Device I/O and User Interfacing
HP-UX Concepts and Tutorials

HP Part Number 97089-90052

["/3 E'Eé".bfé o

B Hewlett-Packard Company
»" 3404 East Harmony Road, Fort Coliins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
. or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and repiacement parts can be obtained from your local
Sales and Service Office.

Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and
Software clause in DAR 7-104.9(a).

Copyright 1980, 1984, AT&T, Inc.
Copyright 1979, 1980, 1983, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

| () Prystre Customer Note

Hewlett-Packard is in the process of changing the color of our documentation binders. In order
to accomplish this changeover we are placing two spine inserts with this manual. Please use the
insert that matches the binders you receive.

Hewlett-Packard Company e 3404 East Harmony Road e Fort Coliins, Colorado 80525

Printed in U.S.A.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

September 1986...Edition 1

jii

Table of Contents

Interfacing Concepts

Differences Between COmMPUtersoueueeueeaneneieananeanaain. 1
DIL Tutorial Contentsouiiunii it 2
The DIL Interfacing Routines 3
Linking the DIL Routinesottt 3
Calling the DIL Routines From Pascal e 4
Calling the DIL Routines From FORTRAN 5
General Interface Conceptsottt n it it 6
What Is an Interface? it 6
Interface Functions. it i 7
Additional Interface Functions, 7
The HP-IB Interface, P 8
General SErUCtUTeo oottt e 8
Handshake Linest i it i 9
Bus Management Control Lines.........o e, 11
The GPIO Interfaceovvor et e e 12
General-Purpose Routines
Conceptsoovvuunn S 13
The Interface Special File i 13
The Entity Identifier (eid) 14
The Programming Modelo 14
General-Purpose Routines. ...t 14
Opening an Interface’s Special File o il 15
Closing an Interface’s Special File i, . 17
Reading and Writing e 18
Designing Error Checking Routines................ e 19
The errno Variable e 19
Using errno O AP 20
Resetting Interfacesot e i e 22
Controlling I/O Parametersooiuiiiiiiiiiiniieiiiiiieeeanns 23
Setting the I/O TImeoutttt 23
Setting Data Path Width i 25
Setting Transfer Speed.... 25
Setting the Read Termination Patternccovuviiiininninnnnns. 26
Removing a Read Termination Pattern e 28

Table of Contents i

Determining Why a Read Terminated, 29
I erTUDES .« . et e e 31
Interrupts on the Integral PC............... 31
Interrupts on the Series 500ot 31
Controlling the HP-IB Interface
Overview of HP-IB Commandsouviitiinreeiiineenineennnnnann. 36
Overview of the HP-IB DIL Routines.............cooviiiiiniiiiinnn... 40
Standard DIL Routinescouiitinniiiiiin i, 40
The Computer’s Roleonthe HP-IB, 41
Opening the HP-IB Interface File o i, 42
Sending HP-IB Commandsoovttiieeiiiie it iiiee i 43
The Active Controllert iii ittt 45
Determining Active Controllerooiiiiiiiiin ... 46
Setting Up Talkers and Listeners.............ccoiiiieiiiineennena... 47
Remote Control of Devicescovveiiniiiiiii it 50
Locking Out Local Controlc.ccoviiiiiiiiniiiiiiineeen... 51
Enabling Local Controlttt 51
Triggering Devicescouviiiiiin ittt et e 52
Transferring Datat e 52
Clearing HP-IB Devices.oovuntetie i iiieeiieeeennn. 54
Servicing Requestsooiiii it i e 54
Parallel Pollingcouiiiiitiii ittt et 57
Waiting For a Parallel Poll Responsecooiiviina... 61
Serial Pollingcovviinit i 65
Passing Control.ot i e 67
The System Controller. i it 68
Determining System Controlleroviiiiiiniiinnen... 68
System Controller’s Dutiesc.coviiiin it 69
The Computer As a Non-Active Controller, 71
Determining the Controller’s Status oot 71
Requesting Servicet 73
Responding to Parallel Polls........... 74
Disabling Parallel-Poll Responsec.covviiiiiineinneennnnnn. 76
Accepting Active Controlttt e 77
Determining When You Are Addressedc.ccovviiinvennnn.... 79
Buffering I/O Operationsccooiiiiiiiiiiiiiiiiiiinnnnnn... 83
Todetail: The I/O Operation Template.coovunneoo... 84
AlloCating SPace .. oottt it e e e e e 87
Example PP 88
Locating Errors in Buffered I/O Operationsooooo... 90

ii Table of Contents

Controlling the GPIO Interface

Configuring Your GPIO Interfacet 93
Configuring the Integral PC GPIO o ... 93
Setting the Interface Switches for Series 200/300 and 500 93
Default Configuration and Switch Settings for the Series 800 Model 840 GPIO 94
Creating the GPIO Interface File i ... 94

Limitations on Controlling the Interface e 95

Using the DIL Routines.ottt 96
Resetting the Interface.o i i 97
Performing Data Transfersc. .. 98
Using the Special-Purpose Lines i i, 98
Controlling the Data Path Width 100
Controlling the Transfer Speed o ... 101
Read Terminationst i, 101
Interrupts . .« oo e 102

Interrupt-Driven Transfer Modecciiiiiiiiiiiiiinnnnnn. 102

Series 500 Dependencies

Location of the DIL Routines.ooiiiiiiiiiiniiiinn.en 103

The GPIO Interfaceoooii i e e e 103
Data Linesot e 104
Handshake Linesot 104
Special-Purpose Linesoouuiiiiiiiiii i e 104
Data Handshake Methods o i, 104
Data-In Clock Source. . ..ot ittt e 105

Creating the Interface Special File 105
Creating an Interface File i i i, 105

Determining The Bus Address of the Interface Card 108

Effects of Resetting (via io_reset)ccoiiiiiiiiii .. 108

Entity Identifiers.co i e 108

Restrictions Using the DIL Routines i i, 109
hpib_bus_status e 109
hpib_card_ppoll_respot e 110
hpib_rgst_srveeot e 110
hpib_send_emnd e 111
hpib_status_wait e 111
hpib_wait_on_ppoll. 111
1o_get_term _reasoniiiiiii i e e e 111
fo_timeout_ctl el 112
jo_speed_ctl ..ot 112
fo_width_ctl . ..o e 112

Performance Tips

Table of Contents iii

Series 200/300 Dependencies

Location of the DIL Routines., 115
Linking DIL Routinesttt 116
The GPIO Interfacettt 116
Data Lines . ..ottt e 116
Handshake Linescoviriin ittt i e 117
Special-Purpose Linesc.oouiiininnettiii i 117
Data Handshake Methodsc.oo i 117
Data-In Clock SOUTCE. . . oottt et e iee e 118
Creating the Interface Special File it 119
Creating the Special File........ ...l 119
Effects of Resetting (via io_reset)cooiuiiiiiieiinienonn.. 122
Entity Identifiers. i 122
Restrictions Using the DIL Routines i, 123
hpib 10 ..o e 123
hpib_send_cmndot e e 123
hpib_statuso i e e 123
fo_interrupt_ctl e 123
fo_on_interrupt e 123

0T <11 PR 124
cdospeed_Ctl ..o e e e e 124
fo_timeout_ctlooi i e 124
Performance Tipsvvvtitie i e e 125
Simulating Interrupts for the HP-IB Interface 126
Simulating Interrupts on the GPIO Interface 128

Integral PC Dependencies

Location of the DIL Routines............cooiiiiiiiiinniiniiiinnennn.. 132
The GPIO Interfacettt e 132
Creating an Interface Special File o i, 133
GPIO Interface Filesttt e it 133
HP-IB Interface Filesttt i 133
Unloading the DIL Driverscouuitttiintiiiiiieeanan. 133
Interruptso e e 134
Controlling the HP-IB Interface.............. ... o i, 134
Limitations on the HP-IB Interface..................coivieiiii.. 134
The Computer as a Non-Active Controller 134
Non-Standard DIL Routinesovviiiiiinnnniinneeeneennnnnnnn. 135
General-Purpose Routines.o i, 135
Non-Standard HP-IB Routines.ccoiiiiinnennnn.. 135

Non-Standard GPIO Routines

iv Table of Contents

Restrictions Using the DIL Routines it 136

hpib_bus_statusciiiiiiii 136
hpib_card_ppoll_respoiiiiiiii i e 136
hpib_ppoll_resp_ctl. i i i e 136
10_e0l ctl ..o e e 136
TG TR (< 136
fo_speed_ctl . ..o e 137
fo_timeout_ctlot 137
fo_width _ctl. ..o 138
ODEIN(2) .ottt 138
read(2) and write(2).......oii e 138
Series 800 Model 840 Dependencies
Compiling Programs That Use DILo i, 140
Accessing the Interface Special Files......... i, 140
Major Numbers e 140
Minor Numbers and Logical Unit Numbers........................... 141
Listing Special Files ...t i i 142
Naming Conventions for Interface Special Files 143
Creating Interface Special Files 144
Hardware Effects on DIL Routines i, 145
hpib_rgst_srvee e e e 145
10_e0l_Ctl ..o e 145
IO TESBE . oottt 145
fo_speed _ctl ... e e e 146
fo_timeout_ctlot e 146
fo_width _ctl . ..o e 146
Return Values for Special Error Conditions.coouiea... 146
DIL Support of HP-IB Auto-Addressed Files 147
hpib_card_ppoll_respo e 149
01031 o J00 1o T PP 149
hpib_ren_ctl. e 149
hpib_send_cmd e 149
hpib spoll. .o e e 149
hpib_wait_on_ppoll. e 149
10_0n_Interruptot 149
A

Table of Contents Vv

Performance Tips ... oovviviin i e e i e s 150

Process Lockingvviiimniie i 150
Setting Real-Time Prioritycccviiiiiniin i, 151
Preallocating Disc Spacecvvvtiin ittt ettt 151
Reducing System Call Overheadccoviiiiieiniiinenn.. 152
Setting Up Faster Data Transfers, 152
Character Codes.oviiittitniiii et 153
Index. ... e e e e e e e 155
Ps
vi Table of Contents

Interfacing Concepts

This tutorial illustrates how to access an arbitrary device through HP-IB (Hewlett-
Packard Interface Bus) and GPIO (General Purpose Input/Output) interfaces on your
HP-UX system using the routines in DIL (Device I/O Library). This tutorial covers
general interfacing strategies, in addition to strategies designed specifically for HP-IB
and GPIO interfaces.

The tutorial assumes you want to communicate with devices from within a program
(process). All DIL routines can be called from C, Pascal, and FORTRAN programs.
The examples, illustrating the use of the routines, are written in C; however, with a little
extra code they can be accessed from Pascal or FORTRAN programs.

Differences Between Computers

For the most part, DIL routines function the same on different computers; that is, the
routines should work basically the same for the Integral PC, Series 200/300, Series 500,
and Series 800 computers. However, some differences do exist.

Where differences do exist, you’ll be alerted by bold introductory phrases such as:
Integral PC Only:

Series 200/300 Only:

o Series 500 Only:

e Series 800 Only:

In addition, major differences are outlined in an appendix for each computer system on
which DIL routines run—Series 500, Series 200/300, Integral PC, and Series 800.

Interfacing Concepts 1

DIL Tutorial Contents

Chapter 1: Interfacing Concepts presents basic interfacing concepts and a description of
the HP-IB and GPIO interfaces.

Chapter 2: General-Purpose Routines discusses how the interfaces are accessed in the
HP-UX environment and how basic data transfers are implemented.

Chapter 3: Controlling the HP-IB Interface describes interfacing techniques for the HP-
IB interface.

Chapter 4: Controlling the GPIO Interface covers interfacing techniques for the GPIO
interface.

Appendix A: Series 500 Dependencies covers hardware- and system-dependent informa-
tion for Series 500 computers. If you use DIL routines on a Series 500 computer, you
should check this appendix to ensure the correct use of DIL routines.

Appendix B: Series 200/300 Dependencies describes hardware- and system-dependent
information. If you use DIL routines on a Series 200/300computer, you should check this
appendix to ensure the correct use of DIL routines.

Appendix C: Integral PC Dependencies describes hardware- and system-dependent in-
formation specific to the Integral PC. If you use DIL routines on an Integral PC, you
should check this appendix to ensure the proper usage of DIL routines.

Appendix D: Series 800 Model 840 Dependencies describes hardware- and system-
dependent information specific to the Series 800 Model 840. If you use DIL routines
on a Model 840, you should check this appendix to ensure the proper usage of DIL

routines.

Appendix E: Character Codes

2 Interfacing Concepts

The DIL Interfacing Routines

As mentioned previously, Device I/O Library (DIL) routines allow you to access devices
directly through HP-IB and/or GPIO interfaces connected to your computer system.
Some routines are general-purpose and can be used with any interface supported by
the library, while others provide control of specific supported interfaces. DIL currently
supports the HP-IB and GPIO interfaces.

Linking the DIL Routines

You can make calls to the DIL routines from C, Pascal, or FORTRAN programs. How-
ever, the library is not automatically linked with your program when you compile the
program with ce(1), pe(1), or fe(1). You must use the -1 flag to specify that the library
be linked with the program. To compile a C program and then link the DIL routines
with it, use:

cc program.c -ldvio

Similarly for a Pascal program, use:
pc program.p -ldvio
and for a FORTRAN program, use:

fc program.f -ldvio

In all three cases, the -1 option is passed to the HP-UX linker, causing it to link any DIL
routines called by the program. For the exact location of DIL library on your computer
system, see the appropriate hardware-specific appendix in this tutorial.

Interfacing Concepts 3

Calling the DIL Routines From Pascal

You must give an external declaration for each DIL routine called from a Pascal program.
An external declaration consists of the routine heading, including a formal parameter list
and result type, followed by the Pascal EXTERNAL directive. For example, the C description
of open(2) is:

int open(path, oflag)
char *path;
int oflag;

The external declaration in a Pascal program for the routine is:

TYPE
PATHNAME = PACKED ARRAY [0..50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
oflag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating the parameter is passed by

reference. This simulates the passing of a pointer, which is what open(2) expects. In
general, declaring a C routine from Pascal is straightforward.

4 Interfacing Concepts

Calling the DIL Routines From FORTRAN

C and FORTRAN routine calls are not compatible because C passes parameters by value
while FORTRAN passes them by reference.

To overcome this incompatibility, direct the compiler to generate a call by value using
FORTRAN’s $ALIAS option. For example:

$ALIAS close = ’close’ (%val)
If your system’s FORTRAN compiler does not support this form of $4ALIAS, you may
need to solve the parameter-passing differences by writing an onionskin routine. An
onionskin routine is a C-language function written for the purpose of resolving parameter
passing-irregularities between C and other languages.
For example, to access close(2) using an onionskin routine, use:

$ALIAS close = ’_my_io_close’

and then write the onionskin routine:

int my_io_close (eid)

/* the compiler will create the external symbol "_my_io_close"
based on the above declarationx/

int *eid;

{
}

return (close (*eid));

Interfacing Concepts 5

General Interface Concepts

This and the remaining sections in this chapter provide concepts information concerning
interfaces in general and the HP-IB and GPIO interfaces in particular. This information
is provided as background information only; it is not required before using the DIL
routines (although you may find some of the information useful). You can skip the
remainder of this chapter without serious detrimental effects.

What Is an Interface?

The primary function of an interface is to provide a data communication path between
the computer and its associated peripherals. Interfaces act as intermediaries between pe-
ripherals by handling part of the bookkeeping work and ensuring that the communication
process flows smoothly

On HP’s 9000 family of computers, the interface connects directly to the computer
either hard-wired or as a card that fits in your computer’s backplane slots. Peripherals
are connected to the interface via cables. The functions of an interface are shown in the
following block diagram (Figure 1-1).

Computer
Compatible Logic
Connector Level
— Matcher
— Cable R
— Interface) Peripheral
Computer — . ¢ .
— Logic Device
- oot Device
ogic
9 Compatible
Level
Connector
Matcher

Figure 1-1. Functional Diagram of an Interface

6 Interfacing Concepts

Interface Functions
In general, an interface performs the following functions:

o Electrical and Mechanical Compatibility. This simply means that you can attach
compatible peripherals to an interface, and doing so won’t destroy the peripheral
or the interface.

e Data Compatibility. Just as two people must speak a common language to com-
municate, the computer and peripheral must agree upon the format of data before
communicating. Ensuring proper data format is the responsibility of the program-
mer. Most interfaces merely move agreed-upon quantities of data between the
computer and peripheral.

e Timing Compatibility. Since all devices do not have the same data transfer rates,
nor do they agree as to when data should be transferred, there must be synchroniza-
tion between peripherals and the interface: data transfers can be started at a time
agreed upon by the interface and the peripheral, and the data must be transferred
at a mutually agreeable rate.

If the sender and receiver do not agree upon start time and transfer rate, then
the transfer is carried out via a handshake process: the transfer proceeds one data
item at a time with the receiving device acknowledging that it received the data
and that the sender can transfer the next data item. Both types of transfers are
utilized with different interfaces.

Additional Interface Functions

Another powerful feature of an interface card is to relieve the computer of low-level tasks,
such as performing data transfer handshakes. This distribution of tasks eases some of the
computer’s burden and decreases the otherwise stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely.
The next sections concentrate on the functions of two particular interfaces: the HP-IB
and the GPIO.

Interfacing Concepts 7

The HP-IB Interface

The Hewlett-Packard Interface Bus (HP-IB) is an interface that provides compatibility
between the computer and external devices conforming to the IEEE 488-1978 standard.
Electrical, mechanical, and timing compatibility requirements are satisfied by the bus,
which allows you to connect up to 15 devices to one interface.

General Structure

Communications through the HP-IB are made according to a precise set of rules defined
by the IEEE 488-1978 standard. These rules ensure orderly communication. There are
three types of devices on the HP-IB:

e controller
o talker

e listener.

These types are actually attributes that exist alone or in combinations in one device. For
example, the HP-IB interface allows a desktop computer to be a controller, talker, and
listener. A device that accepts data from the bus (for example, a printer) is usually a
listener, while a device that supplies data to the bus (for example, a voltmeter) is usually
a talker. At any one time, the bus has only one Active Controller and only one talker,
but it can have any number of listeners.

The HP-IB is composed of 16 lines which are divided into 3 groups: 8 lines form a
bi-directional data path which carries data, commands, and device addresses; 3 lines
control the transfer of data bytes (handshake lines); and the 5 remaining lines control
bus management.

8 Interfacing Concepts

Handshake Lines
The handshake lines used to synchronize data transfers are:

e DAV — DAta Valid
e NRFD — Not Ready For Data
e NDAC — Not Data ACcepted.

NOTE

The HP-IB interface uses negative logic for handshake, data, and
bus management lines. This means that a line is asserted (true)
when its voltage is low; when a line’s voltage is high, the line is
not asserted (false).

The timing diagram in Figure 1-1 illustrates how the handshake lines are used to complete
a data item transfer. You should refer to this diagram when reading the subsequent
discussion of the HP-IB handshake.

RIS FALSE
Data RIERLRIRLRRRRRRRRRKK RUE
o Ny S FALSE
DAV | S

TRUE
FALSE

NRFD
TRUE

PEOE ©OO0O

Figure 1-2. The HP-IB Handshake

Interfacing Concepts 9

[

At the start of the handshake (point A), the handshake lines are in the following states:
o DAV is false — there is no valid data on the data lines.
o NRFD is true — none of the listeners are ready to accept data.

e NDAC is true — there is no data for the listeners to accept.

When a listener is ready to accept data, it de-asserts NRFD—that is, it lets NRFD
float high. However, NRFD remains asserted (true) until every listener de-asserts it?.
When every listener is ready to accept data (that is, when NRFD is de-asserted by every
listener), NRFD becomes false (point B).

By looking at NRFD, the talker knows when it can send data: when NRFD is false, the
talker knows that every listener is ready to accept data; the talker then puts data on the
data lines and asserts DAV (point C), thus telling the listeners that there is valid data
on the data lines to be accepted.

As soon as a listener senses the assertion of DAV, the listener asserts NRFD (point D),
thus driving NRFD low (true).

After point D, each listener accepts the data on the data lines. When a listener has

accepted the data, it de-asserts NDAC. As with the NRFD line at point B, NDAC remains
asserted (true) until every listener on the bus de-asserts (makes false) the NDAC line.
When every listener has de-asserted NDAC, the line becomes false (de-asserted), thus
telling the talker that every listener has accepted the data (point E).

When the talker sees that every listener has accepted the data, the talker de-asserts
(makes false) the DAV line and takes data off the data lines (point F).

As soon as a listener senses that data is no longer valid, it asserts NDAC (point G), thus
signifying the end of the handshake (point H). When the handshake is finished, all lines
are at the values they had before the handshake started (point A).

The reason NRFD remains asserted until every listener de-asserts it is because an active low voltage
on the bus line (asserted) overrides a passive high voltage (de-asserted). Therefore, the line remains
asserted until every listener sets the line voltage to a passive high (de-asserted).

10 Interfacing Concepts

Bus Management Control Lines
There are five bus management control lines:

e ATN — ATtentioN

o IFC — InterFace Clear

¢ REN — Remote ENable
¢ EOI — End Or Identify
e SRQ — Service ReQuest.

ATN: The Attention Line

Command messages are encoded on the data lines as 7-bit ASCII characters, and are
distinguished from the normal data characters by the attention line’s (ATN’s) logic state.
That is, when ATN is false, the states of the data lines are interpreted as data. When
ATN is true, the data lines are interpreted as commands.

IFC: The Interface Clear Line

Only the System Controller sets the IFC line true. By asserting IFC, all bus activity is
unconditionally terminated, the System Controller becomes the Active Controller, and
any current talker and listeners become unaddressed. Normally, this line is used to
terminate all current operations, or to allow the System Controller to regain control of
the bus. It overrides any other activity currently taking place on the bus.

REN: The Remote Enable Line

This line allows instruments on the bus to be programmed remotely by the Active Con-
troller. Any device addressed to listen while REN is true is placed in its remote mode of
operation.

EOI: The End or Identify Line

The EOI line is used to indicate the end of a data message. Normally, data messages
sent. over the HP-IB are sent using standard ASCII code and are terminated by the
ASCII line-feed character. However, certain devices need to send blocks of information
containing data bytes which have the line-feed character bit pattern as part of the data
message. Thus, no bit pattern can be designated as a terminating character, since it
could occur anywhere in the data stream. For this reason, the EOI line is used to mark
the end of the data message.

Another function of EOI is that, when it is asserted along with the ATN line, a parallel
poll is taken of the bus.

Interfacing Concepts 11

SRQ: The Service Request Line

The Active Controller is always in charge of ordering events that occur on the HP-IB.
If a device on the bus needs the Active Controller’s help, it sets the SRQ line true. The
SRQ line sends a request for service, not a demand, and it is up to the Active Controller
to choose when and how it services the request. However, the device continues to assert
SRQ until it has been satisfied. Exactly what satisfies a service request depends on the
requesting device, and is explained in the device’s operating manual.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel inter-
face that allows communication with a variety of devices. The GPIO interface utilizes
data, handshake, and special-purpose lines to perform data transfers via user-selectable
handshaking methods.

