AAAAAAAAAAAAAA

il

HEWLETT hp; PACKARD

PROGRAMMING AND OPERATING MANUAL
REAL-TIME EXECUTIVE Il

SOFTWARE SYSTEM

-IMPORTANT NOTICE--
This manual contains information on Hewlett-Packard Real-Time Executive Software.

The reader is assumed to be a programmer familiar with one of the Hewlett-
Packard programming languages, ALGOL, Assembler or FORTRAN.

Microfiche No. 92001-93002

PRINTED August 1975

Part No. 92001-93001
HEWLETT PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, US.A

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1975 by HEWLETT-PACKARD COMPANY

Section

TABLE OF CONTENTS

GENERAL DESCRIPTION

Introduction

Hardware

Software .

System Dcsmptlon .
Multiprogramming
Real-Time Core Resident
Real-Time Disc Resident
Background Core Resident
Background Disc Resident .
Subroutines

Program Scheduling (SCHE D)
Time-scheduling .
Priority Level .

Program Initiation and Swappmg

Input/Output Control (RTIOC) .
Interrupt Processing .
Privileged Interrupt .
Input/Output Processing
Class Input/Output Operations

Logical Unit Lock
Resource Management .

EXEC Communication (EXEC) .

Operator Requests

System Configuration
System/Auxiliary Discs .
Peripheral Discs

RTE System Summary .

OPERATOR REQUESTS
Introduction

Command Structure .
Command Conventions .
AB

BL

BR

DN . . .

EQ (status) .

EQ (buffering)

FL

GO

Page

e e
']

QLU ddcdasd bbb bbbbbrbrblLiObl—-— -~~~

19 1o 1o Do 0 19 19 1o to 1o o
' . ' ' ' v ' ' v ' '

I

L) L Wt — o —

Section

IT (cont.)

111

IT .

LG

LS .

LU (asswnmcm)

LU (reassignment)

Oor

ON

PR

RU

RT

SS

ST

SW

TI

™

TO

up ...
Error Messages

EXEC CALLS
Introduction

Error Return Point
Assembly Language Format

FORTRAN/FORTRAN IV Format .

ALGOL Format
Read/Write .
Control Word . .
A-and B-Register Returns .
1/O and Swapping
Re-entrant 1/O
Class 1/O - Read/Write
I/O Control
Control Word .
Class I/0-Control .
Class 1/O-Get
Buffer Considerations
A- and B-Register Returns .
[/O Status .
Disc Track Alloutlon

Disc Track Release-Program Tr l\.l\\ .

Disc Track Release-Global Tracks
Program Completion

Conte

nts

)
=
Q

o

lolotlotolotlo o
' ' ' ' ' '

‘20 100
7 T

-15
-18
.19

"44 Do 'ou '0d ou oo u uu s
7 7

o

[oxlEe IR NS

Ldede Ll

'
NoliNe)

lotlotololototototlototo
' ' ' ' '

00 T o — O

E_—___~

(VSRR VSRR VSRR VS RV BV
T T

[SF R VSRR
—_— AR A A
S N A s Lo s s — —

[VSERVS)
|

10

12

-13

-14

14

20

21

i

RTE-II

Section
I
(cont.)

v

Part 1

Part 2

Part 3

iv

CONTENTS (Continued)

Program Suspend .
Program Segment Load .
Program Schedule
Optional Parameters .
Time Request .
Timed Execution (lmtlal Offset)
Timed Execution (Absolute Start Time)
Program Swapping Control
Resource Management (Resource
Numbering) .
Logical Unit Lock
Error Messages .
Error Codes for Disc AHOLdthH (d]lS
Error Codes for Schedule Calls
Error Codes for I/O Calls .
Error Codes for Program Management .
Error Codes for Logical Unit Lock Calls

REAL-TIME PROGRAM PREPARATION
Introduction

RTE EDITOR
Introduction

Editor Input/Output Flles
Editing Process

Operating Procedures

RU, EDIT .

Messages to Operator
Edit Commands .

Edit Command Formats
Edit File Editing .

Editor Error Messages

RTE INTERACTIVE EDITOR
Introduction .
Source/Edited Files .
Description

RU, EDITR

Messages to Operator
Editor Commands
Control Commands .
Search Commands
Character Edits

Relative Edits .
Pending Edits .

List Commands
Terminate Commands
EDITR Error Messages .

RTE FORTRAN
Introduction .
FORTRAN Refcrence .
Compiler Operation .

Page

. 322
. 323
. 3-24
. 325
. 326
. 327
. 329
. 331

. 3-32
. 3-34
. 3-35
. 3-36
. 3-36
. 3-36
. 336
. 3-36

4-1
4.3
4.3
4.3
4.3
4-3
4.3
4.4
4.4
4-4
4.5
4.5

4.7
4.7
4.7
4.7
4.8
4.8
4.8

. 4-10
. 4-11
. 413
. 4-14
. 4-14
. 4-15
. 4-15
. 416

. 4-17
. 4-17
. 4-17
. 417

Section

Part 3
(cont.)

Part 4

Part 5

Part 6

RU, FTN/FTN4 .
Messages to Operator
FORTRAN Format . .
FORTRAN Control Statement
Program Statement .
Data Statement
External Statement .
Pause & Stop Statements
ERR@ Library Routine .

RTE ALGOL
Introduction
ALGOL Reference
RU, ALGOL
Messages to Operator
ALGOL Format . .
ALGOL Control Statement

RTE ASSEMBLER
Introduction
Assembler Reference
Assembler Operation
ON, ASMB .
Messages to Operator
Assembler Control Stdtement
NAM Statement .

Creating Type 4 Entry Rewrds

RTE-II LOADER

Introduction

LG Track Area

Background Loading

On-Line Modification
Limitations
Segmented Background Pr()grams
New Program Addition .
Program Replacement
Program Deletion
Common Allocations

Loader Operation

RU, LOADR
opcode Parameter
fmt Parameter .

Loading the Binary Code

Loader Rescheduling

GO, LOADR (Background)
input option Parameter .
library Parameter .

Matching Externals . .

Loader Operation (On-Line l:dlt)

Loader Rescheduling (On-Line Edit)

GO, LOADR (On-Line Edit) .

Page

. 4-17
. 4-18
. 418
. 4-18
. 419
. 4-20
. 4-20
. 4-21
. 4-21

. 4-27
. 427
. 427
. 427
. 427
. 4-27
. 428
. 4-29
. 429

. 431
. 4-31
. 4-31
. 4-32
. 4-32
. 432
. 433
. 4-33
. 433
. 433
. 4-33
. 4-33
. 4-34
. 4-34
. 4-35
. 4-35
. 4-35
. 4-30
. 4-36
. 4-36
. 4-36
. 4-37
. 4-37
. 4-37

Section

Part 6

(cont.)

Part 7

Part 8

Part 9

Contents

CONTENTS (Continued)

RTE Debug Library Subroutine .
Relocating Loader Error Messages
Additional Messages .
No Blank ID Segments .
Duplicate Prog Name-name
Waiting for Disc Space .
Undefined EXTS .
Load .
Set Prgm Inactive
Load Lib

RTE RELOCATABLE LIBRARY
Introduction .
Re-entrant Subroutine Struclure
Privileged Subroutine Structure .
Format of Privileged Routine .
Utility Subroutine Structure .
Re-entrant I/O
Other Subroutines
Binry .
Parse Subroutme .
Binary to ASCII Conversxon Subroutmes
Message Processor Interface
Interrupting LU Query .
Parameter Return Subroutines
Indirect Address Subroutine .
Break Flag Test Subroutine
First Word Available Memory
Subroutine . .
Current Time Subroutme .
Buffer Conversion Subroutine
Library Core Requirements
Subroutine Structure

SEGMENTED PROGRAMS
Introduction

RTE ALGOL Segmentdtmn
RTE FORTRAN Segmentation
RTE Assembler Segmentation

MULTIPLE TERMINAL OPERATION
Introduction

Multiprogramming

Multitasking

Operation

System Conﬁguratlon

REAL-TIME INPUT/OUTPUT
Introduction -
Software 1/O Structure .
The Equipment Table
Device Reference Table

Page

. 438
. 439
. 4-39
. 4-39
. 439
. 440
. 4-40
. 4-40
. 4-40
. 4-40

. 441
. 441
. 441
. 442
. 442
. 442
. 442
. 443
. 4.43
. 443
. 444
. 444
. 4-44
. 445
. 445
. 445

. 4-46
. 446
. 4-46
. 4-46
. 4-47

. 451
. 451
. 451
. 4-51
. 451

. 4-53
. 4-53
. 453
. 4-53
. 453
. 4-54

5-1
5-1
5-1
5-2

Section

V (cont.)

Vi

Part 1

The Interrupt Table . .
General Operation of 1/0 Processor .
Standard 1/0 Calls
Power Fail . .
Driver Structure and Opuatmn .

Initiation Section

Completion Section .

[/O Device Time-Out
Driver Processing of Time-Out

System Processing of Time-Out

Driver Auto Up
Sample 1/O Driver .o
Privileged Interrupt Processing

Privileged Interrupts .

Special Processing by CIC .

Privileged Interrupt Routines .

Sample Privileged Driver

RTE-I1 SYSTEM INSTALLATION
Introduction

INSTRUCTIONS FOR PLANNING RTE-IT .

Input/Output Planning .

Step 1: 1/0 Locations .

Step 2: Standard Logical Unit
Assignments . .

Step 3: Additional Logic: ll Unlt
Assignments .

Step 4: Driver Identification

Step S: DMA

Step 60 EQT Table .

Step 7: Buffering

Step 8: Time-Out

Step 9: Extra Memory

Disc Planning .
System/Auxiliary %uh Innml\
Peripheral Subchannels .
HP 7900 Disc Configuration
HP 7905 Disc Contiguration
Extra Disc Controllers
Fixed Head System Disc
Generator Scratch Area .
Moving Head Disc Initialization .
HP 7900/7901 Disc Initialization
HP 7905 Disc Initialization
Bad Track Information .
Fixed Head Disc Initialization
System Configuration
Program Input Phase
Parameter Input Phase
Table Generation Phase
System Boundaries Phase
Prepare Tape System

N

. 6-25

,;
<
“

N
7 7 T
F VS A]

IR IR Y Y e L A I e]
AR 7 R
L L xr e

'

-16
-16
-16
-l16
17

‘N

‘N

'

. 0-19

RTE-II
CONTENTS (Continued)

Section Page Page
Appendix
Part 2 MOVING HEAD SYSTEM GENERATION . 6-31 B 7900 Extra Controller
Introduction 631 (cont.) Track Configuration B-l
Moving Head Disc RTGEN B 2 | Subchannels Bl
Multiple CPU/7905 Systems6-31 Sectors Bl
Operating Procedures63l Tracks B2
Initialization Phase6-34 Defining 7900 Track
Program Input Phase636 Map Table B2
Parameter Input Phase637 7905 Extra Controller
Table Generation Phase6-38 Track Configuration B2
System Boundaries Phase64l Subchanpels B2
Initiating RTE-II from the Sectors B2
Moving Head Disc643 Tracks B2
Error Halts643 Surface Organization B-3
MH RTGEN Error Messages ... 644 Unit Number B3
Message During Initialization Defining the 7905
and Input Phase6-44 Track Map Table B-3
Messages During Parameter Phase .. . 644 Multiple CPU/7905
Messages During 1/O Table Entry . . . 6-45 System Operation B3
General Message646 DVR32 Lock/Unlock
FunctionCall B4
Part 3 FIXED HEAD SYSTEM GENERATION . . 6-47 Source Record Format B4
Introduction 647
Fixed Head Disc RTGEN 647 C EXAMPLE RTE-Il GENERATION C-l
Operating Procedures647
Initialization Phase 648 D SUMMARY OF EXEC CALLS D-l
Program Input Phase6-50 Assembly Language Format D-I
Parameter Input Phase65l FORTRAN/FORTRAN IV Format . . . D-
Table Generation Phase6-52 Read/Write D
System Boundaries Phase6-53 I/0 ControlD=2
Initiating RTE-1I From the Class 1/O-Get D2
Fixed Head Disc6-54 I/O StatusDb2
SDUMP S . ¥ Disc Track AllocallonDb=2
SDUMP Error Messdges655 Disc Track Release D3
FH RTGEN Error Messages6-56 Program Completion D-3
Messages During Initialization Program Suspend D4
and Input Phase 6-56 Program Segment Load D4
Messages During the Pardmetcr Phase .. 657 Program Schedule D4
Messages During 1/O Table Entry . . . 6-57 Time Request Db4
General Message6-58 Timed Execution (Inmdl Oftsetb D5
Timed Execution (Absolute Start) D-5
Appendix Resource Management D-6
Program Swapping Control D-6
A SYSTEM TABLES AND COMMUNICATION Logical Unit Lock D-6
AREA oA
Base Page Commumcat]on Area Lo A E SUMMARY OF ERROR MESSAGES . . . E-I
Program ID Segment A2 Operator Request Error Messages E-I
The Equipment Table A4 EXEC Call Error Messages E-l
Device Reference Table A4 Input/Output Error Messages E-=2
Disc Layout of RTE-II System A-S RTE-II Editor Errors E3
BBDL Listing AS RTE-II Interactive Editor Errors E3
FORTRAN Compiler Errors E4
B REAL-TIMEDISCUSAGE B-l ALGOL Errors E4
Track Configuration B-l Assembler Errors ES

vi

RTE-11 Contents
CONTENTS (Continued)
Appendix Page Appendix Page
E Relocating Loader Errors . E-6 H END Record . . H7
(cont.) Additional Messages . E-7 (cont.) Absolute Tape Format . . H-8
F SUMMARY OF OPERATOR REQUESTS F-1 | RTE VS. RTE-II . I-1
General . . I-1
G HP CHARACTER SET . . G-l Program Scheduling . . I-1
RTE-II Dormant List Non- Struuturu I-1
H PAPER TAPE FORMATS . . H-1 Differences Due to Background Swapping I-1
NAM Record . H3 Changes In Base Page . 1-2
ENT Record . H4 Device Reference Table Changes I-2
EXT Record . H5 Time Keeping . I-2
DBL Record . H-6
ILLUSTRATIONS
Figure Title Page Figure Title Page
1-1 Core Allocations in the RTE-II System 12 5-3 1/0 Driver Completion Section 5-7
2-1 Swapping Word Display . . 2-11 5-4 Sample 1/O Driver . 5-10
3-1 READ/WRITE (conwd) Format . 3-5 5-5 Sample Privileged 1/0 Drlvu . . 5-19
32 Class Number (ICLAS) Format 3-8 6-1 Swap Delay Graph . 6-13
3 Example of Class /O Mailbox 6-2 EQT Table Example . 622
Communication .o . 39 6-3 DRT Table Example . 6-22
34 1/0 Control (conwd) Format . . 3-10 6-4 INT Table Example . .. 0623
3-5 Class Word (ICLAS) Format . 3-14 6-5 CPU Memory Allocations in a (onhbuud
3-6 Resource Number Control Word Formdt .. 332 RTE-II System . 6-24.,6-29
4-1 RTE Library Configuration Diagram . 4-42 A-1 Device Reference Table Word . A4
4-2 Segmented Programs . 4-51 A-2 Disc Space Allocation in RTE-II System . AS
4-3 Main Calling Segment . 4-52 A-3 Basic Binary Fixed Head Disc Loader . A6
4-4 Segment Calling Segment . 4-52 A-4 Basic Binary 7900 Moving Head Disc Loader. A-8
4-5 Main-to-Segment Jumps . 4-52 A-S Basic Binary 7905 Moving
5-1 Device Reference Table 5-2 Head Disc Loader .A-10
5-2 1/O Driver Initiation Section . 5-5 G-1 ASCII Characters and Binary (‘odu . G2
TABLES
Table Title Page Table Title Page
1-1 Minimum RTE-II System 1-1 6-3 HP 7905 Disc Worksheet 6-8
1-2 Real-Time Software . . 1-1 6-4 Fixed Head Disc Worksheet . 6-11
2-1 RTE-II Operator Commands . 2-1 6-5 Approximate Number of 64-Word
2-2 Conventions in Operator Command Sectors Required to Store
Syntax 2-2 RTE-II in Relocatable Format 6-12
2-3 Day of Year 2-12 6-6 HP 7900/7901 Moving Head
3-1 RTE-11 Exec Calls . . 3-2 Disc Initialization 6-15
32 Glossary of Terms for Class lnput/ 6-7 HP 7905 Moving Head
Output 37 Disc Initialization . . 6-16
3-3 I/O Status Word (lEQTS/IEQT4) 6-8 Fixed Head Disc Initialization . 6-18
Format . . . 3-16 6-9 System Configuration Worksheet 6-26
3-5 EQT Word 5, Status Table . 3-17 6-10 Switch Register Options . 6-33
4-1 Summary of EDITR Commands . . 49 6-11 Octal/Decimal Conversion . . 6-55
4-2 Order of FORTRAN Library Routmes . 448 A-1 ID Segment Map . . A3
5-1 Equipment Table Entries 5-1 A-2 Equipment Table Entries . A4
6-1 [/O Configuration Worksheet . 6-4 B-1 Source Format . B-3
6-2 HP 7900/7901 Moving Head G-1 Legend for Figure G-1 . G-3
Disc Worksheet ' 6-7 G-2 ASCII/Octal Table . G4

vii/viii

RTE-II

Glossary

GLOSSARY OF TERMS
USED IN THIS MANUAL

ABSOLUTE SYSTEM — The absolute binary code of the
Real-Time Executive Il System (stored on logical unit 2).

AUXILIARY DISC - The disc is optional and when used is
assigned to logical unit 3. (The absolute binary code of
RTE-I1 does not reside on the auxiliary disc.) When the
auxiliary disc is part of a moving head disc drive, it is
contained on one subchannel of that drive. The auxiliary
disc has the same status in the RTE-II as does the system
disc in that it is treated as a logical extension of the system
disc.

CONTROLLER - Two computer interface cards plugged
into adjacent 1/O slots, and connected to the disc drive with
a cable.

DEVICE DOWN - (adj.) Relates to the state of a peripheral
device. When the device is down, it is no longer operable.
Also (noun), refers to the operator command DN. which
sets the device down.

DEVICE UP - (adj.) Relates to the state of a peripheral
device. When the device is up, it is operable. Also (noun),
refers to the operator command UP, which sets the device
up after it has been set down.

DISC DRIVE — Consists of a mechanism to rotate the disc,
and electronic circuitry to write data on and read data off
the disc through disc heads.

FIXED HEAD DISC DRIVE — Consists of the mechanism
to rotate one disc with a read/write head per track.

GLOBAL TRACKS - Global tracks are a subset of RTE-II
System tracks and are accounted for in the track assign-
ment table. Any program can read/write or release a global
track.

MOVING HEAD DISC DRIVE - Consists of a mechanism
to rotate one or two discs, one permanently mounted and
the other removable. There is one head per recording
surface that is attached to a movable arm. The head is
moved to the addressed track by means of an actuator
driving the arm and head.

PERIPHERAL DISC — A peripheral disc is a disc that is
available to the user for read/write operations but for which
the Real-Time Executive Il does not manage the disc nor
maintain a track assignment table. A peripchral disc must
have a logical unit number assignment greater than o.

PROGRAM SWAPPING ~ Where program A is removed
from computer memory and stored on the disc in its
current state of execution, and program B is placed in the
computer memory area (for execution) formerly occupied
by program A. Program A is eventually returned to memory
and continued.

REAL-TIME EXECUTIVE II - The total operating system
comprised of three program modules, EXEC. SCHED. and
RTIOC, plus 1/O drivers, and various tables. Abbreviated
RTE-11.

RTE-II SYSTEM TRACKS - All those disc tracks assigned
to the system for which the RTE-II maintains a contiguous
track assignment table. These disc tracks are located on
logical unit 2 (system), and 3 (auxiliary).

SCRATCH AREA -- A number of disc tracks used during
system generation for storage of the relocatable binary code
of RTE-IL.

SUBCHANNEL - One of a group of peripherals connected
to a single controller. For example, one moving head disc
drive has two discs. The permanently mounted disc is
subchannel 0 and the removable disc is subchannel 1.

SYSTEM DISC -- The disc assigned to logical unit 2. When
the system disc is part of a moving head disc drive, it is
contained on one subchannel of that drive. The absolute
binary code of the Real-Time Executive Il resides on the
system disc.

TIME-OUT - (adj.) Relating to the state of a peripheral
device. When the device has timed-out. it is no longer
operable. Also (noun). the parameter itselt. Amount of
time the RTE-Il will wait for the device to respond to an
[/O transter command before RTE-Il makes the device
inoperable.

Glossary - 1/2

SECTION 1
GENERAL DESCRIPTION

INTRODUCTION

The Real-Time Software Manual is a programmer’s guide to
using the Hewlett-Packard Real-Time Executive Il Disc
Based System (RTE-11). The reader should be familiar with
operating procedures of the HP 2100 Series Computer and
other system related hardware, and in addition, to software
programming languages as presented in the FORTRAN
(02116-9015), FORTRAN IV (5951-1321), ALGOL
(02116-9072), and Assembler (02116-9014) Programmer’s
Reference Manuals.

HARDWARE

The HP Real-Time Executive Il Disc Based System is
divided as shown in Table 1.1.

Table 1-1. Minimum RTE-II System

Table 1-2. Real-Time Software

HP 2100 Series Computer with 16K Memory and
Memory Protect feature

Time Base Generator

Direct Memory Access

Disc Memory Subsystem

System Console Device

Paper Tape Reader

Tape Punch (Optional)

Line Printer (Optional)

Magnetic Tape (Optional)

HP 2313B Data Acquisition Subsystem (Optional)

Binary Tape

Description
Number

Assembler

Interactive Editor EDITR
Relocating Loader
Multi-Terminal Monitor
Power Fail (DVR43)
RTE-11 System Library
RTE-11 Core Resident System
M.H. Generator

F.H. Generator

F.H. Disc Driver DVR30
System Dump

Editor

FORTRAN 11

Prepare Tape System

92060-12004
92002-16010
92001-16002
92001-16003
92001-16004
92001-16005
92001-16012
92001-16013
92001-16018
20747-60001
20802-60001
20805-60001
20875-60001/5
24016-60001

24129-60001/2 ALGOL
24151-60001 RTE/DOS Relocatable Library
(EAU)

24152-60001
24153-60001
24170-60001

RTE/DOS FORTRAN IV Library

RTE/DOS FORTRAN Formatter

RTE/DOS FORTRAN 1V
Compiler

RTE/DOS FORTRAN 1V
Compiler (Fast)

Relocatable Library

M.H. Dis¢ Driver DVR31

Multi-Terminal Driver DVROO

24177-6001/3

24248-60001
29013-60001
29029-60001

SOFTWARE

Table 1-2 is a list of the software that makes up the
Real-Time Executive I System. This list is comprised of the
RTE-II software only and does not include System Input/
Output (SIO) Drivers for the various peripheral equipment,
or other hardware related drivers.

SYSTEM DESCRIPTION
MULTIPROGRAMMING

The RTE-II System is a multiprogramming system that
allows several programs to operate concurrently, each
program executing during the unused central processor time
of the others. All input/output and interrupt processing is
controlled by RTE-II, except for special privileged inter-
rupts which circumvent RTE-1I for quicker response. When

RTEII

a program requests a non-butfered I/O transfer, RTE-II
places the program in an 1/O suspend state, initiates the 1/O
operation, and starts executing the next highest priority
scheduled program. When the [/O transfer is complete,
RTE-II reschedules the suspended program for execution.
Operating programs can be written in Real-Time Assembler,
ALGOL, or FORTRAN languages. Programs are scheduled
by time intervals, an external device, an operator request,
or by another program. RTE-II has a scheduling module
which decides when to execute the competing programs.

The RTE-II system has up to four user defined program
areas for execution of his programs.

Real-time core resident
Real-time disc resident
Background core resident
Background disc resident

Figure 1-1 shows the core layout for the core-resident and
disc-resident programs.

BBL Starting

Addresses: PROTECTED BASIC
32K-077700 BINARY LOADER
24K-057700
16K-037700

NOTE:

BACKGROUND FORTRAN requires
DISC RESIDENT 4K of core. Assem-

AREA bler requires 4K
core.

BACKGROUND CORE
RESIDENT AREA

BACKGROUND Memory Protect
COMMON Fences:
(o}

SYSTEM AVAILABLE
MEMORY FOR
BUFFERING AND
RE-ENTRANT
PROCESSING

FOREGROUND
DISC RESIDENT
AREA

FOREGROUND CORE
RESIDENT AREA

FOREGROUND
COMMON

RESIDENT LIBRARY
RE-ENTRANT AND
PRIVELEGED
20,000 A

R/T EXECUTIVE

—Interrupt and 1/0 Control
—Scheduling

—Operator Communication
—Allocation and Control
—1/0O Drivers

2000

SYSTEM COMMUNI-
CATION AREA

BASE PAGE
LINKAGE AREA

TPRTE-1

Figure 1-1. Core Allocations in the RTE-II System

1-2

REAL-TIME CORE RESIDENT

Real-time core resident programs are always resident in core
and are intended for high priority tasks requiring quick
response to real-time conditions. Programs of this type can
control a logically subordinate set of disc resident pro-
grams.

REAL-TIME DISC RESIDENT

This type resides in absolute format on the disc and must
be transferred into a reserved part of core before executing.
Thus, disc resident programs provide slower response than
core resident. Since all real-time disc resident programs have
the same point of origin in core, only one program may be
in core at a time. With the on line optional swapping
feature, programs can be suspended and swapped out of
core (except 1/O suspended) if a higher priority program
needs the area.

BACKGROUND CORE RESIDENT

These programs are identical to the real-time core resident
type, except that the program area is located at the start of
the background region and shares a common area with the
background disc resident programs.

BACKGROUND DISC RESIDENT

Just like the real-time disc resident type, background disc
resident programs may also be swapped. The background
area is usually used by compilers, assemblers, editors, etc.
to create new programs to control future processes while
the real-time area is handling external events. These new
programs can be compiled, tested, and placed into opera-
tion without any paper tape output, and little operator
intervention. In addition, new programs can be added to
the set of permanent user programs, and the old ones
deleted if desired. Background disc resident software
usually includes the following items. Note that the memory
requirements stated apply to the program plus a reasonable
area for symbol tables.

REAL-TIME ASSEMBLER -- Accepts storage programs in
HP Assembler Language and outputs a relocatable binary
program to a load-and-go disc track and/or punches the
program on paper tape. Usually only one pass of the source
tape is required.

REAL-TIME FORTRAN — Compiles FORTRAN programs
and provides additional statements for real-time control.
Same output options as Assembler.

~—

REAL-TIME FORTRAN IV — Compiles source programs
written in FORTRAN IV with extended precision arith-
metic and bit manipulation via logical expressions. The
24170 version of FORTRAN IV compiler requires 6K of
background core. and the 24177 version 12K.

REAL-TIME ALGOL — Compiles source programs written
in HP ALGOL. An 8K background area is required to use
this compiler with the real-time system.

REAL-TIME SYMBOLIC EDITOR — Edits, updates, and
lists source language programs from a paper tape or disc file
input.

REAL-TIME INTERACTIVE EDITOR (EDITR) - EDITR
is an on-line editor that provides the user with a powerful
editing tool (requires optional Batch Spool Monitor soft-
ware). The user moves a pointer (pending line to be
edited) through the file. forward or backward skipping lines
if desired, and editing only where desired.

REAL-TIME RELOCATING LOADER - Provides on-line
loading of user generated programs. Programs can be
debugged and tested in background then brought up into
real-time disc resident area if desired.

REAL-TIME DEBUG — When user program is loaded with
relocating laoder, DEBUG can be appended to each main
program and segments to provide checkout. When the
program is run, DEBUG takes control of program execution
and requests instructions from the keyboard.

SUBROUTINES

Each user program (main or segment) consists of a primary
routine, containing the transfer point for entry into the
program from RTE-II and optionally a series of subrou-
tines. In Assembly Language, the transfer point is the
location of the label appearing in the END statement. In
FORTRAN. the transfer point is the first executable
instruction in a routine containing a PROGRAM statement.
The primary routine is linked with its subroutines (which
are defined by external references within the primary
routine) when it is loaded.

The Relocatable Library consists of a number of subrou-
tines that may be linked to user programs. (See Section IV,
Part 6.) Each subroutine is either re-entrant, privileged, or
utility. These terms are defined as follows:

. Re-entrant — Can be interrupted
(] Privileged - Cannot be interrupted
. Utility - Used by one program only

General Description

The classification of a specific routine is based on its
functions, word length, and execution times. A re-entrant
or privileged subroutine may be used by more than one
program at a time if they are in the resident library. (See
Figure 1-1.) If called by disc resident programs and not in
the resident library, the re-entrant and privileged subrou-
tines are appended to the absolute version of the calling
program.

Subroutines which cannot be shared because of internal
design or [/O considerations are utility subroutines. and a
copy of the utility subroutine is appended to each primary
routine, whether core or disc resident, that calls it. RTGEN
stores all library programs that are not included in the
resident library on the disc in relocatable format (as utility
routines to be used by the Relocating Loader).

PROGRAM SCHEDULING (SCHED)

Scheduling of all programs is done by the scheduling
module SCHED, and is based on priority. Programs may be
scheduled for execution by an operator request, a program
request, a device interrupt, or the completion ot a time
interval. The RTE-I1 System can be generated such that one
program is automatically scheduled cach time the system is
loaded from the disc. Whenever programs contlict because
of simultaneous demands for execution, SCHED decides in
favor of the highest priority program. Priorities are assigned
by the user during RTGEN or on-line loading, and may be
changed by an operator request.

The RTE-II System handles priorities on a completely
generalized basis. The highest priority program scheduled
for exccution executes first. Then, if that program suspends
execution (possibly for an input wait), the next highest
priority scheduled program executes. This process contin-
ues down the scheduled list until a higher priority program
is rescheduled.

Programs that were removed from the executing state to
wait for an event to occur before re-scheduling are in the
suspended state. Programs which are not currently in either
the scheduled, executing, or suspended state arc in the
dormant state. Programs may thus be in one of four states:

Executing
Scheduled
Suspended
Dormant

The status field in the ID segment (see Appendix A) records
the state of the program.

RTE-II

Programs may be suspended for several reasons:

(] Waiting for the completion of an [/O operation
(] Waiting for the availability of needed memory space
(] Waiting for the completion of a disc allocation

(] Waiting for the completion of a program scheduled
by the suspended program

(] The operator has requested that a program be
suspended

(] The program has requested that it be suspended
TIME SCHEDULING

Current time is updated every ten milliseconds. Whenever
this occurs, a time list of programs is checked. Any
programs scheduled to execute at that time are placed in
the scheduled list. Programs can be executed on resolutions
of hours, minutes, seconds, or even multiples of tens of
milliseconds.

PRIORITY LEVEL

Program priority determines the order of a program in the
scheduled and suspended states. The priority field of the
ID segment (see Appendix A) records the priority of the
program. Priorities range from O (the highest, reserved for
system programs) to 32767 (the lowest). The priority of
any program can be changed by an operator request, and
more than one program can be at the same priority.

For each program state except dormant, RTE-II maintains
an ordered list of the programs in that state, connecting the
ID segments according to the priority of the programs.
There are two types of lists:

(] Scheduled
] Suspended

The base page communication area (see Appendix A)
contains the pointers to the ID segment of the first, or
highest priority, program in each list. Then, the linkage
field of each ID segment contains the location of the next
ID segment in the list. There is one scheduled list and five
types of suspension lists:

[/O suspension lists (one for each device)
Memory availability list

Disc allocation list

Operator suspension list

General wait list

1-4

PROGRAM INITIATION AND SWAPPING

A program is initiated immediately once it is transferred to
core memory. Real-time resident programs are normally
given highest priority and are always in core. If the program
is on disc and is to be executed in one of the disc-resident
areas, and an uncompleted program already occupies that
space, the uncompleted program is transferred out to the
disc and saved in its uncompleted and modified state. Then
the new program is transferred into core. During the
transfer a check is made to see if work can be done in one
of the other areas of core. I/O operations continue
simultaneously.

Background swapping makes it possible for multiple users
to take advantage of the program development facilities of
the RTE-II system. For example, one person can be editing
his program while another is entering, compiling, assem-
bling, or loading another program.

INPUT/OUTPUT CONTROL (RTIOC)

RTIOC is responsible for processing all system interrupts
and input/output operations. Section V describes the 1/O
structure oi the RTE-I[System in detail, especially 1/0
drivers, and privileged interrupt processing.

INTERRUPT PROCESSING

All interrupts, except privileged interrupts and power fail,
cause a transfer to the Central Interrupt Control (CIC) in
RTIOC, which is responsible for saving and restoring the
various registers, analyzing the source of the interrupt and
calling the appropriate processing routine.

An interrupt table, ordered by hardware interrupt priority,
contains the correct processor routine for each interrupt.
Processors that respond to standard system interrupts
(real-time clock routine, memory protect, standard 1/O
drivers) are called directly by CIC. Processors that respond
to user-controlled devices or interrupt sources are scheduled
just like other programs.

When an interrupt occurs, the instruction in the word
corresponding to the 1/O channel number is executed. For
all active interrupt locations, except privileged interrupts
and power fail, this instruction is a jump subroutine
(indirect) to CIC.

PRIVILEGED INTERRUPT

RTE-1I offers a special privileged interrupt feature, using an
optional privileged interrupt control card and the hardware

priority structure of HP 2100 series Computers. Privileged
interrupt bypasses normal interrupt processing to achieve
faster response for interrupts having the greatest urgency.

INPUT/OUTPUT PROCESSING

RTIOC allocates DMA channels for I1/O devices, provides
for referencing 1/0 devices by logical unit number rather
than directly by EQT entry number of 1/O channel, stacks
program 1/O requests for a particular device by priority of
the calling program, and provides automatic output buffer-
ing, when specified.

[/O drivers are under control of RTIOC for initiation and
completion of program-requested 1/O operations: they
provide simultaneous multi-device control.

Program requests for 1/0 are made by EXEC calls which
specify the type of transfer and device desired. RTIOC
handles the request. It suspends the requesting program
until the operation is complete unless the request is
buffered. All input/output operations occur concurrently
with program execution; however, if the transfer is non-
buffered, the requesting program is suspended and the next
lower priority scheduled program is allocated execution
time during the suspension.

CLASS INPUT/OUTPUT OPERATIONS

All 1/O operations of the system are performed concur-
rently with program computation. This is accomplished
through a unique scheme of programming within the
RTE-Il system to effectively handle scveral programs
addressing ecither other programs or 1/O devices. The term
“class™ as used in this context is likened to an account
which is owned by a program which may be used by a
group of programs. The maximum number of classes 1s
established during system generation. Once the numbers are
established the system keeps track of them and assigns
them (if available) to the calling program when a class 1/0
call is made. Once the number has been allocated, the user
can keep it as long as desired and use it to make multiple
class 1/O calls. When the user is finished with the number it
can be returned to the system for use by some other class
user.

LOGICAL UNIT LOCK

The RTE-1l system provides for temporary exclusive
assignment of 1/O devices to specific user’s programs. This
can be used to assure that a low-priority program completes
its use of a printer. for example, without having that use
preempted by a higher-priority program.

General Description

RESOURCE MANAGEMENT

Within RTE-I, any element that can be accessed by a user’s
program is regarded as a resource. A resource thus can be
an 1/O device, file, program, or subroutine. Occasionally.
the user may want to manage a specific resource shared by
a particular set of programs so that no two of these
programs can use the resource at the same time. To
accomplish this type of resource management the programs
involved must mutually cooperate. For example, PROGB
must not access a particular file when PROGA is using it.
Both programs should include provisions for a hand-shaking
arrangement overseen by the system when these programs
are being executed concurrently. Under this arrangement.
when PROGA has exclusive access to the file and PROGB
attempts to access the same file. this access will be denied.
PROGB will be suspended until PROGA releases its exclu-
sive access. Then, PROGB can resume execution and access
the file. (It is important to realize that as long us PROGB
is suspended, it not only cannot access the file
perform any operations.) For more information refer to
Section I11.

it cannot

The hand-shaking arrangement between programs is based
upon an arbitrary resource identification number (RN)
made available to programs. Within the cooperating pro-
grams the RN is related to a particular resource through the
structure of the statements making up each program. When
a program secks exclusive access 1o a resource. it requests
the system to lock the related RN. (This request is granted
only if no other program has already locked the RNz other-
wise, the requesting process is suspended until the RN s
released.) When it is finished with the resource. the pro-
gram requests the system to unlock the RN so that other
programs can lock it.

A RN is not a physical entity. Furthermore, it is not
logically assigned to any resource. The association between
4 RN and a resource is accomplished only by the context
of the statements within the program using the RN. The
RN is always known to the system but its meaning (the
resource with which it is associated) is not. For this reason.
all cooperating programs must agree on what RN s
associated with what resource.

Programs can lock more than one RN at a time. However.
in doing so. the users must be caretul to avoid the case
where two suspended programs cannot be resumed because
they are mutually blocked.

RTE-NI

EXEC COMMUNICATION (EXEC)

When an executing program makes an EXEC call, it
attempts to execute a jump subroutine to EXEC in the
protected area of core. This causes a memory protect
violation interrupt, which CIC recognizes, and transfers to
EXEC. EXEC examines the parameters associated with the
jump subroutine in the calling program. If the parameters
are legal, EXEC either handles the request itself or goes to
the appropriate part of RTE-II to process it. ~

Using EXEC calls, which are the line of communication

between an executing program and RTE-II, a program is
able to:

] Perform input and output operations.

(] Allocate and release disc space.

(] Terminate or suspend itself.

(] Load its segment (if background disc type).
L] Schedule other programs.

o Obtain the time of day.

] Set execution time cycles.

OPERATOR REQUESTS

The operator retains ultimate control of the RTE-1I System
with requests entered through the teleprinter keyboard.
(See Section II.) Operator requests, which are handled by
SCHED, can interrupt RTE-II to:

(] Turn programs on and off.

(] Suspend and restart programs.

° Examine the status of any program or 1/O device.

° Schedule programs to execute at specified times.

° Change the priority of programs.

(] Turn swapping on/off in either disc resident area.

. Set up load-and-go operations and source files.

. Declare 1/O devices up or down.

L] Dynamically alter the logical 1/O structure and

buffering designations.

1-6

(] Eliminate disc-resident programs from the system.

] Examine and dynamically alter an [/O device’s
time-out parameter.

] Release tracks assigned to dormant programs.
L] Initialize the real-time clock and print the time.
SYSTEM CONFIGURATION

User real-time programs and background programs, system
programs, library routines, and Real-Time Executive Mod-
ules are incorporated into a configured RTE-II System. The
RTE-II software is modular and of a general nature, so the
user can configure his particular programs and 1/O device
drivers into a real-time system tailored to his exact needs.

Using the Real-Time Generator (RTGEN), the relocatable
software modules and user programs are converted into a
configured real-time system in absolute binary format
which is stored on a disc, usually the HP 7900 Moving Head
Disc Drive. In operation the configured system is loaded
into the computer from the Real-Time Disc Resident area
of the disc. The remaining disc storage is dynamically
allocated by the configured system to user programs or is
utilized by the scheduler for swapping operations.

The HP 7900 Moving Head Disc Drive is a single unit that
contains two discs; one permanently mounted, and the
other housed in a removable cartridge. The drive is
interfaced to the computer through a single plug-in control-
ler occupying two /O slots. It is possible to daisy-chain up
to four drives to the same controller providing up to eight
discs. Each disc is a subchannel, and is accessed through a
logical unit reference number that is referenced back to the
equipment table (EQT) entry number of the controller.
Therefore, one controller, containing eight subchannels
linked to eight logical unit numbers, can control up to eight
discs. When the RTE-II moving head disc system is
generated using RTGEN, the user designates areas, or
tracks, of each disc that are available to RTE-IL. The system
is limited to these tracks, and as a result, it is possible for
the user to create many different configurations of RTE-1I
Systems, all coresiding on the same moving head disc
channel.

Additional information on system configuration is found in
Section VI and Appendix B of this manual.

SYSTEM/AUXILIARY DISCS

The RTE-II System disc tracks are those for which RTE
controls and maintains a contiguous track usage table.

RTE-II

These are logical units 2 (system), and 3 (auxiliary). The
system disc tracks are used for swapping, and by the editor,
assembler, and compilers for source, load-and-go, and
scratch area. They may also be used by user programs for
storage. The only differences between a system disc and an
auxiliary disc are that the absolute code of RTE-Il is stored
on the system disc, and that the auxiliary disc is optional.

PERIPHERAL DISCS

Peripheral discs are not managed by the RTE-II System but
can be managed with the optional File Manager. Track
allocation and usage in this case are totally up to the user
through the File Manager. Peripheral discs are distinguished
from system discs by having logical unit numbers greater
than 6.

RTE SYSTEM SUMMARY

The Hewlett-Packard Real-Time Executive-Il Software
System is a multiprogramming, foreground-background
system with priority scheduling, interrupt handling, and
program load-and-go capabilities.

With multiprogramming, a number of data acquisition
systems or test stands can be operated simultaneously on a
24-hour a day basis. Data reduction and report preparation
functions can be scheduled to execute in the background
area during times when foreground real-time activities
permit. The same computer can also be used by the
programming group for ongoing development work with
RTE-II's background compilers for FORTRAN, FORTRAN

General Description

IV, and ALGOL, and with the HP Assembler, Editor. and
other auxiliaries. Programs can be added to the system
on-line, and on a load-and-go basis (no intervening paper
tapes). For system protection, new programs can be
debugged in background while memory protect maintains
the integrity of the real-time foreground area.

Scheduling of all programs is based on priority. External
events can interrupt to schedule programs for execution, or
a program can be scheduled by an operator request, a
program request, or on a real-time clock basis. Priorities are
assigned by the user during RTGEN or on-line loading. and
may be changed by an operator request.

The Executive controls [/O processing through a central
routine that directs requests and interrupts to the appro-
priate device driver subroutine. For efficiency, programs
awaiting 1/O aie suspended to let other programs use the
computer. Outputs to slow devices can be buffered. For
process that cannot tolerate ordinary system overhead. a
privileged interrupt option lets a device contact its driver
directly without going through the Executive.

The operator retains ultimate control of the RTE-I1 System
with requests entered through the teleprinter keyboard.

The operator can turn programs on, make status checks. or
perform other operations.

Configuration is efficient. The generation program RTGEN,

in a dialog with the operator, configures the software for a
particular hardware system on that system itself.

1-7/1-8

SECTION 11
OPERATOR REQUESTS

INTRODUCTION

The operator controls an executing Real-Time Executive-11
System by operator requests entered through the tele-
printer console. These operator requests can interrupt RTE
to perform the functions described in Table 2-1.

COMMAND STRUCTURE

The operator gains the attention of RTE-Il by pressing any
key on the console. When RTE-II responds with an asterisk
(*), the operator types any operator request (or command),
consisting of a two-character request word (e.g., ON, UP,
etc.) and the appropriate parameters separated by commas.
Each command is parsed, or resolved, by a central routine
that accepts certain conventions. Command syntax is
described in Table 2-2 and, with the conventions described
next, must be followed exactly to satisfy system require-
ments.

COMMAND CONVENTIONS

° When the data is entered, the items outside the
brackets are required symbols, and the items inside
the brackets are optional. Note that when RTE-II is
restarted, any parameters previously changed are
restored to their original value set during RTGEN.

L] If an error is made in entering the parameters,
CONTROL and A struck simultaneously will delete
the last character entered if input is a teletype. If the
system input device is a CRT terminal, the last
character can be deleted with the backspace key. To
delete the entire line use RUBOUT. Note that line
feed is supplied by the system. Each request must be
completed with an end-of-record terminator (e.g.,
carriage return for the teleprinter and CRT).

® Two commas in a row mean a parameter 1s zero.

Table 2-1. RTE-1l Operator Commands

Command .
Description
Format

AB Abort current BATCH program.

BL Sets buffer limits.

BR Sets a break flag in named program’s
ID segment.

DN Declare 1/0 device unavailable.

EQ Examine the status of any /O device.
and dynamically alter device buffering
assignments.

FL Buffer flush command used in conjunction
with Multiple Terminal Monitor (MTM) only.

GO Restart programs out of suspension.

IT Sets time intervals for programs

LG Allocate load-and-go area.

LS SEt logical source pointer.

LU Dynamically alter device logical unit
assignments.

OF Turn programs off.

ON Turn programs on.

PR Change the priority of programs.

RU Start a program immediately.

RT Release program’s disc tracks.

SS Suspend programs.

RTE-II

Table 2-1. RTE-II Operator Commands (Continued)

Command Descrinti
Format escription

ST Examine the status of programs.

SwW Allow / disallow foreground /
backgound programs to swap.

TI Print the current time.

™ Set the real-time clock.

TO Examine and dynamically alter an 1/O
device’s time-out parameter.

Up Declare 1/0O devices available.

Table 2-2. Conventions in Operator Command Syntax

[tem Meaning
UPPER CASE These words are literals and
ITALICS must be specified as shown.

lower case italics These are symbolic representa-

tions indicating what type of
information is to be supplied.
When used in text, the italics
distinguishes them from other
textual words.

[item] Items with brackets are optional.
However, if item is not supplied,
its position must be accounted
for with a comma: this causes
item to automatically default.

jteml This indicates that exactly one

,item2 item may be specified.

Jitem3

item 1 This indicates that there is a

item 2 choice of entries for the param-

item 3 eter, but one parameter must be
specified.

... (row of dots) This notation means ‘“and so
on.”

2-2

AB

Purpose:

To abort the current File Manager Program running

under batch.

Format

w[?]
1

Where:

0 terminates and removes from the time list
the current BATCH program that is
executing, scheduled, or operator sus-
pended. Terminates BATCH programs
which are 1/O, memory, or disc suspended
the next time they are scheduled. Disc
tracks are not released.

1 terminates immediately the BATCH pro-
gram and removes it from the time list, and
releases all disc tracks. If suspended for
1/0, the device and channel are cleared by
a CLC.

COMMENTS

When the File Manager is waiting on a program it is running
(e.g., ASMB), the AB command aborts that program just
like the

OF ,name command.

If the File Manager is dormant, or non-existent in the
system, the AB command will cause the error message
ILLEGAL STATUS to be printed. If the File Manager is
not dormant and is not running a program, this command is
the same as

BR,FMGR

BL

Operator Requests

BR

Purpose:

To examine or modify current Buffer Limits.

Format:
BL [lower limit, upper limit, |
Where:
BL alone displays upper and lower
limits previously set.
lower limit is the lower limit number.

upper limit is the upper limit number.

COMMENTS

Setting upper and lower memory limits with this command
can prevent an inoperative or slow 1/O device from
monopolizing available system memory. Each time a
buffered /O request is made (Class I/O requests are
buffered). the system adds up all the buffered words in I/O
requests queued to that EQT entry and compares the
number to the upper limit set by this command (or during
generation). If the sum is less than the upper limit the new
buffered request is added to the quecue. If the sum is larger
than the upper limit the requesting program is suspended in
the general wait (STATUS = 3) list. When a buffered 1/0
request completes, the system adds up the remaining words
in 1/O requests queued to that EQT entry and compares the
number to the lower limit set by this command (or during
generation). When the sum is less than the lower limit, any
programs suspended for exceeding the buffer limits on this
EQT are rescheduled.

Purpose:
To set an attention flag in a program’s ID segment.
Format:
BR.name
Where:

name is the name of the program.

COMMENTS

The BR command allows an operator to interrupt a
program while it is running. When the BR command is
executed, RTE sets bit 12 in word 21 of the named
program’s ID segment. The user’s program can call an HP
furnished subfunction that will test this bit and then act
accordingly. The calling sequence of the subfunction is:

I = IFBRK (DM)

where DM is a dummy parameter to make the call appear as
a function (DM need not be supplied in Assembly Language
calls). The returned value will be negative it the break flag is
set and positive if it is not. If the flag is set it will be cleared
by IFBRK.

DN

Purpose:

To declare an 1/O device down (i.c.. unavailable tor
use by the RTE-II System).

Format:
DN.egt
Where:

eqt is the EQT entry number of the 1/O device
to be set down.

COMMENTS

The device set down is unavailable until set up by the UP
command. The operator might set a device down because of
equipment problems, tape change. etc.

to
J

RTE-II

EQ (stat_us)

EQ (buffering)

Purpose:

To print the description and status of an /O device,
as recorded in the EQT entry.

Format:
EQ.eqt
Where:

eqt is the EQT entry number of the I/O device.

COMMENTS
The status information is printed as:

select code DVRnn D B Unn status
Where:

select code is the 1/0 channel.

DVRnn is the driver routine.

D is D if DMA required, O if not,

B is B if automatic output buffering used, O if
not,

Unn is the last subchannel addressed

status is the logical status:

0 — available

1 — unavailable (down)

2 — unavailable (busy)

3 — waiting for DMA assignment

Note that if eqt is 0 it is a bit bucket, and the LU associated
with it is also a bit bucket.

Purpose:

To change the automatic output buffering designa-
tion for a particular 1/O device.

Format:
,UNbuffer
E
Qeqt [BUffer }
Where:
eqt is the EQT entry number of the 1/O
device.

UNbuffer deletes buffering.

BUffer specifies buffering.

COMMENTS

When the system is restarted from the disc, buffering
designations made by the EQ command are reset to the
values originally made by RTGEN.

FL

Purpose:
To eliminate buffered output to an [/O device.
Format:

lu>FL

Where:

lu is the logical unit number of the inter-
rupting terminal.

COMMENTS

The FLush command can only be used in conjunction with
the Multiple Terminal Monitor (MTM), and can only be
entered from a terminal other than the system terminal.

Other methods of clearing the buffer are using an EXEC
call or a File Manager command as follows:

CALL EXEC (3.23/u)

*ON,FMGR
:CN,lu,23B

GO

Purpose:

To reschedule a program that has been suspended by
an SS command or a Suspend EXEC Call.

Format:

GO,name |.pl|.....pS11]1]

Operator Requests

NO
FI

3
4
5

After a program has suspended itself and is restarted with
the GO command. the address of the parameters passed by
GO is in the B-Register. In FORTRAN, an immediate call
to the library subroutine RMPAR retrieves the parameters
(see Section 1. Suspend EXEC Call). It the program has
not suspended itself, the B-Register is restored to its value
before suspension and the parameters are ignored.

IT

Where:

name is the name of a suspended program to be
scheduled for execution.

pl ... p5 is a list of parameters to be passed to
name only when name has suspended
itselt (see Suspend EXEC Call in Section
111). The parameters are not required if
name was suspended with the SS
command.

COMMENTS

If the program has not been suspended previously by the
operator or has not suspended itself. the request is illegal.

Parameters p/ through pS5 can be entered in ASCII or
numeric form. Octal numbers are designated by the “B”
suffix and negative numbers by a leading minus sign. For
example:

GO.name FI,LE.31061B

Note that only two ASCII characters per parameter are
accepted; if one is given, the second character is passed as a
blank (blank = 40B). If the first parameter is ASCII
“NO” then it must be repeated (the system interprets it as
“NOW?” in the GO command). For example:

GO,name NONO FI.345

is interpreted as shown below. NO (NOW) is not used
except to push the parameters out.

