer for multi-dimensional 
array of objects of class x with constructor 
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"Not Implemented" Messages 

• initializer list for local variable name 

This message should not be produced. 

• label in block with destructors 

A labeled statement appears in a block in which an object with a destructor exists. 

struct S { S(int)i -S()i }i 

void fO { 
S S(5)i 

xyz: 
} 

line 5: not implemented: label in block with destructors 

• local class class (local to function) as parameter to template class class 

A local class is defined and is used as a template actual argument. 

template <class T> class A (}i 

void fO 

class B {} i 

A<B> ai 

"file", line 6: not implemented: local class B(local to f()) as parameter type to 
template class A 

• local class name within template function 

A local class is defined inside a template function. A similar message is issued for local enums and 
local typedefs defined inside a template function: 

template <class T> f() { 
class 1 {/* ... */}; 
enum E {/* ... */}; 
typedef int* iPi 

} ; 
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"Not Impremented" Messages 

• local static class name (type ) 

A static array of objects of a class with a constructor is declared at local scope. 

class S { 
public: 

SOi 
} i 

void f () { 
static S S[9]i 

} 

7' 
( "file", line 2, not implemented, local static class s ( S (9]1 

~ 

• local static name has class: : -class () but no constructor (add class: : class ( ) ) 

A static class object with a destructor, but no constructor, appears at local scope. 

struct S { -S()i }i 
void f() { static S Si } 

"file", line 1: warning: S has S: :~S () but no constructor 
"fik" , line 2: not implemented: local static s has S::~S() but no constructor 
(add S:: S () ) 

• 1 value op too complicated 

This message should not be produced. 

• needs temporary variable to evaluate argument initializer 

A default argument requires a temporary variable. 
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"Not Implemented" Messages 

void f () { 

} 
int g(const int& = 5); 

"file", line 2: not implemented: needs terrporary variable to evaluate argument 
initializer 

• nested class type as parameter type to template class name 

A nested class is used as the actual parameter for a template class instantiation: 

template <class T> struct S; 

struct outer { 
struct inner {}; 

} ; 

S<outer::inner> svar; 

"fik", line 7: not implemented: nested class outer::inner as parameter type to 
terrplate class S 

• nested class within template 

A template class contains a nested class. 

template <class T> struct A { 
struct B {}; 

} ; 

"file", line 2: not implemented: nested class within terrplate 

• nested depth class beyond 9 unsupported 

Classes are nested more than nine levels deep. 
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"Not Implemented" Messages 

struct SI { 
struct S2 { 
struct S3 { 
struct S4 { 
struct S5 { 
struct S6 { 
struct S7 { 
struct S8 { 
struct S9 { 
struct SID { enum { e }i }i 

}i}i}i}i}i}i}i}i}i 

r 
( "fi'e", line 20: not implemented: nested depth class beyond 9 unsupported 

~ 

• nested enum enum in template specialization 

• nested typedef typedef in template specialization 

A nested enum or typedef is used in a template specialization. 

template <class T> struct A { 
enum E {ee = sizeof(T)}i 
typedef T T2i 

} i 

struct A<int> { 

} i 

enum E {ee = 47}i 
typedef int T2i 

"fire", line 13: sorry, not implemented: nested enum E in template specialization 
"fire", line 14: sorry, not implemented: nested typedef T2 in template specialization 

• non-trivial declaration in switch statement 

A Unon-trivial" declaration appears within a switch statement. Such a declaration might declare an 
object of reference type, a static object, a const object, an object of a class type with constructor or 
destructor, an object with an initializer list, or an object initialized with a string literal. 
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"Not Implemented" Messages 

void f(int i) { 
switch (i) { 
default: 

int& j = i; 
} 

"fik", line 2: not implemented: non-trivial declaration in switch statement 
(try enclosing it in a block) 

Note that since it is illegal to jump past a declaration with an explicit or implicit initializer unless the 
declaration is in an inner block that is not entered, most declarations in switch statements and not 
contained in inner blocks will be errors. 

• overly complex op of op 

This message should not be produced. 

• parameter expression of type float, double or long double 

A template taking a non-type argument is declared taking a float, double or long double argument: 

template <double d> struct S { I* ... */}; 

(' 'file', 
~ 

line 1: not implemented: parameter expression of type float, double, or long double 

• postfix template function operator ++(): please make a class member function 

C-16 

The postfix implementation of a template increment or decrement operator must be a member func­
tion. 

template <class t> struct x { 
int operator++(int); II ok 

} ; 

template <class t> 
int operator++(x<t>&,int); II sorry 

x<int> xi; 
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"Not Implemented" Messages 

·fire·, •• , line 6: not implemented: postfix template function operator ++(): 
please make a class member function 

• pointer to member function type too complicated 

This message should not be produced. 

• public specification of overloaded function 

The base class member in an access declaration refers to an overloaded function. A similar message 
is issued for private and protected access declarations. 

struct B { int f()i int f(int)i }i 

class D : private B { 
public: 

B: : f i 

} i 

17 
( • file', line 2, not inpl emented, public spec if i cation of over loaded B" f II 

~ 

• reuse of formal template parameter name 

A template formal parameter name is reused within the template declaration: 

template <class T> struct S { 
int Ti 

} ; 

(' 'file', 
~ 

line 2: not implemented: reuse of formal template parameter T 

• specialized template name not at global scope 

A specialized template is declared at other than global scope: 
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"Not Implemented" Messages 

template <class T> struct S { 
T var; 

} ; 

void f () { 

} ; 

struct S <int > 
int var; 

} ; 

"fire", line 6: not implemented: specialized template S not at global scope 

• static member anonymous union 

A static class member is declared as an anonymous union. 

class C { 

} ; 

static union { 
int i; 
double d; 

"file, line 5: not implemented: static member anonymous union 

• struct name member name 

This message should not be produced. 

• template function instantiated with local class name 

C-18 

template <class T> int f(T); 

f2 () 

} 

struct local {/* ... */}; 
local lvar; 
f (lvar) ; 
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"Not Implemented" Messages 

·fire·, line 6: not implemented: template function f(l instantiated with local class local 

• temporary of class name with destructor needed in expr expression 

An expression containing a ?:, I I , or && operator requires a temporary object of a class that has a 
destructor. 

struct 8 { 8(int)i -8()i }i 
8 f(int i) { 

return i ? 8(1) : 8(2) 

"fire·, line 3: not implemented: temporary of class S with destructor needed 
in ?: expression 

• too few initializers for name 

The initializer list for an array of class objects has fewer initializers than the number of elements in 
the array. 

struct 8 { 8(int)i 8(); }; 
8a[2] {l}i 

"fiW", line 2: not implemented: too few initializers for ::a 

• typel assigned to type2 (too complicated) 

A pointer is initialized or assigned with an expression whose type is too complicated. 

struct 81 {}i 

struct 82 { int ii }i 

struct 83 : 81, 82 {}; 
int 83::*pmi = &82::ii 
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"Not Implemented" Messages 

r 
( • file', line 4, not inplemented, int 82" * ass igned to int 83" * (too compli catedl 

~ 

• use of member with fonnal template parameter 

An attempt to use a member of a formal parameter type, such as T: : type, is not currently sup­
ported. For example, 

template <class T> class U 
{ 

} i 

typede f T 'ill i 
/ / ... 

template <class Type> class V 
{ 

} i 

Type::TU ti 
/ / ... 

"fire", line 9: not implemented: use of Type::TU with formal template type parameter 
"fire", line 9: cannot recover from earlier errors 

• variant nested enum enum in template 

• variant nested typedef typedef in template 

C-20 

A variable enum or typedef is declared in a template definition. 

template <class T> struct A { 

} i 

main() 
{ 

enum E {ee = sizeof(T)}i 
typedef T T2i 

A<char> ai 
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"Not Implemented" Messages 

sorry, not irrplemented: variant nested enum E in terrplate 
error detected during the instantiation of A <char > 
is the site of the instantiation 

sorry, not irrplemented: variant nested typedef T2 in template 
error detected during the instantiation of A <char > 
is the site of the instantiation 

• visibility declaration for conversion operator 

An access declaration is specified for a conversion operator. 

struct B { operator int(); }; 
class D : private B { 
public: 

B: : operator inti 
} ; 

7 

( "fik" line 1: not irrplemented: visibility declaration for conversion operator 
~ , 

• volatile functions 

A member function is specified as volatile. 

struct S 
int f() volatile; 

} ; 

"fik", line 2: not irrplemented: volatile functions 

• wide character constant 

• wide character string 

A wide character constant or a wide character string is used. 

int we = L'ab'; 
char *ws = Lllabcd ll ; 
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"Not Implemented" Messages 

C-22 

"fire", line 1: not implemented: wide character constant 
"fire", line 2: not implemented: wide character string 
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D 
Manual Pages 

To see the online man page for CC(l}, type man ee. 
Man pages are provided online for the following commands: 

• CC(l} 
• c++filt(l} 
• demangle{3} 
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c++filt(1 ) UNIX System V c++filt(1 ) 

NAME 
c++filt - C++ name demangler 

SYNOPSIS 
c++filt [-m] [-8] [-v] 

DESCRIPTION 
C++filt copies standard input to standard output after decoding tokens which look like C++ encoded symbols. 
Any combination of the following options may be used: 

-m 

-8 

-v 

Produce a symbol map on standard output. This map contains a list of the encoded names 
encountered and the corresponding decoded names. This output follows the filtered output. 

Produce a side-by-side decoding with each encoded symbol encountered in the input stream 
replaced by the decoded name followed by the original encoded name. 

Output a message giving information about the version of c++filt being used. 

SEE ALSO 
cc(1), Id(1), run(1). 
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demangle (3) UNIX System V 

NAME 
elf_dernangle - decode a C++ encoded symbol name 

SYNOPSIS 
char *elf_dernangle (char canst *symbol) 

DESCRIPTION 

demangle(3) 

demangle decodes an encoded C++ symbol name into a format which more closely resembles the original C++ 
declaration. This routine should be used to convert symbols obtained from an ELF symbol table into a form 
more suitable for output. 

WARNING 
This routine allocates space for the return buffer using the ELF allocation routines. 

CAVEAT 
The return value points to static data whose content is overwritten by each call. 

SEE ALSO 
cc(l), c++filt(l), libelf(3), nm(l). 
Bjarne Stroustrup, The c++ Programming Language, Addison-Wesley 1986. 

DIAGNOSTICS 
The argument symbol will be returned if it points to a string which does not need decoding. A return value of 
NULL indicates that storage could not be allocated for the return buffer. 
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Index 

A 
+a option 4: 26 

access declaration for conversion operator, not 
implemented message C: 19 

access declarations 4: 54 

access protection, for operator new() 4: 39 

access to protected new or delete member 
invalidly disallowed A: 6 

actual parameter expression of type string literal, 
not implemented message C: 1 

address & of op, not implemented message C: 1 

address of bound member as actual template argu­
ment, not implemented message C: 1 

aggregate at local scope, not implemented mes-
sage C: 9 

allocation of storage, for multiple base classes B: 5 

anachronisms 4:61,63-69, B:6 

anonymous union members 4: 32 

ANSI C standard, incompatibilities A: 13 

ANSI C standard, preprocessors 4: 60 

a.out file permissions 4: 25 
argument matching rules 4: 18-19, 58-59 

array class member initialization, not implemented 
message C: 10 

arrays, deleting 4: 39, 41 

asm declaration B: 4 

assignment, of ints to enumerations 4: 64 

assignment to overcomplicated type, not imple-
mented message C: 17 

AT&T 3B15 computers 3: 38 

AT&T 3B15 computers, build problems 3: 38 

AT&T 3B15 computers, usage problems 3: 40 

AT&T 3B2 computers 3: 37 

AT&T 3B2 computers, build problems 3: 37 

AT&T 3B2 computers, usage problems 3: 40 

AT&T 3B20 computers, build problems 3: 38 

awk problems 3: 42 

B 
bit-fields B: 5 

block nesting 3: 41 

Index 

bootstrapping the compiler 3: 4, 15 

BSD systems 3: 36 

build shell script 3: 31 

building compiler, from C++ source 3: 16 

c 
-c option 4: 26 

call of virtual function before class has been com­
pletely declared, not implemented message 
C: 2 

cannot expand inline function with return state­
ment, not implemented message C: 3 

cast of non-integer constant, not implemented mes-
sage C:4 

casts, of bound pointer 4: 64 

casts, of pointer types 4: 29 

casts, type definitions 4: 41 

catch keyword, not implemented message C: 6 

CC command 1: 1, 3: 18,33 

CC command, new options to 4: 25-28 

CC makefile variable 3: 11, 20, 32 

ccC environment variable 3: 34 

CCFLAGS makefile variable 3: 11, 35 

c++filt program 3: 15, 18 

cfront program 3: 15, 18 

cfrontC environment variable 3: 34 

character constants B: 2 
character types 4: 36 

class arguments to f ( ... ) 4: 37 

class defined within sizeof, not implemented 
message C: 6 

class names, reuse of 4: 46, A: 2 

class temporary needing destructor, not imple-
mented message C: 17 

classic C function definition syntax 4: 67 

comma operator I, not implemented message C: 5 

comments, C++-style A: 12-13 

compatibility, between releases 2.0 and 2.1 
4: 23-62 

compatibility, between releases 2.1 and 3.0 4: 2-22 

compatibility, with future releases 4: 63-69 

compatibility, with previous releases 4: 1-62 
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Index 

compilation and linking problems A: 15-18 
compiler tape, extracting contents of 3: 8 

compiler-specific problems 3: 40-42 
complex arithmetic library 2: 2 

complex arithmetic library, building 3: 21 
conditional expression with type operand, not 

implemented message C: 6 

const functions 4: 44 
const member functions 4: 13-14 
const member functions, with const violations 

4:31 
const objects, initialization of 4: 29-30 
const objects, members of 4: 29 
const parameters 4: 34 
const typedefs 4: 11 
constructor needed for argument initializer, not 

implemented message C: 7 

constructors, declaration 4: 17, 57 
constructors, definition 4: 67 
contents of the release 2: 1-3 
conversion to signed type B: 3 

conversions A: 14 
conversions, not implemented message C: 6 

copy operation for class, not implemented mes-
sage C: 7 

CPIO makefile variable 3: 11 
c-plusplus preprocessor macro 4: 68 
cpp errors 3: 41 
cppC environment variable 3: 34 
curses. h header file 4: 25 

D 
declaration within switch statement, not imple-

mented message C: 14 
decrement operators 4: 7-8,59-60 
default argument, not implemented message C: 7 

default arguments requiring temporary variable, 
not implemented message C: 12 

default assignment operator 4: 58 
default constructors 4: 6-7, 56 
definitions, multiple A: 1 
delete operator 4: 17-18,57-58,66 

delete operator, and arrays 4: 63 
DENSE makefile variable 3: 12 
destructors A: 13-14 
destructors, declaration 4: 17,57 
destructors, for built-in types 4: 17,57 
division operator / B: 3 

dominance rule, and objects and enumerators 
4:8,52 

E 
+e [ 01] options 4: 27 
editing files created during build 3: 18 
ellipsis ( ... ) in argument list of template function, 

not implemented message C: 8 

enumerations 4: 44, 52 
environment variables, setting 3: 34 
exception handling 4: 9, B: 6 

#expand directive 3: 30 
explicit template parameter list for destructor of 

specialized template class, not implemented 
message C: 8 

explicit type conversion B: 3 
explicit type conversions 4: 7, 38 
extern C syntax 3: 30 

F 
-Fc option 4: 25 
FILLDEF makefile variable 3: 12 
FILLUNDEF makefile variable 3: 12 
floating constants B: 2 

for keyword, initializers 4: 9, 41, 43 
for statement, not implemented message C: 2 
for statement, not implemented message C: 5 
forward declaration of a specialized version of 

template, not implemented message C: 9 

free store 3: 40 
friend declarations 4: 32-33 
friend functions, linkage of 4: 54-55 
friend functions, scope of 4: 16,55-56 

friendship 4: 55 
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friendship, and non-function members 4: 55 

friendship in multiple inheritance invalidly 
extended A: 4 

function call, evaluation order B: 3 

function definitions, classic C 4: 67 

functions, overloading 4: 34 

functions, size of 4: 38 

functions, value-returning 4: 10 

G 
-g option 4: 27 

general initializer in initializer list, not imple-
mented message C: 9 

generic function 2: 2 

generic.h header file 3: 35 

global inline functions 4: 43, A: 1-2 

H 
hash table 3: 41 

header files 4: 3,24-25 

header files, full port of 3: 29-31 

header files, porting 3: 28-32 

#hide directive 3: 30 

HP 9000 computers 3: 37, 39 

HP 9000 computers, build problems 3: 37 

HP 9000 computers, usage problems 3: 39 

I environment variable 3: 15,32,34 

identifiers B: 1 

identifiers, in nested type definitions 4: 66 
if statement, not implemented message C: 4 

implementation specific behavior B: 1-6 
implicit conversions, of pointers to members 4: 28 

implicit static initializer for multi-dimensional 
array of objects of class with constructor, not 
implemented message C: 10 

incl directory 3: 15 
include files, defining location of 3: 15 

Index 

Index 

increment operators 4: 7-8, 59-60 

initializer for multi-dimensional array of class, not 
implemented message C: 10 

initializers, for aggregates 4: 31 

initializers, for class members 4: 11, 44-45 

initializers, for operator new ( ) 4: 39 

initializers, for references 4: 11-12, 45-46 

initializers, redundant 4: 33 

inline function, not implemented messages 
C: 2-5 

inline functions 4: 27-28, B: 4 

inline member functions 4: 36 

INSTALL makefile variable 3: 11 
installation roadmap 3: 5 
INSTALL_BIN makefile variable 3: 10 
INSTALL_INC makefile variable 3: 11, 35 

installing compiler 3: 1-42 

installing compiler, on machine with existing com­
piler 3: 14 

installing compiler, on machine without existing 
compiler 3: 15-16 

INSTALL_LIB makefile variable 3: 10 

Intel 386-based computers 3: 38 

Intel 386-based computers, build problems 3: 38 

Intel 386-based computers, usage problems 3: 40 
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Preface 

The c++ Language System Library Manual describes the C++ class libraries provided with Release 3.0 of the 
C++ Language System: 

• the complex arithmetic library 

• the task library 

• the iostream library 

The manual is part of a set of four documents that are supplied with your C++ Language System. The 
other documents are: 

• the Release Notes, which describe the contents of this release, how to install it, and changes to the 
language 

• the Product Reference Manual, which provides a complete definition of the C++ language supported by 
Release 3.0 of the Language System. 

• the Selected Readings, which contains papers describing aspects of the C++ language 

The chapters in this manual cover the following C++ class libraries: 

• Chapter 1 describes the complex arithmetic library, which provides a class complex that allows you 
to declare and manipulate complex numbers in C++ programs 

• Chapter 2 describes the task library, which allows you to create and control concurrent processes in 
C++ programs. The last section of Chapter 2 provides porting information for the task library, which 
is machine dependent. ' 

• Chapter 3 describes the stream library, which allows you to do formatted input and output from C++ 
programs 

• The back of this book contains manual pages for the complex library, task library, and iostream 
library. 

To make the best use of the Library Manual, you must be familiar with the C programming language and 
the C programming environment under the UNIX operating system. 
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Complex Arithmetic in C++ 

~ This chapter is taken directly from a paper by Leonie V. Rose and 8jarne Stroustrup. 

y 
Abstract 

This memo describes a data type complex providing the basic facilities for using complex arithmetic in 
C++. The usual arithmetic operators can be used on complex numbers and a library of standard complex 
mathematical functions is provided. For example: 

#include <complex.h> 

main() { 
complex XXi 
complex yy = complex(l,2.718)i 
xx = log(yy/3)i 
cout « l+XXi 

initializes yy as a complex number of the form (real+imag*i), evaluates the expressions and prints the 
result: (0.96476,1.21825). 

The data type complex is implemented as a class using the data abstraction facilities in C++. The arith­
metic operators +, -, *, and I, the assignment operators =, +=, -=, *=, and 1=, and the comparison opera­
tors == and ! = are provided for complex numbers. So are the trigonometric and mathematical functions: 
sin () , cos () , cosh () , sinh () , sqrt () , log () , exp () , conj () , arg () , abs () , norm () , and pow () . 
Expressions such as (xx+1) * log (yy*log (3 .2)) that involve a mixture of real and complex numbers are 
handled correctly. The simplest complex operations, for example + and +=, are implemented without func­
tion call overhead. 

Introduction 

The C++ language does not have a built-in data type for complex numbers, but it does provide language 
facilities for defining new data types. The type complex was designed as a useful demonstration of the 
power of these facilities. 

There are three plausible ways to support complex numbers in a language. First, the type complex could be 
directly supported by the compiler in the same way as the types int and float are. Alternatively, a 
preprocessor could be written to translate all use of complex numbers into expressions involving only 
built-in data types. A third approach was used to implement type complex; it was specified as a user­
defined type. This demonstrates that one can achieve the elegance and most of the efficiency of a built in 
data type without modifying the compiler. It is even much easier to implement than the pre-processor 
approach, which is likely to provide an inferior user interface. 
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This facility for complex arithmetic provides the arithmetic operators +, /, * , and -, the assignment opera­
tors =, +=, -=, *=, and /=, and the comparison operators == and! = for complex numbers. Input and out­
put can be done using the operators » (get from) and « (put to). The initialization functions and » 
accept a Cartesian representation of a complex. The functions real () and imag () return the real and ima­
ginary part of a complex, respectively, and « prints a complex as (real, imaginary). The internal 
representation of a complex, is, however, inaccessible and in principle unknown to a user. Polar coordi­
nates can also be used. The function polar () creates a complex given its polar representation, and abs ( ) 
and arg () return the polar magnitude and angle, respectively, of a complex. The function norm () returns 
the square of the magnitude of a complex. The following complex functions are also provided: sqrt ( ) , 
exp ( ) , log ( ) , sin ( ) , cos ( ) , sinh ( ) , cosh ( ) , pow ( ) , and conj (). The declaration of complex and the 
declarations of the complex functions can be found under "Type complex." A complete program using 
complex numbers can be found under II An FFT Function." 

Complex Variables and Data Initialization 

A program using complex arithmetic will contain declarations of complex variables. For example: 

complex zz = complex(3,-S); 

will declare zz to be complex and initialize it with a pair of values. The first value of the pair is taken as 
the real part of the Cartesian representation of a complex number and the second as the imaginary part. 
The function complex () constructs a complex value given suitable arguments.1 It is responsible for initializ­
ing complex variables, and will convert the arguments to the proper type (double). Such initializations 
may be written more compactly. For example: 

complex zz(3,-S); 
complex c_name(-3.9,7); 
complex rpr(SQRT_2,root3); 

A complex variable can be initialized to a real value by using the constructor with only one argument. For 
example: 

complex ra = complex(l); 

will set up ra as a complex variable initialized to (1, ° ). Alternatively the initialization to a real value can 
also be written without explicit use of the constructor: 

complex rb = 123; 

The integer value will be converted to the equivalent complex value exactly as if the constructor com­
plex (123) had been used explicitly. However, no conversion of a complex into a double is defined, so 

double dd = complex(l,O); 

is illegal and will cause a compile time error. 
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If there is no initialization in the declaration of a complex variable, then the variable is initialized to (0, 0) . 
For example: 

complex origi 

is equivalent to the declaration: 

complex orig = cornplex(O,O)i 

Naturally a complex variable can also be initialized by a complex expression. For example: 

complex cx(-0.5000000e+02,O.8660254e+02)i 
complex cy = cx+log(CX)i 

It is also possible to declare arrays of complex numbers. For example: 

complex carray[30]i 

sets up an array of 30 complex numbers, all initialized to (0, 0). Using the above declarations: 

complex carr[] = ( cx, cy, carray[2], cornplex(1.l,2.2) }i 

sets up a complex array carr [ ] of four complex elements and initializes it with the meml?ers of the list. 
However, a struct style initialization cannot be used. For example: 

complex cwrong[] = {1.5, 3.3, 4.2, 4}i 

is illegal, because it makes unwarranted assumptions about the representation of complex numbers. 

Input and Output 

Simple input and output can be done using the operators » (get from) and« (put to). They are declared 
like this using the facility for overloading function operators: 

ostream& operator«(ostream&, complex)i 
istream& operator»(istream&, complex&)i 

When zz is a complex variable cin»zz reads a pair of numbers from the standard input stream cin into 
z z . The first number of the pair is interpreted as the real part of the Cartesian representation of a complex 
number and the second as the imaginary part. The expression cout«zz writes zz to the standard output 
stream cout. For example: 

void copy(istream& from, ostream& to) 

complex ZZi 

while (frorn»zz) to«ZZi 

reads a stream of complex numbers like (3.400000, 5 . 000000) and writes them like (3.4, 5). The 
parentheses and comma are mandatory delimiters for input, while white space is optional. A single real 
number, for example 10e-7 or (123), will be interpreted as a complex with 0 as the imaginary part by 

Complex Arithmetic in C++ 1-3 



Complex Arithmetic in C++ 

operator ». 

A user who does not like the standard implementation of « and » can provide alternate versions. 

Cartesian and Polar Coordinates 

The functions real () and imag () return the real and imaginary parts of a complex number, respectively. 
This can, for example, be used to create differently formatted output of a complex: 

complex cc = complex(3.4,5)i 
cout « real(cc) « "+" « imag(cc) « "*i"i 

will print 3 .4+5*i. 

The function polar () creates a complex given a pair of polar coordinates (magnitude, angle). The func­
tions arg () and abs () both take a complex argument and return the angle and magnitude (modulus), 
respectively. For example: 

complex cc = polar(SQRT_2,PI/4)i 
double magn = abs(cc)i 
double angl = arg(cc)i 

II also known as complex(l,l) 
II magn = sqrt(2) 
II angl = PI/4 

cout « II (m=" « magn «" a="« angl « ") II i 

If input and output functions for the polar representation of complex numbers are needed they can easily 
be written by the user. 

Arithmetic Operators 

The basic arithmetic operators +, - (unary and binary), /, and *, the assignment operators =, +=, -=, *=, 
and / =, as well as the equality operators == and ! =, can be used for complex numbers. The operators have 
their conventional precedences. For example: a=b*c+d for complex variables a, b, c, and d is equivalent to 
a= (b*c) +d. There are no operators for exponentiation and conjugation; instead the functions pow() and 
conj () are provided. The operators +=, -=, * =, and / = do not produce a value that can be used in an 
expression; thus the following examples will cause compile time errors: 

1-4 

complex a, bi 

II 
if (a+=2) ==0 

II 
) 

b = a *= bi 
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Mixed Mode Arithmetic 

Mixed mode expressions are handled correctly. Real values will be converted to complex where necessary. 
For example: 

complex xx(3.5,4.0); 
complex yy = log(yy) + log(3.2); 

This expression involves a mixture of real values: log (3 .2) , and complex values: log (yy) and the sum. 
Another example of mixing real and complex, xx=i, is equivalent to xx=complex(i) which in turn is 
equivalent to xx=complex(i, 0). The interpretation of the expression (xx+i) *yy*3.2 is 
(((xx+complex(1»*yy)*complex(3.2». 

Mathematical Functions 

A library of complex mathematical functions is provided. A complex function typically has a counterpart 
of the same name in the standard mathematical library. In this case the function name will be overloaded. 
That is, when called, the function to be invoked will be chosen based on the argument type. For example, 
log (1) will invoke the real log ( ) , and log ( complex (1» will invoke the complex log ( ). In each case 
the integer 1 is converted to the real value 1. 0 . 

These functions will produce a result for every possible argument. If it is not possible to produce a 
mathematically acceptable result, the function complex_error () will be called and some suitable value 
returned. In particular, the functions try to avoid actual overflow, calling complex_error () with an 
overflow message instead. The user can supply complex_error (). Otherwise a function that simply sets 
the integer errno is used. See "Errors and Error Handling" for details. 

complex conj(complex); 

Conj (zz) returns the complex conjugate of zz. 

double norm(complex); 

Norm ( z z) returns the square of the magnitude of z z. It is faster than abs ( z z) , but more likely to cause an 
overflow error. It is intended for comparisons of magnitudes. 

double pow (double, double); 
complex pow (double, complex); 
complex pow (complex, int); 
complex pow (complex, double); 
complex pow (complex, complex); 

Pow (aa, bb) raises aa to the power of bb. For example, to calculate (i-i) **4: 

cout «pow( complex(i,-i), 4); 

The output is (-4,0) . 
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double log(double)i 
complex log(complex)i 

Log ( z z ) computes the natural logarithm of z z. Log ( 0) , causes an error, and a huge value is returned. 

double exp(double)i 
complex exp(complex)i 

Exp(zz) computes e**zz, e being 2.718281828 ... 

double sqrt(double)i 
complex sqrt(camplex)i 

Sqrt (zz) calculates the square root of zz. 

The trigonometric functions available are: 

double sin(double)i 
complex sin(complex)i 

double cos(double)i 
complex cos(complex)i 

Hyperbolic functions are also available: 

double sinh(double)i 
complex sinh(camplex)i 

double cosh(double)i 
complex cosh(complex)i 

Other trigonometric and hyperbolic functions, for example tan () and tanh ( ) , can be written by the user 
using overloaded function names. 

Efficiency 

C++'s facility for overloading function names allows complex to handle overloaded function calls in an 
efficient manner. If a function name is declared to be overloaded, and that name is invoked in a function 
call, then the declaration list for that function is scanned in order, and the first occurrence of the appropri­
ate function with matching arguments will be invoked. For example, consider the exponential function: 

double exp(double)i 
complex exp(complex)i 

When called with a double argument the first, and in this case most efficient, exp () will be invoked. If a 
complex result is needed, the double result is then implicitly converted using the appropriate constructor. 
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For example: 

complex foo 

is evaluated as 

exp(3.5); 

complex foo = complex ( exp(3.5) )i 

and not 

complex foo = exp( complex(3.5) )i 

Complex Arithmetic in C++ 

Constructors can also be used explicitly. For example: 

complex add(complex al, complex a2) II silly way of doing al+a2 
{ 

return complex( real(al)+real(a2), irnag(al)+imag(a2) )i 

Inline functions are used to avoid function call overhead for the simplest operations, for example, conj () , 
+, +=, and the constructors (See "Type complex"). 

Type complex 

This is the definition of type complex. It can be included as <complex.h>. A friend declaration specifies 
that a function may access the internal representation of a complex. The standard header file <stream.h> 
is included to allow declaration of the stream I/O operators « and » for complex numbers. 

#include <stream.h> 
#include <errno.h> 
#include <math.h> 

class complex { 
double re, imi 

public: 
complex() { re=im=Oi 

complex(double r = 0, double i) { re=ri im=ii 

friend double abs (complex) i 
friend double norm (complex) i 
friend double arg (complex) i 
friend complex conj (complex) i 
friend complex cos (complex) i 
friend complex cosh (complex) i 
friend complex exp(complex) i 
friend double imag (complex) i 

friend complex log (complex) i 
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} i 

friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 
friend 

friend 
friend 
friend 
friend 
friend 
friend 
friend 

complex pow(double, complex); 
complex pow(complex, int); 
complex pow(complex, double); 
complex pow(complex, complex); 
complex polar(double, double 0); 
double real(complex); 
complex sin(complex); 
complex sinh(complex); 
complex sqrt(complex); 

complex operator+(complex, complex) ; 
complex operator-(complex); 
complex operator-(complex, complex) ; 
complex operator*(complex, complex) ; 
complex operator/(complex, complex) i 
int operator==(complex, complex) ; 
int operator!=(complex, complex) i 

void operator+=(complex)i 
void operator-=(complex)i 
void operator*=(complex)i 
void operator/=(complex)i 

ostream& operator«(ostream&, complex); 
istream& operator»(istream&, complex&)i 

inline complex operator+(complex al, complex a2) 

return complex(al.re+a2.re, al.im+a2.im); 

inline complex operator-(complex al,complex a2) 
{ 

return complex(al.re-a2.re, al.im-a2.im)i 

inline complex operator-(complex a) 
{ 

return complex(-a.re, a.im); 

inline complex conj(complex a) 

return complex(a.re, -a.im); 



inline int operator==(complex a, complex b) 

return (a.re==b.re && a.im==b.im}i 

inline int operator!=(complex a, complex b) 
{ 

return (a.re!=b.re I I a.im!=b.im)i 

inline void complex.operator+=(camplex a) 
{ 

} 

re += a.rei 
im += a.imi 

inline void complex.operator-=(complex a) 

re - a.rei 
im - a.imi 

An FFT Function 

Complex Arithmetic in C++ 

Transcribed from Fortran as presented in IIFFT as Nested Multiplication, with a Twist" by Carl de Boor in 
SIAM Sci. Stat. Comput., Vol 1 No 1, March 1980. 
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#include <complex.h> 

void fftstp(complex*, int, int, int, complex*); 

const NEXTMX = 12; 
int prime[NEXTMX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 }; 

complex* fft(complex *zl, complex *z2, int n, int inzee) 
/* 

*/ 
{ 

Construct the discrete Fourier transfor.m of zl (or z2) in the 
Cooley-Tukey way, but with a twist. 

zl[before], z2[before]. 
inzee==l means input in zl; inzee==2 means input in z2 

int before = n; 
int after = 1; 
int next = 0; 
int now; 

do { 
int np = prime[next]; 
if ( (before/np)*np < before) { 

if (++next < NEXTMX) continue; 
now = before; 
before = 1; 

else 
now = np; 
before /= 

if (inzee == 1) 
fftstp(zl, 

else 
fftstp(z2, 

inzee = 3 - inzee; 
after *= now; 

} while (1 < before) 

np; 

after, 

after, 

return (inzee==l) ? zl z2; 

now, before, 

now, before, 

z2); 

zl); 

void fftstp(complex* zin, int after, int now, int before, complex* zout) 
/* 
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*1 
{ 

zin (after, before, now) 
zout(after,now,before) 

there is ample scope for optimization 

double angle = PI2/(now*after)i 
complex omega = complex(cos(angle), -sin(angle»i 
complex arg = 1i 
for (int j=Oi j<nOWi j++) { 

for (int ia=Oi ia<afteri ia++) { 
for (int ib=Oi ib<beforei ib++) 

} 

II value = zin(ia,ib,now) 
complex value = zin[ia + ib*after + (now-1)*before*after]; 

for (int in=now-2i O<=ini in--) { 
II value = value*arg + zin(ia,ib,in) 

value *= argi 
value += zin[ia + ib*after + in*before*after]i 

II zout(ia,j,ib) = value 
zout[ia + j*after + ib*now*after] = valuei 

arg *= omegai 

The main program below calls f ft () with a sine curve as argument. The complete unedited output is 
presented on the next page. All but two of the numbers ought to have been zero. The very small numbers 
shows the roundoff errors. Since C++ floating-point arithmetic is done in double-precision these errors are 
smaller than the equivalent errors obtained using the published Fortran version. 
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#include <complex.h> 

extern complex* fft(complex*, complex*, int, int); 

main() 
/* 

test fft() with a sine curve 
*/ 
{ 

const n = 26; 
complex* zl new camplex[n]; 
complex* z2 = new camplex[n]; 

cout « II input: \mll; 
for (int i=O; i<n ;i++) 

zl[i] = sin(i*PI2/n); 
cout « zl [i] « lI\mll; 

errno = 0; 
complex* zout = fft(zl, z2, n, 1); 
if (errno) cerr « IICerror II « errno « II occurred\mll; 

cout « II output : \mll; 
for (int j=O; j<n ;j++) cout« zout[j] « lI\mll; 

input: 
(0, 0) 
(0.239316, 0) 
(0.464723, 0) 
( 0 . 663123, 0 ) 
(0.822984, 0) 
(0.935016, 0) 
(0.992709, 0) 
(0.992709, 0) 
(0.935016, 0) 
(0.822984, 0) 
(0.663123,0) 
(0.464723, 0) 
(0.239316, 0) 
(4.35984e-17, 0) 
(-0.239316, 0) 
(-0.464723, 0) 
(-0.663123, 0) 
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(-0.822984, 0) 
(-0.935016, 0) 
(-0.992709, 0) 
(-0.992709, 0) 
(-0.935016, 0) 
(-0.822984, 0) 
(-0.663123,0) 
(-0.464723, 0) 
(-0.239316, 0) 
output: 
(9.56401e-17, 0) 
(-3.76665e-16, -13) 
(9.39828e-17, 1.11261e-17) 
(6.4221ge-16, -4.20613e-17) 
(7.3727ge-17, 2.3331ge-16) 
(2.85084e-16, 2.87918e-16) 
(4.03134e-17, 5.178ge-17) 
(2.60865e-16, 6.78794e-17) 
(-5.71667e-17, -3.86348e-17) 
(2.76315e-16, 2.36902e-17) 
(-6.43755e-17, -3.80255e-17) 
(1.95031e-16, 9.77858e-17) 
(1.49087e-16, -7.57345e-17) 
(3.17224e-16, 1.64294e-17) 
(1.49087e-16, 7.57345e-17) 
(2.7218e-16, -4.03777e-17) 
(-6.43755e-17, 3.80255e-17) 
(4.93805e-16, 3.36874e-17) 
(-5.71667e-17, 3.86348e-17) 
(7.86047e-16, -4.11068e-18) 
(4.03134e-17, -5.178ge-17) 
(1.60788e-15, -1.06841e-16) 
(7.3727ge-17, -2.3331ge-16) 
(5.45186e-15, 2.4271ge-16) 
(9.39828e-17, -1.11261e-17) 
(-1.12013e-14, 13) 

Complex Arithmetic in C++ 
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Errors and Error Handling 

These are the declarations used by the error handling: 

int errnoi 
int complex_error (int, double)i 

The user can supply complex_error ( ). Otherwise a function that simply sets errno is used. The excep­
tions generated are: 

cosh(zz) : 
C_COSH_RE 
C_COSH_IM 

exp(zz) : 
C_EXP_RE_POS 
C_EXP_RE_NEG 
C_EXP_IM 

sinh(zz) : 
C_SINH_RE 
C_SINH_IM 

1-14 

zz.re I too large. Value with correct angle and huge magnitude returned. 
zz.im I too large. Complex(O,O) returned. 

zz.im too small. Value with correct angle and huge magnitude returned. 
zz.re too small. Complex(O,O) returned. 
I zz.im I too large. Complex(O,O) returned. 

zz==O. Value with a large real part and zero imaginary part returned. 

zz.re I too large. Value with correct angle and huge magnitude returned. 
zz.im I too large. Complex(O,O) returned. 
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Footnotes 

1. Such a function is called a constructor. A constructor for a type always has the same name as the 
type itself. 
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Introduction 

Roadmap for the C++ Task Library Documentation 

The three sections of this chapter describe the C++ Language System coroutine or task library. 

• The first section, IIA Set of C++ Gasses for Co-routine Style Programming," written by Bjarne 
Stroustrup and revised and updated by Jonathan Shopiro, describes how the task library can be used. 
Read this section to learn about the basic use of the task library. 

• The second section, IIExtending the C++ Task System for Real-Time Control," by Jonathan Shopiro, 
describes new features of the task library to enable tasks to receive UNIX system signals. 

• The task system internals for Release 3.0 are described in the third section, II A Porting Guide for the 
C++ Coroutine Library," by Stacey Keenan. This part tells you about the internals of the task library. 

• The manual pages for the task library can be found at the end of this book. 
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A Set of C++ Classes for Co-routine Style Programming 

~ This section is taken directly from a paper by 8jarne Stroustrup and Jonathan E. Shopiro. 

y 
Abstract 

Some programs are most naturally expressed as a set of relatively independent activities communicating to 
achieve a common goal. Each activity, here called a task, has its own locus of control, a program to execute, 
and its own private data. Tasks can communicate by explicit sharing of data, by messages, or by data 
pipes. 

This paper describes C++ classes for a range of styles of multi-programming techniques in a single 
language, single address-space environment. Each task is an instance of a user-defined class derived from 
class task, and the program of the task is the constructor of its class. A task can be suspended and 
resumed without interfering with its internal state. Class qhead and class qtail enable a wide range of 
message passing and data buffering schemes to be implemented simply. 

The task system can be used for writing event driven simulations. Tasks execute in a simulated time frame 
presented by the variable clock, and objects of class timer provide a convenient and efficient facility for 
using the clock. 

The implementation and use of these concepts rely heavily on the idea of derived classes. Familiarity with 
the C++ language would be an advantage for the reader. 

Introduction 

Some programs are most naturally expressed as a set of relatively independent activities communicating to 
achieve a common goal. Such activities, here called tasks, must be able to execute in parallel with each 
other and communicate through means convenient to the chosen style of task usage. 

Facilities for multi-thread computation can be provided in the semantics of a language, as is done in Con­
current Pascal and Mesa or a language without such facilities can be augmented using special run-time sup­
port systems and library functions, as has been done for BCPL and C. The use of C classes to implement 
tasks represents an intermediate approach pioneered by Simula67. 

The tools presented herel provide the basic facilities for several styles of multi-thread programming in a 
single language, single address-space environment. The underlying facility is a simple and efficient tasking 
system with non-preemptive scheduling. That is, a task will only be suspended on its own request, so no 
"system policy" can be enforced without the cooperation of all tasks. In contrast to pure co-routine sys­
tems, however, the task system provides a framework for processor sharing and communication between 
tasks. The task system is intended for applications, like event driven simulations, where tasks are used to 
express a quasi-parallel structure for a single program. For this class of applications a concept of simulated 
time is implemented. A unit of simulated time can represent any amount of real time, and it is possible to 
compute without consuming simulated time. A few simple random number generating classes and a 
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histogram class for data gathering are also provided. The task system is not intended for handling real 
parallelism of some underlying real-time system. Consequently, no facilities are provided to map inter­
rupts and other real-time events into the concepts provided by the task system. 

The current version of the task library has a new degree of extensibility, so that it is now 
possible to write a class that represents an interrupt or signal that can be waited for. 

Implementations of the task system have been used for about eight years on the UNIX system and other 
operating systems on 3B2, 3B20, VAX, and Motorola 680xO hardware. 

In the following sections the task library will be described in some detail, and examples of its use will be 
given. The classes used in the task system are presented. This allows a detailed and specific discussion of 
the concepts involved, but it unfortunately also implies that some concepts cannot be explained in detail 
where they are first mentioned. 

Tasks 

The publicly accessible functions and data of class task look like this:2 

class task : public sched 

pUblic: 

} ; 

task* 
char * 
int 
int 
void 
void 
long 
void 
void 
void 

task(char* name = 0 , int mode=O, int stacksize=O); 
-task(); 
t_next; 
t_name; 
waitvec(object**); 
waitlist(object* ... ); 
wait(object*); 
delay (long) ; 
preempt(); 
sleep(object* t =0); 
resultis(int); 
cancel(int); 

The base class, sched, is responsible for scheduling and for the functionality that is common to tasks and 
timers (described below). The public part of its declaration is: 
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class sched public object 
pUblic: 

sched(); 
void setclock(long); 
long rdtDne(); 
int rdstate(); 
int pending(); 
void cancel(int); 
int result(); 

} ; 

Class sched is used strictly as a base class: that is, only instances of derived classes are created. 

A task is a locus of control, a virtual processor. It too can only be used as a base class, with the further 
limitation that only one level of derivation from class task is allowed 

H Mu~i-Ievel derivation from class task is disallowed for implementation reasons. See the manual page for a y workaround for this lim~ation. 

A task executes the program supplied as the constructor of the derived class.3 The most basic feature of a 
task is that it can be suspended and later resumed so that several tasks can run in quasi-parallel. Most 
member functions of class task are conditional or unconditional requests for suspension. 

A task can be in one of three states: 

RUNNING 

IDLE 

TERMINATED 

The task is executing instructions or it will be scheduled to do so without further 
intervention from other tasks. 

The task is not in the RUNNING state, but it can be transferred to the RUNNING state 
by some suitable action. That is, it is waiting. 

The task has completed its work. It cannot be resumed, but its result can be 
retrieved. 

The function sched: :rdstate () returns the state. 

A simple example of the use of tasks is where one task creates another to run in parallel with itself. Later 
the creator can obtain the result produced by the usecondary" task. For example, a task which counts the 
number of spaces in a string could be declared. First a class Spaces must be declared. 

class Spaces : public task 
{ 

pUblic: 
Spaces(char*); 

} ; 

In the case of class Spaces the declaration is trivial. It states that Spaces is derived from class task so 
that each object of class Spaces becomes an independently scheduled entity. The program for the task is 
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provided by its constructor. 

Spaces::Spaces(register char* s) 
{ 

register int i = Oi 
register char Ci 

while (c = *s++) 
if (c ' I) i++i 

resultis(i)i 

This function counts the spaces in its argument string and returns the result using the class task function 
resultis (). A task of class Spaces can now be created and used like this: 

main() 
{ 

Spaces ss ("a line with four spaces II ) i 

int count = ss.result()i 
printf ("count = %dO 1 count) i 
thistask->resultis(O); 

When an object of class Spaces is created, like ss here, its constructor becomes a new task that runs in 
parallel with the task4 that created it. A task can "return" an integerS value using the function 
task: :resultis (int). The task then becomes TERMINATED and the value is available for examination by 
the function sched: : resul t (). That is, in this example ss will call result is () with the argument 4, 
which will be returned from sched: : resul t () to the parent task. If a task calls result () for another task 
which has not yet completed the calling task will be suspended. After the other task finishes the call to 
result () in the waiting task will return. A task waiting for another to complete is IDLE. If a task calls 
resul t () for itself it will cause a run time error. 6 

A task cannot return a value using the usual function return mechanism; it must use resultis (). This 
function puts the task into the TERMINATED state from which it cannot be resumed. 

Queues 

A queue is a type of storage that is organized so that objects are retrieved from it in the order in which they 
were inserted into it. A queue has a head from which data is retrieved and a tail where data is inserted. 
With a little elaboration this basic type of data structure makes an excellent inter-task communication facil­
ity. 

There is no "class queue" available to a user. Instead, the two classes qhead and qtail provide the ser­
vices needed. There is a function qtail : : put () which adds an object to the tail of a queue and a function 
qhead: : get () which retrieves an object from the head of a queue. This allows explicit separation between 
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the source and the recipient of data. The public part of the declaration of class qhead looks like this: 

class qhead : public object 
{ 

pUblic: 

} ; 

object* 
int 
int 
int 
int 
void 
void 
qtail* 
qhead* 
void 
int 
void 

qhead(int =WMODE, int =10000); 
-qhead(); 
get () ; 
putback(object*); 
rdcount(); 
rdrnode(); 
rdmax () ; 
setmode (int) ; 
setmax (int) ; 
tail () ; 
cut () ; 
splice(qtail *); 
pending(); 
print (int, int =0); 

A queue can be created like this: 

qhead qh; 

To obtain a qtail for an existing queue execute tail () for its head: 

qtail* qtp = qh.tail(); 

The queue could now be used as a one way inter-task communication channel by giving its head and tail as 
arguments to two new tasks, Producer and Consumer: 

Producer pp(qtp); 
Consumer cc(&qh); 

The producer task pp can now put () objects to the tail of the queue (denoted by the pointer qtp) and the 
consumer task cc can get () those objects from its head (denoted by the pointer &qh). The function 
qtail: : put () takes a pointer to a class object as argument, and qhead: :get () returns such a pointer. 
Unless the user has specified otherwise a task executing qhead: : get () will be suspended temporarily if 
the queue is empty? After another task executes put () on the associated queue tail the suspended task will 
be resumed. Similarly a task executing qtail: : put () on a fullS queue will be suspended until some other 
task removes data from the queue. 

The objects transmitted through a queue must be of class obj ect or of some class derived from it. Class 
object (described under ''The object Class") is provided by the task system, and it is up to the program­
mer to define types of objects suitable for each application. 
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In the current version of the task library qhead and qtail have the form of user extensions, 
but in the original version they were built in. Since extensibility was limited, the supplied 
classes had to support a wide range of programming styles. Thus they may seem "feature­
rich." The new organization makes it easy to provide new kinds of queues and other forms 
of task interaction. 

A Server Example 
As an example of the use of tasks and queues we will define a server task that receives requests for service 
in the form of messages on a queue, handles the requests and returns replies on other queues. One could 
define a class Message as follows: 

class Message : public object 
{ 

public: 

} i 

int 
int 
int 
qtail* 

r_operationi 
r_argli 
r_arg2j 
r_replYi 

A message, that is an object of class Message, describes an operation r_operation that is to be performed 
by the recipient of the message. Arguments for this operation can be passed as r_argl and r_arg2, and 
the result of the operation is to be returned as a message on the queue denoted by r_reply. 

A server fOT these messages can be defined as follows: 
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class Server public task 

public: 
Server ( qhead *); 

} ; 

Server::Server(qhead* in) 
{ 

} 

for (;;) 
Message * 
qtail* 
int 

req = (Message *) in->get(); 
reply = req->r_reply; 
res = VALUE; 

int val; 
switch (req->r_operation) 
case PLUS: 
val = req->r_argl + req->r_arg2; 
break; 
case MINUS: 

default: 
res = ERROR; 
} 

req->r_operation res; 
req->r_argl = val; 
reply->put (req) ; 

This style of server has proved useful in many contexts. In particular, it is the backbone of many 
Umessage-based systems." In this particular example a server, that is an object of class Server, and the 
queue on which it depends can be declared: 

qtail* 
Server* 

rq = new qtail; 
ser = new Server(rq->head()); 

Other tasks can now send a request to this particular server through rq. For example: 
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qhead 
qtail* 
Message* 

rply; 
rply_to = rply.tail(); 
mess = new Message; 

mess->r_operation = PLUS; 
mess->r_argl = 1; 
mess->r_arg2 = 2; 
mess->r_reply = rply_to; 

rq->put(mess); 
mess = (Message *) rply.get(); 
if (mess->r_operation == ERROR) error(); 
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More about Queues: Mode and Size 
A queue head has a mode that controls what happens when get () is executed on an empty queue. In 
EMODE this causes a run time error. In ZMODE it will cause get () to return the NULL pointer instead of a 
pointer to an object. In WMODE a task executing a get () on an empty queue will wait on that queue until 
the queue becomes non-empty. Unless the user specifies the mode explicitly a queue head will be in 
WMODE. The function qhead: : rdmode () returns the current mode and qhead: : setrnode () can be used to 
change it. 

As mentioned above a queue also has a maximum size. This can be changed using qhead: : setrnax ( ) I and 
read using qhead: : rdrrax ( ) . 

The mode and maximum size for a queue can also be specified when the queue is created. For example: 

qhead Q1(ZMODE, 10); 
qhead* QP2 = new qhead(EMODE, 64*BUFSIZE); 

The public part of the declaration of class qtail is similar to that of class qhead. The two classes comple­
ment each other, and together they provide a representation of the general idea of a queue: 

class qtail : public object 

pUblic: 

} ; 

/ / ... 

int 
int 
int 
int 
qtail* 
void 
qhead* 
void 

qtail(int = WMODE, int 
-qtail(); 
put(object*); 
rdspace(); 
rdrnax(); 

rdmode(); 
cut () ; 
splice(qhead*); 
head() ; 
setrnode (int rn) ; 

void setrnax (int rn) ; 
int pending(); 
void print (int, int =0); 

10000); 

A queue tail's mode controls what happens on queue overflow in the same way as a queue head's mode 
controls what happens on queue underflow. For example, when a task executes put () on a full queue 
where the queue tail is in WMODE, then that task will be suspended until the queue is no longer full. The 
modes of a queue's head and tail need not be the same. 

Similarly the maximum number of objects which can be on a queue can be examined by rdrnax () and 
changed by setrnax ( ). Decreasing the maximum below the current number of objects on the queue is 
legal. Doing this simply implies that no new objects can be put on the queue until the queue has been 
drained below the new limit. 
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qhead: : rdcount () returns the current number of objects in a queue, and qtai 1 : : rdspace () returns the 
number of objects which can be inserted into a queue before it becomes full. 

qhead: : putback () puts its argument back at the head of the queue, that is 

qhead qh(WMODE,lO)i 
object* 00 = qh.get()i 
qh.putback(oo)i 
00 = qh.get () i 

will assign the same object to 00 twice. put back () has proved to be a useful function in many systems in 
the past, and it also allows a queue head to operate as a stack When putback () is used, the task execut­
ing it competes for queue space with tasks using put () on the queue's tail. A putback () to a full queue 
causes a run time error in both EMODE and WMODE. In ZMODE it returns NULL. 

More about Tasks 

When a task is created it can be given three arguments. The first is a character string pointer which is used 
to initialize the class task variable t_name. This name can be used to provide more readable output and 
does not affect the behavior of the task The string denoted by the pointer will not be copied. The t_name 
is used by the debugging aids and error reporting functions described below. The other two class task 
arguments are tuning parameters and will be described below. If an argument is NULL a system default 
will be used. For example, we could have given each Server task a name like this: 

class Server : public task 

Server (char*, qhead *)i 

} i 

void Server::Server(char* name, qhead* in) 
(name) II argument for Server's base class task 

I I ... 

task: : sleep (obj ect * =0) suspends the task unconditionally without specifying what is supposed to 
cause it to be resumed. 

If an argument is given to task: : sleep (obj ect * =0) which is a pointer to a pending 
object, the task will be remembered by the object, so that after it is no longer pending, the 
task will be resumed. 
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task: : cancel () puts a task into the TERMINATED state and sets the return value just like resultis () . 
However, cancel () does not invoke the scheduler so that one task can terminate another without losing 
control itself. 

The pointer 

task* thistask; 

denotes the currently active task. If no tasks have been created its value is o. It is illegal to assign to this­
task. The use of thistask enables the class task functions to be used from external functions without 
explicit passing of the current task's this pointer. 

The pointer9 

task* task_chain; 

is the start of a chain of all tasks. In the following loop t points to every task in turn: 

task* t; 
for (t=task_chain; t; t=t->t_next) ; 

It is not possible to have only one task. Therefore, when the first task is created in a program another task 
is implicitly created. Its name is main and its code is the original main () function. It can be suspended 
and resumed like any other task. Please remember that a return from main () terminates a C program. If 
the "'main" task should be terminated when there are other tasks which should be left running, then 
resultis () can be used. For example, 

thistask->resultis(O); 

can be executed in main ( ). The program will then run on until no more tasks are or can become RUNNING. 

It is illegal for a task to return. Always call resultis () instead of return, and never just "'drop out of the 
bottom" of a task. Unless a task contains an infinite loop so that it will never terminate place a call of 
resultis () at the end of its body. 

The task system does not provide a garbage collector. It is left to the programmer to ensure that pointers 
to deallocated store are not used. 

Waiting 

Functions like sched: :result (), qhead: :get () , and qtail: :put () each provide a way of waiting for 
one single specific event to happen. More general facilities are sometimes needed. 

When an object must be waited for, we say it is pending. For example, 

• A queue head whose associated queue is empty is pending because if a task calls 
get () for it, the task must wait until some other task puts some data in the queue, 

• Similarly, a queue tail whose queue is full is pending because a put () must wait, and 
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• A task that has not terminated is pending because its result is not available. 

Each class derived from object may have its own definition of the virtual pending () func­
tion. An object may have several operations that could suspend the calling task, but it can 
have only one definition of pending (). Therefore (for example) it is not possible to combine 
a queue head and a queue tail into a single object, because the former is pending when its 
queue is empty, and the latter when its queue is full. New kinds of objects, with new kinds 
of interaction can be added to the task library, with the fundamental requirement being a 
definition of pending () for the new datatype. 

task: :wait (object*) provides a way of waiting on an arbitrary object. If the argument points to a pend­
ing object, the calling task will be suspended until the object is no longer pending. If the argument is not 
pending the caller will not be suspended at all. For example, if taskp is a pointer to a task then 

wait (taskp) i 

will suspend the task executing it until the task denoted by taskp finishes. 

Each class derived from class obj ect which is ever going to be Uwaited on" must have rules specifying 
under which conditions a task executing a wait () for it will be resumed. The rules for class task, qhead, 
and qtail have been stated. 

The conditions for wakeup are reflected in state changes in the objects, and are not just transitory 
unrecorded signals. For example, if a task executes a wait () for a non-empty qhead it will immediately 
continue, that is the condition for returning from a wait () for a qhead is that the queue is non-empty, not 
a brief state change from empty to non-empty. Rules of this type simplify programming considerably by 
eliminating race conditions. 

When the state of an object changes from pending to not pending, obj ect: : alert () must 
be called for the object. This function changes the state of all tasks "remembered" by the 
object from IDLE to RUNNING and puts them on the scheduler's run_chain. Thus all such 
operations should be member functions of the object's class or a related class. For exam­
ple, in qtail: : put () , if the queue was empty, a call to alert () is made for the associated 
queue head. If it was possible to put an object on a queue without calling a member func­
tion, then there would be no guarantee that alert () would be called. 

The functions task: :waitvec () and task: :waitlist () suspend a task waiting for one of a list of objects
6 for example to wait for messages to arrive on one of a number of queue heads. waitlist (object* ... ) 1 

takes a list of object pointers terminated by a zero as argument; for example: 

qhead* qli 
qhead* q2i 
/ / ... 
short who = waitlist(ql, q2, 0); 

will suspend the task executing it until either ql or q2 is non-empty. If either is non-empty when 
waitlist () is called the task will continue immediately. 
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The value returned is the position in the list of the object that caused the return from the wait, that is if q2 
caused the task to resume the value 1 will be assigned to who. Positions are numbered starting from O. 
waitlist () can take any number of arguments. The degenerate example 

waitlist(O); 

causes unconditional suspension of the task executing it without any guarantee of later resumption. It is 
equivalent to sleep () and wait (0) . 

Please note that one should not assume that because waitlist () returns a particular value indicating one 
object as the cause of resumption none of the other objects are "ready." The value returned by 
waitlist () only indicates what is known to have happened, and it does not exclude other independent 
possibilities. 

However if waitlist () indicates a particular object, that object is guaranteed to be "ready," 
because waitlist () does not return until the object is no longer pending. 

Because every class in the task system allows non-blocking examination of the conditions which might lead 
to suspension using the three wait functions, the value returned by wait list () can always be ignored. 
The information it conveys can always be obtained by direct inquiry. In many cases, however, the value 
returned can be trusted and used to write simpler, more efficient programs. 

waitvec (), a variation of waitlist (). takes the address of a vector holding a list of object pointers. For 
example: 

object* vec[] = { ql, q2, 0 }; 
short who = waitvec(vec)i 

is equivalent to the previous example. 

System Time and Timers 
The long variable clock measures simulated time. It is initialized to zero. It is illegal to assign to clock. 

task: : de lay ( long) suspends a task for a specified time. That is, 

long t = clocki 
delay(n) i 
actual_delay = clock-t; 

will assign the value n to actual_delay. delay () is useful for representing service delays in simulations. 
While a task is delayed in this way its state is still RUNNING, but it will not be affected by the actions of 
other tasks except if cancel () or preempt () is used on it. delay (n) makes an IDLE task RUNNING so that 
it will start executing at time clock+n. 

task: : preempt () makes a RUNNING task IDLE and returns the number of time units left of its delay. 
Applying preempt () to an IDLE or TERMINATED task causes a run time error. This function is useful when 
tasks are used to represent processes in a system with preemptive scheduling and delay times are used to 
represent the time used by executing processes. The value returned by preempt () allows the preempted 
task to be re-started with a new delay time which is a function of the delay time at the time of preemption. 
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For example: 

long time_left = other_task->preempt()j 
/ / ... 
other_task->delay(time_left+10)j 

A timer provides a facility for implementing time-outs and other time dependent phenomena. 

Class timer has this declaration: 

class timer public sched ( 
pUblic: 

} ; 

timer(long)j 
-timer(); 

void reset(long); 
void print (int, int =0); 

A timer is quite similar to a task with a constructor consisting of the single statement 

delay(d); 

that is, when a timer is created it simply waits for the number of time units given to it as its argument, and 
then wakes up any tasks waiting for it. 

A timer's state can be either RUNNING or TERMINATED. This state can be inspected by using 
sched::rdstate(). 

A common use of timers is to wait for a task and a timer. For example, one can wait for the completion of 
a task handling a simulated input operation and also on a timer. The timer ensures that the waiting task 
will eventually be resumed even if the input operation is never completed:}} 

timer* tt = new timer(15); 
short res = waitlist(io-ptr,tt,O); 
switch (res) ( 
case 0: 

/* normal completion of i/o */ 

break; 
case 1: 

/* time out occurred */ 

break; 
default: 

error(IMPOSSIBLE); 
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sched: : resul t and sched: : cancel () have the same use and effects on timerS as on 
taskS. Since there is no timer: :resultis () , the value returned by sched: : result () is 
undefined for a timer unless cancel () was used. 

timer: : reset () re-sets the timer delay to the value of its argument. This makes repeated use of timers 
possible. A timer can be reset () even when it is TERMINATED. 

A unit of simulated time can be used to represent any unit of real time. Only delay () causes the clock to 
advance. 

More About Queues: Cutting and Splicing 

One of the most convenient and powerful ways of using tasks involves tasks defined to do a transformation 
on a data stream. Such a task is called a filter. It reads its input from one queue and writes its output onto 
another queue. Tasks at the "other ends" of these queues tend to view these queues plus the filter as one 
entity. The data source simply sees an output queue that is being emptied at some rate, and the task at the 
receiving end sees an input queue being filled. In other words, a task sees only its input and output 
queues and cares little about the "internal organization" of the programs that operate on the other ends of 
those queues. 

For example, one task could produce a stream of lines of characters, that is objects of class Line, and 
another expect an input stream consisting of words, that is objects of class Word. A filter that handles the 
conversion could be defined and used like this: 
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pUblic: 
Line_to_word(qhead*, qtail*); 

Word * next_word(Line*); 
} ; 

Line_to_word::Line_to_word(qhead* in_q, qtail* out_q) 
{ 

Line* 1; 
Word* w; 
for ( ; ; ) 

1 = (Line *) in_q->get(); 

} 

while(w = next_word(l)) out_q->put«object *)w); 

qhead* 
qtail* 
Producer* 
Consumer* 
Line_to_word* 

line_q = new qhead(WMODE,lO); 
word_q = new qtail(WMODE,50)i 
prod new Producer(line_q->tail()); 
cons new Consurner(word_q->head())i 
filt = new Line_to_word(line_q, word_q); 

In this way the filter f i 1 t is programmed into the path between cons and prod using two queues to 
separate filt's input from its output. 

This is a fairly static use of a filter. Often one would like to insert a filter into an existing data path. For 
example, a macro-based text formatting program could be organized as a sequence of filters - each doing 
its smaIl part of the common task. First some filters re-arrange the input into a form suitable for the for­
matter proper, then the uinput independent" formatter does its job producing output of a standard form, 
and last some output filters adjust this output to a form suitable for physical output. The task filt is an 
example of such a filter. In this scenario it would be useful to have each macro defined as a filter which 
the formatter proper inserts just in front of itself when the macro expansion is needed and which removes 
itself when it is not needed any more. Assuming that data streams are represented by queues, this can be 
achieved by using the class qhead functions cut () and splice (). 

When the task fo:rnatter recognizes a caIl to the macro foo it creates a new task of class Macro to handle 
a macro of type FOO and diverts its own input through it. This is done by first ucutting" the input queue 
to create a place to insert the new filter, and then creating the filter giving it the new qhead and qtail as 
arguments: 

The Task Library 

qhead* 
qtail* 
Macro * 

newhead = input_queue->cut(); 
newtail = input_queue->tail(); 
f = new Macro(FOO,newhead,newtail); 
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qhead: : cut () splits the queue to which it is applied into two. newhead, the pointer returned from cut () , 
denotes the qhead for the original queue and has the same mode as the original qhead. The original qhead 
is now attached to a new empty queue with the same max as the original. 

Puts to the original qtai 1 will therefore place objects on the filter's input queue, and gets from the original 
qhead will retrieve objects from the filter's output queue. 

The result of these operations has been to insert a filter with an input and an output queue into a queue 
without changing the appearance of that queue to anyone using it, and without halting the flow of objects 
through that queue. In our example the macro expansion filter foo will get () the input which would oth­
erwise have gone to the formatter, interpret it as macro arguments, and output the expanded input as its 
output. 

The filter can be removed again by splicing its input and output queues together with qhead: : splice () : 

newhead->splice(newtail); 

splice () deletes the qhead to which it is applied, the qtail given to it as an argument, and the queue 
denoted by that qtail. If the splice () operation causes an empty queue to become non-empty or a full 
queue to become non-full all tasks waiting for such a state change are resumed. 

Deleting the filter completes the cleanup: 

delete f; 

Typically a filter would remove itself when its task was completed, because the task that inserted it would 
not be programmed to be aware of the presence of the filter it inserted. The sequence of operations which 
enables a task to remove itself without a trace is: 

cancel(any_value); 
delete this; 

This will work because cancel () does not imply immediate suspension, only a guarantee that the task can­
not be resumed. 

qtail: : cut () and qtail: :splice () are similar to qhead, but they operate on the other end of the queue. 

Encapsu lation 

Passing information between tasks through queues can lead to rather tedious, repetitive (and therefore 
error prone) packing and unpacking of information into messages. Simple encapsulation techniques can be 
used to relieve the programmer of this. For example, by adding a constructor to the class Message the 
server example could be re-written thus: 
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class Message object 
{ 

public: 

} ; 

int r_operation; 
int r_arg1; 
int 
qtail* 

r_arg2; 
r_reply; 
Message(int op, int a1, int a2, qtail* rp) 
r_operation(op), r_arg1(a1), 
r_arg2(a2), r_reply(rp) {} 

Message * mess; 
rq->put(new Message(PLUS, 1, 2, rply_to»; 
mess = (Message *) rply.get(); 
if (mess->r_operation == ERROR) error(); 

Furthermore, because the message queues obviously are meant to hold only Message objects a specific mes­
sage queue could be defined and used: 

class Mqhead : qhead 
{ 

pUblic: 
Message * get() { return (Message *) qhead::get(); }; 

} ; 

class Mqtail 
{ 

qtail 

pUblic: 
int put(Message* m) { return qtail::put(m); }; 

} ; 

The use of Mqtail: : put () ensures that only class Message objects are put on the queue, and no type cast 
is needed when class Message objects are taken from the queue using Mqhead.get (). For example: 

mess = rply->get(); 

Because the body of Mqtail: : put () is present in the class Mqtail, declaration calls of Mqtail: : put () will 
be expanded inline. This ensures that using a Mqtail is no less efficient than using a qtail directly. In 
many cases some error handling can also be handled by the derived put () and get () functions. 

An alternative solution is to provide the server class with functions which handle the packing: 
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class Server : task 

qtail* inpi 
public: 

Server (char*, qhead*)i 
int plus (int, int, Mqtail *)i 

int minus (int, int, Mqtail *)i 

} i 

int Server::plus(int arg1, int arg2, Mqtail * rqt) 
{ 

Message * meSSi 

int Xi 

inp->put(new Message(PLUS,arg1,arg2,rqt»i 
mess = rqt->head()->get()i 
X = mess->r_operationi 
delete meSSi 
return Xi 

so now the server task can be requested to perform services like this: 

Mqtail 
Server 
int 
int 

qqi 
SS ( "plus_and_minus II, 0, 0) i 

two = ss.plus(l, 1, &qq)i 
ten = ss.minus(12, 2, &qq)i 

For large programs this style of inter-task communication promises not only increased clarity, but also 
increased efficiency. The message queue interaction may, where necessary, be transparently replaced by a 
specially tailored inter-task communication facility. 

These techniques are now widely applied in C++ programming, but when this paper was first 
written, they were new to c. 

Histograms and Random Numbers 

To ease data gathering class histogram is provided. 
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struct histogram 
II "nbin" bins covering the range [l:r] unifonnly 
II nbin*binsize r-l 
{ 

} i 

int 1, ri 

int binsizei 
int nbini 
int* hi 
long sumi 
long sqsumi 

histogram(int=16, int=O, int=16)i 
void add(int); 
void print(); 

A histogram consists of nbin bins h[O], ... h[nbin-1] covering a range [l:r] of integers. The func­
tion add () adds one to the correct bin for its integer argument. The sum of the integers added is main­
tained in sum, and the sum of their squares is maintained in sqsum. If an argument to add () is outside the 
range [1: r] the range is adapted by either decreasing 1 or increasing r. The number of bins remains con­
stant so the size of the range covered by a bin is doubled each time the size of the range [1: r] is. The 
print () function prints out the numbers of entries for each non-empty bin. 

In most simulations some form of random number generation is needed. The generators provided here are 
intended to help the developer of a simulation to get started and to provide a paradigm for generators of 
more suitable distributions. 

class randint 
II uniform distribution in the interval [O,MAXINT_AS_FLOAT] 
{ 

pUblic: 

} ; 

long randx; 

void 
int 
float 

randint(long s 
seed(long s); 
draw ( ) ; 
fdraw() ; 

0) ; 

The following program shows the use of class randint. The ints returned by randint: : draw ( ) are uni­
formly distributed in the interval [0: largestJ)Ositi ve_int]. The floats returned by 
randint: :fdraw() are uniformly distributed in the interval [0:1]. 
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main () 
{ 

randint ir; 
register i; 
for (i=O; i<100; i++) 

printf (" i=%d f=%f ", ir .draw(), ir. fdraw() ) ; 

Each object of class randint provides an independent sequence of random numbers. randint:: seed ( ) 
can be used to reinitialize a generator. The draw() function calls the underlying C library rand(3). Using 
class randint, generators for other distributions are easily programmed. Note that erand: :draw() calls 
log () from the math library, so a program using it must be loaded with -1m. 

class urand : public randint 
II uniform distribution in the interval [low, high] 
{ 

pUblic: 

} ; 

int low, high; 
urand(int 1, int h) { low=l; high=h; } 

int draw() { return int(low + (high-low) * 
(O+randint::draw()/MAXINT_AS_FLOAT»; 

class erand : public randint 
II exponential distribution random number generator 
{ 

pUblic: 

} ; 

int mean; 
erand(int m) { mean=m; }; 

int draw(); 

Implementation Details 

The following sections contain many implementation-dependent details. The implementation described is 
the UNIX version. Implementation-dependent information is unfortunately often necessary to allow tuning 
and ease debugging. 

2-22 library Manual 



A Set of C++ Classes for Co-routine Style Programming 

Task Stack Allocation 

The two arguments mode and stacksize allow the user to guide the system's handling of the task. Their 
exact interpretation is implementation dependent. Users who are not interested in implementation details 
and/or want a more portable program should set them both to zero. The system will then choose (hope­
fully reasonable) implementation-dependent default values. 

The stacks i ze argument indicates the maximum amount of stack storage that the task is allowed to use. 
Using more is an error. It will be expressed in a unit of store (typically machine words) suitable for stack 
allocation on the host system. 

The mode provides additional information. The value SHARED indicates that the stack space should be 
taken from the stack space of the parent task, that is the task which created the new task. Where SHARED 
stacks are used the active part of the stack is copied to a save area when a task is suspended, and copied 
back when it is resumed. Since SHARED stack locations are not dedicated to a single task pointers to local variables 
should not be passed to other tasks. The time needed to suspend and resume a task with SHARED stack is 
approximately proportional to the amount of stack space actually used at the time of suspension. 

If, on the other hand, the mode is DEDICATED then a new and separate stack area is allocated, and no copy­
ing of stack space will occur. 

Scheduling 

Functions of a system class, known as the scheduler, are invoked as the result of any function of class task 
which causes the suspension of a running task, and may be invoked by any function from the standard 
classes described here. The scheduler selects the next task to run. When the scheduler finds no more tasks 
to run, and there are no interrupt_handlers, it examines the pointer variable exit_fct, and if this is 
non-zero the scheduler will call the function denoted by it. 

Whenever clock is advanced the scheduler examines the pOinter variable clock_task. If this denotes a 
task, then that task will be resumed before any other task. The clock_task must be IDLE when resumed 
by the scheduler. The class task function sleep () is useful to ensure this. 

Debugging and Tuning Aids 

The task system has been designed under the assumption that a typical use of tasks may involve hundreds 
of tasks and need tuning to achieve an acceptable time-space tradeoff. The task of debugging such a sys­
tem can safely be assumed to be non-trivial. 

Classes were used in the implementation of the task system largely because they allow the scope of data 
and functions to be explicitly restricted to the object to which they belong. This allows better type checking 
of a multi-threaded program than could be achieved by a function-based implementation. The classes 
which constitute the task system were designed to allow quite strong type checking of programs using 
them. 

A number of run time errors are detected by the task system. For example it is illegal to delete a queue 
on which a task is waiting. When such a run time error is detected the task system function 
obj ect : : task_error is called with the number of the error and the this pointer of the object which 
caused the error as arguments. A list of run time errors appears under "Run-Time Errors." task_error ( ) 
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will in turn examine the pointer error_fct, and if this is non-zero call the function denoted by it with a 
copy of its own arguments. function Otherwise task_error () will call the system function exit () with 
the error number as argument. 

When returning from task_error () after executing an error_fct which returned rather than using 
exit () the task system will re-try the operation which caused the error (provided that error_fct could 
have affected the condition which caused the error). For example, a put () to a qhead will be re-tried 
because the user's error_fct might have either caused the get () function to be used on the queue, or 
used chmax () to allow more objects to be inserted into that queue. 

This error handling mechanism is primarily designed for debugging and it is expected that 
user error functions will print some appropriate error message and exit. 

Beware of infinite loops. 

All task system classes have a function print () which can be used to print the contents of their objects on 
stdout. A print () function takes an int argument indicating the amount of information to be printed. 
print ( 0) gives the minimum amount of information, print (VERBOSE) rather more, and print (CHAIN) 
will call print () for objects on lists associated with the object with its own arguments. The print () argu­
ment constants can be combined by the or operator. For example 

thistask->print(VERBOSE); 
run_chain->print(VERBOSEICHAIN); 

will verbosely describe every non-TERMINATED timer and every RUNNING task. For tasks information about 
the run time stack is printed by print (STACK). If the variable _hwm is set to a non-zero value, 
print (STACK) will also give an estimate of the maximum amount of stack space ever used by the task, the 
stack' s Uhigh water mark." For tasks that share a stack, the high water mark printed will be the high water 
mark of the most greedy task. For example, information describing stack usage for all tasks can be printed 
by: 

task_chain->print(STACKICHAIN)i 

The output of the print () functions is implementation-dependent and hopefully self-explanatory. 

Overheads and Performance 

The store used for representing a class object in addition to the user specified data is: 

object 3 words 
timer 5 words 
task 18 words + stacksize 
queue 15 words (including the qhead and the qtail) 

The times needed to execute some of the task system functions are (very) approximately: 
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C procedure call + return 1 unit 
task suspend + resume 9 units (using resultO) 
put 2 units 
get 2 units 
wait, waitvec, or waitlist 3 units 

The last four actions can all cause a task to be suspended. When this happens add 6 units of time. 