Four GPIO interfaces are supported by DIL routines: the GPIO for Series 200 and
300, the GPIO for Series 500 computers, the GPIO for the Integral Personal Computer,
and the AFI card for the Series 800 Model 840. You should refer to the appropriate
hardware-specific appendix for details on each GPIO.

12 Interfacing Concepts

General-Purpose Routines

The DIL library contains several general-purpose routines that can be used with any
interface supported by the library. (These routines are listed in Table 2-1.) This chapter
discusses how to use these routines from your programs. Specifically, the following topics
are presented:

e concepts essential to understanding the use of DIL library routines
e opening an interface’s special file

e closing an interface’s special file

e reading from and writing to an interface’s special file

e designing error-checking routines

e resetting an interface

e controlling input/output parameters

e determining why a read terminated

e handling interrupts

Concepts

The Interface Special File

HP-UX treats I/O to an interface the same way it treats I/O to an input/output device:
the interface must have a special file. Before you can write programs that call DIL
routines to communicate with an interface, the interface must have an appropriate special
file.

The special file for a device interface must be created before calling DIL routines to com-
municate with the interface. The method for creating an interface’s special file depends
on which model of computer you use. You should refer to the appropriate hardware-
specific appendix for details on creating the interface special file for your system.

General-Purpose Routines 13

The Entity Identifier (eid)

Nearly all DIL routines require an entity identifier (eid) as a parameter. The entity
identifier is an integer returned from opening (via the open(2) system call) an interface’s
special file. When supplied as a parameter to a DIL routine, the entity identifier tells
the routine which interface special file to work with.

The Programming Model

As a general rule, all programs that call DIL routines to operate on a specific interface
conform to the following structure:

1. Get the entity identifier (eid) for the interface with which you wish to communicate.
This is done by opening the interface’s special file. For details on obtaining an
interface’s entity identifier, see the section “Opening an Interface’s Special File.”

2. After obtaining the eid, your program can call DIL routines to perform various tasks
with the corresponding interface. This and the remaining chapters in this tutorial
describe how to use the various routines. (General-purpose routines covered in this
chapter are described briefly in the following “General-Purpose Routines” section.)

3. When finished calling DIL routines, your program should close the interface’s spe-
cial file, opened in step 1 above. For details on closing this special file, sec the
section “Closing an Interface’s Special File.”

General-Purpose Routines

Table 2-1 provides a brief synopsis of the standard general-purpose routines discusse-! in
this chapter. The following system calls, pertinent to DIL routines, are also discussed in
this chapter: open(2), close(2), read(2), and write(2).

14 General-Purpose Routines

Table 2-1. General-Purpose Routines.

Routine Description

to_reset Reset a specified interface.

10_timeout_ctl Establish a timeout period for any operation performed to a specified
interface by a DIL routine.

1o_width_ctl Set the width of the data path for a specified interface.

10_speed_ctl Select a data transfer speed for a specified interface.

to_eol_ctl Set up a read termination character for data read from a specified
interface.

10_get_term_reason | Determine how the last read terminated for a specified interface.

to_on_interrupt Set up interrupt handling for a program.

to_interrupt_ctl Allow enabling and disabling of interrupts for a specified interface.

Series 200/300 computers support an additional routine, jo_burst; you should refer to
the to_burst(8D) page of the HP-UX Reference for details on using this routine.

In addition to the above standard DIL routines, the Integral PC DIL library supports
non-standard DIL routines. You should refer to the appendix “Integral PC Dependen-
cies” for details on these routines.

Opening an Interface’s Special File

Other than the default standard input, standard output, and standard error files, you
must explicitly open files in order to read and write to them from inside C, FORTRAN,
or Pascal programs. The HP-UX system routine for opening files is open(2). It is called
as follows:

#include <fcntl.h>
int eid;

eid = open(filename, oflag) ;

The filename is either a character string representing a file’s external HP-UX name or a
pointer to a buffer that contains the external name.

General-Purpose Routines 15

Integral PC Only: filename should be the special device name for the specific GPIO
or HP-IB interface created by load_gpio or load_hpib. Note that each GPIO port has a
separate device file name. Refer to Appendix C, “Integral PC Dependencies,” for details
on using load_gpio and load_hpib to create special files for GPIO and HP-IB interfaces,
respectively.

The integer oflag specifies the access mode for opening the file. It can have one of three
possible values, as defined in the /usr/include/fentl.h header file: 0_RDONLY (0) requests
read-only access, 0_WRONLY (1) requests write-only access, and 0_RDWR (2) requests both
read and write access. To use these constants in your programs, you must use the
#include C-compiler directive, as shown in the above example.

When used on an interface’s special file, the open system call returns an integer repre-
senting the interface’s entity identifier (eid). As mentioned in the “Concepts” section of
this chapter, the entity identifier is required as a parameter to DIL routines; it is also
required as a parameter when reading from or writing to an interface’s special file.

The following code defines an entity identifier called eid and opens an interface file called
/dev/raw_hpib with read and write access:

#include <fcntl.h>

int eid;

eid = open("/dev/raw_hpib", O_RDWR);

As an alternative to specifying the character string name of the HP-UX file in the call to
open, you can place the name in a buffer and then call open with a pointer to the buffer.
For example, the following code also opens the HP-IB interface file:

#include <fcntl.h>
int eid;
char xbuffer;

buffer = "/dev/raw_hpib";
eid = open(buffer, O_RDWR);

If a file is successfully opened, open returns a non-negative integer as the entity identifier.
However, if an error occurs and the file is not opened, a —1 is returned.

16 General-Purpose Routines

Closing an Interface’s Special File

When your program is finished with an opened interface special file, the special file should
be closed using the close(2) system call.

Normally, when a process terminates (via exit(2) or a return from the main routine), any
of its open files are automatically closed by the HP-UX operating system. However, it
is still good programming practice to close a file when you’re finished using it.

NOTE

HP-UX limits the number of files one process (program)
can have open at one time to NOFILE, as defined in the
Jusr/include/sys/param.h header file.

The close routine requires the entity identifier for the opened interface special file you
wish to close. The following code shows how an HP-IB interface can be opened and
closed:

#include <fcntl.h>
main()
{

int eid;
eid = open("/dev/raw_hpib", O_RDWR);

/* You can now call routines to
communicate with the interface. */
close(eid) ;
}

The connection between the entity identifier and the open file is now broken, and the
entity identifier is available for the system to assign to another file. A file that is opened
on two separate occasions need not be assigned the same entity identifier both times by
the system.

If the routine successfully closes the specified file, it returns a 0; if not, it returns a
—1 and the external error variable errno(2) is set to indicate the error (see the section
“Designing Error Checking Routines”). A common cause of the routine failing is using
an argument that is not a valid entity identifier for an open interface file.

General-Purpose Routines 17

Reading and Writing

The lowest level of I/O in HP-UX provides no buffering or other services; it is a direct
entry into the operating system. Two HP-UX system routines provide low-level 1/0
read/write capabilities: read(2) and write(2). Both require three arguments:

e an entity identifier of an open file

e a buffer in your program where the data is to come from during write or go to
during read (write empties a buffer; read fills a buffer)

e the number of bytes to be transferred.

The call to read has this form:

#include <fcntl.h>
main()

{
int eid; /*the entity identifier*/
char buffer[10]; /*buffer in which the read data will be placed*/
eid = open("/dev/raw_hpib", O_RDWR);

/*establish communication with the raw HP-IB device file
as described in Chapter 3, "Controlling the HP-IB interface"*/

read(eid, buffer, 10); /*reads 10 bytes from a previously opened*/
} /*file with the entity identifier "eid". */

The call to write is very similar:

#include <fcntl.h>

main()
{
int eid; /*the entity identifier*/
char *buffer; /* the buffer containing data to be written to a filex/

eid = open("/dev/raw_hpib", O_RDWR);

/*establish communication with the HP-IB interface as described
in Chapter 3, "Controlling the HP-IB Interface"x/

buffer = "data message"; /*message to be sent*/
write(eid, buffer, 12); /*12 bytes are written to previously*/
} /*opened file with the entity identifier "eid"*/

18 General-Purpose Routines

Although read and write required the number of bytes to be transferred as their third
argument, other parameters, discussed later, associated with the interface file’s eid can
end the transfer before this number is reached. Both read and write return the number
of bytes transferred.

Integral PC Only: When performing a read or write operation to a 16- or 32-bit GPIO
port, the data must start on a word boundary.

Example
Assume that you have already created an auto-addressed special file, /dev/hpib_dev, for
an HP-IB device. Your program must first open the interface file /dev/hpib_dev for
reading and writing:

int eid;

eid = open("/dev/hpib_dev", O_RDWR);

To place data on the bus you use write:

write(eid, "This is a test", 14);
The number of bytes to be sent is 14 because there are 14 characters in the data string.
To receive 10 bytes of data from the bus you use:

char buffer[10];

read(eid, buffer, 10);

The read routine will attempt to read 10 bytes of data from the interface and put the
data in buffer.

Designing Error Checking Routines

All Device I/O Library routines return a —1 to indicate that an error occurred during
the routine’s execution. If this happens, the routine sets an external HP-UX variable
called errno.

The errno Variable

errno is an integer variable whose value indicates what error caused the failure of a
system or library routine call. It is not reset after successful routine calls; therefore, you
should only check its value after you have determined an error occurred.

General-Purpose Routines 19

Except for this section, most examples in this manual do not check for the successful
completion of routine calls. However, as good programming practice you should include
error checking in your own programs.

The errno(2) page in the HP-UX Reference defines the various errors returned when a
system call fails. You should refer to this documentation for a complete description of
errors.

Using errno

To access errno from your program you must include the following code at the beginning
of the program:

#include <errno.h>

The errno.h Header File

The header file Jusr/include/errno.h uses error number definitions from the
Jusr/include/sys/errno.h header file. Refer to the errno(2) entry in the HP-UX Ref-
erence to see this list and to find out the meaning associated with each value.

Displaying errno

Once you have declared errno, there are two ways you can check its value if a routine
fails. The simplest way is to check to see if the routine failed, and if so, to print out the
value of errno and then exit. The example below illustrates this strategy:

#include <errno.h>
#include <fcntl.h>

main()

{
int eid;
'if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1)
{

printf ("Error occurred. Errno = %d", errno);
exit(1);
}

}

If an error occurs and errno’s value is printed, you must then refer to errno’s entry in
the HP-UX Reference to find out what the number means.

20 General-Purpose Routines

Error Handlers

Another approach is to check for specific values of errno and execute different error
routines depending on its value. Only a limited number of situations can cause the
failure of a particular routine; thus, a routine usually has a small set of values that it can
assign to errno. To find out what this set is, refer to the routine’s entry in the HP-UX
Reference.

For example, in the HP-UX Reference you find that errno is set to ENOENT (defined in the
errno.h header file) when you try to open a file that doesn’t exist. Once this is known,
you can incorporate the following code into the program:

#include <errno.h>
#include <fcntl.h>

main()

{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1)
{

if (errno == ENQOENT)

printf ("Error occurred because file doesn’t exist to open");
else

printf("File exists to open, but still an error occurred");
exit(1);

}

Notice the print statements in the example above could be replaced with calls to more-
complicated error handling routines such as perror(8) (see the HP-UX Reference).

General-Purpose Routines 21

Resetting Interfaces

The DIL routine for resetting an interface is io_reset. This routine is used on either
HP-IB or GPIO interfaces.

The following call to ¢o_reset resets the interface whose entity identifier is eid—i.e., eid
was returned from opening the interface’s special file.

io_reset(eid) ;

1o_reset resets the interface whose entity identifier is eid. You should refer to the ap-
propriate hardware-specific appendix for details on the exact effects of 70_reset on your
computer’s HP-IB and GPIO.

Assume that after opening an interface file you want to make sure the interface operates
correctly. This is done by calling ¢o_reset and looking at its return value:

#include <fcntl.h>
main()
{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);

if (io_reset(eid) == -1)

{
printf ("Possible problem with interface");
exit(1);

/* program continues if "io_reset" was successful */

22 General-Purpose Routines

Controlling 1/0O Parameters

The Device I/O Library provides four routines that allow you to control three different
parameters involved in data transfers between an interface card and the devices connected
to it. The routines and the parameters they control are listed below.

Routine I/O Parameter

to_timeout_ctl Timeout: Assign a timeout value for I/O operations.
1o_width_ctl Data Path Width: Specify width of the interface’s data path.
1o_speed_ctl Transfer Speed: Request a minimum speed for data transfers

through the interface.

10_eol_ctl Read Termination Pattern: Assign a pattern to be recognized as
a read termination pattern.

When you use one of these four routines, its effect is associated with the open interface
file for the interface. If you close the file the effect is lost and the I/O parameter returns
to its default state the next time the file is opened.

Setting the 1/0 Timeout

The I/O timeout parameter controls how long an interface spends trying to complete a
data transfer with a device connected to it. When you open the interface file associated
with the interface, the timeout is set at 0 by default, indicating that the system never
causes a timeout.

If timeout is zero and an error condition occurs which keeps a data transfer from com-
pleting, your program may hang. It is recommended you set a timeout for the interface.
To set or change the timeout use zo_timeout_ctl:

#include <fcntl.h>
main()
{
int eid;
long time;
eid = open("/dev/raw_hpib", O_RDWR);

time = 1000000; /*set timeout of 1 second*/
io_timeout_ctl(eid, time);

/*data transfers using "eid" are controlled by the
timeout value "time"x*/

General-Purpose Routines 23

etd is the entity identifier for the open interface file; time is a 32-bit long integer specifying
the length of the timeout in microseconds.

If read or write requests do not complete within the time limit specified by the timeout
value, the requests are aborted and an error indication is returned (a return value of -1).
If a routine fails due to the timeout occurring, errno is set to EIO (not to be confused
with EOI).

Although you specify the timeout value in microseconds (u-secs) when you call
to_timeout_ctl, the resolution of the effective timeout is system-dependent. The time-
out value is rounded up to your system’s time resolution boundary. For example, if your
system’s resolution is 10 milliseconds and you request a timeout of 25000 microseconds
(25 milliseconds), the effective timeout is set at 30 milliseconds. To determine the time
resolution on your computer system, refer to the appropriate hardware-specific appendix.

IMPORTANT

An actual timeout of 0 microseconds (i.e., timeout occurs as soon as
a routine is called) is not possible. However, specifying a timeout of
zero sets an infinite timeout; the system will never cause a timeout.
Specifying a timeout of zero is not recommended.

An entity identifier for an interface file obtained with the HP-UX routine dup(2) or
inherited by a fork(2) request shares the same timeout as the original entity identifier for
the file obtained with open. If the child process resulting from a fork inherits an entity
identifier and then changes the timeout, the entity identifier used by the parent process
is also affected.

Series 200, 300, and 500 Only: If your program has used open more than once to open
the same interface file, the entity identifiers returned by open can each have their own
timeout associated with them. Using 7o_timeout_ct! with one entity identifier does not
affect the other entity identifiers.

24 General-Purpose Routines

Setting Data Path Width

When you create an interface file and then open it for the first time, the data path
width defaults to 8 bits. Once the file is opened, to_width_ctl lets you select a new
width. Allowable widths are system and hardware dependent; you should refer to the
hardware-specific appendix for your system to determine what widths are allowed for
various interfaces.

Assuming that the open interface file has the entity identifier eid, io_width_ctl is called
with:

int eid, width;
io_width_ctl(eid, width);

where width is the number of bits that are in the new data path. The routine returns a
—1 to indicate an error if the width that you specify is not supported on the specified
interface.

For example, to change the width of a GPIO data bus from 8 to 16 bits you can use:

#include <fcntl.h>
main ()
{
int eid, width;
width = 16; /*width of new data path */
eid = open("/dev/raw_gpio", O_RDWR);
io_width_ctl(eid, width); /*assign new width for GPID bus*/

/*data transfers using "/dev/raw_gpio" will now
use a 16-bit busx/
}

Changing the data path width of an interface with this routine affects all users of the
interface. Once you change the data path width, it stays at the new value for each future
opening of the file. Either o_reset or 1o_width_ctl can be used to change the path back
to the default of 8 bits.

Setting Transfer Speed

You can set the minimum transfer speed that is used on the interface (within the limits
of the hardware) with the routine io_speed_ctl:

io_speed_ctl(eid, speed);

General-Purpose Routines 25

where eid is the entity identifier for the open interface file and speed is an integer indi-
cating a minimum speed in kilobytes (Kb) per second®.

The routine returns a 0 if it is successful, and a —1 if an error occurred. For example:

io_speed_ctl(eid, 1);

requests a minimum speed of 1024 bytes per second. The system may use a faster
transfer rate, but you are at least supplied with that speed.

The transfer method (e.g., DMA, interrupt) chosen by your system is determined by
the minimum speed that you request. The system selects a transfer method that is as
fast or faster than the speed you requested. If you request a speed that is beyond the
limitations of the system, the fastest transfer method possible is used. See the appropriate
hardware-specific appendix for details.

Setting the Read Termination Pattern

When you perform read operations on an open interface file, certain conditions cause
the interface to recognize the end of data transfer from a sending device. When you call
read, you must specify how many bytes you expect to read. After the specified number
of bytes have been read, the data transfer halts.

The interface you are accessing can also be configured to recognize a special read ter-
mination condition. For instance, if an HP-IB interface sees the EOI line asserted, it
knows that it has received the last data byte in the transfer and the read operation halts,
whether or not the specified byte count has been reached.

The DIL routine o_eol_ctl causes an interface to recognize a particular character or
string of characters as a read termination pattern, in addition to any other termination
conditions already in effect for the interface. The call to the routine has the form:

int eid, flag, match;
io_eol_ctl(eid, flag, match);

where eid is the entity identifier for the open interface file and flag either enables or
disables the interface’s ability to recognize a special read termination pattern.

A kilobyte equals 1024 bytes.

26 General-Purpose Routines

When flag = 0, any previously set read termination pattern is disabled. If flag has any
other value, then match is the new termination pattern.

When flag indicates enable mode (e.g., flag = 1) and the interface’s data path is 8 bits,
the least-significant byte of match is the integer equivalent of the termination pattern
that you want to set.

If the data path for the interface is set at 16 bits (such as with a GPIO interface),
then for most systems the termination pattern is also 16 bits. It is taken from the 2
least-significant bytes of the specified match value.

Note that if any special read termination condition defined for the interface is still in
effect (e.g., EOI for an HP-IB). Either it or the termination pattern that you have defined
could cause a read operation to halt. Also note the read termination pattern you set up
is interpreted by the interface as the last byte of data. In other words, the interface sees
it as part of the data message but does not try to read past it.

To illustrate using 7o0_eol_ctl, assume that you want to set up an HP-IB interface to
recognize a backslash-n (\n) as a read termination pattern. First, you must open the
HP-1B interface file and obtain the entity identifier eid. Second, make the call to 7o_eol_ctl
in your program using ezd as the entity identifier, ENABLE as the flag, and \n as the match:

#include <fcntl.h>

#define ENABLE 1
main()
{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
io_eol_ctl(eid, ENABLE, ’\n’);

/*data transfers using "eid" terminate with a ’\n’%/

}
Now when data is read from /dev/raw_hpib, the read operation is terminated when any
one of the following occurs:

e The byte count specified in the call to read is reached.

o The HP-IB’s EOI line is asserted. The character on the bus, when the interface
sees the line’s assertion, becomes the last byte in the data message.

o A backslash-n (\n) is read. The backslash-n (\n) becomes the last byte in the data
message.

General-Purpose Routines 27

Integral PC Only: On the Integral PC, a read operation from a GPIO interface will
terminate only when a specified number of read operations have been performed, or
when the read termination pattern has been found.

An entity identifier for an interface file obtained with the HP-UX system routine dup
or inherited by a fork request shares the same read termination pattern as the original
entity identifier. If the child process resulting from a fork inherits an entity identifier
and then sets a read termination pattern for it, the entity identifier used by the parent
process is also affected.

Series 200, 300, and 500 Only: If your program has used open more than once to open
the same interface file, the entity identifiers returned by open can each have their own
read termination pattern associated with them. Using 70_eol_ctl with one entity identifier
does not effect the others. Thus, you can set up several entity identifiers for the same
interface that recognize different termination characters.

Removing a Read Termination Pattern

To disable the read termination pattern, call 7o_eol_ctl with the flag parameter disabled
(set to 0):

io_eol_ctl(eid, 0, XX);

The XX indicates a don’t care value for the match argument. If the flag is 0, then the
match value is not looked at by the routine.

The following code sets up the ASCII ’.’ (decimal value 46) as a termination pattern,
does a read operation, and then disables the termination pattern.

#include <fcntl.h>

main()

{
int eid;
char buffer[12];
eid = open("/dev/hpib_dev", O_RDWR);
io_eol_ctl(eid, 1, 46);
read(eid, buffer, 12); /*Read operation halts when either a

"." is read or when the 12th byte is read*/

io_eol_ctl(eid, 0, 0); /*termination pattern is removedx/

28 General-Purpose Routines

Determining Why a Read Terminated

There are several situations which can terminate read operations through an interface.
After your program completes a read, you may want to include code that verifies the
cause of the read’s termination is what you expected. The DIL routine that allows you
to do this is 10_get_term_reason.

to_get_term_reason accepts the entity identifier of the interface file as an argument and
returns an integer. The returned value indicates how the last read operation ended, as
shown below.

Returned
Value Meaning

-1 An error occurred while making this routine call.

0 The last read terminated abnormally (for some reason other than the ones
covered below).
The last read terminated by reading the number of bytes requested.

2 The last read terminated by detecting a previously determined read ter-
mination pattern.

4 The last read terminated by detecting some device-imposed termination

condition, for example, the assertion of EOI for an HP-IB interface.

If a read terminated for multiple reasons, the bits that are set indicate each of the reasons.
The three least-significant bits of the lowest byte have the meanings indicated by their
associated decimal values in the table above. For example, if i0_get_term_reason returns
a 7 you know that the specified number of bytes were read, the last byte read was a read
termination pattern, and also a device-defined termination condition occurred.

NOTE

If no read is performed on an interface file once it is opened and
you call i0_get_term_reason, the routine returns a 0.

All entity identifiers descending from one open request (such as from dup or fork) affect
the status returned by this routine. For example, suppose that an entity identifier is
inherited by a child process through a fork. If the parent process calls io_get_term_reason,
the last read operation of either the parent or the child is looked at, depending on which
is more recent.

General-Purpose Routines 29

Example

Suppose you want to read data from a device on an HP-IB and need to guarantee that a
specific number of bytes are read. The following code reads 50 bytes through an opened
interface file and makes sure that read wasn’t terminated before all 50 were read.

#include <fcntl.h>
main()
{
int eid, condition;
char buffer[50]; /*storage for data*/

eid = open("/dev/raw_hpib", O_RDWR);
read(eid, buffer, 50); /*perform read and put data in "buffer"*/
if ((condition = io_get_term_reason(eid)) > 1)

/*Terminated due to seeing a read termination pattern or the
assertion of EOI. However, the event could have occurred at the
same time as the 50th byte was read*/

printf ("Possible termination before all of data was read");

else if (condition < 1)
{
if (condition == 0)
/*Termination due to some abnormal condition*/
printf ("Last read terminated abnormally");

else
printf ("io_get_term_reason call failed");

}

else
/*Termination due to reading the 50th bytex/
printf("All of data was read into buffer");
}

Series 500 Only: On Series 500 computers, the value returned by ¢o_get_term_reason only
indicates the termination cause with the highest value; other causes with lower values

could have occurred at the same time. See Appendix A, “Series 500 Dependencies” for
more information.