Purpose:
To set time values for a program. so that the program
executes automatically at selected times when turned
on with the ON command.
Format:

IT.name |.res,mpt| hr.min|,sec|.ms||] |

Where:

name is the name of the program.

res is the resolution code
1 - tens of milliseconds
2 seconds
3 - minutes
4 hours
mpt is a number from 0 to 4095 which is used

with res to give the actual time interval for
scheduling (see Comments).

hr hours
min minutes L
sets an initial start ume.
sec seconds
ms tens of ms.
COMMENTS

The resolution code (res) is the units m time to be
multiplied by the multiple execution interval value (mpt) to
get the total time interval. Thus. if res=2 and mpr=100.
name would be scheduled every 100 seconds. It hir.min.sec
and ms are present. the first execution occurs at the initial

RTE-I

start time which these parameters specify. (Program must
be initialized with ON command.) If the parameters are not
present (e.g., IT name), the program’s time values are set to
zero and the program is removed from the time list. The

program can still be called by another program or started
with the ON, name NOW or RU command.

When the system is restarted from the disc, time values set
by the IT command are lost, and the original time values set
at original load time are reinstated.

The IT command is similar to the Execution Time EXEC
Call (See Section III).

LG

LS

Purpose:

To allocate or release a group of disc tracks for
load-and-go operations.

Format:
LG,numb
Where:

numb =0 (zero) releases the allocated load-and-go
area.

numb > 0 release currently allocated load-and-go
tracks and then allocate numb contiguous
tracks for a load-and-go area.

COMMENTS

The user must allocate enough tracks for storing binary
object code before each load-and-go compilation or assem-
bly. If not, the compiler or assembler aborts and a
diagnostic is printed on the system console.

1006—
1009—

Load-and-go area not defined.
Overflow of load-and-go area.

An LG request should not be used while a compiler or the
Assembler is using the load-and-go tracks. If done, this may
result in the message

LGO IN USE

being printed on the system console, and no change in the
current number of load-and-go tracks. In most cases,
however, it results in an [006 error.

2-6

Purpose:

To designate the disc logical unit number and starting
track number of an existing source file before
operating on it with EDIT, EDITR, FTN, FTN4,
ALGOL, ASMB.

Format:
LS,disc lu, trk numb

Where:

disc lu is the logical unit number of the disc
containing the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source

file designation.

trk numb is the starting track number of the

source file (in decimal).
COMMENTS

LS replaces any previous file declarations with current file.
Only one file may be declared at a time.

For details on creating, updating, compiling, or assembling
source files, see Section 1V, Background Programming.

LU (assignment)

Purpose:

To print the EQT table entry number and device
subchannel number associated with a logical unit
number.

Format:
LU, lu
Where:
lu is a logical unit number from 1 to 63.

COMMENTS

The assignment information is printed as:

LU #7=#5, U2

Jogical unit number }

EQT entry number

subchannel number

LU (reassignment)

Purpose:

To change a logical unit number assignment.

Format:
LU,lu"(’))‘{[|.subch numb)

Where:

lu is a logical unit number from 1 to 63
(decimal).

eqt is an EQT entry number to assign
lu.

eqt it zero (0) Iu becomes the bit bucket.

is a subchannel number (0 to 31) to
assign to lu.

subch numb

COMMENTS

The LU command can be used to change subchannel bits of
DVROO in reference to an EOT setting the tape reader
down. Refer to the Multiple Device Driver DVR0OO manual
HP Part No. 29029-95001.

The restrictions on changing logical unit assignments are:

a. LUI (system console) must be a keyboard en-
try device (e.g., teleprinter). Note that if LUI is
changed from one keyboard device to another, the
new device will print a double asterisk (**).

b. LU2 (system disc) and LU3 (auxiliary disc) can-
not be changed to another EQT entry number.

C. An LU cannot be changed to point at the same
device as LU2 or LU3.

Operator Requests

When an irrecoverable problem occurs on an 1/0 device. the
operator can bypass the downed device for future requests
by reassigning the logical unit number to an operable device
on another channel. Any programs referencing the downed
device are suspended until the device is declared UP.

When the system is restarted from the disc. any assignments
made by LU are reset to those originally set by RTGEN.

Section V, Real-Time Input/Output, explains logical unit
numbers, equipment table entry numbers, and subchannel
numbers in detail.

OF

Purpose:

To terminate a program, or to remove a disc resident

program which was loaded on-line but not permanently

incorporated into the protected RTE-I1 system.

Format:

0
OF, name| .1
3

Where:

name is the name of the program.

0 terminates and removes {rom the time list
the named program the next time it is
scheduled. The program’s disc tracks are not
released.

] terminates immediately the named program.
removes it from the time list. and releases all
disc tracks. If suspended tor 1/0. the device
and channel are cleared by a CLC.

8 terminates immediately the named program,
and if the program is a temporary program
loaded on-line, it is permanently removed
from the system.

COMMENTS

For programs with segments, the OF. name. 8 command
must be used on the segments as well as the main.

OF ,name,8 will not remove permanent programs because
their ID segments on the disc are not altered by this re-

27

RTE-NI

quest. A permanent program is defined as a program loaded
during generation, or on-line with the LOADR and with a
copy of its ID segment in core and on the disc. For tem-
porary programs loaded on-line the ID segment is blanked
making the segment available for loading another program
with LOADR. The tracks (if they are system tracks) con-
taining the program are released. If the program had been
stored on File Manager tracks, those tracks are not returned
to the system but remain as File Manager tracks.

If the program is [/O suspended, the device and channel are

cleared by a CLC. The OF name,8 command must then be
entered a second time to permanently remove name from
the system in this case.

A permanent disc resident program is removed with the
LOADR as described in Part 6 of Section 1V.

ON

Purpose:

To schedule a program for execution. Up to five
parameters may be passed to the program.

Format:

ON,name [NOW] [,pI|, . . .[.p511111]

Where:

name is the name of a program.

NOW schedules a program immediately that is
normally scheduled by the system clock
(see IT).

pl..pS are parameters passed to the program
when it is scheduled.

COMMENTS

Parameters p/ through p5 are the ones passed by RMPAR
as described under Comments in the Program Schedule
EXEC Call in Section IIl. Refer also to XTEMP words
2 through 6 in the program’s ID segment (see Appendix
A). Note that any parameters not entered as part of
the ON command will be returned as zeros by a call to
RMPAR.

Parameters pl through p5 can be entered in ASCII or nu-
meric form. Octal numbers are designated by the “B” suffix

2-8

and negative numbers by a leading minus sign. For
example:

ON,name FI,LE,31061B

Note that only two ASCII characters per parameter are
accepted; if only one is given, the second character is passed
as a blank. (blank = 40B). If the first parameter is ASCII
“NO” then it must be repeated (the system interprets it as
“NOW’” in the ON command). For example:

ON,name ,NO,NO,FI,3 4.5

is interpreted as

NO
FI
3

4

5

If the resolution code in the ID segment of the program is
not zero, RTE-II places the program in the time list for
execution at specified times (unless NOW appears in which
case, the program is scheduled and put into the time list
immediately). The resolution code may be non-zero as a
result of:

a. Generation
1. With a resolution code in the name record
2. Entry of a resolution code during param-

eter input phase.

b. The IT command.
c. Scheduling the program with absolute start
time or offset by some program in the system.

PR

Purpose:
To change the priority of a program.
Format:

PR name numb
Where:
name is the name of the program.

numb is the new priority.

COMMENTS

One (1) is the highest priority, and 32767 is the lowest.
When the system is restarted from the disc, the priority of
name resets to the value set by RTGEN or LOADR.

Operator Requests

is interpreted as shown below. NO(NOW) is not used except
to push the parameters out.

o Lo

RT

Purpose:
To release all disc tracks assigned to a progran.
Format:
RT name
Where:

name is the name of the program that is to have its
tracks released.

RU
Purpose:
To schedule a program immediately without affecting
its entry in the time list. Up to five parameters may
be passed to the program.
Format:
RU pame|pl| [p5111]]
Where:
name is the name of a program.
pl..pS are parameters passed to the program
when it is scheduled.
COMMENTS

The RU command is usually used when the operator desires
to run a program without affecting its entry in the time list.

Parameters p/ through p5 are the ones passed by RMPAR
as described under Comments in the Program Schedule
EXEC Call in Section III. Refer also to XTEMP words 2
through 6 in the program’s ID segment (sce Appendix A).
Note that any parameters not entered as part of the RU
command will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or
numeric form. Octal numbers are designated by the “B”
suffix and negative numbers by a leading minus sign. For
example:

RU,name,F1.LE,;31061B

Note that only two ASCIl characters per parameter are
accepted: if only one is given, the second character is passed
as a blank (blank = 40B). If the first parameter is ASCII
“NO” then it must be repeated (the system interprets it as
“NOW” in the RU command). For example:

RU name NONO.F1,3.4.,5

COMMENTS
If the program is not dormant. the command is illegal.

If the program is dormant, all tracks assigned to that
program are released.

If any tracks are released as a result of this command, all

programs in disc track allocation suspension are re-
scheduled.

SS

Purpose:
To suspend a non-dormant program.
Format:

SS.name
Where:

name is the name of the program to be suspended.

RTE-II

COMMENTS

The SS command places the program in the operator
suspended list immediately if the program is executing or
scheduled. If the program is dormant the request is illegal.
If the program is suspended for I/O memory or disc, RTE-II
waits until the current suspend is over, then suspends the
program with SS.

The SS command is similar to the Program Suspend EXEC
Call (see Section III).

ST

Purpose:

To request the status (priority, current list, time
values) of a named program, or to determine the
name of the foreground disc resident program, or
background disc resident program currently occu-
pying memory.

Format (status of a program):
ST name

Format (name of current program):

Where:

name is the name of the program whose status is
to be printed.

0 will cause the system to print the name of
the program currently executing. If none,
then O will be printed.

1 will cause the system to print the name of
the current foreground disc resident pro-
gram. If none, then 0 will be printed.

2 will cause the system to print the name of
the current background disc resident pro-
gram. If none, then O will be printed.

COMMENTS

The status of a program is printed on one line in a fixed
format:

2-10

pr s res mpt hr min sec ms T
Where
pr s the priority, a decimal value from | to 32767.

s is the current state of the program.
0— Dormant
1— Scheduled
2~ 1/0O suspend

3~ General wait

4— Unavailable memory suspend

5— Disc allocation suspend

6— Operator suspend or programmed suspend

(EXEC 7 Call)
9— Background segment.
res, mpt, hr, min, sec and ms are all zero (0) unless the
program is scheduled by the clock (see IT, this section, for
the meaning of these items.

The letter “T” appears when the program is currently in the
time list (as the result of an ON command).

A program is placed in the general wait list (status = 3)
whenever:

a. It is waiting for a Resource Number (RN) to
clear or become available. This includes Logical Unit
(LU) locks and attempts to use a locked LU.

b. A schedule request is made with ICODE = 23 or
24 (queue schedule), and the program being called is
busy.

c. A request is made to an I/O device that is
down. This differs from a request to an 1/O device
that is busy.

d. A Class I/O GET Call is made and the Class
Queue is empty.

e. A program is waiting for another program to
complete as a result of an Exec 9 or 23 call.
f. A program is waiting on a Buffer limit (see

BL this section).

Programs will be removed from the general wait list when
the action waited for takes place, or when the program is
aborted.

SW

Purpose:

To examine or change the foreground/background
swapping word (base page 1736B).

Format:

Where:

SW alone displays swapping word.

0 indicates no swapping.
1 indicates foreground swapping only.
2 indicates background swapping only.
3 indicates both foreground and background
swapping
COMMENTS

When SW with no parameters is entered. the swapping word
is displayed as an octal number. The individual bits of the
number are shown in Figure 2-1.

SWAP CORE SWAPPING
DELAY LOCK

Where:
Bits 1-0

00 - No Swapping

01 - Foreground Swapping Only
10 - Background Swapping Only
11 - Both

Bits 3- 2
=1 - Foreground core lock allowed
=1-

Background core lock allowed
TPRTE-2

Operator Requests

Note that the core lock data shown in bits 2 and 3. and the
swap delay time shown in bits 8 through 15 is for
information only. The SW command will not modify these
bits.

TI

Purpose:

To print the current year, day and time, as recorded
in the real-time clock.

Format:

TI

COMMENTS
The computer prints out the year. day and time:

YEAR DAY HR MIN SEC

Where

YEAR is the four-digit year.

DAY is the three-digit day of the year (see
Table 2-3 for day of year conversion).

HR MIN,SEC is the time on a 24-hour clock.

The TI command is similar to the Time Request EXEC Call
(see Section III).

™

Figure 2-1. Swapping Word Display

Purpose:

To set the real-time clock.

Format:
TM, year,day |,hr.min,sec|
Where:
year is a four-digit year.
day is a three-digit day of the year (see

Table 2-3).

hr,min,sec is the current time of a 24-hour clock.

RTEII

Table 2-3. Day of Year

JANUARY FEBRUARY MARCH
12 173 1/4 1/5 1/6 177 21 202 203 2 205 206 27 31 32 33 34 3/5 36 37
2 3 (4 (9 6 7N (32) (33) (34) (35) (36) 37 (38) (60) (61) (62) (63) (64) 65) (66)

1/8 1/9 1/10 11 112 1/13 114 28 209 2010 21 212 3 s 3/8 319 3/10 311 312 313 314
8 || (9 (10) an a2 a3) (14) (39) (40) (1)) @3) (a4) (5) (67) (68) (69) (70) an (72 (3)
118 1/16 117 118 119 1/20 1/21 215 2Ule M7 218 219 2/20 21 315 3/16 37 318 319 3/20 321
as) ae) | an a8) (19) (20) @1) (a6) (a7) (48) (49) (50) 51 (52) (74 75 (76) an (78) a9 (80)
1/22 1/23 124 1/25 1/26 1/27 1/28 222 2023 224 225 226 227 228 322 3123 324 325 326 327 3/28
(22) (23) 4) (25) (26) 27) (28) (53) (54) (55) (56) (57) (58) (59) (81) (82) (83) (84) (85) (86) 87
1/29 1/30 1/31 229 3/29 3/30 331

,(29) (30) 31) (60) LEAPYEARONLY (88) (89) (90)

APRIL MAY JUNE
4/1 4/2 4/3 4/4 4/5 4/6 4/7 S/ S/2 5/3 S/4 SIS S/6 517 6/1 6/2 6/3 6/4 6/ 6/6 617
(91) (92) (93) (94) (95) (96) 97 (121) (122) (123) (124) 125) (126) (127) (152) (153) (154) (155) (156) (157) (158)
48 4/9 4/10 411 4/12 4/13 a/14 s/8 5/9 5/10 S/ 5/12 S/3 s/4 6/8 6/9 6/10 o/11 6/12 o/13 6/14
(98) (99) (100) (101) (102) (103) (104) (128) (129) (130) (131) (132) (133) (134) (159) (160) (161) (162) (163) (164) (165)
415 4/16 417 a/18 4/19 4/20 4/21 s/6 57 sN8 5/19 5/20 5/21 6/15 6/16 6/17 6/18 o/19 6/20 /21
(105) | | (106) (107) (108) (109) (110) (111 (136) (137) (138) (139) (140) (141) (166) (167) (168) (169) (170) (171) 172)
4/22 4/23 4/24 4/25 4/26 4)27 4/28 5123 5124 s/2s 5/26 /27 5128 6/22 6/23 6/24 6/25 6/26 6/27 6/2%
(112) (113) (114) (11s) (116) i (118) (143) (144) (145) (146) (147) (148) (173) (174) (175) (176) a7 (178) (179)
429 4/30 /2 5/30 5/31 529 6/30
a19) || (120) (149) (150) (151) (180) (181)
JuLy AUGUST SEPTEMBER
7 12 13 /4 /5 76 717 8/1 8/2 8/3 8/4 8/5 8/6 8/7 91 9/2 9/3 9/a 9/5 96 9/7
(182) | | (183) (184) (185) (186) 187) | | (188) (213) (214) | | (215) 16) || @17 (218) (219) (244) (245) (246) (247) (248) (249) (250)
/8 719 7/10 7 72 713 /14 /8 8/9 8/10 8/11 8/12 8/13 /4 9/8 9/9 9/10 911 9/12 9/13 9/14
(189) (190) (191) (192) (193) (194) (195) (220) (221) (222 (223) (224) (225) (226) (251) (252) | | (253) (254) (255) (256) (257)
1S 7716 77 718 719 /20 7121 8/15 8/16 8/17 8/18 8/19 8/20 8/21 9/15 9/16 9/17 918 9/19 9/20 9/21
(196) (197) (198) (199) | | (200 (201) (202) (227) (228) || (229) (230) (231) (232) (233) (258) (259) (260) (261 (262) (263) (264)
722 7/23 724 725 7126 7127 7128 8/22 8/23 8/24 8/25 8/26 8/27 8/28 9/22 9/23 9/24 9/25 9/26 9/27 9/28
(203) (204) (205) (206) (207) (208) (209) (234) (235) (236) (237) (238) (239) (240) (265 (266) 267 (268) (269) (270 a7
7/29 7/30 731 8/29 8/30 8/31 9/29 9/30
(210) @1 (212) (241) (242) (243) @) @13
OC FTOBER NOVEMBER DECEMBER

10/1 1012 1013 10/4 10/5 10/6 10/7 1N "2 1/3 11/4 /s 11/6 1 12/1 12/2 12/3 12/4 12/5 12/6 12/7
(274) (275) (276) (277) (278) (279) (280) (305) (306) (307) (308) (309) (310) 311 (335) (336) (337) (338) (339) (340) (341)
10/8 10/9 10/10 10/11 10/12 10/13 10/14 1/8 11/9 1/10 H/n /12 1/13 11/14 12/8 12/9 12/10 12/11 12/12 1213 12/14
(281) (282) (283) (284) (285) (286) (287) (312) (313) (314) (315) (316) (317) (318) (342) (343) (344) (345) (346) 347) || (348)
10/15 10/16 10/17 10/18 10/19 10/20 1021 1/1s 11/16 117 1118 /19 11/20 121 1215 12/16 12117 12/18 12119 12/20 1221
(288) (289) (290) (291) (292) (293) (294) 319) (320) (321) (322) (323) (324) (325) (349) (350) (351) (352) (353) (354) (355)
10/22 10/23 10/24 10/25 10126 10/27 10/28 /22 11723 1124 11725 11/26 2 11/28 12/22 12/23 12124 12/25 12126 12727 12/28
(295) (296) (297) || (298) (299) (300) (301) (326) (327) (328) (329) | | (330 (331) [1332 (356) 357 | | (358) (359) (360) (361) (362)
10/29 10/30 10131 11729 11/30 12/29 12/30 12/31

(302) (303) | | (304) (333) (334) 363) | | (364) (365)

Note: For leap year, add one to each number starting at 3/1 (60).

2-12

COMMENTS

The operator should give TM in response to the message
printed when the RTE-II System is initiated from the disc:

SET TIME

The response sets the time when the return key is pressed.
Enter a time value ahead of real-time. When real-time equals
the entered value, press carriage return. The system is now
synchronized with the time of day.

NOTE

The real-time clock is automatically
started from 8:00 on the approx-
imate system release date each time
the system is loaded into core.

TO0

Purpose:

To print or change the time-out parameter of an 1/O
device.

Format:
TO,eqt [,numb]
Where:
eqt is the EQT entry number of the 1/O device.
numb is the number of 10 ms intervals to be used
as the time-out value. (numb cannot be less

than 500 (5 sec) for the system input
device driven by DVR00/0S).

COMMENTS

The time-out value is calculated using numb time-base
generator interrupts (the time-base generator interrupts
once every 10 ms). For example, numb = 100 sets a
time-out value of one second: 100+ 10 ms = 1 second.
When the system is restarted from the disc, time-out values
set by TO are reset to the values originally set during
RTGEN.

If numb is absent the time-out value of eqt is printed. The
information is printed as:

TO #3 =100

Operator Requests

and means EQT entry number 3 has a time-out value of 100
ten millisecond intervals or one second.

If a device has been initiated, and it does not interrupt
within the interval set by the time-out parameter. the
following events take place:

a. The calling program is rescheduled. and a zero
transmission log is returned to it.

b. The device is set to the down status, and bit 11

in the fourth word of the device’s EQT entry is set to
one. An error message is printed: e.g..

[/0 ERROR TO EQT #x

C. The system issues a CLC to the device’s 1/O
select code(s) through the EQT number located in the
interrupt table.

up

Purpose:

To declare an 1/O device up (i.e., available tfor use by
the RTE-II system).

Format:
UP eqt
Where:
eqt is the EQT entry number of the device to be
re-enabled.
COMMENTS

When the operator of the RTE-Il System has set an /O
device down for some reason. the operator should correct
the situation before declaring the device available again
with the UP command. If the problem is irrecoverable, the
operator can use LU to switch the logical unit number
assignment to another device for future requests (see LU,
this section). Previous requests made to this device are
switched to the new device except in the case of buf-
fered requests. To prevent indefinite 1/O suspension on a
downed device, time-out is used. Refer to 1/O Device Time-
Out in Section V, and the TO command in this section.

to
'
oY)

RTE-I

ERROR MESSAGES

RTE-II rejects operator requests for various reasons. When a
request is in error, RTE-II prints one of the messages below.
The operator should re-enter the request correctly.

Message Meaning

OP CODE ERROR [llegal operator request word.

NO SUCH PROG The name given is not a main
program in the system.

INPUT ERROR A parameter is illegal.

ILLEGAL STATUS Program is not in appropriate state.
Other errors may occur when an /O device times out
because of an inoperable state. When this occurs the
operator can use the LU operator command to change the
referenced device to another that works.

For example, the line printer may be in the OFF-LINE
condition (or the operator has failed to engage the paper
tape reader clutch). In this case the system will print one of
the following error messages and suspend the program.

1/0 ERR NR EQT #eqt
1/0 ERR TO EQT #eqt

2-14

After the operator has corrected the device problem, all
that is required is to type:

UP.eqt

where eqt is the downed device’s equipment table entry
number (same number given in the I/O error message). The
program is automatically rescheduled and the desired /O
operation takes place.

Another example is that the program may be in the process
of printing a long listing on the line printer when the
printer runs out of paper. In this case it is possible to switch
LU’s and continue the listing without interruption as shown
below.

[/0 ERR TO EQT #eqt
LU lu,eqt
UP eqt

The error message says that the device at EQT number eqt
has timed out and has been set down by the system. Note
that some drivers handle time out themselves and do not
cause the specified actions. In this case the error message
states that the device is not ready (NR). The operator
switches logical units (with the LU command) and then
UP’s the original equipment table entry that went down.
The listing will continue on the new device.

SECTION III
EXEC CALLS

INTRODUCTION

This section describes the basic formats of FORTRAN,
FORTRAN 1V. ALGOL, and Assembly Language EXEC
Calls with each call presented in detail. Table 3-1 is a
summary of the EXEC vcalls listed in the order of
appearance in this section. The error messages associated
with the calls are listed at the end of this section. Refer to
Appendix D at the rear of this manual for a summary of the
EXEC calls and required parameters.

An EXEC call is a block of words consisting of a “JSB
EXEC™ instruction and a list of parameters defining the
request. The execution of the “JSB EXEC™ instructions
causes a memory protect violation interrupt and transfers
control into the EXEC module. EXEC then determines the
type of request (from the parameter list) and. if it is legally
specified. initiates processing of the request.

In FORTRAN and FORTRAN IV, EXEC calls are coded as
CALL statements. In ALGOL, EXEC calls must be declared
as CODE procedures and parameters must be declared as
NAME. In Assembly Language, EXEC calls are coded as
JSB EXEC followed by a series of parameter definitions.
For any particular call, the object code generated for the
FORTRAN CALL Statement is
corresponding Assembly Language object code.

equivalent to the

ERROR RETURN POINT

The user can alter the error return point of EXEC calls in
association with error codes LU, SC. 10, DR. and RN as
shown in the following example.

CALL EXEC (ICODE ...)
GO TO error routine
normal return

This special error return is established by setting bit 15 to
“1" on the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
EXEC if there is an error, or if there is no error, the second
line of code following the CALL EXEC.

The special error return will also return control to the
calling program on a disc parity error on the system disc. In
this case the B-Register will be set to 1 instead of the
transmission log and the return will be to the normal return
point. If there is an error the A-Register will be set to the
ASCII error type (LU,SC.LO.DR.RN) und the B-Register
set to the ASCII error numbers as usually printed on the
system teletype.

The following excerpts from an cxample program
demonstrates the use of the special error return.
FTN,L

PROGRAM PROGA

DIMENSION IREG(2)

EOUIVALENCE (REG, IREG, IA) , (IREG(2) ,IB)

-

When an EXEC call is issued, the sign bit must be set in the
request code.
CALL EXFEC (ICODE+1@@@g@B, ...)

GO TO 10 (ERROR RETURN POINT)
(NO ERROR RETURN POINT)

After the following function is executed, "TA™ will contain
the A-Register contents and “IB™ the B-Register contents.
Note the EQUIVALENCE statement at the beginning of
the example.

10 REG = AB(J)

The above function generates the following assembly code.

JSB AB CALL ROUTINE AB.
DEF *+2 RETURN POINTER
DEF J DUMMY ARGUMENT, MAKES AB
EXTERMAL TO PROGRAM,
JSB .DST STORE A AND B REGISTERS
DEF REG IN REG
CONTINUE

Next call the user defined error routine and pass it the error
code.
CALL IER(IA,IB)

END

oy
1

RTE-II

Table 3-1. RTE-II EXEC Calls

Request
Call Code Function Page
READ,WRITE 1,2 Transfers information to and from an external [/O 34
device.
Class I/0 READ,WRITE 17,18,20 Starts a no-wait I/O request which results in a transfer 36
WRITE/READ of information to and from an external 1/O device
or program.

1/0 Control 3 Instigates various I/O control operations. 3-10
Class 1/0O Control 19 Instigates various /O control operations under Class 3.12
numbering scheme.

Class I/0O Get 21 Completes the data transfer initiated by the Class 1/O 3-13

request.
1/0O Status 13 Requests information about a device. 3-15
Disc Track Allocation Assigns a specific number of disc tracks for data storage.
Program 4
Global 15 3-18
Disc Track Release Release assigned disc tracks
Program S
Global 16 3-19/3-20
Program Completion 6 Logically terminates execution of a calling program. 321
Program Suspend 7 Suspends calling program execution. 3.22
Program Segment Load 8 Loads a program segment into background area. 3-23
Program Schedule Schedules a program for execution.
9 Immediate with wait.
10 Immediate without wait.
23 Queue with wait.
24 Queue without wait. 3-24
Time Request 11 Requests current real time. 3-26
Timed Execution 3.27
Initial Offset 12 Schedules a program for execution after an initial offset. 3.29
Absolute Start 12 Schedules a program for execution at a specified time.
. - 3-32
Resource Management - Allows cooperating programs a method of efficiently
utilizing resources.
Program Swapping
Control 22 Allows a program to lock itself into core and notify 3-31
system of core usage.
Logical Unit Lock - Allows a program to exclusively dominate an 1/O device. 3-34

The following is a user written dummy routine for
obtaining the A- and B-Registers.

ASMB, L
NAM AB
ENT AB
A3 1OP
STA TMP
LDA AB,T
STA AB
LDA TMP
JMP AB,I
TEMP NOP
END

ASSEMBLY LANGUAGE FORMAT

The following is a general model of an EXEC call in
Assembly Language:

EXT EXEC Used to link
. program to RTE-II.

JSB EXEC Transfer control to
RTE-IT.

DEF *+n+1 Defines point of
return from RTE-II;

n is number of
parameters and may
not be an indirect
address.

DEF pl Define addresses of
parameters which may
occur anywhere in
program; may be multi-
level indirect.

DEF pn

return point Continue execution of
programn.

pl - - -

: Actual parameter values.

pn - = -

FORTRAN/FORTRAN IV FORMAT

In FORTRAN and FORTRAN [V, the EXEC call consists
of a CALL statement and a series of assignment statements
defining the variable parameters of the call:

Exec Calls

CALL EXEC (ICODE,p2...,pn)

Where

pl through pn are either integer values or integer variables
defined elsewhere in the program.

Example:

CALL EXEC (7)

or Equivalent calling
ICODE = 7 sequences
CALL EXEC (ICODE)

Some EXEC call functions are handled automatically by
the FORTRAN compilers or special subroutines. Refer to
“FORTRAN,” Section 1V, Real-Time Programming, and
the specific EXEC calls.

ALGOL FORMAT

In ALGOL certain conventions must be followed in making
EXEC references (calls). The END statement in an ALGOL
main procedure automatically declares the EXEC as exter-
nal with a single integer parameter calling sequence.
Therefore. without any further declaration of types of
EXEC references through CODE procedures, any attempt
to declare the EXEC with other than one integer parameter
results in an error.

To avoid errors of this nature. CODE procedures with
names other than EXEC must be declared with the proper
number and type of parameters. A CODE procedure must
be declared for each EXEC reference with a ditferent
number of type of parameters.

For example. the following is a main procedure reterencing
the EXEC with one parameter (EXECA). and then with
four parameters (EXECB). The two respective CODE
procedures are listed after the main procedure.

For example,

(In the main program):

PROCEDURE EXECA (A); INTEGER A; CODE;
PROCEDURE EXECB (A,B,C,D); INTEGER A,B,
C,D; CODE;

EXECA (I);

EXECB (J,K,L,M);

ENDS$

RTE-1I

(External)

HPAL,P,B,L, "EXECA"
PROCEDURE EXECA (A); INTEGER A;

(External)

HPAL,P,B,L, "EXECB""

PROCEDURE EXECB (A,B,C,D); INTEGER A,B,

BEGIN PROCEDURE EXEC (A); INTEGER A; C,D;
CODE; EXEC (A); BEGIN PROCEDURE EXEC (A,B,C,D);
END; INTEGER A,B,C,D;CODE;EXEC (A,B,C,D);
END;
READ/WRITE
Purpose:

the program.
Assembly Language:
EXT EXEC

JSB EXEC

DEF RTN
DEF ICODE
DEF ICNWD
DEF IBUFR
DEF IBUFL
DEF IPRM1
DEF IPRM2
RTN return point
ICODE DEC 1 (or2)
ICNWD oCT conwd
IBUFR BSS n
IBUFL DEC n(or -2n)
[PRM1 DEC f
IPRM2 DEC q
FORTRAN

DIMENSION IBUFR(#n)
IBUFL =n

ICODE =2

ICNWD = conwd

To transfer information to or from an I/O device. For a READ request, or, if the I/O device is not buf-
fered, the program is placed in the 1/O suspend list until the operation is complete. RTE-II then reschedules

REG=EXEC (ICODE,ICNWD IBUFR,IBUFL,IPRM1,IPRM2)

Transfer control to RTE-II

Return address

Request code

Control information

Buffer location

Buffer length

Optional parameter or track number if disc transfer
Optional parameter or sector number if disc transfer
Continue execution (A =status, B = transmission log. If
buffered WRITE, A and B are meaningless.)

1=READ, 2=WRITE

conwd is described in Comments

Buffer of n words

Same n; words (+) or characters (-)

Optional parameter or decimal track number if disc transfer
Optional parameter or decimal sector number if disc transfer

Set up buffer
Buffer length
Request code
Set Control Word

COMMENTS

Parameters IPRM1 and IPRM?2 are optional, except in the
case of disc transfers. If the data transfer involves a disc,
IPRM1 is the disc track number and IPRM?2 is the disc
sector number. In calls to other 1/O devices these para-

34

meters may have other uses. For example, driver DVR77
(HP 2323A Subsystem) uses IPRM1 for the scanner
channel number and IPRM2 for the instrument program
word. In some cases these parameters may be used to pass
an additional control buffer to the driver (see Z-bit below).

_—

CONTROL WORD

Figure 3-1 shows the format of the control word (conwd)

required in the READ/WRITE calling sequence for DVRO00O

driven devices. Several fields defining the nature of the data
transfer are shown.

Fsl14'13'12111'10'9 ‘8l7'6 5‘4'3l2'1 'OJ

Logical J

OOOZOLXAKV-MJ Unit#

- Function Code

TPRTE-3

Figure 3-1. READ/WRITE (conwd) Format

Note that if the logical unit bits are specified as zero, the
call takes place but no data is transferred.

Where

M

0 for ASCII.

=
I

1 tor binary.

<
I

1, and M = 1, causes the length of punched tape input
to be determined by the word count in the first
non-zero character read from the tape.

V=1 for the line printer will cause it to print column
one.

V=0, and M = [, the length of the punched tape input is
determined by the buffer length specified in the
EXEC call.

K= 1 causes keyboard input to be printed as received. If
K = 0 input from the keyboard 1s not printed.

A= 1 designates punching (without printing) ASCII char-
acters on the teleprinter (M = 0). (If A =0, M
determines mode of transfer.) This bit is effective on
devices that recognize this control function.

X= 1 for moving head disc WRITE with cyclic checking,
or when paper tape devices are used, X" in combina-
tion with “M” and “V” will indicate an honesty
mode that is defined as follows:

On input, if “X”, “M”, and “V” are set, absolute
binary tape format is expected and handled. If “X”
and “M” are set, and “V” is not, leader is not skipped
and the specified number of words are read. On
output, the record terminator (usually four feed
frames) is not punched.

9 Modified to contain request code before entry into driver.

Fxec Calls

On input, if X is set and “M” is not. ASCII tape
format is expected. Leader is not skipped. bit 8 1s
stripped. but otherwise, all characters are passed Lo
the user’s buffer. The only exception is line-feed.
which terminates the record. On outpul. carriage
return and line-feed are suppressed: any trailing left
arrow is not (i.e.. left arrow is transmitted but
carriage return/line feed is not).

Z= | designates that IPRMI is the address of a control
buffer and IPRM2 is the length ot that bufter (only
when the call is to a non-disc device). The length
must be in words.

In an Assembly Language calling sequence. the buffer
length (IBUFL) can be a positive number for words (+) or a
negative number for characters ().

A- AND B- REGISTER RETURNS

End-of-operation information is transmitted to the program
in the A- and B-Registers. The A-Register contains word 5
(status word) of the device EQT entry with bits 14 and 15
indicating the end-of-operation status as defined by the
driver completion code. This will be ecither 00-up. or
01-down. The B-Register contains a positive number which
is the number of words or characters (depending upon
which the program specified) actually transmitted.

NOTE

When a REAL array is transmitted.
the buffer length must still be the
total number of words required
(i.e.. 2 times REAL array length, or
3 times double precision array
length).

If the request is for output to a buffered device. the
registers are meaningless.
1/0 AND SWAPPING

Disc resident programs doing 1/O are swappable under the
following conditions:

a. The buffer is not in the disc resident area (i.c..
it is in common or the resident library).

b. The device is buffered and the request is for
output, and enough contiguous memory was allo-
cated for buffering the record to be transterred.

RTE-II

c. The buffer is contained in the Temporary Data
Block (TDB) of a re-entrant routine, and enough
contiguous memory was allocated to hold the TDB.

Only the first buffer of a two buffer request (see Z-bit
above) is checked to determine program swappability. It is
the user’s responsibility to put the second buffer in an area

that implies the swappability if conditions “a” or “c” are
true. The system takes care of case “‘b”.

RE-ENTRANT /O

A subroutine called REIO is furnished to allow the user to
do re-entrant I/O. REIO is a utility type library routine and
is more fully documented in Part 7 of Section IV, RTE-II
Relocatable Libraries.

CLASS I/0 — READ/WRITE

Purpose:

assembly Language:

ICODE DEC numb

ICNWD OCT conwd
IBUFR BSS n
IBUFL DEC n (or - 2n)

IPRM1 DEC f
IPRM?2 DEC ¢
ICLAS OoCT class

FORTRAN:

DIMENSION IBUFR (n)
IBUFL = n

ICODE = 20

ICNWD = 0

ICLAS = 0

To transfer information to or from an external non-disc I/O device or another program. Depending on parameter
options, the calling program will not be suspended while the call completes.

Transfer control to RTE-II

Contine execution (A = zero or status, B meaningless)

EXT EXEC
JSB EXEC
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control information
DEF IBUFR Buffer location
DEF IBUFL Buffer length
DEF IPRMI Optional parameter
DEF IPRM2 Optional parameter
DEF ICLAS Class word

RTN return point

17=READ, 18=WRITE, 20=WRITE/READ
conwd is described in Figure 3-1

Buffer of n words

Same n; words (+) or characters (-)

Optional parameter (place holder)
Optional parameter (place holder)

class is described in Comments

REG = EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRM1,IPRM2,ICLAS)

3-6

COMMENTS

Class 1/O consists of a unique scheme of programming
within the RTE-Il system to effectively handle several
programs addressing either other programs or I/0 devices.
The following description of class 1/O relies upon a Glossary
of Terms directly related to Class 1/O (see Table 3-2).

The maximum number of classes is established during
system generation after the last system modules are loaded.
The generator requests how many class numbers are to be
established and the operator responds with a number
between 0 and 255. Once the numbers are established the
system keeps track of them and assigns them (if available)
to the calling program when a class 1/0O call is made and the
Class Number parameter is set to zero. Once the number
has been allocated, the user can keep it as long as desired
and use it to make multiple class 1/O Calls. When the user is
finished with the number it can be returned to the system
for use by some other class user. One example of using Class
[/O is Class I/O Mailbox communication. The example
program in Figure 3-3 and described in the following
sequence of events, shows how this is accomplished.

Table 3-2. Glossary of Terms for
Class Input/Output

Term Description

An account which is owned
by a program which may be
used by a group of programs.

1. Class

2. Class Number The account number referred

to in number one.

3. Class Users Programs that use the class

number.

4. Class Request An access to a logical unit

number with a class number.

5. Class Members Logical unit numbers that are
currently being accessed in
behalf of a class. Completion
of access removes the associa-
tion between class number
and logical unit number (com-
pletion of access is defined as
when the driver completes
the request).

6. Class Queue The set of uncompleted class

(Pending) requests.
7. Class Queue The set of all completed class
(Completed) requests. The structure is first

in, first out.

Exec Calls

a. User program PROGA issues a Class 1/O call
with the Class Number parameter set to zero and the
logical unit number portion of the control word
parameter set to zero. This causes the system to
allocate a Class Number (if available) and the request
to complete immediately. (Logical unit zero specities
a system “bit bucket” which implies immediate
completion).

b. When the WRITE/READ call completes,
PROGA’s data will have been placed in a system
buffer and this fact recorded in the Completed Class
Queue for this class.

¢. PROGA then schedules PROGB (the program
receiving the data) and passes PROGB, as a parameter,
the Class Number it obtained.

d. When PROGB executes it picks up the Class
Number by calling RMPAR. Then using this Class
Number, it issues a Class I/0O Get Call to the class.
PROGA’s data is then passed from the system bufter
to PROGB’s buffer.

The system handles a Class 1/O call in the tollowing
manner.

a. When the class user issues a Class 1/O call (and
the call is received), the system allocates a bufter
from available memory and puts the call in the header
(first 8 words) of this buffer. The call is placed in the
pending class queue and the system returns control to
the class user.

b. If this is the only call pending on the EQT. the
driver is called immediately, otherwise the system
returns control to the class user and calls the driver
according to program priority.

c. If buffer space is not available, the class user is
memory suspended unless bit 15 (“no wait”) is set. If
the “no wait” bit is set, control is returned to the
class user with the A-Register containing a 2
indicating no memory available.

d. If the class number is not available or the 1/0
device is down, the class user is placed in the general
wait list (status = 3) until the condition changes.
e. If the call is successful, the A-Register will
contain zero on return to the program.

The buffer area furnished by the system is filled with the
caller’s data if the request is either a WRITE, or a
WRITE/READ call. The buffer is then queued (pending) on
the specified logical unit number. Since the system forms a
direct relationship between logical unit numbers and EQT
entries, the buffer can also be thought of as being queued
on the EQT entry.

RTE-I1

After the driver receives the Class I/O call (in the form of a
standard 1/0O call) and completes, the system will:

a. Release the buffer portion of the request if a
WRITE. The header is retained for the Get call.

b. Queue the header portion of the buffer in the
Completed Class Queue.

c. If a Get call is pending on the Class Number,
reschedule the calling program. (This means that if
the user issues a Class Get call or examines the
completed Class Queue before the driver completes,
the user has effectively beat the system to the
completed Class Queue.) Note that the program that
issued the Class I/O call and the program that issued
the Class Get call do not have to be the same
program.

d. If there is no Get call outstanding, the system
continues and the driver is free for other calls.

When the user issues the Get call, the completed Class
Queue is checked and one of the following paths is taken.

a. If the driver has completed, the header of the
buffer is returned (plus the data). The user (calling
program) has the option of leaving the 1/O request in
the completed Class Queue so as not to lose the data.
In this case a subsequent Get call will obtain the same
data. Or the user can dequeue the request and release
the Class number.

b. If the driver has not yet completed (Get call
beat system to the completed Class Queue), the
calling program is suspended in the general wait list
(status = 3) and a marker so stating is entered in the
completed Class Queue header. If desired, the
program can set the ‘“no wait” bit to avoid
suspension. In any case, when the driver completes,
any program waiting in the general wait list for this
class is automatically rescheduled. Note that only one
program can be waiting for any given class at any
instant. If a second program attempts a GET call
before the first one has been satisfied it will be
aborted (I/0O error 1010).

IPRM1 and [PRM2 are required as place holdersin this
request. They may also be used to pass information through
to the Class 1/0 Get Call to aid in processing the request.

For a combination class WRITE/READ call, the driver
should expect control data in the buffer IBUFR. The
system will treat the request as a class WRITE in that the
buffer must be moved prior to the driver call, and as a class
READ in that the buffer must be saved after the driver
completion. Note that the driver will receive a standard
READ request (ICODE = 1) on this request.

3-8

Refer to Figure 3-1 for the format of the control word
(conwd) required in the class I/O READ/WRITE calling
sequence.

Figure 3-2 shows the format of the class word (ICLAS)
required in the calling sequence. To obtain a class number
from the system the class portion (bits 12-0) of the word is
set to zero. This causes the system to allocate a Class
Number (if one is available) to the calling program. The
number is returned in the ICLAS parameter when the call
completes and the user must specify this parameter
(unaltered) when using it for later calls. Bit 15 is the
“no-wait” bit. When set the calling program does not
memory suspend if memory (or a class number) is not
available. A-Register value when the program returns is as
follows:

“A” Value Reason

0 OK-request done

-1 No class number
-2 No memory now or buffer limit

exceeded.
Il5|14 13 12|11 10 9‘8 7 6[5 4 3[2 1 0|
N'o I Class Number I
Wait

TPRTE-4

Figure 3-2. Class Number (ICLAS) Format

When the user’s program issues a Class 1/O call (and
the call is received) the system allocates a buffer from
available memory and puts the call in this buffer. The
call is queued and the system returns control to the
user’s program. If memory is not available, three possible
conditions exist: (1) The program is requesting more
memory than will ever be available. In this case the
program is aborted with a 1004 error. (2) The pro-
gram is requesting a reasonable amount of memory but
the system must wait until memory is returned before it
can satisfy the calling program. In this case the program is
suspended unless the “no wait” bit is set in which case a
return is made with the A-Register set to —2. (3) If the
buffer limit is exceeded the program will be suspended until
this condition clears. If the “no wait” bit is set the program
is not suspended and the A-Register is set to —2.

FTN,L

e EeRal

o000

FIN,L

oo

OoOoo0n

PROGRAM PROGA
ODIMENSTION I8FR(32),INAME(3)

DO CLASS WRITE/READ TO LU=,

ICLAS=Q
CALL EXEC(20,v,18FR,=64d,IDUMY, JDUMY,ICLAS)

SLHENDULE RECEIVING PRUGRAM AND PASS 1T CLASSY,

INAME (1) 33541228

INAME (2)=47507R

INAME (3) 2412078

CALL EXEC (19, INAME, ICLAS)
L]

END

PR(LRAM PROGH
DIMENSION I3FR(32),IPRAM(S)

SAVE CLASS #, IPRAM(1)
Call, KMPAR(IPRAM)

ACCEPT DATA FKOUM PROGA USING CLASS GET CaALL
AND RELFASE THE CLASS NUMBER,

CALL EXEC(21,IPR&M(1),IBFK,32)

*
[}

Figure 3-3. Example of Class I/O Mailbox Communication

Exec Calls

RTE-II

I/0 CONTROL

Purpose:

Assembly Language:

EXT

JSB

DEF

DEF

DEF

DEF
RTN return
ICODE DEC
ICNWD OCT
IPRAM DEC

FORTRAN:

EXEC

EXEC
RTN
ICODE

ICNWD

IPRAM
point

3
conwd
n

Transfer control to RTE-I1
Return address
Request code

Control information

Optional parameter
Continue execution (A = status, B meaningless. If call is
buffered, A is meaningless)

Request code = 3
See Control Word
Required for some control functions; see Control Word

Use the FORTRAN AUXILIARY [/O statements or an EXEC call sequence.

Request code

ICODE = 3
ICNWD = conwd
I[IPRAM = x

Optional; see Control Word

REG = EXEC (ICODE,ICNWD,IPRAM)

To carry out various 1/O control operations, such as backspace, write end-of-file, rewind, etc. If the 1/O device is
not buffered, the program is placed in the 1/O suspend list until the control operation is complete.

CONTROL WORD

Figure 3-4 shows the format of the control word (conwd)
required in the I/O control calling sequence.

T

T T T T T
l15|14 13 12[11 10 9 |8 7

T

0O 0 0 0 O Function Code

T T T
6|5 4 3 LZ 1 OJ
Logical]
Unit#
TPRTE-5

Figure 3-4 1/O Control (conwd) Format

Function Code (Octal) Action
00 Unused
01 Write end-of-file (magnetic tape)
02 Backspace one record (magnetic
tape)

3-10

Functional Code (Octal)

03

04

05

06

07

10

11

12

Action

Forward space one record (mag-
netic tape)

Rewind (magnetic tape)

Rewind standby (magnetic tape)
Dynamic status (magnetic tape)
Set end-of-paper tape

Generate paper tape leader

List output line spacing

Write 3-inch gap (magnetic tape)

#) Modified to contain request code before entry into driver

Function (‘oder(Qct'cllﬁ) A:tu{n
13 Forward space file (magnetic
tape)
14 Backward space file (magnetic
tape)
15 Conditional form feed (see Line

Printer Driver manual).

The following functions are defined for DVRO0O. For more
information see the driver manual 29029-60001.

20 Enable terminal — allows terminal to schedule its
program when any key is struck.

21 Disable terminal — inhibits scheduling of terminal’s
program.

Exec Calls

22 Set time-out - the optional parameter is set as the
new time-out interval.

23 Ignore all further action requests until:

a) The device queue is empty or

b) An input request is encountered in the queue.
or

¢) A restore control request is received.

24 Restore output processing (this request is usually not
needed).

Function Code (octal) 11 (list output line spacing), requires
the optional parameter IPRAM which designates the num-
ber of lines to be spaced on the specified logical unit. A
negative parameter specifies a page eject on a line printer or
the number of lines to be spaced on the teleprinter. A
positive parameter always spaces that number of lines.

RTE-II

CLASS I/0 — CONTROL

Purpose:

To carry out various I/O control operations, such as backspace, write end-of-file, rewind, etc. The calling program

does not wait.

Assembly Language:

RTN

ICODE
ICNWD
IPRAM
ICLAS

FORTRAN:

Use the FORTRAN auxiliary 1/O statements or an EXEC call sequence.

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
OCT
DEC
OCT

ICODE = 19
ICNWD = conwd
IPRAM =x
ICLAS =y

REG = EXEC (ICODE,ICNWD IPRAM,ICLAS)

EXEC

EXEC
RTN
ICODE
ICNWD
IPRAM
ICLAS
point

19
conwd

class

Transfer control to RTE-II

Return address

Request code

Control information

Optional parameter

Class word

Continue execution (A = class number, B meaningless)

Request code = 19

See Control Word

Required for some control functions: see Control Word
class is described in Comments

Request code

See Control Word
See Control Word
Class Word

COMMENTS

Note that this call, with the exception of the ICLAS
Refer to Figure 3-4 for the format of the control word parameter is the same as the standard I/O control call. Also
(conwd) required in the Class I/O control calling sequence. refer to the Class /O Get Call for additional information.

3-12

EFxec Calls

CLASS I/0 — GET

Purpose:

request.

Assembly Language:

To complete the data transfer between the system and user program that was previously initiated by a Class

EXT EXEC

JSB EXEC Transfer control to RTE-II

DEF RTN Return address

DEF ICODE Request code

DEF ICLAS Class word

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IRTNI1 Optional parameter status word

DEF IRTN2 Optional parameter status word

DEF IRTN3 Optional parameter class word
RTN return address Continue execution (A = status, B = Transmission log)
ICODE DEC 21 21 = class GET call
ICLAS NOP class is described in Comments
IBUFR BSS n Buffer of n words
IBUFL DEC n (or —2n) Same n; words (+) or characters (—)
IRTNI1 NOP Location for IPRM1 from READ/WRITE call
IRTN2 NOP Location for IPRM2 from READ/WRITE call
IRTN3 NOP Location for IPRM3 from READ/WRITE call

FORTRAN:

DIMENSION IBUFR (n)

IBUFL = n

ICODE = 21

ICLAS = x0

REG = EXEC (ICODE,ICLAS IBUFR,IBUFL,IRTN1,IRTN2IRTN3)

COMMENTS Figure 3-5 shows the format of the class word (ICLAS)

When the calling program issues a Class Get call, the
program is telling the system that it is ready to accept
returned data from a Class READ call or remove a
completed Class WRITE or Control call from the completed
Class list. If the driver has not yet completed (Get call beat
system to the completed Class Queue), the calling program
is suspended in the general wait list (status = 3) and a
marker so stating is entered in the Class Queue header.
When the driver completes, the program is automatically
rescheduled. If desired, the program can set the “no wait”
bit to avoid suspension.

required in Class Get Call. Bits 12-0 represent the Class
Number and security code that the Get call is looking tor.
This Class Number is obtained (in unaltered form) from the
original Class [/O READ, WRITE, CONTROL or
WRITE/READ call. Bit 15 is the “no wait™ bit. When set,
the calling program does not suspend it the Class Request
has not yet completed. Bit 14 is the “‘save™ bit. When set,
the buffer is not released; therefore, a subsequent Get call
will return the same data. Bit 13 is the “de-allocate™ bit.
When set, the Class Number is not returned to the system.
If bit 13 is zero and no requests are left in the Pending Class
Queue, and no Class Requests for this class are waiting tor

]
v
oy

RTE-II

[15[14 13 12[11 710 9 8 7 6|5 4
L System Use
Class Number
Do not de-allocate class number
Save Class Buffer
No Wait

TPRTE-6

Figure 3-5. Class Word (ICLAS) Format

driver processing, the class is returned to the system. It is
possible for the call to return the Class Number and data, or
no data depending on if there is one class call left. Bits 14
and 13 work in conjunction with each other. If bit 14 is set
then the buffer will not be released. Therefore you cannot
de-allocate the Class Number. That is, the Class Number
cannot be released because there is still an outstanding
request against it.

Only when the Get call gets the last class request on a class,
or on an empty class queue (completed and pending) can
the user release the Class Number by clearing bit 13 in the
ICLAS word.

Three parameters in the call are return locations: that is,
values from the system are returned to the calling program
in these locations. Optional parameters IPRM1 and IPRM2
from the Class I/O — WRITE/READ calls are returned in
IRTN1 and IRTN2. These words are protected from
modification by the driver. The original request code
received by the driver is returned in IRTN3. For example:

Original Request Code Value Returned in IRTN3

17/20(READ,WRITE/READ) 1
18 (WRITE) 2
19 (CONTROL) 3

3-14

3|2 1 0| BUFFER CONSIDERATIONS

Several buffer considerations exist in the Class I/O Get call.
They are as follows:

a. The number of words returned to the user’s
buffer is the minimum of the requested number and
the number in the Completed Class queue element
being returned.

b. If the original request was made with the “Z”
bit set in the control word, then IPRMI returned by
this call will be meaningless.

c. The “Z” buffer will be returned if there is room
for it (see “a” above) only if the original request was
a READ or WRITE/READ (i.e., for WRITE requests
no data is returned in the buffer area).