For timing results relative to UNIX process switching, see "Extending the C++ Task System 
for Real-Time Control." 

The task system uses about 15K bytes of store for program and data, but much of this is redundant virtual 
function tables that will be eliminated in a future version of the C++ compiler. 

The obj ect Class 

The task system as described above is implemented using a lower level of abstraction based on the direct 
use of the class obj ect . Class obj ect can also be used as a base for other (user defined) abstractions, but 
beware, it is an implementation tool that is not intended to be used directly. 

Class obj ect is a base class for all classes in the task system and also the most basic facility for inter-task 
communication. The declaration of class obj ect looks like this: 

class object 
{ 

friend sched; 
friend task; 

olink* 
pUblic: 

object* 
virtual int 

o_next; 
o_type(); 
object() { o_link=O; o_next=Oi } 
-object(); 

void 
void 

remember(task* t) { o_link = new olink(t,o_link); 
forget(task*); II remove all occurrences of task from chain 

} i 

void 
virtual int 
virtual void 

alert(); II prepare IDLE tasks for scheduling 
pending(); II TRUE if this object should be waited for 
print (int, int =0);11 first arg VERBOSE, CHAIN, or STACK 

The task system implements objects of type TASK, QHEAD, QTAIL, and TIMER. 

Virtual functions make it unnecessary to ever test the type of an object. The virtual function 
o_type () is never called. 
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A task can be added to the set of tasks "remembered" by an object by executing obj ect : : remember () and 
a task can be removed from this set by executing obj ect: : forget (). Executing obj ect : : alert () has the 
effect of transferring all IDLE tasks remembered by the object to the run_chain and the RUNNING state. 

The virtual function obj ect: : pending () provides the "glue" that allows new kinds of 
objects and new communication protocols to be added to the task system. The object may 
have any kind of operation that may cause the invoking task to wait, but it must implement 
its own version of pending () to tell whether the operation would cause a wait. 

A task can be IIremembered" by several objects or several times by the same object without any ill effects. 
forget () will insure that its argument is not "remembered" any more, and it causes no bad effects when 
used for an object that does not "remember" its argument task. No record is kept of how many alert ( ) 
operations have been executed on an object. alert () does not cause an object to forget () tasks. Execut­
ing a remember () does not suspend a task. Applying alert () to an object that does not remember any 
tasks is legal, but has no effect. Caveat emptor! 

The functions object: : remember (), object: : forget (), object: : pending () , and object: : alert () 
provide a simple, efficient, but unstructured and therefore error-prone communication mechanism. 

The declarations for the task system classes can be found in /usr/include/CC/task.h on systems where it 
is implemented. 

Run Time Errors 
When an error is detected at run time, task_error () is called. This function will examine error_fct and 
if this variable denotes a function, that function will be called with the error number and this as argu­
ments, otherwise the error number will be given as an argument to print_error () which will print an 
error message on stderr and terminate the program. 

E_OLINK 
E_ONEXT 
E_GETEMPTY 
E_PU'IDBJ 
E_PUTFULL 
E_BACKOBJ 
E_BACKFULL 
E_SETCLOCK 
E_CLOCKI DLE 
E_RESTERM 
E_RESRUN 
E_NEGTIME 
E_RESOBJ 
E_H I STO 
E_STACK 
E_STORE 
E_TASKMODE 

2-26 

Attempt to delete an object which remembers a task. 
Attempt to delete an object which is still on some chain. 
Attempt to get from an empty queue in E_MODE. 
Attempt to put an object already on some queue. 
Attempt to put to a full queue in E_MODE. 
Attempt to putback an object already on some queue. 
Attempt to putback to a full queue in E_MODE. 
Clock was non-zero when set clock () was called. 
The clock task was not IDLE when the clock was advanced. 
Attempt to resume a TERMINATED task. 
Attempt to resume a RUNNING task. 
Negative argument to delay ( ) . 
Attempt to resume task or timer already on some queue. 
Bad arguments for histogram constructor. 
Task run time stack overflow. 
No more free store - new () failed. 
Illegal mode argument for task constructor. 
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E_TASKDEL 
E_TASKPRE 
E_TIMERDEL 
E_SCHTlME 
E_SCHOBJ 
E_QDEL 
E_RESULT 
E_WAIT 
E_FUNCS 
E_FRAMES 
E_REGMASK 

E_FUOOE_SIZE 
E_NO_HNDLR 
E_BADSIG 
E_LOSTHNDLR 

Attempt to delete a non-TERMINATED task. 
Attempt to preempt a non-RUNNING task. 
Attempt to delete a non-TERMINATED timer. 
Scheduler run chain is corrupted: bad time. 
Sched object used directly instead of as a base class. 
Attempt to delete a non-empty queue. 
A task attempted to obtain its own result (). 
A task attempted to wait () for itself to TERMINATE. 
Internal error - cannot determine the call frame layout. 
Internal error - cannot determine frame size. 
Internal error - unexpected register mask. 
Internal error - fudged frame too big. 
No handler for the generated signal. 
Attempt to use a signal number that is out of range. 
Signal handler not on chain. 

A Program Using Tasks 

#include <task.h> 

/* trivial test example: 

*/ 

make a set of tasks which pass an object round between themselves 
use printf to indicate progress 
WARNING: this program sets up an infinite loop 

class pc task 

pc (char*, qtail*, qhead *)i 

} i 

pc::pc(char* n, qtail* t, qhead * h) : (n,O,O) 
{ 

main () 
{ 

printf (" new pc (%s, %d, %d) \n" , n, t, h) i 

while (1) ( 
object* p = h->get()i 
printf("task %s\n",n)i 
t->put (p) i 

qhead* hh new qhead; 
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qtail* 
qhead* 
short 

t = hh->tail()i 
h; 
i; 

printf ("main\n") ; 

for (i=O; i<20i i++) 
char * n = new char[2]; /* make a one letter task name */ 
n[O] 'a'+i; 
n[l] = 0; 

h = new qhead; 
new pc (n, t, h) ; 
printf ("main () , s loop\n ") ; 
t = h->tail(); 

new pc (" first pc II , t, hh) ; 
printf ("main: here we go\n"); 
t->put(newobject); 
printf (llmain: exit\n"); 
thistask->resultis(O); 
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Extending the C++ Task System for Real-Time Control 

~ This section is taken from a paper by Jonathan E. Shopiro. 

y 
Abstract 

The task system for coroutine programming was one of the first libraries written in C++ and it has served 
admirably in several applications. It is small, efficient, and easy to use. As part of a robot control project, 
it was extended to support real-time control. The new task library is more robust, more easily extendible, 
and more portable than the original. It is upward compatible, so that programs written for the old task 
library can still be used. This section documents the new features and the internal structure of the revised 
system, and is intended for users of the task library and for authors of other coroutine systems. 

Overview 

The C++ task library is a coroutine12 support system for C++. A task is an object with an associated corou­
tine. The task library includes a scheduler that enables each task to execute just when it has work to do, 
and to wait when necessary for whatever is needed. 

Programming with tasks is particularly appropriate for simulations, real-time process control, and other 
applications which are naturally represented as sets of concurrent activities. A task can represent a simple 
part of a complex system, and when the task gains control, it can process its current input data, perhaps 
creating other data that will be processed by other tasks. It can then relinquish control, waiting for more 
input or an external event. 

In a program using the C++ task system, all tasks share the same address space so that pointers can be 
passed between tasks, and it is easy to share common data structures. Also, the scheduler is non­
preemptive, so that each task runs until it explicitly gives up the single processor, and only then does the 
scheduler choose a new task to run. This eliminates the need for locks on shared data (which would be 
required if preemptive scheduling or multiple processors were used) and allows task-switching to be 
accomplished with low overhead, but requires the programmer to be careful that no task monopolizes the 
processor. 

The rest of this section is an overview of control flow in the task system along with a brief note on task sys­
tem performance. The section l'Real-Time Extensions" describes the interrupt handler class and how it can 
be used to provide real-time response to external events. Familiarity with C++ is assumed. 

The Structure of the Task System 

Control in the task si'stem is based on a concept of operations which may succeed immediately or be 
blocked, and objects1 which may be ready or pending (not ready). When a task executes a blocking opera-
tion on an object that is ready, the operation succeeds immediately and the task continues running, but if 
the object is pending, the task waits. Control then returns to the scheduler, which chooses the next task 
from the run chain, a list that contains all the tasks that are ready to run (not waiting or terminated). For 
example, a queue head is ready when the associated queue has data, and get (which extracts an item from 
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the queue) is a blocking operation for queue heads. Similarly, put is a blocking operation for queue tails, 
which are ready unless the associated queue is full. 

Each different kind of object can have its own way of determining whether it is ready or not, which makes 
it easy to add new capabilities to the system. On the other hand, each kind of object can have only one cri­
terion for readiness (although it may have several blocking operations), so it is not possible for one object 
to act as both a queue head and a queue tail, for example. 

Each object contains a list (the remember chain) of the tasks that are waiting for it. When any operation 
changes the state of a pending object so that it becomes ready, those tasks are moved to the run chain; this 
is called an alert. Thus the cycle is: a task runs until it blocks; it is saved on the remember chain of one or 
more pending objects; some other task or an interrupt alerts the object; the original task is moved to the 
run chain; eventually the task runs again. 

Task System Performance 
The fundamental operations of the task system are task creation and task switching. In order to make a 
meaningful evaluation of their performance, equivalent programs using tasks and UNIX Operating System 
processes were written. These programs are given under ''Example Programs." Each of the first pair of 
programs (tereate.e and uereate .e) repeatedly creates new trivial tasks (processes) and waits for them 
to terminate. Each of the second pair of programs (tswiteh.e and uswiteh.e) creates a single child task 
(process) and repeatedly exchanges control with it through a pair of semaphores (see under uSemaphores") 
in the task version, and through UNIX signals in the process version. The programs were run on a SUN 
3/280 under 4.2 BSD, using the free store allocator (malloe. e) from Ninth Edition UNIX, which is much fas­
ter than the one supplied with 4.2 BSD. The results were that tereate. e was 37 times faster than 
uereate.e, and tswiteh.e was 10 times faster than uswiteh.e. 

It is important to note that the task system and the UNIX Operating System are not equivalent and that the 
results of these performance measurements do not imply that the task system is 23.5 times better than 
UNIX. Among the significant differences between tasks and processes are the following. 

• A set of tasks runs as a single UNIX process. The task system relies on the UNIX Operating System 
for I/O, memory management, etc. 

• Tasks share an address space, while processes have separate address spaces. This means that tasks 
can share data by simply passing pointers, while processes must go through one of several much 
more complex and expensive procedures to share data. By the same token, tasks can interfere with 
each other as easily as they can cooperate, while errant processes usually kill only themselves. 

• The task system can support two or three orders of magnitude more concurrent tasks (especially with 
the SHARED option; see "Task Switching") than the UNIX Operating System can support processes. It 
is not uncommon for a simulation to require thousands of tasks. 

The memory required for the task system is about 14,000 bytes for code and data, plus about 70 bytes per 
task, plus stack storage for each task. By default each task has its own stack buffer with a default size of 
3000 bytes, but tasks can share a stack buffer and then storage is required only for the active stack of each 
task (typically 50 to 100 bytes). This option is very useful for applications with thousands of tasks. Queues 
occupy 60 bytes (including both head and tail) plus the size of whatever is stored on the queue. Lists of 
tasks are maintained in various places, for example the run chain and remember chains; each occurrence of 
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a task on a list adds 8 bytes to the total memory requirement. 

Real-Time Extensions 

The application that motivated this work on the task system was a control system for two robots operating 
in the same workspace. The most important requirement of this application that was not fulfilled by the 
original task system was the need for tasks to wait for external events. For example, after a motion com­
mand was sent to a robot, the task that sent the command needed to wait for the interrupt that was gen­
erated by the robot hardware when the command was complete or had failed. A related requirement of 
some real time systems is to respond to external events in a timely manner, for example to retrieve data 
from an unbuffered external device. Also, in the original task system, the scheduler would exit when the 
run chain was empty. This is inappropriate in a system that is intended to respond to external events 
because some task might become runnable after an interrupt. 

Hardware interrupts are handled differently by different machines and operating systems, so the interface 
to the task system must also vary. For didactic reasons, the version described here is for the UNIX Operat­
ing System using signals as interrupts, but it should be clear how to adapt it to other environments. 

In the task system events that can be waited for are represented by instances of class obj ect or derived 
classes. When the function obj ect : : alert () is called, the tasks that were waiting for that object are made 
runnable. A natural solution to the problem of waiting for external events was to define a new kind of 
object to represent external events, and when such an event occurs, to call obj ect: : alert () for the 
appropriate object. These objects are called interrupt handlers. 

class Interrupt_handler : public object { 
int id; II signal or interrupt number 
int got_interrupt; II an interrupt has been received but not alerted 
Interrupt_handler *oldi II previous handler for this signal 
virtual void interrupt() {}/I runs at real time 

pUblic: 
int pending(); II FALSE once after interrupt 
Interrupt_handler(int sig_num); 
-Interrupt_handler() ; 

} i 

After an interrupt handler is created, a task can wait for it, exactly as for any other object. When the inter­
rupt occurs, the handler's interrupt () function will be executed immediately, or rather, as soon as the 
operating system can route the interrupt to the process. When the interrupt function returns, control will 
resume at the point where the current task was interrupted. 

At the next entry to the scheduler, when the currently running task blocks, a special task, the interrupt 
alerler, will be scheduled. This task alerts the handler (and any other handlers that have received interrupts 
since it was last scheduled). Thus the waiting task becomes runnable. As long as any interrupt handler 
exists, the scheduler will wait for an interrupt, rather than exiting when the run chain is empty. The pend­
ing function for an interrupt handler always returns TRUE except the first time it is called after an interrupt 
occurs. 
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Interrupt_handler: : interrupt () is a null function, but since it is virtual, the programmer can specify 
the action to be taken at interrupt time by simply defining an interrupt () function in a class derived 
from Interrupt_handler. An example is given under IIInterrupts." In this way real-time response can be 
obtained without resorting to a preemptive, priority-based scheduler which would be more complex and 
less efficient, and would require locking of shared data structures. 

Avoiding Interference 

Whenever shared data structures are manipulated by concurrent processes, there is the potential for 
interference, where one process is in the middle of modifying a data structure and another process accesses 
it and finds it in an invalid state. Segments of code that access shared data structures are called critical 
regions.14 If more than one process can be in a critical region at one time, there is a potential for interfer-
ence. 

Interference is easy to avoid in the task system, because of the non-preemptive nature of the scheduler. 
There are only two ways in which interference can arise: a task switch occurring within a critical region, or 
an interrupt routine that accesses shared data. 

It is almost always possible to write code so that no operation that could cause a task to block is inside a 
critical region. The style of programming where coroutines share information by sending messages to each 
other in the form of objects on queues typically leads to programs where there are no shared data struc­
tures or critical regions at all. Even if coroutines must share access to a data structure and alternately 
modify it, no problems will arise if the routines that do the modification refrain from operations that could 
cause the task to block. A properly modular program will generally satisfy this requirement without any 
extra effort. 

Semaphores 
If, for some unusual reason, it is necessary to put an operation that could cause the task to block in a criti­
cal region, then the affected data structure should be protected by a semaphore, which will allow only one 
task at a time to access the object. The following example code outlines this technique. 

class My_data ( 

pUblic: 

} ; 

Semaphore sema; 
II user data 

void 
void 

lock() { sema.wait(); } 
unlock() { sema.signal(); 
My_data() : sema(l) { ... II see note 

Each critical region must begin with a call to My_data: : lock () for the object to be accessed, and end with 
a call to My_data: : unlock ( ). This will ensure that no interference occurs, even if the operations in the 
critical region cause the task to block.lS 

The implementation of semaphores using the task system is easy. 
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class Semaphore 
int 

pUblic: 

public object { 
sigs; II the number of excess signals 

Semaphore(int i =0) { sigs = i; } 
int pending() { return sigs <= 0; } 
void wait () ; 
void signal() { if (sigs++ == 0) alert(); } 

} ; 

void 
Semaphore: : wai t ( ) 
{ 

for (;;) 

} 

if (--sigs >= 0) 
return; 
sigs++; 
thistask->sleep(this); 

Semaphores are useful tools for building other kinds of synchronization besides mutual exclusion. For 
example, whenever one task wants to wait for an operation to be completed by another task, it can wait on 
a semaphore. 

Interrupts 
The other case where interference can occur is a little more complex. The interrupt () routine of an 
Interrupt_handler can be executed at any time, and it would be contrary to the reason for its existence to 
lock it out. The mechanism that alerts the handler after the interrupt has occurred is carefully designed to 
be safe from interference, and sometimes the alert is all that is necessary for an application. If it is neces­
sary to gather data from an external device immediately after an interrupt occurs, but the interrupts do not 
come in rapid succession (for example, the next interrupt won't occur until after the device is reset), the 
interrupt routine can save the data and the task that is waiting for the interrupt can process the data before 
resetting the device. In this case even though the data is shared, the interrupt routine cannot access the 
data at the same time as the task. 

Sometimes, however, it is necessary to handle interrupts that can come in rapid succession, with a require­
ment to gather data at each interrupt, so that several interrupts may occur before the task that will process 
the data can be scheduled, and more interrupts may occur even while the task is running. This problem is 
best handled by establishing a queue of the interrupt data records. Then the only shared data between the 
interrupt handler and the task processing the data can be the queue head and tail pointers, which can be 
atomically updated. In the following toy example, the interrupt routine records the value returned by an 
arbitrary function, get_data ( ) , each time the signal SIGINT is sent. A waiting task is then scheduled and 
prints all accumulated data. 
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class Delete_handler : public Interrupt_handler ( 

pUblic: 

} i 

void interrupt()i 
int* 
int* 
int* 
int* 

localqi 
local<Lendi 
local<Lhi 
local<Lti 

II data buffer beginning 
II data buffer end 
II queue head 
II queue tail 

int getX(int&)i II the next item, if any 
Delete_handler(unsigned local_<Lsize =5)i 

-Delete_handler() { delete [local<Lend - localq] localqi } 

The delete handler (so called because SIGINT is normally sent when the user presses the ( DELETE) key) is 
an interrupt handler that maintains a local queue of data. Its interrupt function will put data on the local 
queue, using local<Lt, the queue tail pointer, and its getX () function is used by a task to retrieve the 
data. 

Delete_handler::Delete_handler(unsigned local_<Lsize) 
(SIGINT) II base class constructor arg 

local<Lt local<Lh = localq = new int[local_<Lsize]i 
local<Lend = &localq[local_~ize]; 

The constructor initializes the local queue. The size of the local queue determines how many interrupts can 
be awaiting processing. 

void 
Delete_handler::interrupt() 
( 

register int* p = local<Lti 
*p = get_data () i 

if (++p == local<Lend) p = localqi 
if (p 1= local<Lh) 

local<Lt = Pi 
else error ("Overflow") i 

II no overflow 

The interrupt function assumes that local<Lt points to an available slot in the queue and puts the real­
time data there. It then checks for overflow and updates local<Lt to point to the next available slot if it's 
okay or calls an error function otherwise. 
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int 
Delete_handler::getX(int& ans) 
{ 

register int*p = local~h; 
if (p -- local~t) 

return 0; 
ans = *p; 
if (++p == local~end) p localq; 
local~h = p; 
return 1; 

The function getX () assigns the next datum to its argument and returns "I," or returns "0" and leaves its 
argument alone if no data is available. A call to getX () may be interrupted, but it has been designed so 
that no corruption of the queue will result. 

class Delete-printer : public task 
Delete_handler*handler; 

pUblic: 
Delete-printer(); 

} ; 

Delete-printer () is a task that will create a Delete_handler and print whatever data is received. 

Delete-printer::Delete-printer() 
handler(new Delete_handler) 

for (i i) 

} 

wait (handler) ; 
inti; 
while (handler->getX(i» 
cout « i « lI\n ll i 

Note that each time the printer task is scheduled, it prints all the available data from the delete handler. 

Implementation Details 
The approach taken was to minimize the impact to the scheduler and to isolate as much as possible the 
machine and operating system dependent parts of the implementation. There is a system-dependent func­
tion, sigFunc ( ) , which catches each signal for which an Interrupt_handler exists. When the signal is 
sent, sigFunc () calls the appropriate interrupt () function. It then atomically puts the address of a dedi­
cated alerter task in a static, private cell of the scheduler and rearms the signal and returns. At the next 
entry to the scheduler, that cell is checked and if it is non-zero, the alerter task is scheduled. The alerter 
task alerts all pending interrupt handlers and returns to the scheduler. Tasks that were waiting for inter­
rupt handlers are then eligible to run. 
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The other system-dependent parts of the implementation are the constructor and destructor for class 
Interrupt_handler. Its constructor takes the signal number as argument (it might be an interrupt vector 
address in another system). If some other interrupt handler already existed for that signal, it is saved (and 
alerted if it was pending), and otherwise the UNIX system function signal () is called to associate sig­
Func () with the signal. The destructor undoes the action of the constructor, restoring the previous signal 
routine if necessary. 

Example Programs 

tcreate.c 

The following program repeatedly creates a task and waits for it to terminate. It would be possible to time 
creation of new tasks without waiting for them to terminate, but because of the limited number of 
processes that can exist under the UNIX system, the corresponding UNIX system program would fail. 

2-36 

#include "task.h" 

class Child : public task 
{ 

pUblic: 
Child (int) ; 

} ; 

Child: :Child(int i) 
("Child" ) 

main () 
{ 

resultis(i); 

II user task declaration 

II task constructor declaration 

II user task constructor definition 
II argument to base class constructor 

II terminate task execution 

for (register int i = 10000; i--; ) { 
Child* c = new Child(i); II create a task 
c->result(); II wait for it to terminate 
delete c; II clean up 

thistask->resultis(O); II exit from main task 
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ucreate.c 

The following C program repeatedly forks a UNIX process and waits for it to terminate. 

main () 
{ 

tswitch.c 

register int ii 
for (i=10000; i--; 

if (fork() == 0) 
exit(O); 

else 
wait ((int*) 0) ; 

II child process 

II parent process 

The following program uses two semaphores (described under HSemaphores") to alternate control between 
a parent and child task. 
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#define K 10000 
#include "task.h" 

class Child : public task 

pUblic: 

} ; 

Semaphore sema1; 
Semaphore sema2; 

Child: : Child () 
("Child" ) 

Child() ; 

II for signals from main to Child 
II for signals from Child to main 

for (register int n = K I 2; n--; ) ( 

main () 
( 

sema1.wait(); II wait for a signal from main 
sema2.signal(); II send it back 

resultis(O); 

new Child; 
sema1.signal(); II send the first signal 
for (register int n = K I 2; n--; ) ( 

sema2.wait(); II wait for a signal from Child 
sema1.signal(); II send it back 

} 

thistask->resultis(O); 

uswitch.c 

The following C program uses a UNIX system signal to force alternation between two UNIX system 
processes. The program is a little strange in that its main routine consists of an infinite loop of pause ( ) 
calls. Unfortunately the utility of wait () and pause () for signal handling is limited because it is always 
possible that a signal has been received just as the wait () or pause () is being executed. 
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#include <signal.h> 
#define KI0000 
int otherpid; 
int received; 
int child; 
void 
sig() 

signal (SIGTERM, sig); 
received++; 

Extending the C++ Task System for Real-Time Control 

/* signal-catching routine. called */ 
/* when a signal is received */ 

/* arrange to catch the next signal */ 

if (child && received >= K/2) exit(); 

main() 
{ 

real_timer.c 

kill (otherpid, SIGTERM); /* send it back */ 
if (!child && received >= K/2) exit(); 

signal (SIGTERM, sig); 
if «otherpid = fork()) == 0) { 

otherpid = getppid()i 
child = 1; 
kill (otherpid, SIGTERM); 

for (; i) 
pause(); 

/* 
/* 
/* 
/* 
/* 

arrange to catch the signal 
create the child process */ 
get parent process id */ 
this is the child */ 
send the first signal */ 

*/ 

In addition to the robot application, the system was implemented on the UNIX Operating System using sig­
nals as interrupts. A class Real_timer, modelled on the original class timer was built. 
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class Real_timer : public object { 
friend class Alarm_handler; 

pUblic: 

} i 

int 
long 
void 
void 
void 

int 
void 
void 

state; 
time; 
insert(long)i 
remove()i 
resume()i 

Real_timer(long)i 
-Real_timer () i 

pending()i 
reset(long); 
print (int, int =0); 

I I RUNNING, IDLE, TERMINATED 
II initially delay, then alarm time 
II put on chain 
I I remove from chain & make IDLE 
II called when time is up 

Instead of simulated clock ticks, class Real_timer measures time in seconds. It is based on the following 
handler for the alarm signal and a task that maintains the list of unexpired Real_timer instances. 
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class Alarm_handler : public task ( 
friend Real_timer; 

pUblic: 

} ; 

Real_timer* 
Interrupt_handler* 
void 
void 

chain; 
bell; 
add_timer(Real_timer*); 
remove_timer(Real_timer*); 

Alarm_handler(); 

alarm_handler; 1/ the only instance 

Alarm_handler::Alarm_handler() 
( "Alarm_handler" ) I chain ( 0 ) 

sleep(); 
for (; ;) { 

for (long now = time(O); chain && chain->time <= now; 
chain = (Real_timer*)chain->o_next) 

chain->resume(); 1/ alert the timer 
if (chain) ( 

} else ( 

alarm(chain->time - now); 
wait (bell) ; 

bell->forget(thistask); 
delete bell; 
sleep () ; 

The Interrupt_handler pointed to by Alarm_handler: :bell only exists while there are pending 
Real_timer objects. The Alarm_handler task runs after an alarm signal, and after alerting any timers that 
have expired, if there are any unexpired timers, it resets the alarm and waits. 
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~ This section is taken directly from a paper by Stacey Keenan. 

9 
Introduction 

The c++ coroutine library, commonly known as the task library after its header file, task.h, provides mul­
tiple threads of control within one UNIX system process. Each thread of control is a coroutine, or task, and 
each task runs until it explicitly gives up the processor; there is no pre-emption. Implementing concurrency 
requires knowledge of hardware-dependent and compiler-dependent runtime features, especially calling 
sequence and stack frame layout; hence the library is target-dependent and must be ported explicitly to 
each supported compiler/processor platform.16 The target-dependent parts of the library are isolated in 
four files. Release 3.0 of the C++ Language System supplies the task library for the AT&T 3B20, AT&T 
WE32000 family (e.g., 3B2, 3B15), AT&T 6386 WGS and DEC VAX processors, and the Sun-2 and Sun-3 
Workstations (Sun compilers on Motorola 68000 family processors). 

This paper describes the implementation of the task library, with particular emphasis on task creation and 
task switching, where target-dependent code is needed. The existing implementations for the 3B, VAX, and 
Sun Workstation processors are used as examples.17 The scope of this paper is limited by the similarity of 
the runtime models supported by these targets. Targets diverging from these models, like mainframe or 
RISC-style processors, are likely to present porting difficulties not addressed in this paper. It is assumed 
that the reader has access to the source code for the library. This paper does not describe how to use the 
task library; see II A Set of C++ Classes for Co-routine Style Programming" and l'Extending the C++ Task 
System for Real-Time Control" for user-level information. I~ask Switching Fundamentals" provides back­
ground needed to understand the workings of the task library. uImplementation of Task Switching" 
describes how the task library creates new tasks and switches among them, including details about the 
target-dependent functions swap () and fudge_return (). The final sections discuss source file organiza­
tion and miscellaneous hints for porting the library. 

Task Switching Fundamentals 

The c++ task library provides non-preemptive scheduling for tasks. A task runs until it explicitly gives up 
the processor to allow another task to run. Typically, a task will give up the processor when it tries to per­
form an action that cannot yet be done, for example, if it tries to put an oblect on a full queue, or to get an 
object from an empty queue. When this happens, the task is put to sleep. 1 The scheduler then chooses to 
run the next task on the ready-to-run list, sched: : runchain. 

When a task is put to sleep, or suspended, the task system must save the state of the task so that it may be 
resumed later. On the targets described here, this involves saving the task's stack and hardware registers, 
including the non-volatile registers and the frame pointer (and the argument pointer on some targets). A 
task switch is the process of saving the state of one task, and restoring the state of another. 
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Stack Frames 

Some familiarity with the C runtime environment and the target implementation of stacks is needed to 
understand the details of task creation and switching. A C function call sets up a new stack frame for the 
function. A stack frame contains the arguments to the function, the saved hardware state of the calling 
function, and any automatic variables used by the function. Figure 2-1 illustrates the stack frames built on 
the 3B2, the V AX, and the Sun-2/3 targets for a function called with three arguments and saving four regis­
ters. These stack frames are described here to provide a base for later discussions on the internals of the 
task library. 

On a 3B2, the argument pointer (ap) points to the start of the arguments to the function, the frame pointer 
(fp) points to the start of the automatics of the function, and the stack pointer (sp) points to the next avail­
able space in the stack. The caller's registers are saved between the arguments and the automatics. Previ­
ous stack frames can be accessed via the frame pointer: The old frame pointer, argument pointer, and pro­
gram counter (pc) are always a fixed distance below the frame pointer. Stacks grow up, toward higher 
memory addresses. 

On a VAX, stacks grow down, toward lower memory, although the figures in this paper will show the low 
memory on top and relative positions on the stack will be described in terms of the pictures (e.g., above 
means higher in the picture, at a lower memory address). The argument pointer points to a longword con­
taining the number of arguments that have been pushed on the stack. Arguments are pushed in reverse 
order, so that the first argument is stored one word below the ape The frame pointer points to a condition 
handler, above which are the automatics of the function. The stack pointer points to the last assigned word 
in the stack. The word just under the frame pointer contains a procedure entry mask, which tells which 
registers were saved in the frame. Saved user registers and the old frame pointer, argument pointer, and 
program counter are stored between the argument and frame pointers. 
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Figure 2-1: Stack Frames on a 382, a VAX, and a Sun-2/3 for a Function Taking 3 Arguments and Saving 4 
Registers 
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The stack on the Sun-2/3 Workstation grows down, toward lower memory. This target has no argument 
pointer. Arguments, saved registers, and automatics are all referenced as offsets from the frame pointer. 
Arguments are pushed on the stack in reverse order, followed by the return pc and the old frame pointer. 
The frame pointer points at the old frame pointer. Space for automatics is reserved above the frame 
pointer. Saved registers are pushed after the reserved space, and the stack pointer points to the last saved 
register. The 68000 processor has both data (dx) and address (ax) registers. In this example, two of each 
type are saved. 

On entry, a function first saves all the registers that it might use.19 On function exit, the same number of 
registers are restored from the register save area of the stack frame. On some targets, like the V AX, stack 
frames are self-describing: one can tell how many registers are saved in the frame (and where they are) 
from the frame itself (by looking at the entry mask). Thus, the function return sequence on a VAX consists 
of a single, simple instruction: ret. The 3B and Sun-2/3 targets do not have self-describing stack frames. 
This means that "return" instructions on these targets need to specify how many registers to restore. When 
(as happens in the task system) one needs to restore registers without returning through the normal return 
sequence, one can only find out how many registers were saved on the stack by looking at the save instruc­
tion at the beginning of the function. 

To switch to a new task, the task system needs to know what the new frame pointer (and argument pointer 
on the 3B targets) should be and from where to restore all the non-volatile registers.2° The task library 
explicitly saves the frame pointer and argument pointer of the function to be returned to, swap () , in the 
task object as t_framep and t_ap. The non-volatile registers are stored in swap's stack frame. 

DEDICATED and SHARED Tasks 
Tasks can be of one of two modes: DEDICATED or SHARED. DEDICATED tasks each have their own stack, of 
some fixed size, allocated from the free store. SHARED tasks share a single stack, of some fixed size. When 
a SHARED task is about to resume execution, if its stack space is occupied by another task,21 the portion of 
the stack that is in use by the other (suspended) task is copied out to a save area, and the resuming task's 
stack is copied from its save area back into the stack. Because the in-use part of the stack is less than the 
allocated size of the stack, the user can save space by using SHARED stacks, at a cost in execution speed. 
Additionally, some targets and operating systems do not allow the stack pointer to point into the UNIX pro­
cess data segment; on these systems SHARED tasks must be used.22 

Implementation of Task Switching 

There are two general contexts in which a task switch occurs: when a parent task creates a new child task 
and switches to it, and when a task suspends and the scheduler chooses a new task to run. The stacks of 
both the suspending and resuming tasks look different in each of these situations. Task creation differs 
from a switch to a suspended task in two ways. First, in task creation a runtime environment for the new 
task must be set up before the switch can take place. Second, task creation causes the parent task to be 
suspended and the new task to run immediately, bypassing any other tasks waiting on the run chain. This 
is the only case where a task switch takes place without a call to the scheduler to choose the next task to 
run. These two contexts are described below. 
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Task Switches Between Suspending and Resuming Tasks 
In task switches from a suspending to a resuming task (Le., switches other than those to newly created 
tasks), the function that causes the running task to block (qhead: :get () in Figure 2-2) calls 
task: : sleep () , which in tum calls the scheduler, sched: : schedule (). After selecting the next task to 
run, the scheduler calls task: :resume()23 for the resuming task. The function task: :resume() calls 
task: : restore ( ) , an inline function whose purpose is to call the appropriate version of swap () (swap ( ) 
for DEDICATED tasks, sswap () for SHARED tasks) with the appropriate arguments. 

Figure 2-2 shows examples of the stacks for a suspending and a resuming task, both of type user_task 
(user_task: :user_task() is the constructor and Umain" function of the task). Each box in the stack 
represents a stack frame; the frames for task: : resume () and task: : restore () are separated by a dashed 
line because task: : restore () is an inline function, and therefore doesn't really have its own stack frame. 

Figure 2-2: A Task Switch from a Suspending to a Resuming Task (DEDICATED) 
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The two swap functions do the real work of performing a task switch. They are written in assembly 
language because they manipulate hardware registers. The swap () function saves the state of the suspend­
ing task (labeled running in the code)24 and restores the state of the resuming task (labeled to-run). Sav­
ing the state of the suspending task involves first saving all the non-volatile registers in swap's stack frame, 
then saving the current frame pointer, which defines swap's frame, and the argument pointer, if necessary, 
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in the suspending task's task object, in members t_framep and t_ap. Then swap () overwrites the 
hardware frame pointer and argument pointer with the values saved in the resuming task's t_framep and 
t_ap. Now the to-run task is running; swap () returns, restoring all the registers that were saved when the 
to-run task was suspended. Note that swap's save is done on the suspending task's stack, and the restore 
is done on the resuming task's stack. This is because save and restore instructions are executed relative to 
the frame pointer, which was modified in the middle of swap ( ). Figure 2-2 illustrates a task switch on a 
3B target. The swap () hardware frame and argument pointers are shown both before and after the switch. 

Switching Between SHARED Tasks: sswap () 

The function sswap () is like swap ( ) , but has additional code for SHARED tasks to copy task stacks out of 
and into the shared stack area.25 There are three tasks that are relevant during a SHARED task switch: the 
suspending task, the resuming task, and the task that last occupied the stack space that the resuming task 
now wants to occupy (the target stack). This "prevOnStack" task is often the same as the suspending task, 
but that is not necessarily the case.26 

The sswap () function first saves all the non-volatile registers in its stack frame, then saves the frame 
pointer (and argument pointer, if necessary) of the suspending task in that task's task object, just as swap () 
does. It also calculates and saves the height of the stack in the t_s i ze member of the task object. Next, it 
allocates space and copies the contents of the target stack to that space, which becomes "prevOnStack's" 
save area (pointed to by task member t_savearea). Next, sswap() copies the resuming task's saved stack 
back from its t_savearea to the target stack, and deletes the space. Finally, sswap () restores the resum­
ing task's t_framep (and t_ap, if necessary) to be the hardware frame and argument pointers, and the 
resuming task is running. As in swap ( ) , sswap () returns, restoring all the registers saved in the resuming 
task's sswap frame. 

New Task Creation 

To use the task library, the user derives a class, which I will refer to as class user_task, from the base class 
task. The "main" program for the user task will be the constructor user_task: : user_task (). The first 
thing user_task: :user_task() does is to call the base class constructor, task: :task(). The constructor 
task: : task () initializes the private data for the new task, acquires stack space27 in which the task will 
run, initializes the stack with the top two frames of the parent task's stack (as illustrated in Figure 2-3), 
inserts the parent task on the run chain, and switches to the new task, which runs immediately. 
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Figure 2-3: Creating a New Task's Stack 
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After initializing the new task's stack, the parent task continues execution in task: : task (). Notice that 
the parent's stack contains a frame for user_task: :user_task(), the child's "main"; the parent task needs 
to skip over that frame when it returns from task: : task ( ). To arrange this, task: : task () calls a func­
tion, task: : fudge_return () , to alter task: : task's stack frame so that it returns to 
user_task: :user_task's caller (restoring any registers saved in the skipped frame as well). This change 
to the parent's stack is shown in Figure 2-4 with dotted lines through the user_task: :user_task() frame. 
The fudge_return function will be described in detail under HFudging the Parent Stack." 

swap () for Children 

When a new task is created, its stack does not have an instance of swap() on it; task: :task() is the top 
frame. It is task: : task's responsibility to arrange for the hardware state of user_task: :user_task() to 
be restored when the child begins execution there. Therefore, task: : task () saves the frame and argu­
ment pointers for the child's task: :task() frame in the child's t_framep and t_ap of its task object. 
Then task: :task() saves all the registers as they were when user_task: :user_task() called 
task: : task () in a global variable, New_task_regs.18 Getting these registers right, no matter how many 
registers were saved in user_task: :user_task or task: :task(), is a bit tricky. We first copy all the 
current hardware registers into New_task_regs and then overwrite any of those that are used by 
task: : task () with those saved in task: : task's frame. This is done with a macro, SAVE_CHILO_REGS, 

which calls SAVE_REGS () to do the first step, and save_saveCLregs () to do the second step. 

Then the parent calls task: : restore, which calls swap () with a NEW_CHILD argument. Given this argu­
ment, swap () explicitly restores the registers that were saved in New_task_regs, instead of restoring the 
registers saved in the frame. See Figure 2-4 When swap () returns, the return is effectively from 
task: : task ( ) , as that is where the frame pointer points, and then the child task is executing in 
user_task: :user_task(). On the 3Bs, the assembly language return instruction specifies how many 
registers to restore. Because the necessary registers have been restored from New_task_regs, swap ( ) 
restores no registers saved in task: : task ( ) 's frame on its return. The V AX return instruction determines 
the number of registers saved in the frame by looking at the entry mask under the frame pointer, therefore, 
when swap () returns, the registers saved in task: : task's frame are restored. Since these registers are the 
same as those saved by save_saved_regs ( ) p save_saved_regs () is unnecessary on the VAX. 
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Figure 2-4: A Task Switch to a New Child (DEDICATED) 
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New SHARED tasks don't need to copy in a new stack, nor do they need to reset the hardware frame and 
argument pointers. Their stacks are already in place, since a new SHARED task runs in its parent's stack. 
However, the parent task needs to call sswap () to save its state and to copy its active stack to its save area. 
Therefore, task: : restore () and sswap () are called with a NEW'_CHILD argument, and sswap () has a 
branch for new children to skip the Hcopy in" part. 

Fudging the Parent Stack 

As mentioned above, fudge_return is called by task: : task () to modify the parent stack so that the 
parent does not return to user_task: : user_task ( ). Rather, the parent skips the 
user_task: : user_task () frame and returns to user_task: :user_task's caller (main () in Figure 2-4). 
This routine is highly machine- and compiler-dependent. It depends on call/return and save/restore con­
ventions of both the compiler and the machine. The left side of Figure 2-5 shows a hypothetical example of 
a parent stack when fudge_return () is first called. Portions of three stack frames are shown: 

• at the bottom is the register save area for user_task: :user_task(), containing the saved state of 
main () (Le., Hmain's r8" refers to the value of hardware register r8 in main () before 
user_task: :user_task() was called). In this example, user_task: :user_task() uses, and there­
fore saves, two registers, which on a 3B2 would be registers r7 and r8. 
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• in the middle is the save area for task: : task ( ) , containing the saved state of 
user_task: :user_task() or skip() , as it is labeled in the diagram and in the fudge_return 0 
code. In this example, task: : task () uses and saves four registers, r5 through r8.29 

• at the top is the save area for fudge_return ( ) , containing the saved state of task: : task (). In this 
example, fudge_return () uses and saves just one register, r8. 

The ellipses in the diagram represent function arguments, automatics, and unused words in the stack 
frames. The fudge_return () function must copy up the relevant elements from skip's stack frame to 
task: : task's stack frame, so that when task: : task's return instruction is executed, the parent will find 
itself back in main () (in this example), with the hardware registers restored to the values they had before 
skip () was called. The stack on the right side of Figure 2-5 represents the same parent stack after 
fudge_return has altered the stack. The dotted arrows show where the elements from skip's save area 
have been copied. 

In the 3B, V AX, and Sun-2/3 implementations, fudge_return () overwrites the program counter, frame 
pointer, and argument pointer (for 3B targets only) saved in task: : task's frame with those saved in 
skip's frame. This causes task: : task () to return to main 0 . 

Restoring main () 's registers is trickier. It requires knowing the layout of the save area for at least skip () 
and task: : task ( ) , and sometimes for fudge_return () as well. Ways of determining the frame layout 
are discussed under IIFinding Where Registers Are Saved: FramelayoutO." For now, assume 
fudge_return () knows how many registers are saved in each frame. 
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Figure 2-5: A 3B2 Stack Before and After Fudging 
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If skip () saved any registers, we must take pains to see that they are restored on task: : task's return. If, 
as is the case in the example in Figure 2-5, all the registers saved in skip's frame are also saved in 
task: : task's frame, this is simple. We just copy the saved skip () registers over the corresponding 
task: : task () registers, leaving any additional saved task: : task () registers in place. There is room in 
task: : task's frame for these registers and, in the case of the 3B and Sun-2/3 targets,30 task: : task's 
restore instruction will restore all the registers we care about. 
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There are various difficulties with restoring the Uextra" registers when skip () saves registers that 
task: : task () does not save. On some targets, such as the VAX and Sun-2/3, there is no room in the 
frame for the additional registers; on other targets, such as the 3Bs, task: : task's restore instruction won't 
restore any extra registers, although the save area is always large enough to hold extras. Figure 2-6 shows 
a parent stack frame where the skip () frame contains four saved registers, the task: : task frame contains 
only two saved registers, and the fudge_return () frame contains three saved registers. In this example, 
rS and r6 are Uextra." 

2-52 Library Manual 



A Porting Guide for the C++ Coroutine Library 

Figure 2-6: Fudging When user_task: :user_task() Uses More Registers than task: : task 
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If fudge_return () saved any of the "extra" registers, then we can overwrite those with the corresponding 
saved skip registers. In Figure 2-6, skip() saved r6 e'main's r6/), task: :task() did not, but 
fudge_return () also saved r6. Therefore, fudge_return () will overwrite the r6 in its save area with the 
r6 from skip's save area. When fudge_return () returns, r6 will be restored to the value it had when 
main () last executed, which is what we want. Because task: : task () did not save r6, we know that it 
will not disturb its value. 

Neither task: : task () nor fudge_return () saved the other extra register, r5, in this example. Therefore, 
to ensure that when task: : task () returns, r5 has the value it had in main ( ) , and not the value it had in 
skip () (its current value), fudge_return () must explicitly set the hardware register r5 to the value saved 
in skip's frame (main's r5). This is safe to do, because none of the intervening functions use r5. The func­
tion fudge_return () calls an assembly language function to overwrite r5 (or any other extra registers). 
After fudge_return () and task: : task () return, all the registers will have the values they had when 
main () last executed on the parent stack. 

There is one final step: arranging for the stack pointer to be in the right place after task: : task returns. 
This depends on the way the target executes a return. Without some adjustment, the stack pointer will be 
set one frame too high (at the top of skip's frame instead of at the top of main's frame). 

On the V AX, a return instruction restores the frame and argument pointers from those saved in the stack, 
pops the saved registers off the stack, and adds the number of arguments that are on the stack (as given in 
the argument descriptor, see Figure 2-1) to the stack pointer. We can cause the stack pointer to be restored 
correctly by adjusting the argument descriptor in task: : task's frame to include all the words in the skip 
frame in addition to the arguments. In other words, fudge_return () alters task: : task's frame to look as 
though there is a big argument list. 

On the 3Bs, a return instruction restores the frame and argument pointers from those saved on the stack, 
but the stack pointer is given the value of the argument pointer of the returning function. This presents a 
problem for a fudged parent stack: when we return from task: : task ( ) , the frame and argument pointers 
are reset to point to main's frame, as we wanted, but the new stack pointer points where task: : task's 
argument pointer was, which is higher than needed and wastes space.31 What we want is to have the stack 
pointer point to where skip's argument pointer was. We arrange for this with an assembly language func­
tion, FUDGE_SP ( ) ,32 which is defined for the 3Bs to take an argument, the skip () argument pointer, and to 
reset the current argument pointer (task: : task's) to the argument. FUDGE_SP () is called just before 
task: : task () returns on the parent side. Once FUDGE_SP () is called, no arguments to task: : task () can 
be referenced. The task: : task () constructor returns the this pointer, which is its implicit first argument. 
The this argument is usually in a register, but if it is not, task: : task will need to reference it through the 
now-changed argument pointer when it sets the return value. Therefore, FUDGE_SP () also copies the value 
of task: : task's first argument to be user_task: :user_task's first argument, to ensure that 
task: : task's return value will be set properly. 

The Sun-2/3 targets have a similar problem to that described above for the 3B targets. The solution, how­
ever, is different. The Sun-2/3 compiler typically generates a function return sequence of three instructions: 
movern, unlk, and rts. The movem instruction restores the registers denoted by a mask and uses an offset 
from the frame pointer to find the register save area. The unlk instruction resets the frame pointer to be 
the one saved in the stack, and also resets the stack pointer to point at the saved return program counter 
on the stack. Finally, the rts instruction pops the program counter off the stack, leaving the stack pointer 
pointing at the top of the frame of the function that called the returning function. As with the 3B targets, 
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after a parent task (whose stack has been fudged) returns from task: : task () to main () (in the example), 
the stack pointer points to the top of the skipped frame. 

We compensate for this with a variation in FUIX:;E_SP 0 and fudge_return () on the Sun-2/3 targets?3 
Instead of overwriting task: : task's return pc with skip's return pc, fudge_return 0 overwrites 
task: : task's return pc with the address of an assembly language function, fudge_sp(). When the parent 
task returns through task: : task ( ) , it calls FUIX:;E_SP ( ) , which sets a global variable, Skip-pc-p, to point 
to skip's return pc in the stack. Then task: : task 0 returns to fudge_sp() ,34 which sets the stack pointer 
to Skip-pc-p, and executes an rts instruction, which pops skip's saved return pc off the stack, leaving 
the stack pointer at the top of main ( ) 's frame. 

Finding Where Registers Are Saved: FrameLayout () 

As mentioned above, fudging the parent stack requires knowing the layout of the stack frames surrounding 
the one to be fudged?5 This is not a problem for targets with self-describing stack frames, such as the VAX. 
Targets that do not have self-describing stack frames, such as the 3B and Sun-2/3, include a structure, 
defined in the source file fudge.c, called FrameLayout. FrameLayout has different members, depending 
on the target. It always has a constructor, which initializes the members so that fudge_return () has the 
information it needs to modify the parent stack. 

FrameLayout for the 38 Processors 

On the 3B2 and 3B20 targets the layout of saved registers follows from the number of registers saved by the 
function. On both targets, the size of the save area is invariant; if fewer than all the registers are saved, 
some slots in the save area will be unused and contain garbage values. The number of registers saved is 
found by looking at the save instruction of the function in question. By convention, the save instruction is 
the first instruction of the function. The easiest way to find the save instruction for a given function, I, is 
by dereferencing a pointer to the function. However, when I is a constructor, as both task: : task () and 
user_task: : user_task 0 are, one cannot take its address. In this case, one can find the save instruction 
for I by using the pointer to the return pc saved in the f s frame, backing up one instruction to find the 
instruction to call I, and following the destination argument of the call to find the save instruction. ' 

On the 3B targets, Framelayout contains one element: n_saved, which represents the number of registers 
saved in the frame. The Framelayout constructor finds n_saved for the frame denoted by its frame 
pointer argument. FrameLayout:: FrameLayout () uses the frame pointer to find the return pc, which 
points to the instruction after the call to the denoted function. It backs up one instruction to get a pointer 
to the call instruction,36 then decodes the call instruction (using a function called call_dst-ptr () ) to get a 
pointer to the function denoted by the frame pointer argument. Finally, it decodes the save instruction 
(pointed to by the function pointer) to find the number of registers saved in the frame. 

FrameLayout for the Sun-2/3 Target 

On the Sun-2/3 target, Framelayout contains two elements: offset, the offset of the top of the register 
save area from the frame pointer, and mask, the bit mask denoting which registers were saved. The 
Framelayout constructor for the Sun-2/3 initializes the structure by a method similar to that described 
above for the 3B targets, which involves following the return pc to find the call, and decoding the call to 
find the destination of the call. Finally, it decodes the instructions in the function prologue (which can 
vary), to find the mask and the offset. 
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Source File Organization 

The target-dependent parts of the task library are isolated in four source files: 

hw_stack.h 

fudge.c 

swap.s 

contains target-dependent macro, const, structure, and function declarations for each sup­
ported target (surrounded by #ifdefs). 

contains definitions of target-dependent functions for each supported target (surrounded by 
#ifdefs). Many of these are short assembly language functions which set or return hardware 
registers. 

There is a version of fudge. c for each supported target, currently: fudge. c. 3b, 
fudge. c. vax, fudge. c. 386, and fudge. c. 68k?7 These files contain definitions of 
task: : fudge_return () and FrameLayout: : FrameLayout () (for the targets that need it). 

There is a version of swap.s for each supported target, currently: swap.s.3b, swap.s.vax, 
swap.s.386, and swap.s.68k. These files contain the assembly language functions swap() 
and sswap (). 

Hints for Porting the Task Library to Other Processors 

• Draw pictures (like those in Figure 2-1) of the stack frame layout for the target to which you are port­
ing. Detailed pictures of the register save areas of several frames on the stack, like those in Figure 
2-5 and Figure 2-6, are helpful in writing fudge_return () . 

• Become familiar with the sequence of operations in function calls and returns. Write and compile 
some sample C or C++ programs and look at the generated code to see what kinds of call and return 
sequences the compiler generates, in what order registers are used, and so forth. A fast way to write 
the copy in and copy out loops for sswap () is to write them in C, compile them with the -8 option, 
and transcribe the generated code into sswap ( ) . 

• The implementation of the task library was designed to be both maintainable and, as far as possible, 
portable across both machines and compilers. These goals are sometimes mutually exclusive, and in 
those cases, we aimed for maintainability and portability across different compilers for the same 
machine (where possible). Some porters may want to write some of the assembly language functions 
in hw_stack. c as macros that depend on positional parameters and compiler conventions. For 
example, FP () returns the frame pointer for the calling function. This could also be written for the 
3B targets as a macro that takes as an argument the first automatic variable of the function and 
returns the address of that variable, or for the V AX takes the same argument and returns the address 
of that variable minus one. This only works if the macro is given the first automatic as an argu­
ment, if the compiler assigns automatics in the order in which they are declared, and if the optimizer 
leaves the automatic on the stack, even if it is never read nor written. 
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1. The original version of this paper was written in 1980 by B. Stroustrup and revised in 1982 by him. 
Since then both the task library and C++ (then known as "C with Classes") have changed substan­
tially, but the interface to the task library has been left intact. This has allowed old programs to run 
with new versions of the library, but has prevented any updating of the style of the interface, which 
does not conform to current tastes. 

This version of the paper has been revised by J. E. Shopiro to reflect the present state of affairs. I 
have added a few notes (in sans-serif type) where changes have been significant, and have made 
numerous syntactic changes, etc., without further comment. 

2. Many of the member functions are inline, but their definitions are not shown here to prevent clutter. 
Class task is derived from class sched which is derived from class obj ect. Class obj ect is a sim­
ple base class used by most classes in the task system. It contains some of the pointers used by the 
task system's internal "house-keeping." Class obj ect is described under "The obj ect Class." 

3. The class may have other member functions, of course, which may be called by the constructor or by 
any other function according to the usual rules of C++. 

4. When the first task is created, main () automatically becomes a task itself. 

5. It is a fairly simple job to add a new kind of task that returns some other datatype. 

6. The handling of run time errors will be described below. 

7. Thus qhead: :pending() returns 1 if the queue is empty and 0 otherwise. Correspondingly, 
qtail: : pending () returns 1 if the queue is full and 0 otherwise. 

8. The default maximum size for a queue is 10000. That is, the queue can hold up to 10000 pointers to 
objects. It does not, however, pre-allocate space. 

9. The original task package had a number of global variables, including thistask, task_chain, and 
clock. They are now all macros which expand to inline functions that return the values of private 
static variables. Thus programs that just read the values will be unaffected, but programs that try to 
set them (which was always illegal) will fail to compile. 

10. waitlist () is an example of a function whose form does not satisfy current esthetic standards. 

11. In a quasi-parallel system this will only be true provided no infinite loop without task system calls 
exists. Such a loop constitutes an error that only a system with true parallelism or time slicing can 
recover from. 

12. Coroutines can exchange control among themselves more freely than ordinary functions and pro­
cedures. In the usual function calling discipline, when one procedure (more precisely, one instance 
of a procedure) executes a procedure call, a new instance of the called procedure is created, and the 
calling procedure waits until the called procedure (and any procedures it may call) returns. A pro­
cedure instance is initiated when the procedure is called and is destroyed when it returns. When one 
coroutine (coroutine instance) initiates another it need not wait for the new coroutine to end, but 
instead it can be resumed while the new coroutine is still active. A running coroutine can relinquish 
control to any waiting coroutine without abandoning its state and later regain control and continue 
from where it left off. 
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13. Class object is the base class of most classes in the task system. We use the typewriter font for 
programming language construcG. 

14. Semaphores which are used for mutual exclusion are initialized with one excess signal so that the 
first lock call will succeed. 

15. But watch out for deadlock. 

16. To the extent that the target hardware dictates subroutine linkage and stack frame layout, the com­
piler is less important. Some machines, like the 3Bs and the VAX, support a particular stack frame; 
the task library is largely independent of the compiler on these machines. The 68000, however, does 
not support a specific stack frame arrangement; the task library on this machine also depends on the 
compiler conventions for the stack frame. The word target will be used in this paper to denote an 
instance of either a processor or a compiler/processor platform. 

17. The stack frame layout on the AT&T 6386 WGS is similar to that on the Sun-2/3 Workstations. The 
task library port is also similar on these targeG. 

18. See "A Set of C++ Classes for Co-routine Style Programming" or "Extending the C++ Task System 
for Real-Time Control" for details. The ways in which a task is put to sleep and awakened are 
target-independent. 

19. This is true for our example targets. Some targets may use a caller save convention rather than a cal­
lee save convention. 

20. It may not be immediately obvious that all registers must be saved on a task switch. Consider a task 
A, which has a function f that uses all the registers. It calls another function, g, which uses less than 
all the registers, say two, and therefore only saves two registers in iG save area. If a task switch 
occurs before g returns, and task B uses all the registers, it will destroy those needed by task A's 
functionf· 

21. It can happen that a SHARED task will resume execution without having ever been displaced by 
another task sharing the same stack. 

22. For example, DEDICATED tasks do not work with 3B2s running versions of the UNIX system earlier 
than SVR3. 

23. The function restune () is virtual, with definitions for tasks and timers. Only tasks are relevant here. 

24. If the suspending task is TERMINATED, then swap () does not save its state. 

25. Writing the code for stack copying of SHARED tasks in assembly language adds more complexity than 
we would like to the job of porting the task library. It would be possible to call a C function to copy 
out the suspended task's stack to iG save area. However, copying the resuming task's stack back in 
presents a problem: If the resuming task's stack is taller than the stack on which we are executing, a 
copy-in will overwrite the current stack frame. The sswap () function is careful to move all the data 
it needs from the frame into registers, so that if the frame is overwritten, sswap () can still complete 
successfully. But if sswap () called a C function to do the copy-in, that function might overwrite its 
own stack frame, making it impossible to return to sswap () to finish the task switch. So long as the 
copy-in must be written as part of sswap ( ) , it seems little more trouble to write the complementary 
copy-out in assembly language as well. 
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26. When the prevOnStack task and the resuming task are the same, restore () calls swap () , rather 
than sswap ( ) , to do the task switch, as no stack copying is necessary. 

27. The constructor task: : task () only acquires stack space for DEDICA'IED tasks, that is, tasks that have 
their own stack. SHARED tasks will need space in which to save the current (or parent) task's active 
stack; sswap () takes care of that, as described above. 

28. Only one child is activated at a time - remember, no pre-emption - and the child runs immedi­
ately, so it is safe to put these registers in a global, and more space-efficient than keeping them as 
part of the task object. 

29. Note that, in Figure 2-5, the saved r5 and r6 in task: : task's frame are labeled umain's r5" and 
Umain's r6" rather than uskip's r5" and uskip's r6." This is because in this example, skip () does 
not use r5 or r6; main () was the last function to use r5 and r6. Therefore, the values of r5 and r6 
saved in task: : task's frame are the values that r5 and r6 had when main () was running. 

30. The restore instruction for the VAX doesn't specify which registers to restore. 

31. In the case of a task that repeatedly spawned children, the stack pointer would grow unnecessarily, 
eventually causing the stack to overflow. Each time the parent task returned from task: : task, the 
stack pointer would be an additional frame higher than needed, and a new call to task: : task 
would start building the next frame where the stack pointer pointed. 

32. FUOOE_SP () is defined as a do-nothing macro for the VAX. 

33. The AT&T 6386 WGS port of the task library also uses this technique. 

34. When task: : task () returns, the hardware registers are restored to the values they had in main ( ) 
and the frame pointer is set to the value it had in main ( ) , but the program counter is set to 
fudge_sp () . 

35. Some of these frames are for user functions, so we cannot rely on techniques which require the C++ 
code for the function to be written so as to generate code that creates frames with some particular 
layout. 

36. Because 3B instructions can be of various sizes, one cannot deterministically '1Jack up" one instruc­
tion. FrameLayout:: FrameLayout () subtracts each possible instruction size from the return pc and 
decodes the resulting pointer to check for a call opcode and legal operands. There is a small possi­
bility, reduced by familiarity with the compiler, that these heuristic methods could yield more than 
one candidate call instruction. 

37. The .68k suffix used for the Sun-2/3 target is something of a misnomer. These files were written 
specifically for Sun compiler /68K platforms; they will not necessarily work on all 68K platforms, for 
example, the AT&T compiler for the 68K. However, the #ifdefs in the source files say 
# i fdef mc68000 
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lostream Examples 

~ This chapter is taken directly from a paper by Jerry Schwarz. 

y 
Abstract 

The iostream library supports formatted I/O in C++. This document, containing many examples, is an 
introduction to the library. Overloading and other C++ features are used to provide an interface that com­
bines flexibility and type checking. Predefined and user defined operations are easily mixed. The stream­
buf class supports alternate sources and sinks of characters. 

The manual pages for the iostream library can be found at the end of this book. 

Introduction 

C and C++ share the property that they do not contain any special input or output statements. Instead, 
I/O is implemented using ordinary mechanisms and standard libraries. In C this is the stdio library. In 
C++ (since Release 2.0 of the AT&T C++ Language System) it is the iostream library. Because C++ is an 
extension of C it is possible for a C++ program to use stdio. Using stdio may be the easiest way for a C 
programmer to get started with C++, but using stdio is not a good style for C++ I/O. Its main drawbacks 
are its type insecurity and the inability to extend it consistently for user defined classes. 

This document consists mainly of examples of the use of parts of the iostream library. It assumes a reason­
able familiarity with C++, including such extensions to C as references, operator overloading, and the like. 
An attempt has been made to create examples that not only illustrate features of the iostream library, but 
represent good programming style. A programmer who is new to C++ may copy the examples ucookbook 
style," but cannot be said to have mastered C++ until he or she understands the examples. 

Some of the examples are moderately complicated and demonstrate advanced features of the iostream 
library. These are included so that the document will continue to be useful as an aid even after the pro­
grammer has written a few programs using iostreams. The author is annoyed by Ututorials" that show 
how to do simple things that he could figure out himself, but are silent about the harder, more sophisti­
cated kinds of code that he frequently wants to write. 

This document is not a complete description of the iostream library. Some classes and members are not 
described at all. Some are used without complete descriptions. The reader is referred to the iostream man 
pages for more details. 

The declarations for the iostream library exist in several header files. To use any part of it, a program 
should include iostream. h. Other header files may be needed for other operations. These are mentioned 
below, but the #include lines are never put in the examples. 

lostream Examples 3-1 



lostream Examples 

The iostream library is divided into two levels. The low level (based on the strearobuf class) is responsible 
for producing and consuming characters. This level is an independent abstraction and may be used 
without the upper level. This is appropriate when the program is moving characters around without much 
(or any) formatting operations. 

The upper level is responsible for formatting. There are three significant classes. istream and ostream 
are responsible for input and output formatting, respectively. They are both derived from class ios, which 
contains members relating to error conditions and the interface to the low level. A third class, iostream, is 
derived (multiple inheritance) from both istream and ostream. It plays only a minor role in the library. 
A IIstream class" is any class derived from istream or ostream. 

The topics covered in this document are: 

•. Output - predefined output conversions, ways to deal with errors, and ways to adapt the library for 
output of user classes. 

• Input - predefined input conversions, and ways to adapt the library for input of user classes. 

• Constructing specialized streams - file I/O and incore operations. 

• Format Control - An ios contains some format state variables. This section describes how they are 
manipulated by user code and interpreted by the predefined operations 

• Manipulators - A powerful method for customizing operations. 

• strearobufs - How to use the low level interface. 

• Deriving Streambuf Classes - Methods for creating specialized classes that specialize strearobuf to 
deal with alternate producers and consumers of characters. 

• Extending Streams - Deriving classes from istream and ostream, adding state variables, and ini­
tialization issues. 

• Comparison of I/O libraries. 

• Compatibility - Converting a program that uses the old stream library to use the new library. 

Output 

Suppose we want to print the variable x. The main mechanism for doing output in the iostream library is 
the insertion operator «. This operator is usually called left shift (because that is its built-in meaning for 
integers) but in the context of iostreams it is called insertion. 

cout « x i 

cout is a predefined ostream and if x has a numeric type (other than char or unsigned char) the inser­
tion operator will convert x to a sequence of digits and punctuation, and send this sequence to standard 
output. There are different operations depending on the type of x, and the mechanism used to select the 
operator is ordinary overload resolution. The insertion operator for type t is called the lit inserter." 
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If we have two values we might do: 

cout « x « y ; 

which will output x and y, but without any separation between them. To annotate the output we might 
do: 

cout « II x= II « x 
« II,y=" « y 
« ", sum=" « (x + y) « "\n" ; 

This will not only print the values of x, y, and their sum, but labels as well. It uses the string (char*) 
inserter, which copies zero terminated strings to an ostream. 

Notice the parentheses around the sum. These are not needed because the precedence of + is higher than 
that of «. But, when using« as insertion, it is easy to forget that C++ is giving it a precedence appropri­
ate to shift. Getting in the habit of always putting in parentheses is a good way to avoid nasty surprises 
such as having cout«x&y output x rather than x&y. 

The output might look like: 

x=23 t y=159,sum=182 

A pointer (void*) inserter is also defined. 

int x = 99 ; 
cout « &x ; 

It prints the pointer in hex. 

A char inserter is defined: 

char a = 'a' ; 
cout « a « '\n' 

This prints a and newline. 

User Defined Insertion Operators 
What if we want to insert a value of class type? 

Inserters can be declared for classes and values of class type and used with exactly the same syntax as 
inserters for the primitive types. That is, assuming the proper declarations and definitions, the examples 
from the previous section can be used when x or y are variables with class types. 

The simplest kinds of examples are provided by a struct that contains a few values. 

struct Pair { int x ; int y ; } ; 

We want to insert such values into an ostream, so we define: 
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ostream& operator«(ostream& 0, Pair p) { 
return 0 « p.x « II II « p.y i 

This operator inserts two integral values (separated by a space) contained in pinto 0, and then returns a 
reference to o. 

The pattern of taking an ostream& as its first argument and returning the same ostream is what makes it 
possible for insertions to be strung together conveniently. 

As a slightly more elaborate example, consider the following class, which is assumed to implement a vari­
able size vector: 

class Vee ( 
private: 

public: 

} i 

int 
void 
float& 

Vee () i 

size () i 

resize (int) 
operator [] (int) 

We imagine that Vee has a current size, which may be modified by resize, and that access to individual 
(float) elements of the vector is supplied by the subscript operator. We want to insert Vee values into an 
ostream, so we declare: 

ostream& operator« (ostream& 0, const Vec& v) i 

The definition of this operator is given below. Using Vec& rather than Vee as the type of the second argu­
ment avoids some unnecessary copying, which in this case might be expensive. Of course, using Vec* 
would have a similar advantage in terms of performance, but would obscure the fact that it is the value of 
the Vee itself that is being output, and not the pointer. 

The definition might be: 

ostream& operator« (ostream& 0, const Vec& v) 

o « II [" i II prefix 
for ( int x = 0 i x < v.size() i ++x 

II use comma as separator 
if ( x!=O ) 0« ',' 
o «v[x] i 

} 

return 0« "]11 ill suffix 

This will output the list as a comma separated list of numbers surrounded by brackets. The code takes care 
to get the empty list right and to avoid a trailing comma. 
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Propagating Errors 
None of the examples so far has checked for errors. Omitting such checks would be bad style, except that 
the iostream library is arranged so that errors are propagated. 

Streams have an error state. When an error occurs bits are set in the state according to the general category 
of the error. By convention, inserters ignore attempts to insert things into an ostream with error bits set, 
and such attempts do not change the stream's state. The error bits are declared in an enum, which is 
declared inside the declaration of class ios. 

class ios { 
enum iO-ptate { goodbit=O, eofbit=l, failbit=2, badbit=4 } 
} ; 

ios : : goodbi t is not really a ''bit.'' It is zero and indicates the absence of any bit. 

In the definitions of the Pair and Vec inserters, if an error occurs some wasted computation may be done 
as the code does insertions that have no effect. But eventually the error will be properly propagated to the 
caller. 

It is a good idea to check the output stream in some central place. For example: 

if (!cout) error("aborting because of output error") ; 

The state of cout is examined with operator! , which will have a non-zero value if the state indicates an 
error has occurred. This and other examples in this document assume that error () is a function to be 
called when an error is discovered, and that it does not return. But error () is not part of the iostream 
library. 

An ostream can also appear in a ''boolean'' position and be tested. 

if ( cout « x ) return ; 
... , II error handling 

The magic here is that ios contains a definition for operator void* that returns a non-null value when 
the error state is non-zero. 

An explicit member function also exists: 

if ( ... , cout.good() ) return 
... , II error handling 

The reader is referred to the man pages for other member functions that examine the error state. 

Flushing 
In many circumstances the iostream library accumulates characters so that it can send them to the ultimate 
output consumer in larger (presumably more efficient) chunks. This is a problem mainly in interactive pro­
grams where the user may need to see the output before entering input. It can also be a problem during 
debugging when the programmer may need to see how far the program has gotten before dumping core. 
The easiest way to make sure that everything inserted into an ostream has been sent to the ultimate consu-
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mer is to insert a special value, flush. For example: 

cout « "Please enter date:" « flush 

Inserting flush into an ostream forces all characters that have been previously inserted to be sent to the 
ultimate consumer of the ostream. flush is an example of a kind of object known as a manipulator, a 
value that may be inserted into an ostream to have some effect. It is really a function that takes an 
ostream& argument and returns its argument after performing some actions on it. 

Another useful way to cause flushing is the endl manipulator, which inserts a newline and then flushes. 

cout « "x=" « x « endl ; 

Binary Output 
Sometimes a program needs to output binary data or a single character. 

int c='A' ; 
cout.put(c) ; 
cout « (char)c 

The last two lines are equivalent. Each inserts a single character (A) into cout. 

If we want to output a larger object in its binary form a loop using put would be possible, but a more 
efficient method is to use the write member. For example: 

cout.write«char*)&x, sizeof(x» 

will output the raw binary form of x. 

The reader should notice that the above example violates C++ type discipline by converting &x to char*. 
Sometimes this is harmless, but if the type of x is a class with virtual member functions, or one that 
requires non-trivial constructor actions, the value written by the above cannot be read back in properly. 

Input 

Iostream input is similar to output. It uses extraction (») operators that can be strung together. For 
example: 

cin » x » y ; 

inputs two values from the predefined istream cin, which is by default the standard input. The extractor 
used will be appropriate for the types. The lexical details of numbers are discussed below under "Format 
Control." Whitespace characters (spaces, newlines, tabs, form-feeds) will be ignored before x and between 
x and y. For most types (including all the numeric ones), at least one whitespace character is required 
between x and y to mark where x ends. 

There is a char extractor. For example: 
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char c ; 
cin » c 

skips whitespace, extracts the next visible character from the istream and stores it in c. ("Non-whitespace" 
is too ugly a phrase for extensive use. This document uses "visible" instead. Strictly speaking this termi­
nology is incorrect. For example, it classifies control characters as visible. But the term is reasonably 
euphonious and reasonably clear.) 

Sometimes it is desirable to extract the next character unconditionally. For example: 

char c ; 
cin.get(c) ; 

The next character is extracted and stored in c, whether or not it is whitespace. 

User Defined Extraction Operators 
Creating extractors for classes is similar to creating inserters. The Pair extractor could be defined thus: 

istream& operator»(istream& if Pair& pair) 

return i » pair.x » pair.y ; 
} 

By convention, an extractor converts characters from its first (istream&) argument, stores the result in its 
second (reference) argument, and returns its first argument. Making the second argument a reference is 
essential because the purpose of an extractor is to store a new value in the second argument. 

A subtle point is the propagation of errors by extractors. By convention, an extractor whose first argument 
has a non-zero error state will not extract any more characters from the istream and will not clear bits in 
the error state, but it is allowed to set previously unset error bits. Further, an extractor that fails for some 
reason must set at least one error bit. The code in the Pair extractor does nothing explicitly to respect 
these conventions, but because the only way it modifies i is with extractors that honor the conventions, the 
conventions will be respected. 

Conventions also apply to the meaning of the individual error bits. In particular ios: : failbit indicates 
that some problem was encountered while getting characters from the ultimate producer, while 
ios: : badbi t means that the characters read from the stream did not conform to the expectation of the 
extractor. For example, suppose that the components of a Pair are supposed to be non-zero. The above 
definition might become: 
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istream& operator»(istream& i, Pair& pair) 
{ 

i » pair.x » pair.y ; 
if ( !i ) return i ; 
if ( pair.x == 0 I I pair.y == 0 ) { 

i.elear(ios::badbitli->rdstate()) 
} 

return i 

This uses the (misleadingly named) clear () member function to set the error state to indicate that the 
extractor found incorrect data. Dring ios: :badbit with i->rdstate () (the current state) preserves any 
bits that may previously have been set. 

The Pair extractor has been defined so that it can input values that were output by the Pair inserter. 
Maintaining this symmetry is an important general principle that is worth some effort. 

The next example is the Vee extractor, which will require an opening [ followed by a sequence of numbers, 
followed by a ]. Recall that the Vee inserter uses, as a separator and does not insert any whitespace 
between numbers. The extractor must accept such input. It will also accept slightly more general formats. 
In particular it allows extra whitespace, and it allows any visible character to be used as a separator. It also 
deals properly with a variety of special conditions such as errors in the input format. 

3-8 Library Manual 



istream& operator»(iostream& i, Vec& v) 
{ 

int n = 0 ; 
char delim ; 

v.resize(n) ; 

II number of elements 

II verify opening prefix 
i » delim ; 
if ( del im ! = '[' ) ; 

i.putback(delim); 
i.clear(ios::badbitli.rdstate(» 
return i ; 

if i.flags() & ios::skipws ) i »ws 
if i.peek() -- ']' ) return i ; 

I I loop 
while ( i && delim != ']' ) { 

v.resize(++n) ; 
i »v[n-l] » delim 

return i 

The steps this code performs are: 

• Tum v into an empty vector. This is done by the first resize operation. 

• Verify that the next character in the istream is [. 
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If the next character is not [ (or if the state of the iostream already has error bits set), mark the state 
of i as bad, put delim back in e (where it may later be extracted again), and return. Putting delim 
back in the stream is not essential but it is consistent with the behavior of the predefined extractors. 

• Optionally skip some whitespace. 

Whether to skip is controlled by the ios: : skipws flag set in a collection of bits known as i's format 
flags. This bit also controls skipping of whites pace in the predefined extractors. If it is set, 
whitespace was skipped before extracting the character stored into delim. 

• If the next character is ], the input represents an empty vector and since v has already been resized 
the extractor can just return. 

The next character is examined using the peek () member function. This returns the next character 
that would be extracted but leaves it in the stream. 
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• The code now loops, extracting numbers and delimiters until either the closing ] is found or an input 
error occurs. An explicit check of the state of i is required to prevent an infinite loop should an 
error occur in extracting vec [n-l] or delim. 

char* Extractor 
A useful extractor, but one that must be used with caution, takes a char* second argument. For example, 

char p [ 100] ; 
cin » p; 

skips whitespace on cin, extracts visible characters from cin and copies them into p until another 
whitespace character is encountered. Finally it stores a terminating null (0) character. The char* extractor 
must be used with caution because if there are too many visible characters in the istream, the array will 
overflow. 

The above example is more carefully written as: 

char p[lOO] ; 
cin.width(sizeof(p)) ; 
cin » p ; 

There are very few circumstances (perhaps there are none at all) in which it is appropriate to use the char* 
extractor without setting the "width" of the istream. 

To make specifying a width more convenient, the setw manipulator (declared in iornanip. h) may be used. 
The above example is equivalent to: 

char p[lOO] i 

cin » setw(sizeof(p)) »p 

Binary Input 
The char extractor skips whitespace. Programs frequently need to read the next character whether or not 
it is whitespace. This can be done with the get () member function. For example, 

char C; 
cin.get(c); 

get () returns the istream and a common idiom is: 

char c ; 
while ( cin.get(c) ) { 
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Programs also occasionally need to read binary values (e.g., those written with write (» and this can be 
done with the read () member function. 

cin.read((char*)&x,sizeof(x» i 

This does the inverse of the earlier write example (namely, it inputs the raw binary form of x). 