30 General-Purpose Routines

Interrupts

DIL provides an interrupt mechanism that is similar to HP-UX signal handling. The
user is able to set up interrupt handlers to be invoked when certain conditions occur.
DIL currently supports interrupts for HP-IB and GPIO interfaces.

Currently, interrupts are supported only on the Integral PC, Series 500, and Series 800
computers; however, you can simulate interrupts on Series 200/300 computers. You
should check the hardware-specific appendix for your system for any restrictions that
may apply.

Interrupts on the Integral PC

The only interrupt condition available on the Integral PC is PIR, meaning the Peripheral
Interrupt Request has been asserted. For hardware restrictions on using the HP-IB
interrupts on the Integral PC, refer to the t0_on_interrupt.3d file in the doc folder on the
DIL disc.

Interrupts on the Series 500

The following interrupt conditions are available for HP-IB interfaces on Series 500 com-
puters:

Name Meaning

SRQ SRQ line has been asserted

TLK The computer has been addressed to talk

TN The computer has been addressed to listen

cle The computer has received control of the bus

IrC The IFC line has been asserted

REN The remote enable line has been asserted

DCL The computer has received a device clear command

GET The computer has received a group execution trigger command
PPOLL A specific parallel poll response occurred

The following interrupt conditions are available for the GPIO interface:

General-Purpose Routines 31

SIEO Status line 0 has been asserted
SIE1 Status line 1 has been asserted
EIR Enable Interrupt, ATTN line has been asserted

io_on_interrupt
DIL provides two routines for controlling interrupts. The first routine, io_on_interrupt,
sets up the interrupt information and has the form:

io_on_interrupt(eid, cause_vec, handler);

where eid is an entity identifier for a GPIO or raw HP-IB interface. The parameter
handler points to a function to be invoked when the condition occurs. Then cause_vec is
a pointer to a structure of the form:

struct interrupt_struct {
int cause;
int mask;

};
The interrupt_struct structure is defined in the include file dvio.h.

The cause parameter is a bit vector specifying which of the interrupt or fault events
will cause the handler routine to be invoked. The interrupt causes are often specific to
the type of interface being considered. Also, certain exception (error) conditions can be
handled using the io_on_interrupt capability. Specifying a zero-valued cause_vec vector
effectively turns off the interrupt for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. The
integer mask specifies which parallel poll response lines are of interest. mask’s value is
obtained from an 8-bit binary number, each bit of which corresponds to one of the eight
lines. For example, if you want an interrupt handler invoked for a response on lines 2 or
6, the correct binary number is 01000100. This converts to a decimal equivalent of 68,
which is the number you should assign to mask.

Upon occurrence of an enabled interrupt condition on the specified eid, the receiving
process executes the interrupt-handler routine pointed to by handler. The entity identifier
eid and the interrupt condition cause are returned to handler as the first and second
parameters respectively.

32 General-Purpose Routines

An interrupt for a given eid is implicitly disabled after the event occurs. The interrupt
condition can be re-enabled with 7o_interrupt_ctl.

to_on_interrupt returns a pointer to the previous handler if the new handler is successfully
installed, otherwise it returns a -1 and errno is set.

The following example illustrates how an interrupt handler can be set up to handle
assertion of the service request line (SRQ):

#include <dvio.h>

#include <fcntl.h>

#include <stdio.h>

main()

{
int eid;
struct interrupt_struct cause_vec;
eid = open ("/dev/raw_hpib", O_RDWR);

cause_vec.cause = SRQ;
io_on_interrupt(eid, &cause_vec, handler);

}
handler (eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)

service_routine(); /* user specific routinex/

}

io_interrupt_ctl

The io_interrupt_ctl routine allows the user to enable or disable interrupts on a
specific ezd. Since interrupts are automatically disabled when an interrupt occurs,
to_wnterrupt_ctl is commonly used when the user wants to repeatedly handle a specific
event. The call to zo_interrupt_ctl has the following form:

io_interrupt_ctl(eid, enable_flag);

where eid is an entity identifier for an open GPIO or raw HP-IB device file. To control
enabling and disabling of the interrupts, enable_flag is used. If enable_flag is non-zero,
then interrupts are enabled on the eid. If enable_flag is zero, then interrupts are disabled
on the eid. Note that attempting to use to_interrupt_ctl on an eid that has not had an
to_on_tnterrupt applied to it, fails.

General-Purpose Routines 33

The following example modifies the handler from the previous example to re-enable
interrupts:

handler(eid, cause_vec)

int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)

{

service routine(); /* user specific routinex/
io_interrupt_ctl(eid,1);
}
}

34 General-Purpose Routines

Controlling the HP-IB Interface

To gain a full range of control over your computer’s HP-IB interface you must use:

e the general purpose 1/O routines in DIL discussed in Chapter 2, “General-Purpose
Routines”

o the DIL routines, described in this chapter, designed specifically for controlling the
HP-IB interface.

Besides the various routines, you must know about the commands that are interpreted
on an HP-IB. This chapter provides some general information about HP-IB commands
and introduces the DIL routines that specifically control the HP-IB. Then it relates this
information to the information provided in Chapter 2, “General-Purpose Routines,” to
illustrate some HP-IB interfacing strategies.

Controlling the HP-IB Interface 35

Overview of HP-IB Commands

This section discusses the HP-IB commands that are sent over the 8 data lines while the
ATN line is asserted. You can send all of these commands using a DIL routine called
hpib_send_cmnd. This routine takes care of the assertion of ATN and the necessary hand-
shaking between devices. The computer’s interface must be the Active Controller before
hpib_send_cmnd is used and any of the HP-IB commands sent. How hpib_send_cmnd is
called from your program is discussed later in this chapter.

In order for the commands to be interpreted by devices on the HP-IB, the bus’s remote
enable line (REN) must be in its enabled state. Only the System Controller changes the
state of this line (see the “System Controller’s Duties” section later in this chapter). By
default, REN is enabled.

Commands sent on the bus’s data line form 4 groups:

e Universal commands cause every device, so equipped, to perform a specific interface
operation. The devices do not have to be addressed as listeners.

o Addressed commands are similar to the universal commands, except they affect
only those devices currently addressed as listeners.

e Talk and listen addresses are commands that assign talkers and listeners on the
bus.

e Secondary commands are commands that must always be used in conjunction with
a command from one of the above groups.

36 Controlling the HP-IB Interface

The table below lists the commands that you can send with hpib_send_cmnd. Later,
when you use the routine, you may need to refer back to this table for the decimal or
ASCII character value of particular commands.

Table 3.1 Bus Commands

Decimal
Command Value ASCII Character
Universal Commands:
UNLISTEN 63 ?
UNTALK 95 -
DEVICE CLEAR 20 DC4
LOCAL LOCKOUT 17 DC1
SERIAL POLL ENABLE 24 CAN
SERIAL POLL DISABLE 25 EM
PARALLEL POLL UNCONFIGURE 21 NAK
Addressed Commands:
TRIGGER 8 BS
SELECTED DEVICE CLEAR 4 EOT
GO TO LOCAL 1 SOH
PARALLEL POLL CONFIGURE 5 ENQ
TAKE CONTROL 9 HT
Talk and Listen Addresses:
Talk Addresses 0-30 64-94 @ thru *
(uppercase ASCII)
Listen Addresses 0-30 32-62 space thru >

Secondary Commands: (If a secondary
command follows the PARALLEL POLL
JONFIGURE command then it is inter-
preted as follows, otherwise its meaning is

device dependent)
PARALLEL POLL ENABLE

PARALLEL POLL DISABLE

96-111

112

(numbers and special characters)

¢ thru o
(lowercase ASCII)
)%

Controlling the HP-IB Interface 37

UNLISTEN

The UNLISTEN command unaddresses all current listeners on the bus. Single listeners
cannot be unaddressed without unaddressing all listeners. It is necessary to use this
command to guarantee only desired listeners are addressed.

UNTALK

The UNTALK command unaddresses the current talker. Sending an unused talk address
accomplishes the same thing. This command is provided for convenience since addressing
one talker automatically unaddresses others.

DEVICE CLEAR

The DEVICE CLEAR command causes all recognizing devices to return to a pre-defined,
device-dependent state. Recognizing devices respond whether or not they are addressed.
Device manuals define the reset state for each device that recognizes the command.

LOCAL LOCKOUT

The LOCAL LOCKOUT command disables local control on all devices that recognize
this command. Recognizing devices respond to the command whether or not they are
addressed.

SERIAL POLL ENABLE

The SERIAL POLL ENABLE command establishes serial poll mode for all responding
devices capable of being bus talkers. Recognizing devices respond to the command
whether or not they are addressed. When a device is addressed to talk, it returns a 8-bt
status byte message.

This command is not discussed any further since its function is accomplished by a DIL
routine called hptb_spoll (discussed later in this chapter).

SERIAL POLL DISABLE
The SERIAL POLL DISABLE command terminates serial poll mode for all responding
devices. Recognizing devices respond to the command whether or not they are addressed.

This command is not discussed any further since its function is accomplished by a DIL
routine called hpib_spoll (discussed later in this chapter).

38 Controlling the HP-IB Interface

TRIGGER (Group Execute Trigger)

The TRIGGER command causes the devices that are currently addressed as listeners to
initiate a preprogrammed, device-dependent action if they are capable. Device manuals
indicate whether or not a particular device is capable of responding to the TRIGGER
command and if it can, how to program it to do so.

SELECTED DEVICE CLEAR

The SELECTED DEVICE CLEAR command resets devices currently addressed as listen-
ers to a device-dependent state, if they are capable. A device’s documentation indicates
whether or not the device recognizes this command and if so, it defines the reset state.

GO TO LOCAL

The GO TO LOCAL command causes devices that are currently addressed as listeners
to return to the local control state (exit from the remote state). The devices return to
the remote state the next time they are addressed.

PARALLEL POLL CONFIGURE
The PARALLEL POLL CONFIGURE command tells the devices currently addressed

as listeners that a secondary command follows. This secondary command must be either
PARALLEL POLL ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE

The PARALLEL POLL ENABLE command configures devices addressed by the PAR-
ALLEL POLL CONFIGURE command to respond to parallel polls on a particular data
line and with a particular logic level. Some devices implement a local form of this message
(for example, jumpers) that cannot be changed.

This command must be preceded by the PARALLEL POLL CONFIGURE command.

PARALLEL POLL DISABLE

The PARALLEL POLL DISABLE command disables devices addressed by the PARAL-
LEL POLL CONFIGURE command from responding to parallel polls. This command
must, be preceded by the PARALLEL POLL CONFIGURE command.

Controlling the HP-IB Interface 39

Overview of the HP-IB DIL Routines

Standard DIL Routines

Besides the general purpose routines described in Chapter 2, “General-Purpose Rou-
tines,” DIL also provides routines that allow you to fully access the capabilities of the
HP-IB interface. There are 14 of these routines:

Routine Description
hpib_abort Stops activity on a specified HP-IB select code.
hpib_zo Performs a mixture of HP-IB read, write, and SEND_CMD activities.
hptb_ppoll Conducts parallel poll on HP-IB.
hprb_spoll Conducts serial poll on HP-IB.
hptb_bus_status Returns status on HP-IB interface.
hpib_eor_ctl Controls EOI mode for data transfers.
hptb_pass_ctl Changes active controllers on HP-IB.
hptb_card_ppoll_resp | Configures it owns response to a parallel poll.
hpib_ren_ctl Controls remote enable line (REN) on HP-IB.
hptb_rgst_sruce Allows interface to generate an SRQ request on HP-IB.
hpib_send_cmnd Sends characters on HP-IB with the attention line (ATN) line asserted.
hptb_wait_on_ppoll Lets you wait for a particular parallel poll value to occur.
hptb_status_wazrt Lets you wait until a particular status condition is true.
hpib_ppoll_resp_ctl Defines interface parallel poll response as yes or no.

Additional Series 200/300 and Integral PC Routines
In addition to the standard HP-IB routines, the Integral PC and Series 200/300 support
the following DIL routine:

to_burst(eid,flag) Used to control the high-speed HP-IB mode. If flag = 0, high-speed
mode is turned off; otherwise it is turned on.

For details on using this routine, refer to the appropriate hardware-specific appendix.

40 Controlling the HP-IB Interface

The Computer’s Role on the HP-IB

Your computer must currently have one of the following two roles on the HP-IB:
e It is the Active Controller.

e If it isn’t the Active Controller, it is a Non-Active Controller.

There can be only one Active Controller on an HP-IB interface at a given time. Since
Active Controller status is passed between bus controller devices, your computer’s status
can change from active to non-active, or from non-active to active.

In addition to being either an Active or Non-Active Controller, your computer can also
be the bus’s System Controller. Once a controller is configured as the System Controller,
it cannot be unconfigured without powering down the system. The System Controller is
cither the Active Controller or a Non-Active Controller. When the System Controller is
initially powered up, it assumes the role of Active Controller.

Which of the DIL routines you can use depends on your computer’s role on the HP-IB.

Given the three role designations, Table 3-2 indicates which routines can be used with
them.

Controlling the HP-IB Interface 41

Table 3-2. DIL Routine Role Designations.

System Active Non-Active

Routine Controller Controller Controller
hpib_abort X
hpib_io X
hpib_ppoll X
hpib_spoll X
hpib_bus_status (X) X X
hpib_eoi_ctl X
hpib_pass_ctl X
hpib_card_ppoll_resp X* X
hpib_ren_ctl X
hpib_rqgst_srvce X* X
hpib_send_cmnd X
hpib_wait_on_ppoll X
hpib_status_wait (X) X X
hpib_ppoll_resp_ctl X* X

* means that the routine can be used if the computer is the Active Controller but

there is no affect until it becomes a Non-Active Controller.

(X) means that the X isn’t required since the System Controller must be either active
or non-active and both of these roles can use the routine (i.e., the System Controller role
is not required to use the routine).

Opening the HP-IB Interface File

Before you can use DIL routines on an HP-IB interface, the special file for the interface
must exist. In addition, your program must open this special file and obtain its entity
identifier. For details on creating an HP-IB special file and opening an interface’s special
file and obtaining its entity identifier, you should refer to the “Concepts” and “Opening
an Interface’s Special File” sections of Chapter 2, “General-Purpose Routines.”

42 Controlling the HP-IB Interface

Sending HP-IB Commands

After your program has opened the special file for the HP-IB interface and obtained
its entity identifier, you can call DIL routines to send HP-IB commands to the HP-IB
interface. The DIL routine that allows you to place HP-IB commands on the data bus
is hpib_send_cmnd. Your computer must be the Active Controller to use this routine.

One method of using this routine is to first set up a character array containing the
commands that you want to send. You assign the decimal value for the commands to
the elements of the array. The routine call then has the form:

hpib_send_cmnd(eid, command, number);

where eid is the entity identifier for the open interface file, command is a character
pointer to the first element of the array containing the HP-IB commands, and number
is the number of elements (commands) in the array. The routine hpib_send_cmnd places
cach of the commands stored in the array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer, you can
send subsets of command arrays. Suppose you create an array that contains 10 HP-IB
commands, command[0] through command[9]. You can now specify that only the last 5
commands in the array be sent using:

hpib_send_cmnd(eid, command + 5, 5);
This method of sending HP-IB commands by storing them in an array uses their decimal

values. Alternatively, the commands’ ASCII character values can be used by specifying
a character string. In this case, the routine call has the form:

hpib_send_cmnd(eid, "command_string", number);

where eid and number are the same as above. However, the commands to be sent are
now specified by each character in the string command_string.

Controlling the HP-IB Interface 43

To illustrate the two methods, assume that you want to send the HP-IB UNLISTEN and
UNTALK commands. With the decimal array method you first set up an array with two
elements, the decimal values for the commands, and then call hpib_send_cmnd:

#include <fcntl.h>
main()
{
int eid;
char command[2]; /*command array*/

eid = open("/dev/raw_hpib", O_RDWR);

command[0] = 63; /*decimal value for UNLISTEN*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

}

If the ASCII character string method is used, the same effect is achieved with the code:

#include <fcntl.h>
main()

{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
hpib_send_cmnd(eid, "?_", 2); /*? is ASCII for UNLISTEN and*/
/*_ is ASCII for UNTALK */
}

Since the array method allows you to store a list of commands, it should be used if you
are sending a large number of commands or if you are sending the same set of commands
several times in a program. With the string method, the entire set of commands must
be specified as a string in the call to hpib_send_cmnd. It is useful if you are sending only
a few commands or if a particular set of commands is only sent once in a program.

Errors While Sending Commands
Normally, hpib_send_cmnd returns a 0 if it executes successfully. However, it returns a
—1 if any one of the following error conditions are true:

e The computer’s interface is not the Active Controller.

e The eid entity identifier does not refer to an HP-IB raw interface file.

e The eid entity identifier does not refer to an open file.
To find out which of these conditions caused the error, the program should check the
value of errno, an external integer variable used by HP-UX system calls. Chapter 2,

“General-Purpose Routines” discusses how you can design an error checking routine
that looks at the value of errno.

44 Controlling the HP-IB Interface

The following table indicates the value that errno will have given that one of the above
conditions occurred during the call to hpib_send_cmnd:

errno Value Error Condition

EBADF e1d did not refer to an open file

ENOTTY etd did not refer to a raw interface file

EIO The interface was not the Active Controller

The Active Controller

Acting as Active Controller of the bus involves sending the HP-IB commands with
hpib_send_cmnd and making calls to several other DIL routines. The functions of the
Active Controller discussed in this chapter are:

e Setting up devices as talkers and listeners

e Gaining remote control of devices

e Locking out local control of devices

e Enabling local control of devices

o Triggering devices to initiate device-dependent actions
e Transferring data

e Clearing devices

e Servicing requests from devices

o Conducting parallel and serial polls

e Passing active control of the bus to another controller

Controlling the HP-IB Interface 45

Determining Active Controller

To carry out the Active Controller’s bus management activities, the computer’s HP-IB
interface must be the Active Controller of its bus. If other devices on the bus are capable
of being the Active Controller, you can use the hpib_bus_status routine to determine if
the interface is currently the Active Controller.

To find out if the interface is the Active Controller, the call to Apib_bus_status must have
the form:

hpib_bus_status(eid,4);

where eid is the entity identifier for the opened HP-IB interface device file and the 4 tells
the routine to determine if the interface is the Active Controller. This routine returns a
value that can be tested, see source code below.

hptb_bus_status returns 0 if the answer is no, 1 if the answer is yes, and —1 if an error
occurred. The code that follows shows a straightforward way of interpreting the returned
value:

#include <fcntl.h>
main()

{

int eid, status;
eid = open("/dev/raw_hpib", O_RDWR);
if ((status = hpib_bus_status(eid,4)) == -1)
: /*an error occurred -- insert code that*/

: /*flags it. */
else if (status == 0)

/*not Active Controller -- insert code */
: /*that requests Active Controller status*/
else

/*is Active Controller -- insert code for*/

/*the bus management routine required */

46 Controlling the HP-IB Interface

Setting Up Talkers and Listeners

One talker and one or more listeners must be configured on the bus before data can be
transferred. Also, some HP-IB commands effect only those devices currently addressed
as listeners, which means that the Active Controller must specify the listeners before
using them. There can be only one talker at a time on the bus, but there can be any
number of listeners.

On Series 200/300, 500, and 800 computers, two methods exist for addressing listeners
and talkers on an HP-IB. The first method, referred to as auto-addressing, instructs the
computer to handle addressing for you.

The Integral PC does not support auto-addressing. This is because all HP-IB inter-
face files on the Integral PC are raw special files and, therefore, do not support auto-
addressing.

The second method requires using the hpib_send_cmnd function to manually address the
bus. This is the only method available to Integral PC users.

Auto-Addressing on Series 200/300, 500, and 800

The system performs auto-addressing on normal (non-raw) HP-IB device files. Except
for certain cases on the Series 800, note that DIL routines require a raw HP-IB device
file. Therefore, while you can open, close, read, and write from a non-raw HP-IB device
file, the DIL functions will fail. Please refer to the Model 840 appendix for information
on Series 800 exceptions.

On Series 200, 300, and 500 systems, you can create a special file that informs the system
to perform auto-addressing (see the appropriate hardware-specific appendix for details).

For example, suppose you’ve created an auto-addressable special file for a specific device
on select code 1 at bus address 3; the device is an HP27110A/B card on a Series 500
computer and uses driver 12; the special file is named /dev/device. If you list this file
using (1), you would see:

crw-rw-rw- 1 root other 12 0x010300 Apr 5 1985 /dev/device

Controlling the HP-IB Interface 47

The following code illustrates auto-addressing using this device file:

main()

{
int eid;
eid = open("/dev/device",0_RDWR) ;
/*Assuming "/dev/device" has the minor number (0x010300), thex/
/*system addresses the interface card at select code 1 as a talker*/
/*and the device at bus address 3 as a listener before sending data*/
write(eid, "test data",9);

3

Using hpib_send_cmnd

Talkers and listeners may be manually configured with the HP-IB commands formed
by the talk and listen addresses of the devices. First, however, you should remove any
previous listeners from the bus with the UNLISTEN command. To configure the bus’s
talker and listeners, the following steps are required:

1. Send the UNLISTEN command to remove any previous listeners.

2. Send the talk address of the device that will be sending data. There can only be
one talker device.

3. Send the listen address of each device that is to receive the data.

To send the HP-IB commands necessary for this process you can use the Apib_send_cmnd
routine.

Calculating Talk and Listen Addresses

A talker is specified on the bus by sending the talk address for the device, and a device
is specified as a listener by sending its listen address. Talk addresses and listen addresses
are both considered HP-IB commands, which means you should send them with the
hpib_send_cmnd routine.

48 Controlling the HP-IB Interface

To calculate either the talk or the listen address for a device, you must first know its
HP-IB address. The HP-IB address for the computer’s interface card can be found using
the hpib_bus_status routine:

#include <fcntl.h>
main()

{

int eid, address;
eid = open("/dev/raw_hpib", O_RDWR);
address = hpib_bus_status(eid, 7);

where eid is the entity identifier for the interface file and 7 indicates that you want the
routine to return the interface’s HP-IB address. To find out the bus address of some
other device, refer to its installation and operation documentation.

Once you have the device’s HP-IB address, its talk_address (in decimal) is found using
the formula:

talk_address = 64 + bus_address

where bus_address is the HP-IB bus address for the device. Bus addresses range from 0
to 30.

The listen address for a device (in decimal) is found similarly using the formula:

listen_address = 32 + bus_address

Thus, My Talk Address (MTA) for the computer is calculated with:

MTA = hpib_bus_status(eid, 7) + 64;

and My Listen Address (MLA) is calculated with:

MLA = hpib_bus_status(eid, 7) + 32;

Controlling the HP-IB Interface 49

An Example Configuration

Assuming that the computer’s interface is currently the Active Controller of the HP-IB,
the following code establishes the interface as the bus talker. Two devices at HP-IB
addresses 4 and 8 are designated as the bus listeners.