A- AND B-REGISTER RETURNS

The A- and B-Registers are set as follows after a Class 1/0
Get call.

A-Register B-Register

A15 =0 then A = status B = transmission log
(positive words or characters
depending on original request)

A15 =1 then A = —(numb+1)B = meaningless

On return with data, bit 15 is set to zero and the rest of the
A-Register contains the status word (EQTS). If a return is
made without data (the “no wait bit” was set in the
class word) then bit 15 is set to one and the A-Register
contains the number of requests numb made to the class bit
not yet serviced by the driver (i.e., pending class requests).

Exec Calls

1/0 STATUS
Purpose:
To request information (status condition and device type) about the device assigned to a logical umt number.
Assembly Language:
EXT EXEC
JSB EXEC Transfer control to RTE-I1
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control information
DEF IEQTS Status word 1
DEF IEQT4 Status word 2~ optional
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 13 Request code = 13
ICNWD DEC n Logical unit number
[EQTS NOP Word 5 of EQT entry returned here
IEQT4 NOP Word 4 of EQT entry returned here. optional
FORTRAN:
N ICODE = 13 Request code
ICNWD = nn nn is the logical unit number
CALL EXEC (ICODE,ICNWD.IEQT5.1EQT4)
COMMENTS

returned in IEQTS and IEQT4 and are defined as shown in
When this call is made the calling program is not suspended. Table 3-3. The STATUS portion of EQT word 5 is further
Equipment Table (EQT) words 5 and 4 (optional) are broken down and shown in Table 3-4.

RTE-lI

Table 3-3. 1/O Status Word (IEQT5/IEQT4) Format

EQUIP. TYPE CODE =

STATUS =

WORD CONTENTS
T T T T T T T Y T T
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 D B P S T Unit # Channel #
5 AV EQUIP. TYPE CODE STATUS (see Table 34)
IEQT4 D = 1 if DMA required.
B = 1 if automatic output buffering used.
P = 1 if driver is to process power fail.
S = 1 if driver is to process time-out.
T = 1 if device timed out (system sets to zero before each I/O request).
Unit = Last sub-channel addressed.
Channel = [/O select code for device (lower number if a multi-board interface).
IEQTS AV = availability indicator:

0 = available for use.

1 = disabled (down).

2=

3=

busy (currently in operation).

waiting for an available DMA channel.

type of device. When this number is linked with “DVR.” it identifies the
device’s software driver routine:

00 to 075 = paper tape devices (or system control devices)

00
01
02
0S
10
10
12

15

32
40

= teleprinter (or system keyboard control device)

= photo-reader

paper tape punch

interactive keyboard device

to 17 = unit record devices

|

= plotter
= line printer_
= mark sense card reader
to 37 = magnetic tape/mass storage devices
= fixed head disc or drum
= 7900 moving head disc
= 7905 moving head disc

to 77 = instruments

the actual physical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5 =1
means end-of-tape on input, or tape supply low on output.

3-16

Table 3-4. EQT Word 5, STATUS Table.

Exec Calls

DevNatus 7 6 5 4 3 2 1 0
Teleprinter(s) End of
Photoreader(s) X 1/0 STL TEN
Punch(es) Tape
DVROO
7210 Plotter - PD
DVRI10
2892 Card Reader HE I0L/CE
DVRI11
2767 Line Printer < ek NE
DVRI12 LCF LCF
2607 Line Printer TOF DM ON RY X X Auto X
page
eject
DVRI12
7261 Card Reader EOF HE/SF PF DE RNR
2761 Mark Sense HE/SF PF DE RNR
Reader
DVRI15
3030 Mag Tape EOF ST EOT TE I/OR NW PE DB/OL
7970
DVR22
DVR23
2766 Fixed Head DR(1) SAC AF WE PE DB
2773 Disc/Drum
DVR30 NR(0)
7900 Moving Head Disc NR EOT AE FC SC DE EE
DVR31
7905 Moving Head Disc PS FS HF RY SC NR EE
DVR32
Where
PE = Pariy Brron AW = No Write (write enable HE = Hardware Fault

HE = Hopper Empty
SE = Stacker Full
RNR = Reader Not Ready
PF = Pick Fuil

DE = Data Error

OL = Ott Line

ON =On Line

CE = Compare krror
BT = Broken Tape
DB = Device Busy
EOF = End of file
ST = Start of Tape
TE = Timing krror

1/OR = 11O Reject

ving missing o1 tape unit is rewinding)
SC = Seek Check

FC = Flagged Cylinder

AL = Address brror

EOT = End of Track

NR = Not Ready

RY = Reuady (0= power on)
LCEF = Last Character Flag

NE = No Eiro

DR = Disc Ready

SAC = Sector Address Coinci-
dence (troubleshooting only)
PS = Protect Switch Set

I'S = Drive Format Switch is Set

AF = Abort Flag [NR (Bt)
has occurred durmg simee List
data transter]

WE = Currently addressed ek
is write enabled

FE = Erorexists

TEN = Terminal Enabled

TOF =Top of Form

DM = Demand (1 = 1dle)

X = Driver Internal Use

STL = Stall required In
program

PD =Pen Down

RTE-11

DISC TRACK ALLOCATION

Purpose:

Assembly Language:

To request that RTE-II assign a specific number of contiguous disc tracks for data storage. The tracks are either
assigned to the calling program or assigned globally.

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE Request code
DEF ITRAK
DEF ISTRK
DEF IDISC
DEF ISECT
RTN return point
ICODE DEC 4or 15
ITRAK DEC n
ISTRK NOP
available.
IDISC NOP
ISECT NOP
FORTRAN:

Example (with no suspension):

ICODE = 4

ITRAK = 100000B + n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

Example (with suspension until tracks available):

ICODE =4
ITRAK =4

CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

Transfer control to RTE-II
Return address

Number of contiguous tracks required

Start track number

Disc logical unit number

Number of 64 word sectors/track

Continue execution (A and B are meaningless)

4 = allocate track to program

15 = allocate track globally

n = number of contiguous tracks within the same disc unit
requested. If bit 15 of ITRAK = 1 the program is not suspended if
tracks are not available; if bit 15 = 0, the program is suspended until
the tracks are available.

RTE-II stores starting track number here, or —1 if the tracks are not

RTE-II stores logical unit number here.
RTE-II stores number of 64 word sectors/track here.

COMMENTS

switching; the user program (when using this call) is

RTE-II supplies only whole tracks within one disc. When
writing or reading from the tracks (see READ/WRITE
EXEC Call), RTE-I does not provide automatic track

3-18

completely responsible for file and track management.
RTE-II will prevent other programs from writing on
program assigned tracks, but not from reading out of them.

Exec Calls

The program retains the tracks until it or the operator READ, WRITE, or release. The user 1s completely rve-

releases them, or the program is aborted.

Globally assigned tracks are available to any program for

sponsible for their management. RTE-II will not prevent
other programs from writing on globally assigned tracks or
releasing them.

DISC TRACK RELEASE-PROGRAN TRACKS

Purpose:

Call).

RTN

- JCODE
ITRAK

[STRK
IDISC

FORTRAN:

Assembly Language:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC

DEC
DEC

To release some contiguous disc tracks which were previously assigned to a program (see Disc Allocation EXEC

EXEC

EXEC
RTN
ICODE
ITRAK
ISTRK
IDISC
point

Release of n contiguous tracks starting at m on LU p:

ICODE =5
ITRAK=n
ISTRK =m
IDISC =p

CALL EXEC (ICODE.ITRAK ISTRK IDISC)

Release all tracks allocated to the program.

ICODE = 5
ITRAK = -1

CALL EXEC (ICODE.ITRAK)

Transfer control to RTE-II

Return address

Request code

Number of contiguous tracks. or —1

Starting track number

Disc logical unit

Continue execution (A and B are meaningless)

Release program’s tracks

If 1 = —1. release all tracks assigned to program: ISTRK and IDISC are
unnecessary. Otherwise, n is the number of contiguous tracks to be
released starting at ISTRK.

Starting track number

Disc logical unit

COMMENTS

for tracks is rescheduled.

When tracks are released, any program suspended waiting

RTEI

DISC TRACK RELEASE-GLOBAL TRACKS

Purpose:

RTN

ICODE
ITRAK
ISTRK
IDISC

FORTRAN:

Assembly Language:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
DEC
DEC

To release some contiguous disc tracks which were previously assigned globally (see Disc Allocation EXEC Call).

EXEC

EXEC
RTN
ICODE
ITRAK
ISTRK
IDISC
point

Release of n contiguous global tracks starting at m on LU p:

ICODE = 16
ITRAK =n

ISTRK =m

IDISC =p

REG = EXEC (ICODE ITRAK,ISTRK,IDISC)

Transfer control to RTE-II

Return address

Request code

Number of contiguous tracks

Starting track number

Disc logical unit

Continue execution (A = track release status, B meaningless)

Release global tracks

The number of contiguous tracks to be released starting at ISTRK
Starting track number

Disc logical unit

COMMENTS

If any one of the tracks to be released is either not assigned A=0 The tracks have been released.

globally or is currently in use (i.e., some program is queued

to read or write on the track at the time of the release A=—1 No tracks have been released - at least one of

request), none of the tracks are released.

them was in use.

The requesting program is rescheduled after the request = -2 No tracks have been released — one or more of
with the A-Register set as follows:

3-20

them was not assigned globally.

Exec Calls

PROGRAM COMPLETION

Purpose:
To notify RTE-III that the calling program wishes to instigate a program termination.
Assembly Language:
EXT EXEC
JSB EXEC Transter control to RTE-111
DEF RTN Return address
DEF ICODE Request code
DEF INAME Name of program to be terminated - optional
DEF INUMB Type of completion - optionel
DEF IPRM 1
: Up to five optional parameters — optional
DEF IPRMS
RTN return point Continue execution (A = as it was. B = as
it was or parameter address)
1CODE DEC 6 Request code = 6
([DEC 0 Terminate this program
INAME or
~ ASC 3.name name = Name ol subordinate program to be terminated.
INUMB DEC n n =0, Normal completion
n = —1, Serial reusability completion.When rescheduled.
program is not reloaded into memory if it is
still resident.
n=1. Make program dormant but save current suspension
point.
n=2. Terminates and removes from the time list the named
program. If the program is 1/O suspended. the system
waits until the 1/O completes betore setting the program
dormant: however. this call does not wait. The program’s
disc tracks are not released.
n=23. Terminates immediately the named program, removes it
from the time list. and releases all disc tracks. If
suspended for 1/0, the device and channelare cleared by
a CLC. An abort message is printed on the system TTY.
IPRM| Up to five optional parameters to be passed to caller when next
IPRMS5 scheduled (INAME = 0).
FORTRAN: DIMENSION INAME(3) See INAME above
ICODE = 6
INUMB =0 See INUMB above
INAME(1) = humb B First two characters
INAME(2) = numb B Second two
INAME(3) = numb B Last character in upper 8 bits
REG = EXEC (ICODE,INAME,INUMB,IPRMI. . . IPRMS)
CALL RMPAR (IPRM1 . .. IPRMS) to pick up the parameters

RTE-II

COMMENTS

This call, with its optional parameters, makes it possible for
the user to selectively terminate programs he and only he
has scheduled. For example, if PROGI (“Father”)
schedules PROG?2 (“*Son™) to run, and then later PROG2
schedules PROG3 to run, PROG2 becomes the “Father™ to
PROG3 (2 “Son™). In this case. only the following calls for
Program Completion are legal.

° PROG 1 terminates itself or PROG 2
° PROG 2 terminates itself or PROG 3
(] PROG 3 terminates itself only.

Option =1 (INUMB = —1) should be used only for programs
that have serial reusability. These are disc resident programs
that can initialize their own buffers or storage locations. For
instance. all library subroutines are serially resuable. When
INUMB = -1 the program is reloaded from disc only if it
is overlaid by another program. The program must be able
to maintain the integrity of its data in memory.

Option 1 (INUMB = 1) is almost the same as a Program
Suspend EXEC call. In this case the program restarts from
its point of suspension with all resources untouched. Unless
the program suspended itself in this way, the program may

only be restarted by the program that scheduled it
(“Father”), or the ON or RUN operator commands. If the
program suspended itself (INAME = 0), it may be restarted
by any normal run stimulus (i.e., Schedule, ON, RUN,
TIME and Interrupt).

Parameters [PRM1 . . . IPRMS are optional parameters that
are passed to the caller when it is next scheduled. The
parameters are passed only when INAME = 0 and may be
recovered by a call to RMPAR when the program next
executes. In this way a program in the time list may run
with the same parameters each time.

Note that the FORTRAN and ALGOL compilers generate a
Program Completion EXEC call automatically when they
compile an END statement.

PROGRANM SUSPEND

Purpose:

Assembly Language:

EXT EXEC
JSB EXEC
DEF RTN

DEF ICODE

RTN return point

ICODE DEC 7

FORTRAN and ALGOL:

generates the Suspend EXEC Call

To suspend the calling program from execution until restarted by the GO operator request.

Transfer control to RTE-111

Return address

Request code

Continue execution (A = as it was, B = as it was or
parameter address)

Request code =7

The FORTRAN and ALGOL library subroutine PAUSE, which is automatically called by a PAUSE statement,

COMMENTS

Note that it is illegal to suspend a Batch program with this
call (error SCOO results). When a program is suspended
(either by this call or the SS command), both the A- and
B-Registers are saved and the program is placed in suspen-
sion list 6. When the program is restarted with the GO

3-22

request and no parameters, both registers are restored as
they were at the point of suspension and the program
continues. When the program is restarted with a GO and
parameters, the B-Register contains the address of a
five-word parameter array set by the GO request. In a
FORTRAN program, a call to the library subroutine
RMPAR can load these parameters using the address in the

B-Register as a pointer as long as the RMPAR call occurs
immediately after the EXEC call. It must be noted,
however, that when RMPAR is used, parameters must
accompany the GO request. Otherwise RMPAR uses the
restored B-Register as an address to parameters which do
not exist. If you suspect there might not by any para-
meters, the following example shows how to allow for it.

Must alwavs specify
at least 5

DIMENSION I (5)

REG = 0.0

REG = EXEC (7)

IF (IB) 20,20,10
10 CALL RMPAR (I)

Suspend

Return Point; get
parameters

Return point; no
parameters

20 CONTINUE

Exec Calls

When programming in ALGOL the parameters can be
retrieved through RMPAR in the following manner. The
variables are declared as integers and then RMPAR is called
(immediately after the EXEC call).

INTEGER A,B,C,D,E;

CALL EXEC (7)

CALL RMPAR (A)

Obtaining the parameters in this manner depends on the
compiler placing the contents of AB.C.D.E in sequential
locations.

The Program Suspend EXEC Call is similar to the SS
operator request (see Section II).

PROGRAM SEGMENT LOAD

Purpose:

on segmented programs.)

Assembly Language:

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE
DEF INAME
DEF IPRM1
DEF IPRMS
RTN return point
ICODE DEC 8
INAME ASC 3 name

FORTRAN:

To load a background segment of the calling program from the disc into the background overlay area and transter
execution control to the segment’s entry point. (See Section 1V, Part 8 Real-Time Programming. for information

Transter control to RTE-II
Return address

Request code

Segment name

Up to five optional parameters

Controlis transterred to the segment. (A = segment
ID segment address, B = as it was or parametel
address).

Request code = &

name is the segment name

DIMENSION NAME (3)
ICODE =8

INAME (1) = numb B
INAME (2) = humb B Second two

INAME (3) = numb B Last character in upper 8 bits
REG = EXEC (ICODE,INAME IPRMI ... IPRMS)

First two characters

‘s
l

to

(%)

RTE-1I

COMMENTS

See Section IV, Overlay Segments and Segmented Pro-
grams, for a description of segmented background pro-
grams.

On segment entry the registers are set as follows:

A= Segment ID segment address.

B= Asit is unless parameters are passed in which case it is
the parameter list address (see RMPAR).

In the FORTRAN calling sequence, the name of the
segment must be converted from ASCII to octal and stored
in the INAME array, two characters per word. Refer to the
table in Appendix G for the ASCII to octal conversion.

PROGRAM SCHEDULE

Purpose:

Assembly Language:

EXT EXEC
JSB EXEC
DEF RTN
DEF ICODE
DEF INAME
DEF IPRM1
DEF IPRMS
RTN return point
ICODE DEC numb
INAME ASC 3,name
IPRM1
IPRMS

FORTRAN:

ICODE = numb

INAME (1) = numb B
INAME (2) = nhumb B
INAME (3) = numb B

To schedule a program for execution. Up to five parameters may be passed to the program.

DIMENSION INAME (3)

REG = EXEC (ICODE,INAME,IJPRM1 . . . IPRM5)

Transfer control to RTE-II
Return address

Request code

Name of program to schedule

Up to five optional parameters

Continue execution (A = program status, B = as it
was or parameter address)

9 = immediate schedule, with wait
10 = immediate schedule, no wait
23 = queue schedule, with wait
24 = queue schedule, no wait
name is the name of the program to schedule

Up to five optional parameters

See ICODE above

First two characters

Second two

Last character in upper 8 bits

3-24

COMMENTS

The ICODE parameter determines if the calling program
will wait or not, and if the calling program’s schedule
request will be queued until the scheduled program
becomes dormant.

When a program is scheduled, a pointer will be put in its ID
segment that will:

a. Point back to the program that scheduled it.
b. Be set to O if the program was scheduled by the
operator, from an interrupt, or from the time list.

The pointer will be cleared when the program terminates or
is aborted. Note that this pointer establishes the program
doing the scheduling as the “Father”, and the program
being scheduled as the “Son”.

As soon as a program that had been scheduled with wait
completes, the “Father” may recover optional parameter
one that indicates if the “Son” was aborted by the system
or terminated by the OF operator command. The para-
meter is set by the system to 100000B and is recovered
through RMPAR or a load B Indirect (LDA B,I). However,
if the program does not pass back parameters and ter-
minates normally, B will be set as it was on the call.

ICODE =9 OR 10

If the program to be scheduled is dormant, it is scheduled
and a zero is returned to the calling program in the
A-Register. If the program to be scheduled is not dormant,
it is not scheduled by this call, and its status (which is some
non-zero value) is returned to the calling program in the
A-Register. If the program to be scheduled is a “Son” that
was suspended with the EXEC 6 call, some high bits may be
set in the A-Register. Only the least 4-bits should be
checked for zero in this case.

A schedule with wait (ICODE = 9) call causes RTE-II to put
the “Father” in a waiting status (the wait bit is set in the
status word in the “Father’s” ID segment). If required, the
“Father” will be swapped by the system to make way for a
program that may run. The “Son” runs at its own priority,
which may be greater than, less than, or equal to that of the
calling program. Only when the “Son” terminates does
RTE-Il resume execution of the “Father” at the point
immediately following the schedule call.

A disc-resident program may schedule another disc-resident
program with waiting, because disc-resident programs are
swapped according to their priority when they conflict over
use of their core area.

Exec Calls

All schedule combinations are legal: a disc-resident can call
a core-resident, a core-resident can call a disc-resident, and a
core-resident can call a core-resident.

A Schedule EXEC Call with no wait (ICODE = 10) causes
the specified program to be scheduled for execution
according to its priority.

ICODE =23 or 24

These requests are the same as 9 and 10 except that the
system will place the “Father” in a queue it the “Son” is
not dormant. When the “Son” becomes available the
“Father’s” request will be honored. Note that status will
not be available in the A-Register and the “Father™ will be
impeded until the request is honored.

OPTIONAL PARAMETERS

When the “Son” begins executing, the B-Register contains
the address of a five-word list of parameters from the
“Father” (the parameters equal zero if none were spec-
ified). A call to the library subroutine RMPAR, the first
statement of a called FORTRAN program, transters these
parameters to a specified five-word array within the called
program. For example:

PROGRAM XQF
DIMENSION IPRAM (5)
CALL RMPAR (IPRAM)

The Program Schedule EXEC Call is similar to the RU
operator request (see Section II). The Execution Time
EXEC Call also schedules programs for execution, but
without passing parameters.

For the schedule with wait requests (ICODE = 9 or 23), the
“Son” may pass back five words to the “Father™ by calling
the library routine PRTN. For example:

PROGRAM SCHEE
DIMENSION IBACK(5)
CALL PRTN (IBACK)
CALL EXEC(6)

The EXEC (6) call (which is a termination call) should
immediately follow the PRTN call. The *“‘Father’”™ may
recover these parameters by calling RMPAR immediately
after the “SON”’ call.

3-25

RTE-II

TIME REQUEST

Purpose:

Assembly Language:

To request the current time recorded in the real-time clock.

EXT EXEC
JSB EXEC Transfer control to RTE-II
DEF RTN Return address
DEF ICODE Request code
DEF ITIME Time value array
DEF IYEAR Optional year parameter
RTN return point Continue execution (A=meaningless, B as it was)
ICODE DEC 11 Request code = 11
ITIME BSS S Time value array
IYEAR BSS 1 Year (optional)
FORTRAN
DIMENSION ITIME(5),IYEAR(1)
ICODE =11
CALL EXEC (ICODE,ITIME,IYEAR)
COMMENTS The Time Request EXEC Call is similar to the TI operator

request (see Section II).

When RTE returns, the time value array contains the time
on a 24-hour clock, with the year in an optional parameter.
The year is a full 4-digit year (e.g., 1974).

Assembler

ITIME

ITIME+1
ITIME+2
ITIME+3
ITIME+4

3-26

or
or
or
or
or

FORTRAN/ALGOL Another method of obtaining the current time is through a

double word load from the system entry point $TIME.

ITIME(1) = Tens of milliseconds $TIME contains the double word integer of the current

ITIME(2) = Seconds time of day. If this double word is passed to the library

ITIME(3) = Minutes subroutine TMVAL, then TMVAL returns milliseconds,

ITIME(4) = Hours seconds, minutes, and hours. Refer to the Library, Part 7,
ITIME(5) = Day of the year Section IV.

Exec Calls

TIMED EXECUTION (Initial Offset)

Purpose:

To schedule a program for execution at specified time intervals, starting after an initial offset time. RTE-II places
the specified program in the time list and returns to the calling program.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE-I1
DEF RTN Return address
DEF ICODE Request code
DEF IPROG Program to put in time list
DEF IRESL Resolution code
DEF MTPLE Execution multiple
DEF [OFST Initial time offset (negative value)
RTN return point Continue execution (A = meaningless, B as it was)
ICODE DEC 12 Request code = 12
DEC 0 Put calling program in time list
IPROG or
ASC 3,name name is the program to put in the time list
IRESL DEC «x Resolution code (1 = 10’s/ms; 2=secs: 3=mins: 4=hrs)
MTPLE DEC Execution multiple
IOFST DEC -z z (units set by x) gives the initial offset (negative value)
FORTRAN:
DIMENSION IPROG(3) See IPROG above
[PROG(1) = numb B First two characters
[PROG(2) = numb B Second two
IPROG(3) = numb B Last character in upper 8 bits
ICODE = 12
IRESL = x (1=10’s/ms; 2=secs; 3=mins; 4=hrs)
MTPLE =y
IOFST =-z z (units set by x) gives the initial offset (negative value)
CALL EXEC (ICODE, IPROG, IRESL, MTPLE, —-IOFST)
COMMENTS Note that the IOFST parameter is a negative value and
must not equal zero.
The Execution Time EXEC Call is similar to the IT
Operator request (see Section II). However, the EXEC Call RUN ONCE
places the program in the time list whereas IT does not. After a time offset, the program will execute once and then
This call can schedule a program to execute in one of three be made dormant. This is accomplished as shown in the
ways as described in the following paragraphs. following example:

(9}
v

(89

~

RTE-II

IRESL = 3 (specifies minutes)
MTPLE = 0 (specifies run once)

IOFST = —45 (specifies run after 45 minutes have
elapsed from current time)

RUN REPEATEDLY
After a time offset, the program will execute, go dormant,

and then re-execute at specified intervals. This is accom-
plished as shown in the following example.

3-28

IRESL = 3 (specifies minutes)
MTPLE = 60 (specifies run every 60 minutes)

IOFST = 30 (specifies run after 30 minutes have
elapsed from current time)

GO DORMANT; THEN RUN

If IPROG=0, the current/calling program is made dormant,
but the point of suspension is retained. The program is then
placed in the time list for rescheduling from the point of
suspension after a delay. When the program is rescheduled,
it can be either to run once or repeatedly.

Exec Calls

TIMED EXECUTION (Absolute Start Time)

Purpose:

To schedule a program for execution at specified time intervals, starting at a particular absolute time. RTE-II
places the specified program in the time list and returns to the calling program.

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE-II

DEF RTN Return address

DEF ICODE Request code

DEF IPROG Program to put in time list

DEF IRESL Resolution code

DEF MTPLE Execution multiple

DEF IHRS Hours

DEF MINS Minutes

DEF ISECS Seconds

DEF MSECS Tens of milliseconds
RTN return point Continue execution (A = meaningless, B as it was)
ICODE DEC 12 Request code = 12

DEC 0 Putting calling program in time list
IPROG or

ASC 3,name name is the program to out in the time list
IRESL DEC X Resolution code (1=10"s/ms; 2=secs; 3=mins; 4+=hrs)
MTPLE DEC y Execution multiple
IHRS DEC a Absolute starting time
MINS DEC b In hours, minutes, seconds
ISECS DEC ¢ and tens of milliseconds
MSEC DEC d on a 24-hour clock

FORTRAN:

IPROG=0 or DIMENSION IPROG(3)

IPROG(1) =numb B First two characters

IPROG(2) = numb B Second two

[PROG(3) = numb B Last character in upper 8 bits
ICODE =12

IRESL = x (1=10’s/ms; 2=secs: 3=mins; 4=hrs)
MTPLE =y

IHRS =h

MINS =m

ISECS =5

MSECS = ms

CALL EXEC (ICODE,IPROG,IRESL MTPLE JHRS MINS.ISECS,MSECS)

RTE-II

COMMENTS

The Execution Time EXEC call is similar to the IT operator
request (see Section II). However, the EXEC call places the
program in the time list whereas IT does not. This call
differs from the Initial Offset version in that a future
starting time is specified instead of an offset. For example,
if the current time is 1400 hours and you wish the program
to run at 1545 hours the parameters would be as follows:

[HRS = 15
MINS = 45
ISECS = 0
MSECS= 0

This call can schedule a program to execute in one of two
ways as described in the following paragraphs.

RUN ONCE

At the absolute start-time, the program will execute once

3-30

and then be made dormant. This is accomplished as shown
in the following example.

IRESL = 3 (specifies minutes)

MTPLE = 0 (specifies run once)

IHRS = h

MINS = m o .
ISECS _ s (specifies absolute start-time)
MSECS = ms

RUN REPEATEDLY

At the absolute start-time, the program will execute, go
dormant, and then re-execute at specified intervals. This is
accomplished as shown in the following example:

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)
[HRS = h

MINS = . .
ISECS _ S (specifies absolute start-time)
MSECS = ms

Exec Calls

PROGRAM SWAPPING CONTROL

Purpose:
To allow a program to lock itself into core (foreground or background) if the core locks were set up during
generation.
Assembly Language:
EXT EXEC
JSB EXEC Transfer control to RTE-II
DEF RTN Return address
DEF ICODE Request code
DEF IOPTN Control information
RTN return point Continue execution (A = meaningless, B as it was)
ICODE DEC 22 Request code = 22
IOPTN DEC numb 0 = program may be swapped
| = program may not be swapped
2 = swap just the program area
3 = swap all of the disc resident area
FORTRAN:
ICODE =22
IOPTN = numb
CALL EXEC (ICODE,IOPTN)
COMMENTS

This call allows the programmer to lock his program into
core so it cannot be swapped out for a program of higher
priority. Also the programmer can specify if just the
program is to be swapped or if the entire fore-
ground/background area is to be swapped with the pro-
gram.

NOTE

The program cannot be locked into
core if the core lock bits (base
page word 1736B, bits 2 and 3)
are not set (SCO7 error results).
The bits are set during generation
and can be examined with the SW
operator command.

The program’s core lock bit (IOPTN = 0 or 1) is set or
cleared by this request (refer to ID segment word 15, bit 6

in Table A-2). This bit is also cleared (making the program
swappable) if the program aborts or terminates except on
the Program Completion EXEC Call where the current
suspension point is saved.

The program’s core usage bit (IOPTN = 2 or 3) is also set or
cleared by this request (refer to ID segment word 15, bit 5
in Table A-2). The bit is initialized when the program is
scheduled as follows:

— bit is cleared
- bit is set

Foreground program
Background programs

The system sets this bit whenever it loads a segment tor the
program. If the bit is not set, the segment area is not
swapped, that is, the segment occupies undeclared core.

When IOPTN = 3, the calling program tells the system that
it is going to use undeclared core in its disc resident area.
When the program is swapped, the whole disc resident area

o
v
(V5]

RTE-II

is swapped. This allows the program to save working area When IOPTN = 2, the calling program tells the system that

that it had set up.

it is not going to use undeclared core in its disc resident
area. Only the program itself is swapped.

RESOURCE MANAGEMENT (Resource Numbering)

Purpose:

Assembly Language:

To allow cooperating programs a method of

efficiently utilizing resources through a resource numbering scheme.

EXT RNRQ
JSB RNRQ Transfer control to subroutine
DEF RTN Return address
DEF ICODE Control information
DEF IRN Buffer location
DEF ISTAT Optional parameter
RTN return point Continue execution (A = meaningless, B as it was)
[CODE OCT numb numb is described in Comments.
IRN BSS 1 Resource number. Returned on allocate; required otherwise.
ISTAT BSS 1 Status of resources.
FORTRAN:
ICODE = numb
CALL RNRQ (ICODE,IRN,ISTAT)
COMMENTS If more than one bit is set in the control word, the

following order of execution is used:

Figure 3-6 shows the format of the control word (numb)

required in the calling sequence. 1. Local allocate (skip 2 if done).
2. Global allocate.
15 14 5 I 4 I 3 2 l 1 I 0 3. Deallocate (exit lf d()ne).
Wait Alocate Set 4. Local set (skip 5 if done).
Option Option Option 5. Global set.
6. Clear.
NO NO C G L C G L
W A L L (0} L L (6] - .
A B £ o c £ o c f[‘he.status return word (ISTAT) has the following mean-
| o Ale | a|Aal] Bl A ngs:
T R R A L R A L
T L L ISTAT Value Meaning
l_ Reserved For 0 Normal deallocate return
System Use TPRTE] RN is clear (unlocked).
2 RN is locked locally to caller.
3 RN is locked globbally.
Figure 3-6. Resource Number Control Word Format 4 No RN available now.

ISTAT Value Meaning
5 _
6 RN is locked locally to other program.
7 RN was locked globally when request was

made.

Note that status 4, 6, and 7 are returned only if the request
failed and the “no wait” bit is set.

NO ABORT BIT

The no abort bit is used to alter the error return point of
this call as shown in the following example.

CALL RNRQ (ICODE ...)
GO TO error routine
normal return

This special error return is established by setting bit 14 to
“1” in the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
RNRQ if there is an error, or if there is no error, the second
line of code following the CALL RNRQ.

ALLOCATE OPTIONS

LOCAL — Allocate an RN to the calling program. The
number is returned in the IRN parameter. The number is
automatically released on termination of the calling pro-
gram, and only the calling program can de-allocate the
number.

GLOBAL — Allocate an RN globally. The number is
released only by a request from any program.

CLEAR — De-allocate the specified number.
The system has a certain quantity of resource numbers

(RN’s) that are specified during generation. If a number is
not available, the program is suspended until one is free,

Exec Calls

unless the “no wait” bit is set (see the ICODE parameter).
If the “no wait” bit is set, the IRN location is set to zero. If
the RN allocation is successful, the value returned in IRN is
set by the system (it has no meaning to the user) and must
be specified (through IRN) when a lock is requested or the
RN is cleared or de-allocated.

SET OPTIONS

LOCAL — Lock the specified RN to the calling program.
The RN is specified in the IRN parameter. The local lock is
automatically released on termination of the calling pro-
gram, and only the calling program can clear the number.

GLOBAL — Lock the specified RN globally. The RN is
specified in the IRN parameter and the calling program can
globally lock this number more than once. The number is
released by a request from any program.

CLEAR — Release the specified number.

If the RN is already locked, the calling program is
suspended (unless the “no wait” bit is set) until the RN is
cleared. If more than one program is attempting to lock an
RN, the program with the highest priority is given
precedence.

If a program makes this call with the “clear” bit set., in
addition to either the “global” or “local set” bits, the
program will wait (in the general wait list) until the RN is
cleared by another program and then continue with the RN
clear.

An entry point is provided for drivers or privileged
subroutines that wish to clear a global (and only a global)
RN.

LDA RN
JSB SCGRN
return point

o]
T

(9]

o)

RTE-lI

LOGICAL UNIT LOCK

Purpose:

Assembly Language:

To allow a program to exclusively dominate (lock) input/output devices (logical unit, or LU numbers).

EXT LURQ
JSB LURQ Transfer control to subroutine
DEF RTN Return address
DEF IOPTN Control parameter
DEF LUARY LU’s to be locked
DEF NOLU Number of LU’s to be locked
RTN return point Continue execution (A = lock status, B as it was)
IOPTN OCT numb numb is an octal number:
0x0000 — unlock specified LU’s
1x0000 — unlock all LU’s program currently has locked
0x0001 — lock with wait specified LU’s
1x0001 — lock without wait specified LU’s
x (bit 14) is the no abort bit
LUARY DEC XX LUARY is an array of LU’s to be
DEC yy locked/unlocked. Only the least
DEC 2z 6 bits of each word are used. Ignored when
. IOPTN = 1x0000
NOLU DEC aa Number of LU’s to be locked/unlocked. Ignored when
IOPTN = 1x0000
FORTRAN:
DIMENSION LUARY (x)
IOPTN = numb
NOLU =aa
CALL LURQ (IOPTN,LUARY NOLU)
COMMENTS CALL LURQ (IOPTN ...)

This request allows up to 31 programs to exclusively
dominate (lock) an input/output device (e.g., program
output to a line-printer). Any other program attempting to
use or lock alocked LU will be suspended until the original
program unlocks the LU or terminates.

NO ABORT BIT
The no abort bit is used to alter the error return point of

this call as shown in the following example.

334

GO TO error routine
normal return

This special error return is established by setting bit 14 to
“1” in the request code word (ICODE). This causes the
system to execute the first line of code following the CALL
LURQ if there is an error, or if there is no error, the second
line of code following the CALL LURQ.

This subroutine calls the Program Management subroutine
(RNRQ) for a resource number (RN) allocation. That is,

the system locks an RN number locally to the calling
program. Therefore, before the logical unit lock subroutine
can be used, a resource number must have been defined
during generation. Note that the first 31 Resource Numbers
can be used for LU locks.

If the no wait option is coded the A-Register will contain
the following information on return.

= 0 — LU lock successful.
A# 0 — LU lock unsuccessful.
A= -1 — No RN available this time.
A= 1 — One or more of the LU’s is already locked.

Note that the calling program may not have LU’s locked at
the time of this call unless the no wait option is used. Also,
all the LU’s that the calling program locks are locked to the
same RN.

Exec Calls

ERROR MESSAGES

When RTE-I discovers an error in an EXEC call, it
terminates the program, releases any disc tracks assigned to
the program, prints an error message on the operator
console, and proceeds to execute the next program in the
scheduled list. Table 3-5 is a summary of the possible errors
associated with all the EXEC calls. Refer to Appendix E for
other system errors.

When RTE-Il aborts a program, it prints the following
message:

name ABORTED

When a memory protect violation occurs that is not an
EXEC call, a resident library call, or SLIBX or SLIBR call,
the following message is printed: (address is the location
that caused the violation.)

MP name address
When an EXEC call contains an illegal request code, the
following message is printed: (address is the location that
made the illegal call.)

RQ name address
An RQOO error means that the address of a returned

parameter is below the memory protect fence.

The following errors have the same format as “MP”" and
“RQ” errors.

Error Meaning
TI Batch program exceeds allowed time.
RE Re-entrant subroutine attempted recursion.

The general error format, for other errors, is:

type name address

Where
type is a 4-character error code.
name is the program that made the call.
address is the location of the call (equal to the

exit point if the error is detected after the
program suspends).

[99]
<
W

RTE-II

ERROR CODES FOR DISC ALLOCATION CALLS

DROI = Insufficient number of parameters.

DR0O2= Number of tracks < zero, illegal logical unit;
or number of tracks to release is zero or
negative.

DR03 = Attempt to release track assigned to another

program.

ERROR CODES FOR SCHEDULE CALLS

SC00 = Batch program attempted to suspend (EXEC
(7).

SCO01 = Missing parameter.

SC02 = Illegal parameter.

SCO03 = Program cannot be scheduled.

SCO3 INT =occurs when an external interrupt attempts to
schedule a program that is already scheduled.
RTE-I ignores the interrupt and returns to the
point of interruption.

SC04 = name is not a subordinate (or “‘son”) of the
program issuing the completion call.

SCOS = Program given is not defined.

SC06 = No resolution code in Execution Time EXEC
Call.

SCO7 = Prohibited core lock attempted.

ERROR CODES FOR I/0 CALLS

1000 = Illegal class number.

1001 = Not enough parameters.
1002 = Illegal logical unit.

1003 = Not used.

1004 = Illegal user buffer.

1005 = Illegal disc track or sector.

3-36

1006 = Reference to a protected track; or using
LG Tracks before assigning Mem (see LG,
Section II).

1007 = Driver has rejected call.

1008 = Disc transfer longer than track boundary.

1009 = Overflow of load-and-go area.

1010 = Class Get and one call already outstanding on

class.

ERROR CODES FOR PROGRAM MANAGEMENT

RN0O = No option bits set in call.

RNOI = Not used.

RNO2 = Resource number not defined.

RNO3 = Unauthorized attempt to clear a LOCAL Re-

source Number.

ERROR CODES FOR LOGICAL UNIT LOCK CALLS

LUO1 = Program has one or more logical units locked
and is trying to LOCK another with WAIT.

LUO02= Illegal logical unit reference (greater than
maximum number).

LUO03 = Not enough parameters furnished in the call.

(This page is intentionally blank.)

Exec Calls

9
7

(%)

RTE-

Table 3-5. Summary of EXEC Call Errors

ERROR

MEANING

READ

WRITE

CONTROL

PROGRAM
TRACK
ALLOCATE

4

PROGRAM
TRACK
RELEASE

5

PROGRAM
COMPLETION

PROGRAM
SUSPEND

PROGRAM
SEGMENT
LOAD

8

PROGRAM
SCHEDULE
W/WAIT

9

PROGRAM
SCHEDULE
WO/WAIT

10

TIME
REQUEST

11

DRO1

Not Enough Parameters

1. Less than 4 parameters.
2. Less than 1 parameter.
3. Number = -1.

4. Less than 3 (not -1).

DRO2

[llegal Track Number or
Logical Unit Number.

1. Track number = 0.

2. Logical Unit not 2 or 3.

3. Dealocate 0 or less Tracks.

DRO3

Attempt to release Track
assigned to another program.

1000

Illegal Class Number
1. Outside Table.

2. Not allocated.

3. Bad Security Code.

1001

Not Enough Parameters.

. Zero parameters.

. Less than 3 parameters.
. Less than 5/disc.

. Less than 2 parameters.
. Class word missing.

[N

o —

[y

1002

Illegal Logical Unit

1. 0 or maximum.

2. Class request on disc LU.

3. Less than 5 parameters and
X-bit set.

1004

Illegal User Buffer.

1. Extends beyond FG/BG area.

2. Not enough system memory to
buffer the request.

1005

Iilegal Disc Track or Sector
1. Track number maximum.
2. Sector number

0 or maximum

1006

Attempted to WRITE to LU2/3
and track not assigned to user
or globally, or not to next
load-and-go sector. Illegal
WRITE to a FMP track.

1007

Driver has rejected request
and request is not buffered.

1008

Disc transfer implies track
switch (LU2/3)

1009

Overflow of load-and-go area.

3-38

Exec Calls

PROGRAM 1/0 GLOBAL GLOBAL CLASS | CLASS CLASS CLASS CLASS PROGRAM PROGRAM PROGRAM RNRQ | LURQ
SCHEDULE STATUS TRACK TRACK 1/0 1/0 1/0 1/0 1/0 SWAPPING SCHED QUEUE SCHED QUEUL
TIME ALLOCATE RELEASE READ | WRITE | CONTROL | WRITE/READ GET CONTROL W/WAIT WO/WAIT

12 13 15 16 17 18 19 20 21 22 23 24
1
3
4
1
2
3
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 1
2 2 2
4
N 5 5 N
1 1 1 1 1
2 2 2 2
3 3 3 3
1
2 2 2 2

RTE-lI

Table 3-5. Summary of EXEC Call Errors

ERROR

MEANING

READ

WRITE

CONTROL

PROGRAM
TRACK
ALLOCATE

PROGRAM
TRACK
RELEASE

PROGRAM
COMPLETION

PROGRAM
SUSPEND

PROGRAM
SEGMENT
LOAD

PROGRAM
SCHEDULE
W/WAIT

PROGRAM
SCHEDULE
WO/WAIT

TIME
REQUEST

1010

Class GET and one call already
outstanding on class.

LUO1

Program has one or more logical
units locked and is trying to
LOCK another with WAIT.

LU02

Illegal logical unit refer-
ence (greater than maximum
number).

LU03

Not enough parameters furnished
in the call. Illegal logical

unit reference (less than one).
Logical unit not locked to

caller.

RQOC

Return buffer below memory
protect fence.

RQ

EXEC call contains an illegal

request code.

1. Return address indicates
less than one or more
than seven parameters.

2. Parameter address indirect
through A- or B- Register;

3. Request code not defined
or not loaded.

RNOO

No option bits set.

RNO1

Not used

RNO2

Resource number not in
Table (undefined).

RNO3

Unauthorized attempt to
clear a LOCAL Resource Number.

SC00

Batch program cannot suspend.

SCo1

Missing Parameter.

1. Segment name missing.

2. Not 4 or 7 parameters
in Time Call.

$C02

Qllegal Parameter
1. Option word is missing
ornot 0, 1, 2, or 3.

SC03

Program Cannot Be Scheduled.
1. Not a segment
2. Isasegment

[}

o

SCo4

Attempted to control a
program that is not a *“‘son.”

NER

Program Given is Not Defined,
1. No segment

2. No program

3. “Son" not found.

¥}

(5}

SC06

Resolution not 1, 2, 3, or 4.

SC07

Prohibited core lock attempted.

3-40

RTE-1I Exec Call

PROGRAM 10 GLOBAL GLOBAL CLASS | CLASS CLASS CLASS CLASS PROGRAM PROGRAM PROGRAM RNRQ | LURQ
SCHEDULE STATUS TRACK TRACK 1/0 1/0 1/0 1/0 1/0 SWAPPING SCHED QUEUY SCHED QUEUE
TIME ALLOCATY RELEASE READ | WRITE | CONTROL [WRITE/READ GET CONTROL W/WAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 23
X
X
X
AN
X X X X X X
X X X X X X X X X X X X
X
X
X
5
1
2)
2 2 2
X

3-41/3-4

ro

SECTION IV
REAL-TIME PROGRAM PREPARATION

INTRODUCTION

This section is divided into seven parts that describe the
operating procedures and formatting conventions of back-
ground programming aids of the Real-Time Software. The
memory requirements stated apply to the program plus a
reasonable area for symbol tables where appropriate.

PART 1. RTE EDITOR

The RTE-II Editor creates, lists, and edits symbolic source
language tapes and disc files.

PART 2. RTE INTERACTIVE EDITOR

The RTE-II Interactive Editor is a foreground/background
swappable program that creates, lists, and edits symbolic
source language tapes and disc files. The editor requires the
RTE File Management Package option.

PART 3. RTE FORTRAN

The FORTRAN compilers accept source programs from
either an input device or a source file created by the RTE
Editors and translates the source programs into relocatable
object programs. The relocatable code is punched on paper
tape or stored in the LG tracks of the disc or both.

PART 4. RTE ALGOL

The ALGOL compiler accepts source programs from either
an input device or a source file created by the RTE
Editor, and translates the source programs into relocatable
object programs. The relocatable code is punched on paper
tape or stored in the LG tracks of the disc or both.

PART 5. RTE ASSEMBLER

The Assembler accepts source programs from either an
input device or a source file created by the RTE Editors,

and translates the source programs into either absolute or
relocatable object programs. Absolute code is punched in
binary, suitable for execution outside of RTE-Il. The
relocatable code is punched on paper tape or stored in the
LG tracks of the disc or both.

PART 6. RTE-1Il LOADER

The loader accepts relocatable object programs from either
an input device, or a file created by the Assembler,
ALGOL, or FORTRAN compilers on LG tracks. The
program can optionally be loaded into the background
and run; or the program can be loaded into the background
with the DEBUG library routine linked to it; or the
program can be loaded into the disc-resident user program
area.

LG TRACK AREA

The loader also provides the facility for compilation or
assembly, loading, and executing a user program without
intervening object paper tapes. To accomplish this, the
compiler or assembler stores the relocatable object code,
which it generates from source statements, on the disc
in a predefined group of tracks called LG Tracks (see
LG operator request). Then separate operator requests
initiate loading (RU,LOADR) and execution (RU,program).
All of the operating procedures have optional parameters
that specify source input, relocatable output, and list
device. These parameters take the form of logical unit
numbers as follows:

Logical Unit Number Function
0 Bit Bucket
1 System Teleprinter
2 System Disc
3 Auxiliary Disc

4-1

RTE-1I

4 Standard Punch Device
5 Standard Input Device
6 Standard List Device
7)
8
Can be assigned to any devices by
9 the user, for the defined range of
N logical units.
10
63,,

Note that LUS8 is recommended as the magnetic tape
device.

PART 7. RTE RELOCATABLE LIBRARY
This part describes the libraries used by RTE-II, re-entrant
subroutine structure, privileged subroutine structure, and

utility subroutine structure.

PART 8. SEGMENTED PROGRAMS

This part describes the procedures for writing segmented
programs in Assembler, ALGOL, and FORTRAN.

PART 9. MULTIPLE TERMINAL OPERATION

This part describes the operation and configuration of the
multi-terminal moniter.

Real-Time Program Preparation

PART 1
RTE-II Editor

INTRODUCTION

The RTE Editor, a general-purpose background program,
creates, lists, and edits symbolic source language tapes and
disc files.

EDITOR INPUT/OUTPUT FILES

In general, the Editor requires two inputs: an edit file
containing edit commands, and a symbolic file containing
source programs, on tape or disc. Both the edit file and the
symbolic file may consist of more than one physical tape.
The RTE-II Editor processes all properly related inputs and
produces a single updated file on a paper tape, or a disc file,
or a list of the source file. Both the symbolic file and the
updated file consist of a series of records; each record
contains 1 to 72 ASCII characters. In a disc file, records are
packed within a track, and tracks are chained together.

EDITING PROCESS

The editor is turned on by an RU, EDIT operator request
and reads the edit file (which it stores in core) from a
specified input device other than 2, checking the file for
possible format errors. The editor terminates if available
memory is exceeded. After storing the edit file, the editor
reads the symbolic file from a specified input device (paper
tape or disc), counting each record as entered and per-
forming the required editing before adding the record to
the updated file.

The editor can also list program tapes or files and create
disc files; but in these two cases, it does no editing and does
not expect an edit file.

OPERATING PROCEDURES

The choice of input device for the edit file depends on the
complexity of the editing. For only one or two short edit
commands, using a teleprinter keyboard is faster; but for a
longer edit file, it is faster to punch the file on tape and
read it through the photo-reader. If the photo-reader is
used, the edit file tape must be in place before scheduling
the editor with an RU operator request.

RU, EDIT

Purpose:
To schedule the editor for operation.
Format:
RU, EDIT, input 1, input 2, output, edit
Where:

input 1 Corrections. The logical unit number of the
edit file input device. The standard input
(logical unit 5) is used if none is specitied
(must not = 2). If the edit file is entered
through the system teleprinter, the following
message will be printed:

/EDIT:ENTER EDIT FILE:

input 2 Source. The logical unit number of the sym-
bolic file input device. The standard input
(logical unit S) is used if none is specitied. If
input 2 = 2 (disc), the symbolic file must be
a disc file defined by an LS operator request
preceding the RU, EDIT request or else the
edit aborts (see LS, Section II). The old file
is released upon completion of editing.

output The logical unit number of an output device
for the updated file or the listing (see edit).
For a disc file, outpur = 2. It defaulted.
logical unit 6 is used.
edit The type of Editor operation:
If edit =0 (or no value), a normal edit.
If edit =1 the symbolic file is only listed (output
may not be 2).
If edit =2 a disc file is generated trom the symbolic
file (output is ignored). If input 2 =2, the
old file is not released.

Example:

RU,EDIT<is equivalent to RU,EDIT, 5,5,4,0 >

RTE-II

MESSAGES TO OPERATOR

At the end of the edit file, the Editor prints the following
message and suspends itself.

/EDIT: END EDIT FILE

The sysmbolic file must be loaded into the correct device to
resume operations. If the updated file is paper tape, the
Editor generates blank leader on the output tape. Enter:

GO, EDIT

When a paper tape is being input through the tape reader,
RTE Driver DVROO can interpret an end-of-tape (EOT) in
two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how
DVROO subchannels were configured during generation. In
any case, an EOT suspends the editor. For more infor-
mation refer to the DVROO manual (HP Part No.
29029-95001). To change DVROO Subchannel assignments,
use the LU command.

If an EOT causes the tape reader to be set down, the RTE
system will output a message to the operator:

I/0 ERR ET EQT #eqt

The operator must up the tape reader with the UP operator
command.

UP, eqt

If an EOT does not cause the tape reader to be set down,
the system does not output any message. However, the
editor is still suspended. Editing can continue or terminate
at this point by the operator entering:

GO, EDIT, numb
Where:

numb if O (or not given), means to read the next tape;
if numb is any other number, it means ter-
minate the editing process.

If the symbolic file is on the disc, the Editor runs to
completion without operator intervention. If the updated
file is a paper tape, the Editor produces trailer before
terminating. If the edit operation is from a disc file to a disc
file, the old file is released. If the updated file is a disc file
or if a disc file is created, the Editor prints the logical
unit numbers and track number of the file in decimal:

4-4

JEDIT: TRACKS IN NEW FILE
/EDIT: disclu, trk numb

Editing finally terminates with the messages:
/EDIT: END OF EDIT RUN
Where

disc lu is the disc logical unit number and trk numb is

the track number. This formation is used with
the LS operator request.

The Editor must be rescheduled with the RU command
for the next operation.

EDIT COMMANDS
The edit commands, consisting of ASCII characters ter-

minated by a RETURN (and if paper tape input a LINE
FEED), direct the editing process and have this format:

| ee, pl, p2, p3

Where
The first non-blank character must be a slash (/).
ee is a one or two-character editing code, and

pl through p3 are either record sequence numbers or
character numbers referring to the symbolic file.

Sequence numbers are from one to four digits, character
numbers either one or two digits. All sequence numbers
must be in ascending order, greater than zero, and unique, a
particular sequence number may be used in only one edit
command.

