
HEWLETT f pf PACKARD

MOVING-HEAD

DISC OPERATING SYSTEM

02116-91. 779

MOVIN(i-HEAD

DISC OPERAl.ING SYSTEM

HEWLETT ifj PACKARD

11000 wo·1 fe Road
Cupertino, California 95014

August 1970

© CopyJtJ_ght., 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Copyright © 1970 by Hewlett-Packard Company, Cupertino, California.
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

MOVING-HEAD DISC OPERATING SYSTEM is the programmer's and opera tor's guide

for the Hewlett-Packard Moving-Head Disc Operating System (OOS-M). OOS-M is

a batch processing system that executes complete jobs without operator inter­

vention. For a full understanding of DOS-M the reader should be familiar

with one of the Hewlett-Packard programming languages, as presented in the

FORTRAN (02116-9015) I ALGOL (02116--9072) and ASSEMBLER (02116-9014) pro­

grammer's reference manuals.

The Introduction of this manual explains the software and hardware elements

of the system. Section I presents the system organization, while Sections

II and III cover the complete set of batch and keyboard directives and pro­

gram calls to the system. All facE:~ts of OOS-M programming --FORTRAN, ALGOL,

Assembler, Loader, DEGUB, and Library are presented in Section IV.

Section V assembles all the necessary infonnation on input/output, including

the planning of I/O drivers. Proc•=dures for installing and initiating the

software appear in Section VI. Thi= appendices provide tables, summaries,

a complete listing of error messagies, and sample job decks.

iii

CO INTENTS

iii PREFACE
ix INTRODUCTION

1-1 SECTION I
SYSTEM ORGANIZATION

1-1 DOS-M

1-2 Directives

1-3 EXEC Calls

1-3 Input/Output

1-4 Core Layout

1-4 DISC USAGE

1-6 DOS-M Files

1-7 DOS-M Installation

2-1 SECTION II
DIRECTIVES

2-4 JOB

2-5 EJOB

2-6 ABORT

2-7 PAUSE

2-8 COMMENT

2-9 TYPE

2-10 PROG

2-11 RUN

2-12 CHANGE USER DISC

2-14 DISC-TO-DISC DUMP

2-16 SYSTEM SEARCH

2-18 TRACKS

2-20 STORE

2-25 SPECIFY SOURCE FILE

v

SECTION II (cont.)

DIRECTIVES

2-26 EDIT

2-29 PURGE

2-31 LIST

2-35 FILE DUMP

2-37 SECTOR DUMP

2-39 P.ROGRAM DUMP

2-42 EQUIPMENT

2-44 LOGICAL UNIT

2-45 UP

2-46 DOWN

2-47 BATCH

2-48 DATE

2-49 GO

2-50 INITIALIZE

2-52 OFF

3-l SECTION III
EXEC CALLS

3-2 FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

3-2 EXEC CALLS IN ALGOL

3-3 FORMAT OF THE FORTRAN CALLING SEQUENCE

3-4 READ/WRITE

3-7 FILE READ/WRITE

3-9 I/O CONTROL

3-11 I/O STATUS

3-13 WORK AREA LIMITS

3-14 WORK AREA STATUS

3-16 PROGRAM COMPLETION

3-19 PROGRAM SEGMENT LOAD

3-21 SEARCH FILE NAME

3-22 TIME REQUEST

3-24 CHANGE USER DISC

vi

4-1 SECTION IV
PROGRAMMING

4-1

4-2

4-3

4-5

4-6

4-7

4-8

4-9

4-10

4-10

4-11

4-13

4-14

4-14

4-14

4-15

4-15

4-16

4-18

4-20

4-25

4-26

4-27

4-30

4-34

4-35

5-1

LOAD-AND-GO FACILITY

DOS-M FORTRAN COMPILER

PROG,FTN

PROGRAM STATEMENT

DATA STATEMENT

EXTERNAL STATEMENT

PAUSE & STOP

ERR~ LIBRARY ROUTINE

RTE/DOS ALGOL COMPILER

Compiler Operation

PROG,ALGOL

ALGOL Control Statement

ALGOL Segmentation

ALGOL I/O

ALGOL Error Messages

DOS-M ASSEMBLER

Assembler Operation

PROG,ASMB

DOS-M Assembly Language

NAM Statement

DOS-M RELOCATING LOADER

PROG, LOADR

Operating the Loader

DEBUG Library Subroutine

Loader Error Messages

THE RELOCATABLE LIBRARIES

SECTION V
INPUT/OUTPUT

5-1 SOFTWARE I/O STRUCTURE

5-2 Equipment Table

5-4 Logical Unit Numbers

vii.

SECTION V (cont.)

INPUT /OUTPUT
5-5 The Interrupt Table

5-5 Input/Output Drivers

5-6 System I/O

5-6 User Program I/O

5-7 Interrupt Processing

5-7 PLANNING I/O DRIVERS

5-8 Initiation Section

5-11 Completion Section

6-1 SECTION VI
INSTALLATION

6-2 CONVENTIONS USED IN THIS SECTION

6-3 GENERATING DOS-M

6-3 Operating Procedures

6-19 HOW TO INITIATE DOS-M

6-20 FORMATTING USER DISCS

6-20 Operating Procedures

6-22 CONFIGURING DSGEN

6-22 Operating Procedures

6-23 Loading SIO Drivers

6-24 CONFIGURING DOS-M BOOTSTRAP

6-25 BASIC BINARY LOADER

6-26 ERROR MESSAGES

A-1 APPENDIX A
TABLES

B-1 APPENDIX B
TYPICAL JOB DECKS

C-1 APPENDIX C
SAMPLE DSGEN LISTINGS

viii

D-1 APPENDIX D
RELATION TO OTHER SOFTWARE

E-1 APPENDIX E
LINE PRINTER FORMATTING

F-1 APPENDIX F
SUMMARY OF DIRECTIVES

G-1 APPENDIX G
SUMMARY OF EXEC CALLS

H-1 APPENDIX H
MESSAGES

I-1 APPENDIX I
MAGNETIC TAPE USAGE

J-1 APPENDIX J
DISC LABELS

ILLUSTRATIONS

1-1 Figure 1-1. Functional Diagram of DOS-M

4-21 Figure 4-1. Segmented Programs

4-22 Figure 4-2. Main Calling Segment

4-23 Figure 4-3. Segment Calling Segment.

4-24 Figure 4-4. Main-to-Segment Jumps

5-10 Figure 5-1. I/O Driver Initiation Section

5-13 Figure 5-2. I/O Driver Completion Section

6-14 Figure 6-1. Core Allocations in DOS-M

TABLES

2-35 Table 2-1. File Dump Formats

i.x

INTRC>DUCTION

In the Moving-Head Disc Operating System (DOS-M) , software modules are stored

permanently on the disc for high-speed batch processing, eliminating slow and

inefficient paper tapE~ loading. Input can be set up and executed in serial

order to automatically edit, trans1ate, load and execute a set of source

programs written in HP FORTRAN (an extension of ASA BASIC FORTRAN), HP ALGOL,

or HP Assembly Language. A variety of files can be stored, edited, listed,

dumped and used as input to programs.

FEATURES OF DOS-M

DOS-·M contains the following highlights and features:

a Keyboard and batch procE::ssing modes I

a Software programming aids: FORTRAN Compiler, Assembler, Relocating

Loader, Relocatable Library, Debug Routine, Source File Editor,

and ALGOL.

0 Jobs executed in a queuG with no operator intervention,

0 Symbolic disc files, with relative addressing,

D Centralized and device-independent I/O processing,

0 Modular structure,

Il Custom configuration to optimize available memory and I/O,

0 Cyclic error checking on disc read & write operations,

Il Exchangeable discs packs, and

Il Optional search of the entire system for file names.

xi

DOS-M HARDWARE CONFIGURATION

DOS-M will operate on either an HP 2114 computer or an HP 2116. computer. This

causes several variations in hardware configuration.

1. No MEMORY PROTECT on the 2114. DOS-M operates either with memory

protect, as on the 2116 (recommended) or without, as on the 2114.

(Without memory protect, user programs can destroy the system area

of core.)

2. No EAU instructions on the 2114. EAU is available on the 2116,

but DOS-M does not require these instructions.

3. Direct Memory Access (DMA): DOS-M uses one channel DMA on the

2114 and two-channel DMA on the 2116.

4. Memory size: Minimum memory for DOS-M is 8,192 words (2114 or

2116). Larger memories can be used on the 2116 only.

5. Input/Output Channels: The minimum 2114 has 7 channels versus

16 on the 2116.

MINIMUM HARDWARE

The minimum hardware requirements for the Moving-Head Disc Operating System

are:

1. Computer (2114B or 2116B) 8,192 words of memory, Central Interrupt

Processor, 1 channel DMA, halt on memory parity error.

2. HP 2870 Moving-Head Disc Drive with fixed disc and a removable

cartridge.

3. system Input Device: Teleprinter (HP 2752).

4. Batch I/O Device: Second Teleprinter (HP 2754).

xii

In place of the HP 2754B teleprinter, the user can select one of the follow­

ing combinations instead for batch operations:

Batch List Device Batch Input Device Batch Punch Device

HP 2752A Teleprinter Punched Tape Reader Punch Unit

HP 2752A Teleprinter Mark Sense Card Reader Punch Unit

Line Printer Punched Tape Reader Punch Unit

The following hardware options are available:

1. Time Base Generator (provides accounting times).

2. Extended Arithmetic Unit (EAU) on 2116 only (provides hardware

multiply, divide, etc. for user programs).

3. Additional memory: 16,,384 or 32,7p8 words on 2116.

4. Additional I/O channels:: extenders are available on the 2114

and 2116.

5. Memory Protect (2116 only).

6. Photoreader.

7. Paper Tape Punch.

8. Line Printer.

9. Mark Sense Card Reader.

10. HP 3030 Magnetic Tape Unit

11. Up to three additional Disc Drives (all four operate on one control­

ler).

12. Plotter

DOS-M SOFTWARE MODULES

DOS-·M consists of the following programs:

DOS-M Supervisor and sub-modules

OOS-M Assembler

DOS-M FORTRAN Compiler

DOS-M Relocating Loader

DOS-M Moving Head Disc Driver (DVR 31) (uses DMA)

DOS-M Special 'J~eleprinter Driver (DVR 05)

DOS-M DSGEN (the system generator)

xiii

In addition, the following programs can be included when DOS-M is generated:

RTE/DOS ALGOL Compiler (16K memory required)

RTE/DOS Relocatable Library (EAU or Non-EAU)

RTE/DOS FORTRAN IV :Library (extended precision arithmetic)

DOS I/O Drivers (either core- or disc-resident) :

Teleprinter (DVR ¢¢)

Photoreader (DVR ¢1)

Tape Punch (DVR ¢2)

Line Printer (DVR 12)

Mark Sense Card Reader (DVR 15) (uses OMA)

3030 Magnetic Tape (DVR 22) (uses two-channel DMA)

Plotter (DVR 1,0)

DOS-M Supervisor

The DOS-M supervisory software consists of a monitor (DISCM) that is partly

core-resident and partly (optionally) disc-resident and a disc-residE:mt job

processor (JOBPR) :

DISCM

Interrupt Processor

Executive Processor

I/O Processor

Executive modules:

$EX¢1 through $EX2~

NOTE: Exec modules can be made
either core- or disc­
resident when DOS-M is
generated.

xiv

JOB PR

Job Processor

File Manager

NOTE: JOBPR is always made dJ~sc­
resi dent when DOS-M is gen­
erated. DISCM brings J'.t
into core when needed.

SEf~TION I

SYSTEM C>RGANIZATION

An operating system is an organized collection of programs which increases

the productivity of a computer by providing common functions for all user

pro~:Jrams.

An operating system's function is to aid in the preparation, translation,

loading, and execution of programs. This is accomplished by an auxiliary,

quick access memory, usually a disc storage unit. The various translators,

loaders, and other software are stored permanently on the disc for use only

when needed. Since the prograrmner requests a compiler from the disc in-

stead of loading it by hand from paper tape, the overhead time can be signifi­

cantly reduced.

DOS-M

The Moving-Head Disc Operating System is composed of user disc files and

the OOS-M Supervisor. The Supervisor consists of two parts: a Disc Monitor

(DISCM) and a Job Processor (JOBPR) • DISCM consists of modules which are

either core- or disc-resident and handle I/O transfers, requests from pro­

grams, and other supervisory taskE:. The disc-resident JOBPR handles operator

and programmer directions from the batch or keyboard device.

The Moving-Head Disc Operating System affords speed and convenience. Pro­

grams can be input to DOS-M for automatic translation, loading, and execution.

For example, simple punched cards carry out load-and-go operations in OOS-M

as follows:

a. DOS-M reads the FORTRAN Compiler into core from the disc.

b. The Compiler reads the source program from an external device,

such as a card reader, and stores the relocatable binary in­

structions on the disc ..

c. DOS-M reads the Loader into core from the disc.

1-1

SYSTEM ORGANIZATION

d. The Loader reads the relocatable binary programs from the disc

and stores the converted binary instructions on the disc.

e. DOS-M reads the program in from the disc and runs it.

