
HP-UX Symbolic Debugger
User's Manual

HP 9000
Computers

HP-UX Symbolic Debugger
User's Guide

HP 9000 Computers

Fli'PW HEWLETT
~~ PACKARD

HP Part No. 82355-90044
Printed in USA 08/92

First Edition
E0892

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright © Hewlett-Packard Company 1990, 1991, 1992

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(l)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright © UNIX System Laboratories, Inc. 1980, 1984, 1986
Copyright © The Regents of the Univ. of California 1979, 1980,1983,
198.5-1990

This software and documentation is based in part on materials licensed from
The Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. The manual printing date and part number indicate its
current edition. The printing date changes when a new edition is printed.
(Minor corrections which are incorporated at reprint do not cause the date to
change.) The manual part number changes when extensive technical changes
are incorporated.

August 1992 ... Edition 1.

iv

This edition includes information on how to
debug C++ parameterized types, exceptions,
and nested classes. There is also information
on how the debugger provides for debugging
shared libraries, source file mapping, viewing
of the execution stack, and necessary resources
for window mode. This manual replaces HP
part number
B1864-9000S.

Preface
The HP- UX Symbolic Debugger User's Guide explains how to debug computer
programs on HP 9000 computer systems. The manual assumes that you are an
experienced programmer familiar with symbolic debuggers on other systems.

This manual contains the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Introduces the HP Symbolic Debugger - what it is and who can
use it. This chapter also explains how to prepare a program for
use with the symbolic debugger.

Contains listings of sample debugger programs which are
used in sample debugger sessions online. Use these listings for
reference to the online programs when experimenting with the
debugger.

Describes how to use the HP Symbolic Debugger to debug
programs.

Discusses the HP Symbolic Debugger commands.

Covers information that is specific to the use of the symbolic
debugger for debugging C++ programs.

Covers information that is specific to the use of the symbolic
debugger for debugging shared libraries.

Lists warning and error messages, along with their remedial
actions.

Lists the language operators for HP C and HP C++.

Lists the language operators for HP FORTRAN 77 and
explains FORTRAN VMS record support.

Lists the language operators for HP Pascal.

Lists the special variables and environment variables used by
the HP Symbolic Debugger.

Lists some limitations of the HP Symbolic Debugger and gives
some usage hints.

v

Appendix G

Appendix H

Appendix I

Appendix J

Glossary

vi

Lists installed HP Symbolic Debugger files.

Provides a brief description of all of the HP Symbolic Debugger
commands.

Gives a comparison between the xdb and edb HP Symbolic
Debuggers.

Lists registers displayed by the HP Symbolic Debugger in
disassembly mode.

Lists new terms and their definitions.

Additional Documentation
This Inanual does not discuss the HP -UX operating system in detail. Only
those aspects relevant to the HP Symbolic Debugger are mentioned. Similarly,
details about conlpiling a program using HP FORTRAN 77, HP Pascal, HP C,
and HP C++ are only discussed to the extent that they affect how you use
the HP SYlnbolic Debugger. See the appropriate operating system or language
lllanual for complete inforrnation about those subjects. The following is a
partial list of the operating system and language manuals:

Series 300/400 COillput.er Manual Title Number Used t.o
Order Manual

Programlning on HP- UX B2355-90026

HP- [l)<;.- Portability Ouide B2355-90025

HP FORTRAN/9000 Programmer)s Reference B2408-90010

HP FORTRAN /9000 Programmer)s Guide B2408-90009

HP Pascal Reference B2373-90000

C P7'Ogrammer's Guide B 1864-90008

C Programrn.ing Tools B1864-90009

C: A Reference .M anual (a Prentice Hall book)

HP C++ Prograrnming Language B2402-90001

HP C++ P7'Ogrammer's Ol.lide 92501-90005

HP C++ Developer User)s Guide B1697-90000

HP- UX Assembler and Tools B1864-90014

vii

Series 600 Computer Manual Title Number Used to
Order Manual

Programming on HP- UX B2355-90026

HP FORTRAN /9000 Programmer's Reference B2408-90010

HP FORTRAN/9000 Programmer's Guide B2408-90009

Assembly Language Reference Manual 92432-90001

Series 700/800 Computer Manual Title Number Used to
Order Manual

Programming on HP- UX B2355-90026

HP- UX Porlability Guide B2355-90025

HP FORTRAN/9000 Programmer's Reference B2408-90010

HP FORTRAN/9000 Programmer's Guide B2408-90009

HP Pascal/HP- UX Reference Manual 92431-90005

HP Pascal/HP- UX Programmer's Guide 92431-90006

HP C/HP- UX Reference Manual 92453-90024

HP C Programmer's Guide 92434-90002

HP C++ Programming Language B2402-90001

HP C++ Programmer's Guide 92501-90005

HP C++ Developer User's Guide B1697-90000

Assembly Language Reference Manual 92432-90001

HP- UX Floating-Point Guide B2355-90024

viii

Conventions

CASE

italics

punctuation

underlining

In a syntax statement, commands and keywords are
shown in uppercase and lowercase characters. The
characters must be entered exactly as shown. For
example:

breakpoint

cannot be entered as any of the following:

Breakpoint BreakPoint break_point

In a syntax statement or an example, a word in italics
represents a parameter or argument that you must
replace with an actual value. In the following example,
you must replace filename with the name of the file:

view filename

Italics font is also used to emphasize a word or words.

A name in italics followed by a number in parentheses
(e.g., more(1)) is a reference to an entry in the HP- UX
Reference.

In a syntax statenlent, punctuation characters (other
than brackets, braces, vertical bars, and ellipses) must
be entered exactly as shown. In the following example,
the colon must be entered:

file: proc

Within an example that contains interactive dialog,
user input and user responses to prompts are indicated
by underlining. In the following example, "yes" is the
user's response to the prompt:

Really quit?» y

ix

Conventions (continued)

{ } In a syntax statement, braces enclose required elements.

[]

[...]

x

When several elements are stacked within braces, you
must select one. In the following example, you must
select either db or delete breakpoint:

{ ::lete breakPOint}

Note that the debugger use braces ({ }) to group
commands. These groups are called command
lists throughout this manual. This usage can be
distinguished from the notation above because the
enclosed entries are not stacked, but sequential.

In a syntax statement, brackets enclose optional
elements. In the following example, count can be
omitted:

s [count]

In a syntax statement, horizontal ellipses enclosed
in brackets indicate that you can repeatedly select
the element (s) that appear within the immediately
preceding pair of brackets or braces.

In an example, horizontal ellipses indicate where
portions of the example have been omitted.

Conventions (continued)

L:)

(CTRL)char

>

The symbol ()indicates a key on the keyboard.
For example, (Return) represents the carriage return key.

(CTRL)char indicates a control character. For example,
(CTRL)S means you press the control key and the S key
simultaneously.

The HP Symbolic Debugger prompt.

Represents "or".

Separates commands in a command list.

xi

Contents

1. Introducing the HP Symbolic Debugger
Who Can Use the HP Symbolic Debugger 1-4

Special Considerations for the Series 300/400 7.40 and 8.0
Releases 1-4

Special Considerations for the Series 600/700/800 8.0 Release. 1-5
Special Considerations for the Series 300/400 9.0 Release. .. 1-6
Special Considerations for the Series 600/700/800 9.0 Release. 1-6

Creating a Program with Debugger Information 1-7
Terminal Support . . . 1-8
Command History 1-10
Where To Go from Here 1-11

2. Getting Started
Debugger Session Scenario One

Running the Sample Sessions
Debugger Session Scenario Two

Running Sample Sessions Two
Where To Go from Here
Sample Program Listings

Sample HP FORTRAN 77 Program
Sample HP Pascal Program
Sample HP C Program
Sample HP C++ Program .

2-2
2-2
2-4
2-4
2-5
2-6
2-7
2-8

2-10
2-12

Contents-1

3. Using the HP Symbolic Debugger
Preparing the Program

Preparing Shared Libraries . . .
Starting the HP Symbolic Debugger

Customizing the Symbolic Debugger Environment
Toggling the Case Sensitivity
Setting Up the Screen
Setting Up the Locale

Once You Start the HP Symbolic Debugger ...
Starting the Program
Ending the Program.
Ending the HP Symbolic Debugger
Displaying Lines in the Program
Controlling the Command Window Display
Changing the Source Window Size
Displaying Assembly Code
Displaying Source and Assembly Code
Stepping through the Program . . .
Searching for a String in the Current File
Pausing during Execution

Setting Breakpoints
Resuming Execution After a Breakpoint
Listing Breakpoints .
Deleting Breakpoints

Displaying Data
Modifying Data. . . .
Tracing Function and Procedure Calls
Navigating the Execution Stack

U sing the down Command
U sing the up Command .
U sing the top Command .
U sing the View Command

Capturing and Rerunning a Debugger Session
Saving and Restoring the Debugger State
Displaying Character Data and Using NLS . .

Wide Characters
Separate Interfaces (Debugging Screen Applications)

Separate Environments by way of Adoption

Contents-2

3-3
3-4
3-5
3-9
3-9

3-10
3-11
3-13
3-16
3-17
3-17
3-18
3-20
3-21
3-22
3-24
3-26
3-27
3-28
3-28
3-30
3-30
3-31
3-32
3-35
3-36
3-37
3-38
3-39
3-39
3-40
3-41
3-42
3-43
3-45
3-47
3-50

Executing Commands At Each Instruction
U sing Macros.
Altering the Execution Sequence
Getting Help
Adopting a Running Process . .
Debugging a Program that Caused a Coredump

Generating a Coredump
Debugging the test_prog Program. . .

Mapping of Source Directories
A Scenario for Using the apm Command
Example 1: Both Old Path and New Path are Provided
Example 2: Stripping Part of an Old Path
Example 3: Prefixing a Path

4. HP Symbolic Debugger Commands
Entering Commands.

Using Uppercase and Lowercase
Abbreviating Commands
Entering Variable N anles
Special Variables
Entering Expressions

Character and String Expressions
Symbolic Constants . .
Numeric Constants . .
Promotion of Operands
Assignment
Pointers, Casts, and Composite Types
Arrays

Entering Procedure Calls in an Expression
Window Mode Commands
File Viewing Commands
Source Directory Mapping Commands .
Data Viewing and Modification Commands
Stack Viewing Commands
Status Viewing Command
Job Control Commands .
Breakpoint Commands
Overall Breakpoint Commands

3-51
3-52
3-53
3-54
3-55
3-57
3-57
3-59
3-62
3-63
3-65
3-65
3-66

4-1
4-5
4-6
4-6
4-9

4-15
4-16
4-17
4-18
4-19
4-19
4-20
4-20
4-21
4-23
4-28
4-35
4-36
4-56
4-63
4-64
4-70
4-77

Contents-3

Breakpoint Creation Commands
Breakpoint Status Commands
All-Procedures Breakpoint Commands
Global Breakpoint Commands
Auxiliary Breakpoint Commands
Exception Handling Commands .
Assertion Control Commands. .
Record and Playback Commands
Macro Facility Commands
Signal Control Commands
Miscellaneous Commands

5. C++ and the Symbolic Debugger
Summary of Debugger Support for C++
How the Debugger Deals with C++ Scopes

What Does Scope Mean . .
Class Scope
Declaration Statement Scope
Setting Breakpoints at the End of a Scope

C++ Expressions .
Variables
Global Variables
Reference Types
Function Calls
Operators
Class Objects. .

Displaying Type Information for an Object
Displaying the Contents of an Object
Object Identification

Class Members . . .
Data Members . .
Member Functions

Object Pointers .
Member Pointers .
Casts
Anonymous Unions

Displaying Static Data Members
Listing Local Variables

Contents-4

4-79
4-86
4-88
4-92
4-93
4-95
4-97

4-102
4-105
4-108
4-112

5-2
5-5
5-5
5-5
5-7
5-9

5-10
5-10
5-11
5-12
5-12
5-16
5-18
5-19
5-23
5-26
5-28
5-28
5-30
5-33
5-35
5-36
5-40
5-42
5-44

Listing Functions
Listing Functions
Listing Overloaded Functions

Viewing Functions with the Debugger
Example

Breakpoint Commands
Setting a Breakpoint on a Function
Setting a Breakpoint on Overloaded Functions
Setting a Breakpoint at all Member Functions of a Class
Setting an Instance Breakpoint

Handling Exceptions
U sing throw and catch. . . .
Stopping on a throw Statement
Executing a throw Command List
Stopping on a catch Statement .
Executing a catch Command List
Listing Exceptions
Exception Command's Effect on Other Commands

Step-Into (s)
Step-Over (S)

Debugging Parameterized Types
U sing Parameterized Types
Setting Breakpoints in Templates

All Member Functions of a Class Template
All Member Functions of a Template Class
A Single Class Template Member Function
A Single Class Template Member Function Instance
Function Templates

Displaying Template Data
Data Member Values in a Template Class
Calling a Template Function
The Type of An Object Declared as a Template Class
The Template Type of an Object

Listing Templates .
Classes
Class Templates
Function Templates
Template Functions

5-45
5-45
5-46
5-47
5-47
5-50
5-50
5-52
5-53
5-54
5-57
5-57
5-59
5-60
5-61
5-62
5-63
5-64
5-64
5-64
5-65
5-66
5-67
5-67
5-68
5-69
5-69
5-70
5-70
5-70
5-70
5-71
5-71
5-71
5-72
5-72
5-72
5-73

Contents-5

Using Nested Classes 5- 74
References to Static Members 5-74
References to Class Names of Enclosed Classes 5-75

Customizing Default Debugger Behavior 5-76
Sample C++ Debugging Sessions 5-77

Session One 5- 77
Session Two 5-88

6. Debugging Shared Libraries
Enabling the Debugging of Shared Libraries 6-2

Creating the Library 6- 2
Naming a Shared Library 6- 2
Locating Shared Libraries 6-3
Invoking the Debugger. . 6-4

The Debugger Environment (Symbol Binding) 6-6
Shared Library Symbols 6-8

Explicit Library References. 6-9
Debugging Shared Libraries in Disassembly Mode 6-10

Summary of Extended Debugger Commands . . . 6-11
Debugging Shared Libraries in an Adopted Process (xdb -P) 6-12
Special Considerations 6-14

A. Messages
User Errors (UE42 - UE2031) A-3

B. HP C and C++ Language Operators
HP C and C++ Language Operators B-1

HP C and C++ Language Operators B-2

C. HP FORTRAN 77 Language Operators and VMS Record Support
HP FO RTRAN 77 Language Operators C-l

HP FO RTRAN 77 Language Operators C- 2
VMS FORTRAN Records C-4

Contents-6

D. HP Pascal Language Operators
HP Pascal Language Operators D-l

HP Pascal Language Operators D-2

E. Special and Environment Variables Used by the Symbolic Debugger
Special Variables E-l

F. Limitations and Hints
Limitations and Hints

Source Limitations
Process Limitations
Single Step Limitations
Signals Restrictions . .
Operators Limitations .
Object Type Lirnitations
Files Restrictions . . .
N arning Restrictions. .
Command-Line Procedure Call Limitations
Shared Library Limitations. .
Disassembly Mode Limitations
Save State Limitations. . .
Pointer Limitation
Address Format Restriction
Hints for Using Assertions .
Window lVlode Requirements

G. Installed Files
Debugger Installation

H. HP Symbolic Debugger COlnmands
Invocation Options

Window lVlode Commands . . .
File Viewing Commands
Data Viewing and lVlodification Commands
Source Directory Mapping Commands
Stack Viewing Commands
Status Viewing Command
Job Control Commands .

F-l
F-l
F-2
F-3
F-3
F-3
F-4
F-6
F-6
F-7
F-8

F-IO
F-ll
F-12
F-12
F-12
F-13

G-l

H-l
H-5
H-7

H-IO
H-18
H-19
H-21
H-22

Contents-7

Breakpoint Commands
Exception Handling Commands
Assertion Control Commands .
Record and Playback Commands
Macro Facility Commands
Miscellaneous Commands
Signal Control Commands

I. Comparison between the xdb and cdb Symbolic Debuggers
Startup Command File
Basic Command Form

Basic Command Form for xdb
Basic Command Form for cdb

Variable Name Conventions
Special Variables
Expression Conventions
The Debugger Special Variable $lang
Division Operator
Command-Line Editing Environment Variables
Split-Screen Mode
Single- Stepping Commands
File Viewing Commands .
Data Viewing Commands
Stack Viewing Commands
Job Control Commands
Breakpoint Counts
Breakpoint Commands
Assertion Evaluation
Assertion Commands
Signal Command . .
Toggle Recording . .
Toggle Case Sensitivity
Save-State

Contents-8

H-25
H-39
H-40
H-42
H-44
H-45
H-51

1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6
1-8

1-10
1-11
1-12
1-13
1-14
1-15
1-15
1-16
1-16
1-16

J. Registers Displayed by the HP Symbolic Debugger in Disassembly
Mode
Register Names for Series 600/700/800 Computers J-1

Special Variables Names Used for Registers. . . J-1
Special Variables Names Used for Registers (Continued) J -2
Registers Displayed in the General or Floating-Point Register

Windows J -2
Registers Displayed in the Special Register 't\Tindow J-3

Register N ames for Series 300/400 COITI pu ters J-4
Special Variable Names Used for Registers J-4
Registers Displayed in the General and Floating-Point Register

Window J-4

Glossary

Index

Contents-9

Figures

1-1. Creating an Executable Program File
2-1. HP FORTRAN 77 Main Source File, Fortran_demo
2-2. HP Pascal Main Source File, Pascal_demo
2-2. HP Pascal Main Source File, Pascal_demo (Continued)
2-3. C Main Source File, C_demo
2-3. C Main Source File, C_demo (Continued)
2-4. HP C++ Main Source File, C++_demo .
2-4. C++ Main Source File, C++_demo (Con'tinued)
2-4. C++ Main Source File, C++_demo (Continued)
2-4. C++ Main Source File, C++_demo (Continued)
2-4. C++ Main Source File, C++_demo (Continued)
2-4. C++ Main Source File, C++_demo (Continued)
2-4. C++ Main Source File, C++_demo (Continued)
3-1. The HP Symbolic Debugger Screen (Source Mode)
3-2. The HP Symbolic Debugger Screen (Disassembly Mode)
3-3. The HP Symbolic Debugger Screen (Source and Disassembly

Mode)
3-4. Debugging the Program test_prog. . . .
3-5. Viewing the Procedure that Called set_to
4-1. Stack Depth
4-2. Listing a Breakpoint
4-3. Signal Numbers for the z Command . . .
4-4. A View of Object and Core Address Maps
.5- L Nested Classes

Contents-10

1-7
2-7
2-8
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
3-13
3-23

3-24
3-59
3-61
4-56
4-77

4-108
4-119

e:- '7 A
,J-I'±

Tables

1-l. Examples of Terminals that Do and Do Not Support Window
Mode. 1-8

4-l. Methods for Specifying Variables 4-7
4-2. Escape Sequences 4-17
4-3. Symbolic Constants 4-18
4-4. Data Viewing Formats . 4-53
4-5. Shorthand Notation for Size 4-54
4-6. Record and Playback Commands 4-103
5-l. Debugger Support for C++ 5-2
5-2. Bits Contained in the $cplusplus Variable 5-76
B-l. Language Operators for HP C and C++ B-2
C-l. Language Operators for HP FORTRAN 77 C-2
D-l. Language Operators for HP Pascal D-2
E-l. Special Variables E-1
E-2. Environment Variables. E-4
H-l. Window Mode Commands H-5
H-2. File Viewing Commands H-7
H-3. Data Viewing and Modification Commands H-10
H-4. Source Directory Mapping Commands H-18
H-5. Stack Viewing Commands H-19
H-6. Status Viewing Command H-21
H-7. Job Control Commands H-22
H-8. Overall Breakpoint Commands H-25
H-9. Breakpoint Creation CommCLnds H-26

H-10. Breakpoint Status Commands H-32
H-1l. All-Procedures Breakpoint Commands H-33
H-12. Global Breakpoint Commands H-37
H-13. Auxiliary Breakpoint Commands H-38
H-14. Exception Handling Commands H-39
H-15. Assertion Control Commands . H-40

Contents-11

H-16. Record and Playback Commands
H-17. Macro Facility Commands
H-18. Miscellaneous Commands
H-19. Signal Control Commands

I-I. Startup Command File
1-2. Variable Name Conventions
1-3. Special Variables
1-4. Division Operator
1-5. Command-Line Editing Environment Variables
1-6. Single-Stepping Commands
1-7. File Viewing Commands .
1-8. Data Viewing Commands
1-9. Stack Viewing Commands

1-10. Job Control Commands
I-II. Breakpoint Counts
1-12. Breakpoint Commands
1-13. Assertion Commands
1-14. Signal Command . . .
I-IS. Toggle Recording . . .
1-16. Toggle Case Sensitivity
1-17. Save-State

Contents-12

H-42
H-44
H-45
H-51

I-I
1-2
1-3
1-4
1-4
1-5
1-6
1-8

1-10
I-II
1-12
1-13
I-IS
I-IS
1-16
1-16
1-16

1
Introducing the HP Symbolic Debugger

This manual describes the operation of the HP Symbolic Debugger called xdb.
Related debuggers are cdb, fdb, and pdb. They are only available on Series
300/400 computers and have syntax and functionality similar to xdb.

If you are a first-time user of HP Symbolic Debuggers, it is recommended that
you use xdb. If you are familiar with either cdb, fdb, or pdb and want to
compare them to xdb, read the appendix "Comparison between the xdb and
cdb Symbolic Debuggers."

The HP Symbolic Debugger is an interactive tool that assists you in finding
errors in programs written in high-level programming languages.

On most terminals, the HP Symbolic Debugger uses the full screen. The
screen is divided into an area for viewing source code, and an area for entering
commands and command and program output. When you work with the
debugger, you use the same language constructs that are used in the program
you're debugging.

Introducing the HP Symbolic Debugger 1-1

The HP Symbolic Debugger lets you:

View source code

Display and modify variables

Trace program flow

Capture and rerun a debugger
seSSIOn

Execute debugger commands
before each machine instruction

View machine instructions

You can view any program source line readily.

You can view the value of any type of data item in
the program and you can display it in the format
that is most appropriate. VVhen necessary, you can
change the value of a data item.

You can execute one or more statements at one
time, allowing you to closely examine program flow
and data areas. If the program is large, you might
prefer to set breakpoints at certain statements in
the program. When the breakpoints occur, you can
examine data areas and alter them if necessary. If
your program contains several procedure calls, you
might want to display the program stack to trace
those calls. You can also trace execution at the
machine-instruction level.

If you think you might need to retrace your steps
during a debugger session, you can have the
debugger automatically record your session
commands in a file. Then, at a later time, you can
replay those commands. This playback feature can
save you time because it contains the "trail" of
commands that led to a given program state.

You can have the debugger execute one or more
commands before it executes each instruction in
the program. These commands, called assertions,
can save you time when you need to examine
execution progress one operation at a time.

You can view disassembled-machine code with
symbolic addresses at any address in your program.
Register display and access are also provided.
Associated source line numbers are also shown
where possible, and source can also be displayed
simultaneously.

1-2 Introducing the HP Symbolic Debugger

Examine core files If the program failed in a way which caused the
kernel to write a file, named core, containing a
dump of the program state at the time of the
failure, you can use the debugger to examine that
file. Usually, you will be able to look at the stack,
registers, and variables from debuggable portions of
the program.

Introducing the HP Symbolic Debugger 1-3

Who Can Use the HP Symbolic Debugger

The HP Symbolic Debugger can be used by programmers who program in HP
C++, HP C, HP Pascal, and HP FORTRAN 77 on HP 9000 Series 300/400
and Series 600/700/800 computers.

This manual describes the 9.0 release of the HP Symbolic Debugger (xdb). The
xdb command exists in earlier releases of HP- UX, but not all features described
here are present in those releases.

Special Considerations for the
Series 300/400 7.40 and 8.0 Releases

As of the 7.40 and 8.0 releases, the Series 300/400 compilers generate a
different format for debugger information that is incompatible with debugger
information generated by previous releases of the compilers. Therefore, if you
compile with the -g compile-line option, you will not be able to debug this
code with pre-7.40/8.0 debuggers. Similarly, the 7.40 and later debuggers
cannot be used to debug code produced by pre-7.40/8.0 Series 300/400
compilers. Note that object files or libraries previously compiled with the -g
option using these compilers can be linked to a program being debugged on
7.40 and 8.0 releases, but the symbolic information in these modules will not be
used.

If you have a debuggable C++ program which was compiled with the A.02.00
revision of C++, it cannot be debugged with debuggers with a revision number
of A.07.40 or later. If you attempt to do so, the debugger will issue an error
message and abort. To remedy this situation, the pxdb++ preprocessor must
be updated on your system and then your program must be relinked and
preprocessed once again. To update pxdb++, have your system administrator
execute the following command after the 7.40 or 8.0 release has been installed:

In /usr/bin/pxdb /usr/bin/pxdb++

The Series 300/400 8.0 release of the symbolic debugger is fully compatible
with the compilers in the 7.40 language release, as well as the A.02.00 revision
of C++ when the proper pxdb is used. Since this debugger is otherwise fully
compatible with the A.02.00 C++ product, it can be used in place of the other
debuggers provided with it (that is, cdb++ and xdb++).

1-4 Introducing the HP SymbOlic Debugger

Special Considerations for the Series 600/700/800 8.0 Release

The Series 600/700/800 8.0 symbolic debugger (xdb) is compatible with 7.0
compilers. Programs linked (but not already debugged) on 7.0 systems can
be debugged on 8.0 systems. This also applies to programs linked against
7.0 libraries. Programs that have already been debugged on 7.0 systems will
not be debuggable on 8.0 systems due to changes in the debug-information
preprocessor (pxdb). In these cases the debugger will issue a message indicating
that the user should re-link his application.

In certain cases where 7.0 compilers produce incorrect symbolic debug
information, the preprocessor will detect this and issue an internal error. In
such cases, you should re-compile an application to insure that correct debug
information is generated and available to the new debugger.

If you have a debuggable C++ program which was compiled with the A.02.00
revision of C++, it cannot be debugged with the 8.0 debuggers. If you attempt
to do so, the debugger will issue an error message and abort. To remedy
this situation, the pxdb++ preprocessor must be updated on your system and
then your program must be relinked and preprocessed once again. To update
pxdb++, have your system administrator execute the following command after
the 8.0 release has been installed:

In /usr/bin/pxdb /usr/bin/pxdb++

The Series 600/700/800 8.0 symbolic debugger (xdb) is otherwise fully
compatible with the A.02.00 revision of the C++ product and can be used in
place of the xdb++ debugger.

Shared libraries compiled and linked on 8.0 or earlier releases are not
debuggable at the source level.

Introducing the HP Symbolic Debugger 1-5

1

Special Considerations for the Series 300/400 9.0 Release

Shared libraries compiled and linked on the 8.0 release are not debuggable at
the source level.

Programs compiled and linked on the 8.0 release can support only
assembly-level debugging of shared libraries; however, if shared libraries are
loaded with shLload(3X} they cannot be debugged.

Some features, including support for source-level debugging of shared-libraries,
analyzing shared-library core files, and C++ exception handling, require
current versions of the files /usr /lib/ end. 0 and /lib/ crtO .0 to be linked
with the program (these files are normally linked as part of a debuggable
compilation). The debugger will issue a warning if the version used is lacking
support for a requested feature.

Special Considerations for the Series 600/700/800 9.0 Release

Shared libraries that have been compiled and linked on any 8.0x release are not
debuggable at the source level. Programs compiled and linked on the Series
700 8.05 or 8.07 releases can support only assembly-level debugging of shared
libraries.

Some features, including support for source-level debugging of shared libraries,
analyzing shared-library core files, and C++ exception handling, require
current versions of the files /usr /lib/ end. 0 and /lib/ crtO .0 to be linked
with the program (these files are normally linked as part of a debuggable
compile). The debugger will issue a warning if the version used is lacking
support for a requested feature.

1·6 Introducing the HP Symbolic Debugger

Creating a Program with Debugger Information
To debug a program on the symbolic level, you must compile and link the
source program with debugger information to create an executable program
file. The figure "Creating an Executable Program File" illustrates the process
of creating an executable program file containing debugger information. If you
do not compile and link your program with debugger information, the debugger
can only display disassembled code, register values, absolute addresses, and
linker symbols (unless it has been stripped of its linker symbol table (see
strip(l) in the HP-UX Reference)). If you optimize the program using either
compile-line options or optimization directives, the program can be debugged
only in disassembly mode.

II

II

I

Source File(s)

Compile with the
symbolic debugger option.

* Object File(s)

Link object files

Executable File(s)

Source Code.

Translates statements with debugger
information into object code.

Relocatable object file and
relocatable debug information.

Combines subroutines and
resolves relocatable addresses.
Preprocess symbolic debug information.

A program file you can run and debug.

Figure 1-1. Creating an Executable Program File

Introducing the HP Symbolic Debugger 1-7

1

1

Terminal Support

Hewlett-Packard terminals with memory lock and various terminals with
scrolling region capability support the command windows (window mode)
used by the debugger. Other terminals operate in line mode only. Use the - L
command line option when invoking the debugger to force operation in line
mode.

The debugger uses the environment variable TERM to determine from the
terminfo database if window mode is supported. For more information on
environment variables and terminfo, read the section "Setting Up the Screen"
in the chapter "Using the HP Symbolic Debugger" and the manual page
terminfo(4) in the HP- UX Reference.

Some examples of TERM types that do and do not support window mode are
given in the following table.

Table 1-1.
Examples of Terminals that Do and Do Not Support Window

Mode

Does Support Window Mode Does Not Support Window
Mode

hp2622 hp2621

hp2392 300h

hpterm1 98720

xterm1 98550

vt102 vt100

1 X Window terminal emulators.

Note that the built-in console terminal (ITE) on HP workstations does not
support window mode.

Programs that use escape sequences, tty ioctls, or screen handling packages
such as the curses(3X) library to do special display or input handling may
be hard to debug due to interactions with the debugger's user interface. In
these cases, using a separate window or terminal for the program can help.

1-8 Introducing the HP Symbolic Debugger

For example, to place a program's user interface in one X window and the
debugger's in another X window so they will not interact, follow these steps:

1. Execute the command

tty (Return)

in the hpterm or xterm window chosen for the program's use.

2. Execute the command

sleep 10000000 (Return)

in the program's window (to keep the shell from competing with the
program for input).

3. Start the debugger in another window and use the response from the tty
command as the argument for the -i, -e, and -0 options. For example, if
the tty command returned /dev/pty/ttyp4, invoke the debugger with the
following command:

xdb -i /dev/pty/ttyp4 -0 /dev/pty/ttyp4 -e /dev/pty/ttyp4 [args]

For a more complete example, see the section "Separate Interfaces (Debugging
Screen Applications)" in the chapter "Using the HP Symbolic Debugger."

Introducing the HP Symbolic Debugger 1-9

I

1

Command History
The symbolic debugger has a command history mechanism modeled after the
ksh(1) command editing facility. The environment variables XDBEDIT, VISUAL,
or EDITOR are checked (in that order) to determine which of the three available
editing modes (vi, emacs, or gmacs) is to be used. For more information on
the vi, emacs, and gmacs modes, read the ksh(l) man page for an explanation
of these modes.

The command history file is specified by the XDBHIST environment variable
and its size is derived from HISTSIZE. If any of these environment variables is
not set, the default is the same as with ksh(1) except that XDBHIST defaults to
$HOME/.xdbhist.

1-10 Introducing the HP Symbolic Debugger

Where To Go from Here
To get hands-on practice in running the debugger, continue on with the next
chapter. It steps you through the debugging of the same sample program for C,
Pascal, and FORTRAN.

If you don't have time to debug the sample program, but want to start
debugging a program right away, skip to Chapter 3. Chapter 3 introduces you
to the most COlnmon ways to use the debugger and should give you enough
information to begin using it.

Use Chapter 4 as a reference chapter. It lists details about each of the HP
SYlnbolic Debugger commands.

Chapter 5 covers information that is specific to the use of the symbolic
debugger for debugging C++ programs.

Chapter () covers information that is specific to the use of the symbolic
debugger for debugging shared libraries.

See appendix A for error message information.

See appendix B to find out the language operators for HP C and C++.

See appendix C to find out the language operators for HP FORTRAN 77 and
VlVIS FORTRAN record support.

See appendix D to find out the language operators for HP Pascal.

See appendix E for a list of special variables and environment variables used by
the HP Symbolic Debugger.

See appendix F for a list of HP Symbolic Debugger limitations and hints.

See appendix G for a list of installed files for the HP Symbolic Debugger.

See appendix H for a brief description of all the HP Symbolic Debugger
commands.

See appendix I for a comparison between the xdb and edb HP Symbolic
Debuggers.

See appendix J for a list of registers displayed by the HP Symbolic Debugger in
disassembly mode.

See the glossary for definitions of new terms.

Introducing the HP Symbolic Debugger 1-11

2
Getting Started

The HP Symbolic Debugger comes with a sample debugger session for each
of the supported languages, HP FORTRAN 77, HP Pascal, HP C, and HP
C++. The debugger session scenario for HP FORTRAN 77, HP Pascal, and
HP C can be found in the section "Debugger Session Scenario One," and the
debugger session scenario for HP C++ can be found in the section "Debugger
Session Scenario Two." You can run these sample debugger sessions without
knowing anything about the debugger; the debugger guides you through each
step. The sessions take only a few minutes to run. When you're finished, you
will have a good overview of how the debugger works and some important ways
it can be used.

When running the sample session, follow the instructions explained at the
beginning of the session. The programs used in the debugger sessions are listed
at the end of this chapter.

Getting Started 2-1

2

2

Debugger Session Scenario One

This debugger session scenario is for HP FORTRAN 77, HP C, and HP
Pascal. Suppose you're developing a program to read and process rainfall data.
Proceeding in stages, you're developing the user input section and the portion
that fills in an array with data from the rainfall file.

During tests, your program aborts with messages indicating that access to
memory outside your program's allotment has occurred. This type of error
most frequently results from bad pointer arithmetic or bad array subscripts,
especially in a loop. This program does no explicit pointer arithmetic, so
you've decided to use the HP Symbolic Debugger to check the loops in your
program.

Running the Sample Sessions

The directory /usr/lib/xdb_demos contains the source files for the HP
FORTRAN 77, HP C and HP Pascal sample programs and playback files to be
used in this quick overview of the capabilities of the symbolic debugger (xdb).

To run the sample sessions, you must first compile the source programs. To do
so, cd to the directory where your executable files are to be built. For example,
your home directory or /tmp are good places.

To make the executable files, type:

make -f /usr/lib/xdb_demos/Makefile C_demo (Return)
make -f /usr/lib/xdb_demos/Makefile Pascal_demo (Return]
make -f /usr/lib/xdb_demos/Makefile Fortran_demo (Return]

The resulting executables will be called democ, demop, and demof for HP C, HP
Pascal, and HP FORTRAN 77, respectively. You can start up the debugger on
the executable file of your choice. The executable file chosen in the following
example is democ. To start the debugger using this file, type:

xdb democ (Return)

Note that the the directory /usr/bin must be in your PATH.

2-2 Getting Started

Once inside the debugger, you need to start the appropriate playback script.
To start the HP C playback script, type:

« /usr/lib/xdb_demos/c.demo (Return)

at the xdb prompt. The playback scripts for HP FORTRAN 77 and HP Pascal
are p. demo and f. demo, respectively. Note that for xdb, the < command is
different from the « command so be careful to enter «.

Getting Started 2-3

2

2

Debugger Session Scenario Two

This debugger session scenario is for HP C++. You're going to use a C++
program to learn how the symbolic debugger supports the debugging of C++
programs. There are no built-in errors in this program as were included in the
previous scenario.

Running Sample Sessions Two

The directory /usr/lib/xdb_dernos contains the source file for the C++
sample program and playback file to be used in this quick overview of the
capabilities of the symbolic debugger (xdb).

To run the sample session, you must first compile the source program. To do
so, cd to the directory where your executable file is to be built. For example,
your home directory or / tmp are good places.

To make the executable file, type:

make -f /usr/lib/xdb_demos/Makefile C++_demo (Return)

The resulting executable file is given the name demoC. You can start up the
debugger on this executable file by typing:

xdb demoC (Return)

Once inside the debugger, you need to start the appropriate playback script.
To start the C++ playback script, type:

« /usr/lib/xdb_demos/C.demo [Return)

at the xdb prompt. Note that for xdb, the < command is different from the «
command so be careful to enter «.

2·4 Getting Started

Where To Go from Here
Now that you've completed the sample sessions, you have a good idea about
how the HP Symbolic Debugger works. To learn more details about the
operations used in the debugger session or to begin debugging your own
programs, continue with the chapter"Using the HP Symbolic Debugger." If you
want to see the complete listings for the programs you saw in the session, read
on.

Getting Started 2-5

2

2

Sample Program Listings

This section lists the language source files used in the sample debugger
sessions. The data file RAINFALL, which is not listed here, contains the data for
the C_demo, Pascal_demo, and Fortran_demo programs that are listed in the
following table.

These source files:

Fortran_demo
Pascal_demo

C_derno
C++_demo

2-6 Getting Started

are listed in:

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4

Sample HP FORTRAN 77 Program

$CoNTRoL RANGE, CODE_OFFSETS, TABLES
PROGRAM RAIN_REPORT

2

3

4

INTEGER*2 NUMBER_YEARS,
FIRST_YEAR,
YEAR_INDEX,
NUM_oF_MoNTHS

REAL MoNTH_ToTALS(60)
100 PRINT *,'ENTER THE FIRST YEAR YOU WISH TO REPORT ON:

READ (5,*) FIRST_YEAR
IF «FIRST_YEAR .LT. 1950).oR.(FIRST_YEAR .GT. 1988)) THEN

GoTo 100
ENDIF

110 PRINT *,'ENTER THE # OF YEARS YOU WISH TO CONSIDER (1-5):
READ (5,*) NUMBER_YEARS
IF «NUMBER_YEARS .LT. 1).oR.(NUMBER_YEARS .GT. 5)) THEN

GoTo 110
ENDIF
YEAR_INDEX = (FIRST_YEAR - 1950) * 12
NUM_oF_MoNTHS = NUMBER_YEARS * 122
CALL LoADMT (YEAR_INDEX, NUM_oF_MoNTHS, MONTH_TOTALS)
PRINT *,'PRoGRAM ENDS'
STOP
END

SUBROUTINE LoADMT (YEAR_INDEX, NUM_oF_MoNTHS, MONTH_TOTALS)
INTEGER*2 YEAR_INDEX,

2 NUM_oF_MoNTHS,
3 TABLE_INDEX

REAL MoNTH_ToTALS(60),
2 HOLD_RAINFALL

OPEN (UNIT=10, FILE='RAINFALL')
DO 1=1, YEAR_INDEX

READ (10,*) HOLD_RAINFALL
END DO
DO TABLE_INDEX = 1,NUM_oF_MoNTHS

READ (UNIT=10, FMT=10, END=900) HOLD_RAINFALL
MoNTH_ToTALS(TABLE_INDEX) = HOLD_RAINFALL

END DO
900 RETURN

END

Figure 2-1. HP FORTRAN 77 Main Source File, Fortran_demo

Getting Started 2-7

2

2

Sample HP Pascal Program

$RANGE ON, CODE_OFFSETS ON, TABLES ON$
program RainReport (INPUT, OUTPUT, RainFall);

type
YearType
NumYearsType
MonthTotalType
ArrayType

var
NumYears
FirstYear
YearIndex
NumOfMonths
MonthTable
RainFall

1900 .. 2000;
O .. 200;
REAL;
ARRAY [1 .. 60] of MonthTotalType;

NumYearsType;
YearType;
INTEGER;
INTEGER;
ArrayType;
TEXT;

procedure GetInput;
{

This procedure prompts the user for the initial year and number of
years for the report. It also checks to see that the year and number
of years are within range.
}

const
YearPrompt
NumYearsPrompt

'Enter the first year on which to report: ';
'Enter the # of years to consider (1 - 5): ';

procedure GetFirstYear;
begin {GetFirstYear statements};

writeln (OUTPUT);
prompt (OUTPUT, YearPrompt);
readln (INPUT, FirstYear);
IF (FirstYear < 1950) or (FirstYear > 1988) THEN

GetFirstYear;
end {GetFirstYear statements};

Figure 2-2. HP Pascal Main Source File, PascaL demo

2-8 Getting Started

procedure GetNumYears;
begin {procedure GetNumYears statements};

writeln (OUTPUT);
prompt (OUTPUT, NumYearsPrompt);
readln (INPUT, NumYears);
IF (NumYears < 1) or (NumYears > 5) THEN

GetNumYears;
end;

begin {level 1 procedure};
GetFirstYear;
GetNumYears;
YearIndex .= (FirstYear - 1950) * 12;
NumO£Months := NumYears * 122;

end {level 1 procedure};

procedure LoadMonthTable;
var

ArrayIndex
HoldRainFall

INTEGER;
INTEGER;

begin {LoadMonthTable statements};
HoldRainFall :~ 0;
reset (RainFall, 'RAINFALL');
FOR ArrayIndex := 1 to YearIndex DO

{

This loop will per£orm dummy reads to get the Tile to the start
o£ the requested data.

}

readln (RainFall, HoldRainFall);
FOR ArrayIndex := 1 to NumO£Months DO

begin {FOR loop}
readln (RainFall, HoldRainFall);
MonthTable[ArrayIndex] := HoldRainFall / 100

end {FOR loop}
end {LoadMonthTable statements};

begin {main program}
GetInput;
LoadMonthTable

end {o£ program}.

Figure 2-2. HP Pascal Main Source File, PascaL demo (Continued)

Getting Started 2-9

2

2

Sample HP C Program

#include <stdio.h>

#define YEAR_PROMPT II \nEnter the first year
#define NUM_YEARS_PROMPT "\nEnter the # of years

typedef int year_type;
typedef int num_years_type;
typedef double month_total_type;
typedef month_total_type array_type[60];

num_years_type
year_type

num_years;
first_year;
year_index;
num_ofJUonths;
month_table;

int
int
array_type
FILE *rain_fall,

*fopenO;

void get_first_year()
{

}

printf (YEAR_PROMPT);
scanf ("%d", &;first_year);
if «first_year < 1950) II (first_year> 1988»

get_first_year();

void get_num_years()
{

}

printf (NUM_YEARS_PROMPT);
scanf ("%d", &;num_years);
if «num_years < 1) I I (num_years > 5»

get_num_yearsO;

on which to report:
to consider (1 - 5):

Figure 2-3. C Main Source File, C_demo

2-10 Getting Started

void get_input()
{

}

/*
* This function prompts the user for the initial year and number of
* years for the report. It also checks to see that the year and number
* of years are within range.
*/

get_first_year();
get_num_years ();
year_index (first_year - 1950) * 12;
num_of~onths = num_years * 122;

void load_month_table()
{

}

int array_index;
int hold_rain_fall = 0;

rain_fall = fopen(IRAINFALL", "r");
/* This loop will perform dummy reads to get the file to the start
* of the requested data.
*/

for (array_index = 1; array_index <= year_index; array_index++)
fscanf (rain_fall, "%d", &hold_rain_fall);

for (array_index = 1; array_index <= num_of~onths; array_index++) {
fscanf (rain_fall, "%d", &hold_rain_fall);
month_table[array_index] = hold_rain_fall / 100;

}

mainO
{

}

get_input 0 ;
load_month_table();

Figure 2-3. C Main Source File, C_demo (Continued)

Getting Started 2-11

2

2

Sample HP C++ Program

extern "C"
{

#include <stdio.h>
void *.malloc(int);

}

class buffer
{

int size;
int *pointer;

pUblic:
buffer (int) ;

int buffer_size() { return size; }
int *buffer_pointer() { return pointer; }

int virtual empty() 0;
int virtual full() 0;
void virtual dump() = 0; /* all of it */
void virtual identify() = 0;

};

class stack : public buffer
{

int stack_pointer;
pUblic:

stack(int) ;
int full 0 ;
int empty 0 ;
void operator+(int);
int operator--();
int operator[] (int);
void dump 0 ;
void dump(int); /* last n elements */
void identify();

};

Figure 2·4. HP C++ Main Source File, C++_demo

2-12 Getting Started

class circular_buIIer
{

int head;
int tail;

public:
circular_buIIer(int);
int full 0 ;
int empty 0 ;
void operator+(int);
int operator--();
void dump 0 ;

public bUIIer

void dump(int); 1* last n elements *1
void identiIy0 ;

};

II ***

buffer::buffer(int size)
{

}

pointer = (int *) malloc(size);
buffer: :size = (pointer? size: 0);

II ***

circular_buffer::circular_buIfer(int size) : buffer(size)
{

}

head
tail

0;

0;

int circular_buffer::full()
{

return (head + 1) % buffer_size()
}

int circular_buffer::empty()
{

return head == tail;
}

tail;

Figure 2·4. C++ Main Source File, C++ _demo (Continued)

Getting Started 2·13

2

2

void circular_buffer::operator+(int i)
{

}

if (full 0)
{

printf("Warning: circular buffer overflog\n");
return;

}

++head %= buffer_size();
*(buffer_pointer() + head) i· ,

int circular_buffer::operator--()
{

}

if (empty 0)
{

}

printf("Warning: circular buffer underflog\n");
return -1;

++tail %= buffer_size();
return *(buffer_pointer() + tail);

void circular_buffer::dump()
{

}

int i = (tail + 1) % buffer_size();
int limit = (head + 1) % buffer_size();
ghile (i < limit)
{

}

printf("%d\n", *(buffer_pointerO + i»;
++i %= buffer_size();

Figure 2-4. C++ Main Source File, C++ _demo (Continued)

2-14 Getting Started

void circular_buffer::dump(int n)
{

}

printf("---------\n");
if(n <= 0)

return;
if(head == tail)
{

}

printf("Buffer is empty\n");
return;

if(head > tail)
{

}

if(n > head - tail)
{

}

printf("Buffer not that deep\n");
return;

else if(n > buffer_size() - tail + head)
{

}

printf("Buffer not that deep\n");
return;

int limit = (head + 1) % buffer_size();
int i = (head + buffer_size() - n + 1) % buffer_size();
do
{

}

printf("%d\n", *(buffer_pointerO + i));
++i %= buffer_size();

while(i != limit);

void circular_buffer::identify()
{

printf("Hi, I'm a circular buffer\n");
}

II ***

stack::stack(int size) : buffer(size)
{

}

Figure 2-4. C++ Main Source File, C++_demo (Continued)

Getting Started 2-15

2

2

stack: : empty 0
{

return stack_pointer 0;
}

stack: :fullO
{

return stack_pointer buffer_size 0 ;
}

void stack::operator+(int i)
{

}

if(full())
{

}

printf(IIWarning: stack overflow\n");
return;

*(buffer_pointer() + stack_pointer++)

int stack::operator--()
{

if (empt yO)
{

}

printf("Warning: stack underflow\n");
return -1;

i· ,

return *(buffer_pointer() + stack_pointer--);
}

int stack::operator[] (int offset)
II return nth element form the top
{

}

if(stack_pointer <= offset)
{

}

printf(IIWarning: stack underflow\n");
return -1;

return *(buffer_pointer() + stack_pointer - offset - 1);

Figure 2-4. C++ Main Source File, C++_demo (Continued)

2-16 Getting Started

void stack: :dump() II dump the entire stack
{

}

printf("\n----------------\n");
if (empt yO)
{

}

printf("Empty stack\n");
return;

for(int i = stack_pointer; i;)
printf(" [%d] %d\n", i, *(buffer_pointerO + --i»;

void stack::dump(int n) II dump the top n elements
{

}

printf("---------\n");
if(n <= 0)

return;
if(stack_pointer < n)
{

}

printf("stack not that deep\n");
return;

int limit = stack_pointer - n;
for(int i = stack_pointer; i > limit;)

printf(" [%d] %d\n", --i, *(buffer_pointerO + i»;

void stack::identify()
{

printf(IIHi, I'm a stack\n");
}

II ***

Figure 2-4. C++ Main Source File, C++ _demo (Continued)

Getting Started 2-17

2

2

mainO
{

}

int i;

circular_buffer C(5);
stack S(5), S2(8);

int stack::*pm; /* pointer to int member of stack */

buffer *buffer_pointer;

S + 1;
S2 + 2;

S + 3;
S2 + 8;

S + 4;

i S--;

C + 1 ;
i C--;
C + 2· ,
i c--;

/* force debug info by using vars */
pm = 0; buffer_pointer = 0;

Figure 2-4. C++ Main Source File, C++_demo (Continued)

2-18 Getting Started

3
Using the HP Symbolic Debugger

This chapter shows you how to start the HP Symbolic debugger and how
to use its major features. The first sections of the chapter list the steps you
must perform to begin using the debugger and familiarize you with the screen
display. The last sections of the chapter show you how to perform various
tasks. You do not perfonn these tasks necessarily in the same order as they are
listed; pick and choose the tasks depending on your requirenlents.

To get started with the HP Symbolic Debugger, read and perform these
sections in order:

• Preparing the Program

• Starting the HP Symbolic Debugger

• Starting the Program

Note All examples of debugger commands in this chapter appear as:

> command ...

The> is the debugger's conunand prOlnpt. Anything appearing
after the prompt represents user input.

Using the HP Symbolic Debugger 3-1

3

3

Once you start the program, read and perform the sections below that
correspond to the tasks you may want to perform:

• Ending the Program
• Ending the HP Symbolic Debugger
• Displaying Lines in the Source Program
• Controlling the Command Window Display
• Changing the Source Window Size
• Displaying Assembly Code
• Displaying Source and Assembly Code
• Stepping through the Program
• Searching for a String in the Current File
• Pausing during Execution
• Displaying Data
• Modifying Data
• Tracing Function and Procedure Calls
• Capturing and Rerunning a Debugger Session
• Saving and Restoring the Debugger State
• Displaying Character Data and Using NLS
• Separate Interfaces (Debugging Screen Applications)
• Executing Commands at Each Source Line
• U sing Macros
• Altering the Execution Sequence
• Getting Help
• Adopting a Running Process
• Debugging a Program that Caused a Coredump
• Mapping of Source Directories
• Navigating the Execution Stack

3-2 Using the HP Symbolic Debugger

Preparing the Program

Before starting HP Symbolic Debugger, compile your HP C++, HP
FORTRAN 77, HP Pascal, or HP C program using the symbolic debug option.
If you do not use the symbolic debug option, you can only debug the program 3
in disassembly mode; the debugger can track only register values, absolute
addresses and labels.

When you're confident that the program will cOlllpile without errors, use the
symbolic debug compile option. When you use the symbolic debug option, the
compiler generates tables containing the names and addresses of variables,
labels and source lines. These tables are the symbolic hooks into your program.

To tell the compiler to add symbolic debugger information to the executable
file, use the -g command line option. For example, compile the C source file
test1. c and create the executable file test!. This can be done by executing
the following command:

cc -g -0 test1 test1.c

Note that the file /usr/Iib/ end. 0 will automatically be linked with your
program. Do not forget to include it in your list of object files to link if you
invoke the linker ld(1) directly. For example:

Id -0 myprog t1.0 t2.0 /usr/Iib/end.o -Ic

When the -g option is used, optimization on the generated code is
automatically disabled.

On some systems, the linker by default links in shared libraries instead of
archive libraries (see glossary(9)). To override this default, use the -a archive
option with ld(1) command or the options -WI, -a , archive with the compiler
command.

If you optimize the program using either compile-line options or optimization
directives, the program can be debugged only in disassembly mode.

Using the HP Symbolic Debugger 3-3

Preparing Shared Libraries

,If your program is linked against shared libraries which you wish to debug, you
can debug the shared libraries at the source level if they have been prepared as

3 explained in this section. Note that system libraries (for examples, 1ibc) are
only debuggable in disassembly mode.

Shared libraries are created by first compiling source code with the +z compiler
option. This creates relocatable (position independent code) object files. If you
want to be able to debug the relocatable object file at the source level, you also
need to compile the program with the -g symbolic debug option. For example,
if you have a program my test . c and you want to compile it for use in a shared
library and make it debuggable, you would execute this command:

cc -g +z mytest.c

The linker -b option is then used to create the shared library. For example to
create a shared library 1ibmyshare. sl containing the relocatable object file
my test .0, you would execute this command:

1d -b -0 1ibmyshare.s1 mytest.o

Any module included in a shared library is debuggable at the source level if it
has been compiled with the -g compiler option.

Note that forcing immediate binding with the linker's -B immediate option is
not required for debugging your program. The default of deferred binding is
acceptable.

If you will be adopting a program with the debugger's -P command line
option and wish to debug any shared libraries used by the program, you will
need to use the pxdb command on the program before executing it. For more
information on this, see the section "Debugging Shared Libraries in an Adopted
Process" in Chapter 6.

3-4 Using the HP Symbolic Debugger

Starting the HP Symbolic Debugger
When using the HP Symbolic Debugger, the debugger is the parent process and
the program that you're debugging becomes a child process. The debugger
controls only the child process and can debug only one child process at a time. 3

To start the debugger, enter the following command:

-d altdir
-r file
-R file
-p file
- P process-ID
-L

xdb -i file
-0 file
-e file
-s num
-8

-1 library
-1 ALL

[objectfile [corefile]]

The options for the xdb command are described as follows:

objectfile

corefile

Is an executable program file with zero or more of its
components compiled with the -g option. The default for
objectfile is a. out.

Is a core image from a failed execution of objectfile (see core(4)
in the HP- UX Reference). The default for corefile is core.

Using the HP Symbolic Debugger 3-5

3

-d altdir

-r file

-R file

-p file

-P process-ID

-L

-i file

-0 file

Specifies an alternate directory for source files. Alternate
directories are searched in the order given. If a source file is
not found in any alternate directory, the current directory is
searched last. When searching for the source file in an
alternate directory altdir, where file is composed of a
directory and a base file name (i.e., dirname/ basename), xdb
first attempts to open altdir / dirname/ basename. If this fails,
xdb attempts to open altdir / basename (see basename (1) in
the HP-UX Reference).

Specifies a record file, which is invoked immediately for
overwrite, rather than for append (see the section "Record
and Playback Commands" in the chapter "HP Symbolic
Debugger Commands").

Specifies a restore state file, which is processed before the -p
option (if any) and after the -r option (if any). The file must
have been created previously with the ss command while
debugging the same obJ'ectfile (see the section "Save State
Command" in the chapter "HP Symbolic Debugger
Commands"). The debugger attempts to verify this when the
-R option is used.

Specifies a playback file, which is invoked immediately (see
the section "Record and Playback Commands" in the chapter
"HP Symbolic Debugger Commands").

Specifies the process-ID of an existing process that the user
wishes to debug (see the section "Adopting a Running
Process").

Forces the line-oriented interface, even if xdb can support the
window-oriented interface on the terminal type specified by
the environment variable TERM.

Redirects standard input to the child process from the
designated file or character device.

Redirects standard output from the child process to the
designated file or character device.

-e file Redirects standard error from the child process to the
designated file or character device.

3-6 Using the HP Symbolic Debugger

-s num

-8

-1 shared-library

-1 ALL

Sets the size of the string cache to num bytes (default is 1024,
which is also the minimum). The string cache holds textual
data read from the objectfile.

Causes all shared libraries used by an application to be loaded
as private (unshared) copies. This option or the -1 option
(which implies -8) is required if breakpoints will be set or
single stepping will be done in shared libraries.

Pre-loads the symbolic debug information (and linker symbol
table) into the debugger so that the user can view code, set
breakpoints, and do other debugging operations prior to
running the program. If the -1 option is not used for a given
library, no symbolic information concerning the library will be
available, and you will not be able to debug that library at the
source level, unless

• You explicitly make a reference to a symbol in that library
(e.g. symbol@shared-library as opposed to just symbol), or

• The debugger stops execution at some location within that
library.

shared-library may be implicitly loaded by the program
(linked in with the Id(1) -1 option), or explicitly loaded by
shLload(3X) .

If shared- library is not a complete path name, it will be
searched for using the same search rules used by the dynamic
loader (see the section "Locating Shared Libraries" in Chapter
6, the Id(1) +b and +8 options, and the section "Library
Location and the Dynamic Loader" in the manual
Programming on HP- UX). If the library is not located, any
directories previously specified with the -d option will also be
searched, followed by the current directory. If it is still not
located, the symbolic debug information will still be available
once the library has been mapped in (loaded), and an explicit
reference to a symbol within it has been made.

The trailing. 81 is optional in shared-library.

Pre-loads the debug information (and linker symbol table)
into the debugger for all shared-libraries used by the program,
with the exception of libraries loaded with shLload(3X),
which the user must list using a separate -1 option for each.

Using the HP Symbolic Debugger 3-7

3

There can only be one objectfile and one corefile per debugging session
(activation of the debugger). The program (objectfile) is not invoked as a child
process until you give an appropriate command (see the section "Job Control
Commands" in the chapter "HP Symbolic Debugger Commands"). The same

3 program may be restarted, as different child processes, many times during one
debugging session.

Note Equivalent debugger commands exist for the -d, -p, and
-r options. See the D (directory) command and the section
"Record and Playback Commands" in chapter "HP Symbolic
Debugger Commands."

In addition to the command line options, the debugger uses various
environment variables. For information on these environment variables and
their default values, see the appendix "Special and Environment Variables Used
by the Symbolic Debugger."

At start-up, the debugger executes commands from the file .xdbrc (see the
section "Customizing the Symbolic Debugger Environment"), if it exists in the
$HOME directory. The start-up sequence is:

1. Begin recording to -r file
2. Read commands from .xdbrc
3. Process - R file
4. Playback from -p file

If you use the -r option when invoking the debugger, that record file will
record commands from the .xdbrc file (if present), the -R file (if given), and
the -p file (if specified).

3-8 Using the HP SymbOlic Debugger

Customizing the Symbolic Debugger Environment

The symbolic debugger environment can be customized by setting up different
environment variables and symbolic debugger commands in the . xdbrc file.
This file is located in your $HOME directory. The environment variables and 3
their default values can be found in the appendix "Special and Environment
Variables Used by the Symbolic Debugger." The symbolic debugger commands
can be found in the chapter "HP Symbolic Debugger Commands."

The subsequent sections provide examples for customizing the debugger
environment to toggle case sensitivity, and set up the screen for the number of
lines and columns you need.

Toggling the Case Sensitivity

You can place special commands in your. xdbrc file that you want to be
executed when xdb is invoked. For example, the symbolic debugger by default
starts up case insensitive. If you are debugging C or C++ programs that
use a naming convention where case is significant (for example, X Windows
programs), you may wish to change this default condition to be case sensitive.
This will allow you to search in the debugger for variables and strings that
require case sensitivity. For example, if you were using the p (print) command
to display the value of the variable ValueOne, the debugger would search for
ValueOne, not valueone, and print that value for you.

To change the default value from case insensitive to case sensitive, when you
initially start the debugger, add the following command to your . xdbrc file:

tc # toggle case command

Using the HP Symbolic Debugger 3-9

3

Setting Up the Screen

Environment variables define how the debugger (xdb) will interact with you.
For example, the debugger (xdb) looks at the environment variables TERM,
LINES, and COLUMNS when setting up the screen.

If the TERM environment variable is set, the debugger will attempt to retrieve
information about the specified terminal type from the terminfo database.
Screen mode is enabled if terminfo contains the resources the debugger needs
to implement it (see the section "Window Mode Requirements" in Appendix
F). If TERM is not defined, the debugger will use line mode.

After the debugger has determined that window mode is feasible, it sizes
the screen using the first of the following methods (in the order shown) that
provides dimensions:

1. If the LINES and COLUMNS environment variables are set, it uses them.

2. If automatic X window resizing (sigwinch) is supported, it uses the values
returned by the sigwinch support routine.

3. If terminfo contains lines (lines) and columns (cols) values, it uses them.

4. If none of the above conditions exist, it uses the default values 24 and 80.

The debugger will not allow the number of lines to be less than 12, nor the
number of columns to be less than 60. It will remain in screen mode, with
these values, to allow the window to be resized to acceptable values.

If automatic X window resizing is supported, the debugger will use the
sigwinch support routine to determine the new screen size, when the X
window is resized. However, this is subject to the 12 lines by 60 columns or
greater format restriction. If a command is in progress when the X window is
resized, the debugger will reformat the screen at the next command prompt. If
the command produces output in the command window, you will not be able to
read it before it is erased because the screen is reformatted. If the debugger is
at a cOlllInand prompt, the screen should reformat immediately.

Note that the debugger only looks for the sigwinch signal while waiting for
input. In the unlikely event that the screen is not reformatted immediately,
pressing (Return) for a new command prompt should cause it to do so.

3·10 Using the HP Symbolic Debugger

Setting Up the Locale

The environment variable LANG defines what locale (for example, german,
english or chinese-t) the debugger will use for displaying messages such as:
errors, warnings, and other notices. If a localized version of the debugger's
message catalog has been provided for you, it will be found on your system as

/usr/lib/nls/ locale/xdb. cat

and can be enabled by setting the following in your environment:

LANG=~cak; export LANG

The default catalog provided in the debugger's fileset is

/usr/lib/nls/C/xdb.cat

It will be used if LANG is:

1. not set

2. set to C

3. set to a locale for which a message catalog has not been provided.

In cases where a catalog is not available for a desired locale, the following
message will be displayed when the debugger is invoked:

xdb: Warning! The following language(s) are not available:
LANG=locale

Continuing processing using the language IIC II
•

Debugging localized applications (that is, those that use setlocale(3)) is possible
under the following conditions:

• The program uses the environment variable LC_ALL (or other LC_xxx
settings) to define its locale, or

• If the program uses LANG to define its locale, you are willing to accept
debugger messages in the same locale (or in the standard C locale if a
debugger catalog is not available in the desired locale).

These conditions are necessary as the program being debugged inherits its
entire environment from the debugger, and it requires a special effort for the
same environment variable to have different values in the debugger and in

Using the HP Symbolic Debugger 3-11

3

3

the program being debugged. For more information on this see the section
"Separate Environments by way of Adoption."

The debugger uses the environment variable LC_CTYPE to define the locale
for interpretation of character data within the program (see the section
"Displaying Character Data and Using NLS" later in this chapter). Note that
it is possible to use a locale for debugger messages that is different than the
locale used for the displaying of the program's character data.

For more detailed information on locales and the environment variables that
define or influence them, see the manual pages for hpnls(5) and environ(5) in
the HP- UX Reference.

3·12 Using the HP Symbolic Debugger

Once You Start the HP Symbolic Debugger ...

When you start HP Symbolic Debugger from a terminal that supports
windowing, you see a screen similar to the one shown in Figure 3-1.

Note

.-
~ hpterm • -.l

62: fscanf (rai n3 all, ";~d", &ho Id_rai n_f all);
63: month_tableCarray_index] = hold_rain_fall ! 100;
64:
65:)
66:
67: main()
68: {
69: get_input();
70: load_month_table();
71: }

File: demo.c Procedure: main Line: 69
Copyright Hewlett-Packard Co. 1985. All Rights Reserved.
«« XDB Version A.07.05 HP-UX »»
No core file
Procedures: 6
Fi les: 2
>1

Figure 3-1. The HP Symbolic Debugger Screen (Source Mode)

I

The previous screen appears only on terminals that support
window lllode. If your terminal does not support window mode,
the debugger displays information one line at a time (line
mode).

The screen has three parts, which are described below. This is the screen you
see when debugging in symbolic (source) mode.

Using the HP Symbolic Debugger 3-13

3

3

Source window

Location window

Command window

The source window is located at the top of the screen, above
the highlighted line. This is the area where you view the
source statements. If your terminal has 24 lines, the top 15
are used for the source window. To alter the number of lines
in the source window, see the section "Changing the Source
Window Size" in this chapter.

Source statements are displayed one window at a time. See
the section "Displaying Lines in the Source Program" for
directions on locating and displaying lines in the source
window.

The> marker in the left margin of the source window points
to the current line. When you first start the debugger, this is
the first executable statement. The marker always points to
the current viewing location. Unless a viewing command has
been given, this will correspond to where the program is
currently suspended.

The location window (or location line) is the highlighted line
near the middle of the screen. This line shows you the current
program file, procedure name, and the source line number of
the current line (the marked location currently being viewed
in the source window).

The command window is the area located below the location
window (highlighted line). This window is where the debugger
commands that you enter are echoed. The debugger shows its
own output in this area. The command window normally also
shows output from the child process (program being
debugged). The window automatically scrolls up when full,
but this does not affect the other windows. A scrolling more
feature lets you view debugger output one window-full at a
time.

The debugger prompts you to enter a command by displaying
>. When you enter a command, enter the entire command on
one line (continuation lines are not allowed).

For information about controlling the display of lines in the
command window, see the section "Controlling the Command
Window Display."

3·14 USing the HP Symbolic Debugger

At this point, before starting program execution, you might want to set
breakpoints in the program, or change the source window size. The remaining
sections in this chapter describe how you can accomplish these tasks and others
as well (the tasks can also be performed during any execution pause). The
sections are not listed in any particular order. You need to determine which are 3
relevant to the debugging session at hand and perform only those.

Using the HP Symbolic Debugger 3-15

Starting the Program
Once you start the debugger and you are ready to begin debugging your
program, enter either an r (run), R (Run), s (step) or S (Step) command.

3 The r (run) command starts execution of the program and allows you to
enter arguments with it. Subsequent uses of r without arguments repeat the
command with the arguments previously given. The R (Run) command, as
shown below, starts executing the program, but does not allow you to enter
run-time arguments:

>R

To execute one statement at a time, enter either the s (step) or S (Step)
command. The initial step command executes up to the first statement of the
program. The following s (step) command allows single-stepping through the
program and any procedures that it contains:

>s

The following S (Step) command allows single-stepping through the program,
stepping over procedure calls-A procedure call is treated as a single
statement.

>S

Note HP Symbolic Debugger commands are case sensitive regardless
of the case sensitivity set with the tc command; you must type
them exactly as documented. To see command syntax, refer to
each command's listing in the chapter "HP Symbolic Debugger
Commands" and "Appendix H."

3-16 Using the HP Symbolic Debugger

Ending the Program

If you want to terminate your program before it normally completes, enter the
k (kill) command:

>k

You will be prompted to confirm this request. To have the debugger ignore the
request, enter n; otherwise, enter y.

At this time, you can restart the program, quit the debugger, or enter other
commands.

Ending the HP Symbolic Debugger

To end your debugging session, enter the q (quit) command:

>q

You will be prompted to confirm this request. To have the debugger ignore the
request, enter n; otherwise, enter y.

Using the HP Symbolic Debugger 3-17

3

3

Displaying Lines in the Program

There are several ways to display program lines in the source program window.

To display a particular source line, enter the v (view) command with the line
number. For example, to display line 11:

>v 11

To move your view one or more lines forward in the program, enter the plus
sign (+) and the number of lines you want to move. When moving forward
or backward in the program, the source and location windows are adjusted
accordingly. For example, to move five lines forward, enter:

>+5

To move your view backward in the program, enter the minus sign (-) and the
number of lines you want to move. To move backwards five lines, enter:

>-5

Note When you reach the end (or beginning) of the source program
using the + and - commands, no further movement may take
place.

You can repeat a previous + or - command (see +5 and -5
above) by pressing (Return). In this case, the previous count is
kept and re-used.