EDIT COMMAND FORMATS

Format Function
Lr Insert new records after record r. The
new records follow the /I command in
the edit file.
/Dyl [r2] Delete record rl, or records r/ through
r2, inclusive.
IRyI[r2] Replace record rl, or records rl through

r2, inclusive. The replacement records
follow the /R command.

RTE-II
Format Function

/Clrc Insert new character(s) after character ¢
in record r. The new characters follow the
/CI command.

/CDycl,[,c2] Delete character cl, or characters ¢/ to
¢2, inclusive, in record r.

/CRrcl,[c2] Replace character ¢/ to ¢2, inclusive, in
record r. With the character(s) following
the /CR.

/E Ends the edit file, or, without other
commands, dumps a file from the disc on
the output device or copies a tape.

/A Aborts editing — useful only when enter-

ing the edit file from teleprinter.

EDIT FILE EDITING

Sometimes, a mistake is made near the end of a long edit
file tape. In these cases, the editor itself can correct the
mistakes on the edit tape.

For most commands, the format is the same as regular
editing; but if edit commands must be replaced or inserted,
the Editor must be able to make a distinction. That
is, it has to know whether to execute an edit command, to
insert it, or to replace it. For commands to be inserted or
replaced, a character ‘! makes the distinction. For
example,

/R, 6
!/D, 314, 315

tells the Editor to “replace record 6 (in the first edit
file) with the record /D, 314, 315.”

Real-Time Program Preparation

EDITOR ERROR MESSAGES

The Editor prints error messages on the operator console
in this format:

JEDIT: error message: illegal edit command

Then the Editor continues with the edit file; there is no on-
line correction of illegal edit commands.

Error Message Meaning

MEM OVERFLOW The edit file overflows available
memory; the Editor prints the
command causing the overflow
Edit terminates.

CS ERR Illegal edit command, which is
printed.

PARAM ERR Edit command *“r”” or “c” is illegal:
non-numeric, = 0,> 72,12 <r1,¢2
< ¢, ;command printed.

SEQ ERR “r” parameter << a previous '’ or
“r” greater than range of symbol
file; command printed.

/T ERR No insert source statements after /I;
command printed.

/R ERR No replacement statements after
/R; command printed.

/C OVF Character overflow in edit state-
ment (i.e.,> 72 characters).

DISK OVF No disc space for file; edit termi-
nates.

FILE UN Undefined symbolic file, or LUN

(edit file) = 2. Edit terminates.

4-5/4-6

Real-Time Program Preparation

PART 2
RTE Interactive Editor

INTRODUCTION

The RTE Interactive Editor is a foreground/background
swappable program that uses all of foreground/background
memory (exclusive of itself and its subroutines) as disc 1/O
buffers. The Interactive Editor requires at least 4.5K of
background or foreground memory and the RTE-II Batch
Spool Monitor Option in order to operate properly.

SOURCE/EDITED FILES

The Interactive Editor obtains the source file to be edited
from the user, places the source file into the working area,
and then turns control over to the user for the editing
process. Note that when the editor is turned on it releases
all the tracks it owns if and only if it does not own the
current LS tracks. The source file can be obtained from:

. The system LS tracks. If the LS tracks are empty (or
released by the LS,0 operator command) the source
file may be input directly through the keyboard.

(] A source file (type 3 or 4) created by the File
Manager. Note that the file can also be a type O file
(e.g., the tape reader).

As the user edits the source file the results are placed into
the destination or edited file. At the end of the editing
process the user can place the destination file into the LS
area for use by compilers and the File Manager and/or
create or replace a file ‘“‘name” within the File Manager
area.

The editor performs edits by reading lines from the source
file (which has been moved to a work area on the disc), and
modifying them under control of the editor commands.
This results in a destination file which is located in the
memory buffer. When the buffer becomes full it is
transfered to the disc work area. With the exception of the
“J” command it is not possible to back up in the source

file; however, several commands result in the editor copying
some, none, or all lines to the destination file, abandoning
the original source file, and making the destination file the
source file from which to create a new destination file. In
this manner many passes can be made with the editor and
one can effectively back up. For convenience, the act of
passing all remaining lines to the destination file and then
abandoning the source and making the destination the new
source will be called rolling over.

DESCRIPTION

The Interactive Editor is a powerful tool provided to the
user as an aid in the process of editing programs. The power
comes from a great many commands designed to manip-
ulate the source file before the actual edit takes place.
Many of the commands have default values that can be
disasterous if the user is not aware of them. One example is
the “D” command. If the user does not correctly specify
the optional parameters that go with the “D” command,
part or all of the source file can be eliminated.

For this reason the user should always maintain a backup of
the current source file that is being edited. If the editing
process is lengthy, it is recommended that intermediate
results be stored in a file for backup should the current
source be eliminated. This prevents having to start from
scratch should something happen.

A full understanding of the Interactive Editor and its many
capabilities will only be possible through actual use by trial
and error. For this reason it is strongly recommended that
the user create some scratch files and experiment with all of
the editor’s commands.

Before beginning the edit process, it is recommended that
the user obtain a listing of the source file complete with
line numbers. This can be accomplished with the File
Manager LI Operator command.

4.7

RTE-II

RU,EDITR

Purpose:

To schedule the Interactive Editor for operation.

Format:

RU.EDITR [ttylu| line length]]

Where:

ttylu = The logical unit number of the teletype
device to be used for command input.
Default is logical unit 1.

line

length = Maximum output record length in charac-
ters. Default is 150 characters.

MESSAGES TO OPERATOR

As soon as the editor is scheduled it requests information
on the source file.

SOURCE FILE?
[file name [:security [:cr numb]]
—or —

A
Where
/ is a prompt character supplied by the editor.

is the name of a File Manager file. The file
name can be a type O file.

file name

A is a symbol representing a blank (space bar). If
a blank is entered for file name the input comes
from the LS tracks.

¢rnumb is the cartridge reference (CR) number that is a

numeric identifier assigned to all cartridges in

the system.

When the editor requests information on the source file, the
only two legal responses are a blank or an existing file
name. Any other response will cause a FMGR ~006 error
(file not found). If the user desires to abort the editor at
this time enter a blank, and then enter an A in response to
the next prompt (/).

48

If a legal file name is used for the source file question the
editor obtains the file from the File Manager, puts it in the
working tracks and prints the first line of the file on the
TTY. This is the pending line and editing can now begin.
Note that if a security code and cartridge number are
specified as part of the file name, the editor retains them
and uses them as the default values when the edit is
completed with the ECname command. If new security
code and cartridge number values are specified in the
ECname command, they override the original values.

If a blank is used for the source file question the editor
obtains the file from the LS tracks, puts it in the working
tracks and prints the first line of the file on the TTY. This
is the pending line and editing can now begin. If the LS
pointer has not been set, or is pointing to a track that
contain an EOF as the first record of a file, the editor prints
EOF, which indicates end-of-file. If the LS tracks have not
been previously used for logical source, they will not be
properly formatted and the editor will abort with the
message CORRUPT FILE. In this case the tracks can be
formatted by the following command.

*LS,0

The above command formats the empty LS tracks so that
when the editor is scheduled, and the LS tracks are
referenced as input, the user can enter a file on-line through
the keyboard. The file is entered after the EOF message.
Enter a space following the slash prompt and begin typing
the text of the file. See the example below.

*ON,EDITR Schedule the editor

SOURCE FILE? Location of source file

/A Use LS tracks
EOF LS not assigned
/ANASMB, L, T A = insert after pending line

/N ; NAM PROGL ; = first tab, 7th column and next
/N; EXT EXEC;xxx ; = second tab, 21lst column. Xxx
stands for comments.

EDITOR COMMANDS

Table 4-1 is a summary of the Interactive Editor commands
for quick reference. Each of the commands shown in the
table are described in more detail, some with examples, in
the following paragraphs.

Table 4-1. Summary of EDITR Commands

Real-Time Program Preparation

Table 4-1. Summary of EDITR Commands (Cont.)

Control Commands

Description

CTRL G

Mname

T()

=n

K

Prompt character printed
by the Editor

Invoke or delete bell ring

Merge source file called
name after pending line.

Set tab stops

Set window (column)
boundaries

Add line sequence num-
bers

Set line length to n.

Delete trailing blanks

U

Enable exchange pattern
all lines (list)

Enable exchange pattern
all lines (no list)

Unconditional character
replace (list)

Unconditional character
replace (no list)

Character Edits

Description

Search Commands

Description

CTRL @

ESC

B< find field>

D< find field>

F<{find field>

J< find field>

Find field in a zero length
line

Find field of indefinite
length

Find find field thru be-
ginning of file-saves

Delete lines until find
field or EOF

From pending line find
find field or EOF

Find fine field thru be-
ginning of file-deletes

C<text>

P<text>

CTRLR

CTRL 1

CTRLS

CTRLC

CTRLT

Edit pending line and go
to next line

Edit pending line and
leave as pending line

Replace characters
Insert characters

Insert characters (alter-
nate for CTRL)

Delete characters

Truncate line

Relative Edits

Description

+n

/n

n

Space down n lines
Space down # lines

Delete n lines

Pending Line Edits

Description

Exchange Commands

Description

G

Character replace on
pending line

Exchange pending line,
display next occurance
of line

R<rext>
[<text>
A<ltext>
O (oh)

N

Replace pending line with rexr
Insert fext betore pending line
Insert rext after pending line

Duplicate pending line and edit

Print pending line number

19

RTE-II

Table 4-1. Summary of EDITR Commands (Cont.)

List Commands Description

P Display pending line

Ln List n lines

+ List the next line

/ List the next line

n Go to line n

S Print the approximate number of
words in the destination file (to
pending line —1).

tn Go back n lines in the destination
file.

ND Print current line number in the
destination file.

H Print the number of characters in
the pending line.

Terminate Descripti

Commands escription

A Abort EDITR

EL Edited file placed in LS tracks

ECname Create name and store edited
file there

ER Replace old file with new file
(retaining same name)

ERname Replace file name with edited
file

ELR Replace old file with new file
(retaining same name) and also
store in LS tracks

ELCname Create name, store edited file
there and in LS tracks

ELRname Replace file name with edited
file and also store in LS tracks

4-10

CONTROL COMMANDS

PROMPT CHARACTER

The editor prompts with a slash character *“/”” and bell. The
prompt is also used as a delimiter in some of the com-
mands. That is, if you are changing some characters in a line
and you want to save some as they are, you use the prompt.
Both the prompt and bell can be changed. The prompt
character can be changed with the exchange command (X)
and the bell is turned on or off with the CTRL G com-
mand. Note that while the prompt can be changed, the
slash (/) is exclusively used as a command to space down
and is not changed. For example, if you change the slash
prompt to a $ prompt with the “X” command, entering a
slash will still space down 7 lines.

CTRL G (CONTROL G)

When the editor is scheduled the bell is rung with every
prompt. To turn the bell off (or turn it back on), enter
CTRL G.

Mname (MERGE SOURCE)

The entire contents of the file called name is inserted after
the pending line and before the next line. The next line
then becomes the pending line. If the LS area is specified an
error indication is given. If the file is not found, nothing is
inserted and FMGR-6 error is given. The next line still be-
comes the pending line.

: (TAB STOPS)
The initial tab character when the editor is turned on is the
semicolon (;) (not appropriate for editing ALGOL). With

the stop set for the 7th and 21st columns. The tab charac-
ter is changed with the T command as follows:

[Tx[s1],s2[,s3...s10]]..]

Where

X is the new tab stop control character (replaces
original semicolon).

sI1—s10 are the column numbers of the stops.

Tabs beyond the highest defined stop are replaced with
blanks. The tab character may be changed without changing
the stops. For example:

IT %

changes tab character to a percent sign (%) without chang-
ing the stops.

W (WINDOW)

The initial window field when the editor is turned on is
columns 1 through 150. The field is used to limit the char-
acter exchange, and one form of the find field, to patterns
found beginning in specific columns. For example:

/W79
Where
7 is the starting column of the window.
9 is the last column of the window.

With the window set thus, the Search command “F” can be
used to find a line with a specified pattern. For example,
you want to find the first line from your present position
that contains a NAM statement starting in column 7, 8, or
9.

/W79
/F/NAM

#(SEQUENCE NUMBERS)

This command adds sequence numbers to all lines in the
file. The three character identifier starts in column 73 and
the numbers start in column 76. Note that the TTY has a
line length limit of 72 characters which must be taken into
consideration. However, when using a CRT terminal it auto-
matically does a line feed and places the sequence numbers
on the second line or in between each line in the file. The
command syntax is as follows:

[#|xxx] [numbl |,numb2]]

XXX is the three character identifier. It occupies
columns 73-75 and must be accounted for
when specifying numbl and numb2. If the en-
tire command is allowed to default (e.g., /#),
the numbers will start in column 76.

is the starting number. The first line will start
with this number. If allowed to default it starts
at 00000.

numbl

numb2 is the incrementing value. numbl is incre-
mented by numb2 for each line. If allowed to

default, numbl is incremented by 10.

Real-Time Program Preparation

An example of using the sequence number command is:
#AAAA O

There is no three character identifier (A is a space). The line
numbers start at 00000 (4th A = default) and are
incremented by 1. Note that the “#" command always
rolls over and always ends with an EOF message.

=n (SET LINE LENGTH)

The line length is initially set to 150 characters (see line
length in the ON,EDITR command) when the editor
is turned on. This command resets the line length to the
value n.

K (KILL TRAILING BLANKS)

This command deletes all trailing blanks in the file. A total-
ly blank line will be reduced to two blanks. Note that the
“K” command always rolls over and always ends with an
EOF message.

SEARCH COMMANDS
FIND FIELD

The find field consists of n characters (where n is greater
than or equal to 0) typed after a “B.” “D.” “F,” or “J”
command. The editor will search for a line containing a
matching field in the specified position(s). Only as many
characters as specified are used in the match. Options used
in specifying the find or matching field are:

NULL — If no field is given the last find field entered is
used.
ESC — The escape character is a tind field of indefinite

length and eliminates the need for specifying a
specific find field. For example:

JFESC XXX ESC YYY

The Escape character tells the editor to find a
line contaning “XXX” followed by “YYY.”
“XXX” may be anywhere in the line and
“YYY” is constrained only to follow the
“XXX” but otherwise may be anywhere in the
line. Note that on some terminals the Escape
Key generates an action within the terminal
that is not desirable. In this case, use the alter-
nate Escape Key, ~ (sine wave).

RTE-lI

| — Delimiter character (/ is default) used as the
first character of the find field acts the same as
an ESC character but the search for the match
is limited to patterns beginning within the win-
dow established by the “W” command.

CTRL@ — Control @ as the find field will find a zero
length line.

TAB — The find field is tabbed according to the estab-
lished TAB STOPS. Tabbed over characters are
replaced by blanks in the find field.

For example:

LABEL LDA B
LDA B,

are instructions located in the source file. The
following search command,

/F;LDA

will find all instructions LDA but not LABEL
LDA (or any other LDA with a label in front of

it).
B<FIND FIELD>(SEARCH FROM BEGINNING)

Search from the beginning of the file and find the first line
which matches the find field and make it the pending line.
All lines passed over are put in the destination file (i.e.,
lines are not deleted with this command). If the find field is
not found the search ends at EOF. The “B”’ command rolls
over the file, disables any exchange option set up, and then
searches for the find field.

D<FIND FIELD>(DELETE)

Delete the pending line and all lines down to the line con-
taining the find field. The line containing the find field
becomes the new pending line. If the find field is not en-
countered the remainder of the file is deleted. If the find
field is null then the last find field entered is used.

F<FIND FIELD>(FIND)

Search from the pending line to the end-of-file for the line
containing the find field and make it the new pending line.
If the find field is not encountered the search ends at the
EOF, lines are not deleted with this command.

J<FIND FIELD>(JUMP)

Save the pending line and then jump to the first line con-

taining the find field and make that line the pending line.

4-12

The “J” command may be used to either delete or copy
lines in the file. If the jump terminates after the current
pending line, lines are deleted: if it terminates prior to the
pending line then the lines between the jump target and the
pending line when the jump was given will be passed over
again; thus a copy is effected.

EXCHANGE COMMANDS

The “G,” “Y,” “X,” and “Z” commands set up two char-
acter strings. Wherever the first string is encountered it is
replaced by the second string. Exchanges are made only if
the first character of the first string is within the window
established by the “W” command (i.e., the string must start
in the window).

The “U” and “V” commands set up an exchange field
length and a character string. The characters in the ex-
change field are replaced by the character string. The ex-
change field starts at the first position of the window but is
not limited by the length of it.

For the “X,” “Z,” “U,” and *“V” commands, the exchange
does not take place until another command is entered after
the exchange command (e.g., a search command). The num-
ber of lines in which the exchange occurs depends on this
command. In general, an exchange occurs on all lines passed
over during a search or positioning to a new pending line.
The exception is when the “B” command is used and causes
the file to roll over. This disables any exchange option set
up, and then searches for the find field. The exchange takes
place from the pending line to the EOF but not after the
roll over. An exchange will not occur on lines inserted by
the “I”’ command just prior to an exchange command. In-
serted lines may be included in the exchange by reposition-
ing the pending line to a line above the inserted lines before
entering an exchange command.

The “G” and “Y” commands are the same as the “X”
command but do an exchange on the current pending line
only and are executed immediately.

An exchange pattern remains in effect until a new one is
entered.

The editor generates records in word-length (two characters
per word). For example, a source file which contains the
record “ERR 1”7 will be changed on a pass through the
editor to “ERR 1A.” This addition of a trailing blank usual-
ly has no significance except during the exchange process.
For example, /XERR 1/ would set up an exchange to
delete all records ERR 1, but would leave the trailing blank.

This trailing blank is then padded to two blanks by the
editor during the exchange.

The exchange fields are not tabbed, thus the tab character
is equivalent to any other character in an exchange string.
Also the first delimiter delimits the two fields, subsequent
delimiters are treated as normal characters of the “new”
field.

G<OLD FIELD>/<NEW FIELD>

The “G” command is an action command and performs an
immediate exchange (substitutes new for old) on the pend-
ing line and leaves it as the pending line. The first string
may be any length except zero, and the second string any
length including zero.

Y<OLD FIELD>/<NEW FIELD>

The “Y” command causes an exchange of new data for old
data in the pending line only. The first string may be any
length except zero, and the second string any length in-
cluding zero. The editor then finds the next occurence of
the old data and prints that as the pending line. To edit that
line enter the “Y” command alone; the data is not required.
To skip that line and find the next occurence of the old

data enter the ““F” command alone; the data is not required.

X<OLD FIELD>/<NEW FIELD>

The “X” command enables an exchange of new data for old
data. The first string may be any length except zero, and
the second string any length including zero. The exchange
takes place when the next command is entered, and all lines
where an exchange takes place are printed. The “X” com-
mand will also change the prompt or exchange character
(which is a slash (/) when the Editor is turned on). For
example, /X$ will change the prompt/exchange character
from a slash (/) to the dollar sign ($).

Z<OLD FIELD>/<NEW FIELD>

The “Z” command will enable an exchange of new
data for old data. The first string may be any length except
zero, and the second string any length including zero. The
exchange takes place when the next command is entered,
and all lines where an exchange took place are not printed.
This command is the same as the “X” command except it
does not print lines in which the exchange has been made.

U<charlchar2 . .. charn>/<NEW>

Sets up a replace of any number of characters including zero
(specified by char{ char2 . .. charn) beginning at the start-

Real-Time Program Preparation

ing column of the window. The string charl char2 ... charn
is not used as a pattern for a search but is used only to
specify the number of characters to be replaced in the win-
dow by the new pattern. Lines in which the exchange is
made will not be listed. For example. to change the first
character of every line to the File Manager command
“:L1,” enter:

/W1 Set window to 1st column
JUL/:LI, Replace Ist character with :LI.
/FEND Do every line until END found

This command does unconditional:

a. inserts (first field zero length).
b. deletes (second field zero length).
c. exchanges.

V<charlchar?2 . . . charn>/<NEW FIELD>

This Exchange command is the same as the U™ command
except that all lines in which the exchange is made will be
listed.

CHARACTER EDITS

There are two types of Character Edits. the *C” command
and “P” command. Within these two types are four modes
of Character Edits, replace (CTRL R). insert (CTRL 1),
delete (CTRL C) and truncate (CTRL T). The initial start-
ing mode is replace. The mode may be changed at any time
in the line by entering another mode command. Note that
the Mode Control characters are non-printing (i.c., CTRL I
does not cause a character to be printed on the teletype).

C<TEXT>

The »C” command will edit the pending line. display the
results of the edit, pass the edited line to the destination
file, then display the next line of code as the pending line.

P<TEXT>

The “P” command will edit the pending line, display the
results of the edit, and leave the altered line as the pending
line.

CTRL R (REPLACE)
CTRL R stands for Replace Mode and is the default mode.
In the Replace Mode each character is replaced by the new

character. Characters may be skipped by entering the
prompt for each character to be skipped. Using the Tab

4-13

RTE-II

character will also cause characters to be skipped. Note that
skipped characters appear in the new line the same as they
did in the old line. For example:

NAM PROG 1 0Old line of code

/PyJ//]]]]]]2 Tab to 7th column (skip) then skip the next

9 columns and change the 1 to a 2.
NAM PROG 2 Result is displayed.

Note that in the above example CTRL R was not entered —
it is the default mode.

CTRL I (INSERT)

CTRL S (INSERT)

CTRL I or S stands for Insert Mode. CTRL S is used on
terminals where CTRL I has a special function (e.g., the HP
2754 (ASR35) teleprinter uses CTRL I as a tab function).
In the Insert Mode each new character is inserted in the line
immediately before the character under which the CTRL I
or S is entered. Once the CTRL I or S is entered character
skipping will insert blanks. The Tab character will also in-
sert the tabbed number of blanks. For example:

NOP Old line of code
/PLabel The word LABEL is inserted in the line
starting in column 1.

Note that CTRL I or S is a non-printing character and ap-
pears in the example with a circle around it for clarity. Since
characters cannot be skipped in the Insert Mode all skipping
must be done first (in the default Replace Mode) before the
mode is changed to Insert. For example, it is desired to in-
sert a letter in a word (or a word in text).

BUFER DEC6

DEF BUFR 01d lines of code.

PRI T @E Insert “E.”
DEF BUFER New line of code.
CTRL C (DELETE)
CTRL C stands for Delete Mode. In the Delete Mode each
character, or place holder, entered following the CTRL C
will delete a character in the pending line. The Tab char-

acter will delete everything up to the tab stop (i.e., char-
acter skipping will delete characters). When Carriage Return

4-14

is entered the pending line will be left justified. For ex-
ample, to change a spelling error in the comments of a
listing.

SSA,RSS SSKIP IF NEG

[P{OX

SSA,RSS SKIP IF NEG
CTRL T (TRUNCATE)

CTRL T stands for truncate the line. When this mode con-
trol character is entered the remainder of the line will be
eliminated.

RELATIVE EDITS
+n(,lu) or /nf,lu)

The “+” or “/” command causes the nth line following the
pending line to be displayed and made the pending line. If n
is missing, default is the next line following the pending
line. If lu is given, any exchange prints are done on lu;
otherwise they are printed on the command device.

-n

The “-” command deletes n lines. If n is missing one line
is deleted.

PENDING LINE EDITS
R<TEXT>(REPLACE)

The “R” command will replace the pending line with rext.
If no text is given the new line has zero length.

I<TEXT>(INSERT BEFORE)

The “I”’ command will insert a new line of text in front of
the pending line. If no text is given the new line has zero
length.

A<TEXT>(INSERT AFTER)

The “A” (space bar) will insert the new line of fexs im-
mediately after the pending line. If no fext is given the new
line has zero length.

O<TEXT>(COPY AND EDIT)

The “O” command places the pending line in the destina-
tion file, then performs a /P <TEXT> on a copy of that
pending line. The result (in the destination file) is two cop-
ies of the pending line, one unchanged and one edited with
text. For example:

BUFR1 DEC 50 Current pending line.

J/OBUFR?2 Save pending line and perform P
<text> edit.

BUFR2 DEC 50 Result on teletype.

In the destination file the results would be

BUFR1 DEC 50
BUFR2 DEC 50

N(LINE NUMBER)

The “N” command causes the current pending line number
to be printed. This number is based on the first line of the
file being line number one, the second line number two and
so on. These are the line numbers shown on a listing of the
file obtained with the File Manager LI command. These line
numbers are not the same as those given with the “#’
command previously described unless the format /#xxx1,1
is used. These numbers are restarted each roll over; thus any
inserts or deletions will change the numbers.

LIST COMMANDS
P(DISPLAY PENDING LINE)

The “P” command entered by itself causes the pending line
to be printed on the system TTY.

La(,lu)

This command will list n number of lines on logical unit /u.
The listing device must be an output type device (e.g., TTY,
line printer, tape punch, etc.) If lu is not a legal device, the
editor will continue to run until it has passed n lines. Note
that each line has two blanks as the first characters.

/(SLASH)

Entering the ““/” or “+” character alone will cause the next
line following the pending line to be displayed. Entering the
“/” or “+” character and a number will cause that number
of lines to be skipped (i.e.,/n is the same as +n).

n(GO TO n)

In this command only the line number need be entered.
The line number entered is displayed and becomes the
pending line. These line numbers are the same as those
described under the “N” command. If n is less than or
equal to the number of the pending lines a roll over is
performed. Zero is interpreted as one.

Real-Time Program Preparation

H(CHARACTER COUNT)

The “H” command prints the number of characters in the
pending line. This number is always even for a “new” pend-
ing line, but increments/decrements as characters are add-
ed/deleted. Since operations such as GXXX/AAA TEMOVE XXX
and insert 3 blanks at the end of the line.the "H’* command
immediately following the “G” command will show a de-
crement of 3 characters. But if the file is rolled over the
same line examined again, it will be the original length until
a “K” command deletes the trailing blanks or the file is
recycled with the File Manager.

S(WORD COUNT)

The “S” command prints the approximate number of
words in the destination file (to pending line —1). An ex-
ample use of this command could be to break up large
paper tapes. A paper tape can hold a maximum of approx-
imately 14,000 words before exceeding the box size. After
determining the word count with the *S” command the
tape can be broken with a series of O-length records.

th(BACK UP)

The “up arrow” command backs up in the destination file.
“Up arrow” by itself backs up 1 line. It n is too large (i.e.,
back up beyond the top of the file), the error message ?? is
displayed. Note that the “up arrow” command forces a
transfer from the source file to the destination file. This
could cause a loss of data if used in conjunction with the
“J” command. Refer to the “J” command for more infor-
mation.

ND(PRINT CURRENT DESTINATION LINE NUMBER)

The “ND” command prints the current line number in the
destination file. By implication, N by itself prints the pend-
ing line number in the source file.

TERMINATE COMMANDS

The Editor terminate commands assign the edited file to
the RTE system Logical Source LS tracks, a file name in
the File Manager, or both. Note that once the character
“E” is entered the editor begins its termination process. No
other command (except rubout or “A”) may be entered at
this time except one of the following legal termination
commands.

The only legal command for dumping the edited file to a
type O file is the ER or ELR command.

RTE-1I

A(ABORT)

The editor is aborted and the original source file remains
unchanged.

EL

This command ends the edit and assigns the edited file to
the LS tracks. The location of the LS tracks is returned to
the user, and also set up on the base page.

ECname(:security(:cr numb))

This command ends the edit, creates a file called name and
stores the edited file in name. LS tracks are not used. Note
that if a security code and cartridge number are specified as
part of the file name in response to SOURCE FILE? when
the editor was turned on, these numbers will be used to
create the new file name if ECname is entered by itself. If
this is not desired, then use ECname (:security (:cr numb))

Where:

security = 0 or a number
crnumb =0 or a number
ER

—or—

ERname(:security(:cr numb))

This command ends the edit and, if name is not supplied,
assigns the edited file to the original file name. If name is
supplied the edited file is assigned to the file called name. A
file is not created with this command, but replaced (i.e., old
file contents are purged and new edited file contents take
their place). Note that if a security code was used in the old

file’s name it must be supplied, otherwise an FMGR-7 error
occurs when EDITR attempts to write new contents into
the old file.

ELC
—0r-—-
ELC name (:security(:cr numb))

This command ends the edit, creates a file called name, and
stores the edited file in name and the system LS tracks. The

4-16

location of the LS tracks is returned to the user. Note that
if a security code and cartridge number are specitied as part
of the file name in response to SOURCE FILE? when the
editor was turned on, these numbers will be used to create
the new file name if EC name is entered by itself. If this is
is not desired, then use EC name (:security(:cr numb)).
Where:

security 0 or a number

cr numb = 0 or a number

ELR
ELRname(:security(:.cr numb))

This command ends the edit and, if name is not sup-
plied,assigns the edited file to the original file name and the
system LS tracks. If name is supplied the edited file is
assigned to the file called name and the system LS tracks.
A file is not created with this command, but replaced (i.e.,
old file contents are purged and new edited file contents
take their place). Note that if a security code was used in
the old files name it must be supplied, otherwise an
FMGR-7 error occurs when EDITR atternpts to write new
contents into the old file.

EDITR ERROR MESSAGES

Meaning

Error Messages

7 Error in command just given EDITR,
or input device has timed out waiting
for a command.

EOF A command has caused an attempt to
read beyond the current end of the
source file.

CORRUPT FILE Input record length from the system
LS area is greater than 150 characters,
or was not properly formatted.

FMGRxxx An error detected by the File Manager

routines. Refer to the Real-Time
Batch/Spool Monitor Manual.

PART 3
RTE FORTRAN

INTRODUCTION

Regular FORTRAN and FORTRAN IV are segmented pro-
grams that execute in the background under control of
RTE-II. The compilers consist of a main program and over-
lay segments, and reside in the protected area of the disc.
At least 4K background disc-resident area is required to
execute the regular FORTRAN compiler HP 28075; SK for
FORTRAN IV HP 24170; and 12K for FORTRAN IV HP
24177. Only one FORTRAN IV compiler can be used in
the system at any one time.

RTE FORTRAN, a problem-oriented programming lan-
guage translated by a compiler, is very similar to regular HP
FORTRAN. Source programs, accepted from either an in-
put device or disc LS tracks, are translated into relocatable
object programs, and stored in the LG tracks of the disc
and/or punched on paper tape. The object programs can be
loaded by the RTE-II Relocating Loader and executed by
an ON operator request. When a FORTRAN program has
been completely debugged, the RTE-IT Relocating Loader
can make it a permanent part of the RTE-II System if
desired.

FORTRAN REFERENCE

For a complete description of the regular HP FORTRAN
Language, read the FORTRAN Programmer’s Reference
Manual (02116-9015). For a complete description of the
HP FORTRAN IV Language, read the FORTRAN IV Pro-
grammer’s Reference Manual (5951-1321).

COMPILER OPERATION

An RU, FTN operator request schedules the regular RTE
FORTRAN compiler for execution. If FORTRAN IV is
used, the operator request is RU, FTN4. All other para-
meters are the same. Before using RU, FTN, the operator
must place the source program in the input device, or, if
input is from a source file, specify the file location with an
LS operator request. If planning to relocate and run, the
operator allocates LG tracks with an LG operator request.

Real-Time Program Preparation

RU,FTN/FTN4

Purpose:

To schedule the FORTRAN compiler for operation.

Format:

RU, FTN, input, list, punch, lines, 99

or

RU, FTIN4, input, list, punch, lines, 99

Where:

input =

list =

punch =

lines =

99 =

Logical unit number of input device. Use 2

for source file input from the disc (set to 5 it
not given).

Logical unit number of list device (set to 0 if
not given).

Logical unit number of punch device (set to
4 if not given).

Lines/page on listing (set to 56 if not given).

The load-and-go parameter (LG command
required first). If present, the object pro-
gram is stored in the load-and-go tracks
for later loading. Any punching requested
still occurs. The 99 may occur anywhere in
the parameter list, but terminates the list.

Example:

RU.FTN <is equivalent to RUJFTN.,5,64,506>

RTE-II

MESSAGES TO OPERATOR

More than one source tape can be compiled into one FOR-
TRAN program by leaving off the $SEND statement on all
but the last source tape. When the end of each source tape
is encountered (end-of-tape or EOT condition), RTE Driver
DVROO can interpret it in two ways. An EOT can set the
tape reader down (make it inactive), or not set it down. The
action depends on how DVROO subchannels were con-
figured during generation. In any case, an EOT does not
suspend the FORTRAN Compiler. Therefore, it is recom-
mended that when compiling multiple tapes, DVROO be
configured to set the tape reader down on EOT (see the LU
command). For more information refer to the DVROO
Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the
RTE-II system will output a message to the operator:

I/O ERR ET EQT #eqt

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP,eqt

If an EOT does not cause the tape reader to be set down,
the RTE-II system does not output any message and the
compiler is not suspended.

At the end of the compilation (when the compiler detects
the $END statement), the following message is printed.

$END,FTN

Two I/O error messages may be generated by the system
when FTN attempts to write on the LG tracks (FTN is
aborted).

1006
1009

1006 means that the LG tracks were not defined by an
LG operator request, and 1009 means that the LG tracks
overflowed. The operator must define more LG tracks with
LG and start compilation over again.

The compiler terminates abnormally if:

a. No source file is declared by LS, although logi-
cal unit 2 is given for input. Compiler error E-0019

4-18

(FTN2), or ERROR 05 (FTN4) is printed on the list
device.

b. The symbol table overflows. Compiler error
E-0014 (FTN2), or ERROR 03 (FTN4) is printed on
the list device. $SEND, FTN does not appear after the
error message using FTN2, but does appear when us-
ing FTN4.

FORTRAN FORMAT

The RTE FORTRAN Language is similar to the regular
HP FORTRAN Language. The differences are described in
the next few pages. RTE FORTRAN has additional capa-
bilities, using EXEC calls. Read Section III for complete
details on the EXEC calls.

FORTRAN CONTROL STATEMENT

Purpose:

To define the output to be produced by the
FORTRAN compiler.

Format:
FTN,B,L,A
Where:
B = Punched binary tape (B not present does not

affect binary output to load-and-go tracks).

L

1]

List output.

1}

A Assembly listing.
Besides the standard options shown above, two
additional compiler options, T and 1, are available.

T

Lists the symbol table for each program in the
compilation. If a “u” follows the address of a
variable, that variable is undefined (the program does
not assign a value to it). The A option includes this T

option.
n

n is a decimal digit (1 through 9) which specifies an
error routine. The user must supply an error routine,
ERRx. If this option does not appear, the standard
library error routine, ERRO, is used. The error
routine is called when an error occurs in ALOG,
SQRT, .RTOR, SIN, COS, .RTOIl, EXP, .ITOI or
TAN.

PROGRAM STATEMENT

Purpose:

The program statement, which must be the first
statement in a FORTRAN source program, includes

optional

parameters defining the program type,

priority, and time values.

Format:

PROGRAM name, (type, pri, res, mult, hr, min, sec, msec)

Where:

name is the name of the program (and its entry point).

type is the program type (set to 3 for main
program, or 7 for subroutines, if not given).

o)
i

e 1B vt
I

—_ _.
(99 —_
I 1

—
(98]
1l

pri

res

System Program

Real-Time Core-Resident

Real-Time Disc-Resident

Background Disc-Resident
Background Core-Resident
Background Segment

Illegal

Library, utility

If program is a main, it is deleted from
the system

- 0r —

If is a subroutine, then it is used to
satisfy any external references during
generation. However, it is not loaded
in the relocatable library area of the
disc.

Foreground core-resident, uses back-
ground common

Foreground disc-resident, uses back-
ground common

Background disc-resident, uses fore-
ground common

Background core-resident, uses fore-
ground common

Background segment, uses foreground
common

[llegal

is the priority (1-32767, set to 99 if
not given).

is the resolution code.

Real-Time Program Preparation

mult is the execution multiple.

hr is hours.
min IS minutes.
sec is seconds.

msec is tens of milliseconds.

COMMENTS

The parameters fype through msec must appear in the order
shown. And even though the parameters are optional, if any
one parameter is given, those preceding it must appear also.
For example:

PROGRAM#narme(,90)

is illegal and will be rejected by the system. The only
method of legally defaulting the parameters is shown be-
low:

PROGRAM name
PROGRAM name(3,90)

All parameters are set to O if not specified with the fol-
lowing two exceptions:

a. The priority parameter pri is set to 99, the
lowest priority recognized by RTE FORTRAN.

b. The program type parameter /ype is set to 3

for a main program, or 7 for subroutines. Type
6 is illegal.

4-19

RTE-11

DATA STATEMENT

EXTERNAL STATEMENT

Purpose:

The DATA statement sets initial values for variables
and array elements.

Format:

DATA ki /d, k2 /ds), . . . pldy/

Where:

k is a list of variables and array elements
separated by commas.

d is a list of constants (optionally signed)
which can be immediately preceded by an
integer constant (followed by an asterisk)
identifying the number of times the constant
is to be repeated.

/ is a separation, and is used to bind each

constant list.
The elements of d; are serially assigned to the
elements of k;, therefore, k; and dj must correspond
one-to-one. If a list contains more than one entry, the
entries must be separated by commas.

Elements of k; may not be from COMMON.

Arrays must be defined (i.e., DIMENSION) before
the DATA statements in which they appear.

Example:
DIMENSION A(3), 1(2)

DATA A(1), A(2), A(3)/1.0,2.0.3.0/
L, 1)/ 2%1]

4-20

Purpose:

With the EXTERNAL statement, subroutines and
functions can be passed as parameters in a subroutine
or function call. For example, the routine XYZ can
be passed to a subroutine if XYZ is previously
declared EXTERNAL. Each program may declare up
to five EXTERNAL routines.

Format:
EXTERNAL v, vy, ..., Vs
Where:
vy is the entry point of a function, subroutine,

or library program, which exists externally.
Example:

FUNCTION RMX (XY ,AB)
RMX=X (A) * Y (B)

END

PROGRAM ABCDE
EXTERNAL XYZ, FLI

Z=Q-RMX (XYZFL1.3.56,4,75)
END
NOTE

If a library routine, such as SIN, is
used as an EXTERNAL, the com-
piler changes the first letter of the
entry point to “%.” Special versions
of the library routines exist with
the first character changed to “%.”
See RTE Relocatable Library, Part
7 in this section.

RTE-II Real-Time Program Preparation

PAUSE & STOP STATEMENTS ERRO LIBRARY ROUTINE
Purpose: Purpose:
PAUSE provides a temporary program halt and the Prints the following message whenever an crror oceurs
program to be suspended. in a library routine.
Format (as displayed): Format:
name: PAUSE oct numb name: id tvpe

Where: Where:
name is the program name. name is the program name.
oct numb is the octal number given in the PAUSE. id is the routine identitier.

Note that the ‘B’ octal designator suffix

is not required. type is the error type.

To restart the program, usc a GO operator request.

See Secti 1. GO.
(See Section) COMMENTS

Purpose:) .]
The compiler generates calls to ERRO automatically.

STOP causes the program to be terminated.
prog If the FORTRAN control statement includes an 1 option,

BT . the call will be to ERRsm,a routine which the user must
Format (as displayed):
supply.

name: STOP oct numb ~]
Recad the FORTRAN manual for the meaning of error

Where: codes.

name is the program name.

oct numb is the octal number given in STOP. Note
that the ‘B’ octal designator suffix is not
required.

4-21/4-22

Real-Time Program Preparation

PART 4
RTE ALGOL

INTRODUCTION

The RTE ALGOL compiler is a segmented program re-
quiring 8K of background disc-resident area. The compiler
accepts source programs written according to regular HP
ALGOL with some additions and changes.

ALGOL REFERENCE

For a complete description of the HP ALGOL Language,
including error messages, read the HP ALGOL Pro-
grammer’s Reference Manual (HP Part No. 021 16-9072).

COMPILER OPERATION

An RU,ALGOL operator request schedules the RTE
ALGOL compiler for execution. Before using RU,ALGOL,
the operator must place the source program in the input
device, or, if input is from LS tracks, specify the file
location with an LS operator request. If planning to relocate
and run, the operator allocates LG tracks with an LG
operator request.

RU,ALGOL

Purpose:

To schedule the ALGOL compiler for operation.

Format:

RU.ALGOL, input, list, punch, lines, 99

Where:

input = Logical unit number of input device. Use 2
for source file input from the disc. (Set to S
it not given).

list = Logical unit number of list device (set to 0 it
not given).

punch = Logical unit number of punch device (set to
4 if not given).

lines = Lines/page on listing (set to 56 if not given).

99 = The load-and-go parameter (LG command
required first). If present, the object pro-
gram is stored in the load-and-go tracks
for later loading. Any punching requested
still occurs. The 99 may occur anywhere in
the parameter list, but terminates the list.

Example:

RU.ALGOL <is equivalent to RUALGOL.5.64.56>

MESSAGES TO OPERATOR

More than one source tape can be compiled into one
ALGOL program by leaving off the ENDS statement on all
but the last source tape. When the end of each source tape

RTE-II

is encountered (end-of-tape or EOT condition), RTE Driver
DVROO can interpret it in two ways. An EOT can set the
tape reader down (make it inactive), or not set it down. The
action depends on how DVROO subchannels were con-
figured during generation. In any case, an EOT does not
suspend the ALGOL compiler. Therefore, it is recom-
mended that when compiling multiple tapes, DVROO be
configured to set the tape reader down on EOT (see the LU
command). For more information refer to the DVROO
Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the
RTE-II system will output a message to the operator:

I/0O ERR ET EQT #eqt

The operator must place the next source tape into the tape
reader and set the tape reader up with the UP operator
command.

UP, eqt

If an EOT does not cause the tape reader to be set down,
the RTE-II system does not output any message and the
compiler is not suspended.

At the end of completion (when the compiler detects the
ENDS statement), the following message is printed.

$END ALGOL

If source input is indicated to be from the disc (by input=2
in the ON control statement), and the source pointer is not
set, the diagnostic

NO SOURCE

is output to the system teleprinter and the compilation
ceases.

Two I/O error messages may be generated by the system
when ALGOL attempts to write on the load-and-go tracks
(ALGOL is aborted).

1006
1009

1006 means that the LG tracks were not defined by an
LG operator request, and 1009 means that the LG tracks
overflowed. The operator must define more LG tracks with
LG and start compilation over again.

4-24

At the end of a program, a program-termination request is
made to the Executive. No message is printed.

In case of a PAUSE statement, the following message is
printed:

name: PAUSE xxxx

Where
name = the program name.
XXXX = number which has no significance.

Execution is then suspended. To restart the program, type
GO, name

See the GO operator command in Section II for a definition
of the parameters.

ALGOL FORMAT

The first statement of an RTE ALGOL program is the
HPAL control statement. The control statement does not
use the symbol S (sense switch control). Also, after the
NAM record-name, additional parameters may be specified.

RTE-II
ALGOL CONTROL STATEMENT

Purpose:

To define the output to be produced by the ALGOL

compiler.

Format:

HPAL[,L,AB.P],
“name’’ ,numb,type,pri,res,mult,hr,min,sec,msec/
Where:
= Produce source program listing.
A = Produce object code listing.
= Punch binary tape. B not present does

not affect binary output to load-and-go
tracks.

p = A procedure only is to be compiled.

name = Program name.

numb = A digit from 1 through 9 specifying the
error-routine name. A library routine.
ERRnumb with numb = 1-9 must be
supplied by the user. If this option is not
specified, the error-routine name is
ERRO. The error routine is called when
an error occurs in the following routines:
ALOG, SQRT, .RTOR, SIN, COS. .RTIO.
EXP, .ITOI TAN.

type = Program type.

pri = Priority.

res = Resolution code (0-4).

muddt = Execution multiple (0-999).

hr = Hours (0-23).

min = Minutes (0-59).

sec = Seconds (0-59).

msec = Tens of milliseconds (0-99).

COMMENTS

Note that the program-name specified in “NAM” must be
enclosed in quotation marks, must be a legitimate iden-
tifier, and must not contain blanks.

Real-Time Program Preparation

If no symbols are specified (L through P), and if
load-and-go is not specified in the RU.ALGOL control
statement, the program is compiled but does not produce
output other than diagnostic messages.

If there is an error in the control statement, the diagnostic
“HPAL??77” is printed on the system teleprinter. The com-
piler than returns control to the system.

The parameters numb through msec must appear in the
order shown. And even though the parameters are optional,
if any one paramenter is given, those preceding it must
appear also. For example:

name , , , 90

is illegal and will be rejected by the system. The only
method of legally defaulting the parameters is shown be-
low:

name
or
name, 3, 3, 90

All parameters are set to O if not specified with the tol-
lowing two exceptions.

a. The priority parameter pri is set to 99, the low-
est priority.
b. The program type parameter fype is set to 3 if

both type and P are not specified, or 7 if zvpe is not
specified and P is specified.

4-25/4-26

Real-Time Program Preparation

PART 5§
RTE Assembler

INTRODUCTION

The RTE Assembler is a segmented program requiring 4K
of background disc-resident area. The Assembler consists of
a main program and segments, and resides in the protected
system area of the disc.

RTE Assembler Language, a machine-oriented program-
ming language, is very similar to regular HP Extended As-
sembler Language. Source programs, accepted from either
an input device or disc LS tracks, are translated into absolute
or relocatable object programs. Absolute code is punched in
binary records suitable for execution outside of RTE-IL
ASMB can store relocatable code in the LG area of
the disc for on-line execution, as well as punch it on paper
tape. The RTE-II Relocating Loader accepts Assembler
Language relocatable object programs from paper tape or
the LG tracks.

The source tape passes through the input device only once,
unless there is insufficient disc storage space. In this case,
two passes are required. (See next page Messages To Opera-
tor.)

ASSEMBLER REFERENCE

For a complete description of the HP Assembler Language,
read the Assembler Programmer’s Reference Manual (HP
Part No. 92060-90005).

ASSEMBLER OPERATION

An RU operator request schedules the RTE Assembler
for execution. Before using RU,ASMB, the operator must
place the source program in the input device, or if the input
is from LS tracks, specify the file location with an LS
operator request. If planning to relocate and run, the
operator must allocate LG tracks with an LG operator
request. The format for scheduling the Assembler is:

RU,ASMB

Purpose:
To schedule the Assembler for operation.
Format:

RU,ASMB, input, list, punch, lines, 99

Where:

(]

input = Logical unit number of input device. Use
for source file input from the disc. (Set to

>4

it not given.)

list: = Logical unit number of list device (set to 0 it
not given).

punch= Logical unit number of punch device (set to
4 if not given).

lines Lines/page on listing (set to S0 it not given).

99 = Load-and-go parameter (LG command re-
quired first). If present, the object program
is stored on the disc for loading, and any
punching requested still occurs. The 99 may
oceur anywhere in the parameter list, but
terminates the list.

Example:

RU,ASMB < s equivalent to RU,ASMB.5,6.4.56 >

MESSAGES TO OPERATOR

When a paper tape is being input through the tape reader,
RTE Driver DVROO can interpret and end-of-tape (EOT) in
two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how

4-27

RTE-II

DVROO0 subchannels were configured during generation. In
any case, an EOT does not suspend the Assembler. There-
fore, it is recommended that when assembling multiple
tapes, DVROO be configured to set the tape reader down on
EOT (see the LU command). For more information refer to
the DVROO Manual (HP Part No. 29029-95001).

If an EOT causes the tape reader to be set down, the
RTE-II system will output a message to the operator:

I/O ERR ET EQT #eqt

The operator must up the tape reader with the UP operator
command.

UP, eqt
If an EOT does not cause the tape reader to be set down,
the RTE-II system does not output any message and the
Assembler is not suspended.
At the end of assembly, the following message is printed:

SEND ASMB

If another pass of the source program is required, the fol-
lowing message appears at the end of pass one.

SEND ASMB PASS

The operator must replace the program in the input device
and type:

GO,ASMB

If an error is found in the Assembler control statement, the
following message appears:

$END ASMB CS
The current assembly aborts.

If an end-of-file condition occurs before an END statement
is found (LS file only), the teleprinter signals:

$END ASMB XEND

The current assembly aborts.

If source input for logical unit 2 (disc) is requested, but no
file has been declared (see LS, Section II), the teleprinter
signals:

SEND ASMB NPRG

4-28

The current assembly aborts.

RTE-I generates two messages when ASMB attempts to
write on the LG tracks (ASMB is aborted).

1006
1009

1006 means that the load-and-go tracks were not defined
by an LG operator request, and 1009 means that the
LG tracks have overflowed. The operator must define
more LG tracks with LG and start compilation over
again.

The next message is associated with each error diagnostic
printed during pass 1.

tape numb

tape numb is the “tape” number where the error (reported
on the next line of the listing) occurred. A program may
consist of more than one tape. The tape counter starts with
one and increments whenever an end-of-tape condition oc-
curs (paper tape) or a blank card is encountered or a zero
length record is read from the disc. When the counter incre-
ments, the numbering of source statements starts over at
one.

Each error diagnostic printed during pass 2 of the assembly
is associated with a different message:

PG page numb

page numb is the page number (in the listing) of the pre-
vious error diagnostic.

PG 000 is associated with the first error in the program.

These messages occur on a separate line, above each error
diagnostic in the listing.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular
Assembler Language; and although only relocatable code
can be run under RTE, the RTE Assembler accepts and
assembles absolute code. Absolute code is never stored in
the LG tracks. To get absolute code, the control
statement must include an “A.” The “R”, however, is not
required for relocatable code. An “X” causes the assembler
to generate non-extended arithmetic unit (non-EAU) code.
B is required to punch a binary tape. B not present does not
affect binary output to LG tracks.

The memory protect feature, which protects the resident
executive from alteration (except in the case of privileged
library routines), interrupts the execution of a user program
under these conditions:

a. Any operation that would modify the pro-
tected area or jump into it.

b. Any I/O instruction, except those referencing
the switch register or overflow.
¢. Any halt instruction.

When an interrupt occurs, memory protect gives control to
the system which checks to see if the interrupt was from a
legal system call. If not, the user program is either suspend-
ed or aborted (depending on bit 15).

NAM STATEMENT

Purpose:
The NAM statement, which must be the first
statement in an Assembler source program, includes
optional parameters defining the program type,
priority, and time values.
Format:

Nam name, type, pri, res, mult, hr, min, sec, msec, id
Where:

name is the name of the program.

type is the program type (set to 0 if not given):

System program

Real-time core-resident

Real-time disc-resident

Background disc-resident

Background core-resident

Background segment

Library (re-entrant or privileged)
Library, utility

If program is a main, it is deleted from
the system

W o — O
[

o IR B RV, T SN
1}

- Or —

8 = If program is a subroutine, then it is
used to satisfy any external references
during generation. However, it is not
loaded in the relocatable library area
of the disc.

Real-Time Program Preparation

9 = Foreground core-resident, uses back-
ground common

10 = Foreground disc-resident. uses back-
ground common

11 = Background disc-resident, uses fore-
ground common

12 = Background core-resident, uses fore-
ground common

13 = Background segment, uses foreground
common

14 = Library, core resident

pri is the priority (1 to 32767. set to 99 it not
given).

res is the resolution code \

mult is the execution multiple.

(Time values,

hr is hours. set to 0 it not
\ given. See
min is minutes. Section I IT.
for meaning)
sec is seconds.

msec is tens of milliseconds.

id comments field-separated
from parameters by a space.

These parameters are optional: but it any one
parameter is given. those preceding it must appear
also.

COMMENTS

The parameters of the NAM statement, beginning with type
and ending with msec, are separated by commas. A blank
space within the parameter field will terminate that field
and cause the Assembler to recognize the next entry as the
comment field (id). The first parameter must be separated
from the program name by a comma. The parameters are
optional, but to specify any particular parameter. those
preceding it must also be specified.