Directives
~~~--~ 

The DOS-M Supervisor operates in response to directives input by the pro­

grammer or operator. Directives are strings of up to 72 characters that 

specify tasks to DOS-M. They are entered in one of the two modes of DOS-M 

operation: keyboard or batch. In keyboard mode, the directives are entered 

manually from the teleprinter keyboard. In batch mode, directives ca.n be 

input as punched cards integrated with the source program into a job deck . 

. A job is a related set of user tasks and data. In keyboard mode, the di­

rectives (tasks) are entered separately from the job data. In batch mode, 

they are included in a job deck that can execute without manual intervention. 

Jobs may be stacked directly upon one another in a queue. 

The DOS-M directives are used for the following functions: 

0 Create, edit, list, dump, and purge user files (relocatable, 
loader-generated, source and ASCII or binary data). 

a Turn on systems programs such as FORTRAN, Assembler, etc. 

a Modify the logical organization of the I/O. 

a Start and stop a job; type comments; suspend operations. 

a Translate, load and execute a user program. 

a Dump core or disc memory. 

a Resume execution of suspended programs. 

Il Set the date; abort programs; transfer to batch mode (from 
keyboard mode); return to keyboard mode (from batch mode). 

Il Check status of user disc tracks. 

Il Change the subchannel of the user disc. 

Il Search the various disc subchannels for specified file names. 

Il Initialize (label) disc. 

Il Dump a disc to another disc. 

JX)S-M directives are described in detail in Section II. 

1-2 



SYSTEM ORGANIZATION 

EXEC Calls 

AftE~r being translated and loaded, an executing user program communicates 

with DOS-M by means of EXEC calls. An EXEC call is a JSB instruction which 

transfers control to the DOS-M Supervisor. 

The EXEC calls perform the following functions: 

D I/O read and write operations. 

D User file and work area read and write operations. 

D I/O control operations (backspace, EOF, etc.), 

D Request I/O status. 

D Change the subchannel o:E the user disc. 

D Request limits and status of WORK area (temporary disc storage). 

D Program completion. 

D Program suspension. 

D Loading of program segments. 

D Request the time. 

Section III describes EXEC calls in detail. 

~t/Output 

All I/O operations and interrupts are channeled through the DISCM section of 

the !X)S-M Supervisor. DISCM is always core-resident and maintains ultimate 

control of the computer resources. (See "Software I/O Structure," Section V.) 

I/O programming is device-independent. Programs written in FORTRAN, ALGOL, 

and Assemvly Language specify a losrical unit number (with a predefined func­

tion, such as data input) in I/O statements instead of a particular device. 

Logical unit numbers a.re assigned to appropriate devices by the operator, de­

pending upon what is available. Thus, the programmer need not worry about 

the type of input or output device performing the actual operation. (See 

"Logical Unit Numbers," Section V.) 

1-3 



SYSTEM ORGANIZATION 

Core Layout 

When DOS-M is active, the core memory is divided into a user program area 

and a system area (as shown in Figure 1-1). The Disc Monitor program handles 

all EXEC calls. and, if they are legal, transfers them to the proper module 

for processing. The I/O drivers handle all actual I/O transfers of infor­

mation. If some I/O drivers are disc-resident, they are read into core by 

the supervisor when needed. The user program area provides space for exe­

cution of user programs. In addition, large DOS-M software modules, such as 

the FORTRAN Compiler, Assembler, Relocating Loader, and Job Processor, reside 

on the disc and execute in the user program area. 

If the memory protect option is present, a memory protect boundary is set 

between the executive area and the user program area. This boundary inter­

rupts whenever a user program attempts to execute an I/O instruction (in-

eluding a HALT) or to modify the executive area. (Instructions can reference 

the switch register and overflow register.) Programs to be run in the user area 

must use EXEC calls for input/output, termination, suspension, and other external 

processes. 

DISC USAGE 

The controller for the moving-head discs supports up to four disc drives 

(one is required). Each drive contains two discs: a fixed disc and a re­

movable cartridge. Each disc is referenced through a subchannel of the 

controller. Therefore, the controller has eight subchannels (numbered 0 to 

7). The channels are assigned as follows: 

Disc Drive Numbers 0 1 2 3 

Permanent Subchannels 

Removable Subchannels 

1-4 



SYSTEM ORGANIZATION 

Each disc contains 203 tracks of 24 sectors each. At least three of these 

tracks must be spares. (A sector contains 128 16-bi t words and is the 

smallest addressable unit on the disc.) DOS-M normally allows two subchannels 

to be available to the user: one subchannel contains the system disc and the other 

contains the user disc (may be the same subchannel as the system disc). The 

user subchannel can be changed during job or program execution. In addition, 

an optional system search mode is available to allow searching for user files 

on any specified subchannels. 

The disc storage has four parts: 

1. The System Area: 

Executable code created by the system generator and 

hardware protected; includes DJS-M Supervisor and 

other sys tern programs. 

2. The User Area (optional): 

User file directory and user files (data, object 

programs, source statements, etc.). 

3. The Work Area: 

Temporary storage for the current job. 

4. Job Binary Area: 

Temporary storage for relocatable object code generated 

by the assembler and compilers; this is an area of 

variable size and starts from the end of the disc. 

All four of these areas can reside on the system disc. Or the user area can 

be on a separate subchannel. Only one user area is available to the system 

at a time. The standard user subchannel is assigned at system generation 

time; this can be the system disc or another subchannel (removable or perma­

nent disc). The :UD directive and an analogous EXEC call allow the user 

to temporarily change the user area. to another sub channel. 

Automatic track switching is provided within each subchannel. 

1-5 



SYSTEM ORGANIZATION 

Disc Storage 

System User Work Job 
Area Area Area binary 

Area 

I ~ 

System Teleprinter 
\ v 

: DIRECTIVES ~ Output Device 
DISC 

Batch Input Device ~ MONITOR I ~ ~ 
LISTINGS ;] 
PUNCHED TAPES 

: DIR£CTIVES 
SOURCE STATEMENTS ~ 
DATA ~ v 

USER 
AREA (EXEC Calls) 

Computer Memory 

Figure 1-1. Functional Diagram of DOS-M 

DOS-M Files 

The disc provides quick access and mass storage for user files consisting 

of source statements, relocatable and loader-generated object programs, and 

ASCII or binary data. Each file has a name that is used to reference it. 

Programs use the work area of the disc for temporary storage. The system 

area contains files of systems programs, EXEC modules, a system directory, 

and library subroutines (see LIST, Section II). 

1-6 



SYSTEM ORGANIZATION 

DOS-M Installation 

008-M is a series of relocatable binary software modules. Since each module 

is an independent, general purpose program, the hardware and software con­

figuration of each DOS-M is quite flexible. A separate absolute program, 

D8GEN, accepts the software modules and generates a configured 008-M following 

dialogue-type instructions from the user. (See DOS-M Generator, Section VI.) 

Certain OOS-M modules may be ei the:c core- or disc-resident. In a minimum 

SK core system, all possible modulE:~s are disc-resident; but a 16K memory 

allows more modules to be core-resident for greater efficiency. 

An absolute copy of the configured 008-M is stored on the disc and is pro­

tected from alteration by a hardware override switch. A bootstrap program 

is tIBed to initiate DOS-M from the disc. 

1-7 



SEC:TION II 

DIRECTIVES 

Directives are the direct line of conununication between the keyboard or 

batch input device and the Moving-Head Disc Operating System. The operator 

enters these directives manually through the keyboard or the programmer 

enters them on punched cards within his job deck. Directives are able to: 

ll Initiate, suspend, terminate, and abort jobs, 

ll Switch between keyboard and batch mode, 

ll Execute, suspend, and resume programs (including 

compilers, loaders, etc.), 

ll Print the status of the disc tracks and the I/O tables, 

U Create and purge files of source statements, relocatable and 

loader-generated binary programs, and ASCII or binary data, 

ll Edit source statement files, 

ll Set up source files for compilers and assemblers, 

ll List and dwnp files, dwnp disc and core, 

ll Declare I/O devices up and down, 

ll Set the date and print cormnents, 

ll Change user disc subchannel, 

ll Dwnp a copy of a disc onto another subchannel, 

ll Search specified subchannels for file names, 

U Initialize a disc, and 

ll Turn off an executing program. 

Directives may enter DOS-M in two modes: keyboard and batch. In either 

mode, all directives are listed on the teleprinter. Certain directives 

are legal in one mode only; other directives are operable in both. In key­

board mode, the operator manually inputs the directives through the tele­

printer keyboard. In batch mode, the progranuner prepares the directives on 

punched cards or paper tapes and inputs them along with programs, data, etc, 

in a complete job. 

2-1 



DIRECTIVES 

Directives have the same format, regardless of the mode in which they occur: 

"::" followed by a directive word (first two characters are significant) and, 

if necessary, a list of parameters separated by commas (maximum is 15). 

For example, 

: PROG, FTN ,99 

When optional parameters are missing, they must be represented by commas if 

the following parameters are to be recognized. The first blank character 

not preceded by a comma is the end of the directive. Comments may appear 

after this blank; they are ignored by DOS-M. A "rubout" anywhere in a di­

rective deletes the entire directive, while a "control-A" (striking the "A" 

key and the "control" key simultaneously) deletes the previous character. 

DOS-M has two conventions for notifying the operator that directives may be 

entered. An asterisk (*) means that DOS-M is waiting for an operator atten­

tion directive (see below). A"@" with the bell signals that OOS-M is wait­

ing for further directions. (During some operations, such as editing, there 

may be perceptible waits while DOS-M processes the directive. Further di­

rectives must not be input until the "@" is output.) 

The operator attains control of OOS-M at any time by striking any system 

teleprinter key. If the teleprinter is available, OOS-M prints an asterisk 

(*) on it; if it is busy, DOS-M prints an asterisk as soon as it is free. At 

this time, the operator may enter any of the following directives (describ­

ed in detail in this section) : 

:ABORT 

: ON 

:EQ 

:LU (reports only) 

:TYPE 

:UP 
:OFF 

2-2 



DIRECTIVES 

If the operator types any other directives, DOS-M prints the following 

message and returns to the executing program. 

IGNORED 

2-3 



DIRECTIVES 

JOB 

Purpose 

To initiate a user job and assign it a name for accounting 

purposes. 

Format 

: JOB [,name] 

where name is a string of up to five characters (starting 

with an alphabetic character) which identifies 

the job. 

Comnents 

When DOS-M processes the JOB directive, it prints an accounting message on 

the system teleprinter and the list device recording the job's name (as 

specified in the JOB directive), the date (as specified in the DATE directive) 

and the current time (if a time base generator is present): 

JOB name date TIME = xxxx MIN. xx.x SECS. 
or 

JOB name date (if no time-base generator) 

For example, 

:JOB,START 
JOB START MON 6. 16.9 TIME= 0013 MIN 41.6 SEC. 

or 
JOB START MON 6. 16.9 

If an EJOB directive has not been encountered, JOB also acts as the EJOB for the 

previous job. In this case, all actions of the EJOB are carried out, except for 

returning to keyboard mode from batch mode, before starting the new job. 

Only the first two characters of JOB are significant. DOS-M skips everything 

up to the comma. 

2-4 



DIRECTIVES 

EJOB 

Purpose 

To terminate the current job normally and return to keyboard mode. 

Format 

:EJOB 

Comments 

EJOB condenses all user discs by eliminating spaces left by non-permanent 

programs. ( :EJOB follows the : SS condition.) EJOB outputs a message record­

ing the total job and execution timE~, tnen returns to Keyboard mode. (See 

STORE directive and Relocating Loader, Section IV.) All directives except 

TRACKS, OFF, or BATCH are ignored until the next JOB directive. 

EJOB resets logical units 1 through 9 and resets the :SS condition. EJOB 

resets the user disc assignment to the standard subchannel unless the standard 

is not ready or a new cartridge has been inserted (with a different label and 

without a : UD directi VE!). 

When the EJOB directive occurs, a message is printed, similar to that of JOB, 

giving the total run ti.me of the job and total execution time (if a time­

base generator is present). For example, 

END JOB START RUN = 0007 MIN. 52.6 SEC. EXEC = 0001 MIN. 21 .0 SEC. 
or 

END JOB START (No TBG) 

This message is printed on the systE!m teleprinter and on the standard list 

device. 

2-5 



DIRECTIVES 

ABORT 

Purpose 

To terminate the current job before the next JOB or EJOB directive. 

Format 

:ABORT 

Comments 

ABORT carries out all the operations of an EJOB. All I/O devices are 

cleared. When it returns to the batch device, DOS-M ignores all directives, 

except TRACKS, OFF, BATCH, or TYPE, until it finds a new JOB directive. An 

ABORT may be entered through the keyboard, even if OOS-M is in batch mode. 

:OFF must never be given during a purge or after a /E in an EDIT li'.st. 

2-6 



DIRECTIVES 

PAUSE 

Purpose 

To interrupt the current job and return to the keyboard for 

operator action. 

Format 

:PAUSE 

Comments 

PAUSE may be entered through the keyboard even when DOS-M is in batch mode. 

PAUSE suspends the current job until the operator inputs a GO directive. 

During this time the operator may mount magnetic tapes or prepare I/O devices. 

(A series of COMMENT directives or a remark in the PAUSE directive itself 

can be used to tell the operator what to do during the PAUSE.) 

The GO directive returns DOS-M to the job in the previous mode. 

2-7 



DIRECTIVES 

COMMENT 

Purpose 

To print a message on the system teleprinter. 

Fomiat 

:COMMENT Character String 

where Character String is a message to be printed on the teleprinter. 

Comments 

The prograrmner may use the COMMENT directive with the PAUSE directive to 

relay instructions to the operator about setting up magnetic tapes, etc. 

A space (but not a cormna) is required between the directive word and the 

comment string. 

Examples 

: COMMENT PLACE MAGTAPE LABELED 11 INPUT 11 ON THE M. T. UNIT 

: COMMENT PUT 11 INPUT 11 PAPERTAPE IN PHOTOREADER 

2-8 



DIRECTIVES 

TYPE 

Purpose 

To return from batch mode to k 1eyboard mode. 

Format 

:TYPE 

Comments 

Control is returned to the teleprinter keyboard. TYPE may be entered 

through the batch device or keyboard. device; but when it is entered from 

the keyboard, DOS-M waits until the current executing program is completed 

or is aborted before returning to keyboard mode. If TYPE is entered while 

already in keyboard mode, the directive is ignored. 

2-9 



DIRECTIVES 

PROG 

Purpose 

To turn on (i.e., load from the disc and begin executing) a pro­

gram from the system area or programs from the user file which 

were generated through the DOS-M Relocating Loader. 

:SS condition in searching for the program.) 

(Follows the 

Format 

where name denotes a system program, such as FTN for the OOS-M 

FORTRAN Compiler, ASMB for the OOS-M Assembler, LOJrnR 

for the DOS-M Relocating Loader, or ALGOL for the 

RTE/DOS ALGOL Compiler. A user program is specifiE~d 

via the file name assigned in the DOS-M Relocating 

Loader. 

Comment 

P
1 

through PS are optional parameters which DOS-M 

transfers to the program named. P
1 

through PS 

must be positive integers less than 32767. The pro­

gram must retrieve the parameters immediately. Th:Ls 

procedure is described under :GO. 

Consult Section IV for the parameters required by FTN, AS.MB, ALGOL, and LOADR. 

Additional programs may be added at system generation time if desired. (See 

DOS-M Generator, Section VI.) 

NOTE: User programs can be run using : FROG. This may be use:ful when 
the program needs parameters. OOS-M first searches th(~ user 
files for the program, then the system files. 

Examples 
:PROG,FTN,2,99 
:PROG,ASMB,2,6,4 

2-10 



DIRECTIVES 

l~UN 

Purpose 

To run a user program. (Follows the : SS condition.) 

Format 

: RUN ,name[, time] [,NJ 

where name is a user file containing the desired program, 

Comments -----

time is an integer specifying the maximum number of minutes 

the program may run (set to five minutes if not 

specified). DOS-M ignores time if a time-base generator 

is not present. 

N, if present, tells DOS-·M to allow the program to continue 

running even if it makes EXEC calls with illegal re­

quest codes. 

Programs which have been relocated during the current job but not stored (see 

STORE directive) permanently in a user file, may be run using this directive. 

If the program executes longer than the time limit, the current job is abort­

ed and DOS-M scans to the next JOB directive. 

If N is not present in the RUN directive, the current job will be aborted by 

any illegal request codes. The N option is provided so that programs can be 

written and tested on OOS-M ultimately to execute with other HP software 

which does not have the same request codes. (See Appendix D, RELATION TO 

OTHER SOFTWARE.) 

Example 

: RUN , RO UT, 1 5 

executes program ROUT up to fifteen minutes not allowing illegal request codes. 

2-11 



DIRECTIVES 

CHANGE USER DISC 

Purpose 

To change the subchannel assignment for the user disc. 

Format 

:UD[,[label][,n]] 

where label is a six-character disc label (* for an unlabeled 

disc) . 

n is the subchannel. 

Comments 

Discs are labeled by the :IN directive. 

Each form of the :UD directive has a different purpose: 

Example 

:UD 
(without label or 
sub channel) 

: UD, ,n 
(no label) 

:UD,label,n 

Action 

Interrogates the current user disc subchannel 

and prints its label on the system teleprinter: 

SUBCHAN = n 

LBL = label (or UNLBL) 

If n is labeled, DOS-M prints: 

LBL = label (or UNLBL) 
No assignment is made. 

If n is labeled with the specified label, 

DOS-M assigns n as the user disc. 

If n is unlabeled or has a different Jabel, 

DOS-M prints: 

LBL = label (or UNLBL) 
Operator can then reissue :UD,label,n with 

the correct label. 

2-12 



Example 

:UD,label 
(no subchannel) 

:UD,*,n 

:UD,* 

DIRECTIVES 

Action 

DOS-M searches for the label, starting with 

the highest number subchannel (determined at 

system generation). If label is found, DOS-M 

makes it the user disc and prints: 

SUBCHAN = n 

If la.bel is not found, 008-M prints: 

DISC NOT ON SYS 

If n is unlabeled, DOS-M assigns n as the 

user disc. 

If n is labeled, 1DS-M makes no assignment 

and prints: 

LBL = label 

Assigns the highest number unlabeled disc as 

the user disc and prints: 

:SUBCHAN = n 

If there are no unlabeled discs, 008-M prints: 

DISC NOT ON SYS 

If the :UD directive specifies a subchannel with an incorrect system pro­

prietary code (see Appendix J), OOS-M still makes the assignment, and 

prints: 

TSB DISC or ??? DISC 

If the :UD directive specifies a subchannel whose system generation code 

(see Section VI) does not match that of the current system disc, DOS-M 

still makes the assignment but prints: 

DISC GEN CODE nnnn NOT SYS Gl:N CODE mmmm ERR POSS 

The changes made by : UD are only temporary; the user disc is reset at the 

end of each job. 

2-13 



DIRECTIVES 

DISC-TO-DISC DUMP 

Purpose 

i. To dump an entire disc onto another subchannel (:DD) 

ii. To dump the system area (including system buffer) onto 

another sub channel (:DD, X) 

i ·ii. To dump all or specified files of the user area (optionally 

assigning some new file names) onto another subchannel 

(:DD,U ••• ) 

Formats 

i. : DD 

ii. : DD, X 

iii. :DD,U[,file l[,(file A)],file 2[,(file B)[, •. . ] 

where X specifies the system area, 

U specifies the user area, 

file 1, file 2, specify the files to be dumped 

(the entire user area if no files 

are specified) , 

file A, file B, ..• specify the optional new names 

for file 1, file 2, etc. (renamed 

files can be intermixed with un-

changed files). 

The destination disc must be specified by a :UD directive 

immediately following the :DD directive. (For :DD and :DD,X, 

the directive must be :UD,*,n where n is not the system disc.) 

2-14 



DIRECTIVES 

Comments 

When the destination for a :DD,U is a system disc, other than the current 

system, the user files are dumped in the user area following the system 

files. This allows the user to dump a system and selected user files to 

a single disc. (See also : IN.) 

The : SS directive does not apply to : DD. 

If the files of the source disc cannot completely fit on the destination disc, 

DOS-M transfers as many whole files as possible and prints 

TRAC # TOO BIG 

If DOS-M cannot find some of the files specified to be dump, the messages 

file 

UtWEFINED 

is printed. This does not effect dumping of the files which are defined. 

If a file specified to be dumped has the same name as an existing file on 

the destination disc, the message 

file 

DUPLICATE FILE-NAME 

is printed and the file is not dumped. This does not effect dumping of 

other files. 

2-15 



DIRECTIVES 

SYSTEM SEARCH 
(Optional Directive) 

Purpose 

To specify a list of disc subchannels to be searched for file 

names; the :SS condition applies to all EXEC calls and direc-

tives that require a file search. (No check is made for existing 

duplicate file names during searches; the first file found is 

used.) 

Format 

:SS 

:SS,99 

Comments 

All active subchannels are searched, 

starting with the current user sub­

channel, then continuing from the 

highest to the lowest number. 

Where n
1

,n
2 
•.. are subchannel numbers. 

The current user subchannel is searched 

first, then the subchannels specified, 

starting with the lowest number. 

Only the current user subchannel is 

searched. This is the default condition. 

Every job starts out in this condition. 

The :SS directive can only be used if it was specifically allowed during 

system generation. If the operator answers YES to the question 

ALLOW :SS? 

then :SS directives will be allowed. Otherwise, they are not, and any :SS 

directive will cause the following message: 

BAD CONTROL STATE. 

2-16 



DI RE CTI VES 

If a file search results in the file being found, the current user sub­

channel is changed to the subchannE!l containing the file. If the file was 

not found, the current. user subchannel is restored to its previous assign­

ment. The LIST, U directive is an exception: this directive does not 

stop after it finds the file; it continues to look for duplicate entries. 

When the LIST search is complete, the user subchannel is always restored. 

However, if a search is interrupted before completion, the current user 

disc may be on any subchannel. (This should be checked with a : UD directive.) 

More than one :SS can occur during a job. The job starts in :SS,99 con­

dition until a different :SS directive is issued. Each :SS directive re­

mains in effect until another is issued. :SS directives do not apply to 

file searches initiated by the Relocating Loader or to disc dumps initiated 

by the :DD directive. 

Whenever the user subchannel assignment is changed (except by a running 

program), the system prints a message: 

SUBCHAN = n 

2-17 



DIRECTIVES 

TRACKS 

Purpose 

To print the next available track on the current user disc. 

Format 

:TRACKS 

Comments 

The number of the first track beyond the end of the current user area, 

followed by the number of faulty tracks that have been replaced by spares. 

Tracks are replaced by spares when parity errors occur on read or write. 

Examples 

The following is an example in which no faulty tracks are reported. 

(INPUT) 

(OUTPUT) 

:TRACKS 

NEXT AVAIL TRACK = 0010 

@ (End of directive processing) 

2-18 



DIRECTIVES 

Examples 

The following is an example in which no faulty tracks are reported. 

(INPUT) 

(OUTPUT) 

:TRACKS 
NEXT AVAIL TRACK = 0010 
@ (End of directive processing) 

In this example, the system reports that 2 tracks have been replaced by 

spares. 

(INPUT) 

(OUTPUT) 

:TRACKS 
NEXT AVAIL TRACK= W012 
BAD = 2 
@ (End of directive processing) 

In this example, the system reports that there are no more work tracks 

available. 

(INPUT) 

(OUTPUT) 

:TRACKS 
NEXT AVAIL TRACK = NONE 
@ (End of directive processing) 

2-19 



DIRECTIVES 

STORE 

Purpose 

To create a user file on the disc and assign it a name. The 

STORE directive can create relocatable object program files 

(type-R), loader-generated object program files (type-P), 

source statement files (type-S), ASCII data files (type-A), 

and binary data files (type-B). 

for duplicate file names.) 

(Follows :SS in checking 

Format 

'I'he format varies according to what type file is being created .. 

See Comments below for details: 

'l'YPE-R 

TYPE-P 

TYPE-S 

TYPE-A 

TYPE-B 

: STORE, R, file[ ,logical unit] 

:STORE,P[,name
1

,name
2

, ... J 
:STORE,S,file,logical unit 

:STORE,A,file,sectors 
:STORE,B,file,sectors 

NOTE: The second character of file cannot be "Control @." 

Comments 

TYPE - R FILES 

The directive format is: 

: STORE, R, file [ , logical unit] 

where file is a name consisting of five characters or less. 

2-20 



DIRECTIVES 

A user file is created under this name, and relocatable binary programs are 

read into it from the logical unit specified or from the job binary area of 

the work tracks if none is specified. The job binary area remains as it 

was before the STORE directive. (See Section IV, IXJS-M FORTRAN and DOS-M 

ASSEMBLY LANGUAGE.) 

If DOS-M comes to an end-of-tape, it asks: 

DONE? 

If there are more tapes, the operator places the next tape in the reader 

and replies NO; otherwise, he answ·ers YES. 

The user should not assign any file names that will be used as program names 

as this will make loading impossible. The file may be input to the DOS-M 

Relocating Loader for relocation into an executable program. 

DOS-M REWCATING WADER. ) 

Examples 

: STORE, R, RINE 

(See Section IV, 

(Stores all of the relocatable proq-rams from the job binary area into the 

filE~ RINE created for that purpose.) 

:STORE,R,JUGG,5 

(Stores relocatable programs from logical unit 5, the standard input device, 

in to the file JUGG.) 

2-21 



DIRECTIVES 

TYPE - P FILES 

The directive format is: 

where name
1

,name
2 

••• are programs that the DOS-M Relocating Loader had relo­

cated into executable format during the current job. Up to 

14 programs per directive are allowed. If none are! speci­

fied, all programs loaded during the current job are stored. 

DOS-M finds these temporary programs in the user file and 

converts them to permanent user files; the program name 

automatically becomes the file name. 

Programs loaded during the current job but not stored as files (as shown 

above) may be executed normally (RUN or PROG directive) and appear in the 

user directory (LIST directive). At the end of a job, however, they are 

purged from the directory unless they have been converted to user files by 

a S'IDRE,P directive. 

Examples 

:STORE,P 

(Changes all programs loaded during the current job ~sing the Relocating 

Loader into permanent user files.) 

:STORE,P,ARITH,MATH,TRIG,ALGEB 

(Searches for the programs listed and makes them permanent user files.) 

2-22 



DIRECTIVES 

TYPE - S FILES 

The directive format is: 

:STORE,S,file,logical unit 

where file is the name of the user file to be filled with source statements 

from the logical unit specified. File must not duplicate a 

name already present in the user or system files. The source 

statement input must be terminated by a double colon (::}. If 

the :: is omitted, DOS-M stores the succeeding data on the disc 

as if it were source statements. 

If DOS comes to an end-of-tape before finding the::, it asks 

DONE? 

If there are more tapes, the opera.tor replies NO: otherwise, he 

answers YES. 

When OOS-M completes the STORE, it prints 

nnnn LINES 

where nnnn is the nurnber of statements stored. 

Example 

:STORE,S,SOURC,5 

(Reads source statements from the standard input device and stores them 

in a new file SOURC.) 

2-23 



DIRECTIVES 

TYPE - A and TYPE - B FILES 

The directive format is: 

:STORE,type,file,sectors 

where type is either A (for ASCII character data) or B (for binary da.ta) , and 

file is the name assigned to a file containing the number of sectors 

requested. These requests are made prior to executing a program 

to reserve a file area; no data is involved. The program may 

store and retrieve data from the file through a call to EXEC. 

It is the programmer's responsibility to store the right kind of data. in the 

file. The EXEC call must specify the file name and the relative sect.or with­

in the file. DOS-M checks that the file name exists and contains the sector 

specified. 

Example 

:STORE,A,ASCII,20 

(Creates a file name ASCII, 20 sectors in length. A sector equals 128 words.) 

2-24 



DIRECTIVES 

SPECIFY SOURCE FILE 

Purpose 

To specify the user source file to be used as input by the 

assembler and compilers. (Follows the : SS condition.) 

Format 

: J FILE, file 

where. file is thE~ name of a TYPE-S file on any active sub channel. 

Comments 

If logical unit 2 is specified as the input device when the compiler or 

assembler is turned on (using :PROG) and a :JFILE has been defined, then 

the compiler or assembler reads the source statements from the :JFILE. 

Only one program can be translated from a file; any statements beyond the 

end of the source program will be ignored. The JFILE assignment is only 

changed at the end of the current job or by another JFILE directive. 

It is highly reconunended that the :JFILE directive immediately precede the 

corresponding :PROG directive. 

2-25 



DIRECTIVES 

EDIT 

Purpose 

To perform listed edit operations on a user source file. 

Format 

: EDIT ,file,logical unit[ ,new file] 

where file is the name of a source file (follows the :SS 

condition) to be edited according to an edit list 

(edit operations plus associated source state­

ments) input on the specified logical unit. If 

new file appears, the edited source file is stored 

in a new file (with the name new file) on the 

same subchannel and the old file is not purged. 

Otherwise, the edited source file is the updated 

old file. (Follows :SS in searching for duplicate 

file names. ) 

Position one of a source statement must not be a slash (/) or 

a colon (:). The legal edit operations in an edit list are 

described under Comments. 

Comments 

An edit list consists of several edit operations and, optionally, a series of 

associated source statements (i.e., following REPLACE, INSERT). Edit opera­

tions are executed when they are entered. When using the keyboard, the oper­

ator must not enter the next operation until the previous one is completed 

(completion is signaled by"@" output on the keyboard). 

All edit operations begin with a slash (/) , and only the first character 

following the slash is required. The rest are ignored up to a comma. If a 

colon (:) is encountered in column one before the end of the edit list, the 

job is aborted. In the edit operation formats, the letters m and n are the 

2-26 



DIRECTIVES 

sequence numbers of the source statements to be edited, starting with one. 

Letter m signifies the starting statement, and n is the ending statements 

of the operation, inclusive. In all cases, n must be greater than or equal 