There are a variety of other ways to specify an argument to the v (view)
command to change the current viewing location. For example, a procedure
can be viewed by executing a command similar to the following:

>v my_procedure

3-18 Using the HP Symbolic Debugger

To view a file, execute a command similar to the following:

>v test1.c

To view a particular line in another file, execute a command similar to the
following:

>v test1.c:104

To view a label in a procedure, execute a command similar to the following:

>v my_procedure#my_label

To view a procedure in a debuggable shared library, execute a command similar
to the following:

>v my_procedure@my_library

For more information on viewing by procedure or file name, read the
section "File Viewing Commands" in the chapter "HP Symbolic Debugger
Commands."

To display a procedure that has been called but is currently suspended at a
given depth in the run-time stack, enter the V (View) command. The following
example displays the procedure at depth two in the run-time stack. (Stack
depth one is the current procedure's caller, depth two is its caller, etc.)

>V 2

To view the current point of suspension in the source window, use the V (View)
command with no argun1ents:

>V

Note The source window automatically tracks where the program
becomes suspended, and the V (View) is only needed after using
the v (view), +, or - commands.

The current view is automatically restored to the current
point of suspension any time execution is resumed and again
suspended.

Using the HP Symbolic Debugger 3-19

3

Controlling the Command Window Display
Command and program output is displayed one screen at a time in the
command window. You can use the terminal keys C!), and the (Shift larrow keys

3 (or the equivalent scroll keys on your terminal) to scroll the command window.
When you enter a command that requires more than the number of lines in
the command window to display, the debugger displays enough lines to fill the
command window then displays a --More-- prompt at the bottom.

Use one of the following commands to continue from this prompt:

(Space Bar 1
(Return)

q

Displays one more window-full.

Displays one more line.

Quits scrolling and ignores the rest of the pending output until
another debugger prompt is issued.

To view command window output in a continuous stream, use the sm (suspend
more) command to suspend the more feature. This is useful, for example, if
you are using the debugger to dump the contents of data structures into a
record-all file. (CTRL)S may be used to temporarily suspend scrolling when the
more feature is suspended. Use (CTRL lQ to continue scrolling.

To return to single-window output, enter the am (activate more) command.

If you are using a playback file to debug a program and a command in that
playback file causes the more feature to be used, the debugger automatically
provides any carriage return that is required to continue the scrolling of text
in the command window. This is not the same as suspending the more feature
although the effect is similar.

Note Output from the child process (program being debugged)
normally also appears in the command window, but it is not
controlled by the more feature.

3-20 Using the HP Symbolic Debugger

Changing the Source Window Size

To change the size of the source window, use the w (window) command and
specify the number of lines you want for this window. For example, to change
the size of the source window to 12 lines enter: 3

>w 12

The number of lines for the source window range from one to 21 for a 24-line
terminal (the default is 15). Changing the size of the source window also
changes the size of the command window.

An hpterrn window in the X Window System is well suited to running the
debugger. The maximum window height is only limited by the display device
and font you are using. The debugger will track changes in X Window size
at the (next) command prompt (subject to a minimum size of 12 lines by 60
columns).

Using the HP Symbolic Debugger 3-21

Displaying Assembly Code

If you didn't use the symbolic debug option (-g) when compiling the program,
you will be debugging in disassembly mode and will see a screen similar to the

3 one shown in Figure 3-2. Even if you compiled with the symbolic debug option,
you can debug in disassembly mode by entering the td (toggle disassembly)
command as follows:

>td

In disassembly mode, the program is debuggable at the machine instruction
level. The instructions shown are the reverse-assembled machine code for your
program. Addresses are shown symbolically, as determined by the external
symbols in the program's linker symbol table (see a.out(4)). Note that
corresponding source-line numbers are displayed along with the absolute and
symbolic address of each instruction. The values of all hardware registers are
also shown in disassembly mode. A highlighted register value indicates its
contents have been modified since the last debugger command.

It is also possible to debug shared libraries in disassembly mode. For
information on this see the section "Debugging Shared Libraries in Disassembly
Mode" in Chapter 6 of this manual.

3-22 Using the HP Symbolic Debugger

.-
~ hpterm • ~

00000000 01a80000 00002683 00000001
4001a800 00002000 40000000 0000007e
40000000 40001000 00000000 0000a228
68ff31ec 68ff31e4 00000001 40000000

0 load_mon+
0x000025f4 load_mon+00fc LOO
0x000025f8 load_mon+0100 OR
0x000025fc main STN
0x00002600 main +0004 LOO

> 68: 0x00002604 maIn +0008 BL
0x00002608 maIn +000c OR

70: 0x0000260c main +001O BL
0x00002610 main +0014 OR

71: 0x00002614 main +OO18 OR
FIle: demo.c Procedure: maIn LIne: 68

«« XOB Version R.07.05 HP-UX »»
No core fi Ie
Procedures:
Fi les: 2
>s
Starting process 2258: "democ"
>td
>1

68ff31e4 68ff31ec 40015500 00000012 I
68ff5524 68ff5470 00000001 00000001
01ac2630 68ff3300 00000000 01ac2630
00000000 00000001 68ff3330 00004187

0(
-56(30),30
0,0,0
2, -20(0,30)
48(30) , 30
get_input,2
0,0,0
load_month_table,2
O,O,0
0,0,0

Figure 3-2. The HP Symbolic Debugger Screen (Disassembly Mode)

To return to source mode, enter td again.

Disassembly mode can also be used when only parts of your program were
compiled with the symbolic debugger option. If the current viewing location
is within non-debuggable code (such as a system library), and the debugger is
in source mode, No Source will be shown in the source window. This indicates
that it would be appropriate to use the disassembly mode.

You should refer to the appendix "Registers Displayed by the HP Symbolic
Debugger" to see the registers displayed by the debugger in disassembly mode.

Using the HP Symbolic Debugger 3-23

3

Displaying Source and Assembly Code

To view both the source code and its matching assembly code, enter the ts
(toggle screen) command. When you do this, the source window is divided

3 into two windows, the top for source code and the bottom for assembly code as
shown in Figure 3-3.

To view both source and assembly code, enter:

>ts

.-
~ hpterrn " -1

>

66:
67: mainO
68: {
69: get_input();
70: load_rnonth_table();
71: }

Symbo Ii c Mode
0x000025f8 load_mon+0100
0x000025fc main
0x00002600 main +0004

69: 0x00002604 main +0008
0x00002608 main +000c

70: 0x0000260c main +0010
0x00002610 main +0014

OR
STj,.j
LOO
BL
OR
BL
OR

Fl Ie: derno.c Procedure: main Line: 69
«« XOS Version R.07.05 HP-UX »»
No core file
Procedures: 6
Fi les: 2
>s
St art i ng process 2261: "democ"
>ts

>1

I

0,0,0
2, -20(0,30)
48(30),30
get_input,2
0,0,0
load_month_table,2
0,0,0

Figure 3-3. The HP Symbolic Debugger Screen (Source and Disassembly Mode)

If the ts command is executed when the debugger is in source mode, the new
screen will be in Symbolic Mode. This means that single stepping through the
program will occur at the source line level. If, however, the ts command is
executed when the debugger is in assembly mode, the new screen will be in the
Assembly Mode and single stepping will occur at the assembly instruction level.
Whether the debugger is in Symbolic Mode or Assembly Mode is indicated in
the line separating the source and assembly screens. This mode may be toggled
by executing the td (toggle disassembly) command.

3-24 Using the HP Symbolic Debugger

To return to source mode, enter ts again in Symbolic Mode. Entering ts again
in Assembly Mode will return the screen to the disassembly mode discussed in
the preceding section.

Using the HP Symbolic Debugger 3-25

3

Stepping through the Program

The debugger lets you step through a program one (or more) statements
at a time. If you're in disassembly mode, you execute one or more machine

3 instructions; if you're in source mode, you execute one or more source
statements. If you're in split-screen mode, the single step mode (symbolic or
assembly) is indicated on the highlighted line separating the source window
from the assembly window.

Stepping lets you closely examine program execution. During stepping, you can
display and alter variables or perform other tasks between each statement.

The following command executes the next six statements (or machine
instructions) then pauses:

>s 6

To repeat the step command, press (Return) or type a tilde (-) followed by
(Return) Using (Return) to repeat the step command will only cause one
additional step to occur. Any count previously used is discarded.

If the program contains procedure calls and you do not want to step through
the code in the procedures themselves, use the S (Step) command. The
procedure call statements (or instructions) are treated as one step. To single
step through a program and to treat procedure calls as one step, enter:

>S

Note that the s command cannot be used to step into system calls (those
documented in Section 2 of the HP- UX Reference). In such cases, the debugger
will always step over the call as if the S command was used.

If the program was linked with shared libraries, and the debugger's -lor -s
option is not used to enable shared-library debugging, any single-step command
used at a procedure call to a shared library will always step over the call as if
the S comand was used.

3-26 Using the HP Symbolic Debugger

Searching for a String in the Current File
This section explains how to locate certain text elements in the current source
file. For example, you can search for variables and pointers by name or you can
search for arithmetic expressions. You can search forward or backward in the 3
current file for any text string. When you reach the end of the current file,
searching starts again at the beginning. Likewise, when searching backwards
and you reach the beginning of the current file, searching continues at the end
of the file. A match to the search string will reset the current viewing location
to the line where the match occurred.

The following example searches forward in the program for the string r: = 0
and stops at the first occurrence of it.

>/r:= 0

To search backward in a program for the string const n = 10, enter:

>?const n = 10

String searches can be case sensitive or case insensitive. Use the tc (toggle
case) command to control case sensitivity.

Search strings will be matched exactly (possibly disregarding case). All
characters are significant, including blank spaces. If no match is found,
the current viewing location does not change. Note that after locating an
occurrence of the search string, the debugger may not always know what
procedure the string was found in and will display Procedure: unknown in the
location window.

To repeat a previous search command searching in the same direction, enter
the n (next) command. To repeat the previous search command but search in
the opposite direction, enter the N (Next) command.

Using the HP Symbolic Debugger 3-27

Pausing during Execution
When you want to temporarily suspend the execution of the program
to examine some aspect of it, such as a variable's value, set one or more

3 breakpoints in the program. This must be done before starting the program, or
when it is suspended by an existing breakpoint or an exception condition.

Breakpoints direct the debugger to stop execution at (immediately before
executing) the specified line (or instruction). When you resume execution, the
program will continue until this or another breakpoint is reached. While the
program is suspended, you can enter any debugger command.

For more information on the commands used in this section, see the section
"Breakpoint Commands" in the chapter "HP Symbolic Debugger Commands."

Setting Breakpoints

To set a breakpoint in source mode, enter the line number before which you
want execution to pause. There are several ways to specify a line number (see
the appendix "HP Symbolic Debugger Commands" for a complete description).

If it is not an executable statement, the debugger sets a breakpoint at the first
executable statement following that line. You can set breakpoints before step
and run commands or after another breakpoint occurs.

The following example sets a breakpoint at line 10:

>b 10

When a breakpoint is set, the debugger displays in the command window
the procedure and line number where the breakpoint is set and the source
statement located at that line. If your terminal supports windowing, the line
is marked in the source window with an asterisk (*). From this point on, the
debugger pauses each time line 10 is encountered.

To pause after a specific nurnber of tllnes the breakpoint is encountered
during execution, enter the b (breakpoint) command followed by the location
(line number) and \ number. In the following example, a breakpoint is set at
line 10 with a count of 2. The debugger pauses every other time line 10 is
encountered.

>b 10 \2

3-28 Using the HP Symbolic Debugger

To set a breakpoint at the first executable statement in all debuggable
procedures in the program, enter:

>bp

To execute a series of debugger commands before each procedure is executed, 3
enter the bp (breakpoint procedure) command with a command list. For
example, to track the value of a particular variable, the following command sets
a breakpoint at the beginning of each procedure and executes three commands
(Q, p and c) at each of these breakpoints before continuing execution.

>bp {Q; P someglobal; c}

In this example, the Q (Quiet) command suppresses the debugger messages
that are normally displayed when any breakpoint is encountered. The p
(print) command displays the current value of the global variable someglobal.
The c (continue) command resumes execution of the program. Without a c
command, the program remains suspended at the breakpoint.

You can also set all-procedure breakpoints with the bpt and the bpx
commands. The bpt command sets a trace breakpoint at the beginning and
exit of all procedures. The bpx command sets a breakpoint at each procedure's
exit.

To set procedure breakpoints only on procedures that are within a particular
shared library, use a command similar to this:

>bp @myshare {Q; L}

The procedure breakpoints are set for all procedures. You cannot set individual
procedure breakpoints in this manner. The b (breakpoint) command can
be used to set individual procedure breakpoints, which will co-exist with any
all-procedure breakpoint that may be set at the same location.

There are also C++ specific breakpoint commands:

bpc sets a breakpoint in all the member functions of a particular class.

bi sets an "instance" breakpoint (a breakpoint on a member function for a
particular object only).

bpo lets you set breakpoints on a set of overloaded functions.

Using the HP Symbolic Debugger 3-29

Resuming Execution After a Breakpoint

Once the debugger pauses for a breakpoint and you have finished entering
commands at that breakpoint, enter the c (continue) command:

3 >c

This causes execution to continue until another breakpoint is encountered, an
exception (signal) occurs, or the program terminates.

Listing Breakpoints

To list the breakpoints that are set in the program, enter the lb (list
breakpoints) command as follows:

>lb

When the lb (list breakpoints) command is executed, information about
each breakpoint is displayed. For example, two breakpoints are shown
below. The first number on each breakpoint line is the debugger-assigned
breakpoint number, which you use with other commands (such as db (delete
breakpoint)) to refer to a particular breakpoint. The number following count
is the number of times the source statement will be encountered before the
breakpoint is recognized. The breakpoint's state (active or suspended) is
listed next, followed by the line at which the breakpoint is set and the source
statement on that line.

Overall breakpoints state: SUSPENDED
1: count: 1 Active sortall: 12: abc += 1;
2: count: 5 Suspended fixit: 29: def=abc » 4;

To list the breakpoints only within a single shared library, enter a command
similar to this:

>lb @myshare

3-30 Using the HP Symbolic Debugger

Deleting Breakpoints

To delete a breakpoint, enter the debugger-assigned number of the breakpoint
(see the previous section "Listing Breakpoints") with the db (delete
breakpoint) command. 3

For example, to delete the breakpoint whose number is 2, enter:

>db 2

If you do not enter the breakpoint number, the breakpoint at the current line,
if any, is deleted. If there is no breakpoint at the current line, the debugger
lists all of the breakpoints.

To delete all breakpoints (including all all-procedure breakpoints), enter:

>db *
To delete only all-procedure breakpoints (only those breakpoints set by the bp
(breakpoint procedure), bpt (breakpoint trace), or bpx (breakpoint exit)
commands), enter the following respective commands:

>dp

>Dpt

>Dpx

To delete the procedure breakpoints only within a single shared library, enter a
command similar to this:

>dp @myshare

Using the HP Symbolic Debugger 3-31

3

Displaying Data
Whenever program execution pauses, you can display the contents of simple
variables, arrays, structures and pointers.

To display data, use the p (print) command. Various options and formats are
available for greater control over displaying data.

The example below shows how to display the value of the variable fob in a
form that is consistent with how it is declared in the language used (if the
variable is an integer variable, for example, the value is expressed in decimal
form):

>p fob

To display a variable or expression in a hexadecimal format, enter a print
command in a form similar to this:

>p fob\x

To interpret an expression as a long decimal integer, enter the print command
in this form:

>p hanoi\D

To re-display the variable used with the last command, enter:

>p .

To display the contents of the location that is 30 bytes ahead of the last
displayed data item in memory (using HP C syntax), enter:

>p *(&.+30)

This assumes the specified location begins a data item of the same type and
size as the previously displayed them.

Field members of structures, unions, or records can also be displayed. They
are referenced in the same manner as they would be in your program. For
example:

>p employee_rec.date_of_birth.month
month = 11

3-32 Using the HP Symbolic Debugger

If individual fields are not specified, the entire composite object is printed,
indented to show its actual structure. In this C example, all nested structures
are shown:

>p employee_ree

}

employee_ree = struet {
name = IIJoe Q. Publie ll

;

date_of_birth = struet {
year = 1960;
month = 11;
day = 7;

}

ssn = 532892398;

Pointer variables can be displayed as addresses, or dereferenced to show the
object being referenced. For C programs, commands like the following might be
used:

>p ptr\X
ptr = Ox40042a6e
>p *ptr
Ox40042a6e 5

N ate that the default format used to display the dereferenced object depends
on its type. In this example, ptr might have been declared as int *ptr.

Pointers to records or structures are also easily printed. Fields in the object
pointed to are referenced in the same manner as they would be in your
program. In this Pascal example, elements of a linked list are examined:

>p reeptr
RECPTR = Ox40008020
>p reeptr~.next
next = Ox40008040
>p *(reeptr~.next)
Ox40008040 record

end

KEY = 'zombie';
HASHVAL = 349;
NEXT = Ox40008060;

Using the HP Symbolic Debugger 3-33

3

The p+ and p- commands are useful for traversing the elements of an array.

To display the next data item in the array using the current format (the format
most recently used) and data item size, enter the print command in this form:

3 >p+

This interprets the next sequential data item after the one previously printed,
which is assumed to be of the same size and type.

To display the next data item using a format different from the current one,
use this form:

>p+ \x

To display the previous data item in the array using the current format and
data item size, enter the print command in this form:

>p-

To display the previous data item using a format different from the current
one, use this form:

>p- \x

3-34 Using the HP Symbolic Debugger

Modifying Data
When you need to alter the value of a variable, array item, field, or pointer, use
the p (print) command followed by an assignment expression. The expression
should be entered in the same syntax as the language in which the program is 3
written.

This example changes the value of the variable A1 to 30 (HP C, HP C++, or
HP FORTRAN 77):

>p A1=30

The following example sets the variable j to the value of the expression j + 17:

>p j = j + 17

or

>p j += 17

In HP Pascal, this same example is:

>p j := j + 17

If you want to avoid the display of the result of the assignment (for example,
because the assignment is in an assertion or a breakpoint command list), use
the pq command.

Using the HP Symbolic Debugger 3-35

Tracing Function and Procedure Calls
When a program contains several functions or procedure calls, you might
need to know the sequence of calls that led to the current point of suspension.

3 Displaying this sequence is called "viewing the stack". To view the stack, enter
the t (trace) command:

>t
° f2 (i = 3)
1 f1 (i = 2)
2 main ()

[t. c: 17J
[t. c: 11J

[t. c: 5J

In this example, the debugger lists:

• The stack depths: 0, 1, and 2 (0 is always the "top" of the stack).

• The name of the procedure at each depth and their parameter values:

o f2 (i = 3)

o f1 (i = 2)

o main ()

• The source file and line number where it is suspended (within their respective
procedures):

o [t. c: 17J

o [t.c: 11]

o [t. c: 5]

If you also want to see the value of local variables at each depth of the stack,
use the T command.

3-36 Using the HP Symbolic Debugger

Navigating the Execution Stack
This section uses the program navstack. c to show how to use the View, down,
up, and top debug commands.

#include <stdio.h>

maine)
{

}

stack(5);
exit(O);

stack(depth)
int depth;

{

}

int local;

local = depth;
if (depth) stack(depth -1);
printf("local = %d\n",local);

Before debugging navstack. c, you need to compile it using the -g compiler
option. For example:

cc -g navstack.c -0 navstack

Once the program has been compiled with debug information, you can execute
the following command to run the debugger:

xdb navstack

N ext, set a breakpoint where the procedure printf is called in the program,
type at the prompt (»:

>b 16\t

You can now run the program by typing:

>r

Using the HP Symbolic Debugger 3-37

3

3

The program will stop at the breakpoint you set. You are now ready to use the
View, down, up, and top debug commands.

Using the down Command

The debugger down command can be used to move down four levels in the
execution stack. For example, type:

>down 4

Result displayed:

stack level: 4

which means you are currently at level 4 in the execution stack. To verify this,
type:

>p $depth

Result displayed:

$depth = 4

Note that $depth is a special variable that contains the current execution stack
level.

If you type 1 at the prompt, you will get a listing of the values of the local
variables for the current procedure. For example:

depth ;:: 4
local ;:: 4

3 .. 38 Using the HP Symbolic Debugger

Using the up Command

You are currently at level 4 in the execution stack. To move up two levels in
the execution stack, type:

>up 2

Result displayed:

stack level: 2

If you need to change the value of the variable local at stack level 2, you
would type:

>p local = 15

Result displayed:

local = 15

Using the top Command

The top command is used to get to the top of the stack. To try this command,
type:

>top

Result displayed:

stack level: 0

To look at the values of the local variables of the current procedure, type:

>1

Results displayed:

depth = 0
local = 0

,;

Using the HP Symbolic Debugger 3 .. 39

3

Using the View Command

The V (View) command sets the current viewing location to the location of the
next instruction that would be executed in the procedure at the specified stack

3 depth. For example, move the current viewing location to line 6 in the program
by typing:

>v 6

The marker (» points to the current viewing location in the source window
(line 6).

Next, to see where execution would continue in the procedure at level 4 of the
execution stack, type:

>V 4

where V indicates viewing of the current point of program suspension and 4
indicates viewing is to take place at level 4 of the execution stack. To verify
that the current viewing location is stack level 4, type:

>p $depth

Result displayed:

$depth = 4

The location shown by typing V 0 has the next instruction that will be
executed when the program is stepped or continued. This is the current point
of suspension of program execution.

To allow the program to complete execution, type the continue command:

>c

The program prints the value of the variable local at each stack level,
including the one modified above. Results displayed:

, ---, = " .LVI...a..L v

local ::; 1
local = 15
local = 3
local = 4
local = 5

3·40 Using the HP Symbolic Debugger

Capturing and Rerunning a Debugger Session
If, before a debugging session, you think you might need to retrace your steps,
you can capture the debugger commands you used during the session, You
can save the debugger commands in a file and "play them back" during a 3
subsequent session.

To write the debugger commands to a file, start the debugger using the -r
option. The example below invokes the debugger and directs it to echQ all
commands to the file acdebug:

xdb -r acdebug test1

If you are already in the debugger, execute this command instead:

»acdebug

To play back the file in subsequent debugger sessions, invoke the debugger
with:

xdb -p acdebug test1

This file may also be played back from inside the debugger using the <
command:

>< acdebug

To interactively play back each command, execute:

>«acdebug

For more information on capturing and rerunning a debugger session, read
the section "Record and Playback Commands" in the chapter "HP Symbolic
Debugger Commands."

Using the HP Symbolic Debugger 3 .. 41

Saving and Restoring the Debugger State
When you are running the debugger and want to save the current set of
breakpoints, macros, and assertions in a file, the debugger provides a way to do

3 this. You can also restore this information when you re-invoke the debugger on
the same objectfile at some later time.

To save the current set of debugger breakpoints, macros, and assertions in the
file my _cmds, you would execute a command similar to the following:

>ss my_cmds

Information saved in the file my _cmcls can be restored by using the -R option
with the file name when the debugger is invoked. For example, you would
execute:

xdb -R my_cmds test!

Note that the file my .. cmds can be used as a playback file; however, this will
bypass the verification the debugger provides with the -R option (see "Save
State Limitations" in the appendix "Limitations and Hints").

3 .. 42 Using the HP Symbolic Debugger

Displaying Character Data and Using NLS
The HP symbolic debugger provides features which aid in the debugging of
programs that deal with textual data; that is, characters or strings. A useful
feature of xdb is its ability to display such data using the semantics described 3
by the HP NLS (Native Language Support) model. For additional information,
see the manual HP- UX Concepts and Tutorials: Native Language Support.
The hpnls(5) entry in the HP- UX Reference also provides a good overview of
this model. See also the section "Setting Up the Locale" under the section
"Customizing the Symbolic Debugger Environment" in this chapter.

When the debugger is invoked, the current setting of the LC_CTYPE
environment variable determines the locale (or language) that character-based
operations will be performed in. In the debugger's case, it determines the
"printability" of a given character. Note that if LC_CTYPE is not set, it defaults
to the current setting of the environment variable LANG. If LANG is not set, the
default C locale is used (see the file /usr/lib/nls/config for the locale names
that may be used).

The debugger provides the c formatting character for displaying data bytes
as individual characters. The s format is used for string types. (Note the
definition of string depends on the programming language being used.)

For example, assume your program contains the following declaration (in C):

char *prompt = IInext?1I

The following debugger command can be used to print the string:

>p prompt
prompt = Il next?1I

which, in this case, is equivalent to:

>p prompt\s
prompt = II next?1I

as the s format is the default for objects of type "pointer-to-char."

Using the HP Symbolic Debugger 3-43

3

Individual character elements of the string can be examined with something
similar to:

>p prompt[3]\c
Ox1003 't'
>p *prompt\6c
Ox1000 n e x t ? \000

Here the leading hex number is the address of the object being printed.
Note the null character that terminates the C string. This is shown as an
"octal-escape," which is an 8-bit value displayed as a backslash followed by
three octal digits: \nnn.

By default, xdb will display all non-ASCII characters as a octal-escapes.
However, there is a debugger special variable $print that controls this
behavior. Initially, it is set to the value ascii.

Note The following examples contain 8-bit characters that require
HP terminals to enter and display. The debugger makes no
assumptions about the display device or keyboard you are
using; all it knows about is the current setting of the NLS
environment variable $LC_CTYPE. It is up to the user to ensure
that the keyboard language (usually set with softkeys) and
character-set (or font) are configured properly.

To illustrate, suppose you had just executed the following statement in an HP
Pascal program:

green : = 'griin';

The 8-bit character ii would normally be displayed as an octal-escape:

>p green
GREEN = 'gr\317n'
>p green\5c
Ox107bO \004 g r \317 n

(N ote the string size (4) appears as the first element in the Pascal example
above. This reflects how Pascal strings are stored in memory.)

3-44 Using the HP SymboUc Debugger

However, by issuing the following debugger command, only non-printable
characters in the current locale (LC_CTYPE) are displayed as octal-escapes:

>p $print = native
$print = native

Given the above example, u is now printable, even though it is not an ASCII
character. This then gives the following results:

>p green
GREEN = 'grun'
>p green\5c
Ox107bO \004 g r n

This example assumes that the locale was set appropriately from the command
shell, as in this csh example:

% setenv LC_CTYPE german

There is a third possible value for $print, the value raw. This causes all 8-bit
character bytes to be output with no distinction made between printable and
non-printable. A word of caution: this may have detrimental effects on your
terminal, and is not generally recommended.

Wide Characters

The ANSI/C language supports a wide-character base-type, which represents
a universal encoding of character data (see multibyte(3C)). Items declared
with the ANSI/C type wchar _t can also be manipulated as textual data
by the debugger, which automatically provides the mapping between the
external character set (as determined by the current locale) and its internal
representation. This mapping is invoked by the wide-character string formatter
\W, and the wide-character formatter \C.

For example, assume your ANSI/C program contains the following declaration
(note the use of the wide-character prefix operator L):

static wchar_t *wstr = LIIHello, world. lI
;

Using the HP Symbolic Debugger 3-45

3

3

It is irrelevant how individual elements of wstr are stored, as they are
automatically converted to their external equivalents upon display.

>p wstr\W
wstr = LIIHello, world."
>p wstr[O]\C
Oxi006 L'H' (Ox00000048)

The L prefix is displayed here to indicate the mapping was performed. The
formatters used above would be unnecessary if $print were set to native, as
they are the default formats for type wchar _ t in that case. (When $print is
set to ascii, the default format for wchar _ t is X.)

The mapping from multibyte strings to wide-characters is also performed
by the debugger when the L prefix is used with character- or string-constant
expressions. For example:

>p wstr = L 11fun 11

wstr = L11fun"
>p wstr[O] = L'r'
Oxi006 L'r' (Ox00000072)

Wide-characters are most useful for representing extended (16-bi t) character
sets, such as Traditional Chinese, using the locale chinese-to If you're using a
terminal or window that supports input and output of this type of data, you
have the ability to display and modify wide-character program variables as
easily as if they contained simple AS ell text.

3-46 Using the HPSymbolic Debugger

Separate Interfaces (Debugging Screen Applications)

Here is an example program which uses the curses{3X) library to read a line of
characters from the terminal with no echo. In this example, the line is printed
after (Return) is pressed to verify that input has occurred. 3

1: #include <stdio.h>
2: #include <curses.h>
3: mainO
4: { int i=O; char str[256]; int c;
5: initscr();
6: nonlO;
7: cbreakO;
8: noechoO;
9: keypad(stdscr,TRUE);

10: idlok(stdscr,TRUE);
11: nodelay(stdscr,TRUE);
12: do { c = getch();
13: if (c == -1) continue;
14: str[i++] = (char) c;
15: } while (str[i-1] != '\015'); 1* wait for return *1
16: printf("%s\n 'l ,str);
17: endwin();
18: }

Suppose you wanted to debug this program by setting a breakpoint on line 14
and observing the processing of each character as it is entered. If the program
runs in the same window/terminal as the debugger, as soon as the breakpoint
is hit the special termio(7) modes are lost and no further interrupts occur until
return is pressed.

In order for the program's interface handling to work undisturbed by xdb's
interface handling, the program should have its interface directed to another
window /terminal as described in the section "Terminal Support" in the chapter
"Introducing the HP Symbolic Debugger."

Using the HP Symbolic Debugger 3-47

3

For example, using X windows, one would select two windows: one for the
program to use and another for the debugger. In the window selected for the
program's use, execute the commands:

$ tty (Return)

/dev/pty/ttyp7
$ sleep 10000000 (Return)

This gives you the device name for the window, and puts the shell in that
window to sleep so it does not compete for input with the program you are
debugging.

Assume that you have compiled this program with the -g option and left
the program in a.out. In the window selected for the debugger, invoke the
debugger with:

$ xdb -i /dev/pty/ttyp7 -0 /dev/pty/ttyp7 -e /dev/pty/ttyp7 a.out

Now a breakpoint at line 14 will not interfere with the terminal state created
by calls to routines in the curses library, since the debugger and the program
are talking to different pseudo-terminals (pty).

While the program's interface is now separate, its controlling terminal is still
the debugger's window. This means that keyboard generated signals, such as
SIGINT (interrupt), must come from the debugger's window.

If separate windows are often necessary, it may be useful to create special
scripts (in an appropriate directory in your PATH). Name the first script wxdb.
It will contain:

/usr/bin/xdb -i $T -0 $T -e $T $@

3-48 Using the HP Symbolic Debugger

Note On earlier systems that do not have SIGWINCH support, you
should include the following command line:

eval '/usr/bin/Xll/resize'

at the beginning of the wxdb script to set the LINES and
COLUMNS environment variables for the new window.

N arne the second script Xxdb. It will contain:

export T='tty'
/usr/bin/Xll/hpterm -name Xxdb -e wxdb $@

The -name Xxdb is optional; see hpterm(l). While hpterm is recommended for
use with xdb, xterm can be used if you prefer.

Executing the script Xxdb as shown below will create a new window for
xdb, but leave the program's interface in the window where you invoked the
debugger.

Xxdb other _ xdb_ options objfile

Note that the sleep command is not necessary (as in the previous example)
since the hpterm running in the foreground has the same effect.

The window where you invoke the Xxdb debugger script does not need to be
the same type of terminal as is invoked in the script. It can be any terminal
emulator program that the program being debugged requires. Since the
program will inherit its environment variables from xdb, it may be necessary
to set breakpoints where the program reads them and assign more appropriate
values (for example, for TERM, LINES, or COLUMNS).

Using the HP Symbolic Debugger 3-49

3

Separate Environments by way of Adoption

In some cases, it may be necessary to have completely separate environments
for the debugger and the process being debugged. For example, the program

3 may include non-debuggable libraries that use the same environment variables
as the debugger for terminal set-up or NLS support. In these cases, adoption
can provide a solution. Starting the program in one terminal/window
and adopting with a debugger in another will allow each a totally disjoint
environment. For more information on how to adopt a program to debug it, see
the section "Adopting a Running Process" in this chapter.

3·50 Using the HP Symbolic Debugger

Executing Commands At Each Instruction
When you suspect that bugs might be occurring at several places in a program,
or you have a bug that is especially difficult to track down, you can direct the
debugger to execute one or more commands before every machine instruction 3
is executed. For example, you might want to track the value of one or more
variables through a series of detailed calculations.

The commands that you execute in this manner are called assertions.

The following example shows how to display the variables payw8 and paynet
before each instruction is executed:

>a {p payw8; p paynet}

The if command is very useful in assertion and breakpoint command lists. For
example, if paynet should always be less than 23000, and you want to know
where its value becomes greater, the assertion:

>a {if (paynet >=23000) {x}}

will stop the program when paynet exceeds the legal value.

Using the HP Symbolic Debugger 3 .. 51

Using Macros
Macros are words that represent one or more debugger commands or
expressions. You create macros by entering names for them and specifying the

3 commands or expressions for which they stand. Macros are very useful for
representing a group of commands that you execute often. You do not have to
re-enter the commands; just enter the macro name for them.

The following command defines the macro name. Every time name is used, the
corresponding commands are executed:

>def name p employee->personal_data.name.first;p employee->personal_data.name.last

Macro expansion can be enabled or disabled with the tm (toggle macros)
command. Initially, macro expansion is disabled.

Note that macros have no arguments, and can only be used to represent entire
commands or expressions.

3-52 Using the HP Symbolic Debugger

Altering the Execution Sequence
When the program is paused at a breakpoint or you are single-stepping
through it, you can change the normal execution sequence of the program and
cause it to resume at a different line. To resume execution of a program at a 3
specific line, use the g (goto) command with the appropriate line number. The
new line must be in the same procedure as the current one.

The following example directs the debugger to change the next line to execute
to be line 600:

>g 600

Then you would use a continue or step command to begin execution at line
600:

>c

The above example allowed you to move to an absolute line position. If you
need to move to a relative line position from your current position, you would
execute a command similar to the following:

>g +10

Executing this command will move you forward 10 lines from your current
position.

If you want to always skip a particular line (located at line number), you could
execute a command similar to the following:

b number {Q;g +1;c}

Using the HP Symbolic Debugger 3 .. 53

Getting Help
When you need help with the format of a debugger command or can't
remember which command performs a particular function, use the h (help)

3 command as follows:

>h [topic]

The h (help) command with no argument shows all of the help text. The topic
is either a specific command name (short form) or a task keyword describing
groups of related items. Command name topics print the syntax and a brief
description of that command. Task-related topics print the commands and
other items related to that task. For a list of the available task-related topics,
execute this command:

>h help

Help text is displayed one window at a time using more (1). You can use the
terminal keys C!), and the (CTRL)arrow keys (or the equivalent scroll keys on
your terminal) to scroll the command window. The more command displays
enough lines to fill the command window then displays a --More-- prompt at
the bottom.

Use one of the following commands to continue from this prompt:

(Space Bar)

q

Displays one more window-full.

Displays one more line.

Quits scrolling and ignores the rest of the help information
until another debugger prompt is issued.

The more feature of help cannot be suspended.

To create a copy (e.g., prt .help) of the help text suitable for printing, execute
this command:

nroff /usr/lib/xdb.help.nro > prt.help (Return)

This file (prt .help) includes bolding and underlining of the appropriate text.
If your printer does not understand this, it can be remove by using col(1).

3'-54 Using the HP Symbolic Debugger

Adopting a Running Process
The xdb command is capable of adopting and debugging a process that was
started outside of the debugger. This is accomplished by invoking xdb with the
-P option. For example, this command: 3

xdb -P 12446 sort

adopts the process 12446 which must be running a program called sort.

To adopt a process, the effective user ID's of the debugger and the process to
be adopted must match, or the effective user ID of the debugger must be root.
When a process is adopted, it halts, and xdb displays where the program is
halted, at which point the program can be debugged.· If the user quits the
debugger without killing the process, xdb removes all breakpoints from the
process, and allows it to continue running.

Note The debugger cannot adopt a sleeping process (see sleep(3)).
The easiest way to make a program adoptable by xdb before a
certain condition arises (such as an error condition) is to make
it execute a simple infinite loop ("busy wait"). Once you get
control of the process, you can get out of the loop with the g
(goto) command, or by changing the value of the variable that
enables the loop.

The debugger can adopt a process that is suspended while
waiting for an event or I/O.

However (for Series 600/700/800 only), if the process is waiting
(blocked) in a system call, and the program was linked with
the shared C library (/lib/1ibc. sl), a stack trace command
will not be possible until a breakpoint has been set in your
(non-shared library) code and the process has continued past
the block to reach the breakpoint.

Because an adopted process behaves much like a process initiated under the
debugger, it is easy to lose sight of the fact that it is still running in the same
environment as before its adoption. In particular, signals generated from the
keyboard, such as SIGINT and SIGTSTP, will not reach the adopted process

Using the HP Symbolic Debugger 3-55

3

(which must have been running in the background or attached to another
window or terminal before being adopted).

If you are accustomed to using a keyboard-generated interrupt to regain control
of the child process, this will not work for an adopted process. You must use a
kill -2 pid from another window or terminal (or after putting the debugger
into the background) to send a SIGINT to the child. The debugger itself will
not receive non-fatal signals such as SIGINT while it is waiting for an event in
the child process. However, if the child process is running in the foreground
in another window or terminal, a keyboard-generated interrupt in the child's
window can probably be used to regain control.

Note If your program is linked with shared libraries which you wish
to debug, you must run the command

pxdb -8 enable program

before the program is started. For more information on this,
read the section "Debugging Shared Libraries in an Adopted
Process" in Chapter 6 of this manual.

3·56 Using the HP Symbolic Debugger

Debugging a Program that Caused a Coredump
The example program in this section has an error in it that Causes a
"coredump." A "coredump" is a core image of the process that the HP- UX
system writes to a file called core, at the instant the process is terminated (see 3
core(4))·

Generating a Coredump

To generate an example coredump, copy the program gen_core. c from the
xdb_demos directory to your directory and name it test ... prog. c. To do this,
execute the command:

cp lusr/lib/xdb_demos/gen_core.c test_prog.c

Here is a listing of the program:

14 set_to(x,y)
t5 int *x;
16 int y;
17 {
18 *x = y;
19 }
20
21 thusly(x,z)
22 int x,Z;
23 {int i;
24 i = x;
25 set_to(&x,O);
26 for (; (i++)<10; i++)
27 if (i==z) set_to(x;i);
28 printf (tl%d II, x) ;
29 }
30
31 mainO
32 {int i;
33 for (i=O; (i++)<10; i++) {

USing the HP Symbolic Debugger· 3-57

3

34 printf ("%d ", i) ;
35 thusly(1,i+4);
36 }

37 printf("\n");
38 for (i=1; (i++)<10; i++) {

39 printf("%d ",i);
40 thusly(1,i+4);
41 }

42 printf("\n");
43 }

After you have copied and re-named the program, compile it using this
command:

cc -g test_prog.c -0 test_prog (Return)

The above command prepares the program for debugging and gives the
executable file the name test_prog. To run the program, execute

test_prog (Return)

After you executed this command, you will see the following information on
your screen:

1 0 3 050 709 0
Bus error(coredump)

This message tells you that a coredump was generated as a result of a bus
error. If you list the files in your current directory, you will see that there is
a new file in it called core. It is a good idea to re-name this file to prevent
the core image you are currently examining from being overwritten by another
coredump. You can re-name it mycore.

3 .. 58 Using the HP Symbolic Debugger

Debugging the test_prog Program

To debug the program test_prog, execute the following command:

xdb test_prog mycore

Your display will look like this:

--.l _________ ._

. • ..J

>

11: * and follow the instructions in the manual.
12: */
13 :
14: set_to(x,y)
15: int *x;
15: int y;
17: {
18: *x = y;
19: }
28 :
21: thusly(x, z)
22: int x,z;
23: { int i;
24: i = x·
25: set_t~(&x,8);

FIle: teEt_prog.c Procedure: set_to Line: 18
Copyright Hewlett-Packard Co. 1985,1987-1992. All Rights Reserved.
«« XDB Version A.89.88 HP-UX »»
Core file from: test_prog
Child died due to: bus error
Procedures: 3
Files: 1
>1

Figure 3-4. Debugging the Program tesLprog

I

At the command line prompt>, you can enter any symbolic debugger
commands that you want except for those commands that require the process
you are debugging to be activated. Examples of command that should not be
used with core files are:

• Job control commands such as: r, c, s, etc. Using one of the job control
commands will start execution of the object file. While this process exists,
the core file is inaccessible .

• Breakpoint commands such as: b, ba, bpc, etc. Attempting to use a
breakpoint command without an executing object file (process) will produce
an error message.

Using the HP Symbolic Debugger 3-59

3

Commands that allow you to view the file you are debugging can be executed
at the debuggers command line prompt >. Examples of such commands are:

• File viewing commands such as, L, v, va, etc.

• Data viewing commands such as, p, lp, lr, etc.

• Stack viewing commands such as, t and T

If you look at the figure "Debugging the Program test_prog" (Figure 3-4), you
will see in the command window the message:

Child died due to: bus error

Here the debugger reports the signal that caused the coredump to occur (in
case you didn't or couldn't record the message from the kernel). You should
also notice that the marker (» in the source window is pointing at or just after
the assignment in the procedure set_to (line 18). This is the line where the
process terminated and the core dump was generated. The stack should contain
the values of the variables that were passed to the procedure set_to. To view
the value of each variable passed to this procedure, execute this command:

>t (Return)

The following information is displayed.

>t
o set_to ex = 00000000, y = 6) [test_prog.c: 18J
1 thusly ex = 0, Z = 6) [test_prog.c: 27J
2 main e) [test_prog.c: 40J

>

Notice that the top of the stack (depth 0) shows that the variable x was passed
a null pointer. This is an indication that the problem with the program must
have occurred at or before the call to the procedure set_to. Looking down the
stack to depth 1, you find that the procedure thusly called set_to from line
27 of the program. To view line 27, execute this debugger command:

>V 1

3-60 Using the HP Symbolic Debugger

Your display would look like this:

. ------------_.-
~ . ~

>

20:
21 :
22:
23:

thusly(x,z)
int x,z;
{ int i;

24: i = x'
25: set_t~(&x,0);
26: for (; (1++)<10,: i++)
27: if (i==z) set_to(x,i);
28: printf("%d ",x);
29: }
30:
31 :
32:
33:
34 :

mainO
{ int i;

for (1=0; (i++)<10; i++) {
printf ("%d ",1);

File: test_prog.c Procedure: thualy Line: 27
Procedures: 3
Files: 1
>V 1
>t
o set_to (x = 00000000, y = 6) [test_prog.c: 18]
1 thusly (x = 0, Z = 6) [test_prog.c: 27]
2 main () [test_prog.c: 40]

>1

Figure 3-5. Viewing the Procedure that Called seLto

I

The marker (» in the source window is now pointing at line 27 of the program.
If you look at the procedure call set_to, you will see that the variable x is
passed as a value instead of being passed by reference. The cause of the bus
error is a missing address operator that must be prefixed to the variable x.
Line 27 of the program should look like this:

if (i==z) set_to(&x,i);

Making this correction will cause the program to execute correctly.

Using the HP Symbolic Debugger 3-61

3

Mapping of Source Directories
The debugger normally locates a source file for a given section of the program
by using the file names recorded in the symbolic debug tables when the
program was compiled. This path is identical to what you provided to the
compiler and is not always sufficient for the debugger, especially if the program
is debugged in a directory different from where it was compiled.

If you are debugging a program from a directory other than where it was
compiled, you can use the debugger's D command or -d invocation option to
tell the debugger where the source files are located. This command and option
are sufficient if all of your source files are located in a single or small number of
directories; however, if they are located in several directories, you may want to
use the debugger's apm command.

This section provides a scenario for three uses of the apm command. The topics
covered are:

• A Scenario for Using the apm Command

• Example 1: Both Old Path and New Path are Provided

• Example 2: Stripping Part of an Old Path

• Example 3: Prefixing a Path

3-62 Using the HP Symbolic Debugger

A Scenario for Using the apm Command

In this scenario, assume that you are using separate machines for development
(compilation) and testing (debugging). In your development environment, you
have the following directory:

/myprod/newdev/src

This is the top directory under which the sources for your related programs are
kept. Since you compile several distinct parts, you keep the sources for the
different parts in several subdirectories.

/myprod/newdev/src/driver
/myprod/newdev/sre/interface
/myprod/newdev/sre/eore

Now suppose you compile your programs in /myprod/ne1Ndev/bin, and you give
the compiler relative path names of the form:

.. / sre/ driver / filename

to locate your source. The result is that the debug information for your
driver program contains the sam~ relative path names. Thus, unless
you tell the debugger otherwise, it will look for the source to main () in
.. /src/driver/main. c, relative to the directory where you invoke the
debugger.

Using the HP Symbolic Debugger 3 .. 63

Next assume that testing (debugging) is done on a different machine, and your
sources are NFS-mounted from the development machine. The path to your
top-level source directory now looks like this:

/mnt/project/src

If you now want the debugger to be able to locate your source file, you could
use the D command while in the debugger or the -d option when you invoke the
debugger. If you use the D command to help locate your source files, you would
execute commands similar to these:

D "/mnt/project/src/driver ll

D II/mnt/project/src/interface"
D "/mnt/project/src/core ll

Alternatively, the -d invocation option accomplishes the same thing:

xdb -d /mnt/project/src/driver -d /mnt/project/src/interface \
-d /mnt/project/src/core ...

Note that limitations to the D command and the -d option are:

• Very large software systems may have several subdirectories, each requiring a
separate D command or -d option .

• If you have identical file names under any two or more subdirectories, the
debugger can easily display the wrong file, depending on the order you have
issued the D commands.

It is because of these limitations that the apm debugger command is
recommended for use over the debugger's D command and -d command line
option. The following three examples use the scenario in this section to explain
different ways of using the apm command.

3-64 Using the HP Symbolic Debugger

Example 1: Both Old Path and New Path are Provided

Rather than enumerating each subdirectory, you could instead use the following
debugger command:

apm .. /src /mnt/project/src

This causes the debugger to tra,nslate all paths of the form:

to

· ./src/driver/main.c
· ./src/core/eval.c

/mnt/project/src/driver/main.c
/mnt/project/src/core/eval.c

All files are now easily located by the debugger, without any ambiguities that
could have been introduced by the D command.

Example 2: Stripping Part of an Old Path

Suppose your current directory is /mnt/proj ect/src when you are debugging
one of your programs. You can still use the path map illustrated in the
previous eXalnple, or you could use the following path map:

> apm .. /src

Since a replacement path was not specified, the specified old path is just
stripped from all known file paths it applies to, rendering paths of the form:

· ./src/driver/main.c
.. /src/core/eval.c

into

driver/main.c
core/eval.c

Using the HP Symbolic Debugger 3-65

3

Example 3: Prefixing a Path

Assume that you compiled your programs while your current directory was
/myprod/newdevel/ src, and you issued names like driver/main. c to the

3 compiler.

Given that your sources are now mounted under /mnt/proj ect/src, you can
debug anywhere on your test machine using one command to tell the debugger
where to find the sources:

> apm 1111 /mnt/project/src

Since you didn't specify an old path, the debugger just prefixes the replacement
path to the file name, rendering all file paths of the form:

driver/main.c
core/eval.c

into

/mnt/project/src/driver/main.c
/mnt/project/src/core/eval.c

Note that this is the only case where you need to surround a path by double
quotes.

3-66 Using the HP Symbolic Debugger

4
HP Symbolic Debugger Commands

This chapter describes the cOlnmands recognized by the HP Symbolic
Debugger. These comrnands are arranged by function in alphabetical order and 4
can be entered in short form (abbreviated) or long form (spelled out). If you
use the long form, space between command words is usually optional.

Entering Commands

The HP Symbolic Debugger keeps track of the current file, procedure, line and
data locations of the executing program. The current file, procedure, and line
are always displayed in the source and location windows, but their values do
not necessarily correspond to the point at which execution is suspended.

A program is suspended when control is transferred from the program to xdb
by encountering a breakpoint or exception condition. Many commands use
these current locations as defaults.

Note that when a program becomes suspended, the source corresponding to
the suspension point is forced to be displayed in the source window and the
items displayed in the location window reflect exactly where the program is
suspended. When you enter a search or v (view) command, items displayed
at the location window may change and will be reflected by a change in the
contents of the source window (i.e., the focus is changed).

To realign items displayed at the location window with the source code at the
point of suspension, enter the V (View) command with no arguments. Note
that this only works once the child process has been started.

HP Symbolic Debugger Commands 4-1

4

The debugger always knows at any point in time where to continue execution.
For example, you can stop execution to view a different source file, then
continue where you left off.

Most debugger commands assume that the command applies to the current
location and its scope. For example, if you stop in procedure abc and then
view procedure def and ask for the value of a local variable that exists in both,
the debugger returns the value of that variable as it exists in def.

Note The procedure def must be a caller of abc, or the variable must
be statically declared, for its value to be meaningful.

The general format of most debugger commands is:

command [location] [command arguments] [command-list]

Numeric modifiers after commands can be any numeric expression. They need
not be just simple numbers. A blank is required before any numeric option.
Multiple commands on one line must be separated by";".

Here are some common modifiers and other special notations:

{A I B I C} Anyone of A or B or C is required.

[A I B I C] Anyone of A or B or C is optional.

class A C++ class name.

command-list A series of debugger commands, separated by";" entered on
the command line or associated with a breakpoint or assertion.
Commands may be grouped with {} for the a (assert), b
(breakpoint), if, i (if), and! commands. In all the other
cases, commands inside {} are ignored.

count The number of repetitions specified for a command.

depth A stack depth as printed by the t (trace) command. The top
procedure is at a depth of zero. A negative depth acts like a
depth of zero or produces an appropriate error message.

In interpreting variable references where depth is not explicitly
specified, the debugger will try to use the special variable
$depth as the default value for the depth. If the required

4-2 HP Symbolic Debugger Commands

procedure (either explicitly specified or taken by default from
the current viewing location) is at this depth on the stack,
the debugger looks for the variable in that stack frame. If the
required procedure is not the procedure at that stack depth,
the debugger looks for the most recent instance of the required
procedure by searching down frorn the top of the stack. If the
procedure is found, the debugger looks for the variable in that
stack fralne.

(Series 600/700/800 only: see also the tst command for a
discussion on P A -RIS C stubs)

expr Any expression, but with limitations stated in "Entering
Expressions."

file A file name.

format A style for printing data.

label A program label.

line A number that refers to a particular line in a file.

proc A procedure (or function, or subroutine) name. proc may be
of the form proc@shared_library in cases where it is necessary
to uniquely qualify proc. See the section "Shared Library
Symbols" in Chapter 6.

shared-library The basenalne of a shared-library, without the trailing . sl
(for example, libe). Because of limitations in the debuggers
command parser, only some non-alphanumeric characters are
allowed in a shar'ed-library basename; specifically, anyone of
the following characters: ., " :, -, -, %, ~, =, +. Use of any
of these special characters requires parentheses to delimit a
shared-library reference, distinguishing the special characters
from operators:

(symbol@shared-library)

Parentheses must also be used if one of the above special
characters is used as an operator on the symbol. In this case,
the operator appears outside the delimiters; for example:

(symbol@shared-library) . field

HP Symbolic Debugger Commands 4-3

4

4

location

address

Note that shared library basenames used in a debugger
command are always case sensitive; that is, they are not
affected by the tc (toggle case) command.

A particular line in a file (and its corresponding address in the
user's program if there is executable code for that line). A
location has the following general forms:

line

label

file [: line]

[file:] proc [: proc [...]] [: line I # label]

[class] :: proc [: line I # label]

If a location involves an overloaded C++ function, the user
will be presented with a menu to allow interactive selection of
the intended routine. Note that the proc:proc . .. form is used
to specify a nested procedure in HP Pascal programs.

An absolute code (text) or data location in a program's active
address space that has the following forn1s:

expr

label [+expr]

label [- expr]

proc#line

[[class] : :] proc# line

The expr option must evaluate to an integer, and is assumed
to be unsigned. The symbol label is found in the program's
linker symbol table and is not a source label from the
symbolic-debug (-g) tables. To reference labels within a
non-debuggable shared library, use the syntax:

4·4 HP Symbolic Debugger Commands

number

var

label@shared_library_name

Note that some Series 600/700/800 code labels begin with
$. To reference these labels, they must be prefixed with \
to distinguish them from special variables. For example,
\$cerror+Oxc or \$$dyncall+Ox28.

A constant number (e.g. "9", not "4 + 5"). Floating point
(real) numbers may be used any place a constant is allowed.

A variable name. See "Entering Variable Names" later in this
chapter and "Shared Library Symbols" in Chapter 6.

Using Uppercase and Lowercase

HP Symbolic Debugger commands are case-sensitive. The two cases are treated
differently by the debugger. For example:

s or step

S or Step

Lowercase s tells the HP Symbolic Debugger to single step to
the next executable statement and step into a procedure, if
necessary.

Uppercase S tells the HP Symbolic Debugger to single step to
the next executable statement treating a procedure call as a
single statement (it is "stepped over").

HP Symbolic Debugger Commands 4-5

4

4

Abbreviating Commands

You can enter commands in their complete spelled-out form (long form) or
in an abbreviated form (short form). Generally, you can abbreviate one-word
commands using the first character of the word. Abbreviate two-word
commands using the first character of each word in the command (do not leave
a space between the two characters). If you use the long form, you can leave a
space between words. For example:

{ w. } number
wlndo1N

Changes the size of the source window.

{ ::lete breakpOint} [number 1
Deletes the breakpoint selected by number.

Some debugger commands are not abbreviated by following the previous rules.
Refer to the individual command syntax in this chapter to find abbreviations
for these commands. Note that a few commands are available only in
ab breviated form.

Entering Variable Names

Variables are referenced exactly as they are named in your source file (s).

Note Use of variable names in debugger commands is normally case
insensitive; for example, gvar is the same variable as GVAR.
This may be changed with the tc (toggle case) command.

There are several methods used to specify a variable depending on where
and what it is. The following table shows the various forms for specifying a
variable.

4-6 HP Symbolic Debugger Commands

Table 4-1. Methods for Specifying Variables

Method Description

Search the stack for the current or most
var recent (see the description of depth in

the section "Entering Commands" in
this chapter) instance of the current
procedure (the procedure in the location
and source windows). If found, see if var
is a parameter or a local variable for
that procedure. If the current procedure

4

is a C++ member function, search for
var as a member of the class. If no such
local variable is found, the current
language scoping rules are used to try to
locate var. If var is not found in an
enclosing block, procedure or module,
the debugger searches for a global
variable named var.

If the current procedure is a C++
class: : var member function of class or of a class

derived from class, search for var in class
or its base classes. Otherwise, search for
var as a static member of class.

Search the stack for the current or most
proc: var recent (see the description of depth in

[[class] : :] proc: [class: :] var
the section "Entering Commands" in
this chapter) instance of proc. If found,
see if it has a parameter or a local
variable named var as before. The
second syntax form allows a C++
procedure and! or variable to be qualified
by a class. Preceding proc only with a : :
indicates a global non-member function.

HP Symbolic Debugger Commands 4-7

Table 4·1. Methods for Specifying Variables (continued)

Method Description

Use the instance of proc that is (exactly)
proc: depth: var at stack depth instead of the current or

[[class] : :] proc: depth: [class: :] var
most recent (see the description of depth
in the section "Entering Commands" in
this chapter) instance. This is useful for
debugging multiple instances of a

4
recursive procedure. The second syntax
form allows a C++ procedure and/or
variable to be qualified by a class.
Preceding proc only with a :: indicates
a global non-member function.

Search for a global (not local) variable
: var named var.

:: var

Dot is a shorthand for the piece of data
you last viewed. It has the same size it
did when you last viewed it. Dot may be
treated like any other variable.

Note: Dot (".") is the name of a
location. It is deferenced like any other
variable name. For example, if you want
the address of something that is 30 bytes
farther on in memory, do not type
".+30". That would take the contents of
dot and add 30 to it. Instead, type
"&.+30" , which adds 30 to the address
of dot.

4·8 HP Symbolic Debugger Commands

Special Variables

Special variables have names that are prefixed by a $. Some special variables
are predefined and have special meaning. Other special variables are
user-defined variables to which you can assign values. Special variable names
can be up to 98 characters long, but it is recommended that you limit their
names to 80 characters long for display purposes. The first time you reference
special variables, they are created and set to their initial values. Special
variables can be used for the duration of the debugging session or you can
redefine them.

For example, if you enter the following command (in HP FORTRAN 77 or HP
C),

p $xyz = 3*4

the special variable $xyz is created and assigned the value of 12.

HP SymbOlic Debugger Commands 4-9

4

4

To view special variables (except hardware registers), use the Is (list
specials) command. There are several special variables that are available; all
but user-defined special variables are predefined by the debugger. The special
variables are:

• $var
Represents a user-defined variable. It is of type long integer and does not
take on the type of any expressions assigned to it.

• Hardware Registers
A number of special variables exist to let you access the hardware registers.
To find out which names are available on your system use the lr (list
registers) command. See also the appendix "Registers Displayed by the
HP Symbolic Debugger in Disassembly Mode."

• $result
References the return value from the last procedure called from the command
line. The special variable $resul t is normally interpreted to be the same
type as the last procedure call (if the call returns a structured type, $resul t
defaults to integer). Note that there are two alternate ways of looking at
$result, as a 32 bit integer ($long) or as a 16 bit integer ($short).

• $depth
Contains the value of the current stack level (see the description of depth
in the section "Entering Commands" in this chapter). This is the default
stack level for viewing local variables. It is set by the V, up, down, and top
commands. It may be adjusted by the tst command (Series 600/700/800
only). It is reset to 0 (top of stack) by the following commands: r, R, c, C, s,
S, g, and k. Higher numbers correspond to procedures further down the stack
(greater stack depth). Setting this variable directly (p $depth = n) sets the
local context to the specified depth but it will not update the source window.

4-10 HP Symbolic Debugger Commands

• $lang
Allows you to view and modify the current source language designation for
expression evaluations. Valid values for $lang are C++, FORTRAN, Pascal, C,
and def aul t. For example, if $lang is set to C, the debugger expects HP C
expression syntax, regardless of the language you are debugging.

When $lang is set to default, any language expression syntax used is
expected to be the same as the source language of the procedure currently
being viewed.

• $line
Displays the current source line number (usually the next statement to be
executed).

• $malloc
Allows you to see the amount of heap memory (in bytes) currently allocated
by the debugger for its own use. This does not reflect memory-use of the
program being debugged.

• $print
Allow you to alter the behavior of the print command when printing
character data. The allowed values are ASCII, native and raw. The
default is ASCII. ASCII causes all non-ASCII characters to be displayed as
octal-escapes (\nnn). native causes unprintable characters, as determined
by the locale category (environment variable) LC_ TYPE, to be displayed as
octal-escapes. raw causes all bytes to be output unaltered. This switch also
affects the default display format for character types. The value of LC_ TYPE
defaults to the environment variable LANG, and should correspond to the
character set and keyboard language of the terminal or window being used.

HP Symbolic Debugger Commands 4·11

4

4

• $signal
Allows you to see and modify the pending current child process signal
number. This is the signal that will be sent to the user program when
control is returned to it via the C (Continue) command .

• $cplusplus
This special variable is interpreted as a set of flags to control the behavior of
certain C++ capabilities. If bit 0 (least significant bit) is not set, printing a
class object with the K or T format will only print information for any given
class once, regardless of how many times it appears in the object (unless the
format is K and the base class is not virtual). If bit 0 is set, all base class
information will be printed each time it occurs in the object.

If bit 1 is not set, the bpc command (breakpoint class) will set breakpoints
only on member functions of the designated class and not of its base classes.
With bit 1 set, breakpoints are also set on member functions of base classes.

If bit 2 is not set, the bi command (breakpoint instance), when a specific
function is not given, will set breakpoints only on member functions of the
class designated by the object and not of its base classes. With bit 2 set,
breakpoints are also set on member functions of base classes.

The default behavior imposed by bits 1 and 2 may be temporarily
overridden by the -c and -C options to the bpc (breakpoint class) and bi
(breakpoint instance) commands.

4-12 HP Symbolic Debugger Commands

• $step
Allows you to see and change the number of machine instructions the
debugger steps through, while in a non-debuggable procedure, before
setting an "uplevel" breakpoint and free-running to it. (This is where a
breakpoint is set immediately after the return location in the non-debuggable
procedure's caller.) This situation occurs only when the program is executing
in single-step or assertion mode, and represents the debugger's attempt to
step "into" becoming a step "over." The default value for $step is 12 on
Series 300/400 computers and 24 on Series 600/700/800 cOlllputers.

The actions the debugger actually performs during a single step from one
source statement to the next is to execute a single machine level instruction
at a time. After each instruction is executed, the debugger checks to see
if the next instruction matches the beginning of a new source line. If so,
execution stops, the debugger prompts for user input, and the single step is
complete. However, if this low-level stepping proceeds through a procedure
call, it mayor may not be entering a non-debuggable procedure. Until
the debugger encounters an instruction corresponding to a source line, it
presumes it is in non-debuggable code. If, after $step instructions, the
debugger fails to find a source line, it sets an internal uplevel breakpoint at
the instruction after the procedure call, free-runs to it, resets $step, and
then continues its search for a source line from there.

If $step is set to too small a value, the debugger rnay erroneously fail to
step into a debuggable procedure. If $step is too large, it will degrade
performance when stepping over non-debuggable procedures. Increasing the
value of $step frOlll its default value is usually only necessary if the program
being debugged regularly makes calls to debuggable procedures by indirectly
calling them through (short) user-coded non-debuggable interface routines.

(Series 600/700/800 only) The HP-PA procedure calling conventions
frequently require insertion of stubs (calling interludes) in the calling
sequence. This is especially true for shared-library calls and calls that pass
floating-point paranleters. These stubs are non-debuggable, and single-steps
through them (at the source level) are subject to the effects of $step. It may
occasionally be necessary to increase the value of $step if you find that a
procedure call cannot be stepped into when it should be possible to do so.

HP Symbolic Debugger Commands 4-13

4

4

• $fpa
If this is set to a non-zero value, any sequence of machine instructions that
constitute a single floating-point accelerator instruction is treated as a
single instruction for machine-level single-stepping and display. This special
variable is for Series 300 computers only.

• $fpa_reg
If $fpa is set to a non-zero value, $fpa_reg indicates the address register
used in floating point accelerator instruction sequences. A 0 corresponds to
register aO, I to aI, etc. The default value is 2. This special variable is for
Series 300 computers only.

4-14 HP Symbolic Debugger Commands

Entering Expressions

An expression is a symbolic or mathematical representation. Expressions
consist of variables, constants and operators, or any syntactically correct
combination of these items. The HP Symbolic Debugger evaluates user
expressions as if they are part of the high-level language being debugged and,
therefore, uses the same operators and assignment rules as the high-level
language.

See Appendices B, C, D, and E for a list of operators that you can use with
each language. Note that the symbolic debugger tries as much as possible to 4
let you write expressions with the same syntax as the current language. You
can change the current language by setting the value of the special variable
$lang. By default, this variable is set to the language of the program you are
debugging.

The $in operator, a special unary operator, evaluates to true (1) if the
operand is a debuggable procedure and if $pc (the current child process
program counter or location) is in that procedure; otherwise, $in is false (0).
For example, $in load_month_ table is true if the child process is currently
suspended in load_month_ table.

The unary operator $addr, for retrieving the address of a variable, and
$sizeof, another unary operator for retrieving the byte size of a variable, are
available for all languages.

Constant expressions may be textual (character or string), symbolic (that is,
predefined language-specific keywords), or numeric.

If you do not have an active child process or valid core file, you can only
evaluate expressions containing constants.

HP Symbolic Debugger Commands 4-15

Character and String Expressions

The rules in each language for entering character and string constants are as
follows:

• For HP FORTRAN 77 and HP Pascal, string constants are represented by
one or more characters, enclosed by single quotation marks (,) or double
quotation marks (").

• For HP C and HP C++, single quotation marks enclose single characters for
character constants. Double quotation marks enclose zero or more characters

4 for string constants. String constants are treated as pointers to char (i.e.,
char *).

The prefix L can be used to denote wide-character or string constants (C
type wchar _ t). Use of this prefix will cause the value to be mapped to its
wide-character equivalent before being stored (see multibyte(3C) in the
HP- UX Reference). If an unmappable value is encountered, it is stored
unconverted. Note that wchar _ t is a predefined ANSI C type (see stdlib(3C)
in the HP- UX Reference).

String constants are stored in a buffer in the /usr/lib/ end. 0 file which
must be linked with your program. This is done automatically by the
compiler when the -g option is given.

Note If you call the linker directly, don't forget to specify
/usr/lib/ end. 0 at the end of the list of object files you want
to link and before any other library.

The debugger starts storing strings at the beginning of this buffer, and moves
along as more assignments are made. If the debugger reaches the end of the
buffer, it goes back and reuses it from the beginning. This does not usually
cause any problems. However, if you use very long strings, or if you assign a
string constant to a global pointer, problems could arise.

• Character and string constants can contain standard backslashed escapes
(as understood by the HP C compiler), including those shown in the table
"Escape Sequences." For hex-escapes, the longest possible value is evaluated
and then truncated to the size of the destination type (either 1 or 4 bytes).
A \ <newline> is not supported in quotes or at the end of a command line.

4-16 HP Symbolic Debugger Commands

Table 4-2. Escape Sequences

Character Description

bell \a

backspace \b

form feed \f
carriage return \r

horizontal tab \t

vertical tab \v

backslash \\
single quote \'
double quote \"
bit pattern \ nnn (octal digits) or \xnnn (hex digits)

new line \n

Symbolic Constants

Expressions can also contain the symbolic constants listed in the table
"Symbolic Constants."

HP Symbolic Debugger Commands 4-17

4

4

Table 4-3. SymbOlic Constants

Language Constants

HP Pascal nil

maxint

minint

true

false

HP FORTRAN 77 .TRUE .

. FALSE.

HP C None

HP C++ None

Numeric Constants

Integer constants can begin with 0 for octal, Ox or OX for hexadecimal, or Ob or
OB for binary. If followed immediately by 1 or L, they are forced to be of type
long. Likewise, u and U force the type to be uns igned. The suffix ul or UL
corresponds to unsigned long. If no suffix is used, the smallest type in which
the value will fit is used.

Floating-point constants must be of the form:

e

digits. digits : r: 1 digits r ~ l l ~ L j j L1J

For example, any of the following is in the correct form:

4-18 HP Symbolic Debugger Commands

1.0

5.9L

3.14e8

26.62D-31

The suffixes f and F cause the value to be evaluated as type float (4- byte
IEEE real). The suffixes 1 and L cause the value to be evaluated as type
long double (16-byte IEEE real). Unless a direct assignment is made, float
and long double types are converted to type double before the expression is
evaluated.

One or more leading digits is required to avoid confusion with . (dot). A
decimal point and one or more following digits is required to avoid confusion
for sonle command formats. If the exponent does not exactly fit the pattern
shown, it is not taken as part of the number, but as separate tokens. The d
and D exponent forms are allowed for compatibility with HP FORTRAN 77.
The 1 and L exponents forms are allowed for compatibility with HP Pascal.

In the absence of a suffix character, the constant is assumed to be of type
double (8-byte IEEE real).