The comment field (id) can be a maximum of 73 characters
due to the restriction of the source statement size. The
source statement will be truncated after column 80.

The comment field in the NAM statement will be included
as ASCII in the relocatable binary object code. This means
that when the program is relocated with the RTE loader,
the comments field will be printed out as part of the NAM
statement.

4-29

RTE-II

CREATING TYPE 4 ENTRY RECORDS

The user can create type 4 entry records using the RTE
Assembler RPL instruction. When an entry point is RP’d
with a code replacement value (e.g., .FAD to 105000) the
RTE Loader intercepts the entire JSB instruction and
substitutes the RP’d value in its place. This means the user
can eliminate software subroutines by replacing their entry
points with microcode instructions. It also allows the user
to expand the system by adding programs referencing entry
points to subroutines that were not loaded during
generation.

4-30

Entry points are replaced using the RTE Assembler in the
following manner:

a. Create a source file (e.g. punch a paper tape or
create a disc file) using the following format example:

label operation operand
.FAD RPL 105000B
b. Assemble the source file to obtain a relocatable

and load the relocatable file into the LG track area.
c. Load your program with the RTE Loader.

Real-Time Program Preparation

PART 6
RTE-II Loader

INTRODUCTION

The RTE-II On-Line Relocating Loader provides a means
for linking relocatable files produced by compilers or as-
semblers together with one or more library files. The result-
ing program can optionally be loaded into the system and
run;or the program can be loaded into the background with
the DEBUG library routine linked to it.

The RTE-II Loader has the following features:

° Can operate under control of the File Manager
operating under Batch mode.

° Is swappable and can be operated in either
background or foreground disc-resident areas.

o Allows programs to reference common areas away
from program location.

° Loads referenced library routines from LG tracks.

. Can force the relocation of subroutines which have
not been referenced by a previously relocated module.
For example, you can force the relocation of your
own version of a subroutine that already exists in the
system library (see library parameter, GO,LOADR
command).

® Allows a program to be permanently added to the
system (i.e., only the leader can be used to purge a
permanent program; the OF, name, 8 command will
not remove a permanent program from the system).

e Allows programs to reference absolute and code re-
placement type ENT records.

(] Uses system area tracks that have been vacated by
deleted programs.

® Allows a program to be temporarily loaded into the
foreground area.

Uses the “short” ID segment (when available) when
loading a background program segment. Also, does
not restrict the arrangement of subroutines following
segments. For example, if a subroutine is shared by
two segments, only one copy of it is necessary on the
load-and-go tracks.

LG TRACK AREA

The RTE system provides facilities for the assembly or
compilation, relocation, and scheduling for execution of a
user program without intervening paper tapes. To accom-
plish this, the assembler or compiler accepts source state-
ments from which it generates relocatable object code. The
relocatable code may be stored on disc in predefined LG
tracks (see LG Operator Request, Section !1). Then, separate
operator requests initiate relocation (e.g., RU,LOADR) and
schedule execution (e.g. ON, or RU, program name).

Two rules should be remembered when using the LG track
area:

a. Do not reset the LG track area using the LG
command if the LG track area was just used for a
forced relocation and additional library routines re-
main to be relocated. To do so would result in the
loss of the additional routines to the loader.

b. When the initial input is from the LG track area,
the input option parameter of the GO,LOADR com-
mand is set to 99 to indicate that the LG tracks have
been reset with new data moved into them. Setting
the input option to 2 implies that the LG tracks have
not been reset and additional data has been added to
them.

When using the loader, the programmer can structure the
LG track area with a single main program and subroutines,
or with a main program and segments. For relocating a main
program with segments from the LG track area, some con-
straints are imposed by LOADR. These constraints are:

a. Once the LG track area has been scanned and
relocated, there should be no undefined external

RTE-II

references in the main program. If there are, they will
be listed after the last segment is relocated but they
cannot be satisfied.

b. A segment cannot satisfy any external refere-
nces made by another segment. However, the main
program can satisfy segment external references, and
segments can satisfy main program external references.

When the loader terminates either with the message
/LOADER: SEND, or /LOADR ABORTED, the LG track
area is cleared. If the loader terminates in some other
manner, the LG track area is not cleared.

BACKGROUND LOADING

During loading, the programs are relocated to the start of
the background disc-resident area and linked to external
references such as EXEC, the resident library, or the re-
locatable library. Any segments overlay the core area fol-
lowing the main program and its subroutines.

Regardless of the program type recorded in the NAM re-
cord, the third parameter of the RU,LOADR request in-
dicates whether the program is to be set up for foreground
or background operation. Default results in the latter and
the program is not permanently set up in the system (ie.,
the program is lost on boot-up). The DEBUG library sub-
routine can be linked to the program if desired.

The loader stores the absolute version of the program, its
subroutines, and linkages on a disc track or a group of
contiguous tracks; it then assigns the disc tracks to the
System (i.e., not available as scratch or data tracks by pro-
grams) and updates, in core only, the ID segment assigned
to the program. The program and its subroutines may be as
large as the background disc-resident area. Common area
can be allocated in one of several areas according to the
needs of the programmer. Refer to the optional parameters
in the RU,LOADR command.

ON--LINE MODIFICATION

Using the loader, the operator can permanently modify the
set of disc-resident user programs in a configured RTE-II
System. The loader adds new disc-resident real-time or
background programs, and replaces disc-resident programs
with updated versions that have the same name. When a
program is being replaced it must be dormant, not in the
time list, and have a zero point of suspension. The OF
operator request deletes those disc-resident programs
loaded temporarily into the system by the loader. The OF
operator request will not delete program segments that were
permanently added on-line or stored during generation.

4-32

When the system is generated, RTGEN, the system gen-
erator, stores the programs on the disc in an absolute,
packed format. Each main program is identified and located
by a 28-word identification segment (ID segment) of which
there is one copy in core and one on the disc. For
disc-resident programs, the program’s disc location as well
as its core memory bounds, is kept in the ID segment. When
a main program and its segments are loaded, the segments
are identified and located by a 9-word “short” ID segment.
Refer to Appendix A for the ID segment formats.

RTGEN can create a number of blank 28-word and 9-word
ID segments so that the loader can add new programs and
segments to the permanent system later. The addition or
replacement of a program involves the conversion of relo-
catable programs into an absolute unit, finding space on the
disc to store it, and recording information in the ID seg-
ment. The loader always attempts to use the “short” ID
segment for identifying a program segment. However, if a
“short” ID segment is not available, a regular 28-word one
is used.

In replacing, the new program may overlay the old pro-
gram’s disc space only if the length of the new program plus
base page linkages does not exceed the disc space formerly
occupied by the old program. A track or group of tracks is
allocated for program storage if adding a program, or if
space requirements of a replacement program exceed those
of the old. These newly allocated tracks are soft-
ware-protected, but not hardware-protected.

Core-resident programs cannot be replaced because the
length of the program and linkage area is not kept in the ID
segment for core-resident programs, nor can they be added
because this would require changing the disc-resident pro-
gram area origins.

If a user supplied routine is to be referenced by a program,
and a core resident subroutine of the same name already
exists in the system, then the user supplied routine must be
loaded before any reference is made to it. Conversely, if a
system relocatable library routine has to be replaced, the
user supplied routine can be force loaded even after it has
been referenced.

LIMITATIONS

Several limitations may prohibit the final addition or re-
placement of disc-resident programs:

a. A common length exceeds the original common
block. The length of local common is governed by the
first relocatable module encountered by the loader.

b. The base page linkages exceed the correspond-
ing linkage area (linkage area for back-
ground/foreground disc resident programs) as estab-
lished during system generation.

c. The length of the absolute program unit ex-
ceeds the area available.

d. Disc space is not abvailable to store the pro-
gram.

e. A blank ID segment is not available for adding a
program. (A program previously added could be de-
leted to provide a blank ID segment.)

The disc hardware protect must be physically disabled prior
to the loading (and then enabled afterwards), unless the
protection is always kept disabled. RTE-lI provides ad-
ditional software protection for any tracks containing
system programs oOr user programs.

SEGMENTED BACKGROUND PROGRAMS

Segmented programs can be added and replaced in any or-
der as long as the main program is always entered first.
Permanent addition of main segment programs need not
necessarily result in the main and segments being stored on
contiguous tracks.

When replacing segmented programs that were incorporated
into the sytem at generation time, the operator mustreplace
every segment with 2 new segment having the same name,or
remove the segment permanently from the system. Addi-
tional extra segments, however, may be added in a replace-
ment and any segments left over (from the old program) as
a result of replacement may be deleted using the loader.

NEW PROGRAM ADDITION

When a new program is added, it is stored on a complete
disc track or several contiguous tracks. A blank ID segment
is allocated to record the program’s memory and disc
boundaries, name, type, priority, and time values. The
loader attempts to use available disc space in the system
before allocating new full tracks. If new tracks must be
allocated, they are assigned to the system and are soft-
ware-protected.

A program added to the system must be thoroughly de-
bugged because, once incorporated, it has all the rights of
an original program. Specifically, a real-time disc-resident
program has access to the real-time disc-resident area, the
block of system available memory for I/O buffers and re-en-
trant blocks, and the background areas.

Real-Time Program Preparation

PROGRAM REPLACEMENT

In a replacement, if the new program can fit in the disc area
of the old program (both programs must have the same
name), the new program uses the 1D segment of the old.
The new program is generated onto temporary tracks, and
then, if it can fit in the old area, or within another area
within the system gained as a result of deleting a program
incorporated during generation, it is transterred. If not, the
temporary tracks attain system track status and a blank ID
segment is assigned to it. The old ID segment is blanked but
retains its disc space for later use by another program.

PROGRAM DELETION

A temporary program is deleted from the system with the
OF ,name,8 command. A permanent program (which is de-
fined as a program loaded during generation, or on-line with
the loader as a permanent or “edit” load), is deleted with
the loader. When using the loader to delete a permanent
program, the first two paramenters are defaulted, and the
opcode parameter is set to 4.

This blanks the program’s ID segment making it available
for loading another program. The tracks (unless they are
system tracks) containing the program are released. If the
program had been saved on FMP tracks through the File
Manager, those tracks are not released to the system but
remain as FMP tracks.

COMMON ALLOCATIONS

There are three options the user can specify when allocating
common area for a program.

SYSTEM COMMON — This implies a background program
having its common in the background system common area,
or a foreground program having its common in the fore-
ground common area.

LOCAL COMMON — Common area for a background pro-
gram is established directly above the background resident
area, or for a foreground program directly above the
real-time resident area. The common area will be swapped
during program execution.

REVERSE COMMON — This implies a background pro-
gram having its common in the foreground system common
area. Note that improper programming can cause memory
protect violations. Conversely, a foreground program can
use and reference the background system common area.

LOADER OPERATION

The operator schedules the loader for execution with the
RU operator command.

RTE-II

RU,LOADR
Purpose:
To relocate and load programs so they can be
scheduled by an ON or RU operator request.
Format:
RU,LOADR , input, list, opcode, fmt, listing
Where:
input = Logical unit number of input device. If
set to 99, the load-and-go tracks are used,
but 99 does not terminate the parameter
list (default = 5).
list = Logical unit number of list device
(default = 6).
opcode = Operation Code:
Most
Significant
Digit Least
Sys- Lo- Re- Sig-
tem cal verse nifi-
cant Loader
Common Area Digit Operation
1 *2 3 0 BG temp.
1 *2 3 1 BG w/DEBUG
*1 2 3 2 On-line Edit
— - 3 List Programs
4 Purge
Program
1 *2 3 S FG temp.
*] 2 3 6 FG replace
*1 2 3 7 FG add new
*1 2 3 8 BG replace
*] 2 3 9 BG add new
NOTE
The asterisks indicate upper digit
default values.
fmt = Format of program.
0= Single main program and sub-
routines.
1 = Main and segments.
listing = Listing parameter (only when input =
99).

4-34

0 = List program name. bounds. and
entry points.

List only entry points.

List only program name and bounds.
Omit program name, bounds. and
list of entry points from listing.

W oo =
Ll

COMMENTS

When the program is stored on the disc, any BSS location
will contain NOP instructions (i.e., zero). “WAITING FOR
DISC SPACE” is printed when a track allocation cannot be
made. The loader repeats the disc request and is suspended
until space becomes available.

If a single program is loaded and it is not necessary to
re-schedule the loader with the GO command, the loader
terminates with the following message:

/LOADR: name READY
/LOADER: $SEND

Where

name is the name of the main user program. The load-
er terminates and the program is ready to run.

opcode PARAMETER

The most significant digit of the opcode parameter indi-
cates the type of “common” allocation desired and the
least significant digit what operation to perform. If the up-
per digit is not supplied, the type of “common” allocation
defaulted to depends upon the type of operation code. The
asterisks indicate these defaults.

Setting opcode = 1 causes DEBUG to be appended to each
main program and segments. The loader sets the primary
entry point of each to DEBUG, rather than the user pro-
gram. When the program is run, DEBUG takes control of
program execution and requests instructions from the key-
board. (See “DEBUG” for legal DEBUG commands.)

Setting opcode = 2 initiates the loader for an on-line edit
which requires additional information through the GO.
LOADR command. Refer to the ON-LINE LOADER
OPERATION heading for additional information.

Setting opcode = 3 causes a listing of all the programs and
blank ID segments to be printed. For each ID segment in
the system the following format is used.

name, type, priority

name is the program name.
type is the program type:
I — Real-time resident.
2 — Real-time disc-resident.
3 — Background disc-resident.
4 — Background resident.
5 — Background segment.
priority is the program priority, from 1 to 32767.

A blank (i.e., available for use by the loader) ID segment is
noted by the line:

<LONG BLANK ID>
. or —
<SHORT BLANK ID>
The loader terminates after the list is complete.

Setting opcode = 4 initiates the loader to purge a per-
manent program. Using this option, the input and list para-
meters automatically default to 1. The loader’s response to
this option is:

/LOADR: PNAME?

Enter the program’s name on the keyboard input device
and it will be permanently removed from the system. To
abort the command (and loader) enter /A.

Setting opcode = 5-9 allows the loader to run in Batch
mode without operator interaction.

fmt PARAMETER

If input = 99 (specifying load-and-go tracks), and fimt = 1
(main and segments), an automatic segmented program load
is done and the loader immediately scans the library for
entry points. The LG tracks must contain the main
and its subroutines tollowed by a segment and its sub-
routine. Where the same subroutine is required by both the
main and segment, but is not in the library, it need only
appear in the main. Subroutines required by more than one

Real-Time Program Preparation

segment, but not the main, can appear with each segment in
the LG tracks for greater speed in loading. Or, if the
user desires, only one copy of the subroutine can be placed
in the LG tracks and the tracks scanned as a library
(loading time is somewhat greater). Note that if the loader
suspends as a result of undefined externals in any segment,
the user may move additional subroutines to the end of the
LG tracks and scan the area as a library, or have the
loader scan the input device for required subroutines. If
there are undefined externals in the main, the loader prints
the message MAIN followed by UNDEFINED EXTS and
then suspends. It is not possible to satisfy these undefineds
using the loader. The only command acceptable is GO.4
(continue loading without fulfilling externals).

If fmt = 0, a single main program and subroutines will be
merged into an absolute program unit. To load another
main program, the loader must be scheduled again.

LOADING THE BINARY CODE

For a main/segment load, the main program must be enter-
ed first to establish the segment area boundaries. The
library must be scanned (GO,LOADR.1) after each main
program and segment (except the last segement).

The loader scans the relocatable programs and subroutines
as it reads them in, keeping track of any external refer-
ences. If input is initially from the disc as specified by 99 in
the RU statement, the loader immediately scans the library
for entry points. If input is from paper tape and DVROO
has been configured to set the tape reader down on EOT,
the loader suspends with the message:

I/0 ERROR ET EQT #eqt
/LOADER: LOAD

EQT #eqt is unavailable until the operator reinitializes it.
UP, eqt

If an EOT does not cause the tape reader to be set down,
the RTE System does not output any message but does
suspend the loader.

LOADER RESCHEDULING

The operator reschedules the loader with the GO operator
command.

4-35

RTE-II

GO, LOADR (Background)

Purpose:
To reschedule the loader to continue program loading.
Format:

GO,LOADR, input option, entry pts, library

Where:
input option = 0, 2, or 99 indicates a program load
if library is 0 or not entered.
= 0- Load from the binary input
unit (LUS).
= 1 - Scan disc resident relocatable
library and load referenced li-
brary routines.
= 2 _ Load from LG tracks. LG tracks
have been loaded from
previously.
= 3 - Load from the relocatable li-
brary for the last segment in a
main/segment load.
= 4 — Continue without loading any
remaining referenced library
routines.
=98 — List undefined externals.
=99 _ Load from LG tracks for the
first time.
=Ju — Where lu is a logical unit num-
ber and not one of the above
numbers.
entry pits = (- List entry points.
=] — Omit list of entry points
library = (0 - Load all data (force load).
=] — Satisfy undefined externals only
(library scan).
COMMENTS

If the LG tracks are read with a GO,LOADR,99 (or
2) command, the LG track area is not cleared. However,
the RU,LOADR,99 command will still clear the load-and-go
tracks upon a successful load.

input option PARAMETER
. Once you have force loaded from the load-and-go

area, subsequent use of the load-and-go area requires
that input option = 2.

4-36

° After the loader encounters the last segment during a
main/segment load from the LG track area, no
more segments can be read in (even from the binary
input device).

] If undefined externals remain in the main of a seg-
mented program (which the loader discovers after
loading the last segment) and the message
“MAIN—UNDEFINED EXTS” is printed, the unde-
fined externals cannot be satisfied. The only legal re-
sponse at that time is GO, LOADR, 98 or 4.

L4 It is permissible to use the LG track area more than
once with GO, LOADR, 99 without resetting it with
the LG command as long as the last load was not a
force load.

library PARAMETER

The library parameter does not apply when input option =
1, 3, 4 or 98. If library = 1 then library input from the
specified source is assumed. If library = 0 then the input is
force loaded. If the library is read through an input device
(not from the LG track area) and the message LOAD LIB
is printed, the library must be scanned again to satisfy an
undefined external. When the message LOAD is printed, the
library scan is finished.

MATCHING EXTERNALS

External references to resident library programs use the
existing base page links to those entry points, but external
references to disc-resident relocatable library subroutines
cause these routines to be loaded along with the referencing
program. If a segment references a library routine also re-
ferenced by the main program, the segment shares the
routine loaded with the main program.

After matching all possible entry ponts to external refer-
ences, if there are still undefined external references, the
loader prints this message:

UNDEFINED EXTS

The external references are listed, one per line, and the
loader suspends itself.

To load additional programs from the input unit, the
operator types:

GO,LOADR

To continue, without fulfilling external references, the
operator types:

GO,LOADR 4

The loader proceeds to relocate the program or segment
and subroutines into absolute format, and prints a list (on
the list device) of all entry points (unless instructed not to
print the list) as each routine is loaded. The entry point
listing is:

*name address
Where
name is the entry point name, and
address is its absolute location in octal.

END OF LOADING

At the end of a normal load, or after loading the last seg-
ment of a main/segment load, the loader prints the fol-
lowing message and terminates itself.

/LOADR: name READY
J/LOADR: $SEND

Where

name is the name of the main user program. The load-
er terminates and the program is ready to run.

After loading a main or segment of a main-segment load
(end-of-tape mark) the loader prints the following message
and waits for the GO,LOADR entry for the next segment.

/LOADR: LOAD

After entering the last segment and subroutines from the
input device (not the disc), the operator reschedules the
loader with the command:

GO,LOADR,3

The loader proceeds to the end of loading, as described
above.

The operator can schedule the program for execution by an
ON or RU operator request (see Section II). The disc
tracks containing the program are assigned to the system
and are software-protected. The program, if a temporary
load, can be eliminated from the system with the OF
operator command, or if a permanent load can be
eliminated with the RU,LOADR,, 4 command.

Real-Time Program Preparation

LOADER OPERATION (ON-LINE EDIT)
The operator schedules the loader for on-line edit opera-

tions by setting opcode = 2 in the RULLOADR command.
Refer to the RU,LOADR command for more details.

RU,LOADR input,list,2,fmt,listing
The loader requires additional information to carry out the
modifications so it prints the following message and
suspends.

/LOADR: “GO” WITH EDIT PARAMETERS

The operator must disable the hardware disc protect switch
and reschedule the loader.

LOADER RESCHEDULING (ON-LINE EDIT)
The operator reschedules the loader with the GO operator

command. This GO.LOADR command for on-line edit
operations contains an additional command.

GO,LOADR (On-Line Edit)

Purpose:

To reschedule the loader to input additional param-
eters required tor the edit operation.

Format:
GO.LOADR, operation, prog tvpe |,priority]
Where:

operation = 1 for an addition operation.

2 for a replacement operation (pro-
gram must be dormant).

prog type 2 for a real-time disc-resident program,

or
= 3 for a background disc-resident
program.

priority = priority (optional) form 0 to 32767 (a
0 means use the priority value in the
NAM record of the program or. it that
priority is 0, use 32767).

RTE-II

COMMENTS

Any errors cause the error message “L10” to be printed.
The disc hardware protect must be disabled before the
program is loaded, then re-enabled after loading.

When the GO request is entered, the loader proceeds to
load the program, keeping track of any external references.
If input is from the disc as specified by 99 in the ON
statement, the loader immediately scans the library for
entry points. If input is from paper tape, the loader
suspends with the message.

I/O ERR ET EQT #eqt
/LOADER:LOAD

EQT #eqt is unavailable (see DN, Section II) until the
operator declares it up.

UP,eqt
The operator reschedules the loader with the GO request

exactly as described previously under GO,LOADR (Back-
ground).

4-38

RTE DEBUG LIBRARY SUBROUTINE

DEBUG, a utility subroutine of the RTE Relocatable Li-
brary is appended to the user’s program by the loader when
the opcode parameter in the RU,LOADR command is set
to 1, and allows programs to be debugged (i.e., checked for
logical errors on-line) during execution. Programs that ex-
pect starting parameters or that call RMPAR (see Section
IIl, Program Suspend Exec Call) cannot use DEBUG be-
cause DEBUG uses the parameters.

After the user’s program is loaded with DEBUG appended
to it, the user turns his program on with the input parameter
set to 1 (keyboard input).

RU name,1
Where

name is the name of the user’s program.

The primary entry point of the user’s program (the location
where execution begins) is set to DEBUG so that when the
program is turned on with an RU operator request, DEBUG
takes control and prints a message:

BEGIN ‘DEBUG’ OPERATION

The user can enter any legal debug operation. Illegal re-
quests are ignored and a message is printed:

ENTRY ERROR

For further details on the uses of DEBUG, refer to the
Pocket Guide to Hewlett-Packard Computers (HP Part No.
5951-4423) BCS Section, where the non—RTE DEBUG
routine is described.

The following commands describe DEBUG operations.

B,A [nstruction breakpoint at address A.
(NOTE: if A =JSB EXEC, a memory pro-
tect violation occurs.)

D,AN1[,N2] ASCII dump of core address N1 or from
N1 to N2.

D,B,N1[,N2] Binary dump of core address N1 or from
N1 to N2.

M,A Sets absolute base of relocatable program
unit.

RA Execute user program starting at A. Exe-
cute starting at next location in user pro-
gram (used after a breakpoint or to initi-
ate the program at the transfer point in
the user program).

S,A1,D1 Set D1 in location Al.

S,A1,D1...Dn Set D1 to Dn in successive memory loca-
tions beginning at location Al.

W,A D1 Set A-Register to D1.

W.B,D2 Set B-Register to D2.

W.E,D3 Set E-Register (0 = off, non-zero = on).
W,0.D4 Set Overflow (0 = off, non-zero = on).
X,A Clear breakpoint at address A.

A Abort DEBUG operation.

RELOCATING LOADER ERROR MESSAGES
Messages are printed in this format:
J/LOADR: message
“L” ERROR MESSAGES
LOl — Checksum error
L02 — Illegal record
These errors are recoverable (except in Batch mode). The

offending record can be reread by repositioning the tape
and typing.

GO,LOADR

L03 — Memory overflow.

L04 — Base page linkage area overflow.
LOS — Symbol table area overflow.

L06 — Common block error.

a. Exceeding allocation in a replacement or
addition.

Real-Time Program Preparation

b. In a normal background load, first pro-
gram did not declare largest common block.

L0O7 — Duplicate entry points.
LO8 — No transfer address (main program) in the program
unit. Another program may be entered with a GO
operator request. (This also occurs when load-and-
go is specified, but no program exists in the load-
and-go area.)

L09 — Record out of sequence.

L10 — Operator request parameter error. GO requests
may be retyped; RU requests may not.

L11 — Operator attempted to replace or purge a core-
resident program.

L12 — LG area used without presetting (input option =2
IN ‘GO). input option was not input as 99
previously.

L13 — LG area has been illegally reset — overwritten. Pro-
gram addition on LG area not allowed it it has
already been specified for program input, or LG
area was once used for force loading with input
option = 99 and it is again being used with input
option = 99.

L14 — ASMB produced illegal relocatable. A DBL record
refers to an external which has not been defined
(the original can not be found in the symbol
table).

L15 Forward reference to a type 3 of type 4 ENT or to
an EXT with offset which has not yet been
defined.

ADDITIONAL MESSAGES

NO BLANK ID SEGMENTS

This message is printed when available (i.e., blank) ID seg-

ment is not found. The loader calls for program suspension.

The operator may then delete a program from the system
(OF operator request) or may terminate the loader.

DUPLICATE PROG NAME — name
This message is printed when a program name is already

defined in the system for a normal load or a program addi-
tion. The loader changes the name of the current program

4-39

RTE-II

by replacing the first two characters with periods (e.g.,
JIMB1 becomes ..MB1). The second duplicate program
name aborts the loader.

WAITING FOR DISC SPACE

This message is printed when a track allocation cannot be
made. The loader repeats the disc request and is suspended
until space becomes available.

UNDEFINED EXTS

This message is printed followed by a list of all remaining
undefined external symbols after a scan of the library.
Additional programs may be loaded by the GO operator
request.

4-40

LOAD

This message is printed and the loader is suspended when-
ever an end-of-tape condition is detected from the input
unit.

SET PRGM INACTIVE

This message is printed if the loader attempts to replace a
program that is not dormant, is in the time list, or has a
non-zero point of suspension. The program to be replaced
must be set inactive using the OF operator request.

LOAD LIB
This message is printed when an end-of-tape condition is

detected from the input device being used for library input
and the loader needs the library to be scanned again.

Real-Time Program Preparation

PART 7
RTE Relocatable Library

INTRODUCTION

There are three libraries or collections of relocatable
subroutines that can be used by RTE-II, the RTE/DOS Re-
locatable Library, EQU version (F2E. 1), and the RTE/DOS
FORTRAN 1V Library (F4D. 1), and the RTE/DOS Float-
ing Point Library (F2F. n). Refer to Figure 4-1. The F4D.n
Library contains a formatter, extended precision, and other
routines that reference routines from the F2E. n Library. If
extended precision is not required but the formatter is, a
separate RTE/DOS Basic FORTRAN Formatter (FF. n) is
available.

NOTE

The n referenced in the above
paragraph represents the revision
code letter.

The F2E. n Library also contains mathematical and utility
routines such as SIN, COS, BINRY, etc. A program signifies
its need for a subroutine by means of an “external refer-
ence.” External references are generated by EXT state-
ments in Assembly Language, by CALL statements and the
compiler in FORTRAN, and by CODE procedures and the
compiler in ALGOL.

All of these libraries and the subroutines they contain are
documented in the Relocatable Subroutine Manual (HP
Part No. 02116-91780).

In addition to the above libraries there is a system library
(92001-16005) which contains routines unique to the
RTE-Il system. These routines are documented in this
section.

RE-ENTRANT SUBROUTINE STRUCTURE

Many executing programs can reference one resident library
subroutine on a priority basis. If the subroutine is struc-
tured as re-entrant, it must not modify any of its own
instructions; and it must save temporary results, flags, etc.,
if it is called again (by a higher priority program) before
completing its current task.

Each time the re-entrant routine begins executing. the ad-
dress and length of its temporary data block are transferred
to RTE-I through entry point SLIBR to save the data. At
the end of execution, the re-entrant routine calls RTE-I
through entry point SLIBX to restore the temporary data,
if any.

Re-entrant structure is used for programs with an execution
time exceeding one millisecond. For shorter execution
times, the overhead time the system uses in saving and re-
storing temporary data makes re-entrant structure unrea-
sonable. Faster subroutines can be structured as privileged.

NOTE

A library (type 6) program can only
call another library program or
system (type 0) program.

FORMAT OF RE-ENTRANT ROUTINE

NAM XXXXxX,0
EXT SLIBR, SLIBX

ENTRY NOP Entry point of routine.
JSB SLIBR Call RTE-I1 to save temporary
data.
DEF TDB Address of temporary data.

. Program instructions
EXIT JSB SLIBX Call RTE-II to restore data.
DEF TDB
DEC m m is for routines with two return
points in the calling program: 0
specifies the error-print return
and 1 the normal return. For rou-
tines with only one return point,
m = 0.
TDB NOP System control word.
DEC n+3 Total length of current block.
NOP Return address to calling program.

4-41

RTE-II

Temporary data (n words).
Tn
PRIVILEGED SUBROUTINE STRUCTURE

Privileged subroutines execute with the interrupt system
turned off. This feature allows many programs to use a
single privileged subroutine without incurring re-entrant
overhead. As a result, privileged subroutines need not save
temporary data blocks but must be very quick in execution
to minimize the time that the interrupt system is disabled.

RTE/SYSTEM
LIBRARY

YES
FORTRAN

v

HP RTE/DOS
FORTRAN FORTRAN IV
FORMATTER LIBRARY
FF.n F4D.n

FLOATING
POINT

RTE
RTE/DOS FLOX?I?\JSG
RELOCATABLE POINT
LIBRARY LIBRARY
F2E.n F2F.n
o TPRTE-CS

Figure 4-1. RTE Library Configuration Diagram

442

FORMAT OF PRIVILEGED ROUTINE
NAM xxxx,6

EXT SLIBR,SLIBX

ENTRY NOP Entry points to the routine.
JSB SLIBR Call RTE-I to disable the
interrupt system and memory
NQP protect fence.

EXIT JSB $LIBX Call RTE-II to return to calling
program and enable interrupts
and memory protect fence.

DEF ENTRY Location of return address.

Re-entrant and privileged routines may be placed in the
resident library during generation by either of the following
methods.

o If the routine is declared as an external (called) by a
resident (type 1 or 4) program, or is called by another
resident library routine, the routine will automatically
be placed in the resident library by the generator.

(] The routine can be changed during the parameter in-
put phase of generation to a type 14 routine (it also
could have been assembled as a type 14).

Note that type 6 routines not put in the core resident
library are changed to utility routines (i.e., type 7).

UTILITY SUBROUTINE STRUCTURE

Utility subroutines are subroutines which cannot be shared
by several programs because of integral design or I/O opera-
tions. A copy of the utility routine is appended to every
program that calls for it. The library subroutine FRMTR
(FF.n) or FNTIO (F4D.n) which carries out FORTRAN
1/O operations, and the PAUSE subroutine are examples of
utility routines.

When RTGEN creates the RTE-II System, all library sub-
routines not included in the resident library are loaded im-
mediately following each user program requiring them dur-
ing the Relocatable User Program (REL USER PROG) por-
tion of the generation.

RE—-ENTRANT I/O

A re-entrant subroutine may do I/O using the standard
EXEC requests. If the buffer is in the temporary data block
(TDB) of either itself or another re-entrant routine that
called it, the calling program is swappable. If the buffer is in
the user area the program is not swappable. (i.e., if the
buffer is not in the TDB or user common area the program
is not swappable).

A subroutine called REIO is furnished to allow the user to
do re-entrant [/O. REIO is a utility type library routine that
has within its structure a re-entrant routine. Therefore, the
routine may not be put in the resident library, it must be
appended to each program that calls it.

The calling sequence for REIO is:

CALL REIO(ICODE,ICNWD,IBUFR,IBUFL)

where the parameters are as described in the READ/WRITE
EXEC call in Section III of this manual. REIO will always
do the requested I/O: however, it will do re-entrant /0
only if the buffer is less than 130 words (to save system
memory), and the buffer address is at least three words
above the current fence address. If the sign bit is set on
ICODE the same error options available with the EXEC Call
are effected (i.e., error return followed by normal return).
REIO returns the same values in the A- and B-Registers as
the standard EXEC Call.

OTHER SUBROUTINES

Several other subroutines are provided for programming
convenience. The basic calling sequences are provided here
for reference.

BINRY

FORTRAN programs can call BINRY, the disc read/write
library subroutine, to transfer information to or from the
disc. The call must specify a buffer array, the array length
in words, the disc logical unit number, track number, sector
number, and offset in words within the sector. (If the offset
equals 0, the transfer begins on the sector boundary; if the
offset equals n, then the transfer skips n words into the
sector before starting.) BINRY has two entry points:
BREAD for read operations and BWRIT for write
operations.

For example,

CALL BWRIT (ARRAY,N,IDISC,ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOFST)

Where:

ARRAY = Address of the first element

N = Number of words

IDISC = Disc logical unit number

ITRK = Starting track number

ISECT = Starting sector number

[OFST = Number of words offset within a sector

Real-Time Program Preparation

There are three basic ways that data can be written on the
disc in relation to sector boundaries. Care must be uscd in
planning the WRITE statement in two of the cases to avoid
losing existing data.

One form of writing data on the disc is offsct=n (i.e., trans-
fer begins within a sector), and less than the sector is
written, or the data transfer ends on a sector boundary. The
entire first sector is initially read into an internal bufter, the
data is modified according the BWRIT statement, and then
the entire sector is rewritten on the disc with no data loss.
No special precautions are required in this instance.

A second form of writing data on the disc is oftset=0 (i.e.,
transfer begins on a sector boundary), and less than the
sector is written. The remaining data in the sector will be
lost if the following precaution is not taken. The entire
existing sector on the disc can first be read into a user’s
buffer, modified to reflect the desired changes, and then
rewritten on the disc as a full sector.

A third form of writing data on the disc is offset=0 or n,
and a sector boundary is crossed in the data transfer. The
remaining data in the final sector will be lost if the follow-
ing precaution is not taken. The entire final sector (of the
data transfer) on the disc should be read into a user’s buf-
fer, modified to reflect the desired changes. and then re-
written on the disc as a full sector.

PARSE SUBROUTINE

The following subroutine is used to parse an ASCII string.
Note that the calling subroutine must be privileged when
using the following Assembly Language calling sequence:

buffer address
character count

LDA BUFAD
LDB CCOUM
EXT S$PARS
JSB $PARS
DEF RBUF
-return-

Where RBUF is 33 words long. The result of the parse of
the ASCII string at BUFAD is stored in RBUF using 4
words per parameter and are set as follows:

Word Entry
1 FLAG WORD 0 = NULL
1 = NUMERIC
2 = ASCII

2 VALUE(1) 0 If NULL; Value if Numeric:

first 2 characters it ASCII.

RTE-II

3 VALUE(2) 0 If NULL or numeric else
the 3rd and 4th characters.
4 VALUE(3) 0 If NULL or numeric else

the Sth and 6th characters.

ASCII parameters are separated from numeric parameters
by examination of each character. One or more non-digit
characters (except a trailing “B” or leading “~") makes a
parameter ASCII.

The 33rd word of RBUF will be set to the number of
parameters in the string.

The Parse routine ignores all blanks and uses commas to
delimit parameters. ASCII parameters are padded to 6 char-
acters with blanks or, if more than 6 characters, the left
most 6 are kept. Numbers may be negative (leading “-”)
and/or octal (trailing “B”).

A FORTRAN callable interface to $PARS is provided with
the calling sequence as follows:

CALL PARSE (IBUFA,ICONN,IRBUF)

Where the parameters are as described for the Assembly
Language call above.

BINARY TO ASCII CONVERSION SUBROUTINES

The following subroutine is used to convert an integer
binary number to ASCII. Note that the calling program
must be privileged when using. The Assembly Language
calling sequence:

LDA numb
CLE or CCE (see text)
EXT $CVT3
JSB S$CVT3
-return-
E=1,
A=address of result
B=value at invocation

$CVT3 converts the binary number in the A-Register to
ASCII, suppressing leading zeros, in either OCTAL (E = 0)
or decimal (E = 1). On return, the A-Register contains the
address of a three word array containing the resultant ASCII
string.

444

$CVTI1 has the same calling sequence as $CVT3 except that
on return, the A-Register contains the least two characters
of the converted number.

A FORTRAN callable interface to $CVT3 is provided with
the calling sequence as follows:

(decimal) CALL CNUMD (binary numb,addr)
(octal) CALL CNUMO (binary numb,addr)

where binary numb is the binary number to be converted
and addr is the address where a three word array (6 ASCII
characters) begins. Leading zeros are suppressed.

The following subroutine converts a variable to ASCII base
10 and returns the least two digits in “T”’. The FORTRAN
calling sequence is:

I=KCVT ()

MESSAGE PROCESSOR INTERFACE

The message processor processes all system commands, see
Section II. A FORTRAN call to the system message pro-
cessor is provided with the calling sequence as follows:

I = MESSS (IBUFA,ICOUN,LU)

Where IBUFA contains the ASCII command, ICOUN is an
integer containing the character count, and LU is optional.

The value on return will be zero if there is no response or
the negative of the character count, if there is a message.
The message, if any, will be in IBUFA.

If the request is RU or ON (starting in Ist column) and the
first parameter is zero or absent, then the first parameter
will be replaced by LU. LU is optional. If it is not supplied,
no action takes place.

INTERRUPTING LU QUERY

A calling sequence is provided to find the logical unit num-
ber of an interrupting device from the address of word four
of its equipment table entry. The address of word four is
placed in the B-Register by the driver and used in the fol-
lowing sequence:

LDB EQT4 (done by DVROO and DVR65)

Not necessary if address of EQT4 has already been placed
into ‘B’ by driver, or by another program/subroutine.

EXT EOLU
JSB EOLU
DEF *+2 or *+1
DEF LUSDI

EQLU will return with:

A-Register = 0 if an LU referring to the EQT was not
found.
= LU if the LU was found.
B-Register = ASCII ““00” or the LU number in ASCII
e.g.,"16.”
LUSDI = (optional parameter) value is returned to this

parameter, as well as in the A-Register.

Other variations of the call are (passed from DVROO or
DVRG65):

EXT EQLU
JSB EQLU
DEF *+1

STA LU

STB ASCLU
—or-
LU=EQLU (LU)

PARAMETER RETURN SUBROUTINES

There are two routines used to pass parameters to the pro-
gram that scheduled the caller with wait. The scheduling
program may recover these parameters with RMPAR.

The first routine is called PRTN, passes five parameters, and
clears the wait flag. This means that the caller should termi-
nate immediately after the call. The Assembly Language
calling sequence is:

EXT EXEC,PRTN

JSB PRTN
DEF *+2

DEF IPRAM
JSB EXEC

Real-Time Program Preparation

DEF *+2
DEF SIX

0

IPRAM BSS 5 PARAMETER BUFFER
SIX DEC 6 PROGRAM TERMINATION CODE

The FORTRAN calling sequence is:

DIMENSION IPRAM(5S)

CALL PRTN (IPRAM)
CALL EXEC(6)

The second routine is called PRTM, passes four parameters,
and does not clear the wait flag. When the parameters are
recovered with RMPAR, the first parameter is meaningless.
The Assembly Language calling sequence is:

EXT PRTM
JSB PRTM
DEF *+2

DEF IPRAM

IPRAM BSS 4

INDIRECT ADDRESS SUBROUTINE

This routine is used to find an indirect address. The Assem-
bly Language calling sequence is:

EXT .DRCT
JSB .DRCT
DEF ADDR

-return-

The routine returns with the A-Register set to the direct
address of ADDR, the B-Register unaltered. and the E-
Register lost. This routine is usually used when ADDR is
external.

BREAK FLAG TEST SUBROUTINE

This routine tests the break flag and if set clears it. The
FORTRAN calling sequence is:

IF (IFBRK(IDMY)) 10,20

445

RTE-II

Where:

10 branch will be taken if the break flag is set. The flag will
be cleared.

20 branch will be taken if the break flagis not set.

IDMY must be used in order to inform the FORTRAN
compiler that an external Function is being called.

In the Assembly Language calling sequence:

JSB IFBRK
DEF *+1
-return-

The A-Register will = -1 if the break flag is set and = O if
not. The break flag will always be cleared if set.

FIRST WORD AVAILABLE MEMORY SUBROUTINE

This routine finds the address of the first word of available
memory for a given ID segment. The Assembly Language
calling sequence is:

EXT COR.A
LDA IDSEG
JSB COR.A

-return-

The ID segment address is loaded into the A-Register and
the routine is called. On return the A-Register contains the
first word of available memory (MEM2 from ID). Note that
on entry into a segment, the A-Register contains the seg-
ments 1D segment address.

CURRENT TIME SUBROUTINE

This routine reformats and returns the time in milliseconds,
seconds, minutes, hours, and the day. The FORTRAN call-
ing sequence is:

CALL TMVAL (ITM,ITMAR)
Where:

IT™ is the two word negative time in tens of milli-
seconds. This double word integer can be ob-
tained from the system entry point $TIME or
the time values in the ID segment.

446

ITMAR is a five word array to receive the time. The
array is set up as:

tens of milliseconds

seconds

minutes

hours

current system day of year (not related to call

values)
BUFFER CONVERSION SUBROUTINE

This routine converts a buffer of data back into its original
ASCII form. The user passes the routine a buffer (IRBUF),
plus the number of parameters in the buffer, that looks like
the buffer returned by the PARSE routine. INPRS then
reformats the buffer into an ASCII string that is syntacti-
cally equivalent (under the rules of PARSE) to a buffer that
may have been passed to PARSE to form IRBUF. The
length of the ASCII string in characters will be 8 times the
number of parameters. The FORTRAN calling sequence is:

CALL INPRS (IPRBF,IPRPF(33))

Where:
IPRBF is the buffer IRBUF
IPRBF (33) is the number of parameters parsed

LIBRARY CORE REQUIREMENTS

A user-written HP FORTRAN program requiring formatted
I/O, can use ecither the RTE/DOS Formatter or the
FORTRAN IV Formatter. The following information on
the formatters is provided as an aid in designing the memo-
ry allocation for the system generation process. The figures
are approximate and have been rounded up to
accommodate future changes.

The resident library core requirements will vary depending
on which formatter is used. This is because each formatter
calls different subroutines as shown below.

a. Using RTE/DOS Formatter and RTE/DOS
Library, the following privileged routines are used:

Approximate
Routine Core Requirement
IFIX .ZRLB
FLOAT: .OPSY 3603 240,
.FLUN .EAU.
.PACK

b. Using the FORTRAN IV Library and RTE/
DOS Library, the following privileged or re-entrant
routines are used:

Approximate

Routine Core Requirement
FRMTR IFIX
DBLE FLOAT
SNGL .FLUN

2 C
. XPAK .PACK 3625 1940,
. XCOM .ZRLB
.XFER .OPSY

.ENTR .EAU.,

¢. Using RTE/DOS Formatter and the Floating
Point Library, the following privileged routines are

used:
Approximate
Routine Core Requirement
FLIB .ZRLB
.FLUN .OPSY 405, 2610

.PACK .EAU.

d. Using the FORTRAN IV Library and the Float-
ing Point Library, the following privileged routines

are used:
Approximate
_Routine Core Requirement

FRMTR FLIB
DBLE .ENTR
SNGL .FLUN
. XPAK .PACK 35654 1909,
. XCOM .ZRLB
.XFER .OPSY

.EAU.

If a user FORTRAN program does not require formatted
I/O, and uses the RTE/DOS Library as a minimum, the
minimum routines that may be required are math routines
such as FADSB, .EAU., FLOAT, etc.

The core requirements in the user program area will also
vary depending on which formatter is used. Remember that
a utility routine is appended to each program that requires
it.
a. Using RTE/DOS Formatter and RTE/DOS
Library, FRMTR requires 2545¢4 or 1380, ¢ words.

b. Using the FORTRAN IV Library and RTE/
DOS Library, FMTIO) requires 12355 or 670;¢
words.

Real-Time Program Preparation

NOTE
The utility routine CLRIO is also
used but only accounts for three
words.

A conclusion that can be drawn from the above informa-
tion indicates the following:

Resident Library 240, (Re-entrant/Privileged)

FRMTR = +1380,, (Utility)

1 program = 1620, Total FRMTR+Library

(FRMTR) = +1380,;, (Utility) 2nd Copy tor 2nd
Program

2 programs = 3000,

(FRMTR) +1380 (Utility) 3rd Copy for 3rd

_ Program

4380, Total FRMTR Copies +
Library

3 programs

b. Using FORTRAN IV Formatter

Resident Library =

1940, (Re-entrant/Privileged)

FMTIO

+ 670,, (Utility)

2610, Total FMTIO + Library
+ 670, (Utility) 2nd Copy

328040

1 program

2 programs

+ 670, (Utility) 3rd Copy

3950, Total FMTIO Copies +
Library

3 programs =

€,

Comparing “a” to “b” shows that one program using for-
matted I/O uses less core when the RTE/DOS Formatter is
used. However, two or more programs in the system that use
formatted I/O should use the FORTRAN IV Formatter to
realize a savings in core.

SUBROUTINE STRUCTURE
Table 4-2 has been included to aid the user in determining
which routines are privileged, re-entrant or utility, and the

order in which the routines are presented on the library
tapes.

447

RTE-II

Table 4-2. Order of FORTRAN Library Routines

Table D-1 applies to the following library revision codes:
RTE/DOS Relocatable Library HP 24151D

RTE/DOS FORTRAN IV Library HP 24152C

RTE/DOS FORTRAN Formatter HP 24153B

RTE/DOS Floating Point Library HP 24248B

RTE/DOS Relocatable Library HP 24151D
Routine Privileged Re-Entrant Utility Routine Privileged Re-Entrant Utility
F2E.C
CLRIO X ITOI X
%ANH X ISIGN X
%XP X IABS X
%IN X CHEBY X
9%08S X MANT X
%AN X PTAPE X
%BS X MAGTP X
%LOG X ENTR X
%QRT X IFIX X
%IGN X FLOAT X
%LOAT X FLUN X
%FIX X PACK X
%TAN X .DLC X
%ABS X .GOTO X
%SIGN X IAND X
%AND X IOR X
%0R X OVF X
%0T X ISSW X
%SSW X .MAP. X
GETAD X RMPAR X
TANH X CODE X
.RTOR X ENTIE X
TAN X SWCH X
EXP X .PRAM X
SICOS X INDEX X
SQRT X %WRIS X
SIGN X PAUSE X
ALOG X ERRO X
JENT X BINRY X
ABS X SREAD X
ATAN X %WRIT X
PWR2 X .ZRLB X
FDV X .OPSY X
FMP X .TAPE X
..FCM X DEBUG X
FADSB X DBKPT X
| .RTOI .EAU. X

4.48

Table 4-2. Order of FORTRAN Library Routines (continued)

Real-Time Program Preparation

RTE/DOS FORTRAN IV Library HP 24152C

Routine Privileged Re-Entrant Utility Routine Privileged Re-Entrant Utility
F4D.C
FMTIO X MOD X
FRMTR X AINT X
ZINT X INT X
9%NT X IDINT X
%LOGT X DDINT X
$SQRT X MXMNI X
$LOGT X MXMNR X
$LOG X MXMND X
SEXP X DSIGN X
#COS X DIM
#SIN X IDIM
#LOG X .CFER X
#EXP X .CCM X
.RTOD X .MAP
.DTOR X IDBL
.DTOD X ICPX
DEXP X .DCPX
ALOGT DINT
DLOGT .CINT
DLOG X .CDBL
DATN?2 X REAL X
DATAN X AIMAG X
DCOS X CMPLX X
DSIN X CONJG X
XPOLY X DBLE X
ENTIX X SNGL X
DSQRT X XADSB X
CLOG X XMPY X
ATAN?2 X XDIV X
CSQRT X CADD X
CABS X CSUB X
CEXP X CMPY X
CSNCS X CDIV X
DMOD X .DCM X
.DTOI X XPAK X
.CTOI X XCOM
DABS X XFER
AMOD X PCAD X

RTE/DOS FORTRAN Formatter HP 24153B
Routine Privileged Re-Entrant Utility
FRMTR X

449

RTE-II

Table 4-2. Order of FORTRAN Library Routines (continued)

RTE/DOS Floating Point HP 24248B
Routine Privileged Re-Entrant Utility Routine Privileged Re-entrant Utility
F2F.B
CLRIO X ITOI X
%ANH X ISIGN X
%XP X IABS X
%IN X CHEBY X
%0S X MANT X
%AN X PTAPE X
%BS X MAGTP X
%LOG X .ENTR X
%QRT X .FLUN X
%1GN X PACK X
%LOAT X .DLC X
%FIX X .GOTO X
%T AN X IAND X
%ABS X IOR X
%SIGN X OVF X
%AND X ISSW X
%0R X .MAP X
%0T X RMPAR X
7SSW X CODE X
GETAD X ENTIE X
TANH X SWCH X
.RTOR X PRAM X
TAN X INDEX X
EXP X J%WRIS X
SICOS X PAUSE X
SQRT X ERRO X
SIGN X BINRY X
ALOG X SREAD X
IENT X %WRIT X
ABS X .ZRLB X
ATAN X .OPSY X
PWR2 X .TAPE X
FLIB X DEBUG X
..FCM X DBKPT X
.RTOI X .EAU. X

4-50

Real-Time Program Preparation

PART 8
Segmented Programs

INTRODUCTION

Background disc-resident programs may be structured into
a main program and several overlapping segments, as shown
in Figure 4-2. The main program begins from the start of
the background disc-resident area, and must be loaded
during RTGEN or with the loader prior to its segments. The
area for overlay segments starts immediately following the
last location of the main program. The segments reside
permanently on the disc, and are read in by an EXEC call
when needed. Only one segment may reside in core at a

tume .
P -
Background
disc resident < SEGMENT
area OVERLAY
AREA

MAIN PROGRAM

\
L —
- CORE MEMORY
SEGMENT 3
SEGMENT 2
MAIN PROGRAM SEGMENT 1

SEGMENT 1. _ MAIN PROGRAM

NOTE. TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED

TPRTE-8

DISC MEMORY

Figure 4-2. Segmented Programs

RTE ALGOL SEGMENTATION

ALGOL programs can be segmented it certain conventions
are followed. The main program must be type 3, and the
segment must be type 5 in the HPAL statement. The
segment must be initiated using the Program Segment Load
EXEC call from the main or another segment.

To establish the proper linkage between a main program
and its segments, each segment must declare the main
program a CODE procedure. For example. it MAIN is the
main program, the following must be declared in each
segment:

PROCEDURE MAIN: CODL:

Chaining of segments is unidirectional. Once a segment is
loaded, execution transfers to it. The segment. in turn, may
call another segment using an EXEC call, but a segment
written in ALGOL cannot easily return to the main program.

RTE FORTRAN SEGMENTATION

FORTRAN programs can be segmented if certain con-
ventions are followed. The main program must be type 3.
and the segment must be type S in the PROGRAM
statement. The segment must be initiated using the Program
Segment Load EXEC call trom the main or another
segment.

Each segment must make a dummy call to the main pro-
gram. In this way, the proper linkage is established between
mains and segments:

CALL MAIN
END
Chaining of segments is unidirectional. Once a segment is

loaded, execution transfers to it. The segment, in turn, may
call another segment, but a segment written in FORTRAN

451

RTE-II

cannot easily return to the main program. All communica-
tion between the main program and segments must be
through COMMON.

