
Device I/O and User Interfacing
HP-UX Concepts and Tutorials

":> .

..

HP Part Number 97089-90052

F/iOW HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,

. or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and repiacement parts can be obtained from your local
Sales and Service Office.

Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and
Software clause in DAR 7-104.9(a).

Copyright 1980,1984, AT&T, Inc.

Copyright 1979, 1980, 1983, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University

of California.

ii

FlijiW. HEWLETT
~~ PACKARD Customer Note

Hewlett-Packard is in the process of changing the color of our documentation binders. In order
to accomplish this changeover we are placing two spine inserts with this manual. Please use the
insert that matches the binders you receive.

Hewlett-Packard Company. 3404 East Harmony Road. Fort Collins, Colorado 80525

Printed in U.S.A.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

September 1986 ... Edition 1

iii

Table of Contents

Interfacing Concepts
Differences Between Computers ~ ; .. 1
DIL Tutorial Contents. .. 2
The DIL Interfacing Routines .. 3

Linking the DIL Routines .. 3
Calling the DIL Routines From Pascal' .. 4
Calling the DIL Routines From FORTRAN,' 5

General Interface Concepts. 6
What Is an Interface? ,............ 6
Interface Functions .. ,. 7
Additional Interface Functions. .. 7

The HP-IB Interface' 8
General Structure. .. 8
Handshake Lines. .. 9
Bus Management Control Lines ~. 11

The GPIO Interface .. 12

General-Purpose Routines
Concepts ... 13

The Interface Special File .. 13
The Entity Identifier (eid) .. 14
The Programming Model ... 14
General-Purpose Routines ... 14

Opening an Interface's Special File .. 15
Closing an Interface's Special File : 17
Reading and Writing " .. 18
Designing Error Checking Routines : 19

The errno Variable -.......................... 19
Using errno ... ' ' .. 20

Resetting Interfaces 22
Controlling I/O Parameters ... 23

Setting the I/O Timeout .. 23
Setting Data Path Width 25
Setting Transfer Speed.. .. 25
Setting the Read Termmation Pattern .. 26
Removing a Read Termination Pattern 28

Table of Contents i

Determining Why a Read Terminated 29
Interrupts. 31

Interrupts on the Integral PC. 31
Interrupts on the Series 500 ... 31

Controlling the HP-IB Interface
Overview of HP-IB Commands .. 36
Overview of the HP-IB DIL Routines 40

Standard DIL Routines .. 40
The Computer's Role on the HP-IB 41

Opening the HP-IB Interface File .. 42
Sending HP-IB Commands .. 43
The Active Controller 45

Determining Active Controller. .. 46
Setting Up Talkers and Listeners 47
Remote Control of Devices .. 50
Locking Out Local Control .. 51
Enabling Local Control ... 51
Triggering Devices ... 52
Transferring Data. .. 52
Clearing HP-IB Devices ... 54
Servicing Requests .. 54
Parallel Polling .. 57
Waiting For a Parallel Poll Response 61
Serial Polling. .. 65
Passing Control .. 67

The System Controller. .. 68
Determining System Controller .. 68
System Controller's Duties .. 69

The Computer As a Non-Active Controller 71
Determining the Controller's Status .. 71
Requesting Service .. 73
Responding to Parallel Polls. .. 74
Disabling Parallel-Poll Response 76
Accepting Active Control 77
Determining When You Are Addressed .. 79

Buffering I/O Operations : 83
lodetail: The I/O Operation Template 84
Allocating Space. .. 87
Example .. 88
Locating Errors in Buffered I/O Operations 90

ii Table of Contents

Controlling the G PIO Interface
Configuring Your GPIO Interface .. 93

Configuring the Integral PC GPIO 93
Setting the Interface Switches for Series 200/300 and 500 93
Default Configuration and Switch Settings for the Series 800 Model 840 GPIO 94
Creating the GPIO Interface File 94

Limitations on Controlling the Interface 95
Using the DIL Routines ... 96

Resetting the Interface. .. 97
Performing Data Transfers .. 98
U sing the Special-Purpose Lines 98
Controlling the Data Path Width .. 100
Controlling the Transfer Speed 101
Read Terminations. .. 101
Interrupts .. 102

Interrupt-Driven Transfer Mode .. 102

Series 500 Dependencies
Location of the DIL Routines. .. 103
The GPIO Interface ... 103

Data Lines. .. 104
Handshake Lines. .. 104
Special-Purpose Lines ... 104
Data Handshake Methods. .. 104
Data-In Clock Source .. 105

Creating the Interface Special File 105
Creating an Interface File .. 105

Determining The Bus Address of the Interface Card .. 108
Effects of Resetting (via io_reset) 108
Entity Identifiers. .. 108
Restrictions Using the DIL Routines 109

hpib_bus_status .. 109
hpib_card_ppolLresp .. 110
hpib_rqst_srvce ... 110
hpib_send_cmnd .. 111
hpib_status_ wait. .. 111
hpib_wait_on_ppoll .. 111
io_get_term_reason .. 111
io_timeout_ctl .. ,. 112
io_speed_ctl .. 112
io_width_ctl .. 112

Performance Tips ... 113

Table of Contents iii

Series 200/300 Dependencies
Location of the DIL Routines. .. 115
Linking DIL Routines ... 116
The GPIO Interface ... 116

Data Lines ... 116
Handshake Lines. .. 117
Special-Purpose Lines ... 117
Data Handshake Methods .. 117
Data-In Clock Source .. 118

Creating the Interface Special File 119
Creating the Special File. .. 119

Effects of Resetting (via io_reset) 122
Entity Identifiers .. 122
Restrictions Using the DIL Routines 123

hpib_io .. 123
hpib_send_cmnd .. 123
hpib_status .. 123
io_interrupt_ctl ... 123
io_on_interrupt ... 123
io_reset .. 124
io_speed_ctl .. 124
io_timeout_ctl .. 124

Performance Tips. .. 125
Simulating Interrupts for the HP-IB Interface 126
Simulating Interrupts on the GPIO Interface 128

Integral PC Dependencies
Location of the DIL Routines ... " 132
The GPIO Interface. .. 132
Creating an Interface Special File .. 133

GPIO Interface Files .. 133
HP-IB Interface Files. .. 133
Unloading the DIL Drivers ... 133

Interrupts. .. 134
Controlling the HP-IB Interface ... 134

Limitations on the HP-IB Interface 134
The Computer as a Non-Active Controller 134

Non-Standard DIL Routines .. 135
General-Purpose Routines .. 135
Non-Standard HP-IB Routines 135
Non-Standard GPIO Routines 135

iv Table of Contents

Restrictions Using the DIL Routines 136
hpib_bus_status .. 136
hpib_card_ppoILresp .. 136
hpib_ppoILresp_ctl. .. 136
io_eol_ctl .. 136
io_reset .. 136
io_speed_ctl .. 137
io_timeout_ctl .. 137
io_ width_ctl .. 138
open(2) .. 138
read(2) and write(2) ... 138

Series 800 Model 840 Dependencies
Compiling Programs That Use DIL 140
Accessing the Interface Special Files 140

Major Numbers ... 140
Minor Numbers and Logical Unit Numbers 141
Listing Special Files .. 142
Naming Conventions for Interface Special Files 143

Creating Interface Special Files ... 144
Hardware Effects on DIL Routines 145

hpib_rqst_srvce ... 145
io_eol_ctl .. 145
io_reset .. 145
io_speed_ctl .. 146
io_timeout_ctl .. 146
io_ width_ctl .. 146
Return Values for Special Error Conditions 146

DIL Support of HP-IB Auto-Addressed Files 147
hpib_card_ppoILresp .. 149
hpib_io .. 149
hpib_ren_ctl .. 149
hpib_send_cmd ... 149
hpib_spoll .. 149
hpib_ wait_on_ppoll .. 149
io_on_interrupt ... 149

Table of Contents v

Performance Tips .. 150
Process Locking .. 150
Setting Real-Time Priority ... 151
Preallocating Disc Space. .. 151
Reducing System Call Overhead .. 152
Setting Up Faster Data Transfers 152

Character Codes. .. 153

Index , 155

vi Table of Contents

Interfacing Concepts 1
This tutorial illustrates how to access an arbitrary device through HP-IB (Hewlett­
Packard Interface Bus) and GPIO (General Purpose Input/Output) interfaces on your
HP-UX system using the routines in DIL (Device I/O Library). This tutorial covers
general interfacing strategies, in addition to strategies designed specifically for HP-IB
and GPIO interfaces.

The tutorial assumes you want to communicate with devices from within a program
(process). All DIL routines can be called from C, Pascal, and FORTRAN programs.
The examples, illustrating the use of the routines, are written in C; however, with a little
extra code they can be accessed from Pascal or FORTRAN programs.

Differences Between Computers
For the most part, DIL routines function the same on different computers; that is, the
routines should work basically the same for the Integral PC, Series 200/300, Series 500,
and Series 800 computers. However, some differences do exist.

Where differences do exist, you'll be alerted by bold introductory phrases such as:

• Integral PC Only:

• Series 200/300 Only:

• Series 500 Only:

• Series 800 Only:

In addition, major differences are outlined in an appendix for each computer system on
which DIL routines run-Series 500, Series 200/300, Integral PC, and Series 800.

Interfacing Concepts 1

OIL Tutorial Contents
Chapter 1: Interfacing Concepts presents basic interfacing concepts and a description of
the HP-IB and GPIO interfaces.

Chapter 2: General-Purpose Routines discusses how the interfaces are accessed in the
HP-UX environment and how basic data transfers are implemented.

Chapter 3: Controlling the HP-IB Interface describes interfacing techniques for the HP­
IB interface.

Chapter 4: Controlling the GPIO Interface covers interfacing techniques for the GPIO
interface.

Appendix A: Series 500 Dependencies covers hardware- and system-dependent informa­
tion for Series 500 computers. If you use DIL routines on a Series 500 computer, you
should check this appendix to ensure the correct use of DIL routines.

Appendix B: Series 200/300 Dependencies describes hardware- and system-dependent
information. If you use DIL routines on a Series 200/300computer, you should check this
appendix to ensure the correct use of DIL routines.

Appendix C: Integral PC Dependencies describes hardware- and system-dependent in­
formation specific to the Integral PC. If you use DIL routines on an Integral PC, YOIl

should check this appendix to ensure the proper usage of DIL routines.

Appendix D: Series 800 Model 840 Dependencies describes hardware- and systern­
dependent information specific to the Series 800 Model 840. If you use DIL routines
on a Model 840, you should check this appendix to ensure the proper usage of DIL
routines.

Appendix E: Character Codes

2 Interfacing Concepts

The OIL Interfacing Routines
As mentioned previously, Device I/O Library (DIL) routines allow you to access devices
directly through HP-IB and/or GPIO interfaces connected to your computer system.
Some routines are general-purpose and can be used with any interface supported by
the library, while others provide control of specific supported interfaces. DIL currently
supports the HP-IB and GPIO interfaces.

Linking the OIL Routines
You can make calls to the DIL routines from C, Pascal, or FORTRAN programs. How­
ever, the library is not automatically linked with your program when you compile the
program with ee(l}, pe(l}, or Je(l}. You must use the -1 flag to specify that the library
be linked with the program. To compile a C program and then link the DIL routines
with it, use:

cc program.c -1dvio

Similarly for a Pascal program, use:

pc program.p -1dvio

and for a FORTRAN program, use:

fc program.f -1dvio

In all three cases, the -1 option is passed to the HP-UX linker, causing it to link any DIL
routines called by the program. For the exact location of DIL library on your computer
system, see the appropriate hardware-specific appendix in this tutorial.

Interfacing Concepts 3

Calling the OIL Routines From Pascal
You must give an external declaration for each DIL routine called from a Pascal program.
An external declaration consists of the routine heading, including a formal parameter list
and result type, followed by the Pascal EXTERNAL directive. For example, the C description
of open(2) is:

int open(path. of lag)
char *path;
int oflag;

The external declaration in a Pascal program for the routine is:

TYPE
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
oflag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating the parameter is passed by
reference. This simulates the passing of a pointer, which is what open(2) expects. In
general, declaring a C routine from Pascal is straightforward.

4 Interfacing Concepts

Calling the OIL Routines From FORTRAN
C and FORTRAN routine calls are not compatible because C passes parameters by value
while FORTRAN passes them by reference.

To overcome this incompatibility, direct the compiler to generate a call by value using
FORTRAN's $ALIAS option. For example:

$ALIAS close = 'close' (%val)

If your system's FORTRAN compiler does not support this form of $ALIAS, you may
need to solve the parameter-passing differences by writing an onionskin routine. An
onionskin routine is a C-Ianguage function written for the purpose of resolving parameter
passing-irregularities between C and other languages.

For example, to access close(2) using an onionskin routine, use:

$ALIAS close = '_my_io_close'

and then write the onionskin routine:

int my_io_close (eid)
/* the compiler will create the external symbol "_my_io_close"

based on the above declaration*/
int *eid;
{

return (close (*eid»;
}

Interfacing Concepts 5

General Interface Concepts
This and the remaining sections in this chapter provide concepts information concerning
interfaces in general and the HP-IB and GPIO interfaces in particular. This information
is provided as background information only; it is not required before using the DIL
routines (although you may find some of the information useful). You can skip the
remainder of this chapter without serious detrimental effects.

What Is an Interface?
The primary function of an interface is to provide a data communication path between
the computer and its associated peripherals. Interfaces act as intermediaries between pe­
ripherals by handling part of the bookkeeping work and ensuring that the communication
process flows smoothly

On HP's 9000 family of computers, the interface connects directly to the computer
either hard-wired or as a card that fits in your computer's backplane slots. Peripherals
are connected to the interface via cables. The functions of an interface are shown in the
following block diagram (Figure 1-1).

I -- -- -- -- -- -- -- -- I
I Computer

Compatible Logic I
I Connector Level I Matcher

1{] Interlace

I
Peripheral

Computer
Logic Device

Device I Logic
Compatible

Level
Connector I Matcher

L -- -- -- -- -- -- -- .-l
Figure 1-1. Functional Diagram of an Interface

6 Interfacing Concepts

Interface Functions
In general, an interface performs the following functions:

• Electrical and Mechanical Compatibility. This simply means that you can attach
compatible peripherals to an interface, and doing so won't destroy the peripheral
or the interface.

• Data Compatibility. Just as two people must speak a common language to com­
municate, the computer and peripheral must agree upon the format of data before
communicating. Ensuring proper data format is the responsibility of the program­
mer. Most interfaces merely move agreed-upon quantities of data between the
computer and peripheral.

• Timing Compatibility. Since all devices do not have the same data transfer rates,
nor do they agree as to when data should be transferred, there must be synchroniza­
tion between peripherals and the interface: data transfers can be started at a time
agreed upon by the interface and the peripheral, and the data must be transferred
at a mutually agreeable rate.

If the sender and receiver do not agree upon start time and transfer rate, then
the transfer is carried out via a handshake process: the transfer proceeds one data
item at a time with the receiving device acknowledging that it received the data
and that the sender can transfer the next data item. Both types of transfers are
utilized with different interfaces.

Additional Interface Functions
Another powerful feature of an interface card is to relieve the computer of low-level tasks,
Huch aH performing data transfer 4andshakes. This distribution of tasks eases some of the
computer's burden and decreases the otherwise stringent response-time requirements of
('xternai devices. The actual tasks performed by each type of interface card vary widely.
The next sections concentrate on the functions of two particular interfaces: the HP-IB
and the GPIO.

Interfacing Concepts 7

The HP-IB Interface
The Hewlett-Packard Interface Bus (HP-IB) is an interface that provides compatibility
between the computer and external devices conforming to the IEEE 488-1978 standard.
Electrical, mechanical, and timing compatibility requirements are satisfied by the bus,
which allows you to connect up to 15 devices to one interface.

General Structure
Communications through the HP-IB are made according to a precise set of rules defined
by the IEEE 488-1978 standard. These rules ensure orderly communication. There are
three types of devices on the HP-IB:

• controller

• talker

• listener.

These types are actually attributes that exist alone or in combinations in one device. For
example, the HP-IB interface allows a desktop computer to be a controller, talker, and
listener. A device that accepts data from the bus (for example, a printer) is usually a
listener, while a device that supplies data to the bus (for example, a voltmeter) is usually
a talker. At anyone time, the bus has only one Active Controller and only one talker,
but it can have any number of listeners.

The HP-IB is composed of 16 lines which are divided into 3 groups: 8 lines form a
bi-directional data path which carries data, commands, and device addresses; 3 lines
control the transfer of data bytes (handshake lines); and the 5 remaining lines control
bus management.

8 Interfacing Concepts

Handshake Lines
The handshake lines used to synchronize data transfers are:

• DAV - DAta Valid

• NRFD - Not Ready For Data

• NDAC - Not Data ACcepted.

NOTE

The HP-IB interface uses negative logic for handshake, data, and
bus management lines. This means that a line is asserted (true)
when its voltage is low; when a line's voltage is high, the line is
not asserted (false).

The timing diagram in Figure 1-1 illustrates how the handshake lines are used to complete
a data item transfer. You should refer to this diagram when reading the subsequent
discussion of the HP-IB handshake.

DAV

N R FD _----'--~/

;<-. ---;---;--- FALSE

~--~------------~~ TRUE

FALSE

~----------~----~--~--~--- TRUE

N DAC _--'-_-'---------'-_-'--__ ~/
FALSE

'-----'---- TRUE

0®©@ ®®©®
Figure 1-2. The HP-IB Handshake

Interfacing Concepts 9

At the start of the handshake (point A), the handshake lines are in the following states:

• DAV is false - there is no valid data on the data lines.

• NRFD is true - none of the listeners are ready to accept data.

• NDAC is true - there is no data for the listeners to accept.

When a listener is ready to accept data, it de-asserts NRFD-that is, it lets NRFD
float high. However, NRFD remains asserted (true) until every listener de-asserts itl.
When every listener is ready to accept data (that is, when NRFD is de-asserted by every
listener), NRFD becomes false (point B).

By looking at NRFD, the talker knows when it can send data: when NRFD is false, the
talker knows that every listener is ready to accept data; the talker then puts data on the
data lines and asserts DAV (point C), thus telling the listeners that there is valid data
on the data lines to be accepted.

As soon as a listener senses the assertion of DAV, the listener asserts NRFD (point D),
thus driving NRFD low (true).

After point D, each listener accepts the data on the data lines. When a listener has
accepted the data, it de-asserts NDAC. As with the NRFD line at point B, NDAC remains
asserted (true) until every listener on the bus de-asserts (makes false) the NDAC line.
When every listener has de-asserted NDAC, the line becomes false (de-asserted), thus
telling the talker that every listener has accepted the data (point E).

When the talker sees that every listener has accepted the data, the talker de-asserts
(makes false) the DAV line and takes data off the data lines (point F).

As soon as a listener senses that data is no longer valid, it asserts NDAC (point G), thus
signifying the end of the handshake (point H). When the handshake is finished, all lines
are at the values they had before the handshake started (point A).

1 The reason NRFD remains asserted until every listener de-asserts it is because an active low voltage
on the bus line (asserted) overrides a passive high voltage (de-asserted). Therefore, the line remains
asserted until every listener sets the line voltage to a passive high (de-asserted).

10 Interfacing Concepts

Bus Management Control Lines
There are five bus management control lines:

• ATN ~ ATtentioN

• IFC ~ InterFace Clear

• REN ~ Remote EN able

• EO! ~ End Or Identify

• SRQ ~ Service ReQuest.

ATN: The Attention Line
Command messages are encoded on the data lines as 7-bit ASCII characters, and are
distinguished from the normal data characters by the attention line's (ATN's) logic state.
That is, when ATN is false, the states of the data lines are interpreted as data. When
ATN is true, the data lines are interpreted as commands.

IFC: The Interface Clear Line
Only the System Controller sets the IFC line true. By asserting IFC, all bus activity is
lJllwnditionally terminated, the System Controller becomes the Active Controller, and
allY current talker and listeners become unaddressed. Normally, this line is used to
j.<'rrninate all current operations, or to allow the System Controller to regain control of
the bus. It overrides any other activity currently taking place on the bus.

REN: The Remote Enable Line
This line allows instruments on the bus to be programmed remotely by the Active Con­
troller. Any device addressed to listen while REN is true is placed in its remote mode of
opnation.

EOI: The End or Identify Line
The EOI line is used to indicate the end of a data message. Normally, data messages
sent over the HP-IB are sent using standard ASCII code and are terminated by the
ASCII line-feed character. However, certain devices need to send blocks of information
containing data bytes which have the line-feed character bit pattern as part of the data
message. Thus, no bit pattern can be designated as a terminating character, since it
could occur anywhere in the data stream. For this reason, the EOI line is used to mark
the end of the data message.

Another function of EOI is that, when it is asserted along with the ATN line, a parallel
poll is taken of the bus.

Interfacing Concepts 11

SRQ: The Service Request Line
The Active Controller is always in charge of ordering events that occur on the HP-IB.
If a device on the bus needs the Active Controller's help, it sets the SRQ line true. The
SRQ line sends a request for service, not a demand, and it is up to the Active Controller
to choose when and how it services the request. However, the device continues to assert
SRQ until it has been satisfied. Exactly what satisfies a service request depends on the
requesting device, and is explained in the device's operating manual.

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel inter­
face that allows communication with a variety of devices. The GPIO interface utilizes
data, handshake, and special-purpose lines to perform data transfers via user-selectable
handshaking methods.

Four GPIO interfaces are supported by DIL routines: the GPIO for Series 200 and
300, the GPIO for Series 500 computers, the GPIO for the Integral Personal Computer,
and the AFI card for the Series 800 Model 840. You should refer to the appropriate
hardware-specific appendix for details on each GPIO.

12 Interfacing Concepts

General-Purpose Routines 2
The DIL library contains several general-purpose routines that can be used with any
interface supported by the library. (These routines are listed in Table 2-1.) This chapter
discusses how to use these routines from your programs. Specifically, the following topics
are presented:

• concepts essential to understanding the use of DIL library routines

• opening an interface's special file

• closing an interface's special file

• reading from and writing to an interface's special file

• designing error-checking routines

• resetting an interface

• controlling input/output parameters

• determining why a read terminated

• handling interrupts

Concepts

The Interface Special File
HP-UX treats I/O to an interface the same way it treats I/O to an input/output device:
the interface must have a special file. Before you can write programs that call DIL
routines to communicate with an interface, the interface must have an appropriate special
file.

The special file for a device interface must be created before calling DIL routines to com­
municate with the interface. The method for creating an interface's special file depends
on which model of computer you use. You should refer to the appropriate hardware­
specific appendix for details on creating the interface special file for your system.

General-Purpose Routines 13

The Entity Identifier (eid)
Nearly all DIL routines require an entity identifier (eid) as a parameter. The entity
identifier is an integer returned from opening (via the open(2) system call) an interface's
special file. When supplied as a parameter to a DIL routine, the entity identifier tells
the routine which interface special file to work with.

The Programming Model
As a general rule, all programs that call DIL routines to operate on a specific interface
conform to the following structure:

1. Get the entity identifier (eid) for the interface with which you wish to communicate.
This is done by opening the interface's special file. For details on obtaining an
interface's entity identifier, see the section "Opening an Interface's Special File."

2. After obtaining the eid, your program can call DIL routines to perform various tasks
with the corresponding interface. This and the remaining chapters in this tutorial
describe how to use the various routines. (General-purpose routines covered in this
chapter are described briefly in the following "General-Purpose Routines" sectioll.)

3. When finished calling DIL routines, your program should close the interface's SP<'­

cial file, opened in step 1 above. For details on closing this special file, see the
section "Closing an Interface's Special File."

General-Purpose Routines
Table 2-1 provides a brief synopsis of the standard general-purpose routines discuss('< III

this chapter. The following system calls, pertinent to DIL routines, are also discuss('d ill
this chapter: open(2), close (2), read(2), and write (2).

14 General-Purpose Routines

Table 2-1. General-Purpose Routines.

Routine Description

io_reset Reset a specified interface.

io_timeouLctl Establish a timeout period for any operation performed to a specified
interface by a DIL routine.

io_width_ctl Set the width of the dc>.ta path for a specified interface.

io_speed_ctl Select a data transfer speed for a specified interface.

io_eoLctl Set up a read termination character for data read from a specified
interface.

io _ geL term_ reason Determine how the last read terminated for a specified interface.

io_on_interrupt Set up interrupt handling for a program.

io_interrupLctl Allow enabling and disabling of interrupts for a specified interface.

Series 200/300 computers support an additional routine, io_burst; you should refer to
the io_burst(3D) page of the HP-UX Reference for details on using this routine.

In addition to the above standard DIL routines, the Integral PC DIL library supports
non-standard DIL routines. You should refer to the appendix "Integral PC Dependen­
cies" for details on these routines.

Opening an Interface's Special File
Other than the default standard input, standard output, and standard error files, you
must explicitly open files in order to read and write to them from inside C, FORTRAN,
or Pascal programs. The HP-UX system routine for opening files is apen(2). It is called
as follows:

#include <fcntl.h>
int eid;

eid = open (filename. aflag);

The filename is either a character string representing a file's external HP-UX name or a
pointer to a buffer that contains the external name.

General-Purpose Routines 15

Integral PC Only: filename should be the special device name for the specific GPIO
or HP-IB interface created by load_gpio or load_hpib. Note that each GPIO port has a
separate device file name. Refer to Appendix C, "Integral PC Dependencies," for details
on using load_gpio and load_hpib to create special files for GPIO and HP-IB interfaces,
respectively.

The integer of lag specifies the access mode for opening the file. It can have one of three
possible values, as defined in the /usr/include/fcntl.h header file: O_RDONLY (0) requests
read-only access, O_WRONLY (1) requests write-only access, and O_RDWR (2) requests both
read and write access. To use these constants in your programs, you must use the
#include C-compiler directive, as shown in the above example.

When used on an interface's special file, the open system call returns an integer repre­
senting the interface's entity identifier (eid). As mentioned in the "Concepts" section of
this chapter, the entity identifier is required as a parameter to DIL routines; it is also
required as a parameter when reading from or writing to an interface's special file.

The following code defines an entity identifier called eid and opens an interface file called
/dev/raw_hpib with read and write access:

#include <fcntl.h>
int eid;

eid = open("/dev/raw_hpib". O_RDWR);

As an alternative to specifying the character string name of the HP-UX file in the call to
open, you can place the name in a buffer and then call open with a pointer to the buffer.
For example, the following code also opens the HP-IB interface file:

#include <fcntl.h>
int eid;
char *buffer;

buffer = "/dev/raw_hpib";
eid = open(buffer. O_RDWR);

If a file is successfully opened, open returns a non-negative integer as the entity identifier.
However, if an error occurs and the file is not opened, a -1 is returned.

16 General-Purpose Routines

Closing an Interface's Special File
When your program is finished with an opened interface special file, the special file should
be closed using the close(2} system call.

Normally, when a process terminates (via exit(2) or a return from the main routine), any
of its open files are automatically closed by the HP-UX operating system. However, it
is still good programming practice to close a file when you're finished using it.

NOTE

HP-UX limits the number of files one process (program)
can have open at one time to NOFILE, as defined in the
/usr/include/sys/param.h header file.

The close routine requires the entity identifier for the opened interface special file you
wish to close. The following code shows how an HP-IB interface can be opened and
dosed:

#include <fcntl.h>
mainO
{

}

int eid;

eid = open("/dev/raw_hpib", O_RDWR);

1* You can now call routines to
communicate with the interface. *1

close(eid);

The connection between the entity identifier and the open file is now broken, and the
entity identifier is available for the system to assign to another file. A file that is opened
OIl two separate occasions need not be assigned the same entity identifier both times by
the system.

If the routine successfully closes the specified file, it returns a OJ if not, it returns a
-1 and the external error variable errno(2} is set to indicate the error (see the section
"Designing Error Checking Routines"). A common cause of the routine failing is using
an argument that is not a valid entity identifier for an open interface file.

General-Purpose Routines 17

Reading and Writing
The lowest level of I/O in HP-UX provides no buffering or other services; it is a direct
entry into the operating system. Two HP-UX system routines provide low-level I/O
read/write capabilities: read(2} and write (2). Both require three arguments:

• an entity identifier of an open file

• a buffer in your program where the data is to come from during write or go to
during read (write empties a buffer; read fills a buffer)

• the number of bytes to be transferred.

The call to read has this form:

#include <fcntl.h>
mainO
{

int eid; I*the entity identifier*1
char buffer [10] ; I*buffer in which the read data will be placed*1
eid = open("/dev/raw_hpib", O_RDWR);

I*establish communication with the raw HP-IB device file
as described in Chapter 3, "Controlling the HP-IB interface"*/

read(eid, buffer, 10); I*reads 10 bytes from a previously opened*1
} I*file with the entity identifier "eid". *1

The call to write is very similar:

#include <fcntl.h>
mainO
{

}

int eid; I*the entity identifier*1
char *buffer; 1* the buffer containing data to be written to a file*1
eid = open("/dev/raw_hpib" , O_RDWR);

I*establish communication with the HP-IB interface as described
in Chapter 3, "Controlling the HP-IB Interface"*1

buffer = "data message";
write(eid, buffer, 12);

I*message to be sent*1
1*12 bytes are written to previously*1
I*opened file with the entity identifier "eid"*1

18 General-Purpose Routines

Although read and write required the number of bytes to be transferred as their third
argument, other parameters, discussed later, associated with the interface file's eid can
end the transfer before this number is reached. Both read and write return the number
of bytes transferred.

Integral PC Only: When performing a read or write operation to a 16- or 32-bit GPIO
port, the data must start on a word boundary.

Example
Assume that you have already created an auto-addressed special file, /dev/hpib_dev, for
an HP-IB device. Your program must first open the interface file /dev/hpib_dev for
reading and writing:

int eid;
eid = open("/dev/hpib_dev". O_RDWR);

To place data on the bus you use write:

write(eid. "This is a test". 14);

The number of bytes to be sent is 14 because there are 14 characters in the data string.
To receive 10 bytes of data from the bus you use:

char buffer [10] ;
read(eid. buffer. 10);

'I'll(' read routine will attempt to read 10 bytes of data from the interface and put the
data in buffer.

Designing Error Checking Routines
All Device I/O Library routines return a -1 to indicate that an error occurred during
the routine's execution. If this happens, the routine sets an external HP-UX variable
called errno.

The errna Variable
(~rrno is an integer variable whose value indicates what error caused the failure of a
system or library routine call. It is not reset after successful routine calls; therefore, you
should only check its value after you have determined an error occurred.

General-Purpose Routines 19

Except for this section, most examples in this manual do not check for the successful
completion of routine calls. However, as good programming practice you should include
error checking in your own programs.

The errno{2} page in the HP-UX Reference defines the various errors returned when a
system call fails. You should refer to this documentation for a complete description of
errors.

Using errno
To access errno from your program you must include the following code at the beginning
of the program:

#include <errno.h>

The errno.h Header File
The header file /usr/include/errno.h uses error number definitions from the
/usr/include/sys/errno.h header file. Refer to the errno{2} entry in the HP-UX Ref­
erence to see this list and to find out the meaning associated with each value.

Displaying errno
Once you have declared errno, there are two ways you can check its value if a routine
fails. The simplest way is to check to see if the routine failed, and if so, to print out the
value of errno and then exit. The example below illustrates this strategy:

#include <errno.h>
#include <fcntl.h>
mainO
{

}

int eid;

if «eid = open("/dev/raw_hpib". O_RDWR» == -1)
{

}

printf("Error occurred. Errno = %d". errno);
exit (1) ;

If an error occurs and errno's value is printed, you must then refer to errno's entry in
the HP-UX Reference to find out what the number means.

20 General-Purpose Routines

Error Handlers
Another approach is to check for specific values of errna and execute different error
routines depending on its value. Only a limited number of situations can cause the
failure of a particular routine; thus, a routine usually has a small set of values that it can
assign to errna. To find out what this set is, refer to the routine's entry in the HP-UX
Reference.

For example, in the HP-UX Reference you find that errna is set to ENOENT (defined in the
errna.h header file) when you try to open a file that doesn't exist. Once this is known,
you can incorporate the following code into the program:

#include <errno.h>
#include <fcntl.h>
mainO
{

}

int eid;

if «eid = open ("/dev/raw_hpib" ,O_RDWR)) -1)
{

}

if (errno == ENOENT)
printf("Error occurred because file doesn't exist to openll);

else
printf("File exists to open, but still an error occurred");

exit(1);

Notice the print statements in the example above could be replaced with calls to more­
complicated error handling routines such as perrar(3) (see the HP-UX Reference).

General-Purpose Routines 21

Resetting Interfaces
The DIL routine for resetting an interface is iOJeset. This routine is used on either
HP-IB or GPIO interfaces.

The following call to iOJeset resets the interface whose entity identifier is eid-i.e., eid
was returned from opening the interface's special file.

io_reset(eid);

iOJeset resets the interface whose entity identifier is eid. You should refer to the ap­
propriate hardware-specific appendix for details on the exact effects of iOJeset on your
computer's HP-IB and GPIO.

Assume that after opening an interface file you want to make sure the interface operates
correctly. This is done by calling iOJeset and looking at its return value:

#include <fcntl.h>
mainO
{

}

int eid;

eid = open("/dev/raw_hpib". O_RDWR);
if (io_reset(eid) == -1)
{

}

printf("Possible problem with interface");
exit (1) ;

/* program continues if "io_reset" was successful */

22 General-Purpose Routines

Controlling I/O Parameters
The Device I/O Library provides four routines that allow you to control three different
parameters involved in data transfers between an interface card and the devices connected
to it. The routines and the parameters they control are listed below.

Routine

io_ timeouL ctl

io_width_ctl

iO_8peed_ctl

I/O Parameter

Timeout: Assign a timeout value for I/O operations.

Data Path Width: Specify width of the interface's data path.

Transfer Speed: Request a minimum speed for data transfers
through the interface.

Read Termination Pattern: Assign a pattern to be recognized as
a read termination pattern.

When you use one of these four routines, its effect is associated with the open interface
file for the interface. If you close the file the effect is lost and the I/O parameter returns
t.o its default state the next time the file is opened.

Setting the I/O Timeout
The I/O timeout parameter controls how long an interface spends trying to complete a
data transfer with a device connected to it. When you open the interface file associated
with the interface, the timeout is set at 0 by default, indicating that the system never
<:auses a timeout.

If timeout is zero and an error condition occurs which keeps a data transfer from com­
pleting, your program may hang. It is recommended you set a timeout for the interface.
To set or change the timeout use io_timeouLctl:

#include <fcntl.h>
mainO
{

}

int eid;
long time;

eid = open("/dev/raw_hpib ll • O_RDWR);
time = 1000000; I*set timeout of 1 second*1
io_timeout_ctl(eid. time);

I*data transfers using "eid" are controlled by the
timeout value "time"*1

General-Purpose Routines 23

eid is the entity identifier for the open interface file; time is a 32-bit long integer specifying
the length of the timeout in microseconds.

If read or write requests do not complete within the time limit specified by the timeout
value, the requests are aborted and an error indication is returned (a return value of -1).
If a routine fails due to the timeout occurring, ermo is set to EIO (not to be confused
with EOI).

Although you specify the timeout value in microseconds (f.l-secs) when you call
io_timeouCctl, the resolution of the effective timeout is system-dependent. The time­
out value is rounded up to your system's time resolution boundary. For example, if your
system's resolution is 10 milliseconds and you request a timeout of 25000 microseconds
(25 milliseconds), the effective timeout is set at 30 milliseconds. To determine the time
resolution on your computer system, refer to the appropriate hardware-specific appendix.

IMPORTANT

An actual timeout of 0 microseconds (i.e., timeout occurs as soon as
a routine is called) is not possible. However, specifying a timeout of
zero sets an infinite timeout; the system will never cause a timeout.
Specifying a timeout of zero is not recommended.

An entity identifier for an interface file obtained with the HP-UX routine dup(2) or
inherited by a fork{2} request shares the same timeout as the original entity identifier for
the file obtained with open. If the child process resulting from a fork inherits an entity
identifier and then changes the timeout, the entity identifier used by the parent process
is also affected.

Series 200, 300, and 500 Only: If your program has used open more than once to open
the same interface file, the entity identifiers returned by open can each have their own
timeout associated with them. Using io_timeouCctl with one entity identifier does not
affect the other entity identifiers.

24 General-Purpose Routines

Setting Data Path Width
When you create an interface file and then open it for the first time, the data path
width defaults to 8 bits. Once the file is opened, io_width_ctllets you select a new
width. Allowable widths are system and hardware dependent; you should refer to the
hardware-specific appendix for your system to determine what widths are allowed for
various interfaces.

Assuming that the open interface file has the entity identifier eid, io_width_ctl is called
with:

int eid, width;

where width is the number of bits that are in the new data path. The routine returns a
- I to indicate an error if the width that you specify is not supported on the specified
interface.

For example, to change the width of a GPIO data bus from 8 to 16 bits you can use:

'include <fcntl.h>
mainO
{

int eid, width;
width = 16; /*width of new data path */
eid = open{"/dev/raw_gpio", O_RDWR);
io_width_ctl{eid, width); /*assign new width for GPIO bus*/

/*data transfers using "/dev/raw_gpio" will now
use a 16-bit bus*/

}

(~hanging the data path width of an interface with this routine affects all users of the
int('rface. Once you change the data path width, it stays at the new value for each future
opening of the file. Either io_reset or io_width_ctl can be used to change the path back
to the default of 8 bits.

Setting Transfer Speed
You can set the minimum transfer speed that is used on the interface (within the limits
of the hardware) with the routine io_speed_ctl:

io_speed_ctl{eid, speed);

General-Purpose Routines 25

where eid is the entity identifier for the open interface file and speed is an integer indi­
cating a minimum speed in kilobytes (Kb) per second l .

The routine returns a 0 if it is successful, and a -1 if an error occurred. For example:

io_speed_ctl(eid. 1);

requests a minimum speed of 1 024 bytes per second. The system may use a faster
transfer rate, but you are at least supplied with that speed.

The transfer method (e.g., DMA, interrupt) chosen by your system is determined by
the minimum speed that you request. The system selects a transfer method that is as
fast or faster than the speed you requested. If you request a speed that is beyond the
limitations of the system, the fastest transfer method possible is used. See the appropriate
hardware-specific appendix for details.

Setting the Read Termination Pattern
When you perform read operations on an- open interface file, certain conditions cause
the interface to recognize the end of data transfer from a sending device. When you call
read, you must specify how many bytes you expect to read. After the specified number
of bytes have been read, the data transfer halts.

The interface you are accessing can also be configured to recognize a special read ter­
mination condition. For instance, if an HP-IB interface sees the EOI line asserted, it
knows that it has received the last data byte in the transfer and the read operation halts,
whether or not the specified byte count has been reached.

The DIL routine io_eoLctl causes an interface to recognize a particular character or
string of characters as a read termination pattern, in addition to any other termination
conditions already in effect for the interface. The call to the routine has the form:

int eid. flag. match;

where eid is the entity identifier for the open interface file and flag either enables or
disables the interface's ability to recognize a special read termination pattern.

1 A kilobyte equals 1 024 bytes.

26 General-Purpose Routines

When flag = 0, any previously set read termination pattern is disabled. If flag has any
other value, then match is the new termination pattern.

When flag indicates enable mode (e.g., flag = 1) and the interface's data path is 8 bits,
the least-significant byte of match is the integer equivalent of the termination pattern
that you want to set.

If the data path for the interface is set at 16 bits (such as with a GPIO interface),
then for most systems the termination pattern is also 16 bits. It is taken from the 2
least-significant bytes of the specified match value.

Note that if any special read termination condition defined for the interface is still in
dfect (e.g., EOI for an HP-IB). Either it or the termination pattern that you have defined
could cause a read operation to halt. Also note the read termination pattern you set up
is interpreted by the interface as the last byte of data. In other words, the interface sees
it as part of the data message but does not try to read past it.

To illustrate using io_eoLctl, assume that you want to set up an HP-IB interface to
n~cognize a backslash-n (\n) as a read termination pattern. First, you must open the
liP-Ill interface file and obtain the entity identifier eid. Second, make the call to io_eoLctl
ill your program using eid as the entity identifier, ENABLE as the flag, and \n as the match:

.include <fcntl.h>
_define ENABLE 1
mainO
{

int eid;
aid = open("/dev/raw_hpib". O_RDWR);
io_eol_ctl(eid. ENABLE. '\n');

/*data transfers using "eid" terminate with a '\n'*/

}

Now when data is read from /dev/raw_hpib, the read operation is terminated when any
one of the following occurs:

• The byte count specified in the call to read is reached.

• The HP-IB's EOI line is asserted. The character on the bus, when the interface
sees the line's assertion, becomes the last byte in the data message.

• A backslash-n (\n) is read. The backslash-n (\n) becomes the last byte in the data
message.

General-Purpose Routines 27

Integral PC Only: On the Integral PC, a read operation from a GPIO interface will
terminate only when a specified number of read operations have been performed, or
when the read termination pattern has been found.

An entity identifier for an interface file obtained with the HP-UX system routine dup
or inherited by a fork request shares the same read termination pattern as the original
entity identifier. If the child process resulting from a fork inherits an entity identifier
and then sets a read termination pattern for it, the entity identifier used by the parent
process is also affected.

Series 200, 300, and 500 Only: If your program has used open more than once to open
the same interface file, the entity identifiers returned by open can each have their own
read termination pattern associated with them. Using io_eoLctlwith one entity identifier
does not effect the others. Thus, you can set up several entity identifiers for the san\('
interface that recognize different termination characters.

Removing a Read Termination Pattern
To disable the read termination pattern, call io_eoLctl with the flag parameter disabled
(set to 0):

io_eol_ctl(eid, 0, XX);

The XX indicates a don't care value for the match argument. If the flag is 0, then the
match value is not looked at by the routine.

The following code sets up the ASCII'.' (decimal value 46) as a termination pattern,
does a read operation, and then disables the termination pattern.

#include <fcntl.h>
mainO
{

int eid;
char buffer [12] ;
eid = open("/dev/hpib_dev",
io_eol_ctl(eid, 1,46);
read(eid, buffer, 12); /*Read operation halts when either a

}

28 General-Purpose Routines

II II is read or when the 12th byte is read*/
/*termination pattern is removed*/

Determining Why a Read Terminated
There are several situations which can terminate read operations through an interface.
After your program completes a read, you may want to include code that verifies the
cause of the read's termination is what you expected. The DIL routine that allows you
to do this is io_geLterm_reason.

io_geLterm_reason accepts the entity identifier of the interface file as an argument and
returns an integer. The returned value indicates how the last read operation ended, as
shown below.

Returned
Value Meaning

-1 An error occurred while making this routine call.

o The last read terminated abnormally (for some reason other than the ones
covered below).

1 The last read terminated by reading the number of bytes requested.

2 The last read terminated by detecting a previously determined read ter­
mination pattern.

4 The last read terminated by detecting some device-imposed termination
condition, for example, the assertion of EOI for an HP-IB interface.

If a read terminated for multiple reasons, the bits that are set indicate each of the reasons.
The three least-significant bits of the lowest byte have the meanings indicated by their
associated decimal values in the table above. For example, if io_geLterm_reason returns
a 7 you know that the specified number of bytes were read, the last byte read was a read
t.ermination pattern, and also a device-defined termination condition occurred.

NOTE

If no read is performed on an interface file once it is opened and
you call io_geLterm_reason, the routine returns a O.

All entity identifiers descending from one open request (such as from dup or fork) affect
the status returned by this routine. For example, suppose that an entity identifier is
inherited by a child process through a fork. If the parent process calls io_geLterm_ reason,
the last read operation of either the parent or the child is looked at, depending on which
is more recent.

General-Purpose Routines 29

Example
Suppose you want to read data from a device on an HP-IB and need to guarantee that a
specific number of bytes are read. The following code reads 50 bytes through an opened
interface file and makes sure that read wasn't terminated before all 50 were read.

#include <fcntl.h>
main 0
{

}

int eid, condition;
char buffer[50] ; I*storage for data*1

eid = open ("/dev/raw_hpib", O_RDWR);
read(eid, buffer, 50); I*perform read and put data in Ibuffer"*1
if «condition = io_get_term_reason(eid)) > 1)

I*Terminated due to seeing a read termination pattern or the
assertion of EO!. However, the event could have occurred at the
same time as the 50th byte was read*1

printf("Possible termination before all of data was read");

else if (condition < 1)
{

}

else

if (condition == 0)
I*Termination due to some abnormal condition*1
printf (IILast read terminated abnormally");

else
printf (lIio_get_term_reason call failed");

I*Termination due to reading the 50th byte*1
printf("All of data was read into buffer");

Series 500 Only: On Series 500 computers, the value returned by io_yeCterm_reason only
indicates the termination cause with the highest value; other causes with lower values
could have occurred at the same time. See Appendix A, "Series 500 Dependencies" for
more information.

30 General-Purpose Routines

Interrupts
DIL provides an interrupt mechanism that is similar to HP-UX signal handling. The
user is able to set up interrupt handlers to be invoked when certain conditions occur.
DIL currently supports interrupts for HP-IB and GPIO interfaces.

Currently, interrupts are supported only on the Integral PC, Series 500, and Series 800
computers; however, you can simulate interrupts on Series 200/300 computers. You
should check the hardware-specific appendix for your system for any restrictions that
may apply.

Interrupts on the Integral PC
Thl' only interrupt condition available on the Integral PC is PIR, meaning the Peripheral
Interrupt Request has been asserted. For hardware restrictions on using the HP-IB
illt('rrupts on the Integral PC, refer to the io_on_interrupt.3d file in the doc folder on the
D1L disc.

Interrupts on the Series 500
Till' following interrupt conditions are available for HP-IB interfaces on Series 500 com­
pll \'('rs:

Name

SB.Q

TLK

LTN

CIC

I V(~

REN

DCL

CET

I'I'OLL

Meaning

SRQ line has been asserted

The computer has been addressed to talk

The computer has been addressed to listen

The computer has received control of the bus

The IFC line has been asserted

The remote enable line has been asserted

The computer has received a device clear command

The computer has received a group execution trigger command

A specific parallel poll response occurred

Th(' following interrupt conditions are available for the GPIO interface:

General-Purpose Routines 31

SIEO

SIEl

EIR

io_onjnterrupt

Status line 0 has been asserted

Status line 1 has been asserted

Enable Interrupt, ATTN line has been asserted

DIL provides two routines for controlling interrupts. The first routine, io_on_interrupt,
sets up the interrupt information and has the form:

where eid is an entity identifier for a GPIO or raw HP-IB interface. The paramrtrr
handler points to a function to be invoked when the condition occurs. Then cause_ vee is
a pointer to a structure of the form:

struct interrupt_struct {
int cause;
int mask;

};

The interrupLstruct structure is defined in the include file dvio.h.

The cause parameter is a bit vector specifying which of the interrupt or fault events
will cause the handler routine to be invoked. The interrupt causes are often specific to
the type of interface being considered. Also, certain exception (error) conditions can be
handled using the io_on_interrupt capability. Specifying a zero-valued cause_vec vector
effectively turns off the interrupt for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. The
integer mask specifies which parallel poll response lines are of interest. mask's value is
obtained from an 8-bit binary number, each bit of which corresponds to one of the eight
lines. For example, if you want an interrupt handler invoked for a response on lines 2 or
6, the correct binary number is 01000100. This converts to a decimal equivalent of 68,
which is the number you should assign to mask.

Upon occurrence of an enabled interrupt condition on the specified eid, the receiving
process executes the interrupt-handler routine pointed to by handler. The entity identifier
eid and the interrupt condition cause are returned to handler as the first and second
parameters respectively.

32 General-Purpose Routines

An interrupt for a given eid is implicitly disabled after the event occurs. The interrupt
condition can be re-enabled with io_interrupt_ctl.

io_ on_ interrupt returns a pointer to the previous handler if the new handler is successfully
installed, otherwise it returns a -1 and errno is set.

The following example illustrates how an interrupt handler can be set up to handle
assertion of the service request line (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
mainO
{

}

int eid;
struct interrupt_struct cause_vec;

eid = open ("/dev/raw_hpib", O_RDWR);
cause_vec.cause = SRQ;
io_on_interrupt(eid, &cause_vec, handler);

handler (eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)
service_routine(); 1* user specific routine*1

}

iojnterrupLctl
The io_interrupLctl routine allows the user to enable or disable interrupts on a
specific eid. Since interrupts are automatically disabled when an interrupt occurs,
io_interrupLctl is commonly used when the user wants to repeatedly handle a specific
event. The call to io_interrupLctl has the following form:

io_interrupt_ctl(eid, enable_flag);

where eid is an entity identifier for an open GPIO or raw HP-IB device file. To control
enabling and disabling of the interrupts, enable-flag is used. If enable-flag is non-zero,
then interrupts are enabled on the eid. If enable-flag is zero, then interrupts are disabled
on the eid. Note that attempting to use io_interrupLctl on an eid that has not had an
io_on_interrupt applied to it, fails.

General-Purpose Routines 33

The following example modifies the handler from the previous example to re-enable
interrupts:

handler(eid. cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

}

if (cause_vec->cause == SRQ)
{

}

service routine(); 1* user specific routine*1
io_interrupt_ctl(eid.l);

34 General-Purpose Routines

Controlling the HP-IB Interface 3
To gain a full range of control over your computer's HP-IB interface you must use:

• the general purpose I/O routines in DIL discussed in Chapter 2, "General-Purpose
Routines"

• the DIL routines, described in this chapter, designed specifically for controlling the
HP-IB interface.

Besides the various routines, you must know about the commands that are interpreted
on an HP-IB. This chapter provides some general information about HP-IB commands
and introduces the DIL routines that specifically control the HP-IB. Then it relates this
information to the information provided in Chapter 2, "General-Purpose Routines," to
illustrate some HP-IB interfacing strategies.

Controlling the HP-IB Interface 35

Overview of HP-IB Commands
This section discusses the HP-IB commands that are sent over the 8 data lines while the
ATN line is asserted. You can send all of these commands using a DIL routine called
hpib_send_cmnd. This routine takes care of the assertion of ATN and the necessary hand­
shaking between devices. The computer's interface must be the Active Controller before
hpib_send_cmnd is used and any of the HP-IB commands sent. How hpib_send_cmnd is
called from your program is discussed later in this chapter.

In order for the commands to be interpreted by devices on the HP-IB, the bus's remote
enable line (REN) must be in its enabled state. Only the System Controller changes the
state of this line (see the "System Controller's Duties" section later in this chapter). By
default, REN is enabled.

Commands sent on the bus's data line form 4 groups:

• Universal commands cause every device, so equipped, to perform a specific interface
operation. The devices do not have to be addressed as listeners.

• Addressed commands are similar to the universal commands, except they affect
only those devices currently addressed as listeners.

• Talk and listen addresses are commands that assign talkers and listeners on the
bus.

• Secondary commands are commands that must always be used in conjunction with
a command from one of the above groups.

36 Controlling the HP-IB Interface

The table below lists the commands that you can send with hpib_send_cmnd. Later,
when you use the routine, you may need to refer back to this table for the decimal or
ASCII character value of particular commands.

Table 3.1 Bus Commands

Command

Universal Commands:

UNLISTEN

UNTALK

DEVICE CLEAR

LOCAL LOCKOUT

SERIAL POLL ENABLE

SERIAL POLL DISABLE

PARALLEL POLL UNCONFIGURE

Addressed Commands:

TRIGGER

SELECTED DEVICE CLEAR

GO TO LOCAL

PARALLEL POLL CONFIGURE

TAKE CONTROL

Talk and Listen Addresses:

Talk Addresses 0-30

Listen Addresses 0-30

Secondary Commands: (If a secondary
command follows the PARALLEL POLL
CONFIGURE command then it is inter­
preted as follows, otherwise its meaning is
device dependent)

PARALLEL POLL ENABLE

PARALLEL POLL DISABLE

Decimal
Value

63

95

20

17

24

25

21

8

4

1

5

9

64-94

32-62

96-111

112

ASCII Character

?

-
DC4

DC1

CAN

EM

NAK

BS

EaT

SOH

ENQ

HT

@ thru A

(uppercase ASCII)

space thru >
(numbers and special characters)

, thru 0

(lowercase ASCII)

p

Controlling the HP-IB Interface 37

UN LISTEN
The UNLISTEN command unaddresses all current listeners on the bus. Single listeners
cannot be unaddressed without unaddressing all listeners. It is necessary to use this
command to guarantee only desired listeners are addressed.

UNTALK
The UNTALK command unaddresses the current talker. Sending an unused talk address
accomplishes the same thing. This command is provided for convenience since addressing
one talker automatically unaddresses others.

DEVICE CLEAR
The DEVICE CLEAR command causes all recognizing devices to return to a pre-defined,
device-dependent state. Recognizing devices respond whether or not they are addressed.
Device manuals define the reset state for each device that recognizes the command.

LOCAL LOCKOUT
The LOCAL LOCKOUT command disables local control on all devices that recognize
this command. Recognizing devices respond to the command whether or not they are
addressed.

SERIAL POLL ENABLE
The SERIAL POLL ENABLE command establishes serial poll mode for all responding
devices capable of being bus talkers. Recognizing devices respond to the command
whether or not they are addressed. When a device is addressed to talk, it returns a 8-b't.
status byte message.

This command is not discussed any further since its function is accomplished by a DIL
routine called hpib_spoll (discussed later in this chapter).

SERIAL POLL DISABLE
The SERIAL POLL DISABLE command terminates serial poll mode for all responding
devices. Recognizing devices respond to the command whether or not they are addressed.

This command is not discussed any further since its function is accomplished by a DIL
routine called hpib_spoll (discussed later in this chapter).

38 Controlling the HP-IB Interface

TRIGGER (Group Execute Trigger)
The TRIGGER command causes the devices that are currently addressed as listeners to
initiate a preprogrammed, device-dependent action if they are capable. Device manuals
indicate whether or not a particular device is capable of responding to the TRIGGER
command and if it can, how to program it to do so.

SELECTED DEVICE CLEAR
The SELECTED DEVICE CLEAR command resets devices currently addressed as listen­
ers to a device-dependent state, if they are capable. A device's documentation indicates
whether or not the device recognizes this command and if so, it defines the reset state.

GO TO LOCAL
The GO TO LOCAL command causes devices that are currently addressed as listeners
to return to the local control state (exit from the remote state). The devices return to
the remote state the next time they are addressed.

PARALLEL POLL CONFIGURE
The PARALLEL POLL CONFIGURE command tells the devices currently addressed
as listeners that a secondary command follows. This secondary command must be either
PARALLEL POLL ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE
The PARALLEL POLL ENABLE command configures devices addressed by the PAR­
ALLEL POLL CONFIGURE command to respond to parallel polls on a particular data
line and with a particular logic level. Some devices implement a local form of this message
(for example, jumpers) that cannot be changed.

This command must be preceded by the PARALLEL POLL CONFIGURE command.

PARALLEL POLL DISABLE
The PARALLEL POLL DISABLE command disables devices addressed by the PARAL­
LEL POLL CONFIGURE command from responding to parallel polls. This command
must be preceded by the PARALLEL POLL CONFIGURE command.

Controlling the HP-IB Interface 39

Overview of the HP-IB OIL Routines

Standard OIL Routines
Besides the general purpose routines described in Chapter 2, "General-Purpose Rou­
tines," DIL also provides routines that allow you to fully access the capabilities of the
HP-IB interface. There are 14 of these routines:

Routine Description

hpib_abort Stops activity on a specified HP-IB select code.

hpib_io Performs a mixture of HP-IB read, write, and SEND_CMD activities.

hpib_ppoll Conducts parallel poll on HP-IB.

hpib_spoll Conducts serial poll on HP-IB.

hpib_bus_status Returns status on HP-IB interface.

hpib_eoi_ctl Controls EOI mode for data transfers.

hpib_pass_ctl Changes active controllers on HP-IB.

hpib _ card_ppolL resp Configures it owns response to a parallel poll.

hpib_ren_ctl Controls remote enable line (REN) on HP-IB.

hpib_rqsCsrvce Allows interface to generate an SRQ request on HP-IB.

hpib_send_cmnd Sends characters on HP-IB with the attention line (ATN) line asserted.

hpib _ waiC on_ppoll Lets you wait for a particular parallel poll value to occur.

hpib_status_ wait Lets you wait until a particular status condition is true.

hpib_ppolL resp_ctl Defines interface parallel poll response as yes or no.

Additional Series 200/300 and Integral PC Routines
In addition to the standard HP-IB routines, the Integral PC and Series 200/300 support
the following DIL routine:

io_burst(eid,flag) Used to control the high-speed HP-IB mode. If flag = 0, high-speed
mode is turned off; otherwise it is turned on.

For details on using this routine, refer to the appropriate hardware-specific appendix.

40 Controlling the HP-IB Interface

The Computer's Role on the HP-IB
Your computer must currently have one of the following two roles on the HP-IB:

• It is the Active Controller .

• If it isn't the Active Controller, it is a Non-Active Controller.

There can be only one Active Controller on an HP-IB interface at a given time. Since
Active Controller status is passed between bus controller devices, your computer's status
can change from active to non-active, or from non-active to active.

In addition to being either an Active or Non-Active Controller, your computer can also
he the bus's System Controller. Once a controller is configured as the System Controller,
it cannot be unconfigured without powering down the system. The System Controller is
either the Active Controller or a Non-Active Controller. When the System Controller is
initially powered up, it assumes the role of Active Controller.

Whieh of the DIL routines you can use depends on your computer's role on the HP-IB.
Given the three role designations, Table 3-2 indicates which routines can be used with
them.

Controlling the HP-IB Interface 41

Table 3-2. DIL Routine Role Designations.

System Active Non-Active
Routine Controller Controller Controller

hpib_abort X

hpib_io X

hpib_ppoll X

hpib_spoll X

hpib_ bus_status (X) X X

hpib_eoLctl X

hpib_pass_ctl X

hpi b _ card_ppolLresp X* X

hpibJen_ctl X

hpib_rqsLsrvce X* X

hpib_send_cmnd X

hpib_ wait_on_ppoll X

hpib_status_ wait (X) X X

hpib _ppolLresp _ ctl X* X

* means that the routine can be used if the computer is the Active Controller but
there is no affect until it becomes a Non-Active Controller.

(X) means that the X isn't required since the System Controller must be either active
or non-active and both of these roles can use the routine (i.e., the System Controller roh'
is not required to use the routine).

Opening the HP-IB Interface File
Before you can use DIL routines on an HP-IB interface, the special file for the interfac('
must exist. In addition, your program must open this special file and obtain its entity
identifier. For details on creating an HP-IB special file and opening an interface's special
file and obtaining its entity identifier, you should refer to the "Concepts" and "Opening
an Interface's Special File" sections of Chapter 2, "General-Purpose Routines."

42 Controlling the HP-IB Interface

Sending HP-IB Commands
After your program has opened the special file for the HP-IB interface and obtained
its entity identifier, you can call DIL routines to send HP-IB commands to the HP-IB
interface. The DIL routine that allows you to place HP-IB commands on the data bus
is hpib_send_cmnd. Your computer must be the Active Controller to use this routine.

One method of using this routine is to first set up a character array containing the
commands that you want to send. You assign the decimal value for the commands to
the elements of the array. The routine call then has the form:

hpib_send_cmnd(eid. command. number);

where eid is the entity identifier for the open interface file, command is a character
pointer to the first element of the array containing the HP-IB commands, and number
is the number of elements (commands) in the array. The routine hpib_send_cmnd places
each of the commands stored in the array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer, you can
send subsets of command arrays. Suppose you create an array that contains 10 HP-IB
commands, command[O] through command[9]. You can now specify that only the last 5
commands in the array be sent using:

hpib_send_cmnd(eid. command + 5. 5);

This method of sending HP-IB commands by storing them in an array uses their decimal
values. Alternatively, the commands' ASCII character values can be used by specifying
a character string. In this case, the routine call has the form:

hpib_send_cmnd(eid. "command_string". number);

where eid and number are the same as above. However, the commands to be sent are
now specified by each character in the string command_string.

Controlling the HP-IB Interface 43

To illustrate the two methods, assume that you want to send the HP-IB UNLISTEN and
UN TALK commands. With the decimal array method you first set up an array with two
elements, the decimal values for the commands, and then call hpib_send_cmnd:

#include <fcntl.h>
mainO
{

int eid;
char command [2] ; I*command array*1

eid = open ("/dev/raw_hpib", O_RDWR);
command[O] = 63; I*decimal value for UNLISTEN*I
command[l] = 95; I*decimal value for UNTALK*I
hpib_send_cmnd(eid, command, 2);

}

If the ASCII character string method is used, the same effect is achieved with the code:

#include <fcntl.h>
main 0
{

int eid;

eid = open ("/dev/raw_hpib", O_RDWR);
hpib_send_cmnd(eid, "?_", 2); I*? is ASCII for UNLISTEN and*1

1*_ is ASCII for UNTALK *1
}

Since the array method allows you to store a list of commands, it should be used if you
are sending a large number of commands or if you are sending the same set of commands
several times in a program. With the string method, the entire set of commands must
be specified as a string in the call to hpib_send_cmnd. It is useful if you are sending only
a few commands or if a particular set of commands is only sent once in a program.

Errors While Sending Commands
Normally, hpib_send_cmnd returns a 0 if it executes successfully. However, it returns a
-1 if anyone of the following error conditions are true:

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, the program should check the
value of errno, an external integer variable used by HP-UX system calls. Chapter 2,
"General-Purpose Routines" discusses how you can design an error checking routine
that looks at the value of errno.

44 Controlling the HP-IB Interface

The following table indicates the value that errna will have given that one of the above
conditions occurred during the call to hpib_send_cmnd:

errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file

eid did not refer to a raw interface file

The interface was not the Active Controller

The Active Controller
Acting as Active Controller of the bus involves sending the HP-IB commands with
hpib_send_cmnd and making calls to several other DIL routines. The functions of the
Active Controller discussed in this chapter are:

• Setting up devices as talkers and listeners

• Gaining remote control of devices

• Locking out local control of devices

• Enabling local control of devices

• Triggering devices to initiate device-dependent actions

• Transferring data

• Clearing devices

• Servicing requests from devices

• Conducting parallel and serial polls

• Passing active control of the bus to another controller

Controlling the HP-IB Interface 45

Determining Active Controller
To carry out the Active Controller's bus management activities, the computer's HP-IB
interface must be the Active Controller of its bus. If other devices on the bus are capable
of being the Active Controller, you can use the hpib_bus_status routine to determine if
the interface is currently the Active Controller.

To find out if the interface is the Active Controller, the call to hpib_bus_status must have
the form:

where eid is the entity identifier for the opened HP-IB interface device file and the 4 tells
the routine to determine if the interface is the Active Controller. This routine returns a
value that can be tested, see source code below.

hpib_bus_status returns 0 if the answer is no, 1 if the answer is yes, and -1 if an error
occurred. The code that follows shows a straightforward way of interpreting the returned
value:

#include <fcntl.h>
mainO
{

}

int eid, status;
eid = open ("/dev/raw_hpib" , O_RDWR);

if «status = hpib_bus_status(eid,4» == -1)

/*an error occurred -- insert code that*/

/*flags it.
else if (status == 0)

else

/*not Active Controller -- insert code */

/*that requests Active Controller status*/

/*is Active Controller -- insert code for*/

/*the bus management routine required */

46 Controlling the HP-IB Interface

Setting Up Talkers and Listeners
One talker and one or more listeners must be configured on the bus before data can be
transferred. Also, some HP-IB commands effect only those devices currently addressed
as listeners, which means that the Active Controller must specify the listeners before
using them. There can be only one talker at a time on the bus, but there can be any
number of listeners.

On Series 200/300, 500, and 800 computers, two methods exist for addressing listeners
and talkers on an HP-IB. The first method, referred to as auto-addressing, instructs the
computer to handle addressing for you.

The Integral PC does not support auto-addressing. This is because all HP-IB inter­
face files on the Integral PC are raw special files and, therefore, do not support auto­
addressing.

The second method requires using the hpib_send_cmnd function to manually address the
bus. This is the only method available to Integral PC users.

Auto-Addressing on Series 200/300, 500, and 800
The system performs auto-addressing on normal (non-raw) HP-IB device files. Except
for certain cases on the Series 800, note that DIL routines require a raw HP-IB device
file. Therefore, while you can open, close, read, and write from a non-raw HP-IB device
file, the DIL functions will fail. Please refer to the Model 840 appendix for information
OIl Series 800 exceptions.

On Series 200, 300, and 500 systems, you can create a special file that informs the system
to perform auto-addressing (see the appropriate hardware-specific appendix for details).

For example, suppose you've created an auto-addressable special file for a specific device
on select code 1 at bus address 3; the device is an HP271lOA/B card on a Series 500
computer and uses driver 12; the special file is named /dev/device. If you list this file
Ilsing ll(l), you would see:

crw-rw-rw- 1 root other 12 Ox010300 Apr 5 1985 /dev/device

Controlling the HP-IB Interface 47

The following code illustrates auto-addressing using this device file:

main 0
{

}

int eid;
eid = open("/dev/device",O_RDWR);
/*Assuming "/dev/device" has the minor number (OxOl0300), the*/
/*system addresses the interface card at select code 1 as a talker*/
/*and the device at bus address 3 as a listener before sending data*/
write(eid, "test data" ,9);

Using hpib_send_cmnd
Talkers and listeners may be manually configured with the HP-IB commands formed
by the talk and listen addresses of the devices. First, however, you should remove any
previous listeners from the bus with the UNLISTEN command. To configure the bus's
talker and listeners, the following steps are required:

1. Send the UNLISTEN command to remove any previous listeners.

2. Send the talk address of the device that will be sending data. There can only be
one talker device.

3. Send the listen address of each device that is to receive the data.

To send the HP-IB commands necessary for this process you can use the hpib_send_cmnd
routine.

Calculating Talk and Listen Addresses
A talker is specified on the bus by sending the talk address for the device, and a device
is specified as a listener by sending its listen address. Talk addresses and listen addresses
are both considered HP-IB commands, which means you should send them with the
hpib_send_cmnd routine.

48 Controlling the HP-IB Interface

To calculate either the talk or the listen address for a device, you must first know its
HP-IB address. The HP-IB address for the computer's interface card can be found using
the hpib_bus_status routine:

#include <fcntl.h>
MainO
{

}

int eid. address;
eid = open C "/dev/raw_hpib" . O_RDWR);
address = hpib_bus_statusCeid. 7);

where eid is the entity identifier for the interface file and 7 indicates that you want the
routine to return the interface's HP-IB address. To find out the bus address of some
other device, refer to its installation and operation documentation.

Once you have the device's HP-IB address, its talk_address (in decimal) is found using
the formula:

talk_address = 64 + bus_address

where bus_address is the HP-IB bus address for the device. Bus addresses range from 0
to 30.

The listen address for a device (in decimal) is found similarly using the formula:

listen_address = 32 + bus_address

Thus, My Talk Address (MTA) for the computer is calculated with:

MTA = hpib_bus_status<eid. 7) + 64;

and My Listen Address (MLA) is calculated with:

MLA = hpib_bus_status<eid. 7) + 32;

Controlling the HP-IB Interface 49

An Example Configuration
Assuming that the computer's interface is currently the Active Controller of the HP-IB,
the following code establishes the interface as the bus talker. Two devices at HP-IB
addresses 4 and 8 are designated as the bus listeners.

#include <fcntl.h>
mainO
{

}

int eid. MTA;
char command [4] ;
eid = open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status(eid. 7) + 64; /*calculate My Talk Address*/
command [0] = 63; /* the UNLISTEN command*/
command[l] = MTA; /* the talk address for the interface*/
command [2] = 32 + 4; /* the listen address for device at HP-IB address

command[3] = 32 + 8; /* the listen address for device at HP-IB address

hpib_send_cmnd(eid. command. 4);

Remote Control of Devices
Most HP-IB devices can be controlled either from their front panel or from the bus. If
the device's front-panel controls are currently operational, it is in the local state. If it
is being controlled through the HP-IB, it is in its remote state. Pressing the device's
front-panel LOCAL key returns the device to local control, unless it is in the local lockout
state (described in a subsequent section).

The level of the remote enable (REN) line of the HP-IB bus controls whether or not a
device can respond to remote program control. If the REN line is enabled, any device
that is addressed (as a listener) is automatically placed in the remote state. Only the
System Controller can change the level of the REN line (see System Controller's Duties
later in this chapter). By default, the line is enabled when the System Controller is
powered up.

50 Controlling the HP-IB Interface

Locking Out Local Control
The LOCAL LOCKOUT command effectively locks out the local switch present on most
HP-IB front panels, preventing a device's user from interfering with the system operations
by pressing buttons. All devices that recognize this command are affected, whether they
are addressed or not, and cannot be returned to local control from their front panels.

The following code shows one way of sending the LOCAL LOCKOUT command:

command[D] = 17; 1* Decimal value of LOCAL LOCKOUT*I
hpib_send_cmnd(eid. command. 1);

The local lockout state is cancelled by sending a GO TO LOCAL command to a device.

Enabling Local Control
During system operation, it may be necessary for an operator to interact with one or
more devices in the local state. For instance, an operator might need to work from the
front panel to make special tests or to troubleshoot. The GO TO LOCAL command
returns all of the devices currently addressed as listeners to the local state.

For example, the code below places the devices at HP-IB addresses 3 and 5 into their
local state.

command[D] 63; 1* the UNLISTEN command*1
command [1] 32 + 3; 1* listen address for device at address 3*1
command [2] 32 + 5; 1* listen address for device at address 5*1
command [3] 1 ; 1* the GO TO LOCAL command*1
hpib_send_cmnd(eid. command. 4);

Controlling the HP-IB Interface 51

Triggering Devices
The HP-IB TRIGGER command tells the devices currently addressed as listeners to
initiate some device-dependent action. For example, it can be used to trigger a digital
voltmeter to perform its measurement cycle. Because the response of a device to a
TRIGGER command is strictly device-dependent, you can not specify with the command
what action is to be initiated.

The following code triggers the device at bus address 5 to initiate some action:

command[O] = 63;
command [1] = 32 + 5;

command[2] = 8;
hpib_send_cmnd(eid. command.

Transferring Data

/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 5 */
/* the TRIGGER command*/
3);

For the Active Controller to send data to another device it must:

1. Send an UNLISTEN command.

2. Send its own talk address (MTA).

3. Send the listen address of the device that is to receive the data. One listen address
is sent for every device that is to receive the data.

4. Send the data.

The first 3 steps are accomplished using hpib_send_cmnd, while the system routine write
takes care of the fourth.

52 Controlling the HP-IB Interface

The following code illustrates how character data can be sent to a device at HP-IB
address 5.

#include <fcntl.h>
main 0
{

}

int eid. MTA;
char command[50];

eid = open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status(eid. 7) + 64;
command [0] = 63;
command [1] = MTA;
command [2] = 32 + 5;

hpib_send_cmnd(eid. command. 3);
write(eid. "data message". 12);

I*calculate MTA*I
I*the UNLISTEN command*1
I*talk address of interface*1
I*listen address of device at*1
I*address 5 *1

I*send the data*1

Now assume that you are expecting to receive 50 bytes of data from another device on
t.he bus. The code below allows the interface to receive character data from a device at
bus address 5. The integer variable MLA contains the bus address of the interface.

#include <fcntl.h>
mainO
{

}

int eid. MLA. len;
char buffer [51] ;

eid = open("/dev/raw_hpib". O_RDWR);
MLA = hpib_bus_status(eid. 7) + 32;
command [0] 63;
command [1] 64 + 5'

command [2] MLA;
hpib_send_cmnd(eid. command. 3);
len = read(eid. buffer. 50);
buffer[len] = '\0';
printf("Data read is: %s". buffer);

I*storage for data*1

I*calculate MLA*I
I*the UNLISTEN command*1
I*the talk address of device at*1
I*address 5 *1
I*the listen address of interface*1

I*store the data in "buffer"*1
I*terminate with NULL for printf*1
I*print message*1

Controlling the HP-IB Interface 53

Clearing HP-IB Devices
There are two HP-IB commands for resetting devices to their pre-defined, device­
dependent states. The first one is the DEVICE CLEAR command which causes all
devices that recognize the command to be reset, whether they are addressed or not.

Thus, to reset all of the devices on an HP-IB accessed through a interface file with an
entity identifier eid, you can use the following code:

command[O] = 20; /* the DEVICE CLEAR command*/
hpib_send_cmndCeid. command. 1);

The second command for resetting devices is SELECTED DEVICE CLEAR. This com­
mand resets only those devices that are currently addressed as listeners.

To reset a device with an HP-IB address of 7, you can use the following code:

command[O] = 63;
command[1] = 32 + 7'

command [2] = 4;
hpib_send_cmndCeid. command.

Servicing Requests

/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 7 */
/* the SELECTED DEVICE CLEAR command*/

3) ;

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers,
are capable of generating a service request when they require the Active Controller to
take some action. Service requests are generally made after the device has completed a
task (such as taking a measurement) or when an error condition exists (such as a printer
being out of paper). The operating or programming manual for each device describes the
device's capability to request service and the conditions under which it requests service.

54 Controlling the HP-IB Interface

Monitoring the SRQ Line
To request service, a device asserts the Service Request (SRQ) line on the bus. To
determine if SRQ is being asserted, you check the status of the line, wait for SRQ, or set
up a interrupt handler for SRQ. The hpib_status_wait routine allows you to write code
that waits until the SRQ line is asserted before it continues. To specify that you want
the program to wait until the SRQ line is asserted, hpib_status_ wait must be invoked as
follows:

where eid is the entity identifier for the open interface file and 1 indicates that the event
that you are waiting for is the assertion of the SRQ line. The routine returns a when the
condition requested becomes true or -1 if a timeout or an error occurred.