Promotion of Operands

Expressions approximately follow the HP C language rules of promotion. In
other words, char, short, and int becOlne long, and float becomes double.
If either operand is a double, floating math is used. If either operand is
unsigned, unsigned math is used. Otherwise, normal (integer) math is used.
Results are then cast to proper destination types for assignments.

If a floating point number is used with an operator that does not normally
permit it, the number is cast to long and used that way. For example, the HP
C binary number - (bit invert) applied to the constant 3.14159 is the same as
-3.

Assignment

Note that = means assign in all languages but HP Pascal; to test for equality,
use .EQ. for HP FORTRAN 77 and == for HP C and HP C++.

HP Symbolic Debugger Commands 4-19

4

In HP Pascal, = is a comparison operator; use: = for assignments. For example,
suppose you invoke the debugger, then set $lang to Pascal:

p $lang = Pascal

To return to HP C, you must use the: = operator:

p $lang := C

POinters, Casts, and Composite Types

4 You can dereference any constant, variable, or expression result using the HP C
* operator. If the address is invalid, an error is given.

Type casting is allowed. For simple types, the syntax is identical to HP C. For
example:

(short) size
(double *) mass_ptr

These casts are limited to char, short, long, int, unsigned, float, double,
approximate combinations of these keywords, and single level pointer types.
Also supported are class, struct and union pointer type dereferences. For
example:

bat_ptr = &:bat
(struct fob) &bat
(struct fob) bat_ptr

Both of these casts treat bat as a struct of type fob during printing. Class,
structure, and union pointer casts can only include the keyword class, struct
or union, an appropriate tag, and an optional "*." The argument of the cast is
simply treated as an address.

Arrays

Whenever an array variable is referenced without giving all its subscripts, the
result is the address of the lowest element referenced. For example consider the
following declared arrays:

HP FORTRAN 77

HP Pascal

HP C

x(5,6,7)

x [1 .. 5,2 .. 6,3 .. 7J

x [5J [6J [7]

4-20 HP Symbolic Debugger Commands

Referencing it simply as x is the same as the following:

HP FORTRAN 77

HP Pascal

HP C

x(1,1,1)

x[1,2,3]

x

If a not-fully-qualified array reference appears on the left side of an assignment,
the value of the right-hand expression is stored into the element at the address
specified.

Entering Procedure Calls in an Expression

You can include calls to procedures in expressions. You can call any executable
procedure from the command line whether or not it was compiled with
debugger information. You can use the lp (list procedures) command to list
the de buggable procedures in the program.

l\!lember functions of C++ classes may be called using C++ syntax:

[[class] : :] proc(parameter list)

expr. [class: :] proc(parameter list)

eJ;pr-> [class: :]proc(parameter list)

C++ overloaded operators can only be specified by function names. For
example, if + is overloaded, a = b. operator+ (c) is allowed but not the
corresponding a = b + c.

The following command evaluates an expression that calls the procedure ref
and uses its return value:

p $xyz = $abc* (3 + ref (ghi - 1, j kl, IIHi Folks II))

HP Symbolic Debugger Commands 4-21

4

4

An argument list must follow each procedure call, even if it is empty (for
example, proc()). When a procedure is called, the following considerations
apply:

• The HP Symbolic Debugger has one active command line at a time. During
a command line procedure call, any breakpoints reached during execution
are treated as usual (by suspending execution as specified). If execution is
stopped in a called procedure, the remainder of the original command line is
discarded and you are informed of this .

• If you try to call a procedure when the child process is not active, then a
child process is started by the debugger. This will invalidate the contents
of the core file if one was specified on debugger invocation. This process is
similar to using the single-step command to initially activate a child process.

4-22 HP Symbolic Debugger Commands

Window Mode Commands

Window Mode Commands
\Vindow mode commands let you control what is displayed on the screen. The
window mode commands are:

• td (toggle disassembly)
• fr (floating point registers)
• tf (toggle float)
• gr (general registers)

• +r
• -r
• sr (special registers)
• ts (toggle screen)
• u (update)
• U (Update)
.w(window)

The source window displays source lines in a program. In disassembly mode,
the top five lines of the screen show the floating point, general or special
registers (the register window) followed by assembly language instructions (the
assembly window). In split-screen mode, the top part of the screen displays
source code followed by the corresponding assembly language instructions.

td (toggle disassembly)

{~:ggle disaSSemblY}

Toggles the source window between disassembly mode and source mode.
vVhen in disassenlbly mode, this command displays the assembly language
instructions, corresponding to the source code, below one of the sets of registers
(floating point, general, or special (for Series 600/700/800)).

\iVhen in disassembly mode, the single step command steps one machine
instruction at a time (rather than one source statement at a time).

The assembly language display of each instruction consists of: the source line
number, the address in hexadecimal, the address in the form of the nearest
label plus the offset from the label, and the actual assembly instruction
mnemonic and operands.

HP Symbolic Debugger Commands 4-23

4

Window Mode Commands

fr (floating point registers)

{:~oating point registers}

Display the floating point registers in the register window when the debugger is
in assembly (non-split-screen) mode.

On a Series 300 computer having multiple floating point co-processors, you
will be asked which set of registers you want to display. The floating-point

4 register sets supported are those for the MC68881/MC68882, HP 98635, and
HP 98248 floating-point co-processors. When the value of a register is changed
by a command (usually a step), that register is highlighted until after the next
command.

On Series 600/700/800 computers, these registers may be examined or modified
by using the debugger special variables $fO through $f15 ($fO through $f31
on PA-RISC 1.1 computers). Floating-point registers $fO through $f3 are
read-only registers.

tf (toggle float, Series 600/700/800 computers only)

{::ggle float}

Toggle the display of the numeric floating point registers in the register window
from single-precision to double-precision or vice-versa. The current mode
is displayed in the line dividing the register window from the disassembly
window as SGL or DBL. Numeric floating point registers are registers f4 through
f15 on PA-RISC 1.0 implementations, and f4 through f31 on PA-RISC 1.1
implementations.

In double-precision mode, each numeric floating point register is interpreted
as an 8-byte floating point quantity, and is simultaneously displayed in both
hexadecimal and double-precision decimal formats.

In single-precision mode, the left (high-order) half of each floating point
register is interpreted as a 4-byte floating point quantity, and is simultaneously
displayed as both hexadecimal and single-precision decimal formats. For
PA-RISC 1.1 implementations, the right half of each floating point register is
also displayed in single-precision format.

4-24 HP Symbolic Debugger Commands

Window Mode Commands

gr (general registers)

{::neral registers}
Display the general registers in the register window when the debugger is in
assembly (non-split-screen) mode. When the value of a register changes, that
register is highlighted until after the next command. General registers may
be lllodified by using debugger special variables (see the appendix "Special
Variables Used by the Symbolic Debugger"). When displaying the general
registers or the floating point registers, the line dividing the registers from the
assembly code also displays certain special processor registers. Some registers
are displayed as a string of letters, each letter representing a bit in the register.
A lowercase letter indicates that the corresponding bit is off, uppercase means
on.

+r and -r

The +r command scrolls the floating-point register display forward four
registers. The -r cornmand scrolls the floating-point register display backward
four registers. Note that you can press (Return) to repeat this command.

sr (special registers, Series 600/700/800 computers only)

{ :;eCial registers}
Display the special registers (Series 600/700/800 space and control registers)
in the register window when the debugger is in assembly (non-split-screen)
mode. When the value of a register changes, it is highlighted until after the
next command. The control registers cannot be modified.

HP Symbolic Debugger Commands 4-25

4

4

Window Mode Commands

ts (toggle screen)

{::ggle screen}
Toggles the source window between all source or assembly and split-screen
mode. In split-screen mode, the source window displays both source code
and corresponding assembly instructions. Single stepping occurs at either
the source statement or the assembly instruction level, depending on the
part of the split-screen in which you are single stepping. The stepping mode
is displayed in the line separating the source and assembly windows, and is
toggled with the td command.

u (update)

Updates the source and location windows to show the location where the user
program is suspended. This command is useful in an assertion. For example,
this command:

a {u}
will continuously update the screen to follow the execution of the program as it
proceeds.

U (Update)

{~Pdate }

Clears the screen of all data and redraws the screen. Use this command if the
screen gets corrupted by a system-wide announcement that overwrites your
seSSIon.

4-26 HP Symbolic Debugger Commands

Window Mode Commands

w (window)

{
w } . szze
window

If your terminal supports windowing (window mode), this command changes
the height of the source window to the number of lines that you specify. By
default the source window will occupy about two thirds of the total window or
terminal size. Changing the size of the source window also changes the size of
the command window.

If your terminal does not support windowing or you have forced line mode by
including the - L option when invoking the debugger, this command prints
the specified number of lines surrounding the current line. If no number is
specified, the last number used with the w (window) command is used again.
You can press (Return) to repeat this command. The next specified number of
lines will be displayed.

HP Symbolic Debugger Commands 4-27

4

4

File Viewing Commands

The file viewing commands let you view program source code. The file viewing
commands are:

• + · -
• v (view) · /
• ?
• n (next)
• N (Next)
• D (Directory)
• Id (list directories)
• If (list files)
• L (Location)
• va (view address)

4-28 HP Symbolic Debugger Commands

File Viewing Commands

+

+ [number]

Moves the viewing location forward in the current file the specified number of
lines (or the specified number of instructions in disassembly mode). If you do
not enter a number, the next line (or instruction) becomes the current line (or
instruction) .

You can press a (Return) to repeat this command. If your terminal supports
windowing, a new group of lines are displayed. If it does not support
windowing, or you have forced line mode by including the -L option when
invoking the debugger, only the new current line and its line number are
displayed.

- [number]

Moves the specified number of lines (or the specified number of instructions in
disassembly mode) backward in the current file and updates the windows. The
default is one line (or instruction) before the current line (or instruction).

You can press (Return) to repeat this command. If your terminal supports
windowing, a new group of lines (or instructions) are displayed. If it does not
support windowing, or you have forced line mode by including the -L option
when invoking the debugger, only the new current line and its line number are
displayed.

HP Symbolic Debugger Commands 4-29

4

4

File Viewing Commands

v (view)

{ v. } [location]
Vl.ew

Displays one source window forward from the current source window if no
location is given. One line from the previous window is preserved for context.
If your terminal does not support windowing, or if you have forced line mode
by including the -L option when invoking the debugger, only the new source
line is displayed.

A location can be a particular line, procedure, or any text file, whether used in
the program or not. Using the location modifier causes the specified location
to become the current location, and the source at the specified location is
then displayed in the source window. The source location window is adjusted
accordingly.

If a procedure (proc) name is specified for the location, the procedure's first
executable line becomes the current line.

You can press [Return) to repeat this command. If a location was given,
subsequent (Return)'S move forward from that point.

Note In order for the debugger to associate a source file with the
corresponding code when the location includes a filename, the
file name must be a basename only. By default, the debugger
uses the same path names for finding source files as were
used during compilation. These path names may be either
relative or absolute. If the source files are not accessible via
the compile-time path names, use the commands described in
the section "Source File Mapping Commands" found in this
chapter to provide correct paths. Alternately, the -d option
(when invoking the debugger) or the D (Directory) command
(see D under "File Viewing Commands") can be used.

Any text file can be examined with the view command, and
the filename given can be an absolute or relative path name,
but the debugger will not recognize these files as source for the
program.

4-30 HP Symbolic Debugger Commands

File Viewing Commands

/

/ [string]

Searches forward in the file for the specified string. Searches wrap around the
end of the file. If you do not enter a string, the last search string you entered is
used again. The string must be literal; wild cards are not supported.

You can select case sensitivity for string searches with the tc (toggle case)
command. Initially, searches are case insensitive.

?

? [string]

Searches backward in the current file for the specified string. Searches wrap
around the beginning of the file. If you do not enter a string, the last search
string you entered is used again. The string must be literal; wild cards are not
supported.

You can select case sensitivity for string searches with the tc (toggle case)
command. Initially, searches are case insensitive.

n (next)

Repeats the previous search (/ or ?) command.

HP Symbolic Debugger Commands 4·31

4

4

File Viewing Commands

N (Next)

Repeats the previous search (/ or ?) command, searching in the opposite
direction.

D (D irectory)

{ D } d" II zrll
Directory

Adds the directory that you specify to the end of the list of directory search
paths for source files. You can add more than one directory, but only one can
be added at a time. Directories are searched in the order that they are added.
When searching for the source file in an alternate directory altdir which has
been specified by the D (Directory) command (where file itself is made up of
a directory and base name: dirname/ base name), the debugger first attempts
to open altdir / dirname/ basename. If this fails, the debugger then attempts to
open altdir / basename.

The D command is equivalent to the command-line option -d.

For more information on source file mapping, read the section "Source File
Mapping Commands" found in this chapter.

4·32 HP Symbolic Debugger Commands

File Viewing Commands

Id (list directories)

{ ~~st directories}

Lists all the alternate directories that are searched when the debugger tries to
locate the source files. The list order is the same as the search order.

If (list files)

{ I~ . } [string] [@shared-library]
Ilst flIes

Lists all source files containing executable statements that were compiled (with
the -g option) to build the program (a. out). Code address ranges are shown
for each file. Only files containing debuggable executable code are shown. If a
string is specified, only those files beginning with this string are listed.

This command also lists any include files containing executable code with their
code addresses. A file may appear several times if it contains include files. An
example of the output is:

0: /usr/project/src/tree1.c
1: /usr/gIobal/src/treeglobs.c
2: /usr/project/src/tree2.c

Ox00001834 to Ox00002524
Ox00002530 to Ox00003210
Ox00003344 to Ox00004002

Files which belong to shared libraries which are currently not active (not
mapped into the process) are shown as:

3: /usr/project/lib/libxyz/mod.c (not mapped)

HP Symbolic Debugger Commands 4-33

4

4

File Viewing Commands

L (Location)

{~ocation }

Displays in the command window the current file, procedure, line number and
the source text for the current viewing location. When used in a breakpoint
or assertion command list, the current point of execution is displayed. This
command allows you to determine where you are in the program and is useful
when included in an assertion or breakpoint command list. For example:

>L
doproc.c: eval_q: 8: if (qp != NULL) {

You cannot press (Return) to repeat this command.

va (view address)

{
va } address
view address

Displays in the disassembly window the assembly code at the specified address,
which can be an absolute address or symbolic code label with an optional offset
(for example, _start + Ox20). Symbolic addresses within shared libraries (see
the section "Shared Libraries Symbols" found in Chapter 6) can be referenced
using the syntax label@shared_library_name (for example, _printf@libc). This
command is used in disassembly mode only.

Note that if the specified address is not a valid code address, the assembly code
at the address closest to the given address will be displayed instead.

(Series 600/700/800 only) For programs that are linked with shared libraries,
and for shared libraries themselves, a code label may appear twice in the linker
symbol table. In such cases, the 11 (list labels) command will display both
a Code/Univ (actual entry point) and a Entry/Univ (stub) symbol with the
same name, but differing addresses. A symbol used in the address provided to
the va command will always be associated with the actual entry point by that
name, rather than the stub. To view a named stub, the list labels command
must first be used to locate the actual address of the stub, and that numeric
address provided to the va command.

4-34 HP SymbOlic Debugger Commands

Source Directory Mapping Commands

Source Directory Mapping Commands
The complete path names of source files listed on a compiler command line
are stored without change in the symbolic-debug information for the resulting
program. The debugger will attempt to locate the sources using that entire
path. The path-map facility provides an alternate method for locating these
source files. The source file mapping commands are:

• apm (add path map)

• lpm (list path map)

• dpm (delete path map)

If all maps are exhausted and the file has not yet been located, the alternate
directories (as specified with D or -d) are then used (as in previous releases of
the debugger).

apm (add path map)

{
apm } { old_path} [new_path]
add path map II II

Allows you to modify the path the debugger will use to locate a set of source
files (see below).

Ipm (list path map)

{ ~~:t path map}

Lists the path maps in the order in which they will be searched.

dpm (remove path map)

{ :~~ete path map } [~ 1
Removes the latest path map entered if used with no arguments. If a positive
integer n is given, the nth path map will be removed. If a * is given, all the
path maps will be removed.

HP Symbolic Debugger Commands 4-35

4

4

Data Viewing and Modification Commands
Data viewing and modification commands allow you to view program data in
a variety of formats and change the values of variables. The data viewing and
modification commands are:

• 1 (list)
• lc (list common)
• lcl (list classes)
• lct (list class templates)
• 1ft (list function templates)
• Ig (list globals)
• 11 (list labels)
• 1m (list macros)
• 10 (list overload)
• Ip (list procedures)
• lr (list registers)
• Is (list specials)
• lsI (list shared libraries)
• 1 tf (list template functions)
• Ix (list exceptions)
• mm (memory map)
• p (print)
• pq (print quiet)

I (list)

{I} { [proc [: depth]] }
list [class] : : [proc[: depth]]

Lists all parameters and local variables for the current procedure. You
can optionally specify any active procedure and its depth on the stack. In
interpreting variable references where depth is not explicitly specified, the
debugger will try to use the special variable $depth as the default value for the
depth. If the required procedure (either explicitly specified or taken by default
from the current viewing location) is at this depth on the stack, the debugger
looks for the variable in that stack frame. If the required procedure is not the
procedure at that stack depth, the debugger looks for the most recent instance
of the required procedure by searching down from the top of the stack. If the

4-36 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

procedure is found, the debugger looks for the variable in that stack frame. If
an invocation of the procedure other than the default is desired, then a depth
must be specified. The follo\ving illustrates the use of this command.

If the current stack trace (generated with the command t 5) is:

0 groucho([marx. c: 23J
1 harpo() [marx. c: 70J
2 chico () [marx. c : 55J
3 harpo() [marx. c: 73J
4 maine) [marx. c : 16J

and groucho is the procedure currently viewed (and where execution is
currently suspended), then:

1

1 harpo

1 harpo:3

V 2

1 harpo

Lists the local variables and parameters of groucho.

Lists the local variables and parameters of harpo at level 1 on
the stack.

Lists the local variables and parameters of harpo at level 3 on
the stack. Alternately executing:

>V 3
>1

will also list the local variables and parameter of harpo at level
3 on the stack.

lVlakes chico the current procedure and 2 the current stack
depth.

Lists parameters and variables for harpo at level 1 on the
stack.

The \n (normal) format is used to display the procedures, parameters, and
local data except for arrays and pointers, which are displayed as addresses.

The second form of the argument to this command allows a class to be
specified in qualifying a C++ function.

HP Symbolic Debugger Commands 4-37

4

4

Data Viewing and Modification Commands

Ic (list common)

{
Ic } [.] strzng
list common

U sed when debugging an HP FORTRAN 77 program, this command displays
HP FORTRAN 77 common blocks and their associated variables (this
command is only supported on Series 600/700/800 computers). If a string is
specified, only common blocks whose names begin with that string are printed;
otherwise, all common blocks visible from within the current subroutine or
function are printed.

Sample output is:

>lc
COMMON /COM1/

BR4 = 0
INTl = 0
BR8 = 0
BI4 = -2097152000
BI2 = -32000
BCX8 = 0
BCl = '\000'
BL4 = .FALSE.

4-38 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Icl (list classes)

{ lcl } [st,ing] [@sha,ed-lib,a,y]
list classes

Lists all classes (regular classes and tenlplates) known to the debugger. The
optional st,ing causes only classes whose names start with that st,ing to be
listed.

If debuggable shared-libraries are present, the lcl (list classes) command
will show (matching) classes within each library. If only @sha,ed-lib,a,y is 4
provided, all classes within the named library are shown.

Ict (list class templates)

{
lct }
list class templates

[stling] [@sha,ed-lib,a,y]

Lists all class templates known to the debugger. The optional st,ing causes
only templates whose names start with that st,ing to be listed.

If debuggable shared-libraries are present, the lct (list class templates)
command will show (matching) class templates within each library. If only
@sha,ed-lib,a,y is provided, all class templates within the named library are
shown.

1ft (list function templates)

{
1ft }
list function templates

[stling] [@sha,ed-lib,a,y]

Lists all function templates known to the debugger. The optional st,ing causes
only templates whose names start with that st,ing to be listed.

If debuggable shared libraries are present, the 1ft (list function templates)
cOlnmand will show (lnatching) function templates within each library. If only
@sha,ed-lib,a,y is provided, all function templates within the named library are
shown.

HP Symbolic Debugger Commands 4-39

Data Viewing and Modification Commands

Ig (list globals)

{ l~ } [string] [@shared-library]
11st globals

Lists all global variables and their values. If a string is specified, only global
variables whose names begin with this string are listed.

If debuggable shared libraries are present, the 19 (list globals) command
will show (matching) globals within each library. If only @shared-library is

4 provided, all globals within the named library are shown.

II (list labels)

{ l~ } [string] [@shared-library]
11st labels

Lists all external labels and program entry points known to the linker, as well
as their type (i.e., code and data). If shared libraries are present, the name of
the library containing the symbol is also shown. If a string is specified, only
symbolic addresses with this prefix are used. If string ends in @shared_library,
only those labels within shared_library are shown. For example, executing:

11 @libm

shows only and all of those symbols in 1 ibm . sl.

(Series 300/400 only) In a program linked with shared libraries, many code
symbols will appear more than once with the same symbol types. For example,
in a program that calls printf(3C), the symbol printf will appear at least
twice:

• once in the program and each library that calls printf, where the symbol
denotes the location of the PLT (Procedure Linkage Table) entry for printf

_printf Ox000010a8 Code (2ary) a.out

• once in the library that defines the symbol.

_printf Ox80057678 Code (2ary) libc

(Series 600/700/800 only) In programs linked with shared libraries, many code
symbols will appear more than once, with the same or different symbol types.

4-40 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

For example, in a program that calls p rintj(3 C) , the symbol printf may
appear as 3 different symbol-types:

printf
printf
printf

Ox00001c38
Ox800958cc
Ox80095904

Stub/Extern
Entry-stub/Univ
Code/Univ

where the symbol types denote the following:

Stub jExtern shared-library import stub

Entry-stubjUniv shared-library export stub

CodejUniv actual entry point

a.out
libc
libc

An import stub will appear once in each shared library that calls printf, as
well as in the program itself. The export stub and entry point will each appear
once in the library that defines the procedure (for example, libc).

Referencing a code label in a ba (breakpoint address) or va (view address)
will always default to the actual entry point (Code/Univ) by that name, if it
exists.

1m (list macros)

{
1m }[.] stl'lng
list macros

Displays all user-defined macros and their definitions. If a string is specified,
only macros whose names begin with this string are listed.

Sample output is:

>lm
pheadtuti ==> p flavor:list->head.tuttifrutti
unS ==> bu\t {}; c
Overall macros state: ACTIVE

HP Symbolic Debugger Commands 4-41

4

Data Viewing and Modification Commands

10 (list overload)

{ l~ } [[class] : :] [string] [@shared-library]
Ilst overload

List overloaded C++ functions. If string is specified, only functions with the
same initial characters are listed. The search may also be qualified by a class
name.

If debuggable shared libraries are present, the 10 (list overload) command
4 will show (matching) overloaded functions within each library. If only

@shared-library is provided, all overloaded function within the named library
are shown.

Ip (list procedures)

{ l~ } [string] [@shared-library]
Ilst procedures

Lists all procedure names and their aliases as well as their starting and ending
addresses, and their starting and ending source line numbers. If a string is
specified, only procedures whose names begin with this string are listed. For
C++, the list may be restricted to particular class member functions with:

Ip [[classJ : : [stringJ J

Sample output is:

0: main OxOOOO0868 to OxOOOO089c [C.c: 5 - 7J
0: _MAIN_
1 : proc1 OxOOOO08a4 to OxOOOO08b4 [C.c: 11 - 12J
2: proc2 OxOOOO08bc to OxOOOO08cc [C.c: 16 - 17J
3: _end_ OxOOO019b8 to OxOOO019cc [end.c: 95 - 96J

4-42 HP Symbolic Debugger Commands

Note

Data Viewing and Modification Commands

The procedure name _MAIN_ is used as the alias name for the
main program in all supported languages. Do not use it for any
debuggable procedures.

If debuggable shared libraries are present, the Ip (list procedures) command
will show (matching) procedures within each library. If only @shared-library
is provided, all procedures within the named library are shown. Procedures
that are in shared libraries that are currently not active (not mapped into the
process) are shown as:

4: UNMAPPED [libxyz.c: 104 - 142]

Ir (list registers)

{
lr } [.] strzng
list registers

Lists all hardware registers and their contents. This command displays all
general and floating point registers, as well as the program counter, stack
pointer registers, and other registers. If a string is specified, only registers
beginning with this string are listed (the $ is significant). All registers except
Series 600/700/800 floating-point registers are printed in hexadecimal. A list of
registers available on the supported architectures can be found in the appendix
"Registers Displayed by the HP Symbolic Debugger in Disassembly Mode."

HP Symbolic Debugger Commands 4-43

4

4

Data Viewing and Modification Commands

Is (list specials)

{
ls } [.] strzng
list specials

Lists all special variables and their values. Registers are not listed. If a string
is specified, only those special variables whose names begin with this string are
listed (the $ is significant).

Sample output is:

$lang = FORTRAN
$depth = 0
$line = 49
$signal = 0
$malloc = 43008
$print = ascii
$cplusplus = 0
$step = 100
$long = 0
$short = 0
$result = 0

You can also list special variables defined by usage. For example:

p $var = 10

defines the variable $var to be equal to 10. The ls (list specials) command
will also display $var and its current value.

4-44 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

lsi (list shared libraries)

{~~~t shared libraries }

Lists all shared libraries known to the debugger, including those found as
dependents to the program or other shared libraries, as well as those explicitly
given to the debugger by way of the -1 invocation option.

For each library, the command results indicate whether the library is active
(currently mapped into the process), and whether symbolic debug information 4
is available and/or loaded into the debugger.

Sample output is:

Name Mapped SymDebug Path

myprog Yes Yes myprog
libdld Yes No /usr/lib/libdld.sl
lib1 Yes Not loaded . /lib1. sl
libc Yes No /lib/libc.sl
lib2 Yes Not loaded lib2.s1
lib3 No Not loaded lib3.s1

Itf (list template functions)

{
Itf }
list template functions

[string] [@shared-library]

Lists all template functions known to the debugger. The optional string causes
only template functions whose names start with that string to be listed.

If debuggable shared libraries are present, the 1 tf (list template functions)
command will show (matching) function templates within each library. If only
@shared-library is provided, all function templates within the named library are
shown.

HP Symbolic Debugger Commands 4-45

4

Data Viewing and Modification Commands

Ix (list exceptions)

{~~st exceptions }

Lists the current state of the throw and catch toggles and command-list
associated with them.

mm (memory map)

{
mm }[.] strzng
memory map

Shows a memory-map of all currently loaded (mapped) shared-libraries and the
main program. If string is present, only the memory-map for the named library
is listed. The memory-map provides the following information for each loaded
region:

• The basename of the library (as used in symbolic names; for example, libc).

• The upper and lower bounds of both text and data addresses.

• The handle (see shLload(3X)).

• The complete path name.

• Information on whether the region is writable (debuggable) or read-only
(shared).

4-46 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

• Infornlation on whether symbolic debug ("symdebug") information is present
in the library, and whether it is currently available to the debugger:

symdebug: Available
symdebug: Available (but not loaded)
symdebug: Not available

where:

Available Means that (at least part of) the library was
compiled with -g, and that references to
symbols in the library can be made without
qualification.

Available (but not loaded) lVleans that an explicit reference (for
example, symbol@library) must be made
once to force loading of the symbolic-debug
information into the debugger.

Not available Indicates that no part of the library was
compiled with -g.

Note that libraries explicitly loaded with shLload(3) are visible to the debugger
only until they are unloaded.

p (print)

expr [{ ; } format 1
{ p. } class::

prInt

[: 1 [[\]format 1

Displays and optionally modifies program data. You can choose to display data
in one of the formats shown in tables "Data Viewing Formats" and "Shorthand
Notation for Size." The p (print) command is also used to evaluate arbitrary
expressions involving constants and/or program data.

HP Symbolic Debugger Commands 4-47

4

Data Viewing and Modification Commands

Displaying Data

The following form of the print command:

p class::

is used to print all the static data members of a class.

A format has the syntax:

[count]formchar [size]

4 The format specifier formchar, which is required, specifies the actual format in
which you choose to display the data (see the table "Data Viewing Formats"
(Table 4-4) for a list of valid formchar's). The count option is the number
of times to apply the format. The size option is the number of bytes that
are formatted for each data item, and overrides the default size for the given
format. The count must be a decimal, octal, or hexadecimal number. The size
must be a decimal number or one of the letters b, s, 1, D, or L (see the table
"Shorthand Notation for Size" in this chapter). For example:

>p abc\4x2

prints four two-byte numbers in hexadecimal starting at the address designated
by the variable abc. If abc is an array, you need to specify a subscript if you
want to see the contents of consecutive array elements. For example:

>p abc [5J \4n

will display four elements of array abc, starting with element 5, in normal
(type-dependent) format.

Use the \format option to display the value of the expression in a specific
format. For example:

>print abc \x

prints the contents of abc in hexadecimal. If a format is not given, the
expression is displayed in a format consistent with the type of the expression.
For example:

>print (abc*3/25)+2

prints the results of evaluating the given expression (using the current value of
abc) in decimal format.

4-48 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Use the ?format option to print the address of the evaluated expression in the
selected format. For example:

>print abc?o

prints the address of abc in octal. If the expression is not a named data itenl, ?
is equivalent to \.

You can display the contents of absolute addresses with the p (print)
comlnand when you are debugging a progranl with no debugger information.
For example:

>p *OxC0000348

or

>p *($sp-36)\x

or

>p *_errno@libc

Note that using a symbolic address to print a value (_errno in this example)
requires a dereference operator (*).

p+ prints the next element. Based on the size of the last item displayed, p+
increments the current data address by the size of the previous format and
then displays the contents of memory starting at the new address, using the
format if it is supplied, or the previous format, if not supplied. This command
is useful for displaying successive elements of an array. The initial p (print)
command can determine the array's format by its type.

p- prints the previous elernent. Based on the size of the last item displayed, p­
decrements the current data address by the size of the previous format and
then displays the contents of memory starting at the new address, using the
format if it is supplied, or the previous format, if not supplied.

Note p- something (or p+ something) is ambiguous. It could mean
print the negative of something or it could mean print the next
location with format something. The debugger will assume that
you meant the latter, so if you want the former, use parentheses
accordingly: p (- something).

HP Symbolic Debugger Commands 4-49

4

4

Data Viewing and Modification Commands

Modifying Data

The p (print) command is also used to modify the value of a variable.
Modification of variables is done by using the assignment operator in the
expression (= in HP C, HP FORTRAN 77, and HP C++, or := in HP Pascal).
For example:

>p fob=7

In the case of an assignment, the debugger will also show the name of the
variable being modified (or the address used if the expression is not a simple
name), followed by the assigned value.

Here are some special considerations that apply to the p (print) command.

1. When you try to display a variable which is an HP FORTRAN 77 format
label, an HP Pascal file-of-text, or an HP Pascal set, with no display
format or with normal format (\n), the value is shown as {format-label},
{file-of-text}, or {set}, respectively. You can use other formats, such as
\x, to display the contents of such variables.

2. When a compiler does not know array dimensions, such as for some
HP FORTRAN 77 and HP C array parameters, it uses 0 :MAXINT or
1 :MAXINT as appropriate. The \t format shows such cases with [J (no
bounds specified), and subscripts from 0 (or 1) to MAXINT are allowed in
expreSSIons.

4-50 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

:3. Some variables are indirect, so a child process must be active in order for
the debugger to know their addresses. When there is no child process, the
address of any such variable is shown as Oxfffffffe.

The table "Data Viewing Formats" lists the possible data formats and
corresponding formchars. Note that there is usually a difference between a
lowercase and uppercase character.

For example, the d and D formats print in short and long decimal:

d Displays 16 bits
D Displays 32 bits

Short and long form apply only to the following formats:

Short Long

b B
d D
e E
f F
g G
0 0
u U
x X
z Z

Many of the the data formats have a default size if the size is not given. For
example, X has a default size of four bytes. There are also some shorthand
notations for size. These shorthand notations are shown in the table
"Shorthand Notation for Size." Shorthand notations can be appended to
formchar instead of a numeric size. For example, the format:

\xb

prints one byte in hexadecimal.

HP Symbolic Debugger Commands 4-51

4

4

Data Viewing and Modification Commands

There is also a default for the format, if the format is not specified. For
example: D is the default for a long integer variable or field, X is the default for
a pointer or array variable or field, and S is the default for a structure variable.
The n format specifies the default. In general, if the expression describes a
named data object, the debugger will display its value in a manner consistent
with the object's declared type, even if it is a structured type. If the debugger
cannot determine the type of an expression or data object, X is used.

The following example prints a dynamically allocated C structure that is local
to procedure flavor.

>p *flavor:list->head
Ox68023004 struct {

}

chocolate = 1597845365;
tuttifrutti = 2.21414e-10;

4-52 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Table 4·4. Data Viewing Formats

Formchar Description

a Prints a string using the expression as the address of the first byte.

(biB) Prints a byte in decimal.

c Prints a character.

C Prints a wide-character. Attempts conversion to the external
character-set (as determined by the locale category LC_CTYPE) before
printing (see multibyte(3C)).

4

(diD) Prints in decimal as an integer or long integer, respectively.

(eIE) Prints in e floating point notation as a float or double, respectively. (4
bytes, 8 bytes)

(fIF) Prints in f floating point notation as a float or double, respectively.

(giG) Prints in g floating point notation as a float or double, respectively.

i Prints a disassembled machine instruction.

k This is identical to the S format.

K This is identical to the S format except for C++ class and struct
objects where base class and struct data will also be displayed.

n Prints in normal (default) format, based on the type. (if known)

(010) Prints in octal as an integer or long integer, respectively.

p Prints the name of the procedure containing the given address.

r Prints the template of an object (C++).

R Prints the template of an object with base classes displayed (C++).

s Prints a string using the expression as the address of a pointer to the
first byte. In HP C, this is the same as specifying *expr\a.

HP Symbolic Debugger Commands 4·53

Data Viewing and Modification Commands

Table 4-4. Data Viewing Formats (continued)

Formchar Description

S Prints a formatted dump of structures, fields and their values. The
expression must be the address of a structure, not the address of a
pointer to a structure.

t Shows the type of the expression (expr), usually a variable or procedure
name.

4 T This is identical to the t format except for C++ class and struct
objects where base class and struct type information will also be
displayed.

(uIU) Prints the expression (expr) in unsigned decimal as an integer or long
integer. If the quantity is known to be a full word, u gives the same
result as U.

1iiT Prints a wide character string.

TN Prints address of wide character string.

(xiX) Prints in short and long hexadecimal, respectively. If the quantity is
known to be a full word, x gives the same result as X.

(zlz) Prints in short and long binary, respectively.

Table 4-5. Shorthand Notation for Size

Mnemonic Actual Size

b 1 byte (8 bits)

s 2 bytes (16 bits)

1 4 bytes (32 bits)

D 8 bytes (64 bits) can only be used with floating-point formats

L 16 bytes (128 bits) can only be used with floating-point formats

4-54 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

pq (print quiet)

{
pq
print quiet

expr [{ ; } for-mat 1
} class::

[: 1 [[\]format]

Does not print anything unless an error occurs. Otherwise, the action is
the same as for p. The pq command can be used to do assignments without 4
causing output. This is useful in breakpoint and assertion command lists. For
example:

a if $x != x {pq $y = $y + 1; pq $x = x}

counts in $y how many time the program variable x changes value. $x and $y
are special variables. $y should be set to zero (p $y = 0) before running with
this assertion. The use of pq instead of p keeps the assertion from printing the
values of $x and $y after each change.

HP Symbolic Debugger Commands 4·55

Stack Viewing Commands
Stack viewing commands trace the stack of a program. The stack viewing
commands are:

• t (trace)

• T (Trace)

• V (View)

4 • up

• down

• top

• tst (toggle stubs)

The "Stack Depth" figure illustrates the stack depth of a program and shows
that A called B, B called C, C called D, D called E, E called F, and program
execution is currently suspended in F. The procedure at which the program is
currently stopped is always at depth zero.

Current stack
pointer

($sp)

--+ F

E

D

C

B

A

Execution stack

Figure 4-1. Stack Depth

4-56 HP Symbolic Debugger Commands

o Depth

2

3

4

5

Stack Viewing Commands

To make it easier to examine local variables of procedures not at the top
(depth 0) of the stack, it is possible to set a stack depth to be used by default
for all name references. In interpreting variable references where depth is not
explicitly specified, the debugger will try to use the special variable $depth
as the default value for the depth. If the required procedure (either explicitly
specified or taken by default from the current viewing location) is at this depth
on the stack, the debugger looks for the variable in that stack frame. If the
required procedure is not the procedure at that stack depth, the debugger looks
for the most recent instance of the required procedure by searching down from
the top of the stack. If the procedure is found, the debugger looks for the 4
variable in that stack frame.

N ate that the stack depth is reset to 0 (the top of the stack) by the following
commands: r, R, c, C, s, S, g and k.

t (trace)

{ t } [depth]
trace

Prints a stack trace. You can optionally specify a depth. The default depth is
20 levels. If an optional depth is supplied, only the procedures up to this depth
in the stack are displayed. For each procedure in the stack trace, the following
is displayed:

• Stack depth

• Name of procedure at that depth

• Name of procedure parameters and their values (printed in normal (\n)
format). For procedures that are not compiled with the -g option, xdb
displays the name of the procedure, and in parentheses, a best guess at the
procedure parameters. For Series 300/400 computers, it is five integers. For
Series 600/700/800 computers, it is the first four words of the parameter
"spill" area. Note that the procedure might not have "spilled" the four
argument registers (the values might still be in the argument registers, or
might have been moved to some other registers), and therefore the values
printed by xdb are not guaranteed to be the correct values of the first four
words of the procedure's argument list.

HP Symbolic Debugger Commands 4·57

4

Stack Viewing Commands

• Source file and line number where it is suspended (depth 0) or where a call
to the next procedure (at the next lowest depth) occurred.

The following example is a example of a trace.

>t
o icecream (i = 7) [ice.c: 8J
1 flavor (year = 1988) [flavors. c: 19J
2 main () [main.c: 59J

All arrays, structures, and pointers are shown as addresses. Only the first word
of a structure is shown.

(Series 600/700/800) The appearance of stack traces will differ depending on
the current state of the stubs toggle (see the tst command). If the toggle is
"on", any stub that has a return path will be shown as a separate stack frame:

o func1@liblib1 (param = Ox7af55070) [sl_lib1. c: 41]
1 func1@liblib1 + Ox00000008 (hp-ux export stub)
2 main (argc = 1, argv = Ox7b033590) [sl_main.c: 153J

If the toggle is "off", stubs are not shown:

o func1@liblib1 (param = Ox7af55070)
1 main Cargc = 1, argv = Ox7b033590)

[sl_lib1. c: 41J
[sl_main.c: 153J

If the current location (level 0) is in a stub, it will be shown regardless of the
tst toggle.

4-58 HP Symbolic Debugger Commands

Stack Viewing Commands

T (Trace)

{ T } [depth]
Trace

Prints a stack trace with local variables. You can optionally specify a depth.
The default depth is 20 levels. If an optional depth is supplied, only the
procedures up to this depth in the stack are displayed. For each procedure in
the stack trace, the following is displayed:

• Stack depth

• Name of procedure at that depth

• Name of procedure parameters and their values (printed in normal (\n)
format)

• All local variables and their values (printed in normal (\n) format)

• Source file and line number where execution is suspended (depth 0) or where
a call to the next procedure (at the next lowest depth) occurred.

All arrays, structures, and pointers are shown as addresses. Only the first word
of a structure is shown.

The following example is an example of a Trace.

>T
o icecream (i = 7)

c
[ice. c: 8J

= 00000000
1 flavor (year

harpo
list

= 1988) [flavors.c: 19J

2 main ()
i
j
k

= 1995
= Ox680235bc

[main. c: 59J
= 3
= 2987
=

icecream =
1988
OxOOOOOOOO
Ox6802377e buff =

HP Symbolic Debugger Commands 4·59

4

Stack Viewing Commands

V (View)

{~ieW } [depth 1

Displays the text for the procedure at the depth on the program stack that you
specify. If you do not enter a depth, the current active procedure is used. This
command is normally used to reset the current viewing location to the current
point of suspension after it has been moved elsewhere in the program.

4 If your terminal supports windowing, the new lines are displayed in the
window. Pressing (Return) lets you view successive windows. If your terminal
does not support windowing, or if you have forced line mode by including the
- L option when invoking the debugger, the current line (including its line
number and description) is displayed. Pressing (Return) lets you view the next
line in sequence.

Note that you can query the stack depth by printing the special variable
$depth. If you set the $depth variable directly (p $depth = n), this will set the
local context to the specified depth but it will not update the source window.

up

up [n]
Moves up n (default one) levels toward the top of the stack. The default value
of n is 1. This subtracts n from $depth (see the section "Special Variables"
found in this chapter). The display is updated to view the procedure at the
new level. Successive carriage-returns repeat with an offset of 1.

down

down [n]
Moves down n (default one) levels toward the bottom of the stack. The default
value of n is 1. This adds n to $depth (see the section "Special Variables"
found in this chapter). The display is updated to view the procedure at the
new level. Successive carriage-returns repeat with an offset of 1.

4-60 HP Symbolic Debugger Commands

Stack Viewing Commands

top

top

Moves to the top of the stack. It is shorthand for the debugger command V
0, which moves you to the top of the stade $depth (see the section "Special
Variables" found in this chapter) is set to 0 and the display is updated to view
the procedure where the program is currently stopped.

tst (toggle stubs) (Series 600/700/800 computers only)

{::;gle stUbS}

Toggles the visibility of inter-procedural stubs as independent contexts (stack
frames) in a calling sequence. The tst command also affects the appearance
of stack traces generated with the t (trace) and T (Trace) cOlnmands. It also
affects the depth modifier to various commands (for example, break uplevel),
and the current value of $depth. The default is "off".

If the toggle is off, stubs are not shown in stack traces. This is especially
helpful in programs linked with shared libraries, as stubs appear between each
procedure call to/from a shared library.

Here is an example with the tst toggle on, indicating that stubs should be
visible. An eXpoTt stub is visible between calls into a shared library. If you
execute the following comnland \'lith stubs toggled on:

>t

the results displayed are similar to this:

o printf@libc + Ox00000004 (Ox14, Ox7b033720, Ox7b0335bc, Ox1)
1 printf@libc + Ox00000008 (hp-ux export stub)
2 func1@liblib1 (param = Ox7af55070) [sl_lib1.c: 44J
3 func1@liblib1 + Ox00000008 (hp-ux export stub)
4 func2@liblib2 (param = Ox400012bc) [sl_lib2.c: 33J
5 func2@liblib2 + Ox00000008 (hp-ux export stub)
6 main (argc = 1, argv = Ox7b0335b4) [sl_main.c: 153J

HP Symbolic Debugger Commands 4-61

4

Stack Viewing Commands

With the toggle off, stubs are not shown, and the calling relationships on the
stack are much more understandable. If you execute the following command
with stubs toggled off:

>t

the results displayed are similar to this:

o printf@libc + Ox00000004 (Ox14, Ox7b033720, Ox7b0335bc, Ox1)
1 func1@liblib1 (param = Ox7af55070) [sl_lib1. c: 44J

4 2 func2@liblib2 (param = Ox400012bc) [sl_lib2. c: 33J
3 main (argc = 1, argv = Ox7b0335b4) [sl_main.c: 153J

Since stubs are inserted by the PA-RISe linker to facilitate shared-library calls
and to otherwise preserve calling interfaces between modules, they can usually
be ignored when you are debugging at the source level. For this reason, the
default is "off."

Note that if the current location (level 0) is in a stub, it will be shown
regardless of the state of the tst toggle.

The current value of $depth, if non-zero, will be reset to its equivalent
(with/without stubs) by the tst command. You cannot toggle stubs off if
$depth is currently set (such as with the V command) to a stub.

4-62 HP Symbolic Debugger Commands

Status Viewing Command

Status Viewing Command
The status viewing commands display the state of the debugger and the
program being debugged. This includes various list commands. Refer to the
section on Data Viewing and Modification for further information about list
commands. The other major status viewing command is:

• I (Inquire)

I (Inquire)

{ ~nqUire}
Prints the current status of the debugger. The output contains information
such as the version number of the debugger, program name, number of source
files and procedures, process-ID of the child process, number of breakpoints,
record and playback information and so on. A sample output is displayed:

Version HP9245X-02A A.09.00 HP SYMBOLIC DEBUGGER (XDB)
Program IItree ll

Core File None
Procedures 10
Mapped Images 3
Child process None
Breakpoints 4 (Active)
Assertions 3 (Suspended)
Macros 9 (Active)
Stubs Visible No
Recording Suspended
Record file None
Record-all Active
Record-all file .. mysession
Playback file None
Searches NOT case sensitive
Address format 1I%#lx"
Bytes malloc'd ... 7168
Run arguments 1111

HP Symbolic Debugger Commands 4-63

4

Job Control Commands
The job control commands let you control execution of the program. The
parent (HP Symbolic Debugger) and child (object file) processes take turns
running. The debugger is only active and able to execute commands while the
child process is stopped due to encountering a signal or a breakpoint, or by
terminating.

The job control commands are:

4 • r (run)
• R (Run)
• c (continue)
• C (Continue)
• g (goto)
• k (kill)
• s (step)
• S (Step)

Executing any of the above commands resets $depth to zero.

r (run)

{ :un } [arguments 1

Runs a new child process with the argument list (if any). The existing child
process, if any, is terminated first (after confirmation is given). If no arguments
are given, the ones used with the last r command are used again (none if R was
used last).

The arguments can contain < and> for redirecting standard input and
standard output. « does an open(2) of file descriptor 0 for read-only; > does
a creat(2) of file descriptor 1 with mode 0666). Redirection can also be done
with » and >&. Arguments can contain shell variables and meta characters,
quote marks, or other special syntax (that will be expanded by a Bourne Shell
(sh(1))). The remainder of the input line following the r command is used as
the argument-list, so it cannot be enclosed in a command list ({}). Thus, the r
command cannot be used within a breakpoint, assertion, or if command. The
environment for the child process is the same as for the debugger.

4-64 HP Symbolic Debugger Commands

Job Control Commands

R (Run)

Lets you run a program as a new child process with no argument list. If a
child process already exists, the debugger asks if you want to terminate the
child process first. Use this command to explicitly indicate no arguments after
previously using the r (run) command. The environment for the child process
is the same as for the debugger.

c (continue)

{ c. } [location]
contlnue

Resumes execution after a breakpoint has been encountered, ignoring the
pending signal, if any. If a location is specified, a telnporary breakpoint is
set at that location. See "Breakpoint Commands" in this chapter for more
information.

C (Continue)

{ C. } [location]
Contlnue

Resumes execution after a breakpoint has been encountered, allowing the
pending signal, if any, to be received by the child process. If a location is
specified, a temporary breakpoint is set at that location. See "Breakpoint
Commands" in this chapter for more information.

Continuing with a signal that prevents further execution, such as an untrapped
bus error, may cause the signal to be re-asserted or terminate the child process.
The pending signal may be examined or modified with the debugger special
variable $ signal.

HP Symbolic Debugger Commands 4-65

4

4

Job Control Commands

g (goto)

g #label

[

line 1
{gata} : ~~:

Go to a location in the procedure on the stack at depth zero (not necessarily
the same as the current procedure). This changes the program counter so
that the first executable statement at or after line or #label is the next to be
executed. The + and - signs:

• In source mode, determine the equivalent line by adding (or subtracting)
num from the line with the current program counter position and then
proceed as stated in the previous sentence.

For negative offsets, it is necessary to specify an offset which reaches a line
that corresponds to instructions to cause a change in the program counter.
(U se td (toggle disassembly) to see which source lines have corresponding
instructions.)

• In disassembly mode, move the program counter the specified num of
instructions from the instruction at the current program counter position.

A g without arguments is equivalent to V 0, which restores the viewing location
to the point where execution is suspended.

k (kill)

Terminates the current child process, if any. You are asked to confirm this
command; this guards against accidental termination of the child process.

4-66 HP Symbolic Debugger Commands

Job Control Commands

s (step)

{ :tep } [number 1

Single steps through a progranl, executing one source statelnent (or machine
instruction) at a time before pausing and prompting for another cOlnmand.
In source mode, one source statement is executed (or one step of a multiple
step statement in HP Pascal or HP C); in disassembly mode, one nlachine
instruction is executed (several machine instructions might be equivalent to one
source statement). If a procedure call is encountered, the procedure is single
stepped in the same manner (stepped "into"). Note that numbe'f must be
greater than zero (0).

The child process continues with the current signal if any. To prevent the child
process from receiving the current signal, set $signal to zero (0).

When single-stepping (at the source level) into a non-debuggable procedure,
successive instructions will be executed until debuggable code is again reached,
or the limit defined by $step is reached. At this point the debugger will
set an uplevel breakpoint and continue to it, and then again check to see
if debuggable code has been reached. As a result, an s command at a call
to a non-debuggable procedure will frequently behave like the S (step-over)
command. (See $step under "Special Variables" at the beginning of this
chapter.)

Note One s (step) is required to go fronl the calling statement to
the first statement of the called procedure.

To execute more than one statement or instruction, enter that nUlnber as
the number parameter. The debugger executes this number of statements or
instructions before stopping, unless it encounters a breakpoint first.

You can press (Return) to repeat this command. The number is discarded.

HP Symbolic Debugger Commands 4-67

4

4

Job Control Commands

Note Single stepping, in disassembly mode, through a procedure for
which there is no debugger information (for example, printf)
can be slow. You might prefer to use the c (continue) or S
(Step) command instead.

If you accidentally step down into a procedure you don't care
about, use the bu command to set a temporary "uplevel"
breakpoint, and then continue using a c (continue) command:

bu \t (Return)

C (Return)

Issuing an s command when stopped at a throw statement will cause the
debugger to step into the first statelnent of the first member-function (compiled
with the -g command-line option) implicitly called as a result of the throw
statement. If a simple type is thrown (that is, no member functions are
implicitly called), the debugger will step directly to the catch clause if it was
compiled with the -g command-line option.

If a statement count is given with the s command, the debugger will proceed
until either that many statements have been executed, a breakpoint is reached,
or the catch clause is reached.

Note

S (Step)

If you single step or run with assertions through a call to
longjmp (see setjmp(LIBC)), the child process will probably
take off free-running as the debugger sets but never hits an
uplevel breakpoint.

{ S } [number]
Step

Single steps through a program. In source mode, one source statement (or
one step of a multiple step statement in HP Pascal or HP C) is executed;
in disassembly mode, one machine instruction is executed (several machine
instructions might be equivalent to one source statement). If a procedure call is
encountered, it is not "stepped into". Instead, execution steps to the statement
following the call. The procedure call is treated as a single statement. If a

4-68 HP Symbolic Debugger Commands

Job Control Commands

breakpoint is encountered in the procedure or any that is called, its commands
are executed. Note that number must be greater than zero (0).

The child process continues with the current signal if any. To prevent the child
process from receiving the current signal, set $signal to zero (0).

Note U sing a c (continue) comnland in a breakpoint command list
within a procedure will cause the program to keep executing
through the procedure! If the breakpoint does not explicitly
continue, the current act of stepping ·'over" the procedure
ceases. The command:

bu \t {}; C (Return)

continues back to the calling statement, effectively completing
the S (Step) command.

To execute more than one statement or instruction, enter that number as
the number parameter. The debugger executes this number of statements or
instructions, unless it encounters a breakpoint first.

You can press (Return) to repeat this command as a single step. The number is
discarded.

Issuing an S command when stopped at a throw statement will cause the
debugger to step directly to the appropriate catch clause. The debugger will
execute through any member-functions implicitly called as a result of the throw
statement unless a breakpoint is encountered in one of those members.

If a statement count is given with the S command, the debugger will proceed
until either that many statements have been executed, a breakpoint is reached,
or the catch clause is reached.

HP Symbolic Debugger Commands 4-69

4

Breakpoint Commands
A breakpoint, when encountered, suspends the execution of the program at a
particular location. HP Symbolic Debugger provides a number of commands
for setting, deleting, and managing breakpoints. The breakpoint commands
are:

• Overall

o lb (list breakpoints)
4 0 tb (toggle breakpoints)

• Creation

o b (breakpoint)
o ba (breakpoint address)
o bb (breakpoint beginning)
o bi (breakpoint instance)
o bpc (breakpoint class)
o bpo (breakpoint overload)
o bt (breakpoint trace)
o bu (breakpoint uplevel)
o bx (breakpoint exit)

• Status

o ab (activate breakpoint)
o bc (breakpoint count)
o db (delete breakpoint)
o sb (suspend breakpoint)

• All-Procedures

o bp (breakpoint procedure)
o bpt
o bpx
o dp (delete procedure)
o Dpt
o Dpx

4-70 HP SymbOlic Debugger Commands

Breakpoint Commands

• Global
o abc
o dbc

• Auxiliary
o II any st,ing II
o i (if)
o Q (Quiet)

Once a breakpoint has been encountered during program execution, you can
interactively examine the program state, unless the breakpoint command list
includes a command that causes the child process to continue or terminate.
Examples of these commands are the c (continue), r (run), k (kill) and q
(quit) commands.

Breakpoints can be activated or deactivated (suspended) individually.
Individual breakpoints are identified by a unique number, which is assigned
by the debugger. When a breakpoint is suspended, information for that
breakpoint is retained, but it will not affect program execution.

There is also an overall breakpoint mode for breakpoint activation and
suspension, which is independent of the state of any individual breakpoint.
Any given breakpoint will affect program execution only if it is individually
activated and the overall mode is active.

Any active breakpoint whose location is visible in the source window will be
marked with an asterisk (*) in the leftmost screen column. Note that only
breakpoints that are associated with a line number are so marked in source
mode. In disassembly mode, all breakpoints are displayed, whether associated
with a line or machine instruction. A breakpoint set at a location which does
not begin a source statement does not show an asterisk marker in the source
window unless the debugger is in disassembly mode.

HP Symbolic Debugger Commands 4-71

4

4

Breakpoint Commands

Three parameters are associated with breakpoint commands, location, count
and command list. These parameters are described below:

location

Note

count

You can set a breakpoint at the current location (where the
prompt (» appears in the source window) or at any other
executable statement or instruction. You can specify the
location of the breakpoint in a variety of ways (see the section
"Entering Commands" in this chapter for the specific syntax
for location):

• line number

• procedure name

• label

• symbolic address (with or without offset)

• absolute (numeric) address

Each of these ways of specifying a location is simply an
alternate way to specify the breakpoint's address. The
breakpoint is encountered whenever the location is about to be
executed, regardless of the path taken to get there.

The location can be within a procedure linked from a shared
library only if the debugger was invoked with the -s or -1
option.

The number of times the breakpoint is encountered prior
to recognition. A count is of the form \expr, \expr p (p for
permanent, the default), or \expr t (t for temporary). The
count decrements with each encounter. Each time count
goes to zero (0), the breakpoint is recognized; otherwise, it
is ignored and the count is decremented. If the breakpoint
is permanent, count is reset to the original count. If the
breakpoint is temporary, once count goes to zero (0), the
breakpoint is recognized, then deleted.

4-72 HP Symbolic Debugger Commands

Breakpoint Commands

command list A command list is one or more commands that are executed
when its associated breakpoint occurs. Separate comlnands in
a command list by semicolons. Use braces {} to separate the
breakpoint command list from other debugger commands on
the same line.

Note Only one active command line can exist at one time. A
command line is either the sequence of commands you enter
at the debugger prompt or the comrnand list associated \\lith
a breakpoint or assertion. If a breakpoint's command list is
encountered before all commands in the previous command
line are executed, those remaining cOlnmands are discarded.
For example, suppose you set a breakpoint in a function called
func! which has the following command list:

{Q;p "hello\nll ;c}

Then, from the command line you execute:

>p func! ();p Ilgoodbye\nll

This will print hello, but not goodbye.

HP Symbolic Debugger Commands 4-73

4

4

Breakpoint Commands

Types of Breakpoints

Breakpoints can be separated into two general classes:

• Individual (single) breakpoints

These are explicitly set by the user at a given location or logical group of
locations .

• All-Procedure breakpoints

These are breakpoints attached to all debuggable procedures by a single
command. They do not have a count or lifespan.

The following six breakpoint types are classified as single breakpoints. There
can only be one of these at any given location in the code.

Generic Set with the b (breakpoint) command at a
given source-line.

Address Set with the ba (breakpoint address)
command at a given address (which might not
correspond directly to a source line).

Procedure beginning (entry) Set with the bb (breakpoint beginning)
command at the first executable statement of a
procedure.

Procedure exit Set with the bx (breakpoint exit) command
at the common exit point of a procedure, for
example, the procedure epilogue where all
returns go through (usually does not correspond
to a source line).

Procedure trace (entry/exit) Set with the bt (breakpoint trace) command
at the procedure entry and exit.

Uplevel Set with the bu (breakpoint uplevel)
command at the return address of a given
procedure call, at the first instruction executed
after the return (which might not correspond
directly to a source line).

4-74 HP Symbolic Debugger Commands

Breakpoint Commands

For C++ functions, the following single breakpoints are also available.
Multiple breakpoints of these types may co-exist with any other breakpoints at
the same location.

Overloaded functions Set with the bpo (breakpoint overload) command at
the first executable statement of all functions with the
same name.

Instance

Class functions

Set with the bi (breakpoint instance) command at
the first executable statement of all or the specified
member functions of a class instance.

Set with the bpc (breakpoint class) command at the
first executable statement of all the member functions
of a given class.

There are three basic types of all-procedure breakpoints. These may co-exist
with other all-procedure breakpoints and/or a single breakpoint at a given
location.

Procedure (beginning)

Procedure exit

Procedure trace

Set with the bp (breakpoint procedure)
command at the first executable statement of all
procedures.

Set with the bpx command at the common exit
point of all procedures.

Set with the bpt command at the entry and exit
of all procedures.

HP Symbolic Debugger Commands 4-75

4

4

Breakpoint Commands

Notice that at any given procedure entry, it is possible to have multiple
command lists associated with the location:

Type of Connnand List How It Is Set

Global breakpoint command list Set with the abc command

Individual procedure beginning breakpoint Set with the bb (breakpoint
command list beginning) command

All-procedure beginning breakpoint command Set with the bp (breakpoint
list procedure) command

All-procedure trace breakpoint command list Set with the bpt (breakpoint
trace) command

Overloaded functions breakpoints Set with the bpo (breakpoint
overload) command

Instance breakpoints Set with the bi (breakpoint
instance) command

Class breakpoints Set with the bpc (breakpoint
clas s) command

Also, at any given procedure exit, up to four command lists can be associated
with the location:

Type of Connnand List How It Is Set

Global breakpoint command list Set with the abc command

Individual procedure exit breakpoint command Set with the bx (breakpoint exit)
list command

All-procedure exit breakpoint command list Set with the bpx command

All-procedure trace breakpoint command list Set with the bpt command

4-76 HP Symbolic Debugger Commands

Overall Breakpoint Commands

Overall Breakpoint Commands

Ib (list breakpoints)

{ l~ .} [@library-shared]
llst breakpolnts

Displays all breakpoints in the progranl, both active and suspended, and
the overall breakpoint state. For generic breakpoints, the display shows the
number, count, status and commands for each breakpoint. The @shared-library
syntax is used to list only those breakpoints set in the named shared library.
The figure "Listing a Breakpoinf' gives an exalnple of the information that is
displayed for a typical breakpoint. This infornlation is also displayed whenever
a breakpoint is added or deleted.

Count (Keyword) Overoll stote

Contents of count
Brea kpoint ID# (followed by t if temporary)

"
Overall" " breoKpoints state:)'\CTIVE

~1:

{Q;P

count: 1 Suspended CALCIJL.A TOR: 164:

~I'-

ACC

~I'-

- OP1 + OP2:

op1; P op2; C}"~
~I'-

Commond list

Individual
state

n

Procedul-e
-- Actuo I source for

the line

Line
(possibly followed by
offset if ossociated

with an address)

Figure 4-2. Listing a Breakpoint

HP Symbolic Debugger Commands 4-77

4

4

Overall Breakpoint Commands

tb (toggle breakpoints)

{~:ggle breakPoints}

Toggles the overall breakpoint state from active to suspended or vice versa.
The state of the individual breakpoints remains unchanged.

4-78 HP Symbolic Debugger Commands

Breakpoint Creation Commands

Breakpoint Creation Commands

b (breakpoint)

{ b. } [location] [\count] [command-list]
breakpolnt

Sets a breakpoint at the location that you specify. If you do not enter a
location, the current line in the source or disassernbly window is used. The
breakpoint is executed on each occurrence (count) that you specify. You
can enter a list of commands to be executed at the breakpoint by giving
a command-list. The command list \vill be executed when the breakpoint
is reached and its count is zero. See the definition for location, count, and
command-list at the beginning of this section, "Breakpoint Commands."

In the following example, a breakpoint is set at the current location in the
source window and is executed every fourth execution of that statement. Since
there is no command list, no commands are executed when the breakpoint is
reached. Instead, the debugger will just re-enter command mode at that point.

> b \4

To set a breakpoint in a different file or procedure, use the v (view) command
to display the file or procedure in the current viewing location window and
search for the line on which to set the breakpoint. If you know where to set the
breakpoint in another file or procedure enter this command with the procedure
and line. For example, the following comlnand sets a breakpoint at line 355 in
procedure cmp80.

>b cmp80:355

To set a breakpoint using a label instead of a line number, enter the label name
instead of the line number. For example,

>b cmp80#totals

HP Symbolic Debugger Commands 4-79

4

4

Breakpoint Creation Commands

ba (breakpoint address)

{ ba. } address [\ count] [command-list]
breakpo1nt address

Sets a breakpoint at the specified address . Note that the address can be
specified by giving the name of a procedure or an expression containing such
a name. The breakpoint is executed on each occurrence (count) that you
specify. You can enter a list of commands to be executed at the breakpoint by
entering the command-list. See the definition for address (location), count, and
command-list at the beginning of this section, "Breakpoint Commands".

The following is an example:

>ba printf+Ox0018
Overall breakpoints state: ACTIVE
Added:

2: count:

Caution

1 Active printf +Ox00000018: (line unknown)

Be sure the address given in the ba (breakpoint address)
command is a valid code address in the child process or errors
might ensue. Also, note that this address can be within a
procedure linked from a shared library only if the debugger was
invoked with the -s or -1 option.

(Series 600/700/800 only) A code (linker) symbol used in the address provided
to the ba command will always be associated with the actual entry point
by that name, rather than any stub. To view a stub, the 11 (list labels)
command must first be used to locate the actual address of the stub, and that
numeric address provided to the ba command.

4-80 HP Symbolic Debugger Commands

Breakpoint Creation Commands

bb (breakpoint beginning)

{ bb . ..} [depth] [\count] [comnwnd-list]
breakpol.nt begl.nnl.ng

Sets a breakpoint at the first executable statenlent of the procedure at
the specified depth on the program stack. If you do not enter a depth, the
procedure shown in the source windmv is used (this lllight not be the same as
the procedure at depth zero in the stack).

The breakpoint is executed on the occurrence (courtt) that you specify. You 4
can enter a list of commands to be executed at the breakpoint by entering the
command-list. See the definitions for depth, count, and command-list at the
beginning of this section, "Breakpoint Commands".

bi (breakpoint instance)

{
bi }
breakpoint instance expr. proc [\ count] [command-list]

After evaluating expr to what must be a class instance, set an instance
breakpoint at the first executable line of proc for the instance's class. This
breakpoint is only recognized when proc is called for this instance. See the
definitions for count and command-list at the beginning of this section,
"Breakpoint Commands".

If there are commands, they will be executed when the breakpoint is hit. If
there are none, the debugger pauses for command input. In cases when the
debugger can determine when the given instance will cease to exist because
program execution exits the scope in which it is defined, the breakpoint will be
automatically deleted upon leaving that scope.

bi (breakpoint instance)

{ bi } [-c 1 expr [command-list]
breakpoint instance -C

After evaluating expr to what must be a class instance, set instance
breakpoints at the first executable line of all member functions of the instance's
class. These breakpoints are only recognized when the member functions are

HP Symbolic Debugger Commands 4-81

Breakpoint Creation Commands

called for this instance. See the definition for command-list at the beginning of
this section, "Breakpoint Commands".

If -c is given, breakpoints will be set only on member functions of the class
designated by the object and not of its base classes. If -C is given, breakpoints
are also set on member functions of base classes. If neither -c or -C is given,
behavior defaults to what is defined by bit 2 of the $cplusplus special
variable. See "Entering Commands" at the beginning of this chapter.

If there are commands, they will be executed when one of these breakpoints is
4 hit. If there are none, the debugger pauses for command input. In cases when

the debugger can determine when the given instance will cease to exist because
program execution exits the scope in which it is defined, the breakpoint will be
automatically deleted upon leaving that scope.

bt (breakpoint trace)

{ bt } [proc 1 [\count] [command-list]
breakpoint trace depth

Sets a trace breakpoint at the current or named procedure or at the procedure
that is at the specified depth on the program stack. A breakpoint is set at
the entry and exit point of the procedure. The breakpoint is executed on the
occurrence (count) that you specify. You can enter a list of commands to be
executed at the breakpoint by entering the command-list. See the definitions
for count and command-list at the beginning of this section, "Breakpoint
Commands".

If you include a command-list, it is executed at the beginning of the procedure.
The following command-list is for Series 600/700/800 computers and will be
executed at the end of the procedure.

{ Q;p $retO\d; c }

4-82 HP Symbolic Debugger Commands

Breakpoint Creation Commands

The following command-list is for Series :300/400 computers and will be
executed at the end of the procedure.

{Q;L;c}

If you omit a command-list, the following command-list is executed at the
beginning of the procedure.

{Q;t2;c}

The entry command list above displays the two procedures at the top of the
stack (the current procedure and the procedure which called it) and their
parameters, then continues. For Series 600/700/800 computers, the exit
command list prints the return value of the procedure, then continues. For
Series 300/400 computers, it prints the current location and continues.

To enter a different command list for the exit point of the procedure or
subprogram, use the bx (breakpoint exit) cOlnmand.

Note The default entry and fixed exit command-lists contain a c
(continue) command. Single-stepping into these breakpoints
will cause the debugger to continue. If this "run-away"
behavior is a problem, use the bb and bx commands with
appropriate command-lists instead.

bpc (breakpoint class)

{ bpc. } [-c 1 class [command-list]
breakpolnt class -C

Set class breakpoints at the first executable line of all member functions of
class.

If -c is given, breakpoints will be set only on member functions of the
designated class and not of its base classes. If -C is given, breakpoints are also
set on member functions of base classes. If neither -c or -C is given, behavior
defaults to what is defined by bit 1 of the $cplusplus special variable. See
"Entering Commands" at the beginning of this chapter.