RTE ASSEMBLER SEGMENTATION

The main program must be type 3, and the segments must
be type 5. One external reference from each segment to its
main program is required for RTGEN to link the segments
and main programs. Also, each segmented program should
use unique external reference symbols. Otherwise, RTGEN
or the loader may link segments and main programs
incorrectly.

Figure 4-3 shows how an executing main program may call
in any of its segments from the disc, via a “JSB EXEC.”
The main program is not suspended, but control is passed
to the transfer point of the segment.

An executing segment may itself call in another of the main
program’s segments using the same “JSB EXEC™ request.
(See Figure 4-4). However, a segment of the FORTRAN or
ALGOL compiler may not call in a segment of the
Assembler.

When a main program and segment are currently residing in
core, they operate as one single program. Jumps from a
segment to a main program (or vice versa) can be
programmed by declaring an external symbol and
referencing it via a JMP instruction. (See Figure 4-5.) A
matching entry symbol must be defined at the destination
in the other program. RTGEN and the loader associate the
main programs and segments, replacing the symbolic
linkage with actual absolute addresses (i.e., a jump into a
segment is executed as a jump to a specific address). The
programmer should be sure that the correct segment is in
core before any JMP instructions are executed.

SEGMENT 2
- NAM SEG1
SEGMENT 1 EXT EXEC

. (SEGMENT OVERLAY
. AREA)

158 EXEC)
———————— ———————— BACKGROUND
OISC RESIDENT

NAM MAIN x AREA

EXT EXEC
. (MAIN PROGRAM
AREA)

— JSB EXEC l

(CALL FOR
SEG2) —\
Ul

MAIN PROGRAM

REAL TIME AREA

DISC_ MEMORY

RESIDENT LIBRARY

REAL TIME
EXECUTIVE

L

TPRTE-9
CORE MEMORY

Figure 4-3. Main Calling Segment

4-52

SEGMENT 2

MAIN PROGRAM

DISC MEMORY

L— NAMSEG2
EXT EXEC

NAM MAIN
EXT EXEC

!

({SEGMENT OVERLAY
AREA)

DISC RESIDENT

BACKGROUND
AREA

(MAIN PROGRAM
AREA)

|

{CALL FROM SEG)

REAL TIME AREA

RESIDENT LIBRARY

T

REAL TIME
EXECUTIVE

4 4

CORE MEMORY

TPRTE-10

Figure 4-4. Segment Calling Segment

EXT M1

ENT S1

% ST JMP M1

(Segments)

MAIN PROGRAM

CORE MEMORY

L

TPRTE-11

Figure 4-5. Main-to-Segment Jumps

Real-Time Program Preparation

PART 9
Multiple Terminal Operation

INTRODUCTION

Through Class Input/Output, which consists of initiating an
1/0 request without wait, the RTE-1I System will support
multiple operator consoles. This means that more than one
operator can have access to the system and a single program
simultaneously. To properly understand the capabilities of
multiple terminal operation, one must first understand the
different ways in which a single minicomputer can interact
with more than one terminal.

MULTIPROGRAMMING

Under the scheme of multiprogramming, each terminal has
its own unique and separate copy of a particular program.
This is accomplished by renaming the program with the File
Manager RN command as many times as required. When the
operator at any terminal desires the system’s attention he
simply strikes a key which causes an interrupt. The system
returns the prompt character back to the terminal signaling
the operator that he has the system’s attention. The
operator can then activate his copy of the program until a
resource limitation or higher priority interrupt occurs. For
example, two users would be using the editor and one user
would be using BASIC; the master copy of the editor would
be on the disc, but two copies of the editor would be
swapped in the background area. Most often, the operator
will use the RUn command to cause a program to be
initiated; tor example, RU,EDITR. The multiterminal
monitor will then cause the editor program to be executed
using the given terminal as an input/output device. The
given terminal is used because its logical unit number is
placed in the first parameter following the program’s name
since in the above example that parameter was left out. If
the user desires to use another 1/O device for input/output
then its logical unit number should be supplied immeidately
following the program name. For example, RUEDITR,14
would schedule the editor program and specify logical unit
14 as the 1/0O device.

Programs and resources are given priorities according to
their interaction with the system as follows:

Real-Time Programming Highest

Interactive Programming
Editor
BASIC
FMGR

Middle

Bit Manipulation
ASMB
LOADR
FTN

Lowest

MULTITASKING

In multitasking multiple programs exist as in multi-
programming, but the programs must communicate data
and control flags to each other in order to synchronize their
efforts. For example, one program may handle data
gathering while another program would handle queries for
statistical analysis of the data: both programs would be
coordinated by a third program to provide a consistent and
simple interface to the terminal user. These multitasking
functions are performed in RTE-1I with the following calls.

Class /O calls

Schedule with wait

Schedule without wait
Schedule and pass parameters
Allocate resource numbers
Logical unit lock

OPERATION

Multiple terminal operation requires that two routines,
PRMPT and RSPNS (HP Part No. 92001-16003) be
configured into the system during generation and that these
routines be assigned a reasonably high priority. The
Interrupt Table is set up so that an interrupt generated by a
terminal schedules the PRMPT routine which in turn
schedules RSPNS. Then, as soon as any key is struck on the
terminal, PRMPT issues the prompt character back to the
terminal signaling the operator that he has the system’s
attention. Input from the operator is processed by RSPNS.

Any legal operator request is valid for input (e.g., ON, or
ST, etc.): however, if an ON or RU command is given and

4-53

RTE-I1

the first parameter is not specified, RSPNS$ will default that
parameter to the input terminal’s logical unit number. The
following examples show how the multiple terminal monitor
(MTM) might be used.

Example:

A key on one of the terminals is struck. The terminal
responds as follows:

14>

You desire to run the Interactive Editor EDITR.
14> RU,EDITR

Since there is no parameter (specifically a logical unit
number) following EDITR, MTM takes the logical unit
number of the interrupting device (14 in this example) and
uses it for I/O. If a logical unit number had been provided
then I/O would have taken place through that device. In the
above case EDITR would respond with

SOURCE FILE?

and you would be on your way using the Interactive Editor.

Programs to be scheduled for operation from several
terminals must be swappable. That is, the program must
perform all 1/O through the re-entrant subroutine REIO
instead of EXEC calls or otherwise maintain their
swappability. An additional requirement is that each
terminal must access the program by using a different
Program ID Segment (different program name).

NOTE

Since the Logical Source (LS) and
LG areas may only be used by one
program at a time, it isrecommended
that programs such as ASMB, FTN4,
etc. should not be assigned duplicate
ID segments for multiple terminal
operations.

When a program is to be used by several terminals it must
be accessed by a different name in each case. In the above

4-54

example using the Interactive Editor, it can be renamed
several times on-line with the File Manager RN command.
The following series of File Manager commands
demonstrates how this is accomplished.

:PK
:RN,EDITR,EDIT1
:RP,EDIT1
:RN,EDIT1,EDIT2
:RP,EDIT2
:RN,EDIT2,EDIT3
:RP,EDIT3
:RN,EDIT3,EDITR

Note that the above commands can be put in a file that will
be run each time the system is booted up. This relieves the
user the responsibility of renaming all programs for MTM
use if the system should go down and have to be rebooted.

The Pack (PK) command in the above example is issued
first to recover disc space. However, if a program file is
assigned to an 1D segment, the disc may not be packed (see
the Batch and Spool Manual).

The last rename command restores the file’s original name
for future use. It is recommended that a different number
be assigned to each copy of the program so that the
operator of each terminal may run the program without
confusion as to which one is already being run by another
terminal. Output which has been buffered up for a terminal
may be stopped and completely eliminated by entering the
Flush (FL) command. V

SYSTEM CONFIGURATION

The routines PRMPT and RPNS are loaded into the
system during the Program Input Phase, and are assigned a
reasonably high priority during the Parameter Input Phase.
When the Interrupt Table is formed, and entry for PRMPT
is made as follows:

select code, PROG, PRMPT

After the RTE-Il System is initialized and running, each
terminal must be initialized with a control request through
either a File Manager command or an EXEC request.

:CN, lu,20B —or— CALL EXEC (3,20B)

SECTION V

REAL-TIME INPUT/OUTPUT

INTRODUCTION

In the Real-Time Executive System, centralized control and
logical referencng of I/O operations effect simple, device-
independent programming. Each I/O device is interfaced to
the computer through one or more I/O channels which are
linked by hardware to corresponding core locations for in-
terrupt processing. By means of several user-defined 1/O
tables, self-contained multi-device drivers, and program
EXEC calls, RTE-II relieves the programmer of most I/O
problems.

For further details on the hardware input/output organiza-
tion, consult the appropriate computer manuals.

SOFTWARE 1/O STRUCTURE

An Equipment Table records each device’s I/O channels,
driver, DMA, buffering and time-out specifications. A De-
vice Reference Table assigns one or more logical unit num-
bers to each entry in the Equipment Table, thus allowing
the programmer to reference changeable logical units in-
stead of fixed physical units.

An Interrupt Table directs the system’s action when an
interrupt occurs on any channel; RTE-II can call a driver
(which is responsible for initiating and continuing opera-
tions on all devices of an equivalent type), schedule a speci-
fied program, or handle the interrupt itself.

The programmer requests [/O by means of an EXEC call in
which he specifies the logical unit, control information,
buffer location, buffer length, and type of operation. Other
devices or subsystems may require additional parameters.

THE EQUIPMENT TABLE

The Equipment Table (EQT) has an entry for each device
recognized by RTE-II (these entries are established by the
user when the RTE-II System is generated). These 15-word
EQT entries reside in the system, and have format as shown
in Table 5-1.

Table 5-1. Equipment Table Entries

Word Contents
15{14 131211110987 6]543]210
1 Device Suspended List Pointer
2 Driver “Initiation™ Section Address
3 Driver “Completion” Section Address
4 D|B |P|S|T| Unit= Channel
5 AV |EQ TYPE CODE STATLS
6 CONWD (Current 1/O Request Word)
7 Request Buffer Address
8 Request Buffer Length
9 Temporary Storage for Optional Parameter
10 Temporary Storage for Optional Parameter
11 Temporary Storage for Driver
12 Temporary Storage tor Driver
13 Temporary Storage for Driver
14 Device Time-Out Reset Value
15 Device Time-Out Clock
Where:
D =1 if DMA required.
B =1 if automatic output buffering used.
P =1 if driver is to process power fail.
S =1 if driver is to process time-out.
T = 1 if device timed out (system sets to zero

before each [/O request).

S-1

RTE-II

Unit = Last sub-channel addressed.

Channel = I/O select code for device (lower number if a

multi-board interface).

AV = availability indicator:

0 = available for use.

1 = disabled (down).

2 = busy (currently in operation).

3 = waiting for an available DMA channel.

STATUS = the actual physical status or simulated status
at the end of each operation. For paper tape
devices, two status conditions are simulated:
Bit 5 = 1 means end-of-tape on input, or tape

supply low on output.

EQ = type of device. When this octal number is
TYPE linked with “DVr,” it identifies the device’s

CODE software driver routine as follows:

00to 07 = paper tape devices (or system control
devices).

00 = teleprinter (or system keyboard control
device).

01 = photoreader.

02 = paper tape punch.

10to 17 = unit record device.

10 = plotter.

12 = line printer.

15 =mark sense card reader.

20 to 37 = magnetic tape/mass storage devices.

30 = fixed head disc or drum.

31 = 7900 moving head disc.

32 = 7905 moving head disc.

40 to 77 = instruments.

CONWD = user control word supplied in the I/O EXEC

call (see Section III).

When RTE-II initiates or continues an I/O operation, it
places the addresses of the EQT entry for the device into
the base page communication area (see Appendix A) before
calling the driver routine.

DEVICE REFERENCE TABLE

Logical unit numbers from decimal 1 to 63 provide logical
addressing of the physical devices defined in the EQT and
the subchannels within the physical devices (if applicable).
These numbers are maintained in the Device Reference Ta-
ble (DRT), which is created by RTGEN, and can be modi-
fied by the LU operator request (see Figure 5-1).

5-2

T T T T T
6 I 5 4 3 [2 1 0]
EQT number—,

TPRTE-12

T T T T T
15|14 13 12[11 10 9l8 7

Subchannel | LULock |

number Flag

Figure 5-1. Device Reference Table

Each one-word entry in the DRT contains the EQT entry
number of the device assigned to the logical unit, and the
subchannel number within the EQT entry. The functions of
logical units O through 6 are predefined in the RTE-II
System as:

0 — bit bucket

1 — system teleprinter

2 — system disc

3 — auxiliary disc

4 — standard punch unit
5 — standard input unit
6 — standard list unit

Logical units 7 through 63 may be assigned for any func-
tions desired although logical unit 8 is recommended to be
the magnetic tape device. The operator can assign EQT
numbers and subchannel numbers within the EQT entries
to the logical unit numbers when the RTE-II System is
generated (see Section VI), or after the system is running
(see Section II, LU). The user determines the number of
logical units when the system is generated.

Logical unit numbers are used by executing programs to
specify on which device I/O transfers are to be carried out.
In an [/O EXEC call, the program simply specifies a logical
unit number and does not need to know which actual de-
vice or which I/O channel and subchannel handles the trans-
fer.

THE INTERRUPT TABLE

The Interrupt Table contains an entry, established at sys-
tem generation time, for each I/O channel in the computer.
If the entry is equal to O, the channel is undefined in the
system. If an interrupt occurs on one of these channels,
RTE-II prints this message:

ILL INT xx
where xx is the octal I/O channel number. RTE-II then
clears the interrupt flag on the channel and returns to the

point of interruption.

If the contents of the entry are positive, the entry contains
the address of the EQT entry for the device on the channel.

If the contents are negative, the entry contains the negative
of the address for the ID segment of a program to be
scheduled whenever an interrupt occurs on the channel.

The interrupt locations in core contain a JSB $CIC; CIC is
the Central Interrupt Control routine which examines the
Interrupt Table to decide what action to take. On a power
failure interrupt RTE-II halts unless the power fail routine
is used. If privileged interrupt processing is included in the
system, the privileged channels bypass $CIC and the
interrupt table entirely.

GENERAL OPERATION OF I/0 PROCESSOR
STANDARD I/O CALLS

A user program makes an EXEC call to initiate /O trans-
fers. If the device is not buffered, or in the case of input
transfers, the calling user program is suspended until the
transmission is completed. (See Class 1/O, Section III for
exceptions). The next lower priority program is allocated
execution time during the suspension of a higher priority
program.

An 1/O request (i.e., Read, Write, Control) is channeled to
I0C by the executive request processor. After the necessary
legality checks are made, the request is linked into the sus-
pension list corresponding to the referenced I/O device. The
parameters from the request are set in the temporary stor-
age area of the Equipment Table.

If the device is available (i.e., no prior requests were
stacked), the ““initiation” section of the associated driver is
called. The initiation section initializes the device and starts
the data transfer or control function. On return from the
initiation section, or if the device is busy, or a required
DMA channel is not available, 10C returns to the scheduling
module to execute the next lower priority program.

If the device is down, the calling program is automatically
suspended in the general wait list (status = 3). While in this
list the program is swappable, and if any device is set up the
program is automatically rescheduled. Refer to the ST com-
mand in Section II for more information on the general
wait list.

Interrupts from the device cause the Central Interrupt Con-
trol (CIC) module to call the “completion” section of the
driver. At the end of the operation, the driver returns to
CIC and consequently to IOC. I0C causes the requesting
program to be placed back into the schedule list and checks
for a buffered 1/O stacked request. If there are no stacked
requests, I0C exits to the scheduling module (SCHED);

Real-Time nput/Quiput

otherwise, the initiation section is called to begin the next
operation before returning.

POWER FAIL

The system power fail routine, if loaded at generation, will
perform the following steps.

a. When power comes on, will restart the real-time
clock, set up a time-out entry (TO) back to its EQT,
and then return to the power fail interrupt location.
b. When the EQT entry times-out, the power fail
routine will check EQT word 5 bit 14 and 15 of each
device. The status of bits 14 and 15 will indicate
whether the device is “down” or “busy.” The routine
will also check bit 13 of EQT word 4 (set by driver)
which indicates if thedriver is toprocessthe power fail.
c. If the device was busy when the power failed
and the power fail bit is set when power resumes, the
driver is entered at I.nn and the EQT is not reset. If
the power fail bit is not set the device is set “*down.”
The system then sets the device “up,” resets the EQT
and enters the driver at L.nn.

In other words, if the device was inputting or
outputting data when the power failure occurred and
the driver is written to handle power fail, when power
resumes the device driver will do the power fail re-
covery. If the device was busy when power failure
occurred and the device driver is not written to
handle power failure, the routine attempts to restart
the 1/O operation.

d. If the device was down when the power failed
and the power fail bit is set or not set, when power
resumes the system “‘ups” the device, resets the EQT
and enters the driver at Lan. In other words, if the
device was down when power failed, when power re-
sumes the system “ups” the device and attempts to
start the operation, if any. in the device queue.

e. An HP supplied program called AUTOR will be
scheduled. AUTOR will send the time of power fail-
ure to all teletypes on the system (which re-enables
all terminals). AUTOR is written in FORTRAN, with
the source tape supplied so the user can easily modify
the program to suit his individual needs.

DRIVER STRUCTURE AND OPERATION

An 1/0 driver, operating under control of the Input/Output
Control (RTIOC) and Central Interrupt Control (CIC)
modules of RTE-I, is responsible for all data transfer be-
tween an I/O device and the computer. The device EQT
entry contains the parameters of the transfer, and the base

RTE-1

page communication area contains the number of the allo-
cated DMA channel, if required. It should be noted that
RTE-II operation makes it mandatory that a synchronous
device driver use a DMA or privileged interrupt channel for
data transfer.

Many of the I/O drivers are documented in the RTE-II
Device Subroutine Library manual, HP Part No.
29100-93007.

An I/O driver always has an initiation section and usually a
completion section. If nn is the octal equipment type code
of the device, Lxnn and Cxnn are the entry point names of
the two sections respectively, and DVynn is the driver
name. As shown, the driver name is five characters long and
starts with the characters “DV” and ends with a two-digit
octal number (e.g., DVR00). This name is usually obtained
from the software box that the tape is located in. The entry
point names are four characters in length and start with
either “I”” or “C” and usually end with the same two-digit
octal number used in the driver name. However, since the
system generator RTGEN does not examine the driver’s
NAM record, the driver may in fact be renamed to support
more than one device. The rules for the choice of “x” and
“y”* above are as follows:

If “yn IS not uRn then “x” = “))”
If ‘6y77 iS “R” then “x” = “'”

Using the above rules, a driver named DVRI16 has entry
points named 1.16 and C.16. A driver named DVP16 has
entry points [IP16 and CP16. This allows one driver to sup-
port more than one device type.

Privileged drivers are in a special class. Refer to the end of
this section for a discussion of privileged drivers.

INITIATION SECTION

The RTIOC module of RTE-II calls the initiation section
directly when an I/O transfer is initiated. Locations EQT1
through EQT1S5 of the base page communication area (see
Appendix A) contain the addresses of the appropriate EQT
entry. CHAN in base page contains the number of the DMA
channel assigned to the device, if needed. This section is
entered by a jump subroutine to the entry point, I.nn. The
A-Register contains the select code (channel number) of the
device (bits O through 5 of EQT entry word 4). The driver
returns to I0C by an indirect jump through L.nn.

Before transferring to I.nn RTE-I places the request param-

eters from the user program’s EXEC call into words 6
through 10 of the EQT entry. The subchannel number is

54

placed into bits 6 through 10 of word 4. Word 6, CONWD,
is modified to contain the request code in bits O through 5
in place of the logical unit. See the EQT entry diagram in
Table 5-1, and Section III, Read/Write Exec Call, for details
of the parameters.

Once initiated, the driver can use words 6 through 13 of the
EQT entry in any way, but words 1 through 4 must not be
altered. The driver updates the status field in word 5, if
appropriate, but the rest of word 5 must not be altered.

FUNCTIONS OF THE INITIATION SECTION — The ini-
tiation section of the driver operates with the interrupt
system disabled (or as if it were disabled, in the case of
privileged interrupt processing; see discussion of special
conditions under “Privileged Interrupt Processing”).

The initiation section of the driver is responsible for these
functions (as flow charted in Figure 5-2).

a. Checks for power fail entry by examining bit 15
(=1) of EQT word $. This bit is set only on power fail
entry (see “b” in Power Fail).

TPt}

b. Rejects the request and proceeds to “g” if:

1. The device is inoperable,
2. The request code, or other of the
parameters, is illegal.

¢. Configures all I/O instructions in the driver to
include the select code (and DMA channel) of the
device.

d. Initializes DMA, if appropriate.

e. Initializes software flags and activates the de-
vice. All variable information pertinent to the trans-
mission must be saved in the EQT entry because the
driver may be called for another device before the
first operation is complete.

f. Optionally set the device time out clock (EQT
15).

g. Returns to RTIOC with the A-Register set to
indicate initiation or rejection and the cause of the

reject:
If A=0, then operation was initiated.
If A=123 then operation rejected because:
1- read or write illegal for device.
2 control request illegal or undefined.
3— equipment malfunction or not ready.
If A=4, immediate completion. (Transmission
log should be returned in the B-Register
in this case.)
IfA=5, DMA channel required.

CONFIGURE /0
INSTRUCTIONS
FOR DEVICE

DO POWER
FAIL
RECOVERY

POWER
FAIL
RECOVERY

NO

REQUEST (A)=10R 2, Y
CODE LEGAL REJECT
CODES
DEVICE NO (A) =3,
OPERABLE & REJECT
READY CODE
INITIALIZE N
OPERATING, RETUR
CONDITIONS TO -
FLAGS, ETC. toc
SET BUFFER
ADDRESS,
LENGTH, MODE,
ETC. FOR
TRANSFER
ACTIVATE
DEVICE
OPTIONALLY
SET DEVICE (A) REGISTER
TIME-OUT 1 =40RO
CLOCK)
(EQT 15)
@ IF A = 4 SET B = TRANSMISSION LOG RTE-C-2

Figure 5-2. 1/O Driver Initiation Section

Real-Time Input/Output

DMA INITIALIZATION — A driver can obtain a DMA
channel in two ways:

a. The channel can be assigned during generation

by entering a “D” in the driver’s Equipment Table

Entry.

b. The driver can dynamically assign a DMA chan-
nel as required.

If a driver requires DMA but does not require or use the
DMA interrupt, the DMA control should be cleared after
DMA initialization. Further special processing is not
required in this case.

If a driver requires DMA, and the DMA interrupt, special
processing must be included in the driver. After disabling
the interrupt system, initiating DMA and clearing control,
the driver sets a software flag to indicate that a DMA chan-
nel is active.

The software flag is either the first or second word of the
interrupt table, depending on which DMA channel is used.
The flag is set by making bit 15 equal to I.

INTBL (1) — channel 1 (location 0)
INTBL (2) - channel 2 (location 7)

The address of INTBL is contained in the word INTBA in
the base communication area. When bit 15 is set, the rest ot
the word must not be altered. The operation can be per-
formed only if DUMMY is non-zero (meaning the system
includes privileged interrupt processing.)

The following code demonstrates these principles:

CLF O Disable interrupts.

STC DMA,C Initiate DMA.

CLA Bypass this section it DUM-
CoprA DUMMY MY = 0 and special processing
JMP X is not needed.

CLC DMA

LDB INTBA Clear DMA control. Set B =
LDA CHAN address of the appropriate en-
CPA = D7 try in the interrupt rable.
INB

LDA B,I Set bit 15 of the entry equal
IOR = B]100000 to 1 and return to the inter-
STA B,I rupt table. Enable interrupt
STF O system.

5-5

RTE-II

There may be times when a driver will only occasionally
need DMA, and thus not want to always tie up a DMA
channel while it is operating: this may be done in one of
two ways: (Note that in example No. 1, the DMA channel
is always assigned before the driver is entered. In example
No. 2, the DMA channel is assigned only if the driver
requests it.)

Example 1 — The DMA flag is set at generation time by
entering a “D” in the driver’s equipment table entry. The
driver may return the DMA channel (before completion if
desired) by clearing the appropriate INTBL word (first or
second word of interrupt table). This may be done as
follows:

LDA DMACH Get current channel
LDB INTBA And INTBL address
SLA If channel 7

INB Step address

CLA Clear the

STA B,I Channel word

Example 2 — The DMA flag is not set at generation time as
above. In this case the driver is entered by RTIOC without
a channel being assigned. The driver must analyze the re-
quest and determine if a channel is required, and if so,
request a channel from RTIOC by returning via I.XX,I with
A = 5. RTIOC will assign a channel and recall the driver.
The recall completely resets EQT words 6 through 10.
Since it is possible for the calling program to be aborted
between the request for DMA and the resulting recall of the
driver, the driver must determine, independently of its past
history, if it has DMA. The following code illustrates these
principles:

.

DLD INTBA,I Come here if DMA required.

CPA EQT1 Is channel 6 assigned?
JMP CHb6 Yes; go configure.
CPB EQT1 Is channel 7 assigned?
JMP CH7 Yes? go configure.
LDA =BS5S No channel so

JMP I.XX,I Request one from RTIOC

In this case the driver must also tell RTIOC that it has a
DMA channel at completion of request. This is done by
setting the sign bit in the A-Register on the completion
return to RTIOC. This bit may be set at all times — even
when the driver does not own a DMA channel. However, if
set when not required, some extra overhead in RTIOC is
incurred. The sign bit is set in addition to the normal com-
pletion code. The following code illustrates this principle:

5-6

Get completion code
Set the sign bit
Return to RTIOC

LDA COMCD
IOR =B100000
JMP C.XX,I

NOTE

If your driver wishes to do a series
of non-DMA operations, but still re-
tain the DMA channel assignment,
you must clear bit 15 in the first or
second word of the INTBL entry to
prevent the system from restoring
DMA. The correct word must be
determined by the driver and is the
word described in the above para-
graphs. That is;

INTBL (1) — channel 1 (location 6)
INTBL (2) — channel 2 (location 7)

Programming Hint — A driver may use the following code

Location

to determine which DMA channel it is using at any time:

DLD INTBA,I Get DMA words

RAL,CLE,ERA Clear sign

RBL,CLE,ERB Bits (needed only if driver
sets the sign bit)

CPA EQT1 Channel 6?

JMP CHb6 Yes

CPB EQT1 Channel 77

JMP CH7 Yes

JMP NODMA No — no DMA assigned

COMPLETION SECTION

RTE-II calls the completion section of the driver whenever
an interrupt is recognized on a device associated with the
driver. Before calling the driver, CIC sets the EQT entry
addresses in base page, sets the interrupt source code (select
code) in the A-Register, and clears the I/O interface or
DMA flag. The interrupt system is disabled (or appears to
be disabled if privileged interrupt processing is present).
The calling sequence for the completion section is:

Action

Set A-Register equal to interrupt source code
® JSB C.nn
(P+1) Completion return from C.nn
(P+2) Continuation or error retry return from C.nn

The return points from C.nn to CIC indicate whether the
transfer is continuing or has been completed (in which case,
end-of-operation status is returned also).

The completion section of the driver is flowcharted in
Figure 5-3 and performs the following functions in the
order indicated.

C.nn

YES
NO

OFF-LINE
TO READY
INTERRUPT

CONFIGURE 1/0

YES

Real-Time Input/Output

TRANSFER NEXT

SET EQT15
INSTRUCTIONS o
FOR DEVICE
YES DO TIME-
ouT
PROCESSING
NO
DEVICE
TRANSFER INTERRUPT
BY DMA

REQUIRED

YES

RETURN
TO
P+2

OPTIONALLY
SET DEVICE
TIME-OUT
CLOCK
(EQT 15)

DATA ITEM; END OF RETRY RE-INITIALIZE
UPDATE OPERATION REQUIRED CONDITIONS
INDEXES;

FLAGS, ETC.

OPTIONALLY

SET DEVICE UPDATE
TIME-OUT STATUS IN

CLOCK EQT (5)
(EQT15)
RETURN wo(z)o-siﬂ (A) = CLEAR RETURN
TO . COMPLETION |9 DEVICE - TO
P+2 CHARACTERS CODE CONTROL P+1
TRANSFERRED
RTE-C-3

Figure 5-3.1/0 Driver Completion Section

5-7

RTE-11

a. Checks whether word 1 (device suspended list
pointer) of the EQT entry equals zero. If it does, a
spurious interrupt has occurred (i.e., no I/O operation
was in process on the device). The driver ignores the
interrupt, sets EQT 15 (time-out clock) to zero to
prevent time-out, and makes a continuation refurn. If
not zero, the driver configures all I/O instructions in
the completion section to reference the interrupting
device, and then proceeds to “b.”

b. If both DMA and the device completion inter-
rupts are expected and the device interrupt is signifi-
cant, the DMA interrupt is ignored by returning to
CIC in a continuation return.

¢. Performs the input or output of the next data
item if the device is driven under program control. If
the transfer is not completed, the driver proceeds to
wp

d. If the driver detects a transmission error, it can
re-initiate the transfer and attempt a retransmission.
A counter for the number of retry attempts can be
kept in the EQT. The return to CIC must be (P+2) as
in “f.”

e. At the end of a successful transfer or after com-
pleting the retry procedure, the following in-
formation must be set before returning to CIC at
(P+1):

1. Set the actual or simulated device status,
into bits O through 7 of EQT word 5.

2. Set the number of words or characters
(depending on which the user requested) transmitted
into the B-Register.

3. Set the A-Register to indicate successful
or unsuccessful completion and the reason:

A equals O for successful completion.
A does not equal 0 for unsuccessful:

1 — device malfunction or not ready.
2 — end-of-tape (information).

3 — transmission parity error.

4 — device time-out.

f. Clears the device and DMA control, if end-of-
operation, or sets the device and DMA for the next
transfer or retry. If not end-of-operation (i.e., a con-
tinuation exit is to be made), the driver can again
optionally set the device time-out clock. Returns to
CIC at:

(P+1) — completion with the A and B-Registers set as

[IP%3]

in “e”.

(P+2) — continuation; the registers are not significant.

1/0 DEVICE TIME-OUT

Each 1/O device can have a time-out clock that will prevent
indefinite I/O suspension. Indefinite I/O suspension can oc-
cur when a program initiates I/O, and the device fails to
return a flag (possible hardware malfunction or improper
program encoding). Without the device time-out, the pro-
gram which made the I/O call would remain in [/O suspen-
sion indefinitely awaiting the operation-done indication
from the device. With respect to privileged drivers, the
time-out parameter must be long enough to cover the per-
iod from I/O initiation to transfer completion.

Two words, EQT 14 and EQT 15, of the EQT entry for
each I/O device function as a device time-out clock. EQT
15 is the actual working clock, and before each 1/O transfer
is initated, is set to a value m, where m, is a negative num-
ber of 10 ms time intervals. If the device does not interrupt
within the required time interval, it is to be considered as
having “timed out.” The EQT 15 clock word for each de-
vice can be individually set by two methods.

° The system inserts the contents of EQT 14 into EQT
15 before a driver (initiation or completion section) is
entered. EQT 14 can be preset to m by entering (T=)
m during the EQT entry phase-of generation (see Sec-
tion VI), or it can be set or modified on-line with the
TO operator request (see Section II).

° When the driver initiates I/O, and expects to be
entered due to a subsequent interrupt, the driver can
set the value m into EQT 15 just before it exits. This
value m can be coded permanently into the driver or
else passed to the driver as an I/O call parameter.

NOTE

The system always inserts the con-
tents of EQT14 into EQT15 before
entering a driver except on initia-
tion if EQTI1S is not zero, it is not
reset. However, a time-out value in-
serted directly into EQT1S by the
driver over-rides any value previous-
ly set by the system (from EQT14).

DRIVER PROCESSING OF TIME-OUT

A driver indicates to the system that it wants to process
time-out by setting bit 12 in EQT word 4. The system never
clears this bit so it need be set only once. In this case, when
a device times out, the following actions takes place:

—

a. Bit 11 in EQT word 4 is set.

b. The driver is entered at C.nn with the A-Regis-
ter set to the select code (from EQT word 4).

c. The driver must recognize that the entry is for
time-out by examining bit 11 of EQT word 4 and do
whatever is necessary. The driver should then clear bit
11 in the event it is entered again prior to completion
of the operation so that it knows why it is being
entered on the next call. (RTIOC will clear this bit
prior to entering the driver at L.nn.)

d. The driver may continue or complete the opera-
tion. If it completes the operation it may set the
A-Register to 4 to indicate time-out.

e. If the A-Register is set to 4, RTIOC will issue
the message.

1/0 ERROR TO EQT #x

where x is the EQT number and will set the device
down.

SYSTEM PROCESSING OF TIME-OUT

In the case where the driver does not set bit 12 of EQT
word 4, the following actions take place on time-out.

a. The calling program is rescheduled, and a zero
transmission log is returned to it.
b. The device is set to the down status, and bit 11

in the fourth word of the device’s EQT entry is set to
one. An error message is printed; e.g.,

I/O ERROR TO EQT #x

c. The system issues a CLC to the device’s select
code(s) through the EQT number located in the
interrupt table.

Real-Time Input/Output

Due to the system issuing a CLC to the device’s select code,
each device interface card requires an entry in the interrupt
table during generation. If an I/O card did not normally
interrupt, and therefore did not have an entry in the inter-
rupt table, and the device had timed out. the system would
not be able to issue a CLC to the I/O card.

A time-out value of zero is equivalent to not using the
time-out feature for that particular device. If a time-out
parameter is not entered, its value remains zero and
time-out is disabled for the device.

DRIVER AUTO UP

A driver has the capability of automatically “uping” itself
through a JMP instruction. For example, if a driver makes a
not ready, parity error, EQT, or time-out return to the
system, and subsequently detects an interrupt (or time-out)
entry which signals that the device is now ready. it may
“up” itself as follows:

JMP SUPIO

If any requests are pending the system will call the dri-
ver at [.xx.

SAMPLE 1/O DRIVER

The sample driver in Figure 5-4 demonstrates the principles
involved in writing an 1/O driver for the RTE-II System.
Note that this driver is for tutorial purposes only and not
one of the drivers supplied with the system.

5-9

RTE-II

5-10

Fhnk

Av Ay

BRI

AlVNdse
VGO
Acde

QAT
A Ad
AR w
AALGx
Bylle
Me12%
Ne13e
rP1d4+
AaldHe
Wy16x

ARV B a2 R FUFC DRIVER <720> G,P K, (CUTPUT) =«

AQMj,h,L
G A A haM DVRZG

ENT 1,70,C.70

ODRIVER 7¢ OPE=~ATES UNDEwR THE CONTKOL UF THE
1/ CUNTROL MODJLE CF THE kbEAL-TIME EXELUTIVE.
THIS NRIyeR TS5 RESPONsIuLe FOR CONTROLLING
UUTRPUT TRANSMISSION TUO A 16 BIT EXTERNAL
Devite. <72> IS THE EJUIPMENT TYPE COUE ASSIGNEL
GENERALLY YU THESE UEVICFS, 1,74 1S THt
ENTRY PGINT FOR O THE «INTTIATIUN® SELTIUN AND C,70
IS THE xCOMPLETI0ON® SECTION ENTRY,

Figure 5-4. Sample I/O Driver

A WA
v 1 8%
AA19 %
A 2h*
Nyl x
Lrve2x
A23*
NN24x
Ne2o5«*
P26«
AN/ =
Av.28w
AR
AN
Al w
AA32w
My 33 =
Pr3ax
WA3Dx
NoI6%
AR37 %
Phoasw
A3 w
AP4Aw
A04L
Aha2+*
Bnddx
A44d«
A4S
WNab*
P47 =
NQ48 =
Qa9
230w
ARSI~
W52 x
NI«
AAH 4w
QVHH*
ABS6 =
Weo7w

FAGE

nWvIb
Vv Dy
Anb e
A0 x
Vi h2 k
Avebdw
dibax
Av bbb

-

Reatl-Time tupu/Oucput

THE INITTATION SELTION IS CALLEUD FRUM TI/0
CONTRUL TG INITIACIZE A NDEVICE AND INJTIATE
AN GUTPLT OPERATI N,

I/0 CONTROL SETS THE ADDRESS 0OF EACH wOkD UF THE

1% «“URD F5T ENTRY (FUx THE OBEVICE) IN THE SYSTEM
CUMMUNTICLATIONS AREA FUR BOTH INITIATOR AND CONTINUATOR
SECTINNS, THE uUkIVER REFERENCES 10 THE FWUT AKE:

ek WTY THRU EJT1H-

CaLuLInG StwuEnCE:
(A) = SELELTY Cubt OF THE 1/ DEVICE.

P J3e [,79
P+e] «RETURN=

(a)
(A)

?, UPERATION INITIATEL
REJECT CNOE

1, ILLEGAL REGUEST
2. ILLEGAL ™MODE

«-THE COMPLETION SECTION IS CALLEND By CENTKAL

e

INTERRUPT CONTROL T1 CONTINUE OR COMPLETE
AN OPERATION,

CALLING SEQUENCE:
(AY) = SELFCT CODE OF THE 1,0 DEVICE,
P JSsk C,7¢
Pel =CUMPLETION RETURNe
Pe2 CONTINUATION KRETURN=
(A) = ¥, SUCLESSFUL COMPLETIUN WITH
(B) = & UF WORDS TRANSMITTEOD,

(A) = 2, TRANSMISSION ERROR DETECTED
(3), SAME AS FCR (A)=0

AICIEE-T0R | xx T EXEC URLIVERK «72> G F Kk, (GUTPUT) #x

« CUNTINUATTION ReTuknNi REGISTERS
FEANINGLESS

kb CORD) PORMAT =

THLIS DrIVew PROVIDES A 16 bIT 3INARY
WURL TrRANSFER ONLY,

Figure 5-4. Sample I/O Driver (continued)

RTE-II

5-12

PAGE

Q067 n
2068
A069
Q070w
Bo71
AR72x
073
an74
Q07 5=
vwe7e6
a077
ve78
Aa79
o8 w
81w
no82x
an83
on84
e85
NPB86%
NA87 «
288
An89
A690
20191
nn9e
Qv93
094
an9s
P96
2097
P98 =
AC99
0100w
Q101
A1ne
2123
2104w
2105
nine
A10B7 «

e2P4 #4)

KRN

AganY
APl

onnpe
R

puAe4
naQAS
22006
nnaa7

KEQUEST ERRORe

anpnie
npetl

WRITE

PAvl12
Wen1d
PruatL4
par1s
nepte
pany?
vwag2y
a0n21
wrnee
Ane23

2papae
01687 1R

161665
B1217A5R

M52106R
126000R
052107R
P26R12R

N6210A7R
126@0UR

REGUEST PROCESSING

161666
171670
161667
Y304
17167
an2em2
P26024R
vo211er
nubdnpQ
1260002R

1,70 NOP
Jse

LDA
AND

CPA
JMP
CPA
JMP

INITIATION SECTION wwx

SETIO

EQT6,1
eB3

sBY
1,70,1
82
D.X1

< DRIVER 70 «INITIATION= SECTION >

ENTRY FROM I0OC
SET I/0 INSTRUCTIONS FOR DEVICE

GET CONTROL WORD OF REQUEST,
ISOLATE,

IF REQUEST IS FOR INPUT
THEN REJECT,

PROCESS FOR WRITE REQUEST
GO TO WRITE REQUEST

CAUSE REJECT RETURN TO I/0 CONTROL,

LDA
JMP

Dex1 LODA
STA
LDA

B2
1079,!1

EQY7,1
EQTY,1
EGTHE, I

CMA, INA

STA
SZA
JMP
LDA
CLB
JMP

CALL COMPLETION SECTION

nphea
neaes
neage

nnna7
P3N

N62114R
N72031R
R26PR30OR

240y
1260ARR

D.X3 LDA
STA
JMP
IEXIT CLA
JMP

EQT1Q,1

DyX3
z=B4

I.70,1

SET A=z2 FOR ILLEGAL CONTRL REW,
-EXITe

GET REQUEST BUFFER ADDRESS
AND SET AS CURRENT ADOKESS
GET BUFFER LENGTH
SET NEGATIVE AND SAVE
AS CURRENY BUFFER LENGTH,
CHECK LENGTH
NONeZERO
IMMEDIATE COMPLETION
SET TLOG IN B=REG
IF ZERO

TU WRITE FIRST WOKD,

P2
C.70
N, X2

1.74,1

ADJUST RETURN
TO INITIATOR SECTION,
GO TO COMPLETION SECTION

RETURN TO I/0 CONTROL WITH
OPERATION INITIATED,

Figure 5-4. Sample 1/O Driver (continued)

Real-Time [nput/Output

PAGE Wu@5> #Pm) < NDRIVER 7@ «COMPLETION SECTIONx »

B109x

2110% xxx COMPLETION SECTION wx«

ALl

@112 »WYn3l avenep C,78 NOP ENTRY

D113 neM32 165660 LOB EWTY,1 SPURIQUS

114 Q2033 A6 SIZB,RSS INTERRUPT?

2115 2PAI4 A26POHIR JMP SPURI YES = IGNORE

2116 POR3S5 MI6W7 IR JSB SETIO SEYT 1I/0 INSTRUCTIONS FOR DEVICE
V117 »

4118 APRA36 dn24an Dgx2 CLA IF CURKENT BUFFER LENGTH 3 @,
3119 naapd7 151671 CPA EGT1Q,1 THEN,GO TO

120 PAN4AD P26154R JMP 1,3 STATUS SECTION,

A128x

Q122 0gnay 165670 LOB EQTS,I GET CURRENT BUFFEKR ADDRESS
123 Wead2 135670 18SZ EYYY9,I ADD 1 FOUR NEXT WORD

124 Q043 160201 I.OA B,1 GET WORD

125 4vdd44 135671 182 EQT19,1 AND INDEX WURD COUNT

126 PRRA4S Q0PPRQ NOP IGNORE P+1 IF LAST WORD,
A127 =

128

D129 ARP46 10n26pn I.1 OTA @ QUTPUT WORD TO INTERFACE
130 @Arpd7 1vd7znn 1,2 $1C ©,C TURN CGEVICE ON

2131 020050 a@rzeal RSS
132 @Anpdt 175774 SPURI STB EGT15,1 ZERU TIME=QUT CLOCK WORD
8133

0134 @nrAd2 A3I623LR 1Sz C,70 ADJUST RETURN YO P+2
135 Apadbd 126031R JMP C,7¢,1 ~EXIT=
0136x

Figure 5-4. Sample 1/O Driver (continued)

S-13

RTE-II

5-14

PAGE

138w
V139
A140x
N141
B142
D143
A144
414b
A14b
ny47
A148«
2149
¥15@
2151
B152%»
2133
A154nx
2155
A156%
n157
B158«
2159
A16ax
161w
162
163
P164
A165%
2166
2167
A168w
n169
170
Q17
a172
173
D174«
a75
Al70x

b mAy < DRIVEW /4 «COMPLETION
STATUS AND COMPLETIUN SECTION,
20054 j1u2sen 1.3 LIA @

ARASSH V12111R AND =B77
20056 vw/aenl STA B

WAAS7 161664 LDA EQTS, !
A0N60 v12112R AND =28B177400
61 23avnl I0OR B

PAv62 171664 STA EUTH,I
PRA6S Qv2400 CLA

ANN64 ASE611QAR CPB =H4

AAB6S NO21M7R LUA =B2

npn6H 165667 LDB EQT8,1
PANB7 1067010 1,4 CLC @

ANA7A 126¢31LR JMP C,70,1
SUBROUTINE <SETIO>» CONFIGURES 1/0

20n71 2e@en® SETIO NOP

©0RB72 N321M3R 10R LIA
WeRa73 A72054R STA 1,3
AAaY74 242113R ADA =B1o@
A@A75 A72046R STA 1,1
APa76 V42114R ADA =B110v
VYN77 W72047R STA 1,2
nA1OA A32110R I0R =Banne
PA1NL A72067R STA 1,4
Ar1n2 12607 1R JMP SETIO,I

Figure 5-4. Sample 1/O Driver (continued)

SECTIUON* >

GET STATUS WORD
STRIP OFF BITS
AND SAVE IN B
REMOVE PREVIOUS
STATUS BITS
SET NEW
STATUS BITS

SEYT NORMAL RETURN COND
ERROR STATUS BIT ON?
YES, SET ERrOR RETURN

SEY (B) = TRANSMISSION LOG

CLEAR DEVICE

~EXIT FCR CUMPLETION

INSTRUCTIONS,

COMBINE LIA WITH I/0

SELECT CODE AND SET,

CONSTRUCY OTA INSTRUCTION

CONSTRUCT STC,C INSTRUCTION

CONSTRUCT CLC INSTRUCTION

»RETURN=

FAG

E A ury <

DR lvir

Real-Time Input/Output

Ja xCOMPLEYION SECTION® >

STUKAGE AREA

Eall » A=REGISTEK
Euu 1 B=REGISTER
LIa @

DEF TEX]T=1]

A187%xx SYSTEM AND BASE PAGE COMMUNICATIONS AKREA xax

EWA-X]
A179« CONSTANT AND
2180«
181 ARG A
182 Weanl R
A183#
n184 AN 102500 LIA
8185 2nind Anpn26R P2
A186
N1BBw
A189 P1ndA .
A190x«
A191~ 170 MODULE/URIVER
nigaw
N9y 21660 EQT1
2194 1661 EQT?2
n195 @1662 EQTS
n196 Q21603 tuTa
w197 ©@lob4a FQTS
198 R1665 EQTH
2199 ©@1666 EQT7
n2ve 01667 EWT8
na2ey1 o167 EQTY
0202 1671 EQTI®
203 p1672 EUTld
nw2v4 11771 EQT12
n2es ay772 EQT13
n2n6 @1773 EQT14
¥287 41774 EQT1S
N208Bw
A299w

AA10S Anaenld

A2166 1000l

¢A1IRA7 WONAN02

AAL110 Aneend

WA111l Annn77

WVi12 177400

NN113 dro1en

AR114 K01100

20115 ©odpne
p21le
*% NO ERRORS«

E9U 16508
COMMUNICATION

EUU ,+8
EGL . +Q
Ewu ,+10¢
EdU .+11
EQU .+12
EGU L +13
EQU .+14
EQU .+15
EQU L+16
EQU L,+17
EGU .+18
EQU ,+81
EQU ,+82
EWU ,+83
EQU ,+84

END

Figure 5-4. Sample 1/O Driver (continued)

5-15

RTE-lI

PRIVILEGED INTERRUPT PROCESSING

When a special 1/O interface card, HP 12620, is included in
the system, RTE-II allows a class of privileged interrupts to
be processed independently of regular RTE operation, with
a minimal delay in responding to interrupts. The presence
and location of the special I/O card is selected at system
generation time. Its actual hardware location is stored in
the word DUMMY in base page (or if not available, zero).
See Section VI for the exact specification procedure.

The special 1/O card separates the privileged (high priority,
low-channel numbers) interrupts from the regular system-
controlled interrupts. When this card is present, RTE-II
does not operate with the interrupt system disabled, but
rather, sets control on the special I/O card to hold off
lower-priority interrupts. The privileged interrupts are en-
abled when RTE-II is running, and they can interrupt any
RTE operation.

PRIVILEGED INTERRUPTS

The privileged interrupts can be recognized within 110 * n
machine cycles where n is the relative priority of the privi-
leged device’s I/O card. For example:

select code 10 —n=1
select code 11 —n =2
select code 12 —n=3

The privileged interrupts are processed in two ways:

a. Through a privileged driver which has in general
the structure of a standard 1/O driver plus a special
privileged interrupt processor routine;

b. Through a special routine embedded in the
system area.

Note that the routines which handle privileged interrupts
must be completely independent of RTE-II.

If the first method is used, the calling program can make a
standard I/O call to the privileged device. The calling pro-
gram will be suspended for the time it takes to do the
transfer, after which it will be rescheduled. To the calling
program, there is no difference between a privileged type
device I/O call and a non-privileged (standard) type device
I/O call. If the privileged driver is assigned a time-out
parameter, the parameter must be long enough to cover the
period from I/O initiation to transfer completion.

If the second method is used, a “JSB-I" in the interrupt
location (set by using “ENT,name” when configuring the

5-16

interrupt table) channels the special interrupt directly to
the entry point of its associated special routine. CIC and
thé rest of RTE-II are not aware of these interrupts. CIC
sets a software flag indicating the status of the memory
protect facility, MPTFL, in base page.

If MPTFL equals zero, the memory protect is “ON.”” Any
special interrupt routine must issue a “STC 57 instruction
immediately before returning to the point of interruption
by a “JMP-1.”

If MPTFL equals one, RTE-II itself was executing when the
privileged interrupt occurred, and memory protect is
“OFE.” The special routine must not issue the “STC 5 in
this case.

SPECIAL PROCESSING BY CIC

During interrupt processing, CIC saves the registers, issues a
CLF instruction to the interrupt location, sets the memory
protect flag, MPTFL, equal to one, and checks the DUMMY
flag. If the DUMMY flag is zero, the hardware interrupt
system is left disabled and normal processing continues. If
non-zero, the value is used to issue a STC to the I/O loca-
tion (this assumes that the flag on the special I/O card is
set); the STC holds off lower priority interrupts until the
control is cleared on the special card.

CIC clears the control flip-flop on each DMA channel to
defer DMA completion interrupts, and enables the interrupt
system (a zero is in the interrupt location for the special
card so that interrupts from the card are ignored).

$IRT, a special subroutine within CIC, resets the flags and
DMA channels upon completion of normal system process-
ing. Other modules of RTE-II use this routine also. $IRT
sets MPTFL = 0 to indicate that memory protect is “ON,”
and also sets the control flip-flop on the active DMA chan-
nels if bit 15 of the DMA interrupt entries equals one.

PRIVILEGED INTERRUPT ROUTINES

A privileged interrupt routine, whether embedded directly
within the system or within a privileged driver, must save
and restore all registers, and restore memory protect to its
original state (word MPTFL contains this status). This is
because any interrupt automatically disables memory pro-
tect. The privileged interrupt routine must not use any fea-
tures or requests of RTE-II, nor use either DMA channel. It
can communicate with normal user programs by use of the
appropriate. COMMON region. Flags, parameters, control
words, etc., can be set and monitored by either routine in
the pre-defined locations in COMMON. The starting address
of the COMMON region is available in base page. (See Ap-

pendix A.) A normal user program can be scheduled to run
at periodic time intervals to scan and set indicators in
COMMON.

SAMPLE PRIVILEGED DRIVER

The following discussion describes an example privileged
driver (see Figure 5-5), generalized to DVRXX, which is
controlling a device operating in the privileged mode.

The device transfers one word of data each time it inter-
rupts, and the data is stored into the buffer passed to the
driver via the call parameters. Also passed to the driver is
the number of data words to be input from the privileged
device, this being the length of the data buffer.

The concepts behind such a driver are as follows:
. It is called by a standard EXEC I/O call.
. The calling program is placed into I/O suspension.

. The device’s trap cell is changed from “JSB CIC” to
“JSB P.XX” where P.XX is the entry point to the
privileged routine within the driver.

® Therefore, each time the device interrupts, the
RTIOC overhead is circumvented because the privi-
leged routine P.XX is entered directly.

] After each interrupt, if another data point is still re-
quired to satisfy the buffer length, the device is again
encoded to subsequently interrupt, and the privileged
routine is exited.

° When the entire data buffer has been filled, the driver
needs a way to communicate to the Executive that
the transfer is complete. This is accomplished by
allowing the driver to time-out. The time-out causes
RTIOC to re-enter the driver at C.XX.