to m; neither can be less than one, nor greater than the last source state­

ment of the file. The m must be srreater than the n of the previous operation. 

All edit operations are listed on the system teleprinter as they are executed. 

EDIT OPERATIONS 

The following operation causes source statements m through n, inclusive, to 

be deleted from the file. 

/DELETE ,m[ ,n] 

If only m is specified, only that one statement will be deleted. 

By means of an edit operation, the source statements m through n can be re­

placed by one or more source statements following /REPLACE in the edit list. 

I REPLACE ,m[ ,n] 

Again, if n is absent, only m is replaced. 

The format for the INSERT operation is: 

/INSERT ,m 

The source statements which follow /INSERT in the edit list are inserted in 

the file after statement m. 

In the END operation, 

/END 

the edit directive is terminated and OOS-M returns to its previous mode 

for further directives. 

2-27 



Examples 

If a file named SOURC contains: 

Statement 1 

Statement 2 

Statement 3 

Statement 4 

Statement 5 

Statement 6 

Statement 7 

and the EDIT di rec ti ve is: 

: EDIT, SOU RC, 5 

DIRECTIVES 

ASMB,R,B,L 
NAM START 

A EQU 30 
B EQU 20 
START NOP 

LOA A 
END 

and the edit list, which follows :EDIT on the batch device, 

/R,3 

A EQU 100 
B NOP 
/D,4 
/I,6 

STA B 
/E 

then the new file equals: 

Statement 1 ASMB,R,B,L 
Statement 2 NAM START 
Statement 3 A EQU 100 
Statement 4 B NOP 
Statement 5 START NOP 
Statement 6 LOA A 
Statement 7 STA B 
Statement 8 END 

2-28 

is: 



DIRECTIVES 

PURGE 

Purpose 

To remove a user file from th•= user file area. 

Format 

: PURGE [ , f i .le 
1 

, fi 1 e 
2 

, ••• ] 

where file 
1

, file 
2
,.. • (up to 15 file names or 72 characters per 

directive) designate files in the user area. These 

are purged from tht~ user area. If a file cannot be 

found,. a message is printed on the keyboard: 

FILE UNDEFINED 

If no file names are given, all temporary files are purged. 

Comments 

Purge follows the :SS condition. l~fter the files are purged from the disc, 

the remaining user area files are repacked for efficiency. If the end of 

the user area moves below a track boundary during the purge, the work area 

becomes a track larger. As each file is purged, DOS-M prints its name on 

the teleprinter. 

IMPORTANT NOTE: A :PURGE must: never be interrupted by :AB or :OF 
because this will cause unpredictable destruction 
of all or part of the user area. 

2-29 



DIRECTIVES 

Example 

ORIGINAL CONTENTS OF USER FILE: 

DIRECTIVE: 

OUTPUT: 

Fl ,F2,F3,F4, FLONG, and F5 (at least) 

:PURGE,FLONG,Fl,F2,D3,D7,F3,F4,F5 

FL ONG 

Fl 

F2 

D3 UNDEFINED 

D7 UNDEFINED 

F3 

F4 

F5 

'I'he fastest way to purge all files of a single disc is to use : IN,* .. 

2-30 



DIRECTIVES 

ILIST 

Purpose 

To list file information recorded in the user or system director­

ies. To list and number the contents of a source file sequential­

ly statement-by-statement. 

Format 

(System) :LIST,X,logical unit[,file
1
,. •• ] (Unaffected by :SS) 

(User) : LIST, U, logical unit[ ,file
1

, .•. ] 

(Lists the specified directory entries from all the 

subchannels defined by : SS.) 

where X specifies the system area directory, and 

U specifies a user area directory, 

logical unit specifies the list device, and 

file
1

, ..• names the entries to be listed (if none is 

specified, the entire directory is listed). 

(Source) :LIST,S,logical unit, file[,m[,n]] (follows :SS) 

where file names the source file to be listed on the 

logical unit specified. 

Comments 

m and n, if present, specify the first and last statements 

to be listed. If n is absent, then all state­

ments from m on are listed. If neither appear, 

then the entire~ field is listed. The restrictions 

for m and n are~ the same as those for the EDIT 

directive. 

DIRECTORY LISTING OUTPUT 

The first line is a heading, identifying the information that follows: 

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR. P-BIT 

SUBCHAN = n (This is printed when :LIST switches to the next subchannel 
under :SS.) 

2-31 



DIRECTIVES 

The following lines are then printed: 

name type sctrs trk sec lowerp upperp lowerb upperb entry libr p-bit 

where name identifies the file, 

type tells what kind of file name is, 

AD = ASCII data 

} BD = binary data 

RB = relocatable binary program 
User File Only 

SS = source statements 

DR = disc resident I/O driver 

LB = library 

SR = system core-resident program 
} System File Only 

XS = supervisor module 

UM = user main program 

us program segment 
} Either File = user 

sctrs is the number of sectors in the file, 

trk is the track origin of the file, 

sec is the starting sector of the file within the track specified. 

The infonnation below does not appear for types AD, BD, LB, RB and SS. 

lower is the lower limit (octal) of the program, 
p 

upper is the upper limit (octal) of the program, 
p 

lowerb is the lower limit (octal) of the program base page links, 

upperb is the upper limit (octal) of the program base page links, 

entry is the absolute octal address where execution begins, 

libr is the beginning absolute octal address of the first library 

routine included in the program, and 

p-bit is equal to '11 if the file is temporary and will be purged 

by :EJOB unless stored by : ST. 

If the requested file does not exist, a message appears, 

file UNDEFINED 

2-32 



DI Rl:cn VES 

SOURCE LISTING FORMAT 

Each source statement is preceded by a four-digit decimal sequence number. 

If the requested file is not a source file, a three-line message appears, 

file 

ILLEGAL 
RE-ENTER STATEMENT ON TTY 

The list is terminated by the message 

Examples 

**** LIST END **** 

(On the keyboard:) 

:LI,U,6 
@ 

(On the list device:) 

NAME TYPE SCTRS DISC ORG PROG LIMITS B. P. LIMITS 
SUBCHAN=4 
EX9 SS 0080 T001 000 
EXM RB 0063 T004 008 
BBB SS 0001 T006 023 
SRCH RB 0003 T007 000 
SSERH UM 0002 T007 003 10000 10271 00713 00713 
ASCII AD 0200 T007 005 
BIN RY BO 0300 T015 013 

ENTRY LIBR. P-BIT 

10000 10271 T 

NOTE: T on the "P-BIT" column means that the entry is 
temporary. 

2-33 



DIRECT! VES 

(On the keyboard:) 

:ST,P (To make all temporary files permanent.) 
@ 

:LI,U,6 
@ 

(On the list device:) 

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR. P-BIT 
SUBCHAN=4 
EX9 SS 0080 T001 000 
EXM RB 0063 T004 008 
BBB SS 0001 T006 023 
SRCH RB 0003 T007 000 
SSERH UM 0002 T007 003 10000 10271 00713 00713 10000 10271 
ASCII AD 02~0 T007 005 
BINRY BO 0300 T015 013 

NOTE: "P-BIT" no longer equals "T." 

(On the keyboard:) 

:LI,S,6,EX19,926,936 

@ 

(On the list device:) 

ASMB,L,R,X,C,N,B 0926 
0927 
0928 
0929 
0930 
0931 * 
0932 * 
0933 * 
0934 * 
0935 * 

HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON DOS 
NAM DUMRX,6 
ENT $LIBR,$LIBX 
SPC 2 
CALLING SEQUENCES: ENTRY 

PRIVILEGED . 

0936 * 
**** LIST END **** 

JSB $LIBR 
NOP 

2-34 

TERMINATION 

JSB $LIBX 
DEF (PROGRAM ENTRY POINT) 



DIRECTIVES 

FILE DUMP 

Purpose 

To dump a user file to a specified peripheral I/O device in 

a format appropriate to the file content. 

Format 

: DUMP ,logical uni t,file[ ,Sl [ ,s2 ]] 

where logical unit is the output device to be used for the dump, 

file is the user file to be dumped, 

Sl and S2 are the first and last relative sectors to be 

dumped. 

If Sl and S2 are not given, the entire file is dumped. If only 

Sl is given, then the file, starting with Sl, is dumped. 

Comments 

Files may be dumped on list devices or punch devices. The dump format 

varies with the type of file and the type of device. See Table 2-1. 

ASCII data 

Binary data 

Rel. binary programs 

Source statements 

Table 2-1 

FILE DUMP Formats 

Punch Device 

64 characters/record 

64 words/record 

Relocatable binary 
records (loadable) 

1 statement/record 

2-35 

List Device 

64 characters/record 

8 octal words/line 

8 octal words/line 

1 statement/line 



DIRECTIVES 

Source statements are packed and do not necessarily start on sector boundaries. 

Thus, if the Sl and S2 parameters are used, dumping begins with the start of 

the first statement beginning in sector Sl, and ends with the last statement 

beginning in sector S2 (this will probably end in the following sector) . 

Files in the system area cannot be dumped. Errors occur when Sl > 82, or 

when either Sl or S2 is greater than the length of the file. 

Examples 

Where L is a source file: 

:DUMP,l,L 
A 

BB 
CCC 
DODD 
EEEEE 
FFFFFF 

GGGGGGG 
@ 

Where SSERH is a binary file: 

(On the keyboard:) 

: DU, 6, SSE RH, 1 , 1 
@ 

(On the list device:) 

001 000000 062125 072121 114535 010010 010075 0H"l 56 010100 
0~240~ 052100 026014 026036 062006 042154 072023 114535 
010025 010076 010077 010006 010153 114535 010033 010076 
010077 010101 010117 102501 002002 026056 062006 072046 
114535 010050 010123 010076 010127 010124 010006 010122 
114535 010056 ~10076 010077 010126 010153 036006 036006 
0360~6 036121 026003 114535 010071 010076 0l~{iH7 010106 
010120 114535 010074 010074 000006 000022 000002 000001 
000000 020116 047524 020106 047525 047104 020120 051117 
043522 040515 020103 047515 050114 042524 042504 000005 
000011 000000 000000 000016 000002 177746 020040 020040 
020040 020040 020040 020040 020040 020040 020040 020040 
020040 020040 020040 020040 020040 020040 020040 020040 
020040 020040 020040 000003 177777 020040 020501 040440 
020040 041102 041040 020040 041503 041440 020040 042104 
042040 020040 042505 042440 020040 043106 043040 020040 

2-36 



DIRECTIVES 

SECT()R OUM P 

Purpose 

To dump any specified sector or sectors of the current 

user disc on the standard list device in either ASCII 

or octal format. 

Format 

:SA,track,sector[,number] 

:SO,track,sector[,number] 

(ASCII) 

(Octal) 

where track and sector give the starting disc address for the 

dump, and 

Comments 

number gives the number of sectors to be dumped. If 

number is absent, only one sector is dumped. All 

three parameters are decimal numbers. 

The ASCII dump format (:SA) is 64 characters per record. The octal dump 

format (:SO) is eight octal numbers per line. Two ASCII characters equal 

one computer word (also represented by one octal number). Although :SA 

dumps 64 characters per record, these do not necessarily appear on one 

line since the binary numbers are converted to ASCII characters, some of 

which might be linefeeds or returns. 

2-37 



Example 

(On the keyboard:) 

:S0,0,1 
@ 

(On the list device:) 

001 000000 067767 017570 
017613 064120 007004 
010072 073773 053774 
160001 001727 013733 
067304 044066 037310 
033774 170001 063773 
067304 160001 073766 
006004 160001 033773 
003004 170001 067304 
033774 001727 001723 
067303 017606 002400 
067761 006003 027540 
067762 006003 027546 
067777 006003 002004 
050175 064115 074200 
000000 057766 127570 

DIRECTIVES 

067744 077743 017613 017613 017613 
077310 064117 044055 160001 044051 
077761 053775 077762 077304 044056 
073305 050060 027460 053763 027445 
027415 027505 044052 160001 023773 
073302 002004 073303 063774 073773 
164000 017570 063305 050060 027440 
170001 006004 063730 170001 006004 
077311 027440 060154 001722 013765 
070154 063761 067302 017606 063762 
067774 017606 063311 067775 017606 
044055 160001 023774 033302 170001 
023775 033303 170001 063776 001200 
064155 070155 054175 070175 006400 
047740 074157 064175 074161 124003 
037766 163766 002021 027571 013764 

2-38 



DIRECTIVES 

PROGR~AM DUMP 

Purpose 

To request that a user program be dumped when it completes 

execution. Two directives are provided: PDUMP for dumping 

on a normal completion, and ADUMP for dumping when the pro­

gram aborts. 

Format 

:PDUMP[,FWA[,LWA]][,B][,L] 
:ADUMP[,FWA[,LWA]][,B][,L] 

where FWA is the first word address, relative to the program 

origin, 

B means dump the bas1= page linkage area of the program, 

and, 

L means dump the library subroutines used by the program. 

FWA and LWA are octal numbers that specify the limits of the 

program being dumped. 

If LWA is missing, the entire program, starting with FWA, is 

dumped. 

B alone dumps all thE:! main program, pluss base page 

linkages, but not the library routines. 

L alone dumps only the library routines. 

If no parameters are given, everything is dumped 

2-39 



DIRECTIVES 

Comments -----

Any parameter following L is ignored. If FWA is greater than LWA, a message 

is printed. When the directive :PDUMP precedes a :RUN or :PROG request, the 

program contained in the request will be dumped, if it runs to normal com­

pletion. To dump a program that is aborted while running, the directive 

:ADUMP must precede the :RUN request. To make sure that a program w:ill be 

dumped whether it runs normally or is aborted, both dump directives- must be 

declared preceding the :RUN request. Only one of the requests will be honored, 

depending upon whether the program runs normally or is aborted. 

Since OOS-M sets a flag when it encounters either dump directive then clears 

the flag after the dump routine is executed, the flag representing ~he 

executed dump routine will remain set. This flag can cause an unwanted 

dump of some program run later under the same :JOB directive. Either dump 

flag can be cleared by requesting the dump with both FWA and LWA equal to 0. 

All flags can be cleared by calling a new :JOB directive, or giving an :OF 

when no programs are running. 

The main program and library subroutines are dumped eight octal words per 

line, along with the octal starting address for that line. For example, 

adr
8 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8 

ad
8
+10

8 
wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8 

I:E present, the base page dump follows the main program and library. Base 

page linkages exist for page boundary crossings and subroutines. For each 

line, the starting address appears first, followed by four pairs of octal 

numbers. The first number of each pair records the content of the base page 

word (an address elsewhere in core). The second number of each pair records 

the contents of the address specified by the first item. If the first item 

is the address of a subroutine, then the second item contains the la.st 

address from which the subroutine was called. For example, 

pair-1 

adr i tem-1 item-2 

adr+4 
8 

item-1 item-2 

pair-2 

i tem-1 

item-1 

item-2 

item-2 

2-40 

pair-3 

item-1 

item-1 

i tem-2 

item-2 

pa.ir-4 

i tem-1 i tem-2 

i tem-1 item-2 



Example 

:ADUMP,015,B 
:PR,LOADR 
LU 012140 
ABRT 012140 
(Page Eject) 

(Main program dump) 

12000 160001 002002 130573 
12010 130575 170576 006004 

(Page Eject) 

(Basi~ page dump) 

00570 010137 002045 010711 
00574 017641 000000 017015 
00600 017650 000000 017615 
00604 017637 000573 017571 
00610 017562 021121 017534 
00614 017544 037626 017546 

DIRECTIVES 

(Set up dump flag) 

(Run program) 

(Program aborted) 

170574 006004 
160001 170577 

003237 010763 
000400 017641 
000000 017664 
177205 017563 
021122 017536 
037626 017673 

2-41 

160001 002003 026012 
006004 160001 170600 

002045 017014 000300 
000406 017601 000000 
000000 017662 000573 
001204 017714 017715 
021122 017633 160656 
000000 017605 000040 



DIRECTIVES 

EQUIPMENT 

Purpose 

To list 0ne or all entries in the equipment table. 

Format 

:EQ[,n] 

where n, if present, indicates the one entry to be listed. If 

n is absent, the entire equipment table is listed. 

Comments 

Ea.ch entry is output in the following format: 

EQT nn CH vv DVRmm d r Uu Ss 

where nn is the decimal number of the entry, 

vv is the octal channel number of the device, 

DVRmm is the I/O driver number for the device, 

d specifies DMA if equal to D, no DMA if ~, 

r specifies core-resident if equal to R, disc-resident if ~' 

u is one decimal digit used for subchannel addressing, 

s is the availability status of the device: 

~ for not busy, and available, 

1 for disabled (down) , 

2 for busy, 

3 for awaiting an available DMA channel. 

2-42 



Example 

DIRECTIVES 

:EQ 
EQT 01 CH 10 DVR31 D R U0 50 
EQT 02 CH 12 DVR22 D 0 U0 50 
EQT 03 CH 14 DVR05 0 R U0 50 
EQT 04 CH 15 DVR01 0 0 U0 50 
EQT 05 CH 16 DVR02 0 0 U0 50 
EQT 06 CH 17 DVR12 0 0 U0 S0 
EQT 07 CH 21 DVR15 D 0 U0 50 
@ 

2-43 



DIRECTIVES 

LOGICAL UNIT 

Purpose 

To assign logical tmit numbers (4 through 63) for a job or to 

list the device reference table (logical unit assignments). 

Format 

:LU[ ,n
1 

[ ,n)J 

where n
1 

and n
2

, if both present, assign the device recorded in 

equipment table entry n
2 

to logical unit number n
1 

(both 

are decimal numbers). If only n
1 

is present, then the 

equipment table entry number (see EQUIPMENT directive) 

assigned to logical unit number n
1 

is output. If no 

parameters appear, the entire device reference table 

is printed. 

Comments 

Assignments made by :LU for logical units 4 through 9 are only valid during 

the current job. Assignments for 10 and above remain after EJOB. At the 

beginning of each new job, the device reference table for the first nine 

logical tmits is reset to the assignments given when the system was configured. 

(See Section VI, DOS-M Generator.) This insures a standard I/O organization 

for all users. 

Example 

:LU 
LU~l EQT03 
LU~2 EQT01 
LU03 EQT~l 
LU04 EQT05 
LU05 EQT04 
LU06 EQW6 
LU07 EQT07 
LU08 EQT~2 
@ 

2-44 



DIRECTIVES 

UP 

Purpose 

To declare an I/O device ready for use. 

Format 

:UP,n 

where n is the equipment tablE! en try number corresponding to the 

device. 

Corrmen ts 

The :UP directive (followed by a :CD) is usually used in response to the 

following messages from DOS-M: 

I/0 ERR ET EQT #n 

I/0 ERR NR EQT #n 

I/0 ERR PE EQT #n 

where ET indicates end of tape, 

NR indicates device not ready, 

PE indicates parity error, and 

n is the equipment entry number. 

2-45 



DIRECTIVES 

DOWN 

Purpose 

To declare an I/O device unavailable for use. 

Format 

: ON ,n 

where n is the equipment table entry number for the device to 

be set down. 

Comments 

The system teleprinter and the disc (logical units 1,2, and 3) cannot be 

set down. Once set down, a device is unavailable until set UP by the 

operator. 

2-46 



DIRECTIVES 

BATCH 

Purpose 

To switch from keyboard mode to batch mode or to reassign the batch 

device. 

Format 

:BATCH,logical unit 

where logical unit is the device to be used as the batch input 

device. 

Comrr.~nts -----

See "TYPE" in this section for the opposite procedure of returning from 

batch mode to keyboard mode. 

NOTE: 

The directives in the rest of this section pertain to operation in the key­

board mode only. 

2-47 



Purpose 

DIRECTIVES 
(KEYBOARD MODE ONLY) 

DATE 

To set the date and time for accounting purposes whenever DOS-M 

is started up. 

Format 

:DATE,day[,hour,min] 

where day is any string of ten or less characters (commas not 

permitted) chosen by the operator (such as 

7/l~/69,l~.JULY.69, etc.); 

Comments 

hour and min are the current time in hours and minutes on a 

24-hour clock. If not given or time-base generator is 

not present, they are set to zero. 

The DATE directive is legal only following a start-up procedure. (See 

Section VI, IXJS-M INITIATION FROM THE DISC.) The directive is not 

accepted any other time. 

Examples 

:DATE,7/10/69,12,23 
:DATE,WEDNESDAY,7,45 
:DATE,10JULY1969 

2-48 



Purpose 

DIRECTIVES 
(KEYBOARD MODE ONLY) 

GO 

To resume a program that has been suspended, and optionally, to 

transfer up to five parameters to that program. 

Format 

where P 
1 

through P 
5 

are optional parameters and must be decimal 

values between ~ and 32767. 

Comments ----

When a program suspends itself (see Section III, PROGRAM SUSPEND EXEC CALL), 

it is restarted by a GO directive. Upon return to a suspended program, the 

initial address of the five parameters is located in the B-register. A 

FORTRAN program calls the library subroutine RMPAR to transfer the parameters 

to a specified 5-word array. The f:Lrst statement after the suspend call, in 

a FORTRAN program, must be the call to RMPAR. For example, 

DIMENSION I(5) 

CALL RMPJ\R (I) 

An assembly language program should use the B-register upon return from the 

s uspemd to obtain and save the parameters prior to making any EXEC request 

or I/O request. 

2-49 



Purpose 

DIRECTIVES 
(KEYBOARD MODE ONLY) 

INITIALIZE 

To label or unlabel the current user disc. 

Format 

: IN,label 

where label is a six-character name to be written on the disc 

or "*" which means unlabel the disc. (The label 

cannot start with a "Control @. ") 

Comments 

If the user disc is already labeled, JX>S-M prints: 

TSB (or ???) LABEL nnnnnn (nnnnnn is existing label) 

OK TO PURGE 

The operator must respond with 

YES 

to actually execute the directive, or 

NO 

to leave the disc unchanged. 

If the label equals "*", the user files also are purged. 

If the current user disc is labeled SYSTEM and is not hardware protected 

(which means it was created by a :DD,X), the system area is destroyed and 

any files are moved down to low disc. 

2-50 



DIRECTIVES 

Labeling a disc eliminates any old label on the disc but does not eliminate 

the directory or files on the disc. 

Unlabeling a disc also eliminates the contents. 

: IN always changes the system generation code and system proprietary code 

to ~1at of the current system. :IN can prepare discs for use by DOS-M 

that were formatted by a diagnostic or other software. 

2-51 



Purpose 

DIRECTIVES 
(KEYBOARD MODE ONLY) 

OFF 

To abort the currently executing user program of system 

operation without terminating the job. 

Format 

:OFF 

Comments 

:OFF returns the system to keyboard mode. 

OFF can be used to terminate undesired lists, edits, disc-to-disc dumps, 

program loops, loader operations, assemblies, and compilations. 

:OFF must never be given during a :PURGE or after /E in an EDIT. 

:OFF cancels any pending :DD, :AD, or :PD directives, unless a program is 

running, in which case, a pending :ADUMP is executed. 

2-52 



SECTION Ill 

EXEC: CALLS 

Using EXEC calls, which are the line of conununication between an executing 

program and DOS-M, a program is able to: 

Il Perform input and output operations, 

Il Request status of I/O devices 

Il Determine availability of work area tracks, 

a Terminate or suspend itself, 

Il Load its segments, 

Il Search for file names, 

Il Obtain the time of day, or 

Il Change the user disc subchannel. 

An EXEC call is a block of words, consisting of an executable instruction 

and a list of parameters defining the request. The execution of the 

instruction transfers control to OOS-M. OOS-M then determines the type 

of request (from the parameter list) and, if it is legally specified, 

initiates processing of the request. The executable instruction is a 

jump subroutine (JSB) to EXEC. 

In FORTRAN, EXEC calls are coded as CALL statements. In ALGOL, procedure 

calls are used. In Assembly Language, EXEC calls are coded as a JSB, 

followed by a series of parameter definitions. For any particular call, 

the object code generated for the FORTRAN CALL Statement and the ALGOL 

procedure call is equivalent to the corresponding Assembly Language object 

code .. 

This section describes the basic formats of FORTRAN, ALGOL and Assembly 

Language EXEC calls, then each EXEC call is presented in detail. 

3-1 



EXEC CALLS 

FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE 

The following is a general model of an EXEC call in Assembly Languag·e: 

EXT EXEC 

JSB EXEC 
DEF *+n+l 

} 
return point 

EXEC CALLS IN ALGOL 

(Used to link program to DOS-M) 

(Transfer control to DOS-M) 

(Defines point of return from DOS-M, n 
is number of parameters; may not be an 
indirect address; must be the location 
immediately following the last parameter 
address) 

(Define addresses of parameters which 
may occur anywhere in program; may be 
multi-level indirect) 

(Continue execution of program) 

(Actual parameter values) 

In ALGOL, certain conventions must be followed in making EXEC calls. First, 

since EXEC is external to the program it must be declared a CODE procedure. 

Second, parameters that are going to be changed must be declared "name" and 

those that are not to change must be VALUE parameters. Third, since ALGOL 

requires that the format of each procedure call be defined, a program must 

declare a dununy external procedure for each type of EXEC call it makE~s. 

(These dummy procedures must be compiled as separate procedures to provide 

proper linkage in the Loader.) 

3-2 



EXEC CALLS 

For example, 

(In the main program) : 

PROCEDURE EXECA(A); INTEGER A;CODE; 
PROCEDURE EXECB(A,B,C,D);INTEGER A,B,C,D;CODE; 

EXECA(I); 

EXECB(J,K,L,M); 

END$ 
(External) 

HPAL,P, 11 EXECA 11 ,B,L 
PROCEDURE EXECA(A); INTEGER A; BEGIN PROCEDURE EXEC(A); INTEGER A; 
CODE; EXEC(A); 
END$ 

FORl·~AT OF THE FORTRAN CALLING SEQUENCE 

In FORTRAN, the EXEC call consists of a CALL Statement and a series of 

assignment statements defining the variable parameters of the call: 

where P
1 

through Pn are either values or variables defined 

Example 

elsewhere in the program. Variables must begin with 

a letter I through N, since they are integer variables. 

CALL EXEC ( 7) 

or 
IRCDE = 7 
CALL EXEC (IRCDE) 

Equivalent calling sequence 

Some EXEC call functions are handled automatically by the FORTRAN compiler 

or special subroutines. (Refer to "FORTRAN," Section IV, DOS-M PROGRAMMING, 

and the specific EXEC calls in this section.) 

3-3 



EXEC CALLS 

READ/WRITE 

Purpose 

To transfer information to or from an external I/O device or thE~ 

work area of the disc. (OOS-M handles track switching automatically.) 

Assembly Language 

EXT EXEC 

JSB 
DEF 

DEF 
DEF 
DEF 
DEF 
DEF 

DEF 

EXEC 
*+5 (or 7) 

RCODE 
CONWD 
BUFFER 
BUFFL 
DTRAK 
DSECT 

(return point) 

RCODE DEC 
CONWD OCT 
BUFFR BSS 
BUFFL DEC 
DTRAK DEC 
DSEC DEC 

l (or 2) 

conwd 

n 

n (or -2n) 

f 

g 

(Transfer control to 008-M) 

(Point of return from DOS-M; 7 i.s 

for disc request) 

(Request code) 

(Control information) 

(Buffer location) 

(Buffer length) 

(Track number-disc transfer only) 

(Sector number-disc transfer only) 

(Continue execution) 

(l=READ, 2=WRITE) 

(conwd is described in Comments) 

(Buffer of n words) 

(Same n; words (+) or characters (-)) 

(Work area track number, decimal) 

(Work area sector number, decimal) 

3-4 



EXEC CALLS 

FORTRAN 

I/O transfers to regular devices are progranuned by standard 

FORTRAN READ and WRITE Statements. I/O on the work area of 

the disc is done with a subroutine BINRY, described in the 

Conunents, or the FORTRAN equivalent of the EXEC call: 

CALL EXEC (I CODE, ICON, IBUF, IBUFL, ITRAK, !SECT) 

Comments 

READ/WRITE EXEC calls carry out 1/0 transfers including those on the 

work area of the disc. (See FILE READ/WRITE EXEC CALL.) 

CONWD 

The conwd, required in the calling sequence, contains the following fields: 

~ ~ W K V M LOGICAL UNIT # 

BITs_l1_s ___ 1_4 ___ 11_3 ___ 1_1_2~_1_1 __ 1_~--~9----8-----7--~6----5----4----3---2----l---~--' 
Field 

w 

Function 

If 1, tells DOS-M to return to the calling program after 

starting the I/O transfer. If W = ~, DOS-M waits until 

the transfer is complete before returning. 

K Used with keyboard input, specifies printing the input 

as received if K = 1. If K = ~, "no printing" is specified. 

V Used when reading variable length records from punched 

tape devices in binary format (M = 1, below). If V = ~, 
the record length is determined by buffer length. If 

v = 1, the record length is determined by the word count 

in the first non-zero character which is read in. 

M Determines the mode of data transfer. If M = ~, transfer 

is in ASCII character format, and if M = 1, binary format. 

(Disc is always binary.) 

3-5 



EXEC CALLS 

BIN RY 

User FORTRAN programs call the FORTRAN disc read/write library routine, 

BINRY, to accomplish I/O in the work area. The user must specify: an array 

to be used as a buffer, the length of the buffer in words (equal to the 

number of elements in an .integer array, double that for a real array), the 

disc logical unit, track number, sector number, and offset in words within 

the sector. (If the offset equals fJ, the transfer begins on the sector 

boundary. If the offset equals N, then transfer skips N words of the sector 

before starting). BINRY has two entry points, BREAD and BWRIT, for read 

and write operations respectively. An example below gives the calling pro­

cedure. 

or 

DIMENSION IBUF(l!J), BUF(2!J) 

LUN = 2 

ITRK = 12 

!SECT = 63 

!OFF = fJ 

CALL BREAD (BUF, 4fJ, LUN, ITRK, !SECT, !OFF), 

CALL BWRIT {IBUF, l!J, LUN, ITRK, !SECT, !OFF) 

Waiting and No Waiting 

If the program requests the no waiting option in the conwd, it can check for 

the end of the I/O operation with the I/O STATUS EXEC call. In the Assembly 

Language calling sequence, the buffer length can be given in words (+) or 

characters (-). When the transfer is complete, the amount actually trans­

ferred can be learned by the same status call. A positive number of words 

or characters, depending upon which were originally requested, is returned. 

If the WAIT option is used, DOS-M returns the number of transmitted words 

or characters to the B register. 

3-6 



EXEC CALLS 

FILE READ/WRITE 

Purpose 

To transfer information to or from a file on the user disc; the 

file must be referenced by name. (The :SS condition is followed.) 

Assembly Languag~ 

EXT EXEC 

RCODE 
CONWD 
BUFFR 
BUFFL 
FNAME 

JSB EXEC 
DEF *+7 
DEF RCODE 
DEF CONWD 
DEF BUFFER 
DEF BUFFL 
DEF FNAME 
DEF RSECT 
return point 

DEC 14 or 15 
OCT conwd 

BSS n 

DEC n or -2n 

ASC 3,xxxxx 

RSECT DEC m 

(Transfer control to DOS-M) 

(Point of return from DOS-M) 

(Request code) 

(Control information) 

(Buffer location) 

(Buffer length) 

(File name) 

(Relative sector within file) 

(Continue execution) 

(14 = READ, 15 = WRITE) 

(See Comments, READ/WRITE EXEC CALL.) 

(Buffer of n words) 

(Same n; words (+) or characters (-)) 

(User file name = xxxxx) 

(Relative sector number ) 

3-7 



FORTRAN 

DIMENSION !FILE (3) 
IFILE(l) = xxxxxB 
IFILE(2) = xxxxxB 
IFILE(3) = xxxxxB 
IRCD = 14 (or 15) 
ICNWD = xxxxxB 
DIMENSION IBUF(lO) 

EXEC CALLS 

(First two characters of file name) 

(Second two characters) 

(Last character and blank) 

(Request code) 

(conwd) 

CALL EXEC (IRCDE, ICNWD, IBUF, 10, !FILE, 0) 

Comments 

See the Comments under READ/WRITE EXEC CALL for a description of the conwd 

fields needed in the above calling sequences. 

To read or write on the first sector of a file, m=~, for the last sector, 

m=number of sectors in the file -1. To determine the size of a file, use 

the SEARCH FILE NAMES EXEC call. 

Any type of file may be read, but only ASCII or binary data files may be 

written. 

If the DOS-M installation is likely to have more than one user disc, the 

program should use the CHANGE USER DISC EXEC call without a subchannel 

specified to check whether the correct user disc is currently assigned. 

Alternatively, the user can use an :SS directive to set up a system search 

condition for referencing files on many subchannels. 

3-8 



EXEC CALLS 

1/0 CONTROL 

Purpose 

To carry out various I/O control operations, such as backspace, 

write end-of-file, rewind, etc. 

Assembly Language 

EXT EXEC 

JSB EXEC 
DEF *+4(or 3) 
DEF RCODE 
DEF CONWD 
DEF PARAM 
return point 

RCODE DEC 3 
CONWD OCT conwd 

PARAM DEC n 

FORTRAN 

(Transfer control to DOS-M) 

(Point of return from OOS-M) 

(Request code) 

(Control information) 

(Optional parameter) 

(Continue execution) 

(Request code = 3) 

(See Comments) 

(Required for some control functions; 

see Comments) 

Use the FORTRAN auxiliary I/O statements or an EXEC calling sequence. 

IRCDE = 3 
ICNWD = conwd 

(Request code) 

(See Comments) 

IPRAM = x (Optional; see Comments) 

CALL EXEC (IRCDE, ICNWD, !PRAM) 
CALL EXEC (IRCDE, ICNWD) 

3-9 



EXEC CALLS 

Comments 

CONWD 

The control word value (conwd) has two fields: 

w FUNCTION CODE (see below} LOGICAL UNIT NUMBER 

BITS 14 13112 11 l~ 9 8 7 6 5 4 3 2 1 

If W = 1, DOS-M returns to the calling program after starting the control 

request. 

If W = ~' DOS-M waits until the control request is complete before returning. 

Function Code 