HP Symbolic Debugger Commands 4·83

4

4

Breakpoint Creation Commands

When one of these breakpoints is hit, commands are executed. If there are
none, the debugger pauses for command input.

bpo (breakpoint overload)

{ bpo. } [[class] : :] proc [command-list]
breakpolnt overload

Set overload breakpoints at the first executable line of all overloaded functions
with name proc (which may be qualified by a class.) When one of these
breakpoints is hit, commands are executed. If there are none, the debugger
pauses for command input.

bu (breakpoint uplevel)

{ bU. } [depth] [\ count] [command-list]
breakpolnt uplevel

Sets an uplevel breakpoint to occur immediately on return to the procedure
at the specified depth on the program stack. This command is useful for
examining values returned from procedures. For example, when execution
pauses in procedure B (called from procedure A), you can set an uplevel
breakpoint so that a breakpoint occurs when execution returns to procedure A.

If you omit depth, 1 is used (0 is the current location). If $pc corresponds to
the beginning of a source line, a depth of 0 is equivalent to:

>b

The breakpoint is executed on the occurrence (count) that you specify. You
can enter a list of commands to be executed at the breakpoint by entering the
command-list. See the definitions for count and command-list at the beginning
of this section, "Breakpoint Commands".

(Series 600/700/800) The behavior of the bu command will differ depending on
the current state of the stubs toggle (see the tst command). If the toggle is
"on", any stub that is in the current call chain will be visible in a stack trace
(t or T commands), and is a potential candidate for an uplevel breakpoint. If
the toggle is "off", stubs are not visible, and breakpoints cannot be set in them
with the bu command.

4-84 HP Symbolic Debugger Commands

Breakpoint Creation Commands

(Series 600/700/800) Because of the way pointers-to-functions are handled
on PA-RISC architectures, a bu command with a depth of 2 is required to
set the breakpoint in the actual caller of a function called through a function
pointer. A depth of 1 will place the breakpoint in the special milli-code routine
$$dyncall.

bx (breakpoint exit)

{ bx . .} [depth] [\ count] [command-list]
breakpoInt eXIt

Sets an exit breakpoint at the epilogue code of the procedure at the specified
depth on the program stack. The breakpoint is set at a point such that all
returns go through it. If you do not enter a depth, the procedure shown in the
source window is used (this might not be the same as the procedure at depth
zero in the stack).

The breakpoint is executed on the occurrence (count) that you specify. You
can enter a list of commands to be executed at the breakpoint by entering the
command-list. See the definitions for count and command-list at the beginning
of this section, "Breakpoint Commands".

HP Symbolic Debugger Commands 4-85

4

4

Breakpoint Status Commands

ab (activate breakpoint)

{ ::tivate breakPoint} [~uhmbedr l'b]
@s are - z rary

Activates the breakpoint having the number that you specify. If you do not
enter a number, the breakpoint at the current line is activated if one exists (use
the lb (list breakpoints) command to determine the number to enter). To
activate an instance, class, or overload breakpoint, number must be given.

Use the asterisk (*) to activate all breakpoints, including all-procedure
breakpoints. Use the @shared-library syntax to activate all breakpoints in the
named shared library.

bc (breakpoint count)

{ bC. } number expr
breakpolnt count

Sets the count of the specified breakpoint number' to the integer value of the
evaluated expression expr that you enter. Use the lb (list breakpoints)
command to determine the number to enter.

Note The count may not be changed for all-procedures, class or
overloaded breakpoints nor for instance breakpoints which
involve all member functions of a class.

db (delete breakpoint)

{
db } [nUmber]

delete breakpoint * h d l'b
@s are - z rary

Deletes the breakpoint having the number that you specify. If you do not enter
a number, the breakpoint at the current line is deleted. If the breakpoint

4-86 HP Symbolic Debugger Commands

Breakpoint Status Commands

that you specify does not exist, the debugger displays all the breakpoints so
that you can select one to delete. To delete an instance, class, or overload
breakpoint, number must be given.

Use the asterisk (*) to delete all breakpoints, including all-procedure
breakpoints. Use the @shared-library syntax to delete all breakpoints in the
named shared library.

sb (suspend breakpoint)

{ :~spend breakPoint} [;Uhmbedr lOb]
@s are - z rary

Suspends (deactivates) the breakpoint having the number that you specify. If
you do not enter a number, the breakpoint at the current line is suspended if
one exists (use the lb (list breakpoints) command to determine the number
to enter). To suspend on instance, class, or overload breakpoint, number must
be given. To reactivate the breakpoint use the ab (activate breakpoint)
command.

Use the asterisk (*) to suspend all breakpoints, including all-procedure
breakpoints. Use the @shared-library to suspend all breakpoints in the named
shared library.

HP Symbolic Debugger Commands 4-87

4

4

All-Procedures Breakpoint Commands

bp (breakpoint procedure)

{ bP . } [@shared-library] [command-list]
breakpolnt procedure

Sets permanent procedure breakpoints at the first executable statement of every
procedure for which debugger information is available (this is equivalent to
executing a bb (breakpoint beginning) for every procedure). The breakpoint
is encountered each time the procedure is entered. When any procedure
breakpoint is encountered, the command-list is executed. See the definition for
command-list at the beginning of this section, "Breakpoint Commands".

The following example sets breakpoints at the beginning of each procedure.
The command list causes the name of the procedure and the values of its
arguments to be displayed before continuing.

bp {Q; t 1; c}

You can set other breakpoints, either permanent or temporary, at the same
locations as the procedure breakpoints without superseding them. However, if
an all-procedure and a nonprocedure breakpoint are set at the same location,
the nonprocedure breakpoint is executed first.

You cannot alter the count of a procedure breakpoint. You also cannot set or
delete procedure breakpoints individually. To delete procedure breakpoints, use
the dp (delete procedure) command.

For programs that are linked with debuggable shared libraries (and the -1
invocation option is used appropriately), an unqualified bp command will set a
procedure breakpoint at each debuggable procedure in the main program, as
well as those in each library that is active (mapped into the process) at the
time the bp command is issued.

The @shared-library syntax can be used to set procedure breakpoints only at
the debuggable procedures in the named library. These breakpoints are set
in addition to any procedure breakpoints already set. Note that each shared
library may have its own command-list which can be replaced by reissuing the
command with a different command-list.

4·88 HP Symbolic Debugger Commands

All-Procedures Breakpoint Commands

bpt

bpt [@shared-library] [command-list]

Sets permanent procedure trace breakpoints at the first and last executable
statement of every procedure for which debugger information is available. The
breakpoints are encountered each time the procedure is entered and exited.
The command-list, if any, is associated with the entry breakpoint. See the
definition for command-list at the beginning of this section, "Breakpoint
Commands." See also the discussion on shared libraries for the bp command
above.

If no command list is specified, the entry command list defaults to:

{Q;t 2;c}

The exit command-list, for Series 600/700/800 computers, is:

{Q;p $retO\d;c}

The exit command-list, for Series 300/400 computers, is:

{Q;L;c}

You can set other breakpoints, either permanent or temporary, at the same
locations as the procedure breakpoints without superseding them. However, if
an all-procedure and a nonprocedure breakpoint are set at the same location,
the nonprocedure breakpoint is executed first.

You cannot alter the count of a procedure trace breakpoint. You also cannot
set or delete procedure breakpoints individually. To delete procedure trace
breakpoints, use the Dpt command.

Note The default entry and fixed exit command-lists contain a c
(continue) command. Single-stepping into these breakpoints
will cause the debugger to continue. If this "run-away"
behavior is a problem, use the bp and bpx commands with
appropriate command-lists instead.

HP Symbolic Debugger Commands 4-89

4

All-Procedures Breakpoint Commands

bpx

bpx [@shared-library] [command-list]

Sets permanent procedure exit breakpoints after the last executable statement
of every procedure for which debugger information is available. The breakpoint
is encountered each time the procedure is exited. When any procedure exit
breakpoint is encountered, the command-list is executed. See the definition for
command-list at the beginning of this section, "Breakpoint Commands".

4 You can set other breakpoints, either permanent or temporary, at the same
locations as the procedure breakpoints without superseding them. However, if
an all-procedure and a nonprocedure breakpoint are set at the same location,
the nonprocedure breakpoint is executed first.

You cannot alter the count of a procedure exit breakpoint. You also cannot
set or delete procedure exit breakpoints individually. To delete procedure exit
breakpoints, use the Dpx command.

Also see the discussion on shared libraries for the bp commmand.

dp (delete procedure)

{ dp } [@shared-library]
delete procedure

Deletes all all-procedure breakpoints set with the bp (breakpoint procedure)
command. All breakpoints set by commands other than the bp command will
remain set.

You cannot delete procedure breakpoints individually.

The @shared-library syntax can be used to only delete those procedure
breakpoints in the named library. All other procedure breakpoints currently
defined remain in place.

4-90 HP Symbolic Debugger Commands

All-Procedures Breakpoint Commands

Opt

Dpt [@shared-library]

Deletes all procedure trace breakpoints at the first and last executable
statement of every procedure. All breakpoints set by commands other than the
bpt command will remain in effect.

You cannot delete procedure trace breakpoints individually.

The @shared-library syntax can be used to only delete those procedure trace
breakpoints in the named library. All other procedure trace breakpoints
currently defined remain in place.

Opx

Dpx [@shared-library]

Deletes all procedure exit breakpoints at the last executable statement of every
procedure. All breakpoints set by commands other than the bpx command will
remain in effect.

You cannot delete procedure exit breakpoints individually.

The @shared-library syntax can be used to only delete those procedure exit
breakpoints in the named library. All other procedure exit breakpoints
currently defined remain in place.

HP Symbolic Debugger Commands 4-91

4

4

Global Breakpoint Commands

abc

abc command-list

Defines a global breakpoint command-list which will be executed whenever
any user-defined breakpoint is encountered. This includes generic, procedure,
address, procedure trace, procedure exit, instance, class, and overload
breakpoints. These commands will be executed before any commands
associated with the breakpoint. See the definition for command-list at the
beginning of this section, "Breakpoint Commands".

This example suppresses the "breakpoint at address" message normally printed
for all breakpoints.

>abc Q

dbc

dbc

Deletes the global breakpoint command list.

4-92 HP Symbolic Debugger Commands

Auxiliary Breakpoint Commands

Auxiliary Breakpoint Commands

Although the any string, if, and Quiet commands are not actually breakpoint
commands, they are used almost exclusively in breakpoint and assertion
command lists. Consequently, they are documented here.

"any string"

II any string"

Causes any string that is enclosed in quotation marks to be echoed to
the screen. This string command is useful for labeling breakpoint output,
particularly for recording a debugger session. You can include character escape
sequences in the string (for exanlple, \ t). See the table "Escape Sequences" for
more information.

In the following example, the "any string" command is used to label the
display of a data-item 'Nhich otherwise doesn't have a name (the debugger
just prints an address in such cases). Note the use of the character escape \n
(newline).

>lIflavor_list head =>\nll; p *flavor:list->head
flavor_list head =>
Ox68023004 struct {

}

i (if)

chocolate = 1597845365;
tuttifrutti = 2.21414e-10;

{ ~f } expr {command-list} [{command-list} 1

Lets you conditionally execute commands in a command list. If the expression
evaluates to a non-zero value, the first group of commands is executed. If the
expression evaluates to zero, the second command list (if it exists) is executed.
The command lists must be enclosed in braces ({ }). The i (if) command can
be nested in other command lists.

HP Symbolic Debugger Commands 4-93

4

4

Auxiliary Breakpoint Commands

The following b (breakpoint) command (set at entry to procedure proc) uses
the i (if) command to conditionally print a value only if a certain condition is
true. Execution always continues after executing this command list:

>b proc {Q; if (list->head.fld > 0) {p list->head.name}; c }

Q (Quiet)

Suppresses the "breakpoint at address" debugger messages that are normally
displayed when a breakpoint is encountered. This enables you to display
variable values without cluttering the command window. The Q (Quiet)
command must be the first command in a command list; otherwise, it is
ignored.

4-94 HP Symbolic Debugger Commands

Exception Handling Commands

Exception Handling Commands
HP's symbolic debugger provides the following exception handling support:

• It provides the ability to stop at (prior to execution) any throw statement
and optionally execute a command-list. This ability to stop at any throw
statement can be toggled and is on by default.

• It notifies you that a throw is about to occur and lets you know
approximately where the exception will be caught.

• It provides the ability to stop at the first statement of any catch clause and 4
optionally execute a command list. This ability to stop at the first statement
of a catch clause can be toggled and is on by default.

• It notifies you that a catch has occurred and lets you know where the
exception was thrown from.

• It lists the current toggle status of the debugger exception handling
commands.

• It provides the ability to step directly from a throw statement to its
corresponding catch statement.

• It provides the ability to explicitly prevent destruction of auto-objects during
the stack-unwinding that follows an exception throw.

The exception handling commands are:

• txt (toggle exception throw)

• xtc (exception throw command)

• txc (toggle exception catch)

• xcc (exception catch command)

txt (toggle exception throw)

{:~:gle exception throw }

Turns off and on the stopping of the debugger immediately prior to an
exception throw. By default, the debugger stops immediately prior to an
exception throw.

HP Symbolic Debugger Commands 4-95

4

Exception Handling Commands

xtc (exception throw command)

{
xtc } [d l'] comman - zst
exception throw command

Defines a debugger command-list to be executed when a stop on throw occurs.

txc (toggle exception catch)

{ :::gle exception catch }

Turns off and on the stopping of the debugger at the first statement of any
catch clause, By default, the debugger stops at the first statement of any
catch clause,

xcc (exception catch command)

{
xcc } [d l'] comman - zst
exception catch command

Defines a debugger command-list to be executed when a stop on catch occurs.

4-96 HP Symbolic Debugger Commands

Assertion Control Commands

Assertion Control Commands

An assertion is a list of one or more debugger commands that are executed
before each machine instruction. Assertions are useful for tracing serious
software defects, such as corrupt global variables, or mysterious side effects.
The assertion control conllllands are:

• a (assert)
• aa (activate assertion)
• da (delete assertion)
• la (list assertions)
• sa (suspend assertion)
• ta (toggle assertions)
• x (exit)

Assertions can be activated or inactivated (suspended) individually. When an
assertion is suspended, information for that assertion is retained, but it will not
be evaluated during program execution. There is also an overall assertion mode
for assertion activation and suspension which is independent of the state of any
individual assertion. Any given assertion will be evaluated during program
execution only if it is individually activated and the overall mode is active.

Assertions are not evaluated during single-step execution. They are only
evaluated during execution following a run or continue command.

The if, Quiet and "any 8tTing" commands are useful in assertion command
lists. For more information about these commands, see the subsection called
"Auxiliary Breakpoint Commands" in the "Breakpoint Commands" section.

Note Assertions slow down program execution because the
commands for all active assertions are executed before each
machine instruction in the program. If you use the assertion
control commands in a breakpoint command list, you will be
able to limit the regions of slowed execution to your actual
areas of interest in the program. See the section "Hints for
U sing Assertions" in the appendix "Limitations and Hints" for
an example of how to use assertions in a useful way.

HP Symbolic Debugger Commands 4-97

4

4

Assertion Control Commands

a (assert)

{a} command-list
assert

Creates an assertion consisting of the command-list that you enter. You
can enclose an assertion command-list in braces to separate it from other
commands on the same line. Errors in assertion command lists are not
identified until the assertion is executed. If there is an error, an error message
is displayed, but execution continues. Assertions, like breakpoints, are
identified by a unique number assigned by the debugger. They also have
an overall state, whereby all assertions can be activated or suspended as a
group. Use the la (list assertions) command to see a list of assertions, their
identifying numbers, and the overall state.

Note In an assertion command-list, you can use the following job
control commands only after an x (exit) command, which
suspends execution of the program.

• r (run)
• R (Run)
• c (continue)
• C (Continue)
• s (step)
• S (Step)
• k (kill)

Also, job control commands cannot be used in an assertion
command list unless all assertions are suspended first. The
following is an example of a typical assertion command
sequence.

{if(i != 0) {ta;x 1;c}}

The following examples show how to use the a (assert) command.

a {L}

4-98 HP Symbolic Debugger Commands

Assertion Control Commands

This "assert list" command traces program execution one line at a time
until the program stops. (The program stops on normal termination, when a
breakpoint is encountered or when your break character is pressed).

a {L; if (xyz> (def-9) *10) {ta;x 1; c} {p abc -= 10}}

This assertion displays the line that will be executed next, then checks the
if statement condition. If it is true, assertion mode and all assertions are
suspended, and the program continues executing. If the condition is false, the
value of abc is decremented by 10, the next source line is executed, and the
command list is executed again. The number after the exit command (x 1)
enables the debugger to recognize the continue command which follows it. If
just x or (x 0) was used, the remainder of the command would not be executed,
and the debugger would again prompt for commands as if a breakpoint were
reached. Note that the ta (toggle assertions) command is used to toggle
assertions to suspend them because the c (continue) command cannot be used
while assertions are active.

a {if (abc .NE. $abc) {p $abc = abc; if (abc .GT. 9) {x} } p abc}

This command list displays the value of the global variable, abc, and suspends
program execution if the variable exceeds a certain value. $abc is a special
variable that keeps track of when the value of abc changes.

Note If you single step or run with assertions through a call to
longjmp (see setjmp(LIBC)), the child process will probably
take off free-running as the debugger sets but never hits an
uplevel breakpoint.

aa (activate assertion)

{
aa } [number]
activate assertion *

Activates the assertion having the number that you specify. Use the la (list
assertions) command to determine the number associated with an assertion.
U sing the * option causes all assertions to be activated.

Overall assertion mode is activated if any individual assertion is activated.

HP Symbolic Debugger Commands 4-99

4

Assertion Control Commands

da (delete assertion)

{
da } [number]
delete assertion *

Deletes the assertion having the number that you specify. Use the la (list
assertions) command to determine the number associated with an assertion.
U sing the * option causes all assertions to be deleted.

4 la (list assertions)

{~:st assertions}
Lists the number, the state (active or suspended) and the command list for
each assertion, as well as the overall assertion state (active or suspended).

Use this command to find the number of a particular assertion before using
the aa (activate assertion), da (delete assertion) and sa (suspend
assertion) commands.

The following example lists the status of two assertions:

Overall assertion state: ACTIVE

1: Active i£(abc.NE.$abc){p $abc = abc; i£(abc.GT.9){x}}

2: Suspended L;i£(xyz.GT.(de£-9)*10) {ta;x l;c} {p abc-=10}}

sa (suspend assertion)

{
sa } [number]
suspend assertion *

Suspends the assertion having the number that you specify. Use the la (list
assertions) command to determine the number associated with an assertion.
U sing the * option causes all assertions to be suspended.

Suspended assertions continue to exist but are not evaluated until activated
again. Overall assertion mode is suspended if the last active assertion is
suspended.

4-100 HP Symbolic Debugger Commands

Assertion Control Commands

ta (toggle assertions)

{ ~:ggle assertions}

Toggles the overall assertion state between active and suspended. The overall
assertion state does not affect the state of individual assertions.

x (exit)

{ x. } [exp,]
eXlt

Causes program execution to stop as if a breakpoint has been reached. A
message like the following will be printed:

Hit on assertion numbe,: command-list
Last line executed was:

file: sou,ce text
Next line to execute is:

file: sou,ce text

If the expression (exp,) is not given or it evaluates to zero, the debugger
returns to command mode, ignoring any remaining commands in the assertion
command list. If exp, evaluates to non-zero, any remaining commands in the
command list are executed. This command can only be used in an assertion
command list.

HP Symbolic Debugger Commands 4-101

4

Record and Playback Commands
The record and playback commands allow reproduction of an HP Symbolic
Debugger session by saving debugger commands in a file, which can later be
used to execute the commands. The record and playback commands are useful
for finding bugs that require many debugger actions to isolate or reproduce.
The record-all command is useful for saving a log of the entire session.

The record and playback commands do not:

4 • Save debugger responses to commands in the record file. An exception to
this is the record-all command that logs all debugger output as well as
user input to the debugger. Note that a record-all file cannot be used as a
playback file.

• Record commands in command lists for breakpoints and assertions as they
are executed. The only commands recorded are those read from the keyboard
or a playback file.

• Copy command lines that begin with> , < , or ! to the current record file.
However, this limitation can be overridden by beginning those lines with one
or more spaces before the command character.

• Record output from the user program (child process). This may be done
using output redirection (» in the r (run) command line, or the -9 and -0

invocation options.

The table "Record and Playback Commands" lists the record, record-all, and
playback commands. The record-all comnlands are used to log all of the output
generated in the command window by the debugger. You should remember
that output generated by the child process is not recorded.

Caution Do not try to play back from a file currently opened for
recording or record from a file currently opened for playback.
This could cause problems with your debugger session.

4-102 HP Symbolic Debugger Commands

Conunand

>file

»file

>

<file

< <file

tr

Record and Playback Commands

Table 4-6. Record and Playback Commands

Description

Sets or changes the record file to file, turns recording on,
rewrites the file from the beginning, and only records
commands. If file exists, you are asked if you want to overwrite.

Sets or changes the record file to file, turns recording on, and
only records commands. All recording is appended to the
existing file; otherwise, a new file is created.

Displays the recording state and the current recording file. Can
also use ».

Starts playback from the file.

Starts playback from the file using a "line-at-a-time" feature.
Each command line from the playback file is shown before it is
executed, and the debugger provides a list of the following
options for you to take some action:

command «cr>,S, <num> , C, Q, or ?):

You can use any of the above options as described:

<cr> execute one command line
S skip one command line
<num> execute number of command lines
C continue through all playback
Q quit playback mode
? gives this explanation of the above commands

toggle record
Toggles recording; toggles the state of the record mechanism
between active and suspended.

HP Symbolic Debugger Commands 4-103

4

Record and Playback Commands

Table 4-6. Record and Playback Commands (continued)

Command Description

>t Turns recording on. (active)1

>f Turns recording off. (suspended)1

>c Closes the record file. 1

>@file Sets or changes the record-all file to file, rewrites from the

4
beginning, and turns recording on. If file exists, you are asked if
you want to overwrite. Captures all input to and output from
the debugger command window, except user program output.

»@file Sets or changes the record-all file to file, and turns recording
on. Appends record-all output to the existing file. Captures all
input to and output from the debugger command window,
except user program output.

>@ Displays the current record- all state and file. 1 Can also use > >@.

tr @ toggle record @

Toggles the state of the record-all mechanism between active
and suspended.

>@t Turns record-all on.

>@f Turns record-all off.

>@c Closes the record-all file.

1 In order to record to a file named t,:f, e, or @use ./t, ./:f, ./e, or ./@.

4-104 HP Symbolic Debugger Commands

Macro Facility Commands

Macro Facility Commands

The macro facility allows you to substitute your own names for debugger
commands, sequences of debugger commands, or expressions. To do so, you
silnply define the text to be used as a straight replacement for the macro name.
Thereafter, you can use your newly defined macro name to represent the
debugger cOlllmands or expressions while inside a debugger session.

The macro commands are:

• def
• tm (toggle macros)
• undef

'''''hen defining a macro, replacement text is not immediately scanned for
additional macro invocations. Rather, macro substitutions are performed as
late as possible by HP Symbolic Debugger. This means that when a macro
is referenced and has been evaluated, its replacement text is rescanned to
determine if the replacement text contains any additional macros. Macros are
not recognized inside character constants, strings, or comment (#) commands
during command line processing.

You can use the macro facility to give your favorite names to the debugger
commands. For example, you might define bplist to be list breakpoints
(equivalently, lb).

Note Macros do not allow argument substitution, and they cannot be
used to modify debugger command syntax.

The invocation of recursive macros is trapped and terminates with an error
message. Recursive macros are macros whose replacement text contains
another reference to the same macro, or to a macro whose expansion eventually
references the same macro. For example,

define a a

is flagged as an error.

Macros are not recognized unless the state of the macro mechanism is activated
with the tm (toggle macros) comlnand. If you want to see a list of your

HP Symbolic Debugger Commands 4-105

4

4

Macro Facility Commands

macros and their current state (active or suspended), use the 1m (list macros)
command.

def

def name replacement-text

Defines a macro substitution for HP Symbolic Debugger commands or
expressions. The argument name can be any string of letters or digits,
beginning with a letter. The argument replacement-text can be any string
'of letters, blanks, tabs or other printing characters that represent one or
more debugger commands or expressions. The string begins with the first
non-white-space character following name and ends with the first [Return). For
example:

>def ptuti p flavor:list->head.tuttifrutti
ptuti ==> p flavor:list->head.tuttifrutti

Note If a macro is defined with the same name as a previous macro,
the new definition will replace the old one, until it is undefined
with the undef command, at which point the old definition is
again active.

tm (toggle macros)

{~:ggle macros}
Toggles the state of the macro mechanism between active and suspended.
When macros are suspended, the currently defined macros continue to exist,
but are not replaced in the command line by their definitions. Additional
macros can be defined while the macro state is suspended.

4-106 HP Symbolic Debugger Commands

Macro Facility Commands

undef

undef { *
name}

Removes the macro defined by name. Using the * option causes all macros to
be removed.

HP Symbolic Debugger Commands 4-107

4

4

Signal Control Commands

Iz (list zignals)

{~~st zignals }

Lists the current handling of all signals sent to the child process. When this
command is entered, a five column table is displayed as shown below.

.-
~ hpterrll ~ ~

Sig
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 .11 ..

31: main()
32: { i nt i;
33: for (i=0; (i++)< 10; i++) {
34: printf("1.d ",i);

Stop Ignore Report Name
Yes No Yes hangup
Yes Yes Yes interrupt
Yes No Yes quit
Yes No Yes illegal ins"truc"tion
Yes Yes Yes breakpoin"t
Yes No Yes lOT instruc"tion
Yes No Yes EMT instruction
Yes No Yes floating point exception
No No No kill
Yes No Yes bus error
Yes No Yes segmentation violation
Yes No Yes bad arg to sys call
Yes No Yes write on pipe wi"th no reader
No No No alarm clock
Yes No Yes software termination
Yes No Yes user signal
Yes No Yes user signal 2

Figure 4-3. Signal Numbers for the z Command

4-108 HP Symbolic Debugger Commands

I

Signal Control Commands

The columns shown in the previous display are defined as follows:

Sig is the signal number.

Stop is set to either Yes to stop on the signal or No to continue.

Ignore is set to either Yes to ignore the signal or No to assign it to $signal.
It will be passed to the child process if Stop is No or if the C, s or S
command is used after the child process is stopped by the signal.

Report is set to either Yes to report the signal to the user or No to not
report it.

Name is what the signal does. For the actual signal name, see the signal(5)
command in the HP- UK Reference.

HP Symbolic Debugger Commands 4-109

4

4

Signal Control Commands

z (zignal)

{ :ignal } number [~l
Modifies the zignal handling table. The number must be a valid signal
number (see signal(5) in the HP-UX Reference). The options (which must
appear as one token) toggle the state of the appropriate flag: i)gnore, r)eport,
or s)top. If Q is present, the new state of the signal is not printed. The default
is to print the new state of the signal after toggling the flags. If no options are
given, the current state of the signal is printed.

For example, assume that the current state of the alarm clock signal is: do not
ignore, do not report, and do not stop (that is, silently pass the signal directly
to the child process). To modify the signal to: stop, do not ignore, and report,
you would execute this command:

z 14 sr (Return)

The results from executing the previous command are:

Sig Stop
14 Yes

Ignore Report Name
No Yes alarm clock

To return back to the previous signal state for alarm clock, execute this
command:

z 14 sr (Return)

When the child process stops or terminates on a signal, it is always reported
(except for the breakpoint signal with a breakpoint command list starting
with Q).

When the debugger ignores a signal, $signal does not get set, the C command
is not made aware of it, and the signal cannot be passed to the child process.
Signals indicating the child process cannot continue execution (e.g. SIGILL,
SIGSEGV) can be ignored, but strange results may occur.

Note that the debugger catches all signals bound for the child process before
the child process sees them (this is a function of the ptrace(2) mechanism used
for tracing processes). For many signals, this is a reasonable thing to do. Most

4-110 HP Symbolic Debugger Commands

Signal Control Commands

programs are not set up to handle segnlentation errors~ etc. However, some
programs do quite a bit with signals and the constant need to continue from
a caught signal can be tedious. The z cornmand can be used to simplify this
task.

Note Since ptrace(2) cancels all pending signals before servicing a
PT_CONTIN or a PT_SINGLE request, any signals received by
the child process while it is suspended (for example between S
commands) \vill be lost. In other words, any signal that arrives
while the debugger is waiting for a user command will be lost.

A signal can be manually sent to the child process by assigning the signal value
to the special variable $signal and either using the C, s, or S command. For
example, to send a bus error signal to a program being debugged, execute the
following commands:

p $signal = 10 (Return)

S (Return)

Note that if your program has a signal handler that handles bus errors, the
symbolic debugger will step "into" the signal handler and not "over" it as a
result of the S command given above.

HP Symbolic Debugger Commands 4-111

4

4

Miscellaneous Commands
The miscellaneous commands perform a variety of individual tasks. The
miscellaneous commands are:

• !
• #
• [Return)

•
• am (activate more)
• sm (suspend more)
• f (format)
• h (help)
• q (quit)
• ss (save state)
• tc (toggle case)
• M (Map)

• Mc
• Mt
• tM (toggle maps)

! [command]

Shell-escapes out of the debugger into the operating system. If a command is
specified, it is automatically executed. Otherwise, a shell is invoked and must
be explicitly exited before the debugger can resume. When you execute the
! command interactively, return to the debugger by hitting the [Return) key
after being prompted to do so. When you use this command in an assertion or
breakpoint command list, control returns to the debugger automatically.

4·112 HP Symbolic Debugger Commands

Miscellaneous Commands

A command can be enclosed in braces ({}) to delimit it from debugger
commands on the saIne line. For example:

b 14 {!{ls -I}; continue}; trace; list assertions

If you use the escape without giving a list of commands, you are given a shell
prompt. You can now execute any HP- UX command. You can return to the
debugger by typing exit at the shell prompt.

[text]

Causes the text to be interpreted as a comment. This command can be used
to document the contents of record and playback files. The number symbol (#)
must be the first non-blank character on the line. The rest of the line is treated
as a comment and is written to the record file if the recording is on. Otherwise,
it is ignored.

(Return)

(Return)

Repeats the previous command. You can only use this command with the
following commands:

+

p (print)
v (view)
+r
-r

s (step)
S (Step)

This command is synonymous with the - command. Any count associated with
the repeated command is discarded.

HP Symbolic Debugger Commands 4-113

4

Miscellaneous Commands

Repeats the previous command. You must use the (Return) key after typing the
-. You can use this command with the following commands:

+

p (print)
4 v (vie'liir)

+r
-r
s (step)
S (Step)

This command is synonymous with the (Return) command, but of the two, it is
the form required in a playback file, and (Return) is recorded in record files as -.
Any count associated with the repeated command is discarded.

am (activate more)

{:tivate more}
Activates (enables) the more feature. (Active is the initial state). When
activated, all command window output following a debugger command is
presented to you a window-full at a time, and you are prompted before
displaying successive windows.

Use one of the following commands to continue from the --More-- prompt.

(Space Bar)

(Return)

q

Displays one more window-full.

Displays one more line.

Quits scrolling and ignores the rest of the output until another
debugger prompt is issued.

4-114 HP Symbolic Debugger Commands

Miscellaneous Commands

To view command window output in a continuous stream, use the sm (suspend
more) command to suspend the more feature. (CTRL)S may be used to
temporarily suspend scrolling when the more feature is suspended. Use (CTRL)Q
to continue scrolling.

Note Output from the child process (program being debugged) also
appears in the command window, but it is not controlled by
the more feature.

sm (suspend more)

{ ::spend more}
Suspends the more feature and lets you view the output in a continuous
stream. (CTRL)S and (CTRL)Q can be used to temporarily suspend scrolling
when the more feature is suspended.

Use this command when you do not want the debugger to pause at the end of
each window of output waiting for a continuation command. This command is
particularly useful when you are using record-all to collect large amounts of
output in a file for later review. To view the command window output one
window-full at a time, use the am (activate more) command to activate the
more feature.

HP Symbolic Debugger Commands 4-115

4

4

Miscellaneous Commands

f (format)

{ f } [II printf-style-format ll
]

format

Sets the printing format used by the debugger to print an address (see
printf(3S) in the HP- UX Reference) for a discussion of valid formats).

U sing the f (f ormat) command wi thou t an argument will reset the format to
the default format: 8 hexadecimal digits, preceded by "Ox".

Note

h (help)

This command is generally not needed for typical debugger use.

If you set the address printing format to something printf does
not like, you might get an error (usually memory fault) each
time you try to print an address, until you fix the format with
another f (format) command.

{:elP } [topic 1

Prints a command summary which describes the syntax and use of each
command. This facility references the short form of the command only, not the
long form.

If no topic is given, the entire help text is displayed. If a topic is given,
only the text related to that topic is displayed. Available topics include the
ab breviated form of each command, which shows the syntax and a brief
description of the command. To get a list of other topics, use the command:

h help

The more facility is used to display the file. The help text is displayed a
window full at a time, and you are prompted before displaying successive
windows.

4-116 HP Symbolic Debugger Commands

Miscellaneous Commands

Use one of the following commands to continue from the --More-- prompt.

(Space Bar)

[Return)

Displays one more window-full.

Displays one more line.

q Quits scrolling and ignores the rest of the help information.

Note that the sm command (suspend more) does not apply to help output.

The file xdb .help .nro contains nroff(1) coded source for the xdb .help file.
Executing the following command:

nroff xdb .help .nro > file-name

produces a formatted copy suitable for printing or direct viewing with more{l).

q (quit)

Quits the debugger after asking for confirmation: enter y (yes) or n (no). This
command returns control to the shell and terminates the debugging session. All
files are closed and the terminal is restored to a normal mode.

ss (save state)

{ ss }fil
save state e

Save the current set of breakpoints, macros, and assertions in file. This file
can then be used with the -R option to restore this information to another
invocation of the debugger on the same object file.

This file may also be used as a playback file. It should be noted that this
bypasses the verification the debugger attempts with the -R option. The
recorded locations of breakpoints may not be valid in a new object file. You
should be sure to read the limitations section on ss (save state) files before
trying to use one as a playback file. See "Save State Limitations" in the
appendix "Limitations and Hints."

HP Symbolic Debugger Commands 4-117

4

4

Miscellaneous Commands

tc (toggle case)

{::ggle case}
Toggles case sensitivity; determines whether or not searches or names are case
sensitive (initially, they are case insensitive). This command affects file and
procedure names, variables, and search strings used with the / or ? commands.

Note

M (Map)

Case insensitive searches equate some non-letters with other
non-letters. For example, [and { are equal, as are @ and' .

Prints the current text (objectfile) and core (corefile) address maps. This
includes both the initial and modifiable maps for the corefile with an indication
of which is currently active. An address map is a set of triples (b,e,f) that
determine how memory addresses are translated into file locations. A triple
consist of a beginning address in memory (b), an ending address in memory (e),
and an offset value (f). When a memory address meets the following condition:

beginning address <= memory address < ending address

the file location is calculated using the formula:

file location = (memory address - beginning address) + offset

If the memory address doesn't satisfy the condition for any triple for the file, it
is invalid.

To view the address map for objectfiles and corefiles, execute the following
debugger command:

>M (Return)

4-118 HP Symbolic Debugger Commands

Your display will look similar to this:

File: test_prog.c Procedure: set_to Line: 18
>N
Object file (test_prog):

0x00001000 0x000023ac 0x00002000
0x40001000 0x400013f4 0x00004000

Core file (mycore):
Kernel: 0x7ffe6c60 0x7ffe6c9c 0x00000010

Exec:
Core:
Data:

MMF:
MNF:
M}'1F:
MMF:

Stack:

0x7ffe6c1c
l:lx7ffe6c0c
0x40001000
0x7b00a000
0x7b00c000
0x7b018000
0x7b031000
0x7b033000

0x7ffe6c60 0x0000005c
0x7ffe6c10 0x000000b0
0x40002000 0x000000c4
0x7b00c000 0x000010d4
0x7b018000 0x000030e4
0x7b031000 0x0000f0f4
0x7b033000 0x00028104
0x7b0360000x0002a114

Registers: 0x7ffe6d60 0x7ffe6f68 0x0002d124
Core file (mycore): (inactive map)

00000000 0x01000000 00000000
00000000 0x01000000 00000000

Miscellaneous Commands

Figure 4-4. A View of Object and Core Address Maps

HP Symbolic Debugger Commands 4-119

4

Miscellaneous Commands

You can see from looking at the address maps that they are divided up into
three categories:

• Object file address map that consists of two triples created from information
in the object file.

• Core file initial address map that consists of several triples created from
information in the core file.

• Core file address map (labeled inactive in the figure) consists of two
modifiable triples for use with the Me command.

Each category has rows of addresses in it that are separated into three
columns. The first column is the beginning address, the second column is the
ending address, and the third column is the offset value. These addresses
are used in the file location formula when the debugger accesses the object
or core file instead of an executing process. The range of addresses in the
object file category provide access to text and data information. The range of
addresses in the default core file category provide access to version (Kernel and
Core), exec area (Exec), data, stack, memory-mapped file (MMF) and register
information. The exec area information is used to verify that the core file was
generated by executing the object file. The MMFs are those memory-mapped
files that are mapped private and are necessary in order for the debugger to
handle core files where shared libraries are invoked. The modifiable core file
triples (initially inactive) allow you to define an alternate address map to use
with the core file. You can also modify the triples in the object file map.

4-120 HP Symbolic Debugger Commands

Miscellaneous Commands

Read This You should read this note before using the Me, Mt, and tM
commands.

Me

While a file mapping different from the original one set by
the debugger is active, debugger commands that translate
symbolic names into addresses or use indirect addressing (such
as examining variables by name, stack traces, etc.) will produce
unexpected results.

Mc [expr [; expr [...]]]

Sets the modifiable core (corefile) address map. The first zero to six map
values are set to the exprs given. For example, executing this command:

Me Ox00004000 Ox00004223 Ox00000040 Ox00005000 Ox00005400 Ox00000040

changes the modifiable core-file address map from a map that may look like
this:

Core file (mycore): (inactive map)
00000000 Ox01000000 00000000
00000000 Ox01000000 00000000

to one that looks like this:

Core file (mycore):
Ox00004000 Ox00004223 Ox00000040
Ox00005000 Ox01005400 Ox00000040

If less than six expressions are given, the remaining map parameters are left
unchanged.

The Mc command also switches the active corefile mapping to the modifiable
core-file map. The tM command can be used to toggle you back to the initial
core-file map.

HP Symbolic Debugger Commands 4-121

4

Miscellaneous Commands

Mt

Mt [expr [; expr [...]]]

Sets the text (objectfile) address map. The first zero to six map values are set
to the exprs given. For example, executing this command:

Me Ox00000010 Ox00000400 Ox00000020 Ox00001020 OxOOOOll00 Ox00000020

changes the object-file address map from a map that may look like this:

4 Object file (test_prog):
00000000 Ox00000674 Ox00000040

Ox00001000 Ox000011b8 Ox000006b4

to one that looks like this:

Object file (test_prog):
Ox00000010 Ox00000400 Ox00000020
Ox00001020 Ox00001100 Ox00000020

If less than six expressions are given, the remaining map parameters are left
unchanged.

Note that it is a good idea to write down the original values before changing
the object file map because the only way to restore them is by re-entering them
with the Mt command.

tM (toggle maps)

{::ggle maps}
Toggles the address mapping of the corefile between the initial core-file map
and the modifiable core-file mapping pair which the user can set with the Me
command.

The most likely alternate core-file map (using the memory address as a file
location) is set up by the debugger as the default modifiable core-file mapping.

4-122 HP Symbolic Debugger Commands

c++ and the Symbolic Debugger

This chapter covers information that is specific to the use of the symbolic
debugger for debugging C++ programs.

5

On Series 300/400 computers, there is C++ support in both the xdb and the
cdb debugger programs. On Series 600/700/800 computers, you must use the
xdb program. Note that this chapter only uses the xdb syntax. For a list of
differences between xdb and edb, read the appendix "Comparison between the
xdb and cdb Symbolic Debuggers" found in this manual.

Topics covered in this chapter are as follows:

• Summary of Debugger Support for C++

• How the Debugger Deals with C++ Scopes

• C++ Expressions

• Displaying Static Data Members

• Listing Local Variables

• Listing Functions

• Viewing Functions with the Debugger

• Breakpoint Commands

• Handling Exceptions

• Debugging Parameterized Types

• Using Nested Classes

• Customizing Default Debugger Behavior

• Sample C++ Debugging Sessions

c++ and the Symbolic Debugger 5-1

5

Summary of Debugger Support for C++
The following table summarizes the abundant features the debugger provides to
support the object oriented nature of C++.

Table 5-1. Debugger Support for C++

Feature Description

Transparent Name Demangling The debugger lets you debug using your actual
C++ variable and function names as they were
declared. There is no need to translate C++
names into the C names generated from them.
This prevents confusion and possible error.

Overloaded Functions and When a debugger command involves an
Operators overloaded function, a menu of possible choices is

displayed, allowing you to resolve the ambiguity
by identifying the intended function. Breakpoints
can be set at all overloaded functions with a given
name using a single command. The same
debugger commands that apply to an overloaded
function also apply to an overloaded operator.

C++ Scope Rules The debugger conforms to C++ scope by allowing
access to identifiers either directly from within its
scope or by means of the C++ scoping operator
(::) from outside its scope.

C++ Data Types The debugger provides support for C++ constant
types, enumeration types, pointers to class
members, reference types, and anonymous unions.

Member Functions In addition to specifying single step, view, and
breakpoint operations for member functions, you
can also call a member function from the
command line.

5-2 C++ and the Symbolic Debugger

Table 5-1. Debugger Support for C++ (continued)

Feature Description

Classes and Objects Simple or extended versions of class information
can be viewed. That is, you have the choice of
whether to display inheritance members with the
extended version. The function and data members
of a class can be accessed via dot (.), arrow (->)
and scope (::) operators. The data members of a
class object can be examined and modified. Static
data members of a class can also be accessed.

Class Commands The debugger provides powerful commands which
allow access to all members of a class.
Breakpoints can be set at all member functions of
a class by a single command. 5

Object Identification In C++, a pointer to an object may point to its
declared class or any derived class. Since it is not
possible to determine the correct type of the
object until run-time, the debugger supports
automatic dynamic object identification. This can
be a tremendous help in debugging object-oriented
code.

Instance Breakpoint A breakpoint can be set at a member function for
a particular instance of a class. This reduces the
number of breakpoints that are reached for
member functions and can therefore lead to
significantly improved productivity.

C++ and the Symbolic Debugger 5-3

Table 5·1. Debugger Support for C++ (continued)

Feature Description

Exception Handling The C++ language provides exception handling
for dealing with special conditions produced by the
programmer as well as for dealing with execution
of invalid programming operations (for example,
dividing by zero). The debugger supports the
handling of throw and catch exceptions.

Parameterized Types In general, class template names can be used
anywhere a class name is valid. Likewise, function
template names can be used anywhere a function
name is valid. The debugger provides support for
referencing and setting breakpoints on these
parameterized types.

Nested Classes References to static members of an enclosing class
and references to class names of enclosed classes
are supported by the debugger.

5·4 C++ and the Symbolic Debugger

How the Debugger Deals with C++ Scopes
This section explains how the debugger handles C++ scopes. These scopes
include class scopes and declaration-statement scopes.

What Does Scope Mean

The term scope is the region of a program in which an identifier has meaning.
An identifier is a sequence of characters that represent an entity such as a
function or data object.

As an example of scope in the C language, the scope of a local variable having
an identifier xyz is within the function where xyz is defined. On the other
hand, the scope of a global variable abc includes all functions in the program
which have not redefined abc themselves.

The current viewing location of the debugger may imply a certain scope in
which a given identifier has a particular meaning. If the location is changed,
this identifier's meaning may also change, or it may have no meaning at all.
The debugger's scoping rules match the language of the source code which is
being debugged with a few intuitive extensions to provide added flexibility
during debugging. The syntax also provides the ability to designate the scope
where it may be outside the current viewing location or where it may be
ambiguous.

There are two scopes that require special consideration when dealing with the
symbolic debugger and the C++ language:

• Class

• Declaration Statement

These scopes are covered in subsequent sections.

Class Scope

Because of its class data type, C++ has a unique kind of scope called the
"class scope." The class scope consists of all the member functions, variables,
constants, and enumerators included within the class definition. For example,

c++ and the Symbolic Debugger 5·5

5

5

class employee {
static int employee_count;
char name[50];
const int employee_number;

public:

};

employee(char *, int);
enum employment_status { parttime, fulltime };
void print_name();

class professor: public employee {
public:

};

int department_number;
professor(char *, int);
int salaryO;

In this example, employee_count, name, employee_number, employee (the
constructor), parttime, full time, and print_name are names within the scope
of class employee. The class professor not only has department_number,
professor (the constructor) and salary within its scope, but also all members
of its base class employee.

Depending upon the circumstances, members within a class's scope may
be accessed in a variety of ways. If the current viewing location is within
a member function of a class, members in that scope may be identified
by a simple name. For example, if the current location is within the
member function salary, department_number may be referred to as simply
department_number without qualification since the class object is implied. It
may also be called:

this->department_number

professor::department_number

this->professor::department_number

In general, the debugger has the same restrictions as the C++ language
itself. If the current location is not within a member function of professor,
department_number may not be referred to as

professor::department_number

5-6 C++ and the Symbolic Debugger

However, you may use prof1.department_number if prof1 is an object of type
professor. One exception to these restrictions is that the debugger ignores
access declarations. This means that it is possible to use

employee: : employee_count

outside a member function of employee even though it is a private member.

Here is a summary of the principle ways class members may be referenced:

• If the current viewing location is not within a member function of the class,
these are valid:

D o~ject. member

D class: : member if the member is static

• If the current viewing location is within a static member function, these are
valid: 5

D member if the member is static

D class: : member if the member is static

• If the current viewing location is withing a non-static member function, these
are valid:

D member

D class:: member

D thi s - > member

D this->class: : member

Declaration Statement Scope

Since variables can be declared anywhere in a program, certain scoping
restrictions are implied by the location of any particular declaration. For
example:

c++ and the Symbolic Debugger 5-7

class A {
public:

int a;
A() {a = O;}

};

maine)
{

}

int i;
i = 4;
A x;
x.a = 3;
return 0;

5 shows i and x at the same scope level; however, i is not at the same scope
level as x to the debugger. The debugger interprets the scope levels as if main
were instead written as follows:

maine)
{

int i;
i = 4;
{

}
}

A x;
x.a = 3;
return 0;

Thus, if an attempt is made to display x at the line:

i = 4;

an appropriate error message is given.

5-8 C++ and the Symbolic Debugger

Setting Breakpoints at the End of a Scope

When you set a breakpoint at the end of a scope, there may be some variables
in that scope that are not accessible at the breakpoint. This is because implicit
scopes are sometimes created for statements like the for statement. Variables
inside the implicit scope will not be accessible outside the implicit scope, for
example at the end of the enclosing scope.

When you set a breakpoint, the debugger warns you if any variables in implicit
scopes are not accessible at that breakpoint. For example:

void mainO{
int i;

II An implicit scope starts here because of the for statement.
for (int x=O;x<5;x++) { }
int z; II z is inside the implicit scope. 5

II The implicit scope ends here, before the closing}
} II end of function scope; setting a breakpoint here,

II you can't see z in xdb. The debugger warns you of this
II when you set the breakpoint.

c++ and the Symbolic Debugger 5-9

5

c++ Expressions
The debugger can evaluate a rich subset of valid C++ expressions. This
section discusses which types of expressions are supported and which are not.
It also lists syntax extensions which enhance flexibility.

Variables

This syntax is used for C++ variables in an expression:

[[[class_name] : :]junction_name: [depth:]] [class_name: :] variable

The variable name may be qualified by a junction_name, depth on the stack,
and/or a class_name to uniquely identify which variable and instance of that
variable is desired. For example:

prate

p employee::name

p link:index

Print the value of rate in the current function.

This may be used in several cases:

• Class employee has a static member called name.
This expression is then valid anywhere class
employee is visible.

• Class employee has a member function called name
and this expression will evaluate to the address of
that function. An error message will be issued if the
function is pure virtual, inlined, or declared but not
defined.

• The current viewing location is within a member
function of class employee or a member function of
a class which uses employee as a base class. It is
valid for name to be any member type, static or not.

Find the most recent occurrence on the stack of a
function called link and print its local variable called
index.

5-10 C++ and the Symbolic Debugger

p sort:4:pointer

p : :merge: top

Find an invocation of a function
called sort on the stack at depth 4
and print its local variable called
pointer. (An explicit depth is
useful when there are recursive
calls.)

Find the most recent occurrence on
the stack of a global function called
merge and print its local variable
called top.

p matrix: : invert: 2: vector: : length Find an invocation of class matrix's
member function called invert
at depth 2 on the stack and print
a member of class vector called 5
length. (Presumably, vector is a
base class of matrix.)

Global Variables

To use global variables in expressions, the:: operator may be used just as
in the C++ language itself. Note that the child process must be active for
references to variable to be active. The syntax is:

: : variable

Gi ven this program:

int i = 3;

maine)
{

}

int i = 4;
return 0;

if the debugger's current viewing location is at the return statement, the global
variable i may be used in an expression by referring to it as :: i. For example:

p ::i - 1

c++ and the Symbolic Debugger 5-11

If there had been no ambiguity between a local and global vari&ble of the s~me
name (e.g. the local variable was called j instead of i), this expression would
have achieved the same result:

P i - 1

Reference Types

If the debugger supports a particular variable type in an expression~ then a
reference to the same type is also supported.

maine)
{

}

int i;
int &j = i;
i = 4;
return 0;

In the program shown above, it is permissible to use j in an expression. For
example:

p j + 3

Function Calls

Calls to functions may be included in expressions, with certain restrictions on
parameter types and return types.

5-12 C++ and the Symbolic Debugger

class account {
long number;
static short count;

public:
account(long acct) {number = acct; count++;};
long get_number();

};

static short get_count();
long operator==(long);

short account::count = 0;

long account: :get_number() { return number; }

short account::get_count() { return count; }

long account: :operator==(long index)
{

return number == index? 0 : (number> index? 1 -1);
}

unsigned long total(char *ptr)
{

}

unsigned long sum = 0;
char c;
while (c = *ptr++)

sum += (unsigned long) (c - '0');
return sum;

maine)
{

}

account old_account = 10014;
account *pointer = &old_account;
return 0;

c++ and the Symbolic Debugger 5-13

5

5

For the program shown above, all of the following are valid command line
function calls:

• p old_account.get_number()

• p pointer->get_number()

• p old_account.get_count()

• p old_account.account: :get_count()

• p old_account: :get_count()

• p old_account.operator==(10000)

• p totalCl 123 11
)

The following types of functions may not be called from the command line (an
appropriate error message will be issued if you attempt to do so):

• A function returning a class object.

• A function returning a pointer to a member function.

• A function parameter which is a class object.

• A function parameter which is a pointer to a member function.

• A call where a difference in type between formal and actual argument
requires implicitly calling a constructor or conversion operator.

• Implicit calls to overloaded operators.

• Implicit calls to constructors.

• Implicit calls to conversion operators.

• Calls to functions which are pure virtual.

• Calls to functions which have been declared but not defined.

• Calls to functions which have been inlined and no static copy of the function
exists. If a function is declared to be inlined, a static copy will be created
only if the +d compile option is used, or if the address of the function is
required somewhere in the code (e.g. initializing a pointer to point to it), or
if the code in the function is deemed to be too complex to be inlined.

• Calls involving expressions which include dereferencing a pointer to a
member function (e.g. (obj ect. *pointer) (1, 2, 3)).

5-14 C++ and the Symbolic Debugger

If a function has default parameters, those parameters must be explicitly
stated. If the required number of parameters is not given to the command-line
call, you will be given a warning message and an opportunity to cancel the call,
except in cases where optional parameters are declared with ellipsis (...).

For cases where an overloaded function is to be called during the course
of expression evaluation, the user will be presented with a menu to enable
disambiguation. For example:

char abc(short s) { return (char) s; }
char abc(long 1) { return (char) 1; }

maine)
{

return 0;
}

If this expression is executed:

p abc(1)

the debugger will display:

abc

Overloaded function; please choose one:
1 char: :abc(short);
2 char ::abc(long);
function number?

The user can then respond with 1 or 2 to indicate which one is desired.

c++ and the Symbolic Debugger 5-15

5

Operators

Operators include such things as +, -, », [J, ->, =, *=, etc. In general, an
expression may use any operators if its evaluation does not require the implicit
invocation of such things as constructors or conversion operators. For example,
in the following program:

class A {
public:

int a;

};

A() {a = O;};
operator int();

A: : operator int()
5 {

return a;
}

class B {
public:

int b;

};

B(int i) {b = i;};
B(A &);

B: :B(A &x)
{

}

}

b = x.a;

int m = 7;
A at;
B bt = 2;
return 0;

5-16 C++ and the Symbolic Debugger

If the debugger is stopped on main's return statement, the following expressions
are allowed:

p m + 30
P a1
p b1. b = 4

However, although the following expressions would be allowed in the C++
program, they are not supported in the debugger because of the implicit calls
to a conversion operator or constructor:

p m = a1;
p b1 = a1;

Similarly, overloaded operators may not be implicitly called:

class A {
long a[2];

public:
A(long i) {a[O] = -i; a[1] = i;};
long operator[J(long);

};

long A::operator[](long i)
{

return a[i != OJ;
}

mainO
{

}

A x = 10;
long i = x[4];
return 0;

From main, it is not possible to execute the following debugger expression:

p x [100J

However, the desired effect can be achieved in this case with:

p x.operator[] (100)

c++ and the Symbolic Debugger 5-17

5

Class Objects

The operations that are allowed on class objects are:

• print the type of the object

• print the members of the object in a structured format

• take the address of the object with the &: operator

• take the size of the object with the sizeof or $sizeof operators

No other operations may be performed on the object as a whole although more
extensive operations are allowed on individual members of the class object.

The following program will be used in the next two subsections.

class A {
5 char a;

public:
A() {a = 'a';}

};

class B : public virtual A {
char b;

public:
B () {b = ' b' ;}

};

class C : public virtual A {
char c;

public:
C() {c = 'c';}

};

class D : public B, public C {
char d;

public:
D() {d = 'd';}

};

5-18 C++ and the Symbolic Debugger

mainO
{

}

D object;
return 0;

Displaying Type Information for an Object

The t and T format specifiers are used for printing the type of an object. The
syntax is:

p expression \ t

p expression \ T

where expression reduces to an object. The difference between the two formats
is that the t displays information only for the immediate class whereas T
displays information for the class and all its base classes. If the following
command is executed for the example program given above:

p object\t

the result will be:

class D: public B, public C {
private:

char d;
public:

inline DCA *);
inline DCA *, const D &);

} object

Notice that only the type information for class D is displayed and not for
classes A, B, and C. (The two special constructors are automatically created by
the compiler and can be ignored for now.)

To get type information which includes base classes, execute:

p object\T

c++ and the Symbolic Debugger 5-19

5

5

This will print:

class D: public B, public C {

class B: public virtual A {

class A {
private:

char a;
public:

inline AO;
}

private:
char b;

public:
inline B(A *);
inline B(A *, const B &);

}

class C: public virtual A {
private:

char c;
public:

inline C(A *) ;
inline C(A *, const C &);

}

private:
char d;

public:
inline D(A *) ;
inline D(A *, const D &);

} object

5-20 C++ and the Symbolic Debugger

Notice that the type information for class A is only printed once although it
is inherited twice (by classes B and C). It is possible to control the default
behavior of whether or not this base class information will be duplicated where
appropriate. One bit of a special variable called $cplusplus controls this.
If bit 0 of this variable is set, the base class information will be printed at
each point where it has been inherited. In other words, to enable this feature
execute:

P $cplusplus 1= 1

If bit 0 of this variable is not set, type information will only be printed once as
in the display shown above. To request this behavior execute:

p $cplusplus &= -1

The $cplusplus variable also contains bits to control the default behavior of
other C++ features, so it is important to affect only bit 0 when using it to
modify the behavior in printing base class information. By default, bit 0 of
$cplusplus is cleared.

With bit 0 of $cplusplus set, executing this same command:

p object\T

will result in:

class D: public B, public C {

class B: public virtual A {

class A {
private:

char a;
public:

inline A();
}

private:
char b;

public:
inline BeA *) ;
inline BeA *, const B &);

c++ and the Symbolic Debugger 5-21

5

5
}

}

class C: public virtual A {

class A {
private:

char a;
public:

inline A();
}

private:
char c;

public:
inline CCA *);
inline CCA *, const C &);

private:
char d;

public:
inline DCA *);
inline DCA *, const D &);

} object

The t and T formats show all type information about an object including
access declarations (public, protected, private), access modifications,
inheritance information, friends, data members, and member functions with
parameter and return types.

5-22 C++ and the Symbolic Debugger

Displaying the Contents of an Object

The k and K format specifiers are used in printing the contents of an object.
The syntax is:

• p expresszon

• p expression \k

• p expression \K

where expression reduces to an object. If there is no format specifier, the
meaning is the same as if the k specifier had been given. The difference
between k and K formats is that the k displays information only for the
immediate class whereas K displays information for the class and all its base
classes. If the following command is executed for the example program given
above:

p object\k

the result will be:

object = class D: public B, public C {
private:

d = 'd';
}

Notice that only the information for class D is displayed and not for classes A,
B, and C.

C++ and the Symbolic Debugger 5·23

5

5

To get information which includes base classes, execute:

p object\K

This will print:

object = class D: public B, public C {

class B: public virtual A {

class A {
private:

a = 'a';
}

private:
b = 'b';

}

class C: public virtual A {
private:

c = 'c';
}

private:
d = 'd';

}

Notice that data for class A is only printed once although it is inherited
twice (by classes B and C). As with the t and T formats, it is possible to
control whether or not this base class information will be duplicated where
appropriate. One bit of a special variable called $cplusplus controls this.
If bit 0 of this variable is set, the base class information will be printed at
each point where it has been inherited. In other words, to enable this feature
execute:

P $cplusplus \= 1

If bit 0 of this variable is not set, information will only be printed once as in
the display shown above. To request this behavior execute:

5-24 C++ and the Symbolic Debugger

P $cplusplus &= -1

The $cplusplus variable also contains bits to control the default behavior of
other C++ features, so it is important to affect only bit 0 when using it to
modify the behavior in printing base class information. By default, bit 0 of
$cplusplus is cleared.

With bit 0 of $cplusplus set, executing this same command:

p object\K

will result in:

object = class D: public B, public C {

class B: public virtual A {

class A {
private:

a = 'a';
}

private:
b = 'b';

}

class c: public virtual A {

class A {
private:

a = 'a';
}

private:
c = 'c';

}

private:
d = 'd';

}

c++ and the Symbolic Debugger 5-25

5

5

Duplication of base class information is avoided with bit 0 of $cplusplus
cleared only if this really does constitute duplication of information. In the
example shown above, there is really only one data member called a in obj act.
However, if we change the program slightly so that the two public virtual
inheritances are private instead, we will now have two distinct data members
called a. Both of them will always be printed with the K or T format specifier
independent of the value of bit 0 in $cplusplus.

The k and K formats shows data about an object including access declarations
(public, protected, private), inheritance information, and data members.
Information about friends, access modifications, and member functions is not
included.

Object Identification

It is important to consider the case where the expression which evaluates to an
object is a dereference of a pointer to an object. C++ allows a pointer to a
base class type to point to an object of a derived type. For example:

p *object_pointer\t
p *object_pointer\K

If the pointer does indeed point to a derived object, the information for that
object will be printed instead of for the class type which the pointer type
implies. This feature is called object identification. This capability is a
tremendous help when debugging object-oriented C++ code. Since a C++
pointer to an object may point to its declared class or any derived class, it is
not possible to determine its correct type until run-time.

class A {
char a;

public:
A() {a = 'a';}
virtual int f() { return 1; }

};

5-26 C++ and the Symbolic Debugger

class B : public A {
char b;

public:
BO {b = 'b';}
int f() { return 2; }

};

maine)
{

}

A a1;
B b1;
A *ptr;
ptr = &a1;
ptr = &b1;
return 0;

In the program shown above, if we execute the following command just after
ptr has been assigned to point to a1:

p *ptr\k

the result will be something like:

Ox68ff33d8 class A {
private:

a = 'a';
__ vptr = Ox40000018;

}

If we step past the next line which assigns ptr to point to b1 and execute the
same command, the result will be something like:

Ox68ff33cc class B: public A {
private:

b = 'b';
}

c++ and the Symbolic Debugger 5-27

5

5

Class Members

Data Members

Data members of a class object may be viewed and, when appropriate,
modified.

class A {
public:

};

const char c;
static short s;
long 1;
enum { el, e2, e3 } e;
A(char x, long y) c(x) {I = y; s++; e = e1;}

short A:: s = 0;

maine)
{

}

A object('a', 10);
return 0;

For this program, the following data viewing commands may be executed:

p object.c
p object.s
p object.l
p object.e
p A: :s
p A: :e2

As for modifying object members, the following commands are valid:

p object.c = 'b'

P object.s = 2

P object.l = -12

P object.e = A: :e3
p A: :8 = 100

5-28 C++ and the Symbolic Debugger

Of course, an object's data members may also be used in more complex
expressions. For example:

p A::s = object.l * object.c + 14

A member may also be qualified by a class:

p object.A::l

This will be useful in cases where, because of class inheritance, there is more
than one member with the same name.

When the current viewing location is within a member function, the object is
implied (unless the function is static) and data members may be referenced just
as they are in the C++ language itself.

class A {
long i;
static long j;

public:
long get_i 0 ;
static long get_j();
A(long a, long b) {i = a; j = b;}

};

long A: :get_iO
{

return i; II viewing location 1
}

long A: :get_j 0
{

return j; II viewing location 2
}

main()
{

}

A object(1, 2);
long m1 = object.get_i();
long m2 = object.get_j();
return 0;

c++ and the Symbolic Debugger 5-29

5

In this program, if the debugger is stopped at the line marked / / viewing
location 1, all data member expressions that are valid are:

i

A:: i

this->i

this->A:: i

j

A: :j

this->j

this->A: : j

5 If the debugger is stopped at viewing location 2, only j and A: : j are valid
(because get_j is a static function).

Member Functions

The principle operations that may be done on a member function of an object
are:

• call it from the command-line

• use its address as a pointer to a member function within a class (usually for
assignment to a pointer variable)

• determine its address

• print its type

If the name of a member function is used in an expression and a parameter list
is included, the function is called. Calling member functions is described in the
section called "Function Calls." Pointers to member functions are covered in
the section called "Member Pointers."

5·30 C++ and the Symbolic Debugger

If the name of a member function is used in an expression without giving an
argument list, the address of the function is used. For example:

class A {
public:

};

int fO;
short gO;

int A::f() {return 1; }
short A::g() { return 2; }

maine)
{

}

A object;
A *ptr = &object;
return 0;

Executing the command:

p A::f

will print the address of A: : f. These commands are also valid:

p object.g
p object.A::f
p ptr->f
p ptr->A: :g

c++ and the Symbolic Debugger 5-31

5

A function's type may be printed by using either the t or T formats. This is
true for both global and member functions. Given this program:

class A {
class B {
public:

long B::bf() { return 1; }
} b;
class C {
public:

long (B:: *bp) 0 ;
} c;

public:
A() { c.bp = &B::bf; }
long f(long (B: :*C: :*a)(), long);

5 };

long A::f(long (B: :*C: :*p)(), long 1)
{

}

long (B: :*bp)() = c.*p;
return (b.*bp)() + 1;

mainO
{

}

A x;
long i = x.f(&C: :bp, 4);
return 0;

5-32 C++ and the Symbolic Debugger

If this command is executed:

P x.f\t

the result will be:

long A::f(long (B: :*C: :*)(), long)

Object Pointers

If a pointer to a class object is dereferenced, the debugger will attempt to
identify the type of object that it is pointing to. This feature is called object
identification and is described more fully in under "Object Identification" in
the section called "Class Objects".

If a base class pointer is assigned to point to a derived object, the debugger
automatically takes care of all necessary pointer adjustments. For example:

class A {
char a;

public:
AO {a = 'a';}
virtual int f() { return 1; }

};

class B : public A {
char b;

public:
B 0 {b = , b' ;}
int f() { return 2; }

};

maine)
{

}

A a1;
B b1;
A *a_ptr = &a1;
B *b_ptr = &b1;
return 0;

c++ and the Symbolic Debugger 5-33

5

5

The debugger will make appropriate adjustments for the following comJUand:

p a_ptr = &b1

It should be noted that when requesting the type of a class pointer, its
declared type will be printed instead of the type of the object that the pointer
is pointing to. Even after executing the previous command, the following
command:

p a_ptr\t

will print:

A *a_ptr

5·34 C++ and the Symbolic Debugger

Member Pointers

Pointers to class data members and to member functions are supported for
both viewing and modification.

class A {
public:

};

long 11, 12;
long f1();
long f2();

long A::f1() { return 1; }
long A::f2() { return 2; }

maine)
{

A object, *object_ptr = &object;
long A:: *p = &A:: 11 ;

}

long (A: :*pf)() = &A: :f1;
return 0;

Given the program above, the following viewing commands are accepted by the
debugger:

pp

P pf

P obj ect. *p

p obj ect. *pf

p object_ptr->*p

p object_ptr->*pf

When the value of a member pointer is printed, the actual class name and
member are displayed. For the command:

p p

c++ and the Symbolic Debugger 5·35

5

the debugger will respond with:

p = &A: :11

Similarly, for:

P pf

we will see:

pf = &A: :f1

If a pointer has a garbage value for some reason, the debugger will say:

p = <uninitialized>

As for modifying pointers to members, the following are two examples of
commands that are supported by the debugger:

5 • p p = &A: : 12

• P pf = &A: : f2

Casts

Classes can be used in casts. The primary use of this feature is when an
address of a class object is known and the user wants the contents of memory
beginning at that address printed out in the object's class type format.
Consider the following example program:

class A {
public:

long a, b, c;
};

maine)
{

}

A object;
return 0;

5-36 C++ and the Symbolic Debugger

Let's say that during the course of debugging, we know that an object of class
type A can be found at memory location Ox5000. To print the object out in a
structured format, we can use a cast:

p *«class A *) Ox5000)

This may give us something like:

Ox00005000 class A {
public:

}

a = 10;
b = 20;
c = 30;

Note that the keyword class is required. As a shorthand way of doing the
same thing, the command may be given as:

p (class A) Ox5000

In other words, the argument to the cast is an address that is treated as if it
were the location of an object of class type A. In a C++ program, such an
expression would mean "convert the number Ox5000 to a class A object", but
since such conversions are not supported in the debugger, this notation is given
an alternate meaning.

c++ and the Symbolic Debugger 5-37

5

5

Another use of casts is to display a class definition even when an object of that
type does not exist. For example, this command:

p (class A) O\t

will print:

class A {
public:

long a;
long b;
long c;

} <unnamed>

The T format specifier may be used to display base class information if
inheritance is involved. However, an even simpler way of doing this is with
either of these two commands:

p class\t

p class\ T

Here are two examples of commands that deal with members of class objects
that are only known by address:

p «class A) Ox5000).a
p «class A *) Ox5000)->b = 75

Casts must include a class keyword, the name of the class, and optionally a
* to indicate a pointer type. More than one pointer level is not allowed (e.g.
(class A **)). The keyword struct or union may be substituted in place of
class regardless of how the type was actually declared. Because such type
definitions are usually only referred to by their name without the keyword in
C++ programs, this allows some flexibility if the exact declaration type cannot
be immediately remembered.