] C.XX returns the transmission log, via the B-Register,
and a successful completion indication, via the
A-Register, to RTIOC.

] RTIOC then reschedules the program which called
the driver through its normal I/O completion machin-

ery.

A standard RTE-II driver uses the EQT for all its temporary
storage so that the same driver can be driving more than
one device simultaneously. A privileged driver, however,
cannot do this because it can never know the state of point-
ers to the EQT while it is running since it is running inde-

Real-Time Input/Output

pendently of the Executive. The privileged driver keeps its
temporary storage internally, and therefore, can control
only one device. For each device the driver will control, the
driver must be reassembled with all names DVRXX and
$JPXX (for this example) changed to another number.
Then one driver per device must be loaded into the system
at generation time.

INITIATION SECTION, [.XX — Refer to the partial listing
of the sample privileged driver in Figure 5-5. A standard 1/O
call to input from the device causes the calling program to
be I/O suspended and the driver to be entered at 1.XX. The
request code is checked for validity.

Because this driver can control just one device (unlike
standard drivers), there is no need to configure it more than
once. Therefore, the first time the driver is entered, it is
configured and the switch at “FIRST” is cleared so that on
all subsequent entries, the configuration code is not
executed.

The modification of the device trap cell is performed just
once, after the configuring routine, and is not modified
again on all later entries into the initiator. The trap cell is
altered so that the device interrupts will be channeled to
the P.XX subroutine instead of to RTIOC. The **JSB P.XX”
instruction and its associated base page link are established
via the small program “$JPXX” (see listing).

A counter, which is incremented in routine P.XX, is estab-
lished for the number of readings to be taken; the buffer
address for the stroage of the data is saved, and the device is
set up to initiate a reading and is encoded. The initiator
then exits.

PRIVILEGED SECTION, P.XX - When the device inter-
rupts, P.XX is entered as a result of the device’s trap cell
modification.

Because entry is made directly into P.XX the routine must
do the housekeeping which RTIOC does when entered from
an interrupt. Before P.XX can turn the interrupt system
back on for higher priority interrupts, it must ensure that
the DMA channels cannot interrupt, save the old memory
protect status, and set its new status.

P.XX then loads and stores the data in the next unfilled
buffer word. If there is yet another data point to be taken,
P.XX sets up the device for the next reading, disables the
interrupt system, encodes the device, restores memory pro-
tect status and its flag, turns the interrupt system back on,
and exits. This basically resets the system to its state before
P.XX was entered.

5-17

RTE-lII

When the last reading is taken, P.XX disables the interrupt
system, turns off the device, and sets up the driver for an
immediate time-out. Before P.XX exits, it restores memory,
protect status and its flags, and turns the interrupt system
back on.

COMPLETION SECTION, C.XX — The status of the device
and the driver is now unchanged until the TBG interrupts.

5-18

The TBG interrupt will cause a time-out (this isbecause
-1 is set in EQT word 15, which will cause RTIOC to pass
control to C.XX which returns a transmission log and a
normal completion indication to RTIOC.

RTIOC then goes to its I/O completion section which re-
schedules the calling program and processes the device
queue as if it were a standard (non-privileged) device.

Real-Time Input/Output

JIMB2 T=zuapna 1S ON CRAMLAS USING 20012 BLKS Rs0OnA@

Jurl ASMB,k,L,T,8

pon2 %

28 *

¢Pm4 *x DRIVER wWwITHW PRIVILEGED INTERRUPT

anes =

aves *

2an7 NAM DVRXX

2008 ENT T XX,P XX,C,¥X

YNy ExT $JPXX

2010 «

Anhy *

AdLe »

wayd » CALLING SEQUENCE:S

014 % JSsn EXEC CALL EXEC

AQ10 * DeF »+5 RETURN POINT

2A16 DEF RCODOE REQUEST CuDt

wat17 o« DEF CONWD CONTROL WORD

ARLR = LEF RUFFR® ADDRESS OF BUFFER

W1y NEF LENTH LENGTH 0OF BUFFER

np2y »

naz\ *

w22 =

2023 x

W24 x CAUTION: THIS DRIVEK WILL NOT WORK wITH MORE THAN
naed * ONE SUUBSYSTEM, IF MORE THAN ONE SUBSYSTEM
va26 x EXISTS IN A SYSTEM, BUOTH DVRXX AND S$JPXX MUST
nagl x Hr wE=ASSEMBLED WITH ALL THE NAMES CONTAINING
A28 * YXX' CHANGED TO SUME OTHER NUMBER, THEN ONE
AR29 % PRIVER PEN SUHBSYSTEM MUST BE PUT INTO THE SYSTEM
na3IA L] AT GENEKATION TIME,

2031 =

wrae * INITIATION SECTION

Vwa3ld x

wa3a I.XX NUP

wn3h STA SCONDE SAVE SELECT CODE

An3b LDA FRTH,] KEQUESY CODE TO A

npu37 AND M77

238 CPa =K1 KAl REWUEST?

A039 JMP x4 YES

A4 REJCTY CLA,INA NO = ERROUR

A4l JMP T XX,] REJECT RETUKRN

Y4 FIRST RSS CONFIGILIKE FIRST

R JMpPoOINMTT TIME ONLY

Ana4

Npad Lba SCNDE

”rP40 I0R ILTA CONFIGURE

ana7 STA Ine 10 INSTRUCTIONS

rnas .

Apay R

APsd .

2151 LDA $JPXX SET TrAP CELL TO

4052 STA SCULE, I JSy P, XX

ARs53 LDA ECGT4,] CLEAR EWTA BIT1Z

2054 I0R AIT12 TO ALLOW NORMAL

nns5 XOR RITY2 TIME OUT,

AvhHo6 STA FQTa,l

nwus7z LA FQTYH SAve EQT1H

05t STA BOYS ANI) EQT4 ADDRESSES

Figure 5-5. Sample Privileged 1/O Driver

5-19

RTE-lI

5-20

9059
2069
nn61Y
2062
2063
Anda
hR65
AV66
V67
4068
069
na7e
A071
72
@073
2074
wa7r5
2076
a077
878
@79
eese
foal
wo8e
UL
Av84
20BS
an86
was’
2988
@089
2090
an9
w92
AB9y
2094
2095
0a90
a9
A098
499
4104
niet
niea
M
nied
31035
ALAG
nin7
a108
2109
2114
a111
7112
113
w114
115
wi1eé
217
2116

INIT

101

READ

T * » »

XX

104

EXIT

LDA EQTY
STA Eu4
CLA

STA FIKRST

LDA EQTS8,I
CMA, INA
STa CVCTR
SS5A,RSS
JMP REJCT
LDA EQT7,I
STa DAPTR
JSB READ
$1C 10,C
JMP chl'I

NQP
.

JMP READ,I

NOP

CLF @

CLC 6

cLc 7

STA ASV
STB BSV
ExA,ALS
socC

INA

STA EOSV
LDA MPTFL
STA MPFSV
CLA,INA
STA MPTFL
STF a2

STA DAPIR,]

152 CVCTR
RSS

JMP DONE

152 VAPTR
JSH READ

CLF @

STC 1G,L

Lha MPFSV
$24

JMP EXITY
LDB INTHA
LOs 8,1
sS4

STC 6

FOR LATEK,

SET 50 AS NOT TO
CONF IGURE AGAIN

NUMBER OF CONVERSIONS TO A

NEGATE FOR
CONVERSION COUNTER
REJECT IF
NUMBER <=@
SAVE DATA BUFFER
ADDRESS FOR P,XX
STARKT A READING
ENCODE DEVICE
RETURN

ROUTINE CONTAINING
CONFIGURED IO
INSTRUCTIONS TO
SET UP THE DEVICE
TO INITIATE ONE KEADING

PRIVILEGED INTERRUPY ROUTINE

TURN OFF INTERRUPTS
TURN OFF
DMA INTERRUPTS
S
A
v
t

" REGISTERS

SAVE MEMOKY
PROTECT FLAG

TURN OFF MEMORY
PRUTECT FLAG

TURN ON INTERRUPTS

LOAD IN DATA
FROM DEVICE
vIiA 10 INSTRUCTIONS

STORE IN DATA BUFFER
LAST CONVERSION

NO

YES

SET uP FOK

NEXT CONVERSION
TURN UFF INTEKRUPTS
ENCODE DEVICE

WAS MEMORY
FROTECT ON?
NO, FORGET DMA'S
TURN
DMA'S
BACK
ON

Figure 5-5. Sample Privileged I/O Driver (continued)

w1ty
A12a
w121
4122
w123
w124
M20
ny12s
1127
AL2k
0129
P13v¥
4131
ni3de
w133
n134
135
ni13o
8137
w138
N139
2140
ny4a}
4142
4143
M144
n1d45
n146
ny1ayz
niaad
7”149
A1)
4151
w152
9153
154
w155
156
wi1d?7
2158
n159
n16d
V161
n162
2163
0164
A168
01066
AL67
168
0169
Arze
M7
ng72
n173
w174
2173
a176
ny77
n178

ITNHK
LOA
SSa
STe
ExITY LLaA
cLn
SLA
STF
LER
LDA
STa
SZ24A
JmMp
LNDA
STF
STC
JMP
LDA
STF
JuP

NONE CLF
[o7 cLe
CCa
STA
LOA
10R
STA
JIMP

O s % % % »

o« XX NOP
CLA
LDR
JMp

» % % »

"
SCODE OCT
CvCTIrR OCT

LIA LIA
M77 ocT
DAPTR DFF
ASV uCY
BSV ncY
EQSv OCT
MPFSV NCT
EQa NOP
EQ1S NNP
slT12 0OCT
L]

*

3,1

7
FOSv

JELA
1
RSV
MPFSV
METFL

xeH
ASV

A

]
PoXxX, |
ASvV

2
PeXX,l

v
To

EW15,1
tUA.I

8I1T1?2

Fwd, 1

EXIT

ECLT8,1
CeXXx,1

4]
4

@
77

S S IS

100N

Real-Time Input/Output

1r
THEY
WERE
0N
RESTORE
&t AND
0
FLAGS

RESTOWF B
RESTNKE MEMORY PROTECT
FLAG IN SYSTEM
MEMUKY PROYECT ON?
NO
YES, RESTNRF A
TURN UN INTERRUPTS
SeT MEMORY PROTECT
RETURN
RESTUKE A
TURN ON INTERRUPTS
ReETUKN

TURN QFF INTERRUPTS
TiURN OFF DEVICE

SET YIME OUT FOK
UNE TICK AND SET
BIT12 IN EUT4 SO
KTIOC wILL CALL
C,xX NN TIME OUT,

GO 10 EXIT

LOMPLFTION SECTION

SEY UP FOR NORMAL RETURN
TRANSMISSION LOG TO B
RETURN

CONSTANTS AND TEMPORARIES

Figure 5-5. Sample Privileged I/O Driver (continued)

5-21

RTE-II

5-22

Al79
niga
2181
B Y.V
A1RY
A184
4185
N1RG
w18/
‘.4130
2189
ni1aq
w191l
7102
w1l
¥i9a

J1MB3

wWrny

nang
nang
nRna
AWRS
2000

*
*

SYSTEM COMMUNTICATIUON AREA

EGU 16930b

INTBA By ,+4
EUT4 FOU ey
ERTO kU L+¢13
EQT7 EGO L,e14
ELTE kNl +15
EQTLH EGU 1774b
XA Efy ,+4G
XH EWL ,+50
XkED EGil L, e85
MPTFL Fuu ,+80

A
o]

[FTRI
Eni g
Frp

T=pwnna IS ON CRAMIAS USING @AANY BLKS R=Ana@

ASMB,k,L,B
NAM $JP XX
ENT SJPXX
EXT P XX
$JPXX JSH P,XX
END

Figure 5-5. Sample Privileged I/O Driver (continued)

SECTION VI
RTE-II SYSTEM INSTALLATION

INTRODUCTION

The RTE-II system is initially configured using the system
generation program, RTGEN. Configuration is accom-
plished by the user supplying information in response to
questions from RTGEN. This section describes the steps
necessary to determine the appropriate response. The
section is divided into three parts.

° Part 1 contains directions for planning or laying out
an RTE-II System. General directions are provided
for completing the RTE-Il System Configuration
Worksheet, and then transferring the plans into
instructions to RTGEN. If the user is quite familiar
with the generation process, a punched tape contain-
ing all the parameter inputs can be made up from the
configuration worksheet, and then placed in the tape
reader on the system teleprinter. Each time RTGEN
requires an input from the operator the punched tape
will provide the normal operator response. This
method speeds up the system configuration consider-
ably. If the user is not familiar with the generation
process. it is recommended that this section be read
several times to completely familiarize him with all
the steps required in a successful system configura-
tion. It is also recommended that the user read
Appendix B and Section 1 at least twice before
attempting to configure a system.

. Part 2 integrates the plans from Part 1 into instruc-
tions required to configure an RTE-II System based
on a moving head disc drive.

° Part 3 integrates the plans from Part 1 into instruc-
tions required to configure an RTE-II System based
on a fixed head disc drive.

Located at the end of Part 1 are several blank worksheets
that are filled out as the system is planned. It is

recommended that the worksheets be duplicated. The
copies can ther be used for planning purposes which leaves
the original pages intact for future use. Appendix €
contains the teletype/system dialog. This is an actual
system configuration example intended 1o show the
sequence of cvents to be expected in using the following
planning process.

In this section the following terms are used:

TRACK A software addressable (logical) track.

RTE-I1 SYSTEM TRACKS

RTE-Il maintains a contiguous track assignment table.

The disc tracks tor which

These tracks are located on logical unit 2 (system). and 3
(auxiliary).

PLATTER - The recording surtace where the data is stored
(both sides of a physical disc).

SYSTEM DISC The disc assigned to logical unit 2. Also
the platter where the absolute binary code of RTE-II re-
sides.

AUXILIARY DISC
(Has same status as logical unit 2.)

The disc assigned to logical unit 3.

SCRATCH AREA A number of disc tracks used during
system generation for storage of the relocatable binary code
of RTE-IL.

PERIPHERAL DISC A peripheral disc is available to the
RTE-Il user for read/write operations, however, RTE-I
does not manage the tracks nor mamtain a track assignment
table for them. A peripheral disc must have a logical unit
number assignment greater than six.

0-1 ,r/(')-:

Svstem Installation

PART 1
Instructions for Planning RTE-II

INPUT/OUTPUT PLANNING

1/O interface cards for peripheral devices are assigned
priorities and logical unit numbers. Tables are built that
affect communication between the devices and the system.

Input/output locations in all HP 2100 series computers
have the same sequence of priority addresses: the highest
priority address is the lowest numbered select code (1/0
slot). The octal select codes start at octal 10 and continue
up to octal 77, limited by the [/O capacity of the particular
computer and any attached extenders.

Interface cards are assigned to priority addresses according
to the speed of interrupt response required by the [/O
device. Interface cards for high-speed devices are assigned
higher priority addresses than low-speed devices. Devices
requiring privileged interrupt are always assigned to the
highest priority addresses, while direct memory access
(DMA) devices are assigned the lowest. The one exception
to the DMA rule is in regard to the moving head system disc
controller. For the fastest interrupt response, assign moving
head disc controller to the next available 1/0 slots after the
Time Base Generator (TBG).

The following instructions are keyed to the 1/O Configura-
tion Worksheet in Table 0-1. Fill in the blanks as you plan
your system.

STEP 1:1/0 LOCATIONS

Considering the factors given in the preceding paragraphs
and the instructions given below, select the priority address-
es for each I/O card, and fill in the top portion of the
Input/Output Configuration Worksheet table with the 1/0
card name, and the appropriate select code (1/0 slot).

NOTE
The top portion of the table is used
for either the select code or the
subchannel number. For example,
i two HP 7900 moving head disc
drives (four subchannels) are con-

nected to a controller in select
codes 20 and 21, the top portion of
the table would be completed as
follows:

octal selec

|9
”)

subchannel 0 1

This method of noting subchannel
numbers will facilitate assigning
logical unit numbers later in the
Device Reference table. For appli-
cable HP7905 disc drive subchannel
numbers, see the HP 7905 Disc
Worksheet. Table 6-7.

The following detailed steps show how to assign select
codes to devices starting at the highest priority address,
octal select code 10. In addition to these steps, make cer-
tain that any peripheral devices or subsystems that use mul-
tiple 1/O slots have their 1/O cards together and in the
relative order required by that device or subsystem.

a. Assign all devices that require privileged inter-
rupt in order of decreasing response time require-
ments (i.e., time from interrupt to service).

b. After the privileged devices. assign the privi-
leged interrupt /O card HP 12620.

c. Assign the TBG 1/O card HP 12539.
d. Assign the moving head disc controller /O
cards if a moving head disc is to be configured into

the system.

e. Assign all devices that do not use DMA in order
of decreasing speed.

RTE-II

Table 6-1. I/O Configuration Worksheet

81-3.1¥dL

ol

7
3002
J_wZZ<IUme\ 123738 1v100

103 Ad3dN3LX3

(1) LNO 3INWIL

(8) LNdLNO a34344N8

‘ON AH1N3 103

(@) a34iND34 YA

—t o —t 4 e

(xx4AQ) "LN3AI HAQ

Oleg 0y 0%,

S—

——T

1Nd1No 1811 9

1NdNI S

1NdLNO HONNd 14

3OVHOLS SSYW 'XNV €

3IOVHOLS SSYW 'SAS 4

ALL’SAS L

—

'SON LINN
AvIIO01 "aLs

-+

-+t

~

I d41LS

JWVN QdvO
30V4H3ILNI O/I

ot

ans

Js

A8 3HVYd3Hd 31va

H3IEWNN NOILVYHINIO

133TIHSHHOM NOILVYHNODOIANOD LNdLNO/LNdNI

<+ (d1I1S

8 d41S
Ld9LS
9 did1S
¢ didLS
td41S
¢ dalLs

¢ dALS

6-4

NOTE

There will be occasions when a de-
vice uses DMA for data transfer and
still generates an interrupt for end-
of-record (EOR) processing. In
these cases the hardware priority of
the device should be treated as a
non-DMA device, with the interrupt
rate of the EOR condition deter-
mining its priority location. Some
consideration should be given to
the priority of a data transfer vs the
priority of a record termination.
Data transfers would normally be
given priority over EOR interrupts
of equivalent or even slightly slower
interrupt rates.

f. Assign all devices that do use DMA in order of
decreasing speed.

g. If an I/O extender is required and the extender
does not have DMA capability, the order of steps *“‘e”
and “f’can be reversed so that all DMA devices are in
the computer mainframe. If this step is necessary,
maintain the same relative order of speed assignment

among the DMA and non-DMA devices.

STEP 2: STANDARD LOGICAL UNIT ASSIGNMENTS

Make the standard logical unit number (LU) assignments (1
through 6) to 1/O devices by placing an X at the
intersection of the standard logical unit number. and the
[/O card select code. Place an X under one of the
subchannels for LU2; include LU3 if applicable. Any
remaining disc subchannels can be assigned logical unit
numbers greater than six (i.e., they become peripheral if
desired).

STEP 3: ADDITIONAL LOGICAL UNIT ASSIGNMENTS

Starting with decimal 7, write in the logical unit numbers
sequentially for each device or subchannel number as appli-
cable. These numbers can be arbitrarily assigned to 1/0O de-
vices, and do not have to be written in a left to right order
on this table. However, if a magnetic tape unit is being
configured into the system it is recommended that it be
made LUS. The power fail routine should be the last (or
highest numbered) LU.

System Installation

NOTE

If a device has two I/O cards use
only the highest priority (lowest
select code) /O card for steps 2
and 3.

STEP 4: DRIVER IDENTIFICATION

Write in the driver identification number for each device:
e.g., teleprinter driver is DVROO. If' the moving head disc
drive is used, in addition to placing DVR31 under the
high-priority card, place a large “I”” under the low-priority
card. For other devices or subsystems that have more than
one I/O card, refer to the I/O card or subsystem documen-
tation covering that device and driver. Place an “I”” under
the select code number of all 1/O cards (i.e., every 1/O card
must have an entry in the interrupt tables). Place a dash
under subchannel numbers. In the case there is more than
one driver with the same DVR number, refer to the
paragraph under Equipment Table Entries later in this
planning part.

STEP 5: DMA

Write in a large “D” for DMA required on cach device that
will use this capability. Note that some drivers, such as
DVR62 for the HP 2313 Sub-system, are capable of
dynamically assigning a DMA channel to themselves when
required and do not require the D. Refer to individual
driver documentation for more information on this
capability.

STEP 6: EQT TABLE

Starting with decimal 1, write in the Equipment Table
Entry (EQT) numbers sequentially for each device. The
system disc should be EQT number 1 to permit special
priority assignment to an available DMA channel. Other
DMA devices should then be assigned EQT numbers in
order of their DMA priority. A device that has subchannels
is assigned the same EQT number for each subchannel. It is
recommended that whenever possible, the EQT number be
the same as the LU number. This will aid the user in
operating the system after it is running. It is also
recommended to make the power fail routine the last
(highest numbered) EQT.

STEP 7: BUFFERING

Write in a large “B” for devices that will use output
buffering. Buffering means that the computer will copy
into a system buffer, data that is to be output to a device .,
(e.g., line printer).

RTE-II

The system will allow a program to continue processing
after issuing a WRITE request to such a device, rather than
suspending the program while it waits for a buffer (in the
program) to be emptied.

STEP 8: TIME-OUT

Write in a large “T” for devices that will use the time-out
parameter. Values will be assigned later on the configura-
tion worksheet,

STEP 9: EXTENDED EQT

Write in a large “X” for drivers that will use the extended
EQT feature. For example, each entry for the Spool
Monitor Driver DVS43 will use the EQT extension. Values
will be assigned later on the configuration worksheet.

DISC PLANNING

RTE-I is a disc-based operating system where a disc device
provides the primary storage area for the following items:

L] The configured operating system

L] Relocated disc resident programs

o Relocatable library modules

[Temporary storage for programs (source for editing,
relocatable output of Assembler, and so forth)

] User files

Disc tracks are grouped together to form subchannels. A
scratch (work) area is set aside to temporarily hold
programs during the generation process. After generation,
subchannels are normally referenced through logical unit
numbers which are assigned in the I/O planning section.
The primary purpose of the disc planning section is to
configure available disc storage into one or more sub-
channels. RTE-II further distinguishes between these as
system, auxiliary, and peripheral subchannels. The
generator will interact with the user to define a group of
subchannels on a single disc controller. Multiple controllers,
and mixed disc types are discussed here under the heading
“Extra Disc Controllers” and in Appendix B.

SYSTEM/AUXILIARY SUBCHANNELS

The RTE-I system disc tracks are those for which RTE-II
controls and maintains a track usage table. Programs may
obtain tracks from, and release tracks to, this area using
calls to the executive. System tracks include all tracks on
the system subchannel (LU2) and the optional auxiliary
subchannel (LU3). The system disc tracks are used for
swapping, and by the editor, Assembler, and compilers for
source, LG track, and scratch areas. In addition, system disc
tracks may be used by user programs for storage.

6-6

The difference between a system and an auxiliary sub-
channel is that the configured system (including the
memory resident system, the relocated disc resident pro-
grams, and the relocatable library) is stored on the system
subchannel.

The size of a system or auxiliary subchannel is limited to
256 tracks. This number may be further reduced depending
on the type of disc used (for example, 203 tracks for an HP
7900 disc).

NOTE

More than one system or type of
system can be located on a disc,
and those systems may share tracks.
In designating tracks, those that
are shared would be included and
declared during each system genera-
tion. The restriction is that any
tracks of an RTE-II system that are
assigned to LU2 or LU3 must be
unique to that RTE-II system. Re-
maining tracks on the disc can be
assigned to other systems.

PERIPHERAL SUBCHANNELS

Disc subchannels other than system and auxiliary are
classified as peripheral and must be assigned logical unit
numbers greater than 6. Tracks on these peripheral sub-
channels are not subject to the RTE-Il assignment and
release mechanism. Management of these areas may be
accomplished directly by user supplied programs or by the
File Manager. Peripheral subchannels to be used by the File
Manager must be defined with no more than 1024 tracks.

HP 7900 DISC CONFIGURATION

The HP 7900 Disc Drive is a single unit that contains two
disc platters; one permanently mounted and designated
subchannel 0, and the other housed in a removable
cartridge and designated subchannel 1. The drive is
interfaced to the computer through a plug-in controller
occupying two I/O slots. It is possible to link up to four
drives to the same controller which provides up to eight
disc platters. Each disc platter is a subchannel, and is
accessed through a logical unit number that is referenced
back to the equipment table (EQT) entry number of the
controller. That is, one controller, servicing eight sub-
channels linked to eight logical unit numbers, can control
up to eight disc platters. Refer to Table 6-2 and fill in the
blanks according to the following instructions.

System Installation

Table 6-2. HP 7900/7901 Moving Head Disc Worksheet

SUBCHANNEL 1

REMOVABLE

NO. OF TRACKS AVAILABLE

FIRST TRACK

NOTE:
THE FIXED PLATTER

SUBCHANNEL O
DOES NOT EXIST

ON THE 7901.
FIXED
NO. OF TRACKS AVAILABLE
FIRST TRACK
SYSTEM SUBCHANNEL NUMBER (LOGICAL UNIT 2)
AUXILIARY SUBCHANNEL NUMBER (LOGICAL UNIT 3)

SCRATCH SUBCHANNEL NUMBER

START SCRATCH (1.E. 1ST TRACK = 0)

6-7

RTE-II

Table 6-3. HP 7905 Disc Worksheet

STEP 1 FILL IN UNIT NUMBER:

CYLINDER 411
CYLINDER 0 — 'a

HEAD O —_I___] UNITH#

HEAD 1 ———D \/

TIMING

HEAD | I
HEAD 2 ————D

STEP 2 TRACKS SHOWN END-TO-END ON THREE SURFACES—CIRCLE SUBCHANNELS:
CYLINDER 0 40 80 120 150 200 240 280 320 360 400 411

HEAD O >
REMOVABLE

HEAD 1 >

HEAD 2 >

STEP 3 TRANSLATE STEP 2 TO NUMBERS:

SUBCHANNEL

NUMBER OF
TRACKS

STARTING
CYLINDER

STARTING
HEAD

NUMBER OF
SURFACES

NUMBER OF
SPARES

SYSTEM ?
(v)

AUXILIARY
(v)

SCRATCH ?
(v)

6-8

Determine the number of tracks available and the starting
track number for each subchannel. Then, fill in the blanks
on the worksheet. Note that the maximum number of
tracks available per subchannel for the HP 7900/7901 disc
is 203. The moving-head Basic Binary Disc Loader (BBDL)
will bootstrap a system on an HP 7900 disc only if it starts
at physical track 0 on subchannel O or 1. Locating the
system tracks anywhere else requires that a paper tape
bootstrap program be punched during generation and used
each time the system is loaded from the disc.

Determine which subchannel is the system subchannel and
which is the auxiliary subchannel (the auxiliary subchannel
is optional). Fill in the appropriate blanks on the
worksheet.

Refer to the heading “Extra Disc Controllers,” for instruc-
tions which cover special action required if the auxiliary
subchannel is on a different controller than the system
subchannel.

HP 7905 DISC CONFIGURATION

The HP 7905 Disc Drive is a single unit that contains two
disc platters; one permanently mounted, and the other
housed in a removable cartridge. Up to eight drives may be
connected to a single 7905 controller. The controller is
interfaced to the computer through an interface card
occupying one I/O slot. Each disc has two surfaces;
however, one surface of the fixed disc is used for timing
purposes and is not available for data recording. Therefore,
a single HP 7905 Disc Drive contains three surfaces (three
heads) and 411 cylinders, giving 1,233 tracks, Refer to
Table 6-3 for a pictorial diagram of the drive showing heads
and cylinders.

The purpose of the following discussion is to configure each
disc into subchannels. Each subchanel will consist of a

contiguous group of tracks on a single drive, and one drive
may contain several subchannels. Up to 32 subchannels
may be defined on one 7905 controller. There is no
physical relationship between a subchannel and a given disc
area (as on 7900 discs); it is the user’s responsibility to
define these relationships.

The completed disc worksheet describes each subchannel
on a drive in terms of the drive’s unit number, size of the
subchannel in tracks, starting head and cylinder numbers,
surface organization, and number of tracks. In dividing up
the HP 7905 disc tracks, note that the goal is a logical unit
number referencing a group of disc tracks.

When filling in the worksheet on Table 6-3 there are several
important rules and guidelines to remember.

System Installation

Surface organization. Tracks on a subchannel must be
contiguous. Head movement should be kept to a
minimum for the fastest response time to sequential
tracks. This means that track assignment should
alternate between surfaces. For example, if" track O
(of the first subchannel) is accessed by head O,
cylinder 0, and track 1 is accessed by head 1, cylinder
0, physical head movement (changing cylinders) is
kept to a minimum.

NOTE

If a subchannel involves both fixed
and removable platters, some flex-
ibility is lost because removal of
one platter invalidates all data on
the subchannel. Additionally, the
rotational alignment between two
platters depends on drive orienta-
tion when the cartridge is inserted.
This makes track-to-track access
time across platters unpredictable.
It may, in fact, be better or worse
than on one platter depending on
alignment and the time required for
software processing between tracks.

If more than one surface is to be used, tracks are
cyclically allocated downward and back to the
starting head assignment when necessary. For exam-
ple, a subchannel beginning with head 1 and using 2
surfaces will use head 1 and 2 repeatedly, and in that
order.

Spare tracks. Some tracks on a disc surface may be
unusable. When an unusable track is encouuntered,
another track is assigned by RTGEN in its place, and
the disc controller will automatically switch to that
track on future references. During generation, spare
tracks are assigned to each subchannel for this
purpose; then, when a bad track is encountered, a
subchannel may draw from its spares. Note that spare
tracks are allocated on a subchannel basis and belong
to that subchannel. That is, one subchannel cannot
take spare tracks from another subchannel. The user
should plan on about 1200 usable tracks per drive,
dividing the remaining 33 tracks as spares among the
subchannels in proportion to subchannel size. Spares
immediately follow the main tracks for the associated
subchannel, and use the same surface organization.
Spares are recommended even though they may not
be used on a given disc. Without sufficient spares, a
subchannel or complete disc might later be copied to
another disc where bad tracks are encountered. in
which case all data would not fit on the new disc.

6-9

RTE-II

(] Subchannel size. A subchannel to be used as the
system or auxiliary subchannel (LU2 or 3) must not
exceed 256 tracks, excluding spares. Similarly, a
peripheral subchannel to be used by the file manager
must not exceed 1024 tracks, again, excluding spares.
Larger subchannels may be defined for access by
user-developed programs.

NOTE

If the user plans to run disc utility
programs designed for a 7900 disc,
subchannels should be restricted to
203 tracks or less.

] Subchannel numbering. Subchannels on a given disc
controller are numbered sequentially from 0. Do not
skip or duplicate any numbers, otherwise the disc
addressing scheme is completely up to the user.

° System subchannel. The moving head Basic Binary
Disc Loader will load a system on a 7905 disc only if
it starts a cylinder O, head O, 1, or 2. Locating the
system subchannel anywhere else will require that a
paper tape bootstrap be punched during generation
and used each time the system is initialized.

With the aid of Table 6-3, 7905 subchannels are defined in
a manner directly translatable for input to the generator.
Copies of the table have been completed for two sample
one-drive systems and are included as suggested disc
configurations in Appendix C.

Follow the instructions below for each HP 7905 drive.

— A hardware unit number is associated with each
drive and is selected by a switch located behind the
perforated front panel. Write the appropriate unit number
on the worksheet.

[STEP 2]— The second part of the worksheet represents the
three surfaces of the disc drive and is provided as an aid in
dividing up the surfaces into subchannels. Using Table C-1
as an example, allocate to subchannel 0, 256 tracks for data
and 8 tracks for spares encompassing 2 surfaces. This makes
a total of 264 tracks or 132 cylinders. Note that the
example in Table C-1 has all of the tracks for subchannel 0
enclosed and labeled. The first cylinder contains the first
and second addressable track:

first track = head 0, cylinder O
second track = head 1, cylinder O

Divide up the surfaces, grouping the tracks into sub-
channels. Allow approximately six spare tracks for each

6-10

200 data tracks allocated. The number for the first cylinder
of succeeding subchannels is found by adding the number
of cylinders used by preceding subchannels. (Add tracks
and spares, then divide by the number of surfaces to count
cylinders.) In the example above, 132 cylinders were
assigned to subchannel O (256 tracks plus 8 spares).
Therefore, the “First Cyl” for subchannel 1 would be
cylinder 132, head O or 1, or cylinder 0, head 2. It depends
on how you assign the tracks.

— The third part of the worksheet answers all the
questions the generator will ask about each subchannel. For
the most part, the numbers are filled in from Step 2. Refer
to Table C-1 for the example. Fill in the blanks for all
subchannels created in Step 2.

Determine which subchannel will be the system and which
subchannel will be the auxiliary (if any) and check the
appropriate boxes.

EXTRA DISC CONTROLLERS

The RTE-II generator assumes a single disc controller for
purposes of interactively defining and initializing sub-
channels. If a system is to have more than one controller
(same or different disc types), the user must construct a
table, according to the directions in Appendix B, describing
the subchannels of the controller before beginning genera-
tion. The generator will not initialize these subchannels.
The user must include the appropriate disc driver and
define an equipment table entry and logical unit numbers
for the subchannels (described in [/O configuration
planning).

The optional auxiliary subchannel may be placed on a
different controller than the system subchannel. The
preceding discussion applies in this case with the added
requirement that the user specify the number of tracks in
the subchannel when the generator inquires about the
auxiliary option (see part 2 of this section).

FIXED HEAD SYSTEM DISC

Unless otherwise stated, the following discussion deals with
logical disc tracks. The number of tracks available on the
system and auxiliary discs (LU2 and LU3) depends on two
factors, model number of the disc drive, and if any of the
disc tracks are already being used. Determine the number of
available tracks by referring to Table 6-4, Fixed Head Disc
Worksheet, and subtracting any tracks allocated to another
software system.

The number of hardware protected tracks is selected by
removing diodes on the HP 12606 or 12610 Disc/Drum

Controller cards. Refer to the individual 1/O card manuals
to determine if the diodes apply to logical or physical
tracks. (Four physical tracks = one logical track.) The num-
ber of software protected tracks is selected by the user and
entered through the teleprinter during RTGEN. The average
RTE-Il System requires approximately six to eight tracks
for the absolute code (see the sample RTGEN in Appendix
C). Compare the RTGEN listing in Appendix C to the list
of software intended for this generation to estimate the
approximate number of tracks to protect. For example, if
the system will use more than eight logical tracks, but less
than 16, the user has the option of hardware protecting 16
tracks, or hardware protecting only eight, but software pro-
tecting a greater number. Always remember, tracks for the
absolute code of other software operating systems should
also be protected and contiguous with the RTE-II tracks
within the hardware protected area. Enter the number of
the worksheet.

1

. CAUTION |

Never hardware protect more tracks
than will be declared as software
protected.

Table 6-4 Fixed Head Disc Worksheet

FIXED HEAD SYSTEM DISC

DRUM DISC MEMORY CHARACTERISTICS

oA secors] [,
JRUM 1S CDES
oRU OISt | rracks pertracd | U
~ - 3 12606 10 LpRo0s
o
173 - a5
o
2773003 | 2760007 | 64 LR [
.
e | 266003 | 96 i
{ l

2774-003 | 2766-004 128
|

- 2770 32
B Wl
217001 | o4
+ 90 i 5
2771 6d T
Crl | 75 1-49
- 217101 128
Rt
| | CrU-10
SYSTEM 1LU2! AUXILIARY 1

= =

0. OF TRACKS AVAILABLE NG OF TRACKS AVAILABI

START SCRATCH SECTORS TRACK

NO. OF PROTECTED TRACKS
CECTORS TRACK

SVSTERT SUBCHANNEL NUMBER
AUXT_IARY SUBCHANNEL RUNBER

SCRATCH SUBCHANNEL NUMBER

START SCRATCH (1. £, 1ST TRACK - 01

System Installation

Determine the number of 64 word sectors per track from
the table on the worksheet and fill in the blanks on the
worksheet .

GENERATOR SCRATCH AREA

RTGEN requires a scratch area for storing relocatable
modules used to build the system. This area is defined only
for the duration of the generation and may be placed on
any of the subchannels. Two factors must be considered in
selecting the size of the scratch area:

a. The area must be large enough to accommodate
all of the relocatable modules, otherwise, an ERR17
will occur (see RTGEN Error Messages in this
section).

b. The area must not be so large that the system
area will overflow into it during the disc loading
phase causing an ERR38. (See RTGEN Error Mes-
sages in this section).

An ERR38 can occur only when the scratch area is located
on the system subchannel. Because the absolute system is
built upwards toward the relocatable modules, it is possible
that these modules may be overlayed by the system before
they have been converted into absolute code. It is recom-
mended that the scratch area not be located on the system
subchannel.

NOTE

If the scratch area is assigned to a
subchannel other than the system
subchannel, that subchannel should
not have tracks shared with another
system, or any data on it that must
be retained. This is because the
scratch subchannel tracks assigned
to the system being generated are
initialized by RTGEN. As a result,
any data on them is destroyed.

Determine which subchannel will provide the scratch area
and indicate this on the appropriate disc worksheet. If the
scratch area must be located on the system subchannel, it is
recommended that the entry for the start scratch area be
zero. A zero entry causes RTGEN to start the scratch area
at the midpoint of the available disc area. Note that this
default occurs only when the scratch area is located on the
system subchannel. If either of the error codes ERR17 or
ERR38 are encountered during generation, use the data in
Table 6-5 as a guide to adjusting the scratch area. A formula
for determining the approximate number of 64-word
sectors a user-written program will occupy follows:

o-11

RTE-II

Number of 64-word Sectors = ;—3

where, x is the number of words of main memory the
program occupies.

NOTE

Table 6-5 and the formula are only
approximate guides to be used as an
aid if using the scratch default does
not work, or if difficulty is exper-
ienced in estimating some other
starting point for the scratch area.

The first logical track number of the scratch disc is always
zero (0) regardless of the actual track address. For example,

Table 6-5. Approximate Number of 64-Word Sectors
Required to Store RTE-II in Relocatable

Format
NAME 64-WORD SECTORS
Executive Software 184
RTE-II System Library 50
RTE-1I ASMB 174
RTE-II FORTRAN 348

RTE/DOS FORTRAN 1V

Compiler 464
RTE/DOS FORTRAN IV

10K Compiler 354
RTE-II ALGOL 176
RTE-II Editor 38
RTE-II Interactive Editor 66
RTE-II Loader 142
RTE/DOS Relocatable

Library 240

RTE/DOS FORTRAN IV

Library 290
RTE/DOS HP FORTRAN

Formatter 42
RTE/DOS Plotter

Library 78
Drivers Allow 11 sectors

per driver

6-12

if the scratch is located on a subchannel consisting of
cylinders 100 to 200, the starting logical track for the
scratch disc would be track zero (0). To start the scratch
area on a track inside the available area, count the number
of tracks into the area and use that number as the starting
track (e.g., to skip the first 10 tracks, start scratch on track
10).

The next worksheet to be completed depends on the type
of disc to be initialized. Use either Table 6-6, HP
7900/7901 Moving Head Disc Initialization; Table 6-7, HP
7905 Moving Head Disc Initialization; or Table 6-8, Fixed
Head Disc Initialization. The disc initialization worksheet
contains specifications of all disc tracks belonging to the
system, memory, time base generator channel, swapping
options, and program input devices.

MOVING HEAD DISC INITIALIZATION

During the initialization phase, RTGEN requests informa-
tion necessary to generate a track map that defines disc
subchannels. Once the track map is established, RTGEN
continues requesting information necessary to generate the
system.

HP 7900/7901 DISC INITIALIZATION

Fill in the blanks on Table 6-6. The information requried
for the following steps can be obtained from Table 6-2, the
HP 7900/7901 Disc Worksheet.

STEP 1| — Write in the lower numbered/highest priority

select code (I/0 slot) for the disc controller.

STEP 2}~ Fill in the track assignments for each subchannel.

A zero (0) entered for number of tracks causes RTGEN to
ignore that subchannel.

Go to STEP 3.

HP 7905 DISC INITIALIZATION

Fill in the blanks on Table 6-7. Most of the information
required for the following steps can be obtained tfrom Table
6-3, the HP 7905 Disc Worksheet.

STEP 1| — Write in the lower numbered/highest priority

select code (I/0 slot) for the disc controller.

STEP 2| Fill in the blanks for each subchannel from Table
6-3.

STEP 3|— The number of 128-word sectors per track is 48.

225+A P~

200+A f—

175+A —

150+A |—

125+A |—

100+A

75+A —

NUMBER OF MILLISECONDS

System Installation

25+A

0+A —

o1 1

| | | | |

0 3 6 9

12 15 18 21 24

PROGRAM SIZE IN K-WORDS

TPRTE-13A

THIS GRAPH REPRESENTS THE TIME IT TAKES TO READ OR WRITE A PROGRAM
TO THE DISC. THE TIMES SHOULD BE DOUBLED TO GET TOTAL SWAP TIME.

NOTES:

A RANDOM ACCESS TIME WHICH IS COMPOSED OF
TWO QUANTITIES.

A. THE ROTATIONAL DELAY. THIS DELAY
RANGES FROM 0 TO ONE ROTATION TIME (RT)
WITH EQUAL PROBABILITY, THUS THE
AVERAGE ROTATIONAL DELAY IS RT/2.

B. THE SEEK TIME (ST). FOR A FIXED HEAD
DISC ST = 0. FOR A MOVING HEAD DISC IT
RANGES FROM 0 TO SOME MAXIMUM WITH A
NON-EQUAL PROBABILITY. THE SEEK TIME
DEPENDS ON THE LAST ACCESSED TRACK

NUMBER.

HP 7900/7901
— — HP 2771
— ¢ = HP 7905

EXAMPLE:

USING THE ABOVE PRINCIPLES AND GIVEN THE
FOLLOWING DATA FOR AN HP 7900 DISC, WE CAN PLOT
THE LOAD/SWAP TIME AS A FUNCTION OF THE NUMBER OF
WORDS. NOTE THAT THE NUMBER OF WORDS IS AFFECTED
BY THE “ALL OF CORE BIT.”

FOR AN HP 7900: RT =25 MS
#RT'S/TRACK =2
FWORD/RT =3K

Figure 6-1. Swap Delay Graph

6-13

RTE-I

STEP 4 |- If only one subchannel is assigned to the system,
place a dash (i.e., does not apply) in system subchannel,

auxiliary disc subchannel, and scratch subchannel blanks.
Otherwise fill in the numbers from the Disc Worksheet,
Table 6-2 or Table 6-3. Refer to the pragraphs under
scratch area and enter that number.

STEP 5|— Fill in the select code of the TBG card. Fill in the
select code of the privileged interrupt card. If there is no
privileged card, enter a zero (0).

STEP 6|— The swapping questions are answered with a YES
or NO which allows or disallows foreground/background

swapping. The core lock questions also are YES or NO
answers. If YES is answered to either of these questions, it
allows a program running in the appropriate area to lock
itself into core and not be swapped. If the answer is NO
then the program cannot be locked into core. Refer to the
PROGRAM SWAPPING CONTROL call in Section III.

STEP 7|— The answer to the Swap Delay question is a

decimal number between O and 255 that represents
tens-of-milliseconds (i.e., 0 to 2550 milliseconds). If a
number “N” is entered here a program will not be swapped
if it resides in a disc resident area, is in the time list, and is
to run within “N” milliseconds of the current time and has
priority over its contender for that core area. The amount
of time required for a program to swap depends on several
factors; type of disc drive, program length, and if the
program is segmented. To obtain an accurate figure tailored
to core size, program size, and disc type, refer to Figure
6-1, Swap Delay Graph. Remember, the number selected
here is applied to all swapable programs.

STEP 8| Last word of available memory depends on com-
puter memory size.

16K — 37677
24K — 57677
32K - 77677

STEP 9|— The use of input units is interchangeable. Maxi-
mum versatility can be achieved by designating one device
for paper tape and one for magnetic tape if magnetic tape is
present on the system. For example, if most of your
relocatable programs are on magnetic tape and only a few
on paper tape, it would be most efficient to set up the
magnetic tape as the program input device (PRGM) and the
paper tape reader as the library input device (LIBR). Note
that there is no difference between programs input through
the PRGM device and those input through the LIBR device.
Any program may be loaded through either device. Part 2
of this section describes the mechanism for switching
between devices during input.

System Installation

The program input and library input devices can be:

PT — paper tape (photoreader)
TY — Teleprinter

MT — magnetic tape

DF — fixed-head disc file

The parameter input device is either PT or TY. If the
answers to the generator requests are contained on paper
tape, use TY. Then switch register bit 5 can be used to
control the source of input (see Table 6-10).

STEP 10|— All disc tracks belonging to the system may or

may not be initialized. RTGEN automatically initializes
tracks on the system, auxiliary, and scratch subchannels. If
other subchannels are available RTGEN asks if they are to
be initialized by subchannel number in ascending order. If
the answer is YES, RTGEN initializes only the system
tracks on that subchannel and reports any defective tracks.

If the answer is NO, RTGEN does not initialize that
subchannel.

NOTE

Any tracks on a subchannel that are
shared with other systems should
not be initialized because that data
will be destroyed.

BAD TRACK INFORMATION

7900 DISCS — Up to 10 bad tracks are allowed before
RTGEN aborts. Bad tracks in the area where the absolute
system and relocatable library are stored will prevent
operation of the system (this is the area reported at the end
of generation).

Defective tracks are reported as shown below:

BAD TRACK SUBCHNL x
000yyy

where yyy is the logical track number and is needed when
initializing the file manager for the subchannel (x) reported.

7905 DISCS — Bad tracks are automatically spared by the
generator to tracks set aside for that purpose in the
initialization phase. Bad tracks reported and spared during
generation will not prevent operation of the system and
should not be specified during file manager initialization of
a cartridge on the subchannel.

STEP
NUMBER
(1)

o d

System Installation

Table 6-6. HP 7900/7901 Moving Head Disc Initialization

INITIALIZATION PHASE
MH DISC CHNL?

((#TRKS, FIRST TRK ON SUBCHNL:
0?

(5)

\ E

#128 WORD SECTORS/TRACK?
SYSTEM SUBCHNL?

SCRATCH SUBCHNL?

AUX DISC (YES OR NO OR #TRKS)?
START SCRATCH?

TBG CHNL?

PRIV.INT. CARD ADDR?

(6) <

(FG SWAPPING?

BG SWAPPING?

FG CORE LOCK?

BG CORE LOCK?

(7)

(8)

(10) <

(11)

SWAP DELAY?

LWA MEM?

PRGM INPT?

LIBR INPT?

PRAM INPT?

(INITIALIZE SUBCHNL:

5?

6?7

7?

.

PUNCH BOOT?

TPRTE-20

6-15

RTE-I

Table 6-7. HP 7905 Moving Head Disc Initialization

STEP
NUMBER INITIALIZATION PHASE
(1) CONTROLLER CHAN?

FOR SUBCHNL

0?

1?

2?

3?

(2) < bl ’ > > s

4?

5?

6?

7?

_ /E

(3) #128 WORD SECTORS/TRACK?
SYSTEM SUBCHNL?
SCRATCH SUBCHNL?
w{

AUX DISC (YES OR NO OR #TRKS)?
LSTART SCRATCH?

TBG CHNL?

(5)
T PRIV.INT.CARD ADDR?

6-16

(#TRKS, FIRST CYL#, HEAD, #SURFACES, UNIT, #SPARES

(7)

(8)

(9)

(10)

(11)

(

\

FG SWAPPING?)

BG SWAPPING?

.

FG CORE LOCK?

BG CORE LOCK? J

SWAP DELAY?

LWA MEM?

PRGM INPT?

LIBR INPT?

L PRAM INPT?

INITIALIZE SUBCHNL:

2?

4?
5?
6?
7?

PUNCH BOOT?

TPRTE-20

Defective tracks are reported as shown below:

LOGICAL CYL HD UNIT
BAD TRACK XXXX XXXX X X
SPARED TO XXXX XXXX X X

[STEP 11| — The punch boot question is optional. If the
s_y?tgn__resides on subchannel 0 or 1 and starts at track O,
the tape is not required. Otherwise this blank requires a
minimum of one YES answer. Write in YES for as many
bootstrap tapes as you desire. Write in NO for termination.

FIXED HEAD DISC INITIALIZATION

Many of the answers to the following steps can be obtained
from the Fixed Head Disc Worksheet, Table 6-4. For Table
6-8, perform the following steps:

'STEP 1] - Write in the lower numbered/highest priority
select code for the disc controller.

@@— Write in the system disc size, where the scratch
starts, number of software protected tracks, and number of
64 word sectors per track. (Note that if the auxiliary disc is
an HP 7900 the answer must still be the number of 64 word
sectors per track.) If there is no auxiliary disc, write a zero
(0) in the auxiliary disc size blank, and a dash (i.e., does not
apply) in the # sectors/track blank.

Fill in the select code of the privileged interrupt card. If
there is no privileged card, enter a zero (0).

[STEP 3|- The swapping questions are answered with a YES

or NO which allows or disallows foreground/background
swapping. The core lock questions also are YES or NO
answers. If YES is answered to either of these questions, it
allows a program running in the appropriate area to lock
itself into core and not be swapped. If the answer is NO
then the program cannot be locked into core. Refer to the
PROGRAM SWAPPING CONTROL call in Section III.

[STEP 4|~ The answer to the Swap Delay question is a
decimal number between O and 255 that represents
tens-of-milliseconds (i.e., 0 to 2550 milliseconds). If a
number “N” is entered here, a program will not be swapped
if it resides in a disc resident area, is in the time list, and is
to run within “N” milliseconds of the current time and has
priority over its contender for that core area. The amount
of time required for a program to swap depends on several
factors; type of disc drive, program length, and if the
program is segmented. To obtain an accurate figure tailored
to core size, program size, and disc type, refer to Figure
6-1, Swap Delay Graph. Remember, the number selected
here is applied to all swappable programs.

System Installation

STEP 5| — Last word of available memory depends on

computer memory size.

16K — 37677
24K — 57677
32K - 77677

STEP 6| - The use of input units is interchangeable.
Maximum versatility can be achieved by designating one
device for paper tape and one for magnetic tape if magnetic
tape is present on the system. The program input and
library input devices can be:

PT —paper tape (photo reader)

TY —teleprinter

MT —magnetic tape

DF —fixed head disc file

The parameter input device is either PT or TY.

This concludes the Fixed Head Disc Initialization phase.
Proceed to Table 6-8, System Configuration Worksheet.

SYSTEM CONFIGURATION

This portion of planning the generation is divided into four
phases. Refer to Table 6-9, the System Configuration Work-
sheet. The first phase, Program Input Phase, concerns gath-
ering the necessary tapes to be loaded and putting them in
order. The second phase is the Parameter Input Phase and
allows the user to modify certain parameters ot the pro-
grams. The third phase is the Table Generation Phase and
concerns planning all the necessary internal tables required
by the system for effective communication between user
programs, the system, and I/O devices. The tourth phase is
the System Boundaries Phase and concerns setting up boun-
daries for various parts of the system. and allocating
common areas.

PROGRAM INPUT PHASE

Due to the large number of tapes to be loaded during this
phase, it is recommended that they be placed on a table in
the tollowing order.

Core Resident System

1/O Drivers.