If a program is doing a lot of character binary input, it may be more efficient to use the lower level part of 
the iostream library (strearnbuf classes) directly rather than through streams. 

Creating Streams 

The examples so far have used the predefined streams, cin and cout. For some programs, reading from 
standard input and writing to standard output suffices. But other programs need to create streams with 
alternate sources and sinks for characters. This section discusses the various kinds of streams that are avail­
able in the iostream library. 

Files 

The classes of stream and ifstream are derived from ostream and istream and inherit the insertion and 
extraction operations respectively. In addition they contain members and constructors that deal with files. 
The examples in this section assume that the header file fstream.h has been included. 

If the program wants to read or write a particular file it can do so by declaring an ifstream or of stream 
respectively. For example, 

ifstream source (II from ll ) i 

if ( ! source ) error (llunable to open 'from' for input II) i 

of stream target (lltoll) i 

if ( ! target ) error (llunable to open 'to' for output II) i 

char c i 

while ( target && source.get(c) ) target.put(c) ; 

copies the file from to the file to. If the ifstream() or of stream 0 constructor is unable to open a file in 
the requested mode it indicates this in the error state of the stream. 

In some circumstances a program may wish to declare a file stream without specifying a file. This may be 
done and the filename supplied later. For example: 

ifstream file i 

. .. , 
file.open(argv[l]) 

It is even possible to reuse the same variable by closing it between calls to open ( ). For example: 
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ifstream infile ; 
for ( char** f = &argv[l] *f ++f) { 

infile.open(*f) ; 

inf ile . close ( ) 
} 

In some circumstances the program may already have a file descriptor (such as the integer 0 for standard 
input) and want to use a file stream. For example, 

ifstream infile ; 
if ( strcmp(argv[l],"-") ) infile.open(argv[l],input) 
else infile.attach(O) ; 

opens infile to read a file named by argv[l], unless the name is -. In that case it will connect infile 
with the standard input (file descriptor 0). A subtle point is that closing a file stream (either explicitly or 
implicitly in the destructor) will close the underlying file descriptor if it was opened with a filename, but 
not if it was supplied with attach. 

Sometimes the program wants to modify the way in which the file is opened or used. For example, in 
some cases it is desirable that writes append to the end of a file rather than rewriting the previous values. 
The file stream constructors take a second argument that allows such variations to be specified. For exam­
ple, 

of stream outfile ("out ", ios: :app I ios: :nocreate) ; 

declares outfile and attempts to attach it to a file named out. Because ios: :app is specified all writes 
will append to the file. Because ios: : nocreate is specified the file will not be created. That is, the open 
will fail (indicated in outfile's error status) if the file does not previously exist. The enum open_mode is 
declared in ios. 

class ios { 
enum open_mode { in, out, app, ate, nocreate, noreplace } ; 

} ; 

These modes are each individual bits and may be or'ed together. Their detailed meanings are described in 
the man pages. 

Sometimes it is desirable to use the same file for both input and output. fstream is an iostream (a class 
derived via multiple inheritance from both istream and ostream). The type streampos is used for posi­
tions in an iostream. For example, 

fstream tmp ("tmp", ios: : in I ios: :out) ; 

streampos p = tmp.tellp() ;11 tellp() returns current position 
tmp « x ; 

tmp.seekg(p) 
tmp » x ; 

II seekg() repositions iostream 

saves the position of the file in P, writes x to it, and later returns to the same position to restore the value 
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ofx. 

A variant of seekg () takes a streamoff (integral value) and a seek _ dir to specify relative positioning. For 
example, 

tmp.seekg(-lO,ios::end) i 

positions the file 10 bytes from the end, and 

tmp. seekg ( 10 , ios: : cur) 

moves the file forward 10 bytes. 

Incore Formatting 
Despite its name, the iostream library may be used in situations that do not involve input or output. In 
particular, it can be used for "incore formatting" operations in arrays of characters. These operations are 
supported by the classes istrstream and ostrstream, which are derived from istream and ostream 
respectively. The examples of this section assume that the header file strstream.h has been included. 

For example, to interpret the contents of the string argv [ 1 ] as an integer value, the code might look like: 

int i i 

istrstream(argv[l]) » i i 

The argument of the istrstream () constructor is a char pointer. In this example, there is no need for a 
named strstream. An anonymous constructor is more direct. 

The inverse operation, taking a value and converting it to characters that are stored into an array, is also 
possible. For example, 

char s[32] i 

ostrstream(s,sizeof(s)) « x « ends i 

will store the character representation of x in s with a terminating null character supplied by the ends 
(end string) manipulator. The iostream library requires that a size be supplied to the constructor and noth­
ing is ever stored outside the bounds of the supplied array. In this case, an II0Utput error" will occur if an 
attempt is made to insert more than 32 characters. 

In case it is inconvenient to preallocate enough space for the string, a program can use an ostrstream ( ) 
constructor without any arguments. For example, suppose we want to read the entire contents of a file into 
memory. 
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ifstream in (II infile") i 

II strstream with dynamic allocation 
strstream incore i 

char c i 

while ( incore && in.get(c) ) incore.put(c) 

II str returns pointer to allocated space 
char* contents = incore.str() i 

II once str is called space belongs to caller 
delete contents i 

The file infile is read and its contents inserted into incore. Space will be allocated using the ordinary 
C++ allocation (operator new) mechanism, and automatically increased as more characters are inserted. 
incore . str () returns a pointer to the currently allocated space and also IIfreezes" the strstream so that 
no more characters can be inserted. Until incore is frozen, it is the responsibility of the strstream () des­
tructor to free any space that might have been allocated. But after the call to str ( ), the space becomes the 
caller's responsibility. 

Predefined Streams 
There are four predefined streams, cin, cout, cerr, and clog. The first three are connected to standard 
input, standard output, and standard error respectively. clog is also connected to standard error but, 
unlike cerr, clog is buffered. That is, characters are accumulated and written to standard error in chunks. 
cout is also buffered. 

Frequently programs want to use either standard input and output or some external file depending on their 
command line arguments. One way is to use the predefined streams and assign to them. Assignment of 
streams is not possible in general but the predefined streams have special types which allow it. The reader 
is referred to the man pages for a discussion of the semantics of assignment. A more flexible style is to use 
a pointer or reference to a stream: 

istream* in &cin i 

if (infile in = new ifstream(infile) 

*in « x 

Problems can occur when mixing code that uses iostreams with code that uses stdio. There is no connec­
tion between the predefined iostreams and the stdio standard FILES except that they use the same file 
descriptors. It is possible to eliminate this problem by calling 

ios::sync_with_stdio() 

which will connect the predefined iostreams with the corresponding stdio FILEs. Such connection is not 
the default because there is a significant performance penalty when the predefined files are made 
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unbuffered as part of the connection. 

Format Control 

The default treatment of scalar types is that integral values (except char and unsigned char) are inserted 
in decimal, pointers (except char* and unsigned char*) in hex, floats and doubles with 6 digits of preci­
sion and all without leading or trailing padding. char and uns igned char values are just inserted as sin­
gle characters. char* and unsigned char* values are treated as pointers to strings (null terminated 
sequences of characters). The default treatment for extraction of integer types is decimal numbers with 
leading whitespace permitted. An optional sign (+ or -) is permitted, but without whites pace between it 
and the digits. Extraction is terminated by a non-digit character. Extraction for floating point types is simi­
lar except that the lexical possibilities for floating point numbers are an optional sign followed (without 
intervening whitespace) by a number according to C++ lexical rules. 

For many purposes these defaults are adequate. When they are not, the program can do more formatting 
itself, or it can use the format control features of the iostream library. The examples in this section use 
these features. 

Associated with each iostream is a collection of Uformat state variables" that control the details of conver­
sions. The most important of these is a long int value that is interpreted as a collection of bits. These 
bits are declared as: 

enum skipws=Ol, II skip whitespace on input 
left=02, right=04, internal=OlO, 

II padding location 
dec=020, oct=040, hex=OlOO, 

II conversion base 
showbase=0200, showpoint=0400, uppercase=OlOOO, 
showpos=02000, 

II modifiers 
scientific=04000, fixed=OlOOOO 

II floating point notation 
} ; 

These may be examined and set individually or collectively. For example, the ios: : skipws controls 
whether leading whitespace is skipped by extractors. 

char c ; 
cin.setf(O,ios::skipws) ; 
cin » c ; 
cin.setf(ios::skipws,ios::skipws) 

II turn off skipping 

II turn it back on 

The second argument of setf indicates which bits should be set. The first indicates what values they 
should be set to. 
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Manipulators are declared (in iomanip. h) that will have an equivalent effect. The above is equivalent to: 

cin» resetiosflags(ios::skipws) 
» c 
»setiosflags(ios::skipws) ; 

resetiosflags resets (makes zero) the indicated bits and setiosflags sets (makes them 1) the indicated 
bits. 

Commonly we want to save the flags (or other state variables) and restore their value later. Consider: 

long f = cin.flags() ; 
cin.setf(ios::skipws,ios::skipws) 
cin » c ; 
cin.flags(f) ; 

The variant of flags without an argument returns the current value. state variable The variant with an 
argument stores the argument into the flags state variable. This code does the same extraction as the pre­
vious code, but instead of arbitrarily leaving cin with skipping on it restores skipping to its previous 
status. 

The pattern of member functions is repeated for other state variables. That is, if svar is some state vari­
able, and s is a stream, then s . svar () returns the current value of the state variable and s. svar (x) stores 
the value x into the state variable. 

Field Widths 

The default behavior of the inserters is to insert only as many characters as is necessary to represent the 
value, but frequently programs want to have fixed size fields. 

cout.width(S) ; 
cout « x ; 

will output extra space characters preceding the digits to bring the total number of inserted characters to 
five. If the value of x will not fit in five characters, enough characters will be inserted to express its value. 
The numeric inserters never truncate. The width state variable might be regarded as an implicit parameter 
of extractors because it is reset to 0 (which induces the default behavior) whenever it is used. 

cout.width(S) ; 
cout « x « II II « y ; 

will output x in at least five characters, but will use only as many characters as necessary in outputting the 
separating space and y. 

The value of the width state variable is honored by the inserters of the iostream library, but user defined 
inserters are responsible for interpreting it themselves. For example, the Pair inserter defined previously 
does nothing special with width and so if it is non-zero when the inserter is called the width will apply to 
the first int inserted, and not the second. If the inserter wants to honor width its definition might look 
like: 
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ostream& operator«(ostream& 0, Pair p) { 
int w = o.width() 
0.width(w/2) ; 
o « p.x « II II ; 

o. width (w/2- ( (w+1) &1) ) 
o « p.y 
return 0 ; 

This inserts each number in half the requested width. 
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It is slightly awkward to mix calls to the width () member function with insertion operations. The mani­
pulator setw () may be used. An alternative definition of the Pair inserter might be: 

iostream& operator«(iostream& ios, Pair p) { 
int w = ios.width() ; 

Pair 

return ios « setw(w/2) « pair.x « II II 

« setw(w/2+«w+1)&1» « pair.y 
} 

width is always interpreted as a minimum number of characters. There is no direct way to specify a max­
imum number of characters. In cases where a program wants to insert exactly a certain number of charac­
ters, it must do the work itself. For example, 

if ( strlen(s) > w ) cout.write(s,w) 
else cout « setw(w) « s 

will always insert exactly w characters. 

width is generally ignored by extractors, which tend to rely on the contents of the iostream to detect the 
end of a field. There is, however, an important exception. The char* extractor interprets a non-zero width 
to be the size of the array. For example, 

char a[16] ; 
cin » setw(sizeof(a» » a 
if ( !isspace(cin.peek() ) error(lIstring too longll) ; 

protects the program in case there are sixteen or more visible characters. As a further measure of protec­
tion, the extractor stores a trailing null in the last byte of the array when it stops because there are too 
many visible characters. This means that the number of characters extracted (not counting leading 
whitespace) will be at most one less than the specified width. 

Flags control whether padding (when it occurs) causes the field to be left or right justified. The fill state 
variable (whose initial value is a space) supplies the character to be inserted. 
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cout.fill(*) ; 
cout.setf(ios::left,ios::adjustfield) 
cout « setw(S) « 13 « 11,11 ; 

cout.fill(#) ; II set state variable 
cout.setf(ios::right,ios::adjustfield) 
cout « setw(S) « 14 « lI\nll 

results in a line of output that looks like: 

13***,###14 

Conversion Base 

Integers are normally inserted and extracted in decimal notation, but this is controlled by flag bits. If none 
of ios: :dec, ios: :hex, or ios: :oct are set the insertion is done in decimal but extractions are inter­
preted according to the C++ lexical conventions for integral constants. If ios: : showbase is set then inser­
tions will convert to an external form that can be read according to these conventions. 

For example, 

int x = 64; 
cout « dec « x « 

« hex « x « 
« oct « x « endl 

cout.setf(ios::showbase,ios::showbase) 
cout « dec « x « 

« hex « x « 
II II 

II II 

« oct « x « endl 

will result in the lines: 

64 40 100 
64 Ox40 0100 

setf () with only one argument turns the specified bits on, but doesn't turn any bits off. 

Reading the lines shown above could be done by: 

cin » dec » x 
» hex » x 
» oct » x 
» resetiosflags(ios::basefield) 
» x » x » x ; 

The value stored in x will be 64 for each extraction. The resetiosflags () manipulator turns off the 
specified bits in the flags. 
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Miscellaneous Formatting 
As a precaution against looping, zero width fields are considered a bad format by the extractors. So if the 
next character is whitespace and ios: : skipws is not set, the arithmetic extractors will set an error bit. 

The number of significant digits inserted by the floating point (double) inserter is controlled by the preci­
s ion state variable. The details of the conversion are further controlled by certain flags. The reader is 
referred to the man page for more details. 

It is good practice to flush ostreams appropriately. The flush and endl manipulators make it relatively 
easy to do so. Yet, there are circumstances in which some automatic flushing is appropriate. This is sup­
ported by the ostream* valued state variable tie. If i. tie is non-null and an istream needs more char­
acters, the ostream pointed at by tie is flushed. Initially cin is tied in this fashion to cout so that 
attempts to get more characters from standard input result in flushing standard output. This seems to han­
dle most interactive programs reasonably well without imposing a large performance penalty on non­
interactive programs and without creating different behavior when programs are connected to pipes rather 
than directly to a terminal. (Programs that won't work when their input or output is connected to a pipe 
are one of the author's pet peeves.) The overheads implied by tying are relatively small when compared 
with l'big" extractors (such as the arithmetic ones) but may be large when single character operations are 
being performed. For this reason it is sometimes a good idea to break the tie by setting the state variable 
to O. For example: 

char c i 

II break the tie to improve performance of get. 
cin. tie (0) i 

while ( cin.get(c) ) cout.put(c) i 

Manipulators 

A manipulator is a value that can be inserted into or extracted from a stream to cause some special side 
effect. That is, some side effect besides inserting a representation of its value, or extracting characters and 
converting them to a value. A parameterized manipulator is a function (or a member of a class with an 
operator () ) that returns a manipulator. Previous sections contain examples of the use of manipulators 
and parameterized manipulators. This section contains examples illustrating how to define manipulators. 
The predefined manipulators and macros discussed in this section are declared in the header file 
iornanip.h. 

A (plain) manipulator is a function that takes an istream& or ostream& argument, operates on it in some 
way, and returns it. A (pOinter to a) function of this type may be extracted from or inserted into a stream, 
respectively. 

Many examples of manipulators (such as flush or endl) have already appeared in this paper. For exam­
ple, a manipulator to insert a tab can be defined: 
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ostrearn& tab(ostrearn& 0) { 
return 0 « '\t' i 

cout « x « tab « Y i 

This seems over elaborate. Why not simply define tab as a character or string? One possible reason has to 
do with the namespace. There can be only one (global) variable in a C++ program named tab but because 
of overloading there can be many functions with that name. 

Another common use of manipulators is to shorten the long names and sequences of operations required 
by the iostream library. For example, 

ostrearn& fld(ostrearn& 0) { 
o.setf(ios::showbase,ios::showbase) 
o.setf(ios::oct, ios::basefield) i 

o.width(lO) 
return 0 i 

cout « fld « x i 

It is common for the function that manipulates a stream to need an auxiliary argument. setw () is an 
example of such a parameterized manipulator. To use parameterized manipulators the program must 
include iomanip. h. 

For example, we might want to supply the value to be printed to fld in the above. 

ostrearn& fld(ostrearn& 0, int n ) { 
long f = flags(ios::showbaselios::oct) i 

o « setw(lO) « n 
flags (f) II restore original flags 
return 0 i 

OMANIP(int) fld(int n) { 
return OMANIP(int) (fld,n) 
} 

cout « fld(23) 

OMANIP is a macro and OMANIP (int) expands to the name of a class declared in iomanip.h. An 
OMANIP (int) insertion operator is also declared in iomanip. h and is used in the example. Note that fld 
in the above is overloaded; it is both the function that manipulates the stream and a function that returns 
an OMANIP(int) . 
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If we need parameterized manipulators for parameter types other than int and long (which are declared 
in iornanip.h), they must be declared. For example, suppose we want to read numbers that may have a 
suffix. 

typedef long& Longref i 

IOMANIPdeclare(Longref) 
II Declares IMANIP(Longref), OMANIP(Longref), IOMANIP(Longref) 
II IAPP(Longref), OAPP(Longref), IOAPP(Longref) 

istream& in_k(istream& i, long& n) 

II Extract an integer. 
II If suffix is present mUltiply by 1024 
i » n i 

if ( i.peek() == 'k' 
i.ignore(l) 
n *= 1024 i 

return i 

IAPP(Intref) in_k = in_k i 

long n i 

II IAPP(Intref) is the type of an Intref applicator 
II in_k on right is function, on left variable 

cin » in_k(n) i 

The IOMANIPdeclare (T) declares manipulators (and applicators) for type T. Because of the way the macro 
IOMANIPdeclare expands, the argument must be an identifier. In this case a typedef is required to create 
manipulators for long&. An applicator is something that behaves like a function returning a manipulator. 
That is, it is a class with an operator () member. 

Sometimes we want a manipulator with more than one parameter. One way to achieve this effect is to 
define a manipulator on a class. For example, a manipulator that can be used to repeat a string might look 
like: 

cout « repeat ( lIab ll ,3) « endl i 

to result in a line containing lIababab." A possible definition of repeat would be 
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struct Repeatpair { 
const char* s 
int n ; 

} ; 

IOMANIPdeclare(Repeatpair) 

static ostream& repeat(ostream& 0, Repeatpair p) { 
II insert p.s into 0, p.n tbnes 
for ( int n = p.n ; n > 0 ; --n ) 0 « p.s 
return 0 ; 

OMANIP(Repeatpair) repeat(const char* s, int n) { 
Repeatpair p ; 
p.s=s ; p.n=n i 

return OMANIP(Repeatpair) (repeat,p) 

Manipulators are a powerful and flexible method of extending the default inserters and extractors. 

The Sequence Abstraction 

The iostream library is built in two layers: The formatting layer discussed in previous sections, and a 
sequence layer based on the class strearnbuf. The formatting layer is responsible for converting between 
sequences of characters and various types of values and for high level manipulations of the streams. The 
sequencing layer is responsible for producing and consuming those sequences of characters. The most com­
mon way of using streambufs is with a stream. But streambuf is an independent class and may be used 
directly. 

Abstractly, a strearnbuf represents a sequence of characters and two pointers into that sequence, a get and 
a put pointer. These pointers should be thought of as pointing at the locations either before or after char­
acters in the sequence, rather than at specific characters. The sequences and pointers may be manipulated 
in a variety of ways, with the two fundamental ones being fetching the character after the get pointer, and 
storing a character in the position after the put pointer. Storing either replaces any previous character at 
that location or, if the put pointer was at the end of the sequence, extends the sequence. Other manipula­
tions may move the pointers in various ways. 

For the examples of this section, we assume that there are two strearnbufs, pointed at by in and out. 
Methods for constructing strearnbufs appear later, but it is easy enough to get at the strearnbuf associated 
with a stream via rdbuf (). So we assume that in and out have been initialized with 

streambuf* in = cin.rdbuf() i 

strearnbuf* out = cout.rdbuf() i 

An istream or ostream retains no information about the state of the associated strearnbuf. For example 
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a program may alternate between extracting characters from in and cin. 

The simplest operations are getting and putting characters. A simple loop to copy characters from one 
streambuf to another would be: 

int c 
while « c = in->sbumpc(» != EOF ) { 

if ( out->sputc(c) == EOF ) error("output error") i 

} 

sbumpc () fetches the character after the get pointer and advances the get pointer over the fetched charac­
ter. sputc () stores a character into the sequence and moves the put pointer past it. Both functions report 
errors by returning EOF, which is why c must be declared an int rather than a char. EOFs returned while 
fetching tend to mean that the streambuf has run out of characters from the ultimate producer. EOFs 
returned when storing tend to signal real errors. Because, unlike iostreams, streambufs do not contain any 
error state, it is possible that a store or fetch might fail one time and succeed the next time it is tried. 

The strearnbuf class contains several different member functions for manipulating the get pointer. The fol­
lowing loop represents a common idiom: 

int c in->sgetc() i 

while ( c!=EOF && ! isspace (c) ) ( 
c = in->snextc() i 

} 

It scans the streambuf looking for a whitespace character (Le., one for which isspace is non-zero). It stops 
when it finds that character leaving it available for extraction. This is because sgetc () and snextc () do 
not behave the way many programmers expect. sgetc () returns the character after the get pointer, but 
does not move the pointer. snextc () moves the get pointer and then returns the character that follows the 
new location. As usual both these functions return EOF to signal an error. 

The copy loop moved characters one at a time. It is possible to do larger chunks, as in: 

static const int Bufsize = 1024 i 

char buf[Bufsize] 
int P, g 
do ( 

g = sgetn(buf , Bufsize) i 

p = sputn(buf, g) i 

if ( p! =g ) error ("output error II ) i 

} while ( g>O ) i 

sgetn(b/n) attempts to fetch n characters from the sequence into the array starting at b. Similarly 
sputn (b ,n) tries to store the n characters starting at b into the sequence. Both move the pointer (get or 
put respectively) over the characters they have processed and return the number transferred. For sgetn ( ) 
this will be less than the number requested when the end of sequence is reached. When sputn () returns 
less than the number requested, it indicates an error of some sort. 
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Buffering Exposed 
As the name suggests strearobuf s may implement the sequence abstraction by buffering between the 
source and sink of characters. This results in an unfortunate pun. The word "buffer" is frequently used 
informally to designate a streambuf, but it is also used to describe the chunking of characters. Thus, the 
oxymoron "unbuffered buffer" refers to a strearobuf in which characters are passed to the ultimate consu­
mer as soon as they are stored, and obtained from the ultimate producer whenever they are retrieved. 

In light of the buffering provided by streambufs, the reader will not be surprised to discover that arrays of 
characters are used in the implementation. The strearobuf class contains some member functions that 
make the presence of such arrays visible to the program. With some effort, they might be used to L1Jreak 
the abstraction," but the intended purpose is to deal with the delays implicit in buffering. 

The earlier example using sgetn () and sputn () to copy from in to out waits until Bufsize characters 
become available (or the end of the sequence is reached) before passing any to out. If the source of charac­
ters has delays (e.g., it is a person typing at a terminal) and we want the characters to be passed on as soon 
as they become available; the program might use operations on single characters instead, or it might use an 
adaptive method such as: 

static const int Bufsize = 1024 i 

char buf[Bufsize] 
int p, 9 
do { 

in->sgetc() II force a character in buffer 
9 = in->in_avail() 
if ( 9 > Bufsize ) 9 = Bufsize 
9 = in->sgetn(buf,g) 
p = out->sputn(buf,g) i 

out->sync () 
if ( p! =g ) error ("output error II ) ; 

} while ( 9 > 0 ) 

in_avail returns the number of characters immediately available in the array. Calling sgetc () first forces 
there to be at least one such character (unless the get pointer is at the end of the sequence). Recall that 
sgetc () returns the next character, but doesn't move the get pointer. The code calls sync () after it has 
put characters into out, thus causing these characters to be sent to the ultimate consumer. 

In some circumstances, such as when streambufs are being used for interprocess messages, the chunks in 
which characters are produced and consumed may have significance. The above preserves these chunks 
provided they are less than Bufsize and they fit into the arrays of in and out. To ensure that this latter 
condition is met, the code should provide large enough arrays explicitly with: 

char ibuf[Bufsize+8], obuf[Bufsize+8] 
in->setbuf(ibuf,sizeof(ibuf» i 

out->setbuf(obuf,sizeof(obuf» i 

The calls to setbuf () should be done before any fetches or stores are done. The arrays are eight larger 
than required by the largest chunk to allow for various overheads. Of course, this code behaves properly 
only when in delivers the characters in the appropriate chunks. 
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Using Streambufs in Streams 
The positions of the put pointer after operations that store characters and position of the get pointer after 
operations that fetch characters are well defined by the sequence abstraction. But the location of the get 
pointer after stores, and the location of the put pointer after fetches is not. Most specializations of stream­
buf (Le., classes derived from it) follow one of two patterns. Either the class is queuelike, which means 
that the put pointer and the get pointer are independent and moving one has no effect on the other. Or the 
class is filelike, which means that when one pointer moves the other is adjusted to point to the same place. 
So a filelike class behaves as if there were only one pointer. Other possibilities are logically possible, but 
do not seem to be as useful. 

A queuelike streambuf, may be shared between two streams. For example: 

strstreambuf b i 

ostream ins (&b) ; 
istream extr(&b) ; 
while ( ... ) { 

ins « x ; 
extr » x ; 

This example explicitly uses the strstreambuf class (declared in strstream. h) which is also used (impli­
citly) by the istrstream and ostrstream classes. The istream () and ostream () constructors require a 
streambuf argument. They use that streambuf as a producer or consumer of characters. The characters 
inserted into ins may later be extracted from extr. If an attempt is ever made to extract more characters 
than have been inserted, the extraction will fail. If more characters are later inserted, extr's error state can 
be cleared and the extraction retried. 

Because of the dynamic allocation performed by strstreambuf s the queue is unbounded, but there is a 
serious drawback. Space is not reclaimed until b is destroyed. 

Deriving New Streambuf Classes 

The streambuf class is intended to serve as a base class. Although it contains members to manipulate the 
sequences, it does not contain any mechanism for producing or consuming characters. These must be pro­
vided by a derived class. The iostream library contains several such derived streambuf classes, but a pro­
gram may define new ones. 

The members of a class that are intended for use by derived classes are protected, and the data structure 
as seen by a derived class is said to be the protected interface of the streambuf class. This abstraction 
exposes the details of the array management that is implicit in the buffering provided by streambufs. It 
consists of two parts. The first part is member functions of strearnbuf that permit access to and manipula­
tion of the arrays and pointers used to implement the sequence abstraction. The second part is virtual 
members of streambuf that must be supplied by the derived class. 
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The principle example of this section will be the implementation of fctbuf, whose declaration looks like: 

typedef int (*action) (char* b, int n, open_mode m) i 

class fctbuf : public streambuf ( 
pUblic: 

private: 
} i 

fctbuf(action f,open_mode m) 

When called with m=ios: :out, an action () function processes the n characters starting at b. When called 
with m=ios : : in, it stores n characters starting at b. It returns non-zero to indicate success and zero to 
indicate failure. 

The declaration of fctbuf looks like: 

class fctbuf : public streambuf ( 
public: II constructor 

fctbuf(action a, open_mode m) i 

private: 
action fct i 

open_mode 

char 

protected: 
int 
int 

mode i 

small [1] 

overflow (int) 
underflow ( ) i 

I I data members 

II virtuals 

streambuf* 
setbuf(char*,int,int) 

int sync() i 

} i 

The constructor just initializes the data elements. The action function a will be called only in modes com­
patible with m. 

fctbuf::fctbuf(action a, open_mode m) 
: fct(a) , mode(m) { } 

The virtual functions define details that make fctbuf () behave properly. The streambuf protected inter­
face is organized around three areas (char arrays), the holding area, the get area, and the put area. Char­
acters are stored into the put area and fetched from the get area. 

As characters are stored in the put area, it shrinks until there is no more space available. If an attempt is 
made to store a character when the put area has no space, a new area must be established. Before that can 
be done the old characters must be consumed. Both these tasks are the responsibility of the overflow ( ) 
function. Similarly, the get area is shrunk by fetches and is eventually empty. If more characters are 

Library Manual 



lostream Examples 

needed the underflow () function must create a new get area. Both overflow () and underflow () will 
use the holding area to initialize the put or get area (respectively). 

setbuf 

The virtual function setbuf is called by user code to offer an array for use as a holding area. It can also be 
used to tum off buffering. 

streambuf* fctbuf::setbuf(char* b , int len) 
{ 

if base()) return 0 i 

if bl=O && len> sizeof(small) ) { 
II set up holding area 
setb(b/b+len) 
} 

else { 
II Use a one character array to achieve 
I I II unbuffered II actions. 
setb(small/small+sizeof(small)) 
} 

setp (0 ,0) i 

setg(OIO,O) 
return this 

The actions of this function are: 

II put area 
II get area 

• base () points to the first character of the holding area. If a holding area has already been set up 
(base non-zero) a new one cannot be established and setbuf () returns a null pointer as an error 
indication. 

• If an array is supplied and is sufficiently large, setb () is called to set up the pointers to the holding 
area. Its first argument becomes base, the first char of the holding area, and its second becomes 
ebuf, the char after the last. Otherwise the fctbuf will become unbuffered. This is noted by set­
ting up a one character holding area. 

• Finally the pointers related to the put area are set to 0 by setp () and the pointers related to the get 
area are set to 0 by setg ( ) . 
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overflow 
The virtual function overflow ( ) is called to send some characters to the consumer, and establish the put 
area. Usually (but not always) when it is called, the put area has no space remaining. 

3.-28 

int fctbuf::overflow(int c) { 
II check that output is allowed 
if ( 1 (mode&ios: :out) return EOF 

II Make sure there is a holding area 
if ( allocate()==EOF) return EOF ; 

II Verify that there are no characters in 
II get area. 
if ( gptr() && gptr() < egptr() ) return EOF 

II Reset get area 
setg ( 0 I 0 I 0) ; 

II Make sure there is a put area 
if ( 1pptr() ) setp(base()/base(» 

II Determine how many characters have been 
II inserted but not consumed. 
int w = pptr()-pbase() i 

II If c is not EOF it is a character that must 
II also be consumed. 
if ( c 1= EOF ) { 

II We always leave space 
*pptr() = c ; 
++w 
} 

II consume characters. 
int ok = (*fct) (pbase() I w, ios::out) 

if ( ok ) { 

else { 

II Set up put area. Be sure that there 
II is space at end for one extra character. 
setp(base()/ebuf()-l) 
return zapeof(c) ; 

II Indicate error. 
setp( 0 ,0) i 

return EOF i 
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Some explanations of this code: 

• It first tests for various error conditions, such as trying to do insertion when there are characters that 
have been produced but not extracted. This is a problem because the code only uses one area to hold 
characters for insertion and extraction. It would also be possible to ignore this condition and just 
throwaway the characters or a more elaborate version of fctbuf might use separate areas for inser­
tion and extraction. 

• allocate () is a part of the streambuf protected interface. If no reserve area has previously been 
specified it allocates heap space. 

• pbase is the value of pptr established by the last call to setp ( ). As characters are stored, pptr is 
moved so that it always points to the first unused character. Thus the characters between pbase and 
pptr have been stored and not consumed. They are now sent to the consumer. 

• The value returned by the consumer is checked to verify that it has been able to consume all the char­
acters that were passed to it. If not, there is no put area and EOF is returned. 

• When all has gone well the put area is established by setp () whose first argument becomes pptr 
(pointing to the first char of the put area) and whose second becomes epptr (pointing to the char 
after the last char of the put area). In this case when no errors have occurred the whole holding 
area minus the last character is used as a put area. The last character will usually be filled in by the 
character supplied to the next call to overflow ( ) . 

• Finally, if all has gone well, c is returned unless it is EOF. If c is EOF something else must be 
returned because EOF is returned to signal an error. The macro zapeof () deals with this con­
tingency. 

underflow 
The underflow function is called when characters are needed for fetching and none are available in the get 
area. Its general outline is similar to overflow ( ) , but it deals with the get area rather than the put area. 
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int fctbuf::underflow() { 

Some explanations: 

II Check that input is allowed 
if ( ! (mode&ios::in) ) return EOF 

II Make sure there is a holding area. 
if (allocate()==EOF) return EOF 

II If there are characters waiting for output 
II send them; 
if ( pptr() && pptr() > pbase() ) overflow (EOF) 

II Reset put area 
setp (0,0) ; 

II Setup get area 
if ( blen() > 1 ) setg(base(),base()+l,ebuf()) 
else setg(base() ,base() ,ebuf()) 

II Produce characters 
int ok = (*fct) (base(),blen(),ios::in) 

if ( ok ) ( 

else ( 

return zapeof(*base()) 

setg(O,O,O) 
return EOF ; 

• EOF is returned immediately if we aren't supposed to do input or if a holding area cannot be allo­
cated. 

• allocate () is called to make sure that there is a holding area. 

• setg () is used to establish the get area where fct will be asked to store characters. Its first argu­
ment sets up a pointer, eback, that marks the limit to which putback can move gptr. The second 
argument becomes gptr, and the last becomes egptr, pointing at the char after the last char contain­
ing values stored by the producer. 

• bIen () returns the size of the holding area. It may be as small as 1. 

• If the action function indicated success underflow () returns the first character. It is left in the get 
area and may be extracted again. zapeof () is used to make sure that the returned result is not EOF. 
If zapeof () were omitted this might occur on a machine in which chars are signed and EOF is -1. 
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sync 
The virtual function sync () is called to maintain synchronization between the various areas and the pro­
ducer or consumer. It is also called by the streambuf () destructor. 

int fctbuf::sync() 

if ( gptr() && egptr() > gptr() ) { 
II no way to return characters to producer 
return EOF 

if ( pptr() && pptr() > pbase() ) 
II Flush waiting output 
return overflow(EOF) 
} 

II nothing to do 
return 0 i 

The virtual functions defined above implement a correct streambuf class. A possible refinement would be 
to provide implementations of the virtual xsputn () and xsgetn () functions. These functions are called 
when chunks of characters are being inserted and extracted respectively. Their default actions are to copy 
the data into the buffer. If they were defined in the fctbuf class they could call the functions directly and 
avoid the extra copy. 

Extending Streams 

There are two kinds of reasons to extend the basic stream classes. The first is to specialize to a particular 
kind of streambuf and the second is to add some new state variables. 

Specializing istream or ostream 

When the iostream library is specialized for a new source or sink of characters the natural pattern is this: 
First derive a class from streambuf, such as fctbuf in the previous section. Then derive classes from 
whichever of istream, ostream, or iostrearn is appropriate. For example, suppose we want to do this 
with the fctbuf class defined in the previous section. The streams might get the definitions: 
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class fctbase virtual public ios { 
pUblic: 

fctbase(action a, open_mode m) 
: buf(a,m) { init(&buf) 

private: 
fctbuf buf 

} ; 

class ifctstream : public fctbase, public istream { 
pUblic: 

ifctbase(action a) 
: fctbase(a, ios::in) { } 

} ; 

class ofctstream : public fctbase, public ostream { 
pUblic: 

ofctbase(action a) 
: fctbase(a, ios::out) { } 

} ; 

class iofctstream : public fctbase, public iostream 
pUblic: 

} ; 

iofctstream(action a open_mode m) 
: fctbase(a, m) { } 

Derivations from ios are virtual so that when the class hierarchy joins (as it does in iofctstream) there 
will be only one copy of the error state information. Because the derivation from ios is virtual an argu­
ment cannot be supplied to its constructor. The strearobuf is supplied via ios: : in it (), which is a pro­
tected member of ios intended precisely for this purpose. 

Extending State Variables 

In many circumstances we would like to add state variables to streams. For example, suppose we are 
printing trees and would like to have an indentation level associated with an ostream. 
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int xdent = ios::xalloc() i 

II generate a unique index 

ostream& indent(ostream& 0) { 
II manipulator that inserts newlines and 
II appropriate number of tabs 
o « ' \n' i 

int count = o.iword(xdent) 
while ( count-- > 0 ) 0 « '\t' 
return 0 i 

ostream& redent(ostream& 0, int n) { 
II parameterized manipulator that modifies 
II indentation level 
o.iword(xdent) += n i 

} 

OAPP(int) redent = redent i 

o. iword (xdent) is a reference to the xdent'th integer state variable. Each call to ios: :xalloc returns a 
different index. The index may then be used to access a word associated with the stream. The reason for 
calling ios: :xalloc to get an index rather than just picking an arbitrary one is that it allows combining 
code that uses the indentation level with code that may have extended the formatting state variables for 
some other purpose. 

A subtle problem occurs in the above example because xdent is initialized by a function call. What if 
indent () or redent () were called before xdent was initialized? Can that happen? Yes it can. It can 
happen if indent () or redent () is called from inside a constructor that is itself called to initialize some 
variable with program extent. Problems with order of initialization when doing I/O in constructors are 
common. The solution relies on Utricks" to force initialization order. In this case we would put into the 
header file containing the declarations of indent () and redent (): 

static class Indent_init { 
static int count i 

pUblic: 

} indent_init i 

Indent_init () 
-Indent_init() i 

Each file that includes this header file will have a local variable indent_init that has to be initialized. 
Because this variable is declared in the header its initialization will occur early. 

The definition of the constructor and destructor looks like: 
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static Iostream_init* io i 

Indent_init::lndent_init() 
{ 

II count keeps track of the difference between how 
II many constructor and destructor calls there are 
if ( count++ > 0 ) return ; 

II This code is executed only the first time 
io = new Iostream_init i 

xdent = ios::xalloc() i 

Indent_init::-Indent_init() 
{ 

if ( --count ) > 0 return i 

II This code will be executed the last time 
delete io i 

} 

The iostream library uses this idea itself. The constructor for IostreanLinit causes the iostream library to 
be initialized the first time it is called. It also keeps track of how many times the constructor is called and 
will do finalization operations on various data structures the last time it is called. It is therefore important 
that any values of type Iostream_ini t that are constructed by a program are eventually deleted. This is 
the purpose of having an Indent_init destructor; even though there are no finalization operations associ­
ated with indentation, it must delete io. 

Comparison of lostreams, Streams, and Stdio 

The stdio library served C programmers well for many years. However, it has several deficiencies: 

• The use of functions, like printf () , that accept variable numbers and types of arguments mean that 
type checking is subverted at an important point in many programs. 

• There is no mechanism for extending it to user defined classes. The only way to add new format 
specifiers to printf () is to reimplement it. 

• The mechanism is closely tied to file I/O. sprintf () explicitly extends it to incore operations, but 
there is no general method for creating alternate sources and sinks of data. 

After stdio, the next stage of development was the stream library. Its most significant innovation was the 
introduction of insertion and extraction operations. The first two problems with stdio were elegantly 
solved. It was in use by C++ programmers for several years. But the stream library had problems of its 
own: 
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• The mechanism for creating sources and sinks of characters (strearnbuf class) was not documented 
or designed for extension. 

• The full range of UNIX file operations was not supported. In particular there were no repositioning 
operations (seeks). 

• There was only limited control over formatting. Programs frequently reverted to printf () like func­
tions to specify alternative formats for numbers. A fixed size area was allocated for converting 
values to strings and then outputting the strings. Although it was not a problem in practice, in 
theory this buffer was subject to overflows. 

The iostream library presented in this document has resolved these problems. It is relatively new, and 
whether significant problems will emerge in the future is not yet known. Some apparent deficiencies are: 

• There is no way to determine if a producer has characters available, and no way to select input from 
one of multiple sources. This is, of course, also a deficiency of stdio and streams. 

• There is no way to process data in the buffers without copying them out. This extra copying step can 
be expensive when simple operations (e.g., scanning for a specific character) are being performed. 

• Some formatting operations tend to be wordier than the equivalent stdio operations. This is compen­
sated for by the ability to define manipulators and inserters. 

Converting from Streams to lostreams 

The iostream library is mostly upward compatible with the older stream library, but there are a few places 
where differences may affect programs. This section discusses those differences. 

The major conceptual difference is that in the iostream library, streams and strearnbufs are regarded 
solely as abstract classes. The old stream classes provided certain specialized behaviors, specifically incore 
formatting and file I/O. In the iostream library these are supported solely through derived classes. 

The old stream library declared everything in the header file stream.h. The iostream library uses 
iostream.h and some other headers. For compatibility a stream.h is supplied that includes iostream.h 
and other headers that are required for compatibility and defines a variety of items whose names are dif­
ferent in the iostream and stream libraries. 

strearnbuf Internals 
The internals of the strearnbuf class in the stream library were all public. Any program that relies on 
these internals will break because they are different (and private) in the iostream library. 

How to derive new strearnbuf classes was not documented in the stream library. But it is such a natural 
idea to do so that many programs do it. Converting these programs to the iostream library may require 
changes in the derived overflow () and underflow () functions. The functionality of these functions in the 
iostream library is essentially the same as in the stream library. But because the internals of strearnbuf 
have changed, some code changes will probably be required. In particular the code will have to use the 
(protected) strearnbuf member functions seth ( ) , setg (), and setp () instead of directly manipulating 
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the pointers. 

Incore Formatting 
In the stream library the use of arrays of characters as sources or sinks was supported as the default 
behavior of streambuf. Although some attempt to preserve the default behavior is made by the iostream 
library these uses of a streambuf are considered obsolete. The support of incore operations is specifically 
the responsibility of the strstreambuf declared in strstream. h. streambuf s created for this purpose can 
usually be replaced directly by strstreambufs that have equivalent behavior. The stream usage: 

char* buf[10] ; 
streambuf b(buf,10) 

is equivalent to the iostream: 

char* buf[10] ; 
strstreambuf b(bl..lf,10) 

and the old method for initializing a streambuf for extraction: 

char* buf[10] ; 
streambuf b i 

b.setbuf(buf,10,buf+S) 

is equivalent to the iostream method: 

char* buf[10] ; 
strstreambuf b(buf,10,buf+S) 

Frequently these uses of streambuf do not appear explicitly in the program but are the consequence of 
using certain constructors of istream and ostream. These constructors are supplied in the iostream 
library, but are considered obsolete. The equivalent forms using strstream should be used. 

The old method of storing a formatted value into an array: 

char* buf[10] ; 
ostream out(10,b) 

is replaced by: 

char* buf [10] 
ostrstream out(b,10) 

Note that the order of the arguments is reversed. The new order creates more consistency between various 
uses of strstreams. 

The old method of extracting a formatted value from an array: 

char* buf [ 10] ; 
istream in(10,b) ; 
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The old istream () constructor allowed an optional extra argument to specify skipping of whitespace. In 
the iostream library this is part of a greatly expanded collection of state variables and so an extra argument 
is not provided for the istrstream() constructor. However, the obsolete form of istream() constructor 
continues to accept these optional arguments. 

Filebuf 

Both libraries contain a filebuf class for using streams to do I/O. It is declared in fstream.h in the ios­
tream library. The stream library had constructors that implied the use of filebufs. In the iostream 
library these constructors are replaced by constructors of certain derived classes. The old usage: 

int fd ; 
istream in(fd) ; 
ostream out (fd) 

is replaced by: 

int fd 

II file descriptor 
II file descriptor 

ifstream in(fd) ; II file descriptor 
of stream out (fd) ; II file descriptor 

The optional extra arguments of the stream constructors (for specifying whitespace skipping and IItyingU) 
are not supported. The equivalent functionality is supported by format state variables. 

Interactions with stdio 

The libraries differ significantly in the way they interact with stdio. The old stream header stream. h 
included stdio. h and some stream data structures could contain a pointer to a stdio FILE. In the iostream 
library specialized streams and streambufs (declared in stdiostream. h) are provided to make the connec­
tion. 

The old usage: 

FILE* stdiofile 
filebuf fb(stdiofile) 
istream in(stdiofile) 
ostream out (stdiofile) ; 
constructor, obsolete form 
constructor, obsolete form 
constructor, obsolete form 

is replaced by: 
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FILE* stdiofile i 

stdiobuf fb(stdiofile) 
stdiostream in(stdiofile) 
stdiostream out(stdiofile) i 

In the old library the predefined streams cin, cout, and cerr were directly connected to the stdio FILEs 
stdin, stdout, and stderr. I/O was mixed character by character. Further, these streams were unbuf­
fered in the sense that insertion and extraction was done by doing character by character puts and gets on 
the corresponding stdio FILEs. In the iostream library the predefined streams are attached directly to file 
descriptors rather than to the stdio streams. This means that for output the characters are mixed only as 
flushes are done and the input buffer of one is not visible to the other. 

In practice the biggest problems seem to come from attempts to mix code that uses stdout with code that 
uses cout. The best solution is to cause flushes to be inserted whenever the program switches from one 
library to the other. An alternative is to use: 

ios::sync_with_stdio() i 

This causes the predefined streams to be connected to the corresponding stdio files in an unbuffered mode. 
The major drawback of this solution is the large overheads associated with insertion of characters in this 
mode. Typically insertion into cout is slowed by a factor of 4 after a call of sync_wi th_stdio () . 

The old stream library contained some "stringifying" functions that were called with various arguments 
and returned a string. These are declared in strearn.h and available primarily for compatibility. The only 
such formatting function that seems to provide a significant functionality that is not easily available in the 
iostream library is form ( ), which allows printf () like formatting. In fact, form () is just a wrapper for 
calls to sprintf (). The programmer can easily write manipulators and inserters that do the same thing. 

Assignment 
In the old library it was possible to assign one stream to another. This is possible in the iostream library 
only if the left hand side is declared to be an aSSignable class. A general assignment cannot be allowed 
because of the interactions of derived classes. What, for example, should be the effect of assigning an ifs­
tream to an istrstream? Most programs that use this feature can be converted by using a reference or 
pointer to a stream. The old usage: 

ostrearn out i 

out = cout 
out « x i 

can be replaced by: 

or: 
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ostream* out 
out = cout 
out « x i 
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ostream_with_assign out 
out = &cout 
*out « x i 

char Insertion Operator 

lostream Examples 

The stream library did not contain an insertion operator for char. So inserting a char was taken as insert­
ing an integer value, and it was converted to decimal. This omission was due to problems with overload 
resolution in earlier versions of the C++ Language System. Any old code such as: 

char c i 

cout « c i 

may be replaced by: 

char c i 

cout « (int)c 

iostream Examples 3-39 
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class Y : public X ( 
void mf(); 

} ; 

Y: :mf () 
( 

priv = 1; 
prot 2; 
publ = 3; 

void f(Y* p) 

p->priv = 
p->prot = 

p->publ = 

1; 
2; 

3i 

The Evolution of C++: 1985 to 1989 

II error: priv is private 
II OK: prot is protected and mf2() is a member of Y 
II OK: publ is public 

II error: priv is private 
II error: prot is protected and fO is not a friend 
II or a member of X or Y 
II OK: publ is public 

A more realistic example of the use of protected can be found in this chapter under ''Multiple Inheri­
tance." 

A friend function has the same access to protected members as a member function. 

A subtle point is that accessibility of protected members depends on the static type of the pointer used in 
the access. A member or a friend of a derived class has access only to protected members of objects that 
are known to be of its derived type. For example: 
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Manual Pages 

To see an online manual page, type man name where name is a particular manual page. For 
example, to see the manual page for ios, type man ios. 

The complex library manual pages are: 

• CPLX.INTRO(3C++) 
• cartpol(3C++) 
• cplxerr(3C++) 
• cplxops(3C++) 
• cplxexp(3C++) 
• cplxtrig(3C++) 

The task library manual pages are: 

• TASK.INTRO(3C++) 
• task(3C++) 
• queue(3C++) 
• interrupt(3C++) 
• tasksim(3C++) 

The iostream library manual pages are: 

• IOS.INTRO(3C++) 
• ios(3C++) 
• sbuf.pub (3C+ +) 
• sbuf·prot(3C++) 
• jilebuf(3C++) 
• stdiobuf(3C++) 
• ssbuf(3C++) 
• istream(3C++) 
• ostream (3C+ +) 
• fstream(3C++) 
• strstream(3C++) 
• manip (3C+ +) 
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CPLX.lNTRO (3C++) (C++ Complex Math Library) CPLX.lNTRO (3C++) 

NAME 
complex - introduction to C++ complex mathematics library 

SYNOPSIS 
#include <complex.h> 
class complex; 

DESCRIPTION 

FILES 

This section describes functions and operators found in the C++ Complex Mathematics Library, libcomplex. a. 
These functions are not automatically loaded by the C++ compiler, cc(1); however, the link editor searches this 
library under the -lcomplex option. Declarations for these functions may be found in the #include file 
<complex.h>. When compiling programs using the complex library, users must provide the -1m options on the 
CC command line to link the math library. 

The Complex Mathematics library implements the data type of complex numbers as a class, complex. It over­
loads the standard input, output, arithmetic, assignment, and comparison operators, discussed in the manual 
pages for cplxops(3C++). It also overloads the standard exponential, logarithm, power, and square root func­
tions, discussed in cplxex:p(3C++), and the trigonometric functions of sine, cosine, hyperbolic sine, and hyper­
bolic cosine, discussed in cplxtrig(3C++), for the class complex. Routines for converting between Cartesian 
and polar coordinate systems are discussed in cartpo1(3C++). Error handling is described in cplxerr(3C++). 

INCDIR/complex.h 
LIBDIR/libcomplex.a 

SEE ALSO 
cartpol(3C++), cplxerr(3C++), cplxops(3C++), cplxex:p(3C++), and cplxtrig(3C++). 
Stroustrup, B., "Complex Arithmetic in C++," Chapter 1 of the c++ Language System Release 2.1 Library Manual. 

DIAGNOSTICS 

3/91 

Functions in the Complex Mathematics Library (3C++) may return the conventional values (0, 0), (0, 
±HUGE), (±HUGE, 0), or (±HUGE, ±HUGE), when the function is undefined for the given arguments or when 
the value is not representable. (HUGE is the largest-magnitude single-precision floating-point number and is 
defined in the file <math.h>. The header file <math.h> is included in the file <complex.h>.) In these cases, the 
external variable errno [see intro(2)] is set to the value EDOM or ERANGE. 

Page 1 



TASK.INTRO (3C++) (C++ Task Library) TASK.lNTRO (3C++) 

NAME 
task - coroutines, multiple threads of control, C++ task library 

SYNOPSIS 
#include <task.h> 

class object; 
class sched public object; 
class timer public sched; 
class task public sched; 

class qhead public object; 
class qtail public object; 

class Interrupt_handler : public object; 

class histogram; 
class randint; 
class urand : public randint; 
class erand : public randint; 

DESCRIPTION 
The c++ task library provides facilities for writing programs with multiple threads of control within one UNIX 
system process. Each thread of control is a task or coroutine. Each task is an instance of a user-defined class 
derived from class task, and the main program of the task is the constructor of its class. A task can be 
suspended and resumed without interfering with its internal state. Each task runs until it explicitly gives up 
the processor; there is no pre-emption. 

Most classes in the task system are derived from the base class obj ect. The base class sched is responsible for 
scheduling and for the functionality that is common to tasks and timers. Class sched is meant to be used 
strictly as a base class, that is, it is illegal to create objects of class sched. Class task must also be used only as 
a base class. The programmer must derive a class from class task, and provide a constructor to serve as the 
task's main program. The task system can be used for writing event-driven simulations. tasks execute in a 
simulated time frame. Objects of class timer provide a facility for implementing time-outs and other time­
dependent phenomena. Classes task, timer, sched, and object and their public member functions are 
described on the task(3C++) manual page. 

Classes qhead and qtail enable a wide range of message-passing and data-buffering schemes to be imple­
mented simply. These classes are described on the queue(3C++) manual page. 

Class Interrupt_handler provides an interface for writing classes that can wait for external events using UNIX 
system signals. These classes are described on the interrupt(3C++) manual page. 

Class histogram aids data gathering. Classes randint, urand, and erand provide random number generation. 
These four classes are described on the tasksim(3C++) manual page. 

SEE ALSO 
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task(3C++), queue(3C++), interrupt(3C++), tasksim(3C++) 
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in Chapter 2 of the 
AT&T C++ Language System Release 2.1 Library Manual. 
Shopiro, J. E., "Extending the C++ Task System for Real-Time Control," in Chapter 2 of the AT&T C++ Language 
System Release 2.1 Library Manual. 
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IOS.lNTRO (3C++ ) (C++ Stream Library) IOS.lNTRO (3C++) 

NAME 
iostream - buffering, formatting and input/output 

SYNOPSIS 
#include <iostream.h> 
class streambuf 
class ios i 

class istream : virtual public ios i 

class ostream : virtual public ios i 

class iostream : public istream, public ostream 
class istream_withassign : public istream i 

class ostream_withassign : public ostream i 

class iostream_withassign : public iostream 

class Iostream_init i 

extern i stream_wi thassign cin 
extern ostream_withassign cout 
extern ostre~withassign cerr 
extern ostream_withassign clog 

#include <fstream.h> 
class filebuf : public streambuf i 

class fstream : public iostream 
class ifstream public istream 
class of stream : public ostream 

#include <strstream.h> 
class strstreambuf : public streambuf 
class istrstream public istream 
class ostrstream : public ostream i 

#include <stdiostream.h> 
class stdiobuf : public strearnbuf 
class stdiostream : public ios i 

DESCRIPTION 

3/91 

The C++ iostream package declared in iostream.h and other header files consists primarily of a collection of 
classes. Although originally intended only to support input/output, the package now supports related activities 
such as incore formatting. This package is a mostly source-compatible extension of the earlier stream I/O pack­
age, described in The C++ Programming Language by Bjarne Stroustrup. 

In the iostream man pages, character refers to a value that can be held in either a char or unsigned char. 
When functions that return an int are said to return a character, they return a positive value. Usually such 
functions can also return EOF (-1) as an error indication. The piece of memory that can hold a character is 
referred to as a byte. Thus, either a char* or an unsigned char* can point to an array of bytes. 

The iostream package consists of several core classes, which provide the basic functionality for I/O conversion 
and buffering, and several specialized classes derived from the core classes. Both groups of classes are listed 
below. 

Core Classes 
The core of the iostream package comprises the following classes: 

streambuf 
This is the base class for buffers. It supports insertion (also known as storing or putting) and 
extraction (also known as fetching or get ting) of characters. Most members are inlined for 
efficiency. The public interface of class strearnbuf is described in sbuf. pub(3C++) and the pro­
tected interface (for derived classes) is described in sbuf .prot(3C++). 
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IOS.lNTRO (3C++) (C++ Stream Library) IOS.lNTRO (3C++) 

ios This class contains state variables that are common to the various stream classes, for example, 
error states and formatting states. See ios(3C++). 

istream 
This class supports formatted and unformatted conversion from sequences of characters fetched 
from strearnbufs. See istream(3C++). 

ostream 
This class supports formatted and unformated conversion to sequences of characters stored into 
strearnbufs. See ostream(3C++). 

iostream 
This class combines istream and ostream. It is intended for situations in which bidirectional 
operations (inserting into and extracting from a single sequence of characters) are desired. See 
ios(3C++). 

i stream_wi thassign 
ostream_withassign 
iostream_withassign 

These classes add assignment operators and a constructor with no operands to the corresponding 
class witlwut assignment. The predefined streams (see below) cin, cout, cerr, and clog, are 
objects of these classes. See istream(3C++), ostream(3C++), and ios(3C++). 

Iostream_init 
This class is present for technical reasons relating to initialization. It has no public members. 
The Iostream_ini t constructor initializes the predefined streams (listed below). Because an 
object of this class is declared in the iostream.h header file, the constructor is called once each 
time the header is included (although the real initialization is only done once), and therefore the 
predefined streams will be initialized before they are used. In some cases, global constructors 
may need to call the Iostream_init constructor explicitly to ensure the standard streams are 
initialized before they are used. 

Predefined streams 
The following streams are predefined: 

cin The standard input (file descriptor 0). 

cout The standard output (file descriptor 1). 

cerr Standard error (file descriptor 2). Output through this stream is unit-buffered, which means that 
characters are flushed after each inserter operation. (See ostream: :osfx() in ostream(3C++) 
and ios: :unitbuf in ios(3C++).) 

clog This stream is also directed to file descriptor 2, but unlike cerr its output is buffered. 

cin, cerr, and clog are tied to cout so that any use of these will cause cout to be flushed. 

In addition to the core classes enumerated above, the iostream package contains additional classes derived from 
them and declared in other headers. Programmers may use these, or may choose to define their own classes 
derived from the core iostream classes. 

Classes derived from strearnbuf 

Page 2 

Classes derived from strearnbuf define the details of how characters are produced or consumed. Derivation of 
a class from strearnbuf (the protected interface) is discussed in sbuf .prot(3C++). The available buffer 
classes are: 

filebuf 
This buffer class supports I/O through file descriptors. Members support opening, closing, and 
seeking. Common uses do not require the program to manipulate file descriptors. See 
filebuf(3C++). 

stdiobuf 
This buffer class supports I/O through stdio FILE structs. It is intended for use when mixing C 
and C++ code. New code should prefer to use filebufs. See stdiobuf(3C++). 
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strstreambuf 
This buffer class stores and fetches characters from arrays of bytes in memory (i.e., strings). See 
ssbuf(3C++). 

Classes derived from istream, ostream, and iostream 
Classes derived from istream, ostrearn, and iostream specialize the core classes for use with particular kinds 
of streambufs. These classes are: 

ifstream 
of stream 
fstream 

These classes support fonnatted I/O to and from files. They use a filebuf to do the I/O. 
Common operations (such as opening and closing) can be done directly on streams without 
explicit mention of filebufs. See fstream(3C++). 

istrstream 
ostrstream 

These classes support lIin core" formatting. They use a strstreambuf. See strstream(3C++). 

stdiostream 
This class specializes iostream for stdio FILEs. See stdiostream.h. 

CAVEATS 
Parts of the streambuf class of the old stream package that should have been private were public. Most nor­
mal usage will compile properly, but any code that depends on details, including classes that were derived from 
streambufs, will have to be rewritten. 

Performance of programs that copy from cin to cout may sometimes be improved by breaking the tie between 
cin and cout and doing explicit flushes of cout. 

The header file stream.h exists for compatibility with the earlier stream package. It includes iostream.h, 
stdio. h, and some other headers, and it declares some obsolete functions, enumerations, and variables. Some 
members of streambuf and ios (not discussed in these man pages) are present only for backward compatibility 
with the stream package. 

SEE ALSO 
ios(3C++), sbuf .pub(3C++), sbuf .prot(3C++), filebuf(3C++), stdiobuf(3C++), ssbuf(3C++), 
istream(3C++), ostream(3C++), fstream(3C++), strstream(3C++), and manip(3C++) 
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Preface 

The AT&T C++ Language System Selected Readings contains papers about the C++ programming language. 
The manual is part of a set of four documents that are supplied with your C++ Language System. The 
other documents are: 

• the Release Notes, which describe the contents of this release, how to install it, and changes to the 
language 

• the Product Reference Manual, which provides a complete definition of the C++ language supported by 
the Release 3.0 C++ Language System 

• the Library Manual, which describes the three C++ class libraries and tells you how to use them 

The twelve chapters in this manual are based on technical memoranda by authors working with various 
aspects of the C++ language. These chapters cover features of the language provided by Release 3.0 of the 
compiler. Chapters 7 and 8, which describe the template feature, have been updated to reflect changes in 
this feature in Release 3.0.1. These are the only chapters which have been changed since Release 3.0. 

• Chapter 1 lists the new features of C++ and describes each one briefly 

• Chapter 2 is a tutorial showing you how to use the special features that C++ provides 

• Chapter 3 is an overview of the language provided with Release 3.0 

• Chapter 4 describes support for object-oriented programming in C++ 

• Chapter 5 explains the multiple inheritance feature and describes its use 

• Chapter 6 discusses parameterized types in C++ 

• Chapter 7 gives an overview of the implmentation of template instantiation in C++ Release 3.0 

• Chapter 8 provides a user's guide to template instantiation 

• Chapter 9 explains the type-safe linkage capabilities 

• Chapter 10 explains levels of protection in C++ class definitions 

• Chapter 11 explains inline functions in C++ 

• Chapter 12 discusses C++ and ANSI C 

To make the best use of the Selected Readings, you should be familiar with the C programming language 
and the C programming environment under the UNIX operating system. 
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~ This chapter is taken directly from a paper by 8jarne Stroustrup. 

9 
Abstract 

The c++ Programming Language describes C++ as defined and implemented in August 1985. This paper 
describes the growth of the language since then and clarifies a few points in the definition. It is 
emphasized that these language modifications are extensions; C++ has been and will remain a stable 
language suitable for long term software development. The main new features of C++ are: multiple inheri­
tance, type-safe linkage, better resolution of overloaded functions, recursive definition of assignment and 
initialization, better facilities for user-defined memory management, abstract classes, static member func­
tions, const member functions, protected members, overloading of operator ->, and pointers to 
members. These features are provided in the 2.1 release of C++. 

Introduction 

As promised in The C++ Programming Language, C++ has been evolving to meet the needs of its users. This 
evolution has been guided by the experience of users of widely varying backgrounds working in a great 
range of application areas. The primary aim of the extensions has been to enhance C++ as a language for 
data abstraction and object-oriented programming in general and to enhance it as a tool for writing high­
quality libraries of user-defined types in particular. Bya high-quality library I mean a library that provides 
a concept to a user in the form of one or more classes that are convenient, safe, and efficient to use. In this 
context, safe means that a class provides a specific type-secure interface between the users of the library and 
its providers; efficient means that use of the class does not impose large overhead in run-time or space on 
the user compared with hand written C code. 

Portability of at least some C++ implementations is a key design goal. Consequently, extensions that 
would add significantly to the porting time or to the demands on resources for a C++ compiler have been 
avoided. This ideal of language evolution can be contrasted with plausible alternative directions such as 
making programming convenient 

• at the expense of efficiency or structure; 

• for novices at the expense of generality; 

• in a specific application area by adding special purpose features to the language; 

• by adding language features to increase integration into a specific C++ environment 

For some ideas of where these ideas of language evolution might lead C++ see Chapter 4. 
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A programming language is only one part of a programmer's world. Naturally, work is being done in 
many other fields (such as tools, environments, libraries, education and design methods) to make C++ pro­
gramming more pleasant and effective. This paper, however, deals strictly with language and language 
implementation issues. 

Overview 

This paper is a brief overview of new language features; it is not a manual or a tutorial. The reader is 
assumed to be familiar with the language as described in The C++ Programming Language and to have 
sufficient experience with C++ to recognize many of the problems that the features described here are 
designed to solve or alleviate. Most of the extensions take the form of removing restrictions on what can 
be expressed in C++. 

1-2 

• Access Control 

First some extensions to C++'s mechanisms for controlling access to class members are presented. 
Like all extensions described here, they reflect experience with the mechanisms they extend and the 
increased demands posed by the use of C++ in relatively large and complicated projects. 

• Overloading Resolution 

• Type-Safe Linkage 

C++ software is increasingly constructed by combining semi-independent components (modules, 
classes, libraries, etc.) and much of the effort involved in writing C++ goes into the design and imple­
mentation of such components. To help these activities, the rules for overloading function names and 
the rules for linking separately compiled code have been refined. 

• Multiple Inheritance 

• Base and Member Initialization 

• Abstract Classes 

Classes are designed to represent general or application specific concepts. Originally, C++ provided 
only single inheritance, that is, a class could have at most one direct base class, so that the directly 
representable relations between classes had to be a tree structure. This is sufficient in a large majority 
of cases. However, there are important concepts for which relations cannot be naturally expressed as 
a tree, but where a directed acyclic graph is suitable. As a consequence, C++ has been extended to 
support multiple inheritance, that is, a class can have several immediate base classes, directly. The 
rules for ambiguity resolution and for initialization of base classes and members have been refined to 
cope with this extension. 

• static Member Functions 

• const Member Functions 
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• Initialization of static Members 

• Pointers to Members 

The concept of a class member has been generalized. Most important, the introduction of const 
member functions allows the rules for const class objects to be enforced. 

• User-Defined Free Store Management 

The mechanisms for user-defined memory management have been refined and extended to the point 
where the old and inelegant Uassignment to this" mechanism has become redundant. 

• Assignment and Initialization 

The rules for assignment and initialization of class objects have been made more general and uniform 
to require less work from the programmer. 

• Operator-> 

• Operator I 

• Initialization of static objects 

• Some minor extensions are presented. 

• Resolutions 

The last section does not describe language extensions but presents the resolution of some details of 
the C++ language definition. 

• In addition to the extensions mentioned here, many details of the definition of C++ have been 
modified for greater compatibility with the proposed ANSI C standard. 

Access Control 

The rules and syntax for controlling access to class members have been made more flexible. 

protected Members 
The simple private/public model of data hiding served C++ well where C++ was used essentially as a data 
abstraction language and for a large class of problems where inheritance was used for object-oriented pro­
gramming. However, when derived classes are used there are two kinds of users of a class: derived classes 
and "'the general public." The members and friends that implement the operations on the class operate on 
the class objects on behalf of these users. The private/public mechanism allows the programmer to distin­
guish clearly between the implementors and the general public, but does not provide a way of catering 
specifically to derived classes. This often caused the data hiding mechanisms to be ignored: 
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class Y : public X ( 
void mf(); 

} ; 

Y: :mf 0 
( 

priv = 1; 
prot 2; 
publ 3; 

void f(Y* p) 

p->priv 
p->prot 

p->publ 

1; 
2; 

3; 

The Evolution of C++: 1985 to 1989 

II error: priv is private 
II OK: prot is protected and mf2() is a member of Y 
II OK: publ is public 

II error: priv is private 
II error: prot is protected and fO is not a friend 
II or a member of X or Y 
II OK: publ is public 

A more realistic example of the use of protected can be found in this chapter under ''Multiple Inheri­
tance." 

A friend function has the same access to protected members as a member function. 

A subtle point is that accessibility of protected members depends on the static type of the pointer used in 
the access. A member or a friend of a derived class has access only to protected members of objects that 
are known to be of its derived type. For example: 
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class Z : public Y 
I I ... 

} ; 

void Y: :mf () 
{ 

prot = 2; II OK: prot is protected and mf() is a member function 

X a; 
a.prot = 3; 

X* P = this; 
p->prot = 3; 

Z b; 
b.prot = 4; 

II error: prot is protected and a is not a Y 

II error: prot is protected 
II and p is not a pointer to Y 

II OK: prot is protected 
II and mf() is a member and a Z is a Y 

A protected member of a class base is a protected member of a class derived from base if the derivation is 
public and private otherwise. 

Access Control Syntax 
The following example confuses most beginners and even experts get bitten sometimes: 

class X { 
I I ... 

pUblic: 
int f () ; 

} i 

class Y X { 1* ... *1 }i 

int g(Y* p) 

II 
return P->f()i II error! 

} i 

Here X is by default declared to be a private base class of Y. This means that X is not a subtype of Y so 
the call p->f () is illegal because Y does not have a public function f (). Private base classes are quite an 
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important concept, but to avoid confusion it is recommended that they be declared private explicitly: 

class Y : private X { /* ... */ }; 

Several public I private, and protected sections are allowed in a class declaration: 

class X 
pUblic: 

int il; 
private: 

int i2; 
pUblic: 

int i3 ; 
} ; 

These sections can appear in any order. This implies that the public interface of a class may appear textu­
ally before the private "implementation details": 

class S 

pUblic: 

private: 

} i 

f(); 
int il; 
/ / ... 

g(); 
int i2; 
/ / ... 

Adjusting Access 

When a class base is used as a private base class all of its members are considered private members of the 
derived class. The syntax base-dass-name :: member-name can be used to restore access of a member to 
what it was in the base: 

class base { 
pUblic: 

int pUbl; 
protected: 

int prot; 
private: 

int priv; 
} ; 
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class derived : private base { 
protected: 

base: : prot; 
public: 

base: : publ ; 
} ; 

II protected in derived 

II public in derived 

This mechanism cannot be used to grant access that was not already granted by the base class: 

class derived2 : public base 
public: 

base: :priv; II error: base::priv is private 
} ; 

This mechanism can be used only to restore access to what it was in the base class: 

class derived3: private base { 
protected: 

base: :publ; II error: base::publ was public 
} ; 

This mechanism cannot be used to remove access already granted: 

class derived4: public base 
private: 

base: : publ ; II error: base::publ is public 
} ; 

We considered allowing the last two forms and experimented with them, but found that they caused total 
confusion among users about the access control rules and the rules for private and public derivation. Simi­
lar considerations led to the decision not to introduce the (otherwise perfectly reasonable) concept of pro­
tected base classes. 

Details 

A friend function has the same access to base class members as a member function. For example: 
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class base { 
protected: 

int proti 
public: 

int pub; 
} ; 

class derived : private base { 
pUblic: 

} ; 

friend int fr(derived *p) { return p->proti } 
int mem() { return proti } 

In particular, a friend function can perform the conversion of a pointer to a derived class to its private base 
class: 

class derived2 : private base { 
pUblic: 

friend base* fr(derived *p) { return Pi } 
base* mem() { return this; } 

} i 

base* f(derived* p) 

return p; II error: cannot convert; 
II base is a private base class of derived 

However, friendship is 1Wt transitive. For example: 

class X { 
friend class Y; 
private: 

} ; 

class Y 

} ; 

Evolution of C++ 

int ai 

friend int fr(Y *p) 
return p->a; 

int mem(Y* p) 
{ return p->a; 

II error: fr() is not a friend of X 

II OK: mem() is a friend of X 
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Overloading Resolution 

The c++ overloading mechanism was revised to allow resolution of types that used to be "too similar" and 
to gain independence of declaration order. The resulting scheme is more expressive and catches more 
ambiguity errors. Consider: 

double abs(double); 
float abs(float)i 

To cope with single precision floating point arithmetic it must be possible to declare both of these functions; 
now it is. The effect of any call of abs () given the declarations above is the same if the order of declara­
tions was reversed: 

float abs(float)i 
double abs(double); 

Here is a slightly simplified explanation of the new rules. Note that with the exception of a few cases 
where the the older rules allowed order dependence the new rules are compatible and old programs pro­
duce identical results under the new rules. For the last two years or so C++ implementations have issued 
warnings for the now 1I0utlawed" order dependent resolutions. 

C++ distinguishes five kinds of IImatches": 

• Match using no or only unavoidable conversions (for example, array name to pointer, function name 
to pointer to function, and T to const T) . 

• Match using integral promotions (as defined in the proposed ANSI C standard; that is, char to int, 
short to int and their unsigned counterparts) and float to double. 

• Match using standard conversions (for example, int to double, derived* to base*, unsigned int 
to int). 

• Match using user defined conversions (both constructors and conversion operators). 

• Match using the ellipsis . .. in a function declaration. 

Consider first functions of a single argument. The idea is always to choose the ''best'' match, that is the 
one highest on the list above. If there are two best matches the call is ambiguous and thus a compile time 
error. For example, 
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float abs(float); 
double abs(double); 
int abs(int); 
unsigned abs(unsigned); 
char abs(char); 

abs(l); 
abs (IU) ; 
abs(l.O); 
abs(l.OF); 
abs('a'); 
abs(lL); 

I labs (int) ; 
II abs(unsigned); 
I I abs (double) i 

II abs(float); 
I I abs (char) ; 
II error: ambiguous, abs(int) or abs(double) 

Here, the calls take advantage of the ANSI C notation for unsigned and float literals and of the C++ rule 
that a character constant is of type char 1. The call with the long argument IL is ambiguous since 
abs ( int) and abs (double) would be equally good matches (match with standard conversion). 

Hierarchies established by public class derivations are taken into account in function matching and where a 
standard conversion is needed the conversion to the Hmost derived" class is chosen. A void* argument is 
chosen only if no other pointer argument matches. For example: 

class B { 1* ... *1 }; 
class BB : public B { 1* ... *1 }; 
class BBB : public BB { 1* ... *1 }; 

f(B*); 
f(BB*); 
f(void*); 

void g(BBB* pbbb, int* pi) 
{ 

f (pbbb) ; 
f(pi); 

II f(BB*); 
II f(void*); 

This ambiguity resolution rule matches the rule for virtual function calls where the member from the most 
derived class is chosen. 

If two otherwise equally good matches differ in terms of const, the const specifier is taken into account in 
function matching for pointer and reference arguments. For example: 
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char* strtok(char*, const char*}; 
const char* strtok(const char * I const char*}; 

void g(char* VC, const char* vcc} 
{ 

char* pI = strtok (vc I II a II ) ; I I strtok (char* I char*); 
const char* p2 = strtok(vcc/la"};11 strtok(const char*, char*}; 
char* p3 = strtok(vcc,la"};11 error 

In the third case, strtok (const char * , const char * ) is chosen because vcc is a const char*. This 
leads to an attempt to initialize the char* p3 with the const char* result. 

For calls involving more than one argument a function is chosen provided it has a better match than every 
other function for at least one argument and at least as good a match as every other function for every 
argument. For example: 

class complex { ... complex(double}; }; 

f(int,double}; 
f(double,int}; 
f(complex,int}; 
f (int ... ); 
f (corrplex ... ); 

complex z = 1; 

f(1 / 2.0}; 
f(1.0,2}; 
f(z, 1.2}; 
f(z, 1, 3}; 
f(2.0, z}; 

f(l, I}; 

II f(int,double}; 
II f(double,int}; 
II f(complex/int}; 
II f(complex ... }; 
I I f (int ... ); 
II error: ambiguous, f(int,double} and f(double,int) 

The unfortunate narrowing from double to int in the third and the second to last cases causes warnings. 
Such narrowings are allowed to preserve compatibility with C. In this particular case the narrowing is 
harmless, but in many cases double to int conversions are value destroying and they should never be 
used thoughtlessly. 

As ever, at most one user-defined and one built-in conversion may be applied to a single argument. 
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Type-Safe Linkage 

Originally, C++ allowed a name to be used for more than one name (Uto be overloaded") only after an 
explicit over load declaration. For example: 

overload max; II 'overload' now obsolete 
int max(int,int); 
double max(double,double); 

It used to be considered too dangerous simply to use a name for two functions without previous declara­
tion of intent. For example: 

int abs(int); 
double abs(double); II used to be an error 

This fear of overloading had two sources: 

• concern that undetected ambiguities could occur 

• concern that a program could not be properly linked unless the programmer explicitly declared 
where overloading was to take place. 