5-38 C++ and the Symbolic Debugger

The argument to a cast may be any expression which evaluates to a number
(address). However, care must be taken in certain cases or the results will be
other than what was expected. For example:

class A {
public:

int a;
};

class B {
public:

int b;
};

class C : public A, public B {
public:

int c;
};

mainO
{

}

C object;
B *object_ptr = &object;
object.a = 1;
object.b = 2;
object.c = 3;
return 0;

If the debugger is stopped at the return statement and you wish to print the
value of *obj ect_ptr, you would first be inclined to execute this command:

p (class C) object_ptr

This command shows a B type pointer pointing to a C type object.

c++ and the Symbolic Debugger 5-39

5

5

However, instead of getting the expected;

Ox68ff33c4 class C: public A, public B {
public:

c = 3;
}

it gives:

Ox68ff33c8 class C: public A, public B {
public:

c = 0;
}

This is because casts do not do any adjustments when dealing with pointers to
class objects. Such a debugger capability is not supported.

Anonymous Unions

The debugger fully supports anonymous unions. A member of such a union
may be referenced in the same way it is in a C++ program.

class A {
public:

};

union {

};

long 1;
short s;

maine)
{

}

A object;
object.l = 12345678;
union {

};

char c;
double d;

return 0;

5-40 C++ and the Symbolic Debugger

With the debugger stopped on the return statement in the program above,
these commands may be executed:

p object.l
p c = 'a'

If the class object is printed with the command:

p object

we will get:

object = class A {
public:

}

union {

};

1 = 12345678;
s = 188;

c++ and the Symbolic Debugger 5-41

5

/,

5

Displaying Static Data Members
The debugger provides the capability of printing the values of all static data
members of a particular class. The syntax for this command is:

p class_name: :

Consider this example program:

class A {
public:

static long 1;
};

long A:: 1 = 1;

class B: public A {
public:

static long m;
};

long B: :m = 2;

maine)
{

}

B object;
return 0;

5-42 C++ and the Symbolic Debugger

If the location where the debugger is stopped is the return statement, executing
this debugger command:

p A::

displays:

A: :1 = 1

Likewise, this command:

p B::

will result in:

B: :m
A: :1

= 2
= 1

c++ and the Symbolic Debugger 5·43

5

5

Listing Local Variables

Extensions to the 1 command are provided for listing local variables of C+ +
functions. The syntax is:

1 [[[class_name] : :]junction_name [: depth]]

All parameters and local variables of the specified junction_ name, along with
their current values, are printed. For example:

1

1 sort:3

1 : :rotate

1 list: :delete:7

List local variables of current function

List local variables of the most recent invocation of a
function called read_next which is on the stack

List local variables of a function called sort which is
at a depth of 3 on the stack

List local variables of the most recent invocation of a
global function called rotate which is on the stack

list local variables of a function called delete that is a
member of a class called list and is found at a depth
of 7 on the stack

5-44 C++ and the Symbolic Debugger

Listing Functions

The debugger provides extensions to the Ip command for listing functions and
an 10 command for listing overloaded functions.

Listing Functions

The Ip debugger command is used to list all functions whose names start with
the string that is given as its argument. This command's syntax is as follows:

Ip [[class_name] : :] [string]

A string can be qualified with a class_name which means that only member
functions of this class are of interest. For example:

Ip

Ip A· .

Ip

Ip : :m

Ip B: : set_

List all functions

List all member functions of class A

List all global functions

List all global functions which begin with the letter "m"

List all member functions of class B which begin with the
string "set_"

c++ and the Symbolic Debugger 5-45

5

5

Listing Overloaded Functions

The 10 debugger command is used to list all overloaded functions whose names
start with the string that is given as its argument. It works exactly like the
1p command except that a function must be overloaded to be listed. This
command's syntax is as follows:

10 [[class_ name] : :] [string]

A string can be qualified with a class_name which means that only member
functions of this class are of interest. For example:

10

10 A··

10

10 ::m

10 B:: set_

List all overloaded functions

List all overloaded member functions of class A

List all overloaded global functions

List all overloaded global functions which begin with the
letter "m"

List all overloaded member functions of class B which begin
with the string "set_"

5-46 C++ and the Symbolic Debugger

Viewing Functions with the Debugger

The debugger extends the v command (view) to qualify a function name with a
class name. Its syntax is as follows:

[[]]
. [: line_ number]

v class_name:: Junctzon_name I b l
a e _name

Example

1: class decimal {
2: char number[50J;
3: public:
4: decimal(char *);
5: void increment();
6: };

7:
8: decimal::decimal(char *s)
9: {

10:
11:
12: }
13:

char *p1 = number, *p2 = s;
while (*p1++ = *p2++);

14: void decimal::increment()
15: {
16: char *p1 = number;
17: while (*p1++);
18: char *p2 = --p1;
19: while (--p1 >= number) {
20: if (++*p1 <= '9')
21: return;
22: *p1 = '0';
23: }
24: shift: while (--p2 > number)
25: *(p2 + 1) = *p2;
26: *p2 = '1';
27: return;
28: }
29:
30: void increment(long &i)

C+ + and the Symbolic Debugger 5·47

5

5

31: {

32: addone: i++;
33: return;
34: }

35:
36: long decrement (short &s)
37: {

38: s--;
39: return (long) s' 1

40: }

41 :
42: long decrement (long &i)
43: {

44: i--' 1

45: return i' 1

46: }

47:
48: maine)
49: {

50: decimal x = "999";
51: long i = 3;
52: x.increment();
53: increment(i);
54: return o· 1

55: }

Executing the following v commands on the program shown above will result in
the current location becoming the indicated line number:

Command Line Number

v increment

v decimal::increment

v :: increment

v decimal::increment:26

v :: increment: 33

5-48 C++ and the Symbolic Debugger

32

16

32

26

33

Command

v increment:32

v decimal::increment#shift

v : :increment#addone

v increment#addone

Line Number

32

24

32

32

In some cases, the interpretation of the v command argument will depend upon
the current viewing location. For example:

v increment

will refer to the member function of the class decimal if the current location is
in a member function of decimal; otherwise, it will refer to the global function
increment.

If an overloaded function is the argument of a v command, the debugger will
present a menu to allow you to disambiguate the reference. For example, for
the command:

v decrement

the debugger will respond with:

Overloaded function; please choose one:
1 long: : decrement (short &);
2 long ::decrement(long &);
function number?

You can then respond with either 1 or 2 to indicate which one is desired.

c++ and the Symbolic Debugger 5·49

5

5

Breakpoint Commands
Breakpoint commands specifically for C+ + are provided as well as extensions
to other breakpoint capabilities to handle unique C++ functionality. These
include:

• Extensions to the ability to set a breakpoint on a particular function.

• The ability to set a breakpoint on overloaded functions.

• The ability to set a breakpoint on all member functions of a class.

• The ability to set a breakpoint on one or all member functions of a particular
class instance.

Setting a Breakpoint on a Function

The debugger breakpoint command b can be used to set a breakpoint on a
function. The syntax for doing this is as follows:

b [[class_name] : :]junction_name [\count] [{commands }]

where junction_name is the name of the function where the breakpoint is being
set.

It may be optionally qualified by a class_ name to indicate that it is a member
function of the designated class. A function_name prefixed by only the : :
operator indicates that the breakpoint is to be set on a global function of that
name.

For example, this command:

b print

will set a breakpoint on a function called print. In this example:

b : :print

a breakpoint will be set on a global function called print, and for this one:

b A: :print

the debugger will set a breakpoint at the beginning of a function called print
which is a member of class A.

5-50 C++ and the Symbolic Debugger

Should there be more than one class with the given name because of identically
named local classes, the debugger will take scoping, based on the current
viewing location, into consideration to resolve the ambiguity.

If the name is an overloaded function, the debugger will list all of the
possible functions with each preceded by a number to allow the selection of a
breakpoint. For example, if the following breakpoint command is executed:

b print

information similar to the following may be displayed:

Overload function; please choose one:
1 long : :print(short)
2 long ::print(long)
3 long : :print(float)
4 long ::print(complex)
function number?

If number 2 is selected, the debugger will set a breakpoint at the print (long)
function.

c++ and the Symbolic Debugger 5-51

5

5

Setting a Breakpoint on Overloaded Functions

The debugger breakpoint command bpo can be used to set breakpoints on
overloaded functions. The syntax for doing this is as follows:

bpo [[class_name] : :]junction_name [{ commands}]

The breakpoint will be set at function_name. A class_name may be included
to indicate that a breakpoint is to be set only on the designated functions of a
particular class. A junction_name prefixed by only the :: operator indicates
that the breakpoint is to be set on global functions of that name. A set of
commands to be executed when the breakpoint is hit may be included. For
more information on breakpoint command lists, see the section "Breakpoint
Commands" found in the chapter "HP Symbolic Debugger Commands."

If the following breakpoint command is executed:

bpo print

all functions named print, both global and member, would have a breakpoint.

The following command:

bpo : :print

sets a breakpoint at the beginning of every overloaded function with the name
print that is of global scope (that is, not a member function of a class).

This command:

bpo A: : print

sets a breakpoint at the beginning of every overloaded function named print
that is a member of class A. The debugger will take scoping into consideration
when local classes are involved and, based on viewing location, will correctly
resolve any ambiguity should there be more than one class with the given
name.

5-52 C++ and the Symbolic Debugger

Setting a Breakpoint at all Member Functions of a Class

The debugger breakpoint command bpc can be used to set breakpoints on all
member functions of a class. The syntax for doing this is as follows:

bpc [=~] class_ name

If class_ name is the name of a local class and there is more than one class
with this name, the debugger will resolve the ambiguity based on the scoping
implied by the current viewing location.

If -c is given, breakpoints will be set only on member functions of the specified
class and not of any base classes. If -C is given, breakpoints will also be set
on member functions of base classes. The default behavior when neither -c
or -C is given can be configured by setting or clearing a particular bit of a
special variable called $cplusplus. If bit 1 of $cplusplus is cleared, the
bpc command will act as if the -c option were given. To enable this default
behavior execute:

P $cplusplus &= -2

If bit 1 of $cplusplus is set, the bpc command will act as if the -C option were
given. To enable this default behavior, execute:

p $cplusplus 1= 2

The $cplusplus variable also contains bits to control behavior of other C++
features, so it is important to affect only bit 1 when using it to modify the
behavior of the bpc command. By default, bit 1 of $cplusplus is cleared.

When the bpc command sets breakpoints on member functions of base classes,
the debugger will indicate this when listing the breakpoint. For example:

1: Active class functions: myclass and base classes

c++ and the Symbolic Debugger 5-53

5

5

Setting an Instance Breakpoint

Sometimes it is desirable to set a breakpoint on one or more member functions
of a particular class but have that breakpoint recognized only when the
member function is executed for a particular class instance.

The debugger provides a single command to set such a breakpoint which
is called an instance breakpoint. There is the flexibility to set an instance
breakpoint on a particular member function or on all member functions. If all
member functions are chosen, there is the added capability to designate only
those functions which are members of the instance's immediate class or are
members of the immediate class and all its base classes.

If the instance breakpoint is to be for a particular member function, the syntax
IS:

bi instance expression. member_function [\ count] [{commands}]

or:

bi instance_ expression_pointer->membeLfunction [\ count] [{ commands}]

As implied by the names, instance_expression must reduce to an instance
and instance_expression_pointer must reduce to a pointer to an instance.
An optional count and/or commands may be included with the breakpoint.
Please refer to the section "Breakpoint Commands" found in the chapter "HP
Symbolic Debugger Commands" for further explanation of these.

When this type of instance breakpoint is listed, it will be similar to this
example:

1: count: 1 Active instance function (class myclass): object.func

5-54 C++ and the Symbolic Debugger

This includes the count, the class to which the member function belongs, and
the expression used to specify the instance and member function just as it was
gi ven by the user.

If the instance breakpoint is to be for all member functions of an instance, the
syntax is:

bi [=~] instance_expression [{ commands} 1

Once again, the instance_expression must reduce to an instance. In this case,
it is not possible to specify a count with the breakpoint, but commands may
be given which will be executed when the breakpoint is hit. Please refer to
section "Breakpoint Commands" found in the chapter "HP Symbolic Debugger
Commands" for more information on breakpoint command lists.

If -c is given, breakpoints will be set only on member functions of the
instance's class and not of any base classes. If -C is given, breakpoints will
also be set on member functions of base classes. The default behavior when
neither -c or -C is given can be configured by the user by setting or clearing a
particular bit of a special variable called $cplusplus. If bit 2 of $cplusplus is
cleared, this bi command will act as if the -c option were given. To enable this
default behavior execute:

P $cplusplus &= -4

If bit 2 of $cplusplus is set, this bi command will act as if the -C option were
given. To enable this default behavior execute:

p $cplusplus 1= 4

The $cplusplus variable also contains bits to control behavior of other C++
features, so it is important to affect only bit 2 when using it to modify the
behavior of the bi command. By default, bit 2 of $cplusplus is cleared.

The listing for this type of breakpoint will be similar to this example:

1: Active instance functions (class myclass): object

Notice that the class name is included as well as the expression that was used
to specify the instance.

c++ and the Symbolic Debugger 5-55

5

5

When the bi command sets breakpoints on member functions of base classes,
the debugger will indicate this when listing the breakpoint. For example:

1: Active instance functions (class myclass and base classes): object

Because class instances have limited lifetimes, it makes sense that instance
breakpoints have lifetimes to match the instances themselves. When possible,
the debugger attempts to delete an instance breakpoint automatically when
the instance with which it is associated is destroyed. Sometimes this is not
possible because the expression in the bi command involves dereferences,
making it impossible to determine the lifetime of the instance. However, in all
cases where the debugger can make a determination, the breakpoint is removed
automatically. If any instance breakpoints remain when the program being
debugged terminates, they are automatically removed.

5-56 C++ and the Symbolic Debugger

Handling Exceptions
The C++ language provides exception handling for dealing with special
conditions produced by the programmer as well as for dealing with execution
of invalid programming operations (for example, dividing by zero). The
statements used by C++ to deal with exceptions are:

try Groups together statements where a set of exceptions can be
handled.

throw Allows you to force an exception when a certain condition
occurs, and passes the exception on to an exception handler.

catch Designates where execution will continue when an exception of
a specified type is thrown.

For more information on try, throw and catch, see the HP C++
Programmer's Guide (Part Number: 92501-90005).

The topics covered in this section are:

• Using throw and catch

• Stopping on a throw statement

• Executing a throw command list

• Stopping on a catch statement

• Executing a catch command List

• Listing exceptions

• Inhibiting auto-destructors on throw and catch

• Exception command's effect on other commands

Using throw and catch

The following program di vzero . C tests for a divide by zero exception. If the
divisor does equal zero, the throw statement passes a message to the catch
statement which prints the message:

Division by zero is not legal.

c++ and the Symbolic Debugger 5-57

5

5

If the divisor does not equal zero, then the result of the division is displayed on
stdout. Here is the program divzero .C:

#include <stream.h>
#include <stdlib.h>

double divide(double,double);

main(void)
{

double i, j, result;

cout « "Enter the dividend and then the divisor:" « "\n";
cin » i » j;

try
{

result = divide (i,j);

cout « liThe result of dividing i by j is: II « result;
}

catch (const char* vi)
{

}

}

cout « vi « "\n";
exit(i);

double divide (double ai, double a2)
{

if (a2 == 0.0)
throw "Division by zero is not legal. II;

return ai/a2;
}

The program di vzero . C will be referred to in subsequent sections in this
chapter.

5~58 c++ and the Symbolic Debugger

Stopping on a throw Statement

By default, the debugger stops immediately prior to an exception throw. To
toggle this behavior, execute either of these commands:

toggle exception throw

or

txt

When this toggle is enabled (which is the default), program execution will stop
at any actual throw statement. You are then notified that a throw is about to
occur, and you are either given an indication of where (what function and line
number) the exception will be caught, or a warning if the exception will not be
caught.

To try the stop-on-throw feature, compile the program divzero. C with the -g
option, and execute the debugger command (xdb) with the a. out file. The
content of the source file di vzero. C can now be seen in the source window of
the debugger.

To run the program found in the source window, execute:

run

At the prompt:

Enter the dividend and then the divisor:

type first the value 1.0 and a space and then the value 0.0 and press (Return)'
Since, by default, the debugger stops at all throw statements, execution stops
because the program has detected the invalid divisor and initiated a throw.
The source window marker (» is now pointing at the following line in the
source file:

throw "Division by zero is not legal.";

c++ and the Symbolic Debugger 5-59

5

5

You can now execute this command:

p a1

and the value of the variable a1 (the numerator) is displayed in the command
window.

Executing a throw Command List

To define a debugger command-list to be executed when a stop on throw
occurs, execute either of these commands:

exception throw command [command-list]

or

xtc [command-list]

When the exception throw command (xtc) is enabled and a stop on a
throw occurs, the debugger executes the given command-list. The default
command-list is empty (that is, execution is suspended).

In the section "Stopping on a throw Statement," you executed the print
command after stopping at the throw statement. If you would rather have
the debugger print the numerator and then proceed with the throw, use the
following command:

exception throw command {p a1;c}

or

xtc {p a1;c}

This command will stop the program at the throw statement and execute the
commands shown in the command-list.

If the first command in the command-list is Q, the debugger will not print any
messages normally printed upon stopping at a throw statement.

5-60 C++ and the Symbolic Debugger

Stopping on a catch Statement

By default, the debugger stops at the first statement of any catch clause. To
turn this behavior off, execute either of these commands:

toggle exception catch

or

txc

When this toggle is enabled, program execution will stop at the first statement
of any catch clause. You are then notified that a catch has occurred, and you
are given an indication of where (what procedure or function and line number,
if known) the exception was thrown from. The caught object behaves as if it
were declared locally within the catch clause.

To try the stop-on-catch feature, compile the program divzero. C with the -g
option, and execute the debugger command (xdb) with the a. out file. The
content of the source file di vzero. C can now be seen in the source window
of the debugger. Next, in the command window, disable the stop-on-throw
statement by executing the following command:

txt

To run the program found in the source window, execute:

run

At the prompt:

Enter the dividend and then the divisor:

type first the value 1.0 and a space and then the value 0.0 and press (Return)'

Since, by default, the debugger stops at all catch statements, execution will
stop because the program has detected the invalid divisor and initiated a
throw. The throw has been ignored by the debugger (because the toggle
exception throw was executed), but stopping on a catch statement is still
enabled. The source window marker (» is now pointing at the following line in
the source file:

cout « v1 « rr\nll;

c++ and the Symbolic Debugger 5-61

5

5

You can now execute this command:

P vi

and the value of the variable vi (error message) is displayed in the command
window.

Executing a catch Command List

To define a debugger command-list to be executed when a stop on catch
occurs, execute either of these commands:

exception catch command [command-list]

or

xcc [command-list]

When the exception catch command (xcc) is enabled and a stop on a
catch occurs, the debugger executes the given command-list. The default
command-list is empty (that is, execution is suspended).

In the section "Stopping on a catch Statement," you executed the print
command after stopping at the statement just after the catch statement. If
you would rather print the message and then continue through the catch, use
the following command:

exception catch command {p vi;c}

or

xcc {p vi;c}

This command will stop the program at the catch statement and execute the
commands shown in the command-list.

If the first command in the command-list is Q, the debugger will not print the
messages normally issued upon stopping at a catch statement.

5-62 C++ and the Symbolic Debugger

Listing Exceptions

To list the current state of the throw and catch toggles, and command-list
associated with them, execute either of the following commands:

list exceptions

or

Ix

An exceptions listing looks like this:

Stop on throw is enabled.
ThroTN command: {Q; p I'hello \n II ; c}
Stop on catch is enabled.
Catch command: none.
Destruction of auto-objects is disabled.

c++ and the Symbolic Debugger 5-63

5

5

Exception Command's Effect on Other Commands

The exception command affects the Step-into (s) and Step-over (S) commands.
This section explains how these commands are affected by the exception
commands.

Step-Into (5)

Issuing an s command when stopped at a throw statement will cause the
debugger to step into the first statement of the first member-function (compiled
with the -g command-line option) implicitly called as a result of the throw
statement. If a simple type is thrown (that is, no constructors are implicitly
called), the debugger will step directly to the catch clause if it was compiled
with the -g command-line option.

If a statement count is given with the s command, the debugger will proceed
until either that many statements have been executed, a breakpoint is reached,
or the catch clause is reached.

Step-Over (S)

Issuing an S command when stopped at a throw statement will cause the
debugger to step directly to the appropriate catch clause. The debugger will
execute through any member-functions implicitly called as a result of the throw
statement unless a breakpoint is encountered in one of those members.

If a statement count is given with the S command, the debugger will proceed
until either that many statements have been executed, a breakpoint is reached,
or the catch clause is reached.

5-64 C++ and the Symbolic Debugger

Debugging Parameterized Types

This section describes symbolic debugger commands that support C++ code
that uses parameterized types. All of the features covered in this chapter
require that you compile with the symbolic debug option (-g or -g1).

In general, class template names can be used anywhere a class name is valid.
Likewise, function template names can be used anywhere a function name
is valid. If the template name appears with arguments, the given operation
is performed only on that particular instance of the template. On the other
hand, if the template name appears without any arguments, the operation is
performed on all instances of that template.

The HP symbolic debugger has the ability to provide the following support for
parameterized types:

• Reference a class template or template class wherever a location-specifier is 5
valid.

• Set breakpoints in any or all class template member functions (affecting all
instances of that template).

• Set breakpoints in any or all member functions of a single instance of a class
template (affecting only one instance).

• Reference a function template or template function wherever a
location-specifier is valid. Any instances of a function template can be
treated as any other non template function (for example, in a command-line
procedure call). All template functions are included in all "all procedure"
breakpoint commands.

• Set breakpoints at any location in a function template (affecting all instances
of that template).

• Set breakpoints at any location in an instance of a function template
(affecting only one instance).

• Print the definition (type) of any class template or a single instance of that
template.

• Reference a function template instance wherever a non-template function can
be referenced (for example, in a command-line procedure-call).

• List classes or class templates by name (or partial name).

c++ and the Symbolic Debugger 5-65

5

• List function templates or template functions by name (or partial name).

For rnore inforrnation on pararneterized types, see the HP C++ Programmer's
Guide (Part Number: 92501-90005).

Using Parameterized Types

The following program stack. C shows how a generic template for a class
called stack can be created to handle various data types (that is, the type
declaration T in the template can be: int, char, and so forth). Having a
template like this allows you to keep your programs easier to maintain because
you do not have to create separate push (element) , pop () , and top () functions
for the various data types you might consider using in your program. This
program creates a character stack and an integer stack, pushes a value onto
each stack, and then displays the value at the top of these stacks.

#include <stream.h>
template<class T, int size> class stack

{

int stack_pointer;
T buffer[size];

public:
stackO
void push(T element)
T popO
T topO
T pop(int n)

};

main(void)
{

{stack_pointer = -1;}
{buffer[++stack_pointer] = element;}
{return buffer [stack_pointer--] ;}
{return buffer[stack_pointer];}
{stack_pointer -= n;
return buffer[stack_pointer + 1];}

stack<int, 40> stack_int;
stack<char, 20> stack_char;
int stack_int_top, stack_char_top;

stack_int.push(100);
stack_char.push('c');

5-66 C++ and the Symbolic Debugger

}

stack_int_top = stack_int.top();
stack_char_top = stack_char.top();

cout « IITop of the integer stack is: II « stack_int_top;
cout « IITop of the character stack is: II « stack_char_top;

If you want to debug this program, you need to compile it using the -g and +d
compile-line options and then run xdb with the a. out file that is generated.

The program stack. C will be referred to in subsequent sections in this chapter.

Setting Breakpoints in Templates

This section covers setting breakpoints in:

• all member functions of a class template (all instances)

• all member functions of any single template class

• any single class template member function (all instances)

• any single class template member function instance

• function templates

All Member Functions of a Class Template

Template names can be used as normal class names with the existing bpc
command. The syntax for this command is:

breakpoint class class-template-name

or

bpc class-template-name

This causes a breakpoint to be set at the first statement of all member
functions in the given class template in all instances of that template. For
example, you can set a breakpoint at the first executable statement in the
functions stackO, pushO, popO, and topO by using the following command:

bpc stack

C++ and the Symbolic Debugger 5-67

5

Note that a breakpoint will be set in stack<int>: :pop 0 and in
stack<char> : : pop () (as well as all other member functions).

A template name can be used in place of a class name in the bpo command.
For example:

bpo stack: :pop

sets a breakpoint at:

stack<int>: :pop()
stack<int>: :pop(int n)
stack<char>::pop()
stack<char>::pop(int n)

All Member Functions of a Template Class

5 Template class names can be used as normal class names with the existing bpc
command. The syntax for this command is:

breakpoint class template-class-name<args>

or

bpc template-class-name<args>

This causes a breakpoint to be set at the first statement of all member
functions of the given template class.

To set a breakpoint in the member functions of stack<int>, but not in
stack<char>, use the following command:

bpc stack<int>

A template class name can be used in place of a class name in the bpo
command. For example:

bpo stack<int>::pop

sets a breakpoint at:

stack<int> : :pop ()
stack<int>: :pop(int n)

5-68 C++ and the Symbolic Debugger

A Single Class Template Member Function

The following command causes a breakpoint to be set at the given line (default
is the first statement) of the named member function in all instances of the
named template:

breakpoint class-template-name: : membei-function-name [: line]

or

b class-template-name: : membei-function-name [: line]

If the current viewing location is within a member function of a class template,
the b (breakpoint) command will take into consideration that a template
member is being referred to, and the actual breakpoint will be set at the
corresponding location in all instances of that template.

To set a breakpoint at only the push() function, use the following command:

b stack:: push

This will set a breakpoint at the first statement in both stack<int>: :push()
and stack<char>: :push().

A Single Class Template Member Function Instance

The following command causes a breakpoint to be set at the given line (default
is the first statement) of the named member function in only the specific
instance of the named template:

breakpoint class-template-name<aigs>:: membei-func-name[: line]

or

b class-template-name<aigs>: : membei-func-name [: line]

If you only want to set a breakpoint in a given member function of a given
instance, you need to give the full class name. You can use the following
command to do this:

b stack<int>: :push

C++ and the Symbolic Debugger 5-69

5

Function Templates

Function templates work in much the same way as class templates. You can
refer to one or all instances (instances) of the function. For example:

b function-template-name [: line]

If only one instance exists, this command sets a breakpoint at the given line
(default is the first line) in that instance of the named function template.

If several instances exist, you will be given a menu of function templates from
which you can choose one instance. Note that one of the menu options will
allow you to set a breakpoint on all of the instances.

Displaying Template Data

5 This section covers displaying:

• data member values in a template class

• calling a template function

• calling the type of an object declared as a template class

• the type of an template class

Data Member Values in a Template Class

Template classes can be used anywhere a normal class Can be used. The syntax
for the command that displays the value of a data member in a template class
IS:

print class-template-name<args>: : member-name

Calling a Template Function

A template function can be used in a command-line procedure call. This works
just like calling an overloaded routine, and you will be prompted with a menu
to choose exactly which procedure or function to call. The syntax for calling a
template function from the command line is:

print template-function-nameC arguments)

5-70 C++ and the Symbolic Debugger

The Type of An Object Declared as a Template Class

The t format option to the print command recognizes objects which are
instances of a template class. For example:

p object\t

shows the actual type of obj ect as an instance of a class template. Actual
arguments will appear in the appropriate places within the type.

The Template Type of an Object

The rand R format options to the print command recognize objects which are
instances of a template class. When either option is used, the class template
will be shown (R also causes base classes to be printed). For example:

p object\r

or

p object\R

shows the actual type of object as the class template. No actual arguments
relevant to object will appear.

Listing Templates

This section covers the listing of:

• Classes

• Class templates

• Function templates

• Template functions

C++ and the Symbolic Debugger 5-71

5

5

Classes

The listing command in this section lists all classes known to the debugger.
The optional string causes only classes whose names start with thC\.t string to
be listed. The syntax for the command to list all classes is:

list classes [string]

or

lcl [string]

This command lists both regular classes and class templates.

To list instances of a template, use the following syntax:

lcl template-name<

Class Templates

The listing command in this section lists all class templates· known to the
debugger. The optional string Causes only templates whose names start with
that string to be listed. The syntax for the command to list all class templates
is:

list class templates [string]

or

lct [string]

Function Templates

The listing command in this section lists all function templates known to
the debugger. The optional string causes only templates whose names start
with that string to be listed. The syntax for the command to list all function
templates is:

list function templates [string]

or

1ft [string]

5-72 C++ and the Symbolic Debugger

Template Functions

The listing command in this section lists all template functions templates
known to the debugger. The optional string causes only template functions
whose names start with that string to be listed. The syntax for the command
to list all expansions of function templates is:

list template functions [string]

or

1 tf [string]

Note that the lp (list procedures) command will list all functions, including
function templates and template functions.

c++ and the Symbolic Debugger 5-73

5

5

Using Nested Classes
This chapter describes symbolic debugger support for nested classes. The
topics covered in this section are:

• references to static members

• references to class names of an enclosed class

Here is an example of nested classes:

int x;

class A {
static int x;

class B {
static int y;

void funcB(...) II member function
};

void funcA(...) II member function
};

Figure 5-1. Nested Classes

References to Static Members

References to static members or member functions of an enclosing class can be
made without the qualification of the enclosing class name when execution is
suspended within a member function of the enclosed class.

In Figure 5-1, if you are stopped in funcB () , you can reference A: : x simply as
x. The global x must be referenced as : : x.

5-74 C++ and the Symbolic Debugger

References to Class Names of Enclosed Classes

References to class names of enclosed classes can be made when execution is
suspended within a member function of the enclosing class.

In Figure 5-1, if you are stopped in funeA 0, you can reference funeB 0 as
B: : funeB 0 instead of as A: : B: : funeB 0 .

c++ and the Symbolic Debugger 5-75

5

5

Customizing Default Debugger Behavior

It is possible to set the default behavior of certain debugger commands
associated with C++. This is accomplished by setting or clearing certain bits
in a special debugger variable called $cplusplus. The meaning of the bits in
$cplusplus is shown in the following table. The specific commands to set or
clear these bits are also included.

Table 5-2. Bits Contained in the $cplusplus Variable

Bit Cleared Set

bit 0 When printing type or value When printing type or value
information for a class object, any information for a class object, all
duplicate base class information will information will be printed wherever
only be printed once. it logically appears in the object,

p $cplusplus &= -1
even if this requires printing certain
data more than once.

p $cplusplus 1= 1

bit 1 The bpc command sets breakpoints The bpc command sets breakpoints
only on member functions of the on member functions of the
designated class, but not on any base designated class and all of its base
classes it may have. classes.

p $cplusplus &= -2 P $cplusplus 1= 2

bit 2 The bi command sets breakpoints The bi command sets breakpoints on
only on member functions of the member functions of the instance's
instance's class type and not on class type and that class's base
functions of any base class. classes.

p $cplusplus &= -4 P $cplusplus 1= 4

5-76 C++ and the Symbolic Debugger

Sample C++ Debugging Sessions
There are two debugging sessions covered in this section. If these sessions
are run on a Series 600/700/800 computer, the addresses will be similar to
those shown in the example explanations for each session. These sessions
demonstrate the enhanced debugging features of xdb. Each session gives
a small C++ program, sample user input within xdb, and the debugger's
actual output to the terminal. The first program uses a string class to print
and concatenate character strings. The second program demonstrates class
browsing and object identification using the C++ inheritance feature.

Note that there is also an online C++ demo found in the chapter "Getting
Started." This demo guides you through some important debugger features
that can be used to debug C++ programs.

Session One

For this debugging session, the following source code will be used:

1: #include <stream.h>
2: #include <string.h>
3:

4: const rnaxStringLen = 100;
5:
6: class String {
7: int len;
8: char str[rnaxStringLen];
9: public:

10: String();
11: String(char *);
12: String operator + (String &);
13: String operator + (char *);
14: void print();
15: };
16:
17: String::String() {
18: len = 0;
19: }
20:
21: String::String (char * s) {

c++ and the Symbolic Debugger 5-77

5

5

22: len = strlen(s);
23: for (register int i = 0; i < len; i++)
24: s tr [i] = s [i] ;
25: }
26:
27: void String: :print() {
28: for (int i = 0; i < len; i++)
29: cout « str[i];
30: cout« endl;
31: }

32:
33: String String: : operator + (char * s) {
34: String rslt(*this);
35: int sLen = strlen(s);
36:
37:
38:
39: }

40:

for (int i = 0; i < sLen; i++)
rslt.str[rslt.len++] = sCi];

return rslt;

41: String String: : operator + (String & t) {
42: String rslt(*this);
43: for (int i = 0; i < t.len; i++)
44: rslt.str[rslt.len++] = t.str[i];
45: return rslt;
46: }

47:
48: int stringLenCheck(int newlen) {
49: if (newlen > maxStringLen) {
50: cerr « "string length exceeded" « endl;
51: return 0;
52: }
53: return 1;
54: }
55:
56: String s("Here)s a global String.");
57:
58: maine) {
59: String s;
60: cout« "\n--printing null String" « endl;
61: s.print();
62:

5-78 C++ and the Symbolic Debugger

63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83: }

String t("!");
cout « "\n--printing single character String" « endl;
t . print 0 ;

String u = String(I1 Hello world");
cout « "\n--printing multi-character String" « endl;
u.printO;

s = u + t;
cout « "\n--appending i-char String to multi-char String l1 « endl;
s . print 0 ;

cout « "\n--printing string append expressionl1 « endl;
(u+t) .printO;

cout « "\n--appending character string to Stringl1 « endl;
u = u + ". Greetings from California!";
u.printO;

return 0;

The source code is assumed to be in the file stringapp. C. Once stringapp. C
compiles without errors, recompile and automatically link the program using
the -g option to generate debugging information tables to provide the debugger
with the names and addresses of variables, labels, and source lines. For
example, execute the following command:

CC -g -0 stringapp stringapp.C

You are now ready to start the debugger. To do so, execute this command:

xdb stringapp

From this point on, enter commands on the line following the debugger's
prompt >. To run the sample session, enter the commands shown in computer
font. Note that the debugger's response is also shown.

To set a breakpoint at line 65, execute the following debugger command:

>b 65

c++ and the Symbolic Debugger 5-79

5

The debugger displays the following information:

Overall breakpoints state: ACTIVE
Added:

1: count: 1 Active: :main(): 65: t.print();

After the breakpoint has been entered, begin the program by executing the
following command:

>r

The debugger displays a response similar to the following:

Starting process 28575: Ilstringappll

--printing null String

5 --printing single character String

breakpoint at Ox00001510

To display the value of the String object s which is local to mainO, enter the
following debugger command:

>p s

At this breakpoint, the contents of object s are a null String and the results
displayed are as follows:

s = class String {
private:

len = 0;
str =

}

1111. ,

To display the value of the global String object which is initialized at line
56, prefix the C++ scope operator :: to the String object s. For example,
executing this debugger command:

>p ::s

results in the following information being displayed:

5·80 C++ and the Symbolic Debugger

s = class String {
private:

len = 23;
str = "Here's a global String.";

}

To display the type of object s as declared, use the t format specifier. This
specifier displays the data members with their types as well as the member
functions and their prototypes. For example, executing this debugger
command:

>p :: s\t

results in the following information being displayed:

class String {
private:

long len;
char str[100J;

public:

} s

StringO;
String(char *);
String operator+(String &);
String operator+(char *);
long print();

c++ and the Symbolic Debugger 5-81

5

5

To set a breakpoint at the constructor String, use the following debugger
command:

>b String::String

Note again the use of the class scope operator to indicate that the function is a
member of the class String. In this case, the constructor name is overloaded.
When you enter the name of an overloaded function, the debugger lists all
overloaded functions with the name String and asks you to select the one you
want as shown:

Overloaded function; please choose one:
1 String: :String();
2 String: :String(char *);
function number? 2

At the prompt, enter your selection 1 or 2. For the purpose of this example,
type 2 and press [Return)' This causes the following information to be displayed:

Overall breakpoints state: ACTIVE
Added:

2: count: 1 Active String::String(char *):21:String: :String(char * s) {

Because it is known that the function is overloaded, a breakpoint can be set at
each of the String constructors by executing the command:

>bpo String::String

This causes the following infonnation to be displayed:

Overall breakpoints state: ACTIVE
Added:

3: Active overloaded functions: String::String

To continue executing the program at line 65, execute this debugger command:

>c

This causes the following information to be displayed:

breakpoint at Ox00001104

Note that the breakpoint located at the constructor String: : String (char *)

has been reached.

5-82 C++ and the Symbolic Debugger

With the debugger stopped in the member function String (char * 8),
execute this debugger command:

>p 8

which displays the value of the function argument 8 that was passed to it in
line 67. For a variable of type char *, the name of the variable and the value of
the string pointed to are displayed.

8 = "Hello world"

If the following step command, is executed twice:

>8

the program will stop at line 23.

To display the value of the data member len, execute this debugger command:

>p len

Note that the following command could also be used:

>p thi8->len

but since the debugger supports referring to the data members of a class object
without qualification while within a member function, the first command is
simpler. When either of these commands is executed, the following information
will be displayed:

len = 11

The request for an immediate breakpoint upon return from the current
function can be accomplished with the breakpoint uplevel command:

>bu

Once this command is executed, the following information is displayed:

Overall breakpoints state: ACTIVE
Added:

4: count: 1 Active ::mainO: 68: cout « "\n--printing multi-character String" « endl;

To continue execution at line 23, execute this debugger command:

>c

c++ and the Symbolic Debugger 5-83

5

5

When the above command is executed, the current function is exited and the
breakpoint at line 68 is reached.

breakpoint at Ox00001528

To request a breakpoint at the member function for the overloaded operator in
the class String, use the following debugger command:

>b String::operator+

The debugger prompts you to select the desired function as seen below.

Overloaded function; please choose one:
1 String String: :operator+(char *);
2 static String String: :operator+(String &);
function number? 1

In response to the above prompt, 1 is selected. The following information is
displayed:

Overall breakpoints state: ACTIVE
Added:

5: count: 1 Active String: :operator+(char *): 34: String rslt(*this);

Note that the v (view) command also supports overloaded functions.
Therefore, when the following command is executed:

>v String::operator+

The debugger will give the same prompt as shown above for choosing the
overloaded function. Upon selecting 1, the display will show the source code
centered around line 34.

To return the viewing location to the point of execution, use this debugger
command:

>v

To request an instance breakpoint at the member function print, execute the
following debugger command:

>bi s.print

5-84 C++ and the Symbolic Debugger

This results in the following information being displayed:

Overall breakpoints state: ACTIVE
Added:

6: count: 1 Active instance function (class String): s.print

To continue execution at line 68 and reach the instance breakpoint
String: :print at line 28, execute this debugger command:

>c

The following information is displayed:

--printing multi-character String
Hello world

--appending 1-char String to multi-char String

breakpoint at Ox000011a8

The class object s can be printed using the following debugger command:

>p *this

The class object's contents are displayed as follows:

Ox68ff3510 class String {
private:

len = 12;
str = IIHello world! It ;

}

The V (View) command displays the source at the current point of suspension
at the depth in the program stack you specify. To view where the currently
executing function will return, the following command will display the return
point, in this case, line 75.

>V 1

To continue execution at line 28, execute this debugger command:

>c

c++ and the Symbolic Debugger 5-85

5

5

The debugger displays:

Hello world!

--printing string append expression
Hello world!

--appending character string to String
breakpoint at Ox00001280

A breakpoint has now been reached at line 34 in:

String: :operator+(char *s)

To print the value of the function argument s, passed from line 79, execute this
debugger command:

>p s

The information printed is:

s = II. Greetings from California! 11

To print the class object, execute the command given below. Note that for an
overloaded binary operator such as +, this corresponds to the left-hand side of
the operator expression.

>p *this

The class object information displayed is:

068ff3430 class String {
private:

len = 11;
str = 11Hello world II ;

}

To continue execution at line 34, execute this debugger command:

>c

5-86 C++ and the Symbolic Debugger

The program will finish running. Once the scope of mainO is exited, the
instance breakpoint associated with s becomes invalid and is removed and the
following information is displayed:

Hello world. Greetings from California!
Child process terminated normally
Deleted:

6: count: 1 Active instance function (class String): s.print

To quit the debugger, execute this debugger command:

>q

and respond with y to the following prompt:

Really quit? y..

The first session is ended.

c++ and the Symbolic Debugger 5-87

5

5

Session Two

For this debugging session, the following source code will be used:

1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21 :
22:
23:
24:
25:
26:
27:
28:
29:
30:
31 :
32:
33:
34:
35:
36:
37:

1***1
1* Program to demonstrate class browsing *1
1* and object identification *1
1***1

#include <stream.h>

class Base {
int base_i;

public:
Base(int x);
virtual void print();

};

Base: :Base(int x)
{

}

void Base: :print()
{

cout « "base i = " « base i« "\n";
}

class Inherit : public Base {
int inherit_i;

public:

};

Inherit(int a , int x);
void print () ;

Inherit::Inherit(int a, int x)
{

}

void Inherit::print()

Base(x)

5-88 C++ and the Symbolic Debugger

38: {
39: Base::print();
40: cout « " inherit i " « inherit i « "\n";
41: }
42:
43: mainO
44: {
45:
46: Base x(10);
47: Inherit y(20,30);
48:

49: Base* bp = & x;
50:
51: Inherit* ip = & y;
52:
53:
54:

cout « "base pointer points to derived - invoking virtual print\n";

55: bp = ip;
56:
57: bp->print();
58:
59: return 0;
60: }

The steps described in "Session One" should be followed to compile the
program and enter the debugger. From this point on, enter commands on the
line following the debugger's prompt>. To run the sample session, enter the
commands shown in computer font. Note that the debugger's response is also
shown.

c++ and the Symbolic Debugger 5-89

5

5

To set a breakpoint at line 51, execute the following debugger command:

>b 51

This causes the following information to be displayed:

Overall breakpoints state: ACTIVE
Added:

1: count: 1 Active : :main(): 51: Inherit* ip = & y;

Next, set a breakpoint at line 57 by executing the following command:

>b 57

The following infornlation is displayed:

Overall breakpoints state: ACTIVE
Added:

2: count: 1 Active : :main(): 57: bp->print();

Execution of this debugger session is started by executing this debugger
command:

>r

The process ID and breakpoint address are displayed as follows:

Starting process 4001: t1a.outtl

breakpoint at Ox00001264

Note that the breakpoint set at line 51 has been reached.

To display the type of the object pointed to by Base, execute this debugger
command:

>p *bp\t

5-90 C++ and the Symbolic Debugger

At this breakpoint, bp points to object x of class Base. Therefore, the debugger
will display class Base with all its data and function members. The debugger
also displays the virtual table pointer __ vptr and a special hidden member
function Base *Base (const Base &) which is used for copying across members.

class Base {
private:

long base_i;
public:

Base(long);
inline Base *Base(const Base &);
virtual long print();

private:
__ mptr * __ vptr;

} <unnamed>

To display the object pointed to by pointer bp, execute this debugger
command:

>p *bp

This will display the object x of class Base with current values of data
members including the virtual table pointer.

Ox68ff3288 class Base {
private:

base_i = 10;
__ vptr = Ox40000078;

}

c++ and the Symbolic Debugger 5-91

5

Next, continue execution at line 51 by executing this debugger command:

>c

The breakpoint is reached at line 57.

breakpoint at Ox00001288

Note that at line 55, the Base pointer bp is assigned the pointer ip which is a
pointer to class Inherit. Thus, bp now points to object y which is an object of
the derived class Inherit.

The following debugger command:

>p *bp\t

is the same command as was previously used to display the type of the object
pointed to by bp. However, in this case, the debugger correctly identifies

5 the type as class Inherit by using its object identification capability. After
executing this command, the following information is displayed:

class Inherit: public Base {
private:

long inherit_i;
public:

Inherit (long, long);
inline Inherit *Inherit(const Inherit &);
virtual long print();

} <unnamed>

The format specifier \ t only displays the members of the immediate class in
an inheritance structure. To display members of all parent classes the format
specifier \ T needs to be specified with the print command as follows:

>p *bp\T

5-92 C++ and the Symbolic Debugger

Executing this command causes the following information to be displayed:

class Inherit: public Base {

class Base {
private:

long base_i;
public:

Base(long);
inline Base *Base(const Base &);
virtual long print();

private:
__ mptr * __ vptr;

}

private:
long inherit_i;

public:
Inherit (long, long);
inline Inherit *Inherit(const Inherit &);
virtual long print();

} <unnamed>

To print the object currently pointed to by bp, execute this debugger
command:

>p *bp

The debugger again correctly recognizes that bp is currently pointing to object
y of class Inherit and displays the current values of its data members. This
command only prints the values of data members of the immediate class and
not of the parent classes. The information displayed is as follows:

Ox68ff3314 class Inherit: public Base {
private:

inherit_i = 20;
}

If in the above case the values of data members of parent classes are needed,
the format specifier \K must be added to the p (print) command as follows:

>p *bp\K

c++ and the Symbolic Debugger 5-93

5

5

Executing this command causes the following information to be displayed:

Ox68ff327c class Inherit: public Base {

class Base {
private:

base_i = 30;
__ vptr = Ox40000060;

}

private:
inherit_i = 20;

}

Execution of this session can be continued at line 57 by executing this debugger
command:

>c

The output of the program is shown by the debugger and the program finishes
running.

base pointer points to derived - invoking virtual print
base_i = 30
inherit_i = 20
Child process terminated normally

To exit the debugger, execute this debugger command:

>q

and respond to the prompt with a y as shown:

Really quit? y

Note that the object identification capability of the HP C++ debugger
demonstrated in this session will be very useful for debugging object oriented
C++ applications. However, the debugger supports object identification
only for classes with virtual functions. The debugger uses the address of the
virtual table as a signature in identifying the correct class of an object. Object
identification vv'ill not work for classes without virtual functions.

5-94 C++ and the Symbolic Debugger

6
Debugging Shared Libraries

Shared libraries are a feature of HP- UX that allow multiple running processes
to share a single copy of common code, resulting in smaller executable files and
reduced memory usage. By their very nature (run-time binding), they have
the potential to improve the application or library developer's productivity by
shortening the recompile/relink cycle.

In support of the library developer, the HP Symbolic Debugger has the ability
to debug programs that have been linked with shared libraries, as well as
the shared libraries themselves. Source-level debugging of shared libraries is
fully supported, with a full set of debugger capabilities available to the shared
library developer:

• View shared library sources
• Set breakpoints in a shared library
• Single-step library code in source or disassembly mode
• Set or examine data associated with the library
• Call shared-library procedures from the command line
• Debug shared libraries that are dynamically loaded with shLload(3X).
• Examine core files produced by programs linked with shared libraries.
• Choose which libraries are of interest to minimize debugger overhead.

This chapter covers the following topics:

• Enabling the debugging of shared libraries
• How shared libraries are located by the debugger
• The static and run-time environments within the debugger
• Shared library symbols and how they are bound by the debugger
• Debugging shared libraries in an adopted process (xdb -P)
• Summary of extended debugger commands
• Special considerations

Debugging Shared Libraries 6-1

6

6

Enabling the Debugging
of Shared Libraries
This section covers how shared libraries are created and how the debugger
invokes them.

Creating the Library

Shared libraries are created by the linker with the ld(l) -b option. They are
composed of one or more relocatable object files compiled with the +z or
+2 ("PIC") compiler options. The -g compiler option can also be used to
create symbolic debug information for all or part of the shared library (See
also "Creating a Program with Debugger Information" in Chapter 1, and
"Preparing the Program" in Chapter 3).

Note Debugging a program that uses shared libraries requires that
the program be linked with /usr/lib/ end. 0, regardless
whether any portion of the program was compiled with -g.
Otherwise, the debugger cannot determine shared-library
addresses or track library load/unload operations. Note that if
ld(l) is used for the final link of a program, /usr/lib/end.o
must be explicitly mentioned on the ld(l) command line. If a
compiler is used for the final link, using -g is sufficient.

Naming a Shared Library

Because of limitations in the debugger command parser, certain characters
will not be recognized in a shared-library basename, although they may be
valid HP-UX file names (see glossary(9) in the HP-UX Reference). Only the
following non-alphanumeric characters are recognized correctly:

% = +

The full directory path of a shared library, excluding the basename, may be
any legal HP- UX path name. For example:

/mnt/project/libs/lib-myshare.sl

6-2 Debugging Shared Libraries

where /mnt/proj ect/1ibs is the legal HP- UX path name and
1ib-myshare. sl is the shared-library file name. Note that the full directory
path is not used when referencing symbols.

Locating Shared Libraries

A shared library is attached to a process shortly after the process is created, or
when a shared library is programatically loaded with shLload{3X). This will be
referred to as the load time for a given library, as opposed to link time, when
the program is statically linked.

Shared libraries are located by the dynamic loader with either an absolute
filename or a search path (ordered list of directories). For a more detailed
discussion on library location and searching, refer to the section titled "Linking
a Program with Shared Libraries" in the manual Programming on HP- UX
(B2355-90026).

Briefly, load-time library search path information is initially provided to ld(1)
by you when the program is linked:

• The library's name which is one of the following:

o -llibrary which takes into account a search path that includes all
-Ldirectory arguments and the environment variable LPATH

o A complete path name.

• The +b path_list option.

• The +s option, combined with the load-time value of the environment
variable SHLIB_PATH.

• Both +b and +s, with their relative order on the Id(1) command-line defining
their precedence.

The library search path used by the dynamic loader and the debugger is then
found within the environment (SHLIB_PATH) or the program itself.

The xdb -llibrary option need only specify the name of the library as given
to the linker (that is, without a full path, "lib" prefix, and trailing. 81). For
example, -lXm_debug. The debugger will attempt to locate the library using
the same information available to the dynamic loader.

Debugging Shared Libraries 6-3

6

6

Explicitly loaded libraries (shLload(3X)) may be abbreviated with the
debugger -1 option if they can be located through the search path information
available in the program itself (as provided to the linker). Otherwise, an
absolute path is required.

The debugger lsI (list shared libraries) or mm (memory map) commands
can be used to verify what path is actually being used by the debugger to
locate a library.

Invoking the Debugger

The xdb -1 command-line option enables full symbolic debugging of any or all
of the shared libraries used by the program being debugged. If you choose not
to use this option, the -s option enables minimal (disassembly) level debugging
of all shared libraries. And it also minimizes debugger memory requirements.
However, you may later enable source-level debugging for any library if you so
choose (see "Explicit library references" below), as long as the -s option has
been given.

If neither the -s or -1 options are used, breakpoints and single-stepping are
disallowed in any shared library and the debugger steps "over" shared-library
calls as if they were system calls. However, shared-library disassembly code
may still be viewed.

-1 library Pre-loads the symbolic debug information (and linker
symbols) in library into the debugger. library may be
implicitly loaded by the program (linked in with the ld(l)
-1 option), or explicitly loaded by shLload(3X).

If library is not a complete path name, it will be searched
for using the same rules as the dynamic loader (see the
previous section). The trailing. sl is optional in library, as
well as the "lib" prefix (e.g. /usr/lib/XiiR4/1ibXii. sl
can be referred to as -lXii). The. sl suffix is assumed if it
is not provided.

Note that the space between -1 and library is optional.

6-4 Debugging Shared Libraries

-1 ALL Pre-loads the symbolic debug information into the debugger
for all shared libraries that are implicitly loaded by the
program. Additional -1 options are required for libraries
that will be explicitly loaded with shLload(3X).

Each use of the -1 library option loads the symbolic debug information for
the named library into the debugger, making all symbols in that library
(specifically, that portion of it that was compiled with -g) available to you
when you are debugging the program.

Debugging Shared Libraries 6-5

6

The Debugger Environment (Symbol Binding)

The debugger follows the rules used by the dynamic loader for referencing
(binding) symbols. The "load" ordering of the shared libraries used by a
program defines the mapping of symbols to locations in the address space, and
at any given point in the program's execution, any symbol normally has one
and only one definition. The section titled "Linking a Program with Shared
Libraries" in the manual Programming on HP- UX (B2355-90026) provides
additional information on symbol binding semantics.

The debugger Isl (list shared libraries) command enumerates the set of
all shared libraries known to the debugger, including:

• All implicit libraries (linked with ld(1) -1)

• All libraries that are dependents of implicit libraries (Series 600/700/800
only)

• All dynamically loaded (explicit) libraries that have already been loaded with
shl_load()

• All other libraries listed with the debugger's -1 option (in anticipation of a
6 shl_loadO).

For each library, the Isl command also lists the following information:

• The library's basename, without the trailing. sl, that must be used to
qualify symbol names

• \tVhether the library is currently loaded into the process (mapped)

• Whether the library contains any symbolic debug information

• If symbolic debug information for the library has been loaded into the
debugger.

When there is no child process executing, the load order for all implicit
libraries is known to the debugger. Libraries that are explicitly loaded with
shLload(3X) are not known to the debugger unless they have been identified
with the xdb -1 option, in which case they are assumed to be at the "end" of
the load ordering. The Isl command lists libraries with this ordering.

6-6 Debugging Shared Libraries

Note To facilitate viewing disassembly code when no child process
is running, temporary ("dummy") load addresses are assigned
to each library. This is also true of any library that has been
shl_unloadOed, or otherwise is not currently mapped when
a process is running. For this reason, numerical (absolute)
addresses should not be used to set breakpoints in disassembly
mode. Symbolic addresses (with an offset) should be used
instead.

When a process is executing, the dynamic loader maintains a search (bind)
order and assigns actual addresses to all shared libraries currently mapped into
the process. This information is also known to the debugger, and is reflected by
the mIn (memory map) command. This command shows the true bind order. It
also shows where each library was mapped in the address space.

Explicitly loaded shared libraries (shLload(3X)), and their binding precedence,
are automatically tracked by the debugger.

When you reference a symbol (without @-qualification; see "Shared Library
Symbols" below), either the static load order or the run-time bind order,
depending on whether the child process is running, is used to locate the
definition (that is, the "meaning") of that symbol. Should the bind order
change during execution as a result of a shl_loadO or shl_unloadO, a
symbol's definition may also change.

Note The debugger has no knowledge as to whether a given symbol
is exported from a shared library, and all globally-scoped
symbols in a shared library are visible to the debugger,
regardless of whether they have been "hidden" with the
ld(1) -h option or explicitly exported with the ld(1) +e or -E
options.

Debugging Shared Libraries 6-7

6

6

Shared Library Symbols

Symbols defined within a shared library are displayed by the debugger as:

symbol@libname

where libname is the basename of the library without the trailing . s1. Symbols
defined in this manner are considered to be "@-qualified." For example,
printf@libc. libname is always case sensitive, and is not affected by the tc
(toggle case) comn1and.

When referencing a symbol, the library qualification (@libname) is not usually
necessary if the current bind order and other scoping rules currently in effect
are sufficient to identify the symbol. The types of symbols that may be
@-qualified in this manner are: globally scoped vars, procedures, and C++
class names. lVlost other symbols (such as local variables) are identified by the
scoping rules at the current viewing location.

In circumstances where a symbol is defined in the global scope of more than
one shared library, the user may override the normal binding rules by explicitly
@-qualifying the sYlnbol. If the main program contains the desired definition,
the program name (as shown with the mm or lsI commands) may be used
following the @ character.

Two symbols (TMEM and DMEM) are predefined for shared libraries that were not
listed with the -1 invocation option and have not been explicitly referenced.
Their purpose is discussed in more detail in the section "Debugging Shared
Libraries in Disassembly Mode" later in this chapter.

Note If one of the allowable non-alphanumeric characters (as listed
previously in the section "Naming a Shared Library") is present
in the library's libname or must be used as a language operator
on a shared library symbol, a qualified reference must be
delimited by parentheses to avoid conflict. For example:

>p (structvar@mylib-v1.1).flags = Ox104

6-8 Debugging Shared Libraries

Explicit Library References

To minimize the affect on debugger performance and memory requirements, the
debugger does not pre-load the symbolic debug tables (or linker symbol table)
of a shared library unless you have listed it with the -1 invocation option.
Only the minimal information (name, base addresses, etc.) is initially available
for each library.

If -1 has not been used for a given library and -1 ALL was not used, you may
at any time during the debug session force the debugger to load symbolic
debug information for the library by making a @-qualified reference to a symbol
in that library. The lsl (list shared libraries) command can be used to
verify that this is necessary. Libraries containing symbolic debug information
that has not yet been loaded in to the debugger will be indicated with:

Name Mapped SymDebug Path

basename ?? Not loaded fulLpath_name

where basename is the file name of the shared library, fulLpath_ name is the
path name of the shared library, and ?? is either Yes or No.

Note that if no -1 options were used, the -s option is required to enable
single-stepping or setting breakpoints in any shared library.

Note If the user forces the loading of a library's symbolic debug
tables, the debugger will attempt to run the debug preprocessor
(pxdb) on the library if it has not already been done (ld{1)
usually does this). This will fail if the library has already been
mapped into the process' address-space. Should this failure
occur, the user must end the debugger session and manually
invoke /usr/bin/pxdb on the shared library in order to debug
it at the source level.

If the program being debugged stops within a shared library for any reason or
a code location within a shared library is viewed in disassembly mode, it will
load the symbolic debug information for that library if it is available. This will
happen even if the user has not used -lor an @-qualified symbol to previously
reference the library.

Debugging Shared Libraries 6-9

6

6

Debugging Shared Libraries in Disassembly Mode

Shared libraries that were not compiled with the -g compiler option may still
be debugged in disassembly mode (see the td (toggle disassembly) command
in Chapter 4).

Symbolic addresses (linker symbols) defined in a shared library may also be
@-qualified with a library name, and the -1 option will preload the linker
symbol table.

(Series 600/700/800 only) Dynamic symbols defined with shLdefinesym(3X)
are also tracked by the debugger. They may be referenced like any other
linker symbol. Note that no symbolic debug information is available for these
dynamic symbols. However, the debugger 11 (list labels) command can be
used to list them. Their value when referenced is their address.

If the -1 option was not used when invoking the debugger, and no explicit
@-qualified references have been made to symbols in a library, the following
(dummy) linker symbols are used by the debugger to denote symbolic addresses
within the library:

TMEM [+offset] @libname

DMEM [+offset] @libname

TMEM and DMEM correspond to the base address of the text and data segments
in each shared library, respectively. Note that the user cannot reference these
symbols directly. They are used in circumstances where the symbols for a
library have not been loaded by the debugger, but addresses in the library
are to be displayed (such as in a stack trace). Should you see TMEM@libname
and desire more information, use a command such as 11 @libname to force the
loading of symbols for that library.

6-10 Debugging Shared Libraries

Summary of Extended Debugger Commands

The general syntax for locations (for example, procedures) includes the
qualification with @libname. This applies to all debugger commands which
accept a location as an argument, such as b (breakpoint), v (view), and p
(print).

In addition, some commands also accept "string@libname"" to only allow
matching of strings within a specific library. Also, some commands accept
"@libname" as an argument to allow reference to the entire library.

Commands which accept @libname will also accept @progname to denote
the main program itself. progname is the basename of the program being
debugged, as shown by the rom or lsI commands.

The following commands accept @libname:

• Breakpoint status commands: The commands Ib, db, ab, and sb accept
@libname to specify that all simple breakpoints in the named library are to
be listed, deleted, activated, or suspended. This allows the ability to control
all breakpoints in a given library as a single group.

• All-procedure breakpoint commands: the commands bp, bpt, and bpx accept 6
@libname to indicate that all debuggable procedures with the named library
are assigned an all-procedure breakpoint. The newly added all-procedure
breakpoints are in addition to any all-procedure breakpoints currently set in
the program or other shared-libraries.

Conversely, the dp, Dpt, and Dpx commands also accept @libname to delete
the all-procedure breakpoints only in the nan1ed library.

• List commands: The following commands accept @libname to list only those
objects within the named library: If, 19, 10, Ip, leI, let, 1ft, and 1 tf.

• Shared library specific commands: The rom command accepts @libname (or
simply libname) to restrict the memory-map report to the named library.

The s command allows stepping into a procedure call to a shared library, even
if the program was linked with

Id -B deferred ... (which is the default)

and the call has not yet been bound.

Debugging Shared Libraries 6-11

6

Debugging Shared Libraries
in an Adopted Process (xdb -P)
When the xdb -s or -1 option is used, the debugger will normally use a private
data switch to cause libraries to be mapped private to the process (unshared,
writable). When the r or s command is used to start the program, the switch
is set in the process after it is created. However, if a process is adopted with

xdb - P pid progname

the debugger has no opportunity to set the special switch before process
initiation. Therefore the switch must be set in the file instead. The HP- UX
command /usr/bin/pxdb is used to set this switch.

The primary function of /usr/bin/pxdb is to preprocess the debugging
information provided by the compilers before xdb uses it. This command is
normally invoked by ld(1) as part of a compilation with the -g option. It also
provides the means for setting the "map private" switch in the program.

The syntax used to enable debugging of shared libraries in adopted processes
IS:

where:

on or
enable

off or
disable

status

These options enable shared library debugging of the adopted process
by setting private data switches within the file.

These options disable shared library debugging of the adopted
process by clearing private data switches within the file.

This option reports whether:

1. Shared-library debugging is enabled or disabled

2. Symbolic-debug information is present

3. The symbolic-debug information has already been preprocessed.

The file is not changed when this option is given. If all three
conditions are true, an exit code of 0 is returned, otherwise 1.

6-12 Debugging Shared Libraries

With any of the toggle options (on, enable, off, disable), if the executable
file contains symbolic-debug information which has not already been
preprocessed, pxdb will process it as well as enabling or disabling shared library
debugging. Note that for any of the toggle options, file must be writable by the
user. In case of failure (such as file having been linked with an old version of
/usr/lib/ end. 0), diagnostics are printed and a non-zero exit code is returned.

Once pxdb -s enable program has been performed, it may then be executed
and later adopted with

xdb - P pid -1 shlib ... program

Note Enabling shared library debugging of adopted processes with

pxdb -s enable

causes all shared libraries to be mapped private rather than
shared, regardless of whether the program is to be debugged or
not. This affects the amount of swap required by the process.
For this reason, large applications should be disabled if they
are to be executed without the expectation of being debugged.

Debugging Shared Libraries 6-13

6

6

Special Considerations
For more information on special considerations, read the section "Shared
Library Limitations" in Appendix F in this manual.

• Debugging a program that uses shared libraries requires the program be
linked with /usr/1ib/ end. 0, regardless of whether any portion of the
program was compiled with the -g compiler option. Otherwise, the debugger
cannot deternline shared library addresses or track library load/unload
operations. Note that if ld(l) is used for the final link of a program,
/usr/1ib/end.o must be explicitly mentioned on the ld(l) command line. If
a compiler is used for the final link, using -g is sufficient.

• Full shared library debugging capabilities, including core file support, require
that the most current versions of the files /lib/ crtO . 0 (for Series 300/400
FORTRAN use /lib/frtO.o) and /usr/1ib/end.o be linked with the
program. Consequently, programs linked on earlier releases may restrict the
use of some debugger features relating to shared libraries.

• The debugger assumes that any shared library listed with the -1 option ends
with . sl unless a complete path name is provided.

• Using an @-qualified symbol in an expression where one of these characters

% = +

is in the library's basename, or where one of these characters must be applied
as an operator, requires the entire symbol to be delimited by parentheses:
Csyrnbol@libnarne) .

• Shared libraries support a versioning mechanism which allows older copies of
procedures to be retained in a library, even when the procedure has been
changed. The debugger can only support source-level debugging of the most
recent version of a procedure in a shared library, although disassembly level
debugging is possible on older versions.

• If a shared library is modified between successive invocations of the child
process from the debugger (successive r commands), the debugger will print
a warning, discard any breakpoints currently set within that library, and
reload the symbolic debug information if it was previously loaded.

• Shared libraries that are loaded with shLload(3X) can be located by the
debugger before they are actually loaded if the user identifies the library to

6-14 Debugging Shared Libraries

the debugger with the -1 option. If a complete path name is not provided,
the debugger will attempt to locate the library using path information
available from the main program. If the linker +8 option was used, the
environment variable SHLIB_PATH helps to locate shared libraries .

• Shared libraries that are loaded with the BIND_FIRST modifier to
shLload(3X) may not be properly bound by the debugger before a child
process is run. Symbols in such libraries should always be @-qualified to
ensure proper binding.

Debugging Shared Libraries 6-15

6

A
Messages

This appendix lists messages that you may encounter while using HP Symbolic
Debugger. Self-explanatory messages and those which relate to syntax errors,
such as missing or extraneous characters in commands, are not listed in this
appendix.

To assist you in finding the solution to a problem, several messages may be
displayed. Look up each message in this appendix to get complete information
about the action to take.

Messages are preceded by unique reference numbers that indicate the error
type. Messages, with their message reference numbers, are listed in this order:

UE42-UE2031 User Errors

Internal error messages, which are in the range of IE500 to IE825, should not
occur with normal de bugger use. If they do occur, report them to your HP
representative.

Child process (program) errors result in signals which are communicated to
the debugger. If a program error occurs while executing a procedure call from
the command line, it is handled like any other error (in other words, you can
investigate the called procedure). To recover from this, or to abort a procedure
call from the command line, press the shell interrupt key (usually (CTRL)C.)

The following example message has a reference number of UE312 and is listed
below as it appears in this appendix:

UE312 MESSAGE Invalid breakpoint type tl TEXTtl

Messages A-1

A

A

A list of terms and abbreviations that are used throughout this appendix and
their meanings follow. Note that in all explanations, commands are given in
long form, but the short form may also be used. See the chapter "HP Symbolic
Debugger Commands" for further details.

TERM/ ABBREVIATION

ADDRESS

GMD

GOREFILE

FILE

FMT

NAME

NUM

OBJFILE

PROG

PROGRAM

SHARED-LIBRARY

TEXT

UEnnn

A-2 Messages

DEFINITION

A 32-bit hexadecimal number.

A debugger command.

The name of a file containing the core image of a
terminated process.

The name of a file.

A single character print-format.

The name of a data object.

A number.

A relocatable a.out file ("dot-oh").

A user program or procedure name.

The name of an executable program (or, in some
cases, a shared library).

The path name of a shared library or the
basename (without the trailing. sl).

A text string; arbitrary user input.

User-created error.

User Errors (UE42 - UE2031)
User errors result from entering incorrect commands or from using the
commands incorrectly. User errors cause the command that you entered to fail.
You must correct the cause of the error and re-enter the comlnand.

UE42 MESSAGE WARNING: Modifying the breakpoint signal!

CAUSE The z (zignal) command has been used with signal
parameter 5.

ACTION Modifying the disposition of signal .5 (SIGTRAP) will
significantly affect the debugger's ability to control
the program being debugged. This action is not
recommended.

UE85 MESSAGE WARNING: IlFILEIl does not appear to have line
symbols.

CAUSE A program or shared-library contains symbolic debug
information, but is missing the portion that contains
source-line to address mappings. This may indicate a
corrupt file.