Power Fuail (DVP43)

System Programs written by the user
Multi-Terminal Monitor

Foreground Core-Resident Programs
Foreground Disc-Resident Programs
Background Core-Resident Programs
Assembler (Main and its Segments)

6-17

RTE-II

6-18

(1)

(2) <

Table 6-8. Fixed Head Disc Initialization

INITIALIZATION PHASE

FH DISC CHNL?

(" SYS DISC SIZE?

START SCRATCH?

NO. PROTECTED?

#SECTORS/TRACK?

AUX DEC SIZE?

#SECTORS/TRACK?

TBG CHNL?

PRIV. INT.CARD ADDR?

(FG SWAPPING?

BG SWAPPING?
(3) <
FG CORE LOCK?

BG CORE LOCK?

(4) SWAP DELAY?
(5) LWA MEM?
(PRGM INPT?

(6) < LIBR INPT?

K PRAM INPT?

TPRTE-21

FORTRAN (Main and its Segments) and/or

FORTRAN IV (Main and its Segments) but not both
FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editors

Batch Monitor

Other Background Disc-Resident Programs and
respective segments, if any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

their

NOTE

Some of the above relocatable
modules may not be present in
some configurations.

PARAMETER INPUT PHASE

During the parameter input phase, the operator can modify
the type, priority, or execution intervals and the ENT
(entry) records of any of the programs entered during the
program input phase (except that the primary type code of
background main programs and their segments cannot be
changed without losing their relationship to each other).

RTGEN has an additional feature that applies only to type
1,2,3,4,9, 10, 11, or 12 programs. During the Parameter
Input Phase one program of this type can be scheduled to
execute automatically whenever the RTE-II System is load-
ed from the system disc. This is accomplished by adding 80
to the program’s type code. For example, if PROG is origi-
nally a type 2 program (real-time disc-resident), it can be
changed to:

PROG, 82| ,priority] [,execution interval]

This will cause PROG to be scheduled automatically each
time the system is loaded into memory from the disc. Only
one program can be assigned to type 80 code for automatic
scheduling. If more than one program is assigned an 81, 82,
83, 84, 89, 90, 91, or 92 type code, only the last one
entered in this phase is automatically scheduled.

Each parameter record is of this general form:

name,type [,priority] [,execution interval/
Where:

name is the name of the program.

type

priority

execution
interval

System Installation

is the program type code:

0 system program or driver

1 - foreground core-resident

2 — foreground disc-resident

3 — background disc-resident

4 - background core-resident

5 — background segment

6 — library, re-entrant or privileged

7 -~ library, utility

8 — it program is a main, it is deleted from
the system

— Or —

8 —if program is a subroutine, then it is used
to satisfy any external references during
generation. However, it is not loaded in
the relocatable library area of the disc.

9 — foreground core-resident, back-
ground common

10 — foreground disc-resident, uses background
common

11 - background disc-resident, uses toreground
common

12 — background core-resident,
ground common

13 - background segment,
common

14 - library, core-resident

uses

uses fore-

uses foreground

NOTE

It is illegal to classify a subroutine
as type 14 that does not quality as
a type 6.

is the program priority from 1 to 32767 with
1 the highest priority.

is a list of six parameters specifying the times
the program should be scheduled for execution,
once it is turned on. The first two values speci-
fy the execution interval, and the last four spec-
ify an initial absolute starting time:

resolution code (0 to 4):

0 - no execution interval
1 tens of milliseconds
2 — seconds

3 — minutes

4 - hours

6-19

RTE-lI

execution multiple (0 to 4095); the resolution
code gives the units for the execution multiple.

initial absolute starting time (four values):

hours (0 - 23)
minutes (0 - 59)
seconds 0 -59)

tens of milliseconds (0 - 99)

Fill in the blanks on the worksheet for any programs that
are to be modified.

The next set of blanks are for type 3 (absolute) and 4
(replace) entry (ENT) record creating and modifying. Each
ENT record takes the following form:

entry, type, value

Where
entry is the entry point name.
type is the entry point type.
AB = Absolute
RP = Replace
value is the entry point instruction value. Octal num-

bers are assumed unless the letter “D” follows
the number which signifies decimal.

When an entry point is declared as absolute (type =
AB) its value is added to the referencing instruction to
obtain the final instruction value.

When an entry point is declared as replace (£ype = RP) the
generator loader will replace each reference to it with the
octal (or decimal) value. This provides the user with the
capability of creating type 4 entry records which are code
replacement values. This means that a JSB instruction
referencing an external entry point (e.g., JSM .FAD) is
intercepted by the RTE Loader and changed to a value
which has been defined by the RP command. This allows
the user to eliminate software subroutines by replacing
their entry points with microcode instructions. For
example:

.FMP,RP,105040

This would cause each JSB .FMP instruction (multiply) to
be changed to floating point multiply. Other examples are
shown below.

6-20

RP also allows the user to plan the system with future
expansion of his programs in mind. For example, an entry
point can be created with RP during generation (or later
with RPL in the RTE Assembler, see that part in this
manual), that is not required during generation but will be
used later by programs loaded on-line.

Floating Point _Fixed Point,
.FAD, RP, 105000 — Add MPY ,RP, 100200
FSB, RP, 105020 -- Subtract ~ .DIV,RP, 100400
.FMP, RP, 105040 — Multiply =~ .DLD,RP, 104200
FDV, RP, 105060 — Divide .DST, RP, 104400

IFIX, RP,
FLOAT,RP,

105100 — Fix
105120 — Float

Another example use would be to do [/O configuration at
load time, and configuring tables that are assembled as DEF
statements to externals.

The next item on the worksheet concerns blank ID seg-
ments. One blank ID segment is required for each program
that will be loaded permanently into the system on-line by
the RTE-II relocating loader. If five segments are allocated,
then only five additional programs can be loaded into the
system on-line. If a temporary program is deleted trom the
system by an OF jname,8 operator command, or a perma-
nent program is deleted from the system by the
ON,LOADR,, 4 command, the program’s ID segment is
returned to the system to use for another on-line load. Each
ID segment requires 29 words in the system core-resident
area (28-word ID plus one key word). Fill in the number of
blank ID segments required. (Note: O is changed to 1 to
allow loading at least one program.)

The next item on the worksheet concerns blank back-
ground ID segments, or short ID segments. These ID seg-
ments require 10 words (9-word ID plus one key word) and
are used only for background nrogram segments. One short
ID segment is required for each program segment. If an
on-line load is done, and there are no blank short ID seg-
ments available, a regular 29-word one will be used.

The next item on the worksheet is for the First Word Avail-
able on Base Page for links (FWA BP LINKAGE). The first
word available for base page linkages is established from the
[/O Configuration Worksheet as the last used select code
plus one (e.g., if the last I/O card in the priority string is
located in select code 26, the FWA BP LINKAGE would be
27). Determine the number from the I/O Worksheet and fill
in the blank.

TABLE GENERATION PHASE

The Table Generation Phase is the final phase that generates
all the required tables, and converts the relocatable pro-
grams.

The first blank in the Table Generation Phase concerns
Class Input/Output numbers. Multiple terminal operation
requires one Class Number: spooling requires two, and there
must be one Class Number for each Class GET call simul-
taneously outstanding (see Section I11). For example, if you
specify ten Class Numbers here, ten programs can simul-
taneously process class requests. Enter a number between 1
and 255 (note that 0 is changed to 1).

The next blank concerns a table (configured by the genera-
tor) called LU Mappings that cross references physical logi-
cal unit numbers to logical unit numbers within the Batch
System. The number entered here is the table size and is
related to the maximum number of logical unit numbers
referred to in a single job within the Batch and Spool Moni-
tor. A common entry would be ten. [f the Batch and Spool
Monitor is not used. zero can be entered but is defaulted to
one.

The next blank concerns the allocation of Resource Num-
bers (RN’s). Spooling requires four RN’s and there must be
one RN for each resource to be controlled. See the Re-
source Management Call in Section II. For example, if you
specify ten RN numbers here, ten resources (e.g., I/O device
or file) can be managed and used by cooperating programs.
Enter a number between 1 and 255 (note that O is changed
t 1).

The next blank concerns current buffer limits. Settling up-
per and lower memory limits here can prevent an inopera-
tive or slow 1/O device from monopolizing available system
memory. Each time a buffered 1/O request is made (Class
1/0 requests are buffered), the system adds up all the buf-
tfered words in 1/O requests queued to that EQT entry and
compares the number to the upper limit set here (or by the
BL command). If the sum is less than the upper limit the
new buffered request is added to the queue. If the sum is
larger than the upper limit the requesting program is sus-
pended in the general wait (STATUS = 3) list. When a
buffered I/O request completes, the system adds up the
remaining words in I/O requests queued to that EQT entry
and compares the number to the lower limit set here (or by
the BL command). When the sum is less than the lower
limit, any programs suspended for exceeding the buffer li-
mits on this EQT are rescheduled. An appropriate entry of
100 and 400 can be entered and later changed with the BL
command it desired.

System Installation

EQUIPMENT TABLE ENTRY (EQT TABLE) The first
table to be completed is the Equipment Table. Each entry
is located on the 1/O worksheet and is to be transterred to
this table. EQT number one should be the system disc and
is either DVR30 for the fixed head or DVR31 tor the mov-
ing head. Note that each EQT entry contains a blank for
the driver name which contains five characters, starts with
the characters “DV™ and ends with a two-digit octal num-
ber (e.g.. DVynn). This name is usually obtained from the
software box that the tape is located in. The entry point
names are four characters in length and start with either “I”
(e.g., Lxnn for Initiation section), or ~*C™ (Cxnn for Com-
pletion section), and usually end with the same two-digit
octal number used in the driver name. However, since
RTGEN does not examine the driver’s NAM record, the
driver may in fact be renamed to support more than one
device type. The rules tor the choice of “x™ and “y™" above
are as tollows:
If =y is not “*R” then *“x7 = "y™
Ity is “R™ then “x7 ="

Using the above rules. more than one driver with the same
name can be configured into the system by changing the
third character in the name. For example, the system has
two line printers of different types. Each line printer uses a
different driver but the drivers have the same common
name, DVR12. Both drivers could be contigured into the
system by changing the name of one to DVAI12. Its entry
points for the Interrupt Table would then become 1A12
and CA12. The other driver would be DVRI12 with entry
points of 1.12 and C.12. The remaining blanks on the EQT
entry line are for D (DMA required). B (buffered output), T
(time-out), and X (extra memory). The blanks are filled in
as shown in the example in Figure 6-2.

If T is specitied, a value tor T must be entered in the T =
blank. The value must be a positive decimal number up to
32767. This is then the number of time base generator
interrupts (10 msec intervals) between the times 1/O is ini-
tiated on the device and the time after which the device
should have interrupted. (Note that tor privileged drivers T
must be long enough to cover the period from 1/O initiation
to transfer completion.) If the device has not interrupted
by this time, :t is considered to have timed-out and is set-
down, except in the case of the system teletype and devices
controlled by drivers handling their own time-out. For a
device controlled by driver DVROO (e.g.. teleprinter), or
DVROS (DVROS reserved tor future system control device),
T should not be less than 500. Also, devices controlled by
DVROO require special subchannel assignments to make the
time-out feature effective. Refer to the DVROO Small Pro-
grams Manual, HP Part No. 29029-95001.

RTE-II

EQT 7 =7
17, DVR23, B, D,
A b A

T =200, X =150

»

Equipment
Table
Number

Octal
Select
Code
Number
(slot)

Driver

Number -
Name

Output }

Buffering
Requested
(B)

Direct
Memory
Access
Required
(DMA)
(D)

Number

of 10 ms.

Increments

Before

Timeout
T=n

Number
of Words

For
Extended I

Memory

TPRTE-14
Figure 6-2. EQT Table Example

If “X” is specified (on the I/O Configuration Worksheet) a
value for “X” must be entered in the “X =" blank. The
value must be a positive decimal number up to three digits.
This is then a number of words of buffer space allocated to
the driver for its use, and is called an EQT extension. The
result of this entry is recorded in the driver’s EQT table,
words 12 and 13. EQT word 12 contains the number of
words of buffer space, and word 13 contains a pointer to
the buffer. An example use of the EQT extension is for the
Batch and Spool Monitor Driver DVS43. An entry must be
made for each spool file that will be active, or currently
doing I/0. For example, a common number of 6 files could
be active at one time. The entries (referencing unused I/O
slots) might be:

30,DVS43,X =18
31,DVS43,X =18
32,DVS43,X =18
33,DVS43,X =18
34,DVS43,X =18
35,DVS43,X =18

6-22

Refer to the I1/O Worksheet (Table 6-1) and write in the
octal select code number, DVR number, and D, B, T, and X
options if applicable, for each EQT number in sequential
order. Note that the driver’s identifying suffix letter is not
included.

DEVICE REFERENCE TABLE (DRT TABLE) — The
device Reference Table, which contains the logical unit
(LU) numbers, is cross referenced to the EQT entries here.
Refer to the 1/0O Worksheet (Table 6-1) to obtain the EQT
entry number, LU number, and optional subchannel
number. Fill in the blanks as shown in Figure 6-3. LUO (bit
bucket) is a system mechanism that allows immediate I/O
completion. That is, the data buffer is written to or read
from a non-existent device. The first seven LU numbers are
reserved for system devices as follows:

LUO — Bit bucket (no entry required)
LUI — System teleprinter

LU2 — System mass storage

LU3 — Auxiliary mass storage

LU4 — Standard punch unit

LUS — Standard input unit

LU6 — Standard list unit

LU8 — Recommended magnetic tape

Extra LU numbers can be assigned using EQT number zero
and may be changed on-line to reference other EQT
numbers as desired.

Decimal
Logical
Unit
Number

»2 = EQT No.?

1,1
Equipment f
Table

Number

Subchannel
Number

TPRTE-15

Figure 6-3. DRT Table Exarple

INTERRUPT TABLE (INT TABLE) — This table allows
the user to establish interrupt links that tie the octal select
codes back to EQT numbers. Each I/O card (select code), in
ascending order, is referenced back to its EQT entry
number that was established in the Equipment Table Entry
part. If dummy I/O slots were used to reference EQT
numbers for the Batch and Spool Monitor Driver DVS43,
interrupt links for those entries are also necessary. For
example (refer to the sample generation in Appendix C),

EQT number one (the first entry) was assigned to 1/O slot
21, DVR31. Now, in the interrupt table, 1/O slot 21 will be
referenced back to EQT number one. In this manner, an
interrupt occuring on I/O slot 21 will be directed to EQT
number one which has the address of DVR31. The format
for the entry is shown in Figure 6-4.

From Figure 6-4 the entries for the interrupt table are con-
structed as follows:

octal select code number is taken from the I/O Worksheet
(Table 6-2) in ascending order.

option directs the system in handling the interrupt; there
are four options:

select code, EQT n2 relates channel to EQT entry n2.

select code,PRG name causes program name to be sched-
uled upon interrupt.

causes control to transfer to the
entry point of a user-written sys-
tem program upon interrupt.

select code ENT entry

select code, ABS xxxxxx places an absolute octal value
xxXxxx (instruction code) in the
interrupt location (may be NOP,
CLC, etc.)

The HP 7900 disc controller 1/O cards both require an
interrupt link to their EQT entry number. Reference the
select code numbers to the DVR31 EQT entry number as
shown below.

21,EQT, 1
22,EQT, 1

Octal T)
Select

Code
Number

Option

——

Equipment
Table
Number
—or—
Entry

TPRTE-16

Figure 6-4. INT Table Example

System Installation

For other devices or subsystems that have more than one
I/O card, refer to the I/O card or subsystem documentation
covering the device and driver. In all cases, each /O card
must have an interrupt entry. Note that interrupt location 4
(power fail) may be changed from its present HLT 4 to an
ENT entry if a power-fail routine is to be included in the
system. For example:

4, ENT, SPOWR

where SPOWR is an entry point in the power-fail routine.
SYSTEM BOUNDARIES PHASE

This ends the planning phase of RTGEN. The final ques-
tions cannot be effectively answered until RTGEN begins
loading the system and reports the actual boundaries in-
volved. Some of the boundary changes are for convenience
purposes. That is, the boundary is changed to allow the
affected area to begin on a page boundary, if desired. In
these cases, any gaps are collected and used as system butter
memory by the system. I[f there is to be no change of a
boundary address, enter a 0 (zero) in the change blank.
Refer to 6-5 as an aid in locating the referenced arcas.

The first blank is boundary “A” and concerns the library.
Move the address up to start it on a page boundary, if
desired.

The next blank is area “B” and is the foreground common
area. The number of words allocated for foreground com-
mon is reported and then RTGEN gives the user the oppor-
tunity of increasing the area.

The next blank is boundary “C” which is the toreground
core-resident address. Move the address up to start the area
on a page boundary, if desired.

The next blank is boundary “D’ which is the toreground
disc-resident address. Move the address up to start the area
on a page boundary, if desired.

The next blank is boundary “X,” concerns base page link-
ages and requires some explanation. The boundary being
moved is shown as “X” on Figure 6-5. After the real-time
disc-resident programs are loaded, RTGEN reports the next
available base page link above the links used. The linkage
area for real-time disc-resident programs is initially estab-
lished by the program loaded that requires the most links.
If programs requiring more links are to be loaded on-line by
the RTE-II relocating loader, this area will have to be ex-
panded by moving the boundary up (it cannot be moved
down). However, enough links must be reserved in the
background disc-resident area for the background programs
yet to be loaded by RTGEN.

6-23

RTE-II

LWA MEM >

PROTECTED BASIC
BINARY LOADER

32K-077677
24K-057677
16K-037677

MEM. PROT.
FENCE —™

BG DISC RESIDENT

system buffering

BG CORE RESIDENT

system buffering

BG COMMON

BUFFERING AREA

system buffering

FG DISC RESIDENT

'}
m

system buffering

FG CORE RESIDENT

system buffering

FG COMMON

MEM. PROT. /

FENCES >

RESIDENT LIBRARY

system buffering

REAL-TIME
EXECUTIVE

'}
>

BASE-PAGE
POINTERS

2000

BASE PAGE
LINKAGE
AREA

BG DISC RESIDENT
LINKS

1650

BG CORE RESIDENT
LINKS

FG DISC RESIDENT
LINKS

4\

FG CORE RESIDENT
LINKS

RESIDENT LIBRARY
LINKS

SYSTEM
LINKS

INTERRUPT
LINKS

TPRTE-17

Figure 6-5. CPU Memory Allocations in a
Configured RTE-II System

6-24

A recommended boundary address of octal 1100 will usual-
ly optimize the system if it is to include the usual back-
ground programs ASMB, FTN, FTN4, LOADR, EDIT, etc.
These programs usually require approximately 550 octal
links. The ideal boundary is one which allows RTGEN to
allocate as near to 1650 links as possible. For example, if
boundary X is established at 1100, and. after loading the
background disc resident programs RTGEN reported the
next base page linkage available as 1651, then the linkage
area is as optimized as possible.

| CAUTION]

At

If RTGEN reports that more than
1650 links were used, the genera-
tion is VOID, and must be restarted
at the beginning.

The next blank, shown as boundary “E,” defines the real-
time disc-resident area for on-line loading with the RTE-II
relocating loader. This area is initially established by the
largest program loaded into that area. If a larger program
will be loaded into the system on-ine, this area must be
made larger. This boundary also affects the area reserved
for re-entrant processing, buffered transfers, and for back-
ground; that is, the more area given to foreground, the less
there is available for these other areas.

Boundary “F” establishes the background area used for
disc-resident, and core-resident programs, plus the common
area that is used by both. A recommended procedure for
determining the boundaries of “E” and “F” is as follows:

a. Calculate the area needed for the largest back-
ground disc-resident program that will be used.

b. Add to this the area needed for the background
core-resident programs, and the background common
area.

c. Subtract this area from the last word of avail-
able memory (LWA MEM).

Example:
37677 — (11677) = 26000 (octal)

37677 = LWAM in 16K
A+B+C
A = size of largest disc-resident
B = total core resident size
C = common size

This is boundary “F” (BG BOUNDARY).

d. Subtract the area required for buffering. The
amount recommended for buffering is 2000 words.

Example:
26000 — 2000 = 24000 (octal)

This is boundary “E” (response to CHANGE SYS
AVMEM).

The next blank is area “G” and is the background common
area. The number of words allocated for background com-
mon is reported and then RTGEN gives the user the oppor-
tunity of increasing the area.

The next blank is boundary “H” which is the background
core-resident address. Move the address up to start the area
on a page boundary.

The next blank is boundary “I”” which is the background
disc-resident address. Move the address up to start the area
on a page boundary.

The final blank is for the system size in tracks and sectors.
Obtain this number from the printout and write it in (if
desired).

PREPARE TAPE SYSTEM

Using the Prepare Tape System as described below, the user
can create a magnetic tape or fixed head disc file of the
relocatable program modules used during RTGEN.

The Prepare Tape System (PTS) is a program for creating
files of relocatable software modules on tixed head disc,
drum, or magnetic tape units. RTGEN can then use these
files to generate a configured system. When using PTS to
generate a file for use during RTGEN execution. follow the

System Installation

instructions given in the Prepare Tape System Manual (HP
Part No. 02116-91751). The instructions given in the man-
ual for DSGEN apply directly to RTGEN.

In Section III of the PTS Manual under Operating Instruc-
tions, substitute the following information under step 1.

1. Gather all the relocatable system and user pro-
gram tapes. The suggested order for loading
onto the mass storage device is as follows:

Core Resident System

1/O Drivers

Power Fail (DVP 43)

System Programs written by the user

Multi-Terminal Monitor

Foreground Core-Resident Programs

Foreground Disc-Resident Programs

Background Core-Resident Programs

Assembler (Main and its Segments)

FORTRAN (Main and its Segments) and or

FORTRAN IV (Main and its Segments) but not
both FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editors

Batch Monitor

Other Background Disc-Resident Programs and their
respective segments, it any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

NOTE
Some of the above relocatable

modules may not be present in
some configurations.

6-25

RTE-II

Table 6-9. System Configuration Worksheet

TABLE GENERATION PHASE

PROGRAM INPUT PHASE *#0OF 1/0 CLASSES?

CORE RESIDENT SYSTEM S

I/0 DRIVERS

USER'S SYSTEM PROGRAMS * # OF LU MAPPINGS?

FOREGROUND CORE RESIDENT PROGRAMS

FOREGROUND DISC RESIDENT PROGRAMS

BACKGROUND CORE RESIDENT PROGRAMS .

BACKGROUND DISC RESIDENT PROGRAMS # OF RESOURCE NUMBERS?
AND THEIR RESPECTIVE SEGMENTS

LIBRARY PROGRAMS

UTILITY PROGRAMS * ?
SUBROUTINES BUFFER LIMITS (LOW, HIGH)?

NO UNDEF EXTS * EQUIPMENT TABLE ENTRY
PARAMETER INPUT PHASE EQT 01?
NAME, TYPE [,PR [, RES [, MULT [, HR, MIN, SEC,
10'S/MS]111] . DV , , ,TI= X=
EQT02?
,DV , , ,T= X =
' ' ' ' ' ' ' EQT 03?
, , . . , , , , , DV . , 1= ,X =
/E EQT 04?
CHANGE ENTS?
,DV , , ,I= X =
, , EQT 05?
,DV , , TI= X =
EQT 06?
,DV , , 1= X =
/E
EQT 07?
#OF BLANK ID SEGMENTS:
,DV , , ,I= X =
EQT 08?
#OF BLANK BG SEG. ID SEGMENTS? ,DV , , = X =
EQT 09?
,DV , , ,I= X =
FWA BP LINKAGE?
EQT 10?
-— ,DV , , ,I= X =
/E TPRTE-22a

6-26

System Installation

Table 6-9. System Configuration Worksheet (continued)

* DEVICE REFERENCE TABLE

1=EQT #7? (SYSTEM TELEPRINTER)

2=EQT #? (SYSTEM MASS STORAGE)

3=EQT #? (AUXILIARY MASS STORAGE)

= EQT #? (STANDARD PUNCH UNIT)

5=EQT #? (STANDARD INPUT UNIT)

6= EQT #7? (STANDARD LIST UNIT)

7 = EQT #?

- E—

8 = EQT #? (MAG TAPE RECOMMENDED)

9 = EQT #?

10 = EQT #—?—Ar
:= EQT #?
e
s
.
:EQT #2?

/€ |

* INTERRUPT TABLE

TPRTE-22b

6-27

RTE-II

Table 6-9. System Configuration Worksheet (continued)

SYSTEM BOUNDARIES PHASE

LIB ADDRS ——— (A) BG COMMON —— (G)

CHANGE LIB ADDRS? CHANGE BG COMMON?

FG COMMON (B) BG RES ADD (H)

CHANGE FG COMMON? CHANGE BG RES ADD?

FG RES ADD (C) BG DSC ADD (n

CHANGE FG RES ADD? CHANGE BG DSC ADD?

FG DSC ADD (D) SYSTEM STORED ON DISC

CHANGE FG DSC ADD? SYS SIZE: _TRKS, _SECS (10)
BP LINKAGE (X)

CHANGE BP LINKAGE?

SYSAVMEM _____ ()

CHANGE SYS AVMEM?

BG BOUNDRY (F)
CHANGE BG BOUNDRY?

— TPRTE-22c

6-28

System Installation

PROTECTED BASIC
BINARY LOADER

LWA MEM >
32K-077677 BG DISC RESIDENT
24K-057677
16K-037677 system buffering

BG CORE RESIDENT

system buffering

BG COMMON -G
MEM. PROT.

FENCE - -
BUFFERING AREA

system buffering

A
m

FG DISC RESIDENT

system buffering

A
O

FG CORE RESIDENT

system buffering

FG COMMON - B

MEM. PROT. 7 RESIDENT LIBRARY
FENCES —»

system buffering

REAL-TIME
EXECUTIVE
2000

BASE-PAGE
POINTERS

\J

1650
BG DISC RESIDENT
LINKS

BG CORE RESIDENT
LINKS

BASE PAGE - X

LINKAGE FG DISC RESIDENT
AREA LINKS

FG CORE RESIDENT
LINKS

RESIDENT LIBRARY
LINKS

SYSTEM
LINKS

INTERRUPT
LINKS

TPRTE-17

Figure 6-5. (repeated) CPU Memory Allocations in a
Configured RTE-II System

0-29/6-30

System Installation

PART 2
Moving Head System Generation

INTRODUCTION

The set up and operation of a Moving Head RTE-II System
involves two essential steps; the system must be configured
using the Real-Time System Generator, RTGEN and it
must be initiated from the disc by a Basic Binary Disc
Loader (BBDL) or by a bootstrap tape that is punched
during RTGEN. For an HP 21MX Computer, usc the
appropriate ROM loader.

This part describes the steps necessary to configure an RTE-II
System, with the absolute binary code based on a moving
head disc drive. All of the required information should be
pre-planned and located on the Configuration Worksheets
filled out in Part 1. The answers used in this part are from
an example RTE-IT System that has been configured on
worksheets per the instructions in Part 1. The RTGEN
listing is located in Appendix C.

MOVING HEAD DISC RTGEN

RTGEN operates on the same minimum configuration as
that required for an RTE-Il System, and configures the
system to fit a particular user’s main memory size, 1/O
equipment, and programming needs.

To accomplish this, RTGEN requests certain information
from the user; then it accepts the relocatable program
modules to be included in the system, determines where
they belong in main memory, relocates them into absolute
format, and stores them on the disc. RTGEN also creates
1/O tables by identifying each 1/O device and its associated
driver routine, and establishing procedures for interrupt
processing on each channel.

During generation based on the HP 7900 disc drive,
RTGEN will report defective tracks and initialize them
defective. Up to ten bad tracks are allowed in the system
before RTGEN aborts. The system cannot operate if any
bad tracks are located within the area established for the
absolute code on LU2.

During generation based on the HP 7905 disc drive,
RTGEN will report defective tracks, initialize them as
defective, and assign spare tracks as long as spare tracks are
available for that subchannel. If there are not enough spare

tracks available, RTGEN issues the error message ERR43
and then restarts the initialization phase.

The system is limited to the disc tracks specified during
RTGEN. As a result, the user can create many ditferent
configurations of RTE-Il Systems. all coresiding on the
same moving head disc subchannels.

RTGEN is an absolute program, loaded into main memory
by the Basic Binary Disc Loader (BBDL) from paper tape.
Foran HP 2IMX Computer. use the appropriate ROM loader.
Since RTGEN s independent of the system which it gener-
ates, the 1/O operations of RTGEN require SIO Drivers.

MULTIPLE CPU/7905 SYSTEMS

The HP 7905 versions of RTGEN, the bootstrap loader, and
the on-line driver support multiple CPU operation. More
than one CPU can share one or more disc drives under the
following conditions:

° The system area (that is, LU2 and LU3) for one CPU
cannot occupy the same system disc tracks as that of
another CPU.

° Systems may map tracks in the same peripheral disc
area. However, they should share access to these areas
only as described in Appendix B under Multiple
CPU/7905 System Operation.

. The generator should not be allowed to use as scratch
or to initialize areas of the disc already in use by any
other CPU.

As an aid to using a multiple CPU system, it is recom-
mended that the disc track map be identical for cach CPU.
Further, logical unit numbers should not be assigned to
subchannels already assigned to another CPU.

OPERATING PROCEDURES

The operation of RTGEN involves tive phases:

a. INITIALIZATION PHASE. RTGEN requests
specifications for the system, including a track map
of system disc space, memory, time base generator
channel, swapping option, and program input devices.

6-31

RTE-lI

b. PROGRAM INPUT PHASE. The operator loads
the relocatable programs provided with the system,
and created by the user.

¢. PARAMETER INPUT PHASE. Parameters de-
scribing or changing the type, priority, and execution
interval of each program may be entered. (Although
this information may already be included in the pro-
gram’s NAM record, it can be changed at this point.)
Entry points are changed and a number of blank ID
segments are reserved for subsequent program addi-
tion. RTGEN requests a specification of the base page
linkage and begins loading programs onto the disc.

d. TABLE GENERATION PHASE. RTGEN re-
quests information about Class 1/O, LU switching,
Resource Numbers and buffer limits. RTGEN then
requests information for the equipment table, device
reference table, and interrupt table and finishes load-
ing the rest of the programs onto the disc.

e. SYSTEM BOUNDARIES PHASE. RTGEN be-
gins loading the system and stops at each boundary
and reports the address. If the user desires, the
address can be moved up to a page boundary. The
gap between the two then reverts to system use.

NOTE

During the first three phases,
RTGEN can be restarted at octal
address 100. The restarting points
are back to the beginning of the Ini-
tialization Phase, Program Input
Phase or Parameter Input Phase.
Make certain that the switch regis-
ter options are set up before
pressing RUN.

To execute RTGEN and configure an RTE-II System,
follow these steps:

a. Turn on the system using the main power
switch. Ensure that the peripheral equipment power
switches are on and that the operating mode is
on-line.

NOTE

For the 7905 disc drive, set the

b. Insert a disc cartridge into the disc drive.

c. For instructions on how to disable the disc
protect mechanism for the discs to be configured
during this generation process, refer to the appropri-
ate disc drive reference manual:

HP 7900A Disc Drive Operating and Service Manual,
Part No. 07900-90002.

HP 7905A Disc Drive Operator’s Manual, Part No.
07905-90009

d. For instructions on how to load programs from
paper tape via the system photoreader, refer to the
appropriate HP computer hardware reference manual:

HP 2100A Computer Reference Manual, Part No.
02100-90001, under ‘“Operating Procedures for
Operator Panel.”

HP 2100S Microprogrammable Systems Computer
Reference Manual, Part No. 02100-90160, under
“Operating Procedures for Operator Panel.”

HP 21MX Computer Reference Manual, Part No.
02108-90002, under “Basic Operating Examples.”

e. Load the RTGEN program from paper tape.

f. Load configured SIO drivers from paper tape
(or load and configure SIO drivers individually).

g. Refer to Table 6-10 in this section and set the
switch register to the desired initial options. Most
options can be set at the beginning of the generation
process even though they are not used immediately.

NOTE

During the Program Input Phase,
switch register bit 15 may need to
be changed if an error occurs, and
bits 0 and 1 require resetting at
least once.

h. If the answers to RTGEN requests are con-
tained on paper tape, place that tape in the photo-
reader. Prepare the photoreader for loading.

i. Set the RTGEN program starting address to
100 (octal).

j- Press RUN.

hardware unit switch to the unit RTGEN begins the generation process at the Initialization
number written on your worksheet. Phase.

6-32

Table 6-10. Switch Register Options

System Install

ation

Bit Function When to Set
15 | = The program just read will be purged. Input data is ignored After error 2. 3. or 4 during
until the next NAM record. The same program starting from the Program Input Phase
the beginning or the next program will then be read.
0= The program just read is not purged. The last record can be
re-read.
Print the entry point list. Before answering FWA BP
LINKAGE? (Change anytime)
14 Establishes current page-linking mode. Betore answering FWA BP
LINKAGE? (Change anvtime)
I3 Print base page linkage listing. Before answering FWA BP
LINKAGE? (Change anytime)
6 Print only errors on list device. The generation printout is Anytime
omitted.
S Answers are read from the tape reader instead of the teletype. If Beginning or during generation
an input error occurs, control is automatically returned to the
teletype for the next command only. If the error is meaningless
(e.g., an unwanted routine is referenced). input from the tape
reader can be resumed by entering an asterisk (followed by any
comments if desired) and carriage return. line feed. The switch
can be turned off at this time in order to enter multiple inputs
from the TTY.
4 Questions and answers are punched on the punch device. Beginning or during generation
3 Questions and answers are printed on the list device. This assumes Beginning or during generation
the list device is a line printer because RTGEN will list to only
one device.
| Switches 1 and 0 are set as follows: Beginning of generation or
: during Program Input
1 0 Meaning en e p
- ‘ _ Phase.
00 Load from program input unit
I 0 Load from library input unit
0 1 Print list of undefined externals and halt.
0 11 If still set terminate program Input Phase.
NOTES

I. When answers are from the photoreader, and an error occurs, the generator transters control to the keyboard
automatically. Type in the correct answer or a comment to continue (ignoring the error).

|8

. Comments must be preceded with an asterisk. A comment may be included within an input line following

a legal response to the system, or entered as a stand-alone comment line. For example, the following are both
legal comment lines:

* END OF PHASE

/E * END OF PHASE

3. The switch setting is examined each time the action it controls is started. Thus the setting may be examined
atany time.

6-33

RTE-II

INITIALIZATION PHASE

During the initialization phase, RTGEN first requests infor-
mation necessary to generate a disc track map that defines
which tracks of each platter are assigned to the system.
Once the track map is established, RTGEN goes on to re-
quest more information necessary to generate the system.
After each question is printed, the operator responds with
the required answer followed by carriage return, line feed
(CR, LF). Operator responses are shaded and are only ex-
amples (see Appendix C); actual responses should be appro-
priate to the particular system being generated. If an error
is made and discovered before CR, LF is entered, type the
RUBOUT key then CR/LF. Otherwise, restart at step “‘e”
above.

The following sample dialog is from a system being
generated on an HP 7900/7901 disc. For a system being
generated on an HP 7905 disc, the first two RTGEN
prompts differ. Refer back to Table 6-6 and 6-7 for the
difference.

RTGEN requests the higher priority select code (octal) of
the system disc controller

MH DISC CHNL?

RTGEN requests the starting track and number of tracks
(decimal) of each subchannel that will be assigned to the
system. Up to eight track assignments can be entered, one
for each existing subchannel. The even numbered subchan-
nels are the fixed platters and the odd numbered subchan-
nels are the removable platters (i.e., subchannel O is the
fixed platter and subchannel 1 is the removable platter of
the first drive.

#TRKS, FIRST TRK ON SUBCHNL:

0?

Operator responds with the decimal number of tracks and
starting track number for subchannel 0. If there are to be
no tracks from subchannel O assigned to the system, enter a
0. RTGEN continues to request the track assignments for
each subchannel up to seven or until /E is entered. Refer to
the Configuration Worksheet and enter the correct num-
bers. The Appendix C example is entered as follows:

0?
2030
1?
2030

20
203.0

6-34

37
2030
47
100,50
57
2030
6?
203,0
7?
2030

RTGEN requests the number of 128 word sectors (dec-
imal) per logical track on the system disc.

128 WORD SECTORS/TRACK?
48

NOTE

The following two questions con-
cerning system subchannel and
scratch disc subchannel are not
asked if only one subchannel is as-
signed to the system.

RTGEN requests the subchannel number of the system disc
(LU2). This is the disc that the absolute code will be stored
upon and can be any one of the subchannels assigned to the
system. The operator responds with a subchannel number
(from the worksheet) that contains enough tracks for the
absolute code.

SYSTEM SUBCHNL?
0

RTGEN requests the subchannel number of the scratch
disc. This is the area required for the relocatable modules
used to build the system, and can be any one of the sub-
channels assigned to the system. It is recommended that the
scratch area not be located on the system subchannel. Then
the absolute area cannot overlay the relocatable modules
before they are used.

SCRATCH SUBCHNL?
0

RTGEN asks if there is to be an auxiliary disc (LU3) and its
number of tracks. Answer YES if there is an auxiliary disc
and it’s on the same controller as the system disc. Answer
NO if there is no auxiliary disc. Answer with the number of
tracks if there is an auxiliary disc and its not on the same
controller as the system disc.

AUX DISC (YES OR NO OR # OF TRKS)?
YES

If the above question was answered with a number denoting
how many tracks on the auxiliary disc (on a different con-
troller than the system disc), then the next question asked
1s:

128 WORD SECTORS/TRACK?
Answer accordingly (decimal).

If the answer to the AUX DISC? question was NO, then
RTGEN skips to the START SCRATCH? question. If the
answer to the AUX DISC? question was YES, then RTGEN
requests the auxiliary disc subchannel number. The
operator responds with a valid subchannel number (not the
system subchannel).

AUX DISC SUBCHNL?
1

RTGEN requests the track number starting the disc scratch
area. The operator responds with a decimal relative track
number. For example, subchannel 4 has tracks addressed 50
to 150 available. To start the scratch area on the first avail-
able track (50) enter a zero (0). To start the scratch at track
75. enter 25. Note that if the scratch subchannel is the
same as the system subchannel, entering a zero defaults the
start scratch to the midpoint of the available disc space on
the system subchannel.

START SCRATCH?
0

RTGEN requests the select code of the time base generator
(octal).

TBG CHNL?
i3

RTGEN requests the address of the privileged interrupt 1/0
card (if present).

PRIV.INT. CARD ADDR?

Operator responds with the octal select code of the privi-
leged interrupt HP 12620 card (and all devices in higher
priority slots become privileged) or zero if the card is not
used.

12

RTGEN asks if swapping is allowed in the foreground area.
Answer YES or NO.

System Installation

FG SWAPPING?
YES

RTGEN asks if swapping is allowed in the background area.
Answer YES or NO.

BG SWAPPING?
YES

RTGEN asks it any program is allowed to be locked into
the foreground. Answer YES or NO.

FG CORE LOCK?
YES

RTGEN asks if any program is allowed to be locked into
the background. Answer YES or NO.

BG CORE LOCK?

YES

RTGEN next requests the amount of swap delay time. En-
ter a decimal number between 0 and 255 (meaning tens of

milliseconds).

SWAP DELAY?
50

RTGEN requests the last word of available core memory, in
octal.

LWA MEM?

Operator responds with 37677 for 16K, 57677 for 24K, or
77677 tor 32K.

77677

RTGEN requests the type of input unit for relocatable pro-
gram modules.

PRGM INPT?

Operator responds with PT (for paper tape), TY (for tele-
printer), MT (for magnetic tape), or DF (for disc file).

MT

RTGEN requests the type of input unit tor relocatable li-
brary programs.

LIBR INPT?

Operator responds with PT, TY, MT, or DF.

6-35

RTE-II

NOTE

Any type of program can be
entered through the program input
unit or the library input unit.

RTGEN requests the type of input unit for parameters
describing the relocatable programs.

PRAM INPT?
Operator responds with PT OR TY.
™

RTGEN asks if the operator wishes to initialize disc sub-
channels other than the system, auxiliary, and scratch
subchannel. RTGEN asks this question only for those
subchannels assigned to the system but not declared as
LU2, LU3, or scratch, these subchannels being
automatically initialized by RTGEN. Operator responds
with a YES or NO. If the disc is new or has any write
protect flags written on it, it must be initialized. If the disc
has data stored on it in the system designated area, and the
user does not want to disturb it, the answer is NO.

INITIALIZE SUBCHNL:
27
NO
3?
NO
4
NO
5
NO
6?
NO
77
X

Next RTGEN checks the hardware disc protect switch. If
the disc is protected RTGEN prints

TURN OFF DISC PROTECT — PRESS RUN

and halts with the Memory Data Register = 102032. The
operator must turn off the disc protect switch and press
RUN to continue to the next phase. If the switch is already
off the above message is not printed and RTGEN proceeds
to the PUNCH BOOT question. If the response to PGM
INPT or LIB INPT was MT, the magnetic tape unit will

6-36

rewind to the load point, and then space forward to relo-
catable file number two. A HALT 102044 indicates that
the magnetic tape unit is not ready. Set it up and press
RUN.

RTGEN asks if a paper tape bootstrap is to be punched. If
the RTE-II System is located on subchannel O or 1 and
starts on track 0, the bootstrap tape is not required. Other-
wise the first answer should be YES. Note that the boot-
strap is unique to the absolute system and first track num-
ber only. RTGEN keeps repeating the question until NO is
entered. In this fashion the user can punch as many boot-
straps as he feels he needs.

_PUNC H BOOT?

PUNCH BOOT?

PROGRAM INPUT PHASE

During the program input phase, RTGEN accepts reloca-
table programs from the program input unit and library
input unit specified during the initialization phase. The op-
erator selects the input device by setting switch register bits
0-1.

00 = program input unit

10 = library input unit

o1 = print list of undefined externals, or after the
printout

01 = terminate input phase

If an error is detected during the Program Input Phase, the
name of the offending program is printed. At this point the
operator can set or clear bit 15 before pushing RUN to
accomplish one of the following:

Bit 15 =1 The program just read will be purged. Input
data is ignored until the next NAM record. The
next program will then be read.

Bit 15=0 The program just read is not purged. The last
record can be re-read.

Relocatable programs should be loaded in the tollowing
order. Note that some of the programs may not be present
in some configurations.

Core Resident System

1/O Drivers

Power Fail (DVP 43)

System Programs written by the user
Multi-Terminal Monitor

Foreground Core-Resident Programs

Foreground Disc-Resident Programs

Background Core-Resident Programs

Assembler (Main and its Segments)

FORTRAN (Main and its Segments) and/or

FORTRAN IV (Main and its Segments) but not both

FORTRAN IV Versions

ALGOL

Auto Restart

Relocating Loader

Editors

Batch Monitor

Other Background Disc-Resident Programs and their respec-
tive segments. if any.

System Library

Batch Monitor Library

Library Programs

Utility Programs

NOTE

If a program is being loaded from
paper tape, and was not generated
with the type code in the NAM
record, the operator can modify
it during the Parameter Input
Phuse.

The operator presses RUN. After a program is loaded, the
message “*EOT” is printed whenever an end-of-file or end-
of-tape occurs. The computer halts.

At this point. the operator has several alternatives:

d. Additional programs can be loaded through the
same device by pushing RUN.

b. Input can be switched to the other input device
by setting the switch register bits to binary 00 or 10.
C. After each *EOT message. a list of all unde-
fined externals can be printed by setting the switch
register bits to binary 01 and pushing RUN. At this
point the operator can reset the switches to point to
the desired input device, and load additional routines
needed to satisfy any undefined externals. If there are
none. the message NO UNDEF EXTS is printed and
the computer executes a HALT 77. To continue load-
ing programs, reset the switch register to binary 00,
or 10, place the program in the input device, and
push RUN.

d. To terminate the program input phase, set the
switch register to binary 01 and push RUN. (RUN
must be pushed again after NO UNDEF EXTS is
printed.) If magnetic tape is used for the program
input, it will rewind and go off-line at this point
(after the second RUN).

System lnstallation

e. To restart this phase go to the starting address
of the program, octal 100, and push RUN.

PARAMETER INPUT PHASE

If the teletype was not specitied as the PRAM INPT device
during initialization, the computer executes a HALT 77 to
wait for the parameter tape to be inserted in the photo-
reader. Push RUN to continue. If there are any errors on
the parameter tape, they will be printed on the list device.

During the parameter input phase, the operator can modify
the type, priority, or execution intervals (in decimal) of any
of the programs entered during the program input phase
(except that the program type code of background main
programs and their segments cannot be changed without
losing their relationship to each other).

Each parameter record is of this general form:
name, tvpe | .priority | |.execution interval |

Refer to the Configuration Worksheet and enter any modi-
fication parameters that are listed. It there are none. enter a
JE on the teletype. As an example (see Appendix C) the
operator can respond with:

PARAMETERS
#BSC,14
WHZAT,2,10
MEM,1,32767
SYSON,82,32766
RNRQ,14
LURQ.,14

EQLU, 14

[E

NOTE

Refer to Part 1. Parameter Input
Phase for an explanation of type
codes 81 through 92.

RTGEN requests if there are any entry records to be
changed. The numbers are assumed octal unless followed by
a D> which signifies decimal.

CHANGE ENTS?

*EQU MACRO’S
MPY ,RP,100200
.DIV RP, 100400
.DLD,RP,104200
DST,RP,104400

6-37

RTE-I1

*HFP MACRO'S

.XDIV,RP 105234
.DFER RP,105205
XADD,RP,105213
XSUB,RP,105214
GOTO,RP,105221
MAP RP, 105222
ENTR RP,105223
.ENTP,RP,105224
/E

RTGEN requests the number of blank 28-word ID segments
to be allocated tor on-line loading of programs by the relo-
cating loader. The operator responds with a one or two
digit decimal number (zero is changed to one, because one
is required to do any on-line loading); 29 words are reserved
in the resident table area for each blank ID segment.

OF BLANK ID SEGMENTS?

RTGEN next requests the number of blank 9-word ID seg-
ments to be allocated for background segments. The oper-
ator responds with a one or two digit decimal number (zero
is legal); 10 words are reserved in the resident table area for
each blank BG ID segment.

OF BLANK BG SEG. ID SEGMENTS?

Before the next question concerning Base Page Linkages is
answered, switch 14 should be set or cleared according to
the following directions. With bit 14 set, RTGEN, as each
module is loaded, creates at each end of a module which
crosses a page boundary, a current page-link buffer. The
current page-link buffer is used for DBL records that refer-
ence addresses across the current page boundary. If this
current page-link buffer overflows, then RTGEN reverts to
using base page links for the module. The end result is that
base page is saved as links are established in the current
page buffer.

6-38

NOTE

EXT references and Assembly
Language type 3 or 5 programs still
use exclusively base page for estab-
lishing links. However, this is not
true for subroutines referenced by
these programs.

RTGEN requests the first word of available core memory in
base page. Operator responds with the first available octal
select code number after the last I/O card.

FWA BP LINKAGE?
100

Disc loading begins with the modules of the system, includ-
ing 1/O drivers. As RTGEN loads these programs, it prints
SYSTEM, followed by a memory map giving the starting
locations and, if switch register bit 15 is set, the entry
points for all main programs and subroutines (subroutines
are indented two spaces). Also, if bit 13 is set, the base page
linkage is reported after each module is loaded.

TABLE GENERATION PHASE

After the last system module is loaded RTGEN requests
how many Class I/O numbers are to be allocated.

*#%# OF 1/O CLASSES?
16

RTGEN next requests the maximum number of logical unit
numbers referred to in a single job within the Batch and
Spool Monitor.

*# of LU MAPPINGS?
8

RTGEN next requests how many Resource Numbers are to
be allocated.

*# OF RESOURCE NUMBERS?
32

RTGEN next requests the buffer limits.

BUFFER LIMITS (LOW,HIGH)?
1:

Next, RTGEN generates the three I/O tables: Equipment
table, device reference table, and the interrupt table.

RTGEN requests the equipment table entries
*EQUIPMENT TABLE ENTRY

Operator responds with a series of EQT entries, which are
assigned EQT numbers sequentially from one as they are
entered. The EQT entry relates the EQT number to an [/O
channel and driver. Refer to the Configuration Worksheet
and enter the Equipment table entries. The Appendix C
example is entered as follows:

EQT 01?
21.DVR31D

EQT 02?

15, DVRO0,B,T=32767
EQT 03?

10,DVRS50

EQT 04?
17,DVR02,B,T=32767

EQT 05?
16,DVRO1,T=32767
EQT 06?
20,DVR12,B.1=32767
EQT 07?
25 DVROO,B.T=32767
EQT 08?
23 DVR23.DB.T = 32767

EQT 09?
26,DVRG2.D

EQT 10?
27,DVR61
EQT 117
14DVRILD
EQT 127
30, DVR00,B,T=32767
EQT 13? ‘ ,
31,DVRO0,B,T=32767
EQT 14? _
32, DVROO,B,T=32767
EQT 157
33,DVRO0,B,T=32767

EQT 167
34, DVROO,B,T=32767

System Installation

EQT 172 -
35 DVRO0O B T=32767

EQT 187 v
36,DVRO0O,B,T=32767

EQT 197
37.DVRO0,B,T=32767

EQT20?
72.DVS43 X=18

EQT 21?

73 DVSA3 X=18

EQT 227 »

74 DV843 X=18
EOT23?
75,DVS43 X=18
EQT 247
76,DV543 X=18

EQT 25?

EQT 262

4,DVP43

EQT 277

RTGEN requests the logical unit assignments for the device
reference table.

*DEVICE REFERENCE TABLE
For each logical unit number, RTGEN prints
n=EQT#?

where 7 is a decimal integer starting with one.

Operator responds with an EQT entry number appropriate
to the standard definition of n and the subchannel number
if appropriate. Logical unit numbers | through 6 are pre-
defined in the system as:

0 bit bucket (no action required)
1 system teleprinter

2 - system mass storage

3 auxiliary mass storage

4 standard punch unit

S standard input unit

6 standard list unit

Refer to the Configuration Worksheet and enter the Device
Reference Table entries. The Appendix C example is en-
tered as follows:

6-39

RTE-I

* DEVICE REFERENCE TABLE

= EQT #?

9 =EQT #?

10 = EQT #?

12 = EQT #

13 =EQT #?
9

14 = EQT #?
12

15=EQT #?
1,3,

16 = EQT #?

17 = EQT #?

18 =EQT #?

19 =EQT #?

6-40

SYSTEM CONSOLE

SYSTEM DISC

AUXILIARY DISC

PAPER TAPE PUNCH

PHOTOREADER

LINE PRINTER

BACKGROUND TERMINAL

MAGNETIC TAPE, UNIT 0

MAG TAPE, UNIT 1

MAG TAPE, UNIT 2

MAG TAPE, UNIT 3

CARD READER

BIT BUCKET

PERIPHERAL DISC

PERIPHERAL DISC

PERIPHERAL DISC

PERIPHERAL DISC

PERIPHERAL DISC

PERIPHERAL DISC

20=EQT #

28 = EQT #?

29 =EQT #?
;Z;"B; %

30= EQT #?

32=EQT #?

33 =EQT #?
o

34 = EQT #?

35 =EQT #?
n

36 = EQT #

37=EQT #
9

38 =EQT #?

TERMINAL

TERMINAL

TERMINAL

TERMINAL

TERMINAL

TERMINAL

TERMINAL

TERMINAL

H.P.2313B SUBSYSTEM

H.P. 6940 SUBSYSTEM

RTE-1I

39 = EQT #?

0
40 = EQT #?
30,
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>