The following code illustrates the use of hpib_status_ wait:

#include <fcntl.h>
mainO
{

int eid;
eid = open(lI/dev/raw_hpib ll • O_RDWR);
io_timeout_ctl(eid.10000000);
if (hpib_status_wait(eid. 1) == 0)

service_routine(); /*SRQ is asserted; service the request*/
else

printf("Either a timeout or an error occurred");
}

Allother solution is to periodically check the value of the SRQ line with hpib_bus_status.
To check the SRQ line with hpib_bus_status, the call looks like this:

where eid is the entity identifier for the open interface file and 1 indicates that you want
the logical value of the SRQ line returned. The routine returns 1 if SRQ is asserted, a if
it isn't, and -1 if an error occurred.

The most practical way to monitor the SRQ line is to set up a interrupt handler for that
(,()lIdition (see the "Interrupts" section of Chapter 2, "General-Purpose Routines").

Controlling the HP-IB Interface 55

The Service Routine
Once a device has asserted the SRQ line, it continues to assert the line until its request
has been satisfied. How a service request is satisfied is device-dependent. Serial polling
the device can provide the information as to what kind of service it requires.

In many cases, devices requesting service clear the SRQ line when they are serially polled.
They see the poll as an acknowledgement from the Active Controller to the device that
the request has been seen and the Active Controller is responding.

If there is more than one device on the bus and the SRQ line is asserted, anyone of the
devices could be asserting the line. The Active Controller must then determine which of
the devices needs service. There are two strategies for doing this:

• Serial poll each device until you find the one that is requesting service. This ap­
proach is reasonable if there are only a few devices on the bus.

• Conduct a parallel poll to locate the device requesting service. Normally, each
device (that is capable) is programmed to respond on a different data line. However,
since there can be 15 devices on the bus and there are only 8 data lines, it is
sometimes necessary to have several devices respond on the same line.

If several devices are programmed to respond on the same parallel poll line and the
parallel poll shows that line asserted, the Active Controller must then serially poll
each of these devices until it finds the one that is requesting service.

Thus, the Active Controller usually takes one of two approaches in response to seeing
the SRQ line asserted: it can conduct a serial poll or it can conduct a parallel poll. In
some cases the Active Controller may need to take both types of polls. The DIL routines
that conduct these polls are hpib_ppoll and hpib_spoll. How these routines are used is
discussed next.

56 Controlling the HP-IB Interface

Parallel POlling
The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond
with one bit of status when parallel polled, making it possible to obtain the status of
several devices in one operation. If a device responds affirmatively (I need service) to the
parallel poll, more information as to its specific status can be obtained by conducting a
serial poll of the device.

Integral PC Only: The parallel poll response in the HP 82998A HP-IB interface can only
be set using the hpib_card_ppoILresp routine.

Configuring Parallel Poll Responses
Certain devices can be remotely programmed by the Active Controller to respond to
a parallel poll. However, other devices require that the response be configured locally.
Refer to the documentation for the device whose response you want to configure to find
out if remote configuration by the Active Controller is possible.

The Active Controller remotely configures a device's parallel poll response by sending
the HP-IB command PARALLEL POLL CONFIGURE followed by PARALLEL POLL
ENABLE. The combination of these two commands tells devices addressed as listeners to
respond to any future parallel polls on a particular data line and with a particular logic
level. Some devices may implement a local form of this message (for example, jumpers)
that can not be changed remotely by the Active Controller.

There are 16 different PARALLEL POLL ENABLE commands, each configuring a re­
Hponse on a specific data line and at a specific level. The 8-bits of the command have
the following binary form:

D7 D6 D5 D4 D3 D2 Dl DO Decimal Range

0 1 1 0 L X X X 96-111

where:

L indicates the logic sense of the response (e.g., 1 means that the device will respond
with 1 when it needs service).

X indicates the data line on which the device will respond.

Controlling the HP-IB Interface 57

For example, given that the parallel response lines are labeled DO to D7, a PARALLEL
POLL ENABLE command with a decimal value of 104 (01101000 in binary) tells the
addressed device to respond to parallel polls on data line DO with a 1 when it needs
service.

The following code shows how you can configure a device at bus address 5 to respond to
a parallel poll by asserting data line Dl high when it needs service.

#include <fcntl.h>
mainO
{

}

int eid, MTA;
char command [50] ;

eid = open (1/dev/raw_hpib", O_RDWR);
MTA = hpib_bus_status(eid, 7) + 64; I*calculate MTA*I
command[O] = MTA; I*talk address of interface*1
command[1] = 63; 1* the UNLISTEN command*1
command[2] = 32 + 5; 1* the listen address for device at*1

command [3] = 5;
command[4] = 105;
hpib_send_cmnd(eid,

1* address 5 *1
1* the PARALLEL POLL CONFIGURE command*1
1* the PARALLEL POLL ENABLE command*1

command, 5);

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105 used
above is:

o o 001

1!.-.......,!.1-....J1L..---These 3 bits indicate that the device should

respond on Dl.

L...--------This bit indicates that the device respond with
a 1 to request service.

L..........I..--L.--.L----------These 4 bits indicate that this is a PARALLEL
POLL ENABLE command.

When the interface is the Active Controller, it can configure its own parallel poll response
by addressing itself as both the talker and the listener. However, the configuration has
no effect until the interface is no longer the Active Controller. The Active Controller
never responds to parallel polls.

58 Controlling the HP-IB Interface

Disabling Parallel Poll Responses
A device whose parallel poll response can be remotely configured by the Active Controller
can also be disabled from responding.

The Active Controller disables a device from responding to any future parallel polls
by first sending a PARALLEL POLL CONFIGURE command followed by PARALLEL
POLL DISABLE. All devices that are currently addressed as listeners are disabled.

In the previous example a device at bus address 5 was configured to respond to parallel
polls on Dl. To disable the same device from responding you can use:

command [0] = MTA;
command[l] = 63;
command[2] = 32 + 5;

/*talk address of interface*/
/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 5 */
/* the PARALLEL POLL CONFIGURE command*/
/* the PARALLEL POLL DISABLE command*/

command[3] = 5;
command[4] = 112;
hpib_send_cmndCeid. command. 5);

Conducting a Parallel Poll
Once the parallel poll responses of devices on the HP-IB have been configured (either
remotely or locally), the Active Controller can conduct a parallel poll with hpib_ppoll.

The hpib_ppoll routine returns an integer whose least significant byte contains the 8-bit
response to the parallel poll. Each device that is enabled to respond to a parallel poll
places its status bit on a previously configured line. If an error occurs while the poll is
being taken, a -1 is returned by the routine.

hpib_ppoll is invoked as follows:

hpib_ppollC eid);

where eid is the entity identifier for the open interface file connected to the bus.

The code below indicates how you can interpret the byte returned by hpib_ppoll. Assume
that a device at address 6 was previously configured to respond to a parallel poll by
placing a 1 on DO if it needed service. Assume the device at address 7 was configured to
respond similarly on Dl. If these are the only two devices able to respond to a parallel
poll, you only care about the values of the 2 least significant bits of the integer returned
by hpib_ppoll. The actual service routines have been left out of the example.

Controlling the HP-IB Interface 59

#include <fcntl.h>
mainO
{

int eid, status, byte;
eid = open(l/dev/raw_hpib", O_RDWR);

if «status = hpib_ppoll(eid» == -1) I*conduct the parallel poll*1
{

}

printf("error taking ppoll"); I*if -1 returned then error occurred*1
exit (1) ;

}

byte = status & 3;

switch (byte) {

}

case 0:

break;
case 1:

break;
case 2:

break;
case 3:

break;

I*set all but the least significant*1
1*2 bits to zero *1

I*neither device is requesting service*1

I*device at address 6 wants service*1

I*device at address 7 wants service*1

I*both devices want service*1

Errors During Parallel Polling
hpib_ppoll returns a -1 if anyone of the following error conditions are true:

• The timeout defined by io_timeouCctl occurred before all of the devices responded.

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to a raw HP-IB interface file.

• The eid entity identifier does not refer to an open file.

60 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value Error Condition

EBADF

ENOTTY

EIO

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the Active Controller or a timeout occurred.

Waiting For a Parallel Poll Response
The hpib_waiLon_ppoll routine allows you to wait for a specific parallel poll response
from one or more devices. The effect of this is similar to waiting for the assertion of the
SRQ line with hpib_status_wait (see the section Servicing Requests, presented earlier).
With hpib_waiLon_ppoll you can wait for a specific device to request service; while
hpib_status_wait is interrupted when any device requests service.

hpib_waiLon_ppoll is called with the form:

where eid is the entity identifier for the open interface file, mask is an integer whose
binary value indicates on which parallel poll lines you are waiting for a request, and
8ense is an integer whose binary value indicates on which of these lines the request will
lise negative logic (device responds with 0 when it wants service). The routine returns
the response byte XOR-ed with the sense value and AND-ed with the mask, unless an
prror occurs, in which case it returns a -1.

Calculating the mask
Tlw routine hpib_waiLon_ppoll only looks at the least significant byte of the mask in­
teger; therefore, the integer's remaining bytes can contain anything. For simplicity, the
('xamples in this discussion set the upper bytes to zeros.

Controlling the HP-IB Interface 61

The mask value is determined as follows:

1. Decide which of the parallel poll lines (the 8 data lines) you want to wait for a
request for service on. Assume that the lines are labeled DO-D7.

2. Set up an 8-bit binary number where the bits associated with the lines whose
assertion you want to wait for are set to 1 and all of the other bits are o. (DO
is associated with the least significant bit of the binary number, and D7 with the
most significant.)

3. Given the binary number from step 2, calculate its decimal value. This is the mask
integer you should use with hpib_waiLon_ppoll.

For example, assume that you want to wait for device A or device B to request service.
You know that device A has been configured to respond on the parallel poll line DO and
device B has been configured to respond on line D4. The binary value of the mask that
you will use is:

D7 D6 D5 D4 D3 D2 Dl DO

o o o 1 o o o 1

The decimal value of this number is 17; the mask that you will use is 17.

Now consider a mask of o. It indicates that you do not want to wait for a request on any
of the parallel poll lines, meaning that a call to hpib_ waiL on_ppoll using a mask of 0 hI;
no effect.

Calculating the sense
The routine hpib_ waiL on_ppoll also only looks at the least significant byte of the senS(~
integer. For simplicity, the examples in this discussion set the upper bytes to zeros.

62 Controlling the HP-IB Interface

The sense value is determined as follows.

1. Decide which of the parallel poll lines (the 8 data lines) you want to wait for a
request for service on. Assume that the lines are labeled DO-D7.

2. Determine which of these lines will indicate a request for service with a O. This
means that you must know the sense with which the associated devices are config­
ured to respond to parallel polls.

3. Set up an 8-bit binary number where the bits associated with the lines that use
a 0 to indicate a service request are set to 1 and all of the other bits are O. (DO
is associated with the least significant bit of the binary number, and D7 with the
most significant.)

4. Given the binary number from step 3, calculate its decimal value. This is the sense
integer you should use with hpib_waiLon_ppoll.

Refer back to the example given for calculating the mask value. You know that device A
is configured to respond on line DO with a 1 when it wants service, but device B is going
to request service with a 0 on line D4. The binary value of the sense that you will use is:

D7 D6 D5 D4 D3 D2 Dl DO

o o o 1 o o o o

The decimal value of this number is 16; the sense that you will use is 16.

If all of the devices on the bus respond to parallel polls with a 1 to request service, then
the sense value can always be 0, no matter which parallel poll lines you are waiting for.
If, on the other hand, all of the devices request service with a 0, then the sense value
ean always be 255 (11111111 in binary). You need only calculate a different sense value
if devices on the bus respond with different levels.

Example
Assume that you want to use hpib_ waiL on_ppoll to wait until one of the four devices on
a bus are requesting service. Your bus is configured as follows:

Parallel Poll Requests Service
Device Bus Address Response Line with a:

A 5 DO 1

B 7 Dl 0

C 9 D2 0

D 11 D3 1

Controlling the HP-IB Interface 63

Begin by calculating the mask value for hpib_waiLon_ppoll. You want to wait for re­
sponses on lines DO, D1, D2, and D3; therefore, the mask value is:

Binary: Decimal:

00001 1 1 1 15

Since the four devices on the bus use both positive and negative logic, you must calculate
the sense value. The devices responding on lines D1 and D2 use 0 to request service;
therefore, the sense value is:

Binary: Decimal:

00000 1 1 0 6

Now that you have the mask and sense values you can write the code that makes the call
to hpib_ waiL on_ppoll:

#include <fcntl.h>
mainO
{

}

int eid;
eid = open(lI/dev/raw_hpib ll • O_RDWR);

if (hpib_wait_on_ppoll(eid. 15. 6) == -1)
printf("either a timeout or error occurred");

else
service_routine();

In the code above, for service_ routine to be executed, one of the four devices must be
requesting service with their parallel poll response. ServiceJoutine should contain code
that services all of the devices, either individually or as a group. See the appropriatp
hardware-specific appendix for any restrictions that may apply to your system.

64 Controlling the HP-IB Interface

Serial Polling
A sequential poll of individual devices on the bus is known as a serial poll. One entire
byte of status is returned by the specified device in response to a serial poll. This byte is
called the status byte message and, depending on the device, may indicate an overload,
a request for service, or a printer being out of paper. The particular response of each
device depends on the device.

Not all devices can respond to a serial poll. To find out if a particular device can be
serially polled, consult its documentation. Trying to serially poll a device that cannot
respond causes a timeout or suspends your program indefinitely.

The Active Controller cannot serial poll itself.

Unlike the parallel poll responses, serial poll responses cannot be configured remotely
by the Active Controller. They are device-dependent and you must refer to a device's
documentation to see how it responds.

Conducting a Serial Poll
The hpib_spoll routine performs a serial poll of a specified device. It is called with the
form:

hpib_spoll(eid. address);

where eid is the entity identifier for the open interface file and address is the bus address
of the device to be polled. The routine returns an integer, the lowest byte of which
contains the status byte message (the serial poll response) from the addressed device.
Only one device can be polled per call to hpib_spoll.

Although the status byte message supplied by the addressed device is device-dependent,
one bit always supplies the same information. Given that the status byte's bits are
labelled DO-D7, D6 always indicates whether or not the device is requesting service by
asserting the SRQ line.

Controlling the HP-IB Interface 65

The code below illustrates how hpib_spoll can be used to find out if a device at bus
address 5 is requesting service. It does this by asserting SRQ (it only looks at D6).

#include <fcntl.h>
mainO
{

int eid, status;
eid = open ("/dev/raw_hpib" , O_ROWR);

if «status = hpib_spoll(eid, 5» == -1)
{ printf("error during serial poll");

exit (1) ;
}

I*conduct serial poll*1

if (status 8& 64)

service_routine();

I*after setting every bit except 06*1
I*to zero; if 06 is set the device*1
I*is requesting service *1

}

Errors During Serial Poll
The hpib_spoll routine returns a -1 indicating an error if any of the following conditions
are true:

• The addressed device did not respond to the serial poll before the timeout defined
by io_timeouLctl occurred.

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

• Address is outside the range [0,30j.

To find out which of these conditions caused the error, your program should check for
the following values of ermo:

Errno Value

EBADF

ENOTTY

EIO

EINVAL

Error Condition

eid did not refer to an open file.

eid did not refer to a raw interface file.

The device polled did not respond before the timeout or the interface
was not the Active Controller.

Invalid bus address.

66 Controlling the HP-IB Interface

Passing Control
The current Active Controller can pass the active control capability to a Non-Active
Controller with the hpib_pass_ctl routine. A Non-Active Controller is a device capable
of becoming Active Controller, and in most cases this means it is a computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl(eid. address);

where eid is the entity identifier for the open interface file (that is currently the Active
Controller) and address is the bus address of a Non-Active Controller. Once the call is
completed, the Non-Active Controller is the new Active Controller and the interface is a
Non-Active Controller.

The hpib_pass_ctl routine only passes active control capability, it does not pass system
control capability.

What If Control Is Not Accepted?
Your program is not suspended if the Non-Active Controller that you address does not
accept active control of the bus. However, the computer still loses active control. This
means the bus no longer has an Active Controller. If this happens, the System Controller
must assume the role of Active Controller with hpib_abort (see The System Controller's
Duties section) or iOJeset.

No error is returned by hpib_pass_ctl if the device that you address does not accept active
control. There is also no direct way to determine in advance if a given device can accept
active control. However, if the computer immediately requests service after passing
control and a timeout occurs before the request is acknowledged, possibly the active
control wasn't accepted. There is no way for the computer, after initiating hpib_pass_ctl,
to see if active control is accepted.

Errors While Passing Control
The routine hpib_pass_ctl returns a -1 indicating an error if any of the following error
conditions are true:

• The computer's interface is not the Active Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

• Address is outside the range [0,30j.

Controlling the HP-IB Interface 67

To find out which of these conditions caused the error, your program should check for
the following values of erma:

Errno Value

EBADF

ENOTTY

EIO

EINVAL

Error Condition

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the Active Controller.

Invalid bus address.

The System Controller
When the HP-IB's System Controller is first powered on or is reset, it assumes the role
of Active Controller. An HP-IB can have only one System Controller. The System
Controller cannot pass system control to any other controller (computer) on the bus.
However, it can pass active control to another controller.

Integral PC Only: The HP 82998A HP-IB interface can be configured to power-on in
the non-system-controller state by setting a switch on the interface card. Refer to the
HP 82923A HP-IB Interface Owner'8 Manual for instructions. The built-in HP-IB inter­
face on the Integral PC will always power-on in the system-controller state.

Determining System Controller
To find out if your computer's HP-IB interface is the System Controller, use the
hpib_bu8_8tatu8 routine. It must be called as follows:

hpib_bus_status(eid. 3);

where eid is the entity identifier for the open interface file and 3 indicates that you want
to find out if it is the System Controller. The routine returns a 1 if it is the System
Controller, a 0 if it isn't, and a -1 if an error occurs.

68 Controlling the HP-IB Interface

The code that follows prints a message indicating if the interface is the System Controller:

#include <fcntl.h>
mainO
{

}

int eid, status;
eid = open ("/dev/raw_hpib" , O_RDWR);

if «status = hpib_bus_status(eid, 3)) == -1)
printf("Error occurred during bus status routine");

else if (status == 1)
printf("Interface is the System Controller");

else
printf("Interface is not the System Controller") ;

System Controller's Duties
The System Controller of an HP-IB bus has three major functions:

• It assumes the role of Active Controller whenever it is powered on or reset.

• It can cancel talkers and listeners from the bus and assume the role of Active
Controller by executing hpib_abort.

• It can control the logic level of the remote enable line (REN) with hpibJcn_ctl.

hpib_abort
A call to hpib_abort carries out the following actions:

• It terminates activity on the bus by pulsing the Interface Clear line (IFC). This
results in all talkers and listeners on the bus being unaddressed.

• It sets the REN line so that devices on the bus will be placed in their remote state
when they are addressed as listeners.

• It clears the ATN line if it was left set by the previous Active Controller.

• The System Controller then becomes the bus's new Active Controller.

• Returns devices on the bus to their local state.

The routine leaves the SRQ line unchanged, which means any device requesting service
before hpib_abort is executed is still requesting service when the routine is finished.

To use hpib_abort on a particular HP-IB , the computer must be the System Controller
of that bus. It does not have to be the Active Controller.

Controlling the HP-IB Interface 69

One situation where hpib_abort is useful is when the bus's Active Controller attempts to
pass active control to another device that does not accept active control. This happens
if the device addressed to receive control is not another controller. As a result the bus
is left without any Active Controller and the System Controller must assume that role
using hpib_abort.

hpib3bort is called as follows:

hpib_abort(eid);

where eid is the entity identifier for the open interface file.

hpib_ren_ctl
With hpibJen_ctl you can enable or disable the REN line on the HP-IB. If the line is
enabled, all devices that are capable of remote operation (interpreting HP -IB commands)
can be placed in the remote state by the Active Controller addressing them as talkers or
listeners. When REN is disabled, all devices on the bus return to their local state and
cannot be accessed remotely.

When the System Controller is powered on or reset, the REN line is enabled by default.
It is also enabled if the System Controller executes hpib_ abort.

To use hpibJen_ctl on a particular HP-IB , the computer must be the System Controller
of that bus. It does not have to be the Active Controller.

hpib_ ren_ ctl is called as follows:

hpib_ren_ctl(eid. flag);

where eid is the file descriptor for the open interface file and flag is an integer. If flag is
zero, the REN line is disabled. If it has any other value, then REN is enabled.

Errors During hpib_abort and hpib_ren_ctl
hpib_abort and hpibJen_ctl both return a -1 indicating an error if any of the following
error conditions are true:

• The computer's interface is not the System Controller.

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

70 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of erma:

Errno Value

EBADF

ENOTTY

EIO

Error Condition

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface was not the System Controller.

The Computer As a Non-Active Controller
The information described in this section is accurate for Series 200/300 and 500 comput­
ers. For details specific to the Integral PC, you should refer to Appendix C, "Integral
PC Dependencies."

Determining the Controller's Status
The hpib_bus_status routine allows you to determine information about the interface card
and the HP-IB. It can be used by any controller on the bus, independent of whether or
not it is the Active Controller or System Controller. In the previous discussions about
the Active and System Controllers, the routine is mentioned briefly. The discussion that
follows should give you a broader look at the routine's uses.

hpib_bus_status is called with the form:

where eid is the entity identifier for the open interface file and status_question is an
integer that indicates what question you want answered. The value of status_question
must be within the range 0-7 where the values indicate the following questions:

Controlling the HP-IB Interface 71

Value Status Question

o
1

2

3

4

5

6

7

Is the interface in the remote state?

Are there any devices requesting service? (Is SRQ asserted?)

Is there a listener that is not ready for data? (Is NDAC asserted?)

Is the interface the System Controller?

Is the interface the Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

What is the interface's bus addrel3s?

If the value of status_question is in the range 0-6, the routine returns a 1 if the answer
to the question is yes, or a 0 if the answer is no. If the value of status_question is 7, the
routine returns the bus address of the computer's interface. If status_question has any
other value, a -1 is returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the bus, use
the routine call illustrated by the following code:

if «status = hpib_bus_status(eid. 4)) == -1)
printf(IIError occurred while checking status");

else if (status == 0)
printf("Computer is a Non-Active Controller");

else
printf("Computer is the Active Controller");

72 Controlling the HP-IB Interface

Requesting Service
When your computer is a Non-Active Controller it can request service from the current
Active Controller by asserting the SRQ line. This is done with the hpib_rqsLsrvce routine.
The routine is called as follows:

hpib_rqst_srvce(eid. response);

where eid is the entity identifier for the open interface file and the lowest byte of response
is the integer value of the 8-bit response that the computer gives if it is serially polled.
The upper bytes of response are ignored by the routine. Given a bit labeling of DO-D7,
D6 of the lower byte sets the SRQ line. The defined values for the remaining 7 bits are
application-dependent. This section only discusses the setting and clearing of the SRQ
line with D6 (integer value of 64).

To request service you can invoke hpib_rqsLsrvce as follows:

#include <fcntl.h>
mainO
{

int eid;

eid = open(lI/dev/raw_hpib ll • O_RDWR);
hpib_rqst_srvce(eid.64); /*Bit 6 of serial poll response is set*/

/*and SRQ is asserted */
}

Note that by setting response to 64 the only information that the Active Controller
receives when it serially polls your computer is that you are asserting the SRQ line.

The routine hpib_ rqsLsrvce returns a 0 if it executes correctly or a -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active Controller serially
polls you or you call hpib_rqsLsrvce again and clear bit 6 (e.g. hpib_rqsCsrvce(eid,
OJ). After your serial poll response is configured, your computer's interface responds
automatically to any serial polls from the Active Controller.

Note that if another device is asserting SRQ also, the line is still asserted after your
request is removed.

If you try to request service and you are the Active Controller, the SRQ line is not set.
However, if you then pass active control to another computer, the response that you
specified with hpib-,qsCsrvce is remembered and the SRQ line is set.

Controlling the HP-IB Interface 73

When the Active Controller sees the SRQ line asserted, it usually polls the devices on
the bus to find out who is requesting service. To determine which device (or devices)
is requesting service, the Active Controller conducts a parallel poll. Configuring your
computer's response to a parallel poll is discussed in the next section.

If a device responds to a parallel poll with an I need service message, the Active Controller
can perform a serial poll to determine what service action is required. If several devices
are configured to respond to a parallel poll on the same line and the Active Controller
sees that line is requesting service, it must perform a serial poll of each of the devices to
find out which one is requesting service.

Errors While Requesting Service
HpibJqsLsrvce returns a -1 indicating an error if either of the following error conditions
are true:

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

To find out which of these conditions caused the error, your program should check for
the following values of ermo:

Errno Value

EBADF

ENOTTY

Error Condition

eid did not refer to an open file.

eid did not refer to a raw interface file.

Responding to Parallel Polls
Before your computer can respond to a parallel poll from the Active Controller, its
response must be configured. This can be programmed remotely by the Active Controller
(see The Active Controller section) or locally using hpib_card_ppoILresp.

Configuring a parallel-poll response of a device involves:

• Specifying the logic sense of the response (Le. whether a 1 means the device does
or doesn't need service).

• Specifying which data line the device responds on. More than one device can be
configured to respond on the same line.

74 Controlling the HP-IB Interface

To locally configure how your computer responds to parallel polls, call
hpib_ card_ppolL resp as follows:

hpib_card_ppoll_resp(eid. flag);

where eid is the entity identifier of the open interface file and flag is an integer whose
binary value configures the response.

Calculating the Flag
The flag value is found by first forming an 8-bit binary number and then using the
decimal value of that number. The binary number's bits have the following meaning:

D7 D6 D5 D4 D3 D2 Dl DO

o o o o s p p p

where:

S sets the sense of the response if allowed by the hardware. If S is a 1, then the
device responds with a 1 when it requires service.

P is a 3-bit binary number that specifies which of parallel poll response lines (DO-D7)
the device responds on if allowed by the hardware.

Limitations of hpib_card_ppoIUesp
There are some hardware limitations on using hpib_card_ppolLresp to configure parallel
poll responses. You should refer to the Appendix for your system to find out if any
restrictions apply. If there are restrictions on your system, you may find it .easier to
configure the interface's parallel poll response remotely with the Active Controller. Note
the Active Controller can configure its own response, but the response only has effect
w hen it passes active control.

Errors While Configuring Response
The routine hpib_card_ppolLresp returns a -1 indicating an error if any of the following
error conditions are true:

• The eid entity identifier does not refer to an HP-IB raw interface file.

• The eid entity identifier does not refer to an open file.

• Series 500 Only: The interface's parallel poll response cannot be programmatically
controlled.

Controlling the HP-IB Interface 75

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value

EBADF

ENOTTY

EINVAL

hpip_ppoILresp_ctl

Error Condition

eid did not refer to an open file.

eid did not refer to a raw interface file.

The interface cannot respond on the line indicated by flag (Se­
ries 500 Only.).

The hpip_ppoILresp_ctl function allows the user to determine how the computer will
respond to the next parallel poll. There are two ways to respond to a parallel poll.
Responding favorably indicates to the controller that the computer wants to be serviced.
Responding unfavorably indicates the computer does not need the Active Controller's
attention.

The parallel poll response is set as follows:

hpib_ppoll_resp_ctl(eid. response_value);

where eid is the entity identifier of an open interface file and the response_value is an
integer that indicates the response to use. If response_ value is non-zero then the compu ter
will respond favorably to the next parallel poll. A zero response_ value will respond
unfavorably to the next parallel poll.

Disabling Parallel-Poll Response
The routine hpib_card_ppoILresp also allows you to disable your interface from responding
to parallel polls made by the Active Controller. This is done by setting bit D4 of the
routine's flag value. When D4 is 0 the interface is enabled to respond to parallel polls,
and when it is 1 the interface's parallel poll response is disabled. Thus, a flag value of
16 disables the response.

For example, the code:

hpib_card_ppoll_resp(eid. 16); I*disable parallel poll response*1

disables the interface with the entity identifier eid from responding to any parallel polls.

76 Controlling the HP-IB Interface

Accepting Active Control
If your computer is a Non-Active Controller, the current Active Controller may pass
active control to you. Your computer's interface accepts active control automatically;
however, you must design an interfacing program to recognize when this happens.

The hpib_bus_status, hpib_status_wait, and io_on_interrupt routines allow recognizing
the computer has become the Active Controller.

hpib_status_wait has been mentioned in previous discussions about the Active Controller
and System Controller. The following discussion provides a look at its uses.

hpib_status_ wait is called as follows:

hpib_status_wait(eid. status);

where eid is the entity identifier for the open interface file and status is an integer indi­
cating what condition you want to wait for. The following values for status are defined:

Value

5

Condition Waiting For

Wait until the SRQ line is asserted

Wait until this computer is the Active Controller

Wait until this computer is addressed as a talker

Wait until this computer is addressed as a listener

Now imagine a situation where the current Active Controller is programmed to know that
when your computer requests service, it is to pass active control to you. The following
('ode shows how you can program your computer to request service and then wait until
it becomes the bus's new Active Controller.

Controlling the HP-IB Interface 77

#include <fcntl.h>
mainO
{

}

int eid;

eid = open (II Idev/raw_hpib ll , O_RDWR);
if (hpib_rqst_srvce(eid, 64) == -1) I*set SRQ line to request service*1
{

}

printf("Error while requesting service");
exit(l);

if (hpib_status_wait(eid, 4) == -1)
{

I*wait until Active Controller*1

}

printf("Error while waiting for status");
exit(l);

I*Computer is now the Active Controller*1

Notice for hpib_status_wait to have returned a -1 (due to a timeout occurring), you
would have had to set a timeout value, using io_timeouLctl, after opening the interfaee
file. Since this wasn't done in the example above, no timeout oceurs.

Errors While Waiting on Status
hpib_status_wait returns a -1 indicating an error if any of the following error conditions
are true:

• A timeout occurred before the condition the routine was waiting for became true.

• The status specified has an invalid value.

• The eid entity identifier does not refer to a raw HP-IB interface file.

• The eid entity identifier does not refer to an open file.

78 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

Errno Value

EBADF

ENOTTY

EINVAL

EIO

Error Condition

eid did not refer to an open file.

eid did not refer to a raw HP-IB interface file.

status contains an invalid value.

The specified condition did not become true before a timeout
occurred.

Determining When You Are Addressed
As a Non-Active Controller you may be addressed by the Active Controller and be­
('.ome a bus talker or listener for data transfer. The DIL routines hpib_bus_status,
hpib_status_wait, and io_ on_interrupt allow you to find out if the computer's interface
is currently being addressed.

The following code determines if the interface is currently addressed as a bus talker:

#include <fcntl.h>
mainO
{

}

int eid;

eid = open (II/dev/raw_hpib ll , O_RDWR);
if (hpib_bus_status(eid, 5) == 1)
{

printf("the interface is addressed as a talker");
write(eid, "data message", 12); /*do the expected data transfer*/

}

else
printf("the interface is not addressed as a talker");

In the above call to hpib_bus_status, eid is the entity identifier for the interface and 5
indicates that you are asking if it is a bus talker. The routine returns a 1 if the answer
is yes and 0 if the answer is no.

Controlling the HP-IB Interface 79

To find out if the interface is currently addressed as a bus listener use the following:

if (hpib_bus_status(eid. 6) == 1)
{

printf("the interface is addressed as a listener");
read(eid. buffer. 12); I*do the data transfer*1

}

else
printf("the interface is not addressed as a listener");

If you need to wait until the interface is addressed as either a talker or listener and then
handle a data transfer, use the DIL routine hpib_status_wait. When you call the routine,
you specify the entity identifier of the interface and the bus condition that you want to
wait on:

hpib_status_wait(eid. condition);

As with hpib_bus_status, with a condition value of 5 the routine waits for the interface
to be addressed as a talker. With a condition value of 6 the routine waits until it is
a listener. How long the routine waits for the specified condition is controlled by the
timeout value that you have previously set for the entity identifier with io_timeouLctl
(see discussion in Chapter 2, "General-Purpose Routines"). The routine returns a 0 if
the condition became true or a -1 if a timeout (or an error) occurred first.

80 Controlling the HP-IB Interface

In the example below, the program waits for the interface to become a bus listener, and
then it reads a 50-byte message.

#include <fcntl.h>
mainO
{

int eid. len;
char buffer[51] ;
eid = open("/dev/raw_hpib". O_RDWR);
io_timeout_ctl(eid.5000);

if (hpib_status_wait(eid. 6) -1)
{

I*storage for message*1

printf("Either a timeout or an error occurred");
exit (1) ;

}

}

len = read(eid. buffer. 50);
buffer[len] = '\0';
printf("Message is: %s". buffer);

I*read data into buffer*1

I*print data message*1

Note that a timeout value is set for the interface file's entity identifier in the code above
so the program does not hang while waiting for the interface to be addressed as a bus
listener.

Controlling the HP-IB Interface 81

The following example illustrates how to use the io_on_interrupt routine to set up an
interrupt handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
int eid;
char buffer [50] ;
mainO
{

}

int handler 0 ;
int eid;
struct interrupt_struct cause_vec;

eid = open(l/dev/raw_hpib",O_RDWR);
cause_vec.cause = LTN;
io_on_interrupt(eid, cause_vec, handler);

handler(eid, cause_vec);
int eid;
struct interrupt_struct cause_vec;
{

}

if (cause_vec.cause == LTN)
read(eid, data, 50);

82 Controlling the HP-IB Interface

Buffering I/O Operations
The DIL routine hpib_io allows you to perform structures of HP-IB I/O operations for
both sending HP-IB commands and transferring data. The computer's HP-IB interface
must be the bus's Active Controller before this routine can be used.

A call to hpib_ io has the form:

#include <dvio.h>
1* on the Integral PC, the include directive would be:

*
* #include <libdvio.h>
*1

main 0
{

}

int eid;
struct iodetail *iovec;
int iolen;

hpib_io(eid, iovec, iolen);

where eid is the entity identifier of the open interface file, iovec is a pointer to an array of
I/O operation structures, and iolen is the number of structures in the array. The name
of the template for the I/O operation structures is iodetail and it is defined in the include
file dvio.h.

On the Integral PC, the include file is libdvio.h instead of dvio.h, as shown in the example
above.

Controlling the HP-IB Interface 83

lodetail: The I/O Operation Template

The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Each of the components of iodetail have the following meanings:

mode

terminator

count

but

Describes what kind of I/O operation the structure contains.

Specifies whether or not there is a read termination character for the
I/O operation, and if so it specifies the value.

How many bytes are to be transferred during the I/O operation.

A pointer to an array containing the bytes of data to be transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is either mode,
terminator, count, or buf.

The Mode Component
The mode describes what type of I/O is to be performed on the data pointed to by the
but component. You determine its value by OR-ing constants from a set defined in the
include file dvio.h. The constants that you' can choose from are:

84 Controlling the HP-IB Interface

Name Description

HPIBREAD Perform a read operation and place the data into the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with HPIBCHAR.

HPIBWRITE Perform a write operation using the data in the accompanying buffer
pointed to by buf Can be by itself or OR-ed with either HPIBATN or
HPIBEOI but not both.

HPIBATN

HPIBEOI

If you are performing a write operation, the data is placed on the bus with
ATN asserted (you are sending a bus command). It only has effect if you
also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted when the
last byte of data is sent. It only has effect if you also specify HPIBWRITE.

HPIBCHAR If you are performing a read operation, the transfer is halted when the
terminator component value of the iodetail structure is read. The terminator
component only has effect if you OR HPIBCHAR and HPIBREAD. The
HPIBCHAR constant only has effect if also specify HPIBREAD.

NOTE

When you construct mode, you must use either HPIBREAD or
HPIBWRITE, but not both. Optionally, you can OR one of the
other three constants with either HPIBREAD or HPIBWRITE,
but they are not required. HPIBCHAR only has effect when it
is OR-ed with HPIBREAD, while HPIBATN and HPIBEOI only
have effect when they are OR-ed with HPIBWRITE (but not both
at the same time).

Controlling the HP-IB Interface 85

The mode component allows you to specify under what conditions an I/O operation ter­
minates. All I/O operations terminate when the maximum number of bytes specified by
the count component of the iodetail structure is reached. However, additional termination
conditions are possible:

• If you specify HPIBREAD and HPIBCHAR, the detection of the termination char­
acter determined by the terminator component also causes termination .

• If you specify HPIBWRITE and HPIBEOI, when the count value is reached EOI
is asserted at the time that the last byte of data is sent (unless you also specify
HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are building and
you want the structure to send several HP-IB commands. The mode component of the
structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE I HPIBATN;

The Terminator Component
The terminator component of the iodetail structure specifies a character that causes the
termination of a read operation when it is detected. The terminator only has effect if
HPIBREAD I HPIBCHAR is specified as the structure's associated mode component.

Assign a value to the terminator of the structure pointed to by iovec with:

iovec->terminator = value;

For example, to make the ASCII period Co') the termination character, use the statement:

iovec->terminator = ',';

The Count Component
The count is an integer determining the maximum number of bytes that will be trans­
ferred during the structure's I/O operation. Reading or writing always terminates when
this value is reached, but additional termination conditions can be set up using the
structure's associated mode component.

Set a maximum number of bytes for a structure's data transfer with:

iovec->count = max_value;

where iovec is a pointer to the structure and max_value is an integer.

86 Controlling the HP-IB Interface

The Buf Component
The buf component points to a character array that holds the data that will be trans­
ferred during a read operation (HPIBREAD) or is written to during a write operation
(HPIBWRITE). Note the array's size limit is defined by the structure's count component.

One way to store a message in the buf array is:

iovec->buf = "data message";

Allocating Space
Before you can build iodetail structures for your I/O operations, you need to allocate
space for them in memory. The easiest way to do this (if you are programming in C) is
to write a routine that allocates space for n iodetail structures and returns a pointer to
the first one.

Below is the code for such a routine, io_alloc:

struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return«struct iodetail *) malloc(sizeof(struct iodetail) * n));

}

Refer to the HP- UX Reference for a description of malloc(3C).

To use io_alloc to allocate memory space for 10 iodetail structures your program should
contain the statements:

struct iodetail *iovec; I*define an iodetail pointer*1
iovec = io_alloc(10); I*allocate space for 10 iodetail structures*1

Controlling the HP-IB Interface 87

Example
Assume that your computer's HP-IB interface is at HP-IB address 30 and it is the bus's
Active Controller. You want to send a data message to a device at HP-IB address 7 and
then receive a message from the same device using hpib_io. Four iodetail structures are
required to do this:

1. The first structure configures the bus so that the interface is the talker and the
device at address 7 is the listener.

2. The second structure sends the data message from the interface to the device.

3. The third structure configures the bus so that the device at address 7 is the talker
and the interface is the listener.

4. The fourth structure receives the data message from the device.

The following code illustrates how the 4 structures can be built and then implemented.

#include <fcntl.h>
#include <dvio.h> /*contains definitions for iodetail*/
struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return «struct iodetail *) malloc(sizeof (struct iodetail) *n»;

}

mainO
{

extern int errno;
int eid;
char buffer [4] [12] ;
struct iodetail *iovec. *temp; /*2 pointers to iodetail structures*/

/*Allocate space for 4 iodetail structures*/
io_vec = io_alloc(4); /* use the routine described earlier */
temp = iovec;

/*Build structure 1 -- Configuring the bus*/
temp->mode = HPIBWRITE I HPIBATN; /*you want to send commands*/
strcpy(buffer [0], "?- ",); /*address computer to talk and bus address to

list eM/
temp->buf = buffer [0] ;
temp->count = strlen(temp->buf);

88 Controlling the HP-IB Interface

I*Build structure 2 -- Sending the data message*1
temp++; I*use temp pOinter so that iovec remains pointing to the*1

I*first structure but temp now points to the next one*1

temp->mode = HPIBWRITE I HPIBEOI; I*you want EOI asserted when the
transfer is done*1

strcpy(buffer[l] ,"data message");
temp->buf = buffer[l] ;
temp->count = strlen(temp->buf);

I*Build structure 3 -- Configuring the
temp++;

bus*1
I*increment structure pointer*1
I*you want to send commands*1 temp->mode = HPIBWRITE I HPIBATN;

strcpy(buffer[2] ,"?G>");
temp->buf = buffer [2] ;
temp->count = strlen(temp->buf);

I*Build structure 4 -- Receiving data message*1
temp++; I*increment structure pointer*1
temp->mode = HPIBREAD; I*read data; reaching count value terminates read*1
temp->count = 10; I*you expect a 10-byte message*1
temp->buf = buffer [3] ;

I*Implement the liD operations stored in the iodetail structures*1
eid = open("/dev/raw_hpib", O_RDWR);

}

if (hpib_io(eid, iovec, 4) == -1)
{

}

printf ("hpib_io failed\n");
printf ("errno %d\n",errno);
exit (1) ;

I*Print data message you received from the device. Note temp still*1
I*points to the last iodetail structure and the last structure did the read

printf("%s", temp->buf);

Controlling the HP-IB Interface 89

One comment about the C language: routine parameters are passed by value and not
by reference; therefore, after you execute hpib_io the iovec parameter still points to the
first iodetail structure, just as it did before the routine executed. Thus, another way to
print out the data message, read into the but component of the fourth iodetail structure
in the example above, is:

printf ("%s", (iovec + 3) ->buf) ;

Locating Errors in Buffered I/O Operations
If all of the I/O operations specified in the array of iodetail structures complete success­
fully, hpib_io returns a 0 and updates the count component of each structure to reflect
the actual number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately returns a -1
indicating the error. To find out during which iodetail structure operation the error
occurred, look at the structures' count components. The hpib_io routine updates the
count component of the structure that caused the error to be a -1. Once you have
located a structure with a count of -1, you know that all of the structures previous to
it were completed successfully and all of the structures after it were not executed at all.

For example, assume that you have built an array of 10 iodetail structures to execute a
sequence of I/O operations. The following code executes the operations and then checks
for errors. If an error occurs, the code prints the number of the structure that caused it
(for instance, the first structure in the array is number 1).

#include <fcntl.h>
#include <dvio.h>
mainO
{

int FOUND, number, eid;
struct iodetail *iovec, *temp;

I*space is allocated for the 10 structures and then they are*1
I*built. "lovec" is left pointing to the first structure*1

eid = open ("/dev/raw_hpib", O_RDWR); I*open the interface file*1

90 Controlling the HP-IB Interface

}

if (hpib_io(eid, iovec, 10) -1) I*execute the operations and if a -1*1
I*is returned then an error occurred*1

{

number = 1; I*initialize counter*1

}

else

FOUND = 0; I*initialize Boolean flag*1
temp = iovec; I*set temporary pOinter to first structure*1
while (number <= 10 && FOUND != 1)

if (temp->count == -1) I*found structure that caused error*1
FOUND = 1;

else
{

}

temp++;
number++;

if (FOUND == 1)

I*move pOinter to next structure*1
I*increment counter*1

printf("Structure number %d caused error II , number);
else

printf("Error but couldn't find structure that caused it");

printf("No error occurred during execution of hpib_ioll);

Controlling the HP-IB Interface 91

Notes

92 Controlling the HP-IB Interface

Controlling the GPIO Interface 4
This chapter briefly describes the actions you take to configure your GPIO interface
before it can be accessed from a program using the DIL routines. It then discusses the
limitations and capabilities that DIL provides for controlling the GPIO interface.

Configuring Your GPIO Interface
On Series 200/300 and 500 computers, the GPIO interface is configured via switches on
the interface card. However, the Integral PC's HP 82923A GPIO interface is set using
DIL routines-not switches.

Configuring the Integral PC GPIO
On the Integral PC, the HP 82923A GPIO interface is set using OIL routines. The
functions that can be configured are:

• data logic sense (use gpio_normalize routine)

• data handshake mode (use gpio_handshake_ctl routine)

• delay time (use gpio_delay_fime_ctl routine).

For information on these routines, refer to the documentation files in the doc folder on
the OIL disc.

Setting the Interface Switches for Series 200/300 and 500
The GPIO interface card for Series 200/300 and 500 computers has several switches
that allow you to configure your interface. These are fully described in the interface's
installation manual. The functions they configure are:

• the data logic sense

• the data handshake mode

• the input data clock source.

Set the switches according to the directions found in the GPIO installation manual.

Controlling the GPIO Interface 93

Default Configuration and Switch Settings
for the Series 800 Model 840 GPIO
The Series 800 Model 840 supports the HP 27114A AFI (Asynchronous FIFO Interface)
card as its GPIO interface. Some features are set by default, and some features can be
set by switches. The default configuration for the AFI card sets the following features:

• data logic sense: trigger on leading edge

• data handshake mode: full

The AFI card has several switches that allow you to configure the following features:

• delay time

• even or odd parity

Set the switches according to the directions found in the AFI installation manual.

NOTE

On some systems, the GPIO interface's select code is determined
by a switch setting on the interface card. Refer to the appropri­
ate hardware-specific appendix to see if a switch configuration is
required. If a switch setting is not required, then the select code is
determined by the I/O slot in which you place the interface card.

Creating the GPIO Interface File
Once you have set the necessary switches on your GPIO interface, you must install the
card in your computer and create an interface file for it. Chapter 2, "General-Purpose
Routines" discusses the creation of interface special files. You must create an interface
file before you can access the interface from HP-UX.

94 Controlling the GPIO Interface

Limitations on Controlling the Interface
The Device I/O Library (DIL) routines allow you to use a GPIO interface to communicate
with devices that are not supported on your HP-UX system. They do not provide you
with full control of the interface and because of this, you are faced with the following
limitations:

• You do not have direct access to the interface's handshake lines: the Peripheral
Control line (PCTL), the Peripheral Flag line (PFLG), and the Input/Output line
(I/O).

• You cannot read the value of the Peripheral Status line (PSTS).

• (Series 500 Only) You cannot recognize interrupts sent by the peripheral on the
External Interrupt Request line (EIR).

Integral PC Only: The HP 82923A GPIO card has several capabilities not supported by
the DIL routines. Because of this, the following limitations exist:

• 24-bit port paths are not supported

• the flag line cannot be read directly

• the fast handshake transfer mode described in the HP 82923A GPIO Interface
Owner's Manual is not supported.

Controlling the GPIO Interface 95

Using the OIL Routines
Several of the DIL routines can be used to control the GPIO interface. These are divided
into two groups:

• general purpose routines used with either an HP-IB or GPIO interface

• GPIO routines; routines specifically designed to be used with a GPIO interface.

The general purpose routines are listed and described in Chapter 2, "General-Purpose
Routines," and you should refer there for more information. They are used in this chapter
to illustrate various aspects of controlling the GPIO interface from an HP-UX process.

There are two DIL routines that are restricted to use with a GPIO interface:

• gpio_geLstatus

• gpio_seLctl.

These two routines allow you to use the four special purpose lines that are available on
the interface for any purpose desired. The gpio_geLstatus routine reads the two lines
controlled by the peripheral (STIO and STH) and gpio_seLctl sets the values of the two
lines controlled by the computer (CTLO and CTL1). These two routines are described
later in this chapter in the section Using the Special Purpose Lines.

By using the DIL general purpose routines and these two GPIO-specific routines you
can:

• reset the interface

• perform data transfers

• use the interface's 4 special purpose lines

• control the data path width and data transfer speed

• set a timeout for data transfers

• set a read termination character

• get the termination reason

• set up the interrupts

• enable or disable interrupts.

96 Controlling the GPIO Interface

In addition to these standard GPIO DIL routines, the Integral PC supports non-standard
routines for controlling the HP 82923A GPIO interface. You should refer to the appendix
"Integral PC Dependencies" for information on these routines.

Resetting the Interface
The interface should always be reset before it is used, to ensure it is in a known state. All
interfaces are automatically reset when your computer is powered on, but you can also
reset them from your I/O process using the iOJeset routine. For example, the following
code resets a GPIO interface:

int eid; I*entity identifier*1
eid = open("/dev/raw_gpio". O_RDWR); I*open GPIO interface file*1
io_reset(eid) ; I*reset the interface*1

This has the following effect:

• the Peripheral Reset line (PRESET) is pulsed low

• the PCTL line is placed in the clear state

• if the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to
logical 0)

• interrupts are disabled on Series 200/300.

The lines that are left unchanged are:

• the CTLO and CTLI output lines

• the I/O line

• the Data Out lines, if the DOUT CLEAR jumper is not installed

Controlling the GPIO Interface 97

Integral PC Only: The io_reset routine has the following effect on the HP 82923A GPIO
interface:

• the read termination character is cleared

• the timeout value is set to 0

• the width for all ports is set to 8 bits

• normalization is set to positive true

• the delay time is set to 1 j.t-sec

• the handshake mode is set to 1

• the data lines are set to 0

• speed is set to the flag transfer mode

• the I/O line remains unchanged.

Performing Data Transfers
Using the DIL routines read and write you can transfer bytes of ASCII data to and from
the GPIO interface. The following code illustrates using these routines to first write 16
bytes of data and then read 16 bytes.

mainO
{

int eid; /*entity identifier*/
char read_buffer [16] ,*write_buffer; /*buffers to hold data*/

}

eid = open("/dev/raw_gpio" , O_RDWR);
write_buffer = "message to write";
write(eid ,write_buffer , 16);
read(eid, read_buffer, 16);
printf("%s", read_buffer);

Using the Special-Purpose Lines

/*open interface file*/
/*data message to send*/
/*send message*/
/*receive message*/
/*print received message*/

Four special-purpose signal lines are available for a variety of uses. Two of the lines
are for output (CTLO and CTL1), and two are for input (STIO and 8TH). The rou­
tine gpio_seCctl allows you to control the values of CTLO and CTL1, while the routine
gpio_geCstatus allows you to read the values of STIO and STH.

98 Controlling the GPIO Interface

The Integral PC's HP 82923A GPIO interface does not have special-purpose lines. Each
port, however, does have a status line and a control line. The status and control lines
in unused ports can be used with active ports and perform the same function as the
special-purpose lines. For example, if you have specified the data width on port b to
be 16 bits wide, then both ports a and b will be active. The status and control lines
on ports c and d can then be used by first opening either port c or d; then using the
gpio_geLstatus and gpio_seLctl routines to monitor or control the lines.

Driving CTLO and CTL 1
The call to gpio_seLctl has the following form:

gpio_set_ctl(eid. value);

where eid is the entity identifier for the open GPIO interface file and value is an integer
whose least significant two bits are mapped to CTLO and CTLl.

To illustrate:

int eid;
eid = open("/dev/raw_gpio". O_RDWR);
gpio_set_ctl(eid. 3);

/*entity identifier*/
/*open interface file*1
I*assert CTLO and CTL1*/

Both CTLO and CTL1 are asserted low; thus, in the above example both lines are pulled
low. This logic polarity cannot be changed. To raise both of the lines, call gpio_seLctl
with:

Reading STIO and STI1
The call to gpio_geLstatus has the following form:

int eid. value;
value = gpio_get_status(eid);

where eid is the entity identifier for the open GPIO interface file. The routine returns
an integer whose least significant two bits are the values of STIO and STH.

Controlling the GPIO Interface 99

To illustrate:

int eid; /*entity identifier*/
int value. bits;
eid = open("/dev/raw_gpio". O_RDWR); /*open interface file*/
value = gpio_get_status(eid); /*look at STIO and STI1*/
bits = value & 03 /*clear all but the 2 least significant bits*/
if (bits == 3) /*and see if they're both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
else if (bits == 1) /*just STIO is asserted*/

/*insert code that handles case when STIO is asserted*/

else if (bits == 2) /*just STI1 is asserted*/

/*insert code that handles case when STI1 is asserted*/

else /*neither are asserted*/

/*insert code that handles case when neither STIO nor STI1 is asserted*/

Note that STIO and STU are asserted low; thus, when the value returned by
gpio_geCstatus has one of its two least significant bits set, the associated special-purpose
line is low.

Controlling the Data Path Width
The DIL routine io_width_ctl allows you to specify two different data path widths for
your GPIO interface: 8 bits and 16 bits. The call has the following form:

where eid is the entity identifier for the open GPIO interface file and width is either 8 or
16. If a different width value is specified, the routine returns an error of -1 and errno is
set to EINVAL. The GPIO interface defaults to an 8-bit path when its file is first opened.

The code below illustrates data transfers using a 16-bit data path.

int eid;
eid = open("/dev/raw_gpio". O_RDWR);
io_width_ctl(eid. 16);
write(eid. "data message". 12);

100 Controlling the GPIO Interface

/*open the interface file*/
/*set path width at 16 bits*/
/*perform data transfer*/

Since the interface's data path is 16 bits, 2 ASCII characters are transferred for each
handshake cycle involved. In the first 16-bit transfer, d is sent in the upper byte and a is
sent in the lower. The actual logic level of the GPIO data output lines depends on how
the lines have been configured.

Controlling the Transfer Speed
You can request a minimum speed for the data transfer across a GPIO interface using
io_speed_ctl. Your system rounds the speed that you specify up to the nearest defined
speed. If you specify a speed that is faster than your system allows, the highest allowable
speed is used. Refer to Chapter 2, "General-Purpose Routines," for more information
on using this routine. Again, the Series 500 and the Series 800 always provide DMA;
therefore, the routine io_speed_ctl is ineffective on those systems.

In Case of a Timeout
If you have previously set a timeout value for the data transfer entity identifier, reaching
the timeout after attempting a transfer will cause an error condition. If a timeout does
occur, the DIL routine that you called to implement the transfer returns -1 and sets
errno to EIO. When a timeout occurs you should reset the GPIO interface with the
io_ reset routine before attempting the transfer again.

Read Terminations
Determining Why a Read Operation Terminated
The io_geLtermJeason routine, described in Chapter 2, "General-Purpose Routines," is
used to discover why the last read performed on a particular entity identifier terminated.
It tells you which of the following caused the termination:

• the requested number of bytes were read

• a specified read termination character was seen

• the assertion of the PSTS was seen

• some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern
Chapter 2, "General-Purpose Routines," describes the routine io_eoCctl which allows
you to specify a character or string of characters, known as a read termination pattern,
that when encountered during a read will terminate the read operation on a particular
entity identifier for the GPIO interface file.

Controlling the GPIO Interface 101

Interrupts
Chapter 2, "General-Purpose Routines," describes the routines io_on_interrupt and
io_interrupLctl. These routines allow you to set up and control interrupt handlers for
the GPIO status line or a particular eid for the GPIO interface file.

Interrupt-Driven Transfer Mode
Integral PC Only: Two transfer modes exist between the Integral PC and the HP 82923A
GPIO interface: flag-driven mode and interrupt-driven mode. To select the interrupt­
driven mode, use the io_speed_ctl routine to set the speed to O.

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause
the user's process to go to sleep until an interrupt occurs at the completion of the read
or write.

102 Controlling the GPIO Interface

Series 500 Dependencies A
The following information, specific to the Series 500, is discussed in this appendix:

• the location of the DIL routines

• information about creating the special file for the interfaces that you plan to access
with DIL routines

• the relationship between entity identifiers and file descriptors

• the restrictions imposed by the hardware on using the DIL routines

• information about how you can improve the performance of your I/O process

Location of the OIL Routines
The DIL routines that provide direct control of your computer's interfaces are contained
in the library /usr/lib/libdvio.a. Some of these routines are general-purpose and can be
Ilsed with any interface supported by the library, while others provide control of specific
interfaces. The Device I/O Library (DIL) currently supports the HP-IB and GPIO
interfaces.

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that allows communication with a variety of devices. On the Series 500, the interface
sends and receives up to 16 bits of data with a choice of several handshake methods.
External interrupt and user-definable signal lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose lines.

Series 500 Dependencies 103

Data Lines
There are 32 data lines: 16 for input and 16 for output. These lines normally use negative
logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates
true with the interface's Option Switches. Refer to your GPIO interface manual to see
how to do this.

Handshake Lines
Although four lines fall into this group, only three are used for controlling the transfer
of data:

• PCTL - Peripheral ConTroL

• PFLG - Peripheral FLaG

• I/O - Input/Output.

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used
to signal the peripheral's readiness to continue the transfer process. The Input/Output
(I/O) line is used to indicate direction of data flow.

The fourth handshake line is the External Interrupt Request (EIR) line. This line is used
by a peripheral to signal service requests to the computer.

Special-Purpose Lines
Four lines are available for any purpose you desire; two are controlled by the peripheral
device and sensed by the computer, and two are controlled by the computer and sensed
by the peripheral.

Data Handshake Methods
There are two handshake methods using PCTL and PFLG to synchronize data transfers:
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. The full-mode handshake should be used if the peripheral does not meet the
pulse-mode timing requirements. Refer to the GPIO interface's documentation for a
description of these handshake methods.

104 Series 500 Dependencies

Data-In Clock Source
Ensuring that data is valid when read by the receiving device differs slightly depending
on what direction the data is flowing. When writing data out from the computer the
interface generally holds data valid while PCTL is in the asserted state, the peripheral
must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data valid until
it can signal that the data is valid or until the data is read by the computer. The
peripheral signals that the data is valid using the PFLG line. This clocks the data into
the interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the
FLAG switches on the interface card. Refer to the card's installation manual to find out
how to do this.

Creating the Interface Special File
HP-UX treats I/O to an interface the same way it treats I/O to any input/output device:
the interface must have a special file. The general process of creating special files is
described in the HP-UX System Administrator Manual for your system. The following
discussion points out specific requirements needed for a special file associated with an
interface.

Creating an Interface File
Special files are created using the mknod(lM} command; you must be super-user to
execute this command. When used to create an interface special file, mknod has the
following syntax:

mknod pathname c may'or_number minor_number

The c parameter to mknod tells the system to create the file as a character special file.
Descriptions of the remaining parameters to the mknod command follow.

Series 500 Dependencies 105

pathname
The pathname parameter specifies the name to be given to the newly created interface
special file. The pathname identifies the interface itself, not a peripheral on the inter­
face. Special files are usually kept in the directory /dev. This is basically an HP-UX
convention; some commands expect to find special files in the / dev directory and fail if
they are not there.

major_number
The major number specifies which device driver to use with the interface. The following
table shows the major number used for each supported interface:

Major Number

12

18

37

minocnumber

Interface

HP 27110A/B HP-IB Interface

HP 27110A GPIO Interface

Internal 550 HP-IB Interface.

The minor number parameter tells mknod the location of the interface. The minor number
has the following syntax:

OxSeAdUV

where:

Ox specifies that the characters which follow represent hexadecimal values. These
two characters (zero and x) are entered as shown.

Se a two-digit hexadecimal value specifying the select code of the interface card.
The select code corresponds to the I/O slot in which the interface card resides.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines
with the interface, the special file should be created as a raw special file: the
Ad component of the minor number should be 31 (1f in hexadecimal). If Ad is
less than 31, then the file is not created as a raw file; it is created as an auto­
addressable file. (In this case, Ad specifies the bus address of the device for which
the special file is created.) If only one device can be connected to the interface
(e.g., the GPIO interface), the component of the minor number is ignored.

106 Series 500 Dependencies

U a single-digit hexadecimal value specifying a secondary address. This component
of the minor number is ignored when the special file you are creating is for an
interface; you should set it to O.

V a single-digit hexadecimal value specifying a secondary address, such as the
volume number in a multi-volume drive. This component of the minor number
is ignored also; you should set it to O.

Creating an HP-IB Interface File
Suppose you wish to create an HP-IB interface special file with the following character­
istics:

• the pathname is /dev/raw_hpib

• the HP-IB interface is internal-the major number is 12

• the card is placed in slot 2, giving a select code 02-i.e., the Sc component of the
minor number is 02

• the special file must be a raw special file in order to use DIL library routines with
it; therefore, the Ad portion of the minor number must be 31 (If in hexadecimal).

Based on this information, you would use mknod as follows to create the special file for
the interface:

mknod Idev/raw_hpib c 12 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP-IB HP 27110A interface
cards (major number = 12) installed in slots 2 and 3. The following mknod commands
set up a special file for the interface at select code 02 (jdev/raw_hpibl) and select code
03 (jdev/raw_hpib2):

mknod Idev/raw_hpib1 c 12 Ox021fOO

mknod Idev/raw_hpib2 c 12 Ox031fOO

Creating a GPIO Interface File
Now suppose you have a GPIO interface that you want to access with the DIL routines
on the same Series 500 computer.

Because the GPIO interface is does not use a bus architecture, the usual bus address
(Ad) and secondary address (uv) components of mknod's minor number are ignored, and
you need only determine the select code value.

Series 500 Dependencies 107

Assume that you have placed the interface in the I/O slot on your Series 500 correspond­
ing to select code 04. The following mknod command will create the appropriate special
file, named /dev/raw_gpio:

mknod /dev/raw_gpio c 18 Ox040000

Determining The Bus Address of the Interface Card
The HP 27110A/B card always assumes bus address 30 when it is the Active Controller.
If control is passed, then it assumes the address specified by the cards switch setting.
However, the hpib_bus_status routine always returns the correct bus address.

Effects of Resetting (via io_reset)
For an HP-IB interface on a Series 500 computer, resetting involves clearing REN, pulsing
its Interface Clear line (IFC) , and resetting REN; for a GPIO interface the Peripheral
Reset line (PRESET) is pulsed. The routine also causes the interface to self-test. If it
fails its test, the routine returns a -1; if the interface successfully resets and completes
its self-test, the routine returns a O.

Entity Identifiers
On the Series 500, an entity identifier for a file used by a DIL routine is equivalent to
an HP-UX file descriptor. This means that you can obtain entity identifiers for your
interface files with the system routines dup, lentZ, and pipe, in addition to open.

108 Series 500 Dependencies

Restrictions Using the OIL Routines
This section presents some restrictions on using the DIL routines on the Series 500
computers. These restrictions are organized under the routine to which they apply. The
routines are presented in alphabetical order.

hpib_bus_status
A bug in the HP 27110A HP-IB interface card can cause an erroneous report of the state
of the SRQ line. There is a small window when hpib_bus_status(eid, 1) reports that the
line is clear when in reality it is set. Since the routine will never report that the line
is set when in reality it is clear, OR-ing together successive readings of the state of the
SRQ line minimizes the possibility of error. OR-ing five successive readings gives you a
result that is approximately 99% accurate. This bug has been fixed in the HP 27110B
card.

On the Series 500, it is possible to look at the SRQ line with hpib_bus_status and not see
it asserted when it actually is. Because of this, you should check the SRQ line at least 5
times before determining whether or not it is asserted. If it is seen true anyone of the
5 times, then the line is asserted (it will never be seen asserted when it actually isn't).
For example:

#include <fcntl.h>
mainO
{

}

int eid, value, i;

eid = open("/dev/raw_hpib", O_RDWR);
value = 0;
for (i=O; i<5; ++i)

value = hpib_bus_status(eid,1) + value;
I*Notice that if SRQ is ever seen true, then "value" will be
greater than 0*1

if (value>O)
service_routine();

else
I*SRQ is asserted; service the request*1

printf("No one is requesting service");

Series 500 Dependencies 109

hpib_card_ppoILresp
The HP 27110A/B HP-IB interface cards do not support programmatic configuration
of their parallel poll response. The parallel poll response is set and enabled by the
hpib_card_ppoILresp routine. The default sense of the HP 271lOA/B interface's parallel
poll response is always 1. If the interface's address is 7 or less, the address determines the
response's line number as follows: given that the bus data lines are labeled DO through
D7, they correspond to addresses 7 through 0, respectively. For instance, the parallel
poll response of an HP 27110A/B with address 0 is a 1 on data line D7. If its address is
7 then it responds with a 1 on line DO. If the address of the interface is greater than 7,
there is no default line for it to respond on. Therefore, unless its response is configured
remotely by the Active Controller, it can not respond at all.

If you want the interface to respond with a sense of 0 or on a different line than HP
27110A/B defaults to, you must configure it remotely with the Active Controller

hpib_rqsLsrvce
This routine provides the capability of configuring an HP-IB interface's 8-bit response to
serial polls. However, the HP 27110A/B HP-IB interface only allows you to set bit 6 of
the response; all the other bits are cleared. If you set bit 6 of the serial response (where
the response bits are labeled bit DO-D7) and the interface is not the Active Controller,
then the SRQ line is asserted. The line remains asserted until the interface is serially
polled or you clear bit 6 with hpibJqsCsrvce. If you set bit 6 and the interface is the
Active Controller, the interface remembers the response and asserts SRQ when control
passes to another controller.

Since you can only control bit 6 of the serial poll response, only the bit corresponding to
64 in decimal of hpib_rqsCsrvce's response argument has affect. Thus:

hpib_rqst_srvce<eid. 64);

sets bit 6 of the interface's serial poll response and:

hpib_rqst_srvce<eid. 0);

clears it.

110 Series 500 Dependencies

hpib_send_cmnd
The HP 27110A/B HP-IB and Series 550 Internal HP-IB interface cards send all the
commands you specify with this routine, with odd parity. To do this, it overwrites the
most significant bit of each command byte with a parity bit. This should not cause a
problem since all HP-IB commands use only 7 bits, and the eighth is free for use as
parity.

hpib_status_wait
The hpib_status_wait routine, when processing, holds off all other activity on that inter­
face card. Other processes attempting to access the interface card will hang. It is strongly
recommended that a non-zero timeout be in effect before calling hpib_status_ wait.

hpib_ waiLon_ppoll
The hpib_waiCon_ppoli routine, also, holds off all other activity on the interface card.
Again, other processes attempting to access the interface card will hang and it is recom­
mended that a non-zero timeout be in effect before calling hpib_waiCon_ppoli.

io_geLterm_reason
Normally, this routine can indicate multiple reasons for a read termination by the values
of the least significant three bits in its returned value:

Set Bit Decimal Meaning

(none) 0 Abnormal terminaion.

Bit 0 1 Number of bytes requested were read.

Bit 1 2 Specified termination character was detected.

Bit 2 4 Device-imposed termination condition was detected (e.g., EOI on
HP-IB).

For example, if io_geLtermJeason returns a 7 you know that the read terminated for
three reasons: the byte count was reached, a termination character was seen, and a
termination condition was detected.

The io_geCtermJeason routine on the Series 500 has a limitation when a read is termi­
nated for multiple reasons; it can only indicate one termination cause at a time. If a read
terminates for multiple reasons, the value returned by io_geLtermJeason is the value of
the highest numbered reason. Thus, on the Series 500 the routine can only return a 0,
1, 2, or 4 (or a -1 if the routine itself fails). For instance, if a 4 is returned, you know
that a device-imposed termination condition occurred, but you do not know if the byte
count was reached or if a termination character was read as well.

Series 500 Dependencies 111

On the Series 500, if you set a termination character for a GPIO interface that is using
a 16-bit data path, only an 8-bit termination character is set (the least significant byte
of the match value). During read operations, if the termination character is then seen as
the lower byte in a data transfer, everything works correctly; both the upper and lower
bytes of the transfer are received and the count of received bytes is incremented by two.
However, if the termination character is seen as the upper byte of the transfer, both the
upper and lower bytes are still read. The count of received bytes is only incremented by
one though, indicating that the termination character was in the upper byte.

io_timeouLctl
This routine allows you to set a time limit for I/O operations on an entity identifier
associated with an interface file. The timeout value that you specify is a 32-bit long
integer that indicates the length of the timeout in microseconds. However, the resolution
of the effective timeout is system-dependent. On the Series 500 the timeout is rounded up
to the nearest 10-millisecond boundary. For example, if you specify a timeout of 155000
microseconds (155 milliseconds), the effective timeout is rounded up to 160 milliseconds.

When an I/O operation is aborted due to a timeout, errno is set to EIO. However, EIO
is defined as I/O error and can be set by many other error conditions. On the Series
500, you can obtain more information by looking at the external HP-UX variable errinfo.
When a timeout occurs, errinfo is set to the value 56.

io_speed_ctl
The Series 500 always provides DMA for the fastest possible I/O speeds. Therefore,
io_speed_ctl has no affect on the Series 500.

io_width_ctl
Although this routine is designed to be used on any interface, the path width that you
specify with it must be supported on the particular interface. On the Series 500, only the
GPIO interface allows you to change data path widths and only two widths are currently
supported: 8 bits and 16 bits. The routine returns an error if you access a GPIO interface
with any width besides 8 or 16 bits or if you access any other interface with a width other
than 8 bits.

112 Series 500 Dependencies

Performance Tips
The performance of your I/O process on a Series 500 that uses DIL routines can be
improved by following the basic guidelines listed below.

• Use buffers to hold data that you write to an interface. Transferring data that you
have previously stored in a buffer is faster than if you specify the data string when
you invoke the transfer. For example, the data transfer performed by the code:

int eid;
char *buffer;

I*entity identifier descriptor*1
I*buffer to hold data*1

eid = open("/dev/raw_hpib", O_RDWR);
buffer = "data message"; I*store data in buffer*1
write(eid, buffer, 12); I*transfer data*1

is faster than the data transfer performed by the code:

int eid; I*entity identifier descriptor*1

eid = open("/dev/raw_hpib", O_RDWR);
write(eid, "data message", 12); I*transfer data*1

• Make the number of bytes transferred divisible by the number of bytes per word
that your system supports. Data transfers, both reading and writing, are faster
if the number of bytes involved in the transfer falls on a word boundary. The
Series 500 supports 4-byte words; therefore, the following code has an optimized
performance because the byte counts are divisible by 4.

write(eid, buffer1, 12);
read(eid, buffer2, 40);

• If you are the super-user, you can use the memlck(2} routine (see HP-UX Reference:
Section 2) to lock your I/O process's address space into physical memory. Data
transfer times are reduced because they are carried out directly from the user area
and do not have to be first moved to the system area. However, you cannot lock
an arbitrarily large amount of space for your process since there is a point at which
your system's performance will begin to degrade.

• For processes running with an effective user ID of super-user, it is possible to lock
the process in memory with plock(2} (see HP-UX Reference). This lock is different
than memlck (as mentioned above). plock(2} informs the system that the process
code, data, or both are not to be swapped out of memory. The following example
illustrates the use of plock:

Series 500 Dependencies 113

#include <sys/lock.h>
main 0
{

int plockO;
plock(PROCLOCK); 1* lock text and data semnets into memory*1

plock(UNLOCK); 1* unlock my process*1
}

• Use auto-addressing for all read and write operations. (See the section "Setting
up Talkers and Listeners" of Chapter 3, "Controlling the HP-IB Interface," for
details.)

• Increasing the system priority of an I/O process can be accomplished by using
rtprio(2). rtprio requires the process to be running with an effective user ID of
super-user. The real time priorities available with rtprio are non-degrading pri­
orities. Caution must be observed when using real time priorities since one can
increase their priority above system processes. This may cause undesirable behav­
ior. For example, requesting a real time priority in the range of 0-63 places your
process in a higher priority than the DIL interrupt handler system process. This
means that interrupts could be lost if there is not sufficient CPU resource available.
The following example places the calling process at the lowest (least important) real
time priority:

#include <sys/rtprio.h>
main 0
{

}

int rtprio(). my_proc;

my_proc = 0; 1* a zero process # tells rtprio to refer to the *1
1* calling process. *1

rtprio(my_proc. 127); 1* priority 127 = lowest real time priority*1

rtprio(my_proc. RTPRIO_RTOFF); 1* turn off real time priority*1

114 Series 500 Dependencies

Series 200/300 Dependencies B
The following information, specific to Series 200/300 computers, is discussed in this
appendix:

• the location of the DIL routines

• information about creating the special file for the interfaces that you plan to access
with DIL routines

• the relationship between entity identifiers and file descriptors

• the restrictions imposed by the hardware on using the DIL routines

• information about how you can improve the performance of your I/O process

• information on how to simulate i/o interrupt programming on Series 200/300 com­
puters.

Location of the OIL Routines
The DIL routines that provide direct control of your computer's interfaces are contained
in the library /usr/lib/libdvio.a. Some of these routines are general-purpose and can be
used with any interface supported by the library, while others provide control of specific
interfaces. The Device I/O Library (DIL) currently supports the HP-IB and GPIO
interfaces.

Series 200/300 Dependencies 115

Linking OIL Routines
The libdvio.a library redefines the read, write, lentl, dup, and ioetl entry points. For DIL
to work properly, the DIL library must be linked before libe.

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that allows communication with a variety of devices. On Series 200/300 computers, the
interface sends and receives up to 16 bits of data with a choice of several handshake
methods. External interrupt and user-definable signal lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose lines.

Data Lines
There are 32 data lines: 16 for input and 16 for output. These lines normally use negative

. logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates
true with the interface's Option Switches. Refer to your GPIO interface manual to see
how t(\ <10 this.

116 Series 200/300 Dependencies

Handshake Lines
Although four lines fall into this group, only three are used for controlling the transfer
of data:

• PCTL ~ Peripheral ConTroL

• PFLG ~ Peripheral FLaG

• I/O ~ Input/Output.

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used
to signal the peripheral's readiness to continue the transfer process. The Input/Output
(I/O) line is used to indicate direction of data flow.

Special-Purpose Lines
Four lines are available for any purpose you desire; two are controlled by the peripheral
device and sensed by the computer, and two are controlled by the computer and sensed
by the peripheral.

Data Handshake Methods
There are two handshake methods using PCTL and PFLG to synchronize data transfers:
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. The full-mode handshake should be used if the peripheral does not meet the
pulse-mode timing requirements. Refer to the GPIO interface's documentation for a
description of these handshake methods.

Series 200/300 Dependencies 117

Data-In Clock Source
Ensuring that data is valid when read by the receiving device differs slightly depending
on what direction the data is flowing. When writing data out from the computer the
interface generally holds data valid while PCTL is in the asserted state, the peripheral
must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data valid until
it can signal that the data is valid or until the data is read by the computer. The
peripheral signals that the data is valid using the PFLG line. This clocks the data into
the interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the
FLAG switches on the interface card. Refer to the card's installation manual to find out
how to do this.