#include <fcntl.h>
main()
{
int eid, MTA;
char command([4];
eid = open("/dev/raw_hpib", O_RDWR);

MTA = hpib_bus_status(eid, 7) + 64; /*calculate My Talk Address*/

command [0] = 63; /* the UNLISTEN command*/

command[1] = MTA; /* the talk address for the interfacex/

command[2] = 32 + 4; /* the listen address for device at HP-IB address
4%/

command[3] = 32 + 8; /* the listen address for device at HP-IB address
8%/

hpib_send_cmnd(eid, command, 4);

}

Remote Control of Devices

Most HP-IB devices can be controlled either from their front panel or from the bus. If
the device’s front-panel controls are currently operational, it is in the local state. If it
is being controlled through the HP-IB, it is in its remote state. Pressing the device’s
front-panel LOCAL key returns the device to local control, unless it is in the local lockout
state (described in a subsequent section).

The level of the remote enable (REN) line of the HP-IB bus controls whether or not a
device can respond to remote program control. If the REN line is enabled, any device
that is addressed (as a listener) is automatically placed in the remote state. Only the
System Controller can change the level of the REN line (see System Controller’s Duties
later in this chapter). By default, the line is enabled when the System Controller is
powered up.

50 Controlling the HP-IB Interface

Locking Out Local Control

The LOCAL LOCKOUT command effectively locks out the local switch present on most
HP-IB front panels, preventing a device’s user from interfering with the system operations
by pressing buttons. All devices that recognize this command are affected, whether they
are addressed or not, and cannot be returned to local control from their front panels.

The following code shows one way of sending the LOCAL LOCKOUT command:

command[0] = 17; /* Decimal value of LOCAL LOCKOUTx*/
hpib_send_cmnd(eid, command, 1);

The local lockout state is cancelled by sending a GO TO LOCAL command to a device.

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or
more devices in the local state. For instance, an operator might need to work from the
front panel to make special tests or to troubleshoot. The GO TO LOCAL command
returns all of the devices currently addressed as listeners to the local state.

For example, the code below places the devices at HP-IB addresses 3 and 5 into their
local state.

command [0] = 63; /* the UNLISTEN commandx*/

command[1] = 32 + 3; /* listen address for device at address 3%/
command[2] = 32 + 5; /* listen address for device at address 5%/
command[3] = 1; /* the GO TO LOCAL command*/

hpib_send_cmnd(eid, command, 4);

Controlling the HP-IB Interface 51

Triggering Devices

The HP-IB TRIGGER command tells the devices currently addressed as listeners to
initiate some device-dependent action. For example, it can be used to trigger a digital
voltmeter to perform its measurement cycle. Because the response of a device to a
TRIGGER command is strictly device-dependent, you can not specify with the command
what action is to be initiated.

The following code triggers the device at bus address 5 to initiate some action:

command[0] = 63; /* the UNLISTEN commandx*/

command[1] = 32 + 5; /* the listen address for device atx*/
/* address 5 */

command[2] = 8; /* the TRIGGER command*/

hpib_send_cmnd(eid, command, 3);

Transferring Data
For the Active Controller to send data to another device it must:

1. Send an UNLISTEN command.
2. Send its own talk address (MTA).

3. Send the listen address of the device that is to receive the data. One listen address
is sent for every device that is to receive the data.

4. Send the data.

The first 3 steps are accomplished using hpib_send_cmnd, while the system routine write
takes care of the fourth.

52 Controlling the HP-IB Interface

The following code illustrates how character data can be sent to a device at HP-IB
address 5.

#include <fcntl.h>
main()

{
int eid, MTA;
char command[50];

eid = open("/dev/raw_hpib", O_RDWR);

MTA = hpib_bus_status(eid, 7) + 64; /*calculate MTAx*/

command [0] = 63; /*the UNLISTEN commandx/

command[1] = MTA; /*talk address of interfacex/

command[2] = 32 + 5; /*listen address of device atx*/
/*address 5 */

hpib_send_cmnd(eid, command, 3);
write(eid, "data message", 12); /*send the datax/

}

Now assume that you are expecting to receive 50 bytes of data from another device on
the bus. The code below allows the interface to receive character data from a device at
bus address 5. The integer variable MLA contains the bus address of the interface.

#include <fcntl.h>
main()
{
int eid, MLA, 1len;
char buffer([51]; /*storage for data*/

eid = open("/dev/raw_hpib", O_RDWR);
MLA = hpib_bus_status(eid, 7) + 32; /*calculate MLA*/

command [0] = 63; /*the UNLISTEN command*/

command[1] = 64 + 5; /*the talk address of device atx/
/*address 5 */

command [2] = MLA; /*the listen address of interfacex/

hpib_send_cmnd(eid, command, 3);

len = read(eid, buffer, 50); /*store the data in "buffer"x/

buffer[len] = ’\0’; /*terminate with NULL for printf*/

printf("Data read is: %s", buffer); /*print message*/

Controlling the HP-IB Interface 53

Clearing HP-IB Devices

There are two HP-IB commands for resetting devices to their pre-defined, device-
dependent states. The first one is the DEVICE CLEAR command which causes all
devices that recognize the command to be reset, whether they are addressed or not.

Thus, to reset all of the devices on an HP-IB accessed through a interface file with an
entity identifier ezd, you can use the following code:

command[0] = 20; /* the DEVICE CLEAR command*/
hpib_send_cmnd(eid, command, 1);

The second command for resetting devices is SELECTED DEVICE CLEAR. This com-
mand resets only those devices that are currently addressed as listeners.

To reset a device with an HP-IB address of 7, you can use the following code:

command [0]

= 63; /* the UNLISTEN command#/
command[1] = 32 + 7; /* the listen address for device at*/
/* address 7 */
command[2] = 4; /* the SELECTED DEVICE CLEAR command*/

hpib_send_cmnd(eid, command, 3);

Servicing Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers,
are capable of generating a service request when they require the Active Controller to
take some action. Service requests are generally made after the device has completed a
task (such as taking a measurement) or when an error condition exists (such as a printer
being out of paper). The operating or programming manual for each device describes the
device’s capability to request service and the conditions under which it requests service.

54 Controlling the HP-IB Interface

Monitoring the SRQ Line

To request service, a device asserts the Service Request (SRQ) line on the bus. To
determine if SRQ is being asserted, you check the status of the line, wait for SRQ, or set
up a interrupt handler for SRQ. The hpib_status_wait routine allows you to write code
that waits until the SRQ line is asserted before it continues. To specify that you want
the program to wait until the SRQ line is asserted, hpib_status_wait must be invoked as
follows:

hpib_status_wait(eid, 1);

where eid is the entity identifier for the open interface file and 1 indicates that the event
that you are waiting for is the assertion of the SRQ line. The routine returns 0 when the
condition requested becomes true or —1 if a timeout or an error occurred.

The following code illustrates the use of hpib_status_wazt:

#include <fcntl.h>
main()
{
int eid;
eid = open("/dev/raw_hpib", O_RDWR);
io_timeout_ctl(eid, 10000000) ;
if (hpib_status_wait(eid, 1) == 0)
service_routine(); /*SRQ is asserted; service the request*/
else
printf("Either a timeout or an error occurred");

}

Another solution is to periodically check the value of the SRQ line with hpib_bus_status.
To check the SRQ line with hpib_bus_status, the call looks like this:

hpib_bus_status(eid, 1);
where eid is the entity identifier for the open interface file and 1 indicates that you want
the logical value of the SRQ line returned. The routine returns 1 if SRQ is asserted, 0 if

it isn’t, and —1 if an error occurred.

The most practical way to monitor the SRQ line is to set up a interrupt handler for that
condition (see the “Interrupts” section of Chapter 2, “General-Purpose Routines”).

Controlling the HP-IB Interface 55

The Service Routine

Once a device has asserted the SRQ line, it continues to assert the line until its request
has been satisfied. How a service request is satisfied is device-dependent. Serial polling
the device can provide the information as to what kind of service it requires.

In many cases, devices requesting service clear the SRQ line when they are serially polled.
They see the poll as an acknowledgement from the Active Controller to the device that
the request has been seen and the Active Controller is responding.

If there is more than one device on the bus and the SRQ line is asserted, any one of the
devices could be asserting the line. The Active Controller must then determine which of
the devices needs service. There are two strategies for doing this:

o Serial poll each device until you find the one that is requesting service. This ap-
proach is reasonable if there are only a few devices on the bus.

e Conduct a parallel poll to locate the device requesting service. Normally, each
device (that is capable) is programmed to respond on a different data line. However,
since there can be 15 devices on the bus and there are only 8 data lines, it is
sometimes necessary to have several devices respond on the same line.

If several devices are programmed to respond on the same parallel poll line and the
parallel poll shows that line asserted, the Active Controller must then serially poll
each of these devices until it finds the one that is requesting service.

Thus, the Active Controller usually takes one of two approaches in response to seeing
the SRQ line asserted: it can conduct a serial poll or it can conduct a parallel poll. In
some cases the Active Controller may need to take both types of polls. The DIL routines
that conduct these polls are Apib_ppoll and hpib_spoll. How these routines are used is
discussed next.

56 Controlling the HP-IB Interface

Parallel Polling

The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond
with one bit of status when parallel polled, making it possible to obtain the status of
several devices in one operation. If a device responds affirmatively (I need service) to the
parallel poll, more information as to its specific status can be obtained by conducting a
serial poll of the device.

Integral PC Only: The parallel poll response in the HP 82998 A HP-IB interface can only
be set using the hpib_card_ppoll_resp routine.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the Active Controller to respond to
a parallel poll. However, other devices require that the response be configured locally.
Refer to the documentation for the device whose response you want to configure to find
out if remote configuration by the Active Controller is possible.

The Active Controller remotely configures a device’s parallel poll response by sending
the HP-IB command PARALLEL POLL CONFIGURE followed by PARALLEL POLL
ENABLE. The combination of these two commands tells devices addressed as listeners to
respond to any future parallel polls on a particular data line and with a particular logic
level. Some devices may implement a local form of this message (for example, jumpers)
that can not be changed remotely by the Active Controller.

There are 16 different PARALLEL POLL ENABLE commands, each configuring a re-
sponse on a specific data line and at a specific level. The 8-bits of the command have
the following binary form:

D7|{D6|D5|D4|D3|D2|D1|D0|Decimal Range
0 1 1 0 |L | X |X X 96-111

where:

L indicates the logic sense of the response (e.g., 1 means that the device will respond
with 1 when it needs service).

X indicates the data line on which the device will respond.

Controlling the HP-IB Interface 57

For example, given that the parallel response lines are labeled DO to D7, a PARALLEL
POLL ENABLE command with a decimal value of 104 (01101000 in binary) tells the
addressed device to respond to parallel polls on data line DO with a 1 when it needs
service.

The following code shows how you can configure a device at bus address 5 to respond to
a parallel poll by asserting data line D1 high when it needs service.

#include <fcntl.h>
main()
{
int eid, MTA;
char command[50] ;

eid = open("/dev/raw_hpib", O_RDWR);

MTA = hpib_bus_status(eid, 7) + 64; /*calculate MTA*/

command[0] = MTA; /*talk address of interfacex*/

command[1] = 63; /* the UNLISTEN commandx*/

command [2] = 32 + 5; /* the listen address for device at*/
/* address 5 */

command[3] = 5; /* the PARALLEL POLL CONFIGURE command*/

command [4] = 105; /* the PARALLEL POLL ENABLE command*/

hpib_send_cmnd(eid, command, 5);

}

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105 used
above is:

60 1. 1 0 1 0 0 1

These 3 bits indicate that the device should
respond on D1.

This bit indicates that the device respond with
a 1 to request service.

These 4 bits indicate that this is a PARALLEL
POLL ENABLE command.

When the interface is the Active Controller, it can configure its own parallel poll response
by addressing itself as both the talker and the listener. However, the configuration has
no effect until the interface is no longer the Active Controller. The Active Controller
never responds to parallel polls.

58 Controlling the HP-IB Interface

Disabling Parallel Poll Responses
A device whose parallel poll response can be remotely configured by the Active Controller
can also be disabled from responding.

The Active Controller disables a device from responding to any future parallel polls
by first sending a PARALLEL POLL CONFIGURE command followed by PARALLEL
POLL DISABLE. All devices that are currently addressed as listeners are disabled.

In the previous example a device at bus address 5 was configured to respond to parallel
polls on D1. To disable the same device from responding you can use:

command [0]

= MTA; /*talk address of interfacex/
command[1] = 63; /* the UNLISTEN command*/
command[2] = 32 + 5; /* the listen address for device atx/
/* address 5 */
command [3] = 5; /* the PARALLEL POLL CONFIGURE command*/
command [4] = 112; /* the PARALLEL POLL DISABLE command*/

hpib_send_cmnd(eid, command, 5);

Conducting a Parallel Poll
Once the parallel poll responses of devices on the HP-IB have been configured (either
remotely or locally), the Active Controller can conduct a parallel poll with hpib_ppoll.

The hpib_ppoll routine returns an integer whose least significant byte contains the 8-bit
response to the parallel poll. Each device that is enabled to respond to a parallel poll
places its status bit on a previously configured line. If an error occurs while the poll is
being taken, a —1 is returned by the routine.

hptb_ppoll is invoked as follows:

hpib_ppoll(eid);
where eid is the entity identifier for the open interface file connected to the bus.

The code below indicates how you can interpret the byte returned by hptb_ppoll. Assume
that a device at address 6 was previously configured to respond to a parallel poll by
placing a 1 on DO if it needed service. Assume the device at address 7 was configured to
respond similarly on D1. If these are the only two devices able to respond to a parallel
poll, you only care about the values of the 2 least significant bits of the integer returned
by hpib_ppoll. The actual service routines have been left out of the example.

Controlling the HP-IB Interface 59

#include <fcntl.h>
main()
{
int eid, status, byte;
eid = open("/dev/raw_hpib", O_RDWR);

if ((status = hpib_ppoll(eid)) == -1) /*conduct the parallel poll#*/
{
printf("error taking ppoll"); /*if -1 returned then error occurred*/
exit(1);
3
byte = status & 3; /*set all but the least significant*/
/*2 bits to zero */
switch (byte) {
case O: /*neither device is requesting servicex/
break;
case 1: /*device at address 6 wants servicex/
break;
case 2: /*device at address 7 wants service*/
break;
case 3: /*both devices want servicex/
break;

}
Errors During Parallel Polling
hpib_ppoll returns a —1 if any one of the following error conditions are true:
e The timeout defined by ‘o_timeout_ctl occurred before all of the devices responded.
e The computer’s interface is not the Active Controller.
e The eid entity identifier does not refer to a raw HP-IB interface file.

e The eid entity identifier does not refer to an open file.

60 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF evd did not refer to an open file.

ENOTTY eid did not refer to a raw interface file.

EIO The interface was not the Active Controller or a timeout occurred.

Waiting For a Parallel Poll Response

The hpib_wait_on_ppoll routine allows you to wait for a specific parallel poll response
from one or more devices. The effect of this is similar to waiting for the assertion of the
SRQ line with hptb_status_wait (see the section Servicing Requests, presented earlier).
With hpib_wait_on_ppoll you can wait for a specific device to request service; while
hpib_status_wast is interrupted when any device requests service.

hpib_wast_on_ppoll is called with the form:

hpib_wait_on_ppoll(eid, mask, sense);

where eid is the entity identifier for the open interface file, mask is an integer whose
binary value indicates on which parallel poll lines you are waiting for a request, and
sense is an integer whose binary value indicates on which of these lines the request will
use negative logic (device responds with 0 when it wants service). The routine returns
the response byte XOR-ed with the sense value and AND-ed with the mask, unless an
error occurs, in which case it returns a —1.

Calculating the mask

The routine hpib_wait_on_ppoll only looks at the least significant byte of the mask in-
teger; therefore, the integer’s remaining bytes can contain anything. For simplicity, the
examples in this discussion set the upper bytes to zeros.

Controlling the HP-IB Interface 61

The mask value is determined as follows:

1. Decide which of the parallel poll lines (the 8 data lines) you want to wait for a
request for service on. Assume that the lines are labeled D0-D7.

2. Set up an 8-bit binary number where the bits associated with the lines whose
assertion you want to wait for are set to 1 and all of the other bits are 0. (DO
is associated with the least significant bit of the binary number, and D7 with the
most significant.)

3. Given the binary number from step 2, calculate its decimal value. This is the mask
integer you should use with hpib_wast_on_ppoll.

For example, assume that you want to wait for device A or device B to request service.
You know that device A has been configured to respond on the parallel poll line DO and
device B has been configured to respond on line D4. The binary value of the mask that
you will use is:

D7 Dé D5 D4 D3 D2 D1 DO
0 0 0 1 0 0 0 1

The decimal value of this number is 17; the mask that you will use is 17.

Now consider a mask of 0. It indicates that you do not want to wait for a request on any
of the parallel poll lines, meaning that a call to hpib_wait_on_ppoll using a mask of 0 h:
no effect.

Calculating the sense

The routine hpib_wait_on_ppoll also only looks at the least significant byte of the sense
integer. For simplicity, the examples in this discussion set the upper bytes to zeros.

62 Controlling the HP-IB Interface

The sense value is determined as follows.

1. Decide which of the parallel poll lines (the 8 data lines) you want to wait for a
request for service on. Assume that the lines are labeled D0-D7.

2. Determine which of these lines will indicate a request for service with a 0. This
means that you must know the sense with which the associated devices are config-
ured to respond to parallel polls.

3. Set up an 8-bit binary number where the bits associated with the lines that use
a 0 to indicate a service request are set to 1 and all of the other bits are 0. (DO
is associated with the least significant bit of the binary number, and D7 with the
most significant.)

4. Given the binary number from step 3, calculate its decimal value. This is the sense
integer you should use with hptb_wait_on_ppoll.

Refer back to the example given for calculating the mask value. You know that device A
is configured to respond on line D0 with a 1 when it wants service, but device B is going
to request service with a 0 on line D4. The binary value of the sense that you will use is:

D7 Dé D5 D4 D3 D2 D1 DO
0 0 0 i 0 0 0 0

The decimal value of this number is 16; the sense that you will use is 16.

If all of the devices on the bus respond to parallel polls with a 1 to request service, then
the sense value can always be 0, no matter which parallel poll lines you are waiting for.
If, on the other hand, all of the devices request service with a 0, then the sense value
can always be 255 (11111111 in binary). You need only calculate a different sense value
if devices on the bus respond with different levels.

Example
Assume that you want to use hptb_wait_on_ppoll to wait until one of the four devices on
a bus are requesting service. Your bus is configured as follows:

Parallel Poll Requests Service
Device | Bus Address | Response Line with a:
A 5 Do 1
B 7 D1 0
C 9 D2 0
D 11 D3 1

Controlling the HP-IB Interface 63

Begin by calculating the mask value for hpib_wait_on_ppoll. You want to wait for re-
sponses on lines DO, D1, D2, and D3; therefore, the mask value is:

Binary: Decimal:

00001111 15

Since the four devices on the bus use both positive and negative logic, you must calculate
the sense value. The devices responding on lines D1 and D2 use 0 to request service;
therefore, the sense value is:

Binary: Decimal:

00000110 6

Now that you have the mask and sense values you can write the code that makes the call
to hpib_wait_on_ppoll:

#include <fcntl.h>
main()
{
int eid;
eid = open("/dev/raw_hpib", O_RDWR);

if (hpib_wait_on_ppoll(eid, 15, 6) == -1)
printf("either a timeout or error occurred");
else

service_routine();

}

In the code above, for service_routine to be executed, one of the four devices must be
requesting service with their parallel poll response. Service_routine should contain code
that services all of the devices, either individually or as a group. See the appropriate
hardware-specific appendix for any restrictions that may apply to your system.

64 Controlling the HP-IB Interface

Serial Polling

A sequential poll of individual devices on the bus is known as a serial poll. One entire
byte of status is returned by the specified device in response to a serial poll. This byte is
called the status byte message and, depending on the device, may indicate an overload,
a request for service, or a printer being out of paper. The particular response of each
device depends on the device.

Not all devices can respond to a serial poll. To find out if a particular device can be
serially polled, consult its documentation. Trying to serially poll a device that cannot
respond causes a timeout or suspends your program indefinitely.

The Active Controller cannot serial poll itself.

Unlike the parallel poll responses, serial poll responses cannot be configured remotely
by the Active Controller. They are device-dependent and you must refer to a device’s
documentation to see how it responds.

Conducting a Serial Poll
The hpib_spoll routine performs a serial poll of a specified device. It is called with the
form:

hpib_spoll(eid, address);

where eid is the entity identifier for the open interface file and address is the bus address
of the device to be polled. The routine returns an integer, the lowest byte of which
contains the status byte message (the serial poll response) from the addressed device.
Only one device can be polled per call to hpib_spoll.

Although the status byte message supplied by the addressed device is device-dependent,
one bit always supplies the same information. Given that the status byte’s bits are
labelled D0-D7, D6 always indicates whether or not the device is requesting service by
asserting the SRQ line.

Controlling the HP-IB Interface 65

The code below illustrates how hpib_spoll can be used to find out if a device at bus
address 5 is requesting service. It does this by asserting SRQ (it only looks at D6).

#include <fcntl.h>
main()
{

int eid, status;

eid = open("/dev/raw_hpib", O_RDWR);

if ((status = hpib_spoll(eid, 5)) == -1) /*conduct serial poll*/
{ printf("error during serial poll");

exit(1);
}

if (status & 64) /*after setting every bit except D6*/
/*to zero; if D6 is set the device*/
service_routine(); /*is requesting service */

}

Errors During Serial Poll
The hpib_spoll routine returns a —1 indicating an error if any of the following conditions
are true:

e The addressed device did not respond to the serial poll before the timeout defined
by io_timeout_ctl occurred.

e The computer’s interface is not the Active Controller.

e The eid entity identifier does not refer to an HP-IB raw interface file.
e The eid entity identifier does not refer to an open file.

e Address is outside the range [0,30].

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF etd did not refer to an open file.

ENOTTY eid did not refer to a raw interface file.

EIO The device polled did not respond before the timeout or the interface
was not the Active Controller.

EINVAL Invalid bus address.

66 Controlling the HP-IB Interface

Passing Control

The current Active Controller can pass the active control capability to a Non-Active
Controller with the hpib_pass_ctl routine. A Non-Active Controller is a device capable
of becoming Active Controller, and in most cases this means it is a computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl(eid, address);

where eid is the entity identifier for the open interface file (that is currently the Active
Controller) and address is the bus address of a Non-Active Controller. Once the call is
completed, the Non-Active Controller is the new Active Controller and the interface is a
Non-Active Controller.

The hpib_pass_ctl routine only passes active control capability, it does not pass system
control capability.

What If Control Is Not Accepted?

Your program is not suspended if the Non-Active Controller that you address does not
accept active control of the bus. However, the computer still loses active control. This
means the bus no longer has an Active Controller. If this happens, the System Controller
must assume the role of Active Controller with hpib_abort (see The System Controller’s
Duties section) or zo_reset.