~~~ 

~~l

~~2

~~3

004

~~5

0fl16

007

fl1lfl1

~11

~12

177

(Octal) Action

Unused

Write end-of-file (magnetic tape}

Backspace one record (magnetic tape}

Forward space one record (magnetic tape)

Rewind (magnetic tape}

Rewind standby (magnetic tape)

Dynamic status (magnetic tape}

Set end-of-paper tape

Generate paper tape leader

List output line spacing

(PARAM or IPRMA required}

Unused

Function code 11
8

, list output line spacing, requires the optional parameter

mentioned in the calling sequences. PARAM (or !PRAM} designates the num­

ber of lines to be spaced on the specified logical unit. A negative para­

meter specifies a page eject on a line printer or number of lines to be

spaced on the teleprinter. For details of line printer formatting, consult

Appendix E.

3-10

EXEC CALLS

1/0 STATUS

Purpose

To request the status of a particular I/O device, and the amount

transmitted in the last operation.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5
DEF RCODE
DEF CONWD
DEF STATS
DEF TLOG
return point

RCODE DEC 13
CONWD DEC n

STATS NOP
TLOG NOP

FORTRAN

('I'ransfer control to OOS-M)

(Point of return from OOS-M)

(Hequest code)

(Logical unit)

(Status returned)

(r:J~ransmission log returned)

(Continue execution)

(Request code - 13)

(Logical unit number)

(Status returned here)

('rransmission log returned here)

I RCDE = 1 3 (Request code)

ICNWD = n (.n is decimal logical unit)

CALL EXEC (IRCDE, ICNWD, !STAT, ITLOG)

3-11

EXEC CALLS

Comments -----

The status returned in the A-register and in STATS is the hardware status

of the device specified by the logical unit. The transmission log in the

B-register and in TLOG contains the amount of information which was trans­

ferred (a positive number of words or characters depending on which was

requested by the call initiating the transfer).

3-12

EXEC CALLS

WORK AlREA LIMITS

Purpose

To ascertain the first and last tracks of the work area on the system

disc and the number of sectors per track.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5
DEF RCODE
DEF FTRAK
DEF L TRAK
DEF SIZE
return point

RCODE DEC 17
FTRAK NOP
LTRAK NOP
SIZE NOP

FORTRAN

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(First track)

(Last track)

(NUirber of sectors/track)

(Continue execution)

(Request code = 17

(Returns first work track number here)

(Returns last work track number here)

(Returns number of sectors per track here)

IRCDE = 17 (Request code)

CALL EXEC (IRCDE, IFTRK, ILTRK, !SIZE)

Comments

This call returns the limits of the work area, that area of the system

disc which programs use for temporary storage with the READ/WRITE EXEC

call.

3-13

EXEC CALLS

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable

tracks exist in the work area of the disc.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+5

DEF RCODE

DEF NTRAK

DEF RTACK

DEF STRAK

return point

RCODE DEC 16

NTRAK DEC n

TRACK NOP

STRAK NOP

FORTRAN

IRCDE = 16

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Number of tracks desired)

(Starting track desired)

(Actual starting track)

(Continue execution)

(Request code = 16)

(Consecutive tracks desired)

(Desired track; from LIMITS call)

(Actual starting track available,

~ if n tracks not available)

(Request code)

ICNWD = n (Consecutive tracks desired)

ITRAK = m (Desired starting track)

CALL EXEC (I RCDE, I CNWD, IT RAK, I STRK)

3-14

EXEC CALLS

Comments

This call is used with the WORK AREA LIMITS EXEC call to establish the

nature of the work area. The READ/WRITE EXEC call then transmits inform­

ation to and from this area, using the track numbers determined by this

call. DOS-M handles track .switching automatically. When the disc would

overflow, DOS-M prints this message:

TRAC # TOO BIG

DOS-M checks whether there are n consecutive tracks starting at the track

specified. Upon location of tracks, DOS-M returns the starting track number

to the program. If DOS-M does not locate n consecutive tracks, it returns ~

in TRAK or ITRAK.

3-15

EXEC CALLS

PROGRAM COMPLETION

Purpose

To notify DOS-M that the calling program is finished and wishes to

terminate.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 6

FORTRAN

(Transfer control to DOS-M)

(Return point from DOS-M)

(Request code)

(Request code 6)

The FORTRAN and ALGOL compilers generate a PROGRAM COMPLETION EXEC CALL

automatically when they compile an END or STOP statement.

3-16

EXEC CALLS

PROGRAIM SUSPEND

,Purpose

To suspend the calling program from execution until restarted by the

GO directive.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 7

FORTRAN

(Trans.fer control to DOS-M)

(Point. of return from DOS-M)

(Request code)

(Continue execution)

(Request Code 7)

The library subroutine PAUSE, which is automatically called by a PAUSE

statement, generates the SUSPEND EXEC call.

3-17

EXEC CALLS

Comments

DOS-M prints a message on the system teleprinter when it processes the

PROGRAM SUSPEND EXEC call:

name SUSP

When the operator restarts the program with a GO, the B-Register contains

the address of a five-word parameter array set by the GO request. (The

parameters equal zero if no values have been given.) In a FORTRAN pro­

gram, the library subroutine RMPAR can load these parameters; however, the

call to RMPAR must occur immediately following the SUSPEND EXEC call, as

in the following example:

DI MENS ION I (5)

CALL EXEC (7)

CALL RMPAR (I)

(Suspend)

(Return point; get parameters)

3-18

EXEC CALLS

PROGRAM SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into the

segment overlay area and transfer execution control to the seg­

ment's entry point. (See Section IV, DOS-M PROGRAMMING, for in­

formation on segmented programs.) Follows the :SS condition.

Assembly Language.

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF SNAME
return point

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Segment name)

(Continue execution)

RCODE DEC 8 (Reqm~st code = 8)

SNAME ASC 3,xxxxx (xxxxx is the segment name)

FORTRAN

IRCDE = 8
DIMENSION INAME 93)
INAME (1) = xxxxxB
INAME (2) = xxxxxB

INAME (3) = xxxxxB

CALL EXEC (IRCDE, INAME)

(First two characters)

(Second two)

(Last character)

3-19

EXEC CALLS

Comments

In the FORTRAN or ALGOL calling sequence, the name of the segment must

be converted from ASCII to octal and stored in the INAME array, two char­

acters per word.

See OVERLAY SEGMENTS and SEGMENTED PROGRAMS, Section IV, for a description

of segmented programs.

3-20

EXEC CALLS

SEARCH FILE NAME

Purpose

To check whether a specific file name exists in the directory

of user or system files. (Follows the :SS condition.)

Assembly Languag~

EXT EXEC

JSB EXEC
DEF *+4
DEF RCODE
DEF FNAME
DEF NSECT
return point

(Transfer control to OOS-M)

(Return address)

(Request code)

(File~ name)

(Number of sectors)

RCODE DEC 18
FNAME ASC 3,xxxxx

NSECT NOP

(Request code = 18)

(xxxxx is the file name)

(Number of sectors returned here;

~ if not found)

FORTRAN

IRCDE = 18
DIMENSION !NAME (3)
!NAME (1) = xxxxxB

!NAME (2) = xxxxxB

(request code)

(File name)

(First two characters)

(Next two characters)

!NAME (3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE, !NAME, !SECT)

3-21

EXEC CALLS

TIME REQUEST

Purpose

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF ARRAY
return point

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

RCODE
ARRAY

FORTRAN

Comments

DEC 11
BSS 5

(Time value array)

(Continue execution)

(Request code = 11)

(Time value array)

IRCDE = 11
DIMENSION !TIME (5)
CALL EXEC (IRCDE, !TIME)

When DOS-M returns, the time value array contains the time on a 24-hour clock:

ARRAY or I TIME (1) Tens of milliseconds

ARRAY + 1 or I TIME (2) Seconds

ARRAY + 2 or I TIME (3) Minutes

ARRAY + 3 or I TIME (4) Hours

ARRAY + 4 or I TIME (5) Not used, but must be present
(always = ~)

If OOS-M does not contain a time base generator, all values in the time array

are set to zero (0).

3-22

EXEC CALLS

CHANGE USER DISC

Purpose

To change the subchannel assignment for the user disc.

Assembly Language.

EXT EXEC

JSB EXEC
DEF *+3 (or 4)
DEF RCODE
DEF LABEL
DEF SUBCH
return point

RCODE DEC 23
LABEL ASC 3, xxxxxx

SUBCH DEC (0 to 7)

FORTRAN

IRCDE = 23
DIMENSION LABEL (3)
LABEL (1) =xx

LABEL (2) = xx

LABEL (3) = xx

(Transfer control to DOS-M)

(Point of return from DOS-M)

(Request code)

(Disc Label)

(Disc Subchannel; optional)

(Request code = 23)

(Label = xxxxxx)

ICHNL = M (0 through 7)
CALL EXEC (IRCDE, LABEL, ICHNL)

3-23

Comments

l. If both the label and subchannel are specified, DOS-M checks whether

the subchannel has that label. If it does, the assignment is made and

DOS-M returns. If not, DOS-M prints:

LBL = name

or UNLBL
UD nnnnn

xxxxx SUSP

(name is label on the subchannel)

(nnnnn

(xxxxx

address of EXEC call)

name of program)

The operator can load a correctly labeled disc on the subchannel and

type in

:GO

This returns to the beginning of the EXEC call (not the normal return

point) so that the program can reissue the EXEC call.

If the operator does not have a properly labeled disc (or the sub­

channel is a permanent disc) , he should use "OFF or :ABORT.

2. If only a label is specified, DOS-M searches for the label, starting

with the highest subchannel. If DOS-M finds the label, it makes the

assignment.

If DOS-M cannot find the label, it suspends the program and prints:

DISC NOT ON SYS
UD nnnnn

xxxxx SUSP

The operator can then abort the program or load a properly labeled

disc and type in:

:GO

This returns to the beginning of the EXEC call.

3-24

EXEC CALLS

3. If the label equals "*" and a subchannel is specified, DOS-M checks

whether the subchannel is unlabeled. If it is, DOS-M makes the assign­

ment. If the subchannel is labeled, DOS-M suspends the program and

prints:

LBL = name

UD nnnnn

xxxxx SUSP (xxxxx is the program)

The operator can then abort thi:= program or load an unlabeled disc on

the proper channel and type in:

:GO

This returns to the beginning of the EXEC call.

4. If the label equals "*" and a subchannel is not given, DOS-M searches

for an unlabeled disc, startinq with the highest subchannel. DOS-M

assigns the first unlabeled disc as the user disc, or if no unlabeled

discs are found, it suspends the program and prints.

DISC NOT ON SYS
UO nnnnn

xxxxx SUSP

The operator can then abort the program or load an unlabeled disc

and type in:

:GO

This returns to the beginning of the EXEC call.

If the EXEC call specifies a subchannel with an incorrect system

proprietary code (see Appendix J) , DOS-M still makes the assignment

but prints:

TSB DISC or ??? DISC

3-25

EXEC CALLS

If the EXEC call specifies a subchannel whose system generation code

(see Section VII) does not match that of the system disc, DOS-M

still makes the assignment, but prints:

DISC GEN CODE nnnn NOT SYS GEN CODE nnn ERR POS

The changes made by this EXEC call are only temporary, and will be

reset at the end of each job.