118 Series 200/300 Dependencies

Creating the Interface Special File
HP-UX treats I/O to an interface the same way it treats I/O to any input/output device:
the interface must have a special file. The general process of creating special files is
described in the HP-UX System Administrator Manual for your system. The following
discussion points out specific requirements needed for a special file associated with an
interface.

Creating the Special File
Special files are created using the mknod(lM) command; you must be super-user to
execute this command. When used to create an interface special file, mknod has the
following syntax:

mknod pathname c major_number minor_number

The c parameter to mknod tells the system to create the file as a character special file.
Descriptions of the remaining parameters to the mknod command follow.

path name
The pathname parameter specifies the name to be given to the newly created interface
special file. The pathname identifies the interface itself, not a peripheral on the inter­
face. Special files are usually kept in the directory /dev. This is basically an HP-UX
convention; some commands expect to find special files in the / dev directory and fail if
they are not there.

major_number
The major number specifies which device driver to use with the interface. The following
table shows the major number used for each supported interface:

Major Number

21

22

Interface

HP -IB Interface

GPIO Interface

Series 200/300 Dependencies 119

minocnumber
The minor number parameter tells mknod the location of the interface. The minor number
has the following syntax:

OxSeAdUV

where:

Ox specifies that the characters which follow represent hexadecimal values. These
two characters (zero and x) are entered as shown.

Se a two-digit hexadecimal value specifying the select code of the interface card.
The select code is determined by switch settings on the HP-IB interface card.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines
with the interface, the special file should be created as a raw special file: the
Ad component of the minor number should be 31 (If in hexadecimal). If Ad is
less than 31, then the file is not created as a raw file; it is created as an auto­
addressable file. (In this case, Ad specifies the bus address of the device for which
the special file is created.) If only one device can be connected to the interface
(e.g., the GPIO interface), the component of the minor number is ignored.

u a single-digit hexadecimal value specifying a secondary address. This component
of the minor number is ignored when the special file you are creating is for an
interface; you should set it to o.

V a single-digit hexadecimal value specifying a secondary address, such as the
volume number in a multi-volume drive. This component of the minor number
is ignored also; you should set it to O.

Creating an HP-IB Interface File
Suppose you wish to create an HP-IB interface special file with the following character­
istics:

• the pathname is /dev/raw_hpib

• because the interface is HP-IB, the major number is 21

• the card's select code switches are set to select code 2-Le., the Se component of
the minor number is 02

• the special file must be a raw special file in order to use DIL library routines with
it; therefore, the Ad portion of the minor number must be 31 (If in hexadecimal).

120 Series 200/300 Dependencies

Based on this information, you would use mknod as follows to create the special file for
the interface:

mknod /dev/raw_hpib c 21 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP-IB interfaces (ma­
jor number = 21) installed in slots 2 and 3. The following mknod commands set up
a special file for the interface at select code 02 (jdev/raw_hpibl) and select code 03
(jdev/raw_hpib2):

mknod /dev/raw_hpib1 c 21 Ox021fOO

mknod /dev/raw_hpib2 c 21 Ox031fOO

Creating a GPIO Interface File
Now suppose you have a GPIO interface that you want to access with the DIL routines
on the same computer.

Because the GPIO interface is does not use a bus architecture, the usual bus address
(Ad) and secondary address (uv) components of mknod's minor number are ignored, and
you need only determine the select code value.

Assuming that you have set the interface select code switches to 04 on the Series 200/300
GPIO card, the following mknod command will create the appropriate special file, named
/dev/raw_gpio:

mknod /dev/raw_gpio c 22 Ox040000

Series 200/300 Dependencies 121

Effects of Resetting (via io_reset)
For an HP-IB interface on Series 200/300 computers, resetting involves clearing REN,
pulsing its Interface Clear line (IFC) , and resetting REN; for a GPIO interface the
Peripheral Reset line (PRESET) is pulsed. If it fails, the routine returns a -1; otherwise
the routine returns a O.

Entity Identifiers
On Series 200/300 computers, an entity identifier for a file used by a DIL routine is
equivalent to an HP-UX file descriptor. This means that you can obtain entity identifiers
for your interface files with the system routines dup, lenti, and ereat, in addition to open.

122 Series 200/300 Dependencies

Restrictions Using the OIL Routines
This section presents some restrictions on using the DIL routines on Series 200/300
computers. These restrictions are organized under the routine to which they apply. The
routines are presented in alphabetical order.

hpib_io
After calling hpib_io, the effects of any previous calls to hpib_eoi_ctl and io_eoLctl are
nullified. In other words, EOI mode is disabled for the specified eid and the read termi­
nation pattern is disabled. Therefore, if you want these to remain in effect after calling
hpib_io, you must set them again with hpib_eo(ctl and io_eoLctl.

hpib_send_cmnd
The Series 200/300 HP-IB interface card uses odd parity when you send commands via
hpib_send_cmd. To do this, it overwrites the most-significant bit of each command byte
with a parity bit. This should not cause a problem since all HP-IB commands use only
7 bits, and the eighth is free for use as a parity bit.

hpib_status
The hpib_status routine cannot sense lines being driven (output) by the interface. In
other words, listeners cannot senses NDAC and non-controllers cannot sense SRQ.

io_interruPLctl
The io_interrupCctl routine is not supported on Series 200/300 computers.

io_on_interrupt
The io_on_interrupt routine is not supported on Series 200/300 computers.

Series 200/300 Dependencies 123

io_reset
When an HP-IB interface is reset via iOJeset, the interrupt mask is set to 0, the parallel
poll response is set to 0, the serial poll response is set to 0, the HP-IB address is assigned,
the IFC line is pulsed (if system controller), the card is put on line, and REN is set (if
system controller).

When a GPIO interface is reset, the peripheral request line is pulled low, the PTCL line
is placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out
lines are all cleared. The interrupt enable bit is also cleared.

io_speed_ctl
If the I/O transfer speed is set less than 7Kb/sec (i.e., the speed parameter is less than
7), then the interface will use interrupt transfer mode. If the transfer speed is set greater
than 140Kb/sec (speed> 140), then the system chooses the fastest mode possible. If the
speed is between 7Kb and 140Kb/sec (7Kb ::; speed::; 140), then DMA transfer mode is
used.

IMPORTANT

If you are using pattern termination, via io_eoLctl, then you'll
always get interrupt mode, regardless of speed.

io_timeouLctl
This routine allows you to set a time limit for I/O operations on an entity identifier
associated with an interface file. The timeout value that you specify is a 32-bit long
integer that indicates the length of the timeout in microseconds. However, the resolution
of the effective timeout is system-dependent. On the Series 200/300 computers the
timeout is rounded up to the nearest 20-millisecond boundary. For example, if you
specify a timeout of 150000 microseconds (150 milliseconds), the effective timeout is
rounded up to 160 milliseconds.

124 Series 200/300 Dependencies

Performance Tips
The performance of your I/O process on a Series 200/300 computer using DIL routines
can be improved by following the guidelines below:

• Use the io_burst routine for small data transfers. ("Small" on a Series 300 Model
310 is less than lKb; "small" on a Series 300 Model 320 is less than 4Kb.)

• If you are the super-user, you can use the memlck{2} routine (see HP-UX Reference:
Section 2) to lock your I/O process's address space into physical memory. Data
transfer times are reduced because they are carried out directly from the user area
and do not have to be first moved to the system area. However, you cannot lock
an arbitrarily large amount of space for your process since there is a point at which
your system's performance will begin to degrade.

• For processes running with an effective user ID of super-user, it is possible to lock
the process in memory with plock{2} (see HP-UX Reference). This lock is different
than memlck (as mentioned above). plock{2} informs the system that the process
code, data, or both are not to be swapped out of memory. The following example
illustrates the use of plock:

#include <sys/lock.h>
mainO
{

int plockO;
plock(PROCLOCK); /* lock text and data semnets into memory*/

plock(UNLOCK); /* unlock my process*/
}

• Use auto-addressing for all read and write operations. (See the section "Setting
up Talkers and Listeners" of Chapter 3, "Controlling the HP-IB Interface," for
details.)

• Increasing the system priority of an I/O process can be accomplished by using
rtprio{2}. rtprio requires the process to be running with an effective user ID of
super-user. The real time priorities available with rtprio are non-degrading pri­
orities. Caution must be observed when using real time priorities since one can
increase their priority above system processes. This may cause undesirable behav­
ior. For example, requesting a real time priority in the range of 0-63 places your
process in a higher priority than the DIL interrupt handler system process. This
means that interrupts could be lost if there is not sufficient CPU resource available.
The following example places the calling process at the lowest (least important) real
time priority:

Series 200/300 Dependencies 125

#include <sys/rtprio.h>
mainO
{

}

int rtprio(). my_proc;

my_proc = 0; 1* a zero process # tells rtprio to refer to the *1
1* calling process. *1

rtprio(my_proc. 127); 1* priority 127 = lowest real time priority*1

rtprio(my_proc. RTPRIO_RTOFF); 1* turn off real time priority*1

Simulating Interrupts for the HP-IB Interface
Although Series 200 HP-UX does not allow you to set interrupts, the use of four system
routines fork{2}, signal{2}, kill{2} , and getpid{2} allows you to simulate their effect. The
purpose of this section is not to describe how these routines work, but merely to present a
specific application that uses them. Refer to HP- UX Reference: Section 2 for a complete
description of the four system routines.

You can simulate setting an interrupt by creating a child process that waits for the
interrupt condition. When that condition occurs, the child process sends a signal back
to the parent process and then terminates. While the child process is waiting for the
specified condition, the parent process can continue executing until it receives the signal
from the child, at which time it jumps to a specified service routine.

The code below illustrates how you can use fork to spawn a child process that waits for
a particular bus condition. Here the child process calls hpib_status_wait to wait until the
SRQ line is asserted. Since no timeout has been set for the interface file's entity identifier,
there is no limit to how long the child process waits for the specified condition. When
the SRQ line is seen, the child process sends the signal SIGINT to the parent process
using kill. Since kill requires the process ID of the process that is to receive the signal,
getpid is called. Getpid returns the process ID of the calling process's parent process.
The child process terminates after the signal is sent. Signal allows you to specify in the
parent process what signal it is to look for and what routine it is to execute when the
signal is received. The code for serviceJoutine is not shown here. After service_ routine
is executed, the parent process resumes execution at the point where it was interrupted.

126 Series 200/300 Dependencies

#include <signal.h> /*defines various signals*/
mainO
{

}

int eid;
eid = open("/dev/raw_hpib", O_RDWR); /*open interface file*/

/*create a new process that will look for service requests*/
if (fork() == 0) /*this is the child process*/
{

}
kill(getpid(), SIGINT);

/*note that no timeout is set--it
will wait indefinitely for SRQ*/

else /*this is the parent*/
{

signal (SIGINT, service_routine);

/*parent process can now do other things while the child waits

}

for SRQ. When the parent receives the SIGINT signal the function
service_routine will be executed.*/

Some additional points about simulating interrupts in this way are:

• The code for the child process can be distinguished from that of the parent process
by the value returned by fork. Fork returns a 0 in the child process and the process
ID of the child process to the parent process.

• The include file signal.h must appear near the beginning of your program if the
program calls signal.

• If the interface file is opened before the fork call, the child process inherits the file's
entity identifier. If fork is called before the interface file is opened, then both the
child and the parent processes must open it.

Series 200/300 Dependencies 121

Simulating Interrupts on the GPIO Interface
Chapter 3: Controlling the HP-IB Interface discusses the use of four system routines
fork, signal, kill and getpid to simulate the effect of an interrupt when a certain condition
occurs on an HP-IB interface. This same technique can be used to simulate an interrupt
given a certain condition on a GPIO interface, such as a certain value of the STIO and
STH special purpose status lines.

Fork is used to spawn a child process that waits for a specified condition to occur, leaving
the parent free to continue executing. When the condition occurs, the child process sends
a signal via kill to the parent which then implements whatever service routine is required.
The parent process uses signal to recognize when the signal is sent and the child process
uses getpid to find out the process ID of the parent so that it knows where to send the
signal. The code below illustrates generating an interrupt when a peripheral connected
to the GPIO interface asserts STIO.

128 Series 200/300 Dependencies

#include <signal.h>
mainO

I*defines various signals*1

{

}

int eid; I*entity identifier*1

eid = open("/dev/raw_gpio", O_RDWR); I*open GPIO interface file*1
I*create a child process that looks for assertion of STIO*I

if (fork() == 0)
{

I*this is the child process*1

}

wait_on_STIO(eid);
kill(getpid(), SIGINT);

I*call a routine that waits for STIO*I
I*send signal to parent process*1

else I*this is the parent process*1
{

}

signal(SIGINT, service_routine(»;

I*parent process can now do other things while the child waits for
STIO. When the parent receives the signal SIGINT, the function
"service_routine" will be executed*1 ., } } I*end of main*1

1*"wait_on_STIO" repeatedly calls gpio_get_status until it sees that
STIO is asserted and then it returns to the calling routine*1

wait_on_STIO(eid)
int eid;

{

int value;
int flag = 0;

while (flag == 0)
{

I*Variable to hold value of STIO and STI1*1
I*Boolean flag initialized to 0 (false)*1

value = gpio_get_status(eid); I*read STIO and STI1 lines*1
if (value & 1) I*clear all but the first bit*1

flag = 1; I*when STIO is asserted, set flag to 1*1

Series 200/300 Dependencies 129

130 Series 200/300 Dependencies

Integral PC Dependencies c
The following information, specific to the Integral PC, is discussed in this appendix:

• location of the DIL routines

• the GPIO interface

• creating an interface special file

• interrupts

• controlling the HP-IB interface

• non-standard DIL routines

• restrictions using the DIL routines

Integral PC Dependencies 131

Location of the OIL Routines
The DIL routines are supplied in the libdvio. a library on the DIL disc. To use this
library with your compiler, move the libdvio.a library, along with the include files, to the
appropriate folder for your compiler, usually /usr/lib.

The GPIO Interface
The HP 82923A GPIO interface used on the Integral PC is different in a number of key
areas from the GPIO used on Series 200/300 and 500 computers. Refer to the HP 82923A
GPIO Interface Owner's Manual for a complete description of the hardware. Note that
the HP 82923A GPIO interface has the following features:

• parameters are set using DIL routines, not switches; these DIL routines are non­
standard DIL routines and are only provided on the Integral PC

• four 8-bit bidirectional data ports (which can be configured in 8-, 16-, or 32-bit
ports)

• 2 handshaking lines for each port

• 1 peripheral interrupt line (PIR) for each port

• 1 reset line (RES) for each port

• 1 status line for each port

• 1 data direction line (I/O) for each port.

The HP 82923A GPIO interface has six handshake types. The handshake type is selected
using the gpio_handshake_ctl routine.

132 Integral PC Dependencies

Creating an Interface Special File
Two utility programs, load_hpib and load_gpio, must be used to create the appropriate
special files for your HP-IB and GPIO interfaces, respectively. These routines create a
special (device) file for each HP-IB or GPIO interface found, and load the appropriate
DIL driver. The data files containing the DIL drivers, dhpib.data and dgpio.data, must
be in the search path defined by your PATH variable when the load utility is invoked.
For more information on load_hpib and load_gpio refer to the load_hpib.l and load_gpio.l
files provided in the doc folder on the DIL disc.

GPIO Interface Files
The special files for GPIO interfaces have the following form:

/dev/gpioGPlO_port. lO_port

where GPlO_port is the letter designation for GPIO ports a, b, c, or dj and lO_port is
a one- or two-character designation (a, b, ai, a2, ...) for the Integral PC I/O port. Note
that the top port on the Integral PC is port a, the bottom port is port b, while the bus
expander ports have a combination letter and number designation as shown below.

HP-IB Interface Files
The special (device) files for HP-IB interfaces have two forms:

/dev/dhpib. i for the built-in HP-IB interface

/dev/dhpib. lO_port for the plug-in HP-IB interface, where lO_port is the Integral PC
I/O port designator (a, b, ai, a2, ...) described above.

Unloading the OIL Drivers
Two additional utilities, unload_hpib and unload_gpio, are provided on the DIL disc.
These utilities are used to remove both the DIL drivers and the special files created by
load_hpib and load_gpio. For more information on using these utility programs, refer to
load_hpib.l and load_gpio.l in the doc folder on the DIL disc.

Integral PC Dependencies 133

Interrupts
Unlike the Series 500, the Integral PC supports only one interrupt condition, PIR, mean­
ing that the Peripheral Interface Request line has been asserted. For hardware restrictions
on using the HP-IB interrupts on the Integral PC, refer to the io_on_interrupt.3d file in
the doc folder on the DIL disc.

Controlling the HP-IB Interface

Limitations on the HP-IB Interface
The use of DIL routines with the built-in HP-IB interface has the following limitations:

• The user must not pass control when using the DIL routines with the built-in
HP-IB interface. The built-in HP-IB interface must always be the System Con­
troller/Active Controller .

• Loading the DIL drivers and then opening the built-in HP-IB interface special file
prevents the operating system from accessing printers, plotters, and mass-storage
drives on the built-in HP-IB interface until the built-in HP-IB interface special file
is closed. This means that any operation using a printer, plotter, or mass-storage
device on the built-in HP-IB interface will be suspended until the built-in HP­
IB device file is closed. This limitation can result in a deadlock situation if YOt' .

program both uses the DIL routines with the built-in HP-IB interface and attempts
to use a printer, plotter, or mass-storage drive on the built-in HP-IB interface.

To avoid these limitations, we recommend that you use the HP-IB DIL routines only
with the HP 82998A HP-IB interface.

The Computer as a Non-Active Controller
The built-in HP-IB interface must be in the system controller, active controller state to
use the DIL routines on the Integral PC.

134 Integral PC Dependencies

Non-Standard OIL Routines
The Integral PC DIL library supports several routines that are not part of the DIL
standard. This section describes these routines.

General-Purpose Routines
In addition to the standard DIL routines, the Integral PC DIL library supports the
following two routines:

Locks the interface port to the calling process until the io_ unlock routine
is called.

Used by the calling process to remove the lock created by io_lock.

For details on using these routines, refer to the io_lock.3d file located in the doc folder
on the DIL disc supplied with your Integral PC.

Non-Standard HP-IB Routines
In addition to the standard DIL routines for controlling the HP-IB interface, the Integral
PC supports the following non-standard DIL routine:

io_burst(eid, flag) Used to control the high-speed HP-IB mode. If flag = 0, high­
speed mode is turned off; otherwise it is turned on.

For information on the io_burst routine, refer to the io_burst.3d file in the doc folder on
the DIL disc.

Non-Standard GPIO Routines
The following non-standard DIL routines have been added to control the HP 82923A
GPIO interface:

• gpio_handshake_ ctl

• gpio_normalize_ctl

• gpio_delay_time_ctl

A description of these routines is provided in the doc folder on the DIL disc.

Integral PC Dependencies 135

Restrictions Using the OIL Routines
This section presents some restrictions on using DIL routines with the Integral PC com­
puter. Restrictions on using system routines, such as open(2), are also discussed here.
These restrictions are organized under the routine to which they apply; the routines are
presented in alphabetical order.

hpib_bus_status
On the Integral PC, it is not possible to determine the status of the NDAC and SRQ
lines under certain conditions. This can result in incorrect results when using the
hpib_bus_status routine to determine the status of these two lines. If the HP-IB in­
terface is talk-addressed, the SRQ status is incorrect; if it is listen-addressed, the NDAC
status is incorrect.

hpib_card_ppoILresp
The parallel poll response of the HP 82998A HP-IB interface can not be remotely pro­
grammed. Instead, use the hpib_card_ppoILresp routine.

hpib_ppoll_resp_ctl
The "sense" bit of the flag value for the hpib_ppoILresp_ctl routine determines whether
a zero or non-zero "response value" means that the computer requires service. If the "s"
bit is a 0, then a zero response value means service is needed.

io_eoLctl
On the Integral PC, a read operation from a GPIO interface will terminate only when a
specified number of read operations have been performed, or when the read termination
pattern has been found.

The Integral PC does not support different read termination patterns on multiple opens
to the same eid.

io_reset
When used to reset a GPIO interface, the iOJeset routine will pulse the RES (reset) line
only on the GPIO controller port specified by the eid.

136 Integral PC Dependencies

io_speed_ctl
GPIO
Setting the speed on a GPIO interface determines the transfer mode used by the driver:
either interrupt-driven, flag-driven handshake, or "fast handshake" mode. (Note that
the driver's fast handshake mode is not the same as the fast handshake mode described
in the HP 82923A GPIO Owner's Manual; it refers to a flag-driven mode where the EOL
and timeout settings are ignored to achieve a faster transfer rate.)

DMA transfers are not available on the Integral PC.

Interrupt-Driven Transfer Mode
Two transfer modes exist between the Integral PC and the HP 82923A GPIO interface:
flag-driven mode and interrupt-driven mode. To select the interrupt-driven mode, use
io_speed_ctl to set the speed to O.

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause
the user's process to go to sleep until an interrupt occurs at the completion of the read
or write.

HP-IB
The DIL routines on the Integral PC support two HP-IB transfer modes: flag-driven
mode and high-speed transfer mode. The default mode is the flag-driven mode until it
is set to the high-speed transfer mode using the io_burst routine.

In the high-speed transfer mode, the driver talks directly to the interface without going
through the operating system. For more information on io_burst, refer to the documen­
tation provided in the io_burst.3d file in the doc folder on the DIL disc.

io_timeouLctl
This routine allows you to set a time limit for operations carried out by DIL routines on
a specified entity identifier. The timeout value you specify is a 32-bit long integer that
indicates the length of the timeout in microseconds (Jl-secs). However, the resolution of
the effective timeout is system-dependent. On the Integral PC, the timeout resolution on
both the HP 82923A GPIO interface and the HP 82998A HP-IB interface is 1 millisecond
(msec).

For example, suppose you specify a timeout of 99 999 microseconds (99.999 milliseconds).
Then the effective timeout is rounded up to 100 milliseconds.

Integral PC Dependencies 137

io_width_ctl
The data path width for the HP-IB interface is always 8 bits on the Integral PC. However,
the four 8-bit ports on the HP 82923A GPIO interface can be combined to form 8-, 16-,
or 32-bit data paths.

For 16- or 32-bit ports, only one port acts as a controller; that port's eid is used in the
io_width_ctl routine. The allowable data path widths for each port are shown in the
following table.

G PIO Data Path Widths

Data Path Controller Data
Width Port Ports*

8-bit a a

b b

e e

d d

16-bit b ba

d de

32-bit b bade

* Data ports are listed in order, left to right, from most-significant byte to least-significant
byte.

Combinations of 8- and 16-bit or two 16-bit ports are also allowed on the same GPIO
interface. 24-bit ports are not allowed.

open(2)
When opening the special file for an interface, you must use the special file name for
the specific GPIO or HP-IB interface created by load_hpib or load_gpio. Note that each
GPIO port has a separate special file name. For details on interface special file names,
see the previous section "Creating an Interface Special File."

read(2) and write(2)
During a read or write operation to a 16- or 32-bit GPIO port, the data must start on
a word boundary. This restriction applies only to the GPIO interface.

138 Integral PC Dependencies

Series 800 Model 840 Dependencies 0
The following information, specific to the Device I/O Library (DIL) on Series 800 Model
840 computers, is discussed in this appendix:

• compiling programs that use DIL routines

• accessing the special files for the interfaces that you plan to use with DIL

• creating special files for the interfaces that you plan to use with DIL

• DIL routines affected by the Series 800 Model 840 hardware

• DIL support of HP-IB auto-addressed files

• improving performance of DIL programs

Series 800 Model 840 Dependencies 139

Compiling Programs That Use OIL
The DIL routines are located in the library /usr/lib/libdvio.a. Thus, programs can be
linked as:

CC test.c -ldvio

Accessing the Interface Special Files
The Series 800 Model 840 kernel is shipped with a default I/O configuration. This means
a default set of special files is made for you. For example, the /dev/hpib directory contains
special files created for use with HP-IB instruments connected to the HP 271lOB HP-IB
interface. The special file /dev/gpioO is created for use with instruments or peripherals
connected to the HP27114A Asynchronous FIFO interface (AFI). The insf command is
used to install these special files all at one time. Mknod could also be used to create them
one at a time. For more information on insf and mknod refer to the HP- UX Reference.

Major Numbers
Major numbers map the hardware I/O cards to the software I/O driver for the type
of I/O application the card will be doing. The driver used to talk to the HP-IB card
for instrument I/O is called instrO, and corresponds to major number 21. The HP-IB
card talks to different drivers (which use different major numbers) to do I/O to other
kinds of devices, such as disc drives or printers. All default special files in the /dev/hpib
directory use major number 21. The driver that talks to the AFI card is called gpioO,
and corresponds to major number 22. The /dev/gpioO special file uses major number 22.

140 Series 800 Model 840 Dependencies

Minor Numbers and Logical Unit Numbers
Drivers use minor numbers to map the hardware I/O cards to their locations in the
Model 840 I/O backplane. The default I/O configuration shipped with your Model 840
creates special files accessing a subset of the available backplane slots. For the HP-IB
card, two slots are available for instrument I/O, and one slot is available for the AFI
card. Slot information is accessed through the device's logical unit number. The logical
unit number is mapped into the special file's minor number. For HP-IB special files, the
HP-IB bus address is also mapped into the minor number.

The minor number syntax for an HP-IB special file is:

OxOOLuBa

where Lu is the device's logical unit number, and Ba is the bus address of the HP-IB
device. Both numbers are in hexadecimal.

The minor number syntax for an AFI special file is:

OxOOLuOO

where Lu is the device's logical unit number in hexadecimal.

For example, a long listing of the special file /dev/hpib/Oa16 shows

$ 11 /dev/hpib/Oa16
crw-rw-rw- 1 root root 21 Ox000010 Mar 11 15:19 Oa16

The logical unit number is 0, and bus address 16 is 10 in hexadecimal.

Series 800 Model 840 Dependencies 141

Listing Special Files
The Series 800 Model 840 I/O architecture is based on a hierarchical design. The use of
logical numbers in conjunction with the major and minor number allows the system to
keep track of all the information about the I/O structure. The Issf command, list special
file, is a tool that makes it easy to read information about a special file without decoding
it by hand.

The syntax of Issf is:

lsaf [-f dey _filel path

where path is the pathname of the special file. Lssf uses the major number from the
special file to find the name of the device driver in a file called /etc/devices. If you use
the -C option, Issflooks in deY_file instead of /etc/devices. It then decodes the minor
number, outputs the logical unit number, the device bus address (if there is one), and
the corresponding CIO slot address for the actual card in the Model 840 backplane.

Using the default special file /dev/hpib/Oa16 as an example, the following output is
produced:

$ lssf /dev/hpib/Oa16
instrO lu 0 bus address 16 address 8.2.16 /dev/hpib/Oa16

where instrO is the name of the instrument HP-IB driver, the logical unit number is 0,
the HP-IB bus address is 16, and the backplane address of the HP-IB card is 8.2.16.
This says that the CIO channel card is in mid-bus address 8, and the HP-IB card should
be in slot 2 of that CIO channel. There are 12 CIO slots available, numbered 0-11. The
last digit, in this case 16, is the HP-IB bus address of the device Oa16.

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the CIO channel
at mid-bus address 8. A special file for each possible bus address (0-31) is made for each
card. The special files for the card at slot 2 all have a logical unit number of 0, and the
special files for the card in slot 7 all have a logical unit number of 1.

The default GPIO special file is set up for an AFI card in slot 5 of the CIO channel at
mid-bus address 8, and uses a logical unit number of O.

For more information on Issfrefer to the HP-UX Reference.

142 Series 800 Model 840 Dependencies

Naming Conventions for Interface Special Files
If your Series 800 Model 840 computer was configured correctly, the special files discussed
above will already have been created.

By convention, HP-IB special files reside in the /dev/hpib directory. Also by con­
vention, the default special files for the HP-IB raw bus (a HP-IB card itself) are
named /dev/hpib/X, where X is the bus's logical unit. Auto-addressed files are named
/dev/hpib/XaY, where X is the logical unit, a stands for an auto-addressed file, and Y is
the file's associated HP-IB bus address (see the "DIL Support of HP-IB Auto-Addressed
Files" section of this appendix).

The naming convention for the GPIO default special files is /dev/gpioX, where X is the
device's logical unit.

If you cannot locate the default special files on your system, refer to the next section for
how to create them.

Series 800 Model 840 Dependencies 143

Creating Interface Special Files
If the special files you need for HP-IB or GPIO are not available on your system, you
can use the mksf command to create them. Mksf is a high-level command implemented
for the Series 800 Model 840, that can be used instead of mknod. Like Issf, mksf frees
you from having to know the major number and minor number format. Mksf makes the
special file creation process consistent for all classes of devices. The syntax of mksf is:

mksf -d driver -liu other-flags ... sf name

where driver is the name of the driver associated with the special file, Iu is the file's
logical unit, and sfname is the name of the special file you wish to create.

Each class of device can have additional class-dependent attributes (such as the bus
address for an HP-IB auto-addressed file).

For HP-IB devices, the driver is instrO. Thus, to create a special file named /dev/bus for
HP-IB lu 1, you use the command:

mksf -d instrO -1 1 /dev/bus

When creating auto-addressed HP-IB special files, you add another option -a to associate
the address with the device. For example, to create an auto-addressed special file called
/dev/plotter, at bus address 7 on HP-IB lu 2, you could type:

mksf -d instrO -1 2 -a 7 /dev/p1otter

For the AFI card, the driver is gpioO. Thus, to create a special file named /dev/afi for
GPIO lu 0, you could use the command:

mksf -d gpioO -1 0 /dev/afi

For more information on mksf or mknod, refer to the HP- UX Reference.

144 Series 800 Model 840 Dependencies

Hardware Effects on OIL Routines
The HP-IB card supported on the Series 800 Model 840 is the HP 271lOB HP-IB interface;
the GPIO card is the HP 27114A Asynchronous FIFO Interface (AFJ).

This section presents some restrictions on using the DIL routines on Series 800 Model
840 computers. These restrictions are organized under the DIL routine to which they
apply. The routines are presented in alphabetical order. A list of errno error names can
be found in section two of the HP- UX Reference. Errno numeric values are defined in
the file /usr/include/sys/errno.h.

hpib_rqsLsrvce
The hpibJqsCsrvce routine only permits bit 6 of the serial poll response to be set. If
hpib_rqsCsrvce is called with a response having bit 6 set, the interface sends <01000000>
(64 decimal) in response to serial poll; if bit 6 is not set in response, the interface sends
<10000000> (128 decimal). See "The Computer as a Non-Active Controller" in Chapter
3.

io_eoLctl
The AFI driver does not support pattern matching on reads; all io_eoLctl calls return -1
and set errno to EINVAL.

io_reset
When an HP-IB interface is reset via io_reset, the card's parallel poll response is set
to 0; its serial poll response is set to 128; its HP-IB address is read off the hardware
switches; and the card is put on-line. Any enabled interrupts are preserved. If the
card is configured as system controller, then Interface Clear (IFC) is pulsed and Remote
Enable (REN) is asserted.

When an AFI interface is reset via iOJeset, each of the three control output lines is reset
to zero, the incoming Attention Request (ARQ) is disabled, the ARQ flip flop is cleared,
the ARQ enable flip flop and the handshake to the peripheral are disabled, and the FIFO
buffer is flushed out.

Series 800 Model 840 Dependencies 145

io_speed_ctl
The io_speed_ctl routine is not supported on Series 800 Model 840 computers; transfer is
always done via DMA.

io_timeouLctl
On Series 800 Model 840 computers, the timeout you specify via io_timeouLctl is rounded
up to the nearest lO-millisecond boundary. For example, if you specify a timeout of
125000 microseconds (125 milliseconds), the effective timeout is rounded up to 130 mil­
liseconds.

DIL functions, read, or write requests that time out, return a value of -1 and set errno
to either ETIMEDOUT or EINTR. If the request can be aborted normally, then errno
is set to ETIMEDOUT . Otherwise, the HP-IB card is reset and EINTR is returned.

io_width_ctl
The only allowable data path width for HP-IB devices is 8. AFI devices support 8-bit
and 16-bit data paths. If you specify any other width, io_width_ctl returns an error
indication.

Return Values for Special Error Conditions
On specific error conditions, the Series 800 Model 840 sets errno values which are dif­
ferent from what is expected from the DIL as documented in the HP-UX Standard. For
example, when any request times out, errno is set to ETIMEDOUT ("connection timed
out") or instead of setting it to EOI. Also, upon HP-IB requests that require the interface
to be the active controller or the system controller, set errno to EACCES ("permission
denied"). Jtequests that are aborted due to system power failure set errno to EINTR
("interrupted system call"); in addition, your process receives the signal SIGPWR, which
indicates recovery of system power.

146 Series 800 Model 840 Dependencies

OIL Support of HP-IB Auto-Addressed Files
As noted in Chapter 3 in the section called "Setting Up Talkers and Listeners," one class
of HP-IB special files, known as auto-addressed files, are associated with a given address
on the bus. For read and write requests to these files, addressing is done automatically;
that is, the sequence of talk and listen bus commands is generated for you.

In general, the DIL functions are not defined for auto-addressed files. On the Series
800 Model 840, however, many of them are implemented, but with more device-oriented
actions.

IMPORTANT

The DIL Standard does not currently specify a functional defi­
nition for the support of auto-addressed files. When support for
auto-addressed files becomes part of the DIL Standard, the specific
functionality implemented may differ from the implementation de­
scribed here for the Series 800 Model 840. Please keep this in
mind when developing programs which take advantage of this new
functionality.

The following table shows which DIL functions are supported on auto-addressed files.
Entries in the first column work the same on both auto-addressed and non-auto-addressed
(also called raw bus) files. Entries in the second column are somewhat different for auto­
addressed files; entries in the third column are not supported on HP-IB auto-addressed
files and will return an error indication if used.

Series 800 Model 840 Dependencies 147

Routine Same Effect Different Effect Not Allowed

hpib_abort X

hpib_ bus_status X

hpib_card_ppolLresp X

hpib_eoi_ctl X

hpib_io X

hpib_pass_ctl X

hpib_ppoll X

hpib _ppolLresp _ ctl X

hpib_ren_ctl X

hpib_rqst_srvce X

hpib_send_cmd X

hpib_spoll X

hpib_status_ wait X

hpib_ wait_on_ppoll X

io_eoLctl X

io_get_ term_reason X

io_interrupLctl X

io_on_interrupt X

i~_reset X

io_speed_ctl X

io_ timeout_ctl X

io_ width_ctl X

Those functions in the second column, which operate differently on raw bus and auto­
addressed special files, are discussed below.

148 Series 800 Model 840 Dependencies

hpib_card_ppoILresp
Calling hpib_card_ppoILresp on an auto-addressed file does not configure the HP-IB in­
terface card; rather, it configures the device associated with the file with the appropriate
addressing and Parallel Poll configuration commands.

hpib_io
For those iodetail structures that send commands (by setting the mode flag to HPIB­
WRITE or HPIBATN), hpib_io prefixes the command buffer buf with the appropriate
device addressing (see hpib_send_cmd, below). For data transfers (with mode set to
HPIBREAD or HPIBWRITE) using auto-addressed files, the addressing is also done for
you.

hpib_ren_ctl
Setting REN (by setting the flag parameter to a non-zero value) on an auto-addressed
file addresses the associated device before asserting REN. Clearing REN (by setting flag
to a zero) addresses the device and sends it a Go To Local command, in lieu of clearing
REN.

hpib_send_cmd
Sending HP-IB commands to an auto-addressed file via hpib_send_cmd does the appro­
priate device addressing for you. The command buffer you pass down to the device is
preceded by the commands necessary to remove any previous listeners on the bus, address
the Active Controller to talk, and configure the file's associated device to listen.

hpib_spoll
Performing a serial poll on an auto-addressed file polls the associated device; any bus
address passed via the ba argument is ignored.

hpib_waiLon_ppoll
For auto-addressed files, the mask argument is ignored; only the address associated with
the device is polled. In addition, the sense argument only specifies the sense of the
particular device's assertion. Successful completion of the hpib_waiLon_ppoll request
implies that the device responded to parallel poll.

io_on_interrupt
The only allowable interrupt for auto-addressed files is SRQ.

Series 800 Model 840 Dependencies 149

Performance Tips
DIL performance improvements for the Series 800 Model fall into two categories: those
that keep your process from waiting for resources, and those that actually improve your
I/O performance. The first three of the tips described below fall into the first category;
the last two are in the second category.

Process Locking
Normally, the operating system swaps processes in and out of memory; you can circum­
vent this swapping by using the plock system call.

If you are running as the super-user (or have the PRIV_MLOCK capability), you can
use plock to lock your process in memory; plock prevents the system from swapping out
the process's code, data, or both.

The following example illustrates its use:

#include <sys/lock.h>
int plockO;

mainO {

plOCk(PROCLOCK); /* lock text and data segments into memory */

plock(UNLOCK);
}

/* unlock the process */

Refer to plock(2} and getprivgrp(2} in the HP-UX Reference for more information.

150 Series 800 Model 840 Dependencies

Setting Real-Time Priority
The operating system schedules processes based on their priority. Under normal circum­
stances, the priority of a process drops over time, allowing newer processes a greater
share of CPU time. You can assign a higher priority to your process and keep its priority
from dropping by using the rtprio system call.

If you are running as the super-user (or have the PRIV _RTPRIO capability), you can
use rtprio to give your process a real-time priority. Real-time processes run at a higher
priority than normal user processes; they get preempted only by voluntarily giving up
the CPU or by being interrupted by a higher priority process or interrupt.

You must be careful when using real-time priorities because you can increase your priority
above those of important system processes. The following example places the calling
process at the lowest (least important) real-time priority:

#include <sys/rtprio.h>
#define ME 0 /* a zero process 1D means this process */
int rtprio 0 ;

mainO {
rtprio(ME. 127); /* Turn on real-time priority for ME */

rtprio(ME. RTPRIO_RTOFF); /* Turn off real-time priority for ME */
}

Refer to rtprio(2) and getprivgrp(2) in the HP-UX Reference for more information.

Preallocating Disc Space
If your process is reading large amounts of data and writing it to a file, you can block
while the operating system allocates disc space. However, you can allocate disc space
in advance by using the prealloc system call. The following example opens a file and
preallocates 65536 bytes of space for that file:

#include <fcntl.h>
#define MAX_SIZE 65536
int prealloc 0 ;

mainO {
int eid;

eid = open("data_file". O_WRONLY);
prealloc(eid. MAX_SIZE); /* preallocate space to write into */

}

Series 800 Model 840 Dependencies 151

Refer to prealloc(2) in the HP-UX Reference for more information.

Reducing System Call Overhead
Most DIL function calls you make on the Series 800 map into system calls. Therefore, you
can cut down on operating system overhead by using fewer library calls. In particular,
use auto-addressed files for all read and write operations, rather than using an extra call
to hpib_send_cmd to do addressing.

Setting Up Faster Data Transfers
Because of the I/O architecture of the Series 800, data transfers run more efficiently if
your data buffers are aligned on a page boundary. The number of bytes per page is
defined as NBPG and can be referenced by including < sys/param.h>. The following
example shows how to allocate and page-align a data buffer:

#include <sys/param.h> /* defines NBPG and roundup(x, y) */
#define REAL_SIZE 1024 /* amount of memory we want to page-align */
char *malloc 0 ;

MainO {
char *malloc_ptr, *align_ptr;

malloc_ptr ; malloc(NBPG + REAL_SIZE) ;
align_ptr ; roundup (malloc_ptr, NBPG);

/* in future data transfers, use align_ptr

/* allocate memory */
/* and round up the ptr */

*/

free(malloc_ptr); /* when we're done with the data */
}

In addition, even count transfers run more quickly than odd count transfers.

152 Series 800 Model 840 Dependencies

Character Codes E
ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. De. Binary O.t He, Char. De. Binary O.t Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL I 33 00100001 041 21 LAl

STX 2 00000010 002 02 " 34 aOl00010 042 22 LA2

ETX 3 00000011 003 03 • 35 00100011 043 23 LA3

EDT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

END 5 00000101 005 05 PPC % 37 00100101 045 25 LAS

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 00000111 007 07 39 00100'11 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT • 00001001 011 O • TCT) 41 00101001 051 2. LM

LF 10 00001010 012 OA * 42 00101010 052 2A LAtO

VT 11 00001011 013 OB + 43 00101011 053 28 LA11

FF 12 00001100 014 OC 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101110 056 2E LA14

SI 15 00001111 017 OF I 47 00101111 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LAt6

DCl 17 00010001 021 11 LLO 1 49 00110001 061 31 LA1?

DC2 18 00010010 022 12 2 50 00110010 062 32 LAt8

DC3
"

00010011 023 13 3 51 00110011 063 33 lA19

DC4 20 00010100 024 14 DCL 4 52 00110100 064 34 lA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 lA21

SYNC 22 00010110 026 16 6 54 00110110 066 36 lA22

ET8 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24

EM 25 00011001 031
"

SPD 9 57 00111001 071 3. LA25

SUB 26 00011010 032 lA 58 00111010 072 3A LA26

ESC 27 00011011 033 lB 59 00111011 073 3B LA27

FS 28 00011100 034 lC < 60 00111100 074 3C LA28

GS 2. 00011101 035 10 = 61 00111101 075 3D LA29

RS 30 00011110 036 lE > 62 00111110 076 3E LA30

US 31 00011 t11 037 IF ? 63 00111111 077 3F UNL

Character Codes 153

Character Codes (cont.)

ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS Hp·IB
Char. De. Binary O.t Hex Char. De. Binary O.t Hex

"' 64 01000000 100 40 TAO 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCI

8 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 . 99 01100011 143 63 SC3

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 ; 105 01101001 151 69 SC9

J 74 01001010 112 4A TAtO I 106 01101010 152 6A Se10

K 75 01001011 113 48 TAtt k 107 01101011 153 68 scn

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 40 TAt3 m 109 01101101 155 6D SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TAtS 0 111 01101111 157 6F SC15

p 80 01010000 120 50 TAtS P 112 01110000 160 70 SC1S

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SCt?

A 82 01010010 122 52 TAtS , 114 01110010 162 72 SCla

S 83 01010011 123 53 TAt9 s 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 f 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 , 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 , 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 SA TA26 , 122 01111010 172 7A SC26

[91 01011011 133 58 TA27 { 123 01111011 173 78 SC27

" 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

J 93 01011101 135 50 TA29 } 125 01111101 175 7D SC29

. 94 01011110 136 5E TA3a - 126 01111110 176 7E SC30

- 95 01011111 137 SF UNT DEL 127 01111111 177 7F SC31

154 Character Codes

Index

a
accessing interface special files ... 140
active control, accepting .. 77
active controller .. 41, 43, 45-46, 52
addressed commands .. 36, 37
allocating space ... 87
ASCII character codes .. 153-154
asserted lines .. 9
ATN ... 11
auto-addressed files. 47, 147-149

b
buffered I/O operations ... 83-90
buffered I/O operations, locating errors 90
bus commands .. 37
bus management control lines ... 11

c
calculating listen addresses .. 48-49
calculating talk addresses .. 48-49
call incompatibility ... 5
calling DIL routines from FORTRAN ... 5
calling DIL routines from Pascal ... 4
character codes .. 153-154
clearing HP-IB devices ... 54
closing an interface special file .. 17
configuring the integral PC GPIO ... 93
control passing .. 67
controller .. 8
controller, active ... 41, 43, 45-46, 52
controller, nonactive .. 41, 71-82, 134
controller status .. 71-72
controller, system .. 41, 68-71
controlling I/O parameters .. 23-28
creating interface special files 119, 133, 144

Index 155

d
data handshake methods ... 104, 117
data lines .. 104, 116
data path width ... 23, 25, 100
data transfers .. 23, 52, 98, 152
data-in clock source ... 105, 118
DAV .. 9,10
determining active controller .. 46
determining controller status .. 71-72
determining why a read terminated 29-30, 101
DEVICE CLEAR ... 38
DIL drivers .. 133
DIL routines 3-5, 14, 40-42, 96, 103, 115, 123, 132
DIL routines, hardware effects ... 145
DIL routines, nonstandard ... 135
disabling parallel poll response .. 59, 76
disabling read termination pattern ... 28
disc space ... 151

e
EBADF .. 45,61,66,68,74,76,79
eid .. 14
EINVAL ... 66, 68, 76, 79
EIO ... 24, 45, 61, 66, 68, 79
enabling local control .. 51
ENOTTY .. 45,61,66,68,74,76,79
entity identifier (eid) .. 14, 122
EOI ... 11
errno .. 19
error checking routines .. 19-21
error handlers ... 21
errors during parallel polling .. 60
errors during serial polling .. 66
errors in buffered I/O operations .. 90
errors while configuring response .. 75
errors while passing control ... 67
errors while requesting service .. 74
errors while sending commands .. 44-45
errors while waiting on status ... 78
external declaration .. 4

156 Index

f
flag-driven mode ... 102
FORTRAN calls to DIL routines ... 5

9
general-purpose routines .. 14-15
GO TO LOCAL .. 39
GPIO interface .. 12, 93-102, 103-105, 116-118, 132

h
handshake lines ... 9, 104, 117
handshake process .. 7
HP-IB commands .. 36-39
HP -IB devices ... 8
HP-IB interface ... 8-12
hpib_abort .. 40
HPIBATN .. 85
hpib_bus_status .. 40, 136
hpib_card_ppoILresp .. 40, 110, 136, 149
HPIBCHAR .. 85
HPIBEOI .. 85
hpib_eoi_ctl ... 40
hpib_io .. 40, 123, 149
hpib_pass_ctl .. 40
hpib_ppoll .. 40
hpib_ppoILresp_ctl .. 40, 136
HPIBREAD .. 85
hpib_ren_ctl 40, 149
hpib_rqsCsrvce ... 40, 110, 145
hpib_send_cmd ... 149
hpib_send_cmnd .. 40, 111, 123
hpib_spoll ... 40, 149
hpib_status .. 123
hpib_status_wait .. 40, 111
hpib_ waiCon_ppoll .. 40, 111, 149
HPIBWRITE ... 85

Index 157

· I
IFC ... 11
integral PC dependencies .. 131-138
integral PC interrupts ... 31
interface functions .. 7
interface special files .. 13, 105, 140
interrupt-driven transfer mode ... 102
interrupts .. 31-34, 102, 134
interrupts, Series 500 .. 31
interrupts, simulating for GPIO interface 128
interrupts, simulating for HP-IB interface 126
io_burst .. 40
io_eoLctl ... 15, 23, 136, 145
io_geLtermJeason .. 15, 29, 111
io_interrupLctl ... 15, 33, 123
io_on_interrupt ... 15, 32, 123, 149
io_request ... 136
iOJeset .. 15, 22, 124, 145
io_speed_ctl ... 15, 23, 112, 124, 137, 146
io_timeouLctl ... 15, 23, 112, 124, 137, 146
io_width_ctl ... 15,23, 112, 138, 146

I
linking DIL routines ... 3, 116
listen addresses .. 48-49
listener .. 47
listeners ... 8
listing special files .. 142
local control .. 51
local control, locking out ... 51
LOCAL LOCKOUT ... 38
local state .. 50

m
memory allocation ... 87

158 Index

n
naming conventions for special files ... 143
NDAC .. 9,10
nonactive controller. .. 41, 71-82, 134
nonstandard DIL routines ... 135
not asserted lines ... 9
NRFD .. 9,10

o
onionskin routine ... 5
opening an interface special file .. 15-16
opening the HP-IB interface file ... 42

P
PARALLEL POLL CONFIGURE ... 39
PARALLEL POLL DISABLE .. 39
PARALLEL POLL ENABLE ... 39
parallel polling ... 57-68, 74
parallel polling, disabling ... 59, 76
parameter-passing irregularities .. 5
Pascal calls to DIL routines 4
passing control .. 67
PIR ... 31
polling, parallel .. 57-68, 74
polling, serial .. 65-66
preallocating disc space ... 151
process locking ... 150

r
read termination .. 29-30, 101
read termination pattern .. 23, 26-28
reading ... 18-19
real-time priority ... 151
remote enable line (REN) .. 36
remote state .. 50
REN ... 11,36
resetting an interface .. 22, 97
resetting devices .. 54

Index 159

s
secondary commands .. 36, 37
SELECTED DEVICE CLEAR .. 39
sending HP-IB commands ... 43-45
SERIAL POLL DISABLE .. 38
SERIAL POLL ENABLE .. 38
serial polling ... 65-66
Series 200/300 dependencies ... 115-129
Series 500 dependencies ... 103-114
Series 500 interrupts ... 31
Series 800 Model 840 dependencies 139-152
service request .. 54, 73
setting data path width .. 25
setting interface switches ... 93
setting I/O timeout ... 23-24
setting read termination pattern ... 26-28
setting real-time priority .. 151
setting transfer speed ... 25-26
setting up talkers and listeners .. 47
simulating interrupts .. 126, 128
space allocation ... 87
special files ... 15, 17, 105, 119, 133, 140
special-purpose lines ... 104, 117
SRQ ... 11
SRQ line ... 55
status byte message ... 65
system call overhead .. 152
system controller ... 41, 68-71

t
talk addresses 48-49
talk and listen addresses ... 36, 37
talkers .. 8, 47
terminating character .. 11
termination character ... 111
timeout, setting ... 23
transfer speed 23, 25-26, 101
transferring data .. 52, 98
TRIGGER ... 39, 52
triggering devices .. 52

160 Index

u
universal commands ... 36, 37
UNLISTEN .. 38
unload_gpio .. 133
unload_hpib .. 133
unloading DIL drivers ... 133
UN TALK .. 38

w
writing 18-19

Index 161

162 Index

Table of Contents

Chapter 1: Overview
Program Overview .. 1
Manual Overview .. 2

Chapter 1: Overview .. 3
Chapter 2: Hardware Configuration .. 3
Chapter 3: Software Configuration .. 3
Chapter 4: Uucp File Structure 3
Chapter 5: Uucp Daemons ... 3
Chapter 6: Using The Uucp Facility 4
Chapter 7: The X.25 Network .. 4
Chapter 8: Log, Status and Cleanup. .. 4
Chapter 9: Problems .. 4

Where To Start? .. 5
If You Are a User ... 5
If You Are the System Administrator. .. 5

Additional Networks .. 6
The RJE Network ... 6
The Local Area Network .. '" 7
HP AdvanceN et .. 8

Chapter 2: Hardware Configuration
Series 500 ASI ·Card .. 9
Series 500 MUX Cards. .. 9
HP-UX Series 800 MUX Card 10
HP-UX Series 200 and 300 MUX Cards 10
Modem Connections. .. 13
Direct Connections ... 15
Making a Special Connector. .. 27

Chapter 3: Software Configuration
Software Loading and Setup ~ 29

General Startup Information .. 30
Creating a TTY Device File. .. 32
Naming Your Node ... 34
Uucp Login ... 35
Getty Entries. • .. 36

Table of Contents i

Editing the Library Files for Uucp 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 000 0 0 0 0 37
Additional Uucp Information 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000 38

Chapter 4: Uucp File Structure
Examples of uucp Data Transfer 0 40

Transfer Single File Between Local and Remote System 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40
Transfer Multiple Files Between Local and Remote System 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41
U ux Command Sequences 0 43

Spool Directory 0 44
The Public Area 0 44
The uucp Directory 0 44
Workfiles 0 000 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

Data Files 0 47
Image Data Files 00 47
Data Execution Files 0 48

Execution Files 0 49
Typical Execution File 0 52

Lockfiles and Temporary Files 0 52
Log Files 0 53
Binary Files 0 54
Library Files 0 54

Locmds File 0 55
Security Sequence-Checking Files SEQF and SQFILE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56
USERFILE 00 000 57
L-devices File 0 61
L-dialcodes File 0 62
Dialitoc 0 63
Dialit File 0 67
Losys File 0 68
ADMIN File 0 72

Chapter 5: Uucp Facility Daemons
Running The Uucp Facility 00 73

Invoking uucp Daemons 0 75

Chapter 6: Using the Uucp Facility
Syntax Information 0 77

Pathnames 0 77
Option Separators 0 78

The Cu Command 0 79
Cu Command with a Modem Connection 0 79
Cu with Direct Connection 0 80

ii Table of Contents

After Connection .. 81
Using the uucp Command ... 83

General uucp Snytax .. 83
Sending Files To a Remote System , 84
Receiving Files From Remote Systems .. 85
Forwarding through Several Systems 85
U ucp Command Errors .. 88

Using the uux Command ... 89
General uux Syntax .. 89
Example .. 90
Uux Error Numbers .. 91

Miscellaneous Commands .. 92
Using uuclean .. 92
Using uulog .. 93
Using uuname .. 94
Using uupick .. 95
Using uustat .. 96
Using uusub .. 98
Using uuto ... 100

Using the Mail Facility .. 101
Notes , , 102

Chapter 7: The X.25 Network
Description of X.25. .. 103

Packet Switching Network .. 103
Public Data Network .. 105

Configuring uucp for X.25 .. 106
Prerequisites ... 107
Installing the HP 2334A ... 107
Remote and Local Off-line Configuration 110
Preparing for Configuration .. 112
Configuration Procedure .. 113

Notes .. 132

Chapter 8: Log, Status and Cleanup
Logging Information. .. 133

The LOGFILE file .. 133
The SYSLOG file .. 135
The DIALLOG file .. 136

Status ... 137
Cleanup ... 138

Table of Contents iii

Chapter 9: Problems
Bad Connections .. 141
Out of Space ... 141
Out-of-date Information ... 141
Abnormal Termination .. 141

Notes .. 142

Appendix A: Log Entry Messages
/usr/spool/uucp/DIALLOG .. 143

Meaning of Entries .. 143
Sample Entries ... 144
Message Interpretations .. 144

/usr/spool/uucp/LOGFILE .. 147
Meaning of Entries .. 147
Sample Entries ... 148
Message Interpretations .. 148

/usr/spool/uucp/SYSLOG ... 153

Index

iv Table of Contents

Overview 1
The HP-UX uucp facility is a set of programs which exchange information between HP­
UX and UNIX1 or UNIX-like systems. Note that the program cu which is part of the
uucp facility enables you to talk to non-UNIX systems. Uucp programs can be used to
transfer files and execute commands to and from a remote system, to transfer files from
a remote system to another remote system, and to send and receive mail. You can also
forward mail and files through intermediate nodes. All systems involved must use an
HP-UX or UNIX operating system, be on the uucp network and have the uucp facility
installed. The network consists of workstations connected with either direct or modem
connections. The uucp facility is easy to use, fast, reliable and cost-effective.

Program Overview
There are three main programs in the uucp facility: cu, uucp and uux, and there are also
many auxiliary programs: uuclean, uulog, uuname, uupick, uustat, uusub, uuto, uusnap,
and uuls. The uucp and uux programs operate in the background mode leaving your
terminal free for other uses. Both your local system and the remote system must use
an HP-UX or UNIX operating system, except when you are using cu which allows you
to use a non-UNIX operating system. The rest of this section is a brief overview of the
three main uucp programs.

Cu is an acronym for call UNIX. With the cu program you can interactively log onto
any other UNIX and many non-UNIX systems. Cu provides a way for you to check your
communications link and transfer ASCII files, but implements no error checking.

Uucp is an acronym for UNIX-to- UNIX copy. With the uucp program you can have
the source_file and/or the destination_file reside on remote systems. To specify remote
source or destination files you simply include the remote system name with the file name.

The information necessary to contact the remote system as well as the security access
information is kept in a set of files on both systems. Once you have placed this infor­
mation in the appropriate files, the uucp facility can automatically establish the remote
connection and protect your data files from unauthorized use.

1 UNIX is a trademark of AT&T Technologies.

Overview 1

All data transferred is checked for errors and re-transmitted should an error occur. This
makes the uucp facility a reliable method of information exchange.

The uux command is the acronym for UNIX-to- UNIX execution. With uux you can only
execute those commands which the remote system gives you permission to execute. The
remote system has a list of these commands in its L. cmds file.

Although the mail commandisalocaIHP-UXcommand.mail can also be used with
the uucp facility. You can send mail to remote systems or forward mail through several
remote systems to a final destination system.

Manual Overview
This manual contains nine chapters that address the following subject areas:

• Introduction and overview

• Hardware configuration

• Software configuration

• Uucp file system

• Uucp daemons

• Using uucp commands

• X.25 Networks

• Uucp log, status, mail, and clean-up information

• Possible uucp problems and solutions.

2 Overview

Chapter 1: Overview
This chapter gives an overview of the programs covered in this manual, as well as a
brief description of each chapter included in this manual. You are also provided with
directions on how to use this manual as a system administrator or system user.

Chapter 2: Hardware Configuration
This chapter describes the hardware installation steps which must be taken by the System
Administrator to configure HP 9000 computers for the uucp facility.

Chapter 3: Software Configuration
This chapter outlines the uucp software configuration tasks the system administrator
must perform after hardware is installed.

Chapter 4: Uucp File Structure
This chapter describes the files that are used by uucp facilities to implement remote
communication.

Some of the files are created automatically in the /usr/spool/uucp directory by uucp
programs as they handle information transfers. By listing this directory you can verify
the status of the transfer by identifying these files. Understanding the file structure also
helps in case you have a problem in transferring data.

The system administrator must edit many of the files in this directory (see Software
Configuration chapter) to specify:

• How your HP-UX Computer can contact each remote system

• How, when and if systems on the uucp network can contact you

• Access permission restrictions for files and commands.

Chapter 5: Uucp Daemons
(Jucp daemons are the programs that do the work of the uucp facility. These daemons
are automatically run when the uucp or uux programs are operating in the background
mode. You can also invoke them interactively.

Overview 3

Chapter 6: Using The Uucp Facility
This chapter illustrates the use of uucp facility programs to:

• Send files and commands to a remote system

• Receive files and commands from a remote system

• Send and receive mail

• Monitor status, log and access information

• Clean up old or unwanted files.

Chapter 7: The X.2S Network
This chapter provides you with a brief discussion on what the X.25 Network is, and it
explains how to set up uucp for X.25 communications.

Chapter 8: Log, Status and Cleanup
This chapter discusses how the system logs information about each transaction, how you
can check on job or system status and how you can clean up old or unwanted files.

Chapter 9: Problems
The commonly encountered problems, their solutions and debugging information are
presented in this chapter.

4 Overview

Where To Start?

If You Are a User
If your System Administrator has set up the hardware and software configurations on
your system, go to the chapter, "Using The Uucp Facility".

If You Are the System Administrator
If you are System Administrator for the uucp facility, you should first contact the System
Administrator at each remote system you want to communicate with and obtain the
following information:

• The remote node name

• Whether this will be a direct (hardwired) or a modem (telephone) connection

• What calendar/clock times the remote system will accept communications from
other systems (specifically yours)

• The remote system's incoming telephone number (modem connections)

• The data (baud) rate

• Your login name and password, if any, on the remote system.

This information must be incorporated into your uucp files to establish connection and
maintain proper protections.

Next, set up your hardware and software configurations as described in the chapters,
"Hardware Configuration" and "Software Configuration".

When these tasks are complete, your system can respond to uucp facility commands.
The features described in the chapter, "Log, Status and Cleanup" should be started as
soon as possible to monitor uucp activities and keep your file storage area free of old
or unwanted data. These features should be used periodically to keep file space from
getting cluttered and to maintain clean system operation.

Become familiar with the entire contents of this manual so you clearly understand the
operation of uucp facility processes. You should also be familiar with the HP-UX file and
command system. HP-UX Concepts and Tutorials manuals, the HP-UX Reference, and
HP-UX System Administrator Manual for your system provide more information about
HP-UX operation.

Overview 5

Additional Networks
This section is intended to introduce you to HP networks other than the ones found
in this manual. It provides a brief explanation of each network and gives references to
documentation for these networks. The additional networks are as follows:

• RJE

• LAN

• HP AdvanceNet.

The RJE Network
The RJE Emulator package enables your HP 9000 HP-UX computer to communicate
with remote computers and peripherals that support IBM 2780/3780 Remote Job Entry
(RJE) data transmission protocols. The emulator can also communicate with other
IBM 2780/3780 compatible devices for file transfer.

The supported features of the RJE Emulator include:

• Binary synchronous communications with EBCDIC transmission codes

• Data transmission at up to 19200 bits per second

• Space compression and expansion in 3780 mode only, thereby raising the effective
throughput rate

• Transparent mode, which allows all possible EBCDIC combinations to be used as
data

• Full- or half-duplex operation

• Programmable modem timeout value

• RJE/send subsystem adapted from System III UNIX MRJE

• Tracing of data

• Print formatting utility using IBM print conventions

• Auto answer or manual originate

• MSV2 protcol.

6 Overview

The following IBM 2780/3780 features are not supported:

• Interactive mode (Instead of ACK, a message is transmitted.)

• Multipoint transmission

• 6-bit trans code

• Bell messages

• Hardwired connections.

For more information on RJE networking, consult the RJE User's Guide.

The Local Area Network
A Local Area Network (LAN) is a way of connecting multiple systems together in a
limited geographical area. For example, a Local Area Network can consist of systems
attached to a single length of cable. A Local Area Network can also be formed by
connecting a central system to each of the other systems in the building. Cabling present
in a Private Branch Exchange (PBX) telephone system can also be used to interconnect
devices within a site. PBX cabling forms a unique data transmission network unlike
other LAN configurations; therefore, references to LANs in this manual do not include
PBX LANs unless directly stated.

A LAN is not simply a connection of hardware; software controls the interaction and
transmission of data between systems on the network. There are many different kinds of
Local Area Networks; however, there are a few main characteristics they all share. These
characteristics are:

• Limited geographic coverage

• Single-organization ownership

• High data rate.

For more information on the LAN network, read the NS/9000, LAN User's Guide and
the NS/9000, LAN Node Manager's Guide.

Overview 7

HP AdvanceNet
HP AdvanceNet is an HP networking strategy which offers the following:

• Size Alternatives and growth paths

• Easy-to-use network

• Compatibility with:
Industry standards,
De facto standards.

Because HP AdvanceNet is based on industry standards, it is able to provide commu­
nication between HP computers and other vendors' computer products based on the
same standards. Links currently defined up through Level 3 of the Open System Inter­
connection (OSI) model provide a common protocol for simplified communication in a
multi-vendor environment.

HP AdvanceNet provides system-to-system communication capability within or between
HP product lines, such as the HP 1000, HP 3000, and HP 9000 multi-user computer sys­
tems. These communication capabilities range from user-level services such as virtual
terminal and file transfer to physical links such as point-to-point, PBX, X.25, and satel­
lite.

For more information on HP AdvanceNet, read portions of the LAN documentation
mentioned in the previous section which include HP AdvanceNet. Also read information
on HP AdvanceN et found in these manuals:

• NS/I000 User/Programmer Reference Manual

• NS/3000 User/Programmer Reference Manual.

8 Overview

Hardware Configuration 2
This chapter discusses how to interconnect and configure hardware for use by uucp facility
programs. Uucp always assumes the presence of standard RS-232C modem signals.

Series 500 ASI Card
The HP 27128A Asynchronous Serial Interface card contains the necessary firmware for
modem signalling. If you are using a modem connection, follow the directions in the
installation manual shipped with the card.

Before inserting the ASI card:

1. Be sure the power to your computer is off

2. Set switches two and eight of node address switches to their ON (down) position

3. Use the male cable (HP 27128A Opt. 001).

Figure 2-1. Switch Settings

Series 500 MUX Cards
The HP 27130AjB 8-channel Multiplexer card supports up to eight RS-232C-compatible
devices. It consists of an interface card and an RS-232C connection panel with eight
connectors. It is recommended for direct connection of terminals, providing slightly
higher performance than the HP 27140A Modem MUX at a slightly lower per-port cost.
The HP 27130AjB also supports terminal clusters up to 100m distant with customer­
fabricated cables are used, provided the operating environment does not present electrical
noise problems. The HP 27130AjB cannot be used for modem connections.

The HP 27140A 6-channel Multiplexer card supports up to six RS-232CjCCITT V.22-
compatible devices. It consists of an interface card and an RS-232C connection panel.
The HP 27140A is recommended when one or more ports are being connected to a modem
or directly connected to another HP 27140A MUX card.

Hardware Configuration 9

Before you insert the HP 27130A/B or HP 27140A card:

1. Be sure that the power to your computer is off

2. No card configuration is required. Cables and adapters for various equipment com­
binations are discussed later in this chapter. For other equipment combinations,
contact your HP Sales and Service Office for assistance.

HP-UX Series 800 MUX Card
The HP 27140A option 800 (6 port MUX with four meter cable) is used on the Series 800
Model 840 computer. You must have option 800 to have supported asynchronous serial
RS-232-C connections. Installation instructions are in the HP27140A Asynchronous
6-Channel Multiplexer Hardware Reference Manual which is packaged with the MUX
card. Read the instructions carefully or contact your HP Sales and Service Office for
installation.

HP-UX Series 200 and 300 MUX Cards
The HP 98626A, HP 98642A, HP 98644A, or HP 98628A interface card can be used for
the uucp facilities on your Series 200 or 300 computer. Before you insert the interface
card:

1. Disconnect power to the computer

2. Set all U3 switches on the HP 98626A interface card to 1. If you are using the
HP 98628A interface card, you need to set two switches on the row of 8 switches la­
beled DEFAULTS on the interface card. The two switch settings for the HP 98628A
interface card are as follows: set switch 4 to 1 and set switch 5 to o.

3. Set switches 1, 4, and 8 to 1 and the remaining switches to 0 on the HP 98644A
interface card. Also cut or remove the remote jumper on the HP 98644A interface
card.

10 Hardware Configuration

I

I­
U w z z o
u

Figure 2-2. HP 98626 Switch Settings

Hardware Configuration 11

o

Detail 118 11

nnononnnnononnnnnnnnnnncnnnnnnnonnonnnonnonnnnnnnn

HP 98644A

Detail II All

Figure 2-3. HP 98644 Switch Settings

12 Hardware Configuration

Modem Connections
If the distance between your system and the remote system is more than about 15 meters
(50 feet) or if noise on a direct connection line becomes a problem, a modem connection
should be used.

Modem connections for the Series 500 computers require the HP 27128A Asynchronous
Serial Interface (ASI) card whose firmware revision number is 27128-80005 or greater.
Set switches 2 and 8 down for modem control. The HP 27140A (6-Channel Multiplexer)
can also be used with the Series 500 for modem connection. There are no switch settings
on this card which need to be made for modem use. For information on installing this
card, read the installation manual for your HP 27140A interface.

Modem connections for Series 200/300 computers require either the HP 98626A or
HP 98644A serial interface card or the HP 98628A datacomm interface card. Set all
three switches to the "CONNECT" position. The HP 98642A (4-Channel Multiplexer)
can also be used with Series 200/300 for modem connection (but only one of three ports).
There are no switch settings on this card which need to be made for modem use. For
information on installing this card, read the installation manual for your HP 98642A
card.

For Series 500 computers, use a modem cable (HP 27128A Opt. 001) to connect the ASI
card to the modem and use the HP 92219Q cable for connecting an HP 27140A card to a
modem. For Series 200/300 computers, use a modem cable with male end (HP 98626/28A
Opt. 001, "DTE cable") to connect either the serial or datacomm interface card. Note
that you cannot use an interface card with a DCE (female) end since this does not carry
through modem signals.

For Series 800 computers, use the HP 27140A option 800 (6-Channel Multiplexer with
four meter cable) with the HP 92219Q cable to connect the MUX to a modem.

Hardware Configuration 13

Data Terminal --r---- Data Communications Equipment ----,- Data Terminal
Equipment DCE Equipment

DTE DTE

-Terminal \ Modem

Data in digital form

Telecommunications

Data in modulated form

Telephone Lines

-Modem 7 Terminal

Data in digital form

Figure 2-4. Typical Modem Connection

HP-UX modem connections can use the same line for both incoming and outgoing calls.
No special modification is necessary; the DTE (male) cable end can be connected to the
modem. When you use the mknod command to associate a special (device) file with the
interface card on a specified select code, a flaging mechanism assigns the line as either
an incoming or outgoing port. Refer to the section, "Creating a TTY Device File", in
the "Software Configuration" chapter of this manual for more information.

Many companies sell modem devices which are compatible with the uucp facility. Contact
your nearest HP Sales Office for further information.

14 Hardware Configuration

Direct Connections
Direct connections can be made between two interface cards, two multiplexers, or a
multiplexer and an interface card on two different systems. Direct connections can be
implemented for any combination of Series 200/300 and Series 500 computers, and for
all combinations of serial interfaces and multiplexer (MUX) cards. This section provides
several examples of equipment combinations and the required cabling. Note that two
DTE (male) cable ends cannot be connected together, so a special adapter connector or
cable must be provided. Sufficient details are provided for building the needed adapters
or cables for most situations.

Here is an example of directly connecting a Series 200/300 computer with either a
HP 98626A or HP 98628A interface card to a Series 500 computer with an HP 27130A/B
(8-channel multiplexer).

SERIES 200 DTE

CARD:
OR HP 98628A

HP 98626/28A
OPT. 001

HP 27130A/B

SERIES 500

Figure 2-5. Series 200/300 Serial Interface to Series 500 8-Channel MUX

Hardware Configuration 15

Here is an example of directly connecting a Series 200/300 computer with either
an HP 98626A or HP 98628A interface card to a Series 500 computer with an ASI
(HP 27128A) card. The first figure shows a direct connection for connection origina­
tion in one direction only (getty on one end only), while the second figure shows a direct
connection for connection origination in either direction (gettys on both ends at the same
time).

CARDS:
HP 2712BA

SERIES 200 SERIES 500

OPT. 001

1 1
2 2
3 3

7 7
B B
20 20

Fiture 2-6. Series 200/300 Serial Interface to Series 500 ASI (unidirectional)

16 Hardware Configuration

HP

SERIES 200

OPT. 001

INTERFACE CARDS:
6A HP 27128A

1 1
2 2
3 3

7 7
4 4
6 6
8 8

SERIES 500

27128A

OPT. 001

Figure 2-7. Series 200/300 to Series 500 ASI (bidirectional)

Hardware Configuration 17

Here is an example of directly connecting a Series 200/300 computer with either an
HP 98626A or HP 98628A interface card to a Series 200/300 computer with either an
HP 98626A or HP 98628A interface card.

INTERFACE CARDS:
HP 98626A OR HP

DTE DCE CABLE

DTE CONNECTOR DCE CONNECTOR

Figure 2-8. Series 200/300 to Series 200/300 Serial I/O

Here is an example of directly connecting a Series 500 computer with an ASI (HP 27128A)
card to a Series 500 computer with an HP 27130A/B (8-channel multiplexer).

INTERFACE CARD:
HP 128A

SERIES 500 OTE SERIES 500

HP 27130A/B

Figure 2-9. Series 500 ASI to Series 500 8-channel MUX

18 Hardware Configuration

Here is an example of directly connecting a Series 500 computer with an HP 27130A/B
(8-channel multiplexer) to another Series 500 computer with an HP 27130A/B (8-channel
multiplexer) .

J I
'1 '"1
~=-x::-~
7 - 7

- ~

-

~ I

~

j;

27130A/B
OPT. 001

Figure 2-10. Series 500 8-channel MUX to Series 500 8-channel MUX

Hardware Configuration 19

Here is an example of directly connecting a Series 500 computer with an ASI (HP 27128A)
interface card to another Series 500 computer with an ASI (HP 27128A) card. The first
figure shows a direct connection for communication in one direction, and the second
figure shows a direct connection for communication in both directions.

SERIES 500

1 1
2 2
3 3

7 7
8 8
20 20

Figure 2-11. Series 500 ASI to Series 500 ASI (unidirectional)

20 Hardware Configuration

SERIES 500

1
2
3

7
4
6
8

1
2
3

7
4
6
8

SERIES 500

Figure 2-12. Series 500 ASI to Series 500 ASI (bidirectional)

The direct connections shown here are between an HP serial interface card and an
HP 27140A (6-channel modem multiplexer), between an HP 27130A/B (8-channel mul­
tiplexer) and HP 27140A, and between an HP 27140A and another HP 27140A. The fol­
lowing diagrams show direct connection for transmission in only one direction where one
device is ACTIVE (sends information) and the other device is PASSIVE (waits for the
information).

Hardware Configuration 21

The diagrams given in the following three figures do not use the special connection as
shown in previous examples. The direct conections shown here are made by the use of a
cable and connectors as labeled in the diagrams. It is up to you to make the cable. The
wires on the ends of this cable are connected to the pins on the connectors as shown.

HP 2712BA OPT. 001
OR

HP 98626/28 OPT. 001
DTE

25 PIN DCE

1-------
2-------2

3 3
7 7
8 6

20 4

25 PIN DTE

Figure 2-13. Serial Interface card to HP 27140A 6-channel MUX (unidirectional)

22 Hardware Configuration

1 1

2~2
3~ 3
7------7

C 6
4

Figure 2-14. HP 27140A 8-channel MUX to HP 27130A/B 6-channel MUX (unidirectional)

Hardware Configuration 23

1 1

2 ====:><== 2
3 3

7 7

6 ====:><== 6
4 4

Figure 2-10, HP 27140A 6-channel MUX to HP 27140A 6-channel MUX (unidirectional)

24 Hardware Configuration

The direct connections shown here are between an HP serial interface card and an
HP 27140A (6-channel modem multiplexer), and between an HP 27140A and another
HP 27140A. The following diagrams show direct connection for transmission in two di­
rections where either device may be ACTIVE (sends information) or PASSIVE (waits
for the information).

The two diagrams shown do not use the special connector as given in previous examples.
The direct conections shown here are made by the use of cables and connectors as labeled
in the diagrams. The wires on the ends of the cables are connected to the pins on the
connectors as shown.