The former fear proved largely groundless and the few problems found in actual use have been taken care 
of by the new order-independent overloading resolution rules. The latter fear proved to have a basis in a 
general problem with C separate compilation rules that had nothing to do with overloading. 

On the other hand, the redundant over load declarations themselves became an increasingly serious prob­
lem. Since they had to precede (or be part of) the declarations they were to enable, it was not possible to 
merge pieces of software using the same function name for different functions unless both pieces had 
declared the function overloaded. This is not usually the case. In particular, the name one wants to over­
load is often the name of a C standard library function declared in a C header. For example, one might 
have standard headers like this: 

1* Header for C standard math library, math.h: *1 
double sqrt(double); 
1* ... *1 

II header for c++ standard complex arithmetic library, complex.h: 
overload sqrt; 
complex sqrt(complex); 
I I ... 

and try to use them like this: 

#include <math.h> 
#include <complex.h> 

This causes a compile time error when the over load for sqrt () is seen after the first declaration of 
sqrt ( ). Rearranging declarations, putting constraints on the use of header files, and sprinkling over load 
declarations everywhere IIjust in case" can alleviate this kind of problem, but we found the use of such 
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tricks unmanageable in all but the simplest cases. Abolishing over load declarations (and getting rid of the 
over load keyword in the process) is a much better idea. 

Doing things this way does pose an implementation problem, though. When a single name is used for 
several functions, one must be able to tell the linker which calls are to be linked to which function 
definitions. Ordinary linkers are not equipped to handle several functions with the same name. However, 
they can be tricked into handling overloaded names by encoding type information into the names seen by 
the linker. For example, the names for these two functions: 

double sqrt(double)i 
complex sqrt(complex)i 

become: 

sqrt __ Fd 
sqrt __ F7 complex 

in the compiler output to the linker. The user and the compiler see the C++ source text where the type 
information serves to disambiguate and the linker sees the names that have been disambiguated by adding 
a textual representation of the type information. Naturally, one might have a linker that understood about 
type information, but it is not necessary and such linkers are certainly not common. 

Using this encoding or any equivalent scheme solves a long standing problem with C linkage. Inconsistent 
function declarations in separately compiled code fragments are now caught. For example: 

II filel.c: 

extern name* lookup(table* tbl, const char* name)i 

I I ... 

void some_fct(char* s) 
{ 

name* n = lookup(gtbl,s)i 
} 

looks plausible and the compiler can find no fault with it. However, if the definition of lookup () turns out 
to be: 

II file2.c: 

int lookup(table* tbl, const char* name, int index) 

I I ... 

the linker now has enough information to catch the error. 
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Finally, we have to face the problem of linking to code fragments written in other languages that do not 
know the C++ type system or use the C++ type encoding scheme. One could imagine all compilers for all 
languages on a system agreeing on a type system and a linkage scheme such that linkage of code fragments 
written in different languages would be safe. However, since this will not typically be the case we need a 
way of calling functions written in a language that does not use a type-safe linkage scheme and a way to 
write C++ functions that obey the different (and typically unsafe) linkage rules for other languages. This is 
done by explicitly specifying the name of the desired linkage convention in a declaration: 

extern "C" double sqrt(double)i 

or by enclosing whole groups of declarations in a linkage directive: 

extern "C" { 
#include <rnath.h> 
} 

By applying the second form of linkage directive to standard header files one can avoid littering the user 
code with linkage directives. This type-safe linkage mechanism is discussed in detail in Chapter 6. 

Multiple Inheritance 

Consider writing a simulation of a network of computers. Each node in the network is represented by an 
object of class Switch, each user or computer by an object of class Terminal, and each communication line 
by an object of class Line. One way to monitor the simulation (or a real network of the same structure) 
would be to display the state of objects of various classes on a screen. Each object to be displayed is 
represented as an object of class Displayed. Objects of class Displayed are under control of a display 
manager that ensures regular update of a screen and/or data base. The classes Terminal and Switch are 
derived from a class Task that provides the basic facilities for co-routine style behavior. Objects of class 
Task are under control of a task manager (scheduler) that manages the real processor(s). 

Ideally Task and Displayed are classes from a standard library. If you want to display a terminal, class 
Terminal must be derived from class Displayed. Class Terminal, however, is already derived from class 
Task. In a single inheritance language, such as Simula67, we have only two ways of solving this problem: 
deriving Task from Displayed or deriving Displayed from Task. Neither is ideal since they both create a 
dependency between the library versions of two fundamental and independent concepts. Ideally, one 
would want to be able to say that a Terminal is a Task and a Displayed; that a Line is a Displayed but 
not a Task; and that a switch is a Task but not a Displayed. 

The ability to express this class hierarchy, that is, to derive a class from more than one base class, is usually 
referred to as multiple inheritance. Other examples involve the representation of various kinds of windows 
in a window system and the representation of various kinds of processors and compilers for a multi­
machine, multi-environment debugger. 

In general, multiple inheritance allows a user to combine concepts represented as classes into a composite 
concept represented as a derived class. C++ allows this to be done in a general, type-safe, compact, and 
efficient manner. The basic scheme allows independent concepts to be combined and ambiguities to be 
detected at compile time. An extension of the base class concept, called virtual base classes, allows depen­
dencies between classes in an inheritance DAG (Directed Acyclic Graph) to be expressed. 

Evolution of C++ 1-15 



The Evolution of C++: 1985 to 1989 

Ambiguous uses are detected at compile time: 

class A ( f(); 1* ... *1 }; 
class B ( f(); 1* ... *1 }i 

class C : public A, public B { }i 

void gO 
C* Pi 
p->f () i I I error: ambiguous 

Note that it is not an error to combine classes containing the same member names in an inheritance DAG. 
The error occurs only when a name is used in an ambiguous way - and only then does the compiler have 
to reject the program. This is important since most potential ambiguities in a program never appear as 
actual ambiguities. Considering a potential ambiguity an error would be far too restrictive2. 

Typically one would resolve the ambiguity by adding a function: 

class C : public A, public B { 
pUblic: 

} i 

fO 
( 

} 

II 

II C's own stuff 
A::f()i 

B: :f() i 

This example shows the usefulness of naming members of a base class explicitly with the name of the base 
class. In the restricted case of single inheritance, this way is marginally less elegant than the approach 
taken by Smalltalk and other languages (simply referring to "my super class" instead of using an explicit 
name). However, the C++ approach extends cleanly to multiple inheritance. 

A class can appear more than once in an inheritance DAG: 

class A public L { 1* ... *1 }i 

class B : public L { 1* ... *1 }i 

class C : public A, public B { 1* ... *1 }i 

In this case, an object of class C has two sub-objects of class L, namely A: :L and B: :L. This is often useful, 
as in the case of an implementation of lists requiring each element on a list to contain a link element. If in 
the example above L is a link class then a C can be on both the list of As and the list of Bs at the same time. 

Virtual functions work as expected; that is the version from the most derived class is used: 
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class A public: virtual f(); /* ... */ }; 
class B public: virtual g(); /* ... */ }; 
class C public A, public B { public: f(); g(); /* ... */ }; 

void ff () 

C obj; 
A* pa &obj; 
B* pb = &obj; 

pa->f () ; 
pb->g() ; 

/ / calls C::f 

/ / calls C::g 

This way of combining classes is ideal for representing the union of independent or nearly independent 
concepts. However, in some interesting cases, such as the window example, a more explicit way of 
expressing sharing and dependency is needed. 

Virtual base classes provide a mechanism for sharing between sub-objects in an inheritance DAG and for 
expressing dependencies among such sub-objects: 

class A public virtual W { /* ... */ }; 
class B : public virtual W { /* ... */ }; 
class C : public A, public B, public virtual W { /* ... */ }; 

In this case there is only one object of class W in class c. 

Constructing the tables for virtual function calls can get quite complicated when virtual base classes are 
used. However, virtual functions work as usual by choosing the version from the most derived class in a 
call: 
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class W { 
II 

pUblic: 

} i 

virtual void f()i 
virtual void 9()i 

virtual void h()i 

virtual void k()i 

I I ... 

class AW 
class BW 
class CW 

public virtual W { 1* ... */ pUblic: void 9()i 1* 

pUblic: 

} i 

public virtual W { 1* ... */ public: void f()i 1* 
public AW, public BW, public virtual W { 

I I ... 

void h() i 

I I ... 

CW* pew = new CW i 

pew->f () i 

Pew->g()i 

pew->h() i 
( (AW*) pew) ->f () i 

II invokes BW::f() 
I I invokes AW: :g() 
1/ invokes CW: :h() 
II invokes BW::f() I!! 

*1 }i 

*1 }i 

The reason that BW: : f () is invoked in the last example is that the only f () in an object of class CW is the 
one found in the (shared) sub-object W, and that one has been overridden by B: : f ( ) . 

Ambiguities are easily detected at the point where cw's table of virtual functions is constructed. The rule 
for detecting ambiguities in a class DAG is that all re-definitions of a virtual function from a virtual base 
class must occur on a single path through the DAG. The example above can be drawn like this: 

Figure 1-1: A Directed Acyclic Graph 

W{fghk} 

/ ~ 
AW{g} BW{f} 

~ / 
CW {h} 

Note that a call IIUp" through one path of the DAG to a virtual function may result in the call of a function 
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(re-defined) in another path (as happened in the call ((AW*) pew) ->f () in the example above). In this 
example, an ambiguity would occur if a function f () was added to AW. This ambiguity might be resolved 
by adding a function f () to cw. 

Programming with virtual bases is trickier than programming with non-virtual bases. The problem is to 
avoid multiple calls of a function in a virtual class when that is not desired. Here is a possible style: 

class W ( 
/ / ... 

protected: 

public: 

} ; 

_f() { my stuff} 
/ / ... 

f () { _f () ; 
/ / ... 

Each class provides a protected function doing "its own stuff," _f ( ) , for use by derived classes and a pub­
lic function f () as the interface for use by the "general public." 

class A : public virtual W 
/ / ... 

protected: 

pUblic: 

} ; 

_f() { my stuff} 
/ / ... 

f () { _f (); W:: _f () ; 
/ / ... 

A derived class f () does its "own stuff" by calling _f () and its base classes' "own stuff" by calling their 
_f () s. 

class B : public virtual W 
/ / ... 

protected: 

pUblic: 

} ; 

_f() { my stuff} 
/ / ... 

f () { _f (); W:: _f () ; 
/ / ... 

In particular, this style enables a class that is (indirectly) derived twice from a class W to call W: : f () once 
only: 
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class C : public A, public B, public virtual W ( 
/ / ... 

protected: 

pUblic: 

} ; 

_f() { my stuff} 
/ / ... 

f () { _f (); A:: _f (); B:: _f (); W:: _f (); } 
/ / ... 

Method combination schemes, such as· the ones found in Lisp systems with multiple inheritance, were con­
sidered as a way of reducing the amount of code a programmer needed to write in cases like the one 
above. However, none of these schemes appeared to be sufficiently simple, general, and efficient enough to 
warrant the complexity it would add to C++. 

As described in Chapter 5 a virtual function call is about as efficient as a normal function call - even in 
the case of multiple inheritance. The added cost is 5 to 6 memory references per call. This compares with 
the 3 to 4 extra memory references incurred by a virtual function call in a C++ compiler providing only sin­
gle inheritance. The multiple inheritance scheme currently used causes an increase of about 50% in the size 
of the tables used to implement the virtual functions compared with the older single inheritance implemen­
tation. To offset that, the multiple inheritance implementation optimizes away quite a few spurious tables 
generated by the older single-inheritance implementations so that the memory requirement of a program 
using virtual functions actually decreases in most cases. 

It would have been nice if there had been absolutely no added cost for the multiple inheritance scheme 
when only single inheritance is used. Such schemes exist, but involve the use of tricks that cannot be done 
by a C++ compiler generating C. 

Base and Member Initialization 

The syntax for initializing base classes and members has been extended to cope with multiple inheritance 
and the order of initialization has been more precisely defined. Leaving the initialization order unspecified 
in the original definition of C++ gave an unnecessary degree of freedom to language implementors at the 
expense of the users. In most cases, the order of initialization of members doesn't matter and in most cases 
where it does matter, the order dependency is an indication of bad design. In a few cases, however, the 
programmer absolutely needs control of the order of initialization. For example, consider transmitting 
objects between machines. An object must be re-constructed by a receiver in exactly the reverse order in 
which it was decomposed for transmission by a sender. This cannot be guaranteed for objects communi­
cated between programs compiled by compilers from different suppliers unless the language specifies the 
order of construction. 

Consider: 
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class A public: A(int); A(); /* 
class B public: B(int)i B()i /* 

class C : public A, public B { 
const a; 
int& bi 

pUblic: 
C(int&); 

} ; 

*/ }; 
*/ }i 

In a constructor the sub-objects representing base classes can be referred to by their class names: 

c: : C ( in t& rr) : A ( 1), B (2), a ( 3 ), b ( rr ) { / * ... * / } 

The initialization takes place in the order of declaration in the class with base classes initialized before 
members3, so the initialization order for class C is A, B, a, b. This order is independent of the order of 
explicit initializers so 

c: : C ( in t& rr) : b (rr), B (2), a ( 3 ), A ( 1 ) { / * ... * / } 

also initializes in the declaration order A, B, a, b. 

The reason for ignoring the order of initializers is to preserve the usual FIFO ordering of constructor and 
destructor calls. Allowing two constructors to use different orders of initialization of bases and members 
would constrain implementations to use more dynamic and more expensive strategies. 

Using the base class name explicitly clarifies even the case of single inheritance without member initializa­
tion: 

class vector { 
/ / ... 

public: 

} ; 

vector(int)i 
/ / ... 

class vec : public vector { 
/ / ... 

public: 

} ; 

vec(int,int); 
/ / ... 

It is reasonably clear even to novices what is going on here: 

vec::vec(int low, int high) : vector (high-low-l) { /* ... */ } 
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On the other hand, this version: 

vec::vec(int low, int high) : (high-low-l) { 1* ... *1 } 

has caused much confusion over the years. The old-style base class initializer is of course still accepted. It 
can be used only in the single inheritance case since it is ambiguous otherwise. 

A virtual base is constructed before any of its derived classes. Virtual bases are constructed before any 
non-virtual bases and in the order they appear on a depth-first left-to-right traversal of the inheritance DAG. 
This rule applies recursively for virtual bases of virtual bases. 

A virtual base is initialized by the Hmost derived" class of which it is a base. For example: 

class V public: V(); V(int); 1* ... *1 }; 
class A public virtual V ( pUblic: A(); A(int); 1* ... *1 }i 

class B public virtual V ( public: B()i B(int); 1* ... *1 }i 
class C public A, public B ( pUblic: C(); C(int)i 1* ... *1 }i 

A: :A(int i) 
B: :B(int i) 
C: :C(int i) 

V(i) { 1* 
1* *1 
1* ... *1 

*1 } 

V V(l)ill use V(int) 
A a(2);11 use V(int) 
B b (3) ; I I use V () 
C c ( 4) ; I I use V () 

The order of destructor calls is defined to be the reverse order of appearance in the class declaration 
(members before bases). There is no way for the programmer to control this order - except by the declara­
tion order. A virtual base is destroyed after all of its derived classes. 

It might be worth mentioning that virtual destructors are (and always have been) allowed: 

struct B 1* ... *1 virtual -B()i }; 

struct D B ( -D(); }; 

void g() 
B* P = new Di 

delete Pill D::-D() is called 

The word virtual was chosen for virtual base classes because of some rather vague conceptual similarities 
to virtual functions and to avoid introducing yet another keyword. 
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Abstract Classes 

One of the purposes of static type checking is to detect mistakes and inconsistencies before a program is 
run. It was noted that a significant class of detectable errors was escaping C++'s checking. To add insult 
to injury, the language actually forced programmers to write extra code and generate larger programs to 
make this happen. 

Consider the classic IIshape" example. Here, we must first declare a class shape to represent the general 
concept of a shape. This class needs two virtual functions rotate () and draw (). Naturally, there can be 
no objects of class shape, only objects of specific shapes. Unfortunately C++ did not provide a way of 
expressing this simple notion. 

The C++ rules specify that virtual functions, such as rotate () and draw ( ) , must be defined in the class in 
which they are first declared. The reason for this requirement is to ensure that traditional linkers can be 
used to link C++ programs and to ensure that it is not possible to call a virtual function that has not been 
defined. So the programmer writes something like this: 

class shape ( 

pUblic: 

} ; 

point center; 
color col; 
/ / ... 

where() { return center; } 
rnove(point p) ( center=p; draw(); 
virtual void rotate (int) { error ( II cannot rotate II); abort () ; 
virtual void draw ( ) { error ( .. cannot draw"); abort (); } 
/ / ... 

This ensures that innocent errors such as forgetting to define a draw () function for a class derived from 
shape and silly errors such as creating a uplain" shape and attempting to use it cause run time errors. 
Even when such errors are not made, memory can easily get cluttered with unnecessary virtual tables for 
classes such as shape and with functions that are never called, such as draw () and rotate (). The over­
head for this can be noticeable. 

The solution is simply to allow the user to say that a virtual function does not have a definition; that is, 
that it is a upure virtual function." This is done by an initializer =0: 
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class shape { 

pUblic: 

} i 

point centeri 
color col; 
I I ... 

where() { return centeri } 
move(point p) { center=pointi draw()i } 
virtual void rotate(int) = Oill pure virtual function 
virtual void draw() = Oill pure virtual function 
I I ... 

A class with one or more pure virtual functions is an abstract class. An abstract class can only be used as a 
base for another class. In particular, it is not possible to create objects of an abstract class. A class derived 
from an abstract class must either define the pure virtual functions from its base or again declare them to 
be pure virtual functions. 

The notion of pure virtual functions was chosen over the idea of explicitly declaring a class to be abstract 
because the selective definition of functions is much more flexible. 

Static Member Functions 

A static data member of a class is a member for which there is only one copy rather than one per object 
and which can be accessed without referring to any particular object of the class it is a member of. The rea­
son for using static members is to reduce the number of global names, to make obvious which static objects 
logically belong to which class, and to be able to apply access control to their names. This is a boon for 
library providers since it avoids polluting the global name space and thereby allows easier writing of 
library code and safer use of multiple libraries. These reasons apply for functions as well as for objects. In 
fact, most of the names a library provider wants local are function names. It was also observed that non­
portable code, such as 

( (x*) 0) ->f () i 

was used to simulate static member functions. This trick is a time bomb because sooner or later someone 
will make an f () that is used this way virtual and the call will fail horribly because there is no X object 
at address zero. Even where f () is not virtual such calls will fail under some implementations of dynamic 
linking. 

A static member function is a member so that its name is in the class scope and the usual access control 
rules apply. A static member function is not associated with any particular object and need not be called 
using the special member function syntax. For example: 
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class X 

pUblic: 

} i 

void gO 
{ 

int memi 

static void f(int,X*)i 

X obji 
f(l,&obj)i 

X: : f ( 1 , &obj ) i 
obj.f(l,&obj)i 
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II error (unless there really is 
II a global function f(» 
II fine 
II also fine 

Since a static member function isn't called for a particular object it has no this pointer and cannot access 
members without explicitly specifying an object. For example: 

void X::f(int i, X* p) 
{ 

mem = ii 
p->mem = ii 

canst Member Functions 

Consider this example: 
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II error: which mem? 
II fine 
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class s 

public: 

} i 

void g() 

{ 

int aai 

void mutate() { aa++i } 
int value() { return aai 

SOli 

const s 02i 

ol.rrutate()i 
02 .rrutate () i 

int i = ol.value() + 02.value()i 

It seems clear that the call 02 . mutate () ought to fail since 02 is a const. 

The reason this rule until now has not been enforced is simply that there was no way of distinguishing a 
member function that may be invoked on a const object from one that may not. In general, the compiler 
cannot deduce which functions will change the value of an object. For example, had mutate () been 
defined in a separately compiled source file the compiler would not have been able to detect the problem at 
compile time. 

The solution to this has two parts. First const is enforced so that 1I0rdinary" member functions cannot be 
called for a const object. Then we introduce the notion of a const member function, that is, a member 
function that may be called for all objects including const objects. For example: 

class X 

int aai 
pUblic: 

void mutate() { aa++i } 
int value() const { return aai 

} i 

Now X: : value () is guaranteed not to change the value of an object and can be used on a const object 
whereas X: : mutate () can only be called for non-const objects: 

int g() 

} 
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X 01i 

const X 02i 

ol.rrutate()i II fine 
02.rrutate()i II error 
return ol.value() + 02.value()i II fine 
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In a const member function of X the this pointer points to a const X. This ensures that non-devious 
attempts to modify the value of an object through a const member will be caught: 

class X 
int ai 

void cheat() const { a++i } II error 
} i 

Note that the use of const as a suffix to () is consistent with the use of const as a suffix to *. 

Initialization of static Members 

A static data member of a class must be defined somewhere. The static declaration in the class 
declaration is only a declaration and does not set aside storage or provide an initializer. 

This is a change from the original C++ definition of static members, which relied on implicit definition of 
static members and on implicit initialization of such members to O. Unfortunately, this style of initializa­
tion cannot be used for objects of all types. In particular, objects of classes with constructors cannot be ini­
tialized this way. Furthermore, this style of initialization relied on linker features that are not universally 
available. Fortunately, in the implementations where this used to work it will continue to work for some 
time, but conversion to the stricter style described here is strongly recommended. 

Here is an example: 

class X 

} i 

class Y 

} ; 

static int ii 
int ji 
X(int) i 
int read()i 

static X ai 

int hi 
Y(int); 
int read() i 

Now X: : i and Y: : a have been declared and can be referred to, but somewhere definitions must be pro­
vided. The natural place for such definitions is with the definitions of the class member functions. For 
example: 
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II file X.c: 
X: : X (in t j j) { j = j j; } 
int X::read() { return j; } 
int X:: i = 3; 

II file Y.c: 
Y: : Y (in t bb) { b = bb; } 
int Y::read() { return b; } 
XY::a=7; 

Pointers to Members 

As mentioned in The C++ Programming Language, it was an obvious deficiency that there was no way of 
expressing the concept of a pointer to a member of a class in C++. This lead to the need to IIcheat" the 
type system in cases, such as error handling, where pointers to functions are traditionally used. Consider 
this example: 

struct S 
int rof (char*) ; 

} ; 

The structure S is declared to be a (trivial) type for which the member function rof () is declared. Given a 
variable of type s the function rof () can be called: 

S a; 
int i = a.rof("hello"); 

The question is "What is the type of rof () ?" 

The equivalent type of a non-member function 

int f(char*); 

is 

int (char*) 

and a pointer to such a function is of type 

int (*) (char*) 

Such pointers to "normal" functions are declared and used like this: 
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int f(char*); 
int (*pf) (char*) = &f; 
int i = (*pf) ("hello"); 

II declare function 
II declare and initialize pointer to function 
II call function through pointer 
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A similar syntax is introduced for pointers to members of a specific class. In a definition mf () appears as: 

int 5: :mf (char*) 

The type of 5: :mf is: 

int 5:: (char*) 

that is, "member of 5 that is a function taking a char* argument and returning an int." A pointer to such 
a function is of type: 

int (5::*) (char*) 

That is, the notation for pointer to member of class 5 is 5: : *. We can now write: 

II declare and initialize pointer to member function 
int (5::*pmf) (char*) = &5::mf; 

5 ai 

int i 
II call function through pointer for the object "a" 

(a. *pmf) ("hello") i 

The syntax isn't exactly pretty, but neither is the C syntax it is modeled on. 

A pointer to member function can also be called given a pointer to an object: 

5* Pi 
II call function through pointer for the object "*p": 

int i = (p->*pmf) ("hello") i 

In this case, we might have to handle virtual functions: 
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struct B 
virtual f(); 

} ; 

struct D : B ( 

f(); 
} ; 

int ff(B* pb, int (B::*pbf) ()) 

} ; 

void gg() 
( 

return (pb->*pbf) (); 

D dd; 
int i = ff(&dd, &B::f); 

This causes a call of D: : f ( ). Naturally, the implementation involves a lookup in dd's table of virtual func­
tions exactly as a call to a virtual function that is identified by name rather than by a pointer. The over­
head compared to a "normal function call" is the usual about five memory references (dependent on the 
machine architecture). 

It is also possible to declare and use pointers to members that are not functions: 

struct S 
int mem; 

} ; 

int s:: * psm = &8: :mem; 

void f(S* ps) 

void g() 
( 

ps->*psm = 2; 

S a; 
f(&a); 

This is a complicated way of assigning 2 to a.mem. 
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User-Defined Free Store Management 

c++ provides the operators new and delete to allocate memory on the free store and to release store allo­
cated this way for reuse. Occasionally a user needs a finer-grained control of allocation and deallocation. 
The first section below shows lithe bad old way" of doing this and the following sections shows how the 
usual scope and overloaded function resolution mechanisms can be exploited to achieve similar effects 
more elegantly. This means that assignment to this is an anachronism and will be removed from the 
implementations of C++ after a decent interval. This will allow the type of this in a member function of 
class X to be changed to X *const. 

Assignment to this 

If a user wanted to take over allocation of objects of a class X the only way used to be to assign to this on 
each path through every constructor for x. Similarly, the user could take control of deallocation by assign­
ing to this in a destructor. This is a very powerful and general mechanism. It is also non-obvious, error 
prone, repetitive, too subtle when derived classes are used, and essentially unmanageable when multiple 
inheritance is used. For example: 

class X 

pUblic: 

int on_free_store; 
I I ... 

X(); 
X(int i); 
-X() ; 

I I ... 

Every constructor needs code to determine when to use the user-defined allocation strategy: 

X::X() { 
if (this == 0) { II 'new' used 

else { 

} 

this = myalloc(sizeof(X)); 
on_free_store = 1; 

II static, automatic, or member of aggregate 
this = this; II forget this assignment at your peril 
on_free_store = 0; 

II initialize 

The assignments to this are IImagic" in that they suppress the usual compiler generated allocation code. 

Similarly, the destructor needs code to determine when to use the user-defined de-allocation strategy and 
use an assignment to this to indicate that it has taken control over deallocation: 
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X: :-X() { 

II cleanup 
if (on_free_store) { 

myfree(this)i 
this = Oi II forget this assignment at your peril 

} 

This user-defined allocation and de-allocation strategy isn't inherited by derived classes in the usual way. 

The fundamental problem with the Uassign to this" approach to user-controlled memory management is 
that initialization and memory management code are intertwined in an ad hoc manner. In particular, this 
implies that the language cannot provide any help with these critical activities. 

Class-Specific Free Store Management 
The alternative is to overload the allocation function operator new ( ) and the deallocation function opera­
tor delete () for a class x: 

class X ( 

pUblic: 

} i 

II ... 

void* operator new(size_t sz) ( return myalloc(sZ)i 
void operator delete(X* p) {myfree(p)i } 

X() { 1* initialize *1 } 
X(int i) { 1* initialize *1 } 

-X() { 1* cleanup *1 } 

I I ... 

The type size_t is an implementation defined integral type used to hold object sizes4. It is the type of the 
result of sizeof. 

Now X: : operator new () will be used instead of the global operator new () for objects of class X. Note 
that this does not affect other uses of operator new within the scope of X: 
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void* X::operator new(size_t s) 

void* p = new char[s]; II global operator new as usual 
I I ... 
return p; 

void X::operator delete(X* p) 
{ 

II ... 
delete (void*) p; II global operator delete as usual 

When the new operator is used to create an object of class X, operator new () is found by a lookup start­
ing in x's scope so that X: :operator newO is preferred over a global: :operator new() . 

Inheritance of operator new ( ) 

The usual rules for inheritance apply: 

class Y : public X 

I I ... 
} ; 

II objects of class Yare also allocated 
II using X::operator new 

This is the reason X: :operator new ( ) needs an argument specifying the amount of store to be allocated; 
sizeof (Y) is typically different from sizeof (X). Naturally, a class that is never a base class need not use 
the size argument: 

void* Z::operator new(size_t) { return next_free_Z(); } 

This optimization should not be used unless the programmer is perfectly sure that Z is never used as a base 
class because if it is disaster will happen. 

An operator new ( ) , be it local or global, is used only for free store allocation so 

X al; 

void f () 

} 

X a; 
X v[lO] ; 

II allocated statically 

II allocated on the stack 
II allocated on the stack 

does not involve any operator new ( ). Instead, store is allocated statically and on the stack. 
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X: : operator new () is only used for individual objects of class X (and objects of classes derived from class 
X that do not have their own operator new ( ) ) so 

X* p = new X[lO]; 

does not involve X: :operator new() because X[lO] is an array. 

Like the global operator new() , X: :operator new() returns a void*. This indicates that it returns unini­
tialized memory. It is the job of the compiler to ensure that the memory returned by this function is con­
verted to the proper type and - if necessary - initialized using the appropriate constructor. This is 
exactly what happens for the global operator new ( ). 

X: :operator new() and X: :operator delete () are static member functions. In particular, they have 
no this pointer. This reflects the fact that X: :operato~ new () is called before constructors so that initiali­
zation has not yet happened and x: :'operator delete () is called after the destructor so that the memory 
no longer holds a valid object of class X. 

Overloading· operator new ( ) 

Like other functions, operator new() can be overloaded. Every ope~ator new:C) must return at woid* 
and take a size_t as its first argument. For example: 

void* operator new(size_t SZ)i II the usual allocator 

void* operator new(size_t sz, heap* h)11 allocate from heap 'h' 

return h->allocate(sz); 

void* operator new(size_t, void* p)11 place object at 'p' 

return Pi 

The size argument is implicitly provided when operator new is used. Subsequent arguments must be expli­
citly provided by the user. The notation used to supply these additional arguments is an argument list 
placed immediately after the new operator itself: 
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static char buf [sizeof(X)]i 

class heap { 
I I ... 

heap hi; 

f () { 
X* pi new Xi 

X* p3 = new(&hi) Xi 

X* p2 new (buf) Xi 

II static buffer 

II use the default allocator 
II operator new(size_t sz): 
II operator new(sizeof(X» 

II use hi's allocator 
II operator new(size_t sz, heap* h): 
II operator new(sizeof(X),&hi) 

II explicit allocation in 'buf' 
II operator new(size_t, void* p): 
II operator new(sizeof(X),buf) 

Note that the explicit arguments go after the new operator but before the type. Arguments after the type 
go to the constructor as ever. For example: 

class Y 

} i 

void* operator new(size_t, const char*)i 
Y(const char*)i 

y* p = new ( "string for the allocator") Y ( "string for the constructor II) i 

Controlling Deallocation 

Where many different operator new () functions are used one might imagine that one would need many 
different and matching operator delete () functions. This would, however, be quite inconvenient and 
often unmanageable. The fundamental difference between creation and deletion of objects is that at the 
point of creation the programmer knows just about everything worth knowing about the object whereas at 
the point of deletion the programmer holds only a pointer to the object. This pointer may not even give 
the exact type of the object, but only a base class type. It will therefore typically be unreasonable to require 
the programmer writing a delete to choose among several variants5. 
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Consider a class with two allocation functions and a single deal location function that chooses the proper 
way of deallocating based on information left in the object by the allocators: 

class X { 

} ; 

enum { somehow, other_way } which_allocator; 

void* operator new(size_t sz) 
{ void* P = allocate_somehow(); 

«X*)p)->which_allocator = somehow; 
return p; 

void* operator new(size_t sz , int i) 
{ void* p = allocate_some_other_way(); 

«X*)p)->which_allocator = other_way; 
return p; 

void operator delete(void*); 
II 

Here operator delete () can look at the information left behind in the object by the operator new ( ) 
used and deallocate appropriately: 

void X::operator delete(void* p) 
{ 

switch « (X*)p) ->which_allocator) 
case somehow: 

deallocate_somehow(); 
break; 

case other_way: 

default: 

deallocate_some_other_way(); 
break; 

1* something is funny *1 

Since operator new () and operator delete () are static member functions they need to cast their Uobject 
pointers" to use member names. Furthermore, these functions will be invoked only by explicit use of 
operators new and delete. This implies that X: :which_allocator is not initialized for automatic objects 
so in that case it may have an arbitrary value. In particular, the default case in X: :operator delete () 
might occur if someone tried to delete an automatic (on the stack) object. 
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Where (as will often be the case) the rest of the member functions of X have no need for examining the 
information stored by allocators for use by the deallocator this information can be placed in storage outside 
the object proper ("in the container itself') thus decreasing the memory requirement for automatic and 
static objects of class x. This is exactly the kind of game played by 1I0rdinary" allocators such as the C 
malloc () for managing free store. 

The example of the use of assignment to this above contains code that depends on knowing whether the 
object was allocated by new or not. Given local allocators and deallocators, it is usually neither wise nor 
necessary to do so. However, in a hurry or under serious compatibility constraints, one might use a tech­
nique like this: 

class X 

} ; 

X: :X() 

{ 

static X* last_X; 
int on_free_store; 
I I ... 

X(); 

void* operator new(long s) 

return last_X = allocate_somehow(); 

II 

if (this == last_X) { lion free store 
on_free_store = 1; 

else 

} 

II 

II static or automatic or member of aggregate 
on_free_store = 0; 

Note that there is no simple and implementation independent way of determining that an object is allo­
cated on the stack. There never was. 
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Placement of Objects 
For ordinary functions it is possible to specifically call a non-member version of the function by prefixing a 
call with the scope resolution operator ::. For example, 

: : open (filename, IIrwll) i 

calls the global open ( ). Prefixing a use of the new operator with :: has the same effect for operator 
new () ; that is, 

X* P = : :new Xi 

uses a global operator new () even if a local X ~ :.operator new () has been defined. This is useful for 
placing objects at specific addresses (to cope with memory mapped I/O, etc.) and for implementing con­
tainer classes that manage storage tor the objects they maintain. Using :: ensures that local allo.canon 
functions are not used and the argument(s) specified f()r new allows selection among several global opera­
tor new () functions. For example: 

II place object at address p: 
void* operator new(size_t, void* p) { return Pi } 

char buf [sizeof(X)]i 

fO 
{ 

X* P = : :new(buf) Xi 
p = : :new( (void*) 0777) Xi 

II static buffer 

II explicit allocation in 'buf' 
II place an X at address 0777 

Naturally, for most classes the:: will be redundant since most classes do not define their own allocators. 
The notation:: delete can be used similarly to ensure use of a global deallocator. 

Memory Exhaustion 
Occasionally, an allocator fails to find memory that it can return to its caller. If the allocator must return in 
this case, it should return the value o. A constructor will return immediately upon finding itself called 
with this= =0 and the complete new expression will yield the value G. In the absence of more elegant 
error handling schemes, this enables critical software to defend itself against allocation problems. For 
example: 

void f () 

X* P = new Xi 
if (p == 0) { 1* handle allocation error *1 } 
II use p 

The use of a new_handler can make most such checks unnecessary. 
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Explicit Calls of Destructors 

Where an object is explicitly "placed" at a specific address or in some other way allocated so that no stan­
dard deallocator can be used, there might still be a need to destroy the object. This can be done by an 
explicit call of the destructor: 

p->x: :-X() i 

The fully qualified form of the destructor's name must be used to avoid potential parsing ambiguities. This 
requirement also alerts the user that something unusual is going on. After the call of the destructor, p no 
longer points to a valid object of class X. 

Size Argument to operator delete ( ) 

Like X: : operator new () , X: : operator delete () can be overloaded, but since there is no mechanism for 
the user to supply arguments to a deallocation function this overloading simply presents the programmer 
with a way of using the information available in the compiler. X: :operator delete 0 can have two 
forms (only): 

class X 

} i 

void operator delete(void* p)i 
void operator delete(void* P, size_t SZ)i 
II ... 

If the second form is present it will be preferred by the compiler and the second argument will be the size 
of the object to the best of the compiler's knowledge. This allows a base class to provide memory manage­
ment services for derived classes: 

class X 

} i 

void* operator new(size_t SZ)i 
void operator delete(void* P, size_t SZ)i 

virtual -X()i 
II ... 

The use of a virtual destructor is crucial for getting the size right in cases where a user deletes an object of 
a derived class through a pointer to the base class: 

class Y : public X 
II ... 
-yo i 

} i 

X* P = new Yi 
delete Pi 
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Assignment and Initialization 

c++ originally had assignment and initialization default defined as bitwise copy of an object. This caused 
problems when an object of a class with assignment was used as a member of a class that did not have 
assignment defined: 

class X { 

II 
public: 

} i 

class Y 

} i 

void f() 
{ 

X& operator=(const X&)i 

I I ... 

X ai 

I I ... 

Y yl, y2i 
II 
yl = y2i 

Assuming that assignment was not defined for Y, y2.a is copied into yl.a with a bitwise copy. This 
invariably turns out to be an error and the programmer has to add an assignment operator to class Y: 

class Y { 

X ai 

I I ... 
const Y& operator=(const Y& arg) 
{ 

a = arg.ai 
/ / ... 

} ; 

To cope with this problem in general, ass~ent in C++ is now defined as memberwise assignment of 
non-static members and base class objects . Naturally, this rule applies recursively until a member of a 
built-in type is found. This implies that for a class x, X (const X&) and const X& x: :operator=(const 

X&) will be supplied where necessary by the compiler, as has always been the case for x: : X () and 
X: :-X(). In principle every class X has X: :X(), X: :X(const X&), and x: :operator=(const X&) defined. 
In particular, defining a constructor x: :X(T) where T isn't a variant of X& does not affect the fact that 
X: :X(const X&) is defined. Similarly, defining x: :operator=(T) where T isn't a variant of X& does not 
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affect the fact that X: : operator= (const X&) is defined. 

To avoid nasty inconsistencies between the predefined operator= () functions and user defined opera­
tor= () functions, operator= () must be a member function. Global assignment functions, such as 
: : operator (X&, X&) are anachronisms and will be disallowed after a decent interval. 

Note that since access controls are correctly applied to both implicit and explicit copy operations we actu­
ally have a way of prohibiting assignment of objects of a given class X: 

class X 

public: 

} i 

void f () 

II Objects of class X cannot be copied 
II except by members of X 
void operator=(X&)i 
X(X&)i 

I I ... 

X(int) i 
I I ... 

X a(l)i 
X b = ai 
b = ai 

II error: X::X(X&) private 
II error: X::operator=(X&) private 

The automatic creation of X: : X (const X&) and X: : operator= (canst X&) has interesting implications on 
the legality of some assignment operations. Note that if X is a public base class of y then a Y object is a 
legal argument for a function that requires an X&. For example: 

class X { pUblic: int aai }i 

class Y : public X { pUblic: int bbi }i 

void f () 
X XXi 

Y YYi 

XX = YYi II ok: a Y is an X 
II XX==YYi means xx.operator=«X&)YY)i 
II and is optimized to xx.aa = yy.aa 

Defining assignment as memberwise assignment implies that operator= () isn't inherited in the ordinary 
manner. Instead, the appropriate assignment operator is - if necessary - generated for each class. This 
implies that the uopposite" assignment of an object of a base class to a variable of a derived class is illegal 
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as ever: 

void f () 

x XXi 

Y YYi 
YY = XXi II error: an X is not a Y 

The extension of the assignment semantics to allow assignment of an object of a derived class to a variable 
of a public base class had been repeatedly requested by users. The direct connection to the recursive 
memberwise assignment semantics became clear only through work on the two apparently independent 
problems. 

Operator -> 

Until now -> has been one of the few operators a programmer couldn't define. This made it hard to create 
classes of objects intended to behave like "smart pointers." When overloading, -> is considered a unary 
operator (of its left hand operand) and -> is reapplied to the result of executing operator-> ( ). Hence the 
return type of an operator-> () function must be a pointer to a class or an object of a class for which 
operator-> () is defined. For example: 

struct Y { int mi }i 

class X 

} i 

y* Pi 

II 
y* operator->() { 

) 

II 

if (p == 0) { 
II initialize p 

else 
II check p 

return Pi 

Here, class X is defined so that objects of type X act as pointers to objects of class Y I except that some suit­
able computation is performed on each access. 

1-42 Selected Readings 



The EVolution of C++: 1985 to 1989 

void f(X X, X& xr , X* xp) 

x->mi 
xr->mi 
xp->mi 

II x.p->m 
II xr.p->m 
II error: X does not have a member m 

Like operator= ( ) , operator [] () , and operator () () , operator-> () must be a member function (unlike 
operator+ ( ) , operator- ( ) , operator< () , etc., which are often most useful as friend functions). 

The dot operator still cannot be overloaded. 

For ordinary pointers, use of -> is synonymous with some uses of unary * and []. For example, for 

Y* Pi 

it holds that: 

p->m == (*p).m == prO] .m 

As usual, no such guarantee is provided for user-defined operators. The equivalence can be provided 
where desired: 

class X { 

pUblic: 

} ; 

y* Pi 

y* operator->() { return Pi } 
Y& operator*() { return *Pi } 
Y& operator[] (int i) { return P[i]i 

If you provide more than one of these operators it might be wise to provide the equivalence exactly as it is 
wise to ensure that x+=l has the same effect as x=x+l for a simple variable X of some class if +=, =, and + 
are provided. 

The overloading of -> is important to a class of interesting programs, just like overloading [], and not just 
a minor curiosity. The reason is that indirection is a key concept and that overloading -> provides a clean, 
direct, and efficient way of representing it in a program. Another way of looking at operator -> is to con­
sider it a way of providing C++ with a limited, but very useful, form of delegation. 

Operator 1 

Until now the comma operator I has been one of the few operators a programmer couldn't define. This 
restriction did not appear to have any purpose so it has been removed. The most obvious use of an over­
loaded comma operator is list building: 
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class Xlist 
II 

public: 

} ; 

void f () 
( 

Xlist(); 
Xlist(X&); 
Xlist& operator, (X&); 
friend Xlist operator, (X&,X&); 

X a,b,c; 
Xlist xl = (a,b,c); II meaning operator, (a,b) .operator, (c) 

If you have a bit of trouble deciding which commas mean what in this example you have found the reason 
overloading of comma was originally left out. 

Initialization of static Objects 

In C, a static object can only be initialized using a slightly extended form of constant expressions. In C++, 
it has always been possible to use completely general expressions for the initialization of static class objects. 
This feature has now been extended to static objects of all types. For example: 

#include <math.h> 

double sqrt2 = sqrt(2); 

maine) 
( 

if (sqrt(2) !=sqrt2) abort(); 

Such dynamic initialization is done in declaration order within a file and before the first use of any object 
or function defined in the file. No order is defined for initialization of objects in different source files 
except that all static initialization takes place before any dynamic initialization. 
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Resolutions 

This section does not describe additions to C++ but gives answers to questions that have been asked often 
and do not appear to have clear enough answers in the reference manual of The C++ Programming 
Language. These resolutions involve slight changes compared to earlier rules. This was done to bring C++ 
closer to the ANSI C draft. 

Function Argument Syntax 
Like the C syntax, the C++ syntax for specifying types allows the type int to be implicit in some cases. 
This opens the possibility of ambiguities. In argument declarations, C++ chooses the longest type possible 
when there appears to be a choice: 

typedef long I; 
fl(const I); II fl() takes an unnamed 'const long' argument 
f2(const i); II f2() takes a 'const int' argument (called Ii') 

This rule applies to the const and volatile specifiers, but not to unsigned, short, long, or signed7: 

f3(unsigned int I); 
f4(unsigned I); 

II ok 
II ok: equivalent to f4(unsigned int I); 

A type cannot contain two basic type specifiers so 

f5(char I) { I++; 

f 6 (I I) { I ++; } 

are legal. 

Declaration and Expression Syntax 
There is an ambiguity in the C++ grammar involving expression-statements and declarations: An expression­
statement with a Hfunction style" explicit type conversion as its leftmost sub-expression can be indistin­
guishable from a declaration where the first declarator starts with a (. For example: 

T(a) ; Iideclaration or type conversion of 'a' 

In those cases the statement is a declaration. 

To disambiguate, the whole statement may have to be examined to determine if it is an expression-statement 
or a declaration. This disambiguates many examples. For example, assume T is the name of some type: 
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T(a)->m = 7; II expression-statement 
T(a)++; II expression-statement 
T(a,5)«c; II expression-statement 
T(*d) (double(3)); II expression-statement 

T ( * e) (in t) ; II declaration 
T(f)[]; II declaration 
T(g)={ 1,2 } ; II declaration 

The remaining cases are declarations. For example: 

T(a); II declaration 
T (*b) () ; II declaration 
T(c)=7; II declaration 
T (d) , e, f.=3; II declaration 
T~g)) {h,2'l; II declaration 

The disambiguation is purely syntactic; that iSh the meaning of the names, beyond whether they are names 
of types or not, is not used in the disambiguation. 

This resolution has two virtues compared to aIternatives~ it is simple to explain and completely compatible 
with C. The main snag is that it is not well adapted to simple minded parsers, such as YACC, because the 
lookahead required to decide what is an expression-statement and what is a declaration in a statement context 
is not limited. 

However, note that a simple lexicallookahead can help a parser disambiguate most cases. Consider 
analyzing a statement; the troublesome cases look like this: 

T ( d-or-e ) tail 

Here, d-or-e must be a declarator, an expression, or both for the statement to be legal. This implies that tail 
must be a semicolon, something that can follow a parenthesized declarator or something that can follow a 
parenthesized expression. That is, an initializer, const, volatile, (, or [ or a postfix or infix operator. 

A user can explicitly disambiguate cases that appear obscure. For example: 

void f () 

auto int(*p) ()i II explicitly declaration 
(void) int(*p) ();II explicitly expression-statement 
O,int(*p) ()i II explicitly expression-statement 
(int(*p) ())i II explicitly expression-statement 
int(*p) (); II resolved to declaration 
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Enumerators 
An enumeration is a type. Each enumeration is distinct from all other types. The set of possible values for 
an enumeration is its set of enumerators. The type of an enumerator is its enumeration. For example: 

enurn wine { red l white I rose l bubbly}; 
enurn beer { aIel bitter l lager I stout }; 

defines two types, each with a distinct set of 4 values. 

wine w = red; 
beer b = bitter; 

w b; 
w stout; 
w = 2; 

II error, type mismatch: beer assigned to wine 
II error, type mismatch: beer assigned to wine 
II error I type mismatch: int assigned to wine 

Each enumerator has an integer value and can be used wherever an integer is required; in such cases the 
integer value is used: 

int i = rose 
i = b; 

II the value of Irose l (that iS I 2) is used 
II the value of Ibl is assigned to Iii 

This interpretation is stricter than what has been used in C++ until now and stricter than most C dialects. 
The reason for choosing it was ANSI C's requirement that enumerations be distinct types. Given that, the 
details follow from C++' s emphasis on type checking and the requirements of consistency to allow over­
loading, etc. For example: 

int f (int) ; 
int f (wine) ; 

void g() 

f (i) ; 

f (w) ; 

f (1) ; 

f (white) ; 

f (b) ; 

II 
II 

II 
II 

II 
II 

f(int) 
f(wine) 

f(int) 
f(wine) 

f(int)1 standard conversion 
from beer to int used 

C++'s checking of enumerations is stricter than ANSI C's, in that assignments of integers to enumerations 
are disallowed. As ever, explicit type conversion can be used: 

w = wine (257) ; 1* caveat emptor *1 

An enumerator is entered in the scope in which the enumeration is defined. In this context, a class is con-
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sidered a scope and the usual access control rules apply. For example: 

class X 

pUblic: 

void h() 

} 

enum { x, y, z }; 
I I ... 

enum { a, b, c }; 

f(int i = a) 
II ... 

g (i+x); ... } 

int i = a; 
i = X: :a; 

i = X: :x; 

II error: 'X::a' is not in scope 
II ok 
II error: 'X::x' is private 

The cons t Specifier 

Use of the const specifier on a non-local object implies that linkage is internal by default; that is, the object 
declared is local to the compilation in which it occurs. To give it extema1linkage it must be explicitly 
declared extern. 

Similarly, inline implies that linkage is internal by default. 

External linkage can be obtained by explicit declaration: 

extern const double g; 
const double g = 9.81; 

extern inline f(int); 
inline f(int i) ( return i+c; 

Function Types 

It is possible to define function types that can be used exactly like other types, except that variables of func­
tion types cannot be defined - only variables of pointer to function types: 

typedef int F(char*); 

F* pf; 
F f; 

II function taking a char* argument 
II and returning an int 
II pointer to such function 
II error: no variables of function type allowed 

Function types can be useful in friend declarations. Here is an example from the C++ task system: 
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class task : public scheduler ( 
friend SIG_FUNC_TYP sig_func; II the type of a function must be specified 

II in a friend function declaration 
II ... 

The reason to use a typedef in the friend declaration sig_func and not simply to write the type directly is 
that the type of signal () is system dependent: 

II BSD signal.h: 
typedef void SIG_FUNC_TYP(int, int, sigcontext*); 

II 9th edition signal.h: 
typedef void SIG_FUNC_TYP (int) ; 

Using the typedef allows the system dependencies to be localized where they belong: in the header files 
defining the system interface. 

Lvalues 

Note that the default definition of assignment of an X as a call of 

X& operator=(const X&) 

makes assignment of xs produce an lvalue. For uniformity, this rule has been extended to assignments of 
built-in types. By implication, +=, -=, *=, etc., now also produce lvalues. So - again by implication­
does prefix ++ and -- (but not the postfix versions of these operators). 

In addition, the comma and ?: can also produce lvalues. The result of a comma operation is an lvalue if 
its second operand is. The result of a ?: operator is an lvalue provided both its second and third operands 
are and provided they have exactly the same type. 

Multiple Name Spaces 

C provides a separate name space for structure tags whereas C++ places type names in the same name 
space as other names. This gives important notational conveniences to the C++ programmer but severe 
headaches to people managing header files in mixed C/C++ environments. For example: 

struct stat { 
I I ... 

} ; 

extern struct stat(int, struct stat *); 

was not legal C++ though early implementations accepted it as a compatibility hack. The experience has 
been that trying to impose the Hlpure C++" single name space solution (thus outlawing examples such as 
the one above) has caused too much confusion and too much inconvenience to too many users. Conse­
quently, a slightly cleaned up version of the C/C++ compatibility hack has now become part of C++. This 
follows the overall principle that where there is a choice between inconveniencing compiler writers and 
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annoying users, the compiler writers should be inconvenienced. It appears that the compromise provided 
by the rules presented below enables all accepted uses of multiple name spaces in C while preserving the 
notational convenience of C++ in all cases where C compatibility isn't an essential issue. In particular, 
every legal C++ program remains legal. The restrictions on the use of constructors and typedef names in 
connection with the use of multiple name spaces are imposed to prevent some nasty cases of hard to detect 
ambiguities that would cause trouble for the composition of C++ header files. 

A typedef can declare a name to refer to the same type more than once. For example: 

typedef struct s { 1* ... *1 } Si 
typedef s Si 

A name s can be declared as a type (struct, class, union, enum) and as a non-type (function, object, value, 
etc.) in a single scope. In this case, the name s refers to the non-type and struct s (or whatever) can be 
used to refer to the type. The order of declaration does not matter. This rule takes effect only after both 
declarations of s have been seen. For example: 

struct stat { 1* ... *1 }i 

stat ai 

void stat(stat* p)i 

struct stat bi 
stat(O)i 

II struct is needed to avoid the function name 
II function call 

int f(int)i 
f (1) i 

struct f { 1* ... *1 }i 

struct f ai II struct is needed to avoid the function name 

A name cannot simultaneously refer to two types: 

struct s { 1* ... *1 }i 

typedef int Si II error 

The name of a class with a constructor cannot also simultaneously refer to something else: 

struct s { S()i 1* ... *1 }i 
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int s () i 

struct t* Pi 
int t () ; 
int i = t()i 
struct t { t()i 1* ... *1 } 
i=t()i 

II error 

II ok 

II error 
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If a non-type name s hides a type name s, struct s can be used to refer to the type name. For example: 

struct s { 1* ... *1 }i 

f(int s) { struct s ai S++i } 

Note: If a type name hides a non-type name the usual scope rules apply: 

int Si 
fO 
{ 

struct s { 1* ... *1 }i II new lSi refers to the type 
II and the global int is hidden 

s ai 

Use of the:: scope resolution operator implies that its argument is a non-type name. For example: 

int Si 
f() 
{ 

struct s { 1* ... *1 }i 

s ai 
::s = ai 

Function Declaration Syntax 

To ease use of common C++ and ANSI C header files, void may be used to indicate that a function takes 
no arguments: 

extern int f(void); II same as I I extern int f();11 

Conclusions 

C++ is holding up nicely under the strain of large scale use in a diverse range of application areas. The 
extensions added so far have been have all been relatively easy to integrate into the C++ type system. The 
C syntax, especially the C declarator syntax, has consistently caused much greater problems that the C 
semantics; it remains barely manageable. The stringent requirements of compatibility and maintenance of 
the usual run-time and space efficiencies did not constrain the design of the new features noticeably. 
Except for the introduction of the keywords catch, private, protected, signed, template, and vola­
tile, the extensions described here are upward compatible. Users will find, however, that type-safe link­
age, improved enforcement of const, and improved handling of ambiguities will force modification of 
some programs by detecting previously uncaught errors. 
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Footnotes 

1. Surprisingly, giving character constants type char does not cause incompatibilities with C where 
they have type into Except for the pathological example sizeof (' a '), every construct that can be 
expressed in both C and c++ gives the same result. The reason for the surprising compatibility is 
that even though character constants have type int in C, the rules for determining the values of such 
constants involves the standard conversion from char to int. 

2. The strategy for dealing with ambiguities in inheritance DAGs is essentially the same as the strategy 
for dealing with ambiguities in expression evaluation involving overloaded operators and user­
defined coercions. Note that the access control mechanism does not affect the ambiguity control 
mechanism. Had B: : f () been private the call p->f () would still be ambiguous. 

3. Virtual base classes force a modification to this rule; see below. 

4. operator new ( ) used to require a long; size_t was adopted to bring c++ allocation mechanisms 
into line with ANSI C. 

5. The requirement that a programmer must distinguish between delete p for an individual object and 
delete [n] p for an array is an unfortunate hack and is mitigated only by the fact that there is noth­
ing that forces a programmer to use such arrays. 

6. One could argue that the original definition of C++ was inconsistent in requiring bitwise copy of 
objects of class Y, yet guaranteeing that X: : operator= () would be applied for copying objects of a 
class X. In this case both guarantees cannot be fulfilled. 

7. This resolution involves a slight change compared to earlier rules. This was done to bring this aspect 
of C++ into line with the ANSI C draft. 
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An Introduction to C++ 

~ This chapter is taken directly from a paper by Keith Gorlen. 

9 
The C++ programming language was designed and implemented by Bjame Stroustrup of AT&T Bell 
Laboratories as a successor to C1

. It retains compatibility with existing C programs and the efficiency of C. 
It also adds many powerful new capabilities, making it suitable for a wide range of applications from 
device drivers to artificial intelligence. C++ will be of interest to UNIX users because of its intimate relation 
to C and its potential use for building graphical user interfaces to UNIX, for UNIX systems programming, 
and for supporting large-scale software development under UNIX. 

C++ evolved from a dialect of C known as "C with Classes," which was invented in 1980 as a language for 
writing efficient event-driven simulations. Several key ideas were borrowed from the Simula67 and Algol 
68 programming languages. Figure 2-1 shows the heritage of C++. 

Figure 2-1: The Heritage of C++ 

Simula67 Algol68 

C with 
... Classes ..-

C 

The definitive book on C++ is Bjame Stroustrup's The C++ Programming Language, which gives a detailed 
description of the language and contains many examples and exercises. It also includes the C++ reference 
manual, which is a concise, more formal definition of the language. 

In this chapter, we'll see how C++ corrects most of the deficiencies of C by offering improved compile-time 
type checking and support for encapsulation. We'll also introduce you to many of the new features of 
C++: 

• classes 

• type checking 
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• operator and function name overloading 

• free store management 

• constant types 

• references 

• inline functions 

• derived classes 

• virtual functions 

We'll present these features in the context of a non-trivial example so that you'll understand the motivation 
behind them and see how they are typically used. 

By the end of the paper, you'll see how proper use of C++ can dramatically increase a programmer's pro­
ductivity. C++ programs are shorter, clearer, and more likely to be correct from the outset. As a result, 
they are also easier to debug and to maintain. 

We'll conclude the paper by discussing the current status and future of C++. 
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A C++ Example 

The best way to learn about C++ is to write a program in it, and that is what we'll do in the next three sec­
tions. Let's start in familiar territory by taking a look at a simple program written in plain old C: 

maine) 
{ 

int a = 193; 
int b = 456; 
int c = a + b + 47; 
printf (" %d\n ", c) ; 

This program declares three integer variables named a, b, and c, initializing a and b to the values 193 and 
456, respectively. The integer c is initialized to the result of adding a and b and the constant 47. Finally, 
the standard C library function printf () is called to print out the value of c. The quoted string %d\n tells 
how to print the result: %d prints c as a decimal number, and \n adds a newline character. If we compile 
and execute this program, it prints out the number 696 and exits. 

Now suppose we wish to perform a similar calculation, but this time a and b are big numbers, like the U. 
S. national debt expressed in dollars. Such numbers are too big to be stored as int s on most computers, so 
if we tried to write int a = 25123654789456 the C compiler (hopefully!) would give us an error message 
and fail to compile the program. There are many practical applications for big integers, such as cryptogra­
phy, symbolic algebra, and number theory, where it can be necessary to perform arithmetic on numbers 
with hundreds or even thousands of digits. 

It isn't easy to write a program to deal with these big numbers in ordinary C. Coding and debugging the 
algorithms that perform arithmetic operations on big integers in C involves a significant amount of work, 
so we'd want to make them general-purpose. We wouldn't be able to predict how big the numbers might 
become in advance, so we would have to use a dynamic memory allocator to manage their storage at exe­
cution time. We'd need to write a C library of functions for creating, destroying, reading, printing, assign­
ing, and performing basic arithmetic on big integers. These functions would have to have distinctive names 
such as create_bigint, print_bigint, and add_bigints to avoid confusion with other kinds of data that 
we might want to create, print, or add in the same program. 

Worst of all, programmers wishing to use our big integers would have to know the names of these func­
tions and the rules for calling them. They would have to remember to create and initialize big integers 
when they needed to use them, and to destroy them when they were finished. Even simple arithmetic 
expressions would be awkward to write; c = a+b would have to be coded as: 

assign_bigint(&c,add_bigints(a,b» 

and there might be problems with handling temporary results calculated during the evaluation of a com­
plex expression. Also, programmers would have to be careful when combining big integers with other data 
types such as into They would need to call a function to convert ints to big integers before adding them, 
for example. Any C program using big integers would be both difficult to write and difficult to read. 

In C++, we still must write the code to manage the storage of big integers and functions to perform the 
same operations on them. The difference is that C++ lets us upackage" this code so that using our big 
integers is as convenient as using the int data type that is built into C. We can, in effect, extend the C++ 
language by adding our own custom data type, which we'll call BigInt. Notice how similar the example 
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C program is to this C++ program which performs a similar calculation using Biglnts instead of ints: 

#include II Biglnt .h ll 

main () 
{ 

Biglnt a = "25123654789456 11 i 

Biglnt b = 11456023398798362"; 
Biglnt c = a + b + 47; 
c.print();/* print the result, c */ 
printf(lI\n"); 

Data Abstraction 

This technique of defining new data types that are well-suited to the application to be programmed is 
known as data abstraction, and a data type such as Biglnt is called an abstract data type. Data abstraction is 
a powerful, general-purpose technique which, when properly used, can result in shorter, more readable, 
more flexible programs. 

Data abstraction is supported by several other modern programming languages such as Ada. 

In these languages, and in C++ as well, a programmer can define a new abstract data type by specifying a 
data structure together with the operations permissible on that data structure, as shown in Figure 2-2. 
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Figure 2-2: An Abstract Data Type 

Abstract Data Type 

Data Structure 

I 

\ 

Operations 
(Functions) 

It is difficult or impossible to practice data abstraction in most other programming languages currently in 
widespread use, such as BASIC, C, COBOL, FORTRAN, PASCAL, or Modula-2. This is because data abstrac­
tion requires special language features not available in these languages. To get an idea of what these 
features do, let's analyze the example C++ program. 

The first three statements in the body of the main () program declare three type Biglnt variables, a, b, 
and c. The C++ compiler needs to know how to create them - how much space to allocate for them and 
how to initialize them. 

The first and second statements are similar; they initialize the Biglnt variables a and b with big integer 
constants written as character strings containing only digits. To do this the C++ compiler must be able to 
convert character strings into Biglnt s. 

The third statement is the most complicated. It adds a, b, and the integer constant 47 and stores the result 
in c. The C++ compiler needs to be able to create a temporary Biglnt variable to hold the sum of a and 
b. Then it must convert the int constant 47 into a Biglnt and add this to the temporary variable. Finally, 
it must initialize c from this temporary Biglnt variable. 

The fourth statement prints c on the standard output, and the last statement calls the C library function 
printf () to print a newline character. C programmers are probably familiar with printf () , but 
c . print () probably looks a bit strange. It is a call on a special kind of function available in C++ called a 
member function. We'll talk more about this later, but for now just think of it as a function that prints out a 
variable of type Big Int. 
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Even though there are no more statements in the body of main ( ) , the compiler isn't finished yet. It must 
destroy the BigInt variables a, b, and c and any BigInt temporaries it may have created before leaving a 
function, such as main (). This is to assure that the storage used by these variables is freed. 

Let's summarize what the C++ compiler needs to know how to do with BigInts to compile the example 
program: 

• create new instances of BigInt variables 

• convert character strings and integers to BigInts 

• initialize the value of one BigInt with that of another BigInt 

• add two BigInts together 

• print BigInts 

• destroy BigInts when they are no longer needed 

Specifications and Implementations 

Where does the C++ compiler obtain this know-how? From the file BigInt . h, which is included by the 
first line of the example program. This file contains the specification of our BigInt abstract data type. The 
specification contains the information that programs that use an abstract data type need to have to be suc­
cessfully compiled. The details of how the abstract data type works, known as the implementation, are kept 
in another file. In our example, this file is named BigInt .c. It is compiled separately, and the object code 
produced from it is linked with the program that uses the abstract data type, also called the client program. 
Figure 2-3 shows how the specification and implementation of an abstract data type are combined with the 
source code of a client program to produce an executable program. 

2-6 Selected Readings 



A C++ Example 

Figure 2·3: Combining the specification (Biglnt.h) and implementation (Biglnt.c) of an abstract data type (Biglnt) 
with the source code of a client program (client.c) to produce an executable program(client). 

BigInt.c BigInt.o 

BigInt.h client 

client.c 

We separate the code for an abstract data type into a specification part and an implementation part to hide 
the implementation details from the client. We can then change the implementation and be confident that 
client programs will continue to work correctly after they are relinked with the modified object code. This 
is useful when a team of programmers work on a large software project. Once they agree on the 
specifications for the abstract data types they need, each team member can implement one or more of them 
independently of the rest of the team. 

A well-designed abstract data type also hides its complexity in its implementation, making it as easy as 
possible for clients to use. 
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Let's take a look at the specification for our Biglnt data type, contained in the file Biglnt .h. (Note that 
in C++, I I 
begins a comment that extends to the end of the line.) 

class Biglnt { 
char* digits; 
int ndigitsi 

public: 

} ; 

Biglnt(const char*); 
Biglnt (int) i 
Biglnt(const Biglnt&)i 
Biglnt operator+(const Biglnt&); 
void print()i 
-Biglnt()i 

II pointer to digit array in free store 
II number of digits 

II constructor function 
II constructor function 
II initialization constructor function 
II addition operator function 
II printing function 
II destructor function 

Much of this code may look odd, but we'll explain it as we cover the features of C++ in the next few sec­
tions. 

Classes 

This is an example of one of the most important features of C++, the class declaration, which specifies an 
abstract data type. It is an extension of something C programmers are probably already familiar with: the 
struct declaration. 

The struct declaration groups together a number of variables, which may be of different types, into a unit. 
For example, in C (or in C++) we can write: 

struct Biglnt { 

} i 

char* digitsi 
int ndigitsi 

We can then declare an instance of this structure by writing: 

struct Biglnt ai 

The individual member variables of the struct, digits and ndigits, can be accessed using the dot (.) 
operator; for example, a.digits, accesses the member variable digits of the struct a. 

Recall that in C we can also declare a pointer to an instance of a structure: 

struct Biglnt* Pi 

in which case we can access the individual member variables by using the -> operator; for example, 
p->digits. 
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c++ classes work in a similar manner, and the. and -> operators are used in the same way to access a 
class's member variables. In our example, class Biglnt has two member variables named digits and ndi­
gits. The variable digits points to an array of bytes (chars), allocated from the free storage area, that 
holds the digits of the big integer, one decimal digit per byte. The digits are ordered beginning with the 
least significant digit in the first byte of the array. The member variable ndigits contains the number of 
digits in the integer. Figure 2-4 shows a diagram of this data structure for the number 654321. 

Figure 2-4: A diagram of the BigInt data structure for the number 654321 

digits 

ndigits 6 

However, the C++ class can do much more than the struct feature of regular C. We'll now look at these 
extensions in detail. 

Encapsulation 

In C++, a client program can declare an instance of class Biglnt by writing: 

Biglnt ai 

But now we have a potential problem: the client program might try, for example, to use the fact that 
a.ndigits contains the number of digits in the number a. This would make the client program dependent 
on the implementation of class Biglnt - after all, we might wish to change the representation of Biglnts to 
use hexadecimal instead of decimal arithmetic to save storage. We need a way to prevent unauthorized 
access to the member variables of the instances of a class. C++ provides this by allowing the use of the 
keyword public: within a class declaration to indicate which members can be accessed by anyone and 
which have restricted access. Members declared before the publ ic: keyword are private, as are digits 
and ndigits in this example, so C++ will issue an error message if a client program attempts to use them. 

Protecting the member variables of a class in this manner is known as encapsulation. It is a good program­
ming practice because it enforces the separation between the specification and the implementation of 
abstract data types that we are trying to achieve, and it helps when debugging programs. For example, if 
we find that ndigits has the wrong value in some situation, those parts of the program that do not have 
access to the variable are probably not at fault. 
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Member Functions 

But how does a client program interact with the private member variables of a class? Whereas a struct 
allows only variables to be grouped together, the C++ class declaration allows both variables and the 
functions that operate on them to be grouped. Such functions are called member functions, and the private 
member variables of the instances of a class can be accessed only by the member functions of that class. 
Thus, a client program can read or modify the values of the private member variables of an instance of a 
class indirectly, by calling the public member functions of the class, as shown in Figure 2-5. 

Figure 2-5: Client programs can access the private member variables of an instance of a class only by calling 
public member functions of the class. 

Instances of Class BigInt 

~ BigInt(const char") / 

~ (construct) / 

printO 

~tor+(const Biglnt&) 
/ open (add) 

Client 
Program 

BigInt a = "2148"; 

Our example class Biglnt has two private member variables, digits and ndigits, and six public member 
functions. The declarations of these member functions will look unusual to C programmers for several rea­
sons: the types of the arguments of the functions are listed within parentheses in the function declarations, 
three of the functions declared have the same name, Biglnt, and the function names operator+ and 
-Biglnt contain characters normally not allowed in function names. 
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Function Argument Type Checking 

c++ strongly encourages a programmer to declare the types of the arguments of all functions. This makes 
it possible for C++ to check for inconsistent argument types when a function call is compiled, and can elim­
inate many bugs at an early stage. For example, the C statement: 

fprintf (liThe answer is %d ll ,x) i 

will compile with no problem. However, when this statement is executed the program will abort with a 
cryptic error message. The problem is that the standard C library function fprintf () expects the first 
argument to be a pointer to the stream to which the output is to be written, not a format string as it is here. 
On the other hand, in C++ we can declare the argument types of fprintf (): 

extern int fprintf(FlLE*, const char*, ... )i 

so the compiler can give us an error message when we try to compile the incorrect function call, noting the 
discrepancy in the argument types. Conveniently, the argument types for most standard library functions 
are declared in system header files that you can include in your programs so that you don't have to write 
all these common declarations yourself. 

Function Name Overloading 

Listing the types of all of a function's arguments in its declaration has a second benefit: we can define 
several functions with the same name, as long as each requires a different number and/or type of argu­
ment. For example, in C++ we can declare two functions with the name abs: 

int abs(int)i 
float abs(float)i 

We can then write: 

x = abs(2)i 
y = abs(3.14)i 

The first statement will call abs (int), and the second will call abs (float) - the C++ compiler knows 
which abs to use because 2 is an int and 3 .14 is a float. When more than one function has the same 
name like this, the name is said to be overloaded. One advantage of overloading is that it eliminates 
"funny" function names (remember ABS, lABS, DABS, and CABS from FORTRAN?). It also leads to more gen­
eral programs; for example, we can write copy (x,y) to copy a y to an x without having to worry about 
their types - they might be arrays, or strings, or files - as long as we have written a copy function to 
handle each case. 

An Introduction to C++ 2-11 



The Specification 

Calling Member Functions 

Getting back to our Biglnt example and our discussion of member functions, we can now explain the 
next-to-Iast line in our first C++ program which is: 

c . print () ; 

Member functions are called in a manner analogous to the way member variables are normally accessed in 
C; that is, by using the . or -> operators. Since c is an instance of class Biglnt, the notation c. print ( ) 
calls the member function print () of class Biglnt to print the current value of c. Similarly, if we 
declared a pointer to a Biglnt: 

Biglnt* p; 

then the notation p->print () would call the same function. This notation prevents this particular 
print () from inadvertently being called to operate on anything other than an instance of class Biglnt. 

In C++, several different classes may all have member functions with the same name, just as in regular C 
several different struct s may all have member variables with the same name. This lets us use simple 
function names, like print, rather than distinctive names, like print_bigint, without worrying about 
naming conflicts. We could add a new class, say BigFloat, to a program that also used Biglnts, and we 
could also define print () as a member function of class BigFloat. Our program could contain the state­
ments: 

Biglnt a = "2934673485419"; 
BigFloat x = "874387430.3945798"; 
a.print(); 
x.print(); 

and the C++ compiler would use the appropriate print () in both cases. 

Constructors 

As you'll recall, one of the things the C++ compiler needs to know about our Biglnt abstract data type is 
how to create new instances of Biglnts. We can tell C++ how we want this done by defining one or more 
special member functions called constructors. A constructor function is one which has the same name as its 
class. When a client program contains a declaration such as: 

Biglnt a = 11123"; 

the C++ compiler reserves space for the member variables of an instance of class Biglnt and calls the con­
structor function a . Biglnt ( It is our responsibility as providers of the Biglnt data type to write the func­
tion Biglnt () so that it initializes the instance correctly. In our example, we'll have Biglnt ( allocate three 
bytes of dynamic storage, set a.digits to point to this storage, set the three bytes to {3,2,l}, and set 
a . ndigi ts to three. This will create an instance of class Biglnt named a that is initialized to 123. 
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If a class has a constructor function, C++ guarantees that it will be called to initialize every instance of the 
class that is created. A user of an abstract data type such as Biglnt does not have to remember to call an 
initialization function separately for every Biglnt declared, thus eliminating a common source of program­
ming errors. 

Constructors and Type Conversion 

The second thing C++ needs to know is how to convert something that is a character string, such as 
25123654789456, or an integer, such as 47, to a Biglnt. Constructors are also used for this purpose. 
When the C++ compiler sees a statement like: 

Biglnt c = a + b + 47; 

it recognizes that the int 47 must be converted to a Biglnt before the addition can be done, and so checks 
to see if the constructor Biglnt (int) is declared. If so, it creates a temporary instance of Biglnt by cal­
ling Biglnt (int) with the argument 47. If an appropriate constructor is not declared, the statement is 
flagged as an error. We have defined Biglnt (char*) and Biglnt (int) for class Biglnt, so we may 
freely use character strings or integers wherever a Biglnt can be used, and the C++ compiler will automat­
ically call our constructor to do the type conversion. This is an important feature of C++ because it lets us 
blend our own abstract data types with others and with the fundamental types built into the language. 

Constructors and Initialization 

The third thing C++ must know how to do is how to initialize a Biglnt with the value of another Biglnt, 
as is required by a statement such as: 

Biglnt c = a + b + 47; 

The Biglnt c must be initialized with the value of a temporary Biglnt that holds the result of the expres­
sion a + b + 47. 

We can control how C++ initializes instances of class Biglnt by defining the special constructor function 
Biglnt (canst Biglnt&). In our example, we'll make this constructor allocate storage for the new 
instance and make a copy of the contents of the argument instance. 

Operator Overloading 

The fourth thing C++ must be able to do is to add two Biglnts. We could just define a member function 
named add to do this, but then writing arithmetic expressions would be awkward. C++ lets us define 
additional meanings for most of its operators, including +, so we can make it mean uadd" when applied to 
Biglnts. This is known as operator overloading, and is similar to the concept of function name overloading. 
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Actually, most programmers are already familiar with this idea because the operators of most program­
ming languages, including C, are already overloaded. For example, we can write: 

int a,b,c; 
float X,Y,Z; 

c = a+bi 
Z = x+y; 

The operators = and + do quite different things in the last two statements: the first statement does integer 
addition and assignment and the second does floating point addition and assignment. Operator overloading 
is simply an extension of this. 

C++ recognizes a function name having the form operator@ as an overloading of the C++ operator symbol 
@. We can overload the operator +, for example, by declaring the member function named operator+, as 
we have done in our example class Biglnt. We can call this function using either the usual notation for 
calling member functions or by using just the operator: 

Biglnt a,b,c; 
c = a.operator+(b); 
c = a + b; 

The last two lines are equivalent.2 

Of course, if we overload an operator, we don't change its built-in meaning, we only give it an additional 
meaning when used on instances of our new abstract data type. The expression 2+2 still gives 4. 

Destructors 

The last thing we said was that C++ needed to know how to destroy instances of our Biglnts once it was 
finished with them. We can tell the C++ compiler how to do this by defining another special kind of 
member function called a destructor. A destructor function has the same name as its class, prefixed by the 
character -. For class Biglnt, this is the member function -Biglnt (). Since - is the C++ and C comple­
ment operator, this naming convention suggests that destructors are complementary to constructors. 

We must write the function -Biglnt () so that it properly cleans-up, or finalizes instances of class Biglnt 
for which it is called. In our example, this means freeing the dynamic storage that was allocated by the 
constructor. 

If a class has a destructor function, C++ guarantees that it will be called to finalize every instance of the class 
when it is no longer needed. Once again, this relieves users of an abstract data type like Biglnt from hav­
ing to remember to do this, and eliminates another source of programming errors. 
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Summary 

We've covered a lot of territory already, so let's review where we've been. 