If the specified subchannel is not active (physically present) , DOS-M

aborts the program and prints

UD nnnnn (nnnnn = address of EXEC call)

3-26

SECTION IV

PROGRAMMING

Section IV describes the operating procedures and formatting conventions of

the five user programming aids of DOS-M:

0 ALGOL Compiler

a FORTRAN Compiler

Il Assembler

Il Relocating Loader

Il Relocatable Libraries

Using the EDIT directives, the operator creates and edits files of source

programs written in FORTRAN, ALGOL, or Assembly Language. In load-and-go

operations the DOS-M FORTRAN Compiler, ALGOL Compiler and DOS-M Assembler

generate relocatable binary code onto temporary disc storage. The DOS-M

Relocating Loader can then relocate and merge the code with referenced

subroutines of the Relocatable Library. Once loaded, a program is

executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

The Moving Head Disc Operating System provides the facility for "load-and-go"

which is defined as compilation or assembly, loading, and execution of a

user program without using intervening object paper tapes. To accomplish

this, the compiler or assembler generates relocatable object code from

source statements and stores it on the disc in the job binary area of the

WORK tracks. Then separate directives initiate loading (PROG, LOADR) and

execution (RUN, program).

4-1

DOS-M stores the object code of several programs and associated subr<:mtines

on the disc. The Relocating Loader locates them on the disc, and relocates

them into executable absolute program units.

DOS-M FORTRAN COMPILER

The DOS-M FORTRAN Compiler, a segmented program, operates under control of

the DOS-M Supervisor. The compiler consists of a main program (FTN) and four

overlay segments (FTN,01, FTN,02, FTN,03, FTN,04). It resides on the disc and

is read into core only when needed.

DOS-M FORTRAN, a problem-oriented programming language, is very similar to

regular HP FORTRAN. Source programs, accepted from either an input device

or a user file, are translated into relocatable object programs, punched on

paper tape, and optionally, stored in the job binary area of the disc. The

object program can be loaded using the DOS-M Relocating Loader and executed

using the RUN or PROG directive.

Compiler Operation

The DOS-M FORTRAN compiler is started by a PROG directive. Before entering

the PROG directive, place the source program in the input device, or,, if

input is from a source file, specify the file with a JFILE directive.

4-2

Where

PROGRAMMING

PRC)G, FTN

p
1

logical unit of input device (standard is 5;

set to 2 for source file input) .

p
2

logical unit of list device (standard is 6).

p
3

logical unit of punch device (standard is 4) .

p4 =lines/page on listing (standard is 56).

99 the job binary parameter. If present, the object

program is stored in the job binary area for later

loading. Any requested punch output still occurs.

(The 99 may occur anywhere in the parameter list,

but terminates th~ list.)

p
1

through p
4

are optional. If not present, the standard oper­

ation is assumed. If 99 is not present, then binary is not

placed in the job binary area.

MESSAGES TO OPERATOR DURING COMPILATION

This message is printed on the operator console when an end-of-tape occurs

on device #n:

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n
:GO

Compilation continues after the GO. More than one source tape can be

compiled into one program by loading the next tape before giving the GO.

4-3

PROGRAMMING

At the end of compilation, the following message is printed.

$END, FTN

If the job binary area (where binary code is stored because of a 99 para­

meter) overflows, the following message is printed, and compilation continues:

JBIN OVF

There is no further loading into the job binary area.

The compiler terminates if ...

ll No JFILE is declared, although logical unit 2 has been

given for input. Error E-~~19 is printed on the list

device. ($END,FTN is not printed.)

ll There are not enough work tracks for the compiler. The

following message is printed:

#TRACKS UNAVAILABLE

ll Colons occur in the first column of a source program

entered through the batch device. (Blank cards in

the source program are ignored.) The following mes­

sage is printed:

IE nnnnn

where nnnnn is the memory location of the input request.

FORTRAN CONTROL STATEMENT

Besides the standard options described in the FORTRAN manual, two new compiler

options, T and n, are available. A "T" lists the symbol table for ea.ch pro­

gram in the compilation. If a "u" follows the address of a variable,, that

variable is undefined (the program does not assign a value to it). ~rhe A op­

tion includes this T option. If n appears, n is a decimal digit (1 through 9)

which specifies an error routine. The user must supply an error routine, ERRn.

If this option does not appear, the standard library error routine, ERR~, is

used. The error routine is called when an error occurs in ALOG, SQR~r, .RTOR,

SIN, COS, .TROI, EXP, .ITOI or TAN.

4-4

PROGRAMMING

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type]

where name is the name of the program and its main entry point.

When the program is executed using a RUN directive,

this name is used. (It should not equal any file name.)

type is a decimal digit specifying the program type.

Only types 3 (main), 5 (segment) , and 6 or 7 (library)

are significant in DOS-M. The type is set to 3 if

not given.

Seven more parameters may be included but they are used only

with the Real-Time Executive System.

on OOS-M to be run under Real--Time.

Software Manual.)

I/0 LOGICAL UNIT NUMBERS

Programs can be compiled

(Consult the Real-Time

DOS-M FORTRAN function assignments for logical unit numbers are different

from regular FORTRAN. (See Section V.)

When preparing input data for the batch device, the user never puts a

colon (:) in column one of a record because the colon in first position

signifies a directive. OOS-M aborts the job if a directive occurs during

data input.

4-5

PROGRAMMING

DATA STATEMENT

A new statement, the DATA statement, has been added to DOS-M

FORTRAN. DATA sets initial values for variables and array

elements. The format of the DATA statement is:

where k is a list of variables and array elements separated by

commas,

d is a list of constants or signed constants, separated

by commas and optionally preceded by j* (j is an integer

constant).

The elements of d. are serially assigned to the elements of k ..
1.. 1..

The form j* means that the constant is assigned j times. The

k. and d. must correspond one-to-one.
1.. 1..

Elements of k. may not be from COMMON.
1..

Arrays must be defined (i.e., DIMENSION) before the DATA state­

ments in which they appear. DATA statements may occur anywhere

in a program following the specification statements.

Example,

DIMENSION A(3), I(2)
DATA A(l),A(2),A(3)/l.0,2.0,3.0/I(l),I(2)/2*1/

4-6

PROGRAMMING

EXTERN AIL STATEMENT

With the new statement, EXTE~~AL, subroutines and functions

can be passed as parameters in a subroutine or function call.

For example, the routine XYZ can be passed to a subroutine

if XYZ is previously declared EXTERNAL. Each program may de­

clare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

EXTERNAL v_l,v
2

, ••• ,v
5

Where v
1

is the entry point of a function, subroutine

or library program.

EXAMPLE

FUNCTION RMX(X,Y,A,B)
RMX=(A)*Y(B)
END
EXTERNAL XYZ, FL 1
Z=Q-RMX(XYZ,FLl ,3.56,4.75)

ERROR E-~~18 means too many EXTERNALS.

Note: If a library routine, such as SIN, is used as an

EXTERNAL, the compiler changes the first letter of

the entry point to "%". Special versions of the

library routines exist with the first character

changed to "%".

4-7

PROGRAMMING

PAUSE & STOP

PAUSE causes the following message to be printed.

PAUSE xxxx

Where xxxx is an octal number.

To restart the program, the operator uses a GO directive.

S'IOP causes the program to terminate after the following

message.

STOP program name xxxx

Where xxxx is an octal number.

OVERLAY SEGMENTS

SE~gmented user programs may be written in FORTRAN, but certain conventions

a:re required. A segment must be defined as type 5 in the PROGRAM statement.

The segment must be initiated using the PROGRAM SEGMENT LOAD EXEC call from

main or segment. A dummy call to main must appear in each segment. In this

way, the proper linkage is established between the main and its segments.

Chaining of segments is unidirectional. Once a segment is loaded, execution

transfers to it. The segment, in turn, may call another segment using an

EXEC call, but a segment written in FORTRAN cannot return to the main program.

All communication between the main program and segments must be through

COMMON. Segments must not contain DATA Statements.

4-8

PROGRAMMING

ERR({> LIBl~ARY ROUTINE

ERR¢, the error print routine referred to under the FORTRAN

control statement prints the following message whenever an

error occurs in a library routine:

nn xx

Where nn is the routine identifier, and

xx is the error type.

The compiler generates calls to ERR¢ automatically. If the

FORTRAN control statement includes an n option, the call will

be to ERRn, a routine which the user must supply.

Check the FORTRAN manual (Chapter 9. 9) for the meaning of error

codes.

REFERENCE ON FORTRAN

For a complete description of the FORTRAN language, read the FORTRAN

programmer's reference manual (021.16-9015). Sections 9.5,9.6, and 9.8

are not pertinent to DOS-M FORTRAN.

4-9

PROGRAMMING

RTE/DOS ALGOL COMPILER

The RTE/DOS ALGOL Compiler consists of a main program and a data segment.

It requires a 16K memory computer and can operate under the control of DOS-M,

DOS, or the RTE System. The compiler resides on the disc and is read into

core when called for in a :FROG directive. RTE/DOS ALGOL is very similar

to the HP ALGOL language described in manual HP 02116-9072. The HP l\LGOL

compiler implements a language much like ALGOL 60, but it is non-recursive

and has I/O capabilities.

Source programs written in DOS-M ALGOL are accepted either from an input

device or from a user file and are translated by the ALGOL Compiler into

relocatable object programs, punched on paper tape, and optionally, stored

in the job binary area of the disc. The object program can be loaded

using the DOS-M RELOCATING LOADER and executed using the RUN or FROG

directive.

Compiler Operation

The ALGOL Compiler is started by a FROG directive. Before entering the

FROG directive place the source program in the input device, or, if the

input is from a source file, specify the file with a JFILE directive. The

FROG directive for the ALGOL Compiler should take the following form:

4-10

Where

PROGRAMMING

PR0~3,ALGOL

p
1

=Input unit (=5 if not specified). Input unit= 2

means source input from disc. The source file has

to be specified prior to this statement (by "JFILE"

control statement).

p
2

List unit (=6 if not specified).

p
3

Punch unit (=4 if not specified).

p
4

Number of lines on a page (=56 if not specified).

p
5

Load-and-go parameter. To specify load-and-go,

set p
5
=99. The value of 99 is reserved for the

load-and-go parameter. Its appearance in any

position (p
1

through p
5

) will be interpreted as

p
5
=99, and it also signals the end of the para­

meter list.

MESSAGES TO OPERATOR DURING COMPILATION

Whe:n the end of a source tape is Emcountered, the following will be out­

puted on the system teleprinter:

I/0 ERR ET EQT #n

The compiler will wait until the following messages are entered on the

system teleprinter:

: UP ,n

:GO

4-11

PROGRAMMING

At the end of the compilation, the following message is output to the

system teleprinter:

$END, ALGOL

If the job binary area (where binary code is stored because of a "99" para­

meter in the PROG directive) overflows, the following message is output by

the system teleprinter and compilation continues:

JBIN OVF

The compilation will be completed, but there will be no further loading

of binary code into the job binary area.

The compiler terminates if •..

ll

ll

No JFILE is declared, although logical unit 2

had been specified as pl of the PROG directive.

The following message is output:

NO SOURCE

The first statement of the source file specified

by the PROG directive p
1

parameter does not begin

with the word HPAL. Or the control statement

contains an error. The following message is

output:

HPAL??

ll A colon occurs in the first position of a source

statement line. The following message is output:

IE nnnnn

where nnnnn is the memory location of the input request.

4-12

PROGRAMMING

ALGOL Control Statement

The word HPAL is mandatory. Any combination of the following symbols may

appear next, separated by conunas:

L: produce source program listing

A: produce object code listing

B: produce object tape

P: a procedure only is to be compiled

If no symbols are specified, the program will run but will not produce any

output other than diagnostic messages and job binary (if requested). A pro­

gram name in quotes (the NAM-record name which must be a legitimate identi-

fier without blanks) must follow the symbols.

(It should not equal any file name.)

(It should not equal any file name.)

Sense switch control is not used with DOS-M. Two parameters may be specified

following the NAM-record name.

EXAMPLE

p
1

is a decimal digit between ~ and 9 specifying the name of

the error routine to be called if an error occurs in ALOG,

SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI, TAN. The name of

the error routine is ERRn, where n = p
1

or n = ~ if p
1

is not

specified. ERR~ is supplied in the Relocatable Library, all

other error routines must be supplied by the user.

p
2

is a decimal digit specifying the type of the program: 3 for

a main program, 5 for a segment, and 6 or 7 for a utility

subroutine or procedure. If p
2

is not specified, the type is

set to 3 for main programs and to 7 for procedures (P option

in the control statement).

Hp AL ' L ' B ' II TE s T II ' 1 ' 3

4-13

PROGRAMMING

ALGOL Segmentation

ALGOL programs can be segmented if certain conventions are followed. A

segment must be defined as type 5 in the HPAL statement. The segment must

be initiated by using the PROGRAM SEGMENT LOAD EXEC call from the main or

another segment.

In order to establish the proper linkage between a main program and its seg­

ments, each segment must declare the main a code procedure. For example, if

MAIN is the main program, the following must be declared in each segment.

PROCEDURE MAIN; CODE:

Cha.ining of segments is undirectional. Once a segment is loaded, execution

transfers to it. The segment, in turn, may call another segment using an

EXEC call, but a segment written in ALGOL cannot return to the main program.

ALGOL 1/0

The HP ALGOL I/O statements should specify the proper logical unit numbers

for the DOS-M configuration. (See Section V.)

ALGOL Error Messages

See the manual HP ALGOL (HP 02116-9072) for the meanings of HP ALGOL com­

pilation time and run time error messages.

4-14

PROGRAMMING

DOS-M ASSEMBLER

The DOS-M Assembler, a segmented program that executes in the user program

area of core, operates under contri:>l of DOS-M. The Assembler consists of

a main program (ASMB) and six segments (ASMBD, ASMBl, ASMB2, ASMB3, ASMB4,

ASMBS), and resides on the disc.

DOS-M Assembly Languaqe, a machine·-oriented programming language, is very

similar to the HP Extended Assembly Language. Source programs, accepted

from either an input device or a user source file on the disc, are trans­

lated into absolute or relocatable object programs; absolute code is punched

in binary records, suitable for ex1:!cution only outside of OOS-M. ASMB can

store relocatable code in the load·-and-go area of the disc for on-line

execution, as well as punch it on paper tape. The DOS-M Relocating Loader

accepts assembly language relocatru~le object programs from paper tape, the

load-and-go area, and user files.

A source program passes through the input device only once, unless there is

insufficient disc storage space. In the latter case, two passes are re­

quired.

Assembler Operation

The DOS-M Assembler is started by a PROG directive. However, be fore enter­

ing the PROG directive, the operator must place the source program in the

input device. If the source program is on the disc, the operator must first

specify the file with a JFILE directive, and set parameter p
1

= logical

unit 2 in the PROG directive.

4-15

Where

PROGRAMMING

PROG,ASMB

pl = logical unit of input device (5 is standard; 2 is

used for source file input indicated by a JFILE

directive)

P2 = logical unit of list device (6 is standard)

P3 logical unit of punch device (4 is standard)

P4 = lines/page on listing (56 is standard)

99 job binary parameter. If present, the object pro­

gram is stored in the job binary area for later

loading. "Any requested punching still occurs. The

99, which may follow any parameter in the list,

terminates the list.

MESSAGES DURING ASSEMBLY

The messages described in this section are printed at the teleprinter console

or in the program listing.

When an end-of-tape occurs on device #n, this message appears on the system

teleprinter:

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up and restarts the

assembler by means of a GO directive:

:UP,n
: GO

4-16

PROGRAMMING

Thus, more than one source tape can be assembled into one program. The next

tape is loaded each time the input device goes down. The program should be

placed in the input device before entering the GO.

The following message on the system teleprinter signifies the end of

assembly:

$END ASMB

If another pass of the source program is required, the message is printed

on the system teleprinter at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and type:

:GO

If an error is found in the Assembler control statement, the following mes­

sage is printed on the system teleprinter:

$END ASMB CS

The current assembly stops.

If an end-of-file condition on source input occurs before an END statement

is found, the teleprinter signals:

$END ASMB XEND

The current assembly stops.

If source input for logical unit 2 (disc) is requested, but no file has

been declared (see JFILE, Section II), the system teleprinter signals:

$END ASMB NPRG

If the job binary area, where bina1y code is stored by a 99 parameter, over­

flows, assembly continues but the following message is printed on the system

teleprinter:

JBIN OVF

However, no binary code is stored in the job binary area.

4-17

PROGRAMMING

The next message is associated with each error diagnostic printed in the

program listing during pass 1.

nnn

nnn is the "tape" number on which the error (reported on the next line of

e1e listing) occurred. A program may consist of more than one tape. The

tape counter starts with one and increments by one whenever an end-of-tape

condition occurs (paper tape) or a blank card is encountered. When the

counter increments, the numbering of source statements starts over a.t one.

Each error diagnostic printed in the program listing during pass 2 of the

assembly is associated with a different message:

PG PPP

PPP is the page number (in the listing) of the previous error diagnostic.

PG ~~~ is associated with the first error fotmd in the program.

These messages (#nnn and PG ppp) occur on a separate line, just above each

error diagnostic in the listing.

DOS-M Assembly Language

The 008-M Assembly Language is equivalent to extended assembly language, as

defined in the ASSEMBLER programmer's reference manual (02116-9014). A few

language changes are required to rtm under 008-M; programs must request

certain ftmctions, such as I/O, from the executive. These requests are

made using the EXEC calls described in Section III.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular assembly language;

and although only relocatable code can be run tmder DOS-M, the DOS-M Assembler

is able to assemble absolute code if it is specified. Absolute code is never

4-18

PROGRAMMING

stored in the job binary area. To get absolute code, the control statement

must include an "A". The "R", however, is not required for relocatable code.

An "X" causes the assembler to generate non-extended arithmetic unit code.

Examples

ASMB,L,B List and Punch Relocatable Binary

ASMB,R,L,B,X List and Punch Relocatable, non-EAU Binary.

ASMB, T ,L List and Print Symbol Table.

ASMB,A,B,L List and Punch Absolute Binary.

ORB STATEMENT

008-M Assembly Language does not contain the ORB statement, since information

cannot be loaded into the protected base page area by user programs. How­

ever, programs can read information from base page using absolute address

operands up to 1777
8

.

INPUT /OUTPUT

DOS-M has different function assignments for the logical unit numbers.

(See Section V.)

When preparing input for the batch device, the programmer must remember to

never put a colon (:) in column on1~ of a source statement. DOS-M aborts

the current program if a directive (signified by : in column one) occurs

during data input.

If present, the memory protect opt.ion protects the resident supervisor from

alteration and interrupts the execution of a user program under these con­

ditions:

a Any operation that would modify the protected area or jump into it.

Il Any I/O instruction, excE:!pt those referencing the switch register
or overflow ..

a Any halt instruction.

Memory protect gives control to DOS-M when an interrupt occurs, and DOS-M

checks whether it was an EXEC call. If not, the user program is aborted.

4-19

PROGRAMMING

NAM STATEMENT

The NAM psuedo-instruction allows up to eight optional parameters.

(The last seven parameters are used only by programs to be executed

under the Real-Time Executive System.) Only the first parameter is

significant in OOS-M. If the first parameter equals 3, the pro9ram

is a main program; if 5, a program segment; if 6, a library routine;

if 7, a subroutine. If the parameter equals another number, the~

assembler and DSGEN will accept it, but the Relocating Loader will

not. (See Section VI for DSGEN program type codes.)

NAM name [,type]

where name is the name of the program (it should not equal any file

name), and

type is the type code.

In addition to the name defined by NAM, each program has one or

more entry points defined by an ENT statement with the exception

of the main program. The transfer address on the END statement

is sufficient for the main program (type 3). Name is used in

programrner-to-DOS-M communication, while the entry points are

program-to-program communication.

Segmented Programs

User programs may be structured into a main program and several segments, as

shown in Figure 4-1. The main program begins at the start of the us,er pro­

gram area. The area for the segments starts immediately following the last

location of the main program. The segments reside on the disc, and are read

into core by an EXEC call, when needed. Only one segment may be in core at

a time. When a segment is read into core, it overlays the segment previously

in core.

The main program must be type 3, and the segments must be type 5. When using

DSGEN to configure the system or loading programs with LOADR, the main pro­

gram must be entered prior to its segments. One external reference from each

segment to the main routine is required for DSGEN to link the segments and

main programs. Also, each segmented program should use unique external ref­

erence symbols. Otherwise, DSGEN or LOADR may link segments and main pro­

grams incorrectly.

4-20

User
Program
Area

MAIN PROGRAM

SEGMENT 1

PROGRAMMING

-~

------------------- LOW

MAIN PROGRAM

r-------------, ..

SEGMENT
OVERLAY

AHEA

CORE MEMORY

DISC MEMORY

.. HIGH

MAIN PROGRAM

NOTE: TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED.

Figure 4-1. Segmented Programs

4-21

PROGRAMMING

Figure 4-2 shows how an executing program may call in any of its segments

from the disc using the PROGRAM SEGMENT LOAD EXEC request (1-2). DO.S-M

locates the segment on the disc (3-4), loads it into core (5) and begins

executing it. The segment may call in another of the main program's segments

using the same EXEC request (6).

SEGMENT 1

DISC

LOW

~--+--2

5

HIGH

DOS
SUPERVISOR

NAM MAIN
EXT EXEC
ENTM

•
•

JSB EXEC

NAM SEG1
EXT EXEC. M

• • •
JSB EXEC

CORE

I
MAIN PROGRAM

l
i

SEGMENTS

l

Figure 4-2. Main Calling Segment

4-22

1
USER

PROGRAM
AREA

PROGRAMMING

Figure 4-3 shows how DOS-M processes the request from the segment (7) by

loca.ting the segment on the disc (B-9), loading it into core (10), and

beginning execution of it.