No error is returned by hpib_pass_ctlif the device that you address does not accept active
control. There is also no direct way to determine in advance if a given device can accept
active control. However, if the computer immediately requests service after passing
control and a timeout occurs before the request is acknowledged, possibly the active
control wasn’t accepted. There is no way for the computer, after initiating hptb_pass_ctl,
to see if active control is accepted.

Errors While Passing Control
The routine hpib_pass_ctl returns a —1 indicating an error if any of the following error
conditions are true:

e The computer’s interface is not the Active Controller.
e The eid entity identifier does not refer to an HP-IB raw interface file.
e The eid entity identifier does not refer to an open file.

e Address is outside the range [0,30].

Controlling the HP-IB Interface 67

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF etd did not refer to an open file.

ENOTTY eid did not refer to a raw interface file.

EIO The interface was not the Active Controller.
EINVAL Invalid bus address.

The System Controller

When the HP-IB’s System Controller is first powered on or is reset, it assumes the role
of Active Controller. An HP-IB can have only one System Controller. The System
Controller cannot pass system control to any other controller (computer) on the bus.
However, it can pass active control to another controller.

Integral PC Only: The HP 82998A HP-IB interface can be configured to power-on in
the non-system-controller state by setting a switch on the interface card. Refer to the
HP 82923A HP-IB Interface Owner’s Manual for instructions. The built-in HP-IB inter-
face on the Integral PC will always power-on in the system-controller state.

Determining System Controller

To find out if your computer’s HP-IB interface is the System Controller, use the
hpib_bus_status routine. It must be called as follows:

hpib_bus_status(eid, 3);
where eid is the entity identifier for the open interface file and & indicates that you want

to find out if it is the System Controller. The routine returns a 1 if it is the System
Controller, a 0 if it isn’t, and a —1 if an error occurs.

68 Controlling the HP-IB Interface

The code that follows prints a message indicating if the interface is the System Controller:

#include <fcntl.h>
main()
{

int eid, status;
eid = open("/dev/raw_hpib", O_RDWR);

if ((status = hpib_bus_status(eid, 3)) == -1)

printf ("Error occurred during bus status routine");
else if (status == 1)

printf ("Interface is the System Controller");
else

printf ("Interface is not the System Controller");

}

System Controller’s Duties
The System Controller of an HP-IB bus has three major functions:

e It assumes the role of Active Controller whenever it is powered on or reset.

o It can cancel talkers and listeners from the bus a.nd assume the role of Active
Controller by executing hpib_abort.

o It can control the logic level of the remote enable line (REN) with hpib_ren_ctl.
hpib_abort
A call to hpib_abort carries out the following actions:

e It terminates activity on the bus by pulsing the Interface Clear line (IFC). This
results in all talkers and listeners on the bus being unaddressed.

o It sets the REN line so that devices on the bus will be placed in their remote state
when they are addressed as listeners.

e It clears the ATN line if it was left set by the previous Active Controller.
e The System Controller then becomes the bus’s new Active Controller.
e Returns devices on the bus to their local state.

The routine leaves the SRQ line unchanged, which means any device requesting service
before hpib_abort is executed is still requesting service when the routine is finished.

To use hptb_abort on a particular HP-IB , the computer must be the System Controller
of that bus. It does not have to be the Active Controller.

Controlling the HP-IB Interface 69

One situation where hpib_abort is useful is when the bus’s Active Controller attempts to
pass active control to another device that does not accept active control. This happens
if the device addressed to receive control is not another controller. As a result the bus
is left without any Active Controller and the System Controller must assume that role
using hpib_abort.

hpib_abort is called as follows:

hpib_abort (eid) ;
where eid is the entity identifier for the open interface file.

hpib_ren_cti

With hpib_ren_ctl you can enable or disable the REN line on the HP-IB. If the line is
enabled, all devices that are capable of remote operation (interpreting HP-IB commands)
can be placed in the remote state by the Active Controller addressing them as talkers or
listeners. When REN is disabled, all devices on the bus return to their local state and
cannot be accessed remotely.

When the System Controller is powered on or reset, the REN line is enabled by default.
It is also enabled if the System Controller executes hpib_abort.

To use hpib_ren_ctl on a particular HP-IB , the computer must be the System Controller
of that bus. It does not have to be the Active Controller.
hpib_ren_ctl is called as follows:

hpib_ren_ctl(eid, flag);

where eid is the file descriptor for the open interface file and flag is an integer. If flag is
zero, the REN line is disabled. If it has any other value, then REN is enabled.

Errors During hpib_abort and hpib_ren_ctl
hpib_abort and hpib_ren_ctl both return a -1 indicating an error if any of the following
error conditions are true:

e The computer’s interface is not the System Controller.
e The eud entity identifier does not refer to an HP-IB raw interface file.

e The eid entity identifier does not refer to an open file.

70 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF erd did not refer to an open file.

ENOTTY eid did not refer to a raw interface file.

EIO The interface was not the System Controller.

The Computer As a Non-Active Controller

The information described in this section is accurate for Series 200/300 and 500 comput-
ers. For details specific to the Integral PC, you should refer to Appendix C, “Integral
PC Dependencies.”

Determining the Controller’s Status

The hpib_bus_status routine allows you to determine information about the interface card
and the HP-IB. It can be used by any controller on the bus, independent of whether or
not it is the Active Controller or System Controller. In the previous discussions about
the Active and System Controllers, the routine is mentioned briefly. The discussion that
follows should give you a broader look at the routine’s uses.

hpib_bus_status is called with the form:

hpib_bus_status(eid, status_question);

where eid is the entity identifier for the open interface file and status_question is an
integer that indicates what question you want answered. The value of status_question
must be within the range 0-7 where the values indicate the following questions:

Controlling the HP-IB Interface 71

Value Status Question

Is the interface in the remote state?

Are there any devices requesting service? (Is SRQ asserted?)

Is there a listener that is not ready for data? (Is NDAC asserted?)
Is the interface the System Controller?

Is the interface the Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

N O Ot s W N = O

What is the interface’s bus address?

If the value of status_question is in the range 0-6, the routine returns a 1 if the answer
to the question is yes, or a 0 if the answer is no. If the value of status_question is 7, the
routine returns the bus address of the computer’s interface. If status_question has any
other value, a —1 is returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the bus, use
the routine call illustrated by the following code:

if ((status = hpib_bus_status(eid, 4)) == -1)
printf ("Error occurred while checking status");
else if (status == 0)
printf ("Computer is a Non-Active Controller");
else
printf ("Computer is the Active Controller");

72 Controlling the HP-IB Interface

Requesting Service

When your computer is a Non-Active Controller it can request service from the current
Active Controller by asserting the SRQ line. This is done with the hpib_rqst_srvce routine.
The routine is called as follows:

hpib_rqst_srvce(eid, response);

where eid is the entity identifier for the open interface file and the lowest byte of response
is the integer value of the 8-bit response that the computer gives if it is serially polled.
The upper bytes of response are ignored by the routine. Given a bit labeling of D0-D7,
D6 of the lower byte sets the SRQ line. The defined values for the remaining 7 bits are
application-dependent. This section only discusses the setting and clearing of the SRQ
line with D6 (integer value of 64).

To request service you can invoke hpib_rgst_srvce as follows:

#include <fcntl.h>
main()

{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
hpib_rqst_srvce(eid, 64); /*Bit 6 of serial poll response is set*/
/*and SRQ is asserted */

}

Note that by setting response to 64 the only information that the Active Controller
receives when it serially polls your computer is that you are asserting the SRQ line.

The routine hpib_rqst_srvce returns a 0 if it executes correctly or a —1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active Controller serially
polls you or you call hpib_rgst_srvce again and clear bit 6 (e.g. hpib_rgst_srvce(eid,
0)). After your serial poll response is configured, your computer’s interface responds
automatically to any serial polls from the Active Controller.

Note that if another device is asserting SRQ also, the line is still asserted after your
request is removed.

If you try to request service and you are the Active Controller, the SRQ line is not set.

However, if you then pass active control to another computer, the response that you
specified with hpib_rgst_srvce is remembered and the SRQ line is set.

Controlling the HP-IB Interface 73

When the Active Controller sees the SRQ line asserted, it usually polls the devices on
the bus to find out who is requesting service. To determine which device (or devices)
is requesting service, the Active Controller conducts a parallel poll. Configuring your
computer’s response to a parallel poll is discussed in the next section.

If a device responds to a parallel poll with an I need service message, the Active Controller
can perform a serial poll to determine what service action is required. If several devices
are configured to respond to a parallel poll on the same line and the Active Controller
sees that line is requesting service, it must perform a serial poll of each of the devices to
find out which one is requesting service.

Errors While Requesting Service
Hpib_rgst_srvce returns a —1 indicating an error if either of the following error conditions
are true:

o The eid entity identifier does not refer to an HP-IB raw interface file.
e The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition
EBADF etd did not refer to an open file.
ENOTTY eid did not refer to a raw interface file.

Responding to Parallel Polls

Before your computer can respond to a parallel poll from the Active Controller, its
response must be configured. This can be programmed remotely by the Active Controller
(see The Active Controller section) or locally using hpib_card_ppoll_resp.

Configuring a parallel-poll response of a device involves:

¢ Specifying the logic sense of the response (i.e. whether a 1 means the device does
or doesn’t need service).

e Specifying which data line the device responds on. More than one device can be
configured to respond on the same line.

74 Controlling the HP-IB Interface

To locally configure how your computer responds to parallel polls, call
hpib_card_ppoll_resp as follows:

hpib_card_ppoll_resp(eid, flag);

where eid is the entity identifier of the open interface file and flag is an integer whose
binary value configures the response.

Calculating the Flag
The flag value is found by first forming an 8-bit binary number and then using the
decimal value of that number. The binary number’s bits have the following meaning:

D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 0 S P P P

where:

S sets the sense of the response if allowed by the hardware. If Sis a 1, then the
device responds with a 1 when it requires service.

P is a 3-bit binary number that specifies which of parallel poll response lines (D0-D7)
the device responds on if allowed by the hardware.

Limitations of hpib_card_ppoll_resp

There are some hardware limitations on using hApib_card_ppoll_resp to configure parallel
poll responses. You should refer to the Appendix for your system to find out if any
restrictions apply. If there are restrictions on your system, you may find it easier to
configure the interface’s parallel poll response remotely with the Active Controller. Note
the Active Controller can configure its own response, but the response only has effect
when it passes active control.

Errors While Configuring Response
The routine hpib_card_ppoll_resp returns a —1 indicating an error if any of the following
error conditions are true:

e The eid entity identifier does not refer to an HP-IB raw interface file.
e The eid entity identifier does not refer to an open file.

o Series 500 Only: The interface’s parallel poll response cannot be programmatically
controlled.

Controlling the HP-IB Interface 75

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF etd did not refer to an open file.

ENOTTY ‘ eid did not refer to a raw interface file.

EINVAL The interface cannot respond on the line indicated by flag (Se-

ries 500 Only.).

hpip_ppoli_resp_ctl

The hpip_ppoll_resp_ctl function allows the user to determine how the computer will
respond to the next parallel poll. There are two ways to respond to a parallel poll.
Responding favorably indicates to the controller that the computer wants to be serviced.
Responding unfavorably indicates the computer does not need the Active Controller’s
attention.

The parallel poll response is set as follows:

hpib_ppoll_resp_ctl(eid, response_value);
where eid is the entity identifier of an open interface file and the response_value is an
integer that indicates the response to use. If response_value is non-zero then the computer

will respond favorably to the next parallel poll. A zero response_value will respond
unfavorably to the next parallel poll.

Disabling Parallel-Poll Response

The routine hptb_card_ppoll_resp also allows you to disable your interface from responding
to parallel polls made by the Active Controller. This is done by setting bit D4 of the
routine’s flag value. When D4 is 0 the interface is enabled to respond to parallel polls,
and when it is 1 the interface’s parallel poll response is disabled. Thus, a flag value of
16 disables the response.

For example, the code:

hpib_card_ppoll_resp(eid, 16); /*disable parallel poll response*/

disables the interface with the entity identifier eid from responding to any parallel polls.

76 Controlling the HP-IB Interface

Accepting Active Control

If your computer is a Non-Active Controller, the current Active Controller may pass
active control to you. Your computer’s interface accepts active control automatically;
however, you must design an interfacing program to recognize when this happens.

The hptb_bus_status, hpib_status_wait, and io_on_interrupt routines allow recognizing
the computer has become the Active Controller.

hptb_status_wait has been mentioned in previous discussions about the Active Controller
and System Controller. The following discussion provides a look at its uses.

hptb_status_wait is called as follows:

hpib_status_wait(eid, status);

where eid is the entity identifier for the open interface file and status is an integer indi-
cating what condition you want to wait for. The following values for status are defined:

Value Condition Waiting For

1 Wait until the SRQ line is asserted

4 Wait until this computer is the Active Controller
5 Wait until this computer is addressed as a talker
6 Wait until this computer is addressed as a listener

Now imagine a situation where the current Active Controller is programmed to know that
when your computer requests service, it is to pass active control to you. The following
code shows how you can program your computer to request service and then wait until
it becomes the bus’s new Active Controller.

Controlling the HP-IB Interface 77

#include <fcntl.h>
main()
{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);

if (hpib_rgst_srvce(eid, 64) == -1) /*set SRQ line to request servicex/
{
printf ("Error while requesting service");
exit(1);
}
if (hpib_status_wait(eid, 4) == -1) /*wait until Active Controllerx*/
{
printf ("Error while waiting for status");
exit(1);

}
: /*Computer is now the Active Controller*/
}

Notice for hpib_status_wait to have returned a —1 (due to a timeout occurring), you
would have had to set a timeout value, using ‘o_timeout_ctl, after opening the interface
file. Since this wasn’t done in the example above, no timeout occurs.

Errors While Waiting on Status
hpib_status_wait returns a —1 indicating an error if any of the following error conditions
are true:

e A timeout occurred before the condition the routine was waiting for became true.
e The status specified has an invalid value.
e The eid entity identifier does not refer to a raw HP-IB interface file.

e The eid entity identifier does not refer to an open file.

78 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF etd did not refer to an open file.

ENOTTY etd did not refer to a raw HP-IB interface file.

EINVAL status contains an invalid value.

EIO The specified condition did not become true before a timeout
occurred.

Determining When You Are Addressed

As a Non-Active Controller you may be addressed by the Active Controller and be-
come a bus talker or listener for data transfer. The DIL routines hpib_bus_status,
hpib_status_wast, and to_ on_interrupt allow you to find out if the computer’s interface
is currently being addressed.

The following code determines if the interface is currently addressed as a bus talker:

#include <fcntl.h>
main()

{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
if (hpib_bus_status(eid, 5) == 1)
{

printf("the interface is addressed as a talker");
write(eid, "data message", 12); /*do the expected data transferx*/

}

else

printf("the interface is not addressed as a talker");
}

In the above call to hpib_bus_status, eid is the entity identifier for the interface and 5
indicates that you are asking if it is a bus talker. The routine returns a 1 if the answer
is yes and O if the answer is no.

Controlling the HP-IB Interface 79

To find out if the interface is currently addressed as a bus listener use the following:

if (hpib_bus_status(eid, 6) == 1)

{
printf ("the interface is addressed as a listener");
read(eid, buffer, 12); /*do the data transferx/
}
else

printf("the interface is not addressed as a listener");

If you need to wait until the interface is addressed as either a talker or listener and then
handle a data transfer, use the DIL routine hpib_status_wait. When you call the routine,

you specify the entity identifier of the interface and the bus condition that you want to
wait on:

hpib_status_wait(eid, condition);

As with hpib_bus_status, with a condition value of 5 the routine waits for the interface
to be addressed as a talker. With a condition value of 6 the routine waits until it is
a listener. How long the routine waits for the specified condition is controlled by the
timeout value that you have previously set for the entity identifier with io_timeout_ctl
(see discussion in Chapter 2, “General-Purpose Routines”). The routine returns a 0 if
the condition became true or a —1 if a timeout (or an error) occurred first.

80 Controlling the HP-IB Interface

In the example below, the program waits for the interface to become a bus listener, and
then it reads a 50-byte message.

#include <fcntl.h>
main()
{
int eid, len;
char buffer[51]; /*storage for message*/
eid = open("/dev/raw_hpib", O_RDWR);
io_timeout_ctl(eid, 5000) ;

if (hpib_status_wait(eid, 6) == -1)
{
printf ("Either a timeout or an error occurred");
exit(1);
}
len = read(eid, buffer, 50); /*read data into buffer*/
buffer[len] = ’\0’;
printf ("Message is: %s", buffer); /*print data message*/

}
Note that a timeout value is set for the interface file’s entity identifier in the code above

so the program does not hang while waiting for the interface to be addressed as a bus
listener.

Controlling the HP-IB Interface 81

The following example illustrates how to use the io_on_interrupt routine to set up an
interrupt handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
int eid;
char buffer[50];
‘main()
{
int handler();
int eid;
struct interrupt_struct cause_vec;

eid = open("/dev/raw_hpib",0_RDWR) ;
cause_vec.cause = LTN;
io_on_interrupt(eid, cause_vec, handler);

}
handler(eid, cause_vec);
int eid;
struct interrupt_struct cause_vec;
{
if (cause_vec.cause == LTN)
read(eid, data, 50);

82 Controlling the HP-IB Interface

Buffering 1/O Operations

The DIL routine hpib_io allows you to perform structures of HP-IB 1/O operations for
both sending HP-IB commands and transferring data. The computer’s HP-IB interface
must be the bus’s Active Controller before this routine can be used.

A call to hpib_io has the form:

#include <dvio.h>
/* on the Integral PC, the include directive would be:
*
* #include <libdvio.h>
*/
main()
{
int eid;
struct iodetail *iovec;
int iolen;

hpib_io(eid, iovec, iolen);
}
where eid is the entity identifier of the open interface file, fovec is a pointer to an array of
[/O operation structures, and tolen is the number of structures in the array. The name
of the template for the I/O operation structures is jodetasl and it is defined in the include

file dvio.h.

On the Integral PC, the include file is lsbdvio.h instead of dvio.h, as shown in the example
above.

Controlling the HP-IB Interface 83

lodetail: The I/O Operation Template
The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;

char *buf;

};
Each of the components of 7odetail have the following meanings:

mode Describes what kind of I/O operation the structure contains.

terminator Specifies whether or not there is a read termination character for the
I/0 operation, and if so it specifies the value.

count How many bytes are to be transferred during the I/O operation.

buf A pointer to an array containing the bytes of data to be transferred.

Components of a particular ‘odetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of ‘odetail structures and component is either mode,
terminator, count, or buf.

The Mode Component

The mode describes what type of I/O is to be performed on the data pointed to by the
buf component. You determine its value by OR-ing constants from a set defined in the
include file dvio.h. The constants that you can choose from are:

84 Controlling the HP-IB Interface

Name

Description

HPIBREAD

HPIBWRITE

HPIBATN

HPIBEOI

HPIBCHAR

Perform a read operation and place the data into the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with HPIBCHAR.

Perform a write operation using the data in the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with either HPIBATN or
HPIBEOI but not both.

If you are performing a write operation, the data is placed on the bus with
ATN asserted (you are sending a bus command). It only has effect if you
also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted when the
last byte of data is sent. It only has effect if you also specify HPIBWRITE.

If you are performing a read operation, the transfer is halted when the
terminator component value of the zodetail structure is read. The terminator
component only has effect if you OR HPIBCHAR and HPIBREAD. The
HPIBCHAR constant only has effect if also specify HPIBREAD.

NOTE

When you construct mode, you must use either HPIBREAD or
HPIBWRITE, but not both. Optionally, you can OR one of the
other three constants with either HPIBREAD or HPIBWRITE,
but they are not required. HPIBCHAR only has effect when it
is OR-ed with HPIBREAD, while HPIBATN and HPIBEOI only
have effect when they are OR-ed with HPIBWRITE (but not both
at the same time).

Controlling the HP-IB Interface 85

The mode component allows you to specify under what conditions an I/O operation ter-
minates. All I/O operations terminate when the maximum number of bytes specified by
the count component of the todetail structure is reached. However, additional termination
conditions are possible:

o If you specify HPIBREAD and HPIBCHAR, the detection of the termination char-
acter determined by the terminator component also causes termination.

e If you specify HPIBWRITE and HPIBEOI, when the count value is reached EOI
is asserted at the time that the last byte of data is sent (unless you also specify
HPIBATN).

To illustrate, assume that zovec points to an todetail structure that you are building and
you want the structure to send several HP-IB commands. The mode component of the
structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE | HPIBATN;
The Terminator Component
The terminator component of the todetail structure specifies a character that causes the
termination of a read operation when it is detected. The terminator only has effect if
HPIBREAD | HPIBCHAR is specified as the structure’s associated mode component.
Assign a value to the terminator of the structure pointed to by ‘ovec with:

iovec->terminator = value;

For example, to make the ASCII period (*.’) the termination character, use the statement:

iovec->terminator = ’.’;

The Count Component

The count is an integer determining the maximum number of bytes that will be trans-
ferred during the structure’s I/O operation. Reading or writing always terminates when
this value is reached, but additional termination conditions can be set up using the
structure’s associated mode component.

Set a maximum number of bytes for a structure’s data transfer with:

iovec->count = max_value;

where fovec is a pointer to the structure and maz_value is an integer.

86 Controlling the HP-IB Interface

The Buf Component

The buf component points to a character array that holds the data that will be trans-
ferred during a read operation (HPIBREAD) or is written to during a write operation
(HPIBWRITE). Note the array’s size limit is defined by the structure’s count component.

One way to store a message in the buf array is:

iovec->buf = "data message";

Allocating Space

Before you can build sodetail structures for your I/O operations, you need to allocate
space for them in memory. The easiest way to do this (if you are programming in C) is
to write a routine that allocates space for n iodetail structures and returns a pointer to
the first one.

Below is the code for such a routine, 7o_alloc:

struct iodetail *io_alloc(n)
int n;
{
char *malloc();
return((struct iodetail *) malloc(sizeof (struct iodetail) * n));

}
Refer to the HP-UX Reference for a description of malloc(3C).

To use to_alloc to allocate memory space for 10 ¢odetasl structures your program should
contain the statements:

struct iodetail *iovec; /*define an iodetail pointer*/
iovec = io_alloc(10); /*allocate space for 10 iodetail structures*/

Controlling the HP-IB Interface 87

Example

Assume that your computer’s HP-IB interface is at HP-IB address 30 and it is the bus’s
Active Controller. You want to send a data message to a device at HP-IB address 7 and
then receive a message from the same device using hpib_z0. Four iodetail structures are
required to do this:

1. The first structure configures the bus so that the interface is the talker and the
device at address 7 is the listener.

2. The second structure sends the data message from the interface to the device.

3. The third structure configures the bus so that the device at address 7 is the talker
and the interface is the listener.

4. The fourth structure receives the data message from the device.

The following code illustrates how the 4 structures can be built and then implemented.