HP 27128A OPT. 001
OR

HP 98626/28A OPT. 001
DTE

25 PIN DeE

1

2

3

7

2~=r
8

25 PIN DTE

1 2
3

7
4

c:

Figure 2-16. Serial Interface card to HP 27140A 6-channel MUX (bidirectional)

Hardware Configuration 25

1 1

2~2
3~ 3

7------4=>E4
20 20

8 8

Figure 2-17. HP 27140A 6-channel MUX to HP 27140A 6-channel MUX (bidirectional)

26 Hardware Configuration

You should be aware of these additional considerations when making direct connections:

• Series 200/300 computers can use an HP 98642A (4-channel multiplexer) in place
of an HP 98626 or HP 98628 interface card; however, you must treat the modem
port as an HP 98626A or HP 98628A connection, and you must treat HP 27130A/B
(8-channel multiplexer) ports as multiplexers with 3-wire cables.

• Series 200/300 computers making direct connections using an HP 98644A card
should treat this card as if it were an HP 98626A card.

The "Getty Entries" section of the chapter, "Software Configuration" describes how to
make each line coming into your HP 9000 an ACTIVE (you can initiate calls) or a
PASSIVE (you must wait to be contacted) line .

. Making a Special Connector
The "special connector" is not a part-numbered item that can be purchased from HP. This
connector has to be made using special parts. The following parts or usable equivalents
are needed:

• Two DCE connectors (25-pin RS-232C female, HP part number 1251-0063 or equiv­
alent) connectors

• Two 1112 inch long machine screws (HP part number: 2200-0125) with nuts and
lock washers. These machine screws should be of the proper size to fit through the
holes on both sides of the connectors and should not be so long they keep you from
plugging in the conncector

• Four .625 inch metal (HP part number: 0380-0010) spacers

• 8 - one inch long pieces of 24 gauge electrical wire (note the wires should have 1/4

of an inch of insulation stripped from each end).

Hardware Configuration 27

The "special connector" should look like the following example when put together:

1" WIRE

MACHINE / ""i..L... __ --:::!:-----:-_...J..L..J

SCREW

DCE CONNECTOR

(RS-232C)

SPACER
Figure 2-18. Special Connector

Wiring diagrams have been given on previous pages in this chapter to help you wire
your "special connector". The HP 9000 Series 500 Configuration Information and Order
Guide provides an alternate method for making direct connections with other systems.
To find the appropriate information in this guide, read the section, "Uucp Connection"
found in Appendix I.

28 Hardware Configuration

Software Configuration 3
This chapter discusses the software configuration necessary for your HP 9000 computer
to use uucp facility programs.

Software Loading and Setup
This section discusses the software steps the System Administrator must take to use an
HP-UX computer as a node on the uucp network. Basically you must specify how and
which other nodes on the network can contact you and how and which other nodes you
can contact. You must complete these steps to completely configure the uucp facilities.

Seven main areas are covered:

• describing the boot and login processes

• creating a device file

• naming your node

• uucp login

• setting up a getty entry

• editing the necessary files.

Software Configuration 29

General Startup Information
This section describes the boot and login processes. The tasks you need to perform for
each file and command mentioned are discussed in later sections of this chapter.

Loading the Operating System
You must have the HP-UX operating system loaded in the boot area of your systems hard
disc. Refer to the HP-UX System Administrator Manual for your particular computer
for information about loading an operating system.

Loading Optional Drivers (Series 500 only)
This section uses the HP 27140A (6-channel modem multiplexer) to explain how to load
an optional driver. This same procedure may be used to load other necessary drivers
with the exception of Series 200 serial communication drivers which are loaded when the
system is loaded. On the Series 800, the drivers are already installed upon boot-up.

The HP27140.opt driver is not installed when HP-UX is installed. If you need to use this
driver, use the following procedure to install it:

1. Before installing the HP27140.opt driver, test to see it has not been previously
installed by typing:

osck -v /dev/sys_disc I RETURN I

This lists the drivers which have already been installed with your system. If the
HP27140.opt driver has been installed, skip the remainder of this procedure and
continue reading in this section. If the driver has not been installed continue with
the steps in this procedure.

2. Determine which HP 9000 Series 500 system model number you are using from this
list (e.g. 97078C):

- 97070C Model 520 single-user system
- 97078C Model 520 multi-user system for 32 users
- 97079C Model 530/540/550 single-user system
- 97080C Model 520 multi-user system for 16 users
- 97088C Model 530/540/550 multi-user system for 32 users
- 97089C Model 530/540/550 multi-user system for 16 users

30 Software Configuration

3. Type:

osep -a /system/970xxA/HP27140.opt /dev/sys_dise !RETURN!

where -a says append to an existing operating system from a list of ordinary files,
and put the resulting system in the boot area. The file /system/970xxA/HP27140. opt
is the driver being copied to the boot area of the operating system. The xx in this
file is a two digit number taken from the last two digits of the system model number
given in the above list of model numbers. For example, in the system model number
97070A the xx would be the digits 70. The special file /dev/sys_dise identifies the
system disc.

4. Verify that the file has been copied into the boot area by typing:

osek -v /dev/sys_dise !RETURN!

5. Re-boot your system to make the HP27140.opt driver active.

You can use this same procedure to load any other drivers that you might need for
your particular system application. Just change the system model number (for example,
97070C) and the driver name (for example, HP27130.opt).

Final Sequence of Events Once the System is Loaded
Once the HP-UX operating system configuration is loaded, its initialization proce~s be­
gins and executes the file /ete/init. The init program reads the /ete/inittab file to find
all incoming ports. You need to add an entry, called a getty (get terminal) entry, in this
ini ttab file for each incoming uuep line. The operating system can then regularly check
all incoming lines to see if another system is trying to communicate with you. The getty
entries are therefore needed only if this line is used PASSIVEly or ACTIVEly by your
local system. The getty entry specifies the special file name of your dial-in line as well
as its communication speed. The getty command also causes the "login: " prompt to
be sent to the calling computer when a connection is established.

The init program then starts the /ete/rc shell script. This script causes many things
to happen, among them setting your system's node name and executing the /ete/eron
program, which runs commands on a scheduled basis. You should use the /ete/eron
program to regularly compact and clean up some of the files used by the uuep facility,
for example, files used to log transactions (see the chapter, "Uucp Facility Daemons").

Software Configuration 31

Creating a TTY Device File
For creating a TTY device file on the Series 800, refer to the Series 800 System Admin­
istrator's Manual.

A device file must exist in the /dev directory to associate each device connected to your
Series 200/500/800 computer with a special file name. This is done with the mknod
command.

To create a tty, cuI, or cua device file, make an entry of the form:

mknod /dev/name c 31 OxScAdnn

where:

• The file /dev/name is either /dev/ttydXX, /dev/cuIXX, or /dev/cua. "xx" are char­
acters used to differentiate between the device files for the various communication
ports (for example, ttyd01 and ttyd02). The file naming convention ttydXX is for
dial-up lines and the file naming convention ttyXX is for hardwire connections.

• The characters Sc identify the 2-digit hexadecimal select code of the communication
port's interface.

• If the communcation port is connected via an HP 27130A/B (8-channel multiplexer)
or HP 27140A (6-channel modem multiplexer), the characters Ad specify a 2-digit
hexadecimal port number on the multiplexer. If it is connected via an HP 27128A
Asynchronous Serial Interface, the characters Ad should both be zero.

• The characters nn represent one of the following for the HP 27128A card and the
HP 27140A modem multiplexer. For the HP 27130A/B, all lines are 00 because it
has no modem capabilities.

- 00 for the incoming device file.
- 01 for the outgoing device file.
- 02 for the incoming device file if the modem obeys CCITT protocols.
- 03 for the outgoing device file if the modem obeys CCITT protocols.

An example for the Series 800 would be to use mknod to create the special filename (Driver
is 1):

mknod tty5p3 c 1 Ox200503 #incoming
mknod cu15p3 c 1 Ox100503 #outgoing

32 Software Configuration

Note ttyd, tty, cua, and cuI files use driver:

31 when using the HP 27128A serial interface card or the HP 27130A/B 8-channel
multiplexer.

29 when using the HP 27140A 6-channel modem multiplexer.

1 when using serial interface cards on a Series 200 or 800 computer.

To illustrate, suppose you have inserted an HP 27128A Asynchronous Serial Interface into
your computer at select code o. You next connect a modem to it so this port may be
used as a dial-in and dial-out port. The following mknod commands create the necessary
device files:

mknod /dev/ttyd02 c 31 Ox020000
mknod /dev/cuI02 c 31 Ox020001
mknod /dev/cua02 c 31 Ox020001

#incoming device file
#outgoing device file
#autodial device file

Depending on whether or not you have the directory jete set up in your directory path,
you would execute the mknod command with the jete prefix. For example:

/etc/mknod /dev/ttyd02 c 31 Ox020000

Check to be sure you have both read and write access to the jdev device file for lines
used as out going ports. The II command lists file characteristics, for example:

11 /dev/ttyd02

displays the following information:

crw-rw-rw- 1 root other 31 Ox020000 May 13 14:37 /dev/ttyd02

showing read/write access for everyone.

Change the protection to read/write access if necessary with the ehmod command, for
example:

chmod 666 /dev/file_name

where:

666 is the HP-UX code for read/write access.

Software Configuration 33

The uucp /dev files cuI and cua are normally readable and writeable by everyone.

Remove any old entries from the /dev directory which have the same select code as the
cards you now intend to use for ingoing or outgoing uucp calls.

For more information on the mknod command, read the chapter, "The System Admin­
istrator's Toolbox" in your System Administrator Manual. For more information on the
chmod command consult chmod(l) in the HP-UX Reference.

Naming Your Node
Every node on the uucp network must have a unique nodename. Local Area Network
(LAN) nodenames are independent of the uucp nodenames.

Since nodenames are frequently typed, a carefully planned convention can help all users
identify and remember system nodenames. Try to avoid extraneous characters such as
hyphens, numbers or upper-case letters.

To determine if your node has a name and if so what the nodename is, type:

uname -n

or

uuname -1 (if uucp has been installed)

or

hostname

There are two ways to name your node:

1. use the hostname command in the system script /etc/rc when you want this node
name to come up with every change of state or power-up;

2. execute the hostname command as the superuser (root) when you want the name
to last until you change your state or power-down your system.

Using the /etc/rc system script is the recommended procedure.

34 Software Configuration

Uucp Login
When you installed your HP-UX system, this entry was made in /etc/pa88wd to provide
a login for uucp:

uucp: :6:1: :/usr/lib/uucp:/bin/sh

You need to change this to allow a remote system to contact you and initiate the process
uucico which takes care of any work requested.

This login should have a password for security reasons. An example of the initial entry
prior to setting the password is:

uucpln::6:6::/usr/spool/uucppublic:/usr/lib/uucp/uuCic0

where:

uucpln

: :6:6::

/usr/spool/uucppublic

/usr/lib/uucp/uuCiCO

is the uucp login name and is restricted to a maximum of
eight characters

are conventions used by HP-UX to designate the user and
group access restrictions. They have nothing to do with
the mode bits

is a public area normally accessible to everyone and used
here as the login directory

is a program which must be started when you login as a
uucp user.

Software Configuration 35

Getty Entries
You need a getty entry in your /etc/inittab file for each line which is used as a uucp login
port for your Series 200/500/800 computer.

The following is an example of the format used for the getty entries in /etc/inittab:

/etc/getty [-h] [-t timeout] line [speed]

where:

-h

-t timeout

line

speed

forces a hangup on the line by setting the speed to zero before setting
the speed to the default or specified speed

specifies that getty should exit if the open on the line succeeds and
no one types anything in the specified number of seconds

is the name of a tty line in /dev to which getty is to attach itself

is a label to a speed and tty definition in the file /etc/gettydefs.

An example for a direct connection at 9600 baud is:

/etc/getty tty02 9600

An example for a modem connection at 1200 baud is:

/etc/getty ttyd02 1200

36 Software Configuration

Editing the Library Files for Uucp
Before you read this section, you need to have a basic understanding of where various
files and directories are located in the HP-UX file system. The specific directories and
files you should be aware of are listed in the following diagram:

etc usr bin

/ ~~ ~
getx25 spool bin aterm

/~ /~
uucppublic uucp

lib

uucp

cu

uux

/~
dialit uucp

uulog

uuname

uupick

uustat

uuto

uuls

uusnap

dial:-------/~

X25 uucico SEQF L-devices

/ uuxqt USERFILE L-dialcodes

uuclean FWDFILE L.sys
opx25 uusub ORIGFILE L.cmds
clrsvc

ADMIN
HP2334A.*

ventel.out

Figure 3-1. Files/Directories Installed

The directory /usr/lib/uucp contains program modules which the uucp commands need
to use. These program modules initiate and carryon all communications with remote
systems and perform the remote execution of commands.

Software Configuration 37

You must edit the following files:

• FWDFILE - to provide a list of systems your system can forward to or through

• ORIGFILE - to provide a list of systems which may forward through your system

• L. sys - to specify the remote system parameters

• L-deviees - to provide a list of valid devices

• diali t . e - to modify the C source code for a dialing routine. Dialit. c then must
be compiled and directed to the dialit file.

• L-dialeodes - if you use special characters in the modem phone number

• USERFILE - if you want security protection for a file(s)

• L. emds - if you want to list the commands a remote system can execute with uux
on your local system.

The System Administrator must edit these library files before any uucp communications
take place. The "Library Files" section of the chapter, "Vucp File Structure" in this
manual discusses how you place information specific for your needs into the files. Reading
this entire chapter can provide you with a better understanding of the uucp facility
processes and can help you should problems occur.

Additional Uucp Information
The chapter, "Log, Status and Cleanup" in this manual discusses the methods by which
you can monitor status and log information, as well as the ways you can rid your file
structure of old or unwanted files. It is recommended that you begin implementing these
features as soon as possible.

38 Software Configuration

Uucp File Structure 4
Three HP-UX directories contain files used to implement uucp facilities:

• /usr/spool/uucp (spool directory for background processing)

• /usr /bin (directory containing executable command files)

• /usr/lib/uucp (library of programs used only by uucp, and configuration files).

etc usr bin

/ ~ --------- ~
getx25 spool bin oterm

/~ /~
uucppublic uucp

lib

uucp

cu

uux

/~
diolit uucp

uulog

uunome

uupick

uustot

uuto

uuls

uusnop

diO:------/~
X25 uucico SEQF L-devices

/ uuxqt USERFILE L -diolcodes

uucleon FWDFILE L.sys
opx25 uusub ORIGFILE L.cmds
clrsvc ADMIN

HP2334A .•

ventel.out

Figure 4-1. Files in Directories

Uucp File Structure 39

Examples of uucp Data Transfer
The next three examples illustrate the dynamics of the uucp data transfer. Refer to these
examples when reading about the uucp file structure.

Transfer Single File Between Local and Remote System
uucp locaL source_file remote_ dest-file

or

uucp remote_source_file locaLdesCfile

This example shows the transfer of one file from a local system to a remote system.

First, make sure the source_file is readable by everybody!.

1. The local system checks its USERFILE to verify the user has access to the source_file
and that this file is readable by everybody.! If the user is not found, the default is
"everybody" (if the last field of USERFILE is set, as recommended). Usually, no
one specifies many users in USERFILE because it limits who can do the transferring.

2. A workfile (c.) is set up in the local spool directory.

3. A prompt is sent to your terminal display indicating that you can now perform other
operations while uucp continues with the transfer (uucp is in the background).

4. Uucp checks the local L. sys file for information about connecting the device to the
remote system.

5. Uucp checks the L-devices file to determine whether the device from the L.sys entry
is a valid device (with speed that matches).

6. Uucp locks the remote system and device line using LCK. files (in /usr/spool/uucp).

7. If this is a modem device, the diali t program executes a dialing routine.

8. Uucp attempts to login on remote system according to the information in the L. sys
file (device filename) and the L-devices file (type of connection).

1 When transferring files in the opposite direction (remote system to local system) the dest_fiIe is on the
local system. The local system checks its USERFILE to verify that the local user has access permission to
the dest3ile/path if it already exists and that the dest_fiIe is writeable. A dest3ile is created if none
exists.

40 Uucp File Structure

9. The remote system checks its USERFILE to determine whether your local system
should be called back to verify your identity (this example assumes callback is not
required).

10. The local system now sends a request for work (one line of c. workfile) to the remote
system.

11. The remote system checks its USERFILE to verify that your local system has permis­
sion to access to the remote dest_file (if the destination file already exists, it must
be writeable). 2

12. The source_file is sent to a temporary (TM) file on the remote sysem (if transmission
proceeds without error, the TM file is copied into the remote_desCfile.).

13. The local and remote systems disconnect if no further work needs to be done.

Transfer Multiple Files Between Local and Remote System
uucp -c locaL source_file remote_desCfile

This example illustrates multiple transfers from both the local and remote systems. A
user on the local system initiates the uucp command. This example differs from the
first one in that the callback option as well as multiple work orders on both systems are
discussed.

First, make sure the source_file is readable by everybody3.

1. The local system checks its USERFILE to verify that the user has access to the
source_file and that this file is readable by everybody.3 If the user is not found,
the default is "everybody" (if the last field of USERFILE is set, as recommended).
Usually, no one specifies many users in USERFILE because it limits who can do
the transferring.

2. A workfile (c.) and a source_file (D.) are placed in the the local spool directory.

3. A user prompt is sent to the terminal, and uucp continues operation as a background
process. The local system is the master.

2 When transferring files in the opposite direction (remote system to local system) the source_file is on the
remote system. The remote system now checks its USERFILE to verify that the local system has access
permission to the source3ile/path and that the source_file is readable by everybody.

3 When the dest_file is on the local system, the local system would check its USERFILE to verify that
the local user has access permission to the dest_file/path if it already exists and that the dest_file is
writeable. A dest3ile is created if none exists.

Uucp File Structure 41

4. Uucp checks the local L. sys file for information on how to connect the device to
the remote system.

5. Uucp checks the L. devices file to determine whether the device from the L. ays
entry is a valid device (with speed that matches).

6. Uucp locks the remote system and device line using LCK. files (in /usr / spool/uucp).

7. If this is a modem device, the dialit program now executes a dialing routine.

8. Uucp now logs into the remote system according to the information in the L. sys file
(device filename) and the L-devices file (type of connection). The remote system
is the slave, so the master waits for the return message "Shere" indicating that the
slave is ready to continue. If you want to see the "Shere" message appear on the
terminal, you turn the debugging option on in uucico, option -x9.

9. The slave (remote) checks its USERFILE to see if the master (local) should be called
back to verify its identity. If callback is required, the slave signals the master to
hangup. The master disconnects. The slave changes to the master role and initiates
a return call. When the return connection is completed, the two computers have
reversed roles. The computer that initiated the callback is now the master for the
remainder of this example.

10. The new master sends a request for work (s, R, or X line of the C. workfile) to the
slave.

11. The slave checks its USERFILE to verify that master's system_name can access to
the dest_file. If the destination file already exists, it must be writeable.4 If access
is not permitted, the slave sends a "NACK" and the master puts a "Remote access
to file/path denied" message in the LOGFILE.

12. The slave sends the acknowledge (ACK) message, "Sy", and locaLsource-file is sent
to the slave's temporary (TM) file. The master transfers the bits in 64 byte packets.
The slave retrieves each packet, verifies the checksum, and puts the data in the TM

file in /usr/spool/uucp. The slave must ACK each packet; if the master does not
receive the ACK from the slave in a specified time interval, the master retransmits
the packet. This is done up to five times. If no ACK is received the transmission
is aborted ("g" protocol). If transmission proceeds without error, the TM file is
copied into the slave's dest_file and the master deletes the D. * file if one exists.

4 When the source_file is on the remote system, the remote system now checks its USERFILE to verify that
the local system has access permission to the source_file/path and that the source_file is readable by
everybody.

42 Uucp File Structure

13. The master checks for additional work. If there is additional work, go back to step
10.

14. The master sends a hangup message, "H" to the slave who then checks its spool
directory for C. * files for master.

If there is work on slave for master, the slave sends a hangup no, "HN", message to
the master, the master and slave change roles, and go to step 10.

15. The slave sends a hangup message, "HY", to the master and they both disconnect.

Uux Command Sequences
uux command_string

This example illustrates the uux command sequence of actions:

1. A workfile (c. *) and two data (D. *) files are set up in the local spool directory.
One data file has an X grade and becomes an execution file on the remote system.
The other data file(s) contains any file(s) the command requires.

Steps 3 through 13 are the same as in the second example.

When a request for work is sent to remote system, the file D. aaXbb becomes an execution
file (x. *) on the remote spool directory. Any other data files are also transferred. At
this point both systems can disconnect and the execution daemon uuxqt starts.

14. The remote system checks its L. cmds file to verify your local system may execute
the specified command_string on the remote system.

15. The remote system executes the command.

16. The remote system notifies your local system by mail of the execution status.

Uucp File Structure 43

Spool Directory

The Public Area
The public area, /usr/spool/uucppublic, is the area with general access privileges. This
area can be used to receive files from a remote system that does not have access to any
specified path on your system. Each time you use the "sys_name! - /file_name" as your
pathname, the system stores "file_name" in "/usr/spool/uucppublic/file_name" on the
remote system "sys_name".

The uucp Directory
The /usr/spool/uucp directory contains workfiles, data files, log files and system status
files. At the time of initial installation of your system, this directory is empty. These
files are automatically created when the uucp facilities are used.

Workfiles
Workfiles have a c. prefix and are work orders to copy data files. When you use uucp or
uux commands or the remote mail command, these workfiles are automatically created.
A child process of the parent uucp scans the spooler directory and in chronological order,
taking the oldest work order first, processes whatever is asked for in the background
mode.

Workfile names contain the information indicating which systems must be contacted to
perform the work requested. The following figure shows the general form of a C. workfile.

work file prefix grade subjob

J.h~Sda~~
remote system name sequence number

Figure 4-2. Workfile Name

44 Uucp File Structure

where:

C. is always the workfile prefix

remote system name is the name of the remote system to contact (name cannot exceed
seven characters)

grade is a work-sequencing mechanism (the higher the grade, the sooner
the work is done because workfiles are processed in alphabetical
sequence. The highest grade is A and the lowest is z.)

sequence number is the job number associated with the workfile and is assigned by
the system (the sequence number is used with the uustat com­
mand)

sub-job is the character used to differentiate among files having the same
sequence number. These are sub-jobs of the request.

You can alter the grade by using the -g option (following -g with the desired grade) with
the uucp command. Workfiles created by the uux command have a grade of "A" because
command execution has a higher priority than file transfers.

Workfile names tell the uucp facility which system to contact, while workfile contents tell
the facility exactly what work must be done. Each line in the workfile is separated into
eight fields, as explained below.

A workfile contains one or more lines having the following form (only seven fields are
shown):

Figure 4-3. Workfile Contents

Uucp File Structure 45

where:

type of work

source file

destination

user

options

data file

mode

can be the following:
S - send a file from your system to the desired remote system;
R - copy a file from the remote system onto your local system;
X - send a request to the remote system for processing (the

remote generates the C file with S lines specifying file(s)
to be processed).

is the source file of the copy in either direction. The pathname on
a line with an X type of work does not have an explicit file name
because the remote system is sending the file. When you have an R
type of work the pathname includes a filename on the remote system,
but does not necessarily include the complete path name.

is the destination of the file copied. R types of work have local
destinations, while S or X types of work specify a copy to a local or
remote location. The destination is expanded on either the local or
remote to the login directory if you use "-,, (tilda).

is the login name of the user who requested the work.

is a list of command options and begins with a minus sign (-). If you
use the -dc options (these are the the default options) you specify
with the "d" that the system make any directories needed on the
destination and with "c" that the system use the source file(s) to
copy from. A "C" option indicates that a copy of the source file
exists as D. file in the /usr/spool/uucp directory.5

is the data file to be copied. If you chose a "c" option, this data
file should be D.D; if you chose the "C" option, the file is D. *. Note
that a D.D data file uses the source file that is current at the time of
transfer (background processing may involve a delay that provides
a potential opportunity for the file to be altered by another process
before the transfer occurs) while aD. * data file uses the source file
in its current state as of the time of the request.5

is the mode of the source file sent in an "S" type of work. This can
have read, write and/or execute mode capabilities.

5 If you want to modify a file while an original copy is transmitted across the network, use the -C option.
This forces a copy of the file to be queued on the spool directory to await its turn for transmission. The
-c option takes a copy of the file only when it is time to transmit that file. The default option is -c.

46 Uucp File Structure

The eighth field only exists if an "n" exists in the option list. This option causes a user
on a remote system to receive mail when a file being sent to him has arrived. This field
holds the login name of the user who is notified.

Each workfile can contain up to 20 entries (lines beginning with "X", "S", "R" or some
combination) .

Data Files
Data files begin with the prefix "D.". There are two types of data files: image and
execution.

Image Data Files

where:

prefIX

system name

grade

sequence number

sub-job

prefix grade subjob

.{,s~n~'y
remote system name sequence number

Figure 4-4. Image Data File Name

is always "D".

is normally the name of the remote system where the file is being
sent if the D. * file is a "copy" of the file on your system. If the
data file is to become an execution file on the remote system,
the system name field is your local system, and the grade field
contains an "X".

is again the work sequencing number. See grade under workfiles.
The grade of these files is usually "n" if generated by a uucp
command or "B" if generated by a remote mail command

is a four digit job number associated with the data file

is the character used to differentiate among files having the same
sequence number. These are sub-jobs of the request.

Uucp File Structure 47

The image data file (D.O) generated with the -c (default) option for the uucp command
does not really exist because the data is gathered at the time of transfer. The image
data file generated with the -C option contains a copy of the data file at the time the
uucp command was invoked.

Data Execution Files
Data execution files contain the necessary information for executing a command on the
remote system. This command is requested locally by a uux command or remote mail.
The following figure illustrates data execution filename fields.

where:

prerlX

system name

grade

sequence number

sub-job

prefix grade subjob

'~X~'T
remote system name sequence number

Figure 4-5. Data Execution Filename

is always "D"

is the name of the local system where the file was generated

is always "X" denoting a data file which, when transferred to the
remote system, becomes an execution file

is again the job number associated with the data file

is the character used to differentiate among files having the same
sequence number. These are sub-jobs of the request.

Data execution files become execution files (x. *) when they are transferred to the remote
system. As with all data files, their contents remain the unchanged; only their name is
altered. The next section describes the contents of these files.

48 Uucp File Structure

Execution Files
Execution files found on the spool directory /usr/spool/uucp are the product of data
execution files that were copied from another system. These files are created by uucp
when the request for work is transferred.

The following figure illustrates their fields.

where:

prefIX

system name

grade

sequence number

sub-job

prefix grade subjob

X:h~ys)n'y
remote system name sequence number

Figure 4-6. Execution File Name

is always "X"

is always the name of the remote system that initiated the trans­
fer

is "X" for execute

is the job number associated with this file

is the character used to differentiate among files having the same
sequence number. These are sub-jobs of the request.

An typical execution file would contain these five lines:

• a user line (has a "U" prefix)

• a required file line (has a "F" prefix)

• a required standard input information line (has an "I" prefix)

• a required standard output information line (has an "0" prefix)

• a command line (has a "C" prefix).

F, I and 0 lines are required only if their respective files are required for the command
execution.

Uucp File Structure 49

The discussion that follows shows examples of the general form of the line, a specific
example, then a discussion of the line fields. The line prefix is not included in the
discussion but is shown in the line examples.

User Line
Syntax:

Example:

where:

user

U user source_system

U kls hp-dcx

is the user login name for the user on the remote system who
issued the command

source_system is the name of the remote system where this execution file origi­
nated.

There should be only one "U" line per execution file.

NOTE

You can route an execution file through intermediate nodes, but
the information concerning its origin is lost. The last intermediate
system routed through and the login used for uucp are shown on
the user line in this file.

Required File Line
Syntax:

Example:

F required-file < source>

F D.hp-dccB278

where required_file has two fields:

• data filename as it should appear in your local /usr/spool/uucp directory

• source from which the data filename above was copied.

An execution file may contain zero or more "F" lines.

50 Uucp File Structure

Standard Input Information Line
Syntax:

Example:

where:

I D.file-for _standard_ input

I D.hpdccB278

file_for_standard_input is used if the original command used the standard
input file for its parameters or if a redirection is specified.

If the remote mailx command used the standard input file for its contents you would use
this line.

Only one standard-input information line is allowed in an execution file, if present.

Standard Output Information Line
Syntax: o file_for _standard_output system_ where_directed

Example: o /dev/lp hpdcdx

where:

is the file or device where standard output is to be sent

system_ where_ directed is the system name where the file resides.

Command Line
Syntax:

where:

command

arguments

c command arguments

is the command to be execute

is an optional field that can consist of any options or filenames the
command supports. For a further discussion of command parameters
refer to the HP- UX Reference manual.

The command must exist in the remote command security file /usr/lib/uucp/L. cmds.

The command must also exist in the /usr/bin or /bin directory unless an explicit and
fully qualified pathname is given. The system automatically searches the /usr /bin and
/bin directories when you issue a command, so it is not necessary to explicitly specify
the complete pathname for the command.

Uucp File Structure 51

If you do use an explicit patlmame for a uux command, that pathname must exist in the
/usr/lib/uucp/L. cmds file.

Typical Execution File
Here is an example of the contents of a typical execution file:

U dmr hpcnoa
F D.testsysA1569 DIALLOG
F D.testsysA1570 LOGFILE
F D.testsysA1571 LOG-WEEK
C pr DIALLOG LOGFILE LOG-WEEK

The DIALLOG source file for the first required file "F" line is also one of the "C" command
line arguments.

Lockfiles and Temporary Files
Lockfiles are created to provide you with exclusive access to a system while you are using
it. When you want to copy a file to or from a remote system, lockfiles lock out any other
system from trying to communicate with that remote system. When a log file is being
updated, locking that file ensures the file cannot be overwritten during the update.

Here are some examples of lockfiles:

LCK .. hpdsd

LCK.LOG

LCK .. cul04

LCK.SQ

lock call to system hpdsdj conversation in progress

lock LOG FILE for making an entry

lock /dev/cuI04 while conversation is going on

lock the SQ file while the sequence number is being updated.

If a uucp program is aborted abnormally, one or more lockfiles may still exist, pre­
venting future communication through use of uucp. They can be deleted by using
the /usr/lib/uucp/uuclean program that is discussed in the chapter, "Log, Status and
Cleanup".

Uucp programs use temporary files to hold data being received until the entire trans­
mission has been completed without error. The temporary file is then copied into the
destination file, and the temporary file is automatically deleted.

52 Uucp File Structure

Examples of temporary (TM) filenames are:

TM.<pid>.<count>

TM.00216.001

LTMP . * (Used and cleaned up internally by uucp programs.)

dummy

Log Files
The log summary file, named LOGFILE, is used to record all uucp connections (whether
local or remote), the names of files transferred, the completion or failure of the transfers,
the success or failure of auto dial attempts, and the status of the uux commands. It is
also used to record the time at which transfers took place.

The SYSLOG file is used to record the number of bytes sent or received from a system and
the number of seconds used in the transfer. This file is used to report traffic statistics
between connections.

The DIALLOG file records information about the modem used, the telephone number dialed
and the result of the dialing. An example of a DIALOG file is shown in the chapter, "Log,
Status and Cleanup" .

The ERRLOG file records information about any errors encountered during communication
processes.

Uucp File Structure 53

Binary Files
The directory lUST Ibin contains the command files: cu, uucp, uux, uulog, uuname,
uupick, uustat ,uuto, uusnap, and uuls.

Every time you issue one of these commands the system looks in the lUST Ibin directory
for an executable file with the appropriate command name and executes it.

Library Files
When the uucp programs were installed in their proper directories, several files that
supply remote connection information were created in the /usr/lib directory.

The System Administrator must edit each of these files except SEQF to add information
obtained earlier from the remote systems contacted and information specific to local
system needs.

The directory /usr/lib/uucp contains program modules needed by uucp commands.
These program modules initiate and manage all communication with remote systems,
and perform remote command execution.

The files (including complete pathnames) are:

lUST Ilib luucp IL. cmds

lUST IlibluucplFWDFILE

lUST IlibluucplORIGFILE

lUST IlibluucplSEQF

lUST IlibluucplUSERFILE

lUST Ilib luucp IL-devices

lUST Ilib luucp IL-dialcodes

lusTllibldialit

lUST/lib I dialit. c

54 Uucp File Structure

List of allowed uux commands

List of systems your system can forward through

List of originating systems that can forward through
your system

Keeps track of local sequence numbers

Gives protection information for local users and remote
systems

Defines devices and types of connections possible

Contains strings that are abbreviations for telephone
number prefixes

Contains modem dialing sequences

C language source file for dialit

lUST Ilibluucp IL. SYS

lUST Ilib luucp I ADMIN

L.cmds File

Contains information concerning what systems your
system knows about and how to make a connection

Contains comments for each system that has access to
yours.

The L. cmds file determines what commands can be executed from remote machines using
uux on your local system. This file can be edited to add new commands or delete old
commands.

In this example of the contents in a L. cmds file:

rmail.node1.node2.node3
pr.node1
col
Ip.node12

limits remote execution to four commands. System nodes are also included with some
commands. This technique limits access to certain commands to specific system nodes.
Where no system node is specified with the command, the command can be used by all
systems in the network that have access to your system.

For security reasons, you probably want users on other systems to only be able to send
mail to users on your system; you do not want remote users to read your local system
mail. The rmail parameter permits execution of the receive mail command on your local
system.

Only one command is permitted per line. The complete pathname does not have to prefix
the command if the command resides in /bin or /usr/bin. If not, the full pathname must
be provided. For example:

/BIN/ my_ command

indicates that the command, my_command, found in the /BIN directory is a valid com­
mand.

All commands found in the L . cmds file are executable by all remote systems if the systems
have been assigned special permission to use these commands.

Uucp File Structure 55

Security Sequence-Checking Files SEQF and SQFILE
The file SEQF is used by uucp programs to record the general sequence numbers used
in workfile and data filenames. No external management is needed for this file.

The sequence number file SQFILEwas not created automatically when uucp was installed
on the system. It must be created manually by the System Administrator. The sequence
number records the number of transactions between your local system and a remote
system. Each remote system that you want to implement sequence checking with must
have an entry for your system in its SQFILE. For example, to initiate sequence checking,
SQFILE on sysl has an entry for sys2, and the corresponding SQFILE on sys2 has an
entry for sysl:

SQFILE on sysl SQFILE on sys2

8Y82 8Y81

Thereafter, each time a transaction is made, the sequence number in the SQFILE on both
systems is incremented. The SQFILE is used for explicit sequence checking between remote
systems. These numbers must match before a transaction can be made.

For example, when you attempt to make a connection to a remote system and the
sequence check fails, a message similar to the following is given:

dmr hpfcla (5/23-9:37-24748) HANDSHAKE FAILED (BAD SEQ)

The BAD SEQ message indicates a bad sequence number and the two systems are "out of
sync".

Sequence files are used as security measures to ensure that uucp transactions are with
the specified remote machine. Both machines keep a record of the name of the remote
machine, a count of the number of transactions and the time of the most recent trans­
action. These files are updated after every transaction and compared. If the files on
the two machines disagree, the connection is terminated and one of the files must be
corrected manually to bring them back into agreement.

56 Uucp File Structure

USERFILE
The USERFILE specifies the type of access permission that is granted to both local users
and remote systems; this is the major security tool for the uucp facility. All users should
read this section.

Three methods can be used to implement system and file security:

• Require a remote system be called back to verify its identity

• Check the user login name

• Restrict file access paths available to remote systems

A USERFILE line entry has four main fields:

<user>,<system_name> [c] <pathname>

There must be a blank or tab between the user, system_name field, the c option if used
and each pathname.

where:

user

[c]

pathname

associates the access permission for a named user on your local system
or is used to determine whether a call back is required for the remote
system

determines the access permissions for a remote system logged into
your local system

is an optional field indicating that the remote system logged in as user
should be called back. When the remote system tries to log into your
local system, the remote system is called back to verify its identity

is a list of pathnames separated by blanks. This is the critical list
which gives the user or system_name access along the specified paths.
If the pathname ends at a directory, all files and sub-directories in
that directory are accessible.

Uucp File Structure 57

Entries must be in both USERFILE and /etc/passwd. For every entry in USERFILE,
there must be a corresponding entry in /etc/passwd. The user ID field must be unique
and not zero in /etc/passwd. Here is an example:

user. hpdsd. hpdsd pathname

requires in /etc/passwd:

user.hpdsd::5:5: :x:xuucico

where the first 5 is a unique user ID field.

At the time you install your system USERFILE contains:

uucp. / . /
which provides unlimited access for all users on your local system and for all remote
systems logging into your local system. You can restrict the access by editing this file.

The following example shows the contents of a typical USERFILE:

dmr.hp-sys1 /users/dmr /dev/null
emd.hp-sys2 /usr/spool/uucppublic /dev/null
kls.hp-sys3 c /
uucp. /usr/spool/uucppublic /dev/null

/usr/spool/uucppublic /dev/null

The fourth line provides access to the two specified paths: /UST /spool/uucppublic and
/dev/null for all uucp users on your local system and all remote systems not previously
specified. /dev/null is the default input and output file for the uux command. The last
line gives all not previously specified users on your local system access to the same two
paths. You will probably want to include these permissions in your USERFILE.

58 Uucp File Structure

The following lists show the searching sequence for USERFILE:

USERFILE SEARCH

(file on remote system)

1. Check the user field. In order for a remote system to log onto your system, its
user name must appear in the system's USERFILE. It is also recommended that
you have the remote system's system_name field in your USERFILE, but it is not
necessary. If the remote system, when communicating with your system, has the
correct user field but the system_ name field was left blank, there must not be a line
before it in your USER FILE that contains the correct system_name field and the
incorrect user field, or permission for the remote login will be denied. For example,
when a remote system calling you has a user field of uucp and a system_name field
of remote1 and your USERFILE contains the following:

test1,remote1 /pathname /pathname
uucp, /pathname

login permission will be denied to the remote system. In this example, your system
tests the remote system's user field (uucp) and finds it is incorrect; however, the
remote system's system_name field (remote1) is correct and your system sets a flag
and continues to search for the correct user field. When the correct user field is
found and system_ name field is blank, log in permission is denied to the remote
system.

2. Check the system_name field for system access to the path/file for each file transfer
request.

(If no system_name match is found, use the first blank or null system_name field if
and only if that line is not the same line used for a blank user field.)

USERFILE SEARCH

(file on local system)

1. Check the path/file access for local user permission (if no user match is found, use
the first blank or null user field).

2. Check to verify that the path/source_file is readable or the destination_file path is
readable and the destination file is writeable.

Uucp File Structure 59

The USERFILE is searched sequentially for the user. If the search does not find the user,
the first entry encountered with a null user entry is employed. Be cautious. The first
user entry that is null defines the access permission for all users who are not specifically
named. If you put a null user field before some named user fields, the search finds the
null field first and stops searching; the named users after the null user field are never
searched. When a match or null field is found and the user is a remote system, the uucp
program checks to see whether a callback is required. If so all activity stops until the
remote system is called and its identity verified. If the user is on your local system, the
uucp program checks the USERFILE for pathnames that user is granted access to. If no
match or null field is found for the user, an access denied message is generated.

The next sequentially checked field is the remote system_name field. This field specifies
access permission for remote systems to any pathnames on the match or null system_name
line. All users on a specific remote system are restricted to the same path(s). If the
remote system_name does not have permission to either read a source file or write a
destination file, an access denied message is again generated.

Note that the user and the system_name fields are divorced from each other. Uucp starts
its search process at the first line of the USERFILE for each field. For remote systems, the
user field is only searched for the callback option. Uucp starts at the beginning of USER­
FILE, searching for a system_name field that restricts remote systems to the paths specified
on that line. The users field for local users is combined with the paths described on
the specified line when restricting access to that path.

Although there may be several lines with the same system name, uucp must find either
the name of the remote system, or a null system name on the system name line before
the information transfer is permitted.

Users on a local system must also have permission to access their own files when using
uucp facility commands.

When uucp reaches a null or blank user field before finding the wanted user name, that
line is used for local user pathname access or remote system callback. If uucp reaches
the same line in its system_name search and finds a blank or null system_name, that
line cannot be used to grant remote system access to the pathnames specified. Uucp
continues its system_name search on succeeding lines. For example:

, /dev/null
,hpsys1 /

60 Uucp File Structure

gives hpsys1 access to all paths on your local system. It does not give all unmatched
users on all unmatched systems access to the path /dev/null.

When the uuxqt daemon encounters an X. * file in the /usr / spool/uuep directory, the
L. emds file is checked to determine whether the command can be executed by all remote
systems. The USERFILE is then searched to find the first null system field for path access
permission.

L-devices File
The L-deviees file defines the devices and types of connections that are valid for botb
the uucp facility and the cu terminal emulator. Each entry describes a connection type,
the /dev entries for the connection, and the speed at which the connection is made.

When this file is automatically created at installation time, the file contains the following
lines as examples for you:

<type> <cuI> <eua> <speed> <proto>
OIR tty04 0 9600
OIR tty12 0 9600
ACUVAOIC3450 euI03 eua03 1200
OIR tty09 0 1200
ACUVENTEL212 euI06 eua06 300

where:

type denotes the type of connection. This may be a direct connection indicated
by OIR or an auto dial modem connection, automatic calling unit (ACU)

indicated by the string, ACUmodem_name, the name of the autodial modem
in use. The maximum length of the string is 19 characters. This modem
connection must have an autodial routine in /usr/lib/dialit.e

cuI is the /dev entry name for the main data line you specified when you
used the mknod command. This line is used to transmit all data once the
connection is made with the remote system. It is recommended, but not
required, that you use an entry _name with a cuI prefix for dialout lines
and tty for dialin lines

eua contains a zero (0) if the line refers to a direct connection (OIR) or contains
the name of a /dev entry name if the line refers to a modem connection
(ACUmodem_name). It is this line which is passed to the dialit routine6

6 The entries for <eul> and <eua> can be the same if you have only one physical line connection. You can
also have two entry_names in the /dev directory with the same select code for dialout lines

Uucp File Structure 61

speed

proto

specifies the speed of the data communications line associated with the
L-deviees entry (uucp allows speeds of 300, 1200, 2400 4800 and 9600
baud). The speed you choose depends on the restrictions of the remote
system

a single letter specifying the protocol to be used on that line.

You need to to define your own direct and modem connection devices by inserting ap­
propriate entries similar to the examples given.

Order is important when using the cu command. For example:

eu -ltty09 -s1200 dir

causes the system to look at its direct connection nodes for tty09. In the above list of
L-devices contents, the first matching entry specifies 9600 baud, so the line connection
is opened at 9600 baud, even though you explicitly stated 1200 baud speed, -s1200. The
-s speed option has no effect with cu if a direct connection is specified; once a rate is
found it can only be changed using the following command line:

-!stty 1200 < /dev/tty09

This order restriction does not apply to the uucp command.

L-dialcodes File
The L-dialcodes file specifies telephone prefix translations. Each entry in this file contains
two fields: an identifying string and the string number you want substituted when you
use the identifying string. For example:

boston 131-149

When you want to use a modem connection to contact a remote node, your system looks
in the L.sys file for the phone number of that remote node. If you have used the string,
boston, in the phone field for that remote system, your local system then looks in the
L-dialeodes file for the translation of boston into an actual telephone number, 131-149.

These abbreviations for telephone number prefixes can reduce some time, typing and
mistakes.

62 Uucp File Structure

Dialit.c
The diali t . c file is the C language source of the diali t module used by uucp to perform
the auto dialing needed to contact a remote system with a modem connection. This file
was installed in the lusT/lib directory when you used the optinstall command.

Four example dialing routines are supplied for you in dialit.c. You may need to edit
these routines or modify the USERSUPPLIED ROUTINES section for your specific
needs. Comment lines in dialit. c and the following chart will help you modify these
routines. The procedure headers in diali t . c contain information about modem config­
uration.

Table 4-1.

Use this name in the L.sys
device field and the

For this modem L-devices type field

VENTEL 212 ACUVENTEL212

VADIC 3450 ACUVADIC3450

HP 35141A ACUHP35141A

HP 92205A ACUHP92205A

HAYES ACUHAYESSMART

HP37212A ACUHP37212A

The programs contained within this module are examples of autodialing routines for
selected modems currently on the market. Hewlett-Packard makes no claim as to the
validity or reliability of this code. These programs are not supported products, but
simply examples for our customers. Their compatibility with future products is not
guaranteed.

In certain areas, especially those with tone dialing, the numbers may be dialed faster
than the PBX can respond to. In this case, you should insert a "-" or any defined pause
signal between the numbers dialed.

Uucp File Structure 63

The following code is an example of part of the diali t . c program:

static char UnLid[] = n(l)(#)20.1 n;
/* UNISRC_ID: (I)(#)dialit.c 20.1 84/03/22
/***
* (c) Copyright 1984 Hewlett Packard Co.
* ALL RIGHTS RESERVED
***/

/***
* * * * * DIS C L A I MER * * * *
* The programs contained with in this module are examples of autodial­
* ing routines for selected modems currently on the market. H.P.
* makes no claim as to the validity or reliability of the code in this
* module. These programs are not supported products, but simply examples
* for our customers. Their compatibility with future products is not
* guaranteed.
**/

/**
* This module consists of:
* main routine - this routine is the main entry point into the module.
* The usage of this routine is:
* dial it <modemtype> <cua> <phone> <speed>
* Where:
* modemtype - is the name of a modem know in the Modem structure
* along with a user supplied routine to do the
* autodialing. The standard is for the modemtype to
* be a name of the form:
* ACUmodemname

*
*
*
*
*
*

such as:
ACUVENTEL212

This convention is followed since this is the form
expected by both uucp and cu which utilize this program
to perform their autodialing.

* cua - This must be the full pathname of the /dev entry over which
* the auto dial sequence is to be sent to the modem. In the
* case of uucp and cu this entry is pulled from the L-devices
* file. NOTE: that in the L-devices file the full pathname is
* not given. But uucp and cu do expand it before calling this
* module.

* * phone - The phone number to be called by the autodial modem. The
* phone number may consist of digits, '=' and '-' only.
* The special characters are mapped to wait for secondary
* dialtone(if implemented on the modemtype) or 5 second
* pause respectively.

*

64 Uucp File Structure

*
*
*
*
*
*

speed - This argument is the speed desired for transmission.
i.e. 1200.300.etc. The inclusion of this parameter
allows you to configure the cua line. If the dial
routine is called from cu or uucp the line has already
been configured.

* sendstring routine - writes the designated string to the device
* whose descriptor was sent it.

* * await routine - will read from the designated device a sequence of
* characters until a certian string is recognized or a specific
* number of characters is read.

* * ckoutphone routine - scans the phone string and checks for invalid
* characters and determins a delay time used for alarm timeout
* purposes when calling the remote machine.

* * map_phone routine - map the characters '=' and '-' which mean wait
* for a secondary dial tone and pause respectfully to their
* actual character representation for given modems.

* * log_entry - make an entry into the DIALLOG which resides in /usr/spool
* /uucp.

* * make_entry - called by log_entry. makes the actual entry in the logfile.

* * prefix - tests a string to determine if it begins with a given prefix.

* * mlock - lock the logfile so only one process may write to it at a time.

* * remove_lock - remove the logfile lock and allows another process to
* access the log.

* * close_log - cleans up any temporary log files created and closes the
* log file.

* * USERSPECIFIED ROUTINES:
* these routines are supplied by the users of the uucp package. Each
* routine is written for a specific type of autodialer modem and must
* have an entry in the Modems structure.

*
***/

#include <stdio.h>
#include <termio.h>
#include <setjmp.h>
#include <sys/types.h>
#include <signal.h>
#include <ctype.h>
#include <fcntl.h>

Uucp File Structure 65

#include <sys/stat.h>
#include <sys/dir.h>
#include <pwd.h>

#define FILENAMESIZE 15
#define MAXFULLNAME 100
#define MAXMSGSIZE 256
#define SAME 0
#define FALSE 0
#define TRUE -1
#define FAIL -1
#define SUCCESS 0
#define MAXRETRIES 3
#define PREFIX "DIAL."
#define LOG_LOCK "/usr/spool/uucp/LCK .. DIAL"

jmp_buf Sjbuf;
char *modemtype;
int alarmtout 0 ;

/* modem name as entered in the L-devices file

/**
* The following structure Modems is used in determining which user
* supplied routine is to be used for autodialing given a specific
* modem type. Each user specified routine must have at least one entry
* in this structure and each modem type used for autodialing must have
* only one entry in the structure.

* * To add additional modem types and routines simply add them to the
* initialization of modem[].
***/

int vad3450(), /* function name for vadic3450*/
venteI212(), /* ventel 212+3 function */
hp35141_autodial(), /* hp support link modem */
hayes_smart(); /* hayes smartmodem1200 function */

struct Modems{
char *name;
int (*modem_fn)();

} modem[] = {
"ACUVADIC3450" ,
"ACUHP35141A" ,

};

" ACUVENTEL212 " ,
"ACUHAYESSMART" ,
"ACUHP92205A",
0,

66 Uucp File Structure

/* modem name */
/* function to call */

vad3450,
hp35141_autodial,
ventel212,
hayes_smart,
hayes_smart,

There are lines at the beginning of dialit.c that define the integer functions used and the
module functions that can be called by the dialit program.

Locate the lines that define the integer functions and add your modem name. For
example:

int hays12000;

Next define your modem connection by adding its name and function to the modem[J
structure. For example:

"ACUHAYS1200". hays12000,O

Now locate the USER-SUPPLIED-ROUTINES section at the end of this module and
add the code necessary for your specific type of modem. Note that the await routine
now has a parameter specifying string length.

After you have finished modifying the diali t . c source code, you must compile the code
and store the compiled version in the dialit file.

Dialit File
Note that the dialit pathname does not include the uucp sub-directory name.

The dialit file contains the object code necessary to implement autodial sequences neces­
sary for the specific modem you are using. When the uucp program checks the L-devices

file and finds the device for the remote system uses a modem connection, the diali t

routine is called to perform the autodialing and an entry is made in the DIALLOG file.

Refer to the diali t . c section above for information on modifying the contents of the
dialit file.

Uucp File Structure 67

L.sys File

The L. sys file is used by the uucp facility to provide information on which systems can
be contacted, when the remote system allows communication, whether the connection to
the remote system is direct or modem, the baud rate (speed) of the data communications
link, and how to log in on the remote system.

Here is an example of what an automatically installed L.sys file might look like:

<sysname> <time>[.<retry>] <deY> <speed> <phone> <logininfo>
sys1 Any.1 tty04 9600 tty04 login:-EOT-login: uucp
sys2 Mo0800-1730.10 tty06 1200 tty06 login:-BREAK-login: access
sys3 Wk0800-0600 tty03 1200 tty03 login: network password: hpdcd
sys4 Any.5 ACUVADIC3450 1200 555-1212 login:uucp
sys5 Any.5 ACUVENTEL212 300 999-7777 login: sys5 ssword: uucp
sys6 Any.5 ACUHP2334A 9600 f/123456789 login: sys6 ssword: h9

where:

sysname is the remote name of the system whose contact name is contained
on the entry line. This name may be up to seven characters. If you
have alternate means of communicating with a certain system, you
can have more than one entry in the L. sys file with the same sysname.
This file is searched sequentially to determine if the requested system
name matches a sysname. If you are a PASSIVE (receiving calls)
system with respect to sysname, the remaining five fields are blank.
Specifying the name permits queuing work

68 Uucp File Structure

time

[,retry]

dey

speed

gives the time of day as well as the days sysname allows communica­
tion. Days of the week are specified by: Su, Mo, Tu, We, Th, Fr, and
Sa. Wk specifies weekday (Monday through Friday, and Any specifies
any day of the week). The day specification is followed by the times
permitted in 24-hour format. If the day specification is omitted, Any
is assumed, by default. For example:

0800-0600

allows calls from 8:00 AM to 6:00 AM the following day which is
equivalent to any time except between 6 and 8 AM. This example:

Su Mo Tu 0600-2300

allows calls Sunday, Monday and Tuesday between 6:00 AM and 11:00
PM. If time of day is not specified, all times permitted is assumed by
default.

You can also specify "NEVER" which means you do not want to call a
system but that system may want to call you (you need an entry in
L.sys).

is an optional field indicating the waiting time in minutes between
a failed call connection to a remote system and the next retry. The
default waiting time is the minimum required wait of 5 minutes. If you
specify less than 5 minutes, the default of 5 minutes is substituted.

Note that this retry time specifies the wait time only. It does not
specify that a retry dial operation will be attempted

indicates whether a direct (DIR) entry or a modem (ACUmodemname)
entry must be found in the L-devices file. This field is the same as
the <cuI> field of the corresponding DIR entry in L-devices file

specifies the speed (baud rate) at which communications take place.
The union of the <deY>, <speed> and <type> fields in the L-devices

file are searched for the proper entry to use

Uucp File Structure 69

phone is the telephone number of the remote system to be called during
the login connection process. For direct connections the phone field
is the same as the dev field. The telephone number can contain a
string, such as boston that is used as a search string when scanning
the L-dialcodes file where it is translated into the associated telephone
prefix such as 999.

Samples of permitted characters are:
- Digits zero (0) through nine (9),
- Equal sign (=): wait for secondary dial tone, and
- Minus sign (-): pause for five seconds.

These are generic examples of the characters; your modem may use
different characters that you must map to the above meanings in the
dialit file.

Maximum allowable length of the translated telephone number is 29
characters.

Uucp can be used on two types of communication links, so two pro­
tocols are provided so you can obtain efficient use of both link types.
The I-protocol is used with X.25 (see the chapter, "The X.25 Net­
work") lines while the g-protocol is suitable for regular telephone lines.
Note that the corresponding lor g protocol character is prefixed to
the phone number. For example,

f/555-3111

which says I-protocol is being used and

g/555-3111

says g-protocol is being used.

You can specify uucp protocol that includes the use of both I and g
protocol. For example:

fg/cul05

Here, fg/ specifies that lor g protocol can be used, but I is given
higher priority.

If there is no protocol character is specified, uucico defaults to gl­
protocol.

70 Uucp File Structure

logininfo is a field containing the information necessary for logging onto the
remote system. This field should contain the prompt you expect
to receive from the remote system, followed by a space and the re­
sponse you are expected to give. For example, suppose you expect
the prompt: login and your response sys5 followed by the prompt:
password and your response abcxyz. Your L.sys file entry becomes:

login: sys5 password: abcxyz

where sys5 is the user name on the remote system, and must be in
the remote system's USERFILE.

Login information is given as a series of fields and subfields in the format:

[expect send]

where expect is the string expected to be read and send is the string to be sent when the
expect string is received.

The expect field may be made up of subfields of the form:

expect [-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect following
the send is the next expected string. For example, login-ID-login expects login. If a
login is received, the program goes on to the next field; if it does not get the login it
sends null followed by a new line, and then expects login again.

NOTE

After the connection to a remote system is made, you may need
to add an "10" before the login message is received; this is most
common on direct connections. If you use:

"" 10 gin:-ID-login: sys5 password: abcxyz

"10" is the line 'kill' character before logging in. abcxyz represents
a valid password, and should be replaced with a valid password
string for the remote system. This is a very reliable method for
restoring order to an uncooperative new connection to a remote
UUCP facility.

Uucp File Structure 71

When L. sys was installed, the protection mode, 444, was "readable by everybody". Since
this file may contain proprietary information, you can change its mode to 400 so that only
the owner, uucp, can read the contents. Be sure that uucp remains the owner because
uucp must be able to read L. sys in order to handle data transfers.

The send string can also contain:

\s
\d
\c
\N
\\
EDT
BREAK

blank
1 second delay
no carriage return on the send string
null character
backslash
two CONTROL-Ds
send a break

A correctly structured logininfo field should resemble the following:

login:-\d\d\d~\c-Iogin: IYZ ssword: Ply.

ADMIN File
The ADMIN file is used to keep comments for each system with access to yours. Each
entry is formatted as: sysname <tab> description, where the description should be a
useful comment about the system that will be displayed when uuname is used. Also, be
sure you separate with a tab, not a space. If the other system is never called by the
current system (the word "NEVER" exists in the L. sys entry for that system), then an
entry in the description should be put in ADMIN indicating the other system calls the
current system (but not the other way around). The file is as follows:

/usr/lib/uucp/ADMIN

72 Uucp File Structure

Uucp Facility Daemons 5
Uucp daemons are programs that perform the necessary operations for the uucp facility
to transfer information. This chapter discusses daemons and their specific functions.

Running The Uucp Facility
When you execute a uucp command two things happen:

• Workfiles are set up in the /usr/spool/uucp directory

• A child process is spawned. The child process invokes the uucp communications
daemon:

/usr/lib/uucp/uucico -r1

Uucico is the mnemonic for UNIX-to-UNIX copy-in copy-out. The -rl option specifies
that uucico act in the master role.

Uucico scans directory /usr/spool/uucp for the workfile having the highest grade. At
least one workfile exists in the spool directory because the uucp command that spawned
uucico also set up a workfile (unless uucico was started manually as in the example
above).

Next uucico examines the system names, either local or remote, that are part of the source
and destination file names. If a remote system is specified, uucico looks in the L.sys file
to determine how to contact the remote system. For modem connections, L.sys tells
uucico what type of modem to use, the telephone number, the data transfer speed (baud
rate), and the login information. Uucico now looks in file /usr/lib/uucp/L-devices to
determine if the modem to use is a valid device. The L-devices entry (which must match
the speed in the L. sys file) tells uucico which data communication line (ldev/line_entry)
is connected to the modem.

Uucico then checks to see if another uucp facility is using the line. If not, uucico creates
lock files for the line in directory /usr/spool/uucp as well as for the remote system it is
trying to call. These lock files implement a binary semaphore mechanism.

Uucp Facility Daemons 73

Uucico now spawns a child process which in turn invokes the /usr/lib/dialit program
when making the actual call to the remote system. Once on-line or connected, dialit
returns a status report to the parent uucico process.

Uucico now uses the login information in the L. sys file to attempt to login on the remote
system. There must be an entry in file /etc/passwd on the remote system of the form:

uucp: :5:5: :/usr/spool/uucppublic:/usr/lib/uucp/uucico

It is important to note two special things about this /etc/passwd entry:

1. The login directory for uucp purposes must be /usr/spool/uucppublic.

2. The /usr/lib/uucp/uucico daemon must be invoked instead of the normal shell
/bin/sh; if this is not done, communication can never take place.

At this point, uucico on the system that originated the call is the master because it was
invoked with the -rl option. Another uucico is automatically invoked on the remote
system where it functions as the slave. The slave sends the master a message Shere,

meaning, "slave is here".

When the master receives the Shere message, a series of messages is sent back and forth
to establish correct handshake and communication protocol.

Refer to the second example at the beginning of the "Uucp File Structure" chapter for
a description of the conditions that result in activating a reversal of master/slave roles.

Once protocol and handshaking are established, the master sends a request and waits for
the approval of that request by the slave. If the request is approved, transfer of the file
begins. The file is broken into 64-byte packets each of which includes a checksum used
to verify that the packet has been received without error. If a packet is not correctly
received (checksum test failed), it is re-transmitted up to five times. After the fifth
unsuccessful try, uucico assumes a bad connection and terminates the connection.

A new connection is established when another uucico is invoked.

If transfers are being handled without exceeding the retransmission limit, the master
continues transmitting requests to the slave until there is no more work for that system.
The master then sends the slave a hangup request. When the slave receives the hangup
request it scans its spool directory for any work files that have the master's (remote)
destination. If none are found, the slave returns a hang-up OK message to the master
and the connection is terminated. If the slave has work for the master, a hang-up denial
message is sent indicating to the master that the slave has work to send. At this point,

74 Uucp Facility Daemons

the roles of master and slave are switched. The new master starts sending requests to
the new slave. When all work has been sent, the data communication (datacomm) link
is disconnected.

Upon completion of transfers and disconnection of the datacomm link, each uucico dae­
mon (master and slave) spawns a child process and dies. The child process invokes the
/usr/lib/uucp/uuxqt execution daemon. Uuxqt scans directory /usr/spooljuucp for any
execution files created by the uucico transfer (remember that the initial workfile with a
grade of "X" becomes an execution file upon transfer. If any execution files are found,
uuxqt attempts to execute them, then uuxqt terminates.

A file is the smallest unit that can be transfered by uucp. If a connection is terminated
because a packet could not be successfully transferred and a new connection is made,
the packet cannot be retried; the entire file transfer must be rerun. When errors occur,
short files are more efficient because the necessity of retransmitting all of a large file
when a transmission failure occurs near the end of the file is avoided. On the other
hand, splitting a large file into smaller files then recombining them at the other end also
requires time, so file splitting overhead and retransmission time must be balanced against
each other when planning system operation and tuning communication procedures for
best overall efficiency.

Invoking uucp Daemons
Although uucp daemons are normally invoked as a result of uux or uucp commands,
either you as a user or another uucp daemon can also initiate them.

Uucico Daemon
The syntax for invoking the uucico daemon is:

/usr/lib/uucp/uucico -rl [-ssystem_name] [-xn] &

where:

-rl

-xn

&

invokes uucico as the master

is an optional parameter indicating the node name of the system you
want to contact

is an optional parameter providing debug or error information (n is a
digit between 1 and 9 where higher values print more information)

is used to execute the process in the background so your terminal is
not tied up.

Uucp Facility Daemons 75

Uuxqt Daemon
The uuxqt module performs local command execution of execution (x. *) files from remote
systems. The syntax is:

/usr/lib/uucp/uuxqt [-xnJ &

where:

-xn is the same as for uucico above

runs the process in the background so your terminal is not tied up.

Uudemons
Uudemons are script files that are used to:

• Periodically clean up certain files such as log files .

• Communicate with systems that are waiting for you to contact them.

These script files are normally executed by entries in file /usr/lib/crontab.

The uudemon.hr script that is shipped with most uucp facilities cleans up old status
files and lock files and polls all systems for which you have work pending on an hourly
basis. If you use the -ssystem option uudemons forces a call to the system specified.
This is necessary for PASSIVE only systems (systems waiting for contact from another
system) that cannot initiate communication with you. You can edit this file by replacing
-s<nodename> with the system name you want polled.

76 Uucp Facility Daemons

Using the Uucp Facility 6
You can begin using uucp commands as soon as the uucp facility has been installed on
your system, including hardware configuration, software configuration and neccessary
file editing. Refer to the early chapters of this tutorial for installation and configuration
information.

You must be logged in on your local system before you can use these commands.

Syntax Information

Pathnames
Just as you must use unique names to reference files on your local system, unique sys­
tem_name!pathname/filenames are needed to identify files on remote systems. The sys­
tem name is separated from the complete pathname to that file by a ! character, which
is sometimes referred to as "bang".

An example of a complete pathname (fully qualified) to a file is:

rem_node ! lusrlsys_dir/your_dir/your_file

You also have the option of using the - character to represent a login directory. If you use
-your_user_name, the remote system expands this to the your_user_name login directory,
for example:

would be expanded by the remote system to:

if the login directory for your_user_name is lusrlsys_dir/your_dir.

If you specify - Ifile_name, the uucp facility uses the public area in the spool directory:
uucppublic.

Using the Uucp Facility 77

If you do not use any pathname after the system name, the current local directory or
the remote login directory is used.

The pathname syntax for files within the current local directory supports any shell
meta-characters like:

* a "wild card" character indicating zero or more characters

? any single character

[...] ending character (s) for the file.

The uucp command allows you to exchange files with other systems by using remote
systems as links into the system you wish to obtain information from or send it to. For
example, you might type a command line that looks like this:

uucp message nodel!node2!node3!/usr/spool/uucppublic/file_name

This sends a message to the system node3 (by way of nodel and node2) and places it in
the default directory lUST Ispoolluucppublic on that system. The message is placed in a
file named file_name. Forwarding files through several systems is discussed in greater
detail later in this chapter.

Option Separators
Square brackets indicate optional parameters; spaces and the - character are required
between each option.

78 Using the Uucp Facility

The Cu Command
The cu ("call UNIX") command manages interactive communications with HP-UX or
UNIX remote computers, as well as with non-UNIX remote computers. It functions as
an asynchronous terminal emulator.

The cu command is used interactively to transmit messages to and from remote systems
and to transfer ASCII files. You can also use the cu command to interactively contact
a remote system to verify that the connection is working properly before you invoke the
uucp or uux commands.

Cu tries each line in the L-deviees file (which specifies acceptable devices and types of
connections) until it finds a match with the parameters specified or until it runs out of
entries.

Cu Command with a Modem Connection
The syntax for using the cu command with a modem connection is:

eu [-sspeed] [-1 line] [-q] [-h] [-m] [-t] [-0 I-e] te1_num I sysname

where:

-sspeed

-lline

-q

-h

-m

sysname

specifies the transmission speed of 110, 150, 300, 1200, 2400, 4800, or
9600 baud. The default is 300 baud.

specifies the modem device name to override searching for the first
available device with the correct speed

enables the ENQ/ ACK handshake

emulates local echo. The remote system expects your terminal to be
in half-duplex mode.

ignores modem controls

is for adding CR to LF on output to remote (for terminals)

designates even or odd parity. The default is no parity.

is the telephone number of the remote system. Only digits, "-" mean­
ing pause and "=" meaning wait for secondary dial tone are allowed.

gives the name of a system that appears in L.sys.

Using the Uucp Facility 79

Some examples of using the cu command with a modem connection:

cu -s1200 -e -q 555-1212 (direct dial line, 1200 baud)

cu -s1200 -0 -q 9=555-1212 (dial from PBX line, 1200 baud)

The second example is for a private branch exchange that requires dialing "9" and waiting
for a secondary dial tone before dialing the number.

These messages are displayed on your CRT as the connection is made:

autodialing - please wait
Connected
login: (from remote system)

If the autodial failed, the message:

Connect failed: autodial failed

is generated or (in some cases) a reason for the failure is given.

You need to know how to login on the remote system in order to respond correctly to its
login: prompt.

Cu with Direct Connection
The syntax for the cu command with a direct connection is:

cu [-h] [-q] [-m] [-t] [-0 I-e] -lline dir I sysname

where:

-b

-q

-m

-t

-ol-e
-1

dir

sysname

emulates local echo (default is full duplex)

enables the ENQ/ ACK handshake

ignores modem controls

is for adding CR to LF on output to remote (for terminals)

designates even or odd parity (default is no parity)

specifies the device name and is a mandatory parameter

is a character string that must be used for a direct connection

gives the name of a system that appears in L.sys.

80 Using the Uucp Facility

With a direct connection the -sspeed parameter is ignored. The cu facility uses the speed
field in the L-devices file.

For example, if you type:

cu -ltty09 -s1200 -m dir

and the line in the valid devices file for the direct connection of tty09 is:

DIR tty09 0 9600

the line specified by tty09 is opened at 9600 baud; not 1200 baud. To change to 1200
baud, execute:

-!stty 1200 < /dev/tty09

Here are some examples of using the cu command for a direct connection:

cu -ltty09 dir
cu -h -ltty09 dir (remote expects you to be in half-duplex mode) ;
cu -0 -ltty09 dir (odd parity)

The login prompt appears on your CRT if the connection is made correctly.

After Connection
Cu reads data from the standard input file and passes it to the remote system when the
transmit process is active. Cu accepts data from the remote system and passes it to the
standard output file when the receive process is active.

Transmitted lines beginning with a "-,, have special meanings:

-%cd path

-%b

-! [command]

-& [command]

-$ [command]

change directory (default is $HOME)

terminate the connection

transmit a break character (you can also use "-%break")

escape to local shell and return by EOT. If you specify a command
on this line, the local shell executes the command and returns.

run the command, but kill the cu "receive" process and restore it
later

run the command locally and send its output to the remote system

Using the Uucp Facility 81

-%take from [to]

-%put from [to]

-%<file

-%setps xy

-%setpt n

-%set

-%nostop

-%>file

-%»file

-%>

copies the file "from" on the remote HP-UX or UNIX system to the
file "to" on your local system. If you do not use the optional [to]
parameter the file "from" on the remote system is copied to a file
with the same name, "from", on your local system and created if
none exists.

copies the file "from" on your local system to the file "to" on the
remote HP-UX or UNIX system. If you do not use the optional [to]
parameter the file "from" on your local system is copied to a file
with the same name, "to", on your remote system.

upload file with prompt handshake

set prompt sequence to xy (default DCI)

set prompt timeout to n seconds

tell what the current timeout and prompt are

send the line "- ... " to the remote system

toggle the DC3/DCI input control protocol off and on

begin output diversion to file

append to file

end any active output diversion.

To transfer the ASCII file, "My _file" , on your local system to a file named "My _rem_file"
on the remote system, type:

-%put My_file My_rem_file

Do not press any key on your keyboard while transferring files with "%take" or "%put".
The facility may transmit incorrect data or be left in an unstable state.

Do not terminate the co program while a communication is in process.

82 Using the Uucp Facility

Using the uucp Command
The uucp command is a background program that is used to transfer files to and
from remote HP-UX or UNIX systems. Uucp creates work files and data files in the
/usr/spool/uucp directory for later processing.

General uucp Snytax
The general syntax for the uucp command is:

uucp [options] source-file(s} destination_lile

for uucp to copy the source_Iile(s} to the destination_lile.

The following options can be used:

-c

-c

-d

-esys

-f

-ggrade

-m

-nnser

-r

use the source file when copying out (rather than making a copy of
the source file at the time the command is issued and storing it on
the spool directory for later processing-this is the default)

make a copy of the source file at the time the command is given and
store it on the spool directory

make all necessary directories for the file (this is the default)

send the uucp command to the remote system sys. This option is
only successful if the remote system allows the uucp command in its
1. cmds file.

do not create intermediate directories

request a grade for work sequencing (a grade of "A" specifies "do this
work first, "z" specifies last and "n" is the default)

send mail to the requester when the copy is complete

send mail to notify the user on the remote system that a file was sent

create the files necessary for the transfer to take place, but do not
invoke uucico to call the remote system.

The source-file(s} must exist and both that file and its path name must be readable by
everyone.

Using the Uucp Facility 83

The destination file does not have to exist; uucp creates a file by that name if none
exists. If the destination file already exists, it must be writable by everyone and the
pathname must be readable and writeable by everyone. Your System Administrator can
change the access permissions to files and paths.

For example, if you type:

uuep /usr/sys_dir/user_dir/filel hpsysl!-uuep/file2

A workfile with a name similar to C.hpsysln2270 is created in /usr/spooljuucp, whose
contents resembles:

S /usr/sys_dir/user_dir/filel -uuep/file2 sys_dir -de 0.0 444

Do not use uucp to copy a local source file to a local destination file. Do make
sure the directory is readable, writable, and executable, or uuep will put the file in
/usr/spool/uueppubHe and give you an error message (in the form of a mail message).

Sending Files To a Remote System
The following examples send single or multiple files to a remote system. To send filel in
the current directory to /users/hpfsd/file2 on remote system hpsysl, use:

uuep filel hpsysl!/users/hpfsd/file2

To send /usr/all.exp/cmd/filel on the local system to /users/hpfsd/file2 on the remote
system hpsysl, use:

uuep /usr/all.exp/emd/filel hpsysl!/users/hpfsd/file2

Using the tilde (-) character as a login directory substitution:

uuep -kls/filel hpsysl!-uuep/file2

sends file1 on the login directory for kls to file2 on the remote system, hpsysl, in the
login directory for uucp. Note that in this example, - is used to represent both the local
login directory and the remote login directory. In this case, -uuep after hpsysl! in the
destination file field is used, not as the uucp command, but as a typical name for a remote
login directory.

A copy is made of filel at the time that the uucico daemon performs the file transfer.
Since this is a background operation, the transfer occurs at some later time after you
invoke the uucp command. Therefore, if any process modifies filel after you invoke uucp
but before the time of transfer, the modified version, not the original, is transferred to
the remote system.

84 Using the Uucp Facility

If you need to send a copy of a file in its current state to a remote system then continue
to modify that file, use the -C option. For example:

uucp -c -m -kls/file1 hpsysl!-uucp/file2

copies file1 onto the spool directory where it is held until it is transferred to file2 on the
remote system.

Receiving Files From Remote Systems
The following examples show how to use the uucp command to request that a file on a
remote system be copied to your local system.

uucp -m hpsys2!-ems/prog -my_login/BINI

requests the file prog from the login directory for ems on the remote system, hpsys2, be
copied into a file of the same name in the BIN directory in directory my_login on the
local system. The -m option requests mail acknowledging that the copy is complete.

uucp hpsys2!*. Cab] my_login

fetches all files ending in a or b in the login directory on the remote system, hpsys2 and
places them in the subdirectory, my_login on your local system.

All files in the current directory can be sent with a * character or a subset of these files
can be sent with *. [qualifiers]. * cannot be used to represent entire pathnames.

Forwarding through Several Systems
To perform file forwarding on your system, special permissions must be set up in the
following files:

L.sys

FWDFILE

ORIGFILE

Contains information that determines how uucp will automatically
reach other systems, and whether remote systems will be able to login
to your system.

A subset of L. sys that provides a list of systems through which your
system may forward files.

Contains a list of originating system nodes that are allowed to forward
files through your system. For example, if system nodes B, C, and
D are part of your uucp network and they have included your system
node A in their ORIGFILE then you can send a copy of file_name to
system node D by typing,

uucp B!C!D!file_name I RETURN I

Using the Uucp Facility 85

The L. eye file should be set up as explained in the "Uucp File Structure" chapter. The
subset of L. eye called FWDFILE should be set up with a list of the system nodes that
provide forwarding access to your system. The ORIGFILE should be set up with a list of
system nodes that have forwarding access through your system. System node names are
used to identify a given system within a network of systems using uucp. Consider the
following network and table showing how permissions could be set up within these files
for the network shown:

Figure 6-1. Network of Systems Using Uucp

86 Using the Uucp Facility

The letter characters used in the following table represent system node names.