LOW

8

SEGMENT 2 DOS

' SUPERVISOR

9

""' CJ _, w
_, Cl)

<{ :2:
NAM MAIN I 1

~o
a: EXT EXEC LL

7 El\IT M

• MAIN PROGRAM

• l USER
PROGRAM

AREA

NAM SEG2 i
DISC

EXT EXEC, M
• SEGMENTS

• l •
CORE

Figure 4-3. Segment Calling Segment

When a main program and segment are currently residing in core, they

operate as one single program. Jumps from a segment to a main program (or

vice versa) can be programmed by declaring an external symbol and referen-

cing it via a JMP instruction. (See Figure 4-4.) A matching entry symbol

must be defined as the destination in the other program. DSGEN associates

4-23

PROGRAMMING

the main programs and segments, replacing the symbolic linkage with actual

absolute addresses {i.e., a jump into a segment is executed as a jump to a

specific address). The programmer should be sure that the correct segment

is in core before any JMP instructions are executed.

Reference on Assembly Language

Consult the ASSEMBLER programmer's reference manual (02116-9014) for a full

description of assembly language. Sections 5.5 and 5.6 of that text do not

apply to DOS-M.

-...-,,....

LO w

EXT S1

ENT M1

,..._ M1 JMP S1

MAIN PROGRAM
I- - ----- -- - --1

EXT M1

ENT S1

~ JMP M1

S1- - - --- ----
HIG H

(Segments)

.. _...,
CORE MEMORY

Figure 4-4. Main-to-Segment Jumps

4-24

PROGRAMMING

DOS-M RELOCATING LOADER

The DOS-M Relocating Loader accepts relocatable object programs which have

been translated by the DOS-M Assembler, RTE/DOS ALGOL Compiler or DOS-M

FORTRAN Compiler. It generates an executable core image of each such pro­

gram on the disc. The relocatable programs may enter the loader as

a Job binary area programs translated during the current job,

a User files,

Il Punched tapes, or

Il Subroutines from the disc-resident Relocatable Library.

Each main program is relocated to the start of the user area and linked to

its external references, such as library routines. Segments will overlay

the area following the main program and its subroutines. Programs may run

under control of the DEBUG library routine. The main program, plus its

subroutines and its longest segment, can be as large as the user area. With

a RIB~ or PROG directive, the program is called by name from the disc and

executed, or the program is stored as a permanent user file to be run

during a later job. The loader may be executed only once during each job,

so all load-and-go assemblies or compilations must be done prior to calling

the loader.

4-25

PROGRAMMING

?tarting the Loader

The DOS-M Relocating Loader is initiated by a PROG directive from the batch

or keyboard device.

PROG,LOADR

Format

P
1

determines the relocatable object program input combination:

pl ~ for loading from jbin and relocatable library.

2 for loading from jbin, user files, and relocatable
library.

= n for loading from jbin, user files, relocatable
library and paper tape (logical unit n).

P
2

= list device logical unit.

P
3

~ for no DEBUG, t ~ for DEBUG.

P
4

~ for list of program load map, t ~ for none.

P
5

~ for list of entry point addresses, t ~ for none.

Comments

Selecting the DEBUG option causes DEBUG to be appended to each main program

and segment. The loader sets the primary entry point of each to DEBUG,

rather than the user routine. When the program is run, DEBUG takes control

of the program's execution and seeks instructions from the keyboard.

4-26

PROGRAMMING

RELOCATABLE FILES

A list of relocatable file names follows the PROG directive (unless P
1

equals ,0). In batch mode, the list starts on the next record and stops

at 11 /E 11
• In keyboard mode, the loaLder prints

ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message

repeats until a /E is entered. In batch mode the list of files follows

the PROG directive on the batch input device.

file-name 1, file-name 2, .. ,/E

The file list is a series of records containing file names separated by

commas, ending with a 11 /E. 11 All programs in each file are loaded unless

a particular subset of the file is specified:

file-name (prog 1, prog 2 ..•)

Only the programs specified within the parenthesis are loaded from the

file-name. The file list is simply a 11 /E 11 if no files are to be loaded.

(The search for these files is made only on the current user disc; the loader

is unaffected by :SS.)

Operating the Loader

SCANNING THE PROGRAMS

The loader scans the relocatable binary programs and maintains two tables-­

one of program names, and another of entry points and externals. Since

mains are matched with segments during the scan, each main program must

occur before the associated segments. Programs from tape are stored on

the work tracks as they are read in.

If the job binary area contains any programs, it is scanned first. User

files given in the file list (if any) are scanned for entries and externals.

4-27

PROGRAMMING

If paper tape input is requested, the following messages are printed,

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device: and

types

:GO

When an end-of-tape condition occurs, three messages are printed on the

system teleprinter:

I/0 ERR ET EQT# nn

LOAD TAPE
LOADR SUSP
@

The operator places the next tape in the input device, enters :UP,!!_, and :GO

to read the next tape. Enter :GO,l to indicate that all tapes have been

read in.

Matching Entries with Externals

After matching all possible entry points and external references in the user

programs, the loader scans the Relocatable Library (disc-resident) looking

for entry points to match the undefined external references. If undefined

external references still exist,

UNDEFINED EXTS

i.s printed and the external references are listed, one per line.

4-28

PROGRAMMING

To load additional programs from paper tape, the operator types:

: GO ,0 [,n]

where n is the logical unit number of the input device, if different from

Pl of the PROG,LOADR directive.

To continue without fulfilling external references, the operator types:

: GO, 1

To specify a file name from the keyboard, the following directive is typed:

:G0,2

RELOCATION

The main and segment names become u.ser file names once the programs are

loaded. To ensure unique file names, the loader compares all program and

segment names against the names of previous system and user files (current

user disc only). If duplicate names occur, an error message is printed

and loading stops.

The loader converts each main program into an absolute core image, stores

it on the disc, places the name in the user directory where it remains

during the current job, and lists the program address map and entry points,

if requested. After each main program, any associated segments are loaded

in the same way. When the loader is completely finished, the following

message is printed:

LOADR COMPLETED

During the current job, the absolute core images appear in the user file

area (see LIST directive, Section II) and can be executed by name (see RUN

and PROG directives). At the end of the job, however, they disappear from

the file area, unless they are made permanent files by means of the STORE

directive.

4-29

PROGRAMMING

If no programs are entered, the loader prints the following messages and

terminates:

NO PROGRAMS LOADED.
LOADR COMPLETED

DEBUG Library Subroutine

RTE/OOS DEBUG, a subroutine of the Relocatable Library, allows prograrruners

to check for logical errors during execution. If the P
3

parameter of the

PROG, LOADR directive equals 1, the loader combines DEBUG with the user

program being loaded. The primary entry point (the location where e:Kecution

begins) is set to DEBUG. Therefore, when the program is executed with a

RUN directive, DEBUG takes control and prints the message:

BEGIN 'DEBUG' OPERATION

The programmer now enters any legal debug operation. DEBUG ignores illegal

n~quests and prints a message:

ENTRY ERROR

4-30

DEBUG OPERATIONS

B,A

0 ,A , N l [, N
2

]

0 ,B ,N1 [,N)

M,A

R,A

S,Al,Dl

S ,A
1

,D
1

,Dn

W,A,D
1

W,B,D
2

W,E,D3

W,0,D4

X,A

A

PROGRAMMING

Instruction breakpoint at address A. (NOTE: if

A= JSB EXEC, a memory protect violation occurs.)

ASCII dump of core address N
1

or from N
1

to N
2

.

Binary dump of core address N
1

or from N
1

to N
2

.

Sets absolute base of relocatable program unit.

Execute user program starting at A. Execute starting

at next location in user program (used after a break­

point or to initiate the program at the transfer point

in the user pro9ram) .

Set D
1

in location A
1

•

Set D
1

to Dn in successive memory locations beginning

at location A
1

•

Set A-Register to Dl.

Set B-Register to D2.

Set E-Register (~=Off I non-zero=on) .

Set Overflow (~::off I non-zero=on) .

Clear breakpoint at address A.

Abort Debug operation.

4-31

PROGRAMMING

Loader Example

In the following example, DOS-M is in keyboard mode.

:PROG,LOADR,5,6,0,0,0
ENTER FILE NAME(S)OR/E
/E

LOAD TAPE
LOADR SUSP
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO
I/O ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO, 1

Paper tape input is specified.

No files are specified.

Place paper tape in input device.

Return to loader.

End of tape.

Put in next tape.

Declare input device ready.

Repeat tape loading process 4 times.

No more paper tapes.

4-32

RELOCATING LOADER

NAME/ENTRY

QAl
*QAl
QAlA

*QAlA
QAlB

*QAlB
QAlC

*QAlC
QAlD

*QAlD
FRMTR
*.010.
*.BIO.
*.IOI.
*. IOR.
*. IAR.
*. RAR.
*.OTA.

.ENTR
*.ENTR
. FLUN
*. FLUN
.PACK
*.PACK

FLOAT
*FLOAT

!FIX
*!FIX

LOADR COMPLETE

ADDR

12000
12076
12200
12201
12262
12263
12336
12337
12364
12365
12431
14612
14665
14507
14462
14546
14522
14710
15162
15162
15230
15230
15243
15243
15350
15350
15355
1535,5

PROGRAMMING

Main program, starting address.

Main program, entry point.

Subroutine starting addresses and entry

points. Asterisk signifies entry point.

End of Loading.

4-33

PROGRAMMING

Loader Error Messages

During its operation the loader may print one of the following error mes­

sages on the keyboard:

Message

L01

L(a2

L03

L04

L05

L06

L07

L08

L09

Ll0

Ll 1

L12

L13

L14

L15

Ll6

Error Messages

Checksum error on tape

Illegal record

Memory overflow

Base page overflow

Symbol table overflow

Duplicate main or segment name (may be

caused by attempting to run the loader

twice in one job)

Duplicate entry point

No main or segment transfer address

Record out of sequence

Insufficient directory or work area space

Program name table overflow

User file specified cannot be found

Program name duplication

Non-zero base page length

Segment occurred before main

Program overlay (illegal ORG)

The loader aborts (programmer must start over) on each of these conditions,

and prints a message.

LOADR TERMINATED

4-34

PROGRAMMING

THE RELOCATABLE LIBRARIES

There are two libraries, or collections of relocatable subroutines that can

be used by DOS-M: the RTE/DOS Relocatable Library (EAU or Non-EAU versions)

and the RTE/DOS FORTRAN IV Library. These libraries contain mathematical

routines such as SIN and COS, and utility routines such as BINRY, etc. A

program signifies its need for a subroutine by means of an "external refer­

ence." External references are generated by EXT statements in assembly

language, by CALL statements and the compiler in FORTRAN, and by CODE pro­

cedures and the compiler in ALGOL.

When the system is generated, several combinations of libraries are possible.

Every system must contain an RTE/DOS Relocatable Library: either an EAU

version or a non-EAU version, depending on the computer hardware. This

library does not contain a forma tt•=r, but the FORTRAN IV Library contains

a formatter that handles extended precision numbers. If extended precision

arithmetic is not needed, a separate RTE/DOS Basic FORTRAN Formatter is

available to take the place of the FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in

the Relocatable Subroutines manual (02116-9032).

4-35

SEC:TION V
INPUT/OUTPUT

In the Moving-Head Disc Operating System, centralized control and logical

referencing of I/O operations effect simple, device-independent programming.

Each I/O device is interfaced to the computer through one or more I/O

channels which are linked by hardware to corresponding core locations for

interrupt processing. By means of several user-defined I/O tables,

multiple-device drivers, and program EXEC calls, DOS-M relieves the pro­

grammer of most I/O problems.

SOFTWARE I/O STRUCTUR~

An Equipment Table records each device's I/O channels, driver entry points,

DMA requirements, and location on disc if disc-resident. A Device Reference

Table (logical unit table) assigns an equipment table number to each of its

entries, thus allowing the progranuner to reference changeable logical units

instead of fixed physical units.

An Interrupt Table relates each channel to an entry in the Equipment Table.

A driver is responsible for initiating and continuing operations on all

devices of an equivalent type.

The programmer requests I/O by means of an EXEC call in which he specifies

only the logical unit, control information, buffer location, buffer length,

and type of operation.

5-1

INPUT /OUTPUT

The Equipment Table

The Equipment Table (EQT) has an entry for each device recognized by DOS-M

(these entries are established by the user when DOS-Mis generated). The

EQT entries reside in the permanent core-resident part of the system and

have this format:

WORD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D T R

Av

CONTENTS

Driver "Initiation" Section Address

Driver "Continuation" Section Address

l Unit #T Channel #

Equipment Type Code Status

(saved for system use)

(saved for system use)

Request Return Address

Request Code

Current I/O Request Control Word

Request Buff er Address

Request Buffer Length

Temporary or Disc Track #

Temporary or Starting Sector #

Temporary Storage for Driver

Upper Memory Address of Main Driver Area

Upper Memory Address of Driver Linkage Area

Starting Track # Starting Sector #

BITS 15 T 14 u T 12 I n I 1,0 I 91 8 7 I 61 5 I 4 I 3 I 2 l i I

D

R

Unit#

Channel #

1 if OMA channel required.

1 if driver type is core-resident.

May be used for sub-channel addressing.

I/O select code for device (lower number if multiboard

interface.)

5-2

}~

}

¢ 's if

core­

resident

Av

INPIUT /OUTPUT

~ - Unit not busy and available

1 - Unit disabled (down)

2 - Unit busy

3 - Unit waiting for an available OMA channel

Status - Actual or simulated unit status at end of operation.

Equipment Type Code - Identifies type of device and associated software

driver. Assigned equipment type codes in octal are:

l~

12

15

22

31

Paper Tape D(svices

Teleprinter

Punched Tape Reader

High Speed Punch

Teletype (System)

Unit Record Devices

Reserved for Plotter

Line Printer

Mark Sense Card Reader

Magnetic Tape/Mass Storage and other devices capable
of both input and output

3030 Magnetic Tape

Moving-Head Disc

For equipment type codes ,01 throuc;rh 17, odd numbers indicate input devices

and even numbers indicate output devices (except ~5, which is both input and

output).

When DOS-M initiates or continues an I/O operation, it places the address

of the EQT entry for the device into the base page conununication area

(see Appendix A) before calling the driver routine.

5-3

INPUT/OUTPUT

Logical Unit Numbers

Logical unit numbers from 1 1~ to 63 1~ provide logical addressing of the physi­

cal devices defined in the EQT. These numbers are maintained in the Device

Reference Table (DRT or logical unit table), which is created by the System

Generator (DSGEN) and can be modified by the LU directive.

Each one-word entry in the DRT contains the EQT entry number of the device

assigned to the logical unit. DOS-M has the following function assiqnments

for logical unit numbers.

Logical Unit

1

2

3
Restored

4
after
each 5
:JOB.

6

7

8

9

l~

631~

Number Function

System Teleprinter

User Mass Storage

System Mass Storage

Standard Punch Device

Standard Input Device

Standard List Device

Can be assigned to any

device by user

The user determines the number of logical uni ts when the system is gemerated.

At the beginning of each JOB, logical units 1 through 9 are restored to the

values set by DSGEN (System Generator), whereas 1,0 through 63 are restored

only on a start-up from the disc.

Executing programs use logical unit numbers-to specify the type of device

for I/O transfers. In an I/O EXEC call, the program simply specifies a

logical unit number and does not need to know which actual device or which

I/O channel handles the transfer.

5-4

INPUT/OUTPUT

The Interrupt Table

The interrupt table contains an entry, established at system generation

time, for each I/O channel in the computer which can cause an interrupt.

The entry contains the address of the EQT entry for the device on the channel.

The interrupt locations in core contain a jump subroutine to $CIC which is

the central interrupt control routine which examines the interrupt table to

decide what action to take. On a power failure interrupt, DOS-M halts. How­

ever, the user can write his own routine to handle power failure interrupts.

~t/Output Drivers

The I/O driver routines, either core-or disc-resident, handle the actual

transfer of information between the computer and external devices. When a

transfer is initiated, DOS-M places the EQT entry addresses into the base

page communication area and jumps to the driver entry point. The driver

configures itself for the particular channel (in this way the same driver

can handle several devices of the same type on many channels), initiates the

transfer and returns to OOS-M. When an interrupt occurs on the channel, in­

dicating continuation or completion of the transfer, DOS-M again transfers

control to the driver. DOS-M contains only two drivers: the Moving-Head

Disc Driver (DVR31) and the System Teleprinter Driver (DVR~S). However,

these drivers of the Disc Operating System (DOS, fixed-head disc/drum) are

fully compatible with DOS-M:

DVR~~ Teleprinter

DVRyH Photo-reader

DVR~2 High speed punch

DVRl,0 Plotter

DVR12 Line Printer

DVR15 Mark Sense Card Reader

DVR22 3030 Magnetic Tape

5-5

INPUT/OUTPUT

The driver name consists of the letters "DVR" added to the equipment type

code. In addition, the progranuner can write drivers for special devices,

following the guidelines in this section. The driver is only responsible

for updating the status field in the EQT entry; DOS-M handles the availability

field.

~stern I/0

DOS-M itself initiates many I/O transfers. It reads in directives from

the batch or keyboard device and transfers modules in from the disc. These

functions are accomplished by $SYIO, a routine within the DOS-M Supervisor,

which calls the appropriate driver routine.

User Program I/0

The user program initiates an I/O transfer by means of an EXEC call--a

"JSB EXEC" as described in Section III. The supervisor recognizes the EXEC

call as an I/O request and sends it along to the I/O supervisor EXEC MODULE

($EX18) which determines if the driver for the requested device is core­

resident. If not, the driver is read into core from the disc.

$EX18 places the address of the EQT entry in the base page communication

area (see Appendix A, TABLES) and transfers control to the driver. 'rhe

driver configures itself to I/O operation on the appropriate channel, initiates

the transfer and returns to $EX18. DOS-M either returns to the executing

user program or waits until the I/O transfer is complete as requested by

the program.

5-6

INPUT/OUTPUT

Interrupt Processing

When an interrupt occurs on the computer, control is transferred to the

instruction in the interrupt location corresponding to the device. Each

interrupt location (memory locations 6 through 37) contains a "JSB $CIC"
8 8

instruction. $CIC, the central interrupt control routine of DOS-M, then

performs the following:

a. Disables interrupt sysb:!m

b. Saves registers, point of program suspension

c. Clears interrupt flag

d. Determines the type of interrupt

1) If power fail, halts

2) If memory protect, goes to EXEC (goes directly to EXEC

if no memory protect)

3) If time base, goes to CLOCK routine (if installed)

4) If not a legal I/O channel, returns to suspension point

5) If legal I/O channel, puts EQT entry addresses in base

page communication address and transfers to driver con­

tinuation address

e. Upon return from the I/O driver, turns on interrupt system, re­

stores registers, and returns to the point of suspension.

PLANNING I/0 DRIVERS

Before attempting to program an I/O driver, the programmer should be

thoroughly familiar with Hewlett-Packard computer hardware I/O organization,

interface kits, computer I/O instructions and Direct Memory Access (DMA).

An I/O driver, operating under control of the Input/Output Control ($EX18)

and Central Interrupt Control ($CIC) modules of DOS-M, is responsible for

all data transfer between an I/O device and the computer. The device

equipment table (EQT) entry contains the parameters of the transfer, and

the base page communication area contains the number of the allocated OMA

channel, if required.

5-7

INPUT/OUTPUT

An I/O driver includes two relocatable, closed subroutines, -- the Initiation

Section and the Completion Section. If nn is the octal equipment type code

of the device, I.nn and C.nn are the entry point names of the two sections

and DVRnn is the driver name.

Initiation Section

The I/O control module ($EX18) calls the initiation section directly when

an I/O transfer is initiated. Locations EQTl through EQT17 of the base page

communication area contain the addresses of the appropriate EQT ent~y. CHAN

in base page contains the number of the DMA channel assigned to the device,

if needed. This section is entered by a jump subroutine to the ent~y point,

I.nn. On entry, the A-register contains the select code (channel number)

of the device (bits~ through 5 of EQT entry word 3). The driver returns

to $EX18 by an indirect jump through I.nn.

Before transferring to I.nn, DOS-M places the request parameters from the

user program's EXEC call into words 7 through 13 of the EQT entry. Word 9,

CONWD, is modified to contain the request code in bits ~ through 5 in place

of the logical unit. See the EQT entry diagram and Section III, READ/WRITE

EXEC CALL, for details of the parameters.

Once initiated, the driver can use words 10 through 14 of the EQT entry in

any way, but words, 1, 2, 3, 5, 6, 7, 8, 9, 15, 16 and 17 must not bie altered.

The driver updates the status field in word 4, if appropriate, but the rest

of word 4 must not be altered.

5-8

INPUT /OUTPUT

FUNCTIONS OF THE INITIATION SECTION

The initiation section of the driver operates with the interrupt system

disabled. The initiation section is responsible for those functions (as

flow-charted in Figure 5-1):

1. Rejects the request and proceeds to step 5 if:

a the device is inoperable, or

a the request code,, or other of the parameters' is illegal.

2. Configures all I/O instructions in the driver to include the

select code of the device (or DAM channel).

to DVR~5 and DVR31.)

3. Initializes DMA, if appropriate.

(Does not apply

4. Initializes software flags and activates the device. All vari­

able information pertirnmt to the transmission must be saved in

the EQT entry because the driver may be called for another

device before the first operation is complete.

5. Returns to $EX18 with the A-register set to indicate initiation

or rejection and the cause of the reject:

If A ~' then the operation was initiated.

If A:/~' then the operation was rejected with A set as:

1 - read or write illegal for device,

2 - control request illegal or undefined,

3 - equipment malfunction or not ready,

4 - immediate completion (for control requests).

5-9

Return
to

P+1

INPUT/OUTPUT

(A)= 1 or
....,_ __ 2 reject ~~

codes

(A)= 3,

~i~~ct

I.nn

Configure 1/0
Instructions

for Device

Initialize
Operating,
Conditions,
Flags, etc.