ACTION Make sure the program or shared-library has been
compiled properly.

UE86 MESSAGE WARNING: II FILE tt is younger than ttPROGRAMIl.

CAUSE The debugger has determined that the timestamp
on FILE is more recent than the timestamp on the
executable program (or shared-library) PROGRAM,
which was compiled (in part) from FILE. This
indicates that FILE has been modified (edited) since
it was last compiled.

ACTION If FILE has indeed been modified, recompile
PROGRAM. Otherwise, the touch(1) command can
be used to adjust the timestamp on PROGRAM.

Messages A-3

A

UE134 MESSAGE Warning: COREFILE is older than PROGRAM;
ignoring COREFILE

CAUSE The time stamp on the core file is older than that on
the object file. Usually this indicates that the core file
is left over from an earlier program's failure. However,
it can also occur if (for example): the object file has
been copied, or processed by pxdb, after the core
file was produced; the files are on NFS-mounted file
systems and the system clocks are out-of-sync; etc.

ACTION If you are convinced the core file and executable go
together, you can touch(1) the core file to make it
more recent. The debugger will then do internal
validity checks on the two files.

UE136 MESSAGE Warning: COREFILE cannot be the core file for
PROGRAl'vf; ignoring COREFILE

CAUSE The internal validity check which the debugger does to
see if the core file and object file can be a valid pair
has failed.

ACTION Either obtain a core file which does match the object
file, or allow the debugger to ignore the invalid one (or

A rename it to something other than core to eliminate
the error message).

UE142 MESSAGE flDfl command needs a directory name (in quotes)

CAUSE The D command was given with no argument or with
an argument which is not a quoted string.

ACTION Gi ven the path name of the desired directory to the D
command enclosed in double-quotes ("path name").

A-4 Messages

UE143 MESSAGE No labels

CAUSE The 11 (list labels) cornmand was used and either
no linker symbol table was found, or it contained no
external symbols.

ACTION Link the program without the -s linker option.

UE144 MESSAGE No matching labels

CAUSE The 11 (list labels) command was used with a
string prefix, and no symbols in the linker symbol
table matched the given prefix.

ACTION Verify an appropriate prefix is being used and re-enter
the command. If no prefix is given, all symbols will be
listed.

UE173 MESSAGE Illegal indirection

CAUSE The argument list given with an r command includes
an input or output redirection (> or <) without a
target.

ACTION Leave out the < or >, or supply a target (perhaps
/ dev /null).

A

UE202 MESSAGE No linker symbol table in PROGRA1'vl. Try
linking without -s

CAUSE The program or shared library being debugged
contains no linker symbol-table. It was either stripped
(see strip(l) in the HP- UX Reference) or linked with
the -s option.

ACTION Re-link the program or shared library without the -s
linker option, and do not strip it.

Messages A-5

UE291 MESSAGE No save state name specified

CAUSE The file name is missing in a save state command.

ACTION Re-enter the save state command with a file name for
the new file.

UE300 MESSAGE Attempt to read on non-word boundary

CAUSE The debugger cannot read on a non-word aligned
address.

ACTION Do not try to read at a non-word boundary. An
incorrect reference to a data item has probably
been made. Note: Memory accesses are done
word-at-a-time, regardless of how data is formatted in
memory.

UE301 MESSAGE Attempt to write to ODD address

CAUSE An attempt to write a value on a non-word or
half- word boundary was made.

ACTION Do not try to write to an odd address. Note: JVlemory
accesses are done word-at-a-time, regardless of how
data is formatted in memory.

A

UE302 MESSAGE Addre s s not found

CAUSE The address is part of a command and is invalid. It is
probably out of range.

ACTION Check the validity of the address and re-enter the
command.

A-6 Messages

UE303 MESSAGE Cannot read that location

CAUSE Access to the child process failed, possibly caused by
an invalid address.

ACTION Check the validity of the address and re-enter the
command.

UE304 MESSAGE No child process

CAUSE The debugger attempted an operation that required a
child process that does not exist (was not running).

ACTION To start a child process, use any of the r (run) or s
(step) commands.

UE305 MESSAGE No child process AND no corefile

CAUSE The debugger attempted an operation that required a
child process or a core file.

ACTION Start a child process using any of the r (run) or s
(step) commands, or restart the debugger on a valid
core file.

UE306 MESSAGE Attempt to write to non-word boundary. A

CAUSE The debugger cannot write to a non-word aligned
address.

ACTION Do not try to write to anon-word boundary. An
incorrect reference to a data item has probably
been made. Note: Memory accesses are done
word-at-a-time, regardless of how data is formatted in
memory.

Messages A-7

UE307 MESSAGE Cannot write that location

CAUSE Access to a child process failed; this may have been
caused by an invalid address.

ACTION Check the validity of the address and re-enter the
command.

UE308 MESSAGE Bad access to child process

CAUSE Failed to read data from or write data to a child
process. This may have been caused by an invalid
address (for example, dereferencing an invalid
pointer),or by an attempt to place a breakpoint in an
unwritable child process code space. Other possible
causes:

• The executable file is already being debugged in a
different debugging session.

• The process you were debugging exec'ed a different
process.

ACTION Check the validity of the data and re-enter the
command. You can also:

• Kill the other debugging session.

. A • If you need to debug the new process, adopt it with
the -p option.

UE310 MESSAGE Can't set breakpoint (invalid address)

CAUSE The address of the specified breakpoint command was
invalid or unknown.

ACTION Re-enter the breakpoint command with a correct
address or location.

A-8 Messages

UE311 MESSAGE Stack isn't that deep

CAUSE The debugger tried to set a breakpoint or view a
procedure at an invalid depth. The child process stack
was not that deep.

ACTION Use the trace command to list the child process stack.
This will show you how deep the stack is and what
procedure is at each depth on the stack.

UE312 MESSAGE No symbols for that procedure

CAUSE The debugger tried to set a breakpoint using a stack
depth, when the procedure at that stack depth was
non-debuggable.

ACTION Try setting a ba (breakpoint address) using the
name of the procedure; for example, ba xxx.

UE313 MESSAGE Invalid breakpoint type II TEXTII

CAUSE TEXT was an invalid breakpoint type.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see valid breakpoint commands.

A

UE314 MESSAGE Invalid command list, must be enclosed in {}

CAUSE The command list associated with a breakpoint or an
assertion must be enclosed in {}.

ACTION Re-enter the breakpoint or assertion with the correct
syntax.

Messages A-9

UE315 MESSAGE Invalid line number on IIbreakpointll command

CAUSE The quantity given for a line number on a breakpoint
command was an invalid numeric expression.

ACTION Re-enter the command with a valid expression.

UE317 MESSAGE Can't toggle stubs OFF if current view is in a
stub.

CAUSE (Series 600/700/800 only) The tst command was used
when the view in the source window was at a stub.

ACTION Use the t command to determine which stack depths
are not stubs, and then use the up, down, or V
command to move the view to one of those depths.
Then re-issue the tst command.

UE318 MESSAGE Can't toggle stubs OFF if current $depth is in a
stub.

CAUSE (Series 600/700/800 only) The tst command was used
when $depth was set to the stack depth of a stub.

ACTION Use the t command to determine which stack depths
are not stubs, and then use the print command to

A reassign $depth to one of those values. Then reissue
the tst command.

UE319 MESSAGE Invalid line number on II CMD II command

CAUSE The quantity given for a line number on a b
(breakpoint), v (view), or c (continue) command,
was an invalid numeric expression.

ACTION Re-enter the command with a valid expression.

A-10 Messages

UE321 MESSAGE Procedure II PROGII not found where specified

CAUSE The nesting of procedure PROG was not properly
specified.

ACTION Use the trace command to list the stack and find
where PROG is located.

UE322 MESSAGE Can't go to negative stack levels

CAUSE An argument has been specified to the up command
which is larger than the current stack depth, or up has
been requested while the current depth is at the top of
stack, or an equivalent action (for example, V -2).

ACTION The top command will go the the highest possible
stack level (the current top of stack).

UE323 MESSAGE No count given for I'breakpoint CMDII command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands. A

UE324 MESSAGE No count given for IIbreakpointll command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

Messages A-11

UE325 MESSAGE No count given for IIbreakpoint address II command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

UE326 MESSAGE No count given for "breakpoint beginning"
command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP-UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

UE327 MESSAGE No count given for "breakpoint count" command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

A ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

UE328 MESSAGE No count given for "breakpoint trace" command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

A-12 Messages

UE329 MESSAGE No count given for "breakpoint uplevel ll command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

UE330 MESSAGE No count given for "breakpoint exit ll command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see the correct syntax for breakpoint
commands.

UE331 MESSAGE No count given for II CMD II command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP- UX Symbolic Debugger User's A

Guide to see the correct syntax for breakpoint
commands.

UE332 MESSAGE Count must be positive or negative

CAUSE A count of zero was given for a b (breakpoint) or bc
(breakpoint count) command.

ACTION Re-enter the command with a non-zero count.

Messages A-13

UE333 MESSAGE Must specify a macro name

CAUSE The def command was entered without arguments.

ACTION Refer to the "Macro Facility Commands" section in
Chapter 4 of the HP- UK Symbolic Debugger User's
Guide to see the correct syntax for the def command.

UE334 MESSAGE TEXT is not a valid macro name

CAUSE An attempt was made to define a macro where the
first argument to def was seen by the debugger as not
being a name (for example: a number, an operator,
etc.).

ACTION Use a valid name (beginning with a letter or _, not
containing any operators) as the first argument of the
def command.

UE335 MESSAGE Must specify which macro to delete

CAUSE The undef command was entered to delete or undefine
a macro without giving the name of the macro to
delete.

ACTION Use the 1m (list macros) command to list all defined
A macros.

UE336 MESSAGE Unknown name or command II CMD 11

CAUSE An unrecognized string (CMD) was encountered as a
debugger command.

ACTION Refer to the HP- UX Symbolic Debugger Quick
Reference to see tables of valid debugger commands.

A-14 Messages

UE337 MESSAGE Unknown command IICMDII (NUM)

CAUSE An unrecognized character (CMD) was encountered as
a debugger command. (NUM is the octal value of the
character.)

ACTION Refer to the HP- UX Symbolic Debugger Quick
Reference to see tables of valid debugger commands.

UE339 MESSAGE Empty assertion not added

CAUSE The assertion command was given without an
associated command list.

ACTION Re-enter the command and include a command-list
within braces ({ }).

UE341 MESSAGE No breakpoint set at current location

CAUSE An attempt was made to activate, delete, or suspend a
breakpoint where no breakpoint was defined.

ACTION Use the lb (list breakpoints) command to see
where breakpoints are set.

UE342 MESSAGE Address is required after IIbreakpoint address II
A

CAUSE The ba (breakpoint address) command must be
followed by a code address.

ACTION Use a valid code address (symbolic or numeric) with
the command.

UE343 MESSAGE Address is required after II CMD II

CAUSE The breakpoint command must be followed by a code
address.

ACTION Use a valid code address (symbolic or numeric) with
the command.

Messages A-15

UE344 MESSAGE Invalid depth given for IIbreakpoint CMDII
command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

UE345 MESSAGE Invalid depth given for IIbreakpoint beginningll
command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

UE346 MESSAGE Invalid depth given for IIbreakpoint trace ll

command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

UE347 MESSAGE Invalid depth given for IIbreakpoint uplevel ll

A command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

UE348 MESSAGE Invalid depth given for IIbreakpoint exit ll

command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

A-16 Messages

UE349 MESSAGE Invalid depth given for II CMD" command

CAUSE An attempt was made to specify a depth that is not a
number greater than or equal to O.

ACTION Re-enter the appropriate command with a valid depth.

UE350 MESSAGE Depth must be an integer

CAUSE An attempt was made to specify a stack depth that is
not a number.

ACTION Re-enter the command and specify an integer depth.

UE354 MESSAGE "da", "db", or 11dp" is required

CAUSE d has been given as a command. Possible commands
beginning with dare da, db, and dp.

ACTION Use the two letter command name, or some other
command as appropriate.

UE355 MESSAGE Must specify which assertion to delete

CAUSE The number of the assertion to delete was not
specified.

Use the la (list assertions) command to find the
A

ACTION
number of the assertion to delete.

UE358 MESSAGE Invalid expression for depth on "View" command

CAUSE The View command was given with an expression for a
depth that the debugger cannot evaluate.

ACTION Use the t (trace) command to view the stack for the
proper procedure and depth.

Messages A-17

UE359 MESSAGE Invalid expression for depth on IIV II command

CAUSE The V command was given with an expression for a
depth that the debugger cannot evaluate.

ACTION Use the t (trace) command to view the stack for the
proper procedure and depth.

UE360 MESSAGE IIfll command needs a string argument

CAUSE An f command was given with an argument which is
not a quoted string.

ACTION Give the format string argument to the f command
enclosed in double-quotes ("format").

UE362 MESSAGE II goto ll must be folloliired by #label, line-number
or offset

CAUSE The g (goto) command was followed by an invalid
location specifier.

ACTION Re-enter the command with a valid program label,
line-number within the same procedure, or offset.

A
UE363 MESSAGE II gil must be followed by #label, line-number or

offset

CAUSE The g (goto) command was followed by an invalid
location specifier.

ACTION Re-enter the command with a valid program label,
line-number within the same procedure, or offset.

A-18 Messages

UE364 MESSAGE Missing "{"

CAUSE The i (if) command did not have a brace ({)
following the conditional expression. Or, the
expression might have been entered incorrectly.

ACTION Re-enter the expression, enclosing the command-lists
in braces.

UE369 MESSAGE Unknown name 11 NAME II

CAUSE An unrecognized string (procedure or variable name)
was encountered in an expression.

ACTION Use the lp (list procedures), 19 (list globals),
1 (list), lc (list commons), or 11 (list labels)
command to list all known procedures, globals, locals,
commons, or labels.

UE372 MESSAGE Must specify which assertion to suspend

CAUSE The number of the assertion to suspend was not
specified.

ACTION Use the la (list assertions) command to find the
number of the assertion to suspend.

A

UE373 MESSAGE Invalid expression given for "suspend
assertion' ! command

CAUSE The sa (suspend assertion) command was given
with an expression that the debugger cannot evaluate.

ACTION Use an expression which evaluates to a number.

Messages A-19

UE374 MESSAGE Invalid expression given for IIsa ll command

CAUSE The sa (suspend assertion) command was given
with an expression that the debugger cannot evaluate.

ACTION Use an expression which evaluates to a number.

UE375 MESSAGE Bad magic number NUM. NUM

CAUSE The file you are trying to debug is not a valid
executable file.

ACTION Specify a valid executable file for the program to be
debugged.

UE378 MESSAGE Invalid expression given for II s t ep ll command

CAUSE A non-numeric expression was entered as part of the s
(step) command.

ACTION Re-enter the command with a correct numeric
expreSSlOn.

UE379 MESSAGE Invalid expression given for IISteptl command

CAUSE A non-numeric expression was entered as part of the S
A (Step) command.

ACTION Re-enter the command with a correct numeric
expreSSlOn.

UE380 MESSAGE Invalid expression given for II CMDII command

CAUSE A non-numeric expression was entered as part of
the s (step), S (Step), t (trace), T (Trace), or sa
(suspend assertion) command.

ACTION Re-enter the command with a correct numeric
expreSSIon.

A-20 Messages

UE382 MESSAGE Invalid expression given for Iltrace ll command

CAUSE A non-numeric expression was entered as part of the t
(trace) command.

ACTION Re-enter the command with a correct numeric
expression.

UE383 MESSAGE Invalid expression given for IlTrace ll command

CAUSE A non-numeric expression was entered as part of the T
(Trace) command.

ACTION Re-enter the command with a correct numeric
expression.

UE384 MESSAGE Invalid window size

CAUSE The numeric expression given for the new window
size on the window command was not a valid numeric
expression or was outside a range that is acceptable
for you screen size.

ACTION Re-enter the command with a valid numeric expression
within the range of 1 to the number of lines on your
screen minus 3.

A

UE387 MESSAGE Invalid expression for mode on Ilexitll command

CAUSE The x (exit) command was given with an expression
for mode that the debugger could not evaluate.

ACTION Replace the mode expression with a valid numeric
expression.

Messages A-21

UE388 MESSAGE Invalid expression for mode on tlxtl command

CAUSE The x (exit) command was given with an expression
for mode that the debugger could not evaluate.

ACTION Replace the mode expression with a valid numeric
expression.

UE389 MESSAGE Signal tl TEXTtl unknown

CAUSE The debugger didn't recognize the parameter to the z
(zignal) command as a valid signal.

ACTION Enter a signal number documented in signal(5) of the
HP- UX Reference manual.

UE390 MESSAGE Unknown name or command II CMD CMDtl

CAUSE Your command is not recognized by the debugger.

ACTION Enter a valid debugger command.

UE391 MESSAGE No playback name specified

CAUSE The file name is missing in a playback command.

A
ACTION Re-enter the playback command with a valid playback

file name.

UE392 MESSAGE Can't open FILE as playback file

CAUSE FILE does not exist or is unreadable.

ACTION Enter a valid file name, or change the file permission if
it exists already.

A·22 Messages

UE393 MESSAGE Can't open FILE as record file

CAUSE You don't have write permission in the specified
directory, or a non-writable file with the same name
already exists.

ACTION Enter a different file name, remove the old file, or
change the write permission for the directory.

UE394 MESSAGE Operand stack overflow

CAUSE An expression was too complicated for the expression
handler to parse. A combination of more than 15
nested parentheses and/or pending operators may be
the cause.

ACTION Re-enter the expression, using less than 15 nested
parentheses.

UE396 MESSAGE Data too big to put in the child process

CAUSE A string constant or other data was larger than the
total size of the buffer in /usr/lib/ end. o.

ACTION Re-enter a smaller string constant or data item, if
applicable.

A

UE397 MESSAGE Can't store into a constant

CAUSE The left side of an assignment statement was found to
be a constant; it cannot be modified.

ACTION Use the \ t display format for information on the
assigned variable.

Messages A-23

UE398 MESSAGE Attempt to write to read-only register

CAUSE An attempt was made to change the value of a
privileged register, such as a Series 600/700/800
floating-point status or exception register ($fO - $f3).

ACTION Verify that an appropriate debugger special variable is
used to reference the register in the expression, and
re-enter the command.

UE399 MESSAGE String too long for assignment

CAUSE An attempt was made to assign a string over 1024
bytes to an HP FORTRAN 77 CHAR *, HP Pascal
string, or HP Pascal packed array of char.

ACTION Use the \ t display format for type information of the
string assigning to, and re-enter the command with an
appropriately sized string.

UE400 MESSAGE Incompatible operands for string assignment

CAUSE An attempt was made to assign to an HP FORTRAN
77 CHAR *, HP Pascal string, or HP Pascal packed
array of char, something other than an HP FO RTRAN

A 77 CHAR *, HP Pascal string, HP Pascal packed array
of char, a string constant, or a character constant.

ACTION Re-enter the command with a proper assignment.

UE402 MESSAGE Can't take the address of a constant

CAUSE The operand of a &, $addr, or addr operator is
marked as a constant type.

ACTION Use the \ t display format to find the type of the
operand.

A-24 Messages

UE403 MESSAGE Can't take the address of a register

CAUSE The operand of a &, $addr, or addr operator is
marked as a register type.

ACTION Use the \ t display format to find the type of the
operand.

UE404 MESSAGE Prefix "++11 not supported

CAUSE An attempt was made to use an unsupported ++ prefix
operator.

ACTION Make sure there is a space between a + and a unary
+ operator (for example 2+ +5). +=1 can be used to
increment.

UE405 MESSAGE Prefix 11 __ 11 not supported

CAUSE An attempt was made to use an unsupported -- prefix
operator.

ACTION Make sure there is a space between a - and a unary
- operator (for example 2- -5). -=1 can be used to
decrement.

A
UE406 MESSAGE Invalid combination of operator and operands

CAUSE The debugger tried to perform a numeric operation on
one or more non-numeric operands.

ACTION Re-enter the command with a valid expression.

Messages A-25

UE407 MESSAGE Unknown operator (NUM)

CAUSE An unsupported operator, with internal value NUM,
was pushed on the operator stack.

ACTION Re-enter the command using an operator known to the
current language or reset $lang to the language in
which the operator is valid.

UE408 MESSAGE Misformed expression

CAUSE An expression was entered incorrectly. The debugger
attempts to show you where the error was detected
in the command line. The error token might be one
token beyond the actual error.

ACTION Re-enter the expression using operators and operands
known to the current language or reset $lang to the
language in which the operator or operand is valid.

UE409 MESSAGE Two operators in a row

CAUSE The expression handler detected an improper
construct in an expression.

ACTION Re-enter the command with a valid expression.
A

UE410 MESSAGE Postfix 11++11 not supported

CAUSE An attempt was made to use an unsupported ++
postfix operator.

ACTION Make sure there is a space between a + and a unary
+ operator (for example 2+ +5). +=1 can be used to
increment.

A-26 Messages

UE411 MESSAGE Postfix 11 __ 11 not supported

CAUSE An attempt was made to use an unsupported --
postfix operator.

ACTION Make sure there is a space between a - and a unary
- operator (for example 2- -5). -=1 can be used to
decrement.

UE412 MESSAGE FORTRAN variable not pure array

CAUSE An attempt was made to dereference an array that
had pointer or function qualifiers, while the current
language was set to FORTRAN, which does not
su pport them.

ACTION Try again with $lang set to a different language.

UE413 MESSAGE Invalid real number

CAUSE The specified numeric expression was not a real
number.

ACTION See the appropriate language reference manual,
or Table 4-4 in this manual, for the format of real
numbers.

A

UE414 MESSAGE Misformed global name

CAUSE A : or :: must be followed by a variable name
(string).

ACTION Refer to the "Entering Variable Names" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide to see how to specify global variables.

Messages A-27

UE415 MESSAGE Unknown global

CAUSE The variable specified with : var or :: var was not a
recognized global variable name.

ACTION Use the 19 (list globals) command to list all known
global variables.

UE416 MESSAGE Need a II: II after the number

CAUSE In specifying a variable, proc: depth: var was entered
incompletely (: var was missing).

ACTION Refer to the 1 (list) command listing in Chapter 4 of
the HP- UX Symbolic Debugger User's Guide to see a
list of valid expression for variables.

UE417 MESSAGE Invalid local name

CAUSE In specifying a variable, proc [: depth] : var was entered
incorrectly. The variable var must be a valid variable
name in the specified procedure, at the specified
depth.

UE418 MESSAGE Unknown local
A

CAUSE The variable specified with proc [: depth] : var was not
a recognized local variable of proc.

ACTION Use the 1 (list) command to list all known local
variables of the current proc, or use the T (Trace)
command to list the locals, variables, and procedures
on the stack.

A-28 Messages

UE419 MESSAGE Procedure" PROG" not found at stack depth
NUM

CAUSE In proc: depth, the procedure PROG was not on the
child process stack at depth NUM. Either the stack
was not that deep, or the procedure at that depth was
not PROG.

ACTION Use the t (trace) command to list the stack.

UE420 MESSAGE Unknown language

CAUSE An attempt was made to modify the current language
by assigning an invalid language designator to the
special variable $lang. The valid language designators
are Pascal, FORTRAN, C, C++ and default.

ACTION Re-enter the command with Pascal, FORTRAN, C, C++

or def aul t as the designator.

UE421 MESSAGE Local is not active

CAUSE A local variable name was recognized but the
procedure it belongs to was not currently active on the
child process stack.

ACTION Re-enter the command after its procedure has been A

called.

UE422 MESSAGE Two operands in a row

CAUSE The expression handler detected an improper
construct in an expression.

ACTION Refer to the "Entering Expressions" section in
Chapter 4 of the HP- UX Symbolic Debugger User's
Guide.

Messages A-29

UE423 MESSAGE No source file for current address

CAUSE The given child process address did not map to a
known, debuggable source file.

ACTION Use the If (list files) command to view the files
the debugger recognizes, and re-enter the command
with an appropriate address expression.

UE424 MESSAGE No search pattern

CAUSE The search command (/, ?, n (next), or N (Next)) was
given without a search pattern (in the case of n (next)

and N (Next), the previous search command / or ?
was provided without a pattern).

ACTION Refer to the individual command listings in Chapter
4 of the HP- UX Symbolic Debugger User's Guide for
more information about search commands.

UE425 MESSAGE No match for II TEXT II

CAUSE The search pattern (TEXT) for the /, ?, n, (next)
or N (Next) command was not found in the current
viewing file. Note that the pattern is a literal, not a

A regular expression.

ACTION Try another pattern or view another file and search for
the pattern.

UE426 MESSAGE Invalid display format II TEXT II

CAUSE Gi ven the data display format, or a portion of it, the
TEXT contained invalid syntax.

ACTION Refer to Table 4-4 in Chapter 4 of the HP- UX
Symbolic Debugger User's Guide to see valid data
viewing formats.

A-30 Messages

UE427 MESSAGE Format is missing tl\tl

CAUSE Because the command ends with a \, the debugger
expects a format.

ACTION Re-enter the command with a format or without the
ending \.

UE428 MESSAGE Length not allowed with tl FMTtl format

CAUSE The data display format FMT does not allow the data
length specification because it is irrelevant or implicit
in the format.

ACTION Refer to Table 4-3 in Chapter 4 of the HP- UX
Symbolic Debugger User's Guide to see valid data
viewing formats.

UE429 MESSAGE This does not appear to be a record or union

CAUSE The debugger tried and failed to dump the contents of
a data object that was not a record or union.

ACTION Use the \ t display format for more information.

UE430 MESSAGE This does not appear to be a struct or union A

CAUSE The debugger tried and failed to dump the contents of
a data object that was not a struct or union.

ACTION Use the \ t display format for more information.

UE431 MESSAGE No count given for b command

CAUSE The debugger expected a breakpoint count after the \.

ACTION Re-enter the command with a breakpoint count, or
with no \.

Messages A-31

UE433 MESSAGE No current procedure

CAUSE The debugger tried to list locals for the current
viewing procedure when the procedure was undefined.

ACTION Use the Ip (list procedures) command to list all the
debuggable procedures.

UE434 MESSAGE No such procedure II PROCtl

CAUSE An attempt to list locals of a non-existent, or
non-debuggable procedure PROC was made.

ACTION Use the Ip (list procedures) command to list all
known debuggable procedures.

UE435 MESSAGE Unrecognized "l tl command

CAUSE The 1 (list) command was given with a second part
that was neither a known procedure name, nor a valid
option.

ACTION Refer to the 1 (list) command listing in Chapter 4 of
the HP- UX Symbolic Debugger User's Guide for more
information.

A
UE438 MESSAGE Exi ting command line procedure call

CAUSE The command line procedure call environment
terminated for an unusual reason, such as
encountering a breakpoint during program execution,
or an error was reached before the procedure was
called.

ACTION Check the procedure call for errors and re-enter the
command line procedure call.

A-32 Messages

UE439 MESSAGE Can't pass more than NUM arguments to called
procedure

CAUSE A large limit (NUM) exists on how many parameters
can be passed to a procedure called from the
command line.

ACTION Check the number of parameters for the procedure
you are attempting to call. If the limit (NUM) is less
than the number of parameters in the procedure, that
procedure cannot be called from the command line.

UE440 MESSAGE Argument list too long

CAUSE Arguments to the run command exceeded 1024 bytes.

ACTION Re-enter the run command with fewer arguments.

UE441 MESSAGE Can't got a a locat ion in another procedure

CAUSE The line number given to the g (goto) command was
not an executable source line in the top procedure on
the child process stack. This is not always the same as
the current viewing procedure.

ACTION Re-enter the g (goto) command with a line number
within the procedure on the top of the child process A

stack.

UE442 MESSAGE Signal NUM unknown

CAUSE The debugger didn't recognize the parameter to the z
(zignal) command as a valid signal.

ACTION Enter a signal number documented in signal(5) of the
HP- UX Reference manual.

Messages A-33

UE443 MESSAGE Signal actions are II ill , Ilrtl, tlstl, IIQII

CAUSE An invalid signal action was given.

ACTION Re-enter the command with a valid action: i
(ignore), r (report), s (stop), or Q (quietly change
signal action).

UE444 MESSAGE Unknown name

CAUSE An unrecognized string (procedure or variable name)
was encountered in an expression.

ACTION Use the Ip (list procedures), Ig (list globals),
1 (list), lc (list commons), or 11 (list labels)
command to list all known procedures, globals, locals,
commons, or labels.

UE445 MESSAGE It appears that there's no debugging information
in PROGRAM

CAUSE The program you are trying to debug doesn't contain
debug information.

ACTION Recompile the program with the debugging directive
(-g compiler option), or debug the program at the

A assembly language level.

UE446 MESSAGE Misformed hex number

CAUSE Ox or OX was given without digits following.

ACTION Re-enter the command with a valid hexadecimal
number.

UE447 MESSAGE Misformed octal number

CAUSE An octal number starting with 0 contains an 8 or 9.

ACTION Re-enter the command with the correct octal number.

A-34 Messages

UE448 MESSAGE Character constant is missing ending'

CAUSE Token parsed as a character constant is missing a
trailing single quotation mark ('). This applies to a
single quotation mark followed by a single character or
an equivalent backslash sequence.

ACTION Re-enter the command enclosing the character
constant in single quotation marks (').

UE449 MESSAGE String constant is missing ending II

CAUSE Token parsed as a string constant was missing a
trailing double quotation mark before the end of the
command line.

ACTION Re-enter the string with a beginning and ending
double quotation marks.

UE450 MESSAGE Macros nested too deeply

CAUSE A user specified macro has caused the evaluation of
over 20 macro definitions during its evaluation. The
debugger cannot evaluate macros nested this deep.
This error can also be caused by a recursive macro
definition. A

ACTION Redefine the macro using fewer than 20 macro
definitions, or remove the recursive definition.

UE451 MESSAGE Macros process ing overfloliJ

CAUSE While evaluating a user specified macro, the buffer
used to hold the resulting definition for this macro was
abou t to overflow, and the processing for this macro
terminated unsuccessfully.

ACTION U ndefine the unnecessary macros and redefine the
macro.

Messages A-35

UE452 MESSAGE Sorry, you can't access a naked field

CAUSE An attempt was made to refer to a field by name
without specifying the qualifying structure (for
example, union, record, pointer, etc.).

ACTION Use the \ t display format on the structure object to
examine its type information.

UE453 MESSAGE Too many subscripts

CAUSE An attempt was made to dereference an array with
more dimensions than it was declared to have.
However, HP C does allow you to dereference pointers
in this manner.

ACTION Use the \ t display format for on the array object to
examine its type information.

UE454 MESSAGE It appears that there's no debugging information
in SHARED-LIBRARY

CAUSE The -1 invocation option was used with
SHARED-LIBRARY, but it contains no symbolic
debug information.

A ACTION Don't use -1 SHARED-LIBRARY when invoking
the debugger, or compile all (or some) of
SHARED-LIBRARY with the -g compiler option.

UE455 MESSAGE Invalid field access: II NAME II

CAUSE An attempt was made to do a field dereference of an
object (NAME) that was not a structure or union.

ACTION Use the \ t display format to determine the
characteristics of the object (NAME).

A-3S Messages

UE456 MESSAGE No such field name II NAME II for that record

CAUSE The record did not contain a field of that NAME.

ACTION Use the \ t display format for more information.

UE457 MESSAGE No such field name II NAME II for that struct

CAUSE The struct did not contain a field of that NAME.

ACTION Use the \ t display format for more information.

UE458 MESSAGE No such field name II NAME II for that union

CAUSE The union did not contain a field of that NAME.

ACTION Use the \ t display format for more information.

UE459 MESSAGE Illegal cast

CAUSE The expression contains an illegal cast.

ACTION Re-enter the command with a valid expression. When
casting with a class, structure, or union type, the
keyword class, struct, or union must be given.

UE460 MESSAGE Mismatched parenthesis around name: NAME A

CAUSE The debugger could not parse an expression containing
a symbol.

ACTION Re-enter the expression, making sure parenthesis are
correctly nested.

Messages A-37

UE461 MESSAGE No child process or corefile

CAUSE The debugger attempted an operation that required
an active child process or a core file.

ACTION Start a child process using any of the r (run) or s
(step) commands, or restart the debugger on a valid
core file.

UE463 MESSAGE Program died in unknown location, pc = ADDRESS
Stack trace will not be possible.

CAUSE The corefile being used was created on an older system
which does not support shared-library corefiles, or
the program that aborted was not linked with a
current version of /lib/crtO.o (for Series 300/400
FORTRAN use /lib/frtO. 0). In either case, the
debugger could not relate the program-counter
recorded in the corefile back to a shared-library
address in the program.

(Series 600/700/800 only) Because stack-unwind
information is not available for shared-libraries in the
corefile, a stack trace is not possible.

ACTION Relink the program using a current version of
A /lib/ crt. 0, and re-execute the program on a current

version of HP -UX.

UE464 MESSAGE Operator stack overflow

CAUSE An expression was too complicated for the expression
handler to parse. A combination of more than 15
nested parentheses and/or pending operators may be
the cause.

ACTION Re-enter the expression, using less than 15 nested
parentheses.

A-3S Messages

UE465 MESSAGE Can't execute child program

CAUSE The debugger could not execute the object file given.

ACTION Check to see that the file is executable and writable by
the user.

UE466 MESSAGE WindoW" mode required for this command

CAUSE The debugger was probably invoked with the -L
option.

ACTION Verify that you are using a terminal that supports
window mode and rerun the debugger without the -L
option.

UE475 MESSAGE Count must be positive

CAUSE The count argument given to the c (continue)
command is negative or O.

ACTION Re-enter the command with a positive count (or
none).

UE476 MESSAGE Too many characters in W"ide-character constant

CAUSE More than one valid (possibly multi-byte) character A

was entered.

ACTION Re-enter the expression with one character constant.

UE477 MESSAGE Wide string constant too long; truncating to
NUl\!{ 'Wide-characters

CAUSE Not enough buffer space was available in the user
process to store the entire string constant (maximum
is 127).

ACTION Enter a shorter string constant.

Messages A·39

UE478 MESSAGE Wide string constant contained unmappable chars
in the current locale

CAUSE A wide-character string contains an element that
cannot be mapped back to the external character set
with wctomb(3C).

ACTION Re-enter a valid string, and/or restart the debugger
with a correct locale setting (environment variable
LC_CTYPE).

UE479 MESSAGE Empty hex escape sequence

CAUSE An invalid ANSI C hexadecimal escape sequence was
entered.

ACTION Replace the invalid escape sequence with a valid one of
the form \xhh.

UE480 MESSAGE Long double function calls are not supported

CAUSE There was an attempt to call from the command line a
function whose return type is long double.

ACTION This is not supported.

A
UE481 MESSAGE Long double parameters are not supported in

command line function calls

CAUSE There was an attempt to call from the command line a
function which expects a long double parameter.

ACTION This is not supported.

UE482 MESSAGE Unknown print-mode

CAUSE There was an attempt to assign an illegal value to the
$print debugger variable.

ACTION Assign one of these values: ASCII,native,raw.

A-40 Messages

UE483 MESSAGE Misformed binary number

CAUSE A misformed binary number was found in an
expression.

ACTION Replace the misformed number with a valid one. (Ob
or OB followed by one or more O's or l's)

UE484 MESSAGE Can't open IIFILEII as state file

CAUSE The file already exists and is not writable, or the
directory has the wrong permissions.

ACTION Remove the old file, or make the directory writable
and executable.

UE486 MESSAGE Can't open IIFILEII as restore file

CAUSE The file doesn't exist or the directory is not readable.

ACTION Enter a valid file name or add read permission to the
directory.

UE488 MESSAGE No restore name specified

CAUSE No file name was specified with the -R option.

ACTION Invoke the debugger with a restore file name or don't
A

provide the - R option.

UE490 MESSAGE Wrong obj ectfile for this statefile

CAUSE The save file specified was not created with the object
file you are trying to de bug.

ACTION Specify a valid state file, or if you must use the one
originally specified, start the debugger and use the
file as a playback file. Be sure to read the warnings
related to state files before doing this.

Messages A-41

UE578 MESSAGE exec of PXDB failed: IMMEDIATE GA USE

CAUSE The debugger's attempt to invoke PXDB to preprocess
the debug information in the program failed due to
IMMEDIATE GA USE. Either /usr/bin/pxdb is not
installed properly on your system, or the environment
variable ST _PXDB is set to an improper value.

ACTION Check that /usr /bin/pxdb is correct on your system,
or unset ST _PXDB, and try again. If necessary,
re-install the DEBUGGER'S fileset.

UE582 MESSAGE No matching instance. No breakpoint set.

CAUSE The user attempted to set a breakpoint on a class
template member function or on a function template.
No instance could be found matching the given
arguments. If no arguments were specified, the given
template has no instances, or all instances have been
inlined.

ACTION Use the lcl template-name< command to verify that
an object was declared with the desired arguments.

UE583 MESSAGE Class GLASS has no member function PROG
A

CAUSE The user attempted to set a breakpoint on a class
member function which doesn't exist.

ACTION Use the lcl (list classes) or the If (list
functions) command to verify that PROG exists as a
member of GLASS. Verify the spelling of the member
function.

UE584 MESSAGE Unexpected class name

CAUSE A class name of the form name<arguments> is missing
its closing>.

ACTION Re-enter the correct class name.

A-42 Messages

UE585 MESSAGE /usr/lib/end.o not linked. No exception
support.

CAUSE The file jusrjlibjend.o was not linked with the
program or an older version (lacking support for
exception handling debugging) has been linked with
the program.

ACTION Relink the program with the correct (current)
jusrjlib/end.o.

UE586 MESSAGE /usr/lib/ end. 0 out of date. No exception
support.

CAUSE An older version of the file jusr/libjend.o lacking
support for exception handling debugging has been
linked with the program.

ACTION Relink the program with the correct (current)
jusr jlib / end.o.

UE587 MESSAGE C++ library not linked. No exception support.

CAUSE The C+ + run-time library (libC or libC. ansi) was
not linked with the program, or an older version
(lacking debugger support for exception handling) has A
been linked with the program.

ACTION Relink the program with the correct C++ library.

UE588 MESSAGE C++ library out of date. No exception support.

CAUSE An older version of the C++ run-time library (libC,
libC. ansi) lacking debugger support for exception
handling has been linked with the program.

ACTION Relink the program with the correct C++ library.

Messages A-43

A

UE590

UE593

UE601

UE605

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

A-44 Messages

function or static member expected

A non-function or non-static class member was given
in a context where a member function or a static
member is required.

Retype the command with a member function or a
static member or use a different command.

Warning: exception will not be caught; program
will abort.

An exception throw has occurred, and there is no
corresponding catch clause for the object being
thrown.

No action is required. The program will terminate if
allowed to continue.

exec of A_SHELL failed: IMMEDIATE CAUSE

The debugger's attempt to invoke A_SHELL to
execute an ! (shell escape) command failed due
to IMMEDIATE CA USE. Either the environment
variable SHELL is not set properly or /bin/ sh could
not be executed.

Check that SHELL is set to an appropriate command
interpreter, or if SHELL is unset, that /bin/sh is
properly installed on your system.

Incompatible debug information

The debugger was invoked on a file linked on a older
version of the operating system.

Try relinking your program. If that doesn't solve the
problem, you will have to recompile the program.

UE626 MESSAGE Attempt to read from ODD address

CAUSE An attempt to read from a non-word or half-world
boundary was made.

ACTION Do not try to read from an odd address. Note:
Memory accesses are done word-at-a-time, regardless
of how data is formatted in memory.

UE629 MESSAGE No Files

CAUSE The list files command was given with a pattern
for which there was no match.

ACTION Make sure the pattern is valid, and re-issue the
command.

UE631 MESSAGE Character constant too long

CAUSE A C or C++ quoted character constant contains too
many characters.

ACTION Re-enter the expression with a correct character
constant.

UE632 MESSAGE Wide-character constant not allowed ($lang must
A

be 'C')

CAUSE Attempt to use a wide character constant while the
language is not C.

ACTION Set $lang to C and re-enter the expression.

Messages A-45

UE633 MESSAGE Does not map to a wide-character in the current
locale

CAUSE A character constant (possibly multi-byte) was entered
that cannot be mapped to a wide-character (wchar _ t)
with mbtowc(3C)

ACTION Re-enter a valid character, and/or restart the
debugger with a correct locale setting (environment
variable LC_CTYPE).

UE642 MESSAGE No child process AND no corefile registers

CAUSE The debugger attempted an operation that required
an active child process or a core file.

ACTION Start a child process using any of the r (run) or s
(step) commands, or restart the debugger on a valid
core file.

UE644 MESSAGE Registers bad in core file

CAUSE The core file is corrupt or incomplete.

ACTION Obtain a proper core file, or run the program under
the debugger to the point of failure.

A

UE645 MESSAGE Exec area bad in core file

CAUSE Unexpected exec area size. The core file might be
corrupted.

ACTION Create a new core file.

A-46 Messages

UE646 MESSAGE Error trying to read II FILE II; ignoring it

CAUSE Some error occurred while attempting to interpret
FILE as a core file. This message will be accompanied
by a specific error message unless FILE is empty or
truncated.

ACTION Verify that FILE is the correct core file, or create a
new core file.

UE654 MESSAGE Breakpoint count ignored

CAUSE A count is meaningless for class, overload, or instance
breakpoints on multiple member functions.

ACTION None required. The count was ignored but the
breakpoint was set.

UE655 MESSAGE This does not appear to be a struct, union, or
class

CAUSE The S display format was specified but the type of the
object to print is not a struct, union, or class.

ACTION If you want to do a formatted dump of an address,
cast the address to some struct, union, or class.

A

UE656 MESSAGE No such field name II NAME II for that class

CAUSE The class did not contain a field of the NAME.

ACTION Use the \ t display format for more information.

UE657 MESSAGE No such class II NAME II

CAUSE Use of a non-class name in a context that requires a
class name (e.g., bpc (breakpoint class)).

ACTION Re-enter the command with the name of a valid class.

Messages A-47

UE658 MESSAGE No overloaded functions

CAUSE There are no overloaded functions to list.

ACTION Use the lp (list procedure) command to see a list of
functions.

UE659 MESSAGE No functions

CAUSE There are no functions to list starting with the
provided prefix.

ACTION Re-enter the command with a valid function prefix, or
just use the lp (list procedure) command with no
prefix to see a list of all the functions.

UE661 MESSAGE Cannot view (no debug information for file)

CAUSE A location was specified as file: procedure and the file
is not in the debugger's list of files for which it has
debugging information.

ACTION Re-enter the command with a valid file name.

UE662 MESSAGE Cannot set breakpoint (no debug information for

A file)

CAUSE The breakpoint location was specified as file: procedure
and the file is not in the debugger's list of files for
which it has debugging information.

ACTION Re-enter the command with a valid file name. Use the
If (list files) command to list all valid source files
and the path name you must use.

A·48 Messages

UE663 MESSAGE Invalid file on tlbreakpointtl command

CAUSE A file specified as part of a breakpoint location is not
known to the debugger.

ACTION Re-enter the command with a valid file name. Use the
If (list files) command to list all valid source files
and the path name you must use.

UE664 MESSAGE Invalid procedure on tlbreakpoint tl command

CAUSE A procedure specified as part of a breakpoint location
is not known to the debugger.

ACTION Re-enter the command with a valid procedure name.
Use the Ip (list procedures) command to see a list
of all valid procedures.

UE665 MESSAGE Invalid label on tlbreakpoint II command

CAUSE A label specified as part of a breakpoint location is
not known to the debugger.

ACTION Re-enter the command with a valid label name.

UE666 MESSAGE Invalid class on IIbreakpoint II command
A

CAUSE A class specified as part of a breakpoint location is not
known to the debugger.

ACTION Re-enter the command with a valid class name.

UE668 MESSAGE Ambiguous function name on IIbreakpointll command

CAUSE A location was specified as file :function, and there are
several C++ functions with the same name.

ACTION Use a class specifier instead of a file specifier to
identify the desired function.

Messages A-49

UE669 MESSAGE Invalid file on "continue tl command

CAUSE A file specified as part of a continue location is not
known to the debugger.

ACTION Re-enter the command with a valid file name. Use the
If (list files) command to list all valid source files
and the path name you must use.

UE670 MESSAGE Invalid procedure on II continue ll command

CAUSE A procedure specified as part of a continue location is
not known to the debugger.

ACTION Re-enter the command with a valid procedure name.
Use the lp (list procedures) command to see a list
of all valid procedures.

UE671 MESSAGE Invalid line number on tlcontinue " command

CAUSE A line specified as part of a continue location is out of
range for the associated file.

ACTION Re-enter the command with a valid line number.

A UE672 MESSAGE Invalid label on II continue tl command

CAUSE A label specified as part of a continue location is not
known to the debugger.

ACTION Re-enter the command with a valid label name.

UE673 MESSAGE Invalid class on II continue tl command

CAUSE A class specified as part of a continue location is not
known to the debugger.

ACTION Re-enter the command with a valid class name.

A-50 Messages

UE675 MESSAGE Ambiguous function name on II continue ll command

CAUSE A location was specified as file :function, and there are
several C++ functions with the same name.

ACTION Use a class specifier instead of a file specifier to
identify the desired function.

UE676 MESSAGE Invalid file on IIContinue ll command

CAUSE A file specified as part of a continue location is not
known to the debugger.

ACTION Re-enter the command with a valid file name. Use the
If (list files) command to list all valid source files
and the path name you must use.

UE677 MESSAGE Invalid procedure on IIContinue ll command

CAUSE A procedure specified as part of a continue location is
not known to the de bugger.

ACTION Re-enter the command with a valid procedure name.
Use the lp (list procedures) command to see a list
of all valid procedures.

A
UE678 MESSAGE Invalid line number on IIContinue ll command

CAUSE A line specified as part of a continue location is out of
range for the associated file.

ACTION Re-enter the command with a valid line number.

UE679 MESSAGE Invalid label on IIContinue ll command

CAUSE A label specified as part of a continue location is not
known to the debugger.

ACTION Re-enter the command with a valid label name.

Messages A-51

UE680

UE682

UE683

UE684

UE685

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

A-52 Messages

Invalid class on t1Continuell command

A class specified as part of a continue location is not
known to the debugger.

Re-enter the command with a valid class name.

Ambiguous function name on IIContinue ll command

A location was specified as file :function, and there are
several C++ functions with the same name.

Use a class specifier instead of a file specifier to
identify the desired function.

Invalid file on II v iew ll command

A file specified as part of a view location is not known
to the debugger.

Re-enter the command with a valid file name. Use the
If (list files) command to list all valid source files
and the path name you must use.

Invalid procedure on II v iew ll command

A procedure specified as part of a view location is not
known to the debugger.

Re-enter the command with a valid procedure name.
Use the lp (list procedures) command to see a list
of all valid procedures.

Invalid line number on II v iew ll command

A line specified as part of a view location is out of the
range of the associated file.

Re-enter the command with a valid line.

UE686 MESSAGE Invalid label on II v iew ll command

CAUSE A label specified as part of a view location is not
known to the debugger.

ACTION Re-enter the command with a valid label name.

UE687 MESSAGE Invalid class on II v iew ll command

CAUSE A class specified as part of a view location is not
known to the debugger.

ACTION Re-enter the command with a valid class name.

UE689 MESSAGE Ambiguous function name on "view" command

CAUSE A location was specified as file : function , and there are
several C++ functions with the same name.

ACTION Use a class specifier instead of a file specifier to
identify the desired function.

UE690 MESSAGE Invalid file on CMD command

CAUSE A file specified as part of a CMD location is not
known to the debugger.

ACTION Re-enter the command with a valid file name. Use the
A

If (list files) command to list all valid source files
and the path name you must use.

UE691 MESSAGE Invalid procedure on CMD command

CAUSE A procedure specified as part of a CMD location is
not known to the debugger.

ACTION Re-enter the command with a valid procedure name.
Use the Ip (list procedures) command to see a list
of all valid procedures.

Messages A-53

UE692 MESSAGE Invalid label on CMD command

CAUSE A label specified as part of a CMD location is not
known to the debugger.

ACTION Re-enter the command with a valid label name.

UE693 MESSAGE Invalid class on CMD command

CAUSE A class specified as part of a CMD location is not
known to the debugger.

ACTION Re-enter the command with a valid class name.

UE695 MESSAGE Ambiguous function name on CMD command

CAUSE A location was specified as file :function, and there are
several C++ functions with the same name.

ACTION Use a class specifier instead of a file specifier to
identify the desired function.

UE696 MESSAGE Must specify breakpoint to delete

CAUSE Although there is a breakpoint at the current viewing
location, a breakpoint number must be given with the

A db (delete breakpoint) command.

ACTION Use the lb (list breakpoints) command to find the
number of the breakpoint you want to delete and
re-enter the db (delete breakpoint) command with
the breakpoint number.

UE697 MESSAGE Must specify function name

CAUSE The bpo (breakpoint overload) command was
invoked without a function name.

ACTION Re-enter the command with a function name.

A-54 Messages

UE698 MESSAGE Function not found

CAUSE No function matching the function name argument
given to the bpo (breakpoint overload) command
was found.

ACTION Re-enter the command with a valid function name.
D se the lp (list procedures) command to see a list
of all valid procedures.

UE699 MESSAGE Must specify class name

CAUSE No class name argument was given to the bpc
(breakpoint class) command.

ACTION Re-enter the command with a class argument.

UE701 MESSAGE Class not found

CAUSE No class matching the class name given to the bpc
(breakpoint class) command was found.

ACTION Re-enter the command with a valid class name.

UE702 MESSAGE Class has no member functions

CAUSE The class argument given to the bpc (breakpoint A

class) command has no member functions.

ACTION N one-This kind of breakpoint cannot be set for this
class.

UE703 MESSAGE No count given for ttbreakpoint instance tl command

CAUSE The user failed to specify a breakpoint count (after the
\) for a breakpoint command.

ACTION Refer to the "Breakpoint Commands" section in
Chapter 4 of the HP Symbolic Debugger D ser's Guide
to see the correct syntax for breakpoint commands.

Messages A-55

UE706 MESSAGE Function is not class member

CAUSE The function argument to the bi (breakpoint
instance) command is not a class member.

ACTION Use the b (breakpoint) command to set breakpoints
at non-member functions

UE707 MESSAGE No static data members

CAUSE This class has no static data members to print.

ACTION N one-This message is for information purposes only.

UE708 MESSAGE Class member required

CAUSE The name following the : : is not a valid identifier for
a class member.

ACTION Use a valid class member name after the

UE709 MESSAGE Must specify breakpoint to suspend

CAUSE Although there is a breakpoint at the current viewing
location, a breakpoint number must be given with the
sb (suspend breakpoint) command.

A
ACTION Use the lb (list breakpoints) command to find

the number of breakpoint you want to suspend and
re-enter the sb (suspend breakpoint) command with
the breakpoint number.

A-56 Messages

UE710 MESSAGE Must specify breakpoint to activate

CAUSE Although there is a breakpoint at the current viewing
location, a breakpoint number must be given with the
ab (activate breakpoint) command.

ACTION Use the lb (list breakpoints) command to find
the number of breakpoints you want to activate and
re-enter the ab (activate breakpoint) command
with the breakpoint number.

UE711 MESSAGE Field not found

CAUSE There was an attempt to access a C++ class member
through an invalid member or member function
pointer.

ACTION Make sure the pointer is initialized before using it.

UE712 MESSAGE Improper pointer conversion

CAUSE There was an attempt to assign the value of a pointer
to a class to a pointer to another class.

ACTION If this type of assignment is needed, get the value of
the first pointer by using the p (print) command,
then assign the obtained value directly to the second A

pointer. This will bypass type checking.

Messages A-57

UE713 MESSAGE Static data member required

CAUSE There was an attempt to access a non-static class
member through the use of class scope operator
outside of a member function for the class.

ACTION Outside a member function the class scope operator
class: : name is used to access static class members
only. To access a non-static member, use the .
operator with an object, or the -) operator with a
pointer to an object.

UE721 MESSAGE Pointer to member dereferenced

CAUSE There was an attempt to use a pointer to class
member as a regular pointer.

ACTION A pointer to member can only be used in the following
context:

class: : * pointer
object. * pointer
pointer _ to_ object-)* pointer

as it is directly connected with all objects of a specific
type and does not contain an absolute address.

A

UE722 MESSAGE Illegal use of pointer to member

CAUSE There was an attempt to use a pointer to member in
an expression of the form name. *pointer where name
is not the name of a class object.

ACTION Re-enter the expression with a valid object name.

A-58 Messages

UE723 MESSAGE Illegal member pointer assignment

CAUSE There was an attempt to assign some illegal expression
to a member pointer.

ACTION Re-enter the expression with a valid expression, that
is, & class : : member.

UE724 MESSAGE Instance not specified for function call

CAUSE There was an attempt to call a non-static member
function as class: :Junction () .

ACTION Call the function through an object or an
object pointer, that is, object .Junction () or
objptr->junction ().

UE725 MESSAGE Class member not found

CAUSE There was an attempt to print a non-existing class
member.

ACTION Re-enter the expression with a valid class / member
combination.

UE726 MESSAGE Line not found in body of procedure A

CAUSE There was an attempt to get the address of a line
using the notation Junction#line where line is not in
the body of the function.

ACTION Re-enter the expression with a valid function/line
number combination. Use the lp (list procedures)
command with the procedure's name. The range
of valid line numbers will be displayed with the
procedure.

Messages A-59

UE728 MESSAGE Warning: breakpoint not set on inlined function
invocations.

CAUSE The last breakpoint command was been prevented
from setting a breakpoint on all targeted member
functions because some member functions were inlined
by the compiler.

ACTION Compile with the CC(1) +d option to prevent member
functions from being inlined.

UE729 MESSAGE Invalid structure access

CAUSE There was an attempt to use a non-pointer or a
pointer to a class member as a pointer, that is, p->i
where p is not of type pointer.

ACTION Re-enter the expression with a valid pointer, or use
the address of p if you need it, that is, &(p)->i

UE730 MESSAGE Operations on classes are not supported

CAUSE There was an attempt to use a class in an expression
in a way not supported by the debugger, for example,
trying to add two class objects.

A ACTION If an operator was overloaded to perform the desired
function, you must use the operator<op> () form of the
function call. For example, the debugger won't allow A
+ B, but will accept A. operator+ (B).

UE731 MESSAGE Cannot assign to function

CAUSE There was an attempt to assign a value to a function.

ACTION This is not supported by the debugger.

A-60 Messages

UE732 MESSAGE Nil character constant

CAUSE There was an attempt to use " as a character.

ACTION Re-enter the expression with a valid character
constant. ' c ' , or ,\ value'

UE733 MESSAGE Invalid procedure given for "breakpoint trace"
command

CAUSE The debugger could not find a procedure with the
specified name.

ACTION Use the lp (list procedures) command to find what
procedures are known to the debugger, and re-enter
the command with the corrected name. Alternatively,
if the procedure you supplied was not compiled with
the debug flag, you can still set a breakpoint at its
entry point by using the 'ba address' command.

UE734 MESSAGE Invalid procedure given for "bt II command

CAUSE The debugger could not find a procedure with the
specified name.

ACTION Use the lp (list procedures) command to find what
procedures are known to the debugger, and re-enter A

the command with the corrected name. Alternatively,
if the procedure you supplied was not compiled with
the debug flag, you can still set a breakpoint at its
entry point by using the 'ba address' command.

Messages A-61

UE735 MESSAGE Class instance or member function required for
IIbreakpoint instance ll command

CAUSE There was an attempt to set an instance breakpoint
on something that the debugger doesn't recognize as a
class instance or a member function.

ACTION Re-enter the command with a valid class instance
(object) or a member function (object. function or
objecLpointer-> function).

UE736 MESSAGE Class instance or member function required for
IIbi II command

CAUSE There was an attempt to set an instance breakpoint
on something that the debugger doesn't recognize as a
class instance or a member function.

ACTION Re-enter the command with a valid class instance
(object) or a member function (object .function or
objecLpointer->function).

UE738 MESSAGE Use "breakpoint instance ll for instance
breakpoints

A CAUSE There was an attempt to use the regular b
(breakpoint) command for an instance breakpoint.

ACTION Use the bi (breakpoint instance) command instead.

UE739 MESSAGE Use IIbi II for instance breakpoints

CAUSE There was an attempt to use the regular b
(breakpoint) command for an instance breakpoint.

ACTION Use the bi (breakpoint instance) command instead.

A-52 Messages

UE756 MESSAGE No registers in core file -- registers required

CAUSE The core file has a format not recognized by the
debugger.

ACTION Obtain a new core file on the same system as the
debugger you are running.

UE757 MESSAGE Modif ier is not allowed before CMD command

CAUSE In cdb, fdb, or pdb, a modifier was entered before a
command that does not take a modifier.

ACTION Re-enter the command without a modifier in front of
it.

UE759 MESSAGE No code for function

CAUSE There was an attempt to view or set a breakpoint in a
procedure that contains no code.

ACTION If the C++ function is pure virtual or declared but
not defined, no action can be taken. If the function is
inlined it can be recompiled with the +d option.

UE760 MESSAGE Cannot call pure virtual funct ion A

CAUSE There was an attempt to call a pure virtual C++
function from the debugger command line.

ACTION Call the virtual function of a derived object instead.

Messages A-63

UE761 MESSAGE Cannot call inlined function

CAUSE There was an attempt to call a C++ inlined function
from the debugger command line.

ACTION If such a function needs to be debugged, recompile
your program with the +d option. This will cause the
compiler to force a non-inlined version of the function
to be emitted. This function can then be debugged
regularly.

UE762 MESSAGE Cannot set instance breakpoint on static member
function

CAUSE There was an attempt to set an instance breakpoint
on a static member function.

ACTION Use the regular b (breakpoint) command on static
member functions.

UE763 MESSAGE Class has only static member functions

CAUSE Use of the bi (breakpoint instance) command on a
class which has only static member functions.

ACTION Use the bpc (breakpoint class) command instead.
,A

UE764 MESSAGE Breakpoints set only for non-static member
functions

CAUSE The bi (breakpoint instance) command was used
on a class that has static member functions. No
breakpoint was set on the static member functions.

ACTION If you need to set a breakpoint on all the members,
use the bpc (breakpoint class) command instead.
Alternatively, use the bi (breakpoint instance)
command so that you get instance breakpoints on the
regular members, and set regular breakpoints on static
members.

A-64 Messages

UE765 MESSAGE Pure virtual function in expression not
supported

CAUSE A function used in an expression is a pure virtual
function.

ACTION Use the function from a derived object instead.

UE766 MESSAGE Calls via function expressions not supported

CAUSE An expression contains a call to a member function
through a member function pointer.

ACTION This is not supported.

UE767 MESSAGE Function calls returning class obj ects are not
supported

CAUSE An expression contains a call to a member function
whose return type is a class object.

ACTION This is not supported.

UE768 MESSAGE Warning: constructors will not be implicitly
executed

CAUSE An expression contains a call to a member function A

and the process being debugged has not been started
yet or has died. If there are any static objects in your
program, their constructors will not be called before
the function is called.

ACTION If the member function you want to call accesses any
static objects, you need to start the child process first
(use the s or S command).

Messages A .. 65

UE769 MESSAGE Inlined function in expression not supported

CAUSE The name of an inlined C++ function has been used
in an expression.

ACTION To be able to use this function, your program must be
recompiled with the +d option. This will cause the
compiler to force a non-inlined version of the function
to be emitted.

UE770 MESSAGE No breakpoint set; all functions have been
inlined

CAUSE There was an attempt to set an instance or class
breakpoint (bi or bpc) on a class whose member
functions have all been inlined.

ACTION Recompile your C++ program with the +d option.
This will prevent the compiler from inlining member
functions.

UE771 MESSAGE Cannot resolve overloaded function IIPROCII
while running assertions

CAUSE A command used in an assertion command list

A involves overloaded functions. Usually the debugger
presents a menu of functions and asks you for your
choice to resolve ambiguities. This is not possible from
inside an assertion.

ACTION If you are trying to set a breakpoint on an overloaded
function, set the breakpoint at a line number so that
there is no possible ambiguity.

A-66 Messages

UE772 MESSAGE Cannot resolve overloaded funct ion II P ROell when
executing breakpoint

CAUSE A command used in a breakpoint command list
involves overloaded functions. Usually the debugger
presents a menu of functions and asks you for your
choice to resolve ambiguities. This is not possible from
inside a breakpoint.

ACTION If you are trying to set a breakpoint on an overloaded
function, set the breakpoint at a line number so that
there is no possible ambiguity.

UE773 MESSAGE Class obj ect parameters are not supported in
command line function calls

CAUSE An expression contains a call to a function that has an
argument that is a class object.

ACTION This is not supported.

UE774 MESSAGE Unsupported member pointer assignment

CAUSE There was an attempt to assign the address of a
member function to a pointer to a member function of
a different class. A

ACTION This is not supported.

UE775 MESSAGE Function calls returning a pointer to a member
funct ion are not support ed

CAUSE An expression contains a call to a member function
whose return type is a pointer to member function.

ACTION This is not supported.

Messages A-67

UE776 MESSAGE Parameter of type pointer to member function not
supported in command line call

CAUSE There was an attempt to call a function that has an
argument which is a pointer to member function.

ACTION This is not supported.

UE779 MESSAGE Breakpoint command processing overflow

CAUSE A macro processing overflow occurred while evaluating
a breakpoint command list (see UE451).

ACTION Shorten the macro being processed, or manually
substitute the reference of the macro in the breakpoint
command-list with the actual command.

UE782 MESSAGE Invalid argument on Il continue ll command

CAUSE The continue command was given with a location the
debugger could not evaluate or apply in this context
(such as a filename).

ACTION Replace the location specified with valid location (line
number, procedure name, label).

A
UE783 MESSAGE Invalid argument on IlContinue ll command

CAUSE The Continue command was given with a location the
debugger could not evaluate or apply in this context
(such as a filename).

ACTION Replace the location specified with valid location (line
number, procedure name, label).

A-68 Messages

UE784 MESSAGE Invalid argument on II CMD II command

CAUSE The CMD command was given with a location the
debugger could not evaluate or apply in this context
(such as a filename).

ACTION Replace the location specified with valid location (line
number, procedure name, label).

UE785 MESSAGE Address is required after IIva ll

CAUSE The va command was entered with no parameter.

ACTION Re-enter the command with an address argument.

UE786 MESSAGE Unrecognized opt ion

CAUSE An unrecognized option was given to a bi
(breakpoint instance) or bpc (breakpoint class)
command.

ACTION Consult Chapter 4 in this manual for valid options to
be used with the bi (breakpoint instance) or bpc
(breakpoint class) commands.

UE830 MESSAGE Count ignored on break on template member A
functions.

CAUSE A count was specified with a breakpoint set on a
template member function and has been ignored.
Setting a count on breakpoints on template member
functions is not supported.

ACTION No action is needed.

Messages A-69

UE835 MESSAGE Cannot restore PC space register to continue

CAUSE The program was linked with an older version of
/usr/lib/ end. 0, and the debugger does not have the
ability to use hooks in that file to restore the PCSQ
register after a command-line procedure call.

ACTION Relink the program using a current version of
/usr/lib/ end. 0, and re-invoke the debugger.

UE836 MESSAGE WARNING: /usr/lib/end.o was not linked with this
program

CAUSE This file must be linked with your program for the
debugger to support many operations.

ACTION If the linker (ld{1)) was used to link you program,
explicitly list /usr/lib/ end. 0 on the linker
command-line. If a compiler was used for the final
link, make sure -g is use. If the message persists,
make sure /usr /lib/ end. 0 is installed on your
system.

UE837 MESSAGE Shared-library debugging cannot be made
available

A
CAUSE The file /usr /lib/ end. 0 must be linked with your

program for the debugger to effectively support
debugging of shared-libraries or programs that use
them.

ACTION See UE836.

A· 70 Messages

UE838 MESSAGE WARNING: Cannot find 'main' entry-point in
PROGRAM

CAUSE The debugger could not locate the symbol which
marks the "start" address of the program.

ACTION Make sure the program was linked with the standard
/lib/ crtO. 0 (for Series 300/400 FORTRAN use
/lib/frtO. 0). The linker -v option can provide this
information.

UE839 MESSAGE WARNING: Enclosing procedure not on stack

CAUSE A command-line procedure call was made to a Pascal
procedure which is scoped (nested) within another
procedure, which is not currently active on the
execution stack. The debugger cannot construct a
static link for the procedure being called.

ACTION If this error occurs, the debugger will prompt for
continuation. Answering yes will cause a static-link
of 0 will be used. Otherwise, make sure the outer
procedure is active on the stack before attempting to
call any procedure nested within it.

UE841 MESSAGE Invalid $lang value. Resetting to Default A

CAUSE The $lang special variable was set to an invalid value,
perhaps by an action such as p $lang=C where C is
also an identifier in the program being debugged.

ACTION Reset $lang to a valid value. Choices are C (0),
FORTRAN (1), Pascal (2), C++ (4), and default. If
the desired language name coincides with a program
identifier, the numerical values may be used instead.

Messages A-71

A

UE842

UE843

UE846

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

A-72 Messages

WARNING: Cannot locate main entry point.

The main program body (e.g. main () for the C
language) cannot be located by the debugger.
Presumably it is within a shared-library for which the
-1 option is not specified.

Re-invoke the debugger with -1 libname, where
libname identifies the shared-library containing the
main program body.

WARNING: Can't set breakpoint at main entry; try
invoking with -s .

The main program body (e.g. main () for the C
language) is within a shared-library, but the debugger
cannot set a breakpoint there because the library is
mapped into the process as read-only.

Re-invoke the debugger with the -s or -1 option.

Corefile created on older system.

An attempt was made to use a corefile that was
created on an older version of HP -UX which does not
support shared-library corefiles. Consequently, if the
program aborted in a shared-library, the debugger
cannot convert the actual address where the program
aborted to a symbolic address, and the current
shared-library load map at the time the program
aborted cannot be reconstructed.

Examine the corefile on the system on which it was
created, or attempt to create a valid corefile by
running the program on a newer version of HP -UX.
Make sure the program is linked with current versions
of /lib/ crtO. 0 (for Series 300/400 FORTRAN use
/lib/frtO.o) and /usr/lib/end.o (see also UE436,
UE836, and UE838).

UE847 MESSAGE Program linked on older system.

CAUSE (Series 300/400 only) A corefile was used, but
the program being debugged was linked with an
old version of /bin/ld, and the debugger cannot
determine the shared-library load map at the time the
program aborted.

ACTION Relink the program using a current linker, as well
as current versions of the files /lib/ crtO. 0 (for
Series 300/400 FORTRAN use /lib/frtO. 0) and
/usr/lib/ end. o. Then attempt to re-create the
corefile on a current version of HP- UX.

UE848 MESSAGE Program linked with older version of OBJFILE.

CAUSE (Series 600/700/800 only) A corefile was used, but
the program being de bugged was linked with an old
version of either /lib/ crtO .0 (for Series 300/400
FORTRAN use /lib/frtO. 0) or /usr/lib/ end. 0,

and the debugger cannot determine the shared-library
load map at the time the program aborted.

ACTION Relink the program using current versions of the files
/lib/ crtO. 0 and /usr/lib/ end. o. Then attempt to
re-create the corefile on a current version of HP -UX. A

UE8S0 MESSAGE No valid entry for PROG

CAUSE A command-line procedure-call to PROG was
attempted (PROG was not compiled with -g). No
callable address for PROG was found.