Table 6-1.

File Names B C D E

L.sys A,e B,D e,E D

FWDFILE e D

ORIGFILE B e

As indicated in the column for system D, systems C and E can use uucp to communicate
with D because both systems have been included in the L.sys file on D. D cannot forward
files through other systems because it has no system node names in its FWDFILE file.
However, C can forward files through D because C is included in D's ORIGFILE file.

Here is a typical example of sending a message (file) through a series of remote nodes:

uucp message nodel!node2!node3!/usr/spool/uucppublic/filename

Anyone desiring to send you a message (file) from a remote system would use the same
format as shown above, where:

message

nodel

/usr/spool/uucppubliC

file_name

is the file being sent

is the name of the first node (nearest the originating sys­
tem node) in the forwarding chain, and node2, node3, ... ,
etc. are the remaining nodes that are to forward the mes­
sage until it reaches its destination. Node names used
must specify the exact transmission path from the first
system following the originating system through the fi­
nal destination system. Each node name is followed by
an exclamation point (!).

is a directory open for writing by everyone. This direc­
tory is the depository for messages from remote systems,
the destination for transmitted messages, and the source
directory from which received files are retrieved by the
destination user.

is the name given to the file that is being sent to a re­
mote system when it is placed in the destination directory
lUST Ispool/uucppublic.

Using the Uucp Facility 87

Uucp Command Errors

If an error occurs in the uucp command transfer, a message identifying the problem is
generated on the standard output device, normally your CRT.

"I" is the only error number ever generated. This indicates one of the following condi­
tions:

• You have no right to access this file

• The file does not exist

• The file cannot be copied

• The system name given is incorrect.

88 Using the Uucp Facility

Using the uux Command
The uux command gathers zero or more data files from various systems, executes a
command on a specified system, then sends the standard output file for that execution
to a file on the system on which the command was executed.

General uux Syntax
The general syntax for using the uux command is:

uux [options] command_string

where options can be:

-z

-r

-n

uses standard input to get the data for the command

requesting that the remote system be notified by mail only if the
command execution failed

creates the files necessary for the transfer to take place, but does not
invoke uucico to call the remote system

requesting no mail notification for the remote system.

The command_string must be enclosed in double quotes ("command_string') if an input
or output diversion for the command_string is specified. If quotes are omitted, the shell
tries to redirect the input/output of the uux command. For example:

uux "sys2!pr !ems/cmd/filel > sys2!myoutput"

requests that the pr command be executed on remote system sys2. Your ems/cmd//ile1
on the local system (sys1) is printed by sys2 to its myoutput file. At the time the uux
facility is evaluating the command string, the myoutput file must also be accessible to
the system originating the uux command (sys1).

Note two things illustrated in this example:

• All local files must be prefixed with "!"

• The system where output is redirected should be the same system on which the
command is executed.

Using the Uucp Facility 89

These files are created in the /usr/spool/uucp directory:

C.sys2AAxxx

D. syslXAxxx

D.sys2BAxxx

Example

is the workfile containing the lines:

S D.sys2Bxxxx D.sys2BxAxx ems - D.sys2BAxxx 666
S D.syslXAxxx X.syslXAxxx ems - D.syslXAxxx 666

is an execution grade data file containing the lines:

U ems sysl
F D.sys2BAxxx filel
o myoutput sys2 0
C pr -n filel

contains a copy of the file to be printed.

To compile a Pascal program on your local HP-UX system and have the results of that
compilation directed to a file, a command string is used that resembles:

To execute this command on a remote system, command string merely includes the uux
command and name(s) of the local or remote systems. For example:

uux "hpsysl!pc !/users/cmd/pas_file.p > hpsysl!-/pas_com"

requests that hpsysl execute the pc command on the Pascal program file pas_file.p on
the local system, then place the results of the compilation in hpsysl's public area in the
file pas_com. Note that system!file where the output is redirected should be the same
system that executed the command.

Before you can execute a command on any remote system, you must have permission
from the remote system to the command. The list of all the commands a system permits
to be executed by another system are contained in the L. sys file. You are notified by
mail if the requested command on the remote system was not allowed.

90 Using the Uucp Facility

The usual file naming conventions stated in the beginning of this chapter apply to the
uux command file names with these exceptions:

• All local files must be prefixed with "!"

• Output files must have their parentheses escaped: \ (output_file\).

For example:

uux hpsysl!uucp hpsys2!/usr/filel \(hpsysl!/usr/file2\)

sends a uucp command to hpsysl to copy filel from hpsys2 to file2 on hpsys1. Preceding
the left and right parenthesis by a \ character tells the shell to interpret the parentheses
literally. The parentheses tell the shell not to gather file2 on hpsysl as a data file for the
uucp command, but rather to use file2 as the output file.

Uux Error Numbers
The uux command has several errors that are printed as error numbers rather than the
usual error messages. These error numbers and their interpretations are:

1 You have no right to access a file, the file does not exist, or you cannot copy the
file

2 The pathname cannot be properly expanded

101 You specified an invalid system name

102 The size of the parameters given to uux exceeds the maximum length specified in
the BUFSIZ variable.

Using the Uucp Facility 91

Miscellaneous Commands
This section describes use of the commands: uuclean, uulog, uuname, uupick, uustat,
uusub, and uuto. They are presented and discussed in alphabetical order (for other
related commands, see the HP-UX Reference, uucp(l)).

Using uuclean
The uuclean command scans a directory for files with a specified prefix and deletes those
that are older than the specified number of hours. If you have a backlog of jobs that
cannot be transmitted to other systems, they should be cleaned up so that the file space
can be reused. You can also have the uuclean command remove lock and status files that
are no longer needed.

These cleanup activities can be routinely executed by shell scripts started by the cron
program. Refer to the chapter, "Log, Status and Cleanup" for a detailed discussion.

General syntax for uuclean is:

uuclean [options]

where options can be:

-ddirectory

-ppre

-ntime

-m

is an alternate directory to scan for files instead of the default spool
directory

is the file prefix (up to ten prefixes may be specified. If no -p option
is specified, all files older than the -ntime hours are deleted)

is the time in hours where files older than time are deleted (the default
is 72 hours)

sends mail to the owner of a file when that file is deleted.

Here is an example use of uuclean:

/usr/lib/uuclean -pLOG -pLCK -n24

This removes all files starting with LOG, such as LOGFILEs and all files starting with LCK,
such as LCKFILES that are more than 24 hours old.

The "Log, Status and Cleanup" chapter contains examples of shell scripts that use
uudemons to implement uuclean commands.

92 Using the Uucp Facility

Using uulog
The uulog command displays a summary log of uucp and uux transactions. If you use the
uulog command without any options, the information in the temporary log files (LOG. *)
is appended to the main LOGFILE. These LOG. * files are created only if LOGFILE is locked
when the uucp facility attempts to make an entry. Uulog then gathers information into
the LOGFILE in directory /usr/spool/uucp, then prints it.

General syntax for uulog is:

uulog [-ssys_name] [-uuser_name]

where:

prints information about work involving system sys_name

prints information about work done for the specified user_name.

Uulog then displays log information with each printed line showing user, system, (date,
time, PID_number), status, and action.

For example, if you type:

uulog -smit

a typical display for the system mit would resemble:

john mit (2/14-10:11-15486) SUCCESSFUL (AUTODIAL)
john mit (2/14-10:11-15486) SUCCEEDED (call to mit)
john mit (2/14-10:11-15486) OK (startup)
john mit (2/14-10:11-15486) REQUEST (S D.mitn2236 D.mitn2236 john)
john mit (2/14-10:12-15486) OK (conversation complete)

Invoking uulog without any parameters appends all temporary log files (LOG. *) to the
main LOGFILE.

Refer to the appendix for an alphabetical listing and interpretation of LOGFILE messages.

Using the Uucp Facility 93

Using uuname
The uuname command returns the uucp name of your local system or the nodenames of
remote systems known to your local system.

The general syntax for uuname is:

uuname [-1] [-v]

where:

-1 returns your local system name.

For example:

uuname -1

returns:

and:

uuname

returns a list similar to:

mit
csu
hp-sysl
UCLA
ISU

-v returns a description for each system listed in the ADMIN file.

These are the names of the systems you can communicate with.

94 Using the Uucp Facility

Using uupick
This command should be used with the uuto command.

You can use uupick command to accept or reject files transmitted to you with the uuto
command on another system. Uupick searches /usr /spool/uucppublic for files sent to your
local system by uuto. For each file or directory found, uupick prints a message about the
designated file on the standard output file. Uupick then waits for an answer indicating
what you want to do with that file, reading the answer line from the standard input file.
The cycle is repeated until uupick finds no more uuto files destined for you.

General syntax for uupick is:

uupick [-ssys_name]

where:

searches /usr/spool/uucppublic for files sent only from sys_name.

When uupick is reading from the standard input file to determine the disposition of a
file, the following translations are used:

Table 6-2.

Input Command Interpretation

<carriage return> Go on to next entry

d Delete the entry

m<dir> Move the file to the named directory <dir>
(default is the current directory) 1

a<dir> Move all files sent from <sys_name> to the
named directory <dir> (default is the current
directory)

p Print the contents of the file

q Quit (stop)

EOT (I CTRL ~[[]) Quit (stop)

!command Escape to the shell to do command

* Print a command summary

Do not use "" to represent the current directory with the m or the a parameter. Use the default
instead.

Using the Uucp Facility 95

For example, if you type:

uupick

and file_name has been sent from sys1, this is printed on the standard output file:

from system sys1: file file_name

You could then continue with any of the options listed in the table above.

Using uustat
The uustat command initiates status inquiry for all jobs requested and for job control.

The general syntax for the uustat command is:

uustat [options]

where the available options are:

-chour

-jall

-mmachine

-ohour

-yhour

-ssys

-uuser

-v

Remove status entries that are older than hour hours old (only the
user initiating the uucp command or the super-user can invoke this
option)

Report the status of all the uucp requests

Kill (terminate) the uucp request whose job number is job_num (the
terminated uucp request must belong to the person issuing the uustat
command or the super-user. The jOb_num is supplied automatically
by the uucp facility.)

Report the status of accessibility of machine. If machine is all, then
the status of all machines known to the local uucp are displayed.

Report the status of all uucp requests that are older than hour hours
old

Report the status of all uucp requests that are younger than hour
hours old

Report the status of all uucp requests involving system ays

Report the status of all uucp requests issued by user

Report the uucp status verbosely (this option is recommended because
without it only the status code for each request is printed).

96 Using the Uucp Facility

Using uustat without any options prints all job information in the non-verbose mode for
the user you are logged in as.

If you type:

uustat -v - j all

here is an example of a typical display:

0923 rmd hpfcla 04/25-11:00 04/25-13:01
REMOTE ACCESS TO FILE DENIED
COPY FINISHED, JOB DELETED

where:

0923

rmd

hpfcla

04/25-11:00

04/25-13:01

REMOTE ACCESS TO FILE DENIED

FINISHED, JOB DELETED

is the uucp job number

is the user issuing the uucp command

is the remote system

is when the uucp command was first issued

is the last status update

is part of the status report

is the remainder of the status report.

The status report indicates that the workfile was deleted without any data file being
copied.

Using the Uucp Facility 97

Using uusub
The uusub command defines the uucp subnetwork and monitors the connection and
traffic among its members. This command is normally used by super-user or the system
administrator.

General syntax for using uusub command is:

uusub [options]

where options could be:

-asys add sys to the subnetwork (only one system can be added at a time)

-esys exercise the connection to system sys by making a call to that system (sys may
be all for all systems in the subnetwork)

-dsys delete sys from the subnetwork

-f flush (erase) the connection statistics

-1 report the statistics on connections

-r report the statistics on traffic amount

-uhour gather the traffic statistics over the past hour hours.

which when executed displays:

sys #eall #ok time #dev #login #naek #other

where:

sys is the remote system name

#eall is the number of times your local system tried to call sys since the last flush

#ok is the number of successful connections

time is the latest successful connect time

#dev is the number of unsuccessful connections because of no available device

#login is the number of unsuccessful connections because of login failure

#naek is the number of unsuccessful connections because of no response

#other is the number of unsuccessful connections because of other reasons.

98 Using the U ucp Facility

You can define your subnetwork with the -a option, for example:

uusub -ahpdcd
uusub -ahprvd
uusub -ahpcnob
uusub -ahpfc1d

You can then monitor this defined subnetwork by typing:

uusub -1

which results in an output resembling:

sysname #call #ok 1atest-oktime #noacu #login

hpdcd 26 9 (4/25-23:58) 0 0
hprvd 0 0 (4/21-15:30) 0 0
hpcnob 25 24 (4/25-23:57) 0 1
hpfc1d 5 2 (4/25-23:56) 0 0

#nack #other

17 0
0 0
0 0

14 0

The meanings of the traffic statistics gathered with the -r option are:

sfile sbyte rfile rbyte

where:

sfile is the number of of files sent

sbyte is the number of bytes sent over the period of time indicated in the latest uusub
command with the -uhour option

rfile is the number of files received

rbyte is the number of bytes received.

The traffic statistics over the last two hours can be gathered by typing:

uusub -u2

The traffic statistics must be gathered before they can be reported with the -r option.
For example, if you now type:

uusub -r

Using the Uucp Facility 99

your output could be:

sysname
hpdcd
hprvd
hpfcla

Using uuto

sfile
2
o

66

sbyte
699
o

266639

rfile
o
4

34

rbyte
o

584
140784

The uuto command uses the uucp facility to send files to a specified destination. You
can use the uupick command to "pick" disposition of the files sent by uuto.

General syntax for uuto is:

uuto [options] source_file destination

where:

options

destination

can be either:

-p copy the source_file into the spool directory before transmission,
or
-m generate mail to the sender when the copy is complete

is the source file (s)

is of the form: sysname! user where sysname is the name of the remote
system and user is the user on the remote system you are sending the
files to.

The source_file(s) are sent to /usr/spool/uucppublic on sysname.

If you type:

uuto -p -m /users/rmd/file hpsys2!mark

this uucp command is generated:

uucp -d -C -m -nmark /users/rmd/file
-/receive/mark/hpsysl/

where the destination user is mark and hpsysl is the system from which the file is trans­
ferred.

100 Using the Uucp Facility

Using the Mail Facility
You can use the mail command to send mail messages to other systems. For example, if
you type:

mail remote_sys!name
Meet me in the lunch room.
Don't be late again!
I CTRL I-[[]

lines two and three are mailed to name on remote_sys.

When you specify remote systems with mailx, uucp uses the uux command sequence.
A workfile with an X grade and one containing the actual mail message, are set up in
directory /usr/spool/uucp.

You do not have to specify the entire pathname to the user receiving your mail message.

You can also forward mail through intermediate nodes.

mail remsys1!remsys2!remsys3!name
I (Mesfage typed in here.}

CTRL -[[]

Your mail is then forwarded through remsys1 and remsys2 before it reaches its final
destination on remsys3.

You can mail entire ASCII files to a user on a remote system by using:

mail remote_sys!name <filename

Using the Uucp Facility 101

Notes

102 Using the Uucp Facility

The X.25 Network 7
This chapter provides a brief description of the X.25 Network and explains how to con­
figure uucp software to work with X.25.

Description of X.2S
X.25 is a worldwide standard protocol used in many Public Data Networks (PDNs).
Public Data Networks are packet switching networks (PSN's).

Packet Switching Network
Before learning what a Packet Switching Network (PSN) is, you need to know what an
X.25 packet is. X.25 packets are defined as serially transmittable strings of information
containing the following fields:

ADDRESS identifying the packet destination

DATA data being transmitted, usually not more than 256 bytes

CHECKSUM error detection information

SEQUENCE ensures that data packets are handled in correct sequence

OTHER other fields not discussed in this manual.

A Packet Switching Network consists of many nodes (also called stations) where each
node has the ability to correctly interpret routing information contained in each packet
and forward the packet to the next appropriate node in the network. The computer
that is originating the packet combines routing and error checking information with the
data being transmitted, then sends the packet to the nearest switching node where it is
forwarded to its destination.

ORIGINATING COMPUTER --1 packet~
(assembles data that

station
is to be forwarded

to the destination)

Figure 7-1.

The X.25 Network 103

Each switching node, in turn, examines address information in each packet as it is re­
ceived, and determines automatically where to send it. The process is repeatedly con­
tinued until each packet reaches its correct destination.

Consider the following hypothetical stations and interconnections:

Fort Collins

(1)
The packet starts

at Fort Collins,

and goes to

Denver first.

(3)

packet

Address:

Boblingen,

Germany

New York sends it

(2)
Denver then

routes the

packet to

New York.

Miami

overseas to Stuttgart. London

Stuttgart (4)
Stuttgart sends it to

the final destination. /
Boblingen

Figure 7-2.

Oslo

Montreal

Paris

Madrid

Amsterdam

In this example, the packet is sent from Fort Collins, Colorado to Denver. The Denver
node determines that the packet should be forwarded to New York for transatlantic
transmission. New York forwards the packet to Stuttgart, Germany, where it is forwarded
to its final destination, Boeblingen.

When the receiving computer in Boeblingen accepts the packet, it disassembles the packet
by first verifying that the address is correct, then verifying the checksum against the
data to ensure that no data was lost enroute (if an error is detected, retransmission is
requested). The sequence number is checked to make sure the packet did not arrive before
a packet which preceded it. (Packet switching networks use many data transmission lines
simultaneously, so it is not uncommon for packets to be received in incorrect sequence.
If the sequence is incorrect, the receiving interface must hold the message until preceding

104 The X.25 Network

messages in the sequence arrive before passing the packet data to the computer.) If the
data is in correct sequence and contains no errors, it is passed to the computer for use.

Public Data Network
A Public Data Network (PDN) is a packet switching network that each country has
established to handle data traffic. Most countries have only one PDN, while a few have
several. Public Data Networks are connected to each other by "gateways" which are
really nothing more than packet switching connections between two switching nodes.
For example,

USA: GERMANY:

TELENET PDN DATEX-P PDN

USA:

TYMNET PDN

CANADA: FRANCE:
f--

DATAPAC PDN TRANSPAC PDN

Figure 7-3. Public Data Network

Most nations have their own Public Data Network with gateways to PDNs in other
countries. This worldwide interconnection of PDNs is known collectively as "The X.25
Network".

The X.25 Network 105

Configuring uucp for X.25
This section discusses configuring uucp for use with the X.25 Network. These topics are
as follows:

• Prerequisites

• Installing the HP 2334A

• Remote and Local Off-line Configuration

• Preparing for Configuration

• Configuration Procedure.

The HP 2334A MULTIMU)(Reference and Service Manual (HP part number: 02334-
90001) covers the above topics in detail. If you are using the HP 2334A to connect to
the X.25 Network, you need to read the HP 2334A MULTIMUX Reference and Service
Manual after reading this manual.

The acronym "PAD", which stands for Packet Assembler/Disassembler, needs to
be defined before proceeding with this section of the chapter. A Packet Assem­
bIer/Disassembler is a device which takes a message to be transmitted and assembles
it into transmittable X.25 data packets. Conversely, it receives X.25 packets and disas­
sembles them into character streams for transmission to a terminal.

The HP 2334A is the device which provides for the interfacing of your HP-UX system
to the X.25 Network. This device must be configured with the proper synchronous X.25
network parameters to enable communication across the synchronous network and the
asynchronous protocol (by assigning PAD parameter values) for communication with
connected asynchronous devices (or computer ports). These communication parameters
must initially be defined off-line (i.e. when not communicating with the synchronous
network or devices). They are saved automatically in permanent memory so that the
HP 2334A does not require the configuration process each time the power is turned on.

The off-line configuration (or reconfiguration) of the HP 2334A is normally performed
using a terminal which is directly connected to the HP 2334A device port Al. Alter­
natively the off-line configuration (or recofiguration) may be performed from a remote
location by connecting the remote terminal to the HP 2334A device port Al via a pair of
asynchronous modems and a telephone line. Both of these off-line methods are covered
in this section of the chapter.

106 The X.25 Network

Prerequisites
Before you can start configuration of X.25 you need to make sure the following prereq­
uisites have been met.

• The uucp facility must already be working on your system

• You must have an understanding of your uucp file system

• You should know how to use the uucp commands.

Information for these prerequisites is covered in the chapters prior to this one. If you
haven't read these chapters please do so and return to this chapter when you are done.
You also need to use the unpacking list sent with your HP 2334A to verify that you have
the necessary hardware to begin the installation of your HP 2334A device.

Installing the HP 2334A
This section covers the necessary steps for installing the HP 2334A. Line voltages, power
supply settings and mounting the HP 2334A are covered in the manual, HP 2334A Cluster
Control Reference and Service Manual. The topics included here are as follows:

• Power-on and CPU Switch Test

• Connecting Cables to an HP 2334A.

Power-on and CPU Switch Test
The HP 2334A has a power-on self test which is performed automatically at power-on
and a CPU switch test which is perform manually by the user of the HP 2334A. The first
test is covered in this manual, as the second one is not necessary for getting started on
your HP 2334A. The test are as follows:

• An internal "power-on self test" is automatically performed whenever the HP 2334A
is switched ON (1), or initialized using the reset button. This test is performed
regardless of whether the HP 2334A is off-line or on-line. To observe this test, you
need to remove the front panel of the HP 2334A. You can remove the front panel
by placing your fingers under the lip on the top part of the front panel and pulling
outward. Turn the unit on and observe the LEDs on the CPU card. The LEDs will
blink off and on as the self test is being executed. For a description of this test,
read the section in this chapter entitled, "Entering the CONFIGURE Mode".

• An off-line CPU Card Switch Test checks the operation of the CPU cards DIP
switches. For an explanation of this test, read the section in the, "INSTALLA­
TION" chapter of the, HP 2334A MULTIMUX Reference and Service Manual en­
titled, "CPU CARD SWITCHES TEST".

The X.25 Network 107

With the front panel off you need to set switch 8 of the CPU card's DIP switches to
the upward position and all other switches should be set to the downward position. The
front panel should be left off after you have completed this section.

Connecting Cables to an HP 2334A
The cable connections made in this section are for "local off-line configuration". Local
off-line configuration is where you have a terminal directly connected (not through a
modem) to the Al port of your HP 2334A and the HP 2334A connected to the the
X.25 Network. The next section in this chapter explains "remote" and "local" off-line
configuration.

Before connecting any cables, you need to have the following cards insert in the HP 2334A:

• Synchronous Network Adapter Card

• Modem Control Adapter Card.

The Synchronous Network Adapter Card has already been installed in your unit and is
located behind the front panel as shown in the diagram below.

REAR OF HP2334A FRONT OF HP2334A (FRONT PANEL REMOVED)

BLANKING PANEL CABLE GUARD CABLE ROUTING AREA BLANKING PANEL

DEVICE PORTS SYNCHRONOUS NETWORK
DATA CABLE

SYNCHRONOUS NETWORK
ADAPTER CARD

Figure 7-4. HP 2334A to Device and Synchronous Network Connection

108 The X.25 Network

The Modem Control Adapter Card (HP4026lA) is installed in one ofthe Device Adapter
Card slots located in the backplane of the HP 2334A as shown in the diagram below. The
first adapter card is inserted in slot A and the next one is inserted into slot B and so on.
Also, initial adapter cards come installed.

VOLTAGE SELECTION
COMPARTMENT

DEVICE INTERFACE CARDS
(SLOT INTO MAIN BACKPLANE)

Figure 7-5. Adapter Card Slots

For local off-line configuration, you need to have an HP 4026lA card inserted in slot A.

Connect an interactive terminal to port AI. Port Al is located on the Modem Control
Adapter Card which is in slot A of the backplane. The port is labeled number 1 on the
Modem Control Adapter Card. The terminal is connect to port Al by an RS-232C cable
with a DTE connector.

The Synchronous Network Cable (HP part number: 02333-60008) is connected to the
Synchronous Network Adapter Card using the following procedure:

1. Insure that the HP 2334A is switched OFF (0), then disconnect the power cord

2. Remove the HP 2334A front panel

3. On the right-hand side of the backplane (see Figure 7-4) remove the cable guard.

NOTE

Do not remove any of the Device Adapter Cards or blanking pan­
els.

The X.25 Network 109

4. Pass the connector of the Synchronous Network Cable network into the data cable
routing area, as shown in the diagram mentioned in step 3. This cable (part number:
02333-60008) is supplied with the HP 2334A.

5. From the front of the HP 2334A, carefully pull the cable through the data cable
routing area and then plug the data cable connector into the Synchronous Network
Adapter Card connector (see Figure 7-4) and secure it in position by tightening the
two locking screws.

6. Insure that the cable is a loose fit in the routing area. Then replace the front panel.

7. At the rear of the HP 2334A, place the slot in the cable guard over the data cable.
Then insert a plastic cable tie (i.e. tie wrap) through the two holes in the cable
guard slot and secure the cable guard (this acts as a cable clamp). Replace the
cable guard on the HP 2334A backplane and tighten the two cross-head screws to
secure it.

8. Replace the power cord and switch ON the HP 2334A as required.

Remote and Local Off-line Configuration
Off-line configuration may be performed remotely by connecting a terminal to port Al
of the HP 2334A via a telephone line and two full duplex, asynchronous modems (at
1200 baud) as shown in the Figure 7-6 below. An operator is required at the HP 2334A
location to perform certain simple actions:

• DIP switch setting

• Power-on/reset

• Reading the LEDs.

A second telephone line is necessary for conveying verbal instructions.

110 The X.25 Network

IWJD RATE - 1200

HP2JJ4A f----------~

.PORT AI

DIP SWITCHES

ABCDEF"CH
00000001

IWlITY - "0" OR NO PARITY
PROTOCOl.. - "X-QN/X-OFF'

(I.E. SWITOl M IS UP)

PRESS RESET OR
SWITCH POWER ON

USER PUBUC USER
• MODEIot CONTROL AlW'TER

Figure 7-6. Remote OfT-line Configuration

Remote off-line configuration is an important feature as it enables, for example, an
experienced operator to perform off-line configuration of HP 2334As located at multiple
remote sites (branch offices) without leaving the office.

The Modem Control Adapter Card (HP 40261A) provides modem interface ports Al
to A4 as remote configuration requires the use of asynchronous modems between the
terminal and device port Al. Once communication is established between the terminal
and the HP 2334A, the preparation and configuration procedure is the same as when
configuring the HP 2334A locally (see the diagram below).

HPZJJ4A 1-________ --1

.PORT AI

DIP SWITCHES

ABC 0 E F" G H
o 0 0 0 a a 0 I

(I.E. SWITCH H IS UP)

PRESS RESET OR
SWITCH POWER ON

• DCRECT CONNECT OR UOQEM CONTROL ADAPTER
BAlJO RA IT - 1 200
PARITY - "0" OR NO PARITY
PROTOCOl.. - "X-ON/X-QFf"

Figure 7-7. Local OfT-line Configuration

The procedure for configuring the HP 2334A is explained in the remaining sections of
this chapter.

The X.25 Network 111

Preparing for Configuration
The HP 2334A should be prepared for off-line configuration as follows (refer to the dia­
grams in the previous sections for connections and switch settings):

1. Connect an interactive terminal to device port AI. All other asynchronous de­
vices may remain connected as required. The synchronous network may remain
connected as required.

2. Set the terminal as follows:

a. BAUD RATE - 1200 baud

b. DATA BITS - 7

c. PARITY - set for "0" or no parity

d. X-ON/X-OFF Handshake - ENABLED

e. FULL DUPLEX

f. REMOTE mode

g. CHARACTER mode (BLOCK mode OFF).

3. Make sure the HP 2334A is set to CONFIGURE mode by checking the CPU cards
switch settings. The CPU cards DIP switches should be set as follows:

DIP Switch: ABC D E F G H
Setting: X X X X 0 0 0 1 Where: 0 = DOWN / OFF

1 = UP / ON
X = ON or OFF

Switches A. B. C. and D may be set as required.

NOTE

When the HP 2334A is in CONFIGURE MODE only port A1 is
enabled and it is pre configured at 1200 baud.

112 The X.25 Network

Configuration Procedure
This section covers the following topics:

• Entering the CONFIGURE Mode

• Sample Off-line Configuration Listing

• Entering the HSA Command Mode

• Step-by-step Configuration Procedure for HSA

• Entering the UDP Command Mode

• Entering the ASG Command Mode

• Adding New Entries to the uucp Files

• Creating New Configuration Files.

Entering the CONFIGURE Mode
To enter CONFIGURE mode, simply press the CPU card's reset button (or if the
HP 2334A is switched OFF, switch it ON). The front panel must be removed to get
to the reset button. To remove the front panel, place your fingers in the channel on its
upper edge and pull outward. The inside of the HP 2334A looks like the diagram shown
below. If you use the ON/OFF switch, it is located on the backside of the HP 2334A.

The X.25 Network 113

CPU CARD

RESET PUSH-BUTTON

NOTE:

HP2334A WITH FRONT PANEL REMOVED

r--
61

r--
I~

~
p <Sl

~t=:
V

P l V

61 I~-.:. I'~ L-':;.f.5
r----'

1-'· I
<Sl

c=:Jo I--'

"-r;-- - -----:-Wil:Di:J-:
- - ---

I
I

J
cr===!-

,~ I

~ - - - - - - - - - - - - - - - - - L - - - - - - - - - - - ffirffiffi'f - -:
I I

a bcde 1-4 5-8 9-12 13-16 ABCDEFGH --- """" --~
LEDs DIP SWITCHES

LED [a] = GREEN 1 = UP = OPEN
ALL OTHER LEDs = RED 0 = DOWN = CLOSED

11 SWITCHES A, B, C AND D ARE SENSED:
AI CONTINUOUSLY DURING THE RUN MODE, CONFIGURE MODE. SWITCHES TEST,

DEVICE LOOP BACK TEST AND MODEM LOOP BACK TEST.
BI DURING THE SELF DIAGNOSTIC TESTS, ONLY AT POWER-ON OR AFTER RESET.

21 SWITCHES, E, F, G AND H ARE ONLY SENSED AT POWER-ON OR AFTER RESET.

Figure 7-8. CPU Card's Reset Button and LEDs

Once the above process has been executed the HP 2334A goes through a power-on self
test that last approximately twenty seconds and causes the following to happen:

1. All of the 21 LEDs shown in the diagram above turn ON (illuminate) for one second,
then they turn OFF (extinguish) for one second

2. Then the LEDs are individually illuminated, starting at LED a and going through
to LED 16.

114 The X.25 Network

3. The self diagnostic tests are then performed with LEDs d or e ON (illuminated)
to indicate which test routine is active (LEDs a and 1 to 16 are OFF). See the
diagram below.

TEST
[e] [a]

o
o

LED DISPLAY
[b] [c] Cd]
000
o 0 1

1 - CPU Card Test (10 sec. approx.)
o - Internal Bus and Device Interface

Cards Test (3 sec. approx.)

Where: 0 = LED OFF
1 = LED ON

The CPU Card Test is performed first and, if successful, the Internal Bus and
Device Interface Cards are then tested.

If your CPU Card Test is successful, you may continue with the next section. However,
if you had a failure or an error was detected, the HP 2334A halts and provides a failure
indication as follows:

• LED a remains off (extinguished)

• LED d or e remains on (illuminated) indicating the failed test routine

• LEDs 1 to 16 provide a display indicating the type of failure

• LED b on indicates an invalid DIP switch setting.

If the HP 2334A halts due to a failure refer to the section, "User Troubleshooting" in the
chapter, "OPERATION" or the chapter, "TROUBLESHOOTING", in your HP 2334A
MULTIMUX Reference and Service Manual. If the failure cannot be corrected then
contact the nearest HP Sales and Service Office.

Sample Off-line Configuration Listing
The HP 2334A automatically provides the initial off-line configuration listing as shown
in this section; however, the listing shown in this section has been filled in with the
correct field values for Levels I through III. The remaining fields, with the exception of
the "HP 2334 CONFIGURATION X.25 SRA" field, can be filled in after you have read
the HP 2334A MULTIMUX Reference and Service Manual and you are familiar with the
HP 2334A.

The X.25 Network 115

The off-line configuration listing is divided into three groups they are as follows:

• The HP 2334A-to-Synchronous Network (X.25) configuration. This includes all the
field entries made using the HSA command.

• The HP 2334A-to-Device (X.3 parameters) configuration. This configuration is for
assigning ports to the various devices which are to be connected to the HP 2334A.
The ASC command is used to assign PAD or CAS/PAD profiles to the HP 2334A
asynchronous ports. Explanations for PAD and CAS/PAD can be found in the
chapter, "CONFIGURATION" in the, HP 2334A MULTIMUX Reference and Ser­
vice Manual.

• The hardware installed in the HP 2334A. This lists the ROMs on the CPU card
and is followed by a list of the device "interface" and "adapter" card information.
No data is displayed if a "device adapter card" is not inserted in the associated slot
A, B, C, or D. The "device adapter cards" used with the HP 2334A are identified
as follows:

- Direct Connect Adapter Card (HP 40260A)
- Modem Control Adapter Card (HP 40261A)

The Direct Connect Adapter Card is not implemented for use with your HP 2334A.

The following listing is a sample of what your display would show had you already
configured it to the values given. This listing assumes that you are in the United States
of America and using TELENET.

116 The X.25 Network

HSA 02334-80320. 02334-80330

HP2334 CONFIGURATION X.25 LEVEL I

-PHYS. LINK : X.21bis DTE

HP2334 CONFIGURATION X.25 LEVEL II

-NETWORK TYPE: TEL, 12
-FRAME WINDOW: 7
-RET. CNT N2: 20

HP2334 CONFIGURATION X.25 LEVEL III

-LOCAL ADDRESS nnnnnnnnnnnnnss
-WIND. SIZE IN 2
-THROUGHPUT IN 9600
-PACK. SIZE IN 128
-FIRST PVC
-FIRST SVC IN
-FIRST 2W SVC 1
-FIRST SVC OUT
-FIRST POOL PRT: B4
-D-BIT NO
-PKT. NUMBERING: 8
-FAC. SUPPORTED:
-PVC ASSOC. PRT:

HP2334 CONFIGURATION X.25 LUG

-REMOTE ADDRESS

HP2334 CONFIGURATION X.25 SRA

-LINE SPEED : 9600

-EQUIP. TYPE
-TIMER Tl
-I-FRAME

LAP-B DTE
: 3000 ms
: 131 bytes

-WIND. SIZE OUT: 2
-THROUGHPUT OUT: 9600
-PACK. SIZE OUT: 128
-LAST PVC
-LAST SVC IN
-LAST 2W SVC 64
-LAST SVC OUT
-LAST POOL PRT B4

The X.25 Network 117

-REMOTE ADDRESS

ASG
Assignment for each port

1 2 3 4
D 2 2 2 2
C 2 2 2 2
B 2 2 2 2
A 2 2 2 2

CPU 02334-80300 02334-80310
SC-D
SC-C
SC-B
SC-A 05180-2039 05180-2040 RS232MOD4 ports

The following is an explanation of the various sections of the configuration listing:

• The HSA refers to the Synchronous Network Adapter Card which fits into slot "A"
of the Network Adapter card cage. This card cage is located behind the front panel
of the HP 2334A as seen in the picture below. The two part numbers adjacent to
HSA refer to two ROMs located on the CPU card.

FRONT PANEL REMOVED

BLANKING PANEL IDENTIFICATION LABEL

PROTECTIVE METAL PLATE
(COVERING POWER SUPPLY)

SYNCHRONOUS NETWORK
ADAPTER CARD PORT

(CARD SLOTS INTO THE
NETWORK ADAPTER BACKPLANE)

REAR DEVICE ADAPTER CARDS REMOVED

VOL TAGE SELECTION
COMPARTMENT

DEVICE INTERFACE CARDS
(SLOT INTO MAIN BACKPLANE)

Figure 7-9. Front and Rear View of the HP 2334A

118 The X.25 Network

• Parameters associated with the various fields in Levels 1 through 3 have recom­
mended values assigned to them. These values should be used to configure your
HP 2334A for the first time.

• The two part numbers associated with the CPU toward the bottom of the config­
uration list refer to two more ROMs located on the CPU card

• The parameters SC-D. SC-C. SC-B. and SC-A refer to the Device Adapter Cards
inserted in the slots D, C, B, and A respectively. These slots are located on the
backplane of the HP 2334A. The values associated with these fields are:

• The part numbers of the ROMs located on the Device Interface Cards

• The type of card inserted into the backplane of the HP 2334A which is the
HP 40261A card represented by this value: RS232MOD 4 ports.

The nnnnnnnnnnnnnss values located after various fields in the listing are local network
addresses and remote addresses which may be up to 15 digits long the last two digits
(ss) being the sub-address of the HP 2334A device ports. For a detailed explanation of
this, read the sections, "X.25 Level 3" and "MSG, LUG and SRA CONFIGURATION"
found in your HP 2334A MULTIMUX Reference and Service Manual.

Entering the HSA Command Mode
The HP 2334A-to-synchronous network configuration may be defined using the HSA
command and an HP-UX supported interactive terminal connected to device port AI.
The HSA command allows the user to configure all the X.25 parameters (Levels 1,2, and
3), Symbolic Remote Address (SRA) facilities, and Local User Address (LUG) facilities.

Once the configuration listing, which has not been filled in, has been displayed and the
user asterisk (*) prompt is obtained, execute:

HSA

The HSA command you just executed refers to the Synchronous Network Adapter Card
mounted in slot "A" of the Network Adapter cage. The following is next displayed as a
user prompt:

HSA:

The X.25 Network 119

Step-by-step Configuration Procedure for HSA
This section provides you with a step-by-step procedure for entering the correct values
in the fields of the previously shown configuration listing. Some of the fields in the
configuration listing are preset and are not mentioned in the following procedure. For
a detailed explanation of this procedure, you need to read the chapter entitled, "CON­
FIGURATION" in your HP 2334A MULTIMUX Reference and Service Manual.

All commands are entered on the HSA command line which is indicated by the HSA:

prompt. The step-by-step procedure is as follows:

1. Specify the data transmission rate on the synchronous network connetion, execute:

LEVELl

The following message is displayed:

Respond to it by entering:

9600

120 The X.25 Network

2. Enter the fields for Level 2 of the configuration, entering:

LEVEL2

The following message is displayed:

If you are in the United States of America, you would respond to the above prompt
by typing in the response given below; otherwise, refer to your HP 2334 MULTI­
MUX Reference and Service Manual for the proper response.

TEL. 12 1 RETURN I

This message is displayed:

Respond to it by typing:

71 RETURN I

This message is displayed:

Respond to it by typing:

3000 1 RETURN I

3. Enter the values for Level 3 of the configuration, enter:

LEVEL3

The following message is displayed:

LeI Addr.?

Respond to it by typing:

nnnnnnnnnnnnnBB

where nnnnnnnnnnnnn is the local network address which may be be up to 13 digits
long and BB is the 2 digit sub-address.

The X.25 Network 121

The remainder of this message and response sequence is given in a tabular form. To use
this table correctly, you should start with the message and response at the top of the
table and work your way to the bottom. You will be reading the message in the left
column and responding with the prompt in the right column. Press the [RETURN I key
after typing in your response. There are some cases where you are asked just to press
I RETURN I without entering a response.

Message Displayed

Thrput in?
Thrput_out?
Wind sz in?
Wind sz out?
Def/mod ve tbl.?
Fst pvc?
Fst sve in?
Fst 2w sve?
Lst 2w sve?
Fst sve out?
First pool port?
Last pool port?
Neg pk sz?
Neg wd sz?
Neg thrput?
Rev. char. ace.?
D-Bit?

Response

9600
9600
2
2
no
[RETURN I
[RETURN I
i
64
Press [RETURN I
Ai
Ai
no
no
no
no
no

To verify the field entries you made to your configuration listing, type the following after
the HSA: prompt:

list

If a field entry is wrong, you will have to re-enter the command after the HSA: prompt
(e.g. levell) which gets you the section containing the field that needs to be changed.
Note that there is no way to step to the field you wish to correct. You must re-enter the
correct values to all of the fields as the prompts for them appear.

To exit the HSA mode, press: [RETURN I

122 The X.25 Network

Entering the UDP Command Mode
The UDP primary user command is used to create or modify User Defined Profiles
(UDPs). The HP2334A has several pre-defined BDPs (Basic Defined Profiles) which
can be used for many standard applications, but certain configurations require a special
sets of parameters to be defined (e.g. auto-speed, auto-parity or different flow control
mechanisms). A good knowledge of the standard X.3 and local parameters is required
to avoid creating erroneous UDPs.

To enter the UDP mode, enter:

udp

after the * prompt. The following message should appear:

Prof number?

Respond to this message by entering:

2

The following message should appear:

-PROFILE : 2 -FREE SPACE : 43 parameters

-EXISTING PROFILES 1,21,31,51,61,71,100,101,121,141

UDP:

In response to the UDP: prompt, you must type:

set 11:12,0:13,14:2

this defines profiles for the following "free spaces": 11 and 14 respectively. Note that 0
is a separator and not really a parameter.

To see the newly modified profile listing, type:

par?

The following will appear in your display:

PAR 1:1, 2:1, 3:2, 4:0, 5:1, 6:5, 7:21, 8:0, 9:0, 10:0, 11:12,12:1, 13:0, 14:0,
15:1, 16:8, 17:24, 18:0, 0:13, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:128, 8:0, 9:0, 1

0:0, 11:0, 12:0, 13:3, 14:2, 15:0, 16:0, 17:0, 18:63, 19:255, 20:0, 21:0, 22:64,
23:1, 24:0, 25:0

The X.25 Network 123

To exit UDP mode, type I RETURN I.

The following will appear:

Prof number?

Respond to this prompt by typing I RETURN I.

The * should appear in the display. You are now ready to proceed to the next section
where you are to enter the ASG mode.

Entering the ASG Command Mode
The ASG primary user command is used to assign PAD or CAS/PAD profiles to the
HP 2334A asynchronous ports. Note that a Remote PAD (associated with CAS/PAD)
profile is automatically downloaded by a CAS/PAD profile and is not user assigned.

To enter the ASG command mode, type the following after the *:

asg

Respond to the ASG: prompt by typing:

list

this gives you a listing of the profile assignments of the ports. Your display should look
like this:

Assignment for each port

1 2 3 4

D 1 1 1 1
C 1 1 1 1
B 1 1 1 1
A 1 1 1 1

Change all of the port profile assignments to 2 by typing:

a,b,c,d:2

Test to see that the port profiles have been changed type:

list

124 The X.25 Network

The display should look like this:

Assignment for each port

D
C
B
A

1

2
2
2
2

2

2
2
2
2

3

2
2
2
2

4

2
2
2
2

Exit the ASG mode by typing: I RETURN I

The * will appear in the display. Turn your HP 2334A OFF (0) to prepare for the next
section.

Adding New Entries to the uucp Files
Before proceeding with this section, you need to remove the front panel cover and set
switch 2 on the CPU card to the upward (ON) position. All other switches on the CPU
card switch packet should be in the down position (OFF).

At this point your HP 2334A has been configured and connected to the X.25 Network.
The remaining step-by-step procedure explains how to configure your HP-UX software
for use with the X.25 Network.

1. You should have the HP-UX supported terminal which is connected to your
HP 2334A set at a baud rate of 2400. Next turn its power on and observe the
display the following prompt should appear:

ill

You cannot make a direct connection to the HP 2334A ports through an HP 27130A
(8-channel multiplexer) or three of the ports on the HP 98642A (4-channel multi­
plexer). The port you can use on the HP 98642A is port number 1. You can
make direct connection to the HP 2334A ports through an HP 27140A (6-channel
multiplexer) .

2. All data communication cards should be configured just as if you were going to
connect to a modem.

The X.25 Network 125

3. Set up the following HP-UX files for uucp use: /dev, /etc/inittab, /etc/passwd,
/usr/lib/uucp/L.sys, /usr/lib/uucp/L-devices. These files are set up in the same
manner as was explained in the "Uucp File Structure" chapter of this manual
with the exception of HP 2334A and X.25 naming conventions. The following are
examples of how these files should be set up:

a. You can have up to 16 terminals remotely or locally connected to the ports
on the backplane of your HP 2334A. On the Series 200/300/500 the special
device filename for each device on the HP2334A should be as follows:

mknod /dev/x25.n c 1 Ox000202

On the Series 800, use mknod to create the special filename as follows:

mknod /dev/x.25in c 10x000202
mknod /dev/x.250ut c 10x000203

b. The /etc/passwd file should have the following entry already made for uucp:

uucp:password:5:1: :/usr/spool/uucppublic:/usr/lib/uucp/uucico

where the password is assigned by the system administrator for security pur­
poses.

c. The /etc/inittab file should contain entries similar to the following for each
incoming port from the HP 2334A:

00:2:respawn:/etc/getx25 x25.0 2 HP2334A

where 2 is the run level. The command to be executed is /etc/getx25. The
first parameter to the mentioned command is the special (device) file to be
used. The second parameter is the speed indicator (baud rate) for getx25, a
value of 2 is common. The final parameter is the name of the PAD device
you are connected to: HP 2334A.

d. The /usr/lib/uucp/L.sys file contains entries similar to the following for each
HP 2334A device you are able to communicate with on the X.25 Network:

hpbm Any,5 ACUHP2334A 9600 f/45762 login:-EOT-login: uucp Password:xxxx

e. The /usr/lib/uucp/L-devices file contains entries similar to the following:

ACUHP2334A x25.0 x25.0 2400
DIR x25.0 0 2400

126 The X.25 Network

4. If no changes were made to the files mentioned in step 3 then skip this step. How­
ever, if changes were made, enter system state 2 to execute the file changes. To do
this, type:

init 2

On the Series 800 use telinit, which is documented in init{lm) in the HP-UX Ref­
erence manual.

5. To test to see if the getx25's entries are there, type:

ps -ef

6. Execute the following command line:

cu -l<line> -m dir

where <line> is the device name (i.e. x25.0), without /dev/. Your display should
display the following:

Connected
ERR
(II

7. You are now ready to test the your HP 2334A. To do this, type the following:

locaL network_ address

where locaL network_address is an address to another unit which you have access
to on the X.25 Network. You should receive a COM message indicating a circuit
has been established. If you do not receive a COM message, try to reconfigure the
HP 2334A. If this does not work, you should call your Local HP Sales or Service
Representative for help.

Creating New Configuration Files
After you have successfully completed the steps in the last section and you decide that
you want to talk to another kind of PAD, you have to write new configuration files
(scripts). They must be placed in /usr/lib/uucp/X25, and they must be named *.in,
*.out, and *.clr, where * is the name of your "modem type" as specified to uucp, without
the initial ACU. For example,

HP2334A.in
HP2334A.out
HP2334A.clr

The X.25 Network 127

You do not have to modify dialit. c, since that program now assumes that any unknown
modem type is an X.25 PAD, and looks for the appropriate configuration file to control
it.

Each configuration file (script) looks something like a shell file, though it's actually
interpreted by opx25, a program that talks to the PAD and is thus like a telephone
operator. You tell what characters to send, and which ones you expect back. Each file
has a different purpose:

*.in detect an incoming call
*.out make an outgoing call
*.clr clear the circuit (hang up)

As stated above the configuration files are like shell scripts and they are executed using
the opx25 command. The opx25 command executes HALGOL programs which are scripts
used for communicating with devices such as modems and X.25 PADs. The scripts are
the configuration files covered in this section.

A configuration file (script) contains lines of the following type:

empty

beginning with /

ID:

send STRING

break

128 The X.25 Network

Lines are ignored

Lines are ignored (comments)

Denotes a label. ID is limited to alphanumerics or "_".

STRING must be surrounded by''''. The text is sent to the
device. Non-printable characters are represented as in C; if
you don't know C, just represent each non-printing ASCII
char as \DDD, where DDD is the octal ASCII character
code. In the *.out file, \# in a string is taken to be the
number being dialed.

Send a break "character" to the device

expect NUMBER STRING Here NUMBER is how many seconds to wait before giving
up. 0 means wait forever, but this isn't advised. Whenever
STRING appears in the input within the time allotted, the
command succeeds. Thus, it isn't necessary to specify the
entire string. For example, if you know that the PAD will
send several lines followed by an "@" prompt, you could just
use "@" as the string. The one exception is in the *.in file,
where you need to specify at least the end of the expected
input. If you just specify a substring in the middle, the rest
of the input remains unread until the logger comes along.
The logger reads junk, causing it to repeat its login prompt.

run program args

error ID

exec program args

echo STRING

set debug

set log

set numlog

The program (sleep, date, whatever) is run with the args
specified. Don't use "" here. Also, the program is invoked
directly (with execp), so wild cards, redirection, etc. are
not possible.

If the most recent expect or run encountered an error, go
to the label ID

Like run, but doesn't fork

Like send, but goes to stderr instead of to the device

Sets the program in debug mode. It echoes each line to
/tmp/opx25.log, as well as giving the result of each expect
and run. This can be useful for writing new scripts.

set log will send subsequent incoming characters to
/usr/spool/uucp/X25LOG. This can be used in the *. in file as
a security measure, since part of the incoming data stream
contains the number of the caller. There is a similar feature
in getx25: it writes the time and the login name into the
same logfile.

Like "set log" , only better in some cases, since it sends only
digits to the log file, and not other characters. For the * . in
file, for example, "set numlog" gives you information about
who has called, but in a compact form.

The X.25 Network 129

timeout NUMBER

exit NUMBER

Sets a global timeout value. Each expect uses time in the
timeout reservoir; when this time is gone, the program gives
up (exit 1). If this command isn't used, there is no global
timeout. Also, the global timeout can be reset any time,
and a value of 0 turns it off.

Exits with this value. 0 is success, anything else is failure.
The *. out file should observe the convention that an exit
value of 1 means you couldn't dial the number, and a value
of 2 means that you couldn't get the prompt after dialing
the number.

You can test configuration files, sort of, by running opx25
by hand, using the argument "-f" followed by the name
of the script file. The program in this case sends to, and
expects from, standard output and input, so you can type
the input, observe the output, and see messages with the
echo command.

The content of a configuration file is the HALGOL program (script) you write and place
in that file with a filename of your own choosing. These files are executed using the
opx25 command. Below is a list of the opx25 command line and its options.

opx25 [-fscript] [-cchar] [-onumber] [-inumber] [-nstring] [-d] [-v]

where:

[-fscript]

[-cchar]

[-onumber]

[-inumber]

[-nstring]

causes opx25 to read the configuration file (script) as the input
program. If -f is not specified then opx25 reads standard input for
the script.

causes opx25 to use char as the first character in the input stream
instead of actually reading it from the input descriptor. This is
useful sometimes when the program that calls opx25 is forced to
read a character but cannot "unread" it.

causes opx25 to use number for the output file descriptor (i.e. the
device to use for send). The default is 1.

causes opx25 to use number for the input file descriptor (Le. the
device to use for expect). The default is O.

causes opx25 to save this string for use when \# is encountered in
a send command

130 The X.25 Network

[-d]

[-v]

causes opx25 to turn on the debugging mode

causes opx25 to turn on the verbose mode.

The following configuration file (script) is a sequence that could normally be accom­
plished by entering a set of PAD commands one at a time; however, to save time, this
script was written. The configuration file (script) test a PAD connection to see if a
virtual circuit is active at the time you are trying to communicate with it, and if there
is a virtual circuit active it will clear it.

/ clear the HP2334A
timeout 20
/ ignore garbage
send "\021\021\r"
expectg 2 "**++**++**++**++**++**++**++**++**++**++**++**++**++**++"

cr:
send "\r"
expect 2 "eI"
error brk_clr
exit 0

brk_clr:
break
run sleep 1
expect 2 "eI"
error dle_clr
send "CLR\r"
expect 2 "eI"
error dle_clr
exit 0

send "\020"
expect 2 "eI"
error cr
send "CLR\r"
expect 2 "eI"
error cr
exit 0

The X.25 Network 131

Notes

132 The X.25 Network

Log, Status and Cleanup 8
This chapter discusses the files that contain information about your transactions, files
reflecting system status information, and the programs that compact or delete old or
unwanted files. It also contains several shell scripts to implement cleanup operations.

Refer to the appendix for an alphabetical listing and interpretation of messages in DIAL­

LOG, LOGFILE and SYSLOG.

Logging Information

The LOGFILE file
A LOGFILE is automatically created and maintained by uucp for logging all uucp commu­
nications and transactions. It is the dominant resource for determining the cause of a
communications failure. It also keeps track of requests from the local or remote system,
files transferred, completion or failure of transfers, success or failure of autodial, and
the status of uux commands. The logfile is discussed in greater detail under the uulog
command topic in the chapter "Using the Uucp Facility".

Log, Status and Cleanup 133

The following example segements from a weekly logfile show the type of messages that are
usually found in the file. Each segment is preceded by an interpretation of the segment.

• Remote system called us:

user system (date-time-PID) log entry
uucp hpfcms (6/5-8:25-23221) OK (startup)
uucp hpfcms (6/5-8:25-23221) OK (conversation complete)

• Remote system hpfclj called us and sent job 5954. We sent them jobs 5952, 5958,
and 5956. Note the user also changed:

uucp hpfclj (6/6-10:46-5183) OK (startup)
uucp hpfclj (6/6-10:46-5183) REQUESTED (S D.hpcnoaB5954 D.hpcnoaB5954 sww)
sww hpfclj (6/6-10:46-5183) COPY (SUCCEEDED)
sww hpfclj (6/6-10:46-5183) REQUESTED (S D.hpfcljX5952 X.hpflcjX5952 sww)
sww hpfclj (6/6-10:46-5183) COPY (SUCCEEDED)
sww hpfclj (6/6-10:46-5183) REQUESTED (S D.hpcnoaB5958 D.hpcnoaB5958 sww)
sww hpfclj (6/6-10:46-5183) COPY (SUCCEEDED)
sww hpfclj (6/6-10:47-5183) REQUESTED (S D.hpfcljX5956 X.hpfcljX5956 sww)
sww hpfclj (6/6-10:47-5183) COPY (SUCCEEDED)
sww hpfclj (6/6-10:47-5183) OK (conversation complete)

• Remote system hpfclj called us. We initiated two copies: 1917 and 1915:

uucp hpfclj (6/6-13:39-6583) OK (startup)
dmr hpfclj (6/6-13:39-6583) REQUEST (S D.hpfcljB1917 D.hpfcljB1917 dmr)
dmr hpfclj (6/6-13:39-6583) REQUESTED (CY)
dmr hpfclj (6/6-13:39-6583) REQUEST (S D.hpcnoaX1915 X.hpcnoaX1915 dmr)
dmr hpfclj (6/6-13:39-6583) REQUESTED (CY)
dmr hpfclj (6/6-13:39-6583) OK (conversation complete)

• We called remote system hpfcld. No work requested.

root hpfcld (6/5-6:01-21531) SUCCESSFUL (AUTODIAL)
root hpfcld (6/5-6:01-23531) SUCCEEDED (call to hpfcld)
root hpfcld (6/5-6:01-23531) OK (startup)
root hpfcld (6/5-6:01-23531) OK (conversation complete)

• Autodial to remote system hpfcla failed:

root hpfcla (6/5-8:58-24969) FAILED (AUTODIAL)
root hpdcla (6/5-8:58-24969) FAILED (call to hpfcla)

• Autodial to remote system hpdcd worked but found no carrier on hpdcd.

root hpdcd (6/5-7:58-24493) FAIL (NO CARRIER DETECTED)
root hpdcd (6/5-7:58-24493) FAILED (call to hpdcd)

134 Log, Status and Cleanup

• Autodial to remote system hpdcd was successful. Login to hpdcd failed.

root hpdcd (6/5-8:58-24981) SUCCESSFUL (AUTODIAL)
root hpdcd (6/5-8:58-24981) LOST LINE (LOGIN)
root hpdcd (6/5-8:58-24981) LOST LINE (LOGIN)
root hpdcd (6/5-8:58-24981) FAILED (LOGIN)
root hpdcd (6/5-8:58-24981) FAILED (call to hpdcd)

• Local system tried to call hpfcla. STST. * file indicates that over ten tries were
attempted. The dialing try to hpfcla was consequently stopped.

root hpfcla (6/5-20:56-127) NO CALL (MAX RECALLS)
root hpfcla (6/5-20:56-127) CAN NOT CALL (SYSTEM STATUS)

• Execution daemon uuxqt is sending mail from sww on remote system hpfclj to rmd
and dmr on the local system.

uucp hpfclj (6/6-10:47-5375) sww XQT (PATH=/bin:/usr/bin;rmail rmd)
uucp hpfclj (6/6-10:47-5375) sww XQT (PATH=/bin:/usr/bin/;rmail dmr)

NOTE

If a connection or communication is initiated from your local sys­
tem, the time in your LOGFILE is that of your local time zone.

If it is initiated from a remote system, the time in your LOGFILE is
EASTERN time.

The SYSLOG file
The SYSLOG keeps track of the number of bytes transferred between systems and the time
in seconds it took to complete the transfer. This file is used by uusub when report­
ing traffic statistics between various connections. The chapter, "Ducp File Structure",
contains an example of this file.

Log, Status and Cleanup 135

The DIALLOG file
The DIALLOG file is created by the dialit module to log information about the modem
used, the telephone number dialed, and the result of the dialing.

The ownership of DIALLOG is set at mode 600 (read permission for owner only) by the
dialit module. Only the owner, uucp, should be able to read DIALLOG because confidential
numbers are listed here.

The following segments are from a typical DIALOG file:

root ACUVENTEL212 (6/10-6:01-480) SUCCESSFUL (opening of /dev/eua04)
root ACUVENTEL212 (6/10-6:01-480) PHONE OK (phone # 9=226-1111, delay 60 sees)
root ACUVENTEL212 (6/10-6:01-480) MAPPED PHONE - SUCCESS (9&2261111)
root ACUVENTEL212 (6/10-6:01-480) SUCCESS (modem wake up)
root ACUVENTEL212 (6/10-6:01-480) REQUESTED (dial number - 9&2261111)
root ACUVENTEL212 (6/10-6:01-480) ONLINE (remote system)
root ACUVENTEL212 (6/10-6:01-480) SUCCESSFUL (autodial)

This section of the DIALLOG file indicates that the auto dialing sequence was successful.

When the uucico daemon searched the L. sys file for the name of the remote system to
contact, a remote system with a modem connection was found. Uucico then looked in
the L-deviees file which specified the line parameters to pass to the dialit routine. The
dialit routine not only performed the auto dialing sequence, but also made an entry in
the DIALLOG file.

136 Log, Status and Cleanup

Status
The STST files are the system status files. These files are created in the spool directory
by uucico, and contain information for each remote system, such as login, dialup or retry
failures. If uucp is aborted, STST. * file remains in directory /usr/spool/uucp. When two
systems are actively communicating, the files contain a TALKING status.

Each filename has the form:

where sys_name is the remote system name.

For ordinary failures such as dialup or login, the STST. * file prevents repeated tries for
about 5 minutes. This is the default time, you can change this time for any system with
the time field in the L. sys file.

When the maximum number of retries (10) is reached, the STST. * file must be manually
removed before any future attempts to converse can succeed with that remote system.
STST.* is normally deleted by the uudemons after six hours. However, you can find
information about the transaction in LOGFILE.

You can use uustat to check on one or all jobs that have been queued. The identification
printed when a job is queued is used as a key to query status of the particular job. For
example:

uustat -j123

returns a message similar to:

123 user system 06/08-08:30 06/08-9:46
JOB IS QUEUED

You can also use uustat to check on the status of the last transfer to each system on the
network, for example:

uustat -mall

returns a message resembling:

sys1 06/08-8:50 CONVERSATION SUCCEEDED

Log, Status and Cleanup 137

When sending files to a system that has not been contacted recently, the time of last
access to that system can help you determine whether the system is in service.

You can use uusub to set up and monitor subnetwork statistics. Two files are created
by uucp: L_sub and R_sub, which keep track of the defined subnetwork and their corre­
sponding statistics.

Refer to the chapter, "Using The Uucp Facility" for more information about uustat and
uusub.

Cleanup
The following shell scripts can be started from cran to routinely compact the log files,
8Y8LOG and LOGFILE, and to clean up any backlog of jobs that could not be transmitted
to other systems.

Enter the following lines into a file having a name of your choosing:

56 6-22 * * * /usr/lib/uucp/uudemon.hr » /usr/spool/uucp/DEMONLOG 2>&1
o 6 * * * /usr/lib/uucp/uudemon.day » /usr/spool/uucp/DEMONLOG 2>&1
5 * *1 /usr/lib/uucp/uudemon.wk » /usr/spool/uucp/DEMONLOG 2>&1

Next, type the following:

crontab filename

138 Log, Status and Cleanup

Spool Cleanup Script
May 29 15:18 1983 uudemon.hr Page 1

UNISRC_ID: ~(#)uudemon.hr 14.1 83/05/01
#***
#* (c) Copyright 1983 Hewlett Packard Co.
#* ALL RIGHTS RESERVED
#***

This is an example of a daemon to run hourly.
It cleans up bad spool entries and establishes
communications with specified systems. This daemon
normally runs at 20 minutes past the hour.

/usr/bin/uulog
/usr/lib/uucp/uuclean -pLCK -n6

The entries below are to contact the system specified
on an hourly basis.
Uncomment the line and replace <nodename> with the proper
system names of the remotes you want to contact. Add more
entries or delete to match your situation.

/usr/lib/uucp/uucico -r1 -s<nodename>
/usr/lib/uucp/uucico -r1 -s<nodename>
/usr/lib/uucp/uucico -r1 -s<nodename>

The -8 system option forces a call to systems that may be PASSIVE (receives calls from
other systems) only with respect to you.

Log, Status and Cleanup 139

Log System Cleanup Script
May 29 15:17 1983 uudemon.day Page 1

UNISRC_ID: ~(#)uudemon.day 14.1 83/05/01
#***
#* (c) Copyright 1983 Hewlett Packard Co.
#* ALL RIGHTS RESERVED
#***

This is an example of a daemon which should run daily
to clean up log system and call those remotes
you wish once per day. Normally run at 4:00 am.

/usr/bin/uulog
cat /usr/spool/uucp/LOGFILE » /usr/spool/uucp/LOG-WEEK
/usr/lib/uucp/uuclean -pLOGFILE -nO
cat /usr/spool/uucp/SYSLOG » /usr/spool/uucp/SYS-WEEK
/usr/lib/uucp/uuclean -pSYSLOG -nO
cat /usr/spool/uucp/DIALLOG » /usr/spool/uucp/DIAL-WEEK
/usr/lib/uucp/uuclean -pDIALLOG -nO

Below is the command to call up a system once per day.
Replace <nodename> by the system name of the remote you want
to contact. then uncomment the line.

#/usr/lib/uucp/uucico -r1 -s<nodename>

Weekly Logfile Cleanup Script
May 29 15:19 1983 uudemon.wk Page 1

UNISRC_ID: ~(#)uudemon.day 14.1 83/05/01
#***
#* (c) Copyright 1983 Hewlett Packard Co.
#* ALL RIGHTS RESERVED
#***

This is an example of a daemon to be run once per week.
The entries delete the old weekly log files and clean up
the /usr/spool/uucp directory.

/usr/lib/uucp/uuclean -pTM -pC. -pD. -pLTMP -pLOG. -pdead -pX
/usr/lib/uucp/uuclean -pLOG-WEEK -pSYS-WEEK -nO
/usr/lib/uucp/uuclean -pDIAL-WEEK -nO

Refer to the uudemons section of the "Uucp Daemons" chapter.

140 Log, Status and Cleanup

Problems 9
This chapter discusses problems that are most commonly encountered when using uucp
facilities.

Bad Connections
A bad connection is the most cause of uucp malfunctions. Both direct and modem
connections occasionally experience difficulty when connecting to remote systems. If you
examine the LOGFILE in the /usr/spool directory, the remote entry usually points to a bad
direct or modem line. Also verify that you are using compatible modems if a modem
link interconnects the two computers. Use cu to interactively attempt a call to the other
system over the problem line.

When the transaction cannot run to completion, the temporary file TM. * is not copied
into the destination file so it remains in directory /usr /spool/uucp.

Out of Space
When the disc containing directory /usr/spool is out of space, work requests cannot be
sent or received. This occurs when the system is heavily used or if non-transmittable
files have not been cleaned up. If your situation does not require that a copy of the file
be stored in the spool directory until transmission is ready to start (the -c option in the
uucp command), use the default -c option instead.

Out-of-date Information
Passwords, logins and phone numbers for remote systems are sometimes changed without
your knowing of the change. Be sure that your automatic dialing mechanism does not
keep trying to dial an unreachable system.

You should not change the mode (protection) bits on uucp files that are command mod­
ules. For example, commands need an execution-by-everybody mode.

Abnormal Termination
DO NOT turn off power to your computer while uucp is running even though uucp may
be running in background mode.

Do not press any key on your keyboard while you are using cu with "-%take" or "-%put".

Problems 141

Notes

142 Problems

Log Entry Messages A
This appendix provides an alphabetical listing and interpretation of messages found in
DIALLOG, LOGFILE and SYSLOG files.

/usr/spool/uucp/DIALLOG
Dialit logs dialing status information in the DIALLOG file. Direct uucp connections do not
involve dialing, so they do not produce DIALLOG file entries. This file grows very quickly.
If a collision occurs between two processes wishing to append to the file, one of them
starts a DIAL. <pid> file and writes all further messages to that file instead of to DIALLOG
(pid is the process identification number).

All DIAL* files contain potentially sensitive information (i.e., phone numbers for other
systems) and should be protected against unauthorized access. Therefore DIAL* files are
owned by user uucp, and their protection mode is set as unreadable and unwritable by
the public at the time they are created.

The dialit routine can be modified by users by recompiling the source.

Meaning of Entries
The information given here may not be applicable to a modified version of dialit.

The general format for an entry in the DIALLOG file is:

user eu_type (month/date-hour:min-pid) message

where:

user

month/date-hour:min

is the user who requested the transaction

is the calling unit type, e.g. a device as defined III

/ust/lib/uuep/L-deviees

refers to the 24-hour time based on the timezone of the
originator process (values can be set by the invoking parent
process)

Log Entry Messages 143

pid

message

Sample Entries

is the process identifier of the process performing the logging
operation (useful for tracing individual process's log entries)

is one of a number of message lines (refer to the "Message
Interpretations" section below).

These are some sample DIALLOG entries.

uucp ACUVENTEL (8/24-15:43-8307) SUCCESSFUL (opening of /dev/cul03)
uucp ACUVENTEL (8/24-15:43-8307) PHONE OK (phone # 3524-, delay ...)
uucp ACUVENTEL (8/24-15:43-8307) MAPPED PHONE - SUCCESS (3524)
uucp ACUVENTEL (8/24-15:43-8307) SUCCESS (modem wake up)
uucp ACUVENTEL (8/24-15:43-8307) REQUESTED (dial number - 3524)
uucp ACUVENTEL (8/24-15:43-8307) ONLINE (remote system)
uucp ACUVENTEL (8/24-15:43-8307) SUCCESSFUL (autodial)

Message Interpretations
ATTEMPTING (second modem wakeup)
This is logged after the first wakeup attempt fails.

BAD (phone number - <number»
The phone number the auto dial module used is incorrect.

ERROR (bad character in phone number <character»
<character> in phone number is not recognized by dialcodes or dialit module.

FAILED (autodial)
This message appears as a frequent companion with other FAILED messages. The autodial
can fail to make a connection for many different reasons: invalid cua device, failure to
open the cua special file, an incorrect phone number, no response from the dial prompt,
the modem wakeup failed, the attempt to dial failed, the modem type is unknown, slow
answer (with carrier), a busy number, or line noise.

FAILED (connection with remote system)
The autodial module failed to connect to a remote system. This is a secondary entry
logged after some other failure.

144 Log Entry Messages

FAILED (dial of phone <phone_number»
FAILED (dialing of phone number)
The modem reported dial failure probably due to no answer fast enough (with carrier),
a busy number, or line noise.

FAILED (invalid cua device)
The configuration of the cua device is incorrect. Check the mknod command, the getty
entry, the L.sys and the L-devices special file names.

FAILED (mapping of phone number)
Special characters, such as "=", "-", in the phone number could not be interpreted by
the dialcodes module.

FAILED (modem wake up)
The dialit program could not wake up and synchronize with the modem the first time it
tried.

FAILED (no response from dial prompt)
After waiting for a length of time, there was no response from the dial prompt.

FAILED (open of cua <device»
The uucp facility could not open the call unit. Check the mknod command special
file, the getty entry and the L. sys and L-devices cua field entries.

FAILED (second wake up)
The dialit program could not wake up and synchronize with the modem the second time
it tried.

MAPPED PHONE - SUCCESS «mapped phone number»
The dialit routine succeeded in mapping the phone number as given, containing special
characters such as "-" (pause) and "=" (secondary dial tone) separators, into the form
the modem understands. This is the form <mapped phone number> appears in.

NOT ATTEMPTING (second wakeup)
This message follows the "FAILED (modem wakeup)" for certain modems.

NOT KNOWN (modem type specified)
The dialit module does not recognize the modem device specified.

Log Entry Messages 145

NOT RECEIVED (modem parity message)
The modem is not set for the proper parity.

ONLINE (remote system)
Dialit got a carrier signal from the remote modem.

PHONE OK (phone # <original phone number>. delay <sees> sees)
Dialit accepted the given phone number as valid, containing "-" (pause) and "=" (sec­
ondary dial tone) separators. This is the form <original phone number> appears in.
<sees> is the total computed timeout that dialit allows the modem for dialing the phone
number and returning a response.

REQUESTED (dial phone - <mapped phone number»
Dialit instructed the modem to dial the phone number shown, for the first time. The
format of <mapped phone number> is the actual form passed to the modem.

RETRYING (dial number - <mapped phone number»
Dialit instructed the modem to dial the phone number shown, for the second time, after
a failure. The format of <mapped phone number> is the actual form passed to the modem.

SUCCESS (modem wake up)
Dialit succeeded in resetting and synchronizing with the local modem.

SUCCESS (modem wake up - second attempt)
Dialit succeeded in resetting and synchronizing with the local modem on the second
attempt.

SUCCESSFUL (autodial)
This is the last entry logged for a successful autodial. It means dialit terminated and
returned "successful".

SUCCESSFUL (dial phone <phone number»
The dialit module succeeded in dialing the <phone number>.

SUCCESSFUL (opening of eua device <devieename»
Dialit managed to open the auto dial device <devieename> to talk to the modem.

146 Log Entry Messages

lusrlspool/uucp/LOGFILE
Uucp, UUX, uucico, and uuxqt log status information here. The file grows very quickly.
If a collision occurs between two processes wishing to append to the file, one of them
starts a LOG. <pid> file and writes all further messages there instead of LOGFILE. If uulog
is invoked with no arguments, it appends all LOG. * files to LOGFILE and then removes the
LOG.*.

NOTE

If a LOG.* file is active (still in use) when this occurs, the process
using it continues to hold the file open and write to it. Since LOG. *
is unlinked when closed, all information written after the uulog
executes is lost.

Meaning of Entries
The general format for a LOGFILE entry is:

user system (month/date-hour:min-pid) message

where:

user

system

month/date-hour:min

pid

message

is the name of the user requesting the transaction

is the name of the remote system (may be a null or undefined
field if specified by the remote system)

is the 24-hour time based on the transaction originator's
time zone (the timezone could be set to any value by the
invoking parent process but never gets set for transactions
initiated by remote systems since their login shell is uucico.
The times in the file may not be sequential because of old
LOG. * files appended by uulog)

is the process identifier of the logging process (useful for
tracing individual process's log entries)

is one of a number of message lines (refer to the "Message
Interpretations" section below).

Log Entry Messages 147

Sample Entries
The following entries are sample entries from a LOGFILE.

uucp hp-pcd (8/24-14:34-7710) SUCCESSFUL (AUTODIAL)
uucp hp-pcd (8/24-14:34-7710) SUCCEEDED (call to hp-pcd)
uucp hp-pcd (8/24-14:34-7710) OK (startup)
uucp hp-pcd (8/24-14:34-7710) REQUEST (S D.hp-pcdBl170 ...)
uucp hp-pcd (8/24-14:35-7710) REQUESTED (CY)
uucp hp-pcd (8/24-14:35-7710) REQUEST (S D.hpfclaXl168 ...)
uucp hp-pcd (8/24-14:35-7710) REQUESTED (CY)
uucp hp-pcd (8/24-14:35-7710) OK (conversation complete)

Message Interpretations
ACCESS (DENIED)
A system tried to access a file for which it did not have file path access permission.

BAD READ (expected <message> got <message»
Transaction terminated abnormally; <message (s) > indicate problem.

CAN NOT CALL (SYSTEM STATUS)
A /usr/spool/uucp/STST. <nodename> file still exists for this nodename. The system spec­
ified with the [-ssys] option could not be called.

CAUGHT (SIGNAL N)
An interrupt, hangup, quit or terminate signal was generated during the uucico operation.
N is the signal number.

COpy (FAILED)
The system failed to copy a requested file.

COpy (SUCCEEDED)
The system succeeded in copying a requested file.

DENIED (CAN'T OPEN)
An unauthorized access to a protected file was requested.

DONE (WORK HERE)
All local copies are finished.

FAIL (NO CARRIER DETECTED)
After an otherwise successful dialup, uucico checked and found no carrier on a modem
line, independent of dialit.

148 Log Entry Messages

FAILED (AUTODIAL)
Could not dial another system for some reason; see DIALLOG.

FAILED (CAN'T CREATE TM)
The temporary file (used to hold data until the transfer has completed successfully) can
not be created.

FAILED (CAN'T READ DATA)
The input file is protected and can not be opened.