Set buffer
address, length,
mode, etc. for

transfer

(A)-Register
= 40RQJ

Return to
P+1

Figure 5-1. I/O Driver Initiation Section

5-10

INPUT/OUTPUT

Completion Section

DOS-M calls the completion section of the driver whenever an interrupt is

recognized on a device associated with the driver. Before calling the

driver, $CIC sets the EQT entry addresses in base page, sets the interrupt

source code (select code} in the A--register, and clears the I/O interface

or DMA flag. The interrupt system is disabled. The calling sequence for

the completion section is:

Location

(P}

(P+l}

(P+2}

Action

Set A-reqister equal to interrupt source code

JSB C.nn

Completion return from C.nn

Continuation return from C.nn

The point of return from C.nn to $CIC indicates whether the transfer is con­

tinuing or has been completed (in which case, end-of-operation status is

returned also} .

The completion section of the driver is responsible for the functions

below (as flow-charted in Figure 5·-2} :

1. The driver configures all I/O instructions in the Completion

Section to reference the interrupting device, and then proceeds

to s.tep 2.

2. If both DMA and device completion interrupts are expected

and the device interrupt is significant, the DMA interrupt

is ignored by returning to $CIC in a continuation return.

3. Performs the input or output of the next data item if the

device is driven under program control. If the transfer is

not completed, the driver proceeds to step 6.

5-11

INPUT /OUTPUT

4. If the driver detects a transmission error, it can re-initiate

the transfer and attempt a retransmission. A counter for the

number of retry attempts can be kept in the Equipment ~rable.

The return to $CIC must be (P+2) as in step 6.

5. At the end of a successful transfer or after completinig the

retry procedure, the following information must be set before

returning to $CIC at (P+l) :

a. Set the actual or simulated device status into

bits ¢ through 7 of EQT word 4.

b. Set the number of transmitted words or characters

(depending on which the user requested) to the

B-register.

c. Set the A-register to indicate successful or

unsuccessful completion.

¢ successful completion,

1 device malfunction or not ready,

2 end-of-tape (information) ,

3 transmission parity error.

6. Clears the device and DMA control on end-of-operation, or

sets the device and DMA for the next transfer or retry.

Returns to $CIC at:

(P+l) - completion, with the A- and B-registers set as in

step 5.

(P+2) - continuation; the registers are not significant.

5-12

RETURN
TO -<

P+2

RETURN
TO

P+2

INPUT /OUTPUT

[C. nn

E Configure
lnstructlons

for Device

~
Update
>totus in

EQT(4)

b
B)=#
words or

c:naracters
ronsferred

E
A)=
ompletion

Code

[

Clear
Dev ice
Control

L
~ETURN

TO
P+1

Transfer next
---..~Doto item·, RETURN - ~ TO

update Indexes, P +
2 flags, etc.

Figure 5-2. I/O Driver Completion Section

5-13

SECTION VI

INSTA~LLATION

Two programs are used in the insta1lation of DOS-M: DSGEN (the DOS-M

Generator) and the DOS-M Bootstrap.. DSGEN is used to format new user discs

and cartridges and to generate a protected system disc. The Bootstrap

is used to load DOS-M into core and initiate system operation.

To install DOS-M, follow these st~ls:

1. Generate a system disc out of the relocatable modules of

DOS-M on any active subchannel. (See "Generating DOS-M.")

2. Configure and dump several copies of the Bootstrap.

(See "Configuring DOS-M Bootstrap.")

3. Format all user discs and cartridges.

(See "Formatting User Discs.")

4. Initiate operation of DOS-M using Bootstrap.

(See "How to Initiate DOS-M.")

6-1

INSTALLATION

CONVENTIONS USED IN THIS SECTION

Information printed on the teleprinter by the computer appears in the text

as

OUTPUT EXAMPLE

Information typed on the teleprinter by the user appears in the text as

INPUT EXAMPLE

Items within input or output that appear as

VARIABLE

are variable items and stand for a class of possible entries.

The contents of the registers on the 2114 and 2116 computers (i.e., switch

registers, memory data registers, etc.) appear as a series of 16 binary

digits (bits) organized into octal digits:

0/000/000/000/000/000

t
Bit 15

t
Bit 0

0 means the bit is off or down (equal to binary 0).

I means the bit is on or up (equal to binary 1).

/000 represents a octal digit (e.g., /010 = 2
8

).

For example, 1/000/010/000/111/l'e 102077 8.

6-2

INSTALLATION

GENERATING DOS-M

DSGEN generates a OOS-M to fit a particular user's core memory size, I/O

equipment, and programming needs.

To accomplish this, DSGEN requests certain information from the user. OOS-M

then accepts the relocatable progra.m modules to be included in the system,

determines where they belong in core or on the disc, relocates them into

absolute format, and stores them on the disc. DSGEN also creates I/O tables

by identifying each I/0 device and its associated driver routine, and es­

tablishing procedures for interrupt processing on each channel.

DSGEN is an absolute program, loaded into core by the Basic Binary Loader

(BBL). Since DSGEN is independent of the OOS-M which it generates, the

I/O operations of DSGEN require special programs called SIO Drivers.

Using other standard Hewlett-Packard software, the user can create a mag­

netic tape file of the relocatable program modules to speed up the program

loading phase of system generation. (See PREPARE TAPE SYSTEM, 02116-91751.)

DSGEN operates on the same minimum configuration as that required for a DOS-M.

Operating Procedures

The operation of DSGEN involves four phases:

a INITIALIZATION PHASE. DSGEN requests specifications for the

DOS-M, including description of available disc space, memory,

time base generator channel, system generation code, computer

identification, system and user disc subchannel, and program

input devices.

Il PROGRAM INPUT PHASE. DSGEN reads in the relocatable programs

provided with the system and created by the user.

6-3

INSTALLATION

Il PARAMETER INPUT PHASE. Parameters to change EXEC modules or

drivers from disc to core-resident may be entered. The programs'

NAM records are already set for a minimtun core system except that

DVR.0.0 should be changed to disc-resident. DISCM, DVR31 (moving­

head disc driver) and DVR.05 (teleprinter driver) must be core­

resident.

Il DISC LOADING PHASE. DSGEN requests a specification of the: base

page linkage, and begins loading programs onto the disc. Systems

programs (i.e., the modules of DOS-M) are loaded first, after

which DSGEN requests information for the equipment table, device

reference table (logical unit table), and interrupt table and

proceeds to load the rest of the programs onto the disc.

execute DSGEN and configure DOS-M, follow these steps:

Il Turn on all equipment, set the system teleprinter to LINE, and

turn on the disc protect override switch (located in the lower

right-hand corner of the controller behind the front panel). For

the disc drive, press POWER; place a cartridge in the slot; press

DISC UNLOCK; wait for the READY light to come on.

a Load a configured DSGEN (see "configuring DSGEN") through the

tape reader using the Basic Binary Reader (see "Basic Binary

Loader").

a Set the switch register to 1.0.08 , (O/OOO/OOO/OOl/000/000
8

) press

LOAD ADDRESS, then press PRESET and RUN. DSGEN begins the~

initialization phase.

6-4

INSllALLATION

INITIALIZATION PHASE

During the initialization phase, Dr>GEN requests information necessary to

begin generating the DOS-M. After each question is printed, the operator

responds by giving the required information terminated by a return linefeed.

The following responses are typical. (The operator responses are only ex­

amples; actual responses should be appropriate to the particular system being

generated.)

1. DSGEN requests a decimal system generation

code. This code is written in the label

field of the system disc for identification ..•.•.•. SYS GEN CODE?

Operator responds ..••••...•.•..........•..•. 79

2. DSGEN requests the octal channe~l number

(select code) of the disc controller ..•...••.••.••• SYS DISC CHNL?

Operator responds•....••••.•••..••.•••• 1 ¢

3. DSGEN requests the number of se~ctors per physical

track on the disc. This is half the number of

sectors per logical or software~ track •..••.....•... # SECTORS/TRACK?

Operator responds (usually 12) •..•.•....•.•. 72

4. DSGEN requests the number of tracks (decimal) on

the system disc .•....•.......•....•.•...•.•...•.... SYS DISC SIZE?

Operator responds with et decimal number

less than or equal to 200. (A response

of 200 leaves three tracks as spares. A

response less than 200 leaves extra

tracks as spares.)•...•..•.•......•. 2¢¢

5. DSGEN requests the number of drives on the

system. Each drive contains two discs ..••.•.•••.•. # DRIVES?

Operator responds with a. number

between 1 and 4 inclusive•...•.........• 3

6-5

INSTALLATION

6. DSGEN requests the decimal number of the first

track on the system disc which is available

to oos-M •••••••.•.•••••••.••••••.•••••••••••••••••• FIRST SYSTEM TRACK?

Operator responds .•..•..•...•.••.••..•.••••• ~

7. DSGEN requests the decimal number of the first

sector available to DOS-M ••...••..•.•...••••.•••..• FIRST SYSTEM SECTOR?

Operator responds. (The system area

cannot begin before track 0, sector 3)· •.•••• 3

8. DSGEN requests the subchannel number of the

system disc .•••.•••••...••••••••.•.•..•••.•..••••.• SYS DISC SUBCHNL?

Operator responds with a number

between 0 and 7 ..•.••..••..•.•.••..•••••.••. ¢

9. DSGEN requests the subchannel number of the user

disc. (This may be the same as the system

disc.) ...••......•...•.......•.•..•....•.•.••.••.•• USER DISC SUBCHNL?

Operator responds with a number between

0 and 7. (System efficiency increases if

the user disc is on a different drive from

the system disc.)•...••.• 2

10. DSGEN requests the I/O channel (select code) of

the Time Base Generator•..•..••..•...•.••.•••. TIME BASE GEN CHNL?

Operator responds with an octal number

or~ if the time base is not present •.•..... ¢

11. DSGEN asks whether the computer is a 2114 or not ..• IS 2114?

Operator responds with YES or NO •••••••••••• YES

6-6

INSTALLATION

12. DSGEN requests the last word of available

core memory in octal. LWA MEM?

Operator responds 17 6 77

13. DSGEN asks whether :SS directives are to be

allowed in the system ALLOW :ss?

Operator responds eithE~r YES or NO •.......• YES

14. DSGEN requests the type of input unit for

relocatable program modules ••...•..•...••........ PRGM INPT?

Operator responds with PT (for paper tape),

TY (for teleprinter), or MT (for magnetic

tape; see PTS manual, 02116-91751) .•.••.••. PT

15. DSGEN requests the type of input unit for

relocatable library programs LIBR INPT?

Operator responds with PT, TY, or MT .••••.• MT

16. DSGEN requests the type of input unit for para-

meters, describing the relocatable programs .••.•.. PRAM INPT?

Operator responds with PT or TY ..••....••.• TY

When DSGEN finishes the initialization phase, the computer halts.

6-7

INSTALLATION

PROGRAM INPUT PHASE

During the program input phase, DSGEN accepts relocatable programs from the

Program Input Unit and Library Input Unit specified during the initialization

phase. The operator selects the input device by setting switch register bits

~-1 (~~2 for the Program Input Unit, or 1~2 for the Library Input Unit), and

places the programs in the input device. Main programs must enter prior to

their segments. DISCM must be the first module loaded.

The suggested order of tape input is:

DOS-M CORE-RESIDENT SYSTEM (DISCM)

DOS-M DISC-RESIDENT EXEC MODULES ($EX~l THRU $EX2~)

DOS-M I/O DRIVERS (DVR~S, DVR~l, .•. ETC)

DOS-M JOB PROCESSOR/FILE MANAGER (JOBPR)

DOS-M RELOCATING LOADER (LOADR)

DOS-M ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENT!, •.•.)

DOS-M FORTRAN (MAIN CONTROL, PASS 1, ...)

RTE/DOS ALGOL

RTE/DOS FORTRAN IV LIBRARY OR RTE/DOS BASIC FORMATTER

RTE/DOS RELOCATABLE PROGRAM LIBRARY (EAU OR NON-EAU)

Any relocatable user programs to be made a permanent part of DOS-M.

NOTE: If the FORTRAN IV Library is to be included in an BK
system, certain rules must be followed:

1. The system must be generated without
any compilers or an assembler.

2. A magnetic tape SIO driver cannot be used with DSGEN.

J. The compilers and assembler must be loaded into
the system during operation (using the Loader).

The operator presses RUN. When entering paper tape, the message "*EOT" is

printed whenever an end-of-tape occurs. The computer halts.

6-8

INSTALLATION

At this point, the operator has several options: additional programs can

be input from the same device by repeating the steps above; input can be

switched to the other input device (by setting the switch register bits

To terminate the program input phase, the user must set switch register

bits to ~12 , and press RUN. If there are no undefined externals, this

message is printed on the system teleprinter:

NO UNDEF EXTS

If there are undefined externals, the following message is printed:

UNDEF EXTS

The externals are listed one per line and the computer halts. External

references are satisfied by loading more programs. The user must set

switch register bits to ~~2 (for Program Input Unit) or 1~2 for the

Library Input Unit) and press RUN. If the externals are to be left

unsatisfied, set the switch register bits to ~12 and press RUN.

6-9

INSTALLATION

PARAMETER INPUT PHASE

During the parameter input phase, the operator can change some modules from

disc to core-resident. (If an I/O driver is changed from disc-resident-­

type 4-- to core-resident--type ~--the associ.ated EQT entry must include

the R parameter.) Since DVR,0.0 is a DOS driver, it is distributed as a core­

resident driver; it should be changed to disc-resident if DVR.05 is included

in DOS-M. Any unnecessary I/O drivers must be eliminated at this time.

Each parameter record is of this general form:

name,type

where name is the name of the program

type is the program type code;

.0 - System core-resident

1 - System disc-resident EXEC modules

3 - User disc-resident main

4 - Disc-resident I/O driver

5 - User segment

6, 7 - Library

>7 - Program deleted from the system

EXEC modules and drivers that are often used may be changed from disc to

core-resident. The functions of the EXEC modules are:

Module Name

$EX~H

$EX,02

$EX,03

$EX,04

$EX,05

$EX,06

$EX,07

$EX,08

$EX,09

$EX1,0

Fune ti on

Disc Work Tracks Status

Disc Work Track Limits

Program Completion

Program Suspension

Program Segment Load

User File Name Search

Current Time Processor

Real-Time Disc Allocation. (See Appendix D.)

Execution Time :EQ Processor

Load and Execute Program

6-10

Module Name

$EXll

$EX12

$EX13

$EX14

$EX15

$EX16

$EX17

$EX18

$EX19

$EX2~

INSTALLATION

Function

System File Name Search

System Startup

Error Message Processor

Execution Time, :UP, :DN, :LU Processor

Abort and Post Mortem Dump

:GO Parameter Processor

:UD Processor

I/O Initiation Processor

: IN Proci=ssor

Disc Parity Error Processor

When EXEC modules are made core-resident, certain associated subroutines

must also be changed to be core-resident. Several EXEC modules use $ADDR:

$EX~l

$EX~2

$EX~6

$EX~7

$EX~8

The following EXEC modules use $LBL:

$EX17

$EX19

The following EXEC modules use $SRCH:

$EX~5

$EX~6

$EXll

6-ll

These EXEC modules use ASCII:

$EX~4

$EX~9

$EX13

$EX14

$EX15

$EX2~

INSTALLATION

To end the parameter input phase and continue on to the disc loading phase,

the operator enters "/E" instead of a parameter record.

6-12

INSTALLATION

DISC LOADING PHASE

DSGEN asks two questions before entering DISC LOADING PHASE.

1. DSGEN requests the estimated number of system

linkages required in base page•••••••...•.. # SYSTEM LINKS?

Operator responds with a decimal number.

(The more modules that are core-resident

the more links are needed, 1.0.0 should be

the minimum response.) •....•••.••...•••..... 1 ¢ ¢

2. DSGEN requests the estimated number of user

linkages required in base page ..•.••.•.....•....... # USER LINKS?

Operator responds with a decimal number.

(Since the loader requires approximately

32~ linkages, 32~ should be the minimum

number entered.) .•..•••.....•..•.•.......... 32¢

NOTE: If the system requires more linkages than you have assigned,
it takes them away from the user link area. If the total of
the two responses overflows base page (>677

10
;, the questions

are repeated.

Figure 6-1 shows the relative location of the various core areas. Loading

of the absolute, resident supervisor begins after the establishment of the

user and system linkage areas. As each program is loaded, DSGEN prints a

memory map giving the starting locations and, if switch register bit 15 is

up, the en try po in ts for all main programs and subroutines. (Subroutines

are indented two spaces, and entry point addresses are preceded by an

asterisk.)

6-13

INSTALLATION

LOW
Interrupt Locations

408
System Base Page Area

User Base Page Area

DI SCM - the core resident

Core Resident Drivers and EXEC Modules

Disc Resident EXEC
Module Overlay Area

(Optional)

!
Disc Resident 1/0 Drivers
Overlay Area (Optional)

Memory Proteict Boundary

User Common Area (Optional)

Disc Resident User

Program Area

(Mains & Segments)

Basic Binary Loader
HIGH

Figure 6-1. Core Allocations in DOS-M

6-14

INSTALLATION

Input/Output Tables

Next, DSGEN generates the three I/O tables: equipment table, device

reference table (logical unit tabl«:~), and the interrupt table.

3. DSGEN requests the equipment table entries EQUIPMENT TABLE E

Operator responds with a. series of one

line EQT entries, which are assigned

EQT numbers sequentially from one as

they are entered. The EQT entry re­

lates the EQT number to an I/O channel

and driver, in this forrnat••..•• n7,VVRnn [,V

where n7 is the I/O channel (lower number if multi-board),

VVRnn is the driver name (nn is the equipment type code).

V, if present, means DMA channel required,

Here

R, if present, means driver :Ls core-resident (must be ty·

U, is the physical subchanne1 number.

Operator terminates the equipment

table entries by typing /E

is a sample Equipment Table:

* EQUIPMENT TABLE ENTRY

1 ¢, VVR31 , V, R (EQT entry #1 disc)

12, VVR22, V (EQT entry #2 = magnetic tape)

14,VVR¢5,R (EQT Em try #3 = special teleprinter)

15,VVR¢1 (EQT entry #4 photoreader)

16, VVR¢2 (EQT Em try #5 tape punch)

17,VVR12 (EQT Em try #6 line printer)

IE (End of table)

6-15

INSTALLATION

4. DSGEN requests the logical unit assignments for

Here

the device reference table•....•••........ •. DEVICE REFERENCE TABLE?

For each logical unit number, DSGEN prints••..• n=EQT#?

is a

Operator responds with an EQT entry number (m)

appropriate to the standard definition of n.

Numbers above 6 may be assigned any EQT entry

desired•.....•.......•...•..•..•... m

Operator terminates entry by typing •.....•.• /E

sample Device Reference Table:

* DEVICE REFERENCE TABLE

1 = EQT #? (System teleprinter on channel 14,

3
2 = EQT #? (User disc on channel 10, EQT #1)

1
3 = EQT #? (System disc on channel 10, EQT #1)

1
4 = EQT #? (Standard punch unit on channel 16,

5

EQT #3

EQT #5)

5 = EQT #? (Standard input unit on channel 15, EQT #4)

4
6 = EQT #? (Standard list unit on channel 17, EQT #6)

6
7 = EQT #? (Standard unit definable by user)

2
8 = EQT #? (End of table)

IE

NOTE: The number of responses given here determines
the number of logical units allowed in the
system. To allow unassigned logical units for
the user, respond with a ¢ to as many questions
as units are desired.

6-16

INSTA.LLATION

5. DSGEN requests the interrupt table entries ••••••..• INTERRUPT TABLE

Operator responds with a.n entry for each I/O

location which may interrupt, in ascending

order, and in this forma.t •••••••.••••••••••• n 7, n2

where n1 is the octal channel number (high number for 2 board

interfaces) between 1~8 and 37
8

inclusive (must be

entered in ascending order) , and

n2 is a decimal EQT entry n1.1It1ber.

Operator terminates entry by typing ••••••••• /E

Here is a sample Interrupt Table:

* INTERRUPT TABLE

11, 1 (Channel 11 linked to EQT #1)

7 3, 2 (Channel 13 linked to EQT #2)

14,3 (Chann€'1 14 linked to EQT #3)

15, 4 (Channel 15 linked to EQT #4)

16,5 (Channel 16 linked to EQT #5)

17,6 (Channe·l 17 linked to EQT #6)

IE (End o[table)

NOTE: The EQT numbers need not ap:pear in numerical order. This
order is determined. by referring back to the Equipment
Table. The octal channel numbers, however, must be in
ascending sequence.

Following the completion of the I/O tables, DSGEN loads the disc-resident

executive modules (if any), and the disc-resident I/O drivers (if any).

6. DSGEN reports· the last adc;lress •Of the

supervisor ••• LWA SYS XXXXX

6-17

INSTALLATION

7. DSGEN requests the first word address of the

user program area •.••.••••.••.•...•••••••.•..••..•• FWA USER?

Operator responds with an octal address

greater than XXXXX. In an BK computer,

this response must be less than or equal

(This option is provided so

that user programs can start on a page

boundary, if desired) ..••...••.••.•......•. . n.n.n.n.n.

DSGEN proceeds to load all user main programs

and segments onto the disc with memory map

listings as described for system programs.

8. When system generation is complete, DSGEN prints .•• *SYSTEM STORED ON DISC

DSGEN then reports the last track used in bits 15 through 8 of the

A-register, and the last sector used in bits 7 through ~ of the

A-register.

The disc protect override switch should be turned off.

Restart

During any of the phases, DSGEN can restart that phase if any error occurs.

'Ihe operator sets the switch register equal to 1~~8 , and presses LOl\D

ADDRESS and RUN.

6-18

INSTALLATION

HOW TO INITIATE DOS-M

1.

2.

3.

4.

Load a configured Bootstrap with BBL. (See "BOOTSTRAPPING OOS-M. II)

Set the SWITCH REGISTER equal to 1~~8 (0/000/000/001/000/000 = 1~~8).

Press LOAD ADDRESS.

Set switches 2 through O equal to the octal subchannel of the system

disc. (If this subchannel is not the same as the subchannel that was

specified when the system was generated, the new subchannel overrides

the old.)