#include <fcntl.h>

#include <dvio.h> /*contains definitions for iodetailx/
struct iodetail *io_alloc(n)

int n;

{

char *malloc();
return ((struct iodetail *) malloc(sizeof (struct iodetail) #*n));

}

main()

{
extern int errno;
int eid;

char buffer[4][12];
struct iodetail *iovec, *temp; /%2 pointers to iodetail structuresx/

/*Allocate space for 4 iodetail structures*/
io_vec = io_alloc(4); /* use the routine described earlier */
temp = iovec;

/*Build structure 1 -- Configuring the bus*/
temp->mode = HPIBWRITE | HPIBATN; /*you want to send commands/
strcpy(buffer[0],"?’"); /xaddress computer to talk and bus address to
listen*/
temp->buf = buffer[0];
temp->count = strlen(temp->buf);

88 Controlling the HP-IB Interface

/*Build structure 2 -- Sending the data message*/
temp++; /*use temp pointer so that iovec remains pointing to thex/
/*first structure but temp now points to the next onex/

temp->mode = HPIBWRITE | HPIBEOI; /*you want EOI asserted when the
transfer is donex/

strcpy(buffer([1],"data message");

temp->buf = buffer[1];

temp->count = strlen(temp->buf);

/*Build structure 3 -- Configuring the bus*/
temp++; /*increment structure pointer*/
temp->mode = HPIBWRITE | HPIBATN; /*you want to send commands*/
strcpy(buffer([2],"?7G>");
temp->buf = buffer[2];
temp->count = strlen(temp->buf);

/*Build structure 4 -- Receiving data message*/

temp++; /*increment structure pointer*/
temp->mode = HPIBREAD; /*read data; reaching count value terminates readx/
temp->count = 10; /*you expect a 10-byte message*/

temp->buf = buffer[3];
/*Implement the I/0 operations stored in the iodetail structures*/
eid = open("/dev/raw_hpib", O_RDWR);
if (hpib_io(eid, iovec, 4) == -1)
{
printf ("hpib_io failed\n");

printf ("errno = %d\n",errno);
exit(1);

/*Print data message you received from the device. Note temp stillx/
/*points to the last iodetail structure and the last structure did the read

*/

printf("%s", temp->buf);
}

Controlling the HP-IB Interface 89

One comment about the C language: routine parameters are passed by value and not
by reference; therefore, after you execute hpib_io the iovec parameter still points to the
first iodetail structure, just as it did before the routine executed. Thus, another way to
print out the data message, read into the buf component of the fourth iodetail structure
in the example above, is:

printf ("%s", (iovec + 3)->buf);

Locating Errors in Buffered I/O Operations

If all of the I/O operations specified in the array of ‘odetail structures complete success-
fully, hpib_io returns a 0 and updates the count component of each structure to reflect
the actual number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately returns a —1
indicating the error. To find out during which iodeta:l structure operation the error
occurred, look at the structures’ count components. The hpib_io routine updates the
count component of the structure that caused the error to be a —1. Once you have
located a structure with a count of —1, you know that all of the structures previous to
it were completed successfully and all of the structures after it were not executed at all.

For example, assume that you have built an array of 10 todetail structures to execute a
sequence of I/O operations. The following code executes the operations and then checks
for errors. If an error occurs, the code prints the number of the structure that caused it
(for instance, the first structure in the array is number 1).

#include <fcntl.h>
#include <dvio.h>
main()
{
int FOUND, number, eid;
struct iodetail *iovec, *temp;

/*space is allocated for the 10 structures and then they arex/
/*built. "Iovec" is left pointing to the first structurex/

eid = open("/dev/raw_hpib", O_RDWR); /*open the interface file*/

90 Controlling the HP-IB Interface

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations and if a -1%/
/*is returned then an error occurred*/

{
number = 1; /*initialize counterx/
FOUND = O; /*initialize Boolean flagk/
temp = iovec; /*set temporary pointer to first structure*/
while (number <= 10 && FOUND != 1)
if (temp->count == -1) /*found structure that caused errorx/
FOUND = 1;
else
{
temp++; /*move pointer to next structurex/
number++; /*increment counter*/
}
if (FOUND == 1)
printf ("Structure number %d caused error", number);
else
printf ("Error but couldn’t find structure that caused it");
}
else

printf("No error occurred during execution of hpib_io");

Controlling the HP-IB Interface 91

Notes

92 Controlling the HP-IB Interface

Controlling the GPIO Interface 4

This chapter briefly describes the actions you take to configure your GPIO interface
before it can be accessed from a program using the DIL routines. It then discusses the
limitations and capabilities that DIL provides for controlling the GPIO interface.

Configuring Your GPIO Interface

On Series 200/300 and 500 computers, the GPIO interface is configured via switches on
the interface card. However, the Integral PC’s HP 82923A GPIO interface is set using
DIL routines—not switches.

Configuring the Integral PC GPIO

On the Integral PC, the HP 82923A GPIO interface is set using DIL routines. The
functions that can be configured are:

e data logic sense (use gpio_normalize routine)
e data handshake mode (use gpio_handshake_ctl routine)
e delay time (use gpio_delay_time_ctl routine).

For information on these routines, refer to the documentation files in the doc folder on
the DIL disc.

Setting the Interface Switches for Series 200/300 and 500

The GPIO interface card for Series 200/300 and 500 computers has several switches
that allow you to configure your interface. These are fully described in the interface’s
installation manual. The functions they configure are:

e the data logic sense
o the data handshake mode

e the input data clock source.

Set the switches according to the directions found in the GPIO installation manual.

Controlling the GPIO Interface 93

Default Configuration and Switch Settings
for the Series 800 Model 840 GPIO

The Series 800 Model 840 supports the HP 27114A AFI (Asynchronous FIFO Interface)
card as its GPIO interface. Some features are set by default, and some features can be
set by switches. The default configuration for the AFI card sets the following features:

e data logic sense: trigger on leading edge
e data handshake mode: full

The AFI card has several switches that allow you to configure the following features:
e delay time

e even or odd parity

Set the switches according to the directions found in the AFI installation manual.

NOTE

On some systems, the GPIO interface’s select code is determined
by a switch setting on the interface card. Refer to the appropri-
ate hardware-specific appendix to see if a switch configuration is
required. If a switch setting is not required, then the select code is
determined by the I/O slot in which you place the interface card.

Creating the GPIO Interface File

Once you have set the necessary switches on your GPIO interface, you must install the
card in your computer and create an interface file for it. Chapter 2, “General-Purpose
Routines” discusses the creation of interface special files. You must create an interface
file before you can access the interface from HP-UX.

94 Controlling the GPIO Interface

Limitations on Controlling the Interface

The Device I/O Library (DIL) routines allow you to use a GPIO interface to communicate
with devices that are not supported on your HP-UX system. They do not provide you
with full control of the interface and because of this, you are faced with the following
limitations:

e You do not have direct access to the interface’s handshake lines: the Peripheral
Control line (PCTL), the Peripheral Flag line (PFLG), and the Input/Output line

(1/0).
e You cannot read the value of the Peripheral Status line (PSTS).
o (Series 500 Only) You cannot recognize interrupts sent by the peripheral on the
External Interrupt Request line (EIR).
Integral PC Only: The HP 82923A GPIO card has several capabilities not supported by
the DIL routines. Because of this, the following limitations exist:
e 24-bit port paths are not supported

e the flag line cannot be read directly

e the fast handshake transfer mode described in the HP 82928A GPIO Interface
Owner’s Manual is not supported.

Controlling the GPIO Interface 95

Using the DIL Routines

Several of the DIL routines can be used to control the GPIO interface. These are divided
into two groups:

e general purpose routines used with either an HP-IB or GPIO interface

o GPIO routines; routines specifically designed to be used with a GPIO interface.
The general purpose routines are listed and described in Chapter 2, “General-Purpose
Routines,” and you should refer there for more information. They are used in this chapter
to illustrate various aspects of controlling the GPIO interface from an HP-UX process.
There are two DIL routines that are restricted to use with a GPIO interface:

o gpio_get_status

e gpio_set_ctl.
These two routines allow you to use the four special purpose lines that are available on
the interface for any purpose desired. The gpio_get_status routine reads the two lines
controlled by the peripheral (STI0 and STI1) and gpio_set_ctl sets the values of the two

lines controlled by the computer (CTLO and CTL1). These two routines are described
later in this chapter in the section Using the Special Purpose Lines.

By using the DIL general purpose routines and these two GPIO-specific routines you
can:

e reset the interface

e perform data transfers

e use the interface’s 4 special purpose lines

e control the data path width and data transfer speed

e set a timeout for data transfers

e set a read termination character

e get the termination reason

e set up the interrupts

e enable or disable interrupts.

96 Controlling the GPIO Interface

In addition to these standard GPIO DIL routines, the Integral PC supports non-standard
routines for controlling the HP 82923A GPIO interface. You should refer to the appendix
“Integral PC Dependencies” for information on these routines.

Resetting the Interface

The interface should always be reset before it is used, to ensure it is in a known state. All
interfaces are automatically reset when your computer is powered on, but you can also
reset them from your I/O process using the io_reset routine. For example, the following
code resets a GPIO interface:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio", O_RDWR); /*open GPIO interface filex/
io_reset(eid); /*reset the interface*/

This has the following effect:
e the Peripheral Reset line (PRESET) is pulsed low
e the PCTL line is placed in the clear state

e if the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to
logical 0)

e interrupts are disabled on Series 200/300.
The lines that are left unchanged are:
e the CTLO and CTL1 output lines

e the I/O line
e the Data Out lines, if the DOUT CLEAR jumper is not installed

Controlling the GPIO Interface 97

Integral PC Only: The ¢o_reset routine has the following effect on the HP 82923A GPIO
interface:

the read termination character is cleared
the timeout value is set to 0

the width for all ports is set to 8 bits
normalization is set to positive true

the delay time is set to 1 u-sec

the handshake mode is set to 1

the data lines are set to 0

speed is set to the flag transfer mode

the 1/O line remains unchanged.

Performing Data Transfers

Using the DIL routines read and write you can transfer bytes of ASCII data to and from
the GPIO interface. The following code illustrates using these routines to first write 16
bytes of data and then read 16 bytes.

main()

{

int eid; /*entity identifierx/
char read_buffer[16],*write_buffer; /*buffers to hold data*/

eid = open("/dev/raw_gpio", O_RDWR); /*open interface filex/
write_buffer = "message to write"; /*data message to send*/
write(eid,write_buffer, 16); /*send messagex/

read(eid, read_buffer, 16); /*receive message*/
printf("%s", read_buffer); /*print received message*/

Using the Special-Purpose Lines

Four special-purpose signal lines are available for a variety of uses. Two of the lines
are for output (CTLO and CTL1), and two are for input (STIO and STI1). The rou-
tine gpto_set_ctl allows you to control the values of CTLO and CTL1, while the routine

gpio_

get_status allows you to read the values of STI0 and STII1.

98 Controlling the GPIO Interface

The Integral PC’s HP 82923A GPIO interface does not have special-purpose lines. Each
port, however, does have a status line and a control line. The status and control lines
in unused ports can be used with active ports and perform the same function as the
special-purpose lines. For example, if you have specified the data width on port b to
be 16 bits wide, then both ports a and b will be active. The status and control lines
on ports ¢ and d can then be used by first opening either port ¢ or d; then using the
gpio_get_status and gpio_set_ctl routines to monitor or control the lines.

Driving CTLO and CTLA1
The call to gpio_set_ctl has the following form:

gpio_set_ctl(eid, value);

where eid is the entity identifier for the open GPIO interface file and value is an integer
whose least significant two bits are mapped to CTL0O and CTLI.

To illustrate:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio", O_RDWR); /*open interface filex/
gpio_set_ctl(eid, 3); /*assert CTLO and CTL1x*/

Both CTLO and CTL1 are asserted low; thus, in the above example both lines are pulled
low. This logic polarity cannot be changed. To raise both of the lines, call gpio_set_ctl
with:

gpio_set_ctl(eid, 0);

Reading STIO and STI1
The call to gpio_get_status has the following form:

int eid, value;
value = gpio_get_status(eid);

where eid is the entity identifier for the open GPIO interface file. The routine returns
an integer whose least significant two bits are the values of STIO and STI1.

Controlling the GPIO Interface 99

To illustrate:
int eid; /*entity identifier*/
int value, bits;
eid = open("/dev/raw_gpio", O_RDWR); /*open interface file*/
value = gpio_get_status(eid); /*look at STIO and STI1*/

bits = value & 03 /xclear all but the 2 least significant bits*/
if (bits == 3) /*and see if they’re both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
elgse if (bits == 1) /*just STIO is asserted+*/

/*‘insert code that handles case when STIO is asserted*/
els; if (bits == 2) /*just STI1 is asserted*/
/*.insert code that handles case when STI1 is asserted*/
els;e /*neither are asserted*/

/*insert code that handles case when neither STIO nor STI1 is assertedx*/

Note that STIO0O and STI1 are asserted low; thus, when the value returned by
gpio_get_status has one of its two least significant bits set, the associated special-purpose
line is low.

Controlling the Data Path Width

The DIL routine to_width_ctl allows you to specify two different data path widths for
your GPIO interface: 8 bits and 16 bits. The call has the following form:

io_width_ctl(eid, width);
where eid is the entity identifier for the open GPIO interface file and width is either 8 or
16. If a different width value is specified, the routine returns an error of —1 and errno is

set to EINVAL. The GPIO interface defaults to an 8-bit path when its file is first opened.

The code below illustrates data transfers using a 16-bit data path.

int eid;

eid = open("/dev/raw_gpio", O_RDWR); /*open the interface filex/
io_width_ctl(eid, 16); /*set path width at 16 bits*/
write(eid, "data message", 12); /*perform data transfer*/

100 Controlling the GPIO Interface

Since the interface’s data path is 16 bits, 2 ASCII characters are transferred for each
handshake cycle involved. In the first 16-bit transfer, d is sent in the upper byte and a is
sent in the lower. The actual logic level of the GPIO data output lines depends on how
the lines have been configured.

Controlling the Transfer Speed

You can request a minimum speed for the data transfer across a GPIO interface using
to_speed_ctl. Your system rounds the speed that you specify up to the nearest defined
speed. If you specify a speed that is faster than your system allows, the highest allowable
speed is used. Refer to Chapter 2, “General-Purpose Routines,” for more information
on using this routine. Again, the Series 500 and the Series 800 always provide DMA;
therefore, the routine 7o_speed_ctl is ineffective on those systems.

In Case of a Timeout

If you have previously set a timeout value for the data transfer entity identifier, reaching
the timeout after attempting a transfer will cause an error condition. If a timeout does
occur, the DIL routine that you called to implement the transfer returns —1 and sets
errno to EIO. When a timeout occurs you should reset the GPIO interface with the
to_reset routine before attempting the transfer again.

Read Terminations

Determining Why a Read Operation Terminated

The zo_get_term_reason routine, described in Chapter 2, “General-Purpose Routines,” is
used to discover why the last read performed on a particular entity identifier terminated.
It tells you which of the following caused the termination:

the requested number of bytes were read

a specified read termination character was seen

the assertion of the PSTS was seen

e some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 2, “General-Purpose Routines,” describes the routine ¢o_eol_ct! which allows
you to specify a character or string of characters, known as a read termination pattern,
that when encountered during a read will terminate the read operation on a particular
entity identifier for the GPIO interface file.

Controlling the GPIO Interface 101

Interrupts

Chapter 2, “General-Purpose Routines,” describes the routines ‘o_on_interrupt and
to_interrupt_ctl. These routines allow you to set up and control interrupt handlers for
the GPIO status line or a particular eid for the GPIO interface file.

k)

Interrupt-Driven Transfer Mode

Integral PC Only: Two transfer modes exist between the Integral PC and the HP 82923A
GPIO interface: flag-driven mode and interrupt-driven mode. To select the interrupt-
driven mode, use the 70_speed_ctl routine to set the speed to 0.

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause

the user’s process to go to sleep until an interrupt occurs at the completion of the read
or write.

102 Controlling the GPIO Interface

Series 500 Dependencies

The following information, specific to the Series 500, is discussed in this appendix:
e the location of the DIL routines

o information about creating the special file for the interfaces that you plan to access
with DIL routines

e the relationship between entity identifiers and file descriptors
e the restrictions imposed by the hardware on using the DIL routines

e information about how you can improve the performance of your I/O process

Location of the DIL Routines

The DIL routines that provide direct control of your computer’s interfaces are contained
in the library /usr/lib/libdvio.a. Some of these routines are general-purpose and can be
used with any interface supported by the library, while others provide control of specific
interfaces. The Device I/O Library (DIL) currently supports the HP-IB and GPIO
interfaces.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that allows communication with a variety of devices. On the Series 500, the interface
sends and receives up ‘to 16 bits of data with a choice of several handshake methods.
External interrupt and user-definable signal lines provide additional flexibility.
The GPIO interface is comprised of the following lines:

e 16 parallel data input lines

e 16 parallel data output lines

e 4 handshake lines

e 4 special-purpose lines.

Series 500 Dependencies 103

Data Lines

There are 32 data lines: 16 for input and 16 for output. These lines normally use negative
logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates
true with the interface’s Option Switches. Refer to your GPIO interface manual to see
how to do this.

Handshake Lines
Although four lines fall into this group, only three are used for controlling the transfer
of data:

e PCTL — Peripheral ConTroL

e PFLG — Peripheral FLaG

e 1/O — Input/Output.

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used
to signal the peripheral’s readiness to continue the transfer process. The Input/Output
(I/0) line is used to indicate direction of data flow.

The fourth handshake line is the External Interrupt Request (EIR) line. This line is used
by a peripheral to signal service requests to the computer.

Special-Purpose Lines

Four lines are available for any purpose you desire; two are controlled by the peripheral
device and sensed by the computer, and two are controlled by the computer and sensed
by the peripheral.

Data Handshake Methods

There are two handshake methods using PCTL and PFLG to synchronize data transfers:
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. The full-mode handshake should be used if the peripheral does not meet the
pulse-mode timing requirements. Refer to the GPIO interface’s documentation for a
description of these handshake methods.

104 Series 500 Dependencies

Data-In Clock Source

Ensuring that data is valid when read by the receiving device differs slightly depending
on what direction the data is flowing. When writing data out from the computer the
interface generally holds data valid while PCTL is in the asserted state, the peripheral
must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data valid until
it can signal that the data is valid or until the data is read by the computer. The
peripheral signals that the data is valid using the PFLG line. This clocks the data into
the interface’s Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the
FLAG switches on the interface card. Refer to the card’s installation manual to find out
how to do this.

Creating the Interface Special File

HP-UX treats I/O to an interface the same way it treats I/O to any input/output device:
the interface must have a special file. The general process of creating special files is
described in the HP-UX System Administrator Manual for your system. The following
discussion points out specific requirements needed for a special file associated with an
interface.

Creating an Interface File

Special files are created using the mknod(1M) command; you must be super-user to
execute this command. When used to create an interface special file, mknod has the
following syntax:

mknod pathname ¢ major_number minor_number

The ¢ parameter to mknod tells the system to create the file as a character special file.
Descriptions of the remaining parameters to the mknod command follow.

Series 500 Dependencies 105

pathname

The pathname parameter specifies the name to be given to the newly created interface
special file. The pathname identifies the interface itself, not a peripheral on the inter-
face. Special files are usually kept in the directory /dev. This is basically an HP-UX
convention; some commands expect to find special files in the /dev directory and fail if
they are not there.

major_number
The major number specifies which device driver to use with the interface. The following

table shows the major number used for each supported interface:

Major Number Interface

12 HP 27110A/B HP-IB Interface
18 HP 27110A GPIO Interface
37 Internal 550 HP-IB Interface.

minor_number
The minor number parameter tells mknod the location of the interface. The minor number
has the following syntax:

0xScAdquVv
where:

0x specifies that the characters which follow represent hexadecimal values. These
two characters (zero and x) are entered as shown.

Sc a two-digit hexadecimal value specifying the select code of the interface card.
The select code corresponds to the I/O slot in which the interface card resides.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines
with the interface, the special file should be created as a raw special file: the
Ad component of the minor number should be 31 (1f in hexadecimal). If Ad is
less than 31, then the file is not created as a raw file; it is created as an auto-
addressable file. (In this case, Ad specifies the bus address of the device for which
the special file is created.) If only one device can be connected to the interface
(e.g., the GPIO interface), the component of the minor number is ignored.

106 Series 500 Dependencies

U a single-digit hexadecimal value specifying a secondary address. This component
of the minor number is ignored when the special file you are creating is for an
interface; you should set it to 0.

v a single-digit hexadecimal value specifying a secondary address, such as the
volume number in a multi-volume drive. This component of the minor number
is ignored also; you should set it to 0.

Creating an HP-IB Interface File
Suppose you wish to create an HP-IB interface special file with the following character-
istics:

e the pathname is /dev/raw_hptb

e the HP-IB interface is internal—the major number is 12

e the card is placed in slot 2, giving a select code 02—i.e., the Sc component of the
minor number is 02

e the special file must be a raw special file in order to use DIL library routines with
it; therefore, the Ad portion of the minor number must be 31 (1f in hexadecimal).
Based on this information, you would use mknod as follows to create the special file for
the interface:
mknod /dev/raw_hpib c 12 0x021f£00
To further illustrate the use of mknod, suppose you have two HP-IB HP 27110A interface
cards (major number = 12) installed in slots 2 and 3. The following mknod commands

set up a special file for the interface at select code 02 (/dev/raw_hpib1) and select code
03 (/dev/raw_hpib2):

mknod /dev/raw_hpibl ¢ 12 0x021f00

mknod /dev/raw_hpib2 c¢ 12 0x031£00

Creating a GPIO Interface File
Now suppose you have a GPIO interface that you want to access with the DIL routines
on the same Series 500 computer.

Because the GPIO interface is does not use a bus architecture, the usual bus address

(Ad) and secondary address (Uv) components of mknod’s minor number are ignored, and
you need only determine the select code value.

Series 500 Dependencies 107

Assume that you have placed the interface in the I/O slot on your Series 500 correspond-
ing to select code 04. The following mknod command will create the appropriate special
file, named /dev/raw_gpio:

mknod /dev/raw_gpio c¢ 18 0x040000

Determining The Bus Address of the Interface Card

The HP 27110A /B card always assumes bus address 30 when it is the Active Controller.
If control is passed, then it assumes the address specified by the cards switch setting.
However, the hpib_bus_status routine always returns the correct bus address.

Effects of Resetting (via io_reset)

For an HP-IB interface on a Series 500 computer, resetting involves clearing REN, pulsing
its Interface Clear line (IFC), and resetting REN; for a GPIO interface the Peripheral
Reset line (PRESET) is pulsed. The routine also causes the interface to self-test. If it
fails its test, the routine returns a —1; if the interface successfully resets and completes
its self-test, the routine returns a 0.

Entity Identifiers

On the Series 500, an entity identifier for a file used by a DIL routine is equivalent to
an HP-UX file descriptor. This means that you can obtain entity identifiers for your
interface files with the system routines dup, fentl, and pipe, in addition to open.