FAILED (DIALUP ACU write)
An error occurred trying to access the modem.

FAILED (DIALUP LINE open)
The dial was completed but the line could not be opened.

FAILED (LOGIN)
Could not successfully negotiate the login sequence specified in the /uer/lib/uucp/L. eys
file.

FAILED (call to <nodename»
Usually a secondary entry, after a different failure entry.

FAILED (conversation complete)
Usually a secondary entry, after another failure occurred. This could be because a packet
of information could not be transferred correctly or the connection had a problem.

FAILED (startup)
The local and remote systems could not agree on a protocol.

<file name> XUUCP (DENIED)
A request to copy a protected remote file was denied.

HANDSHAKE FAILED (BADSEQ)
The remote system sequence number on the local system does not match the local system
sequence number on the remote system.

HANDSHAKE FAILED (CB)
Succeeded in logging in on a remote system, but the other system is set up to call this
system back, so the connection failed. Usually the other system then calls back within a
short time (usually on a cheaper line or at a higher baud rate).

Log Entry Messages 149

LOCKED (call to <nodename»
A /usr/spool/uucp/LCK .. <nodename> file already exists for the nodename, due to another
conversation already in process or a file left behind due to some sort of abort.

LOST LINE (LOGIN)
An error occurred during the login process.

NO (AUTODIAL DEVICE)
There is no available auto dial device. A /usr / spool/uucp/LCK .. <devicename> file already
exists for every possible device, due to another conversation already in process or a file
left behind due to some sort of abort.

NO (DEVICE)
A device having charactertics matching an entry in the L-devices file could not be found.

NO CALL. MAX RECALLS
The call was attempted ten times without success.

NO CALL (RETRY TIME NOT REACHED)
A /usr/spool/uucp/STST. <nodename> file still exists for this nodename, or, and in any
case, the retry time specified in /usr/lib/uucp/L. sys has not yet been reached.

NO WORK «nodename»
Uucico was initiated for <nodename>, but there is no work pending for that system.

OK (conversation complete)
Normal end of conversation with a remote system.

OK (startup)
Normal start of conversation with a remote system. If this system is the master, this
entry is preceded by other entries; if this system is the slave (it was logged into), this is
the first entry for the conversation.

PERMISSION (DENIED)
An unauthorized access to a protected file was requested.

PREVIOUS (BADSEQ)
The call to the remote system failed because the remote system's sequence number for the
local system did not match the local system's sequence number for the remote system.

150 Log Entry Messages

QUE'D «nodename»
A copy (uucp, not uux) operation was queued on the local system, destined for <nodename>.

REQUEST (COpy FAILED <message»
The message could be any of the following:
<no message> the reason is not given by remote system can't copy to directory/file - file
left in uucppublic local access to path denied remote access to path/file denied remote
system can't create temporary file system error - illegal uucp command generated.

REQUESTED (CY)
The request for work was completed.

REQUESTED (file user)
The user on a remote system requests the local file transferred.

REQUIRED (CALLBACK)
The remote system called requires that both systems hang up, the remote system then
calls the original caller asking the originator to verify its identity.

REQUEST (S <source filename> <dest filename> <username»
Start of a transfer from this system to a remote system.

return_number from system user (MAIL FAIL)
The mail command failed and the return_number was returned to the sender: user on
system.

SUCCEEDED (call to <nodename»
After successful autodial or direct connect, this entry indicates that the local system
succeeded in logging in to the remote, but has not (yet) synchronized with the remote
uucico.

SUCCESSFUL (AUTODIAL)
This is the first entry for an outbound conversation, where the local system is the master.
It means the local system has succeeded in connecting with the remote, but has not (yet)
logged in.

TIMEOUT (AUTODIALER)
The autodial module took longer than timeout value to make a successful connection to
a remote system. The timeout value is 30 seconds or five times the length of the phone
number, whichever is longer.

Log Entry Messages 151

TIMEOUT (DIALUP DN write)
The autodial module took longer than two minutes to make a successful connection to a
remote system.

user XQT (DENIED command)
The user tried to execute a command on a remote system which was not in the remote
system's L. cmds file.

user XQT (path)
The file name which included a path was expanded to the full path name.

/usr/spool/uucp/LCK.SQ (CAN'T LOCK)
An error occurred five times trying to lock the sequence file.

WRONG TIME TO CALL «nodename»
The /usr/lib/uucp/L. sys file does not allow a call to the remote system at this time.
This sort of entry appears if the L. sys line for the nodename does not parse properly,
for reasons ranging from it containing a nodename only (the simplest way to queue work
only for a remote site the local system is passive to) up to an error in the syntax given
for the legal call times.

XQT QUE'D «command line»
A remote execute (uux, not uucp) operation was queued on the local system, destined
for a remote system nodename.

<username> XQT (PATH=<pathlist>;<commandline»
After uucico completes a conversation, it starts uuxqt to process all /usr/spool/uucp/x. *
files. One such entry is logged for each x. * file processed.

152 Log Entry Messages

/usr/spool/uucp/SYSLOG
Uucico logs information here about actual bytes transferred. The file grows quickly. In
case of a collision some data may be lost.

The general form for a SYSLOG entry is:

user system (month/date-hr:min) (sec) direction data <bytes> bytes <sees> sees

where:

user

system

month/date-hr:min

sec

direction

bytes

sees

is the user who requested the transaction (may be a user
from the remote system)

is the name of the remote system (may be null or undefined
if specified by the remote system)

is the 24-hour time based on the timezone given by the
originator (the timezone could be set to any value by an an
invoking parent process; it never gets set for transactions
initiated by remote systems, since their login shell is uucico.)

is the time in seconds of the current system clock (indepen­
dent of any timezone and is useful for programs that deal
with the data numerically);

can be either "sent" or "received"

is the integer number of bytes transferred

is the integer number of elapsed seconds for the transfer.

Log Entry Messages 153

Notes

154 Log Entry Messages

Index

a
ADMIN file 55, 72
ASI card installation for Series 500 ... 9

b
binary files ... 54

c
cleanup script .. 138-140
cu command:

data transmission .. 81-82
description of
direct connection .. .
modem connection ;

cua device file, creation of
cuI device file, creation of

daemons, uucp
data files:

d

1,79
8(}-81
79-80
32-34
32-34

73-76

data execution files .. 48
image data files .. 47-48

data transfer:
multiple files between local and remote system 41-43
single file between local and remote system 40-41
uux command sequences .. 43

device files, creation of .. 32-34
Dialit file ... 54, 67
Dialit. c file:

description of ... 54, 63
program example ... 64-67

DIALLOG file ... 53, 136, 143-146

Index 155

direct connections:
6-channel MUX to 6-channel MUX 21,24,25,26
8-channel MUX to 6-channel MUX 21,23
Serial interface card to 6-channel MUX 21,22,25
Series 200/300 serial to Series 200/300 serial 18
Series 200/300 serial to Series 500 8-channel MUX 15
Series 200/300 serial to Series 500 ASI 16-17
Series 500 8-channel MUX to Series 500 8-channel MUX 19
Series 500 ASI to Series 500 8-channel MUX 18
Series 500 ASI to Series 500 ASI 20-21
special connector ... 27-28
special considerations .. 27

e
execution files:

command line .. 49, 51-52
eXaIIlple .. 52
fields .. 49
required file line. .. 49, 50
standard input information line 49, 51
standard output information line 49, 51
user line ... 49, 50

f
file structure, UUcp .. 39

9
getting started ... 5
getty entries .. 31, 36

h
hardware configuration ... 9-28
HP AdvanceN et .. 8
HP 2334A configuration procedure:

adapter cards .. 109-110
adding new uucp entries ... 125-127
ASG command mode operation 124-125
configuration procedure ... 113-131
CONFIGURE mode operation 113-115
connecting cables to an HP 2334A 108-110

156 Index

creating new configuration files 00000000000000000000000000000000000000 127-131
HSA command mode operation 0 119
installation 00 0 0 0 0 107-110
local off-line configuration 0 108-110, 111
power-on and CPU switch test 000000000000000000000000000000000000000 107-108
preparing for configuration 0 112
prerequisites 0 106-107
remote off-line configuration 000 110-111
sample off-line configuration listing 0000 000 0 0 0 0 0 115-119
step-by-step HSA configuration procedure 00000000000000000000000000000 120-122
UDP command mode operation 00000000000000000000000000000000000000 123-124

.
I

installing software 0 29-38
invoking uucp daemons 0 75-76

I
L-devices file 0 54, 61--62
L-dialcodes file 0 54, 62
LAN network 0 7
Locmds file 00000 00 0 0 0 0 0 0 000 54, 55
library files:

ADMIN 0 55, 72
Dialit 0 54, 67
Dialito coo 0 54, 63-67
editing for uucp 0 37-38
file names 0 54-55
L-devices 0000000000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000 0 0 54, 61--62
L-dialcodes 0 54, 62
Lo cmds 0 54, 55
Losys 0 55, 68-72
SEQF 00 0 0 0 0 0 0 0 0 0 0 54,56
USERFILE 00 0 0 0 0 0 0 54, 57-61

loading optional drivers 0 30-31
lockfiles 0 52, 73
log files:

cleanup 00 0 0 0 0 0 0 0 138-140
description of 0 53
DIALLOG 000000000000000000000000000000000000 .. 0 0 0 0 0 0 0 53,136,143-146
entry messages 00 0 143-153

Index 157

LOGFILE .. 53,93, 133-135, 147-152
SYSLOG .. 53, 135, 153

login name and password for uucp ... 35
L.sys file .. 55, 68-72

m
mail command .. 2, 101
modem connections ... 13-14
multimux interface installation (see HP 2334A configuration procedure) 106-131
MUX card installation:

Series 200/300 ... 10-12
Series 500 .. 9-10
Series 800 .. 10

n
networks:

HP AdvanceN et .. 8
LAN (Local Area Network) .. 7
PDN (Public Data Network) ... 105
PSN (Packet Switching Network) 103-105
RJE (Remote Job Entry) .. 6-7

node names, uucp ... 34

p
Packet Switching Network (PSN) 103-105
pathnames .. 77-78
problems:

abnormal termination ... 141
bad connections .. 141
out of space ... 141
out-of-date information ... 141

process spawning, uucp ... 73-75
public area ... 44
Public Data Network (PDN) ... 105

r
RJE network .. 6-7

158 Index

s
security sequence-checking:

SEQF file .. 54, 56
SQFfLE ... 56

separators required between uucp command options 78
serial I/O card installation for Series 200/300 10-12
software installation:

boot and login process .. 30-31
creating a tty device file ... 32-34
editing library files for uucp ... 37-38
getty entries .. 31, 36
loading optional drivers ... 30-31
node names ... 34
uucp login .. 35

spool directory:
public area ... 44
uucp directory .. 44
workfiles .. 44-47

status files, uucp ... 137-138
SYSLOG file ... 53, 135, 153

t
temporary files ... 52-53
troubleshooting .. 141
tty device file, creation of 32-34

u
USERFILE:

example .. 58
line entry ... 55-58
null user entry ... 60-61
search (local and remote systems) 59-61

uucico daemon ... 73-75
uuclean command ... 92
uucp:

command errors ... 88
command execution .. 73-75
command syntax ... 83-84
directory ... 44
file structure .. 39

Index 159

forwarding files through several systems 85-87
invoking daemons .. 75-76
login ... 35
node names ... 34
option separators .. 78
pathnames .. 77-78
process spawning ... 73-75
program description .. 1-2
receiving files from remote system ... 85
sending files to a remote system .. 84-85
status files .. 137-138
X.25 configuration (see HP 2334A configuration procedure) 106-131

uudemons .. 76
uulog command ... ')3
uuname command ... 94
uupick command ... 95-96
uustat command ... 96-97
uusub command ... 98-100
uuto command ... 100
uux command:

command description ... 2
command sequences ... 43
command syntax ... 89-90
error numbers .. 91

example ... 9C-91
uuxqt daemon ... 75, 76

w
workfiles 44-47

x
X.25:

configuring uucp for (see HP 2334A configuration procedure) 106-131
description of .. 103
Packet Switching Network (PSN) 103-105
Public Data Network (PDN) ... 105

160 Index

Table of Contents
Using Curses and Terminfo

Introduction. .. 1
Display Data Handling .. 2

Output Data Structure .. 2
Applications Program Structure 3
Applications Program Operation. .. 5

Keyboard Input .. 6
Keypad Character Handling. .. 7
Keyboard Input Program Example. .. 9

Display Highlighting. .. 10
Multiple Windows ... 13

Pads ... 13
Creating Windows ... 14
Using Multiple Windows .. 14
Subwindows ... 16

Multiple Terminals. .. 17
Low-Level Terminfo Usage .. 19
A Larger Example ... 21

Use of Escape in Program Control 22
Program Routines. .. 23

Program Structure Considerations 23
Terminal Initialization Routines 24
Option Setting Routines .. 25
Terminal Configuration Routines. .. 26
Window Manipulation Routines. .. 27
Terminal Data Output Routines 28
Window Writing Routines. .. 28
Window Data Input Routines 30
Terminal Data Input Routines. .. 30
Video Highlighting Attribute Routines. .. 31
Miscellaneous Functions .. 32

curses Routines .. 33
Description of Routines .. 33
Terminfo Routines ... 52
Termcap Compatibility Routines. .. 54

PrograIIl Operation .. 55
Insert/Delete Line ... 55
Additional Terminals .. 55
Multiple Terminals ... 56
Video Highlighting ... 57
Special Keys .. 59
Scrolling Regions .. 60
Mini-Curses 60
TTY Mode Functions .. 61

EXaIIlple PrograIIls .. 63
SCATTER .. 63
SHOW ... 64
HIGHLIGHT. .. 65
WINDOW .. 66
TWO ... 68
TERMHL ... 70
EDITOR ... 72

Index

ii

Using Curses and Terminfo
Introduction
This tutorial describes the operation of curses(3x} and terminfo(5}. It is intended for use by
programmers who are interested in writing screen-oriented software using the curses package.
curses uses terminfo when interacting with a given terminal in the system and when formatting
display data for subsequent output to the terminal display.

curses is a versatile cursor and screen control package that has many capabilities. It is designed
to efficiently utilize terminal screen control and display capabilities, thus limiting its demand
for computer CPU resources. It can create and move windows and subwindows, use display
highlighting features, and support other terminal capabilities that enhance visual interaction with
display terminal users. All interaction with a given terminal is tailored to the terminal type which
is obtained from the environment variable TERM).

curses also interacts with the terminal keyboard, and can handle user inputs. Its ability to handle
keys that produce multi-character sequences (such as arrow keys) as ordinary keys can be used
to add versatility to application programs.

Using Curses and Terminfo 1

Display Data Handling

Output Data Structure
curses uses data structures called windows to collect display text, then transfers the data struc­
tures to the terminal display screen during execution of refresh routines. Each window contains
a two-dimensional data array for storing text and character highlighting attributes. Other data
structures associated with the window contain the current cursor position and various pointers,
and fill other curses needs.

Two windows are always present when curses is active. Current screen is named curser for
programming purposes, and represents the current screen. It is used as a reference when
optimizing output operations to the CRT screen. The standard screen window, named stdser,
is the default destination for all text output operations that are not directed to a window specified
in the function. Both curser and stdscr have the same row and column dimensions as the physical
display screen.

Additional program-definable windows can be created and dimensioned as programming needs
dictate. Such windows can be any size, provided they do not exceed the rowand/or column
capacity of the physical display screen.

When a program requires a window that is larger than the available display screen, pads are
used. Pads have the same structure and characteristics as a window, but they can be any size
within the limits of reasonable memory usage (each pad requires two bytes of memory per
character position in the pad, plus data structure overhead).

Text and Highlighting Data Format
Every window data structure contains, among other things, a two-dimensional array of 16-bit data
words, each word corresponding to a displayable character in the window. Seven bits in each
16-bit word contain the 7-bit character code of the character associated with the corresponding
screen display position. The remaining nine bits specify which highlighting attributes, if any, are
to be used when the character is displayed. The window data structure also contains a set of
current attributes that are used to form the attribute bits as each word is placed in the array
by addch or its equivalent. If text highlighting is to be changed for a given character or set of
characters, an update to the current attribute set must be performed by attrset (or its equivalent)
before addch is performed. The beginning default attribute set disables all highlighting.

2 Using Curses and Terminfo

Applications Program Structure
Consider the following example of an application program structure that uses curses:

#include <curses.h>

initscr(); 1* Initialization *1

cbreak();I* Various optional mode settings *1
nonlO;
noechoO;

while (!done) {/* Main body of program *1

1* Sample calls to draw on screen *1
move(row,col);
addch(ch);
printw("Formatted print with value %d\n", value);

}

1* Flush output *1
refreshO;

endwin();I* Clean up *1
exit(O);

Example of Program Framework for Using curses

One of curses' major advantages is its ability to optimize the process of updating terminal screen
contents, thus reducing the demand for CPU and I/O resources by reducing the amount of data
handling required for requested changes in displayed text. This is accomplished by comparing
the current screen contents with the window being transferred, then transmitting only those
text and control characters that are needed to most efficiently update the screen. Other screen
contents remain undisturbed.

NOTE

Most terminals are equipped with hardware scrolling whose operating
characteristics make it impossible to write characters in the extreme
lower right-hand character position.

Using Curses and Terminfo 3

In order to optimize screen updates, curses must have access to a data base that reflects current
screen contents. When an application program starts execution, the current screen is unknown.
To provide a starting current screen reference, a screen clearing operation must be set up early
in the program by a call to initscrO which identifies the terminal, initializes data structures, and
enables the clearok option in curses so that the screen is cleared during the first refresh operation
in the program. Upon completion of the first refresh operation, the terminal screen is an exact
replica of the text stored in the current screen data base. Use of initscrO in a typical program is
shown in the preceding sample program structure example.

When initialization is complete, other operating modes and options can be selected as dictated
by program needs. Available operating modes include cbreakO and idlok(stdscr, TRUE) which are
explained in detail later. During program execution, screen output is handled through routines
such as addch(ch) and printw(fmt,args). They are equivalent to putchar and printf, respectively,
but use curses in addition to the usual other system facilities. Cursor and character positioning
are performed by moue and other similar calls.

All of the routines mentioned send their output to program-specified window data structures;
not directly to the display screen. The window data structure represents all or part of a CRT
display screen, and contains the following items:

• An array of characters to be displayed on the screen area defined by the window bound­
aries,

• Present cursor location,

• Current set of video attributes, and

• Various operating modes and options.

There is little need to be concerned with windows (unless you use several windows during program
operation), except to recognize that the data structure corresponding to a given window acts as
a buffer/data accumulator for display output requests.

Accumulated contents of a window data structure are sent to the display screen by use of refreshO
or an equivalent function for windows and pads (functionally similar to a flush). curses considers
many different ways of handling the output operation, taking into account the various available
terminal characteristics, similarities between the current screen display and the desired pattern,
and other factors. Refresh operations are usually handled using as few characters as possible,
but not always.

4 Using Curses and Terminfo

When the application program is finished, certain clean-up operations should be performed before
termination. While the amount of clean-up needed varies, depending on program structure and
capabilities, termination should always include a call to endwin{}. endwinO restores all terminal
settings to their original state prior to program execution, places the cursor at the bottom left
corner of the screen, and dismantles data structures that are no longer needed.

Among the example programs at the end of this tutorial is a program named scatter that
reads a file and displays the file contents in random order on the CRT display screen. While
some application programs assume that terminals have twenty-four 80-character lines of available
display space, many terminals do not. To accommodate display terminals having various screen
sizes, the variables LINES and COLS are defined by initscr to specify the current screen size.
Application programs should always use screen-size variables rather than assuming a 24 X 80
display screen.

Applications Program Operation
During program operation, no data is output to the display terminal until refresh is called.
Instead, program routines such as move and addch place data in a window data structure called
stdscr (standard screen) that is maintained by curses. curses also maintains a replica of what is
on the current physical screen in curser for updating purposes.

When refresh or an equivalent function is called, curses compares the curser window with
what is presently contained in stdscr (or other specified window or pad). The results of the
comparison are combined with terminal hardware capabilities to construct character streams
that most efficiently update the physical display to the desired contents. Available terminal
capabilities are considered while comparing stdscr and curser so that the most efficient means of
updating the screen can be determined. This sequence is referred to as cursor optimization, and
is the basis for naming the curses package. During the update operation, curser is also changed
to reflect the contents of the updated screen.

Using Curses and Terminfo 5

Keyboard Input
curses capabilities include more than screen writing functions. Several keyboard input functions
are also supported, including special handling of certain keys that normally generate a sequence of
two or more characters (usually an escape code followed by a single character, but not always).
Such keys can then be treated as ordinary single-character keys for improved programming
versatility.

The most commonly used keyboard input function is getch() which waits for the terminal user
to type a character on the terminal keyboard, then returns the character to the calling program.
getch is similar to getchar, except that it uses curses instead of other HP-UX facilities. getch is
particularly useful in programs that use cbreak() or noecho() options because getch supports
several terminal- and system-dependent options that are not accessible through getchar. Available
getch options include:

• keypad enables programmers to use non-typing keys such as arrow keys, function keys,
and other special keys that transmit escape sequences or other multi-character sequences
as ordinary single-character keys. Keypad character code length requires 16-bit integer
variables for storage.

• nodelay enabled option causes getch to return immediately with the value -1 if no input
character is waiting. This avoids program delays that would otherwise result when no
response from the terminal is available.

• getstr can be used to input an entire string of characters up to a newline instead of a
single character. It also handles echo, erase, and kill character functions associated with
the input operation.

Example programs at the end of this tutorial show how these options are used.

6 Using Curses and Terminfo

Keypad Character Handling
When keypad is enabled, keypad character sequence conversion tables in the terminfo data
base are used to map keypad character sequences into corresponding single, 16-bit character
form. Each supported keypad key must produce a unique character or character sequence when
pressed. All convertible sequences must be included in the terminfo data base. If any sequence
is absent from the table, it cannot be converted, so it is handled in unaltered form. The following
special keys are assigned the values and names indicated. Some of the keys listed may not
be supported on given terminals, depending on the terminal model and its internal operating
characteristics, and whether the conversion sequence is in term info.

NOTE

Keypad character codes do not fit in a normal 8-bit data element. There­
fore a char variable cannot be used. Use a larger (16-bit) variable for
storing and handling keypad character codes.

Using Curses and Terminfo 7

Keypad Character Code Values

Character Name Octal Value Key name

KEY_BREAK 0401 Break key (unreliable)

KEY_DOWN 0402 Down Arrow key

KEY_UP 0403 Up Arrow key

KEY_LEFT 0404 Left Arrow key

KEY_RIGHT 0405 Right Arrow key

KEY_HOME 0406 Home Up (to upper left corner) key

KEY_BACKSPACE 0407 Backspace key (unreliable)

KEYJO 0410 Function Key 0

.

KEYJ(n) 041O+(n) Function Key (n)

KEY_DL 0510 Delete Line key

KEY_IL 0511 Insert Line key

KEY_DC 0512 Delete Character key

KEY_IC 0513 Insert Character or Enter Insert Mode key

KEY_EIC 0514 Exit Insert-character Mode Key

KEY_CLEAR 0515 Clear Screen key

KEY_EOS 0516 Clear to End-of-Screen key

KEY_EOL 0517 Clear to End-of-line key

KEY_SF 0520 Scroll Forward 1 Line

KEY_SR 0521 Scroll Reverse (backwards) 1 line

KEY_NPAGE 0522 Next Page key

KEY_PPAGE 0523 Previous Page key

KEY_STAB 0524 Set Tab key

KEY_CTAB 0525 Clear Tab key

KEY_CATAB 0526 Clear All Tabs key

KEY_ENTER 0527 Enter or Send key (unreliable)

KEY_SRESET 0530 Soft (partial) Reset key (unreliable)

KEY_RESET 0531 Reset or Hard Reset key (unreliable)

KEY_PRINT 0532 Print or Copy key

KEY_LL 0533 Home Down (to lower left) key

8 Using Curses and Terminfo

Keyboard Input Program Example
The example program show at the end of this tutorial contains an example use of getch. Show
displays a file, one screen at a time; advancing to the next page each time the space bar is
pressed. Nearly any exercise for curses can be created by constructing an input file that contains
a series of 24-line pages, each page varying slightly from the previous page.

In the show program:

• cbreak is used so that only the space bar need be pressed (use of RETURN is unnecessary).

• Noecho is used to prevent the character transmitted by the space bar from being echoed
during refresh calls so that echoed character does not alter vertical alignment of the display
during refresh operations.

• non/ is called to enable additional screen optimization.

• id/ok allows insert and delete line. This capability helps streamline updates in some in­
stances, but produces undesirable effects in other cases. Therefore an option to allow or
disallow the capability has been provided.

• cJrtoeo/ clears from cursor to end of current line.

• cJrtobot clears from cursor to end of current line, then clears all subsequent lines to the
bottom of the screen.

Using Curses and Terminfo 9

Display Highlighting
curses supports nine highlighting attributes, each of which has a corresponding 16-bit integer
constant named in the include file < curses. h>. The value of each constant is selected such
that one bit (corresponding to the attribute) in the 16-bit integer is set while all other bits are
cleared. Here is a list of the nine attributes with their corresponding enable-bit positions. The
name and octal value of each constant is also shown (note that only six digits are needed to
represent the 16-bit value; the leading zero identifies the constant as an octal value).

• Standout (bit 7):
A_STANDOUT = 0000200

• Underlining (bit 8):
A_UNDERLINE = 0000400

• Inverse Video (bit 9):
A_REVERSE = 0001000)

• Blinking (bit 10):
A_BLINK = 0002000

• Dim (bit 11):
A_DIM = 0004000

• Bold (bit 12):
A_BOLD = 0010000

• Invisible (bit 13):
A_INVIS = 0020000

• No print or display (bit 14):
A_PROTECT = 0040000

• Alternate Character Set (bit 15):
A_ALTCHARSET = 0100000

addch and waddch store window characters as 16-bit data words where the lower seven bits
(0-6) of each word contain the character code and the upper nine bits (7-15), when set, enable
the corresponding display highlighting attributes when that character is displayed on a terminal.
Each attribute bit corresponds to one of the highlighting functions listed above. Obviously, any
selected highlighting feature that is not available on a given terminal cannot be used even though
the capability is standard fare for curses. However, when a requested attribute is not available
on a given terminal, curses attempts to identify and use a suitable substitute. If none is possible,
the attribute is ignored.

Three other constants in < curses. h> are also useful:

• A_NORMAL (value = 0000000) can be used as an argument for attrset to disable all attributes.
attrset(A_NORMAL) is equivalent to attrset(O), but more descriptive.

• A_ATTRIBUTES has an octal value of 0177600. It can be used in a bit-level logical AND to
remove character bits, isolating the attributes attached to a given character.

• A_ CHARTEXT has an octal value of 0000177. It is useful in a bit-level logical AND to discard
all except the lower seven bits of the data word; in effect, separating the character from
its highlighting attributes.

10 Using Curses and Terminfo

curses maintains a set of current attributes for each window. Whenever text is being placed
in a given window by the program, the current attribute bits for the selected window are added
to each character of text data, forming a 16-bit word for each character handled. To select a
specific combination of attributes, a program call to attrset (or attron) with new attribute values
must precede text output to the window. This can be used to enable one or more attributes
when all were previously disabled, disable all currently enabled attributes (attrset(O)) , or change
the current set to any other new current set.

To enable one or more attributes in the current set without altering other active or inactive
attributes, call attron. A call to attroff performs the opposite function, disabling the selected
attributes without disturbing any other attributes in the current set.

curses always uses current attribute values, so a call to attrset, attron, or attroff (or their related
window functions) must be used whenever you begin, end, or change any selected highlighting
option. Here is an example program segment that illustrates how to set a word in boldface then
restore normal display attributes for remaining text:

printw("A word in II);
attrset(A_BOLD);
printw("boldface") ;
attrset(O);
printw(" really stands out.\n");

refreshO;

In this example, the space characters before and after the word boldface are included in text
blocks outside (before and after) the attrset calls. This technique prevents curses from applying
display highlights to the spaces, thus avoiding possible undesirable effects; especially in situations
where curses attempts to substitute an alternative for unavailable highlighting features.

The attribute A_STANDOUT offers unique program flexibility. In many interactive programs, dis­
played text needs to' be enhanced to attract attention. However, it is not critical that the text be
displayed with specific attributes. Many multi-terminal systems contain various terminal models
that do not support identical highlighting features. For versatility, A_STANDOUT uses the termi­
nal characteristics stored in the term info data base to determine the most pleasing highlighting
feature available on the terminal being addressed (usually bold or inverse Video), then uses that
feature when sending corresponding text to the selected window on the terminal display screen.
Two functions, standoutO and standendO are proVided so you can conveniently enable and disable
A_STANDOUT highlighting.

Using Curses and Terminfo 11

attrset can be used to select only one (such as A_BOLD, shown in the earlier example in this section)
or multiple attributes (such as A_REVERSE and A_BLINK for blinking inverse video). To change
only one attribute or a certain combination of attributes while leaving the others undisturbed,
use attronO and attroffO.

The example program highlight at the end of this tutorial demonstrates typical use of attributes.
The program uses a text file as input, and embedded escape sequences in the file to control
attributes. In the example program, \u enables underlining, \B selects bold, and \N restores
normal text. An call to scrol/ok allows the terminal to scroll if the text file exceeds the capacity
of a single display screen. When scrol/ok is active, if any text extends beyond the lower screen
boundary, curses automatically scrolls the internally stored window up one line, then calls refresh

to update the terminal display screen each time a line of input text exceeds the lower screen
boundary. The scrolling process continues until end-of-file is reached on the input file.

The highlight program comes about as close to being a filter as is possible with curses. It is
not a true filter because curses interacts directly with the terminal screen. curses' ability to
optimize interaction between HP·UX programs and terminals is inherently linked to its direct
monitoring of the current CRT screen and the windows where display text is being held for
output through refresh operations. This capability requires that curses clear the screen as part
of the first refresh operation so that it has a known beginning reference condition, then maintain
a continually up-to-date data structure that reflects current screen contents and cursor location.

12 Using Curses and Terminfo

Multiple Windows
A window is a data structure that represents all or part of the CRT display screen. It contains a
two-dimensional array of 16-bit character data words, a cursor, a set of current attributes, and
several flags. Each 16-bit character data word contains:

• A 7-bit character code in the lower seven bits, and

• A 9-bit video highlighting code in the upper nine bits. Each bit enables one of nine
attributes when set, each attribute represented by one of the respective bits.

curses provides a full-screen window called stdscr and a set of functions that use stdscr. An­
other window called curscr that represents the current physical display screen is also provided.

It is important that you clearly understand that a window is only a data structure. Use of more
than one window does not imply the presence of more than one terminal, nor does it involve
more than one process. A window is nothing more than a data object that can be copied to all
or part of the terminal screen. curses, as presently implemented, cannot handle windows that
are larger than the available display screen (use pads for such applications).

Pads
Pads are data structures that are essentially identical to windows, except that they can be larger
than the available terminal screen size, and, as a result, must be handled differently. For example,
a special refresh function is required that knows how to transfer only a specified part of the
total pad area to the current screen instead of the entire pad. Other window operations do
not depend on the size of the structure, so they can treat windows and pads identically. In
such instances, a single function supports pads and windows (such as addch, delwin, and similar
functions).

Using Curses and Terminfo 13

Creating Windows
Additional windows can be created so that the applications program can maintain several different
screen Images. Images can then be alternated under program control as needs dictate. Win­
dows can be useful in editors, games, and other applications such as when handling interactive
processes involving multiple users on multiple terminals.

Overlapping windows can also be constructed so that changes to one window are easily copied
onto the overlapping area of the second. Several curses routines have been provided specifically
to handle such cases. overlay and overwrite copy one window onto the second, each handling
the copy operation differently. wrefresh can be used to refresh the terminal screen, but in some
cases it is operations that are equivalent to refresh, but which do not update the screen. This is
done by using a series of calls to wnoutrefresh (or its equivalent for pads), followed by a single
doupdate that copies the series of refreshes onto the physical screen in a single operation. This
is readily provided because refresh is really a call to wnoutrefresh followed by a call to doupdate.

To create a new window, use the function:

newwin(lines, cols, begin_row, begin_col)

The newwin function call returns a pointer to the newly created window whose dimensions are
lines by cols, and whose upper left-hand corner is positioned at screen location begin_row and
begin_col.

Using Multiple Windows
All operations that affect stdscr have a corresponding function for use with other named windows.
These functions' names are formed by adding the letter w in front of the stdscr function name.
For example, the window function that corresponds to addch is named:

waddch(mywin, c)

To update the contents of the currently displayed screen to match the contents of a Window,
use:

wrefresh(mywin)

Whenever the boundaries of two or more windows overlap and thus conflict, the most recently
refreshed window becomes the currently displayed screen in that area of the display area that
is defined by the window size and location.

14 Using Curses and Terminfo

Any call to the non-w version of any window function (stdscr function calls) is converted to its w­
prefixed counterpart. Thus, a call to addch(c) produces a call to waddch(stdscr. c), automatically
adding the stdscr argument in the process.

The example program window at the end of this tutorial shows how windowing can be handled.
The main display is kept in stdscr. When the user wants to put something else on the screen, a
new window is created that covers part of the screen. A call to wrefresh on that window causes
the window to be written over stdscr on the display screen. A subsequent call to refresh on
stdscr causes the original window to be fully restored to the screen, eliminating the temporarily
displayed window.

Examine the touch win calls in window that precede refresh calls on overlapping windows. touch­
win calls prevent optimization by curses, thus forcing wrefresh to completely overwrite the entire
window area on the physical screen (previously displayed data is thus erased in the window area
only). In some situations, if the touch win call is omitted, only part of the window is written and
existing information from a previous window may remain in the newly written window area.

For improved screen addressability, a set of move functions are available in conjunction with most
common window functions. They produce a call to move before the other function is called,
so that the cursor can be relocated before the window function is executed. Here are some
examples:

• mvaddch(row,col,ch) is equivalent to move(row,co/); addch(ch)

• mvwaddch(row,col,win,ch) is eqUivalent to wmove(win,row,co/): waddch(win,ch).

Refer to the curses routines section of this tutorial for more detailed descriptions of the window
routines and their related move functions.

Using Curses and Terminfo 15

Subwindows
Subwindows can be created within any existing window or pad. Subwindows are identical
to normal windows except that the subwindow's character data structure occupies the same
memory locations as the corresponding character positions in the main window. This means
that whenever a character is placed in a subwindow, the main window automatically contains
the same character in the same location with the same highlighting attributes. In fact, as a result
of shared character storage, any character stored in the character array automatically receives
the current attributes for the window or subwindow through which it was stored, regardless of
how many subwindows overlap the storage location. This feature greatly simplifies combining
windows in a single display for some types of applications.

Each subwindow has its own cursor location, can be configured with a soft scrolling region,
and generally has the same capabilities as any normal Window, but, except for shared character
storage, is completely independent of the original window it is associated with. Because of
shared character data structures, curses does not allow deletion of any window (delwin(win) or
pad that has one or more undeleted subwindows.

If subwindows are created within a pad, care must be exercised in the choice of correct refresh
functions and other program characteristics to ensure correct data handling.

16 Using Curses and Terminfo

Multiple Terminals
curses can produce simultaneous output on multiple terminals. This capability is useful in single·
process programs that access a common data base such as multi·player games. Output to
multiple terminals is a complex issue, and curses does not solve all of the related programming
problems. For example, it is the program's responsibility to determine the special file name for
each terminal line and what type of terminal is connected to that line. The normal method,
checking the environment variable $TERM, does not work because each process can only examine
its own environment. Another issue that must be addressed is the case of multiple programs
reading data from a single terminal line, a situation that produces race conditions which must be
avoided because a program that wants to take over a terminal cannot arbitrarily stop whatever
program is currently running on that terminal (particularly where security considerations make
this action inappropriate, though it is appropriate for some applications such as inter·terminal
communication programs).

Race conditions mayor may not be a problem, depending on the overall relationships of running
programs and processes. For example, if a curses program is looking for input from a terminal,
there must be no other program looking for input from the same terminal (such as a shell). On
the other hand, if two programs are sending output to the same terminal at the same time, the
result is usually no worse than an unusable screen display. In any event, for interaction with the
terminal to flow smoothly, conflicts in terminal access must be prevented.

A typical solution requires the user logged onto each terminal line to run a program that notifies
the master program that the user is interested in joining the master program. The master
program is given the notification program's process id, the name of the tty link, and the type
of terminal being used. The notification program then goes to sleep until the master program
finishes. During termination, the master program wakes up the notification program and all
programs exit.

curses handles multiple terminals by always having a current terminal. All function calls always
pertain to the current terminal. The master program should set up each terminal, saving a
reference (pointer) to the terminal in its own variables. When it is ready to interact with a
given terminal, the master program should set the current terminal (use set_term) according to
program needs, then use ordinary curses routines.

Terminal references have type struct screen *. To initialize a new terminal, call
newterm(type,fd). newterm returns a screen reference to the terminal being set up. type is
a character string that names the kind of terminal being used. fd is a stdio file descriptor to be
used for input and output to the terminal (if only output is needed, the file can be opened for
output only). The newterm call replaces the normal call to initscr.

Using Curses and Terminfo 17

To select a new current terminal, call set_term(sp) where sp is the screen reference returned by
newterm for the terminal being selected. set_term returns a screen reference to the previous
terminal.

A full set of windows and options must be maintained for each terminal according to program
needs. Each terminal must be initialized separately with its own newterm call. Options such as
cbreak and noecho, and functions such as endwin and refresh must be set (or called) separately
for each terminal. Here is a typical scenario for sending a message to each terminal:

for (i=O; i <nterm; i++) {
set_term(terms[i]);
mvaddstr(O,O,"Important message ll);

refreshO;
}

The sample program two at the end of this tutorial contains a full example of how this technique
is implemented. The program pages through a file, showing one page to the first terminal; the
next page to the second. It then waits for a space character to be typed on either terminal, then
sends the next page to the terminal that sent the space character. Each terminal has to be put
into nodelay mode separately. Multiplexing is currently not implemented in curses(3X), so it is
necessary to busy wait or call sleep(1); between each check for keyboard input. two waits one
second between checks for available terminal keyboard characters.

two is only a simple example of two-terminal curses. It does not handle notification as described
above; instead, it requires the name and type of the second terminal on the program procedure
line. As written, two requires that the command sleep 100000 be typed on the second terminal
to put it to sleep while the program runs, and the the first-terminal user must have read and
write permission on the second terminal.

18 Using Curses and Terminfo

Low-Level Terminfo Usage
Some programs need access to lower-level primitives than those offered by curses. For such
programs, the terminfo-Ievel interface is provided. This interface does not manage the CRT
screen, but gives programs access to strings and capabilities that can be used to manipulate the
terminal.

Use of term info-level routines is discouraged. Whenever possible, higher-level curses routines
should be used instead, in order to maintain portability to other systems and handle a wider
variety of terminal types. curses takes care of all of the anomolies, glitches, and personality
defects present in physical terminals, but at the terminfo level they must be dealt with in the
program. Also, there is no guarantee that the terminfo interface will not change with new
releases of HP-UX, nor that it will be compatible with previous HP-UX releases.

There are two circumstances where use of terminfo routines is appropriate. On instance is where
a special-purpose program sends a special string to the terminal (such as programming a function
key, setting tab stops, sending output to a printer port, or dealing with the status line). The
second is when writing a filter. A typical filter performs one transformation on the input stream
without clearing the screen or addressing the cursor. If this transformation is terminal-dependent
and clearing the screen is inappropriate, terminfo routines are preferred.

A program written at the terminfo level uses the framework shown here:

#include <curses.h>
#include <term.h>

setupterm(O.1.0);

putp(clear_screen);

reset_shell_mode();
exit(O);

The call to setupterm handles initialization (setupterm(O, 1,0) invokes reasonable defaults). If
setupterm cannot determine the terminal type, it prints an error message and exits. The calling
program should call reset_shell_mode before exiting.

Global variables with such names as clear _screen and cursor _address are defined during the call
to setupterm. When outputting these variables, use calls to putp or tputs for better programmer
control during output. Global variable strings should not be output to the terminal through printf
because they contain padding information that must be processed. A program (such as print!)
that transmits unprocessed strings will fail on terminals that require padding or use Xon/Xoff
flow-control protocol.

Using Curses and T erminfo 19

Higher-level routines described previously are not available at the term info level. The program­
mer must determine output needs and structure programs accordingly. For a list of term info
capabilities and their descriptions, see terminfo(5) in the HP-UX Reference.

The example program termhl at the end of this tutorial shows simple use of terminfo. It is
similar to highlight, but uses terminfo instead of curses. This version can be used as a filter.
The strings used to enter bold and underline mode, and to disable all highlighting attributes are
demonstrated.

The program was made more complex than necessary in order to illustrate several terminfo prop­
erties. For example, vidattr could have been used instead of directly outputting enter_bold_mode,
enter _underline_mode, and exit_attribute_mode. In fact, the program could easily be made more
robust by using vidattr because there are several ways to change video attributes. However, this
program was structured only to illustrate typical use of term info routines.

The function tputs(cap,affcnt,outc) adds padding information to the capability cap. Some capa­
bilities contain strings such as $<20>, which means to pad for 20 milliseconds. tputs adds
enough pad characters to produce the desired delay. cap is the string capability to be output;
affcnt is the number of lines affected by the output (for example, insert_line may have to copy
all lines below the current line, and may require time proportional to the number of lines being
copied). By convention, affcnt is 1 if no lines are affected rather than 0 because affcnt is
multiplied by the amount of time required per item, and a zero time may be undesirable. outc
is the name of a routine that is to be called with each character being sent.

In many simple programs, affcnt is set to 1, and outc just calls putchar. For such programs,
the term info routine putp(cap) is a convenient abbreviation. The example program term hi could
be simplified by using putp.

Note the special check for the underlineJhar capability. Some terminals, rather than having a
code to start underlining and a code to stop underlining, use a code to underline the current
character. termhl keeps track of the current mode, and outputs underlineJhar, if necessary,
whenever the current character is to be underlined. Low-level details such as this are a major
reason why curses routines are preferred over term info routines. curses takes care of all the
different terminal keyboard and display functions and highlighting sequences instead of forcing
such details onto the application program.

20 Using Curses and Terminfo

A Larger Example
The example program editor is a very simple screen editor that has been patterned after the
vi editor and illustrates how curses can be used for such applications. editor uses stdscr as a
buffer for simplicity, whereas a more useful editor would maintain a separate data structure for
editing operations, then display the pertinent contents of that separate structure on the screen.
Editor, as written, requires a file size equal to screen size. It also cannot handle lines longer
than the screen, and has no provision for control characters in the file.

Several program characteristics are of interest. The routine that writes the file back to the file
system shows how mvinch is used to retrieve characters from given window positions. The data
structure used does not provide for keeping track of the number of characters in a line nor the
number of lines in the file, so trailing blanks are eliminated when the file is written out.

editor uses built-in curses functions insch, delch, insertln, and deleteln. These functions behave
much like deleting characters and lines.

The command interpreter accepts not only ASCII characters, but also special (non-typing) keys.
This is important - a good program accepts both. Defining the keyboard so that every special
key has its function defined on a normal typing key as well provides a desirable increase in
flexibility. The benefit for new users, for example, is that they can use arrow keys without
having to remember that the same functions are available on h, j, k, and I keys in the normal
typing area. On the other hand, an experienced user may prefer to keep his fingers on the
home typing row where he can work faster, so the typing key eqUivalent of special keys is
appreciated. Handling both classes of keys also widens the variety of terminals the program
can interact with because some terminals may not be equipped with arrow or other special keys
on the keyboard. Providing an ASCII character synonym for each special keypad key provides
better overall program and system flexibility, and makes the program more salable and easier to
learn.

Note the call to mvaddstr in the input routine. addstr is roughly eqUivalent to the fputs function
in C. Like fputs, addstr does not add a trailing newline. It is equivalent to a series of calls to
addch, using the characters in the string. mvaddstr moves the current cursor position to the
specified location in the window before writing the string into the data structure.

The control-L command demonstrates a feature that most programs using curses should include.
Frequently, an independent program operating beyond the control of curses may write something
to the terminal screen, or some other event such as line noise causes the physical screen to be
altered without curses being notified. In such a case, CTRL-L can be used to clear and redraw
the current screen at the user's request. This is accomplished by a call to clearok(curscr) which
sets a flag that causes the next refresh to clear the screen. A call to refresh follows immediately

Using Curses and Terminfo 21

so that the screen is immediately redrawn using the data in curscr so that there is no wait for
other program activities or completion of a pending keyboard input. There is also no loss of
current screen data.

Note also the call to flashO which flashes the screen (unless the terminal has no flashing capability,
in which case it rings the bell instead). Replacing the bell with the flashing capability is useful
in environments where the sound of the bell is objectionable or distracting. Still, there may be
instances where an audible signal is still needed for certain purposes, even in quiet environments.
In such cases, the beep 0 routine can still be called instead whenever a real beep is preferred. If
beep is called and the terminal is not equipped to process the call, curses substitutes the flash
in its place if possible, and vice versa. Thus, a terminal with no beep capability receives a flash
sequence when beep is called; a terminal that cannot flash receives a beep sequence when flash
is called. If the terminal has neither capability, ••• well, ••• some situations do present certain
limitations - do without or get a different terminal because both are ignored in such a case.

Use of Escape in Program Control
Another important programming practice is terminating the input command with control-D; not
escape. It is very tempting to use escape as a command because the escape key is one of the
few special keys that is available on nearly every terminal keyboard (return and break are the
only others). However, using escape as a separate key introduces an ambiguity which is handled
by curses as follows:

Most terminals use sequences of characters beginning with an escape character (called escar ~
sequences) to control the terminal. They also use similar escape sequences to transmit special
keys to the computer. If the computer sees an escape character from the terminal, it cannot
immediately determine whether the user pressed the escape key, or whether a special key was
pressed instead. curses handles the ambiguity by waiting for up to one second. If another
character is received within the one-second time limit, the escape and second character are
compared with possible escape sequences. If the character pair represents a valid possibility, the
wait is extended for up to one more second, or until the next character is received. The cycle
continues until a valid special key sequence is completed or a character is received that could
not be part of a valid sequence (or the time limit expires). While this technique works well most
of the time, it is not foolproof. For example, a user could press the escape key then press one
or more other keys that represent a valid sequence before the time limits expired (less than one
second between successive key strokes). curses would then think that a special key had been
pressed. Another disadvantage is the inevitable delay from the time a key is pressed until it can
be processed by the program when an escape key is pressed, possibly even accidentally.

22 Using Curses and Terminfo

Many existing programs use escape as a fundamental command which often cannot be changed
without incurring the wrath of a large group of users. Such programs cannot make use of special
keys without dealing with the aforementioned ambiguity, and must, at best, resort to a timeout
solution. The pathway is clear. When designing new programs and updating older ones, avoid
using the escape key for program control whenever possible.

Program Routines
This and the following sections describe curses routines that are available to programmers. In
this section, the routines are discussed in groups by function in the context of program operation.
The next sections list curses, term info, and termcap compatibility routines alphabetically for easy
reference, and each is discussed in greater detail. Both are helpful as tutorial and reference
information, expanding on the information contained in the curses(3X) and terminfo(5) entries in
the HP·UX Reference.

The curses routines discussed in this section operate on pads, windows, and subwindows. In
general, windows and subwindows are treated identically by most routines. Subwindows share
character data structures with the original window, but have their own cursor location and other
non-character data structures. Unless indicated otherwise, all references to windows during
discussion of window routines apply equally to windows and subwindows.

Program Structure Considerations
All programs using curses should include the file <curses.h> which defines several curses func­
tions as macros and establishes needed global variables as well as the datatype WINDOW (window
references are always of type WINDOW *). curses also defines the WINDOW * constants stdscr (the
standard screen that is used as a default for all routines that interact with Windows) and curser
(the current screen, used as a reference for low-level operations when updating the current dis­
play or clearing and redrawing a scrambled display). The integer constants LINES and COLS are
defined, and contain values equal to the number of available lines and columns in the physical
display. The constants TRUE and FALSE are also defined with the values 1 and 0, respectively.
Two additional constants are defined; the values returned by most curses routines. OK is returned
when the routine was able to successfully complete its assigned task. ERR indicates that an error
occurred (such as an attempt to place the cursor outside a defined window boundary or create
a window larger than the physical screen); thus, the task was not successfully completed.

The include file <curses .h> that must be specified at the beginning of the program automat­
ically includes <stdio.h> and an appropriate tty driver interface file, presently <termio.h>.
Including <stdio. h> again in a subsequent program statement is harmless though wasteful, but
including a tty driver interface file could cause a fatal error if the file is not the same as the one
selected by curses.

Using Curses and Terminfo 23

Any program that uses curses should include the loader option

-lcurses

in its makefile, whether the program operates at the curses or term info level. If the program
only needs curses' screen output and optimization capabilities, and no non-default windows are
involved, you can improve output speed and processing efficiency by restricting the program to
the mini-curses package. Mini-curses is selected by using the compilation flag

-DMINlCURSES

Routines supported by mini-curses are marked by asterisks in the complete list of curses routines
at the beginning of the curses Routines section of this tutorial. They are also similarly marked
in the HP-UX Reference under curses(3X).

Terminal Initialization Routines
Program entry and exit states must be handled correctly to maintain system integrity and proper
terminal operation. If the program interacts with only one user/terminal, initscr should be the
first function call in the program. It sets up the necessary data structures and makes sure that
terminal handling and screen clearing are properly initialized. The program should call endwin
before terminating, ensuring that the terminal is restored to its original operating state and the
cursor is placed in the lower left corner of the screen. endwin also dismantles data structures
and other program entities that were created by curses and are no longer needed.

If the program must interact with multiple terminals during operation, newterm should be used
for each terminal instead of the single call to initscr. newterm returns a variable of type SCREEN *
which should be saved and used each time that terminal is referenced. Two file descriptors must
be present, one for input, and one for output. Use endwin for each terminal prior to program
termination to restore previous terminal states and dismantle data structures that were created
by curses and are no longer needed. During program operation with multiple terminals, set_term
is used to switch between terminals.

Another initialization function is /ongname which returns a pointer to a static area containing
a verbose description of the current terminal upon completion of a call to initscr, newterm, or
setupterm.

24 Using Curses and Terminfo

Option Setting Routines
These routines set up options within curses. Arguments specify the window to which the option
applies, and the boolean flag which must be TRUE or FALSE (not 1 or O) specifies whether the
option is enabled or disabled. Default for all functions in this group is FALSE (disabled).

• clearok(win. boolean_flag), when set, clears and redraws the entire screen on the next call
to refresh or wrefresh.

• idlok(win, boolean-flag), when set, allows curses to use the insert/delete line features of
the terminal if they are available. This feature tends to be visually annoying if used in
applications where it is not really needed. Insert/delete character capabilities are always
considered by curses, and are not related to insert/delete line considerations.

• keypad(win, boolean_flag), when set, enables handling of special keys from the terminal
keyboard as single values instead of character sequences.

• leaveok(win,boolean-flag), when set, allows curses to ignore cursor position and relocation
at the end of an operation. This feature helps simplify program operation when the cursor
is not used or cursor position is not important.

• meta(win,boolean_flag), when set, handles characters from the (getch) function as 8-bit
entities instead of the usual seven. However, this feature has no value if other programs
and networks interacting with the data can only pass 7-bit characters.

This feature is useful for applications where an extended non-text character set is needed
and the terminal has a meta shift key available. Curses takes whatever measures are
needed to handle the 8-bit input, including the use of raw mode, if necessary. In most
cases, the character size is set to 8, parity checking disabled, and 8th-bit stripping is
disabled. For the data to continue unaltered, all programs using it must also be capable
of handling 8-bit character codes.

• nodelay(win,boolean_flag), when set, makes getch a non-blocking call. When enabled, getch

returns immediately with the value -1 if no input is ready. If not enabled, the program
hangs until a terminal key is pressed.

• intrflush(win,boolean_flag), when set, flushes all output in the tty driver queue if an interrupt
key (interrupt, quit, or suspend, if available on the system) is pressed on the terminal
keyboard. While this capability provides faster interrupt response, the flush destroys the
representative relationship between curser and the current physical display contents.

• typeahead(file_descriptor), when set, enables typeahead for the specified file where
file_descriptor is the terminal input file. A file descriptor value of zero selects stdin;
-1 disables typeahead checking.

Using Curses and Terminfo 25

• scrollok(win.boolean_flag), when set, enables scrolling on the specified window whenever
the cursor position exceeds the lower boundary of the window (or scrolling region, if set).
Boundary crossing results when a newline occurs on the bottom line or a character is
placed in the last character position of the bottom line. If scrollok is enabled, the window
or scrolling region is scrolled up one line, and a refresh operation is performed to update
the terminal screen. idlok must be enabled on the terminal to get a physical scrolling effect
on the visible display. If scrollok is disabled, the cursor is left on the bottom line, and no
advances are allowed beyond the last character position.

• setscrreg(top,bottom) and wsetscrreg(win,top,bottom) are used to set software scrolling re­
gions within a given window. If this option and scrollok are both active, the scrolling
region is scrolled up one line and refresh is called to update the screen whenever the
cursor position is moved beyond the lower limit of the scrolling region in the window. To
get a scrolling effect on the terminal screen, idlok must also be enabled.

Terminal Configuration Routines
These routines are used to set or disable various operating modes that are supported by the
terminal being used.

• cbreakO and nocbreakO enable and disable single-character mode. When cbreak is enabled,
characters are received and processed from the terminal keyboard as they are typed. When
nocbreak is active, characters are held by the tty driver until a newline key is received
before making the line available to the program. Interrupt and flow control characters are
not affected by either option. cbreak enabled is the preferred operating mode for most
interactive programs. Default is nocbreak active.

• echoO and noechoO enable and disable, respectively, direct echoing of characters back to
the terminal display as they are received by the tty driver. When noechoO is used, incoming
characters are transfered directly to the program without returning them to the terminal
display. noecho can also be used to process incoming text under program control, then
echo selected characters to a controlled area of the screen or not echo at all.

• nlO and nonlO select or disable conversion of newline characters into a carriage-return line­
feed sequence on output and conversion of incoming return character(s) into newlines. By
disabling newline conversions, curses can use line-feed capability more effectively, resulting
in better cursor motion.

26 Using Curses and Terminfo

• rawO and norawO select or disable raw mode. Raw mode is similar to cbreak in that
characters are passed to the program as they are typed, but interrupt, quit, and suspend
characters are not interpreted, so they do not generate a signal. Raw mode also handles
characters as 8-bit entities. BREAK handling is not affected.

• resettyO and savettyO restore and save tty modes. savetty saves the current state in a
buffer. resetty restores the terminal to the state that was obtained by the last previous call
to savetty.

Window Manipulation Routines
Window manipulation routines are used to create, move, and delete windows, subwindows,
and pads, and perform certain other operations. newwin, newpad, and subwin create new
structures. delwin deletes window, pad, and subwindow structures, and mvwin relocates a
window to a different area within the physical screen boundary. touchwin, overlay, and overwrite

affect optimization and character replacement during refresh and window copying operations as
follows:

• touch win forces the entire window to be rewritten to the screen during refresh.

• overlay copies non-blank characters from one window onto the overlapping area of another.

• overwrite overwrites all characters from one window onto the overlapping area of another.

Pad functions are related to window functions, with some differences. Pads are essentially the
same as windows but they can be larger than the available screen size for added flexibility. When
a pad is larger than the physical display space, only part of the pad can be displayed at any given
time. Therefore pads cannot be directly transferred to the terminal screen by use of window
refresh functions. Pad refresh functions are used instead so that the appropriate area of the pad
can be specified for display.

When a new window, subwindow, or pad is created, the function returns a pointer that should
be stored in a variable for later use when accessing the window or pad. The returned variable
then becomes the win argument for writing to the window (or pad), deleting the window (or pad),
and for other text and cursor operations that include win as an argument. Except for prefresh,

pnoutrefresh, and newpad, all pad operations use the appropriate window function for all text
and cursor manipulations and other pad/Window activities.

Using Curses and Terminfo 27

Terminal Data Output Routines
All data transfers from a pad or window to the terminal display are handled by pad and window
refresh/update functions:

• refreshO and wrefresh(win) transfer the contents of the default or specified window to the
current screen window and to the terminal display.

• doupdateO and wnoutrefresh (win) are used to accumulate several window copy opera­
tions to the standard screen window by using multiple calls to wnoutrefresh (win), then
transferring the current screen window to the terminal screen by calling doupdateO.

• prefresh(•••) and pnoutrefresh(•••) are equivalent to wrefresh and wnoutrefresh, except that
the pad and area within the pad are specified. pnoutrefresh is followed by the do update
function that is normally used with window updates.

Window Writing Routines
Placing Text in the Window
These routines are used to write data in windows, subwindows, and pads. Only the root function
is listed here. Other related functions are listed with the root function in the alphabetical curses
Routines section later in this tutorial.

Routines in this group that use the win argument operate on the stdscr window if win is not
specified. The cursor can be relocated before a function is executed by adding mv onto the
beginning of the function name. This produces a move(y,x) or wmove(win,y,x) call on the default
or specified window associated with the function, followed by a call to the remaining window
writing routine. Row (y) and column (x) coordinates begin with (0,0) in the upper left-hand corner
of the window or screen (not (1,1)). Use of the mv prefix was also discussed earlier. See the
section, Using Multiple Windows.

• move(y,x) and wmove(win,y,x) move the cursor in the given window or pad. move(y,x) is
equivalent to wmove(stdscr,y,x).

• addch(ch) and related functions (see curses routines section for related functions) write a
single character in the given window or pad. mv prefixed to the base function name causes
the current cursor/character position to be changed to the specified y. x location before
the character is placed. Cursor position after the placement is determined by the type of
character written.

• addstr(str) and related functions place the specified string in the selected window. mv
prefixed to the base function name causes the current cursor/character position to be
changed to the specified y. x location before the string is placed. Cursor position after the
placement is determined by the characters contained in the written string.

28 Using Curses and Terminfo

• eraseO and werase(win) place blanks in the entire window or pad, destroying all previous
window contents.

• clearO and wclear(win) are similar to eraseO. They erase the window by filling it with blanks,
but they also call clearokO which clears the terminal screen on the next re!reshO for that
window.

• clrtoeolO and clrtobotO and their related window jpad functions erase the specified win­
dow jpad from the present cursor position to the end of the cursor line or to the end of
the window or pad, respectively.

Inserting and Deleting Text in the Window
The following routines are used to insert and delete lines and characters in the window. These
operations are performed on the window only, and have no effect on the terminal at the time of
execution.

• delchO and related window and move routines delete a single character from the current
or specified new cursor position.

• deletelnO and wdeleteln(win) remove the current cursor line from the default or specified
window.

• insch(c) and related routines insert the specified character in front of the current cursor
position and move succeeding text appropriately to accommodate the new character.

• insertlnO and winsertln(win) insert a blank line at the present cursor line position and move
the existing cursor line (and subsequent lines) down one position. The bottom line in the
window is lost. The inserted line becomes the new cursor line.

Formatted Output to the Window
printw is functionally similar to print! except the output is handled by addch which places the
formatted data in the window.

Miscellaneous Window Operations
scroll(win) is used to scroll a given window up one line each time the function is called.
box(win,uert,hor) uses the specified characters to draw a box around the specified window.
When the window is boxed, the top and bottom rows and left and right columns in the window
are no longer available for normal text use.

Using Curses and T erminfo 29

Window Data Input Routines
Two functions are available that are used to obtain data from a given window. getyx(y.x) is used
to obtain the present cursor position for use by the program. inchO and related functions can
be used to retrieve any character in a given window. The returned character includes video
highlighting attribute bits, each of which is set or cleared according to the original highlighting
attributes that were stored with the character when it was written to the window.

Terminal Data Input Routines
getch and its related window and move routines are the basic building block for all program input
from the terminal. getch handles individual characters, one at a time, returning a character as a
16-bit integer value each time it returns from a call.

If echo is enabled, getch also places each character at the current cursor position in the window
associated with the function and updates the terminal screen with a refresh on the window as
the character is received and processed (the cursor is advanced as each character is written to
the window). If noecho is active instead, input character(s) are not placed in the window.

getstr and its related functions generate a series of calls to getch to read an entire line, one
character at a time, up to the terminating newline character. The line is stored in the specified
string before getstr returns to the calling program.

scanw and its related functions perform formatted processing on the input line after it has been
placed in a special buffer used by getstr. (If echo is enabled, the string is also placed in the
associated window, but only the characters stored in the buffer are used by scanw. When scanning
is complete, the processed results string results are placed in the specified args variables.

30 Using Curses and Terminfo

Video Highlighting Attribute Routines
Each character written into a window is stored as a 16-bit word. Seven bits contain the character
code; the remaining nine bits control video highlighting. As each word is stored, the 7-bit
character code is combined (through a bit-level logical OR operation) with the current set of nine
video highlighting attributes to obtain the 16-bit result. Video attribute routines are used to
construct the current attribute set that is used during character storage.

Highlighting attributes can be specified as a complete set by using attrset or wattrset. Using 0
(or A_NORMAL) as an argument for attrset disables all highlighting.

Highlighting can be altered from the present state by turning individual attributes on or off
without altering the state of other attributes in the set. This is done with attron, attroff, wattron,
and wattroff.

As characters are stored in a given window, the current attributes are attached to each character.
To change highlighting, attributes must be changed before the next character is written to the
window. When deciding where to change highlighting attributes, remember that highlighting
applies to non-printing space and tab characters as well as visible characters.

standout and standend provide easy access to the A_STANDOUT attribute. standout is eqUivalent to
a call to attron(A_STANDOUT}, and adds A_STANDOUT to the currently active set of attributes (if
any are active). However, standend is not the opposite. standend is equivalent to attrset(O}, not
attroff(A_STANDOUT). Thus, a call to standout with underlining on would maintain underlining
until another highlighting call. standend, on the other hand, would not only terminate the
previous standout call, but would terminate underlining as well.

Attribute functions and arguments must be logically conceived. For example, attron(A_NORMAL}
and attroff(A_NORMAL}, though executable, do nothing because all bits in A_NORMAL are
cleared (value is zero). The bit-level logical OR of attron has no effect (all bits zero), and attroff
is ineffectual because A_NORMAL is inverted (all bits set to 1) before a bit-level logical AND is
used to clear the selected highlighting attribute.

Using Curses and Terminfo 31

Miscellaneous Functions
beep/flash
beep() and flash() are used to signal the terminal operator. If the terminal does not support the
called function, the other is substituted where possible. Thus a call to beep flashes the screen if
the terminal has no beep capability; a call to flash produces a beep if no flashing video capability
is available.

Portability Functions
Several functions have been included to aid portability of curses between various systems:

• baudrate() returns the terminal datacomm line speed as an integer baud rate value. The
returned value can then be used for program and system configuration purposes.

• erasechar() returns the terminal erase character that has been chosen by the user. This
character is used to cancel the last previous character. Interactive programs should include
cancellation capabilities so users can correct typographical errors during keyboard inputs.

• killchar() is similar to the erase character, but cancels the entire line where the character
appears.

• flushinp() discards any typeahead characters when an interrupt character is detected. This
enables users to interrupt a series of commands or other activities that have accumulated in
the typeahead buffer and terminate the current process without waiting for the typeahead
queue to empty. Normally used for aborts, this function and the related program structure
must be handled carefully to ensure proper termination of program processes before the
program exits.

Delay Functions
Delay functions are not highly portable, but are frequently needed by programs that use curses,
especially real-time interactive response programs. Use of these functions should be avoided
where possible:

• draino(ms) is used to reduce the amount of data being held in the output queue. The main
purpose of this function is to keep the program (and keyboard) from getting ahead of the
screen. With careful program design, use of this function should be unnecessary in most
cases.

• napms(ms) suspends program operation for a specified time. It is similar to sleep, but
offers higher resolution (resolution varies, depending on system resources). napms uses a
call to select for its time base reference.

32 Using Curses and Terminfo

curses Routines
curses supports the following functions. Those marked with an asterisk are also supported by
Mini·curses (some unmarked routines might work, but are not officially supported by Mini-curses.

Proceed at your own risk if you try them).

addch(ch}'

addstr(str)'

attroff(attrs)'

attron(attrs)*

attrset(attrs) *

baudrateO'

beepO'

box(win,vert.hor)

cbreakO'

elearO'

elearok(win.boolean.Jlag)

elrtobotO

elrtoeolO

delay_output(ms}'

delchO

deletelnO

delwin(win)

doupdateO

draino (ms)

echoO'

endwinO'

eraseO'"
erasecharO*

fixtermO

flashO'

flushinpO'

getchO

getstr(str)

gettmodeO

getyx(win.y.x)

has_icO'

haUIO'

idlok(win.boolean_flag)'

inchO'

initscrO'

insch(c)

insertlnO

in trflush(win. boolean_flag)

keypad(win.boolean_flag)

killcharO'

leaveok(win.booleanjlag)

longnameO

meta(win. boolean_flag)'

move(y.x}'

mvaddch(y.x.ch}'

mvaddstr(y.x.str}'

mvcur(oldrow.oldcol.

newrow.newcol)

mvdelch(y.x)

mvgetch(y.x)

mvgetstr(y.x.str)

mvinch(y.x)

mVinsch(y.x.c)

mvprintw(y.x.fmt.args)

mvscanw(y.x.jmt,args)

mvwaddch(win.y.x.ch)

mvwaddstr(win.y.x.str)

mvwdelch(win.y.x)

mvwgetch(win.y.x)

mvwgetstr(win.y.x.str)

mvwin(win.beg_y.begj)

mvwinch(win,y,x)

mvwinsch(win.y,x,c)

mvwprintw(win,y,x,fmt,args)

mvwscanw(win.y,x.jmt,args)

napms(ms)

newpad(num_/ines, num_co/s)

newterm(type.fdout.fdin)'

newwin{num_lines. num_co/s.

beg_y.begj)

nlO'

nocbreakO'

nodelay(win. boolean_flag)

noecho()'"

nonlO'

noraw()'"

overlay(win 1.win2)

overwrite(winl.win2}

pnoutrefresh(pad.pminrow.

pmincol,sminrow.

sminco/.smaxrow.

smaxcol}

prefresh(pad.pmlnrow.

pminco/.sminrow.

smincol.smaxrow.

smaxcol)

printw(fmt.args)

rawO'

refreshO'

resetterm()*

resettyO'

saveterm{}'

savettyO'

scanw(fmt.args)

scroll(win)

scrollok(win.boolean_flag)

setscrreg(t.b)

setterm(type)

setupterm(term.jilenum,errret)

set_term(new)'"

standendO'

standoutO'

subwin(orig_win.n_lines.

nJois. beg_y. beg_x)

touchwin(win)

traceoff()

traceonO

typeahead(fd)

unctrl(ch)

waddch(win.ch)

waddstr(win.str)

wattroff(win.attrs)

wattron(win.attrs)

wattrset(win.attrs)

wclear(win}

welrtobat(win)

welrtoeol(win)

wdelch(win.c)

wdeleteln(win)

werase(win)

wgetch(win)

wgetstr(win.str)

winch(win)

winsch(win.c)

winsertln(win)

wmove(win.y,x)

wnoutrefresh{win)

wprintw(win,fmt.args)

wrefresh(win)

wscanw{win,fmt.args)

wsetscrreg(win.t.b)

wstandend(win)

wstandout{win}

Using Curses and Terminfo 33

Description of Routines
The curses package includes the following functions. Function names that are associated with
operations on user-specified windows contain a w or mvw prefix, and the window must be
included as a parameter in the function call. If no w or mvw prefix is present, or if the window
is not specified in the parameter set, the operation is performed on the default window stdscr.
Programs that use the curses package are subject to the normal rules of C compiler statement
syntax.

Routines are listed alphabetically by function keyword which is printed in slanted bold type.
When two or more functions are related to a common keyword, the root keyword is listed
in bold, followed by a list of related function names in normal italics. The individual related
functions are also included elsewhere in the list with references back to the root keyword where
a detailed explanation of all keywords related to the root keyword is located.

34 Using Curses and Terminfo

addch(ch)
waddch(win,ch)
mvaddch(y,x,ch)
mvwaddch(win,y,x,ch)

addstr(str)
waddstr(win,str)
mvaddstr(y,x,str)
mvwaddstr(win,y,x,str)

Places the character ch in the window at the current cursor position
for that window, then advances the cursor to the next position. If ch
is a tab, newline, backspace, the cursor is moved appropriately, but
no text is altered. If ch is a control character other than tab, new­
line, or backspace, the character is drawn using AX notation (where
x is a printable character preceded by - to indicate a control charac­
ter - see unctrl(ch)). If the character is placed at the right margin,
an automatic newline is performed. At the bottom of the scrolling
region, the region is scrolled up one line if scrollok is enabled.

The ch parameter is an integer; not a character. addch performs
a bit-level logical OR between the 16-bit character and the current
attributes if any are active. Highlighting of individual characters
can also be handled by the program if the current attributes are
all zero (disabled) by performing an equivalent bit-level logical OR
operation between the 7-bit character code in bit positions 0 through
6 and selected video attribute bits in bit positions 7 through 15
to create a single 16-bit integer representing the character and its
associated highlighting attributes. If no highlighting attributes for the
window are currently active, any attributes added to the character
by the program or already present from the source are preserved.
If any are active, they are added to the character and any attached
attributes without altering other attributes. Thus, you can copy text
(including attributes) from one place to another with inch and addch.

addch is used with stdscr window; waddch with window win; mvad­
dch moves the cursor to row Y, column x, then places the character
at that location; mvwaddch is identical to mvaddch, but operates on
a specified window win. If win is not specified, default is to stdscr.
All row and column references are relative to the upper left corner
whose corner character position is represented by row 0, column O.

Places the character string specified by str at the current cursor
position (addstr and waddstr) or at the specified location in the
window (mvaddstr and mvwaddstr). String placement consists of a
series of character placements using the addch routine. str must
be terminated by a null character.

Using Curses and Terminfo 35

attrofflattrs)
wattroff(win,attrs}

attron(attrs)
wattron(win,attrs)

attrset(attrs)
wattrset(win,attrs)

ba udra teO

beep()

box(win,uert,hor)

Disables the specified video highlighting attributes without affect­
ing other attributes. Any or all of the following attributes can be
specified (multiple attributes must be separated by the C logical
OR operator, I, which performs a bit-level logical OR on all at­
tributes specified in the function call): A_STANDOUT, A_UNDERLINE,

A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT,

and A_ALTCHARSET.

Enables the specified video highlighting attributes without affect­
ing other attributes. Any or all of the following attributes can be
specified (multiple attributes must be separated by the C logical
OR operator, I, which performs a bit-level logical OR on all at­
tributes specified in the function call): A_STANDOUT, A_UNDERLINE,

A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT,

and A_AL TCHARSET.

Enables the specified video highlighting attributes, and disables all
others. Any or all of the following attributes can be specified (mul­
tiple attributes must be separated by the C logical OR operator, I,
which performs a bit-level logical OR on all attributes specified in
the function call): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,

A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT, and A_ALTCHARSET.

attrset(O), attrset(A_NORMAL), and standendO (or standend(win)) are
equivalent functions that disable all attributes (normal display). See
standendO.

Returns the terminal serial I/O datacomm speed. The value re­
turned is the integer baud rate (such as 9600) rather than a table
index value (such as B9600). If the baud rate is External A or
External B, the value -1 is returned instead.

Used to signal the terminal user with an audible signal. If no audible
signal is available on the terminal, the screen is flashed instead (see
flashO). If neither capability is available, no output is sent to the
terminal.

Draws a box around the specified window. vert specifies the charac­
ter to be used for left and right columns; hor specifies the character
for top and bottom rows. Usable window space is reduced by two
lines and columns when a box is present.

36 Using Curses and Terminfo

cbreakO These functions place the terminal in and out of CBREAK mode,
nocbreakO respectively. When cbreak (character· mode operation) is active, each

typed character is immediately available to the program. If disabled
(nocbreak), the tty driver holds characters until a newline character
is received, then releases the entire line to the program (line· mode
operation). Interrupt and flow control characters are not affected by
cbreak; default is nocbreak, but most interactive programs that use
curses run with cbreak enabled.

c1earO Similar to erase and werase, but c1earok is also called so that the
wclear{win) terminal screen is cleared by the next call to refresh for that win­

dow. c1earok sets a flag to clear the screen, blanks are placed in
the window, and the next call to refresh outputs a screen clearing
operation or blanks or both to the terminal, depending on terminal
capabilities.

c1earok{win, boolean_flag) If set, the next wrefresh call for the specified window clears and
redraws the entire screen (instead of just the area represented by the
specified window). If win specifies curser, the next call to wrefresh
for any window clears and redraws the entire screen. This is useful
when current screen contents are uncertain, or in some cases for a
more pleasing visual effect.

clrtobotO
wclrtobot(win)

clrtoeolO
wclrtoeol(win)

delay _output(ms)

delchO
wdelch(win)
mvdelch(y,x)
mvwdelch(win,y,x)

deletelnO
wdeleteln(win)

Clears all character positions from the current cursor position to the
right margin, and all lines below the current cursor line to the end
of the window.

Clears all character positions from the current cursor position to the
right margin. The rest of the window remains undisturbed.

See terminfo routines in the next section of this tutorial.

The character at the present cursor position is deleted. All remain·
ing characters on the line to the right of the deleted character are
moved left one position. Other lines are not disturbed. The opera­
tion is performed only on the window, and does not use the terminal
hardware delete-character feature because no terminal operation has
been performed.

The present cursor line is deleted. All remaining lines in the window
below the cursor line are moved up one position, leaving a blank
line at the bottom of the window. This window operation does not
interact directly with the terminal when performed, so no terminal
hardware delete-line feature is used.