We've seen how using the technique of data abstraction can lead to more reliable, more readable, and more 
flexible programs, and we've introduced many of the features of C++ that help us practice data abstraction: 

• classes, the basic language construct for defining new abstract data types; 

• member variables, which describe the data in an abstract class, and member functions, which define the 
operations on an abstract class; 

• encapsulation, which lets us restrict access to certain member variables and functions; 

• function argument type checking, which helps to ensure that functions are called with proper argu­
ments; 

• function name overloading, which reduces the need for using unusual function names and helps to gen­
eralize code; 

• constructors and destructors, which manage the storage for an abstract data type and guarantee that 
instances of an abstract data type are initialized and finalized; 

• user-defined implicit type conversion, to let us blend our abstract data types with others and with the 
fundamental data types of the language; and, 

• operator overloading, to let us give additional meaning to most of the existing operators when used 
with our own abstract data types, making our new data types easier to use. 

We've also introduced the idea of breaking up an abstract data type into its specification, which contains 
the information that the user, or client, needs to know to use the abstract data type, and its implementation, 
which hides the details of how the abstract data type works so that it may be programmed independently 
by a member of a programming team and be easily maintained. 
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We've just taken a detailed look at the specification of our Biglnt abstract data type. Now it's time to dis­
cuss its implementation. 

As we said earlier, the implementation of an abstract data type consists of the C++ code that embodies the 
details of how the data abstraction works. For our example it is kept in a separate file named Biglnt . c. 

The implementation requires the information kept in the specification, so the first line in Biglnt . cis: 

#include "Biglnt.h" 

Since both the implementation and client programs are compiled with the same specification, the C++ com­
piler ensures a consistent interface between them. 

The BigInt (canst char*) Constructor 

Class Biglnt has three constructors, one to create an instance of a Biglnt from a character string of digits 
(a char*), one to create an instance from an integer (an int), and one to initialize one Biglnt from 
another. We need to be able to create a Biglnt from a string of digits because this is the only way we can 
legally write very large integer constants in C++. Creating a Biglnt from an int is provided as a conveni­
ence, so we can write small integers in the usual way. 

Here is the implementation of the first constructor: 

Biglnt::Biglnt(canst char* digitString) 
{ 

int n = strlen(digitString)i 
if (n ! = 0) { 

else 

digits = new char[ndigits=n]i 
char* p = digits; 
canst char* q = &digitString[n]i 
while (n--) *p++ = *--q - '0'; 

/ / empty string 
digits = new char[ndigits=l]i 
digits[O] = Oi 

This constructor initializes the data structure of a Biglnt as we described previously. We determine the 
length of the character string argument, allocate enough memory to hold the digits of the number, then 
scan the character string from right to left, converting each digit character to its binary representation. 

If the character string is empty we treat this as a special case and create a Biglnt initialized to zero. 

C programmers will find this code quite recognizable, with a few exceptions that we'll explain in the next 
few sections. 
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The Scope Resolution Operator 

The notation Biglnt: : Biglnt identifies Biglnt as a member function of class Biglnt. We mentioned ear­
lier that several C++ classes can have member functions with the same names. When it is necessary to 
specify exactly which class member we're dealing with, we can prefix the member name by the class name 
and the:: operator. The:: operator is known as the scape resolution aperator, and it may be applied to 
both member functions and member variables. 

Constant Types 

C programmers will be familiar with use of the type char* for arguments that are character strings, but 
what is a const char * ? In C++, the keyword const can be used before a type to indicate that the variable 
being declared is constant, and therefore may not appear to the left of the assignment (=) operator. When 
used in an argument list as it is above, it prevents the argument from being modified by the function. This 
protects against another kind of common programming error. 

Member Variable References 

Throughout the body of the member function, you'll notice that we are able to reference the member vari­
ables of the instance for which the function is called without using the . or -> operators, as we did for 
example in the statement: 

digits = new char[ndigits=n]i 

Since member functions reference the member variables of their class frequently, this provides a convenient, 
short notation. 

The new Operator 

We used the C++ new operator to allocate the dynamic storage needed to hold the digits of a Biglnt. In 
C, we would call the standard C library function malloc () to do this. The new operator has two advan­
tages, however. First, it returns a pointer of the appropriate data type. Thus, to allocate space for the 
member variables of a struct Biglnt in C we would write: 

(struct Biglnt*)malloc(sizeof(struct Biglnt» 

whereas in C++ we can write: 

new Biglnt 

The second advantage is that if we use new to allocate an instance of a class having a constructor function 
(such as Biglnt), the constructor is called automatically to initialize the newly allocated instance. The 
result is more readable, less error-prone code. 
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Placement of Declarations 

C programmers may have noticed that the declaration of p seems to be "misplaced": 

if (n ! = 0) { 

digits = new char[ndigits=n]i 
char* p = digitsi 

II a statement 
II a declaration! 

since it appears after the first statement in a block. In C++, declarations may be intermixed with statements 
as long as each variable is declared before its first use. You can frequently improve the readability of a 
program by placing variable declarations near the place where they are used. 

The Biglnt ( int) Constructor 

Here's the implementation of the Biglnt (int) constructor, which creates a Biglnt from an integer: 

Biglnt::Biglnt(int n) 
{ 

char d[3*sizeof(int)+1]; 
char* dp = di 
ndigits = Oi 
do { 

*dp++ = n%10i 
n 1= 10i 
ndigits++i 

} while (n > O)i 
digits = new char[ndigits]i 
register int ii 

II buffer for decimal digits 
II pointer to next decimal digit 

II convert integer to decimal digits 

for (i=Oi i<ndigitsi i++) digits[i] = d[i]i 

This constructor works by converting the integer argument to decimal digits in the temporary array d. We 
then know how much space to allocate for the Biglnt, so we allocate the correct amount of dynamic 
storage using the new operator, and copy the decimal digits from the temporary array into it. 

The Initialization Constructor 

The job of the initialization constructor is to copy the value of its Biglnt argument into a new instance of 
Biglnt: 
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void Biglnt::Biglnt(const Biglnt& n) 
{ 

int i = n.ndigits; 
digits = new char[ndigits=i]; 
char* p = digits; 
char* q = n.digits; 
while (i--) *p++ = *q++; 

This function makes use of a reference, an important C++ feature we haven't seen before. 

References 

The argument type of the member function Biglnt (const Biglnt&) is an example of a C++ reference. 
References address a serious deficiency of C: the lack of a way to pass function arguments by reference. 

To understand what this means, suppose we wish to write a function named inc () that adds one to its 
argument. If we wrote this in Cas: 

void inc (x) 
int X; 

x++; 

and then called inc () with the following program: 

int y = 1; 
inc(y); 
printf ("%d\n" ,y) ; 

we would discover that the program would print a 1, not a 2. This is because in C the value of y is copied 
into the argument X, and the statement x++ increments this copy, leaving the value of y unchanged. This 
treatment of function arguments is known as call by value. 

To do this correctly in C we must explicitly pass a pointer as the argument to inc () : 

void inc (x) 
int* X; 

*x++; 

int y = 1; 
inc (&y) ; 
printf ("%d\n" ,y); 

Notice that we had to change the program in three ways: 
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• the type of the function argument was changed from an int to an int*; 

• each occurrence of the argument in the body of the function was changed from x to *x; and, 

• each call of the function was changed from inc (y) to inc (&y) . 

The point is that passing a pointer as a function argument requires consistency in every usage of the argu­
ment within the function body and, worse yet, in every call of the function made by client programs. This, 
combined with C's lack of function argument type checking, results in ample opportunity for error. 

Using a C++ reference, we can write the function inc () as follows: 

void inc(int& x) 

x++; 

int y = 1; 
inc (y) ; 
printf (II %d\n II f y) ; 

This requires changing only the argument type from int to int&. 

In the function inc ( ) , we need to pass the argument x using a reference because its value is modified by 
the function. But efficiency is another reason for passing arguments by reference. When the value of an 
argument requires a lot of storage, as in the case of Biglnt s, it is less expensive to pass a pointer to the 
argument even though its value is not to be changed. That's why we declared the argument to Biglnt as 
const Biglnt& - the reference Biglnt& causes just a pointer to the argument to be passed, but the const 
prevents that pointer from being used to change the argument's value from within the function. 

The Addition Operator 

Let's take a look at a first draft of the function operator+, which implements Biglnt addition: 
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BigInt BigInt::operator+(const BigInt& n) 
{ 

II Calculate maximum possible number of digits in sum 
int maxDigits = (ndigits>n.ndigits ? ndigits : n.ndigits)+l; 
char* sumPtr = new char[maxDigits]; II allocate storage for sum 
BigInt sum(sumPtr,maxDigits); II must define this constructor 
int i = maxDigits; 
int car:ry = 0; 
while (i--) { 

*sumptr = I*next digit of this*1 + I*next digit of n*1 + carry; 
if (*sumPtr > 9) { 

} 

carry = 1; 
*sumptr 10; 

else carry = 0; 
sumPtr++; 

return sum; 

We add two BigInts by using the paper-and-pencil method we all learned in grammar school: we add the 
digits of each operand from right to left, beginning with the rightmost, and also add a possible carry in 
from the previous column. If the sum is greater than nine, we subtract ten from the result and produce a 
carry. 

The Biglnt (char* lint) constructor 

We ran into a couple of problems when writing the addition function which we indicated with comments 
in the code. The first problem is that we need to declare an instance of BigInt named sum in which to 
place the result of the addition, which will be left in the array pointed to by sumPtr. We must use a con­
structor to create this instance of BigInt, but none of those we have defined thus far are suitable, so we 
must write another. 

This new constructor takes a pointer to an array containing the digits and the number of digits in the array 
as arguments and creates a BigInt from them. We don't want our client programs to use such an unsafe 
and implementation-dependent function, so we'll declare it in the private part of class BigInt where it can 
only be used by member functions. Thus, we add the declaration: 

BigInt(char*,int); 

just before the keyword public: in the declaration of class BigInt in the file BigInt .h, and we add the 
implementation of this constructor to the file BigInt . c: 
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BigInt::BigInt(char* d, int n) 
{ 

digits = di 
ndigits = ni 

Class DigitStream 

The second problem we encountered is that scanning the digits of the operands in the statement: 

*surnp = I*next digit of this*1 + I*next digit of n*1 + carryi 

becomes complicated because one of the operands may contain fewer digits than the other, in which case 
we must pad it to the left with zeros. We would also face this problem when implementing BigInt sub­
traction, multiplication, and division, so it is worthwhile to find a clean solution. Let's use an abstract data 
type! 

Here is the declaration for class DigitStream and the implementation of its member functions: 

class DigitStream { 

pUblic: 

char* dPi 
int ndi 

II pointer to current digit 
II number of digits remaining 

DigitStream(const BigInt& n)i II constructor 
int operator++()i II return current digit and advance 

} i 

DigitStream::DigitStream(BigInt& n) 
{ 

dp = n.digitsi 
nd n.ndigitsi 

int DigitStream::operator++() 

if (nd == 0) return Oi 
else { 

nd--i 
return *dP++i 

We can now declare an instance of a DigitStream for each of the operands and use the ++ operator when 
we need to read the next digit. 
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With these two problems solved, the implementation of the Biglnt addition operator looks like: 

Biglnt Biglnt::operator+(const Biglnt& n) 
{ 

int maxDigits = (ndigits>n.ndigits ? ndigits n.ndigits)+li 
char* sumPtr = new char[maxDigits]i 
Biglnt sum(sumPtr,maxDigits)i 
Digitstream a(*this)i 
Digitstream b(n)i 
int i = maxDigitsi 
int car:ry = Oi 
while (i--) { 

*sumptr = (a++) + (b++) + car:ryi 
if (*sumPtr > 9) { 
car:ry = 1; 
*sumPtr -= 10i 

else car:ry = Oi 
sumPtr++; 

return sumi 

Friend Functions 

Our abstract data type Digi tStream looks quite elegant, but you may be wondering how the constructor 
DigitStream(const Biglnt&) is able to access the member variables digits and ndigits of class 
Biglnt. After all, digits and ndigits are private, and DigitStream(const Biglnt&) is not a member 
function of class Biglnt. 

Well, it can't. We need a way to grant access to these variables to just this one function. C++ provides us 
with a way to do this - we can make this constructor a friend of class Biglnt by adding the declaration: 

friend DigitStream::DigitStream(const Biglnt&); 

to the declaration of class Big Int. 

We can also make all of the member functions of one class friends of another by declaring the entire class 
as a friend. For example, we can make all of the member functions of class DigitStream friends of class 
BigInt by placing the declaration: 

friend DigitStream; 

in the declaration of class BigInt. 
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The Keyword this 

Going back to the implementation of the function operator+ ( ) , you may be wondering where the pointer 
variable this came from in the declaration: 

DigitStream a(*this}; 

Previously, we described how within the body of a member function we could refer to the members of the 
instance for which the function was called without using the. or -> operators. C++ also gives us the key­
word this so that we may refer to the entire instance as a unit. The keyword this is essentially a pointer 
to this instance, and in our example may be thought of as a variable of type Biglnt *. Thus, the declara­
tion DigitStream a(*this) creates an instance of DigitStream for the left operand of operator+ (). 

The Member Function Biglnt: :print ( ) 

The implementation of the member function print () is straightforward: 

void Biglnt::print() 
{ 

int i; 
for (i = ndigits-l; i >= 0; i--) printf("%d",digits[i]); 

} 

It loops through the digits array from the most significant through the least significant digits, calling the 
standard C library function print f () to print each digit. 

The Biglnt Destructor 

The only thing that the Biglnt destructor function -Biglnt () must do is free the dynamic storage allo­
cated by the constructors: 

Biglnt::-Biglnt() 
{ 

delete digits; 
} 

This is done using the C++ delete operator, which in this case frees the dynamic storage that is pointed to 
by digits. The delete operator does what is usually accomplished in C by calling the standard C library 
function free, but in addition, if we use delete to deallocate an instance of a class having a destructor 
function, the destructor is called automatically to finalize the instance just before its storage is freed. The 
delete operator is thus the inverse of the new operator. 
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Inline Functions 

By now you may be thinking that the overhead of calling all of these little member functions must make 
C++ inefficient. This would be unacceptable for a proper successor to C, which is renowned for its 
efficiency! So c++ allows us to declare a function to be inl ine, in which case each call of the function is 
replaced by a copy of the entire function, much like the substitution performed for the #define preproces­
sor command. This entirely eliminates the overhead of calling a function, and makes encapsulation practi­
cal. 

To make a function such as -Biglnt () inline, we must move its implementation from the file Biglnt . c to 
the file BigInt.h and add the keyword inline to the function definition: 

inline BigInt::-BigInt() 

delete digits; 

The function definition must be in Biglnt . h because it will be needed by the compiler whenever a client 
program uses a Biglnt. 

Small functions make the best candidates for inline compilation. C++ gives us a convenient shorthand for 
writing inline functions: we can include the function body in the function declaration within the class 
declaration. Thus, we can also make -Biglnt () inline by writing: 

-BigInt () { delete digits; 

in the declaration of class BigInt. 

Here is a complete version of BigInt . h showing appropriate functions made inline: 

#include <stdio.h> 

class BigInt { 
char* digits; 
int ndigits; 
BigInt(char* d, int n) { 

digits = d; 
ndigits = n; 

friend DigitStream; 

II pointer to digit array in free store 
II number of digits 
II constructor function 

public: 
Biglnt(const char*); II constructor function 
Biglnt(int); II constructor function 
Biglnt(const Biglnt&); II initialization constructor function 
Biglnt operator+(const Biglnt&); II addition operator function 
void print(); II printing function 
-BigInt() { delete digits; } II destructor function 

} i 
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class DigitStream 
char* dpi 
int ndi 

pUblic: 

} ; 

Summary 

DigitStream(const Biglnt& n) { 
dp = n.digitsi 
nd = n.ndigitsi 

int operator++ () 
if (nd == 0) return Oi 
else { 

nd--i 
return *dp++i 

} 

II pointer to current digit 
II number of digits remaining 

II constructor function 

II return current digit and advance 

This completes our example abstract data type Biglnt. Let's review the C++ features presented in this sec­
tion: 

• the scope resolution operator, which allows us to specify which class we mean when one or more 
classes have member variables or functions with the same name; 

• constant types, which we can use to protect variables or function arguments from unintended 
modification; 

• implicit member variable references and the keyword this, which are used within member functions to 
access the instance for which the function is called; 

• the new and delete operators, which manage the free storage area and call class 
constructors / destructors if present; 

• references, which we can use to conveniently pass pointers to instances instead of the instances them­
selves as function arguments; 

• friend functions, which give us a way to grant access to the private member variables and functions of 
a class to other functions and classes; and, 

• in line functions, which make data abstraction in C++ efficient and practical. 
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Other Uses for Abstract Data Types 

Our Biglnt abstract data type is an obvious application for the technique of data abstraction because it is a 
numeric data type, like int, and it is natural to extend the meanings of C++'s arithmetic operators to apply 
to Biglnts. As you become more familiar with this technique, you'll discover many opportunities for 
using abstract data types in your programs. Here are a few examples: 

Dynamic Character Strings 

We can define a dynamic (i.e., variable length) character string abstract data type that works like the string 
variables in languages such as BASIC. We can overload the operators & and &= to concatenate character 
strings, overload the relational operators <, <=, ==, and so on to compare character strings, and overload 
the array subscript operator [] to address the individual characters of a string. The function call operator: 

operator() (int position, int length) 

can be overloaded to perform substring extraction and replacement. 

Complex Numbers 

C++, like C, doesn't have a built-in complex data type, but it's easy to define one in C++. In fact, one is 
distributed with the C++ compiler. Class complex has two member variables of type double that hold the 
real and imaginary parts of a complex number, and all of the usual arithmetic operators are overloaded to 
perform complex arithmetic when applied to instances of class complex. Many of the functions in the math 
library, such as cos () and sqrt ( ) , are overloaded for complex arguments. 

Vectors 

Vectors are another useful abstract data type. We can define classes for vectors of the fundamental data 
types, such as FloatVec, DoubleVec, and IntVec, and overload the arithmetic operators to apply element­
by-element to vectors. The array subscript operator [] can be overloaded to check the range of vector sub­
scripts or to handle vectors with arbitrary subscript bounds. It's also possible to overload the function call 
operator () to subscript multi-dimensional arrays. 

Stream I/O 

A stream I/O package is distributed with the C++ compiler that defines the class iostrearn (input/output 
stream) for doing formatted I/O. This class defines an instance named cin connected to the standard input 
file and overloads the operator » for all the fundamental data types so we can write: 
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float Xi 

int i; 
char* s; 
cin » X » i » Si 

to read a float, an int, and a character string from the standard input file, for example. The advantage of 
this over using the C library function scanf () is that it is not possible to make the following types of 
errors: 

int i; 
scanf ("%f" I &i) ; 
scanf ( II %d II Ii) ; 

II float format for int 
II int instead of int* 

Similarly, class iostream defines an instance named cout connected to the standard output file and an 
instance named cerr connected to the standard error file. It overloads the operator « for all the funda­
mental data types so we can write: 

cout « X « i « s; 

to write a float, and int, and a character string to the standard output file. 

We can also add our own overloadings for the operators » and« for classes we've written so we can 
read or write instances of these classes using the same notation. 
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Perhaps the most interesting features of C++ are those that support the style of programming known as 
object-oriented programming. Object-oriented programming is generally useful, but is particularly suited for 
interactive graphics, simulation, and systems programming applications. 

Derived Classes 

Suppose we have written a C++ class defining an abstract data type, and we need another abstract data 
type that is similar to it. Perhaps it requires some additional member variables or functions, or a few of its 
member functions must do something differently. We'd like to reuse the code we've already written and 
debugged as much as possible. C++ gives us a simple way to accomplish this: we can declare the new 
class as a derived class of our existing class, called the base class. The derived class inherits all of the member 
variables and functions of its base class. We can then differentiate the derived class from its base class by 
adding member variables, adding member functions, or re-defining member functions inherited from the 
base class. 

A base class may have more than one derived class, and a derived class may, in tum, serve as the base 
class for other derived classes. Thus, we can define an entire tree-structured arrangement of related classes. 
This gives us a coherent way to organize classes and to share common code among them. 

Virtual Functions 

Now suppose we're writing a graphics package, and we've written some classes for various geometric 
shapes, such as Line, Triangle, Rectangle, and Circle. All of these classes implement some of the same 
member functions, for example draw ( ) and move (). The relevant class declarations for class Line and 
class Circle would look like this: 
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class Line ( 
int xl,yl,x2,y2i II end point coordinates 

public: 
Line(int xxl,int yyl,int xx2,int yy2) II constructor 

{ xl=xxli yl=yy1i x2=xx2i y2=yy2i } 
void draw 0 i I I draw a line from (xl,yl) to (x2,y2) 
void move (int dx, int dy) i I I move line by amount dx, dy 

} i 

class Circle ( 
int X,Yi 
int ri 

pUblic: 

} i 

Circle(int xx,int yy,int rr) 
{ X=XXi y=YYi r=rri } 

void draw()i 
void move (int dx, int dY)i 

II center of circle 
II radius of circle 

II constructor 

II draw circle with center (x,y) and radi 
I I move circle by amount dx, dy 

There are a couple of things we'd like to be able to do with these related classes. First, it would be useful 
to have an abstract data type called Picture that would be a collection of Lines, Triangles, Rectangles, 
and Circles. Second, we'd like to be able to draw () and move () our Pictures. 

It would be most elegant if class Picture were general, and contained no mention of the specific shapes. 
That way, we could introduce a new shape, say a Pentagon, and not have to change class Picture in any 
way. 

We can do this by defining a base class Shape with derived classes Line, Triangle, and so on, as shown 
in Figure 2-6. 
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Figure 2-6: Organization of Classes for a Graphics Package 
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Class Shape declares functions applicable to any kind of shape such as draw () and move () as virtual 
functions, and implements these functions to write out an error message if called: 

class Shape ( 
public: 

} ; 

virtual void draw()i II Shape::draw() prints error message 
virtual void move (int dx, int dy); II Shape::move() prints error message 

We change the declarations of classes Line, Triangle, and so on to be derived from class Shape by adding 
the name of the base class to the declaration of the derived class; for example: 

class Line : public Shape { 

class Circle: public Shape ( ... 

and we also add the keyword virtual to the declarations of the functions draw () and move () in the 
derived classes. We don't have to change the implementation of these functions, however. 

Now we can write class Picture to deal only with Shapes. We can represent a Picture by an array con­
taining pointers to its component Shapes, and we can implement Picture: : draw 0 ,for example, simply 
by calling Shape: : draw () for each shape in the picture: 
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const int PICTURE_CAPACITY = 100; 
class Picture { 

public: 

} ; 

Shape* s[PICTURE_CAPACITY]; 
int n; 

Picture() { n = 0; } 
void add(const Shape&); 
void drawO; 
void move (int dx, int dy); 

void Picture::add(const Shape& t) 

if (n == PICTURE_CAPACITY) 

II max number of shapes in picture 

II array of pointers to shapes 
II current number of shapes in picture 

II constructor 
II add shape to picture 
II draw picture 
II move picture 

II add a shape to a picture 

cerr « "Picture capacity exceeded\n"; 
exit(l); 

s[n++] = &t; II add pointer to shape to picture 

void Picture: : draw ( ) II draw a picture 

int i; 
for (i=O; i<n; i++) s[i]->draw(); 

Since Shape: : draw ( ) is a virtual function, C++ takes care of figuring out the specific class of each com­
ponent Shape when the program is executed and calling the appropriate implementation of draw () for that 
class. This is called dynamic binding. 

If we mistakenly forget to implement draw ( ) for a derived class of Shape, it will inherit the implementa­
tion of draw () from class Shape. When we try to draw that shape, Shape: : draw () will be executed, 
which issues an error message, as you'll recall. 

Going a step further, we might want to be able to build a more complicated picture out of a number of 
simpler pictures. We can do this by thinking of a Picture as just another type of Shape, and making it 
another derived class of class Shape, leading to the class structure shown in Figure 2-7. 
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Figure 2-7: Improved Organization of Classes for a Graphics Package 
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Class Libraries 

Taking this technique to its extreme, we can define a class named, say, Obj ect and derive every class from 
it, either directly or indirectly. In class Obj ect we can declare virtual functions that apply to all classes -
functions for copying, printing, storing, reading, and comparing objects, for example. We then can define 
general data structures comprised of Obj ect S and functions that operate on them that will be useful for all 
classes, just as class Picture could work with any derived class of Shape. 

The author has written a library of about 40 general-purpose classes, modeled after the basic classes of the 
Smalltalk-80 programming language. The library, known as the Object-Oriented Program Support (OOPS) 
class library, contains classes such as string I Date, (hash tables), Dictionary (associative arrays), and 
LinkedList. 

Writing C++ programs using a class library such as this is a real delight. The classes are general-purpose, 
and most programs of any size will have uses for some of them. They are flexible - if a particular class 
doesn't quite do what is needed it's usually a simple matter to derive a class that does. And the library is 
extensible. It provides a framework that makes it easy to add your own custom classes and make them 
function along with existing ones. 

As an example, let's see how the OOPS class library can help us with the graphics package we've been dis­
cussing. The OOPS library has a class Point for representing x-y coordinates. We can use it in graphics 
classes such as Line: 
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class Line : public Shape ( 
Point a,b; 

pUblic: 

} ; 

Line{Point pIt Point p2) 
void draw () ; 
void move{Point delta); 

II endpoints of the line 

a=pI; b=p2;} II constructor 
II draw a line from point a to point b 
II move line by delta 

Many of the arithmetic operators are defined by class Point, so we can implement move ( ) , for example, by 
writing: 

void Line::move{Point delta) 
{ 

a += delta; b += delta; 

Our crude implementation of class Picture allocated an array of fixed size to hold the pointers to its com­
ponent shapes. We can use the OOPS library class OrderedCltn to make this a variable-length array. An 
OrderedCl tn is an array of pointers to Obj ect s, so we can use it to hold pointers to instances of any class 
derived from Object, just as we used an array of pointers to Shapes to hold pointers to Lines, Triangles, 
and so on. To make class Shape a derived class of Obj ect, we modify its declaration: 

class Shape: public Object ( ... 

Now we can write class Picture as: 

class Picture : public Shape 
OrderedCltn s; 

pUblic: 

} ; 

Picture{) {} 
virtual void add{const Shape&)i 
virtual void draw()i 
virtual void move(Point delta); 

II collection of pointers to shapes 

II constructor 
II add shape to picture 
II draw picture 
II move picture 

Class OrderedCltn defines member functions such as add () , remove () , size () , first () , and last () to 
let us manipulate the pointers in the array. It also overloads the subscript operator [] so we can subscript 
OrderedCltns like arrays. Using these we can write the functions Picture: :add() and Picture: :draw 
as follows: 
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void Picture::add(const Shape& t) II add a shape to a picture 

s.add(t)i II this calls OrderedCltn::add() 

void Picture: : draw ( ) II draw a picture 

int ii 
for (i=Oi i<s.size()i i++) II s.size() returns # of objects in s 

«Shape*)s[i])->draw()i II cast address of ith 
II to Shape* and call draw() 

Now Pictures can have as many shapes in them as we need; class OrderedCltn manages the required 
storage for us. 

Object I/O 

Let's write a program that uses our graphics classes to create a simple picture composed of two shapes - a 
line and a circle: 

main() 
{ 

Picture picti 
pict.add(*new Line(Point(O,O),Point(lO,lO»)i 
pict.add(*new Circle(Point(lO,lO),2»i 
pict.draw()i 

The first statement in the body of main () declares an instance of class Picture named pict, the second 
statement constructs an instance of Line with endpoints at (0,0) and (10,10) and adds it to pict, and the 
third statement constructs an instance of Circle with the center at (10,10) and radius 2 and also adds it to 
pict. The result is the data structure shown in Figure 2-8. 
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Figure 2-8: The data structure of a simple picture. Instances of OOPS library classes are shown as dashed 
rectangles. 
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What if we wanted to save this data structure on a disk file so it could be read in later and used by another 
program? The CXJPS class library makes this simple. We create an output stream (an instance of class 
fstream) named, for example, out, and write the picture to it with the statements: 

#include <iostream.h> 
#include <fstream.h> 
I I ... 
fstream out ( "picturef ile II I output) ; 
pict.storeOn(out); 

II include header files for 
II standard c++ stream I/O 

I I create "picturefile ll 

The function storeOn () , which is implemented in class Obj ect, handles the details of finding all of the 
objects in the picture data structure and writing them to the output stream in a program-independent, 
machine-independent format. The storeOn () function calls the virtual function storer () to actually write 
out member variables. The storer () function is declared in class Object, and is reimplemented by each 
derived class to write out its own member variables. This function is already implemented for all of the 
CXJPS library classes, but we must write one for any classes of our own which we've derived from class 
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Object. That's easy to do. For example, the storer () function for class Picture looks like: 

void Picture::storer(iostream& strm) 
{ 

} 

Shape::storer(strm); 
s.storeOn(strm); 

II store members of base class, if any 
II store member of class Picture 

To read a picture from a file, we create an input stream, in, (an instance of class fstream) connected to the 
file we wish to read, and read the picture from it with the statements: 

#include <iostream.h> 
#include <fstream.h> 
I I ... 

II include header files for 
II standard c++ stream I/O 

fstream in (llpicturefile ll , input); I I open Ilpicturefile" read-only 
readFrom(in, II Picture II ,pict) ; 

The second argument tells readFrom () that we're expecting an instance of class Picture to be read, and to 
complain if the next object on the input stream is of any other class. 

The function readFrom () works somewhat like storeOn ( ) , calling a small ureader" function which we 
must write for each of our classes. 

We can use OOPS object I/O to store and read an arbitrarily complex data structure containing instances of 
both OOPS library classes and our own classes. Since the data structure is converted into a program­
independent, machine-independent format, we can send it through a UNIX pipe to another process running 
on the same machine, or over a network to another process running on a different kind of machine. This 
capability is particularly useful for spread sheets, forms, documents, drawings, electronic mail, and so on. 
The OOPS class library also gives us a framework to use when implementing object I/O for our own classes. 
We don't have to spend time designing a storage format, or worry about such issues as what to do with the 
pointers in a data structure, for example. We can use the general-purpose mechanism provided by the 
OOPS class library, and concentrate on our particular application. 
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The c++ programming language is currently implemented as a translator, which accepts C++ source code as 
input and produces C source code as output. The C++ translator and run-time support library are written 
in C++, making them easily portable to most UNIX systems. 

AT&T first made the C++ translator available to universities and non-profit organizations in December, 
1984. Release 1.0 became commercially available as an unsupported product in October, 1985. 

The AT&T C++ Language System can run on any UNIX machine capable of running programs up to about 
500KB in size, and having a robust C compilation system that can handle variable and external symbol 
names of arbitrary length. The C compiler must also allow structure assignments and the use of structures 
as function arguments and return values. 

Training and third-party supported ports of the AT&T C++ Translator can be obtained for various UNIX 
systems, VAX VMS, MS-DOS, and others. 
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The Future of C++ 

The definition of the C++ programming language is not yet final. When the ANSI C standard is completed, 
C++ will undoubtably be revised to eliminate any unnecessary incompatibilities; for example, the ANSI C 
rules for doing floating point arithmetic will be adopted. Historically, C++ has met the challenge of evolv­
ing while remaining compatible with C and earlier versions of C++. 

Will the C++ programming language be as successful as its predecessor, or will it become just another of 
the countless languages that never achieve widespread use? Well, c++ has a lot going for it: 

• Since C++ is, with a few minor exceptions, a superset of C, it has no fatal deficiencies. It also 
possesses those attributes of C that have contributed to C's success: portability, flexibility, and 
efficiency. 

• C++ is less error-prone than C. It thoroughly type-checks programs, as is the trend in modem pro­
gramming languages, but not at the expense of flexibility or convenience. A programmer may coerce 
(cast) types when necessary, and define his or her own implicit type conversions for convenience. 

• Support for data abstraction and object-oriented programming make C++ a much more powerful and 
expressive language than C. Yet the language remains one of manageable size, much smaller than 
PL/I or ADA, for example. 

• C++ programs are compatible with UNIX and with the large number of existing C libraries for graph­
ics, database management, math, and statistics. 

• There is a large existing community of C programmers who can begin to use C++ immediately, gra­
dually learning and utilizing its new features. 

• The AT&T C++ Language System is commercially available in source form, is inexpensive, and is 
highly portable. It makes the language accessible on almost all popular operating systems. 

• AT&T is developing a portable C++ compiler, which will compile C++ programs more quickly than 
the combination of the C++ Translator and C compiler now required. 

• C++ was designed at the AT&T Bell Laboratories Computer Science Research Center in Murray Hill. 
They have an impressive track record in producing successful software, such as the UNIX system and 
C language. 

The main obstacle to the widespread adoption of C++ is that to realize its benefits one must master the 
techniques of data abstraction and I or object-oriented programming - techniques that are unfamiliar to the 
current generation of programmers. When this educational problem is solved, C++ should succeed C as 
the language of choice for a wide range of applications. 
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Footnotes 

1. This paper fits the description in the U.S. Copyright Act of a uUnited States Government work." It 
was written as a part of the author's official duties as a Government employee. This means it cannot 
be copyrighted. This paper is freely available to the public for use without a copyright notice, and 
there are no restrictions on its use, now or subsequently. 

The author's time and the computer facilities required to prepare this paper were provided by the 
Computer Systems Laboratory, Division of Computer Research and Technology, National Institutes 
of Health. 

2. Binary operators such as + are usually not defined as member functions because automatic conver­
sion of types is not done for the left operand. For example, the expression a + 47 is equivalent to 
a.operator+ (47). C++ recognizes that the function operator+ (const Biglnt&) is defined and 
that the constructor Biglnt ( int) can be used to convert the int 47 to a Biglnt before calling 
operator+. However, the expression 47 + a is equivalent to 47 .operator+ (a), which is an error 
because 47 is not an instance of a class and therefore has no member functions that can be applied to 
it. For this reason, binary operators are usually defined as friend functions, which are discussed later. 
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An Overview of C++ 

~ This chapter is taken directly from a paper by 8jarne Stroustrup. 

y 
Introduction 

c++ is a general purpose programming language designed to make programming more enjoyable for the 
serious programmer. Except for minor details, C++ is a superset of the C language. C++ was designed to 

• be a better C 

• support data abstraction 

• support object-oriented programming 

This paper describes the features added to C to achieve this. In addition to C, the main influences on the 
design of C++ were Simula67 and Algol68. 

C++ has been in use for about four years and has been applied to most branches of systems programming 
including compiler construction, data base management, graphics, image processing, music synthesis, net­
working, numerical software, programming environments, robotics, simulation, and switching. It has a 
highly portable implementation and there are now thousands of installations including AT&T 3B, DEC VAX, 
Intel 80286, Motorola 68000, and Amdahl machines running UNIX and other operating systems. 

What is Good about C? 

C is clearly not the cleanest language ever designed nor the easiest to use; so why do so many people use 
it? 

• C is flexible: it is possible to apply C to most every application area, and to use most every program­
ming technique with C. The language has no inherent limitations that preclude particular kinds of 
programs being written. 

• C is efficient: the semantics of Care '10w level"; that is, the fundamental concepts of C mirror the 
fundamental concepts of a traditional computer. Consequently, it is relatively easy for a compiler 
and/or a programmer to utilize hardware resources for a C program efficiently. 

• C is available: given a computer, whether the tiniest micro or the largest super-computer, the chance 
is that there is an acceptable quality C compiler available and that that C compiler supports an 
acceptably complete and standard C language and library. There are also libraries and support tools 
available, so that a programmer rarely needs to design a new system from scratch. 

• C is portable: a C program is not automatically portable from one machine (and operating system) to 
another nor is such a port necessarily easy to do. It is, however, usually possible and the level of 
difficulty is such that porting even major pieces of software with inherent machine dependences is 
typically technically and economically feasible. 
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Compared with these Hfirst order" advantages, the "second order" drawbacks like the curious C declarator 
syntax and the lack of safety of some language constructs become less important. Designing Ha better C" 
implies compensating for the major problems involved in writing, debugging, and maintaining C programs 
without compromising the advantages of C. C++ preserves all these advantages and compatibility with C at 
the cost of abandoning claims to perfection and of some compiler and language complexity. However, 
designing a language Hfrom scratch" does not ensure perfection and the C++ compilers compare favorably 
in run-time, have better error detection and reporting, and equal the C compilers in code quality. 

A Better C 

The first aim of C++ is to be lIa better C" by providing better support for the styles of programming for 
which C is most commonly used. This primarily involves providing features that make the most common 
errors unlikely (since C++ is a superset of C such errors cannot simply be made impossible). 

Argument Type Checking and Coercion 
The most common error in C programs is a mismatch between the type of a function argument and the 
type of the argument expected by the called function. For example: 

double sqrt(a) double a; 

1* ... *1 

double sq2 = sqrt(2); 

Since C does not check the type of the argument 2, the call sqrt (2) will typically cause a run time error or 
give a wrong result when the square root function tries to use the integer 2 as a double precision floating 
point number. In C++, this program will cause no problem since 2 will be converted to a floating point 
number at the point of the call. That is, sqrt (2) is equivalent to sqrt ( (double) 2) . 

Where an argument type does not match the argument type specified in the function declaration and no 
type conversion is defined the compiler issues an error message. For example, in C++ sqrt ( causes a com-
pile time error. . 

Naturally, the C++ syntax also allows the type of arguments to be specified in function declarations: 

double sqrt(double); 

and a matching function definition syntax is also introduced: 

double sqrt(double d) 

II 
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Inline Functions 
Most C programs rely on macros to avoid function call overhead for small frequently-called operations. 
Unfortunately the semantics of macros are very different from the semantics of functions so the use of mac­
ros has many pitfalls. For example: 

#define mul(a,b) a*b 
int z = mul(x*3+2,y/4)i 

Here z will be wrong since the macro will expand to x*3+2*y/4. Furthermore, C macro definitions do not 
follow the syntactic rules of C declarations, nor do macro names follow the usual C scope rules. C++ cir­
cumvents such problems by allowing the programmer to declare inline functions: 

inline int mul(int a, int b) { return a*bi } 

An inline function has the same semantics as a "'normal" function but the compiler can typically inline 
expand it so that the code-space and run-time efficiency of macros are achieved. 

Scoped and Typed Constants 
Since C does not have a concept of a symbolic constant macros are used. For example: 

#define TBLMAX (TBLSIZE-l) 

Such Uconstant macros" are neither scoped nor typed and can (if not properly parenthesized) cause prob­
lems similar to those of other macros. Furthermore, they must be evaluated each time they are used and 
their names are ulost" in the macro expansion phase of the compilation and consequently are not known to 
symbolic debuggers and other tools. In C++ constants of any type can be declared: 

const int TBLMAX = TBLSIZE-li 

Varying Numbers of Arguments 
Functions taking varying numbers of arguments and functions accepting arguments of different types are 
common in C. They are a notable source of both convenience and errors. 

C functions where the type of arguments or the number of arguments (but not both) can vary can be han­
dled in a simple and type-secure manner in C++. For example, a function taking one, two, or three argu­
ments of known type can be handled by supplying default argument values which the compiler uses when 
the programmer leaves out arguments. For example: 

void print (char*, char* = II _II, char* = II - II) i 

print (lIone", II two II , II three II ) i 

print ("one", II two II ) i I I that is, print ("one", II two II , "_") i 

print ("one") i I I that is, print ("one", "_", "_") i 
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Some C functions take arguments of varying types to provide a common name for functions performing 
similar operations on objects of different types. This can be handled in C++ by overloading a function 
name. That is, the same name can be used for two functions provided the argument types are sufficiently 
different to enable the compiler to "pick the right one" for each call. For example: 

void print(int); 
void print(char*); 

print(l); II integer print function 
print("two"); II string print function 

The most general examples of C functions with varying arguments cannot be handled in a type-secure 
manner. Consider the standard output function printf, which takes a format string followed by an arbi­
trary collection of arguments supposedly matching the format string:1 

printf("a string"); 
printf ("X = %d\m"/x); 
printf(" narne : %s\m size: %d\n"l obj.name, obj.size); 

However, in C++ one can specify the type of initial arguments and leave the number and type of the 
remaining arguments unspecified. For example, printf and its variants can be declared like this: 

int printf(const char* ... ); 
int fprintf(FILE*, const char* ... ); 
int sprintf(char*, const char* ... ); 

These declarations allow the compiler to catch errors such as 

printf (stderr I "X = %d\m" IX) i 

fprintf ("X = %d\m" ,x) ; 
II error: printf does not take a FILE* 
II error: fprintf needs a FILE* 

Declarations as Statements 
Uninitialized variables are another common source of errors. One cause of this class of errors is the 
requirement of the C syntax that declarations can occur only at the beginning of a block (before the first 
statement). In C++, a declaration is considered a kind of statement and can consequently be placed any­
where. It is often convenient to place the declaration where it is first needed so that it can be initialized 
immediately. For example: 

3-4 

void some_function(char* p) 
{ 

if (p==O) error("p==O in some_function"); 
int length = strlen(p); 
II ... 
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Support for Data Abstraction 

C++ provides support for data abstraction: the programmer can define types that can be used as con­
veniently as built-in types and in a similar manner. Arithmetic types such as rational and complex 
numbers are common examples: 

class complex ( 
double re, imi 

pUblic: 
im=ii complex(double r, double i) ( re=ri 

complex(double r) { re=ri im=Oi } II float->complex conversion 

friend complex operator+(complex, complex)i 
friend complex operator-(complex, complex)i 
friend complex operator-(complex)i 
friend complex operator*(complex, complex)i 
friend complex operator/(complex, complex)i 
II ... 

II binary minus 
I I unary minus 

The declaration of class (that is, user-defined type) complex specifies the representation of a complex 
number and the set of operations on a complex number. The representation is private; that is, re and im 
are accessible only to the functions defined in the declaration of class complex. Such functions can be 
defined like this: 

complex operator+(complex al, complex a2) 
( 

return complex(al.re+a2.re, al.im+a2.im)i 

and used like this: 

main ( ) 
( 

complex a 2.3i 
complex b l/ai 
complex c a+b+complex(l,2.3); 
I I ... 

Functions declared in a class declaration using the keyword friend are called friend functions. They do not 
differ from ordinary functions except that they may use private members of classes that name them friends. 
A function can be declared as a friend of more than one class. Other functions declared in a class declara­
tion· are called member functions. A member function is in the scope of the class and must be invoked for a 
specific object of that class. 
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Initialization and Cleanup 
When the representation of a type is hidden some mechanism must be provided for a user to initialize vari­
ables of that type. A simple solution is to require a user to call some function to initialize a variable before 
using it. This is error prone and inelegant. A better solution is to allow the designer of a type to provide a 
distinguished function to do the initialization. Given such a function, allocation and initialization of a vari­
able becomes a single operation (often called instantiation) instead of two separate operations. Such an ini­
tialization function is called a constructor. In cases where construction of objects of a type is non-trivial one 
often needs a complementary operation to clean up objects after their last use. In C++ such a cleanup func­
tion is called a destructor. Consider a vector type: 

class vector 
int SZi 

int* v; 
pUblic: 

} ; 

vector (int) ; 
-vector() ; 
I I ... 

II number of elements 
II pointer to integers 

II constructor 
II destructor 

The vector constructor can be defined to allocate a suitable amount of space like this: 

vector::vector(int s) 
{ 

if (s<=O) error("bad vector size"); 
sz = Si 

v = new in t [ s] ; II allocate an array of "S" integers 

The cleanup done by the vector destructor consists of freeing the storage used to store the vector elements 
for re-use by the free store manager: 

vector::-vector() 
{ 

delete v; I I deallocate the memory pointed to by v 

C++ does not support garbage collection. This is, however, compensated for by enabling a type to main­
tain its own storage management without requiring intervention from a user. Class vector is an example 
of this. 

Free Store Operators 
The operators new and delete were introduced to provide a standard notation for free store allocation and 
deallocation. A user can provide alternatives to their default implementations by defining functions called 
operator new and operator delete. For built-in types the new and delete operators provide only a 
notational convenience (compared with the standard C functions malloc () and free ( ). For user-defined 
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types such as vector the free store operators ensure that constructors and destructors are called properly: 

vector* fct1(int n) 
{ 

vector v(n); II allocate a vector on the stack 
II the constructor is called 

vector* p = new vector(n)i II allocate a vector on the free store 
II the constructor is called 

I I ... 
return Pi 
II the destructor is implicitly called for "v" here 

void fct2 () 
{ 

vector* pv = fct1(10)i 
I I ... 
delete pVi II call the destructor and free the store 

References 
C provides (only) ucall by value" semantics for function argument passing; ucall by reference" can be simu­
lated by explicit use of pointers. This is sufficient, and often preferable to using IIpass by value" for the 
built-in types of C. However, it can be inconvenient for larger objects2 and can get seriously in the way of 
defining conventional notation for user-defined types in C++. Consequently, the concept of a reference is 
introduced. A reference acts as a name for an object; T& means reference to T. A reference must be initial­
ized and becomes an alternative name for the object it is initialized with. For example: 

int a = 1i II "a" is an integer initialized to "1" 
int& r = a; II "r" is a reference initialized to "a" 

The reference r and the integer a can now be used in the same way and with the same meaning. For 
example: 

int b = r; 
r = 2; 

I I "b" is initialized to the value of "r", that is, "111 
I I the value of "r", that is, the value of "all becomes "211 

References enable variables of types with ularge representations" to be manipulated efficiently without 
explicit use of pointers. Constant references are particularly useful: 
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matrix operator+(const matrix& a, const matrix& b) 

II code here cannot modify the value of "a" or "b" 

matrix a = b+c; 

In such cases the ucall by value" semantics are preserved while achieving the efficiency of "call by refer­
ence." 

Assignment and Initialization 
Controlling construction and destruction of objects is sufficient for many, but not all, types. It can also be 
necessary to control all copy operations. Consider: 

vector v1(100); 
vector v2 = v1; 
v1 = v2; 

II make v1 a vector of 100 elements 
II make v2 a copy of v1 
II assign v1 to v2 (that is, copy the elements) 

Declaring a function with the name operator= in the declaration of class vector specifies that vector 
assignment is to be implemented by that function: 

class vector { 
int* v; 
int sz; 

pUblic: 
II ... 
void operator=(vector&); II assignment 

} ; 

Assignment might be defined like this: 

void vector::operator=(vector& a) II check size and copy elements 
{ 

if (sz != a.sz) error("bad vector size for ="); 

for (int i = 0; i<sz; i++) v[i] = a.v[i]; 

Since the assignment operation relies on the "old value" of the vector assigned to, it cannot be used to 
implement initialization of one vector with another. What is needed is a constructor that takes a vector 
argument: 
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class vector { 
II ... 
vector(int); II create vector 
vector(vector&); II create vector and copy elements 

} ; 
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vector::vector(vector& a) II initialize a vector from another vector 
{ 

sz = a.szi II same size 
v = new int[sz]i II allocate element array 
for (int i = Oi i<SZi i++) v[i] = a.v[i]i II same values 

A constructor like this (of the form X (X&) ) is used to handle all initialization. This includes arguments 
passed ''by value" and function return values: 

vector v2 = VIi II use vector(vector&) constructor to initialize 

void f(vector)i 
f(v2)i II use vector(vector&) constructor to pass a copy of v2 

vector g(int sz) 

vector v(sz) i 
return Vi II use vector(vector&) constructor to return a copy of v 

Operator Overloading 
As demonstrated above, standard operators like +, -, *, I can be defined for user-defined types, as can 
assignment and initialization in its various guises. In general, all the standard operators with the exception 
of 

? : 

can be overloaded. The subscripting operator [ ] and the function application operator () have proven 
particularly useful. The C "operator assignment" operators, such as += and *=, have also found many 
uses. 

It is not possible to redefine an operator when applied to built-in data types, to define new operators, or to 
redefine the precedence of operators. 

Coercions 
User-defined coercions, like the one from floating point numbers to complex numbers implied by the con­
structor complex (double) , have proven unexpectedly useful in C++. Such coercions can be applied expli­
citly or the programmer can rely on the compiler adding them implicitly where necessary and unambigu­
ous: 

An Overview of C++ 3-9 



An Overview of C++ 

complex a = complex(l); 
complex b = 1; II implicit: 1 -> complex (1) 
a = b+complex(2); 
a = b+2; II implicit: 2 -> complex(2) 
a = 2+b; II implicit: 2 -> complex(2) 

Coercions were introduced into C++ because mixed mode arithmetic is the norm in languages used for 
numerical work and because most user-defined types used for ucalculation" (for example, matrices, charac­
ter strings, and machine addresses) have natural mappings to and/or from other types. 

Great care is taken (by the compiler) to apply user-defined conversions only where a unique conversion 
exists. Ambiguities caused by conversions are compile time errors. 

It is also possible to define a conversion to a type without modifying the declaration of that type. For 
example: 

class point ( 
float dist; 
float angle; 

pUblic: 

} ; 

I I ... 
operator complex() II convert point to complex number 
( 

return polar(dist,angle); 

operator double() 
( 

II convert point to real number 

if (angle) error(lIcannot convert point to real: angle!=OIl); 
return dist; 

These conversions could be used like this: 

void some_function(point a) 
( 

complex z = a; 
double d = a; 
complex z3 = a+3; 
I I ... 

II z = a.operator complex() 
II d = a.operator double() 
II z3 = a.operator complex() + complex(3); 

This is particularly useful for defining conversions to built-in types since there is no declaration for a built­
in type for the programmer to modify. It is also essential for defining conversions to Ustandard" user­
defined types where a change may have (unintentionally) wide ranging ramifications and where the aver­
age programmer has no access to the declaration. 
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Support for Object-Oriented Programming 

c++ provides support for object-oriented programming: the programmer can define class hierarchies and a 
call of a member function can depend on the actual type of an object (even where the actual type is 
unknown at compile time). That is, the mechanism that handles member function calls handles the case 
where it is known at compile time that an object belongs to some class in a hierarchy, but exactly which 
class can only be determined at run time. See examples below. 

Derived Classes 
C++ provides a mechanism for expressing commonality among different types by explicitly defining a class 
to be part of another. This allows re-use of classes without modification of existing classes and without 
replication of code. For example, given a class vector: 

class vector 
II ... 

pUblic: 
II ... 
vector(int); 
int& operator[] (int); II overload the SUbscripting operator: [] 

one might define a vector for which a user can define the index bounds: 

class vec : public vector 
int low, high; 

public: 
vec(int, int); 
int& operator[] (int); 

} ; 

Defining vec as 

: public vector 

means that first of all a vec is a vector. That is, type vec has ("inherits") all the properties of type vec­
tor in addition to the ones declared specifically for it. Class vector is said to be the base class for vec, 
and conversely vec is said to be derived from vector. 

Class vec modifies class vector by providing a different constructor, requiring the user to specify the two 
index bounds rather than the size, and by providing its own access function operator [] () . Avec's 
operator [] () is easily expressed in terms of vector's operator [] () : 

int& vec::operator[] (int i) 
( 

return vector::operator[] (i-low); 

The scope resolution operator :: is used to avoid getting caught in an infinite recursion by calling 
vec: : operator [] () from itself. Note that vec: : operator [] () had to use a function like 
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vector: : operator [ ] () to access elements. It could not just use vector's members v and sz directly 
since they were declared private and therefore accessible only to vector's member functions. 

The constructor for vec can be written like this: 

vec::vec(int lb, int hb) : vector (hb-lb+l) 
{ 

if (hb-lh<O) hb = lb; 
low = lb; 
high = hb; 

The construct :vector(hb-lb+l) is used to specify the argument list needed for the base class constructor 
vector() . 

Oass vec can be used like this: 

void some_function(int I, int h) 
{ 

vec vl (l,h) ; 
const int sz = h-l+l; 
vector v2 (sz) ; 
II ... 
for (int i=O; i<SZi i++) v2[i] = vl[l+ili II copy elements explicitly 
v2 = vl; II copy elements by using vector::operator=() 

Virtual Functions 

Class derivation (often called subclassing) is a powerful tool in its own right but a facility for run-time type 
resolution is needed to support object-oriented programming. 

Consider defining a type shape for use in a graphics system. The system has to support circles, triangles, 
squares, and many other shapes. First specify a class that defines the general properties of all shapes: 
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class shape { 
point center; 
color col; 
II ... 

public: 

} ; 

point where() { return center; } 
void move (point to) { center = tOi draw(); } 
virtual void draw()i 
virtual void rotate(int)i 
II ... 
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The functions for which the calling interface can be defined, but where the implementation cannot be 
defined except for a specific shape, have been marked virtual (the Simula67 and C++ term for Uto be 
defined later in a class derived from this one"). Given this definition one can write general functions mani­
pulating shapes: 

void rotate_all(shape* v, int size, int angle) 
II rotate all members of vector "V" of size "size" II angle II degrees 
{ 

for (int i = 0; i < size; i++) v[i] .rotate(angle); 

For each shape v [ i] , the proper rotate function for the actual type of the object will be called. That 
IJ'actual type" is not known at compile time. 

To define a particular shape we must say that it is a shape (that is, derive it from class shape) and specify 
its particular properties (including the virtual functions): 

class circle : public shape { 
int radius; 

pUblic: 
void draw() { 1* *1 }; 
void rotate(int) {} II yes, the null function 

} ; 

In many contexts it is important that the C++ virtual function mechanism is very nearly as efficient as a 
IJ'normal" function call. The additional run-time overhead is about 4 memory references (dependent on the 
machine architecture and the compiler) and the memory overhead is one word per object plus one word 
per virtual function per class. 

Visibility Control 

The basic scheme for separating the (public) user interface from the (private) implementation details has 
worked out very well for data abstraction uses of C++. It matches the idea that a type is a black box. It 
has proven to be less than ideal for object-oriented uses. 

The problem is that a class defined to be part of a class hierarchy is not simply a black box. It is often pri­
marily a building block for the design of other classes. In this case the simple binary choice public/private 
can be constraining. A third alternative is needed: a member should be private as far as functions outside 
the class hierarchy are concerned but accessible to member functions of a derived class in the same way 
that it is accessible to members of its own class. Such a member is said to be protected. 

For example, consider a class node for some kind of tree: 
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class node { 
II private stuff 

protected: 
node* left; 
node* right; 
II more protected stuff 

pUblic: 

} ; 

virtual void print(); 
II more public stuff 

The pointers left and right are inaccessible to the general user but any member function of a class 
derived from class node can manipulate the tree without overhead or inconvenience. 

The protection/hiding mechanism applies to names independently of whether a name refers to a function 
or a data member. This implies that one can have private and protected function members. Usually it 
is good policy to keep data private and present the public and protected interfaces as sets of functions. 
This policy minimizes the effect of changes to a class on its users and consequently maximizes its 
implementor's freedom to make changes. 

Another refinement of the basic inheritance scheme is that it is possible to inherit public members of a base 
class in such a way that they do not become public members of the derived class. This can be used to pro­
vide restricted interfaces to standard classes. For example: 

class dequeue { 
II ... 

} ; 

void insert(elem*); 
void append(elem*); 
elem* remove(); 

Given a dequeue a stack can be defined as a derived class where only the insert () and remove () opera­
tions are defined: 

class stack : private dequeue { I I note: just II: II not II: public ll members 
II of dequeue are private members of stack 

pUblic: 

} ; 

dequeue: : insert; 
dequeue: : remove; 

I I make II insert II a public member of stack 
I I make IIremove ll a public member of stack 

Alternatively, inline functions can be defined to give these operations the conventional names: 

class stack : private dequeue { 
pUblic: 

} ; 
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void push(elem* ee) { dequeue::insert(ee); 
elem* pop() { return dequeue::remove(); } 
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What is Missing? 

c++ was designed under severe constraints of compatibility, internal consistency, and efficiency: no feature 
was included that 

• would cause a serious incompatibility with C at the source or linker levels 

• would cause run-time or space overheads for a program that did not use it 

• would increase run-time or space requirements for a C program 

• would significantly increase the compile time compared with C 

• could only be implemented by making requirements of the programming environment (linker, loader, 
etc.) that could not be simply and efficiently implemented in a traditional C programming environ­
ment 

Features that might have been provided but weren't because of these criteria include garbage collection, 
parameterized classes, exceptions, support for concurrency, and integration of the language with a pro­
gramming environment. Not all of these possible extensions would actually be appropriate for C++ and 
unless great constraint is exercised when selecting and designing features for a language a large, unwieldy, 
and inefficient mess will result. The severe constraints on the design of C++ have probably been beneficial 
and will continue to guide the evolution of C++. 

Conclusions 

C++ has succeeded in providing greatly improved support for traditional C-style programming without 
added overhead. In addition, C++ provides sufficient language support for data abstraction and object­
oriented programming in demanding (both in terms of machine utilization and application complexity) 
real-life applications. C++ continues to evolve to meet demands of new application areas. There still 
appears to be ample scope for improvement even given the (self imposed) Draconian criteria for compatibil­
ity, consistency, and efficiency. However, currently the most active areas of development are not the 
language itself but libraries and support tools in the programming environment. 
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Footnotes 

1. A c++ I/O system that avoids the type insecurity of the printf approach is described in The C++ 
Programming Language. 

2. As indicated by an inconsistency in the C semantics, arrays are always passed by reference. 
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What is "Object-Oriented Programming"? (1991 revised 
version) 

~. This chapter is taken directly from a paper by 8jarne Stroustrup. 

9 
Abstract 

HObject-Oriented Programming" and HData Abstraction" have become very common terms. Unfortunately, 
few people agree on what they mean. I will offer informal definitions that appear to make sense in the 
context of languages like Ada, C++, Modula-2, Simula, and Smalltalk. The general idea is to equate HSUp­
port for data abstraction" with the ability to define and use new types and equate "support for object­
oriented programming" with the ability to express type hierarchies. Features necessary to support these 
programming styles in a general purpose programming language will be discussed. The presentation 
centers around C++ but is not limited to facilities provided by that language. 

Introduction 

Not all programming languages can be lIobject-oriented". Yet claims have been made to the effect that 
APL, Ada, Clu, C++, CLOS, and Smalltalk are object-oriented programming languages. I have heard dis­
cussions of object-oriented design in C, Pascal, Modula-2, and CHILL. As predicted in the original version 
of this paper, proponents of object-oriented Fortran and Cobol programming are now appearing. 1I0bject­
oriented" has in many circles become a high-tech synonym for Hgood", and when you examine discussions 
in the trade press, you can find arguments that appear to boil down to syllogisms like: 

Ada is good 
Object-oriented is good 

Ada is object-oriented 

We simply must be more careful with our concepts and logic. 

This paper presents one view of what "object-oriented" ought to mean in the context of a general purpose 
programming language. It: 

• Distinguishes lIobject-oriented programming" and 'data abstraction" from each other and from other 
styles of programming, and presents the mechanisms that are essential for supporting the various 
styles of programming. 

• Presents features needed to make data abstraction effective. 
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• Discusses facilities needed to support object-oriented programming. 

• Presents some limits imposed on data abstraction and object-oriented programming by traditional 
hardware architectures and operating systems. 

Examples will be presented in C++. The reason for this is partly to introduce C++ and partly because C++ 
is one of the few languages that supports both data abstraction and object-oriented programming in addi­
tion to traditional programming techniques. Issues of concurrency and of hardware support for specific 
higher-level language constructs are ignored in this paper. 

Programming Paradigms 

Object-oriented programming is a technique for programming - a paradigm for writing ugood" programs 
for a set of problems. If the term lIobject-oriented programming language" means anything it must mean a 
programming language that provides mechanisms that support the object-oriented style of programming 
well. 

There is an important distinction here. A language is said to support a style of programming if it provides 
facilities that makes it convenient (reasonably easy, safe, and efficient) to use that style. A language does 
not support a technique if it takes exceptional effort or skill to write such programs; it merely enables the 
technique to be used. For example, you can write structured programs in Fortran, write type-secure pro­
grams in C, and use data abstraction in Modula-2, but it is unnecessarily hard to do because these 
languages do not support those techniques. 

Support for a paradigm comes not only in the obvious form of language facilities that allow direct use of 
the paradigm, but also in the more subtle form of compile-time and/or run-time checks against uninten­
tional deviation from the paradigm. Type checking is the most obvious example of this; ambiguity detec­
tion and run-time checks can be used to extend linguistic support for paradigms. Extra-linguistic facilities 
such a,s standard libraries and programming environments can also provide significant support for para­
digms. 

A language is not necessarily better than another because it possesses a feature the other does not. There 
are many example to the contrary. The important issue is not so much what features a language possesses 
but that the features it does possess are sufficient to support the desired programming styles in the desired 
application areas: 
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[1] All features must be cleanly and elegantly integrated into the language. 

[2] It must be possible to use features in combination to achieve solutions that would otherwise have 
required extra separate features. 

[3] There should be as few spurious and "special purpose" features as possible. 

[4] A feature should be such that its implementation does not impose significant overheads on pro­
grams that do not require it. 

Selected Readings 



What is "Object-Oriented Programming"? (1991 revised version) 

[5] A user need only know about the subset of the language explicitly used to write a program. 

The last two principles can be summarized as "what you don't know won't hurt you." If there are any 
doubts about the usefulness of a feature it is better left out. It is much easier to add a feature to a language 
than to remove or modify one that has found its way into the compilers or the literature. 

I will now present some programming styles and the key language mechanisms necessary for supporting 
them. The presentation of language features is not intended to be exhaustive. 

Procedural Programming 

The original (and probably still the most commonly used) programming paradigm is: 

Decide which procedures you want; 
use the best algorithms you can find. 

The focus is on the design of the processing, the algorithm needed to perform the desired computation. 
Languages support this paradigm by facilities for passing arguments to functions and returning values 
from functions. The literature related to this way of thinking is filled with discussion of ways of passing 
arguments, ways of distinguishing different kinds of arguments, different kinds of functions (procedures, 
routines, macros, ... ), etc. Fortran is the original procedural language; Algol60, Algol68, C and Pascal are 
later inventions in the same tradition. 

A typical example of IIgood style" is a square root function. Given an argument, it produces a result. To 
do this, it performs a well understood mathematical computation: 

double sqrt(double arg) 
{ 

II the code for calculating a square root 

void some_function() 

double root2 = sqrt(2)i 
I I ... 

From a program organization point of view, functions are used to create order in a maze of algorithms. 

Data Hiding 

Over the years, the emphasis in the design of programs has shifted away from the design of procedures 
towards the organization of data. Among other things, this reflects an increase in program size. A set of 
related procedures with the data they manipulate is often called a module. The programming paradigm 
becomes: 
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Decide which modules you want; 
partition the program so that data is hidden in modules. 

This paradigm is also known as the "data hiding principle". Where there is no grouping of procedures 
with related data the procedural programming style suffices. In particular, the techniques for designing 
"good procedures" are now applied for each procedure in a module. The most common example is a 
definition of a stack module. The main problems that have to be solved are: 

[1] Provide a user interface for the stack (for example, functions push () and pop ( ) ). 

[2] Ensure that the representation of the stack (for example, a vector of elements) can only be accessed 
through this user interface. 

[3] Ensure that the stack is initialized before its first use. 

Here is a plausible external interface for a stack module: 

II declaration of the interface of module stack of characters 
char pop(); 
void push(char); 
const stack_size = 100; 

Assuming that this interface is found in a file called stack. h, the "internals" can be defined like this: 

#include "stack.h" 
static char v[stack_size]; 
static char* p = v; 

char pop() 
{ 

II "static" means local to this filelmodule 
II the stack is initially empty 

II check for underflow and pop 

void push(char c) 
{ 

II check for overflow and push 

It would be quite feasible to change the representation of this stack to a linked list. A user does not have 
access to the representation anyway (since v and p were declared static, that is, local to the file/module 
in which they were declared). Such a stack can be used like this: 

4-4 selected Readings 



#include "stack.h" 

void some_function() 
{ 

push (' c') ; 
char c = pop () ; 
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if (c != 'c') error("impossible"); 

Pascal (as originally defined) doesn't provide any satisfactory facilities for such grouping: the only mechan­
ism for hiding a name from lithe rest of the program" is to make it local to a procedure. This leads to 
strange procedure nestings and over-reliance on global data. 

C fares somewhat better. As shown in the example above, you can define a Hmodule" by grouping related 
function and data definitions together in a single source file. The programmer can then control which 
names are seen by the rest of the program (a name can be seen by the rest of the program unless it has been 
declared static). Consequently, in C you can achieve a degree of modularity. However, there is no gen­
erally accepted paradigm for using this facility and the technique of relying on static declarations is 
rather low level. 

One of Pascal's successors, Modula-2, goes a bit further. It formalizes the concept of a module, making it a 
fundamental language construct with well defined module declarations, explicit control of the scopes of 
names (import/export), a module initialization mechanism, and a set of generally known and accepted 
styles of usage. 

The differences between C and Modula-2 in this area can be summarized by saying that C only enables the 
decomposition of a program into modules, while Modula-2supports that technique. 

Data Abstraction 

Programming with modules leads to the centralization of all data of a type under the control of a type 
manager module. If one wanted two stacks, one would define a stack manager module with an interface 
like this: 

class stack_id; II stack_id is a type 
II no details about stacks or stack_ids are known here 

stack_id create_stack(int size); II make a stack and return its identifier 
destroy_stack(stack_id); II call when stack is no longer needed 

void push(stack_id, char); 
char pop(stack_id); 

This is certainly a great improvement over the traditional unstructured mess, but Htypes" implemented this 
way are clearly very different from the built-in types in a language. Each type manager module must 
define a separate mechanism for creating "variables" of its type, there is no established norm for assigning 
object identifiers, a Hvariable" of such a type has no name known to the compiler or programming environ­
ment, nor do such Hvariables" obey the usual scope rules or argument passing rules. 
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A type created through a module mechanism is in most important aspects different from a built-in type 
and enjoys support inferior to the support provided for built-in types. For example: 

void f () 
{ 

stack_id sl; 
stack_id s2; 

sl = create_stack(200); 
II Oops: forgot to create s2 

push (sl, , a ' ) ; 
char c1 = pop(sl); 
if (c1 ! = ' a') error ( II impossible II) ; 

push (s2, 'b' ) ; 
char c2 = pop(S2)i 
if (c2 != 'b') error("impossible"); 

destroy_stack(s2); 
II Oops: forgot to destroy sl 

In other words, the module concept that supports the data hiding paradigm enables this style of program­
ming, but does not support it. 

Languages such as Ada, Clu, and C++ attack this problem by allowing a user to define types that behave in 
(nearly) the same way as built-in types. Such a type is often called an abstract data type. I prefer the term 
uuser-defined type." A way of defining ~es that are somewhat more abstract is demonstrated in the 
uMultiple Implementations" section below. What are referred to as types in this paper would, given such 
a specification, be concrete specifications of such truly abstract entities. The programming paradigm 
becomes: 

Decide which types you want; 
provide a full set of operations for each type. 

Where there is no need for more that one object of a type the data hiding programming style using 
modules suffices. Arithmetic types such as rational and complex numbers are common examples of user­
defined types: 

4-6 Selected Readings 



What is "Object-Oriented Programming"? (1991 revised version) 

class complex { 
double re, im; 

public: 
im=i; } complex(double r, double i) { re=r; 

complex(double r) { re=r; im=O; } II float->complex conversion 

} ; 

friend complex operator+(complex, complex); 
friend complex operator-(complex, complex); 
friend complex operator-(complex); 
friend complex operator*(complex, complex); 
friend complex operator I (complex, complex); 
I I ... 

II binary minus 
I I unary minus 

The declaration of class (that is, user-defined type) complex specifies the representation of a complex 
number and the set of operations on a complex number. The representation is private; that is, re and im 
are accessible only to the functions specified in the declaration of class complex. Such functions can be 
defined like this: 

complex operator+(complex aI, complex a2) 
{ 

return complex(al.re+a2.re,al.im+a2.im); 

and used like this: 

complex a 2.3; 
complex b l/a; 
complex c a+b*complex(l,2.3); 
I I ... 
c = -(a/b)+2; 

Most, but not all, modules are better expressed as user-defined types. For concepts where the "module 
representation" is desirable even when a proper facility for defining types is available, the programmer can 
declare a type and only a single object of that type. Alternatively, a language might provide a module con­
cept in addition to and distinct from the class concept. 

Problems with Data Abstraction 

An abstract data type defines a sort of black box. Once it has been defined, it does not really interact with 
the rest of the program. There is no way of adapting it to new uses except by modifying its definition. 
This can lead to severe inflexibility. Consider defining a type shape for use in a graphics system. Assume 
for the moment that the system has to support circles, triangles, and squares. Assume also that you have 
some classes: 
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class point{ 1* ... *1 }; 
class color{ 1* ... *1 }; 

You might define a shape like this: 

enum kind { circle, triangle, square }; 

class shape { 
point center; 
color col; 
kind k; 
II representation of 

pUblic: 

} ; 

point where ( ) 
void move(point to) 
void draw ( ) ; 
void rotate(int); 
II more operations 

shape 

return center; } 
center = to; draw(); 

The IItype field" k is necessary to allow operations such as draw() and rotate () to determine what kind 
of shape they are dealing with (in a Pascal-like language, one might use a variant record with tag k). The 
function draw () might be defined like this: 

void shape: : draw ( ) 
{ 

switch (k) { 
case circle: 

II draw a circle 
break; 

case triangle: 
II draw a triangle 
break; 

case square: 
II draw a square 

This is a mess. Functions such as draw () must "know about" all the kinds of shapes there are. Therefore 
the code for any such function grows each time a new shape is added to the system. If you define a new 
shape, every operation on a shape must be examined and (possibly) modified. You are not able to add a 
new shape to a system unless you have access to the source code for every operation. Since adding a new 
shape involves "touching" the code of every important operation on shapes, it requires great skill and 
potentially introduces bugs into the code handling other (older) shapes. The choice of representation of 
particular shapes can get severely cramped by the requirement that (at least some of) their representation 
must fit into the typically fixed sized framework presented by the definition of the general type shape. 

" " 
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Object-Oriented Programming 
The problem is that there is no distinction between the general properties of any shape (a shape has a color, 
it can be drawn, etc.) and the properties of a specific shape (a circle is a shape that has a radius, is drawn 
by a circle-drawing function, etc.). Expressing this distinction and taking advantage of it defines object­
oriented programming. A language with constructs that allows this distinction to be expressed and used 
supports object-oriented programming. Other languages don't. 

The Simula inheritance mechanism provides a solution. First, specify a class that defines the general pro­
perties of all shapes: 

class shape ( 
point center; 
color col; 
I I ... 

pUblic: 

} ; 

point where() ( return center; 
void move (point to) (center to; draw(); } 
virtual void draw(); 
virtual void rotate(int); 
I I ... 

The functions for which the calling interface can be defined, but where the implementation cannot be 
defined except for a specific shape, have been marked Uvirtual" (the Simula and C++ term for u may be re­
defined later in a class derived from this one"). Given this definition, we can write general functions mani­
pulating shapes: 

void rotate_all(shape* v, int size, int angle) 
II rotate all members of vector "V" of size "size" II angle II degrees 
{ 

for (int i = 0; i < size; i++) v[i] .rotate(angle); 

To define a particular shape, we must say that it is a shape and specify its particular properties (including 
the virtual functions): 

class circle : public shape ( 
int radius; 

pUblic: 
void draw() ( 1* *1 }; 
void rotate(int) {} II yes, the null function 

} ; 

In C++, class circle is said to be derived from class shape, and class shape is said to be a base of class 
circle. An alternative terminology calls circle and shape subclass and superclass, respectively. 

Object-Oriented Programming 4-9 



What is "Object-Oriented Programming"? (1991 revised version) 

The programming paradigm is: 

Decide which classes you want; 
pravide a full set of operations for each class; 

make commonality explicit by using inheritance. 

Where there is no such commonality data abstraction suffices. The amount of commonality between types 
that can be exploited by using inheritance and virtual functions is the litmus test of the applicability of 
object-oriented programming to an application area. In some areas, such as interactive graphics, there is 
clearly enormous scope for object-oriented programming. For other areas, such as classical arithmetic types 
and computations based on them, there appears to be hardly any scope for more than data abstraction and 
the facilities needed for the support of object-oriented programming seem unnecessary.2 

Finding commonality among types in a system is not a trivial process. The amount of commonality to be 
exploited is affected by the way the system is designed. When designing a system, commonality must be 
actively sought, both by designing classes specifically as building blocks for other types, and by examining 
classes to see if they exhibit similarities that can be exploited in a common base class. 

Having examined the minimum support needed for procedural programming, data hiding, data abstraction, 
and object-oriented programming we will go into some detail describing features that - while not essential 
- can make data abstraction and object-oriented more effective. 

Support for Data Abstraction 

The basic support for programming with data abstraction consists of facilities for defining a set of opera­
tions (functions and operators) for a type and for restricting the access to objects of the type to that set of 
operations. Once that is done, however, the programmer soon finds that language refinements are needed 
for convenient definition and use of the new types. Operator overloading is a good example of this. 