ACTION Use the 11 PROG (list labels) command to verify
the symbol-type and location of PROG.

Messages A-73

UE851 MESSAGE PROG is not TYPE_PROCEDURE

CAUSE A command-line procedure-call to PROG was
attempted (PROG was not compiled with -g).
PROG is a dynamic symbol, but was not defined as
TYPE_PROCEDURE (see shL dejinesym (3X)).

ACTION Use the 11 PROG (list labels) command to verify
the symbol-type of PROG.

UE852 MESSAGE Dynamic-loader cannot locate PROG

CAUSE A command-line procedure call was attempted to a
procedure which the dynamic-loader cannot locate.
The debugger uses shLjindsym{3X) to properly bind
procedures called on the command-line.

ACTION Make sure the procedure is spelled correctly, and that
it is defined in an active shared library. The list
procedures or list labels command can help.

UE854 MESSAGE No such shared-library NAME

CAUSE A reference was made to a symbol using @

qualification (e.g. symbol@NAME), and the debugger

A cannot properly identify the shared-library referred to
by NAME.

ACTION Use the lsI command to list all shared-libraries
and the abbreviated names that are legal in symbol
references. If the shared library denoted by NAME
was not linked with the program, but is expected to
be loaded with shLload{3X), use the -1 invocation
option to specify the library.

A-74 Messages

UE856 MESSAGE syntax: apm {oldpath I \ "\ "} [newpath]

CAUSE The apm command was given without any arguments.

ACTION Supply the proper arguments for the desired mapping.

UE857 MESSAGE path map ignored (2 empty paths)

CAUSE The command apm "" or apm 1111 "" was given.

ACTION Supply an apm command with at least one non-empty
path.

UE858 MESSAGE Path substitution list is empty

CAUSE The dpm command was given when no path maps have
been defined with the apm command.

ACTION No action is needed.

UE859 MESSAGE Path substitution stack is not that deep

CAUSE The dpm command was given with an argument which
is greater than the number of path maps currently
defined.

ACTION Use the lpm command to see which and how many
A

path maps are currently defined.

UE1026 MESSAGE SHARED-LIBRARY is not an active
shared-library

CAUSE The user attempted an mm @shared-library command,
and the named library is not currently mapped into
memory.

ACTION No action is needed.

Messages A-75

UE1030 MESSAGE

CAUSE

ACTION

UE1031 MESSAGE

CAUSE

ACTION

UE1042 MESSAGE
A

CAUSE

ACTION

A-76 Messages

WARNING: OBJFILE does not contain the required
support for - s .

The program being debugged was linked with an old
version of either /lib/crtO.o (for Series 300/400
FORTRAN use /lib/frtO. 0) or /usr /lib/ end. 0,
and debugging of shared-libraries cannot be
supported.

Relink the program using current versions of the files
/lib/ crtO. 0 and /usr/lib/ end. 0, and re-invoke the
debugger.

Cannot set breakpoint at ADDRESS in
SHARED-LIBRARY. Try invoking with
-lSHARED-LIBRARY or -so

No -s or -1 command-line option was given to the
debugger, resulting in SHARED-LIBRARY being
loaded as truly shared (read -only).

Re-run the debugger with the -s or -1 command-line
option.

Ignoring -s or -1 option. You must invoke the
command: Ilpxdb -s enable PROGRAM!' before
executing PROGRAM.

An attempt was made to adopt PROGRAM using
xdb -P, but the flags that cause shared-libraries
to be loaded as writable were not properly
pre-set. Consequently, setting a breakpoint in any
shared-library loaded by PROGRAM is disallowed.

Run the given command before executing
PROGRAM. This statically sets the appropriate flags
in the a.out file, causing the dynamic-loader to load
private (writable) images of all shared -libraries used
by PROGRAM.

UE1044 MESSAGE Warning: Cannot locate dependent library:
SHARED-LIBRARY

CAUSE The program being debugged was linked against a
shared-library which the debugger cannot locate using
information available to it in the executable itself.

ACTION Use the -1 option to specify the complete path to the
debugger.

UE1045 MESSAGE Warning: Cannot locate library for -lNAME

CAUSE An abbreviated shared-library name was used with the
-1 option, but the debugger cannot locate the library
using information available to it in the executable
itself.

ACTION Re-issue the -1 option with a complete path.

UE2003 MESSAGE Warning: PA-RISC 1.1 executable on PA-RISC 1.0
system.

CAUSE The program being debugged was compiled on a
PA-RISe 1.1 system or with the +DA1.1 compiler
option, and is being debugged on a PA-RISe 1.0
system. The debugger will abort with a UE375. A

ACTION Recompile the program with +DA1. 0, or debug it on a
PA-RISe 1.0 system.

UE2004 MESSAGE Executables linked with -N are not supported on
Series 600/800

CAUSE The -N option to ld(1) was used when the program
was linked. This option is only supported on Series
300/400/700.

ACTION Either link the object file without the -N option or
debug the program on a Series 700.

Messages A-77

UE2007 MESSAGE Warning: no such shared-library
SHARED-LIBRARY

CAUSE The program was linked with, or a corefile indicates
that the program was executed with, a shared-library
which cannot be located by the debugger.

ACTION Make sure the program will execute stand-alone
(outside the debugger), or if a corefile was used, make
sure all shared-libraries in use by the progranl when it
aborted are available on the current system.

UE2011 MESSAGE WARNING: Shared-library linked more than once,
ignoring duplicate: SHARED-LIBRARY

CAUSE (Series 300/400 only) The program was linked with
more than one copy of a shared-library. Most likely, a
language's default library was inadvertently listed on
the compiler command-line (For example: cc ... -lc).
The debugger can only accommodate the first one
seen.

ACTION Make sure that each shared-library used by the
program is only linked in once.

A UE2012 MESSAGE WARNING: ignoring shl_IoadO of library that is
already loaded: SHARED-LIBRARY

CAUSE (Series 300/400 only) The program being debugged
did a shLload(3X) of a shared-library that had either
been implicitly linked in, or previously shLload'ed.
The debugger can only accommodate the library
already loaded.

ACTION Make sure that each shared-library used by the
program is only linked in once, and any library
implicitly linked in is not shLload'ed.

A· 78 Messages

UE2017 MESSAGE Too many debuggable shared-libraries

CAUSE The program was linked with more than 512
shared-libraries that contain symbolic debug
information, and the user requested that all such
libraries be debugged.

ACTION Don't use the -IALL invocation option, or limit
the number of -llibname arguments given to the
debugger.

UE2021 MESSAGE Cannot bind I unbind address ADDRESS (symbol
NAME) to inactive image SHARED-LIBRARY

CAUSE A reference was made to an address which was
mapped to shared-library which is no longer active
(mapped into the process).

ACTION Verify the symbol or address is correctly specified, and
reissue the command. The mrn (memory map) command
can be used to list all active images.

UE2029 MESSAGE WARNING: NAME debug table(s) in FILE are too
large

CAUSE The program or shared-library FILE contains more A
symbolic-debug information than the debugger can
handle from a single file.

ACTION Compile all/some portions of FILE without the
-g compiler option, or split the shared-library into
multiple libraries.

Messages A-79

A

UE2031 MESSAGE

CAUSE

ACTION

A-SO Messages

Image not active: SHARED-LIBRARY

Attempt to print a variable or call a function from
the command line where the variable or the function
is in a shared library that has been unloaded by the
program.

Print the variable or call the function before the
program unloads the shared library.

HP C and c++ Language Operators

This appendix lists and describes operators for the HP C and C++
programming languages that the debugger expression evaluator recognizes.

HP C and C++ Language Operators

B

The following table lists the supported HP C and C++ operators. Operators
are listed in order of precedence, from highest to lowest. All operators listed
in the same box are of equal precedence. Associativity of operators in the
following table is from left to right, unless otherwise stated. Assignment is
treated by the debugger as an operation.

For HP C and C++, the operators && and II are not short circuited as is done
by the compilers; all portions of an expression involving these operators are
evaluated. Also, pointer arithmetic in the debugger is unsupported.

Full support of struct and class objects is provided.

HP C and C++ Language Operators 8-1

8

B

HP C and C++ Language Operators

Table B-1. Language Operators for HP C and c++

.. . .
()

[]

->

Operator

! (order is right to left)

- (order is right to left)

- (order is right to left)

* (order is right to left)

&: (order is right to left)

$addr (order is right to left)

$sizeof (order is right to left)

$in (order is right to left)

sizeof (order is right to left)

*
/

%

+

Operation

scope resolution operator (C++ only)

parenthesis (group elements)

array member selection

member selection of pointer to structure

member selection of structure

unary logical negation

unary logical one's complement

unary negation

unary indirection (pointer or address
dereferencing)

unary address of an object

unary address of an object

unary size of an object

unary suspended in named routine

unary size of an object

multiplication

division

modulus - mod function

addition

subtraction

B-2 HP C and c++ Language Operators

Table B-1. Language Operators for HP C and C++ (continued)

Operator Operation

« bit-wise logical left shift; fill with 0

» bit-wise arithmetic right shift; unsigned
fill with 0, else fill with sign bit

< relational less than

<= relational less than or equal to

> relational greater than

>= relational greater than or equal to

-- relational equal to

1- relational not equal to

&; bit-wise logical and

- bit-wise logical exclusive or

1 bit-wise logical inclusive or

&;&; logical and

II logical or

= (order is right to left) assignment

op= (order is right to left) assignment operators of the form: el op=
e2 which means (e1) = (el) op (e2) .

Where op may be anyone of the
mathematical or bit-wise operators (*,
/, %, +, - «, », &;, - I) , , B

HP C and C++ Language Operators B-3

HP FORTRAN 77 Language Operators
and VMS Record Support

This appendix lists and describes operators for the HP FORTRAN 77
programming language that the debugger expression evaluator recognizes.

HP FORTRAN 77 Language Operators

c

The following table lists the supported HP FORTRAN 77 operators. Operators
are listed in order of precedence, from highest to lowest. All operators listed
in the same box are of equal precedence. All operators of equal precedence
evaluate left to right, unless otherwise stated. Assignment is treated by the
debugger as an operator.

Complex variables in HP FORTRAN 77 are not supported except as a pair of
two separate reals or doubles. Any HP C language operators that do not clash
with supported HP FORTRAN 77 operators can be used in HP FORTRAN 77
expressions, with the corresponding C interpretation. The only exception to
this is the unary operator sizeof.

HP FORTRAN 77 Language Operators C-1
and VMS Record Support

C

C

HP FORTRAN 77 Language Operators

Table C-1. Language Operators for HP FORTRAN 77

Operator Operation

() parentheses (grouping), array member
selection

member selection of record

- (order is right to left) unary negation

$addr (order is right to left) unary address of an object

$sizeof (order is right to left) unary size of an object

$in (order is right to left) unary suspended in named routine

* multiplication

I division

+ addition

- subtraction

.LT. relational less than

.LE. relational less than or equal to

.EQ. relational equal to

.GE. relational greater than or equal to

.NE. relational not equal to

.GT. relational greater than

.NOT. logical negation

.AND. logical and

.OR. logical or

C-2 HP FORTRAN 77 Language Operators
and VMS Record Support

Table C-1. Language Operators for HP FORTRAN 77 (continued)

Operator

.EQV.

.NEQV.

= (order is right to left)

Operation

logical equivalence

logical nonequivalence

assignment

HP FORTRAN 77 Language Operators C-3
and VMS Record Support

C

c

VMS FORTRAN Records

HP Symbolic Debugger provides support for VMS FORTRAN records. There
are four associated types:

• structures

• records

• unIOns

• maps

A structure defines record field types, as in the following example:

structure /date/
integer a
union

map
integer b
real c
character*8 d
integer e
union

map
logical f
integer g

end map
map

character*3 h
end map
map

real i
end map

end union
end map

end union
real j
integer f

end structure

C-4 HP FORTRAN 77 Language Operators
and VMS Record Support

A record corresponds to an instance of that record structure.

For example, given the previous structure, you can define a record with that
structure:

record Idatel rec1

In HP Symbolic Debugger, HP FORTRAN 77 records are treated as HP
FORTRAN 77 structures from the debugger. This means that if you use
the print command with the \ t format to look at a record, you will see the
record's structure rather than the record definition, record I datel rec1.

For example, if you type:

>p rec1\t

you will get:

structure Idatel
integer a
union

map
integer b
real c
character*8 d
integer e
union

map
logical f
integer g

end map
map

character*3 h
end map
map

real i
end map

end union

HP FORTRAN 77 Language Operators C-5
and VMS Record Support

C

C

end map
end union
real j
integer f

end structure rec1

You can access any element within a record. Because maps and unions are
unnamed, they are ignored in naming subelements. For example, field h in the
previous example must be accessed as:

rec1.h

If there is any ambiguity among field names, the first one appearing by a given
name is chosen, just as it is in HP FORTRAN 77. For example, field rec1. f in
the example above is of type logical, not integer.

When the value or type of any field in a record is displayed, its individual
format is identical to what it would be if it were not within a record. For the
records, unions, and maps themselves, these keywords are used identically to
the way they are used in HP FO RTRAN 77 except:

• When printing the type of a structure, its name will follow the entire
structure instead of preceding it.

For example:

>p rec\t

gi ves you this:

structure
integer*4 i

end structure rec

C-6 HP FORTRAN 77 Language Operators
and VMS Record Support

• When printing the value of a structure, its name and an equal sign (=)
precede its value.

For example:

>p rec

gi ves you this:

rec = structure
i = 3

end structure

HP FORTRAN 77 Language Operators C-7
and VMS Record Support

C

D
HP Pascal Language Operators

This appendix lists and describes operators for the HP Pascal programming
language that the debugger expression evaluator recognizes.

HP Pascal Language Operators
The following table lists the supported HP Pascal operators. Operators are
listed in order of precedence, from highest to lowest. All operators listed in the
same box are of equal precedence. All operators of equal precedence evaluate
left to right, unless otherwise stated. Assignment is treated by the debugger as
an operator.

Any HP C language operators that do not clash with supported HP Pascal
operators can be used in HP Pascal expressions, with the corresponding C
interpretation.

There are two restrictions with the language operators for HP Pascal:

• Variables qualified by the WITH statement in an HP Pascal program must be
fully qualified in HP Symbolic Debugger expressions. The HP Pascal WITH
construct is not recognized as a debugger command .

• The debugger does not support HP Pascal set constants and does not
support operations on sets.

HP Pascal Language Operators 0-1

u

u

HP Pascal Language Operators

Table 0-1. Language Operators for HP Pascal

()

[]

Operator

~ (order is right to left)

not (order is right to left)

addr

$addr (order is right to left)

$sizeof (order is right to left)

$in (order is right to left)

sizeof (order is right to left)

*
/

div

mod

+

Operation

parenthesis, group elements

array member selection

member selection of record

pointer (address) dereferencing

unary logical negation

unary address of an objectl

unary address of an object

unary size of an object

unary suspended in named routine

unary size of an object

multiplication

real division

integer division with truncation

modulus

addition

subtraction

1 The debugger does not allow Pascal's optional second arglUllent to addr.

D-2 HP Pascal Language Operators

u

Table 0·1. Language Operators for HP Pascal (continued)

Operator Operation

< relational less than

> relational greater than

<= relational less than or equal to

>= relational greater than or equal to

= relational equal to

< > relational not equal to

: = (order is right to left) assignment

and logical and

or logical or

HP Pascal Language Operators 0·3

E
Special and Environment Variables Used by
the Symbolic Debugger

This appendix covers special variables and environment variables (that affect
the behavior of the debugger).

Special Variables

Table E·1. Special Variables

Variable Description

$var Creates or references user-defined variables. User-created special
variables are of type long, and their names are defined when they are
first used. The variable names are limited to 100 characters.

$pc, $sp, These are the names of the program counter, the stack pointer, the
$r7, etc. CPU general registers, etc. (see the appendix "Registers Displayed by

the HP Symbolic Debugger in Disassembly Mode"). All registers act
as type integer.

$fpa If this variable is set to a non-zero value, any sequence of machine
instructions that constitute a single floating-point accelerator
instruction will be treated as a single instruction for machine-level
single-stepping and display (Series 300 only).

Special and Environment Variables E-1

E

E
Table E-1. Special Variables (continued)

Variable Description

$fpa_reg Indicates the address register used in floating point accelerator
instruction sequences if $fpa is set to a non-zero value (Series 300
only). A 0 corresponds to register aO, 1 to aI, etc. The default value
is 2.

$result References the return value from the last command-line procedure
call. Note that $short and $long are available as alternate ways of
looking at $resul t.

$signal Contains the current child process signal number (can be modified).

$lang Contains the current language (can be modified), The current
language determines the operators that can be used in exprel;)sio:p.s,
and the format in which variables are displayed,

$print Alters the behavior of the print command when printing char&cter
data. Values are ASCII, native, and raw. Default is ,4,SCII.

$line Contains the current source line number, which is also settablewith a
number of different commands.

$malloc Allows you to see the current amount of memory (bytes)· allocated at
run-time for use by the debugger itself.

$step Contains the number of machine instructions the debugger wW step
while in a non-debuggable procedure before setting an up~level
breakpoint and free-running to it (can be modified). The number of
machine instructions the debugger will step by default for Series
300/400 computers is 12 and for Series 600/700/800 computers is f4,

$cplusplus A set of flags to control behavior of certain C++ capabilities. For
information on this special variable, read the section "Customi~ing
Default Debugger Behavior" in the chapter "C++ and the Symbolic
Debugger."

E-2 Special and Environment Variables

E
Table E-1. Special Variables (continued)

Variable Description

$depth Contains the default stack level for viewing local variables. It is set by
the V, up, down, and top commands. It is reset to 0 (top of the stack)
by the commands r, R, C, C, s, S, g, and k and adjusted by the tst
command (PA-RISC only). Higher depth numbers correspond to
procedures further down the stack (greater stack depth). Setting this
variable directly (p $depth = n) sets the local context to the
specified depth, but does not update the source window.

Special and Environment Variables E .. 3

E
Table E-2. Environment VariCJbles

Variable N arne Description J)ef<\ult1

Display Interface:

TERM Terminal type none2

LINES Terminal or window height $TERI\l~ 243

COLUMNS Terminal or window width $TERM, 803

Command-line editing (see ksh(1)):

XDBHIST History file $HOME/.xdl;>:p.i~t

HISTSIZE Maximum commands in history 128

XDBEDIT Editing mode (vi,emacs,gmacs) $VISUAL, $EDITOR, none

Native Language Support:

LANG Locale for message "C"

LC_TYPE Locale for interpreting textual data $LANG, '~C"

1 If alternate defaults are listed, they are checked in the order given.

2 If TERM is not set, the debugger uses "dumb" mode (equivalent to the -L com:m,and~line QPtiQn).

3 In an X Window, if LINES and COLUMNS are not set, values qre taken from the window. Othf.lfwise,
if TERM is set, LINES and COLUMNS may be determined by the termi:nf9 entry forthf.l t.erminal type
given.

E-4 Special and Environment Variables

F
Limitations and Hints

This appendix lists some limitations of HP Symbolic Debugger and gives some
hints for debugger usage.

Limitations and Hints

Source Limitations

• Code that is not compiled debuggable or does not have a corresponding
source file is dealt with in a limited manner. The debugger shows "unknown"
for unknown file and procedure names, cannot show source or interpret
parameter lists, etc. However, the linker symbol table (viewable with the 11
(list labels) command) provides procedure names for most procedures,
even if they are not debuggable (see the section "Disassembly Mode
Limitations").

• Some compilers only issue source line symbols at the end of each logical
statement or physical line, whichever is greater. This means that, if you are
accustomed to saying a = 0; b = 1; on one line, you cannot set a breakpoint
after the assignment to a and before the assignment to b.

• Some statements do not emit code where you would expect it. For example,
assume:

99: for (i = 0; i < 9; i++) {
100: xyz (i);
101: }

A breakpoint placed on line 99 will be hit only once in some cases. The code
for incrementing is placed at line 101. Each compiler is a little different;
you must get used to what your particular compiler does. A good way of

Limitations and Hints F-1

F

F

finding out is to use single stepping to see in what order the source lines are
executed.

• The output of some program generators, such as yacc(1}, have compiler
line number directives in them that can confuse the debugger. It expects
source line entries in the symbol table to appear in sorted order. RerIloval
of line directives fixes the problem, but makes it more difficult to find error
locations in the original source file. The following script, run after yacc(1)
and before cc(l}, comments out line number changes in C progran1s:

sed II 1# *line/s/~. *$1\1*&*\1 It I y. tab. c >ternp. c

The yacc(l} command will leave out line directives if invoked with the -1
option. In general, line number directives (or compiler options) are safe so
long as they never emit line number directives out of sequence.

Process Limitations

• The debugger will not be usable on systems that have been booted from
something other than Ihp-ux (for example, SYSBCKUP was booted instead).
Note that this applies only to Series 300/400 computers.

• The debugger has no knowledge about, or control over, child processes forked
in turn by the process being debugged. Programs being debugged should not
execute a different program via exec(2}.

• Child process output may be (and usually is) buffered. Hence it rnay not
appear immediately after you step through an output statement such as
printj(3S). It may not appear at all if you kill the process.

• If the address given to a ba command is not a code address in the child
process, strange results or errors may ensue.

• If you single step or run with assertions through a call to longjrnp () (see
setjmp(3C}), the child process will probably take off free-running as the
debugger sets but never hits an up-level breakpoint,

• Programs which use the set-user-ID facility do not have that capability when
run under the debugger, as setting of the effective-user-ID is disabled when
executing a traced process. Such programs can be debugged via adoption by
superuser. See ptrace(2} and set-user-ID under glossary(9} in the HP- UX
Rejerence for more information.

F·2 Limitations and Hints

Single Step Limitations

• The default value of $step may be insufficient for some applications. Note
that large values for $step may impact single-step performance when
stepping into non-debuggable procedure calls. F

• (Series 600/700/800 only) The S (Step) command can be used to step
over procedure calls in disassembly mode only when used at a branching
instruction (for example, BLE). The current location after performing the step
will be the first instruction following the delay slot instruction (the second
instruction following the branch). The S command behaves like s when used
at the delay slot instruction, and the call is stepped into.

Signals Restrictions

• The debugger does not terminate on an interrupt (SIGINT); instead it jumps
to its main loop and awaits another command. However, this does not
imply that sending the debugger an interrupt is harmless. It can result in
internal tables being left in an inconsistent state that could produce incorrect
behavior.

• Do not use the z command to manipulate the SIGTRAP signal. This signal is
used by the debugger to synchronize with and control the traced process, and
unpredictable results may occur if it is manipulated in a different manner. A
result of this is that applications that make use of the SIGTRAP signal will at
best be difficult to de bug.

Operators Limitations

• The C operators ++, --, and?: are not available. The debugger always
understands all the other C operators, except sizeof if the default language
is FORTRAN. Users should use $sizeof which works in any language.

The C operators && and II are not short-circuit-evaluated as in the compiler.
All parts of expressions involving them are evaluated, with any side-effects,
even if it's not necessary.

The debugger does not understand C pointer arithmetic. * (a+n) is not the
same as a [n] unless a has an element size of 1.

Limitations and Hints F-3

F

• The only operations that are allowed on entire C++ class objects during
expression evaluation are taking the address of them (with the & operator)
and taking the size of them (with the sizeof or $sizeof operators.)

Object Type Limitations

• Assignments from debugger special variables into objects greater than four
bytes in size will give invalid results.

• When you try to display a variable which is a FORTRAN format label, a
Pascal file-of-text, or a Pascal set, with no display format or with normal
format (\n), the value is shown as {format-label}, {file-of-text}, or
{set}, respectively. You can use other formats, such as \x, to display the
contents of such variables.

• When a C parameter is declared as an array of anything, the highest type
qualifier (array) shows up as a pointer instead. For example, int x [J looks
like int *x, and char (*x) [J looks like char **x, but char *x [J is treated
correctly as "pointer to array of char".

When a compiler does not know array dimensions, such as for some C and
FORTRAN array parameters, it uses 0 :MAXINT or 1 :MAXINT, as appropriate.
The \t format shows such cases with [J (no bounds specified), and
subscripts from 0 (or 1) to MAXINT are allowed in expressions.

There is no support for Pascal packed arrays where the element size is not
a whole number of bytes. Any reference into such an array may produce
garbage or a bad access error.

• The debugger does not know about void as a type. All objects of type void
are reported as being of type into After a command-line call to a function of
type void, $resul t will contain a meaningless value.

• The debugger interprets COMPLEX variables to be of type REAL; therefore,
when you try to print the value of a COMPLEX variable from within the
debugger, a REAL value is displayed. To print both the real and imaginary
parts of a COMPLEX variable, you need to enter a command with the following
syntax:

p vaTiable\2n

F·4 Limitations and Hints

The following program (my test . f) prints the real and imaginary parts of the
COMPLEX variable cplx8.

PROGRAM main ()

COMPLEX*8 cplx8

cplx8 = (3.5, 5.4)
PRINT *, cplx8

STOP
END

To test the previously given print syntax, compile the above program as
follows:

f77 -g -0 my test mytese.f

Next, execute the debugger command with the program name my test as
follows:

xdb my test

Set a breakpoint at line 6 in the program:

>b 6\t

and run the program in the debugger using this command:

>r

To display the real and imaginary parts of the COMPLEX variable cplx8,
execute this command:

>p cplx8\2n

Results displayed are similar to this:

Ox7b0333dO 3.5 5.4

To change the values of the the COMPLEX variable cplx8, you would enter and
execute commands similar to this:

>p cplx8=2.7
cplx8 = 2.7
>p *($addr(cplx8)+$sizeof(cplx8))=7.6

Limitations and Hints F·5

F

F

Ox7b0333d4 7.6
>p cplx8\2n
Ox7b0333dO 2.7 7.6

To view the values with an alternate floating-point format, you must take
into consideration the size of the data items:

>p cplx8\2e
Ox7b0333dO 3.500000e+00

Note that the "E" format will not work here.

5.400000e+00

• Two types of string formats are supported in addition to null-terminated C
strings. FORTRAN character variables consist of a string of bytes (no null
terminator). Pascal string variables consist of a length byte, followed by the
string characters. The \s and \a formats will display these types correctly
only if the current language is FORTRAN or Pascal.

Files Restrictions

• Do not modify any file while the debugger has it open. If you do, the
debugger gets confused and may display garbage.

• Although the debugger tries to do things reasonably, it is possible to confuse
the recording mechanism. Be careful about trying to play back from a file
currently open for recording, or vice versa; strange things can happen.

• Command lines longer than 1024 bytes are broken into pieces of that size.
This may be relevant if you run the debugger with playback or with input
redirected from a file.

For backwards compatibility, a blank line in a record file is interpreted as ten
- lines when played back.

Naming Restrictions

• The debugger does not support identically-named procedures except for
overloaded functions in C++. In all other cases, it will always use the
first procedure it finds with the given name. In Pascal, identically-named
procedures are legal if the procedures are in different scopes and are
referenced with the appropriate qualification.

F·6 Limitations and Hints

• Pascal WITH statements are not understood. To access any variable you must
specify the complete "path" to it.

• Case-insensitive searches are done in a crude way which equates some
non-letters with other non-letters. For example, [and { are equal, as are @

and (.

• Procedures in FORTRAN and Pascal may have alias names in addition to
normal names. Aliases are shown by the lp (list procedures) command.
They can be used in place of the normal name, as desired.

The procedure name _MAIN_ is used as the alias name for the main
program (main procedure) in all supported languages. Do not use it for any
debuggable procedures.

FORTRAN "ENTRY" points are flagged ENTRY by the lp command.

• Some variables are indirect, so a child process must exist in order for the
debugger to know their addresses. When there is no child process, the
address of any such variable is shown as Oxfffffff e.

• Symbol names in the debugger's name table are never preceded by
underscores, so the debugger never bothers to search for names of that form.
The only time a prefixed underscore is expected is when searching the linker
symbol table for names of non-debuggable procedures. (Series 300 only)

• There is no support for Pascal intermediate variables. To reference a variable
local to an enclosing procedure, you must specify the procedure name and
stack depth in the usual way (proc: depth: var).

Command-Line Procedure Call Limitations

• The debugger supports call-by-reference only for known parameters of known
(debuggable) procedures. You can fake such a call by passing &object (that
is, the address of the object).

• Array parameters are always passed to command-line procedure calls by
address. This is correct except for Pascal call-by-value parameters. Structure
parameters are passed by address or value, as appropriate, but only a
maximum of eight bytes is passed, which may totally confuse the called
procedure.

Limitations and Hints F-7

F

• Functions which accept complex (real) arguments are not called correctly;
only the first number of a complex pair is passed as a parameter. Functions
which return complex numbers are not called correctly; insufficient stack
space is allocated for the return area, which can lead to overwriting the

F parameter values.

• There is limited support for command-line calls of functions which return
structures. The debugger interprets the start of heap as a structure of the
return type. However, a call such as abc () \ t displays the return type
correctly.

• $short and $long are available in addition to $result. If a command-line
procedure call returns a double, $resul t is set to the value cast to a long.

Shared Library Limitations

• Use of the -s or -1 option causes all shared libraries used by the application
to be transparently loaded as private (unshared) copies. For large
applications, this can significantly increase the amount of swap space
allocated to the process. If the user only needs to debug the application, but
not the libraries it requires, use of the -s or -1 option is unnecessary.

• Only certain non-alphanumeric characters are allowed in the basenames of
shared libraries which the user may wish to reference with an @-qualification:

% = +

Shared libraries with basenames containing any other non-alphanumeric
characters cannot be referenced in the debugger.

• Programs which load the same shared library more than once, either by
linking with -1 or with shLload(3X), will cause the debugger to print
a warning and ignore all but the first instance of the shared library.
Consequently, the debugger cannot properly map addresses within a
duplicate library to their symbolic counterparts.

(Series 300/400 only) Listing a language's default library on the compiler
command line will cause that library to be linked and loaded twice, since the
compiler will also specify that library when invoking the linker. For example:

CC ... -IC -ldld

F·8 Limitations and Hints

will cause both /usr/1ib/1ibC. sl and /usr/1ib/1ibd1d. sl to be linked
and loaded twice, although only one of each would normally be accessible
and usable by the program.

• The total number of shared libraries the debugger can debug at the source
level is 512. The size of symbolic debug tables allowable in a program
or shared library has a finite limit, although considerable. Support
for debugging of shared libraries has caused these limits to be reduced
somewhat. For example, the maximum number of source statements plus 3
times the number of procedures compiled with -g must be no greater than
approximately 8.4 million for a given library or program. The previous limit
was approximately 4.2 trillion.

The maximum number of debuggable procedures allowed in anyone shared
library is 32,767. This limit only applies to all-procedure breakpoints.

• (Series 600/700/800 only) Attempting to print a data item defined in a
shared library, but for which debug info has not been loaded (wasn't listed
with the debugger -1 option), will show the item as an integer value. This is
because the symbol also exists in the linker symbol table, has type (const)
int, and it's value is an address. Once symbolic debug info for the object
has been loaded (i.e. through an explicit reference), the symbol will take on
its proper type and value.

• Attempting to print a data item defined in both a shared library and the
main program will show an incorrect value if:

o The symbol was actually exported from the main program.

o The main program was compiled non-debuggable (without -g).

o Any library referencing (importing) the symbol is compiled debuggable
(with -g) and the symbolic debug information for the library has been
loaded.

• (Series 600/700/800 only) If a global object is defined in a shared-library
which is unloaded with shLunload(3X), both the value and the type of the
object will change as it is unloaded, since a symbol naming the object may
still be present and visible in the linker symbol table. The type of such a
symbol will be (const) int, and it's value will be an address. For example,
suppose we have a global variable containing a floating point value:

>p rea1num\t

Limitations and Hints F-9

F

F

double realnum
>p realnum
realnum = 6.02257e+23

If the library that defines realnum is subsequently unloaded, and execution
is again suspended, the object doesn't become undefined, but its nature
changes:

>p realnum\t
(canst) int <unnamed>
>p realnum
-1074683528
>p realnum\X
Oxbff1a178

This problem will not occur on Series 300/400, as the linker symbol
corresponding to a global object will always be prefixed with an underscore
(-).

• The debugger may show mismatched value and type information for
multiply defined global data symbols when both shared and archived
libraries are used. For more information on this, read the section "Relying
on Undocumented Linker Behavior" in the chapter "Linking and Running
Programs" in the Programming on HP- UX manual.

• Any shared library with basename ALL or libALL cannot be listed with
the -1 option. An explicit reference to the library must be made to force
loading of symbolic debug information for that library (for example, list
procedures @libALL).

Disassembly Mode Limitations

• (Series 300/400 only) The debugger disregards all compiler-generated linker
symbols of the form Lnnnn (where nnnn is any number of digits). They will
not be visible in disassembly mode, even if the as(l} -L option was used.
Symbols of this form should not be used in user-written assembly source.

• (Series 300/400 only) The disassemble-instruction format character (i)
cannot be applied to constant expressions (for example, p Ox4e71 \i). It
can only be applied to dereferenced address expressions (for example, p
* ($a4+6) \4i).

F -10 Limitations and Hints

• Single stepping floating-point instructions may show delayed results for
operations that are actually emulated via exception traps (for example,
f s in on the Series 300/400 M C68040 processor). Actual results may not be
apparent until the next floating-point operation is performed.

• Debugging dynamically loaded code is inherently difficult, since no symbols
within it are known to the debugger. On Series 600/700/800 (PA-RISC)
implementations, stack traces are not possible from within dynamically
loaded code.

Save State Limitations

• When the debugger writes a "save state" file, it makes certain assumptions
about the initial state of the debugger. If you have an . xdbrc file, those
assumptions may not be valid when the -R file is read. For example, if the
. xdbrc file defines assertions or breakpoints or toggles the global breakpoint,
assertion, or macros state, the restored state may have different activations
than when the ss file was created. If the. xdbrc file defines macros, they
may have duplicate definitions after the -R file is read.

If a "save state" file is used as a playback file, the recorded locations of
breakpoints may not correspond to meaningful locations in the objectfile (if
it has changed). In addition, the other considerations about debugger state
mentioned in the preceding paragraph apply here (regardless of how the state
was established).

• The ss command saves the current value of the count for breakpoints. When
restored, this is the value to which the count for permanent breakpoints is
reset when the break occurs. This may differ from the initial count assigned
to the breakpoint before the state was saved.

• The ss command does not save instance breakpoints (set with the bi
command).

Limitations and Hints F-11

F

Pointer Limitation

Symbolic debugging information is not always emitted for objects which are
not directly referenced. For instance, if a pointer to an object is used but no

F fields are ever referenced, HP C++ only emits symbolic debug information for
the pointer type and not for the type of object that the pointer points to. For
instance, use of Widget * will only emit debug information for the pointer type
Widget * and not for Widget. If you wish such information, you can create an
extra source file which references an object of that type (Widget) and link it
into the executable program.

Address Format Restriction

If you set the address printing format to something printf(3S) does not like,
you may get an error (usually memory fault) each time you try to print an
address, until you fix the format with another f command.

Hints for Using Assertions

Since assertions are executed before each instruction, they slow down the
program execution considerably. A good practice is to narrow down where you
think the problem is occurring and use assertions only on small sections of
code.

Suppose you have some location (call it address Ox12345678) that gets
mysteriously overwritten some time during execution, but you do not
know when. All you know is the value that is supposed to be there (call it
OX98765432). A typical method for tracking this down is to set up an assertion
before running the program:

a {if (*Ox12345678 != Ox98765432) {toggle assertions; exit a}}

This will make the comparison against the known value at every instruction
during execution, and suspend the program when the location gets overwritten.
Doing this with a non-trivial program can take practically forever.

A more effective way to do this would be to make the test only at the entry
and exit of each procedure call. This speeds up execution tremendously, and
isolates somewhat the area of code you need to give closer attention to:

F -12 Limitations and Hints

bpt {Q; if (*Ox12345678 == Ox98765432) {c}}

This sets a "procedure trace" breakpoint at the entry and exit of each
debuggable procedure. This in turn makes the test and suspends the program
when the location changes value (that is, at the first call or return following
the point where it changed).

N ow that the questionable segment of code has been isolated, an assertion
needs to be toggled on and off to pinpoint the instruction that is at fault. If it
is a large segment of code that is known to be executed many times before the
error occurs, running an assertion through it can still take forever. However,
a counter can be set that counts the number of times through that segment of
code before the "procedure trace" test fails.

The following breakpoint command:

b {Q; pq $mycounter = $mycounter + 1; c}

can be used to silently count the number of times the suspected segment of
code executes before the location changes its value. To display the value of
$mycounter, execute this command:

p $mycounter

The passes through that segment of code can then be re-counted upon
re- running the program and the assertion enabled only on the nth time
through. This might take the form:

b \$mycounter {ta; c}

This breakpoint is not taken until it has been encountered $mycount times. At
that time, it turns on assertions (ta) and continues (c).

It is not necessary to have an assertion enabled for any longer than absolutely
necessary.

Window Mode Requirements

In order to implement the window mode, the debugger requires the following
terminfo resources:

cup Screen relative cursor motion.

ed Clear to end of display.

Limitations and Hints F-13

F

el Clear to end of line.

Also, the debugger requires either:

meml Lock memory above cursor, meml, and unlock memory above cursor,
F memu memu (both of these resources are available on many HP terminals).

or

csr Change scrolling region (available on most vt-compatible terminals).

If the above resources are not available, the debugger will use line mode.

The debugger also uses the following resources if available, but does not require
them:

kll Horne down or last line (as available on HP terminals, this allows the
debugger to make better use of the command window);

iIi Insert one line (used when changing the size of the source window);

dli Delete one line (used when changing the size of the source window);

rev Reverse video, rev (to indicated regions on the screen), and turn off all
sgrO attribute modes, srgO;

smso Enter standout mode, smso (for location line/changed registers if no
rmso inverse video), and exit standout mode, rmso.

F .. 14 Limitations and Hints

G
Installed Files

This appendix lists the installed files for the HP Symbolic Debugger.

Debugger Installation
These are the files needed to use the HP Symbolic Debugger on your system.

• The file end. 0 must be linked at the end of the user program to give the
debugger private data space in the user process. This is done automatically if
linking occurs at the same time as compilation and the -g option is given to
the compiler.

/usrllib/end.o

• These are the executable program files for the HP Symbolic Debugger (only
/usr/bin/xdb is available on Series 600/700/800 computers).

/usr/bin/xdb
/usr/bin/cdb
/usr/bin/fdb
/usr/bin/pdb

• The file pxdb (the preprocessor) processes the executable file the first time
the debugger is invoked on it. On some releases, this step may be performed
by the linker. It produces quick-lookup tables to increase the performance of
the debugger and removes duplicate global definitions.

/usr/bin/pxdb

Installed Files G-1

G

G

• The file xdb .help contains the database for the help facility, which is a
summary of HP Symbolic Debugger commands. A similar file, edb .help,
is for use with edb, fdb, and pdb and is only needed on Series 300/400
architectures.

/usr/lib/xdb.help
/usr/lib/edb.help

The following files can be processed with nroff (1) to make a copy of the
help text suitable for printing.

/usr/lib/xdb.help.nro
/usr/lib/edb.help.nro

• The file xdb . cat contains the message catalog for xdb. For edb, fdb, and
pdb Series 300/400 architectures, the message catalog is edb. cat. The file
pxdb. cat contains the message catalog for pxdb.

/usr/lib/nls/C/xdb.eat
/usr/lib/nls/C/edb.eat
/usr/lib/nls/C/pxdb.eat

• The following files constitute the demo package for the debugger (see the
chapter in this manual entitled "Getting Started").

/usr/lib/xdb_demos/README
/usr/lib/xdb_demos/RAINFALL
/usr/lib/xdb_demos/Makefile
/usr/lib/xdb_demos/demo.C
/usr/lib/xdb_demos/demo.e
/usr/lib/xdb_demos/demo.p
/usr/lib/xdb_demos/demo.f
/usr/lib/xdb_demos/C.demo
/usr/lib/xdb_demos/e.demo
/usr/lib/xdb_demos/p.demo
/usr/lib/xdb_demos/f.demo
/usr/lib/xdb_demos/gen_eore.e

• The HP- UX Symbolic Debugger 9.0 Release Notes for the debugger are in the
file Debugger.

/ete/neweonfig/90RelNotes/Debugger

G·2 Installed Files

H
HP Symbolic Debugger Commands

This section describes command syntax and gives a description of all the HP
Symbolic Debugger commands. Note that the syntax column of the tables
found in this appendix provides the short form of the command and that the
description column provides the long form of the command if there is one.

Invocation Options
Enter the following command to start the debugger:

-d dir
-r file
-R file
-p file
-p process ID
-L

xdb -i file
-0 file
-e file
-s num
-8

-1 library
-1 ALL

[objectfile [corefile]]

HP Symbolic Debugger Commands H-1

H

H

The options for the xdb command are described as follows:

objectfile

corefile

-d dir

-r file

-R file

-p file

-p process-ID

-L

-i file

-0 file

Is an executable program file with zero or more of its components
compiled with the -g option. The default for objectfile is a. out.

Is a core image from a failed execution of objectfile (see core(f.) in
the HP- UX Reference). The default for corefile is core.

Specifies an alternate directory for source files. Alternate
directories are searched in the order given. If a source file is not
found in any alternate directory, the current directory is searched
last. When searching for the source file in an alternate directory
altdir, where file is composed of a directory and a base file name
(i.e., dirname/ basename), xdb first attempts to open
altdir/dirname/basename. If this fails, xdb attempts to open
altdir / basename (see basename (1) in the HP- UX Reference).

Specifies a record file, which is invoked immediately for overwrite,
rather than for append (see the section "Record and Playback
Commands" in the chapter "HP Symbolic Debugger Commands").

Specifies a restore state file, which is processed before the -p
option (if any) and after the -r option (if any). The file must
have been created previously with the ss command while
debugging the same objectfile (see the section "Save State
Command" in this appendix), which the debugger attempts to
verify when the -R option is used.

Specifies a playback file, which is invoked immediately (see the
section "Record and Playback Commands" in the chapter "HP
Symbolic Debugger Commands").

Specifies the process-ID of an existing process that the user wishes
to debug (see the section "Adopting a Running Process" in the
chapter "Using the HP Symbolic Debugger" in this manual).

Forces the line-oriented interface, even if xdb can support the
window-oriented interface on the terminal type specified by
environment variable TERM.

Redirects standard input to the child process from the designated
file or character device.

Redirects standard output from the child process to the
designated file or character device.

H-2 HP Symbolic Debugger Commands

-e file

-s num

-s

Redirects standard error from the child process to the designated
file or character device.

Sets the size of the string cache to num bytes (default is 1024,
which is also the minimum). The string cache holds data read
from the objecifile.

Causes all shared libraries used by an application to be loaded as
private (unshared) copies. This option or the -1 option (which
implies -s) is required if breakpoints will be set or single stepping
will be done in shared libraries.

-1 shared-library Pre-loads the symbolic debug information (and linker symbol
table) into the debugger so that the user can view code, set
breakpoints, and do other debugging operations prior to running
the program. If the -1 option is not used for a given library, no
symbolic information concerning the library will be available, and
you will not be able to debug that library at the source level,
unless

-1 ALL

• You explicitly make a reference to a symbol in that library (e.g.
symbol@shared-library as opposed to just symbol), or

• The debugger stops execution at some location within that
library.

shared-library may be implicitly loaded by the program (linked in
with the ld(1) -1 option), or explicitly loaded by shLload(3X).

If shared-library is not a complete path name, it will be searched
for using the same search rules used by the dynamic loader (see
the section "Locating Shared Libraries" in Chapter 6, the ld(1) +b
and +s options, and the section "Library Location and the
Dynamic Loader" in the manual Programming on HP- UX). If the
library is not located, any directories previously specified with the
-d option will also be searched, followed by the current directory.
If it is still not located, the symbolic debug information will still
be available once the library has been mapped in (loaded), and an
explicit reference to a symbol within it has been made.

The trailing. sl is optional in shared-library.

Pre-loads the debug information (and linker symbol table) into
the debugger for all shared-libraries used by the program, with the
exception of libraries loaded with shLload(3X), which the user
must list using a separate -1 option for each.

HP Symbolic Debugger Commands H-3

H

H

There can only be one objectfile and one corefile per debugging session
(activation of the debugger). The program (objectfile) is not invoked as a
child process until you give an appropriate command (see the section "Job
Control Commands" in this appendix). The same program may be restarted,
as different child processes, many times during one debugging session.

H·4 HP Symbolic Debugger Commands

Window Mode Commands

Window Mode Commands

Table H-1. Window Mode Commands

Cmd Syntax Description

fr floating point registers
fr Displays the Series 600/700/800 (PA-RISC) or Series

300/400 (MC680xO) floating point registers in the register
window when the debugger is in disassembly mode.

tf toggle float
tf Toggles the display of floating point registers between the

single- and double- precision modes.

gr general registers
gr Displays the Series 600/700/800 (PA-RISC) or Series H

300/400 (MC680xO) general registers in the register
window when the debugger is in disassembly mode.

sr special registers
sr Displays the Series 600/700/800 (PA-RISC) special

registers (space and control) when the debugger is in
disassembly mode.

td toggle disassembly
td Toggles the source window between disassembly mode

and source mode.

ts toggle screen
ts Toggles the source window between all source or all

assembly and split-screen mode.

u update
u Updates the source and location windows to show the

current location of the user program.

U Update
U Clears the screen of data and redraws the screen.

HP Symbolic Debugger Commands H-5

Window Mode Commands

Table H-1. Window Mode Commands (continued)

Crud Syntax Description

w window
w number If your terminal supports windowing, this command

changes the size of the source window to the number of
lines that you specify. Enter a number from 1 to the
screen size minus 3.

+r Scroll the Series 300/400 or Series 600/700/800
+r floating-point register display forward four lines.

-r Scroll the Series 300/400 or Series 600/700/800
-r floating-point register display back four lines.

H

H-6 HP Symbolic Debugger Commands

File Viewing Commands

File Viewing Commands

Table H-2. File Viewing Commands

Cmd Syntax Description

+ Moves forward in the current file the
+ [number] specified number of lines (or the specified

number of instructions in disassembly
mode). If you do not enter a number, the
next line (or instruction) becomes the
current line (or instruction).

- Moves the specified number of lines (or
- [number] the specified number of instructions in

disassembly mode) backward in the
current file and updates the windows. H

The default is one line (or instruction)
before the current line (or instruction).

/ Searches forward in the file for the
/ [string] specified string. Searches wrap around

the end of the file. If you do not enter a
string, the last one that you entered is
used again. The string must be literal;
wild cards are not supported.

? Searches backward in the current file for
? [string] a specific pattern. Searches wrap around

the beginning of the file. If you do not
enter a string, the last search string is
used again. The string must be literal;
wild cards are not supported.

HP Symbolic Debugger Commands H-7

File Viewing Commands

Table H-2. File Viewing Commands (continued)

Cmd Syntax Description

D Directory
D "dir" Adds the directory that you specify to

the end of the list of directory search
paths for source files.

ld list directories
ld Lists all the alternate directories that are

searched when the debugger tries to
locate the source files. The list order is
the same as the search order.

If list files

I H
If [string] [@shared-library] Lists all source files containing executable

statements that were compiled to build
the executable file. If a string is specified,
only those files beginning with the string
are listed. @shared-library restricts the
listing to files that were used to build the
named shared library.

L Location
L Displays in the command window the

current file, procedure, line number and
the source line (text) for the current
point of execution.

n next
n Repeats the previous search (/ or ?)

command.

N Next
N Repeats the previous search (/ or ?)

command, searching in the opposite
direction.

H-8 HP Symbolic Debugger Commands

File Viewing Commands

Table H-2. File Viewing Commands (continued)

Cmd Syntax Description

v view
v [location] Displays one source window forward from

the current source window if no location
is given. One line from the previous
window is preserved for context. If your
terminal does not support windowing,
only the new source line is displayed.
U sing the location option causes the
specified location to become the current
location, and the source at the specified
location is then displayed in the source
window.

H
va view address

va address Displays in the source window assembly
code at the specified address. A specified
address can be an absolute address or
symbolic code label with an optional
offset (for example, _start + Ox20).

HP SymbOlic Debugger Commands H-9

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands

Cmd Syntax Description

I list
I [proc[: depth]] Lists all parameters and local

variables of the current

I [class] : : [proc [: depth]] procedure. You can optionally
specify any active procedure
and its depth on the stack.

lc list common
Ie [string] Used when debugging an HP

H
FORTRAN 77 program, this
command displays HP
FORTRAN 77 common blocks
and their associated variables
(Series 600/700/800
computers). If a string is
specified, only those common
blocks whose names begin with
that string are printed;
otherwise, all common blocks
within the current
subroutine/function are
printed.

lcl list classes
lcl [string] [@shared-library] Lists all classes (regular classes

and templates) known to the
debugger. If a string is
specified, only those classes
whose names begin with that
string are listed.
@shared-library restricts the
search to the named shared
library.

H-10 HP SymboliC Debugger Commands

Data Viewing and Modification Commands

Table H·3. Data Viewing and Modification Commands (continued)

Cmd Syntax Description

let list class templates
let [string] [(Oshared-library] Lists all class templates known

to the debugger. If a string is
specified, only those class
templates whose names begin
with that string are listed.
@shared-library restricts the
search to the named shared
library.

1ft list function templates
1ft [string] [(Oshared-library] Lists all function templates

known to the debugger. If a H
string is specified, only those
function templates whose
names begin with that string
are listed. @shared-library
restricts the search to the
named shared library.

19 list globals
19 [string] [@shared-library] Lists all global variables and

their values. If a string is
specified, only those global
variables whose names begin
with that string are listed.
@shared-library restricts the
search to the named shared
library.

HP Symbolic Debugger Commands H·11

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands (continued)

enId Syntax Description

11 list labels
11 [string] [@shared-library] Lists all external labels and

program entry points known to
the linker. If a string is
specified, only those external
labels (symbols) which begin
with this prefix are used.
@shared-libmry restricts the
search to the named shared
library.

1m list macros

H 1m [string] Displays all user-defined
macros and their definitions. If
a string is specified, only those
macros whose names begin
with this string are listed.

10 list overload
10 [[class] : :] [string] [@shared-library] List overloaded C++

functions. If string is present,
only those with the same
initial characters are listed.
This can also be qualified by a
class. @shared-library restricts
the search to the named shared
library.

H-12 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands (continued)

Cmd Syntax Description

Ip list procedures
Ip [string] [@shared-library] Lists all procedure names and

their aliases, locations in

Ip [class] : : [string] [@shared-library] memory, file names, and line
numbers. If a string is
specified, only those
procedures whose names begin
with this string are listed.
@shared-library restricts the
search to the named shared
library.

lr list registers
lr [string] Lists all registers and their

H

contents. If a string is
specified, only those registers
beginning with this string are
listed. The leading $ is
significant.

Is list specials
Is [string] Lists all special variables and

their values. Registers are not
listed. If a string is specified,
only those special variables
whose names begin with this
string are listed. The leading $
is significant.

lsI list shared libraries
lsI List all shared libraries known

to the debugger.

HP Symbolic Debugger Commands H-13

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands (continued)

Crud Syntax Description

ltf list template functions
ltf [string] [@shared-library] Lists all template functions

known to the debugger. If a
string is specified, only those
template functions whose
names begin with this string
are listed. @shared-library
restricts the search to the
named shared library.

Ix list exceptions
Ix Lists the current state of the

H throw and catch toggles and
command-list associated with
them.

H-14 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands (continued)

Cmd Syntax Description

rom memory map
rom [[@] shared-library] Shows a memory-map of all

currently loaded shared
libraries and the main
program. If shared-library is
present, only the memory-map
for the named library is listed.
The memory-map provides the
following information for each
loaded region: basename of the
library (as used in symbolic
names; for example, libc),
upper and lower bounds of H
both text and data addresses,
the handle (see shLload(3X)),
the complete path name, and
whether the region is writable
(debuggable) or read-only
(shared).

Note that libraries explicitly
loaded with shLload(3) are
visible to the debugger until
they are unloaded.

HP Symbolic Debugger Commands H-15

Data Viewing and Modification Commands

Table H·3. Data Viewing and Modification Commands (continued)

Crud Syntax Description

p

[{; }tormat 1
print

expr Displays program data in the
formats shown in tables 1-5

p < class: : and 1-6 of chapter 1,

[~ 1 [[\]tormat]
"Reference Tables". A format
has the syntax:

[count] { form char } [size]

Formchar, which is required, is
the actual format in which you
choose to display the data.
Count is the number of times
to apply the format. Size is
the number of bytes that are
formatted for each data item,
and overrides the default size
for the given format. p+ prints
the next element. p- prints the
previous element. Use the
\format option to display the
value of the expression in a
specific format. Use the
? format option to print the
address of the evaluated
expression in the selected
format. The p command is also
used to modify the value of a
variable when expr contains an
assignment operator. class::
prints the values of all static
data members of class. (See
Table 4-4 for the data viewing
formats.)

H·16 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Table H-3. Data Viewing and Modification Commands (continued)

Cmd Syntax Description

pq

[{; } format]

print quietly

expr Does not print anything unless
an error occurs. Otherwise, the

pq ~ class: : > action is the same as for p.

[~] [[\ lformat 1
The pq command can be used
to do assignments without
causing output to the
command window. This is
useful in breakpoint and
assertion command lists.

H

HP Symbolic Debugger Commands H-17

Source Directory Mapping Commands

Table H-4. Source Directory Mapping Commands

Cmd Syntax Description

apm add path map

{ apm } { Old_path} [h] Allows you to modify the path the
"" new_pat

debugger will use to locate a set of
source files.

lpm list path maps
lpm Lists the path maps in the order in

which they will be searched.

dpm

} [~]
delete path map

{ dpm Removes the latest path map
entered if used with no arguments.
If a positive integer n is given, the
nth path map will be removed. If a
* is given, all the path maps will be
removed.

H-18 HP Symbolic Debugger Commands

Stack Viewing Commands

Stack Viewing Commands

Table H·5. Stack Viewing Commands

Cmd Syntax Description

t trace

t [depth] Prints a stack trace. You can optionally
specify a depth. The default depth is 20
levels. If an optional depth is supplied,
only the procedures up to this depth in
the stack are displayed.

T Trace

T [depth] Prints a stack trace. You can optionally
specify a depth. The default depth is 20
levels. If an optional depth is supplied, H

only the procedures up to this depth in
the stack are displayed. Displays
everything the t (trace) command
displays, plus all local variables and their
values in \n format.

V Vie1N

V [depth] Displays the text for the procedure at the
depth on the program stack that you
specify. If you do not enter a depth, the
current active procedure is used.

up Moves up n (default one) levels toward
up [n] the top of the stack.

d01Nn Moves down n (default one) levels toward
d01Nn [n] the bottom of the stack.

HP Symbolic Debugger Commands H·19

Stack Viewing Commands

Table H-S. Stack Viewing Commands (continued)

Cmd Syntax Description

top Moves to the top of the stack. It is
top shorthand for the debugger command V 0,

which moves you to the top of the stack.

tst toggle stubs
tst Toggles the visibility of inter-procedural

stubs in stack traces. (PA-RISe only)

H

H-20 HP SymboliC Debugger Commands

Status Viewing Command

Status Viewing Command

Table H-S. Status Viewing Command

Cmd Syntax Description

I Inquire
I Prints the current state of the debugger.

The output contains information such as
the version number of the debugger,
program name, number of source files and
procedures, process-ID of the child
process, number of breakpoints, record
and playback information, etc.

H

HP Symbolic Debugger Commands H-21

Job Control Commands

Table H-7. Job Control Commands

Cmd Syntax Description

c continue
c [location] Resumes execution after a breakpoint or a

signal has been encountered, ignoring the
signal, if any. If a location is specified, a
temporary breakpoint is set at that location.

C Continue
C [location] Resumes execution after a breakpoint or a

signal has been encountered, allowing the

H
signal, if any, to be received by the child
process. If a location is specified, a temporary
breakpoint is set at that location.

g goto

[line 1 Moves the current point of execution

g
#l~bel suspension to the specified line or label. The
+lznes specified line or label must be within the same
-lines procedure where execution is currently

suspended (at depth zero on the stack). The
program counter will change so that the given
line number or the line that #label appears on
becomes the next executable line. Execution
does not automatically resume. The + and -
move the program counter the specified
number of source or assembly lines from the
current program counter position.

k kill
k Terminates the current child process, if any.

lz list zignals
lz See the section "Signal Control Commands"

in this appendix.

H-22 HP Symbolic Debugger Commands

Job Control Commands

Table H· 7. Job Control Commands (continued)

Cmd Syntax Description

r run
r [arguments] Runs a new child process with the argument

list (if any). The existing child process, if any,
is terminated first (after confirmation is
given). If no arguments are given, the ones
used with the last r command are used again
(none if R was used last).

The arguments can contain < and> for
redirecting standard input and standard
output. « does an open(2) of file descriptor 0
for read-only; > does a creat(2) of file
descriptor 1 with mode 0666). Redirection can
also be done with » and >&. Arguments can

H

contain shell variables and meta characters,
quote marks, or other special syntax (that will
be expanded by a Bourne Shell (sh(1))). The
remainder of the input line following the r
command is used as the argument-list, so it
cannot be enclosed in a command list ({}).
Thus, the r command cannot be used within a
breakpoint, assertion, or if command. The
environment for the child process is the same
as for the debugger.

HP Symbolic Debugger Commands H·23

Job Control Commands

Table H-7. Job Control Commands (continued)

Crud Syntax Description

R Run
R Lets you run a program as a new child process

with no argument list. If a child process
already exists, the debugger asks if you want
to terminate the child process first. The
environment for the child process is the same
as that for the debugger.

s step
s [number] Single step, executing one source statement or

machine instruction before pausing and
prompting for another command. In source

H mode, one source statement is executed; in
disassembly mode, one machine instruction is
executed. If a procedure call is encountered,
the procedure is single stepped in the same
manner ("stepped into"). To execute more
than one statement or instruction, enter that
number as the number parameter.

S Step
S [number] Single steps. In source mode, one source

statement is executed; in disassembly mode,
one machine instruction is executed (several
machine instructions might be equivalent to
one source statement). If a procedure call is
encountered, it is not "stepped into". Instead,
execution steps to the statement following the
call ("stepped over"). To execute more than
one statement or instruction, enter that
number as the number parameter.

z zignal
z [signal] [i] [r] [s] [Q] See the section "Signal Control Commands"

in this appendix.

H-24 HP SymbOlic Debugger Commands

Breakpoint Commands

Breakpoint Commands

Overall Breakpoint Commands

Table H-S. Overall Breakpoint Commands

Cmd Syntax Description

lb list breakpoints
Ib [COshaTed-libTaTY] Displays all breakpoints in the program,

both active and suspended, and the
overall breakpoint state. @shaTed-library
lists only those breakpoints in the named
shared library.

tb toggle breakpoints H
tb Toggles the overall breakpoint state from

active to suspended or vice versa. The
state of the individual breakpoints
remains unchanged.

HP Symbolic Debugger Commands H-25

Breakpoint Commands

Breakpoint Creation Commands

Table H-9. Breakpoint Creation Commands

Cmd Syntax Description

b breakpoint
b [location] [\count] [command-list] Sets a breakpoint at the

location that you specify. If
you do not enter a location,
the current line in the
source or disassembly
window is used. The
breakpoint is executed on
each occurrence (C01.tnt)

H that you specify. You can
enter a list of commands to
be executed at the
breakpoint by entering the
command-list.

ba breakpoint address
ba address [\ count] [command-list] Sets a breakpoint at the

specified address. Note that
the address can be specified
by giving the name of a
procedure or an expression
containing a name. The
breakpoint is executed on
each occurrence (count)
that you specify. You can
enter a list of commands to
be executed at the
breakpoint by entering the
command-list.

H-26 HP SymboliC Debugger Commands

Cmd

bb
bb

Breakpoint Commands

Table H·9. Breakpoint Creation Commands (continued)

Syntax Description

[depth] [\count] [command-list]
breakpoint beginning
Sets a breakpoint at the
first executable statement of
the procedure at the
specified depth on the
program stack. If you do
not enter a depth, the
procedure shown in the
source window is used. The
breakpoint is executed on
each occurrence (count)
that you specify. You can
enter a list of commands to
be executed at the
breakpoint by entering the
command-list.

HP SymbOlic Debugger Commands H·27

H

Breakpoint Commands

Table H-9. Breakpoint Creation Commands (continued)

Cmd Syntax Description

bi breakpoint instance
bi expr. proc [\ count] [command-list] Sets an instance breakpoint

at the first executable line

bi [=~] expr [command-list 1
of member function proc of
the class instance to which
the expression expr
evaluates. If proc is not
specified, an instance
breakpoint will be set on all
member functions of the
instance's class. This
breakpoint is only

H recognized when the
specified or implied
functions are called for this
instance. If count is given,
the breakpoint will not be
recognized until it is hit the
designated number of times.
If a command-list is
specified, it will be executed
when the breakpoint is hit.
If there is no command-list,
the debugger pauses for
command input. The -c
option forces a breakpoint
to be set only on member
functions of the instance's
immediate class; -C also
sets breakpoints on member
functions of base classes.

H-28 HP Symbolic Debugger Commands

Cmd

bpc

bpc

bpo
bpo

Breakpoint Commands

Table H-9. Breakpoint Creation Commands (continued)

Syntax Description

[=~] class [command-list 1
class breakpoint
Sets class breakpoints at
the first executable line of
all member functions of
class.

If -c is given, breakpoints
will be set only on member
functions of the designated
class and not of its base
classes. If -C is given,
breakpoints are also set on
member functions of base
classes.

breakpoint overload
[[[class] : :] proc [command-list]] Set overload breakpoints at

the first executable line of
all overloaded functions
with name proc (which may
be qualified by a class.)
When one of these
breakpoints is hit,
command-list is executed.
If command-list is omitted,
the debugger pauses for
command input.

HP Symbolic Debugger Commands H-29

H

Breakpoint Commands

Table H-9. Breakpoint Creation Commands (continued)

Cmd Syntax Description

bt breakpoint trace

bt [proc] [\ count 1 [command-list 1 Sets a trace breakpoint at
depth the current or named

procedure or at the
procedure that is at the
specified depth on the
program stack. A
breakpoint is set at the
entry and exit point of the
procedure. If you include a
command-list, it is executed
at the beginning of the

H procedure or subprogram.
On Series 600/700/800
computers, the following
command-list will be
executed at the end of the
procedure or subprogram.

{ Q;p $retO\d; c }
For Series 300/400
computers, the
command-list is:

{Q;L;C}

If you omit a command-list,
the following is executed at
the beginning of the
procedure or subprogram:

{Q; t 2; c}

H-30 HP Symbolic Debugger Commands

Breakpoint Commands

Table H-9. Breakpoint Creation Commands (continued)

Cmd Syntax Description

bu breakpoint uplevel
bu [depth] [\count] [command-list] Sets an uplevel breakpoint

to occur immediately on
return from the procedure
at the specified depth on
the program stack. If you
do not enter a depth, the
procedure at depth 0 is
used. The breakpoint is
executed on each occurrence
(count) that you specify.
You can enter a list of
commands to be executed H
at the breakpoint by
specifying the
command-list.

bx breakpoint exit
bx [depth] [\count] [command-list] Sets an exit breakpoint at

the epilogue code of the
procedure at the specified
depth on the program stack.
If you do not enter a depth,
the procedure shown in the
source window is used. The
breakpoint is executed on
each occurrence (count)
that you specify. You can
enter a list of commands to
be executed at the
breakpoint by specifying
the command-list.

HP Symbolic Debugger Commands H-31

Breakpoint Commands

Breakpoint Status Commands

Table H-10. Breakpoint Status Commands

Cmd Syntax Description

ab activate breakpoint

[number] Activates the breakpoint having the number that
ab

:shared-library
you specify. If you do not enter a number, the
breakpoint at the current line is activated. Use
the asterisk (*) to activate all breakpoints,
including all-procedure breakpoints. Note that
to activate an instance, class, or overload
breakpoint, number must be specified.
@shared-library activates only those breakpoints

H in the named shared library.

bc breakpoint count
bc number expr Sets the count of the specified breakpoint

number to the integer value of the evaluated
expression expr that you enter.

db delete breakpoint

[number] Deletes the breakpoint having the number that
db

:shared-library
you specify. If you do not enter a number, the
breakpoint at the current line is deleted. Use the
asterisk (*) to delete all breakpoints including
all-procedure breakpoints. @shared-library
deletes only those breakpoints in the named
shared library.

sb suspend breakpoint

[number] Suspends (deactivates) the breakpoint having
sb

:shared-library
the number that you specify. If you do not enter
a number, the breakpoint at the current line is
suspended. Use the asterisk (*) to suspend all
breakpoints, including all-procedure breakpoints.
To suspend an instance, class, or overload
breakpoint, number must be specified.
@shared-library suspends only those breakpoints
in the named shared library.

H-32 HP SymboliC Debugger Commands

Breakpoint Commands

All-Procedures Breakpoint Commands

Table H-11. All-Procedures Breakpoint Commands

Cmd Syntax Description

bp breakpoint procedure
bp [@shared-library] [command-list]

Sets permanent procedure
breakpoints at the first
executable statement of every
procedure for which debugger
information is available. The
breakpoint is encountered each
time the procedure is entered.
When any procedure H
breakpoint is encountered, the
command-list is executed. If
command-list is omitted, the
debugger pauses for command
input. @shared-library sets
procedure breakpoints only in
the named shared library.

HP Symbolic Debugger Commands H-33

Breakpoint Commands

Table H-11. All-Procedures Breakpoint Commands (continued)

Crud Syntax Description

bpt Sets permanent procedure trace
bpt [@shared-library] [command-list] breakpoints at the first and last

executable statement of every
procedure for which debugger
information is available. The
breakpoints are encountered
each time the procedure is
entered or exited. The
commands, if any, are
associated with the entry
breakpoint. If no command-list
is specified, the entry

H command-list defaults to:

{Q;t 2;c}

The exit command-list on a
Series 600/700/800 computer
IS:

{Q;p $ret\d;c}

On a Series 300/400 computer,
the exit command-list is:

{Q;L;c}

@shared-library sets procedure
trace breakpoints only in the
named shared library.

H-34 HP Symbolic Debugger Commands

Breakpoint Commands

Table H-11. All-Procedures Breakpoint Commands (continued)

Cmd Syntax Description

bpx Sets permanent proced'llre exit
bpx [@shared-library] [command-list] breakpoints after the last

executable statement of every
procedure for which debugger
information is available. The
breakpoint is encountered each
time the procedure is exited.
When any procedure exit
breakpoint is encountered, the
command-list is executed. If
command-list is omitted, the
debugger pauses for command
input. @shared-library sets H
procedure exit breakpoints only
in the named shared library.

dp delete procedure
dp [@shared-library] Deletes all procedure

breakpoints set with the bp
(breakpoint procedure)
command. All breakpoints set
by commands other than the
bp command will remain in
effect. @.shared-library deletes
procedure breakpoints only in
the named shared library.