Using Curses and T erminfo 37

delwin(winJ

doupdate()
wnoutrefresh(winJ
pnoutrefresh(pad, • •• J

draino(msJ

echoO
noechoO

endwinO

Deletes the specified window and releases all memory associated
with it. If the window contains subwindows, all subwindows must
be deleted first.

wnoutrefresh (or pnoutrefresh) and doupdate essentially divide wre·
fresh into two independent functions that can be called separately
for more efficient handling of multiple output operations to windows
and pads. In normal operation, wrefresh(winJ calls wnoutrefresh(winJ
to copy the named window to the virtual screen, then uses doupdate
to update the physical screen to match the virtual screen. When
outputting multiple windows, wnoutrefresh(winJ can be used succes­
Sively, once for each window; followed by a single doupdateO to
transfer the new screen to the terminal, probably with fewer char­
acters transmitted. pnoutrefresh is used Similarly when writing to
pads.

Suspends program operation until the output queue has been re­
duced sufficiently ("drained") so that the remaining characters can
be transmitted in not more than ms milliseconds. For example,
draino(50J at 1200 baud would suspend program execution until no
more than 6 characters remain to be sent (6 characters @ 1200
baud require about 50 ms transmit time). This routine is used to
keep the program (and thus the keyboard) from getting ahead of
the screen. If the operating system does not support the I/O con­
trols (ioctls) that are needed to implement draino, the value ERR is
returned; otherwise OK is returned.

Enables or disables echoing of characters by getch through the spec­
ified window and back to the terminal as each character is typed
on the keyboard and subsequently processed by getch. Default is
echo (enabled). In some interactive programs, it is preferable to
suppress echOing by getch (noecho), then let the program place in­
coming characters in a controlled area of the screen or not return
them at all, as needs dictate.

endwin should always be called before exiting from a curses-based
program. Restores tty modes, places the cursor in the lower left
corner of the terminal screen, resets the terminal into the proper
non-visual mode, and removes data structures that are no longer
needed by the exiting program.

38 Using Curses and Terminfo

eraseO
werase(win)

erasecharO

fixtermO

HashO

HushinpO

getchO
wgetch(win)

mvgetchO
m vwgetch (win)

Copies blanks to every character position in the specified or default
window. As each blank is stored in the window, the highlighting
attribute bits are set to zero (disabled).

Returns the user's chosen erase character from the terminfo data
base. The returned character should be interpreted by the program
as an "erase previous character" command whenever it is received
from the terminal.

Restores the current terminal to the state it was in prior to the most
recent call to resettermO. State information stored by the most
recent previous call to savetermO provides the needed restoration
information. See resettermO.

Used to signal the terminal user by flashing the screen. If the ter­
minal has no screen flashing feature, the audible signal is sounded
instead (see beep()). If neither capability is available, no output is
sent to the terminal.

Discards any typeahead characters in the typeahead buffer (charac­
ters that have been typed on the terminal but are still waiting to be
handled by the program.

Takes a character from the terminal keyboard input buffer as a 16-
bit integer, processes it, and returns it to the program as a 16-bit
integer. Character processing and return conditions vary as follows:

If mv is placed in front of getch or wgetch, the cursor position for the
selected window is moved to the specified location which becomes
the new current cursor position. This operation is completed before
any character processing begins.

If echo is active and the character is a normal typing character
(keypad and meta characters are discussed later), the character is
placed in the current cursor position by a call to waddch from getch.
During character placement in the window, a bit-level logical OR
in waddch attaches current highlighting attributes to the character.
waddch is followed immediately by a call to wrefresh which updates
the terminal screen with the echo character.

If an escape character is received, special timeouts are set up to
determine whether the character is part of a multiple-character key­
pad sequence. See Use of Escape in Program Control topic earlier
in this tutorial for a detailed discussion of how escape is handled.

Using Curses and Terminfo 39

If meta is enabled and the character is not a keypad sequence, the
16-bit input character is logical ANDed with octal 0377 to mask
the upper bits to zero and return an 8-bit text character value. The
eighth bit interferes with the A_STANDOUT highlighting attribute
bit in the same position, so noecho is usually chosen for programs
that operate with meta active.

If meta is not enabled, text characters are logical ANDed with octal
0177 to mask the upper bits to zero and return a 7-bit character
value. Echoing is handled in the normal manner if enabled.

If keypad is not enabled, function key sequences are treated as
individual characters and handled as normal text.

If keypad is enabled, each function key sequence (usually an escape
sequence) is handled as a single-character keycode which is assigned
a 16-bit integer value in a range beginning at 0401 (octal) and a
name that starts with KEY _ (a complete list of keypad character
value and name definitions is included in the keypad discussion near
the beginning of this tutorial). The character value is not placed in
the window for echoing, even if echo is enabled.

If nodelay is active: if no input is available in the keyboard input
buffer when getch is called, getch returns with the value -1 and
no other action is taken. If nodelay is not active, the program
hangs until text is available in the buffer. Depending on the current
cbreak setting, text is made available to the program as each
character is received (cbreak), or incoming characters are held by
the tty driver until a newline is received then they are made available
to the program (nocbreak).

40 Using Curses and Terminfo

getstr(str)
wgetstr(win.str)
mvgetstr(y.x.str)
mvwgetstr(win.y.x.str)

gettmodeO

getyx(win,y,x)

idlok(win, boolean_flag)

This routine is used to input an entire line from the terminal. It
is equivalent to getch, except that it handles an entire string in­
stead of single characters. Handling of each character is identical
to getch except that text and meta characters are packed into the
string variable str instead of being returned to the program as in­
dividual 16-bit integers. Keypad characters (except for kill, erase,
keyJeft (left arrow), and backspace) are not recognized and cannot
be handled through getstr.

During execution, getstr generates a series of calls to getch until a
newline is received, at which time it returns. The 16-bit integers
returned by successive calls to getch are stripped of their unneeded
upper bits (except recognized keypad keys) before packing into a
string variable beginning at the location identified by the character
pointer str.

If echo is enabled, incoming string characters are also placed in the
associated window (by getch) as they are received and processed,
and echoed to the terminal (by refresh). If noecho is active, char­
acters are not placed in the window; they are only placed in str.

(Get tty mode). Dummy entry point. Performs no useful function.

Places the current cursor position of the specified window in the
specified two integer variables y and x. This is a macro, so no & is
necessary.

Returns a value indicating whether or not the terminal has in­
sert/delete character capability. Zero value indicates the capability
is not present; non-zero: capability present.

Returns a value indicating whether or not the terminal has in­
sert/ delete line capability. Zero value indicates the capability is
not present; non-zero: capability present.

Insert and Delete Line OK. If enabled, curses can use hardware
insert/delete line capabilities when the terminal is so equipped. If
disabled, curses does not use the capability. Use only when the
program requires it (such as a screen editor). idlok is disabled by
default because it tends to be annoying when used in applications
where it is not really needed. If insert/delete line cannot be used,
curses redraws changed portions of all lines that do not match the
desired result.

Using Curses and Terminfo 41

inchO
winch(win)
mvinch(y,x)
mvwinch(win,y,x)

initscrO

insch(e)

winseh(win,c)
mvinsch(y,x,c)
mvwinsch(win,y,x,c)

insertlnO
winsertln(win)

intrflush
(win,booleanJlag)

Returns the character located at the current or specified position
in the specified window as a 16-bit integer. If any attributes are
set for that position, their values are included in the value returned.
To extract only the character or the attributes, perform a bit-level
logical AND on the returned value, using the predefined constant
A_CHARTEXT (octal 0177) or A_ATTRIBUTES (octal 0177600).

The first function called in curses-based programs. Determines ter­
minal type, and initializes curses data structures as appropriate.
Also sets indicators so that the first call to refresh clears the termi­
nal screen and updates curser to reflect the cleared screen.

Inserts the character (byte, usually a 7-bit code) specified by c at the
current cursor position position or at the specified location in the
standard or specified window (current attributes are attached during
the placement operation). All characters beginning at the insertion
location are moved right one position for the remainder of the line.
If the line is full, the rightmost character is discarded. This does not
interact with the terminal so no hardware insert-character feature is
used.

Inserts a blank line between the current cursor line and the line above
it. The current line and subsequent lines of text in the window are
moved down one position, and the blank line becomes the new
current cursor line. The bottom line of text is discarded if it cannot
fit inside the window. This is a window operation that does not
interact with the terminal, so no hardware insert-line feature is used.

Causes tty driver queue to be flushed on interrupt. When enabled,
an interrupt, quit, or suspend keypress from the terminal flushes
all output from the tty driver queue, providing a faster response to
the interrupt. However, curses loses its record of what is currently
displayed on the screen when the interrupt occurs. Disabling the
option prevents the flush. Default is flush enabled. Requires proper
support from the underlying driver.

42 Using Curses and Terminfo

keypad(win.boolean_flag) Enables keypad character handling for the user terminal associated
with win. When true, the terminal operator can press any key that
generates multiple-character sequences (such as a function key), and
getch returns a single 16-bit integer value representing the function
key (the returned character must be handled as a 16-bit value).
If keypad is disabled (default), curses handles keypad sequences
as normal text. keypad also enables and disables keypad keys on
the terminal if the terminal hardware is equipped to support such
command sequences from the external computer.

killcharO Returns the line-kill character chosen by the terminal user. This
character, when typed by the user, is a command to the program
to cancel the entire line being typed.

leaveok(win.boolean-flag) Upon completion of normal refresh operations (Ieaveok disabled) the
terminal hardware cursor is placed at the current cursor location
for the window being refreshed. A call to leaveok(win. TRUE) prior
to refresh allows refresh operations to leave the terminal hardware
cursor in any convenient position instead of updating it to the current
window cursor position when refresh is finished. This is useful for
applications where the cursor is not used because it reduces the
need for cursor movements. When possible, the cursor is made
invisible when leaveok is specified for the window. Once leaveok is
set TRUE for a given window, it remains active for the duration of
the program or until another call sets it FALSE.

longnameO Returns a pointer to a static area containing a verbose description
of the current terminal. This static area is defined only after a call
to initscr, newterm, or setupterm.

meta(win. boolean_flag) When enabled, text characters are returned by getch as 8-bit charac­
ter codes (masked by octal 0377) instead of 7-bit (masked by octal
0177) characters. Returns the value OK if the request succeeds; ERR

if the terminal or system cannot handle 8-bit character codes.

meta is useful for extending the non-text command set in applications
where the terminal has a meta shift key. curses takes whatever
measures are necessary to arrange for 8-bit input. When meta is
true, HP-UX sets datacomm configuration to 8-bit character length,
no parity checking, and disables 8th-bit stripping. Remember that if
any program or facility handling the data can only pass 7-bit codes
or strips the 8th bit, 8-bit handling is not possible.

Using Curses and Terminfo 43

move(y,x}
wmove(win,y,x}

mvaddch(y,x,ch}

mvaddstr(y,x,str}

mvcur(oldrow,oldcol,
newrow, newcol)

Places the cursor associated with the specified or default window at
the specified row (y) and column (x) where the upper left corner of
the window is row 0, column O. The cursor is not moved on the
display screen until a refresh or equivalent function is executed.

Same as move(y,x}; addch(ch}. See addch(ch}.

Same as move(y,x}; addstr(str}. See addstr(str}.

Optimally moves the cursor from (oldrow, oldcol) to (newrow, new­
col). The user program is expected to keep track of the current
cursor position. Unless a full-screen image is kept, curses must make
pessimistic assumptions that sometimes result in less than optimal
cursor motion. For example, if the cursor needs to be moved a few
spaces to the right, the task could be accomplished by retransmit­
ting the characters between the present and the desired position;
but if curses cannot access the screen image, it cannot determine
what those characters are.

mvdelch(y,x} Same as move(y,x}; delch{}. See delch{}.

mvgetch(y,x} Same as move(y,x}; getch{}. See getch{}.

mvgetstr(y,x,str} Same as move(y,x}; getstr(str}. See getstr(str}.

mvinch(y,x} Same as move(y,x}; inch{}. See inch{}.

mvinsch(y,x,c} Same as move(y,x}; insch(c}. See insch(c}.

mvprintw(y,x,fmt,args} Same as move(y,x}; printw(fmt,args}. See printw(fmt,args}.

mvscanw(y,x,fmt,args} Same as move(y,x}; scanw(fmt,args}. See scanw(fmt,args}.

mvwaddch(win,y,x,ch} Same as wmove(win,y,x}; waddch(win,ch}. See addch(ch}.

mvwaddstr(win,y,x,str} Same as wmove(win,y,x}; waddstr(win,str}. See addstr(str}.

mvwdelch(win,y,x} Same as wmove(win,y,x}; addch(ch}. See delch{}.

mvwgetch(win,y,x} Same as wmove(win,y,x}; wgetch(win}. See getch{}.

mvwgetstr(win,y,x,str} Same as wmove(win,y,x}; wgetstr(win,str}. See getstr(str}.

mvwin(win,beg_y,beg_x} Moves the specified window so that the upper left-hand corner is
located at character position (beg_y, beg_x). If the move causes
any part of the relocated window to lie outside the physical screen
boundary, the command is considered to be in error, and the window
remains in its original location.

44 Using Curses and Terminfo

mvwinch(win,y,x)

mvwinsch(win,y,x,c)

mvwprintw(win,y,x,
fmt,args)

mvwscanw(win,y,x,
fmt,args)

napms(ms)

newpad(num_lines,
num_cols)

newterm(type,fpout,fpin)

newwin(num_lines,
num_cols,beg_y,beg_x)

Same as wmove(win,y,x): winch(win), See inch().

Same as wmove(win,y,x): winsch(win,c). See insch(c).

Same as wmove(win,y,x): wprintw(win,fmt,args).
See printw(fmt,args).

Same as wmove(win,y,x); wscanw(win.fmt,args).
See scanw(fmt,args).

Suspends program operation for rns milliseconds. napms is similar
to sleep, but has higher resolution. The resolution actually provided
depends on the resolution of available operating system facilities. If
a resolution of at least 0.100 sec is not available, the routine rounds
to the next higher second, calls sleep, and returns ERR. Otherwise
the value OK is returned.

Creates a new pad data structure. A pad is similar to a window,
but it is not restricted by physical screen size nor is it associated
with a particular part of the screen. Pads are useful when a large
window is needed and only part of the window will be displayed at
any given time. Automatic refreshes from pads (such as scrolling or
input echo) do not occur. Refresh cannot be used with a pad as an
argument. Instead, the routines prefresh and pnoutrefresh are used.
Pad refresh routines require additional parameters to specify what
part of the pad to display, and where to display it on the screen.

Used instead of initscr in programs that output to more than one
terminal. newterm should be called once for each terminal. It returns
a variable of type struct screen * which should be saved for use
as a reference to that terminal. Arguments are: a string defining
the terminal type, a file pointer for the output file, and another for
the input file if needed (interactive terminal).

Create a new window with the specified number of lines and columns
whose upper left-hand corner is located at the specified row and
column of the physical screen, and return a window pointer (the
upper left-hand corner of the physical screen is row 0, column 0). If
the number of lines and/or columns is specified as zero, the default
value LINES minus beg_y and COLS minus beg_x is used instead.
A screen buffer for the window is also created. To create a new
full-screen window, use newwin(O,O,O,O).

Using Curses and Terminfo 45

nlO
nonlO

nocbreakO

nodelay
(win, boolean_flag)

noechoO

nonlO

norawO

overlay(winl, win2)
overwrite(win 1, win2)

overwrite(win 1, win2)

pnoutrefresh(pad,
pminrow,pmincol,
sminrow,smincol,
smaxrow,smaxcol)

prefresh(pad,
pminrow,pmincol,
sminrow, smincol,
smaxrow,smaxcol)

pnoutrefresh
(same parameters)

Defines handling of newline characters. When enabled (nl), new­
line is translated into a carriage-return and line-feed on output, and
carriage-return is translated into a newline character on input. curses
initially enables newline, but if it is disabled by nonl, curses can make
better use of line feed capability, resulting in faster cursor motion.

See cbreakO.

Makes getch a non-blocking call. When enabled, if no input is ready,
a call to getch returns -1. If disabled, getch hangs until a key is
pressed.

See echoO.

See nlO.

See rawO.

Copies winl onto win2 for all screen area where the two windows
overlap. overlay copies only visible (non-blank) text, and does not
disturb those win2 character positions where winl is blank. over­
write copies all of overlapping winl onto win2, including blanks, thus
destroying all original data in the overlapping area of win2.

See overlay.

See prefresh.

Analogous to wrefresh and wnoutrefresh, except that pads are in­
volved instead of windows. Additional parameters specify what part
of the pad and screen are to be used. pminrow and pmincol iden­
tify the upper left corner of the pad area to be displayed. sminrow,
smincol, smaxrow, and smaxcol define the display boundaries on
the physical screen. The lower right-hand corner of the pad area
being displayed is calculated from the screen boundary parameters
because both rectangles must be the same size. Both rectangles
must lie completely within their respective structures.

46 Using Curses and Terminfo

printw(fmt,args)
wprintw(win,fmt,args)

mvprintw(y,x,fmt,args)

mvwprintw(win,y,x,

raw()
noraw()

fmt,args)

refresh()
wrefresh(win)

resetterm()
saveterm()

fixterm()

resetty()
savetty()

saveterm()

savettyO

These commands are functionally equivalent to print/. Characters
that would normally be output by printf are instead output by waddch

on the associated window.

Places the terminal in or out of raw mode. Raw mode is similar to
cbreak mode in that characters are immediately passed to the user
program as they are typed on the terminal keyboard, except that
interrupt and quit characters are passed as normal text instead of
generating a special interrupt signal. Raw mode handles all terminal
I/O as 8-bit characters instead of 7. BREAK key behavior may vary,
depending on the terminal.

These functions output window data to the terminal (other routines
only manipulate data structures). wrefresh copies the named window
to the physical screen on the terminal by using wnoutrefresh(win)

followed by doupdateO, taking into account what is already on the
screen in order to optimize the transfer. refreshO is similar, except
it uses stdscr as the default screen. Unless leaveok is enabled, the
cursor is placed at the location of the window cursor when the
operation is complete.

resetterm restores the current terminal to the operating condition
it was in when curses was started. The "current curses state" is
saved by savetermO for possible future use by fixtermO. resetterm
and fixterm should be used in all shell escapes. Equivalent routines
are also available at the term info level.

Restores (resets) the tty modes to those stored in the buffer by the
last previous savettyO command. This means that only one set of
states can be stored at any given time. See savetty().

Preserves the current terminal curses state for possible future use
by fixterm. See resettermO and fixterm().

Saves the current state of the tty modes in a buffer for possible later
use by resettyO. See resettyO.

Using Curses and Terminfo 47

scanw(fmt.args)
wseanw(win ,fmt.args)
mvseanw(y.x,fmt,args)
mvwscanw(win,

y.x,fmt.args)

scroll(win)

scrollok
(win, boolean-flag)

setscrreg(t, b)
wsetserreg(win, t, b)

setterm(type)

Corresponds to seanf(3S). Calls wgetstr which inputs characters from
the terminal and places them in a buffer until newline is received.
When newline is received, the string in the buffer serves as input for
the scan which processes the buffered string and places the result
in the appropriate args. Uses geteh for character input and echo
handling.

Scrolls the window up one line by moving the lines in the window
data structure. As an optimization, if the window being scrolled is
stdser, and the scrolling region is the entire window, the physical
screen is scrolled at the same time.

Controls window handling when the cursor advances beyond the
bottom boundary of the window or scrolling region due to a newline
in the bottom line or a character placed in the last character position
of the bottom line. If scrolling is disabled, the cursor is left on the
bottom line (characters are accepted until the bottom line is full, but
newlines are ignored). If the cursor crosses the bottom boundary
while serollok is enabled, a wrefresh is performed on the window,
then the window and terminal are scrolled up one line. idlok must
also be called before a physical scrolling effect can be produced on
the terminal screen.

Sets up a software scrolling area in window win or stdscr. t and b

are the top and bottom lines of the scrolling region (line 0 is the top
line of the window). If this option and scrollok are both enabled,
an attempt to move off the bottom margin causes all lines in the
scrolling region to scroll up one line. Note that this process has noth­
ing to do with the physical scrolling region capability that exists in
some terminal has scrolling region or insert/delete line capabilities,
they will probably be used by the output routines during refresh.
idlok must be enabled before a scrolling effect can be produced on
the terminal screen (see scrollok).

Low-level interface used by old curses and included here for com­
patibility with earlier software.

setupterm(term,filenum, term info routine. See terminfo routines in the next section of this
errret) tutorial for description.

48 Using Curses and Terminfo

seLterm(new)

standendO
wstandend(win)

standoutO
wstandout(win)

su bwin(orig_win,
num_lines,num_cols,

beg_y,beg_x)

touchwin(win)

traceoffl)

traceonO

Switches to a different terminal. The screen reference new becomes
the new current terminal, and the function returns the previous ter­
minal. All other calls affect only the current terminal. This function
is used to handle multiple terminals interacting with a single pro­
gram.

Equivalent to attrset(O) and attrset(A_NORMAL}. Turns off all video
highlighting attributes for the default (standen d) or specified
(wstandend) window.

EqUivalent to attron(A_STANDOUT). Turns on the video highlight­
ing attributes used for standout highlighting for the terminal being
used. Does not alter other attributes in effect at the time. standout
applies to the default window stdscr. wstandout affects the specified
window.

Creates a new window containing the specified number of lines and
columns within existing window orig_win. beg_y and beg_x specify
the starting row and column position of the window on the physical
screen (not relative to window orig_win). The subwindow uses that
part of the main window character data storage structure that cor­
responds to its own area (each window maintains its own pointers,
cursor location, and other items pertaining to window operation;
only character storage is shared). Thus, the subwindow always con­
tains character data (including highlighting attributes) that is identical
to the data contained in the corresponding area of the original win­
dow, regardless of which window is the target of a write operation
(highlighting bits are determined by the current attributes in effect
for the window through which each character was stored). When us­
ing subwindows, it is often necessary to call touch win before refresh
in order to maintain correct display contents.

Discards optimization information on the specified window so that
the entire window must be completely rewritten during refresh. This
is sometimes necessary when using overlapping windows because
changes to one window do not update the overlapping window struc­
ture in such a manner that a subsequent refresh operation can be
handled correctly.

Dummy entry point. Performs no useful function.

Dummy entry point. Performs no useful function.

Using Curses and Terminfo 49

typeahead(fd}

unctrl(eh}

waddch(win,eh}

waddstr(win,str}

wa ttroft(win, attrs}

wa ttron(win,attrs}

wa ttrset(win,attrs}

wclear(win}

wcleartobot(win}

wcleartoeol(win}

wdelch(win}

wdeleteln(win}

werase(win}

wgetch(win}

wgetstr(win, str}

winch(win}

winsch(win,e}

winsertln(win}

wmove(win,y,x}

wnoutrefresh(win}

Sets the file descriptor for typeahead check. fd is an integer ob­
tained from open or fi/eno. Setting typeahead to -1 disables typea­
head check. Default file descriptor is 0 (standard input). Typeahead
is checked independently for each screen; for multiple interactive ter­
minals, it should be set to the appropriate input for each screen. A
call to typeahead always affects only the current screen.

Converts the character code represented by ch into a printable form
if it is an unprintable control character. The converted character is
returned as a two-byte character pair consisting of an alpha-numeric
character preceded by A where n represents the control key, and
the alpha-numeric character corresponds to the key that is normally
pressed in conjunction with the keyboard CTRL key to produce the
control character.

See addeh(eh}.

See addstr(str}.

See attroff(attrs}.

See attron(attrs}.

See attrset(attrs}.

See clearO.

See cleartobotO.

See cleartoeolO.

See deleh().

See deletelnO.

See eraseO.

See getehO

See getstr(str}

See inehO

See inseh(e}.

See insert/nO.

See move(y,x}.

See doupdateO.

50 Using Curses and Terminfo

wprintw(win,fmt.args)

wrefresh(win)

wsCanw(win,fmt.args)

wsetscrreg(win. t. b)

wstandend(win)

wstandout(win)

See printw(fmt.args).

See refreshO. See also doupdateO.

See scanw(fmt.args).

See setscrreg(t.b).

See standendO.

See standoutO.

Using Curses and Terminfo 51

Terminfo Routines
delay _output(ms)

putp(str)

setupterm(term,filenum,
errret)

Inserts a delay into the output stream for the specified number of
milliseconds by inserting sufficient pad characters to effect the delay.
This should not be used in place of a high-resolution sleep, but rather
to slow down or hold off the output. Due to system buffering, it is
unlikely that a delay can result in a process actually sleeping. ms
should not exceed about 500 because of the large number of pad
characters used to produce such delays.

Outputs a string capability without use of an affcnt (see tputs). The
string is sent to putchar with an affcnt of 1. It is used in simple
applications that do not require the output processing capability of
tputs.

Initializes the specified terminal. term is the character string repre­
senting the name or model of the terminal; filenum is the HP-UX
file descriptor of the terminal being used for output; errret is a
pointer to the integer in which a success/failure indication is re­
turned. The values returned can be: 1 (initialize complete); -1
(term info data base not found); or a (no such terminal).

If a is given as the value of term, the default value of TERM is ob­
tained from the enviroment. errret can be specified as a if no error
code is wanted. If errret is default (0), and something goes wrong,
setupterm prints an appropriate error message and exits rather than
returning. Thus, a simple program can call setupterm(O, 1 ,0) and not
provide for initialization errors.

If the environment variable TERMINFO is set to a path name, se­
tupterm checks for a compiled term info description of the terminal
under that path before checking /usr/lib/terminfo. Otherwise, only
/usr/lib/terminfo is checked.

setupterm uses filenum to check the tty driver mode bits, and
changes any that might prevent correct operation of low-level curses
routines. Tabs are not expanded into spaces because various ter­
minals exhibit inconsistent uses of the tab character. If the HP-UX
system is expanding tabs, setupterm removes the definition of the
tab and backtab functions because they may not be set correctly
in the terminal. Other system-dependent changes such as disabling
a virtual terminal driver may also be made here, if deemed appro­
priate by setupterm.

52 Using Curses and Terminfo

tparm{instring,p 1 ,p2,p3,
p4,p5,p6,p 7,p8,p9)

tpu ts(cp, ajfcnt, outc)

vidattr(attrs)

ttytype (an array of characters) to the value of the list of names
for the terminal in question. The list is obtained from the begining
of the term info description.

Upon completion of setupterm, the global variable cur_term points
to the current structure of terminal capabilities. A program can
use two or more terminals at once by calling setupterm for each
terminal, and saving and restoring cur_term.

nlO is enabled, so newlines are converted to carriage return-line
feed sequences on output. Programs that use cursor _down or
scroll_forward should avoid these two capabilities or disable the
mode with nonlO. setupterm calls reseCprog_mode after any
changes are made.

Instantiates a parameterized string. Up to nine parameters can
passed (in addition to the input string) that define what operations
are to be performed on instring by tparm. The resultant string is
suitable for output processing by tput.

Processes terminfo(5) capability strings for terminal devices. The
padding specification, if present, is replaced by enough padding
characters to produce the specified time delay. The resulting string
is passed, one character at a time, to the routine oute which ex­
pects a single character parameter each time it is called. Often,
oute simply calls putchar to complete its task. cp is the capability
string, and affcnt is the number of units affected (such as lines or
characters). For example, the affcnt for insert_line is the number
of lines on the screen below the inserted line; that is, the number of
lines that will have to be moved on the terminal. In certain cases,
affcnt is used to determine the number of padding characters that
must be created in the output string to produce the required de­
lay(s), based on known terminal characteristics (obtained from the
terminal identification data base).

Transmits the appropriate string to stdout to activate the spec­
ified video attributes which can include any or all of the fol­
lowing: A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM,

A_BOLD, A_BLANK (invisible), A_PROTECT, and A_ALTCHARSET (multi­
ple attributes must be separated by the C logical OR operator I).

Using Curses and Terminfo 53

vidputs(attrs,putc) Transmits the appropriate string to the terminal, activating the spec­
ified video highlighting attributes, attrs can include any or all of
the following (multiple attributes must be separated by the C logical
OR operator I): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,

A_DIM, A_BOLD, A_BLANK (invisible), A_PROTECT, and A_ALTCHARSET.

putc is a putchar-like function. Previous highlighting attributes are
preserved by this routine and restored upon return.

Termcap Compatibility Routines
Several routines have been included in curses that support programs written with calls to term cap
routines. Calling parameters are the same as for equivalent termcap calls, but the routines are
emulated using the terminfo data base. These routines may be removed in future releases of
HP-UX.

tgetent(bp, name)

tgetflag(id)

tgetnum(id)

tgetstr(id, area)

tgoto(cap,col,row)

tputs(cap,affcnt,jn)

Obtains term cap entry for name

Returns the boolean entry for id.

Returns the numeric entry for id.

Returns the string entry for id and places the result in area.

Attaches col and row parameters to the capability cap.

Equivalent to the term info routine tputs. Parameters are identical
for both cases.

54 Using Curses and Terminfo

Program Operation
This section describes how curses routines behave and how they are used in a typical program­
ming environment.

Insert/Delete Line
The output optimization routines associated with curses use terminal hardware insert/delete line
capabilities provided the routine

idlok(stdscr.TRUE);

has been called to enable the capability. By default, insert/delete line during refresh is disabled
(FALSE); not for performance reasons (there is no speed penalty involved), but because experience
has shown that not only is insert/delete line frequently not needed (especially in simple programs);
it can sometimes be visually annoying when used by curses. Insert/delete character is always
available to curses if it is supported by the terminal.

Additional Terminals
Curses can be used, even when absolute cursor addressing is not provided on the terminal, as long
as the cursor can be moved from any location to any other location. curses considers available
cursor control options such as local motions, parameterized motions, home, and carriage return.

curses is intended for use with full-duplex, alphamumeric, video display terminals. No attempt
is made to handle half-duplex, synchronous, hard copy, or bitmapped terminals. Bitmapped
terminals can be handled by programming the bitmapped terminal to emulate an ordinary al­
phanumeric terminal. This prevents curses from using the bitmap capabilities, but curses was
not designed for bitmapping.

curses can also deal with terminals that have the "magic cookie" glitch in their display highlighting
behavior. The term "magic cookie" means that changes in highlighting are controlled by storing
a "magic cookie" character in a location on the screen. While this "cookie" takes up a space,
preventing an exact implementation of what the programmer wanted, curses takes the extra
character space into account, and moves part of the line to the right when necessary. In some
cases, this unavoidably results in losing text along the right-hand edge of the screen, but curses
compensates where possible by omitting extra spaces.

Using Curses and Terminfo 55

Multiple Terminals
Some applications require that text be displayed on more than one terminal at the same time
from the same process. This is easily accomplished, even when the terminals are different types.

curses maintains all information about the current terminal in a global variable called

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler accepts declarations of
variables that are pointers. The user program should declare one screen pointer variable for
each terminal that is to be handled. The routine:

struct screen *newterm(type.fdout.fdin)

sets up a new terminal of the specified type and output is handled through file descriptor fdout.
This is comparable to the usual program call to initscr which is essentially equivalent to

newterm(getenv("TERM").stdout)

A program that uses multiple terminals should call newterm for each terminal, and save the value
returned as a reference to that terminal for other calls.

To change to a different terminal, call

set_term(term)

which returns the old value of variable SP. Do not assign to SP because certain other global
variables must also be changed.

All curses routines always interact with the current terminal. set_term is used to change from one
terminal to the next in a multi-terminal environment. When the program is ready to terminate,
each terminal should be selected in turn by a call to set_term, then cleaned up with screen
clearing and cursor locating routines, followed by a call to endwinO for that terminal. Repeat
the sequence for each additional terminal used by the program. The example program TWO
demonstrates the technique.

56 Using Curses and Terminfo

Video Highlighting
Video highlighting attributes can be displayed in any combination on terminals that support
the various attribute capabilities. Each character position in screen data structures is allotted
16 bits: seven for the character code; the remaining nine for highlighting attributes, one bit
per attribute. Each respective bit is associated with one of the following attributes: standout,
underline, inverse video, blink, dim, bold, invisble, protect, and alternate character set. Standout
selects the visually most pleasing highlighting method, and should be used by all programs that
do not need a specific highlighting combination. Underlining, inverse Video, blinking, dim, and
bold are standard features on most popular terminals, though they are not usually all present
on a single terminal (for example, no current terminal implements both bold and dim). Invisible
means that visible characters are displayed as blanks for security reasons (such as when echoing
passwords). Protected and Alternate Character Set are subject to the characteristics of the
terminal being used. Invisible, protected, and alternate character set attributes are subject to
change or substitution by curses, and should be avoided unless necessary.

When characters are stored, each character is combined with the current attributes variable
associated with the window. The variable is formed by using one of the following routines:

attrset(attrs}

attron(attrs}

attroff(attrs}

standoutO

standendO

wattrset(win, attrs}

wattron(win ,attrs}

wattroff(win,attrs}

wstandout{win}

wstandend(win}

The following attributes can be specified in the attrs argument for corresponding attribute
set/ on/ off routines.

A_STANDOUT
A_UNDERLINE
A_REVERSE

A_BLINK
A_DIM
A_BOLD

A_INVIS
A_PROTECT
A_ALTCHARSET

When specifying multiple attributes, they should be separated by the C logical OR operator (i).
Thus, to specify blinking underline and disable all other attributes on the stdscr window, use
attrset(A_BLINKIA_UNDERLINE}.

curses forms the current attributes word as follows:

• Each attribute (such as A_UNDERLINE) is stored as a 16-bit word where all bits are zero
except the bit that represents the corresponding attribute in a stored character word (for
example, 0000010000000000 controls blinking).

Using Curses and Terminfo 57

• All attributes forming the attrs argument are combined using the logical OR operator to
create a single 16-bit word containing all attributes in the argument. For example, the
three attribute words

0000010000000000,
0001000000000000, and
0000001000000000 are combined to form
0001011000000000 which identifies the new attributes.

• Three things can be done with the new attributes word. It can be used as the new current
attributes (attrset or wattrset); or the new attributes can be added to any currently active
attributes (attron or wattron), or deleted from the currently active attributes (attroff or
wattroff).

• If attrset (or wattrset) was called, the routine stores the new attributes in the current
attributes variable and returns. The previous set of current attributes is destroyed.

• If attron (or wattron) was called, the routine performs a logical OR of the current attributes
with the new attributes, then places the result in the current attributes variable and returns.
The revised current attributes variable contains all previously active attributes plus the new
attributes.

• If attroff (or wattroff) was called, the routine inverts the new attributes, performs a logical
AND on the inverted new attributes and the current attributes, then places the result in
the current attributes variable and returns. The altered current attributes variable contains
all previously active attributes except those specified in the call, which are now disabled.

• standout and wstandout obtain their highlighting attributes from the term info data base,
then perform the same operation as attron prior to returning.

• standend and wstandend disable all attributes then return. They are equivalent to attrset(O}

and attrset(A_NORMAL}.

• attrset(O} and wattrset(win,O} set the 16-bit current attributes variable value to zero which
disables all attributes. A_NORMAL can be substituted for zero as an argument.

The preceding scenarios assume that the specified attributes are available on the current terminal.
In every case, the term info data base is used to determine whether the selected attribute is
present. If it is not, curses attempts to find a suitable substitute before forming the new attribute
set. If the terminal has no highlighting capabilities, all highlighting commands are ignored.

58 Using Curses and Terminfo

Three other constants (defined in <curses. h», in addition to the previously listed attributes are
also available for program use if needed:

• A_NORMAL has the octal value 0000000, and can be used as an attribute argument for
attrset to restore normal text display. attrset(O) is easier to type, but less descriptive. Both
are equivalent.

• A_ATTRIBUTES has the octal value 0177600. It can be logically ANDed with a character
data word to isolate the attribute bits and discard the character.

• A_CHARTEXT has the octal value 0000177. It can be logically ANDed with a character data
word to isolate the character code and discard the attributes.

Special Keys
Most terminals have special keys, such as arrow keys, screen/line clearing keys, insert and
delete line or character keys, and keys for user functions. The character sequences that such
keys generate and send to the host computer vary from terminal to terminal. curses provides a
convenient means for handling such keys through the use of keypad routines. Keypad capabilities
are enabled by the call:

keypad (stdscr ,TRUE)

during program initialization, or

keypad (win , TRUE)

when setting up and initializing other windows, as appropriate. When keypad is enabled, keypad
character sequences are passed to the program by getch, but they are converted to special
character values starting at 0401 octal (keypad character codes are listed in the keypad discussion
early in this tutorial). Keypad codes are 16-bit values, and must not be stored in a char type
variable because the upper bits must be preserved.

When keypad keys are used in a program, avoid using the escape key for program control
because most keypad sequences begin with escape. If escape is used for program control, an
ambiguity results that is not easily dealt with, and, at best, results in sluggish program response
to all escape sequences as well as significant potential for incorrect program operation.

Using Curses and Terminfo 59

Scrolling Regions
Each window has a programmer-accessible scrolling region that is normally set to include the
entire window. curses contains a routine that can be used to change the scrolling region to any
location in the window by specifying the top and bottom margin lines. The routines are called
by

setscrreg(top.bottom)

for the stdscr window, or

wsetscrreg(win.top.bottom)

for other windows. When the cursor advances beyond the bottom line in the region, all lines
in the region are moved up one line (destroying the top line in the process) and a new line at
the bottom of the region becomes the new cursor line. If scrolling has been enabled by a call to
scrollok for that window, scrolling takes place, but only within the window boundary (if scrollok
is not enabled, the cursor stays on the bottom line and no scrolling can occur). The scrolling
region is a software feature only, and only causes a given window data structure to scroll. It may
or may not translate to use of the hardware scrolling region that is featured on some terminals
or hardware insert/delete line capabilities on the terminal.

Mini-Curses
All calls to refresh copy the current window to an internal screen image (stdscr). For simpler
applications where window capabilities are not important and all operations can be handled by
the standard screen, the screen output optimization capabilities of curses can be obtained through
the low-level curses interface routines supported by mini-curses. Mini-curses is a subset of full
curses, so any program that runs on the subset can also run on full curses without modification.

A complete list of commands is shown at the beginning of the curses commands section in
this tutorial. Commands that are supported by mini-curses are marked with an asterisk (some
that are not marked may also be accessible - if a program calls routines that are not, an error
message showing undefined calls is produced by the compiler at compile time).

mini-curses routines are limited to commands that deal with the stdscr window. Certain other
high-level functions that are convenient but not essential (such as scanw, printw, and getch) are
not available, as well as all commands that begin with w. Low-level routines such as hardware
insert/delete line and video attributes are supported, as are mode-setting routines such as noecho.

60 Using Curses and Terminfo

To access mini-curses, add -DMINICURSES to the CFLAGS in the makefile. If any routines are
requested that are not available in mini-curses, an error diagnostic such as

Undefined:
m_getch
m_waddch

is listed to indicate that the program contains calls (in this case to getch and waddch) that cannot
be linked because they are not available.

Remember that the preprocessor is involved in the implementation of mini-curses, so any pro­
grams that are compiled for use with mini-curses must be recompiled if they are to be used with
full curses.

TTY Mode Functions
In addition to the save/restore functions savettyO and resettyO, other standard routines are
provided by curses for entering and exiting normal tty mode.

• resettermO restores the terminal to its state prior to curses' start-up.

• fixterm performs the equivalent of an undo on the previous fixterm on that terminal; it
restores the "current curses mode" using the results of the most recent call to savetermO.

• endwin automatically calls resetterm.

• Routines that handle control-Z (on systems that have process control) also use resettermO
and fixtermO.

Programs that use curses should use these routines before and after shell escapes, and also if
the program has its own routines for dealing with control-Z. These routines are also available at
the terminfo level.

Typeahead Check
When a user types something during a screen update, the update stops, pending a future update.
This is useful when several keys are pressed in sequence, each of which produces a large amount
of output. For example in a screen editor, the "forward screen" (or "next page") key draws the
next screenful of text. If the key is pressed several times in rapid succession, rather than drawing
several screens of text, curses cuts the updates short and only displays the last requested full
screen. This feature is automatic, and cannot be disabled. It requires support by certain routines
in the HP-UX operating system.

Using Curses and Terminfo 61

getstr
No matter whether echo is enabled or disabled, strings typed and input by getstr are echoed at
the current cursor location. Erase and kill characters assigned by the user for his (or her) terminal
are considered when handling input strings. Thus it is unnecessary for interactive programs to
deal directly with erase, echo, and kill when processing a line of text from the terminal keyboard.

longname
The longname function does not require any arguments. It returns a pointer to a static storage
area that contains the actual long (verbose) terminal name.

Nodelay Mode
The program call

nodelay(stdscr , TRUE)

puts the terminal in "no delay" mode. When nodelay is active, any call to getch returns the value
-1 if there is nothing available for immediate input. This feature is helpful for real-time situations
where a user is watching terminal screen outputs and presses a key when he wants to respond.
For example, a program can be producing a text pattern on the screen while maintaining an
open opportunity for the user to press certain keys to alter the output pattern, change cursor
direction, or produce some other effect.

62 Using Curses and Terminfo

Example Programs

SCATTER
This program takes the first 23 lines from the standard input, then displays them in random
order on the display terminal screen.

#include <curses.h>
#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS] ; 1* Screen Array *1

mainO
{

register int row = O.
col = 0;

register
int

char c;
char_count
t;
buf[BUFSIZ] ;

0; 1* count non-blank characters *1
long
char

initscrO;
for (row = 0; row < MAXLINES; row++)

for (col = 0; col < MAXCOLS;
s[row][col] = ' ';

row = 0;
col = 0;
1* Read screen in *1

1* initialize screen array *1
col++)

while ((c = getchar()) != EOF && row < LINES) {
if (c != '\n' && col < COLS) {

1* Place char in screen array *1
s[row] [col++] = c;

} else {

}
}

if (c ! = ' ')

colO;
row++;

char_count++;

time(&t); 1* Seed the random number generator *1
srand«int) (t&0177777L));

while (char_count) {
row rand() % LINES;
col = (rand() » 2) % COLS;

Using Curses and Terminfo 63

}

SHOW

if (s [row] [col] ! = ' , && s [row] [col] ! = EOF) {
move(row,col);

}
}

endwinO;
exit(O);

addch(s[row] [col]);
s[row] [col] = EOF;
char_count--;
refreshO;

This example program displays a file taken from the standard input, one screen at a time. Press
the terminal space bar to advance to the next screen.

#include <curses.h>
#include <signal.h>
main(argc,argv)

{

int
char

argc;
*argv[] ;

FILE *fd;
char linebuf[BUFSIZ] ;
int line;
void donee) ,perror(),exit();

if (argc != 2) {
fprintf (stderr, "usage: %s file\n", argv [0]) ;
exit (1) ;

}

if

}

(fd = fopen(argv[1] , "r"))
perror(argv[1]);
exit(2);

signal (SIGINT, done);
initscrO;
noechoO;
cbreakO;

NULL) {

nonlO;
idlok(stdscr,TRUE);

/* enable more screen optimization */
/* allow insert/delete line */

while (1) {
move(O,O);
for (line = 0; line < LINES; line++) {

if (fgets(linebuf, sizeof linebuf, fd)

64 Using Curses and Terminfo

NULL) {

}

doneO
{

}

}

clrtobotO;
done 0 ;

move (line, 0) ;
printw("%s", linebuf);

}

void

}

refreshO;
if (getch() == 'q')

done 0 ;

move(LINES-l, 0);
clrtoeolO ;
refreshO;
endwinO;
exit(O);

HIGHLIGHT
This example program displays text taken from the standard input. Highlighting is determined
by embedded character sequences in the file. \U starts underlining, \8 starts bold highlighting,
and \N restores normal display characteristics.

#include <curses.h>

main(argc,argv)
int
char

{

argc;
*argv [] ;

FILE *fd;
int c ,c2;

if (argc != 2) {
fprintf(stderr, "Usage: highlight file\n");
exit(l);

}

fd = fopen(argv[l] ,"r");
if (fd == NULL) {

perror(argv[l]) ;
exit(2);

}

initscrO;

Using Curses and Terminfo 65

}

scrollok(stdscr,TRUE);

for (;;) {
c = getc(fd);
if (c == EOF)

break;

if (c == "") {

} else

}

fclose(fd);
refreshO;
endwinO;
exit(O);

c2 = getc(fd);
switch(c2) {
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O) ;
continue;

}

addch(c) ;
addch(c2);

addch(c);

WINDOW
This program demonstrates the use of multiple windows.

#include <curses.h>

WINDOW

main 0
{

*cmdwin;

int i ,c;
char buf[120] ;

initscrO;
nonlO;
noechoO;

66 Using Curses and Terminfo

cbreakO;

cmdwin = newwin(3.COLS.O.O) ; /* top 3 lines */
for (i=O; i < LINES; i++)

mvprintw(i.O."This is line %d of stdscr".i);

for (;;) {
refreshO;

}

c = getchO;
switch(c) {
case 'c': /* Enter command from keyboard */

werase(cmdwin) ; /* clear window */
wprintw(cmdwin. "Enter command: ");
wmove(cmdwin.2.0) ;
for (i=O; i < COLS; i++)

waddch(cmdwin. '-');

wmove(cmdwin.l.0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr (cmdwin. buf) ;
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.
*/

eraseO;
for (i=O; i < LINES; i++)

mvprintw(i. O. "%s". buf) ;
refreshO;
break;

case 'q':

}

endwinO;
exit(O);

Using Curses and Terminfo 67

TWO
This program shows how to handle two terminals from a single program.

#include <curses.h>
#include <signal.h>

struct screen *me. *you;
struct screen *set_term();

FILE *fd. *fdyou;
char linebuf[512];

main(argc.argv)
int
char

argc;
*argv[] ;

{

int done 0 ;
int c;

if (argc != 4) {
fprintf(stderr."Usage: two othertty otherttytype inputfile\n");
exit (1) ;

}

fd = fopen(argv[3] ."r");
fdyou = fopen(argv[l] ."W+");
signal (SIGINT. done); /* die gracefully */

me = newterm(getenv("TERM").stdout.stdin); /* initialize my tty */
you = newterm(argv[2] .fdyou.fdyou); /* Initialize his/her terminal*/

set_term(me);
noechoO;
cbreakO;
nonlO;
nodelay(stdscr.TRUE);

set_term(you);
noechoO;
cbreakO;
nonlO;
nodelay(stdscr.TRUE);

/* Set modes for my terminal */
/* turn off tty echo */
/* enter cbreak mode */
/* Allow linefeed */
/* No hang on input */

/* Dump first screen full on my terminal */
dump_page(me);

/* Dump second screen full on his/her terminal */
dump_page (you) ;

68 Using Curses and Terminfo

}

for (;;) { 1* for each screen full *1

}

set_term(me) ;
c = getchO;
if (c == 'q') 1* wait for user to read it *1

done 0 ;
if (c == ' ,)

dump_page(me);

set_term(you);
c = getchO;
if (c == 'q') 1* wait for user to read it *1

done 0 ;
if (c == ' ')

dump_page(you);
sleep(l);

dump_page (term)

{

}

1*

struct screen *term;

int line;

set_term(term) ;
move(O,O);
for (line=O; line < LINES-l; line++) {

}

if (fgets(linebuf,sizeof linebuf,fd)
clrtobotO;
done 0 ;

}

mvprintw(line, 0, "%S" ,linebuf) ;

standout 0 ;
mvprintw(LINES-l,O,"--More--");
standendO;
refresh(); 1* sync screen *1

NULL) {

* Clean up and exit.
*1

doneO
{

1* Clean up first
set_term(you);
move(LINES-l,O);
clrtoeolO ;
refreshO;

terminal *1

1* to lower left corner *1
1* clear bottom line *1
1* flush out everything *1

Using Curses and Terminfo 69

}

endwinO; 1* curses clean up *1

1* Clean up second terminal *1
set_term(me);
move(LINES-l.0);
clrtoeolO;
refreshO;
endwinO;

exit(O);

1* to lower left corner *1
1* clear bottom line *1
1* flush out everything *1
1* curses clean up *1

TERMHL
This program is equivalent to the earlier example program HIGHLIGHT, but uses term info

routines instead.

#include <curses.h>
#include <term.h>

int ulmode = 0; 1* Currently underlining *1

main(argc. argv)
int argc;

*argv[] ;
{

char

FILE *fd;
int c .c2;
int outchO;

if (argc > 2) {

}

fprintf (stderr. "Usage: termhl [file] \n") ;
exit(l);

if (argc == 2) {
fd = fopen(argv[l]. "r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

}

} else {
fd = stdin;

}

setupterm(0.1.0);
for (;;) {

c = getc(fd);
if (c == EOF)

break;

70 Using Curses and Terminfo

}

if (c == '\\') {

} else

}

fclose(fd);
fflush(stdout);
resettermO;
exit(O);

c2 = getc(fd) ;
switch(c2) {
case 'B':

tputs(enter_bold_mode,1,outch);
continue;

case 'U':
tputs(enter_underline_mode,1,outch) ;
ulmode = 1;
continue;

case 'N':
tputs(exit_attribute_mode,1,outch);
ulmode = 0;
continue;

}

putch(c);
putch(c2);

putch(c);

/*
* This function is like put char , but it checks for underlining.
*/

putch(c)

{

}

}

/*

int c;

outch(c);
if (ulmode && underline_char) {

outch('\b') ;
tputs(underline_char,1,outch);

}

* Out char is a function version of put char that can be passed to
* tputs as a routine to call.
*/

outch(c)
int c'

{

putchar(c);

Using Curses and T erminfo 71

EDITOR
This program is a very simple screen-oriented editor that is similar to a small subset of vi. For
simplicity, the stdscr Window is also used as the editing buffer.

#include <curses.h>
#define CTRL(c) ('c'&037)
main(argc,argv)

{

int
char

argc;
*argv[] ;

int i ,n,l;
int c;
FILE *fd;

if (argc != 2) {

}

fprintf (stderr , "Usage: edit file \n") ;
exit(1);

fd = fopen(argv[1] ,"r");
if (fd == NULL) {

perror(argv[1]) ;
exit(2);

}

initscrO;
cbreakO;
nonlO;
noechoO;
idlok(stdscr, TRUE);
keypad (stdscr, TRUE);

1* Read in the file *1
while «c = getc (fd)) ! = EOF)

addch(c);
fclose(fd);

move(O,O);
refreshO;
edit 0 ;

1* Write out the file *1
fd = fopen(argv[1] ,"w");
for (1=0; 1 < LINES; 1++) {

}

n = len(l);
for (i=O; i<n; i++)

putc(mvinch(l,i),fd);
putc('\n',fd); 1* typo in AT&T manual *1

72 Using Curses and Terminfo

}

fclose(fd);
endwinO;
exit(O);

len(lineno)
int lineno;

{

int linelen = COLS-i;

while (linelen >= 0 && mvinch(lineno,linelen) ")
linelen-- ;

return linelen + i;
}

1* Global value of current cursor position *1
int row. col;

editO
{

int c'
for (;;) {

move(row,col);
refreshO;
c = getchO;
switch(c) { 1* Editor commands *1

1* hjkl and arrow keys: move cursor *1
1* in direction indicated *1
case 'h':
case KEY_LEFT:

if (col> 0)
col--;

break;

case 'j , :
case KEY_DOWN:

if (row < LINES-i)
row++;

break;

case 'k':
case KEY_UP:

if (row> 0)
row--;

break;

case '1':
case KEY_RIGHT:

if (col < COLS-i)
col++;

Using Curses and Terminfo 73

}

break;

1* i: enter input mode *1
case KELIC:
case 'i':

input 0 ;
break;

1* x: delete current character *1
case KEY_DC:
case 'x':

delchO;
break;

1* 0: open up a new line and enter input mode *1
case KEY_IL:
case '0':

move(++row,col=O);
insertlnO;
input 0 ;
break;

1* d: delete current line *1
case KEY_DL:
case 'd':

deletelnO;
break;

1* ~L: redraw screen *1
case KEY_CLEAR:
case CTRL(L) :

clearok(curscr, TRUE);
refreshO;
break;

1* w: write and quit *1
case 'w':

return;

1* q: quit without writing *1
case 'q':

endwinO;
exit (1) ;

default:
flashO;
break;

}

74 Using Curses and Terminfo

* Insert mode: accept characters and insert them.
* End with -D or EIC.
*/

input()
{

}

int c;
standout () ;
mvaddstr(LINES-l, COLS-20, "INPUT MODE");
stand end () ;
move(row,col) ;
refresh() ;

for (;;) {

}

c = getch();
if (c == CTRL(D) I I c == KEY_EIC)

break;
insch(c);
move (row , ++col);
refresh() ;

move (LINES-l, COLS-20);
clrtoeol () ;
move(row,col);
refresh() ;

Using Curses and Terminfo 75

Notes

76 Using Curses and Terminfo

Index

a
addch """"""""",","",","',"',"',"',""" 2, 4, 10, 28, 35
addstr "',"",","",',""',',""",""',""""""""'" 28, 36
alternate character set """"""""""""""';"""""""""" 1 0
application program operation """",""","""',"""""""""',' 5
application programs structure ,"',"',","',"',"',",,',',"',",',"" 3
arrow keys """""""""""""""""""""""""""'" 1, 59
attributes ",',"""""',',""""""""""""""""""" 10, 11
attroff ","""',""""""",,"""',""',"""',,'" 11, 31, 36, 58
attron """"",","""""",',""""""""""""'" 11, 36, 58
attrset "',"""',"""""",',""',',"",',"",",' 2, 10, 11, 36, 58

b
baudrate """""""""""",""',',"',",""',',',""'" 32, 36
beep """"""""""""""""',',""',,"",","'," 22, 32, 36
blinking highlight """",',"',""""",',""""""""""""" 1 0
bold highlight """""",,""",,"",",","',","""""""'" 10
box ",","',","",",",""""""""""""",,""',',' 29, 36

c
cbreak """""""",',"',"',"',",","",',""""'" 4, 9, 26, 37
clear ",',"",',',"""""""""",,"',",",""""""" 29, 37
clearok , " 4, 25, 37
clrtobot ,""',",',""""""""",',","""""""""" 9, 29, 37
cktoecl """""""",,"",""""""""',""",,""," 9, 29, 37
COLS ",,","',',"""""",,"",',',""""',"""""""", 5
configuration routines """""",""""""""',""',',"',"""" 26
creating windows """',"""""""',',"',"',',""""""""', 14
current attributes ",",""""",',',"""""""""',,"',",','" 11
current screen """"',",",""""",,"",",",""""""""" 2
current terminal ,,',',""',""',",',"""""',"',"',","""'" 1 7
curser ",',"""""",,"',""""',,"',""""""""',,",'" 2
curses """"',,",""""",""""""""""',',",""""'" 1
curses routines """"",',"',""""","",",',""""""""', 33
curses routines, introduction """"',,","""""',"',",',""""'" 23
curses routines, listed description of """"',',',"""""""""',," 33-51
curses,h """"',"',""""',',',"""""',,"',"""""""" 10

Index 77

d
data output routines .. 28
data-input routines:

terminal data ... 30
window ... 30

delay functions .. 32
delay_output .. 37, 52
delch .. 29, 37
deleteln .. 29, 37
deleting text 29
deleting text from windows 29
delwin .. 38
dim highlight ... 10
display highlighting 10
doupdate ... 28, 38
draino ... 32, 38

e
echo .. 26,38
endwin .. 5, 24, 38, 61
erase .. 29, 39
erasechar ... 32, 39
ERR .. 23
escape sequences .. 22
escape used in program control ... 22
example programs:

editor .. 21, 72
highlight .. 12, 65
scatter .. 63
show .. 12,64
termhl ... 20, 70
two .. 18, 56, 68
window .. 15, 66

f
fixterm 39, 61
flash .. 22, 30, 39
flush .. 4
flushinp .. 32, 39
formatted output to windows ... 29

78 Index

9
getch .. 6, 30, 39
getstr ... 30, 41, 62
gettmode .. 41
getyx .. 30, 41

h
half-bright highlight .. 10
has_ic .. 41
has_il 41
highlight escape sequences ... 12
highlighting attribute routines ... 31
highlighting data structure .. 2
highlighting displays .. 10
highlighting program operation .. 57

•
I

idlok .. 4, 9, 25, 41
inch ... 30,42
include files .. 23
initialization routines 24
initscr ... 4, 24, 42
input routines .. 30
insch .. 29, 42
insert/delete line, program operation 55
inserting text ... 29
inserting text in windows .. 29
insertln .. 29, 42
intrflush .. 25, 42
introduction to curses routines .. 23
inverse video ... 10
invisible highlight .. 10

k
keyboard input ... 6
keyboard input program example ... 9
keypad .. 6, 7, 25, 43, 59
keypad character handling .. 7
keypad codes .. 8
killchar .. 32, 43

Index 79

I
leaveok .. 25, 43
LINES ... 5
loader options .. 24
longname .. 24, 43, 62
low-level terminfo usage ... 19

m
magic cookie ... 55
manipulation routines ... 27
meta ... 25,40, 43
mini-curses ... 24, 60, 61
miscellaneous curses functions .. 32
miscellaneous window operations .. 29
move .. 28,44
multiple terminals 17, 56
multiple terminals, program operation 56
multiple types of terminals, dealing with 55
multiple windows ... 13, 14
mvaddch .. 44
mvaddstr .. 44
mvcur .. 44
mvdelch ... 44
mvgetch ... 44
mvgetstr .. 44
mvinch .. 44
mvprintw .. 44
mvscanw .. 44
mvwaddch ... 44
mvwaddstr ... 44
mvwdelch .. 44
mvwgetch ... 44
mvwgetstr ... 44
mvwin .. 44
mvwinch .. 45
mvwinsch 45
mvwprintw 45
mvwscanw ... 45

80 Index

n
napms ... 32, 45
newpad ... 45
newterm ... 17, 24, 45, 56
newwin .. 14, 45
nl ... 26,46
no-print highlight .. 10
nocbreak .. 46
node lay .. 25, 46
nodelay mode .. 62
noecho ... 9, 26, 46
nonl ... 9, 26, 46
noraw ... 27, 46

o
OK .. 23
option-setting routines .. 25
options .. 25
output data structure .. 2
overlay .. 14,27,46
overwrite .. 14, 27, 46

p
padding .. 2
pads ... 13
placing text in windows ... 28
pnoutrefresh .. 28, 46
portability functions .. 32
pre fresh .. 28, 46
printw ... 4, 29, 47
program structure considerations .. 23
putp .. 52

r
race conditions .. 17
raw ... 27, 47
refresh ... 4, 12, 21, 28, 47
resetterm ... 47, 61
resetty ... 27, 47

Index 81

5
saveterm .. 47
savetty ... 27, 47
scanw ... 30,48
screen size .. 5
scroll ... 48
scrolling regions in window or pad ... 60
scrollok .. 26, 48
scrollw .. 29
setscrreg .. 26, 48, 60
setterm ... 48
set_term .. 17, 18, 49
setupterm .. 19, 24, 48, 52
special keys on terminals, keypad program handling 59
standard screen .. 2
stand end ... 31, 49
standout ... " 31, 49, 58
standout highlight 10
stdscr .. 2
struct screen ... 56
structure considerations for programs 23
sttron 31
sttrset .. 31
subwin .. 49
subwindows .. 16

t
TERM ... 1
termcap compatibility routines .. 54
terminal configuration routines .. 26
terminal data output routines ... 28
terminal data-input routines .. 30
terminal initialization routines ... 24
terminfo .. 1
terminfo routines, listed description of .. 52-54
terminfo-Ievel access .. 19
text data structure .. 2
touchwin .. 15,27,49
tparm ... 53
tputs .. 20, 53
traceoff ... 49

82 Index

traceon ... 49
tty mode functions ... 61
typeahead check .. 25, 50, 61

u
unctrl ... 50
underlining highlight .. 10
using multiple windows 14

v
vidattr ... 20, 53
video highlighting attribute routines .. 31
video highlighting, program operation 57
vidputs .. 54
vminsch ... 44

w
waddch .. 10, 14, 35, 50
waddstr ... 35
wattroff ... 31,36,58
wattron ... 31, 36, 58
wattrset .. 36, 58
wclear .. 29
wdeleteln .. 29
window .. 2
windows .. 13-16
windows:

creating ... 14
data-input routines ... 30
formatted output to .. 29
inserting and deleting text .. 29
miscellaneous operations .. 29
multiple ... 13
placing text in windows ... 28
subwindows .. 16
window manipulation routines 27
window writing routines ... 28

wmove .. 28
wnoutrefresh ... 28
wrefresh .. 14, 28
wsetscrreg ... 60
wstandout ... 58

Index 83

84 Index

Table of Contents

Overview
Who Will Use Native Language Support? 1
Manual Organization .. 2
Conventions Used In This Manual. .. 3
Using Other HP-UX Manuals ... 4

Character Set Representation and Introduction to NLS
What Is NLS? .. 6
Scope of Native Language Support .. 7

Aspects of NLS Support .. 7
Prelocalized commands .. 10

Supported Native Languages and Character Sets 11
8-Bit Character Sets ... 11
16-Bit Character Sets .. 15
Native Languages .. 17

Configuring Native Language Support on HP-UX
File Hierarchy .. 21
Configuring Native Languages .. 22

Installing Optional Languages 22
Environment Changes .. 23

Accessing NLS Features. .. 24
NLS HP-UX Commands .. 24
Library Support for NLS .. 24

Programming With Native Language Support
NLS Header Files .. 25
Library Routines. .. 26

Convert date/time to string ... 26
Convert floating point to string .. 26
Get message from catalog. .. 27
Information on user's native language 27
C routines to translate characters .. 28
C routines that classify characters. .. 28
Non-ASCII string collation .. 29
Print formatted output with numbered arguments. .. 30

Table of Contents i

Convert string to double precision number 31
Multi-byte Library Routines ... 31

Application Guidelines. .. 32
Example C Programs. .. 32

Example 1 32
Example 2 .. 34

Message Catalog System
Introduction to the Message Catalog System 37
Creating a Message Catalog. .. 39

Preview: Incorporating NLS into Commands .. 39
Following the Flow .. 40
Format of Source Message File. .. 44
Printmsg, Fprintmsg, and Sprintmsg 46

Accessing Applications Catalogs ... 46
File System Organization and Catalog Naming Conventions 47
Prelocalization: Adding Native Language Support. .. 48

7 Steps to Prelocalize an Example Program 48
Localization. .. 51
Maintaining Programs and Message Catalogs 51

Native Language Support Library and Commands
Library Routines. .. 53
Commands. .. 56
NLS Files. .. 57

Character Sets .. 59

Peripheral Configuration
European Character Sets ... 63
Japanese Character Sets .. 63
ISO 7-bit Substituion ... 64
Character Set Support by Peripherals 64

Glossary 69

Index 77

ii Table of Contents

Overview
This manual describes what Native Language Support (NLS) is and how to use the NLS
tools on your Hewlett-Packard computer.

Please use one of the reply cards at the back of this manual to tell us what was helpful,
what was not, and why. Feel free to comment on depth, technical accuracy, organization,
and style. Your comments are appreciated.

Who Will Use Native Language Support?
OEMs (Original Equipment Manufacturers), ISVs (Independent Software Vendors), ap­
plications programmers, and Hewlett-Packard Country Software Centers will be the pri­
mary users of Native Language Support (NLS). These are the people writing or trans­
lating programs for multi-national use.

This manual has been written with these users in mind.

Overview 1

Manual Organization
Overview
Defines the NLS user audience, explains the conventions used in the manual, and iden­
tifies other manuals referenced within this one.

Chapter 1: Character Set Representation and Introduction to NLS
Presents the basic description and scope of Native Language Support, Localization, and
Internationalization. This includes the aspects of NLS (Character Set Support, Local
Customs, and Messages), pre-localization, and the character sets as well as native lan­
guages supported.

Chapter 2: Native Language Support on HP-UX
Identifies the HP-UX directories and files in which the NLS tools reside, provides an
installation guide for the optional languages, and identifies the library calls (and com­
mands) that an applications programmer needs in order to access NLS features.

Chapter 3: Programming With Native Language Support
Presents the header files specific to NLS, a detailed description of the C library routines
(with their syntax), and example C programs (with their command lines and output).

Chapter 4: Message Catalog System
Explains how local language message files are created and updated, where they are kept,
and by what conventions they are named. This includes a diagram and description of
the general flow of the message catalog system, ways to access catalogs by use of library
routines, file naming conventions and an example of program output in a local language
other than American English.

Appendix A: Native Language Support Library and Commands
Overview of NLS library routines and routines affected by NLS.

Appendix B: Character Sets
ASCII, Roman and Katakana character sets.

Appendix C: Peripheral Configuration
Table summarys of HP 9000 peripherals that support alternate character sets.

2 Overview

Conventions Used In This Manual
The following naming conventions are used throughout this manual.

• Italics indicate files and HP-UX commands, system calls, and subroutines found in
the HP- UX Reference manual as well as titles of manuals. Italics are also used for
symbolic items either typed by the user or displayed by the system as discussed
below. Examples include /usr/lib/nLs/american/prog.cat, date(1), and pty(4). The
parenthetic number shown for commands, system calls, and other items found in
the HP- UX Reference is a convention used in that manual.

• Boldface is used when a word is first defined and for general emphasis.

• computer font indicates a literal typed by the user or displayed by the system. A
typical example is:

findstr prog.c > prog.str

Note that when a command or file name is part of a literal, it is shown in computer
font and not italics. However, if the command or file name is symbolic (but not
literal), it is shown in italics as the following example illustrates.

findstr progname > output-fiLe-name

In this case you would type in your own progname and output-fiLe-name.

• Environment variables such as LANG or PATH are represented in uppercase char­
acters.

• Unless otherwise stated, all references such as "see the nLtoupper(3C) entry for
more details" refer to entries in the HP-UX Reference manual. Some of these
entries will be under an associated heading. For example, the nUoupper(3C) entry
is under the nLconv(3C) heading. If you cannot find an entry where you expect it
to be, use the HP-UX Reference Manual's Permuted Index.

Overview 3

Using Other HP-UX Manuals
This manual may be used in conjunction with other HP-UX documentation. References
to these manuals are included, where appropriate, in the text.

• The HP- UX Reference manual contains the syntactic and semantic details of all
commands and application programs, system calls, subroutines, special files, file for­
mats, miscellaneous facilities, and maintenance procedures available on the HP 9000
HP-UX Operating System.

• The HP- UX Portability Guide documents the guidelines and techniques for maxi­
mizing the portability of programs written on and for HP 9000, Series 200, 300, and
500 computers running the HP-UX Operating System. It covers the portability of
high level source code (C, Pascal, FORTRAN) and transportability of data and
source files between commonly used formats.

• The HP- UX System Administrator Manual provides step-by-step instructions for
installing the HP-UX Operating System software and for installing the optional
NLS languages. It also explains certain concepts used and implemented in HP­
UX, describes system boot and login, and contains the guide for implementing
administrative tasks.

4 Overview

Character Set Representation
and Introduction to NLS 1
The features of Hewlett-Packard Native Language Support (NLS) enable the applications
designer or programmer to adapt applications to an end user's local language needs.

NLS provides the programmer with the ability to internationalize software. Internation­
alization is the concept of providing hardware and software which is capable of supporting
the user's local language. NLS, along with Hewlett-Packard hardware, accomplishes this.
Localization refers to the process of adapting a software application or system for use
in different local environments or countries. It includes all changes that must be done
repeatedly for each language or locale of interest as well as for each piece of software.

Character Set Representation and Introduction to NLS 5

What Is NLS?
NLS provides the tools for an applications designer or programmer to produce localizable
applications. These tools include architecture and peripheral support, as well as software
facilities within the operating systems and subsystems. NLS addresses the internal func­
tions of a program (such as sorting) as well as its user interface (which includes displayed
messages, user inputs, and currency formats.)

An addition to providing the tools for programmers to develop applications in several
languages, NLS also provides end users with the following features:

• NLS saves disc space by separating the resources required for a specific language
product from the executable code. The components of these products are tables of
data used by the software in the base product.

• NLS allows different users to use different languages, all on the same system.

• NLS permits users to specify the desired language at run time.

Users who are less technically sophisticated benefit from application programs that in­
teract with them in their native language and conform to their local customs. Native
language refers to the user's first language (learned as a child), such as Finnish, Por­
tuguese, or Japanese. Local customs refer to local conventions such as date, time, and
currency formats.

Programs written with the intention of providing a friendly user interface often make
assumptions about the user's local customs and language. Program interface and pro­
cessing requirements vary from country to country; sometimes even within a country.
Most existing software does not take this into account, making it appropriate for use
only in the country or locality for which it was originally written.

6 Character Set Representation and Introduction to NLS

Scope of Native Language Support
NLS facilities allow application programs to be designed and written with a local language
interface for the end user and for locally correct internal processing. The end user then
interacts with localized programs.

For the USASCII-only user the system will appear unchanged. HP-UX commands which
check the LANG environment variable work the same as before unless LANG is set
(though exceptions to this may exist).

For the programmer and the system administrator, the interface has not changed. Most
HP-UX interfacing, subsystems, programmer productivity tools, and compilers have not
been localized. Applications programmers must still use American English to interact
with HP-UX and its subsystems. For example, it is possible to write a complete local
language application program using C, but the C compiler retains the English-like char­
acteristics. For example, C keywords such as main, if, and while, and library calls such
as printf are still in English.

Aspects of NLS Support
There are three aspects, or levels, of native language support included in HP-UX software.
These three aspects, Character Set Support, Local Customs, and Messages, describe the
extent of localization of an application. The applications programmer should consider
each aspect carefully when creating software that is language independent.

Character Set Support
A major NLS objective is to provide the capabilities for adapting character sets and
sequences to local language needs. This takes into account that character code size
determines the maximum number of distinct characters contained in a set. The default
set is 7-bit ASCII character set; all programs not localized use this character set. 7-bit
ASCII is not sufficient to span the Latin alphabet used in many European Languages
including upper- and lowercase, punctuation, and special symbols.

The 8th bit of a character byte is normally never stripped or modified. Hewlett-Packard
has defined character sets with bytes in the range 0 to 255 for foreign languages instead
of ASCII's 0 to 127. Using the extra bit allows expansion to support languages that
have additional characters, accented vowels, consonants with special forms and special
symbols.

Character Set Representation and Introduction to NLS 7

For languages with larger character sets, such as Kanji (the Japanese ideographic char­
acter set based on Chinese), multi-byte character codes are required.

For more detail on the different character sets, refer to the section called "Supported
Native Languages and Character Sets" in this chapter.

All sorting, shifting, and type analysis of characters is done according to the local conven­
tions for the native language selected. While the ROMAN8 character set has uppercase
and lowercase for most alphabetic characters, some languages discard accents when char­
acters are shifted to uppercase. European French discards accents while Canadian-French
does not. If there is no notion of case in the underlying language (such as Katakana),
alphabetic characters are not shifted at all.

Each language uses its own distinct collating sequences (the sequence in which characters
acceptable to the computer are ordered). The ASCII collation order is inadequate even
for American dictionary usage. Different languages sort characters from the ROMAN8
set in different orders. For example, Spanish requires character pairs such as "ch" and "11"
to be sorted as single characters. Therefore, "ch" falls at the end of the sorted pairs "cg",
"ci", and "cz", and "11" similarly falls after "lk", "1m", and "lz". Certain ideographic
character sets, which represent ideas by graphic symbols, can have multiple orderings.
An instance of this is Japanese ideograms (use of graphic symbols to represent Kanji)
which can be sorted in phonetic order; based on the number of strokes in the ideogram;
or according, first, to the radical (root) of the character and, second, to the number C'f
strokes added to the radical.

On the subject of directionality, the assumption that displayed text goes from left to
right does not hold for all languages. Some Middle Eastern languages such as Hebrew
are read from right to left; some Far Eastern languages use vertical columns, starting
from the rightmost column.

Local Customs
Some aspects of NLS relate more to the local customs of a particular geographic area.
These aspects, even when supported by a common character set, change from region to
region. Consequently, date and time, number, currency information, and so on are pre­
sented in a way appropriate to the user's language. For instance, although Great Britain,
the United States, Canada, Australia, and New Zealand share the English language, other
aspects of data representation differ according to local custom.

8 Character Set Representation and Introduction to NLS

The representation of numbers, variations in the symbol indicating the radix character
(period in the U.S.), modification of the digit grouping symbol (comma in the U.S.), and
the number of digits in a group (three in the U.S.), are all based on the user's native
customs. For example, the United States and France both represent currency using
periods and commas, but the symbols are transposed (2,345.77 vs. 2.345,77).

Currency units and how they are subdivided vary with region and country. The symbol
for a currency unit can change as well as the symbol's placement. It can precede, follow,
or appear within the numeric value. Similarly, some currencies allow decimal fractions
while others use alternate methods for representing smaller monetary values.

Computation and proper display of time, 24- versus 12-hour clocks, and date information
must be considered. The HP-UX system clock runs on Greenwich Mean Time (GMT).
Corrections to local time zones consist of adding or subtracting whole or fractional hours
from GMT. Some regions, instead of using the common Gregorian calender system,
number (or name) the years based upon seasonal, astronomical, or historical events. For
example, in Arabic, time of day is measured from the previous sunset; in India, the
calendar is strictly lunar (with a leap month every few years); in Japan years are based
upon the reign of the emperor.

Names for days of the week and the months of the year also vary with language. Rules for
abbreviations also differ. Ordering of the year, month, and day, as well as the separating
delimiters, is not universally defined. For example, October 7, 1986 would be represented
as 10/7/1986 in the U.S. and as 7.10.1986 in Germany.

The chapter "Programming With NLS" describes the library routines used to access
these local customization features.