Initialization and Cleanup 

When the representation of a type is hidden some mechanism must be provided for a user to initialize vari­
ables of that type. A simple solution is to require a user to call some function to initialize a variable before 
using it. For example: 

4-10 

class vector { 
int SZi 

int* v; 
public: 

void init(int size); 

II ... 
} i 

II call init to initialize sz and v 
II before the first use of a vector 
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vector Vi 
II don't use v here 
v.init(lO)i 
II use v here 

This is error prone and inelegant. A better solution is to allow the designer of a type to provide a dis­
tinguished function to do the initialization. Given such a function, allocation and initialization of a variable 
becomes a single operation (often called instantiation or construction) instead of two separate operations. 
Such an initialization function is often called a constructor. In cases where construction of objects of a type 
is non-trivial, one often needs a complementary operation to clean up objects after their last use. In C++, 
such a cleanup function is called a destructor. Consider a vector type: 

class vector 
int SZi 
int* Vi 

public: 
vector(int)i 
-vector()i 
int& operator[] (int index); 

} i 

II number of elements 
II pointer to integers 

II constructor 
II destructor 
II subscript operator 

The vector constructor can be defined to allocate space like this: 

vector::vector(int s) 
{ 

if (s<=O ) error ("bad vector si ze II ) i 

sz = Si 
v = new int[s]i II allocate an array of liS" integers 

The vector destructor frees the storage used: 

vector::-vector() 
{ 

delete Vi II deallocate the memory pointed to by v 

C++ does not support garbage collection. This is compensated for, however, by enabling a type to main­
tain its own storage management without requiring intervention by a user. This is a common use for the 
constructor / destructor mechanism, but many uses of this mechanism are unrelated to storage management. 
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Assignment and Initialization 
Controlling construction and destruction of objects is sufficient for many types, but not for all. It can also 
be necessary to control all copy operations. Consider class vector: 

vector vl(lOO); 
vector v2 = vl; 
vl = v2; 

II make a new vector v2 initialized to vl 
II assign v2 to vl 

It must be possible to define the meaning of the initialization of v2 and the assignment to vl. Alternatively 
it should be possible to prohibit such copy operations; preferably both alternatives should be available. For 
example: 

class vector 
int* v; 
int sz; 

pUblic: 
II ... 
void operator=(const vector&); 
vector(const vector&); 

II assignment 
II initialization 

specifies that user-defined operations should be used to interpret vector assignment and initialization. 
Assignment might be defined like this: 

vector::operator=(const vector& a) II check size and copy elements 
{ 

if (sz != a.sz) error(lIbad vector size for ="); 
for (int i = 0; i<sz; i++) v[i] = a.v[i]; 

Since the assignment operation relies on the Hold value" of the vector being assigned to, the initialization 
operation must be different. For example: 

vector::vector(const vector& a) II initialize a vector from another vector 
{ 

sz = a.sz; II same size 
v = new int[sz]; II allocate element array 
for (int i = 0; i<szi i++) v[i] = a.v[i]; II copy elements 

In C++, a copy constructor, for example X (const X&) defines all initialization of objects of type x with 
another object of type X. In addition to explicit initialization copy constructors are used to handle argu­
ments passed l1>y value" and function return values. 

In C++ assignment of an object of class X can be prohibited by declaring assignment private: 
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class X { 
void operator=(const X&); 
X(const X&); 
I I ... 

pUblic: 
I I ... 

} ; 

II only members of X can 
I I copy an X 

Ada does not support constructors, destructors, overloading of assignment, or user-defined control of argu­
ment passing and function return. This severely limits the class of types that can be defined and forces the 
programmer back to "data hiding techniques"; that is, the user must design and use type manager modules 
rather than proper types. 

Parameterized Types 
Why would you want to define a vector of integers anyway? A user typically needs a vector of elements of 
some type unknown to the writer of the vector type. Consequently the vector type ought to be expressed 
in such a way that it takes the element type as an argument: 

template<class T> class vector { 
T* v; 

int SZi 

pUblic: 
vector (int s) 
{ 

II vector of elements of type T 

if (s <= 0) error("bad vector size"); 

} i 

v = new T[sz = s]; II allocate an array of "S" "T"S 

T& operator[] (int i); 
int size() { return sz; 
II ... 

A template specifies a family of types generated by specifying the the template argument(s). 

Vectors of specific types can now be defined and used: 

vector<int> v1(100); II v1 is a vector of 100 integers 
vector<complex> v2(200); II v2 is a vector of 200 complex numbers 

v2[i] = complex(v1[x],v1[y]); 

Ada, Clu, ML, and C++ support parameterized types.3 There need not be any run-time overheads com­
pared with a class where all types involved are specified directly. 
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A problem with parameterized types is that each instantiation creates an independent type. For example, 
the type vector<char> is unrelated to the type vector<corrplex>. Ideally one would like to be able to 
express and utilize the commonality of types generated from the same parameterized type. For example, 
both vector<char> and vector<complex> have a size () function that is independent of the parameter 
type. It is possible, but not trivial, to deduce this from the definition of class vector and then allow 
size () to be applied to any vector. An interpreted or dynamically compiled language (such as Smalltalk) 
or a language supporting both parameterized types and inheritance (such as C++) has an advantage here. 

Exception Handling 
As programs grow, and especially when libraries are used extensively, standards for handling errors (or 
more generally: lIexceptional circumstances") become important. Ada, Algol68, Clu, and C++ each support 
a standard way of handling exceptions.4 

Consider again the vector example: 

class vector { 
I I ... 
class range { }; II type to be used for exceptions 

} i 

int& vector::operator[] (int i) 
{ 

if (i<O I I sz<=i) throw range()i 
return v[i] ; 

Instead of calling an error function, vector: : operator [] () can invoke the exception handling code, 
IIthrow the range exception." This will cause the call stack to be unraveled until an exception handler for 
vector: : range is found; this handler will than be executed. 

An exception handler may be defined for a specific block: 

void f(int i) { 
try { II exceptions in this try block are handled by the 

} 

vector v(i) ; 
I I ... 

v[i] = 7; 
I I ... 
int i = g () ; 

II exception handler defined below 

II causes vector::range exception 

II might cause a vector::range exception 

catch (vector::range) { 
error(lIf(): vector range error ll

); 

return; 

There are many ways of defining exceptions and the behavior of exception handlers. The facility sketched 
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here resembles the ones found in Clu and ML. 

A poor implementation of exception handling can be a serious drain on run-time efficiency and the porta­
bility of language implementations. The C++ exception handling can be implemented so that code is not 
executed unless an exception is thrown or portably across C implementations by (implicitly) using the C 
standard library functions setjmp () and longjmp () . 

Type conversions 

User-defined type conversions, such as the one from floating point numbers to complex numbers implied 
by the constructor complex (double) ,have proven unexpectedly useful in C++. Such conversions can be 
applied explicitly or the programmer can rely on the compiler to add them implicitly where necessary and 
unambiguous: 

complex a = complex(l)i 
complex b = Ii II implicit: 1 -> complex (1) 
a = b+complex(2)i 
a = b+2i II implicit: 2 -> complex (2) 

User-defined type conversions were introduced into C++ because mixed mode arithmetic is the norm in 
languages for numerical work and because most user-defined types used for ucalculation" (for example, 
matrices, character strings, and machine addresses) have natural mappings to and/or from other types. 

One use of coercions has proven especially useful from a program organization point of view: 

complex a 2i 
complex b = a+2i 
b = 2+ai 

II interpreted as operator+(a,complex(2)) 
II interpreted as operator+(complex(2) ,a) 

Only one function is needed to interpret 11+" operations and the two operands are handled identically by 
the type system. Furthermore, class complex is written without any need to modify the concept of integers 
to enable the smooth and natural integration of the two concepts. This is in contrast to a upure object­
oriented system" where the operations would be interpreted like this: 

a+2i II a.operator+(2) 
2+ai II 2.operator+(a) 

making it necessary to modify class integer to make 2+a legal. Modifying existing code should be 
avoided as far as possible when adding new facilities to a system. Typically, object-oriented programming 
offers superior facilities for adding to a system without modifying existing code. In this case, however, 
data abstraction facilities provide a better solution. 
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Iterators 
It has been claimed that a language supporting data abstraction must provide a way of defining control 
structures. In particular, a mechanism that allows a user to define a loop over the elements of some type 
containing elements is often needed. This must be achieved without forcing a user to depend on details of 
the implementation of the user-defined type. Given a sufficiently powerful mechanism for defining new 
types and the ability to overload operators, this can be handled without a separate mechanism for defining 
control structures. 

For a vector, defining an iterator is not necessary since an ordering is available to a user through the 
indices. I'll define one anyway to demonstrate the technique. There are several possible styles of iterators. 
My favorite relies on overloading the function application operator ():5 

class vector_iterator { 
vector& V; 
int i; 

pUblic: 
vector_iterator(vector& r) { i = 0; V = r; } 
int operator() () { return i<v.size() ? v.elem(i++) O;} 

} ; 

A vector_iterator can now be declared and used for a vector like this: 

void f(vector& v) 

vector_iterator next(v); 
int i; 
while (i=next(» print(i); II maybe too 'cute' 

More than one iterator can be active for a single object at one time, and a type may have several different 
iterator types defined for it so that different kinds of iteration may be performed. An iterator is a rather 
simple control structure. More general mechanisms can also be defined. For example, the C++ standard 
library provides a co-routine clas.s 

For many "container" types, such as vector, one can avoid introducing a separate iterator type by defining 
an iteration mechanism as part of the type itself. A vector might be defined to have a "current element": 

4-16 

class vector 
int* v; 
int sz; 
int current; 

pUblic: 

} ; 

I I ... 
int next() { return (current < sz) ? v[current++] 0; 
int prev() { return (0 <= --current) ? v [current] 0; 
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Then the iteration can be performed like this: 

vector v(sz) ; 
int i; 
while (i=v.next(» print(i); 

This solution is not as general as the iterator solution, but avoids overhead in the important special case 
where only one kind of iteration is needed and where only one iteration at a time is needed for a vector. If 
necessary, a more general solution can be applied in addition to this simple one. Note that the "simple" 
solution requires more foresight from the designer of the container class than the iterator solution does. 
The iterator-type technique can also be used to define iterators that can be bound to several different con­
tainer types thus providing a mechanism for iterating over different container types with a single iterator 
type. 

Multiple Implementations 

The basic mechanism for supporting object-oriented programming, derived classes, and virtual functions 
can be used to support data abstraction by allowing several different implementations for a given type. 
Consider again the stack example: 

template<class T> 
class stack { 
pUblic: 

} ; 

virtual void push(T) 
virtual T pop () = 0; 

0; II pure virtual function 
II pure virtual function 

The =0 notation specifies that no definition is required for the virtual function and that the class is abstract, 
that is, the class can only be used as a base class. This allows stacks to be used, but not created: 

stack<cat> S; II error: stack is abstract 

void some_function(stack<cat>& s, cat kitty) II ok 

s . push (ki t ty) ; 
cat c2 = s.pop(); 
I I ... 

Since no representation is specified in the stack interface, its users are totally insulated from implementation 
details. 

We can now provide several distinct implementations of stacks. For example, we can provide a stack 
implemented with an array: 
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template<class T> 
class as tack : public stack<T> ( 

II actual representation of a stack object 
II in this case an array 
II 

pUblic: 

} ; 

astack(int size); 
-astack(); 

void push (T) ; 
T pop(); 

and elsewhere a stack implemented using a linked list: 

template<class T> 
class lstack : public stack<T> { 

II ... 
} ; 

We can now create and use stacks: 

void gO 
( 

lstack<cat> sl(100); 
astack<cat> s2(100); 

cat ginger; 
cat snowball; 

some_function(sl,ginger); 
some_function(s2,snowball}; 

Only the creator of stacks, g () , needs to worry about different kinds of stacks, the user 
some_function () is totally insulated from such details. The price of this flexibility is that each operation 
on such a type must be a virtual function. 

Implementation Issues 
The support needed for data abstraction is primarily provided in the form of language features imple­
mented by a compiler. However, parameterized types are best implemented with support from a linker 
with some knowledge of the language semantics, and exception handling requires support from the run­
time environment. Both can be implemented to meet the strictest criteria for both compile time speed and 
efficiency without compromising generality or programmer convenience. 

4-18 Selected Readings 



What is "Object-Oriented Programming"? (1991 revised version) 

As the power to define types increases, programs to a larger degree depend on types from libraries (and 
not just those described in the language manual). This naturally puts greater demands on facilities to 
express what is inserted into or retrieved from a library, facilities for finding out what a library contains, 
facilities for determining what parts of a library are actually used by a program, etc. 

For a compiled language, facilities for calculating the minimal compilation necessary after a change become 
important. It is essential that the linker Iloader - with suitable help from the compiler - is capable of 
bringing a program into memory for execution without also bringing in large amounts of related, but 
unused, code. In particular, a library llinker Iloader system that brings the code for every operation on a 
type into core just because the programmer used one or two operations on the type is worse than useless. 

Support for Object-Oriented programming 

The basic support a programmer needs to write object-oriented programs consists of a class mechanism 
with inheritance and a mechanism that allows calls of member functions to depend on the actual type of an 
object (in cases where the actual type is unknown at compile time). The design of the member function cal­
ling mechanism is critical. In addition, facilities supporting data abstraction techniques (as described above) 
are important because the arguments for data abstraction and for its refinements to support elegant use of 
types are equally valid where support for object-oriented programming is available. The success of both 
techniques hinges on the design of types and on the ease, flexibility, and efficiency of such types. Object­
oriented programming allows user-defined types to be far more flexible and general than the ones designed 
using only data abstraction techniques. 

Calling Mechanisms 
The key language facility supporting object-oriented programming is the mechanism by which a member 
function is invoked for a given object. For example, given a pointer p, how is a call p->f (arg) handled? 
There is a range of choices. 

In languages such as C++ and Simula, where static type checking is extensively used, the type system can 
be employed to select between different calling mechanisms. In C++, two alternatives are available: 

[1] A normal function call: the member function to be called is determined at compile time (through a 
lookup in the compiler's symbol tables) and called using the standard function call mechanism with 
an argument added to identify the object for which the function is called. Where the Ustandard 
function call" is not considered efficient enough, the programmer can declare a function inline 
and the compiler will attempt to inline expand its body. In this way, one can achieve the efficiency 
of a macro expansion without compromising the standard function semantics. This optimization is 

, equally valuable as a support for data abstraction. 

[2] A virtual function call: The function to be called depends on the type of the object for which it is 
called. This type cannot in general be determined until run time. Typically, the pointer p will be of 
some base class B and the object will be an object of some derived class D (as was the case with the 
base class shape and the derived class circle above). The call mechanism must look into the 
object and find some information placed there by the compiler to determine which function f is to 
be called. Once that function is found, say D: : f, it can be called using the mechanism described 
above. The name f is converted at compile time into an index into a table of pointers to functions. 
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This virtual call mechanism can be made essentially as efficient as the IInormal function call" 
mechanism. In the standard C++ implementation, only five additional memory references are used. 

In languages with weak static type checking a more elaborate mechanism must be employed. What is done 
in a language like Smalltalk is to store a list of the names of all member functions (methods) of a class so 
that they can be found at run time: 

[3] A method invocation: First the appropriate table of method names is found by examining the object 
pointed to by p. In this table (or set of tables) the string f is looked up to see if the object has an 
f (). If an f () is found it is called; otherwise some error handling takes place. This lookup differs 
from the lookup done at compile time in a statically checked language in that the method invoca­
tion uses a method table for the actual object. 

A method invocation is inefficient compared with a virtual function call, but more flexible. Since static type 
checking of arguments typically cannot be done for a method invocation, the use of methods must be sup­
ported by dynamic type checking. 

Type Checking 
The shape example showed the power of virtual functions. What, in addition to this, does a method invo­
cation mechanism do for you? You can attempt to invoke any method for any object. 

The ability to invoke any method for any object enables the designer of general purpose libraries to push 
the responsibility for handling types onto the user. Naturally this simplifies the design of libraries. How­
ever, it then becomes the responsibility of the user to avoid type mismatches like this: 

II assume dynamic type checking. 
II *** NOT c++ *** 

Stack Si II Stack can hold pointers to objects of any type 

cs.push(new Saab900)i 
cs.push(new Saab37B)i 

cs.pop()->takeoff()i 

cs.pop()->takeoff()i 

II fine: a Saab37B is a plane 

II Oops! Run time error: a Saab 900 is a car 
II a car does not have a takeoff method. 

An attempt to use a car as a plane will be detected by the message handler and an appropriate error 
handler will be called. However, that is only a consolation when the user is also the programmer. The 
absence of static type checking makes it difficult to guarantee that errors of this class are not present in sys­
tems delivered to end-users. 

Combinations of parameterized classes and the use of virtual functions can approach the flexibility, ease of 
design, and ease of use of libraries designed with method lookup without relaxing the static type checking 
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or incurring significant run time overheads (in time or space). For example: 

stack<plane*> cs; 

cs.push(new Saab900); 

cs.push(new Saab37B); 

cs.pop()->takeoff(); 
cs.pop()->takeoff(); 

II Compile time error: 
II type mismatch: car* passed, plane* expected 

II fine: a Saab 37B is a plane 

The use of static type checking and virtual function calls leads to a somewhat different style of program­
ming than does dynamic type checking and method invocation. For example, a Simula or C++ class 
specifies a fixed interface to a set of objects (of any derived class) whereas a Smalltalk class specifies an ini­
tial set of operations for objects (of any subclass). In other words, a Smalltalk class is a minimal 
specification and the user is free to try operations not specified, whereas a C++ class is an exact 
specification and the user is guaranteed that only operations specified in the class declaration will be 
accepted by the compiler. 

Inheritance 

Consider a language having some form of method lookup without having an inheritance mechanism. 
Could that language be said to support object-oriented programming? I think not. Clearly, you could do 
interesting things with the method table to adapt the objects' behavior to suit conditions. However, to 
avoid chaos, there must be some systematic way of associating methods and the data structures they 
assume for their object representation. To enable a user of an object to know what kind of behavior to 
expect, there would also have to be some standard way of expressing what is common to the different 
behaviors the object might adopt. This "systematic and standard way" would be an inheritance mechan­
ism. 

Consider a language having an inheritance mechanism without virtual functions or methods. Could that 
language be said to support object-oriented programming? I think not: the shape example does not have a 
good solution in such a language. However, such a language would be noticeably more powerful than a 
"plain" data abstraction language. This contention is supported by the observation that many Simula and 
C++ programs are structured using class hierarchies without virtual functions. The ability to express com­
monality (factoring) is an extremely powerful tool. For example, the problems associated with the need to 
have a common representation of all shapes could be solved. No union would be needed. However, in the 
absence of virtual functions, the programmer would have to resort to the use of "type fields" to determine 
actual types of objects, so the problems with the lack of modularity of the code would remain.6 

This implies that class derivation (subclassing) is an important programming tool in its own right. It can be 
used to support object-oriented programming, but it has wider uses. This is particularly true if one 
identifies the use of inheritance in object-oriented programming with the idea that a base class expresses a 
general concept of which all derived classes are specializations. This idea captures only part of the expres­
sive power of inheritance, but it is strongly encouraged by languages where every member function is vir­
tual (or a method). Given suitable controls of what is inherited (see Stroustrup, B., The C++ Programming 
Language, Addison-Wesley, 1986. 2nd Edition 1991.)! class derivation can be a powerful tool for creating 
new types. Given a class, derivation can be used to add and/ or subtract features. The relation of the 
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resulting class to its base cannot always be completely described in terms of specialization; factoring may 
be a better term. 

Derivation is another tool in the hands of a programmer and there is no foolproof way of predicting how it 
is going to be used - and it is too early (even after almost 25 years of Simula) to tell which uses are simply 
mis-uses. 

Multiple Inheritance 

When a class A is a base of class B, a B inherits the attributes of an A; that is, a B is an A in addition to 
whatever else it might be. Given this explanation it seems obvious that it might be useful to have a class B 

inherit from two base classes Al and A2. This is called multiple inheritance. 

A fairly standard example of the use of multiple inheritance would be to provide two library classes 
displayed and task for representing objects under the control of a display manager and co-routines under 
the control of a scheduler, respectively. A programmer could then create classes such as 

class my_displayed_task : public displayed, public task { 
II my stuff 

} ; 

class my_task: public task { II not displayed 
II my stuff 

} ; 

class my_displayed public displayed { II not a task 
II my stuff 

} ; 

Using (only) single inheritance only two of these three choices would be open to the programmer. This 
leads to either code replication or loss of flexibility - and typically both. In C++ this example can be han­
dled as shown above with to no significant overheads (in time or space) compared to single inheritance and 
without sacrificing static type checking. 

Ambiguities are handled at compile time: 

class A 
class B 
class C 

pUblic: void f(); 1* 
pUblic: void f(); 1* 
public A, public B { 

void g(C* p) 
{ 

... 

... 
1* 

*1 } ; 

*1 } ; 

... *1 

p->f () ; I I error: ambiguous 

} ; 

In this, C++ differs from the object-oriented Lisp dialects that support multiple inheritance. In these Lisp 
dialects ambiguities are resolved by considering the order of declarations significant, by considering objects 
of the same name in different base classes identical, or by combining methods of the same name in base 
classes into a more complex method of the highest class. 
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In C++, one would typically resolve the ambiguity by adding a function: 

class C : public A, public B { 
I I ... 

pUblic: 

} i 

void fO i 

I I ... 

void f () 

II C's own stuff 
A::fOi 
B::f()i 

In addition to this straightforward concept of independent multiple inheritance there appears to be a need 
for a more general mechanism for expressing dependencies between classes in a multiple inheritance lattice. 
In C++, the requirement that a sub-object should be shared by all other sub-objects in a class object is 
expressed through the mechanism of a virtual base class: 

class W { 1* ... *1 }i II window 

class Bwindow: public virtual W { II window with border 
I I ... 

} i 

class Mwindow public virtual W { II window with menu 
I I ... 

} i 

class BMW : public Bwindow/ public Mwindow 
II window with border and menu 
I I ... 

} i 

Here the (single) window sub-object is shared by the Bwindow and Bwindow sub-objects of a BMW. The Lisp 
dialects provide concepts of method combination to ease programming using such complicated class hierar­
chies. C++ does not. 

Encapsulation 

Consider a class member (either a data member or a function member) that needs to be protected from 
"unauthorized access." What choices can be reasonable for delimiting the set of functions that may access 
that member? The "obvious" answer for a language supporting object-oriented programming is "all opera­
tions defined for this object," that is, all member functions. A non-obvious implication of this answer is 
that there cannot be a complete and final list of all functions that may access the protected member since 
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one can always add another by deriving a new class from the protected member's class and define a 
member function of that derived class. This approach combines a large degree of protection from accident 
(since you do not easily define a new derived class ''by accident") with the flexibility needed for "tool 
building" using class hierarchies (since you can "grant yourself access" to protected members by deriving a 
class). For example: 

class Window 
II ... 

protected: 
Rectangle inside; 
II 

pUblic: 
II 

} ; 

class Dumb_terminal Window { 
II ... 

pUblic: 

} ; 

void prompt(); 
II ... 

Here Window specifies inside as protected so that derived classes such as Dumb_terminal can read it and 
figure out what part of the Window's area it may manipulate. 

Unfortunately, the "obvious" answer for a language oriented towards data abstraction is different: "list the 
functions that need access in the class declaration." There is nothing special about these functions. In par­
ticular, they need not be member functions. A non-member function with access to private class members 
is called a friend in C++. Class complex above was defined using friend functions. It is sometimes 
important that a function may be specified as a friend in more than one class. Having the full list of 
members and friends available is a great advantage when you are trying to understand the behavior of a 
type and especially when you want to modify it. 

Encapsulation issues increase dramatically in importance with the size of the program and with the number 
and geographical dispersion of its users. (See The C++ Programming Language for more detailed discussions 
of language support for encapsulation.) 

Implementation Issues 
The support needed for object-oriented programming is primarily provided by the run-time system and by 
the programming environment. Part of the reason is that object-oriented programming builds on the 
language improvements already pushed to their limit to support data abstraction so that relatively few 
additions are needed? 

The use of object-oriented programming blurs the distinction between a programming language and its 
environment further. Since more powerful special- and general-purpose user-defined types can be defined, 
their use pervades user programs. This requires further development of both the run-time system, library 
facilities, debuggers, performance measuring, monitoring tools, etc. Ideally these are integrated into a 
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unified programming environment. Smalltalk is the best example of this. 

Limits to Perfection 

A major problem with a language defined to exploit the techniques of data hiding, data abstraction, and 
object-oriented programming is that to claim to be a general purpose programming language it must 

1. Run on traditional machines. 

2. Coexist with traditional operating systems. 

3. Compete with traditional programming languages in terms of run time efficiency. 

4. Cope with every major application area. 

This implies that facilities must be available for effective numerical work (floating point arithmetic without 
overheads that would make Fortran appear attractive), and that facilities must be available for access to 
memory in a way that allows device drivers to be written. It must also be possible to write calls that con­
form to the often rather strange standards required for traditional operating system interfaces. In addition, 
it should be possible to call functions written in other languages from an object-oriented programming 
language and for functions written in the object-oriented programming language to be called from a pro­
gram written in another language. 

Another implication is that an object-oriented programming language cannot completely rely on mechan­
isms that cannot be efficiently implemented on a traditional architecture and still expect to be used as a 
general purpose language. A very general implementation of method invocation can be a liability unless 
there are alternative ways of requesting a service. 

Similarly, garbage collection can become a performance and portability bottleneck. Most object-oriented 
programming languages employ garbage collection to simplify the task of the programmer and to reduce 
the complexity of the language and its compiler. However, it ought to be possible to use garbage collection 
in non-critical areas while retaining control of storage use in areas where it matters. As an alternative, it is 
feasible to have a language without garbage collection and then provide sufficient expressive power to 
enable the design of types that maintain their own storage. C++ is an example of this. 

Exception handling and concurrency features are other potential problem areas. Any feature that is best 
implemented with help from a linker can become a portability problem. 

The alternative to having IIl0w level" features in a language is to handle major application areas using 
separate ''low level" languages. 
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Conclusions 

Object-oriented programming is programming using inheritance. Data abstraction is programming using 
user-defined types. With few exceptions, object-oriented programming can and ought to be a superset of 
data abstraction. These techniques need proper support to be effective. Data abstraction primarily needs 
support in the form of language features and object-oriented programming needs further support from a 
programming environment. To be general purpose, a language supporting data abstraction or object­
oriented programming must enable effective use of traditional hardware. 
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Footnotes 

1. I prefer the term "'user defined type": "'Those types are not 1/ abstract"; they are as real as int and 
float." - Doug McIlroy. An alternative definition of abstract data types would require a mathemat­
ical "'abstract" specification of all types (both built-in and user-defined). What are referred to as 
types in this paper would, given such a specification, be concrete specifications of such truly abstract 
entities. 

2. However, more advanced mathematics may benefit from the use of inheritance: fields are specializa­
tions of rings; vector spaces a special case of modules. 

3. The ANSI C++ committee, X3Jl6, only accepted templates into C++ in July 1990, so few C++ imple­
mentations support templates at the time of writing. 

4. The ANSI C++ committee, X3J16, only accepted exception handling into C++ in November 1990, so 
C++ implementations that support exception handling are rare at the time of writing. 

S. This style also relies on the existence of a distinguished value to represent "'end of iteration." Often, 
in particular for C++ pointer types, 0 can be used. 

6. This is the problem with Simula's inspect statement and the reason it does not have a counterpart 
in C++. 

7. This assumes that an object-oriented language does indeed support data abstraction. However, the 
support for data abstraction is often deficient in such languages. Conversely, languages that support 
data abstraction are typically deficient in their support of object-oriented programming. 
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Multiple Inheritance for C++ 

~ This chapter is taken directly from a paper by 8jarne Stroustrup. 

9 
Abstract 

Multiple Inheritance is the ability of a class to have more than one base class (super class). In a language 
where multiple inheritance is supported a program can be structured as a set of inheritance lattices instead 
of Qust) as a set of inheritance trees. This is widely believed to be an important structuring tool. It is also 
widely believed that multiple inheritance complicates a programming language significantly, is hard to 
implement, and is expensive to run. I will demonstrate that none of these last three conjectures are true. 

Introduction 

This paper describes an implementation of a multiple inheritance mechanism for C++ (described in The C++ 
Programming Language). It provides only the most rudimentary explanation of what multiple inheritance is 
in general and what it can be used for. The particular variation of the general concept implemented here is 
primarily explained in terms of this implementation.1 

First a bit of background on multiple inheritance and C++ implementation technique is presented, then the 
multiple inheritance scheme implemented for C++ is introduced in two stages: 

• the basic scheme for multiple inheritance, the basic strategy for ambiguity resolution, and the way to 
implement virtual functions 

• handling of classes included more than once in an inheritance lattice; the programmer has the choice 
whether a multiply included base class will result in one or more sub-objects being created 

Finally, some the complexities and overheads introduced by this multiple inheritance scheme are summar­
ized. 

Multiple Inheritance 

Consider writing a simulation of a network of computers. Each node in the network is represented by an 
object of class SWitch, each user or computer by an object of class Terminal, and each communication line 
by an object of class Line. One way to monitor the simulation (or a real network of the same structure) 
would be to display the state of objects of various classes on a screen. Each object to be displayed is 
represented as an object of class Displayed. Objects of class Displayed are under control of a display 
manager that ensures regular update of a screen and/or data base. The classes Terminal and Switch are 
derived from a class Task that provides the basic facilities for co-routine style behavior. Objects of class 
Task are under control of a task manager (scheduler) that manages the real processor(s). 
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Ideally Task and Displayed are classes from a standard library. If you want to display a terminal class 
Terminal must be derived from class Displayed. Class Terminal, however, is already derived from class 
Task. In a single inheritance language, such as C++ or Simula67, we have only two ways of solving this 
problem: deriving Task from Displayed or deriving Displayed from Task. Neither is ideal since they 
both create a dependency between the library versions of two fundamental and independent concepts. 
Ideally one would want to be able to choose between saying that a Terminal is a Task and a Displayed; 
that a Line is a Displayed but not a Task; and that a Switch is a Task but not a Displayed. 

The ability to express this using a class hierarchy, that is, to derive a class from more than one base class, is 
usually referred to as multiple inheritance. Other examples involve the representation of various kinds of 
windows in a window system and the representation of various kinds of processors and compilers for a 
multi-machine, multi-environment debugger. 

In general, multiple inheritance allows a user to combine independent (and not so independent) concepts 
represented as classes into a composite concept represented as a derived class. A common way of using 
multiple inheritance is for a designer to provide sets of base classes with the intention that a user creates 
new classes by choosing base classes from each of the relevant sets. Thus a programmer creates new con­
cepts using a recipe like "pick an A and/or a B." In the window example, a user might specify a new kind 
of window by selecting a style of window interaction (from the set of interaction base classes) and a style of 
appearance (from the set of base classes defining display options). In the debugger example, a programmer 
would specify a debugger by choosing a processor and a compiler. 

Given multiple inheritance and N concepts each of which might somehow be combined with one of M 
other concepts, we need N+M classes to represent all the combined concepts. Given only single inheri­
tance, we need to replicate information and provide N+M+N*M classes. Single inheritance handles cases 
where N==l or M==l. The usefulness of multiple inheritance for avoiding replication hinges on the impor­
tance of examples where the values of Nand M are both larger than 1. It appears that examples with 
N>=2 and M>=2 are not uncommon; the window and debugger examples described above will typically 
have both Nand M larger than 2. 

c++ Implementation Strategy 

Before discussing multiple inheritance and its implementation in C++ I will first describe the main points in 
the traditional implementation of the C++ single inheritance class concept. 

An object of a C++ class is represented by a contiguous region of memory. A pointer to an object of a class 
points to the first byte of that region of memory. The compiler turns a call of a member function into an 
uordinary" function call with an "extra" argument; that Uextra" argument is a pointer to the object for 
which the member function is called. 

Consider a simple class A:2 

class A 
int ai 

void f(int i)i 
} i 
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An object of class A will look like this 

int ai 

No information is placed in an A except the integer a specified by the user. No information relating to 
(non-virtual) member functions is placed in the object. 

A call of the member function A: : f: 

A* pa; 
pa->f(2); 

is transformed by the compiler into an "ordinary function call": 

f_F1A(pa, 2) i 

Objects of derived classes are composed by concatenating the members of the classes involved: 

class A int a; void feint); }; 
class B : A { int bi void g(int); }i 

class C : B { int Ci void h(int)i }i 

Again, no "housekeeping" information is added, so an object of class C looks like this: 

int ai 
int bi 

int Ci 

The compiler "knows" the position of all members in an object of a derived class exactly as it does for an 
object of a simple class and generates the same (optimal) code in both cases. 

Implementing virtual functions involves a table of functions. Consider: 

class A 

} i 

int a; 
virtual void f(int)i 
virtual void g(int)i 
virtual void h(int); 

class B : A { int hi void g(int)i }i 
class C : B { int Ci void h(int)i }i 

In this case, a table of virtual functions, the vtbl, contains the appropriate functions 'for a given class and a 
pointer to it is placed in every object. A class C object looks like this: 
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int a; 
vptr ......... > 

int b; 
int C; 

vtbl: 

A: :f 
B::g 
C::h 

A call to a virtual function is transfonned into an indirect call by the compiler. For example, 

C* pC; 
pc->g(2); 

becomes something like: 

( * (pc->vptr [1] ) ) (pc I 2) ; 

A multiple inheritance mechanism for C++ must preserve the efficiency and the key features of this imple­
mentation scheme. 

Multiple Base Classes 

Given two classes 

class A { ... }; 
class B { ... }i 

one can design a third using both as base classes: 

class C : A , B { ... }i 

This means that a C is an A and a B. One might equivalent1~ define C like this: 

class C : B , A { ... }; 

Object Layout 

An object of class C can be laid out as a contiguous object like this: 
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A part 

B part 

C part 

Accessing a member of classes A, B or C is handled exactly as before: the compiler knows the location in 
the object of each member and generates the appropriate code (without spurious indirections or other over­
head). 

Member Function Call 

Calling a member function of A or C is identical to what was done in the single inheritance case. Calling a 
member function of B given a C* is slightly more involved: 

C* pc; 
pc->bf(2); II assume that bf is a member of B 

II and that C has no member named bf 
II except the one inherited from B 

Naturally, B: : bf () expects a B* (to become its this pointer). To provide it, a constant must be added to 
pc. This constant, delta (B) , is the relative position of the B part of C. This delta is known to the compiler 
that transforms the call into: 

bf __ FIB«B*) «char*)pc+delta(B»,2); 

The overhead is one addition of a constant per call of this kind. During the execution of a member func­
tion of B the function's this pointer points to the B part of C: 
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pc ................... > 

A part 

B::bf's this ......... > -----------------

B part 

C part 

Note that there is no space penalty involved in using a second base class and that the minimal time penalty 
is incurred only once per call. 

Ambiguities 
Consider potential ambiguities if both A and B have a public member ii: 

class A int iii }i 

class B { char* iii }i 

class C : A, B { }i 

In this case C will have two members called ii, A: : ii and B: : ii. Then 

C* pc; 
pc->iii II error: A::ii or B::ii ? 

is illegal since it is ambiguous. Such ambiguities can be resolved by explicit qualification: 

pc->A: :iii 
pc->B: :iii 

II c's A's ii 
II C's B's ii 

A similar ambiguity arises if both A and B have a function f () : 

class A { void f()i }i 

class B { int f()i }; 

class C A, B { }; 

C* pc; 
PC->f()i II error: A::f or B::f ? 

pc->A: : f () i 

pc->B: : f () i 

II C's A's f 
II C's B's f 

As an alternative to specifying which base class in each call of an f ( ) , one might define an f () for c. 

5-6 Selected Readings 



C: : f () might call the base class functions. For example: 

class C : A, B { 
int f() { A: :f(); return B: :f(); 

} ; 

C* pc; 
pc->f () ; 

Casting 

II C::f is called 

Explicit and implicit casting may also involve modifying a pointer value with a delta: 

C* pc; 
B* pb; 
pb = (B*)pc; 
pb = pc; 
pc = pb; 
pc = (C*)pb; 

II pb = (B*) ((char*)pc+delta(B» 
II pb = (B*) ((char*)pc+delta(B» 
II error: cast needed 
II pc = (C*) ((char*)pb-delta(B» 

Casting yields the pointer referring to the appropriate part of the same object. 

pc ... > 

A part 

pb ... > -----------------

B part 

C part 

Comparisons are interpreted in the same way: 

pc == pb; II that is, pc == (C*)pb 
II or equivalently (B*)pc == pb 

(B*) ((char*)pc+delta(B» == pb 

Multiple Inheritance 

II that is, 
II or equivalently pc == (C*) ((char*)pb-delta(B» 

Note that in both C and C++ casting has always been an operator that produced one value given another 
rather than an operator that simply reinterpreted a bit pattern. For example, on almost all machines 
(int) .2 causes code to be executed; (float) (int) .2 is not equal to .2. Introducing multiple inheritance 
as described here will introduce cases where (char*) (B*) v! = (char*) v for some pointer type B*. Note, 
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however, that when B is a base class of c, (B*)v== (c*)v==v. 

Zero Valued Pointers 
Pointers with the value zero cause a separate problem in the context of multiple base classes. Consider 
applying the rules presented above to a zero-valued pointer: 

C* pc = Oi 
B* pb = Oi 
if (pb == 0) 
pb = PCi 
if (pb == 0) 

II pb = (B*) ((char*)pc+delta(B» 

The second test would fail since pb would have the value (B*) ((char*) O+delta(B». 

The solution is to elaborate the conversion (casting) operation to test for the pointer-value 0 : 

C* pc = Oi 
B* pb = Oi 
if (pb == 0) 

pb = PCi 
if (pb == 0) 

II pb = (pc==O)?O: (B*) ((char*)pc+delta(B» 

The added complexity and run-time overhead are a test and an increment. 

Virtual Functions 

Naturally, member functions may be virtual: 

class A { virtual void f()i }i 
class B { virtual void f()i virtual void g()i }i 
class C A, B { void f()i }i 

A* pa = new Ci 

B* pb = new Ci 

C* pc = new C; 

pa->f () i 

pb->f(} ; 
PC->f()i 

All these calls will invoke C: : f {). This follows directly from the definition of virtual since class C is 
derived from class A and from class B. 
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Implementation 
On entry to c: : f, the this pointer must point to the beginning of the c object (and not to the B part). 
However, it is not in general known at compile time that the B pointed to by pb is part of a C so the com­
piler cannot subtract the constant delta (B). Consequently delta (B) must be stored so that it can be 
found at run time. Since it is only used when calling a virtual function the obvious place to store it is in 
the table of virtual functions ( vtbl). For reasons that will be explained below the delta is stored with each 
function in the vtbl so that a vtbl entry will be of the form: 

struct vtbl_entry 
void (*fct) ()i 
int deltai 

) i 

An object of class C will look like this: 

vtbl: 
vptr .......... >---------------------
A part I I C::f I 0 I 

I ---------------------

vtbl: 
vptr .......... >---------------------
B part I I C::f I -delta (B) I 

I I B::g I 0 I 

C part 

pb->f()i II call of C::f: 
II register vtbl_entry* vt = &pb->vtbl[index(f)]i 
II (*vt->fct) ((B*) ((char*)pb+vt->delta» 

Note that the object pointer may have to be adjusted to point to the correct sub-object before looking for 
the member pointing to the vtbl. Note also that each combination of base class and derived class has its 
own vtbl. For example, the vtbl for B in C is different from the vtbl of a separately allocated B. This 
implies that in general an object of a derived class needs a vtbl for each base class plus one for the derived 
class. However, as with single inheritance, a derived class can share a vtbl with its first base so that in the 
example above only two vtbls are used for an object of type C (one for A in C combined with c's own plus 
one for B in c). 

Using an int as the type of a stored delta limits the size of a single object; that might not be a bad thing. 
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Ambiguities 

The following demonstrates a problem: 

class A { virtual void f()i }i 
class B { virtual void f()i }i 
class C A I B { void f()i }i 

C* pc = new Ci 

pc->f () i 

pc->A: : f () ; 
pc->B: : f () i 

Explicit qualification "suppresses" virtual so the last two calls really invoke the base class functions. Is 
this a problem? Usually, no. Either C has an f () and there is no need to use explicit qualification or C has 
no f () and the explicit qualification is necessary and correct. Trouble can occur when a function f () is 
added to C in a program that already contains explicitly qualified names. In the latter case one could 
wonder why someone would want to both declare a function virtual and also call it using explicit 
qualification. If f () is virtual, adding an f () to the derived class is clearly the correct way of resolving the 
ambiguity. 

The case where no C: : f is declared cannot be handled by resolving ambiguities at the point of call. Con­
sider: 

class A { virtual void f()i }i 
class B ( virtual void f(); }; 
class C A I B}; II error: C::f needed 

C* pc = new C; 
pc->f() ; 

A* pa = pc; 
pa->f()i 

I I ambiguous 

II implicit conversion of C* to A* 
II not ambiguous: calls A::f(); 

The potential ambiguity in a call of f () is detected at the point where the virtual function tables for A and 
B in C are constructed. In other words, the declaration of C above is illegal because it would allow calls, 
such as pa->f (), which are unambiguous only because type information has been "lost" through an impli­
cit coercion; a call of f () for an object of type C is ambiguous. 
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A class can have any number of base classes. For example, 

class A : BI, B2, B3, B4, BS, B6 { ... }i 

It illegal to specify the same class twice in a list of base classes. For example, 

class A : B, B { ... }i II error 

Multiple Inheritance 

The reason for this restriction is that every access to a B member would be ambiguous and therefore illegal; 
this restriction also simplifies the compiler. 

Multiple Sub-objects 

A class may be included more than once as a base class. For example: 

class L 
class A 
class B 
class C 

} i 
L { } i 

L { } i 

A , B { }i 

In such cases multiple objects of the base class are part of an object of the derived class. For example, an 
object of class C has two L's: one for A and one for B: 

L part (of A) 

A part 

L part (of B) 

B part 

C part 

This can even be useful. Think of L as a link class for a Simula-style linked list. In this case a C can be on 
both the list of As and the list of Bs. 
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Naming 

Assume that class L in the example above has a member m. How could a function C: : f refer to L: : m? 
The obvious answer is ''by explicit qualification": 

void C: : f () { A::m = B: :mi} 

This will work nicely provided neither A nor B has a member m (except the one they inherited from L). If 
necessary, the qualification syntax of C++ could be extended to allow the more explicit: 

void C::f() { A::L::m = B::L::mi } 

Casting 

Consider the example above again. The fact that there are two copies of L makes casting (both explicit and 
implicit) between L* and C* ambiguous, and consequently illegal: 

C* pc = new Ci 

L* pI = PCi 

pI = (L*)pCi 
pI = (L*) (A*)pCi 
pc = pli 
pc = (L*)pli 
pc = (C*) (A*)pli 

II error: ambiguous 
II error: still ambiguous 
II The L in C's A 
II error: ambiguous 
II error: still ambiguous 
II The C containing A's L 

I don't expect this to be a problem. The place where this will surface is in cases where As (or BS) are han­
dled by functions expecting an Li in these cases a C will not be acceptable despite a C being an A: 

extern f(L*); II some standard function 

A aai 
C CCi 

f(&aa)i 
f(&CC)i 

f ( (A*) &cc) i 

II fine 
II error: ambiguous 
II fine 

Casting is used for explicit disambiguation. 

Virtual Base Classes 

When a class C has two base classes A and B these two base classes give rise to separate sub-objects that do 
not relate to each other in ways different from any other A and B objects. I call this independent multiple 
inheritance. However, many proposed uses of multiple inheritance assume a dependence among base 
classes (for example, the style of providing a selection of features for a window described in this chapter 
under "Multiple Inheritance"). Such dependencies can be expressed in terms of an object shared between 
the various derived classes. In other words, there must be a way of specifying that a base class must give 
rise to only one object in the final derived class even if it is mentioned as a base class several times. To 
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distinguish this usage from independent multiple inheritance such base classes are specified to be virtual: 

class AW virtual W { ••• }; 
class BW : virtual W { ••• }; 
class CW : AW , BW { ••• }; 

A single object of class W is to be shared between AW and BW; that is, only one W object must be included in 
cw as the result of deriving CW from AW and BW. Except for giving rise to a unique object in a derived class, 
a virtual base class behaves exactly like a non-virtual base class. 

The Uvirtualness" of W is a property of the derivation specified by AW and BW and not a property of W itself. 
Every virtual base in an inheritance DAG refers to the same object. This object is constructed once using 
a default constructor. A class that can only be constructed given an argument cannot be a virtual base. 

A class may be both a normal and a virtual base in an inheritance DAG: 

class A virtual L { } i 

class B virtual L { ... } i 

class C A , B { ... } i 

class D L, C { ... } i 

A D object will have two sub-objects of class L, one virtual and one Unormal." 

Representation 

The object representing a virtual base class W object cannot be placed in a fixed position relative to both AW 
and BW in all objects. Consequently, a pointer to W must be stored in all objects directly accessing the W 
object to allow access independently of its relative position. For example: 

AW* paw = new AW; 
BW* pbw = new BW i 
CW* pew = new CW i 

paw .. > 
AW part 

W part 

Multip1e Inheritance 

v 

1< •••••.. 
I 
I 
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pbw .• > 
BW part 

W part 

pew .. > 
AW part 

BW part 

CW part 

W part 

v 

1< ••••••• 
I 
I 

v 

v 

v 

1< ••••••• 
I 
I 

A class can have an arbitrary number of virtual base classes. 

One can cast from a derived class to a virtual base class, but not from a virtual base class to a derived class. 
The former involves following the virtual base pointer; the latter cannot be done given the information 
available at run time. Storing a ''back-pointer'' to the enclosing object(s) is non-trivial in general and was 
considered unsuitable for C++ as was the alternative strategy of dynamically keeping track of the objects 
"for which" a given member function invocation operates. 

Virtual Functions 
Consider: 

5-14 Selected Readings 



class W 

} ; 

class AW 
class BW 
class CW 

virtual void f(); 
virtual void g(); 
virtual void h(); 
virtual void k(); 

virtual W { void g(); ... }; 
virtual W { void f(); ... }; 
AW I BW { void h(); ... }; 

CW* pew = new CW; 

pew->f () ; 
pew->g() ; 
pew->h() i 
( (AW*) pew) ->f () ; 

I I BW: :f() 

I lAW: :g() 

I I CW: :h() 

II BW::f(); 

A cw object might look like this: 

v 

v 

v 

••• >1 
1 

1 

1 

AW part 1 

1 

BW part 1 

1 

CW part 1 
1 vtbl: 

vptr .......... > 1 BW:: f 
1 1 AW::g 

W part 1 1 CW::h 
1 1 W::k 

delta(BW)-delta(W) 
-delta(W) 
-delta(W) 

o 

Multiple Inheritance 

In general, the delta stored with a function pointer in a vtbl is the delta of the class defining the function 
minus the delta of the class for which the vtbl is constructed. 

If W has a virtual function f that is re-defined in both AW and BW but not in CW an ambiguity results. Such 
ambiguities are easily detected at the point where CW's vtbl is constructed. 
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The rule for detecting ambiguities in a class lattice, or more precisely a directed acyclic graph (DAG) of 
classes, is that all re-definitions of a virtual function from a virtual base class must occur on a single path 
through the DAG. The example above can be drawn as a DAG like this: 

.•.• > W { f g h k } < ... 
I 

A A 

AW { g } BW { f } 

I I 
A A 

... < ... CW { h } ••• > ... 

Note that a call "up" through one path of the DAG to a virtual function may result in the call of a function 
(re-defined) in another path (as happened in the call «AW*)pcw)->f() in the example above). 

Constructors and Destructors 

Constructors for base classes are called before the constructor for their derived class. Destructors for base 
classes are called after the destructor for their derived class. Destructors are called in the reverse order of 
their declaration. 

Arguments to base class constructors can be specified like this: 

class A A(int);}; 
class B { B(int); }; 
class C : A , virtual B { 

C(int a, int b) : A(a) , B(b) { ... } 
} ; 

Constructors are executed in the order their objects are declared. This rule is applied to members and base 
classes separately and the base class constructors and applied before the member constructors. When a 
class has more than one base class all argument lists for its base class constructor must be qualified with the 
name of the base class. This rule applies even if only one of the base classes actually requires arguments. 

A virtual base is constructed before any of its derived classes. Virtual bases are constructed before any 
non-virtual bases and in the order they appear on a depth first left-to-right traversal of the inheritance DAG 
(directed acyclic graph). This rule applies recursively for virtual bases of virtual bases. 

A virtual base is initialized by the "most derived" class of which it is a base. For example: 
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class V 
class A 
class B 
class C 

A: :A{int 
B: :B(int 
C: :C(int 

pUblic: V()i V(int); 1* ... *1 }i 

public virtual V { public: A()i A(int)i 1* ... *1 }; 
public virtual V ( public: B()i B(int); 1* ... *1 }; 
public A, public B ( pUblic: C()i C(int); 1* ... *1 }i 

i) V{i) { 1* *1 } 

i) 1* *1 } 

i) 1* ... *1 } 

V v(l) i II use V(int) 
A a(2)i II use V(int) 
B b (3) i II use V() 
C C(4)i II use V() 

The order of destructor calls is defined to be the reverse order of appearance in the class declaration 
(members before bases). There is no way for the programmer to control this order - except by the 
declaration order. A virtual base is destroyed after all of its derived classes. 

Assignment to this in the constructor of a class that takes part in a multiple inheritance lattice is likely to 
lead to disaster. See Chapter 1 for alternatives. 

Visibility 

The examples above ignored visibility considerations. A base class may be public or private. In addi­
tion, it may be virtual. For example: 

class D 
Bl II private (py default), non-virtual (by default) 

, virtual B2 II private (py default), virtual 
, public B3 II public, non-virtual (py default) 
, public virtual B4 { 
I I ... 

} ; 

Note that a visibility or virtual specifier applies to a single base class only. For example, 

class C : public A, B { ... }i 

declares a public base A and a private base B. 
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Overheads 

The overhead in using this scheme is: 

1. one subtraction of a constant for each use of a member in a base class that is included as the second 
or subsequent base 

2. one word per function in each vtbl (to hold the delta) 

3. one memory reference and one subtraction for each call of a virtual function 

4. one memory reference and one subtraction for access of a base class member of a virtual base class 

Note that overheads [1] and [4] are only incurred where multiple inheritance is actually used, but over­
heads [2] and [3] are incurred for each class with virtual functions and for each virtual function call even 
when multiple inheritance is not used. Overheads [1] and [4] are only incurred when members of a second 
or subsequent base are accessed "from the outside"; a member function of a virtual base class does not 
incur special overheads when accessing members of its class. 

This implies that except for [2] and [3] you pay only for what you actually use; [2] and [3] impose a minor 
overhead on the virtual function mechanism even where only single inheritance is used. This latter over­
head could be avoided by using an alternative implementation of multiple inheritance, but I don't know of 
such an implementation that is also faster in the multiple inheritance case and as portable as the scheme 
described here. 

Fortunately, these overheads are not significant. The time, space, and complexity overheads imposed on 
the compiler to implement multiple inheritance are not noticeable to the user. 

But is it Simple to Use? 

What makes a language facility hard to use? 

1. Lots of rules. 

2. Subtle differences between rules. 

3. Inability to automatically detect common errors. 

4. Lack of generality. 

5. Deficiencies. 

The first two cases lead to difficulty of learning and remembering, causing bugs due to misuse and 
misunderstanding. The last two cases cause bugs and confusion as the programmer tries to circumvent the 
rules and usimulate" missing features. Case [3] causes frustration as the programmer discovers mistakes 
the hard way. 

The multiple inheritance scheme presented here provides two ways of extending a class's name space: 
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• a base class 

• a virtual base class 

These are two ways of creating/ specifying a new class rather than ways of creating two different kinds of 
classes. The rules for using the resulting classes do not depend on how the name space was extended: 

• ambiguities are illegal 

• rules for use of members are what they were for single inheritance 

• visibility rules are what they were for single inheritance 

• initialization rules are what they were for single inheritance 

Violations of these rules are detected by the compiler. 

In other words, the multiple inheritance scheme is only more complicated to use than the existing single 
inheritance scheme in that 

• you can extend a class's name space more than once (with more than one base class) 

• you can extend a class's name space in two ways rather than in only one way 

This appears minimal and constitutes an attempt to provide a formal and (comparatively) safe set of 
mechanisms for observed practices and needs. I think that the scheme described here is lias simple as pos­
sible, but no simpler." 

A potential source of problems exists in the absence of IIsystem provided back-pointers" from a virtual base 
class to its enclosing object. 

In some contexts, it might also be a problem that pointers to sub-objects are used extensively. This will 
affect programs that use explicit casting to non-object-pointer types (such as char * ) and "extra linguistic" 
tools (such as debuggers and garbage collectors). Otherwise, and hopefully normally, all manipulation of 
object pointers follows the consistent rules explained previously and is invisible to the user. 

Conclusions 

Multiple inheritance is reasonably simple to add to C++ in a way that makes it easy to use. Multiple inher­
itance is not too hard to implement, since it requires only very minor syntactic extensions, and fits naturally 
into the (static) type structure. The implementation is very efficient in both time and space. Compatibility 
with C is not affected. Portability is not affected. 
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Footnotes 

1. An earlier version of this paper was presented to the European UNIX Users' Group conference in 
Helsinki, May 1987. This paper has been revised to match the multiple inheritance scheme that was 
arrived at after further experimentation and thought. For more information see liThe Evolution of 
C++: 1985-1987" and 'What is 'Object-Oriented Programming?'." 

2. In most of this paper data hiding issues are ignored to simplify the discussion and shorten the exam­
ples. This makes some examples illegal. Changing the word class to struct would make the 
examples legal, as would adding public specifiers in the appropriate places. 

3. This definition is equivalent except for possible side effects in constructors and destructors (access to 
global variables, input operations, output operations, etc.). 
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Parameterized Types for C++ 

~ This chapter is taken directly from a paper by 8jarne Stroustrup. 

y 
Abstract 

Type parameterization is the ability to define a type in terms of another, unspecified, type. Versions of the 
parameterized type may then be created for several particular parameter types. A language supporting 
type parameterization allows specification of general container types such as list, vector, and associative array 
where the specific type of the elements is left as a parameter. Thus, a parameterized class specifies an 
unbounded set of related types; for example: list of int, list of name, list of shape, etc. Type parameteriza­
tion is one way of making a language more extensible. 

In the context of C++, the problem are 

[1] Can type parameterization be easy to use? 
[2] Can objects of a parameterized type be used as efficiently as objects of a IIhand-coded" type? 
[3] Can a general form of parameterized types be integrated into C++? 
[4] Can parameterized types be implemented so that the compilation and linking speed is similar to 

that achieved by a compilation system that does not support type parameterization? 
[5] Can such a compilation system be simple and portable? 

A design is presented for which the answer to all of these questions is yes. The implementation of this 
scheme is a fairly simple extension of current C++ implementations. 

WARNING: The scheme for providing parameterized types described here is not implemented. It is not 
part of the C++ language, nor is there any guarantee that it ever will be. This paper was written to stimu­
late and focus discussion about the usefulness of a parameterized type facility for C++ and about the possi­
ble forms such a facility might take. 

Introduction 

For many people, the largest single problem using C++ is the lack of an extensive standard library. A 
major problem in producing such a library is that C++ does not provide a sufficiently general facility for 
defining "container classes" such as lists, vectors, and associative arrays. There are two approaches for 
providing such classes / types: 

[1] The Smalltalk approach: rely on dynamic typing and inheritance. 

[2] The Clu approach: rely on static typing and a facility for arguments of type type. 

The former is very flexible, but carries a high run-time cost, and more importantly defies attempts to use 
static type checking to catch interface errors. The latter approach has traditionally given rise to fairly com­
plicated language facilities and also to slow and elaborate compile/link time environments. This approach 
also suffered from inflexibility because languages where it was used, notably Ada, had no inheritance 
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mechanism. 

Ideally we would like a mechanism for C++ that is as structured as the au approach with ideal run-time 
and space requirements, and with low compile-time overheads. It also ought to be as flexible as Smalltalk's 
mechanisms. The former is possible; the latter can be approximated for many important cases. 

Note that C++ appears to have sufficient expressive power to cope with the demands of library writing 
provided there is a single basic kind of object, such as a character (for string manipulation, pattern match­
ing, character I/O, etc.), a double precision floating point number (for engineering libraries), or a bitmap 
(for graphics libraries). The IIcontainer class problem" is particularly serious, though, since container 
classes are needed to specify all but the simplest interfaces; they are the IIglue" for larger systems. 

Class Templates 

A C++ parameterized type will be referred to as a class template. A class template specifies how individual 
classes can be constructed much like the way a class specifies how individual objects can be constructed. A 
vector class template might be declared like this: 

template<class T> class vector { 
T* v; 
int sz; 

pUblic: 
vector(int); 

} ; 

T& operator[] (int); 
T& elem(int i) { return v[i]; 
II 

The template <class T> prefix specifies that a template is being declared and that an argument T of type 
type will be used in the declaration. After its introduction, T is used exactly like other type names within 
the scope of the template declaration. Vectors can then be used like this: 

vector<int> vl(20); 
vector<complex> v2(30); 

typedef vector<camplex> cvec; II make cvec a synonym for vector<complex> 
cvec v3(40); II v2 and v3 are of the same type 

vl[3] = 7; 
v2[3] = v3.elem(4) = complex(7,8); 

Oearly class templates are no harder to use than classes. The complete names of instances of a class tem­
plate, such as vector<int> and vector<comp 1 ex> , are quite readable. They might even be considered 
more readable than the notation for the built-in array type: int [] and complex [ ]. When the full name is 
considered too long, abbreviations can be introduced using typedef. 
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It is only trivially more complicated to declare a class template than it is to declare a class. The keyword 
class is used to indicate arguments of type type partly because it appears to be an appropriate word, 
partly because it saves introducing a new keyword. In this context, class means Hany type" and not just 
U some user-defined type." 

The < ... > brackets are used in preference to the parentheses ( ... ) partly to emphasize the different 
nature of template arguments (they will be evaluated at compile time) and partly because parentheses are 
already hopelessly overused in C++. 

The keyword template is introduced to make template declarations easy to find, for humans and for tools, 
and to provide a common syntax for class templates and function templates. 

Member Function Templates 

The operations on a class template must also be defined. This implies that in addition to class templates, 
we need function templates. For example: 

ternplate<class T> T& vector<T>::operator[] (int i) 
{ 

if (i<O II sz<=i) error ( II vector: range error ll
); 

return v[i] ; 

A function template is a specification of a family of functions; template<class T> specifies that T is a tem­
plate argument (of type type) that must somehow be supplied to specify a particular function. 

Note that you don't usually have to specify the template arguments to use a function template. For exam­
ple, the template argument for vector<T>: : operator [] will be determined by the vector to which the 
subscripting operation is applied: 

vector<int> vl(20); 
vector<cornplex> v2(30); 

vl[3] 
v2[3] 

7; I I vector<int>: : operator [] () 
= cornplex(7,8); II vector<cornplex>::operator[] () 

Member functions of a class template are themselves function templates with the template arguments 
specified in the class templates. Function templates and member function templates will be discussed in 
greater detail below. 
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Outline of an Implementation 

The basic idea for an implementation that incurs no additional costs in run-time or space compared with 
IIhand coding" is to "macro-expandll a template for each different set of template arguments with which it 
is used. Naturally, template expansion is not really just macro expansion; it obeys proper scope and syntax 
rules. Names such as vector<int> can be encoded into composite class names such as _PTvector_int. 

The example above expands into: 

class _PTvector_int { 
int* Vi 
int SZi 

public: 
_PTvector_int(int)i 
int& operator[] (int)i 

} i 

int& elem(int i) { return V[i]i 
I I ... 

class _PTvector_complex 
complex* Vi 
int SZi 

pUblic: 
_PTvector_complex(int)i 
complex& operator[] (int)i 

} ; 

complex& elem(int i) { return V[i]i 
II ... 

_PTvector_int vI(20)i 
_PTvector_complex v2(30)i 
_PTvector_complex v3(40)i 

vI [3] = 7; 
v2[3] = v3.elem(4) = complex(7,8); 

A compiler need not have a separate template expansion pass. Since the information to do such an expan­
sion exists in the compiler's tables, the appropriate actions can simply be taken at the proper places in the 
analysis and code generation process. 

In addition to this expansion mechanism, a facility is needed for detecting which member functions have 
been used for which instances of a parameterized type. The example above used: 
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__ PTvector_int:: __ PTvector_int(); 
__ PTvector_complex:: __ PTvector_complex(); 
__ PTvector_int::operator[] (); 
__ PTvector_complex::operator[] (); 
__ PTvector_complex::elem(); 

II constructor 
II constructor 
II subscripting 
II subscripting 

Parameterized Types for C++ 

Note that the full list of such functions for a program can be known only after examining every source file. 
The linker provides a form of this list as part of its list of undefined objects and functions. 

The definition of an operation on a class template might look like this: 

template<class T> T& vector<T>::operator[] (int i) 
{ 

if (i<O I I sz<=i) error ( "vector: range error"); 
return v[i] ; 

From this, the following two function definitions will have to be generated: 

int& __ PTvector_int::operator[] (int i) 
{ 

if (i<O I I sz<=i) error ( "vector: range error"); 
return v[i] ; 

complex& __ PTvector_complex::operator[] (int i) 
{ 

if (i<O I I sz<=i) error ( "vector: range error") i 
return v[i] i 

This approach ensures that no run-time efficiency is lost compared to IIhand-coding". Code space might 
wasted by creating separate copies of functions that could have shared implementation. For example, 
vector<int> and vector<unsigned> need not have separate subscripting operations. Such waste can, if 
necessary, be reduced through suitable coding practices (see the section on Type Equivalence, below) 
and/ or through a clever compile time environment. 

A programmer can provide a definition for a particular version of an operation on a class by specifying the 
template argument(s) in a function definition: 

int& vector<int>::operator[] (int i) { return V[i]i } 

The general version of such a function as defined by its template will be used to create a function for a par­
ticular argument type only when no user-provided version is specified for that type. 

Replacing the default implementation of a function as· defined by a template is useful where implementa­
tions with greater precision, higher efficiency, etc. can be provided given some understanding of a particu­
lar type. It may also be useful for debugging and for supplying different versions of a function to different 
parts of a program (using static functions). 
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Some Design Considerations 

Let us consider a few choices that were made to write the example above: 

[1] Should all template arguments be of type type? 

[2] Should a user be required to specify the set of operations that may be used for a template argument 
of type type? 

[3] Should a user be required to explicitly declare what versions of a template can be used in a pro­
gram? 

[4] Should it be possible for a user to declare variables of type type? 

The answer to all (in the context of C++) is no. Let us examine them in tum. 

Template Arguments 
UShould all template arguments be of type type?" No, there appear to be useful examples of type parame­
ters of unormal" types. For example, a vector template might be parameterized with an error handling 
function: 

typedef void (*PF) (char*)i 

template<class T, PF error> class vector { 
T* Vi 

int SZi 
pUblic: 

T& operator[] (int i) { 

} 

} i 

if (i<= I I sz<=i) error ( "vector: range error") i 
return v[ i] i 

void my_error_fct() { ... } 
vector<complex,&m¥_error_fct> V(lO)i 

This example implies that default arguments might be useful: 

template <class T, PF error=&standard_error_fct> class vector { ... } 

Another example is a buffer type with a size argument: 

template<class T, int sz=128> class buffer 
T v[sz] ; 
/ / ... 

} i 
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void f() 

buffer<char> bufl; 
buffer<camplex,20> buf2; 
I I ... 

buffer<char*,lOOO> glob; 

Making sz an argument of the template buffer itself rather than of its objects implies that the size of a 
buffer is known at compile time so that a buffer can be allocated without use of free store. It appears 
that default arguments will be at least as useful for template arguments as they are for ordinary arguments. 
Default arguments of type type might even be useful: 

template<class T, class TEMP = double> class store 
I I ... 
T sum() { TEMP sum = 0; ... return sum; } 

} ; 

store<int,long> istore; 
store<float> fstore; 

These examples demonstrate that the range of templates with which a type can be parameterized should be 
restricted only if there are compelling arguments that the restriction will significantly ease the implementa­
tion of templates. I see no such argument. 

Type Argument Attributes 

UShould a user be required to specify the set of operations that may be used for a template argument of 
type type?" For example: 

II The operations =, ==, <, and <= 
II must be defined for an argument type T 

template < 

> 

class T { 

} ; 

T& operator=(const T&); 
int operator==(const T&, const T&); 
int operator<=(const T&, const T&); 
int operator«const T&, const T&); 

class vector 
I I ... 
} ; 

No. Requiring the user to provide such information decreases the flexibility of the parameterization facility 
without easing the implementation or increasing the safety of the facility. 
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Consider vector<T>. To provide a sort operation one must require that type T has some order relation. 
This is not the case for all types. If the set of operations on T must be specified in the declaration of vec­
tor one would have to have two vector types: one for objects of types with an ordering relation and 
another for types without one. If the set of operations on T need not be specified in the declaration of vec­
tor one can have a single vector type. Naturally, one still cannot sort a vector of objects of a type glob 
that does not have an order relation. If that is tried, the generated sort function vector<glob>: : sort ( ) 
would be rejected by the compiler. 

It has been argued that it is easier to read and understand parameterized types when the full set of opera­
tions on a type parameter is specified. I see two problems with this: such lists list would often be long 
enough to be de facto unreadable and a higher number of templates would needed for many applications. 

Should experience show a need for specifying the operations on a parameterized type then such a facility 
can be easily and compatibly added later. 

Source Code 

There might be a more fundamental reason for requiring that the operations performed on a template argu­
ment of type type should be listed in the template declaration. The implementation technique outlined here 
achieves near optimal run-time characteristics by requiring the complete source code of a template to be 
available to the compiler when processing a use of the template. In some contexts, this is considered a 
deficiency and an implementation of templates that requires only the object code for functions implement­
ing the function templates would be preferable. 

At first glance it would appear that requiring the full set of operations on a template argument to be 
specified would make it significantly easier to produce such an implementation. In this case, a function 
template would be implemented by code using calls through vectors of function pointers to perform opera­
tions on template arguments of type type. The specification of the set of operati9ns for a type argument 
would provide the definition for such vectors. Such an implementation would trade run-time for compile 
and link time, but would be semantically equivalent to the implementation scheme presented here. 

Could an implementation along these lines be provided without requiring the user to list the set of opera­
tions needed for each function template argument of type type? I think so. Given a function template, the 
compiler can create a vector layout for the required set of operations without the help of a user. Given the 
full set of function definitions for the members of a class, the compiler can again create a vector layout for 
the required set of operations without the help of a user. If the compile and link environment cannot pro­
vide such a list a less optimized scheme where each member function has its own vector of operations can 
be used. 

It thus appears that both implementation styles can be used even in the absence of template argument attri­
bute lists so that we need not require them to preserve the implementers' freedom of action. It might be 
noticed that a virtual function table is in many ways similar to a vector of operations for a template so that 
the benefits of the vector of operations approach can often be achieved by a coding style relying on virtual 
functions rather than the expansion of function templates. Class pvector presented in the section below on 
Type Equivalence is an example of this. 
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Type Instantiation 

"Should a user be required to explicitly declare what versions of a template can be used in a program?" 
For example, should one require the use of an operation like Ada's new? No. Such a requirement would 
increase the size of the program text and decrease the flexibility of the template facility without yielding 
any benefits to the programmer or the implementer. 

Type Variables 

"Should it be possible for a user to declare variables of type type?" For example: 

type t = inti 

void f(type t) 
{ 

switch (t) 
case int: 

case char*: 

case corrplex: 

default: 

Such a facility would be useful in many contexts, but does not appear suitable for C++. In particular, it is 
not possible to assign integer values to represent constants of type type such as int, 1 ine_module* , 
double (*) (complex* lint) I and vector<complex> while maintaining the current style of separate compi­
lation. Since the C++ type system is open such assignment of values in general requires an unbounded 
number of bits to represent a type. In practice, even simple cases require lots of bits (the current cfront 
scheme for encoding function types in character strings regularly uses dozens of characters) or some system 
of hashing involving a database of types. Furthermore, the introduction of such variables would require an 
order of magnitude greater changes to the C++ language and its implementations than the scheme (without 
type variables) described here. 

Type Inquiries 

It would be possible to enable a programmer to inquire about properties of a template argument of type 
type. This would allow the programmer to write code that depends on specific properties of the actual 
types used. 
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An Inquiry Operator 
Consider providing a print function for a vector type that sorts the elements before printing if and only if 
sorting is possible. A facility for inquiring if a certain operation, such as <, can be performed on objects of 
a given type can be provided. For example: 

template<class T> void vector<T>::print() 
{ 

if (?T::operator<) sort()ill if (T has a <) sort_this_vector 
for (int i=Oi i<SZi i++) { ... } 

Because the < operation is defined for ints, printing of a vector<int> gives rise to an expansion: 

void __ PTvector_int::print() 
{ 

sort()i II that is, this->sort() 
for (int i=Oi i<SZi i++) { ... } 

} 

On the other hand, printing a vector<glob> where the < operation is not defined for globs gives rise to 
an expansion: 

void __ PTvector_glob::print() 
{ 

for (int i=Oi i<SZi i++) { ... } 

Tests on expressions of the form ?typ::aper (lldoes type typ have an operation aper?") must be evaluated at 
compile time and can be part of constant expressions. 

It would probably be wise rwt to include such a type inquiry feature in the initial experimental implementa­
tion but to wait and see what properties (if any) programmers would find useful. Potentially every aspect 
of a type known to the compiler can be made available to the programmer; sizeof is a most rudimentary 
version of this kind of facility. 

The absence of a type inquiry facility will be compensated for by the ability to define a function for a par­
ticular set of template arguments, thus overriding the generation of the IIstandard" version from the tem­
plate. Furthermore, it can sometimes be preferable to define separate templates to represent the different 
concepts. For example, one might have both a vector<T> class and a sorted_ vector<T> class derived 
from it. 

The typeof Operator 
Writing code where the control flow depends of the properties of a type parameter doesn't appear to be 
necessary, but defining variables of types dependent on type parameters does. Given a template argument 
of type type, T, one can express a variety of derived types using the declarator syntax; for example, T*, T&, 
T [ 10], T ( *) (T, T). One can also express types obtained by template expansion such as vector<T>. 
However, this does not conveniently express all types one might like. In particular, the ways of expressing 
types that depend on two or more template arguments are weak. To compensate, one might introduce a 
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typeof operator that yields the type of its argument. For example: 

template<class X, class Y> void f(X X, Y y) 
{ 

typeof(x*y) temp = X*Yi 

/ / ... 

Parameterized Types for C++ 

It would probably be wise not to introduce a typeof operator before gaining more experience. The uses of 
typeof appears to be quite limited and the scope for misuses large. In particular, typeof appears more 
suited for the writing of macros (which templates are designed to replace in many contexts) than for tem­
plates and heavy use of typeof will reduce the compilers ability to pinpoint type errors. 

More about Implementation 

So how can we generate the proper code for definitions of operations on a template for a given set of argu­
ments? Assume that we know that versions of vector's subscripting operation 

template<class T> vector<T>::operator[] (int) { ... } 

are needed for T==int and T==complex. How can we create the proper expansions (as presented above)? 

We might have a compiler option, -X, for creating such expansions. Assuming that the definitions for 
vector's member functions resides in a file called vector. c, one might call the compiler like this: 

cc -x "vector<int>II vector.c 
CC -X "vector<complex>II vector.c 

and have the appropriate .0 files created. This would create not only the required subscript operator func­
tions but also functions for any other vector operation that has its definition stored in vector. h. The stra­
tegy for splitting a program into separately compiled parts is in the hands of the programmer. Where a 
finer granularity is required of .0 files for a library, the programmer can handle it using standard C library 
techniques. 

Note that an expansion using the template expansion option, -x, may give rise to a program that uses an 
instance of a template that has not already been used in the program. This implies that another stage of 
Hmissing template implementation detection" is required after each expansion. Expansion is really a recur­
sive activity. The depth of this recursion will typically be I, though. It will be necessary to have a mechan­
ism protecting against recursive expansion. For example: 

template<class T> void f(T a) { T* Pi ... f(p)i } 

Naturally, one would try to ensure that cc -x is used to generate .0 files only for definitions of templates 
when 

[1] a new template was used, or 
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[2] a new set of template arguments was used, or 

[3] the declaration of a template was changed. 

I imagine that after a short startup period all the necessary .0 files for templates for a program/project will 
reside in a library and not interfere with the compilation process. When a program/project reaches this 
state the compilation overhead incurred by using templates becomes negligible. 

Tools for Ensuring Consistent Linking 
Consider having the tools described above: 

[1] a C++ compiler handling the expansion of class templates into class declarations, and 

[2] a-X option on this compiler to handle the expansion of function templates into function definitions. 

One could then compile a C++ program using templates. A little manual intervention would be needed to 
get a complete program to link and load. 

What additional tools would be needed to 

[1] guarantee consistent and complete expansion and linking? 

[2] make programming reasonably convenient? 

I conjecture that [1] is perfectly feasible, but non-trivial, where portability across operating systems, compile 
and link time efficiency, and flexibility are all required. I also conjecture that very little is needed to 
achieve [2]. Experience using such a system is clearly needed, but it might well be sufficient to modify a 
tool with access to the complete compiled program, such as munch or the linker itself, to produce 

[1] a list of function definitions required, or 

[2] a list of files for which Cc -x needs to be run (assuming some correspondence between type names 
and file names), or 

[3] a make script for running cc -x for an appropriate set of files. 

It would also be important to ensure that cc produces readable error messages when an operation is 
applied to a particular template argument of type type for which it is not defined. For example: 

"foo.c··, line 144: error: operator<= applied to glob in vector<glob>::sort() 

This discussion of how one might provide a minimal and portable mechanism supporting templates in C++ 
should not be taken as an indication that such a mechanism provides the ideal programming environment. 
On the contrary, it is exactly a minimal facility. Much better facilities can be built (think of a smart make, an 
incremental compiler, a Smalltalk-like browser, etc.), However, a minimal facility must exist to ensure porta­
bility of C++ programs between all implementations since there is no hope that a single maximal program­
ming environment will ever be agreed on and implemented on every system supporting C++. 
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Function Templates 

In addition to providing class templates, it is necessary to provide function templates. Consider providing 
a general sort function: 

template<class T> void sort(vector<T»i 

Given a vector v, one might call such a function like this: 

sort (v) i 

The compiler can deduce the type of the sort function from the type of the vector. For example, had v 
been declared 

vector<int> V(lO)i 

the sort function sort<int> would have been required. On the other hand had the declaration of v been 

vector<double> v(2000)i 

the sort function sort<double> would have been used. 

Overloading 
Declaring a function template is simply a way of declaring a whole bundle of overloaded functions at one 
time. This implies that we can use functions with arguments that can be distinguished by the overloaded 
function resolution mechanism only. The following function cannot be used because it takes no argument: 

template<class T> T* create() { return (T*) rnalloc(sizeof(T»i } 

The C++ syntax could be extended to cope with this by allowing the full generality of the name<type> nota­
tion so that template arguments could be supplied explicitly in a call: 

int* pi = create<int>()i II create_int() 
char* pc = create<char>() ill create_char() 

Unless programmers define templates sensibly this form of resolution can become quite cryptic: 

template<class x, class Y> f(Y,X)i II template argument order differs 
II from function argument order 

f<char*, int>(l, "asdfll) i 

I think it would be wise not to include any explicit resolution method in an initial implementation. I 
suspect that the implicit resolution provided by the overloaded function resolution rules are sufficient -
and more elegant - in almost all cases and it is not obvious that a mechanism for explicit overloading is 
worth the added complexity. 