108 Series 500 Dependencies

Restrictions Using the DIL Routines

This section presents some restrictions on using the DIL routines on the Series 500
computers. These restrictions are organized under the routine to which they apply. The
routines are presented in alphabetical order.

hpib_bus_status

A bug in the HP 27110A HP-IB interface card can cause an erroneous report of the state
of the SRQ line. There is a small window when hptb_bus_status(eid, 1) reports that the
line is clear when in reality it is set. Since the routine will never report that the line
is set when in reality it is clear, OR-ing together successive readings of the state of the
SRQ line minimizes the possibility of error. OR-ing five successive readings gives you a
result that is approximately 99% accurate. This bug has been fixed in the HP 27110B
card.

On the Series 500, it is possible to look at the SRQ line with hpib_bus_status and not see
it asserted when it actually is. Because of this, you should check the SRQ line at least 5
times before determining whether or not it is asserted. If it is seen true any one of the
5 times, then the line is asserted (it will never be seen asserted when it actually isn’t).
For example:

#include <fcntl.h>
main()
{

int eid, value, 1i;

eid = open("/dev/raw_hpib", O_RDWR);
value = O;
for (i=0; i<5; ++i)
value = hpib_bus_status(eid,1) + value;
/*Notice that if SRQ is ever seen true, then "value" will be
greater than 0%/

if (value>0)

service_routine(); /*SRQ is asserted; service the request*/
else

printf ("No one is requesting service");

Series 500 Dependencies 109

hpib_card_ppoll_resp

The HP 27110A/B HP-IB interface cards do not support programmatic configuration
of their parallel poll response. The parallel poll response is set and enabled by the
hpib_card_ppoll_resp routine. The default sense of the HP 27110A /B interface’s parallel
poll response is always 1. If the interface’s address is 7 or less, the address determines the
response’s line number as follows: given that the bus data lines are labeled DO through
D7, they correspond to addresses 7 through 0, respectively. For instance, the parallel
poll response of an HP 27110A /B with address 0 is a 1 on data line D7. If its address is
7 then it responds with a 1 on line DO. If the address of the interface is greater than 7,
there is no default line for it to respond on. Therefore, unless its response is configured
remotely by the Active Controller, it can not respond at all.

If you want the interface to respond with a sense of 0 or on a different line than HP
27110A /B defaults to, you must configure it remotely with the Active Controller

hpib_rqgst_srvce

This routine provides the capability of configuring an HP-IB interface’s 8-bit response to
serial polls. However, the HP 27110A /B HP-IB interface only allows you to set bit 6 of
the response; all the other bits are cleared. If you set bit 6 of the serial response (where
the response bits are labeled bit D0-D7) and the interface is not the Active Controller,
then the SRQ line is asserted. The line remains asserted until the interface is serially
polled or you clear bit 6 with hpib_rgst_srvce. If you set bit 6 and the interface is the
Active Controller, the interface remembers the response and asserts SRQ when control
passes to another controller.

Since you can only control bit 6 of the serial poll response, only the bit corresponding to
64 in decimal of hpib_rgst_sruce’s response argument has affect. Thus:

hpib_rqst_srvce(eid, 64);

sets bit 6 of the interface’s serial poll response and:

hpib_rqst_srvce(eid, 0);

clears it.

110 Series 500 Dependencies

hpib_send_cmnd

The HP 27110A/B HP-IB and Series 550 Internal HP-IB interface cards send all the
commands you specify with this routine, with odd parity. To do this, it overwrites the
most significant bit of each command byte with a parity bit. This should not cause a
problem since all HP-IB commands use only 7 bits, and the eighth is free for use as
parity.

hpib_status_wait

The hpib_status_wait routine, when processing, holds off all other activity on that inter-
face card. Other processes attempting to access the interface card will hang. It is strongly
recommended that a non-zero timeout be in effect before calling hpib_status_wast.

hpib_wait_on_ppoll

The hpib_wait_on_ppoll routine, also, holds off all other activity on the interface card.
Again, other processes attempting to access the interface card will hang and it is recom-
mended that a non-zero timeout be in effect before calling hpib_wait_on_ppoll.

io_get_term_reason

Normally, this routine can indicate multiple reasons for a read termination by the values
of the least significant three bits in its returned value:

Set Bit | Decimal Meaning
(none) 0 Abnormal terminaion.
Bit 0 1 Number of bytes requested were read.
Bit 1 2 Specified termination character was detected.
Bit 2 4 Device;imposed termination condition was detected (e.g., EOI on
HP-IB).

For example, if i0_get_term_reason returns a 7 you know that the read terminated for
three reasons: the byte count was reached, a termination character was seen, and a
termination condition was detected.

The io_get_term_reason routine on the Series 500 has a limitation when a read is termi-
nated for multiple reasons; it can only indicate one termination cause at a time. If a read
terminates for multiple reasons, the value returned by to_get_term_reason is the value of
the highest numbered reason. Thus, on the Series 500 the routine can only return a 0,
1, 2, or 4 (or a —1 if the routine itself fails). For instance, if a 4 is returned, you know
that a device-imposed termination condition occurred, but you do not know if the byte
count was reached or if a termination character was read as well.

Series 500 Dependencies 111

On the Series 500, if you set a termination character for a GPIO interface that is using
a 16-bit data path, only an 8-bit termination character is set (the least significant byte
of the match value). During read operations, if the termination character is then seen as
the lower byte in a data transfer, everything works correctly; both the upper and lower
bytes of the transfer are received and the count of received bytes is incremented by two.
However, if the termination character is seen as the upper byte of the transfer, both the
upper and lower bytes are still read. The count of received bytes is only incremented by
one though, indicating that the termination character was in the upper byte.

io_timeout_ctl

This routine allows you to set a time limit for I/O operations on an entity identifier
associated with an interface file. The timeout value that you specify is a 32-bit long
integer that indicates the length of the timeout in microseconds. However, the resolution
of the effective timeout is system-dependent. On the Series 500 the timeout is rounded up
to the nearest 10-millisecond boundary. For example, if you specify a timeout of 155000
microseconds (155 milliseconds), the effective timeout is rounded up to 160 milliseconds.

When an I/O operation is aborted due to a timeout, errno is set to EIO. However, EIO
is defined as I/O error and can be set by many other error conditions. On the Series
500, you can obtain more information by looking at the external HP-UX variable errinfo.
When a timeout occurs, errinfo is set to the value 56.

io_speed_ctl

The Series 500 always provides DMA for the fastest possible I/O speeds. Therefore,
to_speed_ctl has no affect on the Series 500.

io_width_ctl

Although this routine is designed to be used on any interface, the path width that you
specify with it must be supported on the particular interface. On the Series 500, only the
GPIO interface allows you to change data path widths and only two widths are currently
supported: 8 bits and 16 bits. The routine returns an error if you access a GPIO interface
with any width besides 8 or 16 bits or if you access any other interface with a width other
than 8 bits.

112 Series 500 Dependencies

Performance Tips

The performance of your I/O process on a Series 500 that uses DIL routines can be
improved by following the basic guidelines listed below.

e Use buffers to hold data that you write to an interface. Transferring data that you
have previously stored in a buffer is faster than if you specify the data string when
you invoke the transfer. For example, the data transfer performed by the code:

int eid; /*entity identifier descriptorx/
char *buffer; /*buffer to hold datax/

eid = open("/dev/raw_hpib", O_RDWR);

buffer = "data message"; /*store data in bufferx/
write(eid, buffer, 12); /*transfer datax/

is faster than the data transfer performed by the code:
int eid; /*entity identifier descriptor*/

eid = open("/dev/raw_hpib", O_RDWR);
write(eid, "data message", 12); /*transfer data*/

e Make the number of bytes transferred divisible by the number of bytes per word
that your system supports. Data transfers, both reading and writing, are faster
if the number of bytes involved in the transfer falls on a word boundary. The
Series 500 supports 4-byte words; therefore, the following code has an optimized
performance because the byte counts are divisible by 4.

write(eid, bufferl, 12);
read(eid, buffer2, 40);

e If you are the super-user, you can use the memlck(2) routine (see HP-UX Reference:
Section 2) to lock your I/O process’s address space into physical memory. Data
transfer times are reduced because they are carried out directly from the user area
and do not have to be first moved to the system area. However, you cannot lock
an arbitrarily large amount of space for your process since there is a point at which
your system’s performance will begin to degrade.

e For processes running with an effective user ID of super-user, it is possible to lock
the process in memory with plock(2) (see HP-UX Reference). This lock is different
than memlck (as mentioned above). plock(2) informs the system that the process
code, data, or both are not to be swapped out of memory. The following example
illustrates the use of plock:

Series 500 Dependencies 113

#include <sys/lock.h>
main()

{
int plock();
plock(PROCLOCK) ; /* lock text and data semnets into memory*/

plock(UNLOCK); /# unlock my process*/
}

e Use auto-addressing for all read and write operations. (See the section “Setting
up Talkers and Listeners” of Chapter 3, “Controlling the HP-IB Interface,” for
details.)

e Increasing the system priority of an I/O process can be accomplished by using
rtprio(2). riprio requires the process to be running with an effective user ID of
super-user. The real time priorities available with rtprio are non-degrading pri-
orities. Caution must be observed when using real time priorities since one can
increase their priority above system processes. This may cause undesirable behav-
ior. For example, requesting a real time priority in the range of 0-63 places your
process in a higher priority than the DIL interrupt handler system process. This
means that interrupts could be lost if there is not sufficient CPU resource available.
The following example places the calling process at the lowest (least important) real
time priority:

#include <sys/rtprio.h>
main ()
{

int rtprio(), my_proc;

my_proc = 0; /* a zero process # tells rtprio to refer to the */
/* calling process. */
rtprio(my_proc, 127); /* priority 127 = lowest real time priority*/

rtprio(my_proc, RTPRIO_RTOFF); /* turn off real time priority*/

114 Series 500 Dependencies

Series 200/300 Dependencies

The following information, specific to Series 200/300 computers, is discussed in this
appendix:

the location of the DIL routines

information about creating the special file for the interfaces that you plan to access
with DIL routines

the relationship between entity identifiers and file descriptors
the restrictions imposed by the hardware on using the DIL routines
information about how you can improve the performance of your I/O process

information on how to simulate i/o interrupt programming on Series 200/300 com-
puters.

Location of the DIL Routines

The DIL routines that provide direct control of your computer’s interfaces are contained
in the library /usr/lib/libdvio.a. Some of these routines are general-purpose and can be
used with any interface supported by the library, while others provide control of specific
interfaces. The Device I/O Library (DIL) currently supports the HP-IB and GPIO
interfaces.

Series 200/300 Dependencies 115

Linking DIL Routines

The libdvio.a library redefines the read, write, fentl, dup, and toctl entry points. For DIL
to work properly, the DIL library must be linked before libc.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that allows communication with a variety of devices. On Series 200/300 computers, the
interface sends and receives up to 16 bits of data with a choice of several handshake
methods. External interrupt and user-definable signal lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

16 parallel data input lines

16 parallel data output lines
4 handshake lines

4 special-purpose lines.

Data Lines

There are 32 data lines: 16 for input and 16 for output. These lines normally use negative

" logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates
true with the interface’s Option Switches. Refer to your GPIO interface manual to see
how tr do this.

116 Series 200/300 Dependencies

Handshake Lines

Although four lines fall into this group, only three are used for controlling the transfer
of data:

e PCTL — Peripheral ConTroL
e PFLG — Peripheral FLaG
e 1/O — Input/Output.

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used
to signal the peripheral’s readiness to continue the transfer process. The Input/Output
(I/0) line is used to indicate direction of data flow.

Special-Purpose Lines

Four lines are available for any purpose you desire; two are controlled by the peripheral
device and sensed by the computer, and two are controlled by the computer and sensed
by the peripheral.

Data Handshake Methods

There are two handshake methods using PCTL and PFLG to synchronize data transfers:
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. The full-mode handshake should be used if the peripheral does not meet the
pulse-mode timing requirements. Refer to the GPIO interface’s documentation for a
description of these handshake methods.

Series 200/300 Dependencies 117

Data-In Clock Source

Ensuring that data is valid when read by the receiving device differs slightly depending
on what direction the data is flowing. When writing data out from the computer the
interface generally holds data valid while PCTL is in the asserted state, the peripheral
must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data valid until
it can signal that the data is valid or until the data is read by the computer. The
peripheral signals that the data is valid using the PFLG line. This clocks the data into
the interface’s Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the
FLAG switches on the interface card. Refer to the card’s installation manual to find out
how to do this.

118 Series 200/300 Dependencies

Creating the Interface Special File

HP-UX treats I/O to an interface the same way it treats I/O to any input/output device:
the interface must have a special file. The general process of creating special files is
described in the HP-UX System Administrator Manual for your system. The following

discussion points out specific requirements needed for a special file associated with an
interface.

Creating the Special File

Special files are created using the mknod(1M) command; you must be super-user to
execute this command. When used to create an interface special file, mknod has the
following syntax:

mknod pathname ¢ major_number minor_number

The ¢ parameter to mknod tells the system to create the file as a character special file.
Descriptions of the remaining parameters to the mknod command follow.

pathname

The pathname parameter specifies the name to be given to the newly created interface
special file. The pathname identifies the interface itself, not a peripheral on the inter-
face. Special files are usually kept in the directory /dev. This is basically an HP-UX

convention; some commands expect to find special files in the /dev directory and fail if
they are not there.

major_number

The major number specifies which device driver to use with the interface. The following
table shows the major number used for each supported interface:

Major Number Interface
21 HP-IB Interface
22 GPIO Interface

Series 200/300 Dependencies 119

minor_number
The minor number parameter tells mknod the location of the interface. The minor number
has the following syntax:

0xScAduV
where:

0x specifies that the characters which follow represent hexadecimal values. These
two characters (zero and x) are entered as shown.

Sc a two-digit hexadecimal value specifying the select code of the interface card.
The select code is determined by switch settings on the HP-IB interface card.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines
with the interface, the special file should be created as a raw special file: the
Ad component of the minor number should be 31 (1f in hexadecimal). If Ad is
less than 31, then the file is not created as a raw file; it is created as an auto-
addressable file. (In this case, Ad specifies the bus address of the device for which
the special file is created.) If only one device can be connected to the interface
(e.g., the GPIO interface), the component of the minor number is ignored.

U a single-digit hexadecimal value specifying a secondary address. This component
of the minor number is ignored when the special file you are creating is for an
interface; you should set it to 0.

v a single-digit hexadecimal value specifying a secondary address, such as the
volume number in a multi-volume drive. This component of the minor number
is ignored also; you should set it to 0.

Creating an HP-IB Interface File
Suppose you wish to create an HP-IB interface special file with the following character-
istics:

the pathname is /dev/raw_hpib

because the interface is HP-IB, the major number is 21

the card’s select code switches are set to select code 2—i.e., the Sc component of
the minor number is 02

the special file must be a raw special file in order to use DIL library routines with
it; therefore, the Ad portion of the minor number must be 31 (1f in hexadecimal).

120 Series 200/300 Dependencies

Based on this information, you would use mknod as follows to create the special file for
the interface:

mknod /dev/raw_hpib ¢ 21 0x021f00

To further illustrate the use of mknod, suppose you have two HP-IB interfaces (ma-
jor number = 21) installed in slots 2 and 3. The following mknod commands set up
a special file for the interface at select code 02 (/dev/raw_hpib1) and select code 03
(/dev/raw_hpib2):

mknod /dev/raw_hpibl ¢ 21 0x021£00

mknod /dev/raw_hpib2 c¢ 21 0x031£00

Creating a GPIO Interface File

Now suppose you have a GPIO interface that you want to access with the DIL routines
on the same computer.

Because the GPIO interface is does not use a bus architecture, the usual bus address
(Ad) and secondary address (UV) components of mknod’s minor number are ignored, and
you need only determine the select code value.

Assuming that you have set the interface select code switches to 04 on the Series 200/300
GPIO card, the following mknod command will create the appropriate special file, named

/dev/raw_gpio:
mknod /dev/raw_gpio c¢ 22 0x040000

Series 200/300 Dependencies 121

Effects of Resetting (via io_reset)

For an HP-IB interface on Series 200/300 computers, resetting involves clearing REN,
pulsing its Interface Clear line (IFC), and resetting REN; for a GPIO interface the
Peripheral Reset line (PRESET) is pulsed. If it fails, the routine returns a —1; otherwise
the routine returns a 0.

Entity Identifiers

On Series 200/300 computers, an entity identifier for a file used by a DIL routine is
equivalent to an HP-UX file descriptor. This means that you can obtain entity identifiers
for your interface files with the system routines dup, fentl, and creat, in addition to open.

122 Series 200/300 Dependencies

Restrictions Using the DIL Routines

This section presents some restrictions on using the DIL routines on Series 200/300
computers. These restrictions are organized under the routine to which they apply. The
routines are presented in alphabetical order.

hpib_io

After calling hpib_io, the effects of any previous calls to hpib_eoi_ctl and io0_eol_ctl are
nullified. In other words, EOI mode is disabled for the specified eid and the read termi-
nation pattern is disabled. Therefore, if you want these to remain in effect after calling
hpib_io, you must set them again with hpib_eoi_ctl and to_eol_ctl.

hpib_send_cmnd

The Series 200/300 HP-IB interface card uses odd parity when you send commands via
hpib_send_cmd. To do this, it overwrites the most-significant bit of each command byte
with a parity bit. This should not cause a problem since all HP-IB commands use only
7 bits, and the eighth is free for use as a parity bit.

hpib_status

The hpib_status routine cannot sense lines being driven (output) by the interface. In
other words, listeners cannot senses NDAC and non-controllers cannot sense SRQ.
io_interrupt_ctl

The zo_interrupt_ctl routine is not supported on Series 200/300 computers.

io_on_interrupt

The 2o_on_interrupt routine is not supported on Series 200/300 computers.

Series 200/300 Dependencies 123

io_reset

When an HP-IB interface is reset via io_reset, the interrupt mask is set to 0, the parallel
poll response is set to 0, the serial poll response is set to 0, the HP-IB address is assigned,
the IFC line is pulsed (if system controller), the card is put on line, and REN is set (if
system controller).

When a GPIO interface is reset, the peripheral request line is pulled low, the PTCL line
is placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out
lines are all cleared. The interrupt enable bit is also cleared.

io_speed_ctl

If the 1/O transfer speed is set less than 7Kb/sec (i.e., the speed parameter is less than
7), then the interface will use interrupt transfer mode. If the transfer speed is set greater
than 140Kb/sec (speed > 140), then the system chooses the fastest mode possible. If the
speed is between 7Kb and 140Kb/sec (7Kb < speed < 140), then DMA transfer mode is
used.

IMPORTANT

If you are using pattern termination, via to_eol_ctl, then you’ll
always get interrupt mode, regardless of speed.

io_timeout_ctl

This routine allows you to set a time limit for I/O operations on an entity identifier
associated with an interface file. The timeout value that you specify is a 32-bit long
integer that indicates the length of the timeout in microseconds. However, the resolution
of the effective timeout is system-dependent. On the Series 200/300 computers the
timeout is rounded up to the nearest 20-millisecond boundary. For example, if you
specify a timeout of 150000 microseconds (150 milliseconds), the effective timeout is
rounded up to 160 milliseconds.

124 Series 200/300 Dependencies

Performance Tips

The performance of your I/O process on a Series 200/300 computer using DIL routines
can be improved by following the guidelines below:

e Use the io_burst routine for small data transfers. (“Small” on a Series 300 Model
310 is less than 1Kb; “small” on a Series 300 Model 320 is less than 4Kb.)

e If you are the super-user, you can use the memlck(2) routine (see HP-UX Reference:
Section 2) to lock your I/O process’s address space into physical memory. Data
transfer times are reduced because they are carried out directly from the user area
and do not have to be first moved to the system area. However, you cannot lock
an arbitrarily large amount of space for your process since there is a point at which
your system’s performance will begin to degrade.

e For processes running with an effective user ID of super-user, it is possible to lock
the process in memory with plock(2) (see HP-UX Reference). This lock is different
than memlck (as mentioned above). plock(2) informs the system that the process
code, data, or both are not to be swapped out of memory. The following example
illustrates the use of plock:

#include <sys/lock.h>
main()
{
int plock();
plock(PROCLOCK) ; /# lock text and data semnets into memory+*/

plock(UNLOCK); /* unlock my processx/
}

e Use auto-addressing for all read and write operations. (See the section “Setting
up Talkers and Listeners” of Chapter 3, “Controlling the HP-IB Interface,” for
details.)

o Increasing the system priority of an I/O process can be accomplished by using
rtprio(2). rtprio requires the process to be running with an effective user ID of
super-user. The real time priorities available with rtprio are non-degrading pri-
orities. Caution must be observed when using real time priorities since one can
increase their priority above system processes. This may cause undesirable behav-
ior. For example, requesting a real time priority in the range of 0-63 places your
process in a higher priority than the DIL interrupt handler system process. This
means that interrupts could be lost if there is not sufficient CPU resource available.
The following example places the calling process at the lowest (least important) real
time priority: :

Series 200/300 Dependencies 125

#include <sys/rtprio.h>
main()
{

int rtprio(), my_proc;
my_proc = 0; /* a zero process # tells rtprio to refer to the */

/* calling process. */
rtprio(my_proc, 127); /* priority 127 = lowest real time priority*/

rtprio(my_proc, RTPRIO_RTOFF); /* turn off real time priority*/

Simulating Interrupts for the HP-IB Interface

Although Series 200 HP-UX does not allow you to set interrupts, the use of four system
routines fork(2), signal(2), kill(2), and getpid(2) allows you to simulate their effect. The
purpose of this section is not to describe how these routines work, but merely to present a
specific application that uses them. Refer to HP-UX Reference: Section 2 for a complete
description of the four system routines.

You can simulate setting an interrupt by creating a child process that waits for the
interrupt condition. When that condition occurs, the child process sends a signal back
to the parent process and then terminates. While the child process is waiting for the
specified condition, the parent process can continue executing until it receives the signal
from the child, at which time it jumps to a specified service routine.

The code below illustrates how you can use fork to spawn a child process that waits for
a particular bus condition. Here the child process calls Apib_status_wait to wait until the
SRQ line is asserted. Since no timeout has been set for the interface file’s entity identifier,
there is no limit to how long the child process waits for the specified condition. When
the SRQ line is seen, the child process sends the signal SIGINT to the parent process
using kull. Since kill requires the process ID of the process that is to receive the signal,
getpid is called. Getpid returns the process ID of the calling process’s parent process.
The child process terminates after the signal is sent. Signal allows you to specify in the
parent process what signal it is to look for and what routine it is to execute when the
signal is received. The code for service_routine is not shown here. After service_routine
is executed, the parent process resumes execution at the point where it was interrupted.