Messages
The need to customize messages for different countries is perhaps the most significant
justification for implementing Native Language Support. The user can choose the lan­
guage for prompts, response to prompts, error messages, and mnemonic command names
at run time. Thus it is not necessary to recompile source code when translating messages
to another language. Keep in mind the syntax of another language may force a change
in the structure of the sentence if messages are built in segments (using printf(3S)). For
example, in German, "output from standard out and file" becomes "Aus und sammlung
aus dem standarden ausgabe", which translates literally to "out and file from standard
output. "

Character Set Representation and Introduction to NLS 9

To do this, user messages must be put in a message catalog from which they are retrieved
by special library calls. The chapter "Message Catalog System" explains how to create
and access message catalogs.

As an example, a fully localized version of pr (the HP-UX print command) would

• never strip the 8th bit of a character code

• properly format the date in each page header

• use the message catalog system to select user error messages.

Prelocalized commands
Prelocalization is program modification that uses language-dependent library routines
not limited to 7-bit character processing. These routines are enhanced to ensure the
proper handling of 8-bit data.

Localization consists of taking the prelocalized program and adding the necessary mes­
sage catalogs and tables to make it run in a particular language (such as French).

Prelocalization allows the message catalogs and tables to be specified at run time, rather
than having the information hard-coded and compiled into the programs.

A localized message file contains messages in the desired native language. Some HP-UX
commands have been enhanced to check for localized message files.

To prelocalize source code, you would replace original HP-UX commands and routines
with commands and routines that incorporate NLS. For example, the routine ctime would
be replaced with the NLS enhanced version nL ctime.

10 Character Set Representation and Introduction to NLS

Supported Native Languages and Character Sets
HP-UX NLS is based on 18 languages and 6 character sets. Facilities to handle these
character sets are built into the operating system. Tables and files associated with
supported languages will be available through Hewlett-Packard sales offices.

Within NLS, each supported language is associated with a 7-bit, 8-bit, or 16-bit character
set (one character set may support several languages).

The 7-bit character set is called USASCII. This character set is the traditional computer
ASCII character set. Before the introduction of NLS, the only widely supported character
set was ASCII, a 128-character set designed to support American English text. ASCII
uses only seven bits of an 8-bit byte to encode each character. The eighth or high order
bit is usually zero, except in some applications where it is used for other purposes. For
this reason, ASCII is referred to as a "7-bit" code.

The 8-bit and 16-bit character sets are described below.

a-Bit Character Sets
The 8-bit character sets are comprised of an ASCII character set for values from 0 to 127,
and non-ASCII characters for values from 128 to 255. These 256 unique values permit
encoding and manipulation of characters required by languages other than American
English and are referred to as 8-bit compatible or extended character sets. These sets
have five distinct ranges: 0 to 31 and 127 are control codes; 32 is space; 33 to 126 are
printable characters; 128 to 160 and 255 are extended control characters; and 161 to 254
are extended printable characters (see Table 1-1.) New printable characters are added
by defining code values in the range 161 to 254.

Character Set Representation and Introduction to NLS 11

Table 1-1. 8-bit Character Set Structure

COL BIT 80 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

ROW BIT 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 C SP E
0 -

X
,---

0 0 0 1 1
N T

0 0 1 0 2 T E
0 0 1 1 3 R N

0 USASCII D EXTENDED
0 1 0 0 4 L GRAPHIC E PRINTABLE
0 1 0 1 5 (printable) D CHARACTERS

0 6
C CHARACTERS (161-254) 0 1 1
0 (33-126) C

0 1 1 1 7 D H
1 0 0 0 8 E A

S R
1 0 0 1 9 (0-31) A
1 0 1 0 10 C

1 0 1 1 11 T
E

1 1 0 0 12 R
1 1 0 1 13 S

1 1 1 0 14
(128-

rm
160)

~ 1 1 1 1 15

12 Character Set Representation and Introduction to NLS

NLS supports four 8-bit character sets: ROMAN8, KANA8, GREEK8, and TURKISH8.
There are also line drawing and math character sets supported by Hewlet-Packard that
are not a part of the NLS system. The ROMAN8 and KANA8 character sets are shown
in the appendix "Character Sets" .

NLS 8-bit character sets support all ASCII characters in addition to the characters needed
to support several Western European-based languages and Katakana. The exception to
this is that the graphic (on the keyboard/overlay) for back slash ("\") in KAN A8 is yen
("¥")

Since NLS uses 8-bit character sets in character data, every bit in an 8-bit byte has
significance. Application software must take care to preserve the eighth (high order) bit
and not allow it to be modified or reused for any special purpose. Also, no differentiation
should be made between characters having the eighth bit turned off and those with it
turned on, because all characters have equal status in any extended character set.

Peripherals playa key role in a system's ability to represent a particular language. Some­
times, even within a single document, several character sets are needed. For example, this
document's tables needed line drawing characters; another section contains a German
example. Hewlett-Packard peripherals (generally) use the 8-bit Character Set Support
Model to handle multiple character sets (see Figure 1-1).

Character Set Representation and Introduction to NLS 13

SI/
" SO

S
ESC (101

I ~wm7 Sd I
ESC) 10

\

~'D'D: _ M LII

Figure 1-1. 8-bit Character Set Support Model for Peripherals

Each rectangle in Figure 1-1 represents a collection (or set) of 256 character code values
in the form shown in Table 1-1. The appendix called "Character Sets" contains tables
of characters along with their associated ID values.

The Active Set is the one the printed, plotted, or displayed on the terminal. B:r (shift
in) and So (shift out) characters are used to invoke or activate the Base or Alternate
character set. The Base Set is the language-oriented set while the Alternate Set is for
special symbols. The escape sequences Ec (ID and Ec) ID are used to designate, from the
collection of available character sets, the Base and Alternate Set. ID designates ID Field
in this context; see Table 1-2 for a list of character sets with their ID Field numbers. All
sets in this model are 8-bit character sets.

14 Character Set Representation and Introduction to NLS

Table 1-2. Character Set ID Numbers

8-bit Character Set Name ID Field

Start up Base/Default Set @

GREEK8 Character Set 8G

KANA8 Character Set 8K

LINEDRAW8 Character Set 8L

MATH8 Set 8M

TURKISH8 Character Set 8T

ROMAN8 Character Set 8U

16-Bit Character Sets
Asian languages require character sets with more than 256 values. To provide more than
256 values, the character sets must use more than one byte to represent characters. 16-bit
character sets are comprised of two-byte characters.

An Asian character is identified by the first byte having the high order bit on. The
tool firstof2provides the developer the ability to easily identify Asian characters (16-bit)
from ASCII. Refer to the chapter called "Programming with Native Language Support"
for more details on firstof2.

Japanese is currently the only language requiring a 16-bit character set that is supported
by HP-UX. Japanese uses the 16-bit character set called JAPAN15.

HP uses two types of 16-bit character encoding schemes: HP-15 for use within the
operating system and HP-16 for use outside the operating system. As shown in Figure
1-2, any 16-bit characters within HP-UX system (Le., for applications programs, text
files, etc.) use a method of encoding the characters called HP-15. For I/O a method of
encoding called HP-16 is used. The conversion between HP-15 and HP-16 is performed
by the HP-UX system.

Unless you are writing your own input servers or printer models, you need only be
concerned with the HP-15 encoding scheme. Only HP-15 is described in this manual.

Character Set Representation and Introduction to NLS 15

Internal
(HP-15)

HP-UX
Commands

Application

Progroms

Translation

HP-UX
System

External
(HP-16)

Terminals

Printers

Figure 1-2. Use of 16-bit character sets within HP-UX

Table 1-3 depicts the 16-bit code space of HP-15. The complete range of values (0-255)
of the first byte is shown along the vertical axis, and the same range for the second
byte is shown horizontally. The HP-UX system will support character code values in the
indicated area as either 16-bit or 8-bit. In the case of Japanese, those shown as "*,, are
16-bit, those shown as "-,, are 8-bit. Byte values outside the indicated area are always
treated as 8-bit characters.

16 Character Set Representation and Introduction to NLS

W
:::J
--1

~
W
t-
r m

t-
en
~
lL..

Table 1-3. Usable character values for HP-15

SECOND BYTE VALUE
11 1 2

3 222 5
0···3··········678··········5

O+------------------------------r

128 • • •
1~? • • •
~~~ • • • 255 

llil~ 111Ii11~ 
~~ 
~~ 

~~ 
,~~ 

--
Hewlett-Packard has developed tools to help parse data so you can determine what 
characters your data contains. These library routines are described in the appendix 
"Native Language Support Library and Commands". 

Native Languages 
Each supported native language is based on one of the six character sets (USASCII, 
GREEK8, KANA8, ROMAN8, TURKISH8, and JAPAN15). They consist of several 
language-dependent characteristics defined in various system tables and accessed by C 
library routines and HP-UX commands. These characteristics include rules on upshifting, 
downshifting, date and time format, currency, and collating sequence. 

Hewlett-Packard has assigned a unique language name and language number to each 
language included in NLS (see Table 1-4). In some cases, Hewlett-Packard has introduced 
more than one supported language corresponding to a single natural language. For 
example, NLS supports both French and Canadian-French because upshifting is handled 
differently in French and Canadian-French. 

Character Set Representation and Introduction to NLS 17 



Each of the supported languages can also be considered a language family which is 
applicable in several countries. German, for example, can be used in Germany, Austria, 
Switzerland, and any other place it is requested. 

In addition to the native languages supported, an artificial language, native-computer, 
represents the way the computers dealt with languages before the introduction of NLS. 
Whenever native-computer is used in a native language function, the result is identical 
to that of the same function performed before the introduction of NLS. NLS library calls 
with the language parameter equal to 0 will always work correctly, even when no native 
languages have been configured on the system. 

18 Character Set Representation and Introduction to NLS 



Table 1-4. Supported Native Languages and Character Sets 

Language 
Number Language Name Character Set 

00 n-computer USASCII 
(native computer) 

01 american ROMAN8 

02 c-french ROMAN8 
(canadian french) 

03 danish ROMAN8 

04 dutch ROMAN8 

05 english ROMAN8 

06 finnish ROMAN8 

07 french ROMAN8 

08 german ROMAN8 

09 italian ROMAN8 

10 norwegian ROMAN8 

11 portuguese ROMAN8 

12 spanish ROMAN8 

13 swedish ROMAN8 

41 katakana KANA8 

61 greek GREEK8 

81 turkish TURKISH8 

221 japanese JAPAN15 

Character Set Representation and Introduction to NLS 19 



Notes 

20 Character Set Representation and Introduction to NLS 



Configuring Native Language 
Support on HP-UX 

File Hierarchy 

2 
Prelocalized HP-UX commands and C library routines for NLS are in standard directories 
(/b£n, Iusr Ibin, and Iusr Ilib), but language-dependent features reside in directories and 
files created specifically for NLS: 

• The language configuration file, Iusrlliblnlslconfig, is a file containing all the native 
languages that can be configured into a system. Your system has a table like this: 

On-computer 
1 american 
2 c-french 
3 danish 
4 dutch 
5 english 
6 finnish 
7 french 
8 german 
9 italian 
10 norwegian 
11 portuguese 
12 spanish 
13 swedish 
41 katakana 
61 greek 
81 turkish 

221 japanese 

Your computer is always configured for native-computer, language number 0 (see 
Figure 1-4). 

Unless you have purchased and installed the language, your computer will not actu­
ally have the language's files (refer to the section "Installing Optional Languages" 
later in this chapter). The "confirJ' file is used by langinfo routines; it must be 
present before prelocalized commands can work correctly. 

Configuring Native Language Support on HP-UX 21 



• The following directories are of the form /usr/lib/nls/$LANG where $LANG is a 
native language (such as american). 

• /usr/lib/nls/$LANG/collate8 contains the collating sequence for a given lan­
guage. 

• /usr/lib/nls/$LANG/ctype contains information on character set type for the 
language $LANG. 

• /usr/lib/nls/$LANG/in/o.cat contains language-dependent information used 
by langin/o. 

• /usr/lib/nls/$LANG/shi/t has shift tables (uppercase to lowercase or vice­
versa). 

Configuring Native Languages 
To use a language other than native-computer (the default language on HP-UX) you must 
purchase the support software for the optional language and update the environment 
accordingly. 

Installing Optional Languages 
HP-UX is shipped with only the default language (native-computer). Other languages 
(such as German) must be ordered as an option from your Hewlett-Packard sales of­
fice. A language includes the tables for collating, upshifting, downshifting, and includes 
character type and language information. Not all character sets are supported on all 
peripherals, so peripherals which support the desired character set must be obtained. 

NLS includes the library header files and routines (described in Chapter 3), and message 
catalog system (described in Chapter 4). Message catalogs for HP-UX commands are 
available in native-computer language. You can use these as a basis for translation to 
local catalogs. 

To install a language, use the update command, as explained in the chapter of the HP- UX 
System Administrator's Manual entitled "The System Administrator's Toolbox". Update 
automatically installs the language support files in the correct directory as described in 
the previous section "File Hierarchy" . 

After a language is installed, the NLS language-specific information can be used by any 
application program requesting it. 

22 Configuring Native Language Support on HP-UX 



Environment Changes 
To support NLS, changes to the user environment within HP-UX are needed. A new en­
vironment variable LANG (LANGuage) was created during installation. LANG specifies 
the language you want to use. The variable TZ (Time Zone), which allows input about 
different zones, needs to be changed. 

LANG 
LANG is an environment variable that must be set to the native language you desire. 
LANG contains the language name in American English text. It is used to select the 
character set, lexical order, upshift and downshift tables, and other conventions that vary 
with language and locality. LANG can be set in jete/profile as a default native language, 
or it can be set by any individual user in .profile or . login. 

An example . profile, setting LANG to american, is: 

LANG=american 
export LANG 

For . login use: 

setenv LANG american 

If LANG is not set, or is set to an invalid language string, a warning message will be 
issued and all programs using LANG default to the native computer language. 

TZ 
TZ is a variable that holds time zone information. TZ allows fractional offsets from 
GMT (Greenwich Mean Time is the international basis of standard time). Specification 
of daylight savings time is taken into account as well as name differences and starting 
and ending date differences. 

Configuring Native Language Support on HP-UX 23 



Accessing NLS Features 
On HP-UX, all NLS features are optional. These features must be requested by the 
applications programmer through library calls or interactively by the user through a 
localized HP-UX command. The C library routines used for NLS can also be accessed 
from Pascal and FORTRAN. A description of how to access C library routines from 
Pascal and FORTRAN is documented in the HP- UX Portability Guide. 

NLS HP-UX Commands 
There are several HP-UX commands that were created specifically to access the message 
catalog features. They are described in detail in the chapter "Message Catalog System" . 

• f£ndstr- find strings in programs not previously localized for inclusion in message 
catalogs. 

• gencat- generate a formatted message catalog file. 

• insertms{t- use output from findstr to both create a preliminary message file and 
to create a new C program with calls to the message file. 

• findms{t- extracts strings from prelocalized C programs for inclusion in message 
catalogs. 

• dumpms{t- reverse the effect of gencat; take a formatted message catalog and make 
a modifiable message catalog source file. 

Library Support for NLS 
There are several C library routines access the language tables and message catalogs 
(see the appendix "Native Language Support Library and Commands"). These are 
documented in the chapter "Programming With Native Language Support". 

24 Configuring Native Language Support on HP-UX 



Programming With 
Native Language Support 3 
This chapter describes the NLS header files and the C library routines that are used by 
Native Language Support (NLS). Two example programs are also provided. 

NLS Header Files 
There are three header files in lusr linclude specific to NLS: msgbuf.h, nLctype.h, and 
langinfo.h. 

Programming With Native Language Support 25 



Library Routines 
Most NLS library routines have counterparts within the standard HP-UX system. These 
routines produce similar results; but, instead of assuming standard formats, they use 
NLS-specific parameters to format information as the user prefers to see it. 

NLS Library routines are listed below. Routines that have counterparts in the standard 
C library are mentioned, but not described in detail. Other NLS routines that were 
added to the C library are described in more detail. Manual pages for all these routines 
are included in the HP- UX Reference. NLS routines are discussed in this chapter in the 
same sequence as in the HP- UX Reference, Section 3. 

Convert date/time to string 
nl_ctime(clock, format, langid) 
nl_asctime(tm, format, langid) 

The nLctime routine extends the capabilities of ctime in two ways. First the format 
specification allows the date and time to be output in a variety of ways. format uses 
the field descriptors defined in date{l}. If format is the null string, the D_ T_FMT string 
defined by langinfo{3C} is used. Second, langid provides month and weekday names 
(when selected as alphabetic by the format string) to be in the user's native language. 
The nLasctime routine is similar to asctime, but like nLctime allows the date string to 
be formatted and the month and weekday names to be in the user's native language. 
However, like asctime, it takes tm as its argument. 

See ctime{3C} for these commands. 

Convert floating point to string 
nl_gcvt (value , ndigit, buf, langid) 

The nLgcvt routine differs from gcvt only in that it uses langid to determine what the 
radix character should be. If langid is not valid, or information for langid has not been 
installed, the radix character defaults to a period. 

See ecvt{3C} for these routines. 

26 Programming With Native Language Support 



Get message from catalog 
getmsg(fd, set_num, msg_num, buf, buflen) 

where fd is the file descriptor pointing to the catalog (file) containing the messages, 
seCnum is the set number designating a group of messages in the catalog, msg_num is 
the message number within that set, bufis the character array that will hold the returned 
message, and buflen is the number of bytes of the message that can be put into but The 
function itself returns a pointer to the character string in but If fd is invalid or seCnum 
or msg_num are not in the catalog, it returns a pointer to an empty (nUll) string. 

See getmsg(3C) for more information. 

Information on user's native language 
langinfo (langid , item) 
langtoid(langname) 
idtolang(langid) 
currlangidO 

where langid is language information and item is one of several types of definitions. Refer 
to the langinfo(3C) manual page for a complete list of items. Some examples of item are: 

MON_12 

RADIXCHAR 

THOUSEP 

YESSTR 

NOSTR 

CRNCYSTR 

string for formatting date(l), nLctime, and nLasctime. 

"Sunday" in English 

"Saturday" in English 

"January" 

"December" 

"decimal point" ("," on the European Continent) 

separator for thousands 

affirmative response for [yin] questions 

negative response for [yin] questions 

symbol for currency preceded by "-" if it precedes the number, "+" if it 
follows the number. (e.g., "-OM" for Dutch, "+ Kr" for Danish.) 

Programming With Native Language Support 27 



The command langinfo retrieves a null-terminated string containing information unique 
to a language or cultural area. 

The idtolang routine takes the integer langid and returns the corresponding character 
string (language name) defined in the langid(7} manual page. If langid is not found, an 
empty string is returned. The routine langtoid is the reverse of idtolang. The currlangid 
routine looks for a LANG variable in the user's environment. If it finds it, it returns the 
corresponding integer (language number) listed in langid(7}. Otherwise it returns 0 to 
indicate a default to ASCII native-computer. 

See langinfo(3C} for more information. 

C routines to translate characters 
nl_toupper(c,langid) 
nl_tolower(c,langid) 

These routines are similar to the routines in conv(3C}. They function the same way, 
but use a second parameter whose value is expected to be one of the values defined in 
langid(7). If langid has not been installed or if shift information for langid has not been 
installed, toupper and tolower is used for characters below 127, while characters 127 and 
above are returned unchanged (toupper and tolower are used with ASCII character set 
only). 

See the nLconv(3C} manual page for this routine; see also conv(3C). 

C routines that classify characters 
All these routines have the same parameter list: 

routine (c, langid) 

where routine is any of the routines in nLctype. 

nUsalpha 

nLisupper 

nLislower 

nLisalnum 

nLispunct 

nUsprint 

nLisgraph 

c is a letter 

c is an upper case letter 

c is a lower case letter 

c is an alphanumeric (letter or digit) 

c is a punctuation character (neither control nor alphanumeric) 

c is a printing character 

c is a printing character, like nLisprint except false for space 

28 Programming With Native Language Support 



These routines classify character-coded integer values by using the tables in /usr/lib/nls. 
The command langid is as defined in langid(7}. Each returns non-zero for true, zero for 
false. All are defined for the range -1 to 255. If langid is not defined or if type information 
for that language is not installed, isalpha, isupper, etc. from ctype(3C} is used, returning 
o for values above 127. 

If the argument to any of these routines is not in the domain of the function, the result 
is undefined. 

See the nLctype(3C} manual page for more information. 

Non-ASCII string collation 
strcmp8(sl. s2. langid. status) 
strncmp8(sl. s2. n. langid. status) 
strcmp16(sl. s2. file_name. status) 
strncmp16 (sl. s2. n. file_name. status) 

The command strcmp8 compares string sl and s2 according to the collating sequence 
specified by langid (the language number). An integer greater than, equal to, or less 
than 0 is returned, depending on whether the collation of sl is greater than, equal to, 
or less than that of s2. If langid or the collation sequence file is not installed, the native 
machine collating sequence is used. The command strncmp8 makes the same comparison 
but looks at only n characters. The strcmp16 and strncmp16 commands are similar, but 
use the 16-bit Japanese collating sequence. The file_name argument is currently ignored 
and should always be the null string literal (""). 

If an abnormal condition is encountered the integer pointed to by status is set to one of 
the following non-zero values: ENOCFILE. ENOCONV. ENOLFILE. These values are defined in 
/usr /include/langinfo. h 

See the nLstring(3C} manual page for more information. 

Programming With Native Language Support 29 



Print formatted output with numbered arguments 
printmsg (format [ , arg] .,. ) 
fprintmsg (stream, format [ , arg] ... 
sprintmsg (s, format [ , arg] ... ) 

The conversion character % used in printf is replaced by the sequence %digit$, where 
digit is a decimal digit n in the range 1-9. The conversion should be applied to the 
nth argument, rather than to the next unused one (you specify which parameter you 
want this conversion applied to). All other aspects of formatting are unchanged. All 
conversions must contain the %digit$ sequence, and it is your responsibility to make sure 
the numbering is correct. All parameters must be used exactly once. 

See also printf(3S). 

Example 
The following example prints a language-independent date and time format. 

printmsg(format, weekday, month, day, hour, min); 

For American usage format would be a pointer to the string: 

"%1$s, %2$s %3$d, %4$d:%S$.2d" 

producing the output: 

Sunday, July 3, 10:02. 

For German usage, format would be a pointer to the string: 

"%1$s, %3$d %2$s Y.4$d:%S$.2d" 

which outputs: 

Sonntag, 3 Juli 10:02. 

Note that the values of the strings are not modified, only the order. If the German 
format is used with the American data, the output would be: 

Sunday, 3 July 10:02 

30 Programming With Native Language Support 



Convert string to double precision number 
nl_strtod(str, ptr, langid) 
nl_atof(str, langid) 

The nLstrtod and nLato/ commands are similar to the standard routines, strtod and ato/, 
but use langid to determine the radix character. If langid is not valid, or information for 
langid has not been installed, the radix character defaults to a period. 

See strtod{3C) for these commands. 

Multi-byte Library Routines 
Multi-byte library routines and macros were created to help you parse multi-byte 
character data. The library routines are: langinit, /irsto/2, seeo/2, byte_status, and 
eharadv. The macros are: FIRSTof2, BYTE_STATUS, CHARADV, SECof2, CHARAT, ADVANCE, 
PCHAR, PCHARADV, and CHARADV 

The routine, langinit, must be called before any of the other 16-bit tools are called. 
langinit initializes a table specific to the specified language name. The rest of the 16-bit 
tools parse data to determine if the character is 1 or 2 bytes, advance the pointer to the 
next character, or return a character. 

Refer to the nLtools_16{3e) manual page for information on these commands. 

Programming With Native Language Support 31 



Application Guidelines 
When writing an application program, do not use hard-coded message statements. Store 
all messages to the user in a separate message catalog where they can be accessed via 
NLS library commands. This allows users who prefer other native languages to modify 
the messages to to fit their own needs. 

The library routines provided for NLS guarantee correct and standard conversions to 
formats in all supported native languages. You can also create any formats or tables 
that are beyond those supported by HP to fit your specific needs. 

Example C Programs 
Here are two example C programs that show how to use some of the library routines 
described in this chapter. 

Example 1 
This C program is representative of changes to ctime that adapt it for NLS. The library 
routines nLconv(3C), nLctype(3C), and nLstring(3C) are handled in a similar manner. 

#include <langinfo.h> 
main 0 

{ 
int langid; 
long timestamp; 

langid = currlangid(); 

time(&timestamp); 
printf ("Yes". ctime (&timestamp» ; 
printf ("Yes". nl_ctime (&timestamp. "" langid» ; 

} 

32 Programming With Native Language Support 



The command lines used are: 

LANG=american 
export LANG 
cc test_ctime.c -0 test_ctime 
test_ctime 

The output is: 

Tue Apr 24 15:56:34 1990 
Tue, Apr 24, 1990 15:56:34 PM 

The command lines to change the language to French are: 

LANG=french 
export LANG 
test_ctime 

The output is: 

Tue Apr 24 15:56:34 1990 
mar 24 avr 1990 15H56 34 

Programming With Native Language Support 33 



Example 2 
This C program uses the printmsg(3C) routines to output the same message in a variety 
of ways. 

#include <stdio.h> 
MainO 

{ 

char *a = "Hello,"; 
char *b = "world!"; 
char buf[100); 

printf("Hello, world!\n"); 
printf(lI%s %s\n", a, b); 

printmsg("Hello, world!\n"); 
printmsg(II%1$s %2$s\n", a, b); 
printmsg(II%2$s %1$s\n", a, b); 

fprintf(stdout, "Hello, world!\n"); 
fprintf(stdout, "%s %s\n", a, b); 

fprintmsg(stdout, "Hello, world!\n"); 
fprintmsg(stdout, "%1$s %2$s\n", a, b); 
fprintmsg(stdout, "%2$s %1$s\n", a, b); 

sprintf(buf, "Hello, world!\n"); 
printf(lI%sll, buf); 
sprintf(buf, "%s %s\n", a, b); 
printf("%s", buf); 

sprintmsg(buf, "Hello, world!\n"); 
printf("%s", buf); 
sprintmsg(buf, "%1$s %2$s\n", a, b); 
printf(lI%sll, buf); 
sprintmsg(buf, "%2$s %1$s\n", a, b); 
printf(lI%sll, buf); 
} 

The command lines used are: 

cc test_pmsg.c -0 test_pmsg 
test_pmsg 

34 Programming With Native Language Support 



The output is: 

Hello, world! 
Hello, world! 
Hello, world! 
Hello, world! 
world! Hello, 
Hello, world! 
Hello, world! 
Hello, world! 
Hello, world! 
world! Hello, 
Hello, world! 
Hello, world! 
Hello, world! 
Hello, world! 
world! Hello, 

Programming With Native Language Support 35 



Notes 

36 Programming With Native Language Support 



Message Catalog System 4 
This chapter explains how localized message files are created and updated, where they 
are kept, and naming conventions. 

Introduction to the Message Catalog System 
To simplify the localization process, applications programmers should write programs 
that do not require recompiling when they are localized. If the code can remain unmodi­
fied, the functionality of an application is not affected when translations are made. This 
reduces support problems because only one version of the application exists. This also 
minimizes the possibility of introducing additional bugs into the product and reduces the 
time required to localize. 

Localizable programs use text (prompts, commands, messages) from an external message 
catalog file. This allows text to be translated (part of the localization process) without 
modifying program source code or recompiling. If the external message catalog file is 
inaccessible for any reason (such as accidentally removed or not yet created), you can 
either use the internally stored messages written in the original language or you can write 
your program to default to the n-computer message catalog when the desired language's 
message catalog is missing. 

A message catalog system is used to separate strings such as prompts and messages from 
the main code of a program. This makes it very easy for another country to translate 
the information and have the program run properly without modifying the program's 
source code. The HP-UX message catalog system uses HP-UX commands to help create 
the catalogs and C library routines to access those catalogs. Message catalog commands 
work only with the C programming language, but the library routines can be accessed 
from C, Pascal, and FORTRAN programs. 

Message Catalog System 37 



The message catalog commands are: 

• findstr - find strings for inclusion in message catalogs 

• gencat - generate a formatted message catalog file 

• insertmsg - use output from findstr to both create a preliminary message file and 
to create a new C program with calls to the message file (getmsg calls). 

The C library routines specific to message catalogs are: 

• getmsg - get a message from the catalog 

• printmsg, fprintmsg, sprintmsg - print formatted output with numbered arguments 

The steps an applications programmer would take to simplify the localization process 
are: 

• modify existing programs using findstr, insertmsg 

• maintain message catalogs using findmsg, gencat 

• translate message catalogs using dumpmsg, gencat 

38 Message Catalog System 



Creating a Message Catalog 
To make a program easier to localize, string literals such as the error messages and 
prompts should be placed in a separate file that is accessed by the program at run time. 
(Hard-coded messages can be left in; they are useful in source for clarifying code.) This 
way a program can easily access any localized message file without modification of the 
program. Hewlett-Packard has developed a set of tools to extract print statements from 
C programs. This set of tools is referred to as the Message Catalog System. 

Preview: Incorporating NLS into Commands 
The general flow of the message catalog system is diagrammed in Figure 4.1. The three 
HP-UX commands: findstr, insertmsg, and gencat extract messages from C programs 
and build a message catalog. The filenames are prag.c, prag.str, prag.msg, and prag.cat. 
(They can be named anything you prefer. Names, discounting the . c suffix, should be 
equal to or less than 9 characters in length. The suffixes used here are only a suggested 
naming convention.) 

The name prag. c represents any C program containing hard-coded messages. The name 
prag.str represents an intermediate file containing all strings from the source file sur­
rounded by double quotes (II "). The new C program is named nLprag.c (where prag.c 
is the original C program) that includes a message file instead of hard-coded messages. 
The final object file produced by compiling nLprag. c is prag. The file prag. msg contains 
the numbered messages and sets that are used to generate the final message file. The 
final message file is prag. cat. 

An example session is described later in this chapter in the section "7 Steps to Prelocalize 
an Example Program" . 

Message Catalog System 39 



Following the Flow 
The next sections describe in detail the steps used when creating a message catalog (see 
Figure 4-1). 

compile. link 

with NLS Iibs 

(lib.a) 

edit. add other 

NLS routines 

edit. remove 

non-NL strings 

Figure 4-1: Flow of the Message Catalog 

40 Message Catalog System 

edit. translate 

messages 



findstr 
findstr examines files of C source code (prag. c in this case) for string constants that do 
not appear in comments. These strings, along with the surrounding quotes, are placed 
on standard output. Each extracted string is preceded by the file name, start position 
in the file, and string length. The output should be redirected to a file for editing. 

Syntax 

findstr prog.c > prog.str 

prog.str 
prag.str, the output from findstr which is created when the user redirects output from 
findstr into a file, contains all quoted strings that do not appear in comments from the 
C program (prag.c) used as input to findstr. This includes error messages, format state­
ments, system calls, and anything else that is surrounded in double quotes. Preceding 
the strings is a copy of the filename (prag.c), from which the strings came, followed by 
the bytepasitian and bytecaunt. The file prag.str can be called any name. Message files 
should contain nothing but messages, so you must edit prag.str to remove all other types 
of quoted strings. 

Format 

prog. c bytepasitian bytecaunt "string" 

The parameters bytepasitian and bytecaunt apply to the source program at the time 
findstr is run. Any changes to prag. c will invalidate these numbers. Do not modify these 
parameters. 

insertmsg 
insertmsg uses prag. c and prag. str to create both the new C source file (nLprag. c) and a 
file (prag. msg which is redirected standard out) containing the messages for translation 
into local languages. prag. msg is used by gencat. 

Syntax 

insertmsg prog.str > prog.msg 

Here, prag.str is the edited output from findstr (see above section on prag.str). The 
routine insertmsg creates a new file (nLprag.c), for each file named in prag.str. For this 
example, all the lines in prag. str refer to prag. c. 

Message Catalog System 41 



These lines 

#ifndef NLS 
#define nl_msg(i, s) (s) 
#else NLS 
#define NL_SETN 1 1* set number *1 
#include <msgbuf.h> 
#endif NLS 

are inserted by insertmsg at the beginning of each new file (in this case nLprog.c). Then 
for each line in prog.str, it surrounds the string with an expression of the form: 

nl_msg(l, "Hello, world\n"); 

where 1 is the message number. 

This is expanded at runtime by a macro in msgbuf.h. Then insertmsg redirects (to 
standard out) message catalog source. This is generally redirected into a file so that 
gencat can be used to generate the actual message catalog. If insertmsg doesn't find 
the opening or closing double quote where it expects it in prog.str, it prints "insertmsg 
exiting : lost in strings file" and dies. If this happens check the strings file to 
make sure that the lines kept there haven't been altered. Rerunning findstr on prog.c 
reconstructs prog.str to its unedited form. 

output from insertmsg 
There are two branches from insertmsg: the new ".c" file (nLprog. c) and the messages 
going to stdout (assumedly redirected into a file, referred to here as prog.msg). 

nLprog.c 
This is the new source of your program. It consists of all the source in the original 
program, with the messages in prog.str changed to be of the form shown above, and an 
additional #define and #include statement at the beginning of the file. 

You must now edit the file nLprog.c to insert the following: 

#ifdef NLS 
nl_catopen("prog") ; 
#endif NLS 

where prog. cat is the final message file (. cat is appended to prog by the nL catopen macro). 
If a set number other than 1 is desired (for merging several message catalog files, sepa­
rating them by set number only), change the NL_SETN define statement shown in the 
previous section's code, accordingly. 

42 Message Catalog System 



prog.msg 
This is what insertmsg places on stdout to be used as the input to gencat. This file needs 
to be edited to define the $set number to match the NL_SETN in ntprag.c (i.e. you must 
insert the $set line). Messages in this file are automatically numbered from 1 upward, 
in the same order as they appear in the file prag.str. The same number is placed in the 
call to ntmsg (the macro placed around the message by insertmsg). 

findmsg also generates this same output on standard out. Although, unlike insertmsg, 
it does not produce a modified C source file. Instead, it acts on the modified source file 
(ntprag.c in the example in figure 4-1). 

Example of a modified prag. msg file 

$set 1 
1 Good morning 
2 error, monday morning 
$set 2 
15 Hello, world! 
16 Thank goodness it's Friday!! 
17 CRASH 

gencat 
gencat generates a formatted message catalog (prag. cat) from the information in prag. msg. 

Syntax 

gencat prog.cat prog.msg ... 

The prag. msg file consists of sets of messages along with comments which are merged 
into a formatted file (prag. cat) that getmsg can access. If prag. cat does not exist, it is 
created. If it exists, the new messages are included in the original prag. cat unless the set 
and message numbers collide, in which case the new supersedes the old. See the section 
on prag. msg for details on the input file format. If a message source line has a number 
but no text then the existing message corresponding to this number is deleted from the 
catalog. 

Message Catalog System 43 



prog.cat 
prog. cat is the final message catalog, created by gencat, which is then accessed by the 
new source program. gencat is a binary file and cannot be read directly by a user. 

The file prog.cat will be stored as /usr/l£b/nls/n-computer/prog.cat where n-computer is 
the value of LANG when this file is accessed and "prog" is the program name string 
entered into the ntcatopen statement. You must be logged in as super user to place the 
file in that directory. 

Multiple commands may share the same physical file or share the same name in the 
ntcatopen macro. Each message catalog name (program name with .cat appended) 
must be linked to the same file. Messages can be distinguished, either by set number or 
by message number. 

prog 
prog is the object file produced by compiling ntprog. c. Do not confuse this file with 
"prog" called by nt catopen that has . cat appended. 

Format of Source Message File 
All lines in the message file must begin in column 1. The source message catalog may 
contain lines of the following form: 

$set n comment 
This line, followed by the message text lines, specifies the set number of the following 
messages until the next $set. $delset, or end of file appears. The n denotes the set 
number (1 to 255). Set numbers must be in ascending order within a single source file. 
Any string following the set number is treated as comment. 

$delset n comment 
This line deletes an entire message set from the existing catalog file. The n denotes the 
set number (1 to 255). Any string following the set number is treated as comment. Set 
numbers must be in ascending order within a single source file. 

To delete an entire message set, place the directive 

$DELSET set_number 

at the beginning of a line between sets. 

44 Message Catalog System 



$ comment 
This line is used as a comment line. 

m message text 
The m denotes the message number (1-32767). If message text exists, the message is 
stored in the catalog file with the set number specified by $set and message number m. 
If the message text does not exist, the message corresponding to the set number and 
message number is deleted from the existing catalog file. Message numbers must be in 
ascending order within a single set. 

Certain special characters are used in the text strings; certain non-graphic characters 
and the backslash "\" can be specified using the escape sequences shown in table 4-1: 

Table 4-1: Escape Sequences 

Description Symbol Sequence 

newline NL(LF) \n 

horizontal tab HT \t 

backspace BS \b 
carriage return CR \r 

form feed FF \f 
backslash \ \\ 
bit pattern ddd \ddd 

The escape sequence \ ddd consists of backslash followed by 1, 2, or 3 octal digits which are 
used to specify the value of the desired character. If the character following a backslash 
is not one of those specified, the backslash is ignored. Backslash "\" is also used to 
continue a string to the next line. The following two lines are considered a single string: 

1 This line continues \ 
to the next line. 

which is equivalent to: 

1 This line continues to the next line. 

Note that, in this case, backslash "\" must immediately precede the newline character. 

Message Catalog System 45 



Printmsg, Fprintmsg, and Sprintmsg 
The library routines printmsg, fprintmsg, and sprintmsg are derived from their counter­
parts in printj(3S), with the understanding that the conversion character % is replaced 
by the sequence %digit$. Digit is the decimal n, in the range 1 to 9, and indicates that 
this conversion should be applied to the nth argument, rather than to the next unused 
one. All conversion specifications must contain the %digit$ sequence, and numbered cor­
rectly. All parameters must be used exactly once. These commands are used to handle 
the message catalog system with messages, having two or more parameters, that may 
need to be reordered. 

Accessing Applications Catalogs 
Message catalogs are accessed from any supported language program, such as C, Pascal, 
or FORTRAN, using C library routines. These C library routines consist of some new 
library functions and some altered, pre-existing C library routines. 

All HP-UX shell commands and C library routines that are associated with NLS or that 
have been changed due to NLS are documented in the HP- UX Reference. 

To use the C library routines from a Pascal or FORTRAN program please refer to the 
relevent language and portability manuals. 

46 Message Catalog System 



File System Organization and 
Catalog Naming Conventions 
Any application that has been localized into several languages has separate message 
catalogs (files) for each language. The routine nLcatopen assumes the message file is 
under /usr/lib/nls/$LANG/filename.cat where $LANG is the the language contained in 
the LANG environmental variable and filename is the name of the file specified in the 
call to nLcatopen in the source program (usually the program name). 

Only the root user can write in the directory /usr/lib/nls. 

For example, original, unlocalized data might be stored in a file whose full path name is 
/usr /lib/nls/n-computer /prog. cat. The file /usr /lib /nls/ german/prog. cat would contain 
the same data modified for German, and /usr/lib/nls/spanish/prog.cat would contain 
Spanish data. It is the responsibility of the application program to determine (at run 
time) which file to open. 

Message Catalog System 47 



Prelocalization: Adding Native Language Support 
Suppose you have the following C program, hello. c, and you want to localize the output. 
The source file of hello. c looks like this: 

mainO 
1* This program prints a greeting and the date *1 
{ 
printf("hello, world\n"); 
system("date") ; 
} 

7 Steps to Prelocalize an Example Program 

1. Execute findstr, redirecting the output to hello.str. 

$findstr hello.c > hello.str 

2. Edit hello.str. The file hello.str contains all the strings from hello.c that are sur­
rounded by double quotes. It contains the following lines: 

hello.c 67 16 "hello, world\n" 
hello.c 93 6 "date" 

The file hello.str needs to be edited so it contains only messages that should appear 
on the screen. Notice that date is enclosed with double quotes, but should not be 
included in the message file. Edit hello.str so it contains only the line: 

hello.c 67 16 "hello, world\n" 

3. Execute insertmsg, redirecting output to a file called hello. msg. 

insertmsg hello.str > hello.msg 

In addition to the messages output to hello. msg, insertmsg creates the new source 
file, nLhello. c, which contains the original source plus a new #define line and 
#include line, plus an altered message line. Your directory should now contain the 
following files relating to this example: 

hello.c hello.msg hello.str 

48 Message Catalog System 



4. Edit nLhelio. c. The file currently looks like: 

#ifndef NLS 
#define nl_mag(i. a) (a) 
#elae NLS 
#define NL_SETN 1 I*aet number*1 
#include <magbuf.h> 
#endif NLS 
main 0 
1* Thia program printa a greeting and the date *1 
{ 

} 

printf((nl_magCl. "hello. world\n"»); 
ayatem("date") ; 

The macro nLmsg is expanded at compile time (see section on insertmsg). Both 
the set number and the message number is set to 1. 

The file needs to be edited so it refers to the final message file. Decide now what 
you want to call the final message file (in this example it will be called hello. cat) 
and insert the folloowing lines into the program body of nLhello.c (within main()): 

#ifdef NLS 
nLcatopen(lhello") ; 
#endif NLS 

The above lines open a file called hello. cat in a directory corresponding to the native 
language defined in the LANG environmental variable. If LANG is not defined, the 
hard-coded messages in the source are used. This means that you never need to 
change the source code. You simply need to change the value of LANG and create 
a message file stored in /usr/lib/nls/$LANG/hello.cat if you wish to localize hello.c 
for a new language. 

Message Catalog System 49 



The final source file looks like this: 

#ifndef NLS 
#define nl_msg(i. s) (s) 
#else NLS 
#define NL_SETN 1 /*set number*/ 
#include <msgbuf.h> 
#endif NLS 
mainO 
/* This program prints a greeting and the date */ 
{ 

#ifdef NLS 
nl_catopen("hello"); 
#endif NLS 
printf «nl_msg (1. "hello. world\n II)) ) ; 
system("date") ; 
} 

5. Edit hello.msg to define $set to match the set number in nLhello.c, if different. 
It should be the same unless you are creating a message file other than the one 
created by insertmsg. The file hello. msg looks like: 

$set 1 
1 hello. world\n 

6. Execute gencat specifying the file hello. cat used in step 4 as the output file. The 
input file is hello. msg. 

gencat hello. cat hello.msg 

the file hello. cat should then be moed to /usr/lib/nls/n-computer/hello.cat. 

Note: unless you (or your system administrator) change the access permissions you 
must be superuser to write under the /usr/lib/nls directories. 

7. Compile nLhello.c to include the NLS code. For example: 

cc -DNLS -0 hello nl_hello.c 

Often the modified source becomes the master copy. This may be done by moving 
the "nl" version to the original, like this: 

mv nl_prog.c prog.c 

This destroys the original. 

50 Message Catalog System 



Localization 
You now have a localizable program. If your native language is English, you also have a 
localized message file. If your native language is something other than English, you still 
need to localize the message file. Let's say your native language is German, and rather 
than printing the message "hello. world" to the screen, you wish to print "Gut en Tag 
Welt. wie geht es dir?". 

Edit hello.msg or create a new file to read: 

$set 1 
1 Guten Tag Welt. wie geht es dir?\n 

Execute gencat by typing in: 

gencat hello. cat hello.msg 

Store the new hello.cat message file in /usr/lib/nls/german/hello.cat and change your 
LANG environment variable to german. 

When you re-execute the program, it will automatically use the German message file 
rather than the American English message file. Execute hello to verify that it works. If 
the LANG variable is not defined, or the message catalog does not exist, the hard-coded 
message will appear. While this discussion and example was done in English, there is no 
reason that the same exercise could not be done with German literals which must then 
be translated into English or another language. 

Maintaining Programs and Message Catalogs 
Generally programs are larger than the simple examples used here. Rather than sep­
arately maintaining source for the program (nLprog. c as originally named or prog. c if 
moved to replace the original) and the message catalog (prog.msg), the message catalog 
can be extracted from program source using findmsg(l}. Unlike findstr, findmsg returns 
only those messages which are to be taken from the message catalog. 

Message catalog source (prog. msg) can be extracted or uncompiled from a message catalog 
(prog.cat) using dumpmsg(l}. This is useful in situations where C program source code 
is not available. Also if an error is found in the message catalog, dumpmsg can be used 
to get message catalog source. Then the correction can be made to that source and the 
corrected messages compiled back in using gencat. (If this message catalog was extracted 
from C program source, it should be corrected also.) 

Message Catalog System 51 



Notes 

52 Message Catalog System 



Native Language Support Library 
and Commands A 
Library calls and commands, described in the appropriate HP- UX Reference manual 
pages, have been added to HP-UX to facilitate the development of fully localized pro­
grams. 

Library Routines 
The NLS library routines are included in the standard C library /usr/lib/libc.a. Table 
A-I lists the C library routines for NLS. For more details refer to the appropriate page in 
the HP- UX Reference or the the chapter "Programming with Native Language Support". 

Native Language Support Library and Commands 53 



Namee) 
eatread(3C) 

ntetime 

ntgevt 

nteonv(3C) 

nt etype (3C) 

getmsg(3C) 

langin/o(3C) 

ntstring(3C) 

printmsg, /printmsg, 
sprintmsg 

ntstrtod, ntato/ 

langinit 

/irsto/2, seeo/2 

Table A-I. NLS Library 

Description 

adds MPE/RTE style support to getmsg 

time conversion routines (see etime(3C) manual page) 

convert binary numbers to string numerics (see eevt(3C) manual 
page) 

character casefolding routines 

character classification 

get native language message from catalog 

get native language information 

string comparison routines 

print formatted numeric output (see the printmsg(3C) manual 
page). 

convert string numeric to binary number routines (see the str­
tod(3C) manual page). 

initialize the table for multi-byte parsing (see the nUools_16(3C) 
manual page). 

returns true of byte is first (or second) of 2-byte character (see 
the nUools_16(3C) manual page). 

returns 0, 1, or 2 indicating single byte character, second byte 
of 2-byte character, or first byte of 2-byte character. (see the 
nUools_16(3C) manual page). 

1 The location of this command in the HP- UX Reference. 

54 Native Language Support Library and Commands 



Other HP-UX system and library calls are 8-bit compatible, with the following excep­
tions. Localized versions exist for many of these (shown in table A-l) and should be used 
for new program development. 

Table A-2. Non-NLS HP-UX System and Library Calls 

Namee) Description 

atof(3C) convert ASCII string numerics to various binary forms 

conv(3C) ASCII character casefolding routines 

ctime(3C) date and time conversion routines 

ctype(3C) character classification routines 

ecvt(3C) convert binary number to ASCII string numeric 

qsort(3C) quick sort 

regex(3X) regular expression compile/execute 

string(3C) character string operations 

1 The location of this command in the HP- UX Reference. 

Native Language Support Library and Commands 55 



Commands 
The commands listed in table A-3 were created by Hewlett-Packard specifically for NLS. 
They are described in more detail in the appropriate manual page in HP- UX Reference 
and in the chapter "Message Catalog System" . 

Table A-3. NLS Commands 

Namee) Description 

dumpmsg Reverse the effect of gencat; take a formatted message catalog and 
make a modifiable message catalog source file (see the findmsg{l) 
manual page). 

findmsg{l} Extract strings from prelocalized C programs for inclusion in mes-
sage catalogs. 

findstr(l} Find strings in programs not previously localized for inclusion in 
message catalogs. 

gencat{l} Generate a formatted message catalog file. 

insertmsg{l} Uses output from findstr to both create a preliminary message file 
and to create a new C program with calls to the message file. 

Other HP-UX commands may have NLS support to some degree. In the HP-UX Ref­
erence entry for a command, there is a catagory called "International Support". Th '_.3 

category indicates to what level the command supports NLS. The possible values are: 

8-bit data 

16-bit data 

8-bit filename 

16-bit filename 

custom 

The command accepts, and correctly processes, files containing 8-bit 
data. For example, vi. 

The command accepts, and correctly processes, files containing 16-
bit data. For example, vi. 

The command accepts files with names written in an 8-bit language. 
For example, cut. 

The command accepts files with names written in a 16-bit language. 
For example, vi. 

The command formats output appropriate to the user's language. 
For example, the date command formats the output to the language 
set in the LANG environment variable. 

1 The location of this command in the HP- UX Reference. 

56 Native Language Support Library and Commands 



messages 

8-bit string 

NLS Files 

The command has the capability of accessing a message catalog. For 
example, cat. 

The command will correctly parse through 8-bit strings and com­
ments. An example of this is cc, which allows source files to have 
8-bit strings in comments. 

In addition to library routines and commands, one system file was created for NLS. The 
file, tztab, is a time zone adjustment table for date and ctime. See the HP- UX Reference 
for more details. 

Native Language Support Library and Commands 57 



Notes 

58 Native Language Support Library and Commands 



Character Sets B 
This section provides the table for the following character sets: 

• ASCII 

• ROMAN8 

• KANA8 

Character Sets 59 



Table B-l. ASCII Character Set 

b, 0 0 0 0 1 1 1 1 

b. 0 0 1 1 0 0 1 1 

b, 0 1 0 1 0 1 0 1 

b. b, b, b, 0 1 2 3 4 5 6 7 

o 0 o 0 0 NUL DLE SP 0 @ p , 
p 

o 0 o 1 1 SOH DC1 ! 1 A Q a q 

2 STX DC2 " 2 B R b r o 0 1 0 

o 0 1 1 3 ETX DC3 # 3 C S c s 

o 1 o 0 4 EaT DC4 $ 4 D T d t 

o 1 o 1 5 ENQ NAK % 5 E U e u 

o 1 1 0 6 ACK SYN & 6 F V f v 

7 BEL ETB 
, 

7 G W g w o 1 1 1 

1 0 o 0 8 BS CAN ( 8 H X h x 

1 0 o 1 9 HT EM ) 9 I y i y 

1 o 1 0 10 LF SUB . J Z j Z 

1 0 1 1 11 VT ESC + , K [ k { 

1 1 0 0 12 FF FS , < L \ I I 

1 1 o 1 13 CR GS . = M 1 m } 

1 1 1 0 14 SO RS > N 1\ n -
1 1 1 1 15 SI US I ? 0 - 0 DEL 

60 Character Sets 



Table B-2. ROMAN8 Character Set (ID=8U) 

SP 0 @ P 

1 A Q a 

" 2 B R b 

# 3 C S c 1-1 
4 D T d ~ 
5 E U e [0 

6 F V 

7 G W 9 
8 H X h 

9 I y i 

J Z j 

K k 

FF FS < L \ 
CA GS = M 1 m 

so AS > N "-

SI US ? 0 

Character Sets 61 



Table B-3. KANA8 Character Set (ID=8H) 

5P a @ p ~ ~ 

" 
1 A Q a 'T A 

" 2 B R b ';/ ;. 

# 3 C S c 7 .:e: 

4 D T d l- -\" 

5 E U e ::t j- .::L 

6 F V 7J .::. 3 

7 G W 9 :f- :x :7 

8 H X h 9 ;;t- I) 

9 I y 1 7- / .IV 

J Z j ::I -" v 

K k ~ ~ p 

< L ~ ~ 7 '7 

CR = M 1 m ;x. '" ;/ 

50 -l! * 
51 '/ "'? 

0 

62 Character Sets 



Peripheral Configuration c 
European Character Sets 
For European languages, many HP peripherals support the Hewlett-Packard ROMAN8 
character set. ROMAN8 is a full superset of ASCII and offers 88 additional local language 
symbols. Older HP peripherals may use the HP Roman Extension set, which is a subset 
of ROMAN8. Roman Extension is missing ROMAN8 Characters A thru I, U, -0, Q. "{ , 
§ . f . A thru ±. 

See the ROMAN8 character set in the appendix "Character Sets". 

Japanese Character Sets 
Many HP peripherals support an alternate 8-bit character set known as KANA8. The 
first 128 codes in the KANA8 set are JASCn (same as ASCII except substitutes ""{" 
for "\") and the last 128 codes are Katakana. 

Peripheral Configuration 63 



ISO 7 -bit Substituion 
IS07 stands for International Standards Organization 7-bit character substitution. For 
each 1807 language, certain ASCII character codes infrequently used in ordinary text 
(such as those for "I" and "{ ") are designated to generate different local-language symbol 
(such as "0" or "ro" in Danish). Unfortunately, the designated ASCII codes represent 
special characters often used in HP-UX (and all other UNIX and UNIX-like systems). 
The use of ISO 7-bit substitution is neither recommended nor supported. 

Character Set Support by Peripherals 
ROMAN8 terminals can simultaneously display any characters in their set. Their key­
boards have keycaps only for the specified local language, but you can enter any RO­
MAN8 character by use of the I Extend char I key. You can also use most 8-bit terminals in 
IS07 mode (see discussion above). 

Plotter ROM (internal) fonts are normally used for draft-quality plots. Final plots are 
normally done with host-generated (software) vector fonts. DGL/9000 graphics presently 
generate only ASCII characters. 

Some printers are capable of context-sensitive letters, so some shapes may vary. 

The following tables summarize the character set support of HP 9000 peripherals. Not 
all peripherals are available on all HP 9000 computers; check with your HP Sales Rep­
resentative. Also, this list may not be complete. Again, check with your HP Sales 
Representative for new peripherals, or new options to existing peripherals. The Order­
ing Information column indicates what action you must take to obtain a peripheral which 
is not ASCII. 

64 Peripheral Configuration 



Table C-l. 8-Bit Terminals 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP 98700H Display Sta. ASCII only Product suffix 

HP 110 ROMAN8 Std. Product suffix 

HP 45610B (HP 150) ROMAN8 Std. Product suffix 

HP 45650BV (HP 150) ARABIC8 Std. Product suffix 

HP 45650BT (HP 150) HEBREW8 Std. Product suffix 

HP2392A Roman extension, Keyboard option Missing A thru ±. 
ARABIC8 Std. 

HP2393A ROMAN8 Std. Keyboard option 

HP2397A ROMAN8 Std. Keyboard option 

HP2622A Roman Ext. Std. Keyboard option 

HP2622J KANA8 Std. Cannot combine an 
accent with a vowel. 

HP 2623A Roman Ext. Std. Keyboard option Cannot combine an 
accent with a vowel. 

HP2623J KANA8 Std NA Cannot combine an 
accent with a vowel. 

HP 2624B Terminal -------- ----------- Not recommended 
for NLS 

liP 2625A Terminal ROMAN8 Std. Keyboard option 

HP2626A/W Roman Ext. Std. Keyboard option Cannot combine an 
accent with a vowel. 

Peripheral Configuration 65 



Table C-l. 8-Bit Terminals (Cont.) 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP2627A Roman Ext. Std. Keyboard option 

HP2628A ROMAN8 Std. Keyboard option 

HP 2647F Terminal ASCII only NA 

HP 2703A Terminal Roman Ext. Std. Keyboard option 

Table C-2. I6-Bit Terminals 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP35714A Character Mode NA 
Kanji Terminal 

66 Peripheral Configuration 



Table C-3. 8-Bit Printers 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP 2225A ThinkJet ROMAN8, ARA- NA 
BIC8, HEBREW8 
Std. 

HP 2563A Printer ROMAN8 Std. NA 

HP 2565A Printer ROMAN8 Std. NA 

HP 2566A Printer ROMAN8, NA 
KANA8, 
ARABIC8 Std. 

HP 2601A Printer Substitution Accessory Change print wheel 

HP 2602A Printer Substitution Accessory Change print wheel 

HP 2603A Printer ROMAN8 Std. NA 

HP 2608S Printer Roman Option 002 
Ext., KANA8 Std. 

HP 2631B Roman Formerly Option 009 
Ext., KANA8 Std. 

HP2631G ROMAN8, KANA8 NA 
Std. 

HP2671A/G ROMAN8, KANA8 NA 
Std. 

HP2673A Roman Ext. Std. NA 

HP2680A Roman Ext. Std. NA Series 500 only 

HP 2686A LaserJet ROMAN8 Std. Font cartridges may be 
available. 

HP 2686A LaserJet + ROMAN8 Std. Downloadable fonts, font 
cartridges may be avail-
able. 

HP2688A ROMAN8 Std. Downloadable fonts. Series 500 only, not 
all fonts ROMAN8 

Peripheral Configuration 67 



Table C-3. 8-Bit Printers (Cont.) 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP2932A ROMAN8, KANA8 NA 
Std. 

HP2933/34A ROMAN8, KANA8 Font cartridges are avail-
Std. able for Arabic, Hebrew, 

Greek, Turkish 

HP82906A ROMAN8 Std. NA 

HP97090A Roman Ext. Std. NA Series 500 only 

HP9876A Roman Ext. Std. NA 

Table C-4. 16-Bit Printers 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP35713 Kanji NA 

HP35719A Kanji NA Does not support 
HP-16 

HP 35720A Kanji NA Does not support 
HP-16 

HP4163A ROMAN8, NA 
KANA8, Japanese 

Table CoS. 8-Bit Plotters 

Peripheral Character Ordering 
Device Set(s) Support Information Comments 

HP 7470A IS07 only NA 

HP 7475A IS07 only NA 

HP 7580A IS07 only NA 

HP7585A IS07 only NA 

HP 7586A IS07 only NA 

68 Peripheral Configuration 



Glossary 

16-bit character sets 

8-bit character sets 

applications program 

applications programmer 

ASCII 

bit 

byte 

character 

character set 

collating sequence 

a character set that uses two bytes to encode characters. 
This allows representation of up 35344 characters, as 
would be needed to support Chinese, Japanese, and 
Korean languages. 

a character set that uses all eight bits of a single byte 
to encode characters. These character sets are designed 
so the range 0 to 127 are ASCII, with the exception of 
the "\" character in Kana8 which is replaced by the 
yen symbol. Non-ASCII characters appear in the range 
161 to 254. 

a program performs a specific application. 

a person who writes programs for an end-user. 

American Standard Code for Information Interchange. 
A 128-character set represented by 7-bit binary values. 
(ASCII does not define the value of the eighth bit.) 

a contraction of BInary digiT. A bit can have a value 
of 0 or 1. 

a unit of data storage consisting of 8 bits. A byte can 
represent one ASCII, KANA8, GREEK8, TURKISH8, 
or ROMAN8 character. 

a language unit, usually consisting of 7 (ASCII), 8 
(KANA8, ROMAN8, GREEK8, TURKISH8), or 16 
(JAPAN15) bits. 

a grouping of graphic (visible) symbols and control 
characters, each represented by a unique binary value 
occupying a fixed amount of storage. Character sets 
contain the necessary alphanumeric and other charac­
ters required to support languages. 

the ordering sequence assigned to characters or a group 
of characters when they are sorted and ordered by a 
computer. 

Glossary 69 



command 

command interpreter 

comment 

compiler 

control character 

default search path 

device 

directory 

downshifting 

70 Glossary 

a program which is executed by the shell command in­
terpreter. Arguments following the command name are 
passed to the command program. You can write your 
own command programs, either as compiled programs 
or as shell scripts (written in the shell command lan­
guage). 

a program that reads lines typed at the keyboard or 
from a file, and interprets them as requests to execute 
other programs. The command interpreter for HP-UX 
is called the shell. 

an expression used to document a program or routine 
that has no effect on the execution of the program. 

a program that translates a high-level language into 
machine-dependent form. 

a member of a character set that produces action in a 
device other than a printed or displayed character. In 
ASCII, control characters are those in the code range 0 
thru 31, and 127. Most control characters are generated 
by simultaneously pressing a displayable character key 
and I CTRL I. 

the sequence of directory prefixes that sh, time, and 
other HP-UX commands apply when searching for 
a file known by an incomplete path name. It is 
defined by PATH in environ. login sets PATH = 
:bin:jusr Ibin, which means that your working direc­
tory is the first directory searched, followed by Ibin, 
followed by lusr Ibin. 

a piece of peripheral equipment, usually used to input 
or output data. 

a file used to catalog other files on a mass storage 
medium. Each directory contains entries for its own 
unique files. The directory information includes name, 
type, length, location, and protection. 

a pheripheral's provision for producing lowercase letters 
by using the I Shift 1 key (on most keyboards). 



editor 

end-user 

environment 

file name 

GREEK8 

hp-8 

hp-15 

hp-16 

ideogram 

ideographic 

Internationalization 

1807 

JAPAN15 

a program that allows you to create and modify text 
files based on text and commands entered from a ter­
minal. 

a person who uses existing programs and applications. 

the set of conditions (such as your working directory, 
home directory, and type of terminal you are using) 
that exist when you log in. 

a sequence of 14 or fewer characters which uniquely 
identifies a file in a directory. Any character except 
"I" can be used. 

the Hewlett Packard supported 8-bit character set for 
the Greek language. 

Hewlett Packard's implementation of the ISO's (Inter­
national Standard Organization) 8-bit character code 
set. 

a Hewlett-Packard encoding scheme for 16-bit character 
sets. 

a Hewlett-Packard encoding scheme for 16-bit character 
sets. 

the use of graphic symbols to represent ideas. 

representing an idea by use of a character or symbol 
rather than a word; the use of ideograms. 

the process of making software and hardware usable 
to users outside the United States. Native Language 
Support and Localization are two key factors of Inter­
nationalization. 

International Standards Organization 7-bit character 
substitution. The character graphics associated with 
some less-used ASCII codes are changed to other char­
acters needed for a particular language. 

the Hewlett Packard supported 16-bit character set for 
the Japanese language. 

Glossary 71 



KANAB 

Kanji 

Katakana 

LANG 

library 

library routine 

local customs 

localization 

message catalog 

message catalog system 

native language 

natural language 

NLS 

72 Glossary 

the Hewlett Packard supported 8-bit character set for 
support of phonetic Japanese (Katakana). 

the Japanese ideographic character set based on Chi­
nese characters. The set consists of roughly 50,000 
characters. 

the Japanese phonetic character set typically used in 
formal writing. The set consists of 64 characters in­
cluding puntuation. 

the Unix environment variable (LANGuage) that 
should be set to the American English name of the na­
tive language desired. 

a set of subroutines contained in a file that can be ac­
cessed by a user program. 

one of a collection of programs within the HP-UX op­
erating system. Each routine performs a unique task. 

refers to a region's local conventions such as date, time, 
and currency formats. 

the adaptation of software for use in different countries 
or local environments. 

the external file containing prompts, responses to 
prompts, error messages, and mnemonic command 
names in the user's native language. 

a set of tools developed by Hewlett-Packard to extract 
print statements from C programs and place them in 
the message catalog. 

a person's or user's first language (learned as a child) 
such as Japanese, Finnish, or American English. 

the spoken or written language as opposed to a com­
puter implementation of a language. 

Native Language Support. The Hewlett-Packard model 
that provides capabilities for reducing or eliminating 
the barriers that would make HP-UX difficult to use in 
a native language. 



operating system 

parameter 

path name 

peripheral 

prelocalization 

program 

prompt 

psuedo-teletype 

pty 

radix character 

a program which manages the computer's resources. It 
provides the programmer with utilities, including I/O 
routines, peripheral-handling routines, and high-level 
languages. 

in a program, a quantity that may be given different 
values. It is usually used to pass conditions or selected 
information to a subroutine that is used by different 
main routines or by different parts of one main routine. 
Its value frequently remains unchanged throughout any 
one such use. 

a sequence of directory names separated by slashes (J), 
and ending in a file name (any type). 

a device connected to the computer's processor that is 
used to accept information from or provide information 
to an external environment. 

modification to application programs before compila­
tion to make use of language-dependent library routines 
and to ensure that 8-bit data can be handled properly. 

a sequence of instructions to the computer, either in the 
form of a compiled high-level language or a sequence of 
shell command language instructions in a text file. 

a character displayed by the system on a terminal indi­
cating that the previous command has been completed 
and the system is ready for another command. It is 
usually a "$" or "%", but can be redefined to any char­
acter string. 

a pair of interconnected character devices; a master de­
vice and a slave device. Anything written on the master 
is given to the slave as input and anything written on 
the slave is presented as input to the master. 

abbreviation for psuedo-teletype. 

the actual or implied character that separates the in­
teger portion of a number from the fractional portion. 

Glossary 73 



ROMAN8 

root directory 

shell 

shell script 

space 

standard input 

standard output 

string 

supported language 

syntax 

teletype 

teletypewriter 

TURKISH8 

74 Glossary 

the Hewlett Packard supported 8-bit character set for 
Europe. 

the highest level directory of the hierarchical file sys­
tem, in which other directories are contained. In HP­
UX, the "I" refers to the root directory. 

the shell is both a command language and a program­
ming language that provides the user-interface to the 
HP-UX operating system. 

a sequence of shell commands and shell programming 
language constructs, usually stored in a text file, for 
invocation as a user command (program) by the shell. 

a blank character. In ASCII a space is represented by 
character code 32 (decimal). 

the source of input data for a program. The default 
standard input is the terminal keyboard, but the shell 
may redirect the standard input to be from a file or 
pipe. 

the destination of output data from a program. The 
default standard output is the terminal CRT, but the 
shell may redirect the standard output to be a file or 
pipe. 

a connected sequence of characters, words, or other el­
ements. 

the computer-implemented version of a written or spo­
ken language. 

the rules governing sentence structure in a spoken lan­
guage, or statement structure in a computer language 
such as that of a compiler program. 

a trademark for a form of teletypewriter. 

a peripheral for telegraphic data communication with 
a computer. 

the Hewlett Packard supported 8-bit character set for 
the Turkish language. 



upshifting 

US ASCII 

variable 

working directory 

a pheripheral's provision for producing uppercase let­
ters by using the I Shift I key (on most keyboards). 

A less common name for ASCII. See ASCII. 

a storage location for data. 

the directory in which you currently reside. Also, the 
default directory in which path name searches begin, 
when a given path name does not begin with "I". 

Glossary 75 



Notes 

76 Glossary 



Index 

a 
access permissions under lusT Iliblnls ........................................ 50 
accessing NLS features ..................................................... 24 
active character set ........................................................ 14 
ADVANCE macro ............................................................ 31 
alternate character set ..................................................... 14 
application guidelines ...................................................... 32 
applications catalogs ....................................................... 46 
ASCII .............................................................. 7, 8, 11 

b 
16-bit character encoding schemes (HP-15, HP-16) ............................ 15 
16-bit character set ................................................. 11, 15, 16 
7-bit character set ......................................................... 11 
8-bit character set .................................................. 11, 12, 13 
8-bit character set support model ........................................... 14 
base character set ..................................................... 14, 15 
byte_status library routine .................................................. 31 
BYTE_STATUS macro ........................................................ 31 

c 
C library routines .................................................. 24, 25, 38 
case ...................................................................... 8 
character set (see also 7-bit, 8-bit, 16-bit): 

description ......................................................... 11, 23 
ID numbers ............................................................. 15 
support ................................................................. 7 
type ................................................................... 22 

character type ............................................................ 22 
charadv library routine ..................................................... 31 
CHARADV macro ........................................................ 31, 31 
CHARAT macro ............................................................. 31 
classify characters ......................................................... 28 
collating sequence ................................................... 8, 17, 22 
control codes ............................................................. 11 

Index 77 



conv(3C) library routine ................................................... 28 
creating a message catalog ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39, 40 
ctime(3C) library routine ................................................... 26 
ctype(3C) library routine ................................................... 29 
currency .............................................................. 9, 17 
currlangid library routine ............................................... 27, 28 

d 
date format ........................................................... 17, 26 
default native language .................................................... 23 
$delset .................................................................. 44 
double precision number ................................................... 31 
downshifting ....................................................... 17, 22, 23 
dumpmsg command .................................................... 24, 51 

e 
ecvt(3C) library routine .................................................... 26 
end user ............................................................... 6, 7 
environment changes ....................................................... 23 
escape sequences .......................................................... 45 
extended character set ..................................................... 11 
extracting message catalog source ........................................... 51 

f 
file system organization .................................................... 47 
findmsg command ......................................................... 24 
findstr command .......................................... 24, 38, 39, 41, 48, 51 
firstof2 library routine ................................................. 15, 31 
FIRSTof2 macro ........................................................... 31 
format of source message files ............................................... 44 
FORTRAN ........................................................ 24, 37, 46 
fprintmsg library routine ............................................... 30, 38 

9 
gencat command ............................... 38, 39, 41, 42, 43, 44, 50, 51, 244 
getmsg command .......................................................... 38 
getmsg library routine ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 
GREEK8 character set .............................................. 13, 15, 17 
Grenwich Mean Time ...................................................... 23 

78 Index 



h 
hard-coded messges ........................................................ 39 
header files ............................................................... 25 
HP-15 ............................................................ 15, 16, 17 
HP-16 ................................................................... 15 

. 
I 

idtolang library routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27, 28 
incorporating NLS into commands ........................................... 39 
insertmsg command ................................... 24, 38, 39, 41, 42, 43, 48 
installing optional languages ................................................ 22 
internationalization ......................................................... 5 

. 
J 

JAPAN15 character set ................................................ 15,17 
Japanese .......................................................... 15, 16, 29 

k 
KANA8 character set ............................................... 13, 15, 17 
Kanji ..................................................................... 8 

I 
LANG environment variable ................................... 23,44,47,49, 51 
langinfo library routine .................................... 21, 22, 27, 27, 28, 28 
langinfo.h ................................................................ 25 
langinit library routine ..................................................... 31 
langtoid library routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27, 28 
language name ............................................................ 17 
language number .......................................................... 17 
language tables ........................................................... 24 
language-dependent information ............................................. 22 
languages ................................................................ 11 
lexical order .............................................................. 23 
library calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 
library header files ........................................................ 22 
library routines ........................................................... 26 
linedrawing character set ............................................... 13, 15 
local customs ......................................................... 6, 7, 9 

Index 79 



localization ................................................... 5, 10, 37, 38, 51 
localized command ........................................................ 24 
localized message file ...................................................... 10 

m 
manual conventions ......................................................... 3 
math character set .................................................... 13, 15 
message catalog .......................... 10, 22, 24, 27, 37, 39, 40, 46, 47, 51, 51 
message catalog commands ................................................. 38 
messages .................................................................. 7 
msgbug.h ................................................................. 25 
multi-byte character codes ................................................... 8 
multi-byte library routines .................................................. 31 
multi-byte macros ......................................................... 31 

n 
native language ........................................................... 17 
native-computer .............................................. 18, 21, 22, 37, 44 
natural language ................................................... :...... 17 
nLasctime library routine .................................................. 26 
nLatoflibrary routine ...................................................... 31 
nLconv library routine ..................................................... 28 
nLctime library routine .................................................... 26 
nLctype(3C) library routine ............................................... ~9 
nLctype.h ................................................................ 25 
nLgcvt library routine ..................................................... 26 
nLisalnum library routine .............................................. 28, 29 
nUsalpha library routine ............................................... 28, 29 
nLisgraph library routine ............................................... 28, 29 
nUslower library routine ............................................... 28, 29 
nUspunct library routine ............................................... 28, 29 
nUsupper library routine ............................................... 28, 29 
NLS definition ............................................................. 6 
NLS header files .......................................................... 25 
NLS support ............................................................... 7 
nLstring(3C) library routine ................................................ 29 
nLstrtd library routine ..................................................... 31 
nUolower library routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 
nUools_16 (3C) manual page ............................................... 31 
nLtoupper library routine .................................................. 28 

80 Index 



non-ASCII string collation .................................................. 29 
number representation ...................................................... 9 

p 
Pascal ............................................................ 24, 37, 46 
PCHAR macro .............................................................. 31 
PCHARADV macro ........................................................... 31 
peripherals ........................................................... 13, 14 
prelocalization ........................................................ 10, 48 
prelocalized commands ..................................................... 21 
printf(3S) library routine ................................................... 30 
printmsg (30) library routine ............................................... 30 
printmsg library routine .................................................... 38 
printmsg(30) library routine ................................................ 34 
programmer interface ....................................................... 7 

r 
radix character ......................................................... . .. 26 
ROMAN8 character set ............................................. 13, 15, 17 

s 
SECof2 macro ............................................................. 31 
$set ........................................................... 43, 44, 45, 50 
shifting ................................................................... 8 
sorting .................................................................... 8 
sprintmsg library routine ............................................... 30, 38 
strcmp16 library routine .................................................... 29 
strcmp8 library routine ..................................................... 29 
strncmp16 library routine .................................................. 29 
strncmp8 library routine ................................................... 29 
strtod(30) library routine .................................................. 31 
supported character sets ................................................... 19 
supported languages ................................................ 11, 17, 19 

Index 81 



t 
time format ................................ '........................ 9, 17, 26 
time zone ............................................................. 9, 23 
TURKISH8 character set ............................................ 13, 15, 17 
two-byte character ......................................................... 15 
TZ environment variable ................................................... 23 

u 
upshifting ......................................................... 17, 22, 23 
USASCII character set ................................................. 11, 17 
jusr/lib/nls access permissions .............................................. 50 

82 Index 



MANUAL COMMENT CARD 

Device I/O and User Interfacing 
HP-UX Concepts and Tutorials 

HP Part Number 97089-90062 September 1986 

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further 
comments in the spaces below. In appreciation of your time, we will enter your 
name in a quarterly drawing for an HP calculator. Thank you. 

The information in this manual: 

Is poorly organized 1 2 3 4 5 Is well organized 

Is hard to find 1 2 3 4 5 Is easy to find 

Doesn't cover enough 1 2 3 4 5 Covers everything 

Has too many errors 1 2 3 4 5 Is very accurate 

Particular pages with errors? ___________________ _ 

Comments: ___________________________ _ 

Name: _____________________________ _ 

Job Title: _________________________ _ 

Company: _______________________________________ _ 

Address: ___________________________ _ 

o Check here if you wish a reply. 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Fort Collins Systems Division 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

LOVELAND,COLORADO 

I II II I 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

~ - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - .- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -





HP Part Number 
97089-90052 
Microfiche No. 97089-99052 
Printed in U.S.A. 9/86 

FliRW HEWLETT 
a!~ PACKARD 

I I 
97089-90652 
For Internal Use Only 