Allowing explicit resolution would imply that a C++ compiler should treat function template names dif­
ferently from other names and similarly to the way keywords and class names are treated. For example, 
without special rules for template names the last expression above would be parsed as two comparisons 
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and a parenthesized comma expression: 

(g<123) > (vv, 10) ; 

A Problem 

Consider writing a function apply () that applies another function to all the elements of a vector. A tradi­
tional first cut would look something like this: 

ternplate<class T> void apply(vector<T>& v, T& (*g) (T&» 
{ 

for (int i = 0; i<v.size() i i++) v[i] = (*g) (v[i]) i 

This follows the C style of using a pointer to function. Potential problems with this are 

[1] efficiency, because there can be no inline expansion of the applied function, and 

[2] generality, because standard operations of built-in types such as - and - for ints cannot be 
applied. 

Naturally, these are not problems to all people. However, an ideal template mechanism will provide solu­
tions. 

A Solution 

One might consider the function to be applied by apply () a template argument rather than a function 
argument: 

ternplate<class T, T& (*g) (T&» void apply(vector<T>& v) 
{ 

for (int i = 0; i<v.size(); i++) v[i] = (*g) (v[i]); 

To call apply () one must specify the function to be applied. Since this version of apply () takes only a 
single vector argument the syntax for disambiguating an overloaded function call using < ... > must be 
used: 

class X { ... }i 

vector<X> v2(200)i 

inline void hh(X&) { ... }; 
void gg(X&); II not inline 

apply<X,hh>(v2); 
apply<X,gg>(v2); 

Clearly, the x is redundant and not elegant. Since in principle each such call of apply () results in writing 
a new function apply () inlining can be applied where sufficient information is available. Consequently, 
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one would expect a C++ compiler to inline hh () in the first call in the example above and generate a stan­
dard function call of gg (). The fact that function pointers and not functions are passed in C++ is at most a 
minor annoyance for the compiler writer. 

Operators for built-in types can be considered inline functions in this context: 

vector<int> v(lOO); 
apply< int, &int::operator-- >(v); 

However, as for the explicit resolution scheme itself, it remains to be seen if this degree of sophistication 
and complexity is actually needed. 

Syntax Issues 

Consider the declarations: 

template<class T> class vector { ... }; 
template<class T> T* index<class T>(vector<T>,int); 

[1] Why use the template keyword? 

[2] Why use < .•. > brackets and not parentheses? 

[3] Why use the class keyword? 

[4] What is the scope of a template argument? 

The template keyword 

If a keyword is to be used template seems to be a reasonable choice, but it is actually not necessary to 
introduce a new keyword at all. For class templates, the alternative syntax seems more elegant at first 
glance: 

class vector<class T> { II possible alternative class syntax 

} ; 

Here the template arguments are placed after the template name in exactly the way they are in the use of a 
class template: 

vector<int> vi(200); 
vector<char*> vpc(400); 

The function syntax at first glance also looks nicer without the extra keyword: 

T& index<class T>(vector<T> v, int i) { ... } 

There is typically no parallel in the usage, though, since function template arguments are not usually 
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specified explicitly: 

int i = index(vi,10); 
char* p = index(vpc,29); 

However, there appears to be nagging problems with this usimpler" syntax. It is too clever. It is relatively 
hard to spot a template declaration in a program because the template arguments are deeply embedded in 
the syntax of functions and classes and the parsing of some function templates is a minor nightmare. It is 
possible to write a C++ parser that handles function template declarations where a template argument is 
used before it is defined, as in index () above. I know, because I wrote one, but it is not easy nor does the 
problem appear amenable to traditional parsing techniques. In retrospect, I think that not using a keyword 
and not requiring a template argument to be declared before it is used would result in a set of problems 
similar to those arising from the clever and convoluted C and C++ declarator syntax. 

< ... > vs ( ... ) 
But why use brackets instead of parentheses? As mentioned before, parentheses already have many uses in 
C++. A syntactic clue (the < ... > brackets) can be useful for reminding the user about the different nature 
of the type parameters (they are evaluated at compile time). Furthermore, the use of parentheses could 
lead to pretty obscure code: 

template(int sz = 20) class buffer ( 
buffer(int i = 10); 
I I ... 

} ; 

buffer b1(100) (200); 
buffer b2(100); II b2(100) (10) or b2(20) (100)? 
buffer b3; II legal? 

These problems would become a serious practical concern if the notation for explicit disambiguation of 
overloaded function calls were adopted. The chosen alternative seems much cleaner: 
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template<int sz = 20> class buffer 
buffer (sz) (int i = 10); 
I I ... 

} ; 

buffer bl<100>(200); 
buffer b2<100>; 
buffer b3; 
buffer b4(100); 

I I b2<100> (10) 
II b3<20>(10) 

II b4<20>(100) 
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The class keyword 
Unfortunately, the ideal word for introducing the name of a parameter of type type, that is, type cannot be 
used; type appears as an identifier in too many programs. Why use the class keyword then? Why not? 
Classes are already types to the extent that the built-in types can be considered second class citizens in 
some contexts (you cannot derive a class from a built in type, you cannot take the address of an operation 
on a built-in type, etc.). What is done here is simply to use class in a slightly more general form than is 
done elsewhere. 

Scope of Template Argument Names 
The scope of a template argument name is the template declaration and the template name obeys the usual 
scope rules: 

const int Ti 

ternplate<class T> II hides the const int T 
class vector { 

int SZi 

T* Vi 

public: 
II 

} i 

int T2 = Ti II here const int T is visible again 

Template declarations may not be declaration lists: 

ternplate<class T> f(T*), g(T)i II error: two declarations 

This restriction is made to avoid users making unwarranted assumptions about relations between the tem­
plate arguments in the different templates. 

Templates and Typedef 

The template concept is easily extended to cover all typesl . For example: 

ternplate<class T, int i> typedef T array[i]i 

array<int,10> Vi II array of 10 ints 

This allows great freedom in defining type names. The typedef keyword is necessary because 

ternplate<class T, int i> T array[i]i 

Would define a family of arrays (all called array) and not a family of array type. 
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Consequently, only class, function, and typedef templates will be implemented. 

Type Equivalence 

Consider: 

template<class T, int i> class X { 
T vec[i] i 
/ / ... 

} i 

array<int,lO> Xi 

array<int,lO> Yi 
array<int,ll> Zi 

Here, X and y is of the same type, but Z is of the different type. Since the template arguments used in the 
declarations of x and y are identical they refer to the same class. Naturally, only a single class declaration 
is generated by a C generating C++ compiler. On the other hand, the template arguments used in the 
declaration of Z differs and gives rise to a different class. 

Different template arguments give rise to different classes even if the argument is used in a way that does 
not affect the type of the generated class: 

template<class T, int i> class Y 
pUblic: 

focO { int buf[i] i ••• } 

} ; 

Y<int,lO> XXi 

Y<int,lO> YYi 
Y<int,ll> ZZi 

Template arguments must be types, constants, or integer expression that can be evaluated at compile time. 

Derivation and Templates 

Among other things, derivation (inheritance) ensures code sharing among different types (the code for a 
non-virtual base class function is shared among its derived classes). Different instances of a template do 
not share code unless some clever compilation strategy has been employed. I see no hope for having such 
cleverness available soon. So, can derivation be used to reduce the problem2 of code replicated because 
templates are used? This would involve deriving a template from an ordinary class. For example: 
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template<class T> class vector ( 
T* Vi 

int SZi 

pUblic: 
vector(int)i 

II general vector type 

T& elem(int i) { return v[i]; 
T& operator[] (int i)i 
II 

} i 

template<class T> 
class pvector : vector<void*> 

pUblic: 
pvector(int i) : (i) {} 

II build all vector of pointers 
II based on vector<void*> 

T*& elem(int i) { return (T*&) vector<void*>::elem(i)i } 

} i 

T*& operator[] (int i) { return (T*&) vector<void*>::operator[] (i)i 
I I ... 

pvector<int*> pivec(lOO)i 
pvector<complex*> icmpvec(200); 
pvector<char*> pcvec(300)i 

The implementations of the three vector of pointer classes will be completely shared. They are all imple­
mented exclusively through derivation and inline expansion relying on the implementation of 
vector<void*>. The vector<void*> implementation is a good candidate for a standard library. 

I conjecture that many class templates will in fact be derived from another template. For example: 

template<class T> class D : B<T> { 

} i 

This also ensures a degree of code sharing. 

Members and Friends 

Here are some more details: 
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Member Functions 
A member function of a class template is implicitly a template with the template arguments of its class. 
Consider: 

template<class T> class C { 
T Pi 
T ml() { T a = Pi P++i return ai } 

} i 

C<int> Cli 

C<char*> C2i 

int i cl.ml () i II int C<int>::ml() { int a = Pi P++i return ai } 

char* s = c2.ml()i II char* C<char*>::ml() { char* a = Pi P++i return ai 

These two calls of ml () gives rise to two expansions of the definition of ml () . 

Naturally a member template may also be declared: 

template<class T> class C { 
template<class TT> void m(TT*,T*)i 

} i 

This case will be discussed below. However, explicit use of class template arguments in member function 
names is unnecessary and illegal: 

template<class T> class C { 
T m<T>() i 

} i 

II error 

template<class T> C<T>::m<T>() { ... } 

template<class T> C<T>::m() { ... } 

This also applies to constructors: 

template<class T> class C { 

II error 

II correct 

C()i II correct, a constructor 
C<T>(int)i II error constructor 

} i 

template<class T> C<T>::C() { ... } II correct 

To avoid confusion it is not legal to define a template as a member with the same template argument name 
as was used for the class template: 
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template<class T> class C { 
template<class T> T m(T*)i 

} i 

Friend Functions 

II error 

A friend function differs from other functions only in its access to class members. In particular, a friend of 
a class template is not implicitly a template. Consider: 

template<class T> class C { 
friend fl (T a) i 

template<class TT> friend f2(TT a)i 
} i 

The definitions of fl () and f2 () are legal, but clearly not equivalent. 

The friend declaration of fl (T) specifies that for all types T, fl<T> is a friend of C<T>. For example, 
fl<int> is a friend of C<int>. However, fl<int> is not a friend of C<double>. The definition of fl () 
would probably look something like this: 

template<class TT> fl(TT a) { ... }i 

The friend fl () need not be a template, but if it isn't the programmer might have a tedious time construct­
ing the necessary set of overloaded functions "by hand." 

The declaration of f2 () specifies that for all types T and TT, f2<'IT> is a friend of C<T>. For example 
f2<int> is a friend of C<double>. 

Note that a friend function of a parameterized class need not itself be parameterized: 

template<class T> class C { 
static int ii 
friend f() { i++i } 

} i 

Static Members 

Each version of a class template has its own copy of the static members of the class: 

template<class T> class C { static T ai static int bi ... }i 

C<int> XXi 

C<double> YYi 

This implies allocation of the static variables: 
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static int C<int>::ai 
static int C<int>::bi 

static double C<double>::ai 
static int C<double>::bi 

Similarly, each version of a parameterized function has its own copy of static local variables: 

template<class T> f() { static T ai static int bi ... }i 

Friend Classes 
Friend classes can (as usual) be declared as a shorthand for declaring all functions friends: 

template<class T> class C { 
friend template<class TT> class Xi II all X<TT>s 
friend class Y<T>i II only Y<T> 
friend class Z<int>i II only Z<int> 

} i 

Examples of Templates 

Here are some more examples of potentially useful templates. Versions of many of the templates used as 
examples in this paper have been created using macros and actually used in real programs. I~aking" tem­
plates using macros have been a major design technique for the template facilities. In this way the 
language facilities could be designed in parallel with the key examples and techniques they were to sup­
port. 

An associative array: 

template<class E, class I> class Map 
II arrays of Es indexed by Is 
II 
E& operator[] (I)i 

} i 

A "record" stream; the usual stream of characters is a special case: 

template<class R> class ostream { 
II ... 
ostream<R>& operator«(R&)i I I output an R 

} i 

An array for mapping information from files into primary memory: 
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template<class T, int bsz> class huge { 
T in_core_buf[bsz]i 
I I ... 
T& operator[] (int i)i 
seek(long)i 
II 

A linked list class: 

template<class T> class List { ... }i 

A queue tail template for sending messages of various types: 

template<class T> class mtail : public qtail 
I I ... 

} i 

void send(T arg) 

II bundle "arg" into a new message buffer 
II and put than on the queue 

A counted pointer template (for user-defined automatic memory management): 

template<class T> class CP ( 
I I ... 

pUblic: 

} i 

CP () i 

CP(T)i 

CP (CP<T>&) i 

I I ... 

Conclusions 

Parameterized Types for C++ 

A general form of parameterized types can be cleanly integrated into C++. It will be easy to use and easy 
to document. The implementation can be efficient in both run-time and space. It can be implemented port­
ably and efficiently (in terms of compiler and link time) provided some responsibility for generating the 
complete set of definitions of function templates is placed on the programmer. This implementation can be 
refined, but probably not without loss of either portability or efficiency. The required compiler 
modifications are manageable. In particular, cfront can be modified to cope with templates. Compatibility 
with C is maintained. 
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Caveat 

The key thing to get right for a C++ template facility is assuring that basic parameterized classes are imple­
mented in an easy to use and efficient way for the relatively simple key examples. The compilation system 
must be efficient and portable at least for these examples. The most reasonable approach to building a tem­
plate system for C++ would be to achieve this first, make the inevitable changes in concepts based on that 
experience, and proceed with more advanced features only as far as they makes sense then. 
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Footnotes 

1. This section has been changed since the USENIX C++ conference proceedings version of this paper 
based on comments by George Gonthier. 

2. If that really is a problem: memory is cheap, etc. I think it is a problem and will remain so for the 
foreseeable future. People's expectations of computers have consistently outstripped even the 
astounding growth in hardware performance. 
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Template Instantiation in C++ Release 3.0.1 - Overview 

~ This chapter is taken directly from a paper by Glen McCluskey and Robert B. Murray. 

y 
Introduction 

This chapter describes how the USL C++ compiler version 3.0.1 handles automatic template instantiation 
and briefly reviews alternate strategies. The chapter does not cover practical usage of the instantiation sys­
tem; this topic is discussed in Template Instantiation in C++ Release 3.0.1 - User Guide, which follows. 

The template environment is an implementation of the template language feature described in The Annotated 
C++ Reference Manual (M.A. Ellis and B. Stroustrup, Addison-Wesley, 1990). Please note that, unlike the 
language itself, implementations are not subject to formal standardization and are therefore subject to 
change. 

Templates and Instantiation 

A template is a skeleton for defining a set of types or functions. Each type or function of the set is created 
by combining the template with a set of arguments that are themselves types or values. This process is 
known as instantiation. 

For example, consider a template such as the following: 

template <class T> class List 
T* items; 
int count; 

pUblic: 

} ; 

void additem(T); 
/* ... */ 

This declares a template called List, with two data members items and count, and one member function 
addi tern. If one were to use this template in an application by saying 

main ( ) 
{ 

List<double> Ii; 

li.additem(12.34); 
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then a particular combination of the template List and the argument double would be instantiated, with 
two data members and one publicly-accessible member function List<double>: : addi tern (double) . 

The instantiation problem is one of creating compiled files (object files) containing the instantiations needed 
by an application. These files should be minimal in size; only members of the template used in the appli­
cation should be instantiated. The user may have provided a special case for a template member or a com­
plete template class, and this specialization should override any automatic instantiation procedure. 

Definitions of Terms 

We will use the following terms in this chapter (a complete glossary is given at the end). 

The template declaration file of a template is the file that contains the template declaration (for example 
List.h might contain the declarations for List). These declarations must be present in any file that refers 
to the template, that is, #included. 

The template definition file of a template is the file that contains the definitions of the template members (for 
class templates), or the definition of a function template (List. c might contain the definitions for List). 
These definitions are required to instantiate a template, but not to refer to it. 

The argument declaration file of a named type is the file that contains the declaration of that type (String.h 
might contain the declarations for String). The argument declarations of all the type arguments are 
needed to instantiate a template. 

To instantiate a template, you need the template declaration file, the template definition file, and the argu­
ment declaration files for each template type argument. For example, to instantiate List<String>, you 
might need List.h (template declaration file for List), List. c (template definition file for List), and 
String.h (argument declaration file for string).l 

Overall Instantiation Strategies 

The basic idea of template instantiation is that the linker figures out which template functions you used and 
for which argument types, finds the template function definitions, and generates the functions needed. This 
will work completely automatically provided that a class or template c is declared in a file f. h and its 
non-inline functions are defined in f . c. The following sections will describe template instantiation in 
detail, explain some of the design choices made, and show how the default conventions can be overridden. 

The instantiation schemes that we have seen so far fall into one of three families. Two of these use a reposi­
tory; this is conceptually an archive of template instantiations, although it need not be implemented as a 
UNIX™ system archive. 
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Instantiate as You Go 

Every compile is done with reference to a repository of existing template instantiations. When a reference 
to a template is compiled, the repository is checked to see if a valid instantiation for that template exists. If 
it does not, the template is instantiated (in a separate object file) and the result put into the repository. 

The advantage of these schemes is that the declarations of both the templates and the argument types are 
available (since the file that referenced the template must have had them available). This avoids problems 
with having to ugo back later" and find the template and argument declaration files. 

If the general version of a template does not compile, but a special case version (specialization) will be 
presented at link time, these schemes will still attempt to compile the general version and produce error 
messages. The user would have to know enough to ignore these messages, if and only if a specialization is 
going to be presented at link time. 

In addition, these schemes place severe constraints on makefiles. If a template declaration or definition, or 
an argument declaration, is changed, the makefiles must be smart enough to remove the changed instantia­
tions from the repository before any other source files are compiled to object files. In general this requires 
adding an extra dependency to every makefile rule. If the makefile has a bug, the application may appear 
to compile but would not link until the files that referred to the missing instantiations were recompiled 
(even though those files had not changed). Or worse, the application may fail at runtime because of an 
incorrect instantiation being used. This behavior is just too mysterious and error prone. 

Manual Instantiation 
With a manual instantiation scheme, the user is responsible for writing one or more files that specify 
exactly which templates are to be instantiated. Or the user might specify #pragma directives to achieve the 
same end. This may seem to be the easiest to implement; however, there is a snag. If a template Stack<T> 
uses List<T> in its implementation, how does the instantiation of Stack<T> cause List<T> to get instan­
tiated? 

One way is to force the user to ask for the instantiation of List<T>. This violates encapsulation: the user 
should not have to know that Stack<T> uses List<T>. 

Alternatively, the system could be smart enough to figure out that Stack<T> uses List<T>, and to instan­
tiate it if and only if List<T> is not instantiated anywhere else. However, if the system is smart enough to 
do this, it should also be smart enough to figure out which templates the user's code referred to! In this 
case it ought to be able to do instantiation automatically. 

The point is that a manual instantiation scheme that does not violate encapsulation must be smart enough to do 
automatic instantiation. There is no umiddle ground". We have therefore abandoned totally manual 
approaches. 
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Link- Directed Instantiation 

Every compile is done with a repository (or path of repositories) of existing template instantiations. Objects 
from this repository are linked when the linker is called. If the link fails because of unresolved references, 
run is, run on the output and a list of required template members is generated. These templates are then 
instantiated, added to the repository, and the link phase repeated until all needed templates have been 
instantiated. 

Why a repository? Instantiation of template functions for a large program can be a relatively slow process. 
It is therefore important that a function is not reinstantiated unnecessarily. The repository ensures that a 
template function is instantiated the first time a program using it is linked and after each change to the pro­
gram that affects the definition of a template function - and not simply at each compilation or linking. This 
implies that compiling a program for the first time and after a major change can be relatively slow but that 
a typical compile and link step is hardly affected by template instantiation overhead. 

These schemes have important advantages: 

• Only the template members that are used are instantiated. If a special case instantiation is provided 
at link time, no attempt is made to instantiate the corresponding general version. 

• Since the instantiation process takes place at link time, the repository only has to be updated by link 
time, not by the compile time of any source file that uses a template. This avoids complicating the 
makefiles. 

The disadvantages of link-directed instantiation are: 

• There must be a well-defined and easily understood set of rules that the instantiator uses to find the 
template declaration, template definition, and argument type declaration files. 

• References to templates that will not instantiate are not discovered until link time. We do not believe 
this is serious, especially since any apparent reference to a general template member may be a refer­
ence to a specialization provided at link time. Because of this, checking that a template is not bogus 
at the point of reference is not feasible. 

• The number of iterations needed to initially populate the repository can be large. If we examine the 
call graph of the final program, give every call of a template member or function template cost 1, and 
every other call cost 0, then the number of iterations is potentially the diameter of the resulting 
graph. (This is the longest of the shortest paths between every two nodes in the graph.) We do not 
have a good handle on how many iterations this will be, though observations from existing programs 
suggest an upper limit of 3-4 iterations in practice. However, to reduce the overhead, we will emu­
late some of the linker functionality in a upre-linker" to avoid the overhead of multiple links. This 
tool reads the symbol tables of the objects and archives, determining which unresolved references 
would draw in which files. It does not do any relocation. This allows us to only do one link at the 
end when we know that all the required instantiations are available. 

The remainder of this chapter describes our instantiation scheme. 
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Executive Summary 

This section gives a high-level overview of the instantiation process. Later sections will go into more detail. 

1. For all compilations, there is a current repository into which instantiations are stored. The instantia­
tion system modifies the repository but does not clean up obsolete files within it. 

2. When a C++ file that references templates is compiled, the references are compiled normally into 
external unresolved symbols, but nothing is instantiated. (Exception: a specialization of a general­
purpose template is compiled in the object file that it appears in, and is the same as a normal class 
declaration and implementation). 

3. Every class, union, struct, or enum that is declared is logged in a name mapping file in the current 
repository. The entry includes the type name and the basename (not full pathname) of the file in 
which the declaration appears; the basename-only rule is used to simplify moving applications from 
one directory to another. 

4. Every template that is declared is also logged in the name mapping file. Definitions of members of 
class templates are ignored; there is no use for individual member information. 

5. At link time, a pre-linker determines whether a link would succeed, that is, it looks at all the files and 
archives, and the current repository, to determine whether there are any referenced template symbols 
that are unresolved. Header caches are used to make sure that any instantiations in the repository 
that are out of date are not used. If there are no unresolved symbols, we do a link, and are done. 

6. If there are unresolved symbols, the instantiator builds a list of class templates and function tem­
plates that must be instantiated. For each template, the name mapping file is consulted to find the 
template declaration file, and the argument declaration files for all of the template arguments. 

Unless explicitly specified by the user (see the section below on overriding name mapping files), the 
template definition file is assumed to be the file with the same name as the corresponding template 
declaration file, except that it has a . c suffix. 

7. When templates are used, a -I path (the same one used for compiling) must be passed to the pre­
linker. This -I path is used to find the template declaration file, the template definition file, and the 
argument declaration files. If any of these files are not found, the link fails with an appropriate diag­
nostic. 

8. The template declaration file, the template definition file, and the argument declaration files are used 
to build a temporary instantiation file. The C++ compiler is then called to instantiate the template. 
The compile is done in directed mode; that is, the compiler is directed to only generate code for a 
specified list of symbols. If this is a class template, only the members that were needed are instan­
tiated. The resulting object file is added to the repository. 

9. Steps 6-8 are repeated for every template class or function that needs to be instantiated. 

10. When all the instantiations have been done, the pre-linker is called again. Since some of the new 
instantiations may refer to new symbols, this process may iterate (back to step 5). 
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11. The result of the pre-linker is a set of object files containing the instantiations. These objects are 
passed to the actual link step. 

The rest of this paper describes the process in detail, including the ways that users can exercise finer con­
trol over the instantiation process. 

Detailed Description of the Instantiation Process 

Repositories 

A repository is a UNIX1M directory used to store information about instantiations and types. It should not 
be confused with an archive library of object files. A repository pathname can be specified by the user at 
compile or link time. The default repository is a subdirectory of the current directory and is automatically 
created (but not automatically cleaned up). 

The repository contains several kinds of information: 

• Name mapping files that map a template or named type to the name of the file that declares it. By 
default, only the basename of the file (after stripping -I prefixes), not its full pathname, is stored. 

• Object files that contain template instantiations. 

• Checksum files containing a list of needed members for each instantiation. 

Compile-Time Actions 

The C++ compiler maintains a name mapping file, which records the name of the file in which a class, 
struct, union, or enum type is declared. The extraction of type information is done by the C++ compiler 
after preprocessing. The compiler relies on #line entries in preprocessor output to determine what source 
file is being translated. For all class, enum, and template types, the compiler notes the basename of the file 
currently being translated. Typedefs, except for typedefs of anonymous structs, are ignored because they 
are expanded to the underlying type, which is used to encode external names. Local and unnamed types 
are ignored, and only the outermost type in a nested type is used. 

For each type extracted, the name of the type and the basename of the file where it is declared is recorded 
in the name mapping files, together with the basename of the application file being compiled: 
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@dec Vector appl 
"Vector.h" 
@dec A app2 
<A.h> 

@dec B app2 
<A.h> 
@dec C 
"C.h" 
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The @dec keyword indicates a declaration. This file shows that template Vector is declared in Vector .h, 
class A is declared in A.h, and class B is also declared in A.h. The #include quote type is recorded with 
the file to preserve preprocessor semantics. 

The header basename is computed by comparing the pathname reported by the preprocessor against all the 
- I directives and deleting any prefix that matches. Sometimes this will result in a name such as 
sys/stat.h. 

Two application files appl and app2 are used in this example. Application file names are recorded to sup­
port the case where two applications share one repository. If no application basename is given, then the 
@dec entry is a default one that is used as a last resort; the fourth entry is an example. The type lookup 
algorithm is described in section 6.3. 

For function templates, the type name is the function name without arguments. For example: 

@dec f app3 
"f.h" 

for the function f (char*) that came from: 

template <class T> void f(T t)i 

Because arguments are not recorded, map file entries for function templates contain the union of all files 
where the template was declared. 

The name mapping files in the repository are not updated if the compile fails. If the resulting mapping 
files have multiple entries for the same type and application basenames, as in: 

@dec A appl 
<A.h> 
@dec A appl 
<B.h> 

then an error is given at pre-link time, if the type is needed (lazy type lookup). 

Also, if a header file previously existed in some of the entries in the default name mapping file, all the 
entries for that header are deleted before updating with new information. When a source file is compiled a 
list is made of all headers it contains. Each entry in the map file that has one of the same headers, and that 
contains a matching application name, is deleted before new entries are added. This tends to reduce the 
buildup of garbage. 

User Overriding of Name Mapping Files 

The compiler automatically generates its own name mapping files. However, users can override these 
name mapping files for special cases by writing their own. For instance, suppose that use of class A 
requires that both A. hand B. h be included, in that order, for the declaration to compile. Then the user­
specified name mapping file must read: 
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@dec A 
<A.h> 
<B.h> 

Users can also override the rule that the name of the template definition file is the name of the template 
declaration file, except with a . c suffix, by placing a @def directive in the name mapping file: 

@dec List 
"List.h" 
@def List 
"List_impls.c" 

Here template List is declared in List. h, but the definitions of its members can be found in 
List_impls . c. The compiler never generates @def directives automatically. 

User-specified type information is given in nmapXXX files (such as nmap037), while automatically generated 
information is in defmap ones. nmapXXX files are considered in alphabetical order. 

Auto-generated name mapping files have only the basename of the header file. User-specified ones may 
have arbitrary pathnames, though the standard -I convention is followed and recommended for ease of 
moving application code. 

User-specified map files have precedence over the auto-generated one, if the application basenames match 
at type lookup time. The exact order of type lookup is: 

• Try to find matching type/basename in user-specified files. 

• Look for a default @dec entry in user-specified files. 

• Try to find matching type/basename in auto-generated map file. 

• Look for a default @dec in auto-generated map file. 

• If not a template type, generate a forward declaration. 

• If a template type T, assume it is declared in T.h and defined in T. c. Issue a warning. 

Link-Time Actions 

At link time, the name mapping file must be up-to-date and available to guide instantiation. Before linking, 
the compiler needs to determine what, if any, instantiations are necessary, and generate them as object files 
to be fed into the actual link. If the repository is empty or does not exist, no pre-linking is done, and the 
non-template case therefore incurs no extra processing time. 

The first st~ in the process is to determine what external symbols are unresolved in the application. Stan­
dard UNIX linking calls for object files to be unconditionally linked, while object files in an archive are 
linked only if symbols from them are needed. It is therefore not enough to scan all objects and archives 
looking for unresolved symbols, since that would result in instantiations being done for symbols that are 
never linked. One solution to the problem is to actually link the program and see what symbols show up 
as undefined. This is expensive. 
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So, instead of linking, we simulate the link, by running nm on all objects and archives, and then perfonning 
the symbol table actions such as would be done in a real link. This approach is much faster than linking, 
because only the symbol tables of objects and archives must be read; no relocation is done. 

Partitioning Symbols and Granularity 

The output of the process so far is a set of symbols that are unresolved and for which we must provide 
instantiations. We screen the set to eliminate non-template symbols, which are assumed to be defined 
somewhere else. Function templates are encoded just like C++ functions, and so are considered for instan­
tiation only if found in the map files. 

Given a list of symbols, we pick apart the symbol names, which encode the template name and argument 
types, and partition the list according to a desired level of granularity. 

By default, all needed symbols for a given template class are instantiated into a single object file. Alterna­
tively, one can specify that each member function for a template class be instantiated in its own object file, 
with all virtual tables and virtual functions for the class being instantiated into a single object file as well. 

Instantiating all symbols in a single object file results in much shorter instantiation times, especially if there 
is extensive template use in an application. By contrast, instantiating each member function in a separate 
object file makes it easier to build libraries that can be shared, but can easily cause instantiations that 
involve hundreds of compiles, especially when the repository is populated for the first time. 

Creating the Instantiation File 

For each partition of the symbols we create the instantiation file with an internally generated name. It is a 
file that includes all the headers necessary to fully define a template class or function. That is, the file will 
#include the template declaration file, then the template definition file, and then the argument declaration 
files, in the order that the arguments appear from left to right. (Exception: no file is included more than 
once). For example, given the name mapping file: 

@dec Vector app4 
<Vector.h> 
@def Vector app4 
<Vector2.c> 

@dec A app4 
<A.h> 
@dec B app4 
<A.h> 

and an external unresolved symbol 

Vector<B>::f(int,B) 
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we would come up with a file: 

#include <Vector.h> 
#include <Vector2.c> 
#include <A.h> 

If the type is not found in the name mapping files, it is assumed to be an incomplete type used as the base 
type of a pointer or reference. For example, for the template class Vector<A*>, with A not previously seen, 
the instantiation file would be: 

#include <Vector.h> 
#include <Vector2.c> 
struct A; 

Naming the Instantiation File 

Object files stored in the repository are the result of instantiations that are done for particular combinations 
of templates and arguments. Each object file has a checksum file stored with it. Depending on naming 
conventions used, an object file and its associated file containing the checksum will have names like: 

or: 

Vector--pt __ 4_ilA.o 
Vector--pt __ 4_ilA.cs 

pt06717175.o 
pt06717175.cs 

for a template class Vector<int,A>. 

The first case is used when the operating system supports long names, while the latter convention is used 
for ones that do not; a hash code of the encoded template class name is used. 

Dependency Management 

When a template definition or declaration file, or an argument declaration file, is changed, the instantiations 
that used these files become out of date. We must have some way of detecting this case and redoing the 
instantiation. The alternative of recompiling all such files at each link is too expensive. On the other hand, 
a naive scheme, such as not recompiling any instantiation file for which an object already exists, is prone to 
mysterious errors if an instantiation becomes out of date and is not detected. 

For each instantiation file there is a set of unresolved symbols that came from the partitioning described 
above. If there is no object file in the repository for this instantiation file, or if that object file does not 
define all the symbols that are needed, the instantiation file is recompiled, with the result replacing the old 
version in the repository. 
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If, on the other hand, there is an object file that defines all needed symbols, we then have to decide whether 
it is up to date, that is, whether any of the header files it included when it was made have changed. To 
detect changes, a header cache scheme is used. The preprocessor is run on the instantiation file to compute 
a list of all headers upon which the instantiation depends. The list is stored in the repository with the 
instantiation, and updated as needed when headers change. The instantiation object is out of date if its 
timestamp is older than any of the headers upon which it depends. 

To determine whether the instantiation defines all the needed symbols, a sorted list of symbols (that will be 
used for directed instantiation) is included in the checksum file. 

Di rected Instantiation 

If the dependency analysis determines that recompilation is necessary, the instantiation file is compiled in 
directed mode, with user-specified -I and -D options to name header file directories. The C++ compiler is 
passed the instantiation file as a normal source file, along with a list of symbols to be instantiated. No code 
is generated for other symbols; in a typical case the resulting object file will contain a subset of the func­
tions defined for a particular template class. 

Growing Instantiation Files 

When using class-level granularity (all the needed members of a class template are in a single object file), a 
situation can arise where a subset of the members is initially instantiated, but a later iteration of the process 
expands the set of members that are required. In this case, the instantiator will remove the old object file 
from the repository, and reinstantiate the entire object file, including the members that were in the original, 
plus the new members that needed to be added. 

Actual Linking 

After all the instantiation files have been compiled, we are left with a set of objects for them plus all the 
application objects and archives. Actual linking cannot yet be done, because the instantiations may have 
created a need for additional symbols. To handle such a case, the symbol tables of the object files are 
extracted and the whole process repeats. 

When the pre-linker is satisfied that all the required symbols are present, then the actual link is performed. 

Multiple Repositories 

To support large projects, the above scheme is extended to handle more than one repository. Team projects 
often have a central set of standard versions of source files and headers, with the ability for team members 
to override these versions with local copies of files. The multiple repository scheme is intended to support 
such usage. 

At compile time, only one repository is recognized. At link time, the first repository specified is considered 
writeable, while all others are read-only. Any default repository is ignored if a repository is explicitly 
named. 
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Type lookup in map files follows the algorithm in the section above on user overriding of name mapping 
files, except that the algorithm is applied in total to each repository left to right until the type is found. 

For instantiation object files, the search is also left to right until an object file is found that defines all 
required symbols and that passes the dependency checks. If the object file is not found, the instantiation is 
done into the first, that is writeable, repository. 

Repository Locking 
A repository may be shared by several people in a team of programmers. If several of them simultane­
ously try to link, and instantiation takes place in the repository, chaos will result. Therefore a locking 
scheme using standard UNIX™ system calls is implemented, with stub functions provided for custom lock­
ing implementations. If a repository is locked other users wait in an idle loop until it is free. Only the first 
repository (the writeable one) is locked. 

Performance 
Performance at compile time (updating the map files) is not significantly affected by this scheme. Extract­
ing type information and updating the repository is an efficient operation. 

There is substantial cost in determining which template symbols are unresolved. However, since the alter­
native might be several actual links, this is a reasonable expense. 

Binary sizes are optimal, except for virtual functions in a template class; they are always instantiated, 
because there is no static way to tell if they are used. This is no different from the non-template case. 

The biggest performance issue (beyond instantiation) is that of iteration at link time as instantiations create 
demand for more symbols. The initial scan of an application might determine that Vector<A> : : f is 
needed, and when it is instantiated, it requires Vector<A>: : g, and so on. There is not a completely clean 
solution to this problem, except to note that once templates and the headers describing template arguments 
are in a steady state, the repositories will be up to date, so a full-blown instantiation will rarely be neces­
sary. 

Limitations of Our Approach 

The most obvious limitation is that of type name mapping. The fully automated scheme requires that a 
type be described in a single header that is self-contained or that includes the other headers that it needs. 
The user can override the default and specify arbitrary lists of header files for a single type. 

This scheme does not handle local types, that is, types defined within a function. The problem is that rees­
tablishing the context at link time for such a type is difficult at best. There is no way to recreate the scop­
ing and other information for the function that the type appeared in. 

Finally, our approach does not handle static data defined in template definition files. For example: 
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static int x = 83i 
template <class T> void Vector<T>::f() {int y = Xi} 

template <class T> void Vector<T>::g() {int z = Xi} 

In this example, two template functions wish to share a file static x. Since the functions may be split up at 
instantiation time, there is no way to handle this other than by making the file static into a global with 
some internal naming convention. 

Other Approaches to Instantiation 

Replaying Source Files 

A variant to the above approach is replaying source files. That is, at link time determine what application 
source file uses a particular template symbol. Such a file must by definition have all the required type 
information available to it except for the template definition file. If the template definition file can be pro­
vided, the source file can be replayed, that is, all the functions and data ignored and only the types 
accessed. 

This scheme is somewhat more flexible in its handling of types, with name mapping files no longer 
required. However, a different set of problems arises. One has to be able to determine the source file that 
the object file was created from. Another problem is performance; a source file after preprocessing may be 
a megabyte or more in length, and it is expensive to replay. 

Preprocessor Macros and Pragmas 

These manual schemes suffer from the disadvantages listed in the section above on manual instantiation. 

Carrying Headers Along 

One way to recover type information at link time is to carry all the required information along in the repo­
sitory. That way, one does not have to worry about whether headers are available at link time. However, 
this approach has a very significant size cost. An alternative would be to Hdigest" the header and abstract 
its type information, but even this would result in large files. 

Summary 

We are aware of no template instantiation scheme that does not involve many tradeoffs. The above 
scheme, with its slight restrictions on header file usage, seems to offer the best compromise between ease of 
use, ease of implementation, portability, and performance. 
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Glossary 

archive - a collection of object files typically grouped using the ar command. At link time, only object files 
that have needed symbols are extracted from the archive. 

argument declaration file - a file containing the declaration of a class, struct, union, or enum type. 

basename - the part of a UNIX™ pathname after the last /. 

class template - a template that describes a family of types. 

directed mode - a compiler mode that is used to generate an object file with certain specified template sym­
bols defined in it. 

external symbol - a name of a function or data item in an object file that is available to other object files to 
link against. 

function template - a template that describes a family of functions. 

header cache - a file in the repository used to store the list of headers needed by each instantiation. 

instantiate - to form an instantiation by binding a template to particular argument types. 

instantiation - a generated class or function that is the result of binding a template to particular argument 
types. 

instantiation file - a source file that is compiled in directed mode to produce an object file instantiation. 

library - same as archive. 

name mapping file - a text file that describes which header files in an application define particular class, 
enum, and template types. 

pre-linker - a tool that examines unresolved template references in object files and archives and creates an 
additional set of object files that resolve those references; the additional objects are fed into the link step. 

repository - a directory that stores instantiations as object files, together with name mapping files. 

specialization - an instantiation of a template class or function template that overrides the standard version. 

template - a skeleton or description for a family of types or functions. 

template argument - a type or constant specified to a template to distinguish a particular usage of the tem­
plate. 

template class - an instantiation of a class template for particular argument types. 

template declaration file - a header file that declares a template interface. 

template definition file - an implementation of a template's functions. 

template function - an instantiated function template. 

timestamp - the date and time a file was last changed. 

7-14 Selected Readings 



Footnotes 

1. While we are using file names that correspond to the class names, the instantiation scheme cannot 
force such a relationship between a class name and the name of the files that declare and/or define 
it. For example, a scheme that requires the declarations or definitions of String to be in String.h 
and String. c is unacceptable, because such a scheme makes it impossible to declare or define two 
templates in the same file. This scheme also obviously falls short in reflecting real-world naming 
conventions. 
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~ This chapter is taken directly from a paper by Glen McCluskey. 

y 
Introduction 

This chapter presents detailed information on use of the template instantiation environment with C++ 
Release 3.0.1. It assumes familiarity with the template section of The Amwtated C++ Reference Manual (M.A. 
Ellis and B. Stroustrup, Addison-Wesley, 1990) and Chapter 7 of this document Template Instantiation in C++ 
Release 3.0.1 - Overview. 

Getting Started 

Suppose that you want to use vectors in an application, but find that the builtin ones in C++ are too restric­
tive. For example, they do not grow dynamically as new elements are added. 

A first attempt to define a vector template might look like this: 

template <class T> class Vector 
T* data; 
int size; 

pUblic: 
Vector () ; 
T& operator[] (int); 

} ; 

This declaration has two private data members data and size and two public functions operator [] and 
the constructor. There is one argument T to the template. 

Assume that the declaration of the Vector template is in a file Vector. h. Then the implementation would 
be in a file Vector. c and would look like: 

template <class T> Vector<T>::Vector() 
{ 

II start off with 10 elements 

size = 10; 
data = new T[size]; 

Template Instantiation - User Guide 8-1 



Template Instantiation in Ct+ Release 3.0.1 - User Guide 

template <class T> T& Vector<T>::operator[] (int n) 
{ 

int os; 
int i; 
T* newdata; 

II grow if have to 

if (n >= size) { 
os = size; 
while (size <= n) 

size *= 2; 
newdata = new T[size]; 
for (i = 0; i < os; i++) 

newdata[i] = data[i]; 
delete data; 
data = newdata; 

II return reference to data slot 

return data[n]; 

Note that the implementation looks much like regular C++ code. The one difference is that the code is 
parameterized, that is, the implementation is relative to a type that is unknown but represented by T. 

Finally, there is an application that uses this template: 

8-2 

#include <stream.h> 
#include "Vector.h" 

main() 
{ 

Vector<int> v; 
int i; 

II put data into vector 
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for (i = 1; i <= 15; i++) 
v[i] = i * i; 

II pull it back out 

for (i = 1; i <= 15; i++) 
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cout « i «II 11« v[i] « II \nll; 

Note that the Vector template has a type int substituted for the T we saw earlier. Note also that the vec­
tor v can be used transparently, without having to worry about increasing its size. 

To compile this application, one would say: 

$ cc appl.c 

After appl . c is compiled, the cc compiler will go on to create an object file for the template class (template 
plus particular arguments) Vector<int>. The object will contain the members Vector<int>: : Vector () 
and Vector<int>: : operator [] (int). This process is known as instantiation. 

To get an idea of the actions the compiler took, you can look in the repository, the area where the compiler 
stored the object file: 

$ Is ./ptrepository 

Besides the object file, there will be a . c (instantiation file), a . cs (checksum file), and the name mapping 
file defmap. 

Coding Conventions 

This section gives recommendations about how an application's files should be structured to make best use 
of templates. 

Argument Declaration Files 
An argument declaration file is used to declare types used as arguments to a template. For example, for 
the template class Vector<A, B**>, A and B are the underlying argument types. Fundamental types require 
no special declarations; for example, the types int or unsigned short*. 

An argument type should be declared in one header file that is either self-contained or that includes other 
headers that it needs. If this is not possible then a map file needs to be written (see the section on map 
files, below). It is acceptable to have several types defined in one header. An example of a self-contained 
header would be: 
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#ifndef INCL_A 
#define INCL_A 
class A { 

int Xi 

pUblic: 

} i 

#endif 

void f 0 i 

void gO {} 

while one with other includes might look like: 

#ifndef INCL_A 
#define INCL_A 
# include II Point. h II 
class A { 

Point p [10] i 

pUblic: 

} i 

#endif 

void rotate(int)i 

INCL_A is an include guard, used to prevent the same file from being included more than once. Use of 
include guards is strongly recommended when writing template header files. 

The C++ compiler extracts type information from headers and remembers it so that the instantiation pro­
cess can get it back when needed. If a type has not been previously seen it is possible to use it only as a 
pointer or reference type, for example Vector<A * , B&>. 

Template Declaration Files 
A template declaration file is used to declare a template. It is like a class declaration in that the function 
and data members are laid out in the normal way. For example, a declaration file could contain: 

template <class T> class AAA { 
T Xi 

int Yi 
public: 

} i 

void f 0 i 

void g(T&) i 

For function templates a forward declaration is used: 

template <class T> void sort(T*, int n)i 
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Function template external names resulting from instantiation are encoded the same as C++ functions. As 
such, a map file entry is the only way the instantiation system knows that an unresolved symbol might 
represent a template needing expansion, and the map file entry is created when a forward declaration is 
seen. 

The template declaration file is the only template header file included by the user application; template 
definition files discussed in the next section are automatically included at instantiation time. 

Like argument declaration files, a template declaration file should include header files it needs for types it 
uses. However, headers for types used as template arguments or the definition of the template itself 
should not be included, since these are handled automatically by the instantiation system. 

Template Definition Files 

The template definition file contains the implementation of a template. By convention, it is assumed that 
the definition file has the same name as the template declaration file, but with . c substituted for . h in the 
name. The case of the extension is preserved across the substitution. For example, . H is replaced with . c. 

This convention can be overridden by map files (see the section below on map files). If the example of the 
previous section was declared in AAA. h, then the definition file would be AAA. c, and would look like: 

template <class T> void AAA<T>::f() { /* ... */ } 

template <class T> void AAA<T>::g(T&) { /* ... */ 

A definition file should not include the declaration file that matches it or the argument files that declare 
any template argument types. However, if include guards are consistently used, such inclusion is harmless. 
Including a guarded template definition file in a template declaration file will cause the definition file to be 
typechecked at application compile time, at the expense of a slower compile. 

There must be a definition file for each declaration one, or else a map file written to override the standard 
convention. For a template type T, the declaration and definition files T. hand T. c are assumed if the files 
cannot be otherwise found. If a template definition file does not exist along the - I path, a warning is given 
and the file not included. All other missing files will cause a preprocessor error at instantiation time. 

Inline Functions 

Inline template member functions are treated similarly to their class counterparts. An inline can be 
declared and defined in the template declaration: 

template <class T> struct A { 
void f ( ) { / * ... * / } 

or in the definition file: 

template <class T> inline void A<T>::f() { /* ... */ } 

Template Instantiation - User Guide 8-5 



Template Instantiation in Ot+ Release 3.0.1 - User Guide 

The inl ine keyword is mandatory if the inline is defined outside the template declaration; if not used, the 
member will not be inlined. 

~ In release 3.0, the inline must be defined in the template class body. 

y 
Types Defined in Application Sources 

The instantiation system is best suited for types defined in header rather than source files. If you want to 
define types in source files, it is best to do it all or none. That is, fully define all templates and template 
argument types in one source file, or else define them all in headers. 

Data and Functions in Template Files 

Template declaration and definition files are header files, and should be treated as such. This means, for 
example, that a function or data item defined in such a header will probably be laid down in several instan­
tiation files, leading to linker conflicts. 

A static function Oocal to the file) will be duplicated in each instantiation. This is functionally correct but 
wasteful of space. 

Static data items, as in: 

static int Xi 

template <class T> int A<T>::f() 
{ 

int Y = X++i 

return Yi 

are not supported, in part because it is not clear what such usage really means. The template definition file 
may be used several times, and the X variable is no longer local to the file. Static class members are a 
better choice in this case. 

Summary of Coding Conventions 
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• Headers should be guarded against multiple inclusion. 

• A header describing a type should be self-contained or include with include guards other headers 
that it needs. 

• The name of a template definition file should be the same as the template declaration file, with .h 
replaced by .c. 
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• Function templates need a forward declaration. 

All the following restrictions can be gotten around by use of map files. 

Map Files 

A map file can be used to overcome the restrictions noted in the previous section. The default map file is 
defmap in the repository, with defmap. old the previous version that is created every time the map file is 
rewritten. User-specified files start with the string nmap and are also placed in the repository. User­
specified files take precedence over the default and are considered in alphabetical order. For example, 
runapO 0 1 is looked at before runap2. 

A map file entry might look like this: 

@dec Vector appl app2 
<Vector2.h> 
@def Vector appl app2 
<Vector2a.c> 
<Vector2b.c> 

This says that type Vector is declared in Vector2 . h and defined (implemented) in Vector2a. c and 
Vector2b. c; the headers have standard #include semantics as specified by the type of quotes on the 
header name. The type is valid for the application files appl and app2 (whether in source or object form, 
for example appl.c or app2.0). 

Application files are recorded to handle the case where there are distinct applications sharing one reposi­
tory. It is also possible to have map file entries with no application files specified; these entries serve as a 
last resort if the type cannot otherwise be found. Long lists of application names can be continued onto 
multiple lines by using the backslash character at the end of the line. 

If only one of the @dec and @def entries for a type is specified in the file, then standard naming rules are 
used to derive the other header names. For example, without the @def entry above, the instantiation sys­
tem would infer that Vector is defined in Vector2 . c. 

When the instantiation system writes the default map file, it compresses it by using a string table at the top 
of the file: 

@tab 
appl 
app2 
app3 
app4 
@etab 
@dec A @O @2 

<A.h> 
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and then references application names using the notation @nnn. This notation is not required; you can spell 
out the application names. 

In map files, operator function templates are encoded as described on page 125 of The Amwtated C++ Refer­
ence Manual. For example, operator« comes out as _Is. Note that function template types are recorded 
without argument information. This effectively coalesces overloaded functions into a single map file entry. 

CC Options 

The template instantiation system adds several options to CC. These are specified on the CC line or by set­
ting the environment variable PTOPTS. For example, to permanently enable verbose mode, you would say: 

export PTOPTS=-ptv (SysV) 

setenv PTOPTS -ptv (BSD) 

-pta says to instantiate a whole template class rather than only those members that are needed. There are 
performance issues around this discussed below. 

-ptn changes the default instantiation behavior for one-file programs to that of larger programs, where 
instantiation is broken out separately and the repository updated. One-file programs normally have instan­
tiation optimized so that instantiation is done into the application object itself. The process is described 
below in the section on usage scenarios for simple programs. 

-ptrpathname specifies a repository, with. /ptrepository the default. If several repositories are given, 
only the first is writeable, and the default repository is ignored unless explicitly named. 

-pts causes instantiations to be split into separate object files, with one function per object (including over­
loaded functions), and all class static data and virtual functions grouped into a single object. 

~ In release 3.0, -pts and -pta cannot be used together, that is, -pts can only be used to split up needed 9 functions rather than all functions. 

-ptt was used in Release 3.0 to alter dependency checking. It is now (Release 3.0.1 and later) an obsolete 
option. 

-ptv turns on verbose or verify mode, which displays each phase of instantiation as it occurs, together with 
the elapsed time in seconds that phase took to complete. Use of this option is recommended if you are 
new to templates. With verbose mode, the reason an instantiation is done and the exact cc command used 
are displayed. 

The preprocessor directives -I and -D work as they normally do, but must also be specified at link time, to 
pick up the various template and application type header files. 
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+ i is not changed from previous usage. It causes the instantiation system to leave .. c files in the reposi­
tory. 

Usage Scenarios 

This section describes how the instantiation scheme can be used for different types of projects. 

Simple Programs 

By default, a one-file program that is to be compiled and linked (no -c option) causes the C++ compiler to 
instantiate everything it can into the object file for the program. This means that the link-time instantiation 
system is bypassed, if all templates and argument types are found within the program itself. This behavior 
can be disabled via the -ptn option, that is, the instantiation system will kick in even for simple programs. 

Small and Medium Projects 

A small project often operates out of one directory and with a single developer. Suppose that such a pro­
ject wanted to use some templates from a directory of template headers /usr/local/template/incl. This 
would be done by saying: 

$ cc -I/usr/local/template/incl -c filel.c 

and at link time: 

$ Cc -I/usr/local/template/incl filel.o file2.0 -0 prog 

with the - I directive required for the instantiation mechanism. The repository used here would be the 
default. /ptrepository. 

If there is more than one project in a directory, it is better to use an explicitly-named repository: 

$ mkdir repl 

$ cc -I/usr/local/template/incl -ptrrepl -c filel.c 

as a means of better separating one project from another. 

RepOSitory Permissions 

When the default repository is created, it is given the same permissions as the directory it is created within. 
This is done with the chrnod system call, with a fatal error given if it cannot be done. The instantiation sys­
tem also tries to change the group of the created directory using ChOWl1, but it is not a fatal error if this can­
not be done. Permissions of already existing repositories are never changed. 

After possibly setting directory permissions, the file creation mode mask is set using the system call umask; 
this is done by taking the 1's complement of the directory permissions. 
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What all this means is that a repository will be created with the same access as its parent directory, and 
files that are created in the repository will reflect this access. If a repository is to be shareable it must be 
explicitly changed to be so: 

$ chmod 775 ptrepository 

or it must be implicitly created in a directory with such permissions. The instantiation system deletes files 
in the repository before rewriting them, so if a repository has files in it and then the repository's permis­
sions are changed, no access problems will come up. 

Another approach is for team members to set the default creation mask at the shell level: 

$ UI'Cask 002 

Large Projects and Multiple Repositories 

A large project often has the notion of a centralized set of files (sources, objects, libraries) plus a local work 
area for each developer. The idea is that the developer can use a combination of files from the central area 
plus the local one. 

The best way to model this type of development is by multiple repositories. The instantiation system looks 
first in the local repository and then the central one, both for map files and instantiation objects. With such 
a scheme, a typical compilation line would read: 

$ CC -I/usr/jones/tincl -I/usr/proj/tincl -I/usr/jones/incl \ 
-I/usr/proj/incl -ptr/usr/jones/rep -ptr/usr/proj/rep -c file.c 

Repository Management 

The instantiation system adds to the repository but does not delete from it. Maintenance must be done by 
the user. For example, a make rule to completely delete the repository after a compile and link would look 
like: 

appl: appll.o app12.0 
CC appll.o app12.0 -0 appl 
r.m -rf ./ptrepository 

Of course, with this rule, instantiation must be repeated at every link. 

Sharing Code and Use of Archives 

Instantiations in a repository are simply object files, that are easily exportable into an archive. For example, 
with the default repository one can say: 

$ ar cr projlib.a ./ptrepository/*.o 
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Such an archive mayor may not be useful to other projects. By default, the system instantiates only what 
an application needs, and thus the object files will not contain all members of template classes. Another 
project with different needs will not be able to use such objects. Use of the -pta option (instantiate every­
thing) will solve this problem at the expense of wasted binary size. A reasonable strategy might be to ini­
tially use -pta and tum it off later in a project cycle. 

The option -pts may also be useful. It causes the instantiation system to split up instantiations, one func­
tion per object file. This reduces problems with object files clashing because they contain different but over­
lapping subsets of symbols. 

Libraries 

By the term library is meant a collection of object files, also known as an archive. This term is also used to 
denote collections of template headers, but such usage is confusing and not further discussed here. 

Suppose that one has a library that uses templates, but end users of the library do not know or care about 
templates. How can the instantiation process be avoided for those users? The answer is to preinstantiate 
or form the closure of the library, that is, instantiate everything into object files and add the objects to the 
library. 

To do this for a library /usr/proj/lib.a, one would say: 

$ mkdir scr 
$ cd scr 
$ ar x /usr/proj/lib.a 
$ CC -pts -I/usr/proj/tincl -I/usr/proj/incl *.0 
$ rm -f /usr/proj/lib.a 
$ ar cr /usr/proj/lib.a *.0 ./ptrepository/*.o 

This process will cause a link error from cc (because there is no main function) that can be ignored. -pts 
is specified so that the instantiation objects are split apart into separate files, which minimizes external sym­
bol collisions when objects are linked with an application or another library. 

Note that object file names in the repository may be longer than the 14 characters that ar will handle. The 
solution is to rename object files; a tool for this purpose is described in the section below on tools. 

Dependency Checking 

The instantiation system computes for each instantiation object the set of headers upon which it depends. 
This is done by running the preprocessor on the instantiation file. This set is called a header cache and is 
stored in the repository. It is updated when headers change. 

An instantiation object is considered out of date if its timestamp is older than any of the headers in the 
cache for that object. This scheme is very similar to make, but does not require the user to express instan­
tiation object dependencies in a makefile. 
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Sometimes it is desirable to get around dependency checking. To force reinstantiation, it is sufficient to 
simply delete all object files in the repository. The standard make trick of using touch to update the source 
or object modification times can also be used. For example, touching all object files in the repository will 
force off instantiation. 

Specializations 
A specialization is a means of overriding the standard version of a template class or a particular member of 
the class. This is done to get slightly different semantics or for performance. To illustrate how specializa­
tions work, consider this example: 

8-12 

II tl.h 
II A template 
template <class T> struct A { 

int f 0 ; 
} ; 

II t2.h 
II B template 
template <class T> struct B { 

int f 0 ; 
int gO; 

} ; 

II t3.h 
II f template 
template <class T> int f(T); 

II tl.c 
II implementation of A 
template <class T> int A<T>::f() 
( 

return 37; 

II t2.c 
II implementation of B 
template <class T> int B<T>::f() 
( 

return 37; 

template <class T> int B<T>::g() 
{ 

return 37; 
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II t3.c 
II implementation of f 
template <class T> int f(T t) 
{ 

return 83; 

II A.h 
II class specialization of A 
struct A<int> { 

int f () ; 
} ; 

II A.c 
II implementation of A<int> specialization 
#include "tl.h" 
#include "A.h" 
int A<int>:: f () 

return 47; 

II B.c 
II specialization of B<int>::g() - B<T>::f() unaffected 
#include It2.h" 
int B<int>: :g() 

return 47; 

II f.c 
II specialization of f 
#include It3.h" 
int f(int t) 

return 57; 
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II main.c 
#include "tl.h" 
#include "A.h" 
#include It2.h" 
#include It3.h" 
extern "e" void exit(int)i 
main () 
( 

A<int> ai 

B<int> bi 

if (a.f() 1= 47) 
exit(l)i 

b.fO i 

if (b. gO 1 = 47) 
exit(2)i 

f(1234L)i 
if (f(83) 1= 57) 

exit(3)i 
exit(O); 

There are three templates A, B, and f. The template class A<int> is completely specialized by the declara­
tion and definition in A. h and A. c. B. c defines a specialization for B<int>: : g, and f. c a specialization 
f (int). Note that when a complete template class is specialized, the class must be defined before use. 

To compile and link this application, one would say: 

$ ee -c A.c 
$ ec -c B.c 
$ ee -c f.c 
$ ee main.c A.o B.o f.o 

The compiled specializations must be placed on the link line to prevent the general versions from being 
instantiated at link time. For example, if f .0 had not been placed on the ee line, the specialized version of 
f (int) would not have been used. 

Specialization of static template class data members is done in a similar way. A template declaration may 
provide a general template initializer: 

template <class T> int A<T>::x = 97; 

To specialize this, one would say: 

int A<int>::x = 52; 
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somewhere in the application. 

Debugging Instantiations 
A debug option such as -g is passed by cc through to ptlink to the call to cc to instantiate. Debugging is 
therefore automatically enabled for instantiations. 

One thing can go wrong with debugging, however. If a repository pathname is specified, and it is not fully 
qualified, then the debugger will fail to find the source files if the application binary is moved relative to 
the repositories used to build it. This is easily fixed by giving full pathnames for repositories. For exam­
ple: 

$ CC -ptr/usr/xxx/ptrepository appl.c 

There may be problems with individual debuggers, however. If you set a breakpoint on a source line of a 
template definition file, this sets up a many-to-one relationship between the instantiations and the source. 
For example, the instantiation objects for Vector<A> and Vector<B> will both refer to the header file 
Vector. c. Another way of saying it is that there is no current way to debug individual instantiations. 

Performance 

Performance of the instantiation scheme is almost purely a function of how much instantiation is done. 
Manipulating map files and other housekeeping contributes little to the total cost. 

The simplest way to cut down instantiation costs is to avoid instantiation. This is done by anticipating the 
need for template classes, and supplying them in archive (library) form at link time; object files could be 
migrated out of the repository into an archive for this purpose. This implies that such template classes 
change infrequently. If template classes do change frequently, there is an intrinsic cost to be paid in rein­
stantiation. As a rule of thumb, migration should be considered if there are more than about 15 - 20 objects 
in the repository. 

Another important aspect of performance is minimizing iteration during instantiation. For example, with 
the default behavior of instantiating only what is needed, a member A<int>: : f might be needed in an 
application. This member may in tum need A<int>: :g, causing another iteration to occur in the instantia­
tion loop. In general there is no way to determine in advance what the instantiation dynamics will be, 
short of an intimate understanding of one's application. 

The compiler option -pta can be used to instantiate a whole template class rather than simply those 
members that are needed. This will prevent iteration on the class members, but may cause another type of 
iteration, where unused members cause a demand for members of some other template class. Some experi­
mentation will be necessary to determine the best option to use in a given case. 
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Streamlining the Non-template Case 

There is no easy way to tell whether an application uses templates, so the instantiation mechanism must 
cast its net widely. If the default repository exists and has a non-empty defmap file in it, the pre-linker is 
called. 

The pre-linker in tum calls nrn for each object and archive. If this does not tum up any unresolved tem­
plate symbols, linking is then done. So in the worst non-template case run is called once for each file. 

The simplest way to avoid any overhead at all is to delete the default repository from the current directory. 

Interpreting Errors 

Errors and warnings coming from the instantiation system will have either the string: 

CC[ptcomp] 

or the string: 

CC[ptlink] 

in front of them. Other errors will be from the C++ compiler itself or the linker. 

What Can Go Wrong 

Timestamps on Networks of Workstations 
Like make, dependency analysis relies on modification timestamps to determine if an object file (an instan­
tiation) is out of date. If you have a network of workstations, it is possible that timestamps will be out of 
sync because file modification times may be set from different clocks on different file servers. In such a 
case timestamps will not compare and dependency checking will not work correctly. 

There is nothing that the instantiation system can do about this problem. It must be solved by system 
administration. There are often schemes available to continually synchronize workstation clocks with each 
other. 

External Name Length Limitations 
The instantiation scheme examines the symbol tables of object files to get a list of template symbols used to 
drive the instantiation process. These symbol names must fully describe the template class used by a given 
function or data item. Some systems have a name length limit of 8 or 32, which will not work. Other sys­
tems have a limit of 256, which is usually adequate. 

Note that typedefing a long class name or template class name to shorten it will not fix this problem, since 
the typedef name is expanded to the underlying types when external names are encoded. 
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Map File Problems 

A map file contains type/header pairs for one or more programs. For example, an entry such as: 

@dec T appl app2 
"U.h" 

says that type T is defined in U . h and is valid for the files appl and app2. 

If you have many distinct programs that use the same type names, then the default map file will become 
very large. This is only likely to occur if there are many programs in one directory, for example, test cases 
that all use the type T. The map file can be compressed using a string table (see the section above describ­
ing map files). 

Another problem is slowly accumulating garbage in map files. An effort is made to delete out-of-date 
information when a file is recompiled, but this process is not perfect. 

Violation of the One Definition Rule 

Because of separate compilation, the C++ compiler will accept usage such as: 

II file 1 
struct A {} i 

II file 2 
template <class T> struct A {}i 

even though this is a violation of the One Definition Rule. Because type mapping information is collected 
into one file, the instantiation system will catch many such errors. The form of the error is: 

fatal error: type A defined twice in map files 

Picking Up the Wrong Versions of Headers 

Some source code control and configuration management systems support named versions of source files 
and headers, and program compilation is done with particular sets of versions of files (a configuration). 
Template instantiation does not cause any problems with this, but one must be sure that the same versions 
of files are specified via - I at link time as are given at compile time. 

Replaying Source Files 

If a source file looks like: 

II rnain.c 

#include <Vector.h> 

struct A {}i 
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main () 
{ 

Vector<A> ai 

a.f() i 

and Vector.h does not have include guards, then it will end being included twice, once to get at the type 
Vector and once as an indirect result of including main. c to get at the type A. 

The workaround for this is either to use include guards or else completely define the types in main. c or 
completely define them in header files. 

Function Templates 
A function template is encoded just like a C++ function. At instantiation time there is no way to tell them 
apart. Therefore, the instantiation system tries to instantiate function templates only if an entry is found for 
them in the map files. This entry will not be there unless a forward declaration: 

template <class 1> void f(T)i 

has been seen. 

Another problem occurs if only a function definition is given in a single-file application, and then -ptn or -c 
is used to tell the instantiation system not to instantiate on the fly: 

template <class 1> void f(T) {} 

main () 
{ 

f(37)i 

$ CC -ptn prog.c 

Because there is no declaration, no entry is made in the map file, resulting in an unresolved global f (int) at 
link time. The workaround is to use a declaration or not use -ptn. 

Finally, a problem can occur with specializations of function templates and argument matching. Suppose 
that there is a function template: 

template <class 1> void f(Vector<T>&)i 

and a declaration of a specialization: 

void f (char*) i 
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Further suppose that the specialization is not defined anywhere and so is found to be unresolved by the 
pre-linker. The pre-linker will look for f in the map files and find it, and will therefore conclude that it is a 
template to be instantiated. It will then attempt to instantiate with a char* argument to the 
f (Vector<T>&) template, with disastrous results. 

Static Data Member Initialization 

The instantiation system considers that the tentative definition (global common) that the C++ compiler 
emits for each static data member of a template class represents an undefined external symbol that must be 
defined and initialized somewhere. For example: 

template <class T> struct A 
static int X; 

} ; 

by itself would result in an unresolved external. 

This usage follows the C++ standard, but the C++ compiler has not enforced it up to now. 

An initializer might look like: 

template <class T> int A<T>::x = 47; 

or: 

int A<char*>::x = 89; 

The first of these is a general template initializer, the second a specialization. 

Type Checking of Template Members 

By default, only members of a template class that are used are instantiated. Other members are not 
typechecked and therefore legally could contain errors. For overloaded functions, all versions of the func­
tion are instantiated so long as at least one of them is used. So if one overloaded function is called and the 
other contains errors, instantiation will not succeed. All virtual functions are instantiated because there is 
no way to tell whether they are needed. 

If you use the -pta option, or compile a one-file program, the C++ compiler will try to instantiate all 
members of needed template classes, with potential errors. 

run Problems 

The utility run is used to extract the symbol tables from objects and archives. There is at least one case 
where run can fail without it being a fatal error, and that is for an object file containing no functions or data. 
An run failure therefore elicits only a warning and not an error, with the contents of the object or archive 
ignored. 
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Another obscure problem comes up if main is defined in an archive rather than an object file; the start up 
program /lib/crtO.o is not considered in pre-linking, and thus there is no demand for main. 

Renaming Object Files 

The basename of an object file is used to validate type entries in map files. If the name changes, the type 
entry will be invalid unless other object files specified along with the renamed one are also found on the 
basename list in the map file. 

The simplest solution to this problem is to write a map file with a type entry containing no list of 
basenames (see description of map files above). 

Debug and Large Binaries 

The instantiation system creates one object file for each template class. With some debug formats, the 
linker does not merge duplicated strings and other debug information occurring in several object files. This 
can cause a large blowup in binary size. The problem has no easy solution. 

Source File Extensions 
When the instantiation system is built, the extensions for source, header, and object files can be specified, 
with defaults of . c, . h, and .0 respectively. Once configured, these extensions are fixed, with one excep­
tion. 

The exception is the rule that case is preserved when replacing a header extension (for a template declara­
tion file) with a source extension (for a template definition file). For example, if a template Vector is 
declared in Vector .H, then the definition is assumed to be in Vector .c. 

Tools 

Because the repository is a UNIX™ directory and the files in it are not special in any way, it is possible to 
use standard utilities in various ways to get at information. For example, consider a system that has only 
14-character filenames. Hash codes are used to name files in place of complete mangled names, and it 
would be nice to come up with a correspondence list showing which hash code maps to what template 
name. 

A shell script to do this is: 
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#!/bin/sh 

# display the template class for each instantiation file 
# in the repository 

PATH=/bin:/usr/bin:/usr/ucb 

pn=/basename $0 1 

rep=$l 
if [ "$rep" - 1111 -0 ! -d "$rep" ] 
then 

fi 

echo II usage : $pn repository II 1>&2 
exit 1 

cd $rep 
Is *.c I 
while read fn 
do 

done 

exit a 

n=/sed -n 11s/A\/\* \(.*\) \*\/$/\l/pl $fnl 
echo "$fn --> $n" 

Another tool can be used to package the object files in a repository into an archive, with renaming to short 
names for ar: 
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#!/bin/sh 

# export contents of repository into an archive 

PATH=/bin:/usr/bin:/usr/ucb 

pn=/basename $0 1 

t=/trrp/$pn.$$ 
trap Ilrm -rf $t; exit 2" 1 2 3 15 
rm -rf $t 
mkdir $t 

if [ $# -ne 2 -0 ! -d "$1" ] 
then 

fi 

n=l 

echo "usage: $pn repository archive" 
exit 1 

for i in $1/*.0 
do 

done 

cp $i $t/${n}.o 
n=/expr $n + 11 

rm -f $2 
ar cr $2 $t/*.o 
if -x /bin/ranlib -0 -x /usr/bin/ranlib ] 
then 

ranlib $2 
fi 

rm -rf $t 

exit 0 

These tools are included in the distribution. 
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Examples 

This section will walk through a few small example cases. 

Single File (Hello World) Case 

In the simplest case, the template definition and the application code that uses it are all in the same file: 

userapp.c: 

#include "String.h" 

template <class T> 
class Stack { 

T* head; 
public: 

} ; 

Stack () : head ( 0 ) {} 

T pop(); 
void push (T&) ; 

template <class T> T Stack<T>::pop() 
{ 

/* ... */ 
} 

template <class T> void Stack<T>::push(T& arg) 
{ 

/* ... */ 
} 

main ( ) 
{ 

Stack<String> s; 
/* Code that uses push and pop */ 

The following steps describe how the instantiation works in this case. However, all this is done behind the 
scenes; in the normal case, the user will simply say 

CC userapp.c 
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and the right thing will happen automatically. 

1. When userapp. c is compiled to an object file, the references to Stack<String>: : push (String&) 
and Stack<String>: : pop () will be compiled as normal function calls. Since 
Stack<String>: : Stack () is inline, no reference to that function is generated. 

2. As a side effect of compiling userapp. c to an object file, the name mapping file is updated to show 
the declaration of templates and classes: 

Name mapping file (defmap): 

@dec String userapp 
IIString.h ll 

@dec Stack userapp 
lIuserapp.c ll 

3. Because a single file is being compiled and linked, instantiation will occur by default into the applica­
tion file, and the repository will not be updated. 

Separate Compilation 
More commonly, the template will be declared in a header file, with the definitions provided in a separate 
file: 

8-24 

Stack.h: 

template <class T> 
class Stack { 

T* head; 
pUblic: 

} ; 

Stack.c: 

Stack () : head ( 0 ) {} 
T pop(); 
void push(T&); 

template <class T> T Stack<T>::pop() 
{ 

/* ... * / 
} 
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template <class T> void Stack<T>::push(T& arg) 
{ 

1* ... *1 
} 

userapp.c: 

#include "String.h" 
#include "Stack.h" 

main () 
{ 

Stack<String> Si 

1* Code that uses push and pop *1 

Here, the scenario is the same as before, except that the template declaration and definition will be gotten 
from a different place. The name mapping file after compiling userapp. c will be: 

Name mapping file (defmap): 

@dec String userapp 
II String. h II 

@dec Stack userapp 
"Stack.h" 

Since the template declaration file is Stack. h, the definition file will be Stack. c. The automatically gen­
erated instantiation file will be: 

#include "Stack.h" II Template decl file 
#include "Stack.c" II Template defn file 
#include "String.h" II Arg decl file 

Of course, Stack. c must be available along the - I path in order for the instantiation to succeed. 

An advantage of this structure is that the template definition file (Stack. c) does not have to be parsed with 
user application code; it need only be parsed when templates are being instantiated. 

The first steps in the procedure are as before, and then the pre-linker does its work. 

1. At link time, the pre-linker will determine that the following functions must be instantiated: 

Stack<String>::push(String&) 
Stack<String>::pop() 
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2. The repository is checked for an object file that contains these instantiations. If there is one, and it is 
up to date with regard to its headers, we add that file to the list of files to be linked, and go to step 
4. 

3. If the repository does not contain an up-to-date object file with these instantiations, we must instan­
tiate them now. Since we are using the default granularity, both members of Stack<String> will be 
instantiated into the same object file. The template declaration file (from the name mapping file) is 
stack. h. The template definition file has the same name as the template declaration file, except that 
the suffix (if any) is changed to . c; here, the template definition file is Stack. c. The argument 
declaration file (also from the name mapping file) is String .h. 

Directed instantiation is used; the compiler builds an object file that contains the definitions of 
Stack<String>: : push (String&) and Stack<String>: : pop (), plus any virtual functions in 
Stack<String>. 

4. The resulting object file is put in the repository, and the pre-linker iterates (since the member func­
tions of Stack<String> might themselves refer to other templates). If there are any new instantia­
tions needed, we repeat the above process. 

5. If the pre-linker is satisfied that all required object files are available, the linker is called to complete 
the link. 

Again, remember that this all happens behind the scenes; for this simple case, users need not be aware of 
the template instantiation details, except that any -I flags passed at compile time must also be passed at link 
time. 

Separate Compilation, Special Case Provided At Link Time 

It is legal for a special case of a template member to be discovered at link time. For example, in the previ­
ous case, suppose this additional file were provided at link time: 

stringpop.c: 

#include "String.h ll 

#include "Stack.h" 

/* Special case version of Stack<String>::pop */ 

void Stack<String>::pop() 
{ 

/* ... */ 
} 

Here, the pre-linker would determine that only Stack<String>: : push (String&) was required, and only 
that function would be instantiated. Note that this will work properly even if the general version of 
Stack<String>: : pop () would not compile; since we did not need the general version, we did not try to 
compile it. 
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~ This chapter is taken directly from a paper by 8jarne Stroustrup. 

y 
Abstract 

This paper describes the problems involved in generating names for overloaded functions in C++ and in 
linking to C programs. It also discusses how these problems relate to library building. It presents a solu­
tion that provides a degree of type-safe linkage. This eliminates several classes of errors from C++ and 
allows libraries to be composed more freely than has hitherto been possible. Finally the current encoding 
scheme for C++ names is presented. 

Introduction 

This paper describes the type-safe linkage scheme used by the 2.1 release of C++ and the mechanism pro­
vided to allow traditional (unsafe) linkage to non-C++ functions. It describes the problems with the scheme 
used by previous releases, the alternative solutions considered, and the practicalities involved in converting 
from the old linkage scheme to the new. 

The new scheme makes the over load keyword redundant, simplifies the construction of tools operating on 
C++ object code, makes the composition of C++ libraries simpler and safer, and enables reliable detection of 
subtle program inconsistencies. The scheme does not involve any run-time costs and does not appear to 
add measurably to compile and link time. 

The scheme is compatible with older C++ implementations for pure C++ programs but requires explicit 
specification of linkage requirements for linkage to non C++ functions. 

The Original Problem 

C++ allows overloading of function names; that is, two functions may have the same name provided their 
argument types differ sufficiently for the compiler to tell them apart. For example, 

double sqrt(double); 
complex sqrt(complex); 

Naturally, these functions must have different names in the object code produced from a C++ program. 
This is achieved by suffixing the name the user chose with an encoding of the argument types (the signature 
of the function). Thus the names of the two sqrt () functions become: 

sqrt __ Fd II the sqrt that takes a double argument 
sqrt __ F7complex II the sqrt that takes a complex argument 

Some details of the encoding scheme are described under uThe Function Name Encoding Scheme." 
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When experiments along this line began five years ago it was immediately noticed that for many sets of 
overloaded functions there was exactly one function of that name in the standard C library. Since C does 
not provide function name overloading there could not be two. It was deemed essential for C++ to be able 
to use the C libraries without modification, recompilation, or indirection. Thus the problem became to 
design an overloading facility for C++ that allowed calls to C library functions such as sqrt () even when 
the name sqrt was overloaded in the C++ program. 