HP Symbolic Debugger Commands H-35

Breakpoint Commands

Table H-11. All-Procedures Breakpoint Commands (continued)

Crud Syntax Description

Dpt Deletes all procedure trace
Dpt [@shared-library] breakpoints at the first and last

executable statement of every
procedure. All breakpoints set
by commands other than the
bpt command will remain in
effect. @shared-library deletes
procedure trace breakpoints
only in the named shared
library.

Dpx Deletes all procedure exit

H Dpx [@shared-library] breakpoints at the last
executable statement of every
procedure. All breakpoints set
by commands other than the
bpx command will remain in
effect. @shared-library deletes
procedure exit breakpoints only
in the named shared library.

H-36 HP Symbolic Debugger Commands

Breakpoint Commands

Global Breakpoint Commands

Table H-12. Global Breakpoint Commands

Cmd Syntax Description

abc Defines a global breakpoint command-list
abc command-list which will be executed whenever any user

defined breakpoint is encountered. These
include normal, procedure, procedure
trace, procedure exit, class, instance, and
overload breakpoints.

dbc Deletes the global breakpoint command
dbc list.

H

HP Symbolic Debugger Commands H-37

Breakpoint Commands

Auxiliary Breakpoint Commands

Table H-13. Auxiliary Breakpoint Commands

Cmd Syntax Description

II any The string command
string II II any string" echoes any string that is

enclosed in quotation
marks.

i if
i expr { command-list} [{ command-list}] The i (if) command lets

you conditionally execute
commands in a
command-list. If the

H expression evaluates to a
non-zero value, the first
group of commands is
executed. If the
expression evaluates to
zero, the second
command-list, if provided,
is executed.

Q Quiet
Q The Q(Quiet) command

suppresses the
"breakpoint at address
... " debugger messages
that are normally
displayed when a
breakpoint is encountered.
The Q (Quiet) command
must be the first
command in a command
list; otherwise, it is
ignored.

H-38 HP Symbolic Debugger Commands

Exception Handling Commands

Exception Handling Commands

Table H-14. Exception Handling Commands

Cmd Syntax Description

txt toggle exception thro~
txt Turns off and on the stopping of the

de bugger immediately prior to an
exception throw. By default, the
debugger stops immediately prior to an
exception throw.

xtc exception thro~ command
xtc [command-list] Defines a debugger command-list to be

executed when a stop on throw occurs.
H

txc toggle exception catch
txc Turns off and on the stopping of the

debugger at the first statement of any
catch clause. By default, the debugger
stops at the first statement of any catch
clause.

xcc exception catch command
xcc [command-list] Defines a debugger command-list to be

executed when stop on catch occurs.

HP Symbolic Debugger Commands H-39

Assertion Control Commands

Table H-15. Assertion Control Commands

Cmd Syntax Description

a assert
a command-list Creates an assertion consisting of the

command-list that you enter. You can
enclose the command-list in braces to
separate it from other commands on the
same line.

aa activate assertion

H

aa [:umber 1 Activates the assertion having the number
that you enter. Using the * option causes
all assertions to be activated. Overall
assertion mode is activated if any
individual suspended assertion is
activated.

da delete assertion

da [:umber 1 Deletes the assertion having the number
that you enter. Using the * option causes
all assertions to be deleted.

la list assertions
la Lists the number, the state (active or

suspended) and the command list for each
assertion, as well as the overall assertion
state (active or suspended).

sa suspend assertion

sa [:umber 1 Suspends the assertion having the number
that you enter. Using the * option causes
all assertions to be suspended. Overall
assertion mode is suspended if the last
active assertion is suspended.

H-40 HP Symbolic Debugger Commands

Assertion Control Commands

Table H-15. Assertion Control Commands (continued)

Cmd Syntax Description

ta toggle assertions
ta Toggles the overall assertion state

between active and suspended.

x exit
x [expr] Causes program execution to stop as if a

breakpoint has been reached. This can be
used only in an assertion command list. If
the expression (expr) is not given or it
evaluates to zero, the debugger returns to
command mode, ignoring any remaining
commands in the assertion command list.
If expr evaluates to non-zero, any H
remaining commands in the command list
are executed.

HP Symbolic Debugger Commands H-41

Record and Playback Commands

Table H-16. Record and Playback Commands

Cmd Description

>file Sets or changes the record file to file, turns recording on, rewrites
the file from the beginning, and only records commands. If file
exists, you are asked if you want to overwrite it.

»file Sets or changes the record file to file, turns recording on, and only
records commands. All recording is appended to the existing file;
otherwise, a new file is created.

> Displays the recording state and the current recording file. Can also
use "»".

H
<file Starts playback from the file.

«file Starts playback from the file using the "line-at-a-time" feature.
Each command line from the playback file is shown before it is
executed, and the debugger provides a list of the following
commands for you to take some action:

command «cr>,S, <num> , C, Q, or ?):

You can use any of the above options as described:

<cr> execute one command line
S skip one command line

<num> execute number of command lines
C continue through all playback
Q quit playback mode
? gives this explanation of the above

commands

tr toggle record
Toggles recording; toggles the state of the record mechanism
between active and suspended.

>t Turns recording on. (active)

>f Turns recording off. (suspended)

H-42 HP Symbolic Debugger Commands

Cmd

>c

>@file

»@file

><0

tr <0

><Ot

> <Of

><Oc

Record and Playback Commands

Table H-16. Record and Playback Commands (continued)

Description

Closes the record file.

Sets or changes the record-all file to file, rewrites from the
beginning, and turns recording on. If file exists, you are asked if you
want to overwrite it. Captures all input to and output from the
debugger command window, except user program output.

Sets or changes the record-all file to file, and turns recording on.
Appends record-all output to the existing file. Captures all input to
and output from the debugger command window, except user
program output.

Displays the current record-all state and file. Can also use "> >@" .

toggle record <0

Toggles the state of the record-all mechanism between active and
suspended.

Turns record-all on (active).

Turns record-all off (suspended).

Closes the record-all file.

HP Symbolic Debugger Commands H-43

H

Macro Facility Commands

Table H-17. Macro Facility Commands

Cmd Syntax Description

def Defines a macro substitution
def name replacement-text (user-defined command) for HP

Symbolic Debugger commands.
Name can be any string of letters or
digits, beginning with a letter.
Replacement-text can be any string of
letters, blanks, tabs or other printing
characters. The string must be
contained on one line.

H tm toggle macros
tm Toggles the state of the macro

mechanism between active and
suspended.

undef Removes macro defined as name.

undef { :ame } U sing the * option causes all macros
to become undefined.

H-44 HP Symbolic Debugger Commands

Miscellaneous Commands

Miscellaneous Commands

Table H·18. Miscellaneous Commands

Cmd Syntax Description

! Invokes a shell program. The
! [command_line] environment variable SHELL gives

the name of the shell program to
invoke. If SHELL is not found, the
debugger executes /bin/sh. If
command_line is present, it is
given to SHELL via the -c option.
Otherwise, SHELL is given a -i
option. In any case, the debugger
then waits for the shell or H
command_line to complete. Upon
returning to the debugger,
$resul t contains the exit status
of the shell.

As with breakpoints,
command_line may be enclosed in
"{ }" to delimit it from other
(debugger) commands on the
same line. For example,

b 14 {!{date};c}; t; la

sets a breakpoint at line 14 that
calls date(1), then continues; then
(after setting the breakpoint), the
debugger does a stack trace, then
lists assertions.

HP Symbolic Debugger Commands H·45

Miscellaneous Commands

Table H·18. Miscellaneous Commands (continued)

Cmd Syntax Description

Causes the text to be interpreted
[text] as a comment. The number

symbol (#) must be the first
non-blank character on the line.

(Return) Repeats the previous command.
(Return) You can use this command after

the following commands:

• + · -
• p (print)
• v (view)

H
• +r
• -r
• s (step)
• S (Step)

• up
• down

The number of lines to move is
repeated if the previous command
was + or -. Otherwise, any count
associated with the previous
command is discarded.

H·46 HP Symbolic Debugger Commands

Miscellaneous Commands

Table H-18. Miscellaneous Commands (continued)

Cmd Syntax Description

- Repeats the previous command.
- You must use the (Return] key

after typing the -. You can use
this command after the following
commands:

• + · -
• p (print)
• v (view)

• +r
• -r
• s (step)
• S (Step)

H

• up
• down

The number of lines to move is
repeated if the previous command
was + or -. Otherwise, any count
associated with the previous
command is discarded.

HP Symbolic Debugger Commands H-47

Miscellaneous Commands

Table H-18. Miscellaneous Commands (continued)

Cmd Syntax Description

am activate more
am Activates (enables) the more

feature.

sm suspend more
sm Suspends the more feature and

lets you view the output in a
continuous stream.

f format
f ["printf-style-format"] Sets the printing format used by

the debugger to print an address.

H
Only the first 128 literal and
formatting characters are used.
(See the section on printf(3S) in
the HP- UX Reference manual for
a discussion of valid formats).
Using the f (format) command
without an argument will reset
the format to the default format:
8 hexadecimal digits preceded by
"Ox" .

H-48 HP Symbolic Debugger Commands

Miscellaneous Commands

Table H·18. Miscellaneous Commands (continued)

Cmd Syntax Description

h help
h [topics] Prints a command summary

which describes the syntax and
use of each command. The topics
include the command names, plus
other topics. This facility
references the short form of the
command only, not the long form.
You can use the h help command
to get a list of topics other than
command names.

M Map
M Prints the current text (objectfile)

H

[:] [expr [;

and core (corefile) address maps.

M expr [...]]] Sets the text (objectfile) or the
core (corefile) address map. The
first zero to six map values are set
to the expr given. If less than six
expressions are given, the
remaining map parameters are
left unchanged.

tM toggle maps
tM Toggles the address mapping of

corefile between the initial map
and the modifiable mapping pair
which the user can set with the Me
command.

q quit
q Quits the debugger after asking

for confirmation: enter y (yes) or
n (no).

HP Symbolic Debugger Commands H·49

Miscellaneous Commands

Table H-18. Miscellaneous Commands (continued)

Cmd Syntax Description

ss save state
ss file Save the current set of

breakpoints, macros, and
assertions in fi Ie. This file can
then be used with the -R option
to restore this information on
another invocation of the
debugger on the same object file.

tc toggle case
tc Toggles case sensitivity;

determines whether or not

H searches or names are case
sensitive.

H-50 HP Symbolic Debugger Commands

Signal Control Commands

Signal Control Commands

Table H-19. Signal Control Commands

Cmd Syntax Description

lz list zignals
lz Lists the current handling of all

signals.

z zignal
z [signal] [i] [r] [s] [Q] Modifies the signal handling table.

The options (which must be
adj acent) toggle the appropriate flag:
ignore, report, or stop. If Q is
present, the new state of the signal is
not printed. Note that z signal with H

no options tells you the state of the
selected signal.

HP Symbolic Debugger Commands H-S1

Comparison between the xdb
and cdb Symbolic Oebuggers

I

This appendix provides a comparison between the xdb and cdb symbolic
debuggers. In this appendix, cdb refers to cdb, fdb, and pdb. Some debugger
features are present in both xdb and cdb on Series 300/400 computers, but not
in xdb on Series 600/700/800 computers (and vice versa). These dependencies
are not addressed here (e.g., the special variables $fpa and $fpa_reg). Note
that cdb is only available on Series 300/400 computers.

Note that "n.a." indicates that an equivalent command does not exist.

Startup Command File

Table 1-1. Startup Command File

xdb cdb

.xdbrc .cdbrc
.pdbrc
. fdbrc

Description

At startup, xdb and cdb execute
commands found in the files listed under
their respective commands .

Comparison between the xdb 1-1
and cdb Symbolic Debuggers

II

Basic Command Form

Basic Command Form for xdb

command [location] [arguments] [command-list]

Basic Command Form for cdb

[modifier] command [arguments] [command-list]

Variable Name Conventions

Table 1-2. Variable Name Conventions

xdb cdb

proc: val' pl'oc. val'

proc: depth: val' pl'oc. depth. val'

1-2 Comparison between the xdb
and cdb Symbolic Oebuggers

Description

Search the stack for the most recent
instance of pl'oc (procedure, function,
subroutine). If found, see if it has a
parameter or local variable named val', as
before.

Use the instance of pl'oc (procedure,
function, subroutine) that is at depth depth
(exactly), instead of the most recent
instance. This is very useful for debugging
recursive procedures where there are
multiple instances on the stack.

Special Variables

Table 1-3. Special Variables

xdb cdb Description

$step $cBad Lets you see and modify the number of machine
instructions the debugger will step while in a
non-debuggable procedure before setting an up-level
breakpoint and free-running to it. Setting it to a
small value can improve debugger performance at the
risk of taking off free- running after missing the
up-level break for some reason.

n.a. $pagelines Lets you set the number of lines per "page" of
debugger output. The prompt "--More--" occurs
between pages. Values of zero or less turn off paging.

Expression Conventions
In xdb, expression values that are not command modifiers are not printed
unless that expression is used with an xdb print (p) command. In edb,
expression values that are not command modifiers (stand -alone expressions) are
always printed unless the next token is ";" (a command separator) or "}" (a
command block terminator). Therefore, breakpoint and assertion commands
are normally silent. To force an expression result to be printed when using edb,
follow the expression with" In" (print in normal format).

Comparison between the xdb 1-3
and cdb Symbolic Oebuggers

The Debugger Special Variable $Iang

In xdb, the initial value of the debugger special variable $lang is automatically
set by the language type of the procedure being viewed (for example, mainO).
For cdb, fdb, or pdb, the initial value of $lang is determined by the symbolic
debugger that is invoked.

Division Operator

Table 1-4. Division Operator

xdb cdb Description

I II Division operator

Command-Line Editing Environment Variables

Table 1-5. Command-Line Editing Environment Variables

xdb cdb Description

XDBEDIT CDBEDIT Environment variable that determines which of the three
available editing modes (vi, emacs, or gmacs) is used.

XDBHIST CDBHIST Environment variable that specifies the command history
file.

1·4 Comparison between the xdb
and cdb Symbolic Debuggers

Split-Screen Mode

When using the ts command in xdb, the step size (source line or instruction) is
determined by screen mode before the t s command was executed. It may be
toggled with the td command. When using the ts command in cdb, the step
size is determined by the command used (s or j).

Single-Stepping Commands

Table 1-6. Single-Stepping Commands

xdb cdb Description

s [count] [count] j Single step 1 (or count) disassembly instruction. Successive
carriage-returns repeat with a count of 1.

S [count] [count] J Single step like s, but treat procedure calls as single
instructions (do not follow them down).

Note that the xdb commands sand S are also used to step source level
statements.

Comparison between the xdb 1-5
and cdb Symbolic Oebuggers

File Viewing Commands

Table 1-7. File Viewing Commands

xdb cdb

w [size] ws [size]

v [location] e [location]

V [depth] [depth] E

va [address] n.a.

v line line

n.a. [line] p [count]

n.a. [line] w [size]

n.a. [line] W [size]

D "directory" dir "directory"

1-6 Comparison between the xdb
and cdb Symbolic Oebuggers

Description

Set the size of the source viewing
window.

View the source at the specified
location.

View current procedure at depth on
the stack.

View the assembly code at the
specified address in the source
window.

View the source line number in the
current file.

View one (or count) line(s) starting
at the current line (or line number).

For the line mode interface, print a
window of text containing size
(default 11) lines centered around the
current or specified lin e.

Same as w given above, but size
defaults to 21 lines.

Add directory to current search path
for source file.

xdb

n.a.

n.a.

Table 1-7. File Viewing Commands (continued)

cdb

{ :: } [size 1

{ =: } [size 1

Description

View a window of text of given or
default size, ending at the end of the
previous window if the previous
command was a window command;
otherwise, at the current line.

View a window of text of given or
default size, ending at the beginning
of the previous window if the
previous command was a window
command; otherwise, at the current
line.

Comparison between the xdb 1-7
and cdb Symbolic Debuggers

Data Viewing Commands

Table 1-8. Data Viewing Commands

xdb cdb

p expr expr

p exprVormat expr/format

p expr?format expr?format

pq expr expr;

1-8 Comparison between the xdb
and cdb Symbolic Debuggers

Description

If expr does not look like
anything else (such as a
command), it is handled as
if you had typed p expr\n
(print expression in normal
format). When using cdb,
if expr does not resemble
anything else (such as a
command), it is handled as
expr/n (print expression in
normal format), unless
followed by ";" or "}", in
which case nothing is
printed (although it is
evaluated) .

Print the contents (value)
of expr using format.

Print the address of expr
using format.

Print quiet.

Table 1-8. Data Viewing Commands (continued)

xdb cdb

p [- [\] format] - [[I] format]

p [+ [\] format] n.a.

p class:: class: :

1 [proc [: depth]] 1 [[proc [. depth]]

Description

Back up to the preceding
memory location (based on
the size of the last thing
displayed). Use format if
supplied, or the previous
format if not.

Go forward to the following
memory location (based on
the size of the last thing
displayed). Use format if
supplied, or the previous
form at if not.

Print all of the static
members of class.

Lists all parameters and
local variables for the
current procedure (or proc,
if given, at the specified
depth, if any).

Comparison between the xdb 1-9
and cdb Symbolic Oebuggers

Stack Viewing Commands

Table 1-9. Stack Viewing Commands

xdb cdb

t [depth] [depth] t

T [depth] [depth] T

1-10 Comparison between the xdb
and cdb Symbolic Oebuggers

Description

Trace the stack for the first depth

(default 20) levels.

The same as t, but local variables
are also displayed, using \n (for
cdb, In) format (except that all
arrays and pointers are shown
simply as addresses, and
structures as first words only).

Job Control Commands

Table 1·10. Job Control Commands

xdb cdb

c [location] [count] c [line]

C [location] [count] c [line]

s [count] [count] j

S [count] [count] J

s [count] [count] s

S [count] [count] S

Description

Continue from a breakpoint ignoring the
signal. Set a temporary breakpoint at the
specified location. When using cdb, if count is
given, the current breakpoint, if any, has its
count set to that value and if line is given, a
temporary breakpoint is set at that line
number with a count of -1.

Same as "c" above, but allow the signal (if
any) to be received.

Single step 1 (or count) assembly statement(s).

Single step like s, but treat procedure calls as
single statements (do not follow them down).

Single step 1 (or count) source statement(s).

Single step like "s", but treat procedure calls
as single statements (do not follow them
down).

Comparison between the xdb 1·11
and cdb Symbolic Debuggers

Breakpoint Counts

Table 1-11. Breakpoint Counts

xdb cdb Description

breakpoint-command \ num [t I pJ n.a. Number of times the
breakpoint is
encountered prior to
recognition.

numberp number> 0 Permanent
breakpoint count.

numbert number < 0 Temporary
breakpoint count.

be number count n.a. Explicitly modifies
the count for an
existing breakpoint.

Breakpoint counts are handled in different ways on xdb and edb. For xdb, the
count can be explicitly given with the breakpoint command itself. For example:

b \10 add_file

sets a permanent breakpoint at a function called add_file with a count of 10.

For edb, a breakpoint count may be specified only from a continue command (e
or C). For example:

10 e

sets the count to 10 on the breakpoint at the current location.

Both xdb and edb handle positive breakpoint counts as designating breakpoints
which are permanent, that is, not automatically removed when recognized.
Negative breakpoint counts signify temporary breakpoints which are deleted
upon recognition. For xdb, a count of 1 may be specified by p and a count of -1
by t. The be command is also only available on xdb to modify the count for an
existing breakpoint.

1-12 Comparison between the xdb
and cdb Symbolic Oebuggers

Breakpoint Commands

xdb

Ib

b [location] [\count]

db [number]

db *

dp

bb [depth] [\ count]

bx [depth] [\count]

Table 1-12. Breakpoint Commands

[commands]

[commands]

[commands]

cdb Description

B or Ib List all breakpoints

[line] b [commands] or Set a breakpoint at
b [location]

[number] d

D [b]

D P

[depth] bb
[depth] bB

[depth] bx
[depth] bX

[commands] the location or
line.

Delete breakpoint
with given number.

Delete all
breakpoints
(including
"all-procedure"
breakpoints) .

Delete all
"procedure entry"
breakpoints.

[commands] or Set a breakpoint at
[commands] the beginning (first

executable line) of
the current
procedure (or
procedure at the
given stack depth).

[commands] or Set a breakpoint at
[commands] the exit (last

executable line) of
the current
procedure (or
procedure at the
given stack depth).

Comparison between the xdb 1-13
and cdb Symbolic Debuggers

I

Table 1-12. Breakpoint Commands (continued)

xdb cdb Description

bu [depth] [\count] [commands] [depth] bu [commands] or Set an up-level
[depth] bU [commands] breakpoint. The

breakpoint is set
immediately after
the return to the
procedure at the
specified stack
depth (default one,
not zero).

bt [depth] bt [proc] [commands] Trace the current
[depth I proc] [\count] [commands] or procedure (or

[depth] bT [proc] [commands] procedure at
depth, or proc).

ba [address] [\ count] [commands] [address] ba [commands] or Set a breakpoint at
[address] bA [commands] the given code

address.

be number count n.a. Set the count of
the existing
breakpoint
identified by
number to count.

Assertion Evaluation
In xdb, assertions are lists of commands that are executed before every
instruction. In cdb, assertions are lists of commands that are executed before
every statement.

1-14 Comparison between the xdb
and cdb Symbolic Debuggers

Assertion Commands

Table 1-13. Assertion Commands

xdb cdb

aa number number aa

aa * n.a.

da number number da

da * D a

sa number number sa

sa * n.a.

ta A

x [expr] [expr] x

Signal Command

xdb

z [signal] [i] [r] [s] [Q]

Description

Activate assertion number.

Activate all assertions.

Delete assertion number.

Delete all assertions.

Suspend assertion number.

Suspend all assertions.

Toggle the overall assertions mode between active
and suspended.

Force an exit from assertion mode.

Table 1-14. Signal Command

[signal] z

cdb Description

[i] [r] [s] [Q] Modifies the signal
handling table for
the given signal.

Comparison between the xdb 1-15
and cdb Symbolic Debuggers

Toggle Recording

Table 1-15. Toggle Recording

xdb cdb Description

tr [@] n.a. Toggle recording (i.e., if it is ON turn it OFF and if it is
OFF turn it ON).

Toggle Case Sensitivity

Table 1-16. Toggle Case Sensitivity

xdb cdb Description

tc Z Toggles case sensitivity (i.e., if it is ON turn it OFF and if
it is OFF turn it ON).

Save-State

Table 1-17. Save-State

xdb cdb Description

ss ss In xdb, ss saves the current value of count for
breakpoints. In cdb, ss does not save the current value
of count for breakpoints.

1-16 Comparison between the xdb
and cdb Symbolic Oebuggers

Registers Displayed by the HP Symbolic
Debugger in Disassembly Mode

This appendix lists the registers displayed by the HP Symbolic Debugger in
disassembly mode for Series 300/400 and Series 600/700/800 computers.

Register Names for Series 600/700/800 Computers

Special Variables Names Used for Registers

Register{s) Description

$rO .. $r31 General registers

$fO .. $f31 Floating-point (64 bit) registers1

J

$fOr .. $f31r Floating-point registers, right half (the 32 least-significant bits of
the registers fO through f31)1

$fOl .. $f311 Floating-point registers, left half (the 32 most-significant bits of
the registers fO through f31)1

$fpstat Pseudonym for the register $fOl

$pc Program counter (IAOQ-head)

1 Floating-point registers $£16 through $£31 are available only on PA-RISe version 1.1 machines.

Registers Displayed by the HP Symbolic J-1
Debugger in Disassembly Mode

J

J

Special Variables Names Used for Registers (Continued)

Register(s) Description

$sp Stack pointer; pseudonym for $r30

$dp Global data pointer; pseudonym for $r27

$argO . . $arg3 Pseudonyms for $r26 .. $r23

$retO . . $retl Pseudonyms for $r28 .. $r29

Registers Displayed in the General
or Floating-Point Register Windows

Register(s)

rO .. r31

fO .. f31

pc

priv

psw

sar

fpsr

RM

enable

Description

General registers

Floating-point (64 bit) registers1

Program counter; IASQ-head.IAOQ-head

Privilege level, IAOQ [30 .. 31J

Process status word (lowercase means a a bit; uppercase means a 1
bit)

Shift amount register, CRll [27 ., 31J

Floating-point coprocessor status flags (lowercase means a a bit;
uppercase means a 1 bit)

Rounding mode (from coprocessor status word)

Enable flags for the coprocessor (from coprocessor status word)

1 Floating-point registers f16 through f31 are available only on PA-RISe version 1.1 machines.

J-2 Registers Displayed by the HP Symbolic
Debugger in Disassembly Mode

Registers Displayed in the Special Register Window

Register{s}

trO .. tr7

srO .. sr7

pidl .. pid4

eer

sar

eiem

itmr

isr

iva

retr

eirr

ior

iir

peh

pet

priv

psw

Description

Temporary registers, CR24 .. CR31

Space registers

Protection id's, CR8, CR9, CR12, CR13

Coprocessor configuration register, CR10

Shift amount register, CRll

External interrupt enable mask, CR15

Internal timer, CR16

Interruption space register, CR20

Interruption vector address, CR14

Recovery counter, CRO

External interrupt request register, CR23

Interruption instruction register, CR21

Interruption instruction register, CR19

IASQ-head. IAOQ-head

IASQ-tail. IAOQ-tail

Privilege level, IAOQ [30 .. 31J

Process status word

Registers Displayed by the HP Symbolic J·3
Debugger in Disassembly Mode

J

J

Register Names for Series 300/400 Computers

Special Variable Names Used for Registers

Register{s) Description

$aO · . $a7 Address registers

$dO · . $d7 Data registers

$ps Status register

$pc Program counter

$fp Frame pointer; pseudonym for $a6

$sp Stack pointer; pseudonym for $a7

Registers Displayed in the General
and Floating-Point Register Window

Register(s) Description

dO .. d7 Data registers

aO .. a7 Address registers

pc Program counter

ps Status register

fpO · . fp7 MC68881/MC68882 floating-point registers

fpsr MC68881/MC68882 status registers

fpcr MC68881/MC68882 control registers

fpaO .. fpa7 HP 98248 floating-point registers (Series 300 only)

fpasr HP 98248 status registers (Series 300 only)

fpacr HP 98248 control registers (Series 300 only)

J-4 Registers Displayed by the HP Symbolic
Debugger in Disassembly Mode

Glossary

address
Virtual memory address used to reference program code or data. When
used to designate an address with the ba (breakpoint address) command,
it can be either one of the following:

• Strictly a numeric value (such as Ox00001358)

• A symbolic address with or without an offset (such as main+Ox1c).

archive library
An archive library contains one or more object files and is created with
the ar command. When linking an object file with an archive library,
ld searches the library for global definitions that match up with external
references in the object file. If a match is found, ld copies the object file
containing the global definition from the library into the a. out file. Note
that archive library names end with . a.

assertion
A list of commands performed before the debugger executes each program
statement. Useful for tracking unexpected changes in program data
(undesired side effects).

Glossary

Glossary-1

breakpoint
A software "trigger" inserted into the user program, that, when encountered
during execution, pauses the program and transfers control back to the
debugger. A breakpoint is always associated with a particular address,
which is either specified explicitly or implied by its association with a line
number, procedure entry or exit point, etc.

In general, breakpoints can have the following associated with them:

• command list- list of commands executed when the breakpoint is
triggered

• count- how many times the breakpoint must be encountered before it is
triggered.

• lifespan- "temporary" or "permanent" status (this information is
actually determined by whether count is less than or greater than zero,
respectively). A temporary breakpoint is removed when it is triggered; a
permanent breakpoint is not.

child process
A subordinate process that is initiated and closely controlled by the
debugger (parent). This process is a running instance of the program being
debugged.

command
Commands tell the HP Symbolic Debugger which functions to perform, and
can be spelled out or abbreviated. The abbreviation for most commands
is the first character of each word in the command name. Commands are
separated with a semicolon within a command list. For more information,
see Chapter 4 "HP Symbolic Debugger Commands."

GI
command list

ossary .
A sequence of one or more debugger commands separated by a semIcolon
(;). Some commands expect command-lists as arguments. Braces ({}) must
sometimes be used to enclose command-lists. For more information, see
the individual command listings in Chapter 4 "HP Symbolic Debugger
Commands."

Glossary-2

coprocessor
This is an additional processor used in conjunction with the main processor
for speeding up and reducing the workload of the main processor. For
example, the floating-point coprocessor speeds up the mathematical
computations of the system.

corefile
This is the core image of an executable file resulting from an aborted
execution of that file.

current location
The "point-of-interest" in the source as displayed in the source window.
lvlany commands take this as a default location. The current location is not
necessarily the current point of program suspension (where the program is
currently paused.)

debugger information
Name, type, source file, and source-line-to-address mapping information
generated by the compiler for use by the debugger. This information can
significantly increase the size of an executable file. All debugger information
is preprocessed (and reduced in size) when the program is linked.

depth
Number of levels back in the current procedure call chain (stack). Depth 0
is where execution is suspended. If procedure A calls B, procedure B calls
C, and C is where the program is suspended, then B is at depth 1 and A is
at depth 2. The t (trace) or T (Trace) commands display the procedures
and their depths on the stack. (See stack in this appendix.)

Glossary

Glossary-3

exception
Either a hardware or software generated condition that causes the program
to be asynchronously suspended or halted. Examples of these might be:

• user-generated (keyboard) interrupt

• floating-point overflow

• segmentation violation (invalid addressing operation)

• bus error (invalid memory access)

• other signals (see signal(4) in the HP- UX Reference)

expreSSIon
A valid combination of data object names, language operators, and constant
numeric values. Every expression is evaluated and reduced to a single value.

format

Glossary

U sed with the debugger command p (print) to describe how data will be
accessed and displayed. A format consists of:

• an optional repetition count

• a formatting character

• an optional object size

The access and display operation is performed once for each repetition
(default 1). The number of bytes in each object is determined by the given
object size (default depends on the formatting character). The formatting
character determines how each object is interpreted and printed. For
example, to print four sequential 16-bit integers in octal, use the format 402
or 408.

Glossary-4

line mode
Debugger user interface that does not use any special terminal functions.
This must be used for terminals that do not support window mode.

location
A unique position in the user program. It can be specified as a file name,
procedure name, source line number, or combination of these. An address
(see above) can also be used to specify a location for certain commands.

Inachine instruction
Presented to the user when debugging in disassembly mode. Actual
instruction mnemonics and syntax are described in the HP Precision
Architecture and Instruction Reference Manual or HP- UX Assembler and
Tools.

macro
Simple form of command aliasing using text substitution. A macro can be
used as a shorthand for one or more commands.

memory lock
A terminal feature that allows some upper portion of the terminal screen to
remain constant while the remainder of the screen is scrolled. This feature
is required by the debugger for its window-oriented interface. If memory
lock is unavailable, the line-oriented interface (line mode) is used.

procedure
A procedure, function, subroutine, or module name. Also a user program
name.

Glossary

Glossary-5

registers
Precision Architecture (Series 600/700/800 computers) or MC680xO
(Series 300/400 computers) hardware registers. Most of these are directly
accessible by the debugger through symbolic names (e.g. $pc). Many
registers have special meaning; some cannot be modified by the debugger
user. See the HP Precision Architecture and Instruction Reference Manual
or HP- UX Assembler and Tools for a discussion on the use of each register.
Actual modification of hard ware registers should not normally be necessary
while debugging. Correct program execution depends highly on registers
and their contents.

shared library
Like an archive library, a shared library contains relocatable object code.
However, Id treats shared libraries quite differently than archive libraries.
When linking an object file with a shared library, Id does not copy object
code from the library into the a. out file; instead, the linker simply notes in
the a. out file that the code calls a routine in the shared library. The actual
linkage does not occur until the program is run. Note that shared library
names end with .81.

source
Source text (files) used to compile the user program. These can be in any of
the programming languages supported by the debugger.

source line
A single line of text in a source file, denoted by a line number. A source
line might or might not contain actual executable statements. Conversely,
more than one statement can occur on a single line.

special variables
Named variable (prefixed by $) local to the debugger. Many special

Glossary variables are predefined by the debugger to have a unique meaning.
For example, $line is always the current line number, and $dp is the
data-pointer register (Series 600/700/800 general register 27).

User-defined special variables are also available. They are created when
first referenced, and allow you to store and reference numeric variables
independent of the program being debugged.

Glossary .. 6

stack
Linear data structure maintained by the user program for management
of local data and flow of control during procedure calls. Each sequential
region on the stack embodies information about a particular procedure.
The preceding region (frame) describes its caller. At any point during
execution, a stack trace (generated by the T (Trace) command) will display
information contained in each stack frame; in particular, the values of all
local variables. (See depth in this appendix.)

string
Quoted sequence of arbitrary characters. Quotes can be single (') or double
C) depending on the current language ($lang). Character escapes allow
inclusion of control or other non-printing characters.

stub
(Series 600/700/800 only) Stubs are short code segments that may be
inserted into procedure calling sequences by the PA-RISC linker. Stubs
are used for very specific purposes, such as inter-space (for example,
shared library) calls, long branches, and preserving calling interfaces across
modules (for example, parameter relocation). For more information on
stubs, read the PA-RISC Procedure Calling Conventions Reference Manual
(09740-90015).

window
Region of the terminal screen limited to displaying specific information.
The debugger has at least three: the source, location, and command
windows.

window lllode
A display mode where the debugger divides the terminal screen up
into regions dedicated to the display of specific information (see the
section "Terminal Support" in the chapter "Introducing the HP Symbolic Glossary
Debugger"). Note that this does not refer to the X Window System.

Glossary-7

Index

Special characters

!, 4-112, B-2, H-45-50
!=, B-3
#, 4-112, 4-113, H-45-50
%, B-2
&, B-2, B-3
&&, B-3
(), B-2, C-2, D-2
*, B-2, C-2, D-2
+, 3-18, 4-28, 4-113, 4-114, B-2, C-2,

D-2, H-7-9
-,3-18,4-28,4-113,4-114, H-7-9
->, B-2
., 3-32, B-2, C-2, D-2
/,3-27,4-28, B-2, C-2, D-2, H-7-9, 1-4
/ /, 1-4
::, B-2
:=, D-3
<, B-3, D-3
«, B-3
<=, B-3, D-3
< >, D-3
=, C-3, D-3
= ,B-3
==, B-3
>, 4-102, B-3, D-3, H-42-43
>=, B-3, D-3
», B-3
>@, 4-104, H-42-43
?, 3-27, 4-28, H-7-9
[J, B-2, D-2
-, B-3, D-2

I, B-3
II, B-3
-, 4-112, 4-114, H-45-50
-, B-2

A

a, 3-51
$aO .. $a7,J-4
aO .. a7, J-4
aa (activate assertion), 4-97, 4-99,

H-40-41, 1-15
a (assert), 4-97, H-40-41
ab (activate breakpoint), 4-70,

H-32-33
abbreviating commands, 4-6
abc, 4-71, 4-92, H-37
activate breakpoint, 4-86
activate more, 3-20, 4-114
$addr, B-2, C-2, D-2
addr, D-2
address, Glossary-1
address, 4-4-5
address format restriction, F-12
adopted process, debugging shared

libraries, 6-12
adopting

a running process, 3-5, 3-55
shared libraries, 6-12

all-procedures breakpoint commands
bp, H-33-36
bpt, 4-89, H-33-36
bpx, 4-90, H-33-36

Index-1

moex

IIIUt:X

dp, 4-90, H-33-36
Dpt, 4-91, H-33-36
Dpx, 4-91, H-33-36

altering execution sequence, 3-53
am (activate more), 3-20,4-112,4-114,

H-45-50
and, D-3
. AND., C-2
anonymous unions, 5-40
"any string", 4-71,4-93, H-38
apm (add path map), 3-62, 4-35,4-35,

H-18
archive library, Glossary-1
$argO ., $arg3, J-2
arrays, 4-20
assembly code, displaying, 3-22, 3-24
assert, 4-98
assertion, Glossary-1
assertion, 3-51
assertion commands, 1-15
assertion control commands

a, 4-98, H-40-41
aa, 4-99, H-40-41
da, 4-100, H-40-41
la, 4-100, H-40-41
sa, 4-100, H-40-41
ta, 4-101, H-40-41
x, 4-101, H-40-41

assertion evaluation, 1-14
assertions, hints for using, F-12
assignment, 4-19
auxiliary breakpoint commands

"any string II, 4-93, H-38
i, 4-93, H-38
Q, 4-94, H-38

B

-b,3-4
b, 3-28
B, 1-13-14
bA, 1-13-14

Index-2

ba (breakpoint address), 4-70,
H-26-31, 1-13-14

basic command form for
cdb, 1-2
xdb, 1-2

bB, 1-13-14
bb (breakpoint beginning), 4-70,

H-26-31, 1-13-14
b (breakpoint), 4-70, 5-69, H-26-31,

1-13-14
bc (breakpo in t count), 4-70, H -32-33,

1-12, 1-13-14
bi (breakpoint instance), 3-29, 4-70,

5-54, H-26-31
bp (breakpoint procedure), 3-28,

4-70, H -33-36
bpc (breakpoint class), 4-70, 5-53,

5-67, 5-68, H-26-31
bpo (breakpoint overload), 3-29,

4-70, 5-52, 5-68, H-26-31
bpt, 3-29, 4-70, 4-89, H-33-36
bpx, 3-29, 4-70, 4-90, H-33-36
breakpoint, Glossary-2
breakpoint, 3-28, 4-79, 5-69
breakpoint address, 4-80
breakpoint at all member functions of

a class, setting, 5-53
breakpoint beginning, 4-81
breakpoint class, 4-83, 5-67, 5-68
breakpoint commands, 5-50, 1-13
breakpoint count, 4-86
breakpoint counts, 1-12
breakpoint creation commands

b, H-26-31
ba, 4-80, H-26-31
bb, 4-81, H-26-31
bi, 4-81, H-26-31
bpc, 4-83, H-26-31
bpo, 4-84, H-26-31
bt, 4-82, H-26-31
bu, 4-84, H-26-31

bx, 4-85, H-26-31
breakpoint exit, 4-85
breakpoint instance, 3-29, 4-81, 4-81
breakpoint on function, setting, 5-50
breakpoint on overloaded function,

setting, 5-52
breakpoint overload, 4-84
breakpoint procedure, 3-28, 4-88
breakpoints, 3-28

command list, 4-72
count, 4-72
location, 4-72
setting, 3-28

breakpoint status commands
ab, H-32-33
bc, 4-86, H -32-33
db, 4-86, H-32-33
sb, 4-87, H-32-33

breakpoint trace, 4-82
breakpoint types, 4-74
breakpoint uplevel, 4-84, 5-83
bT, 1-13-14
bt (breakpoint trace), 4-70, H-26-31,

1-13-14
bU, 1-13-14
bu (breakpoint uplevel), 4-70,

H-26-31, 1-13-14
bX, 1-13-14
bx (breakpoint exit), 4-70, H-26-31,

1-13-14

C
>@c, 4-104, H-42-43
>c, 4-104, H-42-43
c, 3-29, 3-30, 1-11
C,1-4
C, 1-11
C++,1-4
C and C++

Language operators, B-1
C++ and the symbolic debugger, 5-1

capture and rerun a debugger session,
1-2

capturing a debugger session, 3-41
case insensitivity, 3-9, 3-27, 4-6, 4-118
case sensitivity, 3-9, 3-27, 4-5, 4-118,

6-8
casts, 4-20, 5-36
catch, 5-57, 5-57, 5-62
catch, stopping on, 5-61
$cBad, 1-3
c (continue), 4-64, H-22-24
C (Continue), 4-64, H-22-24
ccr, J-3
C++ data types, 5-2
cdb, 1-1
cdb and xdb comparison, 1-1
cdb, basic command form, 1-2
CDBEDIT, 1-4
C++_demo, 2-4
C_demo, 2-2
C++ expressions, 5-10
changing execution sequence, 3-53
character and string expressions, 4-16
characters, display non-ASCII, 3-44
child process, 3-5, Glossary-2
class

commands, 5-4
members, 5-28
objects, 5-18
scope, 5-5
template, all member functions, 5-67
template member function, a single,

5-69
template member function instance,

a single, 5-69
templates, listing, 5-72

class, 4-2
classes

and objects, 5-4
listing, 5-72
nested, 5-74

Index-3

maex

IIIUt:X

class names of an en closed class, 5-75
C++ main source file, 2-12
C main source file, 2-10-11
COLUMNS, 3-10, E-4
command, Glossary-2
command history, 1-10
command-line

editing environment variables, I-4
procedure call limitations, F-7

command-list, 4-2
command list, Glossary-2
commands

xdb, 3-41
commands, entering, 4-1
command window, 3-14, 3-20
compiler, symbolic debugger options,

3-3
compiling a program, symbolic debugger

information, 3-3
COMPLEX variables, F-6
composite types, 4-20
continue, 3-29, 3-30, 4-65
Continue, 4-65
conventions, expression, I-3
coprocessor, Glossary-3
coredumped, debugging a program that,

3-57
corefile, Glossary-3
count \ 4-2
$cplusplus, 4-12, 5-21, 5-76, E-1-3
creating an executable program file, 1-7
C++ scope rules, 5-2
current location, Glossary-3
customizing default debugger behavior,

5-76
customizing the debugger environment,

3-9

o
d, I-13-14
D, I-6-7, I-13-14

Index-4

$dO .. $d7, J-4
dO .. d7, J-4
da (delete assertion), 4-97, 4-100,

H-40-41, I-15
data members, 5-28
data modification commands, 4-36
data viewing commands

comparisons between xdb and cdb,
I-8

1, 4-36, H-10-17
lc, 4-38, H-10-17
lcl, 4-39, H-10-17
lct, 4-39, H-10-17
1ft, 4-39, H-10-17
19, 4-40, H-10-17
11, 4-40, H-10-17
1m, 4-41, H-10-17
10, 4-42, H-10-17
Ip, 4-42, H-10-17
lr, 4-43, H-10-17
Is, 4-44, H-10-17
lsI, 4-45, H-10-17
Itf, 4-45, H-10-17
lx, 4-46, H-10-17
p, 4-47, H-10-17
pq, 4-55, H-10-17

data viewing formats, 4-53
db, 3-31
dbc, 4-71, 4-92, H-37
db (delete breakpoint), 4-70, H-32-33,

I-13-14
D command, 3-64
-d command-line option, 3-64, 4-35
D (Directory), 4-28, H-7-9
debugger

command syntax, 4-2
environment, customizing, 3-9
information, Glossary-3
installation, G-1
invocation options, H-1
session scenario one, 2-2

session scenario two, 2-4
> debugger prompt, 3-14
debugging

shared libraries, 6-1
shared libraries in an adopted process,

6-12
debugging sessions for C++, 5-77
declaration statement scope, 5-7
def, 3-52, 4-105, 4-106, H-44
delete assertion, 4·100
delete breakpoint, 3-31, 4-86
delete procedure, 4-90
deleting all-procedure breakpoints, 3-31
deleting breakpoints, 3·31
$depth, 3-38
depth, Glossary-3
depth, 4-2
dir, 1-6-7
Directory, 4-32
directory mapping, source, 3-62, 4-35
disassembly mode, 3-3, 3-22, 3-24

shared libraries, 6-10
disassembly mode limitations, F-I0
display

non-ASCII characters, 3-44
display and modify variables, 1-2
displaying

assembly code, 3-22
character data and using NLS, 3-43
data, 3-32
lines, 3-18
source and assembly code, 3-24
static data members, 5-42
the contents of an object, 5-23
type information for an object, 5-19

div, D-2
division operator, 1-4
DMEM, 6-8, 6-10
do~n, 4-56, 4-60, H-19-20
do~n command, 3-38
$dp, J-2

dp, 3-31, 3-31,4-90
D p,I-13-14
dp (delete procedure), 4-70, H-33-36,

1-13-14
dpm (delete path map), 4-35, 4-35,

H-18
Dpt, 3-31,4-70,4-91, H-33-36
Dpx, 3-31, 4-70, 4-91, H-33-36

E
e, 1-6-7
EDITOR, 1-10
eiem, J-3
eirr, J-3
enable, J-2
enclosed class

class names, 5-75
static members, 5-74

ending a program, 3-17
ending the symbolic debugger, 3-17
environment variables, 3-9, E-l, E-4
environment variables, command-line

editing, 1-4
.EQ.,C-2
.EQV., C-3
error messages

debugger, A-I
user, A-I, A-3

escape sequences, 4-16
examine core files, 1-3
exception, Glossary-4
exception catch command, 5-62
exception handling, 5-4, 5-57
exception handling commands

txc, 4-96, H-39
txt, 4-95, H-39
xcc, 4-96, H-39
xtc, 4-96, H-39

exceptions, listing, 5-63
exception thro~ command, 5-60
executable program file, 1-7

Index-5

Inaex

IIIUt:X

executing
commands before machine instructions,

1-2
executing a program, 3-5
executing commands at each source line,

3-51
execution stack, navigating, 3-37
exit, 4-101
export stub, 4-41, 4-61
expr, 4-2
expression, Glossary-4

conventions, 1-3
entering, 4-15

F

>@f, 4-104, H-42-43
>f, 4-104, H-42-43
f,4-116
$fO .. $f31, J-l
fO .. f31, J-2
$fOI .. $f311, J-l
$fOr .. $f31r, J-l
fdb, 1-1
. fdbrc, I-I
f (format), 4-112, H-45-50
«file, 4-102, H-42-43
<file, 4-102, H-42-43
»@file, 4-104, H-42-43
»file, 4-102, H-42-43
>@file, 4-104, H-42-43
>file, 4-102, H-42-43
file, 4-2-4
files restrictions, F-6
file viewing commands, 1-6

+,4-29, H-7-9
-,4-29, H-7-9
/,4-31, H-7-9
?, 4-31, H-7-9
D, 4-32, H-7-9
L, 4-34, H-7-9
ld, 4-33, H-7-9

Index-6

If, 4-33, H-7-9
n, 4-31, H-7-9
N, 4-32, H-7-9
v, 4-30, H-7-9
va, 4-34, H-7-9

floating-point constants, 4-18
floating point registers, 4-24
format, 4-116
format, Glossary-4
format, 4-2-4
formats, data viewing, 4-53
FORTRAN 77, 1-4

Language operators, C-l
FORTRAN 77 main source file, 2-7
Fortran_demo, 2-2
FORTRAN structures

printing the type, C-6
printing the value, C-6

$fp, J-4
fpO .. fp7, J-4
$fpa, E-1-3
fpaO .. fpa7, J-4
fpacr, J-4
$fpa_reg, E-1-3
fpasr, J-4
fpcr, J-4
fpsr, J-2, J-4
$fpstat, J-1
fr (floating point registers), 4-23,

H-5-6
function

G

calls, 5-12
listing, 5-45
template instance, calling a, 5-70
templates, 5-70
templates, listing, 5-72

-g, 3-3
.GE., C-2
general registers, 4-25

g (goto), 3-53, 4-64, 4-66, H-22-24
global breakpoint commands

abc, 4-92, H-37
dbc, 4-92, H-37

global variables, 5-11
gr (general registers), 4-23, H-5-6
-g, symbolic debug option, 5-65
. GT., C-2

H

handling exceptions, 5-57
h (help), 3-54,4-112,4-116, H-45-50
hints for using assertions, F-12
HISTSIZE, 1-10, E-4

i, H-38
if, 4-93
i (if), 4-71
I (Inquire), H-21
iir, J-3
import stub, 4-41
$in, B-2, C-2, D-2
Inquire, 4-63
installed files, G-1
instance breakpoint, 5-4
instance breakpoint, setting, 5-54
interfaces, separate, 3-47
invocation options, debugger, H-1
ior, J-3
isr, J-3
itmr, J-3
iva, J-3

J

j, 1-11
J, 1-11
job control commands

c, 4-65, H-22-24
C, 4-65, H-22-24

K

comparison between xdb and cdb,
1-11

g, H-22-24
k, 4-66, H-22-24
r, 4-64, H-22-24
R, 4-65, H-22-24
s, 4-67, H-22-24
S, 4-68, H-22-24

k format specifier, 5-23
K format specifier, 5-23
kill, 3-17, 4-66
k (kill), 3-17, 4-64, H-22-24

L

1, 1-8-9
label, 4-2-4
la (list assertions), 4-97, 4-100,

H-40-41
$lang, E-1-3, 1-4
LANG, 3-11, 3-43, E-4
language operators

C and C++, B-2
explanation, D-1
Explanation, B-1, C-1
FORTRAN 77, C-2
Pascal, D-2
restrictions for C, B-1
restrictions for Pascal, D-1

Ib (list breakpoints), 3-30, 4-70,
H-25, 1-13-14

LC_CTYPE, 3-43
lc (list common), 4-36, H-10-17
lcl (list classes), 4-36, 5-72, H-10-17
-1 command-line option, shared libraries,

6-4
lct (list class templates), 4-36,

5-72, H-10-17
LC_TYPE, E-4
Id, 3-4

Index-7

IIIUt::X

IIIUC'A

Id (list directories), 4-28, H-7-9
.LE., C-2
If (list files), 4-28, H-7-9
1ft (list function templates), 4-36,

5-72, H-10-17
Ig (list globals), 4-36, H-10-17
limitations and hints, F-1
$line, E-1-3
line, 4-2-4
line mode, Glossary-5
LINES, 3-10, E-4
linking a program, symbolic debugger

information, 3-3
list, 4-36
list assertions, 4-100
list breakpoints, 3-30, 4-77
list classes, 4-39, 5-72
list class templates, 4-39, 5-72
list common, 4-38
list directories, 4-33
list exceptions, 4-46, 5-63
list files, 4-33
list function templates, 4-39,5-72
list globals, 4-40
listing

classes, 5-72
class templates, 5-72
exceptions, 5-63
functions, 5-45
function templates, 5-72
local variables, 5-44
overloaded functions, 5-46
template functions, 5-73
templates, 5-71

list labels, 4-40
list macros, 4-41
list overload, 4-42
list procedures, 4-42
list registers, 4-43
list shared libraries), 4-45
list specials, 4-44

Index-8

list template functions, 4-45, 5-73
1 (list), 4-36, H-10-17
11 (list labels), 4-36, H-10-17
L (Location), 4-28,4-34, H-7-9
1m (list macros), 4-36, H-10-17
locale, setting up, 3-11
local variables, listing, 5-44
location, Glossary-5
location, 4-2-4
location window (line), 3-14
10 (list overload), 4-36, H-10-17
longjrnp(j, F-2
lowercase, 4-5
Ip (list procedures), 4-36, H-10-17
Ipm (list path map), 4-35,4-35, H-18
L prefix (wide-character prefix), 3-46,

4-16
lr (list registers), 4-36, H-10-17
Is (list specials), 4-36, H-10-17
lsI (list shared libraries), 4-36,

6-4, 6-6, H-10-17
.LT., C-2
Itf (list template functions), 4-36,

5-73, H-10-17
lx, 5-63
Ix (list exceptions), 4-36, H-10-17
lz (list signals), H-51
lz (list zignals), 4-108

M

M, H-45-50
machine instruction, Glossary-5
macro, Glossary-5
macro facility commands

def, 4-106, H-44
tm, 4-106, H-44
undef, 4-107, H-44

macros, 3-52
$malloc, E-1-3
Mc, 4-112, 4-121, H-45-50
member

functions, 5-2, 5-30
pointers, 5-35

memory lock, Glossary-5
memory locking, 3-13
-, B-2, C-2, D-2
miscellaneous commands

!, 4-112, H-45-50
#, 4-113, H-45-50
-, 4-114, H-45-50
am, 4-114, H-45-50
f, 4-116, H-45-50
h, 4-116, H-45-50
M, 4-118, H-45-50
Mc, 4-121, H-45-50
mrn, 4-46, H-45-50
Mt, 4-122, H-45-50
q, 4-117, H-45-50
(Return), 4-113, H-45-50
sm, 4-115, H-45-50
ss, 4-117, H-45-50
tc, 4-118, H-45-50
tM, 4-122, H-45-50

M (Map), 4-112, 4-118
mrn (memory map), 4-36, 4-46, 6-7,

H-45-50
mod, D-2
modifying data, 3-35
more, 3-20
Mt, 4-112, 4-122, H-45-50

N

naming restrictions, F-6
navigating the execution stack, 3-37
.NE., C-2
.NEQV., C-3
nested classes, 5-4, 5-74
next, 3-27, 4-31
Next, 3-27,4-32
n (next), 3-27, 4-28, H-7-9
N (Next), 3-27, 4-28, H-7-9
non-ASCII characters, 3-44

not, D-2
.NOT., C-2
number, 4-4-5
numberp, 1-12
numbert, 1-12
numeric constants, 4-18

o
object

identification, 5-4, 5-26, 5-94
pointers, 5-33
type limitations, F-4

object, displaying type information,
5-19

op= , B-3
operand, promotion, 4-19
operators, 5-16
operators limitations, F-3
optimized programs, debugging, 1-7
options

-d, 3-5, H-1
-e, 3-5, 3-8, H-1
-1, 3-5, 3-8, H-1
-L, 3-5, H-1
-0, 3-5, 3-8, H-1
-p, 3-5, H-1
-P, 3-5, H-1
-r, 3-5, H-1
-R, 3-5, H-1
-s, 3-5, 3-8, H-l
-s, 3-5, 3-8, H-1

or, D-3
.OR., C-2
overall breakpoint commands

1b, H-25
tb, 4-78, H-25

overloaded
breakpoints, 3-29
functions and operators, 5-2
functions, listing, 5-46

Index-9

IIIUt::X

IIIUCA

p

p, 3-32, 3-35, 1-6-7, 1-8-9, 1-12
$pagelines, 1-3
parameterized

types, 5-4
types, debugging, 5-65
types, using, 5-66

parent process, 3-5
Pascal, 1-4

language operators, D-l
PascaLdemo, 2-2
Pascal main source file, 2-8-9
path-map, 4-35
path map (apm), using the, 3-62
path, prefixing, 3-66
pausing during execution, 3-28
$pc, E-I-3, J-l, J-4
pc, J-2, J-4
pch, J-3
pct, J-3
.pdbrc, 1-1
pidl .. pid4, J-3
playback and record commands, 4-102
pointer types, 4-20
-p option, 3-41
-p option, 3-55
position independent code, 3-4
p (print), 4-36, 4-113,4-114, H-I0-17
pq, 3-35, 1-8-9
pq (print quiet), 4-36, 4-55, H-I0-17
$print, E-I-3
print, 3-32, 3-35, 4-47
pri v, J-2, J-3
proc, 4-2-4
procedure, Glossary-5
procedure calls in an expression, entering,

4-21
process, adopting an existing, 3-55
process limitations, F-2
promotion of operands, 4-19
$ps, J-4

Index-10

ps, J-4
psw, J-2, J-3
ptrace(2j, F-2
pxdb, 6-12
pxdb++, 1-4

Q

Q, H-38
Q (Quiet), 3-29, 4-71
q (quit), 3-17, 3-29, 4-112,4-117,

H-45-50
@-qualified, 6-8
Quiet, 4-94
quit, 4-117

R

+r, 4-23, 4-113, 4-114, H-5-6
-r, 4-23, 4-113, 4-114, H-5-6
$rO .. $r31, J-l
rO .. r31, J-2
$r7, E-I-3
rctr, J-3
record and playback commands

>,4-102, H-42-43
>@, 4-104, H-42-43
>@c, 4-104, H-42-43
>c, 4-104, H-42-43
>@f, 4-104, H-42-43
>f, 4-104, H-42-43
«file, 4-102, H-42-43
<file, 4-102, H-42-43
»@file, 4-104, H-42-43
»file, 4-102, H-42-43
>@file, 4-104, H-42-43
>jile, 4-102, H-42-43
>@t, 4-104, H -42-43
>t, 4-104, H-42-43
tr, 4-102, H-42-43
tr @, 4-104, H-42-43

recording, toggle, 1-16
reference types, 5-12

registers, Glossary-6
displayed by the symbolic debugger,

J-1
displayed in floating-point register

windows, J-2
displayed in general register windows,

J-2
displayed in the special register

window, J-3
Series 300/400 computers, J-4

Release
7.0, 1-5
7.40, 1-4
8.0, 1-5
8.00, 1-4

rerunning a debugger session, 3-41
restoring and saving the debugger state,

3-42
$resu1t, E-1-3
resuming execution after a breakpoint,

3-30
$retO .. $retl, J-2
(Return), 4-112, 4-113, H-45-50
RM, J-2
-r option, 3-41
-R option, 3-42
r (run), 3-16, 4-64, H-22-24
R (Run), 3-16, 4-64, 4-65, H-22-24
running process, adopting a, 3-5
running the HP symbolic debugger, 3-5
run-time stack, 3-18, 3-36

s
s, 1-11
S, 1-11
sa, 4-100
sample

debugger session, 2-1
program listings, 2-6
session for scenario two, 2-4
sessions for scenario one, 2-2

sample program
C, 2-10
C++, 2-12
FO RTRAN 77, 2-7
Pascal, 2-8

sar, J-2, J-3
sa (suspend assertion), 4-97, H-40-41,

1-15
save-state, 1-16
save state, 4-117
save state limitations, F -11
saving and restoring the debugger state,

3-42
sb(suspend breakpoint),4-70,H-32-33
-s command-line option, shared libraries,

6-4
scope, 5-5
screen, setting up, 3-10
searching a program, 3-27
separate interfaces, 3-47
seijmp(3C) , F-2
setting breakpoints, 3-28
seiuid(2) , F-2
sei-user-ID, F-2
shared libraries, Glossary-6

abbreviated library names with -1,
6-3

adoption, 6-12
basename limitations, 6-2
core files, 6-14
creating, 3-4
creating the library, 6-2
debugging in an adopted process,

6-12
debugging program that use, 6-1
disassembly mode, 6-10
enable debugging, 6-2
explicit loading (shLload(3x)), 6-4
explicit references to, 6-9
force loading of symbols in, 6-9

Index-11

maex

Inoex

how symbols are found by the
debugger, 6-6

implicit loading (ld(1) -1),6-4
invoking the debugger, 6-4
-1 command-line option, 6-4
ld(1)) +b option, 6-3
ld(1)) +s option, 6-3, 6-15
/lib/crtO.o, 6-14
/lib/frtO.o, 6-14
loading with BIND_FIRST, 6-15
lsI (list shared libraries), 6-4,

6-6
nun (memory map) command, 6-7
modification while debugging, 6-15
@ operator, 6-8
overriding normal symbol binding

rules, 6-8
prepare for debugging, 3-4
-s command-line option, 6-4
searching for, 6-3
SHLIB_PATH environment variable,

6-3, 6-15
special considerations, 6-14
special symbol DMEM, 6-10
special symbol TMEM, 6-10
summary of extended commands,

6-11
swap requirements while debugging,

6-14
symbol binding, 6-6
symbols in, 6-8
/usr/bin/pxdb, 6-12
/usr/lib/end.o, 6-2, 6-13, 6-14
versioning, 6-14
+z compiler options (PIC) with -g,

6-2
+z compiler options (PIC) with -g,

6-2
shared library, 4-2-4, 4-4-5, Glossary-6
shared library limitations, F-8
shLdejinesym(3X), 6-10

Index-12

shLload(3X), 6-6, 6-7
shorthand notation for size, 4-53
SIGINT signal, F-3
$signal, E-I-3
signal command, 1-15
signal commands

lz, H-51
z, 4-110, H-51

signals restrictions, F-3
SIGTRAP signal, F-3
sigwinch, 3-10
single-stepping commands, 1-5
size, changing the source window, 3-21
$sizeof, B-2, C-2, D-2
sizeof, B-2, D-2
sm, 3-20
sm (suspend more), 4-112, 4-115,

H-45-50
source, Glossary-6

code display and assembly code display,
3-24

mode, 3-13, 3-24
window, 3-14, 3-18

source code, displaying, 3-24
source directory mapping, 3-62
source directory mapping commands

apm, H-18
dpm, H-18
Ipm, H-18

source file mapping commands
apm, 4-35
dpm, 4-35
Ipm, 4-35

source limitations, F-l
source line, Glossary-6
source window

size, 3-21
$sp, E-I-3, J-2, J-4
special variables

$cplusplus, 4-12
$depth, 4-10

description, 4-9, Glossary-6
$fpa, 4-14
$fpa_reg, 4-14
$lang, 4-11
$line, 4-11
$malloc, 4-11
names used for registers, J-l
$print, 4-11
$result, 4-10
$signal, 4-12
$step, 4-14
table of, E-l
$var, 4-10
xdb and cdb comparison, 1-3

split-screen mode, 1-5
srO .. sr7, J-3
sr (special registers), 4-23, H-5-6
ss (save state), 3-42, 4-112, 4-117,

H-45-50, 1-16
s (step), 3-16, 3-26, 4-64, 4-113, 4-114,

H-22-24, 1-5
S (Step), 3-16, 3-26, 4-64, 4-113, 4-114,

H-22-24, 1-5
stack, Glossary-7

run-time, 3-18, 3-36
stack viewing commands, 1-10

down, 4-60, H-19-20
t, 4-57, H-19-20
T, 4-59
top, 4-61, H-19-20
tst, 4-61, H-19-20
up, 4-60, H-19-20
v, 4-60, H-19-20

startup command file, I-I
static data members, displaying, 5-42
static members of an enclosed class,

5-74
status viewing commands

I, 4-63, H-21
$step, E-I-3, 1-3
Step, 4-68

Step-into (s), 5-64
Step-over (S), 5-64
stepping through a program, 3-26
step (step), 4-67
stopping execution (temporarily), 3-28
string, Glossary-7
stub, 4-13, 4-58, 4-62, Glossary-7
stub, export, 4-41, 4-61
stub, import, 4-41
suspend assertion, 4-100
suspend breakpoint, 4-87
suspend more, 3-20, 4-115
symbolic constants, 4 ... ,17
symbolic debugger, 1-1

commands summary, H-1
terminal support, 1-8
use of, 3-1
user requirements, 1-4

symbolic debug option (-g), 5-65

T

>@t, 4-104, H-42-43
>t, 4-104, H-42-43
t, 3-36, 1-10
T, 3-36, 4-59, 1-10
ta (toggle assertions), 4-97, 4-101,

H-40-41, 1-15
tb (toggle breakpoints), 4-70, H-25
tc (toggle case), 3-9, 3-27, 4-6, 4-112,

4-118, 4-118, H-45-50, 1-16
td (toggle disassembly), 3-22, 4-23,

4-23, H-5-6
template, 5-66
template

data, displaying, 5-70
function, 5-70
functions, listing, 5-73
listing, 5-71
type of an object, 5-71

template class
all member functions, 5-68

Index-13

maex

muex

data member values, 5-70
type of an object declared as a, 5-71

template, setting breakpoints, 5-67
TERM, 3-10, E-4
terminals

supported, 1-8
that do not support window mode,

1-8
that do support window mode, 1-8
without memory locking, 3-13

terminfo, 3-10
tf (toggle float), 4-23, H-5-6
throw, 5-57, 5-57
throw, stopping on, 5-59
tM, H-45-50
TMEM, 6-8, 6-10
tm (toggle macros), 4-105, 4-106, H-44
tM (toggle maps), 4-122
tM(toggle maps), 4-112
toggle assertions, 4-101
toggle breakpoints, 4-78
toggle case, 3-9, 3-27, 4-118
toggle case sensitivity, 1-16
toggle case (tc), 4-6, 4-118
toggle disassembly, 3-22
toggle exception catch, 5-61
toggle exception throw, 5-59
toggle float, 4-24
toggle macros, 4-106
toggle recording, 1-16
toggle screen, 3-24
toggle screen, 4-26
toggling the case sensitivity, 3-9
top, 3-39, 4-56, 4-61, H-19-20
tr, 4-102, H-42-43, 1-16
tr @, 4-104, H-42-43
trO .. tr7, J-3
trace, 3-36, 4-57
trace breakpoint, 3-29
trace program flow, 1-2

Index-14

tracing function and procedure calls,
3-36

transparent name demangling, 5-2
try, 5-57
ts (toggle screen), 3-24,4-23, H-5-6
tst (toggle stubs), 4-56,4-61, H-19-20
t (trace), 4-56, H-19-20
T (Trace), 4-56, H-19-20
txc (toggle exception catch), 4-95,

4-96, 5-61, H-39
txt (toggle exception throw), 4-95,

5-59, H-39

U

undef, 4-105, 4-107, H-44
up, 3-39, 4-56, 4-60, H-19-20
update, 4-26
Update, 4-26
uppercase, 4-5
user errors (UE42 - UE2031), A-3
/usr/bin/pxdb, shared libraries, 6-12
/usr/lib/xdb_demos, 2-2
u (update), 4-23, H-5-6
U (Update), 4-23, H-5-6

V

v, 1-6-7
v, 1-6-7
$var, E-1-3
var, 4-4-5
variable, 5-10

name conventions, 1-2
names, entering, 4-6
special, 4-9
specifying, 4-6

va (View address), 4-28, H-7-9, 1-6-7
view, 3-18,4-30
View, 3-18, 4-60
view address, 4-34
viewing functions with the debugger,

5-47

view machine instructions, 1-2
view source code, 1-2
virtual table pointer, 5-91
VISUAL, 1-10
VMS FORTRAN record support, C-1,

C-4
VMS FORTRAN record types

Maps, C-4
Records, C-4
Structures, C-4
Unions, C-4

v (view), 3-18, 4-28,4-113,4-114, H-7-9
V (View), 3-18, 3-40, 4-56, H-19-20

W

+w, 1-6-7
+W, 1-6-7
-w, 1-6-7
-w,I-6-7
wide characters, 3-45
window, 3-21, 4-27
window, Glossary-7
window command

fr,4-24
td, 4-23

window mode, Glossary-7
window mode commands

gr, 4-25, H-5-6
+r, 4-25, H-5-6
-r, 4-25, H-5-6
sr, 4-25, H-5-6
tf, 4-24, H-5-6
ts, 4-26, H-5-6
u, 4-26, H-5-6
U, 4-26, H-5-6
w, 4-27, H-5-6

window mode requirements, F-13
windows

command, 3-14, 3-20
location, 3-14
source, 3-13, 3-14, 3-18, 3-21

ws, 1-6-7
w (window), 3-21, 4-23, H-5-6, 1-6-7

x
x, 4-101
xcc (exception catch command), 4-95,

4-96, 5-62, H-39
xdb, 1-1

command, 3-5, 3-41
xdb and cdb comparison, I-I
xdb, basic command form, 1-2
xdb. cat, 3-11
XDBEDIT, 1-10, E-4, 1-4
xdb. help, G-2
XDBHIST, 1-10, E-4
xdb options, H-2

directory option, 3-5
line mo<;le option, 3-5
object file, 3-5
playback file, 3-5
record file, 3-5
string cache size option, 3-5
version number option, 3-5

.xdbrc, 3-9, I-I
x (exit), 4-97, H-40-41, 1-15
xtc (exception throw command),4-95,

4-96, 5-60, H-39
X windows, 3-48

z
+z, 3-4
z, 1-15
Z, 1-16
zignal, 4-110, H-51

Index-15

Inuex

Reorder No. or
Manual Part No.
B2355-90044

FI;n- HEWLETT~
a=GtI PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B2355-90044

B2355-90044