126 Series 200/300 Dependencies

#include <signal.h> /*defines various signals/
main()
{

int eid;

eid = open("/dev/raw_hpib", O_RDWR); /*open interface filex/

/*create a new process that will look for service requests*/
if (fork() == 0) /*this is the child process*/
{
hpib_status_wait(eid, 1); /*note that no timeout is set--it
will wait indefinitely for SRQ*/
kill(getpid(), SIGINT);
}

else /*this is the parent*/
{

signal (SIGINT, service_routine);

/*parent process can now do other things while the child waits
for SRQ. When the parent receives the SIGINT signal the function
service_routine will be executed.*/

}
}

Some additional points about simulating interrupts in this way are:

e The code for the child process can be distinguished from that of the parent process
by the value returned by fork. Fork returns a 0 in the child process and the process

ID of the child process to the parent process.

e The include file signal.h must appear near the beginning of your program if
program calls signal.

the

o If the interface file is opened before the fork call, the child process inherits the file’s

entity identifier. If fork is called before the interface file is opened, then both
child and the parent processes must open it.

Series 200/300 Dependencies

the

127

Simulating Interrupts on the GPIO Interface

Chapter 8: Controlling the HP-IB Interface discusses the use of four system routines
fork, signal, kill and getpid to simulate the effect of an interrupt when a certain condition
occurs on an HP-IB interface. This same technique can be used to simulate an interrupt
given a certain condition on a GPIO interface, such as a certain value of the STI0 and
STI1 special purpose status lines.

Fork is used to spawn a child process that waits for a specified condition to occur, leaving
the parent free to continue executing. When the condition occurs, the child process sends
a signal via kel to the parent which then implements whatever service routine is required.
The parent process uses signal to recognize when the signal is sent and the child process
uses getpid to find out the process ID of the parent so that it knows where to send the
signal. The code below illustrates generating an interrupt when a peripheral connected
to the GPIO interface asserts STIO0.

128 Series 200/300 Dependencies

#include <signal.h> /*defines various signals*/
main()

{
int eid; : /*entity identifier*/
eid = open("/dev/raw_gpio", O_RDWR); /*open GPIO interface file*/
/*create a child process that looks for assertion of STIOx/
if (fork() == 0) /*this is the child process*/
{

wait_on_STIO(eid); /*call a routine that waits for STIO*/

kill(getpid(), SIGINT); /*send signal to parent process*/

else /*this is the parent process*/
{

8ignal (SIGINT, service_routine());

/*parent process can now do other things while the child waits for
STIO. When the parent receives the signal SIGINT, the function
‘‘service_routine’’ will be executed*/ } } /*end of mainx/

/*"wait_on_STIO" repeatedly calls gpio_get_status until it sees that

STIO is asserted and then it returns to the calling routinex*/
wait_on_STIO(eid)
int eid;
{
int value; /*Variable to hold value of STIO and STI1*/
int flag = 0; /*Boolean flag initialized to O (false)*/
while (flag == 0)
{
value = gpio_get_status(eid); /*read STIO and STI1 lines*/
if (value & 1) /*clear all but the first bit*/
flag = 1; /*when STIO is asserted, set flag to 1%/
}
}

Series 200/300 Dependencies

129

130 Series 200/300 Dependencies

Integral PC Dependencies

The following information, specific to the Integral PC, is discussed in this appendix:

location of the DIL routines
the GPIO interface

creating an interface special file
interrupts

controlling the HP-IB interface
non-standard DIL routines

restrictions using the DIL routines

Integral PC Dependencies

131

Location of the DIL Routines

The DIL routines are supplied in the libdvio.a library on the DIL disc. To use this
library with your compiler, move the libdvio.a library, along with the include files, to the
appropriate folder for your compiler, usually /usr/lib.

The GPIO Interface

The HP 82923A GPIO interface used on the Integral PC is different in a number of key
areas from the GPIO used on Series 200/300 and 500 computers. Refer to the HP 829234
GPIO Interface Owner’s Manual for a complete description of the hardware. Note that
the HP 82923A GPIO interface has the following features:

e parameters are set using DIL routines, not switches; these DIL routines are non-
standard DIL routines and are only provided on the Integral PC

four 8-bit bidirectional data ports (which can be configured in 8-, 16-, or 32-bit
ports)

2 handshaking lines for each port

1 peripheral interrupt line (PIR) for each port
1 reset line (RES) for each port

1 status line for each port

e 1 data direction line (I/O) for each port.

The HP 82923A GPIO interface has six handshake types. The handshake type is selected
using the gpio_handshake_ctl routine.

132 Integral PC Dependencies

Creating an Interface Special File

Two utility programs, load_hpib and load_gpio, must be used to create the appropriate
special files for your HP-IB and GPIO interfaces, respectively. These routines create a
special (device) file for each HP-IB or GPIO interface found, and load the appropriate
DIL driver. The data files containing the DIL drivers, dhptb.data and dgpio.data, must
be in the search path defined by your PATH variable when the load utility is invoked.
For more information on load_hpib and load_gpio refer to the load_hpib.1 and load_gpio.1
files provided in the doc folder on the DIL disc.

GPIO Interface Files
The special files for GPIO interfaces have the following form:

/dev/gpio GPIO_port. I0_port

where GPIO_port is the letter designation for GPIO ports a, b, ¢, or d; and IO_port is
a one- or two-character designation (a, b, a1, a2,...) for the Integral PC I/O port. Note
that the top port on the Integral PC is port a, the bottom port is port b, while the bus
expander ports have a combination letter and number designation as shown below.

HP-IB Interface Files
The special (device) files for HP-IB interfaces have two forms:

/dev/dhpib.i for the built-in HP-IB interface

/dev/dhpib.IO_port for the plug-in HP-IB interface, where IO_port is the Integral PC
I/0O port designator (a, b, a1, a2,...) described above.

Unloading the DIL Drivers

Two additional utilities, unload_hpib and unload_gpio, are provided on the DIL disc.
These utilities are used to remove both the DIL drivers and the special files created by
load_hpib and load_gpio. For more information on using these utility programs, refer to
load_hptb.1 and load_gpio.1 in the doc folder on the DIL disc.

Integral PC Dependencies 133

Interrupts

Unlike the Series 500, the Integral PC supports only one interrupt condition, PIR, mean-
ing that the Peripheral Interface Request line has been asserted. For hardware restrictions
on using the HP-IB interrupts on the Integral PC, refer to the i0_on_interrupt.3d file in
the doc folder on the DIL disc.

Controlling the HP-IB Interface

Limitations on the HP-IB Interface
The use of DIL routines with the built-in HP-IB interface has the following limitations:

e The user must not pass control when using the DIL routines with the built-in
HP-IB interface. The built-in HP-IB interface must always be the System Con-
troller/Active Controller.

e Loading the DIL drivers and then opening the built-in HP-IB interface special file
prevents the operating system from accessing printers, plotters, and mass-storage
drives on the built-in HP-IB interface until the built-in HP-IB interface special file
is closed. This means that any operation using a printer, plotter, or mass-storage
device on the built-in HP-IB interface will be suspended until the built-in HP-
IB device file is closed. This limitation can result in a deadlock situation if youv.
program both uses the DIL routines with the built-in HP-IB interface and attempts
to use a printer, plotter, or mass-storage drive on the built-in HP-IB interface.

To avoid these limitations, we recommend that you use the HP-IB DIL routines only
with the HP 82998 A HP-IB interface.

The Computer as a Non-Active Controller

The built-in HP-IB interface must be in the system controller, active controller state to
use the DIL routines on the Integral PC.

134 Integral PC Dependencies

Non-Standard DIL Routines

The Integral PC DIL library supports several routines that are not part of the DIL
standard. This section describes these routines.

General-Purpose Routines

In addition to the standard DIL routines, the Integral PC DIL library supports the
following two routines:

10_lock Locks the interface port to the calling process until the s0_unlock routine
is called.
to_unlock Used by the calling process to remove the lock created by zo_lock.

For details on using these routines, refer to the z0_lock.3d file located in the doc folder
on the DIL disc supplied with your Integral PC.

Non-Standard HP-IB Routines

In addition to the standard DIL routines for controlling the HP-IB interface, the Integral
PC supports the following non-standard DIL routine:

1o_burst(eid, flag) Used to control the high-speed HP-IB mode. If flag = 0, high-
speed mode is turned off; otherwise it is turned on.

For information on the io_burst routine, refer to the to_burst.3d file in the doc folder on
the DIL disc.

Non-Standard GPIO Routines

The following non-standard DIL routines have been added to control the HP 82923A
GPIO interface:

e gpio_handshake_ctl
o gpio_normalize_ctl

o gpio_delay_time_ctl

A description of these routines is provided in the doc folder on the DIL disc.

Integral PC Dependencies 135

Restrictions Using the DIL Routines

This section presents some restrictions on using DIL routines with the Integral PC com-
puter. Restrictions on using system routines, such as open(2), are also discussed here.
These restrictions are organized under the routine to which they apply; the routines are
presented in alphabetical order.

hpib_bus_status

On the Integral PC, it is not possible to determine the status of the NDAC and SRQ
lines under certain conditions. This can result in incorrect results when using the
hpib_bus_status routine to determine the status of these two lines. If the HP-IB in-
terface is talk-addressed, the SRQ status is incorrect; if it is listen-addressed, the NDAC
status is incorrect.

hpib_card_ppoll_resp

The parallel poll response of the HP 82998 A HP-IB interface can not be remotely pro-
grammed. Instead, use the hpib_card_ppoll_resp routine.

hpib_ppoll_resp_cti

The “sense” bit of the flag value for the hpib_ppoll_resp_ctl routine determines whether
a zero or non-zero “response value” means that the computer requires service. If the “s”
bit is a 0, then a zero response value means service is needed.

io_eol_ctl

On the Integral PC, a read operation from a GPIO interface will terminate only when a
specified number of read operations have been performed, or when the read termination
pattern has been found.

The Integral PC does not support different read termination patterns on multiple opens
to the same eid.

io_reset

When used to reset a GPIO interface, the io_reset routine will pulse the RES (reset) line
only on the GPIO controller port specified by the eid.

136 Integral PC Dependencies

io_speed_ctl

GPIO

Setting the speed on a GPIO interface determines the transfer mode used by the driver:
either interrupt-driven, flag-driven handshake, or “fast handshake” mode. (Note that
the driver’s fast handshake mode is not the same as the fast handshake mode described
in the HP 829234 GPIO Owner’s Manual; it refers to a flag-driven mode where the EOL
and timeout settings are ignored to achieve a faster transfer rate.)

DMA transfers are not available on the Integral PC.

Interrupt-Driven Transfer Mode
Two transfer modes exist between the Integral PC and the HP 82923A GPIO interface:
flag-driven mode and interrupt-driven mode. To select the interrupt-driven mode, use
10_speed_ctl to set the speed to 0.

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause
the user’s process to go to sleep until an interrupt occurs at the completion of the read
or write.

HP-IB

The DIL routines on the Integral PC support two HP-IB transfer modes: flag-driven
mode and high-speed transfer mode. The default mode is the flag-driven mode until it
is set to the high-speed transfer mode using the ¢o_burst routine.

In the high-speed transfer mode, the driver talks directly to the interface without going
through the operating system. For more information on zo_burst, refer to the documen-
tation provided in the 7o_burst.3d file in the doc folder on the DIL disc.

io_timeout_ctl

This routine allows you to set a time limit for operations carried out by DIL routines on
a specified entity identifier. The timeout value you specify is a 32-bit long integer that
indicates the length of the timeout in microseconds (u-secs). However, the resolution of
the effective timeout is system-dependent. On the Integral PC, the timeout resolution on
both the HP 82923A GPIO interface and the HP 82998 A HP-IB interface is 1 millisecond
(msec).

For example, suppose you specify a timeout of 99 999 microseconds (99.999 milliseconds).
Then the effective timeout is rounded up to 100 milliseconds.

Integral PC Dependencies 137

io_width_cti

The data path width for the HP-IB interface is always 8 bits on the Integral PC. However,
the four 8-bit ports on the HP 82923A GPIO interface can be combined to form 8-, 16-,
or 32-bit data paths.

For 16- or 32-bit ports, only one port acts as a controller; that port’s e:d is used in the
to_width_ctl routine. The allowable data path widths for each port are shown in the

following table.

GPIO Data Path Widths

Data Path | Controller | Data
Width Port Ports*

8-bit a a

b b

c c

d d
16-bit b ba

d dc
32-bit b badc

* Data ports are listed in order, left to right, from most-significant byte to least-significant
byte.

Combinations of 8- and 16-bit or two 16-bit ports are also allowed on the same GPIO
interface. 24-bit ports are not allowed.

open(2)

When opening the special file for an interface, you must use the special file name for
the specific GPIO or HP-IB interface created by load_hpib or load_gpio. Note that each
GPIO port has a separate special file name. For details on interface special file names,
see the previous section “Creating an Interface Special File.”

read(2) and write(2)

During a read or write operation to a 16- or 32-bit GPIO port, the data must start on
a word boundary. This restriction applies only to the GPIO interface.

138 Integral PC Dependencies

Series 800 Model 840 Dependencies D

The following information, specific to the Device I/O Library (DIL) on Series 800 Model
840 computers, is discussed in this appendix:

e compiling programs that use DIL routines

accessing the special files for the interfaces that you plan to use with DIL

creating special files for the interfaces that you plan to use with DIL
DIL routines affected by the Series 800 Model 840 hardware
DIL support of HP-IB auto-addressed files

e improving performance of DIL programs

Series 800 Model 840 Dependencies 139

Compiling Programs That Use DIL

The DIL routines are located in the library /usr/lib/libdvio.a. Thus, programs can be
linked as:

cc test.c -ldvio

Accessing the Interface Special Files

The Series 800 Model 840 kernel is shipped with a default I/O configuration. This means
a default set of special files is made for you. For example, the /dev/hpib directory contains
special files created for use with HP-IB instruments connected to the HP 27110B HP-IB
interface. The special file /dev/gpio0 is created for use with instruments or peripherals
connected to the HP27114A Asynchronous FIFO interface (AFI). The insf command is
used to install these special files all at one time. Mknod could also be used to create them
one at a time. For more information on insf and mknod refer to the HP-UX Reference.

Major Numbers

Major numbers map the hardware I/O cards to the software I/O driver for the type
of I/O application the card will be doing. The driver used to talk to the HP-IB card
for instrument I/O is called instr0, and corresponds to major number 21. The HP-IB
card talks to different drivers (which use different major numbers) to do I/O to other
kinds of devices, such as disc drives or printers. All default special files in the /dev/hpib
directory use major number 21. The driver that talks to the AFI card is called gpi00,
and corresponds to major number 22. The /dev/gpio0 special file uses major number 22.

140 Series 800 Model 840 Dependencies

Minor Numbers and Logical Unit Numbers
Drivers use minor numbers to map the hardware I/O cards to their locations in the
Model 840 I/0 backplane. The default I/O configuration shipped with your Model 840
creates special files accessing a subset of the available backplane slots. For the HP-IB
card, two slots are available for instrument I/O, and one slot is available for the AFI
card. Slot information is accessed through the device’s logical unit number. The logical
unit number is mapped into the special file’s minor number. For HP-IB special files, the
HP-IB bus address is also mapped into the minor number.
The minor number syntax for an HP-IB special file is:

0x00LuBa
where Lu is the device’s logical unit number, and Ba is the bus address of the HP-IB
device. Both numbers are in hexadecimal.

The minor number syntax for an AFI special file is:

0x00Lu00
where Lu is the device’s logical unit number in hexadecimal.

For example, a long listing of the special file /dev/hpib/0a16 shows

$ 11 /dev/hpib/0al6
CIW-TW-TW- 1 root root 21 0x000010 Mar 11 15:19 0Oai6

The logical unit number is 0, and bus address 16 is 10 in hexadecimal.

Series 800 Model 840 Dependencies 141

Listing Special Files

The Series 800 Model 840 I/O architecture is based on a hierarchical design. The use of
logical numbers in conjunction with the major and minor number allows the system to
keep track of all the information about the I/O structure. The Issf command, list special

file, is a tool that makes it easy to read information about a special file without decoding
it by hand.

The syntax of Issf is:
1ssf [-f dev_file] path

where path is the pathname of the special file. Lssf uses the major number from the
special file to find the name of the device driver in a file called /etc/devices. If you use
the -f option, Issf looks in dev_file instead of /etc/devices. It then decodes the minor
number, outputs the logical unit number, the device bus address (if there is one), and
the corresponding CIO slot address for the actual card in the Model 840 backplane.

Using the default special file /dev/hpib/0al6 as an example, the following output is
produced:

$ 1ssf /dev/hpib/0al6
instr0 lu O bus address 16 address 8.2.16 /dev/hpib/0al6

where instr0 is the name of the instrument HP-IB driver, the logical unit number is 0,
the HP-IB bus address is 16, and the backplane address of the HP-IB card is §.2.16.
This says that the CIO channel card is in mid-bus address &, and the HP-IB card should
be in slot 2 of that CIO channel. There are 12 CIO slots available, numbered 0-11. The
last digit, in this case 16, is the HP-IB bus address of the device 0al6.

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the CIO channel
at mid-bus address 8. A special file for each possible bus address (0-31) is made for each
card. The special files for the card at slot 2 all have a logical unit number of 0, and the
special files for the card in slot 7 all have a logical unit number of 1.

The default GPIO special file is set up for an AFT card in slot 5 of the CIO channel at
mid-bus address 8, and uses a logical unit number of 0.

For more information on Issf refer to the HP-UX Reference.

142 Series 800 Model 840 Dependencies

Naming Conventions for Interface Special Files

If your Series 800 Model 840 computer was configured correctly, the special files discussed
above will already have been created.

By convention, HP-IB special files reside in the /dev/hpib directory. Also by con-
vention, the default special files for the HP-IB raw bus (a HP-IB card itself) are
named /dev/hpib/X, where X is the bus’s logical unit. Auto-addressed files are named
/dev/hpib/XaY, where X is the logical unit, a stands for an auto-addressed file, and Y is
the file’s associated HP-IB bus address (see the “DIL Support of HP-IB Auto-Addressed
Files” section of this appendix).

The naming convention for the GPIO default special files is /dev/gpioX, where X is the
device’s logical unit.

If you cannot locate the default special files on your system, refer to the next section for
how to create them.

Series 800 Model 840 Dependencies 143

Creating Interface Special Files

If the special files you need for HP-IB or GPIO are not available on your system, you
can use the mksf command to create them. Mksfis a high-level command implemented
for the Series 800 Model 840, that can be used instead of mknod. Like Issf, mksf frees
you from having to know the major number and minor number format. Mksf makes the
special file creation process consistent for all classes of devices. The syntax of mksf is:

mksf -d driver -1 lu other_flags... sfname

where driver is the name of the driver associated with the special file, lu is the file’s
logical unit, and sfname is the name of the special file you wish to create.

Each class of device can have additional class-dependent attributes (such as the bus
address for an HP-IB auto-addressed file).

For HP-IB devices, the driver is instr0. Thus, to create a special file named /dev/bus for
HP-IB lu 1, you use the command:

mksf -d instrO -1 1 /dev/bus
When creating auto-addressed HP-IB special files, you add another option -a to associate

the address with the device. For example, to create an auto-addressed special file called
/dev/plotter, at bus address 7 on HP-IB lu 2, you could type:

mksf -d instr0 -1 2 -a 7 /dev/plotter

For the AFI card, the driver is gpio0. Thus, to create a special file named /dev/afi for
GPIO lu 0, you could use the command:

mksf -d gpioO -1 O /dev/afi

For more information on mksf or mknod, refer to the HP-UX Reference.

144 Series 800 Model 840 Dependencies

Hardware Effects on DIL Routines

The HP-IB card supported on the Series 800 Model 840 is the HP 27110B HP-IB interface;
the GPIO card is the HP 27114A Asynchronous FIFO Interface (AFI).

This section presents some restrictions on using the DIL routines on Series 800 Model
840 computers. These restrictions are organized under the DIL routine to which they
apply. The routines are presented in alphabetical order. A list of errno error names can
be found in section two of the HP-UX Reference. Errno numeric values are defined in
the file /usr/include/sys/errno.h.

hpib_rqst_srvce

The hpib_rgst_srvce routine only permits bit 6 of the serial poll response to be set. If
hpib_rqst_srvce is called with a response having bit 6 set, the interface sends <01000000>
(64 decimal) in response to serial poll; if bit 6 is not set in response, the interface sends
<10000000> (128 decimal). See “The Computer as a Non-Active Controller” in Chapter
3.

io_eol_ctl

The AFI driver does not support pattern matching on reads; all zo_eol_ctl calls return -1
and set errno to EINVAL.

io_reset

When an HP-IB interface is reset via izo_reset, the card’s parallel poll response is set
to 0; its serial poll response is set to 128; its HP-IB address is read off the hardware
switches; and the card is put on-line. Any enabled interrupts are preserved. If the
card is configured as system controller, then Interface Clear (IFC) is pulsed and Remote
Enable (REN) is asserted.

When an AFI interface is reset via 7o_reset, each of the three control output lines is reset
to zero, the incoming Attention Request (ARQ) is disabled, the ARQ flip flop is cleared,
the ARQ enable flip flop and the handshake to the peripheral are disabled, and the FIFO
buffer is flushed out.

Series 800 Model 840 Dependencies 145

io_speed_ctl

The 7o_speed_ctl routine is not supported on Series 800 Model 840 computers; transfer is
always done via DMA.

io_timeout_ctl

On Series 800 Model 840 computers, the timeout you specify via zo_timeout_ctl is rounded
up to the nearest 10-millisecond boundary. For example, if you specify a timeout of
125000 microseconds (125 milliseconds), the effective timeout is rounded up to 130 mil-
liseconds.

DIL functions, read, or write requests that time out, return a value of -1 and set errno
to either ETIMEDOUT or EINTR. If the request can be aborted normally, then errno
is set to ETIMEDOUT . Otherwise, the HP-IB card is reset and EINTR is returned.

io_width_ctl

The only allowable data path width for HP-IB devices is 8. AFI devices support 8-bit
and 16-bit data paths. If you specify any other width, to_width_ctl returns an error
indication.

Return Values for Special Error Conditions

On specific error conditions, the Series 800 Model 840 sets errno values which are dif-
ferent from what is expected from the DIL as documented in the HP-UX Standard. For
example, when any request times out, errno is set to ETIMEDOUT (“connection timed
out”) or instead of setting it to EOQI. Also, upon HP-IB requests that require the interface
to be the active controller or the system controller, set errno to EACCES (“permission
denied”). Requests that are aborted due to system power failure set errno to EINTR
(“interrupted system call”); in addition, your process receives the signal SIGPWR, which
indicates recovery of system power.

146 Series 800 Model 840 Dependencies

DIL Support of HP-IB Auto-Addressed Files

As noted in Chapter 3 in the section called “Setting Up Talkers and Listeners,” one class
of HP-IB special files, known as auto-addressed files, are associated with a given address
on the bus. For read and write requests to these files, addressing is done automatically;
that is, the sequence of talk and listen bus commands is generated for you.

In general, the DIL functions are not defined for auto-addressed files. On the Series
800 Model 840, however, many of them are implemented, but with more device-oriented
actions.

IMPORTANT

The DIL Standard does not currently specify a functional defi-
nition for the support of auto-addressed files. When support for
auto-addressed files becomes part of the DIL Standard, the specific
functionality implemented may differ from the implementation de-
scribed here for the Series 800 Model 840. Please keep this in
mind when developing programs which take advantage of this new
functionality.

The following table shows which DIL functions are supported on auto-addressed files.
Entries in the first<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>