The Original Solution 

The solution, as used in all non-experimental C++ implementations up to now, was to let the name gen­
erated for a C++ function be the same as would be generated for a C function of the same name wherever 
possible. Thus open () gets the name open on systems where C doesn't modify its names on output, the 
name _open on systems where C prepends an underscore, etc. 

This simple scheme clearly isn't sufficient to cope with overloaded functions. The keyword over load was 
introduced to distinguish the hard case from the easy one and also because function name overloading was 
considered a potentially dangerous feature that should not be accidentally or implicitly applied. In retros­
pect this was a mistake. 

To allow linkage to C functions the rule was introduced that only the second and subsequent version of an 
overloaded function had their names encoded. Thus the programmer would write 

overload sqrti 
double sqrt(double)i 
complex sqrt(complex)i 

/ / sqrt 
/ / sqrt __ F7 complex 

and the effect would be that the C++ compiler generated code referring to sqrt and sqrt __ F7complex. 
This enabled a C++ programmer to use the C libraries. This trick solves the problems of name encoding, 
linkage to C, and protection against accidental overloading, but it is clearly a hack. Fortunately, it was only 
documented in the uBUGS" section of the C++ manual page. 

Problems with the Original Solution 

There are at least three problems with this scheme: 

• how to name over loaded functions so that one may be a C function 

• how to detect errors caused by inconsistent function declarations 

• how to specify libraries so that several libraries can be easily used together 
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The overload Linkage Problem 

Consider a program that uses an overloaded function print () to output globs and widgets. Naturally 
globs are defined in glob.h and widgets in widget.h. A user writes 

II filel.c: 
#include <glob.h> 
#include <widget.h> 

but this elicits an error message from the C++ compiler since print () is declared twice with different 
argument types. The user then modifies the program to read 

II filel.c: 
overload print; 
#include <glob.h> 
#include <widget.h> 

and all is well until someone in some other part of the program writes 

II file2.c: 
overload print; 
#include <widget.h> 
#include <glob.h> 

This fails to link since filel.c's output refers to print (meaning print (glob) and print __ F6widget, 
whereas file2 .c's output refers to print (meaning print (widget) and print __ F4glob. 

This is of course a nuisance, but at least the program fails to link and the programmer can - after some 
detective work based on relatively uninformative linker error messages - fix the problem. The nastier 
variation of this will happen to the conscientious programmer who knows that print () is overloaded and 
inserts the appropriate overload declarations, but happens to use only one variation of print () in each of 
two source files: 

II filel.c: 
overload print; 
#include <glob.h> 

II file2.c: 
overload print; 
#include <widget.h> 

The output from filel.c and file2.c now both refer to print. Unfortunately, in the output from file1.c 
print means print (glob) whereas print refers to print (widget) in the output from file2.c. One might 
expect linkage to fail because print () has been defined twice. However, on most systems this is not what 
happens in the important case where the definitions of print (glob) and print (widget) are placed in 
libraries. Then, the linker simply picks the first definition of print () it encounters and ignores the second. 
The net effect is that calls (silently) go to the wrong version of print (). If we are lucky, the program will 
fail miserably (core dump); if not, we will simply get wrong results. 
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The requirement that the overload keyword must be used explicitly and the non-uniform treatment of 
overloaded functions e'the first overloaded function has C linkage") is a cause of complexity in C++ com­
pilers and in other tools that deal with C++ program text or with object code generated by a C++ compiler. 

The General Linkage Problem 

This problem of inconsistent linkage is a variation of the general problem that C provides only the most 
rudimentary facilities for ensuring consistent linkage. For example, even in ANSI C and in C++ (until now) 
the following example will compile and link without warning: 

#include <stdio.h> 
extern int sqrt(int)i 

main () 
{ 

printf(lIsqrt(%d) -- %d\m ll ,2,sqrt(2»i 

and produce output like this 

sqrt(2) == 0 

because even though the user clearly specified that an integer sqrt () was to be used, the C 
compiler /linker uses the double precision floating point sqrt () from the standard library. This problem 
can be handled by consistent and comprehensive use of correct and complete header files. However, that is 
not an easy thing to achieve reliably and is not standard practice. The traditional C and C++ 
compiler /linker systems do not provide the programmer with any help in detecting errors, oversights, or 
dangerous practices. 

These linkage problems are especially nasty because they increase disproportionately with the size of pro­
grams and with the amount of library use. 

Combining Libraries 

The standard header complex. h overloads sqrt ( ) : 

II complex.h: 
overload sqrti 
#include <ma.th.h> 
complex sqrt(complex)i 

Some other header, 3d.h, declares sqrt () without overloading it: 

II 3d.h: 
#include <ma.th.h> 

Now a user wants both the 3d and the complex number packages in a program: 

#include <3d.h> 
#include <complex.h> 
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Unfortunately this does not compile because of this sequence of operations: 

double sqrt(double); 
overload sqrt; 

II from <3d.h> 
II from <math.h> via <complex.h> 

Type-safe Linkage for C++ 

A function must be overloaded before its first declaration is processed. So the programmer, who really did 
not want to know about the internals of those headers, must reorder the #include directives to get the pro­
gram to compile: 

#include <complex.h> 
#include <3d.h> 

This will work unless 3d.h overloads some function, say atan (), that complex.h does not. Even in that 
case the programmer can cope with the problem by adding sufficient overload declarations where 3d.h 
and complex. h are included: 

overload sqrt; 
overload atan; 
#include <3d.h> 
#include <complex.h> 

This reordering and/or adding of over load declarations is work that is really quite spurious and in any 
case irrelevant to the job the programmer is trying to do. Worse, if the extra overload declarations were 
placed in a header file the programmer has now set the scene for the users of the new package to have 
exactly the same problems when they try combining this new library with other libraries. It becomes 
tempting to overload all functions or at least to provide header files that overload all interesting functions. 
This again defeats any real or imagined benefits of requiring explicit over load declarations. 

A General Solution 

The overloading scheme used for C++ (until now) interacts with the traditional C linkage scheme in ways 
that bring out the worst in both. Overloading of function names that was introduced to provide notational 
convenience for programmers is becoming a noticeable source of extra work and complexity for builders 
and users of libraries. Either the idea of overloading is bad or else its implementation in C++ is deficient. 
The insecure C linkage scheme is a source of subtle and not-so-subtle errors. In summary: 

• lack of type checking in the linker causes problems 

• use of the over load keyword causes problems 

• we must be able to link C++ and C program fragments 

A solution to 1 is to augment the name of every function with an encoding of its signature. A solution to 2 
is to cease to require the use of overload (and eventually abolish it completely). A solution to 3 is to 
require a C++ programmer to state explicitly when a function is supposed to have C-style linkage. 
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The question is whether a solution based on these three premises can be implemented without noticeable 
overhead and with only minimal inconvenience to C++ programmers. The ideal solution would 

• require no C++ language changes 

• provide type-safe linkage 

• allow for simple and convenient linkage to C 

• not break existing C++ code 

• allow use of (ANSI style) C headers 

• provide good error detection and error reporting 

• be a good tool for library building 

• not impose run-time overhead 

• not impose compile time overhead 

We have not been able to devise a scheme that fulfills all of these criteria strictly, but the adopted scheme is 
a good approximation. 

Type-safe C++ Linkage 

First of all, every C++ function name is encoded by appending its signature. This ensures that a program 
will only load provided every function that is called has a definition and that the type specified at the point 
of call is the same as the type specified at the point of definition. For example, given: 

f (int i) { ... } / / f __ Fi 
f (int i, ehar* j) { ... } / / f __ FiPe 

These examples will cause correct linkage: 

extern f(int); 
f (1) ; 

- links to f(int) 

extern f(int,ehar*)i 
f(l,"asdf"); 

/ / f __ FiPe - 1 inks to f (int, ehar*) 

These examples will cause linkage errors independent of where in the program they occur because no f ( ) 
with a suitable signature has been defined: 
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II no declaration of f() in this file 
II (this is only legal in C programs) 
f(l); II f - links to ??? 

extern f(char*); II f __ FPc - links to ??? 
f ("asdf") ; 

extern f(int ... );11 f __ Fie - links to ??? 
f(l,lasdf"); 

One might consider extending this encoding scheme to include global variables, etc., but this does not 
appear to be a good idea since that would introduce at least as many problems as it would solve. For 
example: 

II file1.c: 
int aa = 1; 
extern int bb; 

Ilfile2.c: 
char* aa = "asdf"; II error: aa is declared int in file1.c 
extern char* bb; II error: bb is declared int in file1.c 

Under the current C scheme, the double definition of aa will be caught and the inconsistent declarations of 
bb will not. Using an encoding scheme, the double definition of aa would not be caught since the differ­
ence in encoding would cause two differently named objects to be created - contrary to the rules of C and 
c++. The fact that the inconsistent declarations of bb would be caught by some linkers (not all) does not 
compensate for the incorrect linkage of aa. Consequently only functions are encoded using their signa­
tures. 

This linkage scheme is much safer than what is currently used for C, but it is not meant to solve all linkage 
problems. For example, if two libraries each provides a function f (int) as part of their public interface 
there is no mechanism that allows the compiler to detect that there are supposed to be two different 
f (int) s. If the .0 files are loaded together the linker will detect the error, but where a library search 
mechanism is employed the error may go undetected. 

Note that this linking scheme simply enforces the C++ rules that every function must be declared before it 
is called and that every declaration of an external name in C++ must have exactly the same type. 

In essence, we use the name encoding scheme to "trick" the linker into doing type checking of the 
separately compiled files. More comprehensive solutions can be achieved by modifying the linker to 
understand C++ types. For example, a linker could check the types of global data objects and might also 
be able to provide features for ensuring the consistency of global constants and classes. However, getting 
an improved linker into use is typically a hard and slow process. The scheme presented here is portable 
across a great range of systems and can be used immediately. 
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Implicit Overloading 
If a function is declared twice with different argument types it is overloaded. For example: 

double sqrt(double); 
complex sqrt(complex); 

is accepted without any explicit overload declaration. Naturally, overload declarations will be accepted 
in the foreseeable future; they are simply not necessary any more. 

Does this relaxation of the C++ rules cause new problems? It does not appear to be the case. For example, 
originally I imagined that obvious mistakes such as 

double sqrt(double); 
double d = sqrt(2.3); 

double sqrt(int d) { ... 

would cause hard-to-find errors. It certainly would with the traditional C linkage rules, but with type-safe 
linkage the program simply will not link because there is no function called sqrt __ Fd defined anywhere. 
Even the standard library function will not be found because its name is sqrt as always. 

Another imagined problem was that a call 

f (x) ; 

would suddenly change its meaning when a function became overloaded by the inclusion of a new header 
file containing the declaration of another function f (). This is not the case, because the C++ ambiguity 
rules ensure that the introduction of a new f () will either leave the meaning of f (x) unchanged (the new 
f () was unrelated to the type of x) or will cause a compile time error because an ambiguity was intro­
duced. 

C Linkage 

This leaves the problem of how to call a C function or a C++ function "masquerading" as a C function. To 
do this a programmer must state that a function has C linkage. Otherwise, a function is assumed to be a 
C++ function and its name is encoded. To express this an extension of the "extern" declaration is intro­
duced into C++: 

extern IIC II { 

double sqrt(double); II sqrt(double) has C linkage 

This linkage specification does not affect the semantics of the program using sqrt () but simply tells the 
compiler to use the C naming conventions for the name used for sqrt () in the object code. This means 
that the name of this sqrt () is sqrt or _sqrt or whatever is required by the C linkage conventions on a 
given system. One could even imagine a system where the C linkage rules were the type-safe C++ linkage 
rules as described above so that the name of sqrt () was sqrt __ Fd. Linkage specifications nest, so that if 
we had other linkage conventions such as Pascal linkage we could write: 
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II default: c++ linkage here 
extern IIC II { 

II C linkage here 
extern IIPascal ll 

II Pascal linkage here 
extern IIC++ II 

II c++ linkage here 

II Pascal linkage here 
} 

II C linkage here 

II c++ linkage here 

Such nestings will typically only occur as the result of nested #includes. 

The {} in a linkage specification does rwt introduce a new scope; the braces are simply used for grouping. 
This strongly resembles the use of {} in enumerations. 

The keyword extern was used because it is already used to specify linkage in C and C++. Strings (for 
example, "c" and "c++") were chosen as linkage specifiers because identifiers (e.g., C and Cplusplus) 
would de facto introduce new keywords into the language and because a larger alphabet can be used in 
strings. 

Naturally, only one of a set of overloaded functions can have C linkage, so the following causes a compile 
time error: 

extern IIC II { 
double sqrt(double)i 
complex sqrt(complex)i 

Note that C linkage can be used for C++ functions intended to be called from C programs as well as for C 
functions. In particular, it is necessary to use C linkage for C++ functions written to implement standard C 
library functions for use by C programs. However, using the encoded C++ name from C preserves type­
safety at link time. This technique can be valuable in other languages too. I have already seen an example 
of the C++ scheme applied to assembly code to prevent nasty link errors for low level routines. One might 
consider using this C++ linkage scheme for C also, but I suspect that the sloppy use of type information in 
many C programs would make that too painful. 

In an "all C++" environment no linkage specifications would be needed. The linkage mechanism is 
intended to ease integration of C++ code into a multi-lingual system. 
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Caveat 

One could extend this linkage specification mechanism to other languages such as Fortran, Lisp, Pascal, 
PL/l, etc. The way such an extension is done should be considered very carefully because one 1I0bvious" 
way of doing it would be to build into a C++ compiler the full knowledge of the type structure and calling 
conventions of such IIforeign" languages. For example, a C++ compiler might handle conversion of zero 
terminated C++ strings into Pascal strings with a length prefix at the call point of function with Pascal link­
age and might use Fortran call by reference rules when calling a function with Fortran linkage, etc. 

There are serious problems with this approach: 

• The complexity and speed of a C++ compiler could be seriously affected by such extensions. 

• Unless an extension is widely available, accepted programs using it will not be portable. 

• Two implementations might lIextend" C++ with a linkage specification to the same IIforeign" 
language, say Fortran, in different ways so as to make identical C++ programs have subtly different 
effects on different implementations. 

Naturally, these problems are not unique to linkage issues or to this approach to linkage specification. 

I conjecture that in most cases linkage from C++ to another language is best done simply by using a com­
mon and fairly simple convention such as uC linkageU plus some standard library routines and/or rules for 
argument passing, format conversion, etc., to avoid building knowledge of non-standard calling conven­
tions into C++ compilers. This ought to be simpler from C++ than from most other languages. For exam­
ple, reference type arguments can be used to handle Fortran argument passing conventions in many cases 
and a Pascal string type with a constructor taking a C style string can trivially be written. Where exten­
sions are unavoidable, however, C++ now provides a standard syntax for expressing them. 

Experience 

The natural first reaction to this scheme is to look for a way of handling linkage and overloading without 
requiring explicit linkage specifications. We have not been able to come up with a system that enabled C 
linkage to be implicit without serious side effects. I will summarize the advantages of the adopted scheme 
here and discuss several possible objections to it. II Alternative Solutions" below describes alternative 
schemes that were considered and rejected. 

Making Linkage Specifications Invisible 

One obvious advantage of this scheme is that it allows a programmer to give a set of functions C linkage 
with a single linkage specification without modifying the individual function declarations. This is particu­
larly useful when standard C headers are used. Given a C header (that is, an ANSI C header with function 
prototypes, etc.) 

II C header: 
II C declarations 
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one can trivially modify the header for use from C++: 

II c++ header: 

extern "C" { 
II C header: 
II C declarations 

This creates a C++ header that cannot be shared with C. 

Sharing with C can be achieved using #ifdef: 

II C and c++ header: 

#ifdef __ cplusplus 
extern "C" { 
#endif 

II C header: 
II C declarations 

#ifdef __ cplusplus 
} 

#endif 

where __ cplusplus is defined by every C++ compiler. 

Type-safe Linkage for C++ 

In cases where one for some reason cannot or should not modify the header itself one can use an indirec­
tion: 

II c++ header: 

extern "C II { 

#include II C_header II 

Fortunately, such transformations can be done by trivial programs so that most of the effort in converting C 
headers need not be done by hand. 

It was soon discovered that even though programmers tend to scatter function declarations throughout the 
C++ program text, most C functions actually come from well defined C libraries for which there are - or 
ought to be - standard header files. 

Placing all of the necessary linkage specifications in standard header files means that they are not seen by 
most users most of the time. Except for programmers studying the details of C library interfaces, program­
mers installing headers for new C libraries for C++ users, and programmers providing C++ implementa­
tions for C interfaces, the linkage specifications are invisible. 
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Error Handling 

The linker detects errors, but reports them using the names found in the object code. This can be compen­
sated for by adding knowledge about the C++ naming conventions to the linker or (simpler) by providing a 
filter for processing linker error messages. This output was produced by such a filter: 

c++ symbol mapping: 

PathListHead::-PathListHead() 
Path_list::sepWork() 
Path: :pathnorm() 
Path::operator&(Path&) 
Path: : first () 
Path: : last () 
Path: :rmfirst () 
Path: :rmlast () 
Path: :rmdots () 
Path::findpath(String&) 
Path: : fullpath() 

__ dt __ 12PathListHeadFv 
sepWork __ 9 Path_listFv 
pathnorm __ 4PathFv 
__ ad __ 4 PathFR4 Path 
first __ 4PathFv 
last __ 4PathFv 
rrnfirst __ 4PathFv 
rmlast __ 4PathFv 
:rm:1ots __ 4PathFv 
findpath __ 4PathFR6String 
fullpath __ 4PathFv 

Bringing this filter into use had the curious effect of replacing the usual complaint about "ugly C++ names" 
with complaints that the linker didn't provide sufficient information about C functions and global data 
objects. 

The reason for presenting the encoded and unencoded names of undefined functions side by side is to help 
users who use tools, such as debuggers, that haven't yet been converted to understand C++ names. 

A plain C debugger such as sdb, dbx, or codeview can be used for C++ and will correctly refer to the C++ 
source, but it will use the encoded names found in the object code. This can be avoided by employin9 a 
routine that "reverses" the encoding, that is, reads an encoded name and extracts infonnation from it. The 
encoding scheme is described under "'The Function Name Encoding Scheme." A standard C++ name 
decoder should be generally available for use by debugger writers and others who deal directly with object 
code. Until such decoders are in widespread use the programmer must have at least a minimal under­
standing of the encoding scheme. 

Upgrading Existing C++ Programs 

Decorating the standard header files with the appropriate linkage specifications had two effects. The first 
phenomenon observed was that most of the declarations scattered in the program text that were referring 
to C functions were either redundant (because the function had already been declared in a header) or at 
least potentially incorrect (because they differed from the declaration of that header file on some commonly 
used system). The second phenomenon observed was that every non-trivial program converted to the new 
linkage system contained inconsistent function declarations. A noticeable number of declarations found in 
the program text were plain wrong, that is, different from the ones used in the function definition. This 
was caused in part by sloppiness, for example, where a programmer had declared a function 

f (int ... ) i 

to shut up the compiler instead of looking up the type of the second argument. A more common problem 
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was that the Ustandard" header files had changed since the function declaration was placed in the text so 
that the "local" declaration didn't match any more; this often happens when a file is transferred from one 
system to another, say from a BSD to a System V. 

In summary, introducing the new linkage system involved adding linkage specifications. Typically, these 
linkage specifications were only needed in standard header files. The process of introducing linkage 
specifications invariably revealed errors in the programs - even in programs that had been considered 
correct for years. The process strongly resembles trying lint on an old C program. 

As was expected, some programmers first tried to get around the requirements for explicit C linkage by 
enclosing their entire program in a linkage directive. This might have been considered a fine way of con­
verting old C++ programs with minimum effort had it not had the effect of ensuring that every program 
that uses facilities provided by such a program would also have to use the unsafe C linkage. To achieve 
the benefits from the new linkage scheme most C++ programs must use it. The requirement that at most 
one of a set of overloaded functions can have C linkage defeats this way of converting programs. The 
slightly slower and more involved method of using standard header files (already containing the necessary 
linkage specifications) and adding a few extra linkage specifications in local headers where needed must be 
used. This also has the benefit of unearthing unexpected errors. 

Details 

The scope of C function declarations has always been a subject for debate. In the context of C++ with link­
age specifications and overloaded functions it seems prudent to answer some variations of the standard 
questions. 

Default Linkage 

Consider: 

extern IIC II { 

int f(int); 

int f(int); II default: f() has c++ linkage 

Is it the same f () that was defined with C linkage above and does it have C or C++ linkage? It is the 
same f () and it does (still) have C linkage. The first linkage specification Uwins" provided the second 
declaration has Honly" default (that is, C++) linkage. 

Where linkage is explicitly specified for a function, that specification must agree with any previous linkage. 
For example: 
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extern "C" { 
int f (int) ; 

int gO; 

extern II c++ II 

int f(int); 
int gO; 

II f() has C linkage 

II default: g() has c++ linkage 

II error: inconsistent linkage specification 
II fine 

The reason to require agreement of explicit linkage specifications is to avoid unnecessary order dependen­
cies. The reason to allow a second declaration with implicit C++ linkage to take on the linkage from a pre­
vious explicit linkage specification is to cope with the common case where a declaration occurs both in a . c 
file and in a standard header file. 

Declarations in Different Scopes 
Consider: 

extern "C" { 

void g1 () 
{ 

int f(int); 

int f(int); 
f (1) ; 

Is the f () declared local to gl the same as the global f () and does the function called in g1 () have C 
linkage? It is the same f () and it does have C linkage. 

Consider: 
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extern IIC" ( 

void g2 () 
( 

} 

int f(int); 

int f (char*) ; 
f (1) ; 

f ("asdf") ; 

Does the local declaration of f () overload the global f () or does it hide it? In other words, is the call 
f (1) legal? That call is an error because the local declaration introduces a new f (). In the tradition of C, 
the declaration of f ( char * ) also draws an warning. 

Consider: 

void g3 () 
( 

} ; 

void g4 () 
( 

} ; 

int ff(int) i 

int ff(char*); 
ff (lIasdfll) ; 
ff(l)i 

Does the second declaration of ff () overload the first? In other words, is the call ff (1) legal? The call is 
an error and a warning is issued about the two declarations of f f () because (as in the example above) 
overloading in different scopes is considered a likely mistake. 

Local Linkage Specification 

Linkage specifications are not allowed inside function definitions. For example: 

void g5 () 
{ 

extern IIC II ( II error: linkage specification in function 
int h(); 

The reason for this restriction is to discourage the use of local declarations of C functions and to simplify 
the language rules. 
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Alternative Solutions 

So, the linkage specification scheme works, but isn't there a better way of achieving the benefits of that 
scheme? Several schemes were considered. This section presents the first two or three alternatives people 
usually come up with and explains why we rejected them. Naturally, we also considered more and 
weirder solutions, but all the plausible ones were variations of the ones presented here. 

The Scope Trick 
The first attempt to provide type-safe linkage involved the use of overload and the C++ scope rules. All 
overloaded function names were encoded, but non-overloaded function names were not. This scheme had 
the benefit that the linkage rules for most functions were the C linkage rules - and had the problem that 
those rules are unsafe. The most obvious problem was that at first glance there is no way of linking an 
overloaded function to a standard C library function. This problem was handled using a "scope trick": 

overload sqrti 
complex sqrt(complex)i 
inline double sqrt(double d) 

extern double sqrt(double)i 

return sqrt (d) i 

II 
II 

II 
II 
II 

A completely new sqrt() 
not overloaded 

not a recursive call 
but a call of the C function 
sqrt 

In effect, we provided a C++ calling stub for the C function sqrt (). The snag is that having thus defined 
sqrt (double) in a standard header a user cannot provide an alternative to the standard version. The 
problems with library combination in the presence of over load are not addressed in this scheme, and are 
actually made worse by the proliferation of definitions of overloaded functions in header files. In particu­
lar, if two "standard" libraries each overload a function then these two libraries cannot be used together 
since that function will be defined twice: once in each of the two standard headers. 

There is also a compile time overhead involved. In retrospect, I consider this scheme somewhat worse than 
the original "the first overloaded has C linkage" scheme. 

C "Storage Class" 
It is clear that the definitions providing a calling stub are redundant. We could simply provide a way of 
stating that a member of a set of overloaded functions should be a C function. For example: 

complex sqrt(complex)i 
cdecl double sqrt(double)i 

This is equivalent to 
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complex sqrt(complex)i 
extern IIC II { 

double sqrt(double)i 
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but less ugly. However, it involves complicating the C++ language with yet another keyword. Functions 
from other languages will have to be called too and they each have separate requirements for linkage so 
the logical development of this idea would eventually make ada, fortran, lisp, pascal, etc., keywords. 
Using a keyword also requires modification of the declarations of the C functions and those are exactly the 
declarations we would want not to touch since they will typically live in header files shared with an ANSI 
C compiler. In some cases we would even like not to touch a file in which such declarations reside. 

Overload "Storage Class" 

The use of a keyword to indicate that a function is a C function is logically very similar to the linkage 
specification solution, though inferior in detail. An alternative is to have a keyword indicate that a function 
should have its signature added. The keyword over load might be used. For example: 

overload complex sqrt(complex)i 
double sqrt(double)i 

II use c++ linkage 
II C linkage by default 

This has the disadvantage that the programmer has to add information to gain type safety rather than hav­
ing it as default and would de facto ensure that the C++ type-safe linkage rules would only be used for 
overloaded functions. Furthermore, this would mean that libraries could only be combined if the designers 
of these libraries had decorated all the relevant functions with overload. This scheme also invalidates all 
old C++ programs without providing significant benefits. 

Calling Stubs 

One way of dealing with C linkage would be 1Wt to provide any facilities for it in the C++ language, but to 
require every function called to be a C++ function. To achieve this one would simply re-compile all 
libraries and have one version for C and another for C++. This is a lot of work, a lot of waste, and not 
feasible in general. In the cases where recompilation of a C program as a C++ program is not a reasonable 
proposition (because you don't have the source, because you cannot get the program to compile, because 
you don't have the time, because you don't have the file space to hold the result, etc.) you can provide a 
small dummy C++ function to call the C function. Such a function would be written in C (for portability) 
or in assembler (for efficiency). For example: 

double sqrt __ Fd(d) double di 1* C calling stub for sqrt(double): *1 

extern double sqrt()i 
return sqrt (d) i 

A program can be provided to read the linker output and produce the required stubs. 
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This scheme has the advantage that the user works in what appears to be an "all C++" environment (but 
so does the adopted scheme once a few C libraries have been recompiled with C++ and/or a few header 
files have been decorated with linkage specifications). It does, however, also suffer from a few severe 
disadvantages. A HC calling stub maker" program cannot be written portably. Therefore, it would become 
a bottleneck for porting C++ implementations and C++ programs and thus a bottleneck for the use of C++. 
It is also not clear that this approach can be implemented everywhere without loss of efficiency since it 
requires large numbers of functions to have two names (a C name and a C++ name). This takes up code 
space and introduces large numbers of extra names that would slow down programs reading object files 
such as linkers, loaders, debuggers, etc. The C calling interfaces would also be ubiquitous and available for 
anyone to use by mistake, thus re-introducing the C linkage problems in a new guise. 

Encode Only C++ Functions 

The fundamental problem with all but the last scheme outlined above is that they require the programmer 
to decorate the source code with directives to help the compiler determine which functions are C functions. 
Ideally, the compiler would simply look at the program and determine the linkage necessary for each indi­
vidual function based on its type. Could the compiler be that smart? Unfortunately, no. There is no way 
for the compiler to know whether 

extern double sqrt(double)i 

is written in C or C++. However, one might handle most cases by the heuristic that if a function is clearly 
a C++ function it gets C++ linkage and if it isn't it gets C linkage. For example: 

complex sqrt(complex)i 
double sqrt(double)i 

I I clearly C++: sqrt __ F7complex 
II could be C:sqrt 

Since complex is a class, sqrt (complex) is clearly a C++ function and it is encoded. The other sqrt ( ) 
might be C so it isn't. 

Applying this heuristic would mean that most functions would not have type-safe linkage - but we are 
used to that. It would also mean that overloading a function based on two C types would be impossible or 
require special syntax: 

int max(int,int)i 
double max(double,double)i 

Such overloading must be possible because there are many such examples and several of those are impor­
tant, especially when support for both single and double precision floating point arithmetic becomes 
widespread: 

float sqrt(float)i 
double sqrt(double)i 

This implies that either overload or linkage specifications must be introduced to handle such cases. The 
heuristic nature of the specification of where these directives are needed will lead to confusion, overuse, 
and errors. 
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If overload is re-introduced, the cautious programmer will use it systematically wherever a relatively sim­
ple class is used (in case a revision of the system should turn it into a plain C struct), wherever an argu­
ment is typedef'd (because that typedef might some day refer to a plain C type), and wherever there is 
any doubt. This will lead to the now well known problems of combining libraries. Similarly, if linkage 
specifications are required anywhere, they will proliferate because of doubts about where they are needed. 

It does not seem wise to refrain from checking linkage in a large number of cases and to introduce a rather 
arbitrary heuristic into the linking rules for C++ without being able to reduce the complexity of the 
language or to reduce the burden on the programmer somewhere. 

Nothing 

Naturally, while considering these alternative schemes the easy option of doing nothing was regularly re­
considered. However, the original scheme still suffers from the problems described in section 3: insecure 
linkage, spurious overload declarations, and overloading rules that complicate the life of library writers 
and library users. 

Syntax Alternatives 

The scheme of giving all C++ functions type-safe linkage and providing a syntax for expressing that a 
given function is to have C linkage was thus chosen and tried. However, there were still several alterna­
tives for expressing C linkage for this general scheme. 

Why extern? 

Instead of employing the existing keyword extern we might have introduced a new one such as linkage 
or foreign. The introduction of a new keyword always breaks some programs (though usually not in any 
serious way and for a well chosen new keyword not many programs) and extern already has the right 
meaning in C and C++. In almost all cases extern is redundant since external linkage is the default for 
global names and for locally declared functions. When used, extern simply emphasizes the fact that a 
name should have external linkage. The use of extern introduced here merely allows the programmer to 
tag an extern declaration with information of how that linkage is to be established. 

Linkage for Individual Functions 

One obvious alternative is to add the linkage specification to each individual function: 

extern lie II double sqrt(double)i II sqrt(double) has e linkage 

The problem with this is that it does not serve the need to be able to give a set of C functions C linkage 
with one declaration and requires the declaration of every C function to be modified. In particular, it does 
not allow a C header (that is, an ANSI C header) to be used from a C++ program in such a way that all the 
functions declared in it get C linkage. 
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This notation for linkage specification of individual functions is not just an alternative to the linkage 
''block'' adopted but also an obvious extension to the adopted syntax. I intend to review the situation after 
the current scheme has been used a while longer to see if the use of linkage specifications warrants this 
extension. 

Linkage Pragmas 

The original implementation of the linkage specifications used a #pragrna syntax: 

#pragma linkage e 
double sqrt(double); 
#pragma linkage 

II sqrt(double) has e linkage 

This was considered too ugly by many but did appear to have significant advantages. For example, it can 
be argued that linkage to Uforeign languages" is not part of the language proper. Such linkage cannot be 
specified once and for all in a language manual since it involves the implementations of two languages on a 
given system. Such implementation specific concepts are exactly what pragmas were introduced into Ada 
and ANSI C to handle. The #pragrna syntax was trivial to implement and easy to read. It was also ugly 
enough to discourage overuse and to encourage hiding of linkage specifications in header files. 

There are problems with this view, though. For example, it is most often assumed that any #pragrna can be 
ignored without affecting the meaning of a program. This would not be the case with linkage pragmas. 
Another problem is that for the moment many C implementations do not support a pragma mechanism 
and it is not certain that those that do can be relied upon to udo the right thing" for linkage pragmas used 
by a C++ compiler. 

Linkage to a particular foreign language does not belong in C++ because such linkage will in principle be 
local to a given system and non-portable. However, the fact that linkage to other languages occurs is a 
general concept that can and ought to be supported by a language intended to be used in multi-language 
environments. In practice, one can assume that at least C and Fortran will be available on most systems 
where C++ is used and that a large group of users will need to call functions written in these languages. 
Consequently, one would expect C++ implementations to support C and Fortran linkage. 

The fact that C (like most other languages) does not provide a concept of linkage to program fragments 
written in other languages led to the absence of an explicit linkage mechanism in C++ and to the problems 
of link safety and overloading. 

Special Linkage Blocks 

Another approach would be to introduce a new keyword, say linkage, and use it to specify both the start 
and the end of a linkage block: 

9-20 

linkage (lie") ; 

double sqrt(double); 
linkage(IIII); 

II sqrt(double) has e linkage 
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This avoids introducing yet another meaning for {}, allows setting and restoring of linkage to be two 
separate operations, allows all linkage directives to be found by simple pattern matching in a line oriented 
editor, and allows all linkage directives to be suppressed by a single macro 

#define linkage(a) 

The problem with this seems to be that it tempts people to think of linkage as a compiler IImode" that can 
be switched on and off at random times and doesn't obey block structure. For example: 

linkage (IIC II ) ; 

double sqrt(double); 

f () ( 
extern g(); 

linkage (II II) ; 
extern he); 

II sqrt(double) has C linkage 

I I g () has C linkage 

I I h () has c++ linkage 

It also becomes hard to convince people that linkage specifications come in pairs and can be nested. 

The same approach, with the same educational problems, can be tried without introducing a new keyword: 

extern IIC II ; 

double sqrt(double); 
extern 1111; 

II sqrt(double) has C linkage 

Note that whatever syntax was chosen, linkage specifications were intended to obey block structure to be fit 
cleanly into the language. In particular, if linkage "'blocks" and ordinary blocks were not obliged to nest 
the job of writers of tools manipulating C++ source text, such as a C++ incremental compilation environ­
ment, would be needlessly complicated. 

Conclusions 

The use of function name encodings involving type signatures provides a significant improvement in link 
safety compared to C and earlier C++ implementations. It enables the (eventual) abolition of the redundant 
keyword over load and allows libraries to be combined more freely than before. The use of linkage 
specifications enables relatively painless linkage to C and eventually to other languages as well. The 
scheme described here appears to be better than any alternative we have been able to devise. 

The Function Name Encoding Scheme 

The (revised) C++ function name encoding scheme was originally designed primarily to allow the function 
and class names to be reliably extracted from encoded class member names. It was then modified for use 
for all C++ functions and to ensure that relatively short encodings (less than 31 characters) could be 
achieved reliably for systems with limitations on the length of identifiers seen by the linker. The descrip­
tion here is just intended to give an idea of the technique used, not as a guide for implementors. 
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The basic approach is to append a function's signature to the function name. The separator __ is used so a 
decoder could be confused by a name that contained __ except as an initial sequence, so don't use names 
such as a __ b __ c in a C++ program if you like your debugger and other tools to be able to decompose the 
generated names. 

The encoding scheme is designed so that it is easy to determine 

• if a name is an encoded name 

• what (unencoded) name the user wrote 

• what class (if any) the function is a member of 

• what are the types of the function arguments 

The basic types are encoded as 

void v 
char c 
short s 
int i 
long 1 
float f 
double d 
long double r 

e 

A global function name is encoded by appending __ F followed by the signature so that 
f ( int I char I double) becomes f __ Ficd. Since f () is equivalent to f (void) it becomes f __ Fv. 

Names of classes are encoded as the length of the name followed by the name itself to avoid terminators. 
For example, x: :f() becomes f __ lxFv and rec: : update (int) becomes update __ 3recFi. 

Type modifiers are encoded as 

unsigned U 

const C 
volatile V 

signed S 

so f (unsigned) becomes f __ FUi. If more than one modifier is used they will appear in alphabetical 
order so f (const signed char) becomes f __ FCSc. 

The standard modifiers are encoded as 

pointer * 
reference 
array 
function () 
ptr to member 

P 
&R 
[lO]AIO_ 
F 
S:: *M1S 

So f (char*) becomes f __ FPc and printf (const char* ... ) becomes printf __ FPCce. 
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To shorten encodings repeated types in an argument list are not repeated in full; rather, a reference to the 
first occurrence of the type in the argument list is used. For example: 

f(complex,complex)i . I I f __ F7complexTl 
II the second argument is of the same 
II type as argument 1 

f (record, record, record, record) ill f __ F6recordN31 
II the 3 arguments 2, 3, and 4 are of 
I I the same type as argument 1 

A slightly different encoding is used on systems without case distinction in linker names. On systems 
where the linker imposes a restriction on the length of identifiers, the last two characters in the longest 
legal name are replaced with a hash code for the remaining characters. For example, if a 45 character name 
is generated on a system with a 31 character limit, the last 16 characters are replaced by a 2 character hash 
code yielding a 31 character name. 

Naturally, the encoding of signatures into identifier of limited length cannot be perfect since information is 
destroyed. However, experience shows that even truncation at 31 characters for the old and less dense 
encoding was sufficient to generate distinct names in real programs. Furthermore, one can often rely on 
the linker to detect accidental name clashes caused by the hash coding. The chance of an undetected error 
is orders of magnitude less than the occurrence of known problems such as C programmers accidentally 
choosing identical names for different objects in such a way that the problem isn't detected by the compiler 
or the linker. 
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Footnotes 

1. Naturally, this would be the same function as was used to write the linker output filter. The exam­
ples here are based on the name decoding routine written by Steve Brandt and used to modify the 
UNIX System V C debugger sdb into sdb++. 
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Access Rules for C++ 

~ This chapter is taken directly from a paper by Phil Brown. 

9 
Introduction 

One feature of C++ is the provision for function and data protection through a combination of the follow­
ing: 

• public, protected, and private class members 

Every class member has an associated level of protection. public indicates no protection, whereas 
pri vate indicates access is limited to members and friends. protected is similar to private except 
that it allows access additionally to derived classes. 

• inheritance 

Derived classes are defined in terms of base classes. Inheritance is the name and description of this 
process, by which a derived class acquires the data and functions of its base classes. As previously 
noted, the private members of the base classes are not accessible in the derived class. The protec­
tion of other members is dependent on the type of the derivation. public and protected members 
of public base classes will have the same protection in the derived class. These same members from 
a private base class will be private in the derived class. (See Figure 10-1) 

• friendship 

Friendship overrides all protections within a class. A friend declaration within a class denotes 
another class 1 or function as a potential friend. 

The following access rules define when a potential friend will be considered a friend. 

This paper defines the C++ access rules, as they relate to the various protection methods, and explains 
some of the reasoning for these rules. 

Access Rules 

1. Any visible non-uclass member" is accessible. 

2. If an object is accessible, then 

a. public members of the object's class type are accessible. 

b. potential friends of the object's class type will be considered friends. 
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c. The same level of access applies to the public base classes of the object's class type. 

3. All members of a class, and public and protected members of its base classes, are accessible by 
member and friend functions of the class.2 

Explanation 

1. Any visible non-Nclass member" is accessible. 

The first of the access rules is the starting point for many references. In the following: 

int i; 

void 
fO 

} 
i 1; II OK - Rule #1 

the variable i is accessible since it is not a class member and is visible in the function f. 

2. If an object is accessible, then 

10-2 

a. public members of the object's class type are accessible. 

The first part of the second rule is a restatement of its condition. Access to public 
members of a class object is the minimal amount of accessibility (excluding no access). 

class B { 
public: 

} i 

void 
f () { 

int ii 

B bi 
b.i = 1; II OK - Rule #1, #2a 

In this case, the variable b is accessible by Rule #1. Since b is accessible, the public 
member i of class B will be accessible (Rule #2a). 

b. potential friends of the object's class type will be considered friends. 

One way to view this is to consider a friend declaration as a public member which will 
not be honored unless that friend declaration is accessible. Once friendship has been esta-
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blished, access is described by Rule #3. 

class B { 
private: II unnecessary 

int i; 
friend void f(); 

} ; 

class D private B { 
} ; 

void 
f () { 

B b; 
b.i 
D d; 
d.i 

= 1; II 

= 1; II 

OK - Rule #1, 

ERROR - Rule 

Access Rules for C++ 

#2b, #3 

#1, #2a, -fail-

In this example, both variables band d are accessible according to Rule #1.. However, in 
the first case, the function f is a friend of class B since, by Rule #2b, b is accessible and 
class B has a friend declaration for the function f. Rule #3 states that, as a friend, f will 
have access to all of the members of class B. The assignment to b. i is thus valid. In the 
second case, the public members of d are accessible according to Rule #2a. Since function 
f is not a friend of class D, and class B is not a public base class of class D, there are 
no other access rules to apply. The assignment to d. i is invalid. 

c. the same level of access applies to the public base classes of the object's class type. 

This rule applies when Rule #3 cannot (access is not by a member or friend). Notice that 
there will be no access to private base classes. 
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class B { 
public: 
int i; 
} ; 

class D : public B { 
private: 
int j; 
} ; 

void 
f () { 
D d; 
d.i = 1; 
d.j = 1; 
} 

I I unnecessary 

II OK - Rule #1, #2a, #2c 
II ERROR - Rule #1, #2a, -fail-

In this example, the variable d is accessible according to Rule #1. According to Rule #2a, 
the publ ic members of class D are thus accessible. Since j is a private member of 
class D, it will not be accessible. However, by Rule #2c, since class B is a public base 
class of class D, the public members of class B will also be accessible. The assignment 
to d. i is valid. 

3. All members of a class, and public and protected members of its base classes, are accessible by member 
and friend functions of the class. (self-explanatory) 

The reasoning for the rules as they apply to inheritance is illustrated by Figure 10-1. 
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Figure 10-1: Derivation Relationship 

BASE: 

PRIVATE 

PROTECTED 

PUBLIC 

DERIVED: 

PRIVATE 

PROTECTED 

PRIVATE derivation 

PUBLIC derivation 

PUBLIC 

Access Rules for C++ 

This diagram shows the level of protection of a base class member when referenced through a derived 
class. As indicated in Rule #3, since friends and members of the derived class have access to all members 
of the derived class, they will also have access to the public and protected members of any base class. 

When neither a friend nor member of the derived class, access to base class members will be determined by 
the type of derivation. If it is a private derivation, the base class members will be private in the derived 
class. As such, the base class members will not be accessible. However, in a public derivation, the same 
level of access will apply for base class members as applies within the derived class. 
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Base Member Declarations 

public and protected base member declarations in a derived class (of the form base_class: : member ) 
can be used to alter the accessibility of class members. When given in a private derived class, a base 
member declaration will make the designated base member appear to be a member of the derived class.3 

Thus, accessibility of the member will be determined at the level of the derived class. 

A superfluous base member declaration (Le., one given in a public derived class) is ignored. This is neces­
sary since an inaccessible base member declaration can conceivably hide a validly accessible base member. 

10-6 

class A { 
protected: 

} i 

int ii 
friend f()i 

class B : public A 
protected: 

} i 

void f () 

A: : ii 

B* Pi 
p->i = 1; II This would be illegal if the base 

II member declaration was not ignored 
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Examples (Not Interdependent) 

11------ start of example 01 ------

class B 
int ij 
friend void f()j 

} j 

class D public B { 
} j 

void 
f () { 

B* P = 
D* q = 

int fi1 
int fi2 

new Bj 
new Dj 

= p->ij 
= q->ij 

II 
II 

11------ start of example 02 ------

class B 
int ij 

} j 

class D public B { 
} j 

void 
f () { 

B* 
D* 

int 
int 

P 
q 

= new Bj 
= new D; 

fi1 = p->i; 
fi2 = q->ij 

II 
II 

11------ start of example 03 ------

class B 

} j 

int ij 
friend Ci 

Access Rules for C++ 

Access Rules for C++ 

OK - Rule #1, #2b, #3 
OK - Rule #1, #2a, #2c, #2b, #3 

ERROR - Rule #1, #2a, -fail-
ERROR - Rule #1, #2a, #2c, -fail-
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class C : private B { 
friend Di 
void f1 () 
int fi1 = ii 

} i 

class D : public C { 
void f2 () { 
int fi2 = ii 

} ; 

II OK - Rule #3, #2b, #3 

II ERROR - Rule #3, #2b, #3, -fail-

11------ start of example 04 ------

class B 

} i 

int ii 
friend Di 

class C private B { 
} i 

class D : public C { 
void f () { 
int fi1 = i; 

} i 

II ERROR - Rule #3, -fail-

11------ start of example 05 ------

class B 

} ; 

int ii 
friend Di 

class C public B { 
} i 

class D : private C { 
void f () { 
int fi1 = ii 

} i 

II OK - Rule #3, #2c, #2b, #3 

11------ start of example 06 ------
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class B 

} i 

class D 

int ii 
friend Di 

void f () { 
B* P = new Bi 

int fi1 = p->ii 
} 

II OK - Rule #1, #2b, #3 

} i 

11------ start of example 07 ------

class B { 
protected: 

int ai 

} i 

class D : public B { 
friend void f()i 

pUblic: 

} i 

void 
f () { 

int bi 

D* Pi 
p->a 
p->b = 

B* PPi 
pp->a 
pp->b = 

pp = Pi 
pp->a 
pp->b = 

1i 
2i 

1i 
1i 

1i 
2i 

II 
II 

II 
II 

II 
II 

11------ start of example 08 ------

class A { 
protected: 

int ai 
} i 

Access Rules for C++ 

OK - Rule #1, #2b, #3 
OK - Rule #1, #2a 

ERROR - Rule #1, #2a, 
ERROR - Rule #1, #2a, 

ERROR - Rule #1, #2a, 
ERROR - Rule #1, #2a, 

Access Rules for C++ 

-fail-
-fail-

-fail-
-fail-
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class B public A { 
} i 

class C : public B { 

void f(B* p) ; 
} i 

void 
c: : f (B* p) { 

a = Ii II OK - Rule #3, #2c 
p->a = 2; II ERROR - Rule #1, #2a, #2c, -fail-

11------ start of example 09 ------

class A 
int ai 
friend void f(); 

} i 

class B public A { 
} ; 

void 
f () { 

B* p; 

p->a = 1; 

A* p2; 
p2->a = 2i 

II OK - Rule #1, #2a, #2c, #2b, #3 

II OK - Rule #1, #2b, #3 

11------ start of example 10 ------

class B 
friend void fl()i 

public: 
int ai 

} ; 

class C : private B { 
friend void f2()i 

} ; 

class D public C { 
} i 
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void 
f1() { 

D* p1; 
p1->a = 1i II ERROR - Rule #1, #2a, #2c, -fail-

void 
f2 () { 

D* P2i 
p2->a = 1i II OK - Rule #1, #2a, #2c, #2b, #3 

11------ start of example 11 ------

class B 

} i 

friend void f1()i 
int ai 

class C : private B { 
friend void f2()i 

} i 

class D public C { 

} i 

void 
f1 () 

void 
f2 () { 

D* p1i 
p1->a = 1i 

D* p2i 
p2->a = 1i 

II ERROR - Rule #1, #2a, #2c, -fail-

II ERROR - Rule #1, #2a, #2c, #2b, #3, -fail-

11------ start of example 12 ------

class B 
friend void f1()i 

public: 
int ai 

} i 
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class C : public B { 

friend void f2(); 
} ; 

class D public C { 

} ; 

void 
f1 () { 

D* p1; 
p1->a = 1; II OK - Rule #1, #2a, #2c, #2c 

} 

void 
f2 () { 

D* p2; 
p2->a = 1; II OK - Rule #1, #2a, #2c, #2b, #3 

} 

11------ start of example 13 ------

class B 

} ; 

friend void f1()i 
int a; 

class C : public B { 
friend void f2(); 

} ; 

class D public C { 

} ; 

void 
f1 () { 

D* p1; 
p1->a = 1; 

} 

void 
f2 () { 

D* p2; 
p2->a = 1; 

} 

II OK - Rule #1, #2a, #2c, #2c, #2b, #3 

II ERROR - Rule #1, #2a, #2c, #2b, #3, -fail-

11---------------------------------
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Footnotes 

1. Denoting a class as a friend, in effect, denotes each function member of that class as a friend. 

2. Rules #2b and #3 can be combined to override Rule #2c. 

3. A public base member declaration must appear in a public section of the derived class. Similar 
logic applies to the protected case. 
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Inline Functions in C++ 

~ This chapter is taken directly from a paper by Dennis Mancl. 

y 
Abstract 

Inline functions in C++ permit the programmer to increase the execution time efficiency of a program. 
There are some places, however, where inline functions should not be used - for functions that the com­
piler is incapable of expanding inline. 

Introduction 

Inline functions are a useful feature in the C++ programming language. When they are used judiciously, 
the run-time efficiency of the programs where they are used can be improved considerably. But not all 
uses of inline functions will cause programs to run faster. The purpose of this chapter is to describe the 
proper use of C++ inline functions and to point out some of the pitfalls in their use. 

This paper discusses the implementation of inline functions in the AT&T C++ Language System Release 2.1. 
Other C++ compilation systems exist, and these have subtle differences with the information presented 
here. 

Regular Inline Functions 

C++ functions are declared inline by putting the keyword inline before the definition of the function. For 
example: 

II example program inlinel.c: 

inline int min(int a, int b) 

return « a < b) ? a b) ; 
} 

Inline functions increase the execution speed of a program by getting rid of the normal subroutine call 
overhead. In a program calling a normal function, the actual code for the function is generated by the com­
piler in one place, with a return from subroutine instruction at the end. Each call to the function is 
translated into instructions that place the function arguments on the stack, place the return address on the 
stack, jump to the start of the subroutine, and clean up the stack after the return. 
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Inline functions improve execution speed by eliminating the steps of stacking the arguments, jumping to 
the subroutine, and cleaning up the stack. Instead, the function's code is repeated in each place where the 
function is called. This may create a very large program if an inline function is large and is called in many 
places in a program - the use of inline functions is a space-time tradeoff. The inline function feature is 
used most often for very simple functions. 

In order to make a clearcut decision on whether a function should be inline or not, five pieces of informa­
tion must be estimated: 

1. the object code size of the function 

2. the object code size of the stacking, jumping, and cleanup code 

3. the execution time of the stacking, jumping, and cleanup code 

4. the number of places in the program where the function is called 

5. the average number of times the function is actually executed in a single run of the program 

Item 1 can be determined easily by compiling the function separately. Items 2 and 3 are more difficult to 
determine - it is necessary to look at the assembly code generated by the C compiler. Item 4 can be 
counted directly from the code, and item 5 can be found by running the program with a profiler such as 
prof, lprof, or gprof. With this information, the cost in space and the benefit in time can be determined. 
(Space cost = [(1) - (2)] * (4), time savings = (3) * (5). Notice that for very small functions, the space cost can 
be negative, that is, certain inline functions save both time and space.) In real life this kind of formal 
analysis is rarely performed - but programmers use their own intuitive estimates of these quantities to 
decide where inl ine should be used. 

Many normal functions can be made into inline functions. According to the definition of the C++ inline 
keyword, inline is treated as a IJhint" to the compiler - the compiler may choose to ignore the hint. See 
the AT&T C++ Language System Release 2.1 Product Reference Manual, page 36, for details about the inline 
keyword. In the AT&T C++ Language System some circumstances prevent inline expansion - for instance, 
loops are not allowed in an inline function. A more complete (but not totally exhaustive) list of the 
translator's expansion rules for inline functions appears below. In some cases where the translator can't 
expand a function, it produces an error message and the function must be rewritten. In other cases, the 
translator gives a warning message indicating that the function will not be expanded inline, but the func­
tion will be converted to a static function - this means that no execution speed improvement will occur 
and there may be a possible program size penalty if the inline function is included in multiple source files. 
Finally, there are cases where the translator produces no warning message, but a static copy of the inline 
function is added to the object file. 
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Inline Member Functions 

There are two different ways of defining C++ inline functions that are member functions of a class. The 
first and most common way is to include the definition of the function in the declaration of the class. In 
this kind of inline function definition, the keyword inline is optional. 

II example program inline2.c: 

class example { 
int hrs; 
int mins; 

public: 
void settime(int hval, int mval) { hrs = hvalj mins = minval; } 

} j 

The second way uses the inline keyword before the definition of a member function outside of the class 
declaration. 

II example program inline3.c: 

class example { 
int hrs; 
int mins; 

pUblic: 
int seconds_after_midnight()j 

} ; 

inline int example::seconds_after_midnight() 
return (60 * (mins + 60*hrs)); 

Both methods of defining inline member functions are okay, but the second is very useful in the case when 
it is necessary to relocate the definition of an inline function to another part of the file in order to eliminate 
forward references to other inline functions. (But the function definition can't be moved from the . h file 
containing the definition of the class to a single . c file, because all modules using the function must contain 
the definition of the function.) 

Inline Constructors and Destructors 

Constructors and destructors can also be inline functions. Inline constructors or destructors cause the 
space-time tradeoff analysis to be more complicated - for two reasons. First, it is more difficult to count 
the number of places in the program where a constructor or a destructor is called than to count the number 
of calls to a normal function. Constructor functions are called for declarations, conversions, and invocations 
of the new operator, and destructor function calls are at the end of a block that contains a declaration of a 
class object or where the delete operator is invoked. Second, the code generated by an inline constructor 
or destructor function in a derived class will contain the code from the inline constructor or destructor in 
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the base class, if the corresponding base class constructor or destructor is also an inline function. 

Inline constructors and destructors are very useful in reducing the execution time for initialization and 
cleanup of class objects. Estimating the cost in space is easier to do by experimentation than by analysis. 

Examples of Inline Function Errors and Warnings 

When an inline function is declared, it is not always possible to do an inline expansion of the function. An 
inline function that cannot be expanded is converted to a "static" function - a normal non-inline function 
whose scope is limited to the . c file in which it is contained. 

If an inline function cannot be expanded, as is the case in some of the examples below, the function can 
have a large negative impact on the amount of space used by a program. Most inline function definitions 
are found in header files (. h files) which define variables and function prototypes for many different parts 
of a larger C++ program. In the compilation process, the C++ compilation system will put a duplicate 
static copy of the inline function in many different object files. 

In an extreme case, in a C++ program that consists of 100 . c files, each of which #includes the header file 
defining an inline function, there is a possibility that 100 static copies of the inline function may appear in 
the final executable file. In a couple of the examples given below (example programs inline9. c and 
inlinell.c), a static copy of an inline function is produced even though there is no inline function 
invoked in the program. These "non-inline inline" constructs should be avoided. 

The following is a list of some examples where inline functions are converted to static functions. 

• An inline function definition contains a loop. 

II example program inline4.c: 

inline char *find_next(char *string, char objective) 
{ 

while (*string && (*string 1= objective)) string++; 
return ((*string == objective) ? string: NULL); 

In this case, the translator will produce the following warning message (in C++ Release 2.1, only if 
the +w option is used). 

7' 
( warning: "inline" ignored, find_next() contains loop 

~ 

It will proceed to generate code - in this case, the function is converted to a static function. 

• An inline function contains multiple returns. 
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II example program inline5.c: 

#include <string.h> 
inline char *my_strcpy(char *dest, char *src) 
{ 

if (dest == 0) return (0); 
return (strcpy(dest, src»; 

This program causes a translator error message: 

sorry, not implemented: cannot expand inline 
function IDY_strcpy() with statement after "return" 

This problem can be sidestepped by making a single return. 

II example program inline6.c: 

#include <string.h> 
inline char *my_strcpy(char *dest, char *src} 

char *retval; 
if (dest == 0) retval = 0; 
else retval = strcpy(dest, src); 
return (retval); 

• An inline function contains a local array variable. 

II example program inline7.c: 

#include <string.h> 
inline void basename(char *filename) 

char basename_buf [15] ; 
char *p; 
if «p = strrchr(filename, 'I'» 1= 0) { 

strncpy (basename_buf, p + 1, 15); 
bas ename_bu f [14] = '\0'; 
strcpy(filename, basename_buf}; 

This program causes a translator error message: 

Inline Functions in C++ 

Inline Functions in C++ 
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sorry, not implemented: cannot expand inline function 
needing temporary variable of vector type 

at the place where the inline function is called. A similar message would be produced if the local 
array were declared static char basename_buf [15]. In order to make this function work, the 
array needs to be made static and it must be moved outside of the function definition . 

• An inline function is defined recursively. 

II example program inline8.c: 

inline int factorial(int n) 
return «n == 0) ? 1 : (n * factorial(n - 1»); 

This example compiles with no warning messages from the translator (unless the +w option is used). 
In fact, any call to this function is expanded inline, but the recursive call within the function 
definition is not expanded. For example, the statements 

int n = 5; 
m = factorial(n); 

are translated into 

int n = 5; 
m = «n == 0) ? 1 : (n * factorial(n - 1»); 

• There are nested calls to an inline function in another inline function. 
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II example program inline9.c: 

inline int min(int a, int b) 

return «a < b) ? a b) ; 

inline int min3(int a, int b, int c) 

return (min(a, min(b, c»); II An inline function that 
II makes nested calls to another 
II inline function 

In this example, the function min () becomes a static function. This occurs even if there is no call to 
the min3 () function anywhere in the program. The translator only gives a warning message to indi­
cate that a static copy of min () has been created if the +w option is present. 
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The translator will only expand an inline function once in an expression. This can be sidestepped by 
splitting this into two expressions: 

II example program inlinelO.c: 

inline int min3(int a, int b, int c) 
{ 

int temp = min(b, C)i 

return (min(a, temp»; 
II this works okay -- no static 
II copy of min() is created 

• An inline function is called by a previously defined inline function. 

This case can only happen within a class definition, because in any other case, the compiler gives an 
error message for a forward reference from an inline function to another inline function. 

II example program inlinell.c: 

class example { 
int hrs; 
int mins; 

public: 

} ; 

void roundup() { clearmins()i hrs++i }i 

II roundup() contains a forward reference 
II to the inline function clearmins() 

void clearmins() { mins = 0; } 

The function clearmins () is called before it is defined. In this example, the function clearmins () 
becomes a static function. This occurs even if there is no call to the roundup () function anywhere in 
the program. The translator gives a warning message to indicate that a static copy of clearmins ( ) 
has been created only if the +w option is present. 

This problem can be sidestepped by changing the order of the definitions of the functions roundup ( ) 
andclearmins() . 

• The address of an inline function is needed. 
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II example program inline12.c: 

inline int min(int a , int b) 

return «a < b) ? a : b); 

extern void do_function(int (*) (int, int»; 

main () 
do_function(&min); 

} 

A static copy of the inline function is added to the file so that the function pointer can point to a real 
function. Normal calls to the min () function are expanded inline - only calls through the function 
pointer will call the static copy of the function. 

This program and the next two are examples of the static copy of the inline function being triggered 
by the use of the function rather than by the definition of the function. 

• An inline function is also virtual. 
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This is a result of the implementation of virtual functions. The virtual function table must have a 
pointer to an actual function, so a static copy of the function is created. The static copy of the func­
tion is usually added to only one file - that's the file where the translator puts the virtual function 
table, which is usually the file that contains the definition of the first non-inline virtual function. 

II example program inline13.c: 

class baseclass { 
int data; 

public: 

} ; 

main () 

virtual inline void clrdata() { data 

baseclass b , *baseptr; 
b.clrdata(); 

baseptr->clrdata(); 
baseptr->baseclass::clrdata(); 

0; }; 

II inline only in c++ 2.0 or 2.1 
II (not in c++ 1.2) 
II never inline 
II always inline 

The "virtual inline" function definition is sometimes useful, because of the execution speed efficiency 
of inline expansion in the cases where the function can be expanded inline. The choice of whether to 
make a virtual function into an inline virtual function is based on the same space-time tradeoffs as 
with normal functions, but in the analysis it is necessary to remember that function calls that use the 
IIvirtual" mechanism (as is the case in the example program above: (baseptr->clrdata ( ) ) never get 
the benefit of inline expansion. 
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How to Find Inline Functions That Are Not Expanded 

In a C++ library, a collection of C++ classes and functions that will be used by many programmers in many 
places, a simple check should be made for functions that are not expanded inline. One way to find the 
"non-inline" inlines is to compile the library with the +w option. This option will give warnings about all 
of the examples given in the previous section. Another way to find functions that are being converted to 
static functions by the C++ compilation system is to look at the symbol table of a test program. (The nm(1) 
command prints a list of the names in the symbol table of a .0 file.) If the symbol table contains the names 
of "inline" functions, then those functions are being converted to static functions, because inline functions 
normally don't tum up in the symbol table. 

Here's an example. 

II example program inline14.h: 

#include <memory.h> 
class StffipleStr { 

pUblic: 

} ; 

char *stringbuffer; 
int length; 

SirnpleStr() { stringbuffer = 0; } 
SimpleStr(int str_length) { 

stringbuffer = new char[str_length]; 
length = str_length; 
clrbuf () ; 

void clrbuf() { rnernset(stringbuffer, 0, length); } 

In order to test this code to determine if there is a "non-inline" inline function, a simple . c has to be com­
piled: 

II example program inline14.c: 

#include linline14.h" 
SimpleStr s; 

The "non-inline" inline functions can be found by applying the following commands to the object file: 

nm inline14.o I grep • static" I grep "\.text" I c++filt 
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Running this set of commands produces: 

SirnpleString::clrbuf() I 52 I static I 

c++ syrnbo 1 rnapp ing 
dernangled: mangled: 

I.text 

SirnpleStr ing: : c lrbuf ( ) _clrbuf __ 12SirnpleStringFv 

A more complicated tool could be written to search the source file for inline function definitions and to 
search the object file symbol table for the matching function name. A more complete test program would 
include calling each of the inline functions. 

Summary 

In conclusion, the inline function construct in the C++ programming language is a useful feature. It needs 
to be used selectively - keeping in mind the space-time tradeoffs in using them and the places where 
inline definitions add no execution speed improvement to the program. 
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As Close as Possible to C - But No Closer 

~ This chapter is taken directly from a paper by Andrew Koenig and 8jarne Stroustrup. 

9 
Introduction 

ANSI C and the C subset of C++ serve subtly different purposes. 

The purpose of ANSI C is to provide a standard: to codify existing practice and resolve inconsistencies 
among existing implementations. The purpose of C++ is to provide C programmers with a tool they can 
use to shape their thinking in fundamentally different ways. Both aimed at compatibility with IIClassic CII 
and both came close to hitting their mark. 

The two goals have necessarily resulted in some fundamental differences of approach between the two 
languages. In a few cases, C++ departed slightly from uClassic C" - always with knowledge of the cost of 
doing so and always with the aim to gain something well worth that cost. X3Jl1 did the same according to 
its aims and constraints. Wherever possible, C++ has adopted the X3J11 modifications and resolutions and 
in a few noteworthy cases ANSI C adopted C++ features. 

The purpose of this chapter is to summarize the remaining differences between the ANSI C standard and 
C++, explain their motivation, and point out cases where these differences are less important than they 
might appear at first. 

Below, C refers to C as defined by the December 7, 1988 ANSI C standard and C++ refers to C++ as defined 
in the February 1990 draft C++ Reference Manual. We use the word udifference" to refer to something that 
is C but not C++. Things that can be done in C++ but not C are not interesting in this context unless they 
also somehow restrict C++ from expressing something that is C. 

Note that in this context pure extensions of C provided by C++ are not incompatibilities. 

Name Spaces and Nesting 

Structure Name Spaces 
C puts variables and structure tags in separate name spaces; C++ uses a single name space. The reason for 
this, of course, is that abstract data types - classes - are a crucial part of the foundation of C++ and it is 
important to be able to use them as naturally as if they were built-in types. Essentially every C++ program 
depends on this. 

The place where it matters most - at least the place where people have complained the most - is when a 
library function deals with a structure with the same name. For instance: 
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struct stat { 
/* member declarations */ 

} ; 

int stat(const char * , struct stat *); 

The C++ language definition therefore has a compatibility wart to allow precisely this kind of thing. We 
believe this will smoothly accommodate most existing C usages while still allowing the economical expres­
sion C++ programmers have come to appreciate and depend on. 

The only remaining difference between C and C++ in the name space area is that C++ does not allow a 
name to be declared as both a structure tag and a (different) typedef name in the same scope. For exam­
ple: 

struct stat 
/* member declarations */ 

} ; 

typedef int stat; 

Allowing this construct in C++ would create serious problems with composition of header files describing 
libraries since declarations of functions, variables, and classes then could undetectably change meaning as 
the result of header file inclusions. Note that C++ specifically does allow the following common C usage: 

typedef struct A { 
/* member declarations */ 

} A; 

Structure Nesting 
In both C and C++, a structure may be declared inside another: 

struct OUter { 

int a; 
int h; 
struct Inner { 

int X; 
int y; 

} c; 
int d; 

} ; 

In C, this is merely a notational convenience: the declaration above is precisely equivalent to: 
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struct Inner { 

int X; 
int y; 

} ; 

struct Outer { 

int ai 

int h; 
struct Inner c; 
int d; 

} ; 

In C++, structures are classes, classes can have member functions, and member functions obey the same 
scope rules as any other functions. As a result, it is necessary for classes to obey the normal scope rules as 
well, so that in the first example above, the name Inner is only directly visible inside the body of the 
OUter class declaration and its associated member functions. For example: 

struct Outer { 
int a; 
int h; 

} ; 

void fO 
{ 

} 

struct Inner { 
int X; 
int y; 

} c; 
int d; 

OUter limits; 
Inner sanctum; 
OUter::Inner view; 

/* legal C and c++ */ 
/* legal C, illegal c++ */ 
/* legal C++, illegal C */ 

This difference should not cause trouble in practice, because a considerate C++ implementation will detect 
invalid C++ usages that are valid C, issue an appropriate warning, and use the C treatment. Of course, 
good programming practice argues against declaring a name like Inner in a way that makes it look nested, 
and then using it in a way that requires that it be externally visible. 

Similarly, the C++ notion that a class establishes a scope is useful for declaring enumerations. They are 
kept in the scope of their class, and accessible elsewhere - subject to access control - by explicit 
qualification with their class name: 
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class X 
public: 

private: 

} ; 

enum state { good, bad, fail }; 
state readstate(); 
/ / ... 

some_operation() { state s = good; /* ... */ } 
/ / .. ~ 

void f(X& x) 
{ 

while (x.readstate() == X: :good) / / ... 

Linkage 

The major difference here is that C allows 

extern void f(); 
/* no declaration of g */ 

main() 
{ 

and C++ does not. 

f(3,4) ; 
g(S,6); 

/* legal C, illegal c++ */ 
/* legal C, illegal c++ */ 

In C++, a function prototype with no arguments means that the function has no arguments, and it is an 
error to call it with arguments. The ANSI C standard lists this (mis)use of function declarations as obsoles­
cent (§3.9.4). We think C++ is an excellent place to institute this disappearance. 

To declare a function f () with no arguments in a way that unambiguously means the same thing in both C 
and C++, say something like this: 

int getcount(void); 

Furthermore, in C++, a prototype is required for any calli an undeclared funetion cannot be called. ~s is 
absolutely fundamental to the type safety of C++i C requires a prototype only for functions, such as 
printf (), that accept variable numbers of arguments. 
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Linkage Consistency 

C++ requires the types of all objects and functions with external linkage to be consistent across separate 
compilations - and enforces this requirement. This implies that all prototypes for a function must agree 
(exactly) and that any structure tag used in the type of any object or function with external linkage must 
refer to the same structure (with the same name) in all files. 

We are not convinced that this requirement is actually different from C but we are convinced that actual C 
practice is such that enforcing the requirement would be unacceptable because it would break too much 
code. 

C++ relies on name equivalence; that is, two types are considered the same if and only if they have the 
same name - and there must be exactly one definition of a given type in given scope. ANSI C allows cer­
tain examples of structural equivalence; that is, two types are in a few cases considered the same provided 
their declarations are sufficiently similar. For example: 

II file1: 
struct S { int a, int b; }; 
extern int f(struct S); 

II file2: 
int f(struct { int a, int b; } arg) { 1* ... *1 }; 

This example is ANSI C because the declarations of the structures used as the argument type for f () are 
sufficiently similar. In C++, the f () in file2 is not considered a definition of the f () declared in file1 
because they have different argument types. 

Linkage of canst 

Global variables declared const have external linkage by default in C; in C++ such consts have internal 
linkage by default. The reason for this is to avoid having to allocate memory for things that, in our experi­
ence, are usually intended as the equivalent of preprocessor macros and to allow systematic use of integer 
const s in constant expressions. For example: 

const SIZE = 100; 
int table[SIZE]; 1* legal C++, illegal C *1 

Again this is not as much of a problem as one might expect. It makes no difference, of course, if a constant 
is only defined and used in a single file or if the const is local. If the same constant is defined in several 
files, the programmer will have to declare it static anyway to avoid multiple definition errors from the 
linker or declare it extern in all files but one. All uses of const where explicit static or extern is used 
are compatible as are all uses of local consts. 

The only case to look out for is: 
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file1: 
const a = 1; 

file2: 
extern const a; 

which will not link in C++ because no definition will be found for the a referenced in file2. The follow­
ing modification makes the C program acceptable to a C++ compiler: 

file1: 
extern const a = 1; 

file2: 
extern const a; 

Keywords 
C++ has a few extra keywords: asm, catch, class, delete, friend, inline, new, operator, private, 
protected, public, template, this, t:ry, and virtual. This can't be helped; one cannot add fundamen­
tal concepts to a language in a reasonable way without introducing words to refer to those concepts. To 
avoid chaos, such words must be reserved in languages such as C and C++. 

Miscellaneous 
The differences mentioned above are the most important because they affect the interface between C and 
C++ programs and limit - if only insignificantly - what can be expressed in header files shared by the the 
two languages. The relative insignificance of these limitations can be seen from the fact that all the ANSI C 
standard library header files are also legal C++ header files. 

Other differences are limited to individual source files and are less important since no significant C++ pro­
gram can pass a C compiler anyway. 

Assignment of void 

C not only allows any object pointer to be assigned to a void* but also a void* to be assigned to any 
object pointer. This opens a blatant hole in the type system that was not present in classic C. 

We surmise that the reason this is considered acceptable is that C already has a worse hole in its type sys­
tem in the form of unchecked function arguments and because it provides the C programmer the conveni­
ence of not having to cast the results of calling malloc (), calloc (), etc. Opening this hole is not accept­
able in C++ where reliance on the type system is greater. In C++, only the harmless assignment of any 
object pointer to a void* (and not the opposite assignment) is accepted. Furthermore, since"C++ program­
mers use operator new in preference to using malloc ( ) , etc., directly, the hole in the type system would 
provide no extra convenience in C++. 
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In a similar vein, C++ does not allow a pointer to a const object to be assigned to void*: the program 
must use a const void* instead. This is to catch things like: 

extern lie" { 
int read(int, void, int}i 
int write(int, const void, int)i 

const char filename[] = II letc/passwd ll i 

void f () 

read(O, filename, sizeof(filename}}i II read into a const? 

If an arbitrary const pointer could be freely assigned to void* , there would be no way for the compiler to 
detect that this program fragment tries to read into a constant array. 

Of course a C++ program can use a cast to convert a void* to or from any other kind of pointer. 

Type of 'a' 

The type of character constants in C++ is char instead of into However, since the rules for determining 
the integer value of a character constant are identical in C and C++ the only way to detect this in a C pro­
gram is with an expression like sizeof (' a'). In C++, however, it is essential for the overloaded function 
resolution mechanism to resolve 'a' as a char so that 

cout « 'a'i 

can print a instead of 97 . 

For the same reason, the type of an enumerator is the type of its enumeration. This may lead to an incom­
patibility since, given 

enum e { A, B } i 

sizeof (A) ==sizeof (enum e) and sizeof (enum e) are not guaranteed to be equal to sizeof (int) in 
either C or C++ . 

Repeated Definition 
In C++, a "plain" global object declaration (without extern or an initializer) is a definition. Two of those 
in a file give a double definition error. For example: 

int ii 
int ii 

In C, this is accepted. The reason for the difference is again the uniform treatment of built-in and user­
defined types. Suppose Int is a class for which a constructor taking no arguments has been declared: 
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Int i; 
Int i; 

Each declaration requires a call of the constructor and each places that call in the sequence of such calls to 
be executed for the file. Deciding that only one of the declarations is "real" and ignoring the other not 
only adds complexity to C++ compilers and/or linkers but can also introduce dependency errors into the 
dynamic initialization. 

Character Array Initialization 

For some reason C has come to allow the previously illegal initialization 

char v[3] = "asd l'
; 

Allowing this violates the rule that strings are terminated by '\0' so C++ still rejects it. The way to initial­
ize a bounded character array that is not intended to be used as a string is to initialize the individual ele­
ments: 

char v[3] = { 'a', 's', 'd' }; 

goto Skipping Initialization 

The following is legal C, but not C++: 

void f() 
{ 

/* ... * / 
goto 11; 
{ 

11: 

/* */ 

int a = 7; 
String b = "asdf"; 

/* ... * / 

In C, this is merely dangerous and bad style. In C++, it would with great regularity cause core dumps; 
that innocuous looking String might be a class for which a destructor will be called on exit from f () . 

enum Assignment 

In C, an int may be assigned to a variable of an enumeration type. For example: 
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enum e { A, B }; 

enum e objl = 7; 

enum e obj2 257; 1* what if an e is represented by a char? *1 

C leaves the meaning of many such assignments implementation dependent and the ANSI C manual recom­
mends a warning against all such assignments. C++ prohibits them. As usual, casting can defeat type 
checking: 

enum e obj3 = (enum e) 7; 1* caveat emptor *1 

Comments 
It was believed that the introduction of I I comments in C++ did not lead to any incompatibilities. Here is 
a counter example: 

main() 
{ 

int a = 
int b 
+a; 

4; 
811* divide by a*/a; 

Note that the use of a prefix operator starting the line is essential, as is the absence of whitespace. We do 
not consider this incompatibility serious enough to abandon either style of comments. 

We note in passing that it is important to cater to I I comments in the preprocessor too, lest the following 
evoke surprising preprocessor complaints: 

#include <stdio.h> 

int flag; II remember if we have called getc() 

Conclusion 
We have tried to summarize the differences between ANSI C and C++. In the design of C++, we have been 
trying to keep the differences as minor as possible. We believe that we have succeeded in this beyond rea­
sonable expectations and that differences that remain are unimportant to C programmers, essential to C++ 
programmers, and stem from the somewhat different purposes behind C and C++ . 
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