5. Press PRESET.

6. Press RUN.

DOS-M then prints the following message until the operator types a valid

DATE directive (see Section II) :

INPUT :DATE,XXXXXXXXXX (No time base generator)

or

INPUT :DATE,XXXXXXXXXX,H,M (Time base present)

Following the DATE directive, the only valid directives are TRACKS, BATCH, TYPE

and JOB. All others are ignored until a JOB directive is given.

6-19

INSTALLATION

FORMATTING USER DISCS

The DOS-M DSGEN is used to format a new user disc or cartridge. Thi:s must

be done anytime a new disc is added or an old system disc is reused .as a

user disc. (This special process need not be done for the system disc be­

cause DSGEN will format it during system generation.)

The formatting process involves assigning a system generation code, reading

every sector, clearing any existing user directory, clears any protected or

disabled sectors, etc. The result is an unlabeled user disc ready for use

in DOS-M.

Qperating Procedures: FORMATTING

l. Turn on all equipment; for the disc drive, press POWER; place a

cartridge in the slot; press LOAD; wait for the READY light to

come on.

2. Turn on the Disc Protect Override Switch. (This switch is located

in the lower right hand corner of the controller.)

3. Load a configured DSGEN (see "DSGEN Configuration") through the

tape reader using the Basic Binary Loader (see "Basic Binary Loader").

4. Set the SWITCH REGISTER equal to 1~~8 (0/000/000/001/000/000 = 1~~8)

and press LOAD ADDRESS.

5. Set SWITCH REGISTER bit 15 on or up (1/000/000/000/000/000).

6. Press PRESET.

7. Press RUN.

8. DSGEN asks for a decimal number to be written

on the disc label. This number is used for

identification •....•.•••.•..•.•.....•....•..•..•.. SYS GEN CODE?

Operator responds with a decimal number 79

6-20

INSTALLATION

9. DSGEN requests the octal select code of

the disc controller SYS DISC CHANNEL?

Operator responds with an octal number .•... 7¢

10. DSGEN asks the number of sectors per hard­

ware track on the disc (this :Ls half the

number of sectors on a software track) ..•.•..•.•.. # SECTORS/TRACK

Operator responds with a decimal number ••.. 72

11. DSGEN requests the subchannel number

(0 to 7) of the user disc to be

formatted .••..•..••••.....••..••.••.••....••....•. USER DISC SUBCHANNEL?

Operator responds with a number

between 0 and 7 inclusive .•••••••..•••••.•• 3

12. DSGEN requests that the disc protect override

switch be turned on (if it is not already)

............................ TURN ON DISC PROTECT OVERRIDE - PRESS RUN

Operator turns on this switch

and presses RUN.

13. DSGEN carries out formatting on the specified subchannel and halts

with 102007
8

in the Memory Data Register

(1/000/000/000/000/11~ = 1020078) .

Operator can press RUN to format a

new disc (switch 15 must still be

up). DSGEN repeats from USER DISC SUBCHANNEL?

Operator can set switch 15 down or off and

press RUN to proceed to system generation.

This procedure should be followed for each proposed user disc.

6-21

INSTALLATION

CONFIGURING DSGEN

In order to use DSGEN, a version of DSGEN that is configured for a

particular input/output arrangement must reside in core memory. This

can be done in three ways:

le Load DSGEN with BBL.

Load and configure drivers with BBL.

Ready

2. Load a configured DSGEN tape with BBL.

Ready

To produce a configured DSGEN:

Load DSGEN.

Load and configure drivers.

Load and RUN the SIO System Dump.

A configured tape is punched.

3. Load DSGEN.

Load a configured driver tape.

Ready.

To produce a configured driver tape:

Load and configure drivers.

Load and RUN the SIO System Dump.

A configured tape is punched .

.QEerating Procedures: Configuring DSGEN

1. Turn on all equipment.

2. Load DSGEN with the BBL, if desired.

3. Load and configure the SIO Teleprinter Driver.

4. Load and configure the SIO Tape Reader Driver

Tape Driver, if desired. (See next page.)

6-22

(See next page.)

and the SIO Magnetic

INSTALLATION

5. Load SIO System Dump if a permanent copy is desired:

a. Load SIO System Dump with BBL.

b. Set the SWITCH REGISTER to 2
8

(0/000/000/000/000/010 2
8

).

c. Press LOAD ADDRESS.

d. Set SWITCH REGISTER bit 15 to 1 (on) for a tape containing

both DSGEN and the drivers or to 0 (off) for a tape containing

only the drivers.

e. Turn on the punch unit.

f. Press RUN.

g. The computer halts with the MEMORY DATA REGISTER set

to 102077
8

when completE~d. Press RUN for another copy.

Loading SIO Drivers

1. Load the SIO Driver tape with BBL.

2. Set the SWITCH REGISTER to 2
8

•

3. Press LOAD ADDRESS.

4. Set the I/O address (higher priority select code, lower number) of

the device whose driver is being configured into SWITCH REGISTER bits

5 through O. (For the teleprinter driver only, set switch 15 to 0 (off)

for a model 2752 or 1 (on) for a 2754. Bits 14 through 6 should be

set to 0 (off)).

5. Press PRESET.

6. Press RUN.

6-23

INSTALLATION

C01ff I GURI NG DOS-M BOOTSTRAP

Once DOS-M has been generated onto a disc, it can be initiated using

DOS-M Bootstrap.

The DOS-M Bootstrap must be configured before being used.

Follow these steps:

1. Load the SIO Tape Punch Driver or the SIO

Teleprinter Driver with BBL.

a. Set the SWITCH REGISTER equal to 2
8

(0/000/000/000/000/010 = 28).

b. Press LOAD ADDRESS.

c. Set switches 5 through 0 equal to the octal select

code for the punch or teleprinter.

d. Press RUN.

2. Load Bootstrap with BBL.

a. Set the SWITCH REGISTER equal to 2
8

co;ooo;ooo;ooo;ooo;oeo = 2
8
).

b. Press LOAD ADDRESS.

c. Set switches 5 through 0 equal to the octal select

code of the disc controller. (Low number, high priority)

d. Set switch 15 up (on) to punch a configured Bootstrap.

3. Press RUN. After Bootstrap punches the tape, it halts.

Press RUN for another copy.

If the computer halts with the MEMORY DATA REGISTER equal to 102011
8

(1/000/010/000/00t/OOI = 102011
8

) , a disc error has occurred. The

disc status is in the A-register.

6-24

INSTALLATION

BASIC BINARY LOADER

To load a paper tape:

1. Turn on all equipment.

2. Place the tape in the reader.

3. For the 2114, press LOAD.

For the 2116, set the SWITCH REGISTER equal to the starting

address of BBL (017700 for BK, 037700 for 16K, 077700 for 32K)

and press LOAD ADDRESS; set the 2116 LOADER switch to ENABLED,

press PRESET and RUN.

4. The BBL should read the pap=r tape and halt with 102077

(1/000/010/000/IH/HI = 10:2077
8

) in the T-register. For the

2116, set the LOADER switch to PROTECTED.

5. If the computer halts with 102011 (1/000/0tO/OOO/OOe/OOI = 102011)

in the T-register, a checksum error has occurred. If the com­

puter halts with 102055 (1/000/000/000/101/tOI = 102055
8

) in the

T-register, an illegal addr1=ss has been read. Check for a tear

in the paper tape and clean any dust out of the photoreader with

an air brush. Then reposition the tape and reread the record.

If this does not work, restart at step 1.

6-25

INSTALLATION

ERROR MESSAGES

The following messages may be printed on the teleprinter during execution of

DSGEN:

Message Meaning

Messages During Initialization and Input Phase

ERR,01

ERR,02

ERR.03

ERR,04

ERR.05

name

ERR,06

ERR,07

ERR,08

name

Invalid response to initial­

ization request.

Checksum error on program

input.

Record out of sequence.

Illegal record type.

Duplicate entry point.

Invalid base page length

(must be zero).

Program name or entry point

table overflow of available

memory.

Duplicate program name.

6-26

Action

Request is repeated. Enter

valid reply.

Computer halts; reposition

tape to beginning of record

and press RUN to reread.

Sarne as ERR,02.

Sarne as ERR,02.

Revise program by reloading

the entry points (the current

entry point replaces the pre­

vious entry point).

Base page area is ignored,

but memory protect error will

occur if program is executed.

Irrecoverable error. Revise

or delete programs.

The current program replaces

the previous program.

INSTALLATION

Message Meaning

Messages During the Parameter Phase

ERRl)I

General Messages

ERR13

ERR15

ERR16

ERR17

ERR18

ERR19

ERR2)1

Parameter name error (no

such program) .

Parameter type error.

User segment precedes

user main program.

More than 63 subprograms

called by a main program.

Base page linkage over­

flow.

Current disc address ex­

ceeds number of available

tracks.

Memory overflow (absolute

code exceeds LWA memory).

Program overlay (current

word of absolute code has

identical location to

previous).

Binary DBL record overflow

of internal table.

6-27

Action

Enter valid parameter

statement.

Same as ERR~9.

Irrecoverable.

Revise main program (sub­

sequent calls to subprograms

are ignored) .

Diagnostic printed for each

word required. Revise orde.r

and composition of program

loading to reduce linkage

requirements.

Irrecoverable error.

Diagnostic printed for each

word required (absolute code

is generated beyond LWA).

Revise program.

Current word is ignored

(the address is printed).

Records overlay previous DBL

records (diagnostic printed

for each overflow record).

Revise program.

Message

ERR21

ERR22

ERR23

INSTALLATION

Meaning

Module containing entry

point $CIC not loaded.

Read parity/decode disc

error. A-register bits

8-14 show track number;

bits ~-7 show sector

number.

EQT not entered for

disc-resident I/O module.

Messages During I/0 Table Entry

ERR24

ERR25

ERR26

ERR27

ERR28

ERR29

ERR31

ERR35

ERR36

Invalid channel number.

Invalid driver name or no

driver entry points.

Invalid or duplicate D,R,U

operands.

Invalid logical unit no.

Invalid channel number.

Channel number decreasing.

Invalid EQT number.

Base page interrupt loca­

tions overflow into link­

age area.

Invalid number of charac­

ters in final operand.

6-28

Action

Irrecoverable error.

After ten attempts to read or

write the disc SE~ctor, the com­

puter halts. To try ten more

times, press RUN

Restart at 4!0!0!0
8

..

Enter valid EQT statement

Same as ERR24.

Same as ERR24.

Enter valid DRT statement.

Enter valid INT statement.

Same as ERR28.

Same as ERR28.

Restart Disc Loading Phase.

Same as ERR28.

APPENDIX A

TJ~BLES

Appendix A contains several useful tables and figures.

DOS-M BASE PAGE CONSTANTS

LOCATION TYPE VALUE
4.0 DEC -64

41 DEC -1.0

42 DEC -9

43 DEC -8

44 DEC -7

45 DEC -6

46 DEC -5

47 DEC -4

5.0 DEC -3

51 DEC -2

52 DEC -1

53 DEC ~

54 DEC 1

55 DEC 2

56 DEC 3

57 DEC 4

6.0 DEC 5

61 DEC 6

62 DEC 7

63 DEC 8

64 DEC 9

65 DEC l~

66 DEC 17

67 DEC 64

7~ OCT 17

71 OCT 37

72 OCT 77

A-1

LOCATION

73

74

75

76

77

TABLES

TYPE

OCT

OCT

OCT

OCT

OCT

VALUE

177

377

1774~~

3777

inn~

DOS-M BASE PAGE SYSTEM COMMUNICATION AREA

LOCATION

l~~

l~l

1~2

1~3

1~4-5

1~6-7

11~

111

112

113

114

115

116

117

12~

121

122

123

124

125

126-4~

141-53

NAME

UMLWA

JBINS

JBINC

TBG

CLOCK

CLEX

CXMX

BATCH

SY STY

DUMPS

SYS DR

SYS BF

SECTR

EQTAB

EQT#

LUTAB

LUT#

JBUF

JFILS

JFILC

RON BF

EXPG

CONTENTS

Last word address of user available memory

Start track/sector of job binary area

Current Track/sector of job binary area

Time base generator I/O channel addn~ss

Current system clock time

Execution clock time

Maximum allowable execution time

Logical unit # of batch input device

Logical unit # of system teletype

Abort/Post Mortem dump flag

System directory track/sector

System buffer track/sector

Number of sectors/disc track

First word address of Equipment Table

Number of Equipment entries

First word address of Logical Unit table

Number of Logical Unit entries

Job input buffer address

Source file starting track/sector

Source file current track/sector

User area file name information

Directory entry for current program

A-2

LOCATION

154

155

156

157

16~

161

162

163

164

165

166-7~

171-73

174

175

176

177

2~f1

2f11

2f12

2fB

2~4

2~5

2f16

223

224

225

226

235

NAME

DISCO

SYS SC

SCCNT

UDNTS

SYNTS

curse
CRFLG

CUI LA

SOLA

CUMID

DBUFR

UBUFR

TS ONE

GUISC

SYSCO

JFLSC

DIS CL

INTAB

INT#

EQTl

EQT2

EQT3

EQT4

EQT17

RQCNT

RQRTN

RQPl

RQP8

TABLES

CONTENTS

Disc I/O channel/last track on disc

System subchannel

Nurrber of subchannels on system

Next user disc track/sector

Next system disc track.sector

Current user disc subchannel

Current disc request flag: ~ for system,
not f1 for user

Current user disc last access

System disc last access

Con@uter identification

System disc triplet parameter buffer

User disc triplet parameter buffer

Last track/sector referenced +l

Default user disc subchannel

System generation code

Source file subchannel

User label track/sector

First word address of interrupt table

Nunber of interrupt entries

EQ'I1l-EQTl 7 are addresses of current
Equipment Table entry

Nunber of request parameters.

Current request return address

RQP8-RQP8 are addresses of current
parameters

A-3

request

LOCATION

236

237

24~

241

242

243

244

245

246-47

25~-51

252

253

254

255

256

257

26~

261

262

263-65

265

266

267

2n
47~

471

472

NAME

NAB RT

XA

XB

XEO

XS USP

EXLOC

EX#

EXMOD

EXMAN

EX BAS

IODMN

IO DBS

UMFWA

UMFWA

UBLWA

CHAN

OPATN

OPFLG

SWAP

JOB PM

JOB PB

TBSYG

RTRK

$BUF

$GOPT

$IDCD

$MDBF

TABLES

CONTENTS

Illegal request code abort/no abort option

A register contents at time of interrupt

B register contents at time of interrupt

E and O register contents at time of
interrupt

Point of suspension at time of interrupt

Address of Exec module doublet table

Number of Exec module doublet table entries

Exec module # currently in Exec module
overlay area

Exec module low and high main core addresses

Exec module low and high base page core
addresses

First word address of I/O driver module
main area

First word address of I/O driver module
base page area

First word address of user main area

First word address of user base page! area

Last word address of user base page area

Current DMA channel number

Operator/keyboard attention flag

Operator communication flag

Job processor resident flag

Job processor disc address/number of words
in main

Job processor base page number of words

Track/sector address of system track table

Real time simulation track number

System input/output buffer

Point of suspension continuation address

Input request code check

Exec module data buffer

A-4

LOCATION

474

5~3

5~4

5~5

5~6

5~7

51~

511

512

513

514

515

516

517

52~

521

522

523

524

525

526

527

53~-31

NAME

TEMP

TEMP~

TEMP!

TEMP2

TEMP3

TEMP4

TEMPS

MSECT

VADR

IO DMD

RCODE

SXA

SXB

SXEO

sxsus
SEQTl

DSC LB

DSCL#

LSTCH

FLFLG

XFLG

SSFLG

CHA RC

TABLES

System temporary

System temporary

System temporary

System temporary

System temporary

System temporary

System temporary

CONTENTS

Negative number of sectors/track

Address of instruction causing memory
protect violation

Current resident I/O driver module flag

Current request code value

Operator attention restore A register value

Operator attention restore B register value

Operator attention restore E and 0 register
value

Operator attention return address

Operator attention restore EQT table address

Disc track/sector of relocatable library

Number of relocatable library routines

Last disc referenced

User file table validity flag

Entry address for disc not ready

System search flag

System temporary

A-5

TABLES

SYSTEM LABEL & BOOTSTRAP

SYSTEM DIRECTORY

SYSTEM FILES

SYSTEM BUFFER

USER LABEL SECTOR

USER DIRECTORY

USER FILES, ___ ---- -----
WORK AREA

1------- ---------
JOB BINARY AREA

Figure A-1. General Disc Layout

[;__ 1st DIRECTORY ENTRY~

Last Word of Last Directory Entry

1st File of SYSTEM AREA

Figure A-2. System Directory Format

A-6

}
SYSTEM AREA

(Hardware Protected)

USER AREA
(Software Protected)

TABLES

USER LABEL SECTOR

lst Directory Entry

•
•
•

Last Word of Last Directory Entry

lst File of USER Area

Figure A-3. User Directory Format

INord l F N

lNord 2 A M

l~ord 3 E p] Entry Type

Word 4 Track Sector
\~ord 5 File Length (in sectors)

iford 6 FWA Program

Word 7 LWA Program

Word 8 FWA Base Page Linka9e Area

Word 9 LWA Base Page Li nka£1e Area

Word l~ Program Entry Point

Word ll FWA of LIB routine section

The lst five characters (in Words l through 3) contain the File

TRACK BOUNDARY

TRACK BOUNDARY

For System Generated
Binary Programs Only

The lower character in Word 3 contains the Type Code and 1 P1 bit, as shown below.

Figure A-4. Directory Entry Format

A-7

'P' Bit

TYPE

~

1

2

3

4

5

6,7

~ No Action

TABLES

FILE

System Resident

Disc Resident Exe cu ti ve Supervisor ModulE~

Reserved for System

User Program, Main

Disc Resident Device Driver

User Program, Segment

Library

Relocatable Binary

ASCII Source Statements

Binary Data

ASCII Data

1 = Purge this entry at the end of the JOB. This bit is set by

the LOADER and cleared by a :STORE,P[,file-name] request

The last directory entry in each sector is followed by a word containing '-1'.

The last entry in the directory is followed by a word containing zero.

A-8

Directory size dependent on number of
programs

One directory entry for each disc resi­
dent module

One di rectory entry for each disc res i -
dent module

One directory entry

One directory entry for each main and
segment

One directory entry

END OF HARDWARE PROTECTED FILE AREA/

TABLES

BOOTSTRAP

SYSTEM AREA DIRECTORY

SYSTEM COMMUNICATION, RESIDENT SYSTEM
LINKAGE, MODULE LINKAGE, and USER
LINKAGE AREA
EQUIPMENT TABLE

DEVICE REFERENCE TABLE

INTERRUPT TABLE

CENTRAL INTERRUPT CONTROLLER

EXECUTIVE SUPERVISOR

I/0 SUPERVISOR

DISC DRIVER

TELEPRINTER DRIVER

EXEC MODULES -- Main and Base Page

I/0 DRIVER MODULES -- Main and Base Page

: JOB PROCESSOR and/FILE MANAGER
--Main and Base Page --
USER SYSTEM PROGRAMS
(Asmb., Ftn., Algol, etc.)
--M~in and _Ra~ P_a_ap_ --

.OJ

RELOCATABLE LIBRARY

A-9

APPENDIX 8
TYPICAL JOB DECKS

ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB,5,6,4,56,99
ASMB,B,L

NAM TEST,3

END ENTER
: STORE , R , AF I LE
:JOB,NEXT JOB

LOAD AND EXECUTE A RELOCATABLE FILE

:JOB,LOADE
:PROG,LOADR,2
AFILE,lE
:STORE,P,TEST
: RUN, TEST
1.0
23

51

:JOB,NEXT JOB

Source Program

Data

B-1

TYPICAL JOB DECKS

STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

: JOB, EVERY
:STORE,S,SOURC,5
FTN,B,L

PROGRAM ZOOM
DIM I (10)

ENDS$

: LIST ,S ,6 ,SOURC
:EDIT,SOURC,5
/I ,2

/E

:JFILE,SOURC
:PROG,FTN,2,6,4.56,99
:PROG,LOADR
: RUN ,ZOOM
123.62

~0001

:RUN,ZOOM
321.5

}

0.56
:JOB,NEXT JOB

Source Program

Edit List

Data for first run

Data for second run

B-2

APPENDIX C

SAMPLE DSGEN LISTINGS

This appendix contains the listings of two sample system generations. The

first is for a minimum system: 2114 computer with 8K memory, and two tele­

printers. The second is for a 2116 computer with 16K memory, card reader,

lineprinter, magnetic tape, etc.

The values shown in these listings are only samples. The user must provide

inputs appropriate to his system.

BK SYSTEM

SYS GEN CODE?
4321

SYS DISC CHNL?
19)

SECTORS/TRACK?
12

SYS DISC SIZE?
29)9)

DRIVES?
1

FIRST SYSTEM TRACK?
9)
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
1

USER DISC SUBCHNL?
1

TIME BASE GEN CHNL?
0

IS 2114?
YES

C-1

SAMPLE DSGEN LISTINGS

LWA MEM?
17677

ALLOW :SS?
YES

PRGM INPT?
PT

LIBR INPT?
PT

PRAM INPT?
TY

*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT
*EOT

NO UNDEF EXTS

ENTER PROG PARAMETERS

/E

#SYSTEM LINKS?
177

USER LINKS?
5~~

C-2

SAMPLE DSGEN LISTINGS

SYSTEM

DIS CM 02000

DVR00 04515

DVR3l 05275

* EQUIPMENT TABLE ENTRY

l0,DVR3l,D,R,
14, DVR00, R
15,DVR00,R
/E

* DEVICE REFERENCE TABLE

1 = EQT #?
2
2 = EQT #?

l
3 = EQT #?

1

4 = EQT #?

3
5 = EQT #?

3
6 = EQT #?

3
7 = EQT #?

0
8 = EQT #?

/E

* INTERRUPT TABLE

11, 1
14,2
15,3
/E

EXEC SUPERVISOR MODULES

$EX01 06150
$ADDR 06231

C-3

SAMPLE DSGEN LISTINGS

$EX02 06150
$ADDR 06220

$EX03 06150

$EX04 06150
ASCII 06471

$EX05 06150
$SRCH 06317

$EX06 06150
$SRCH 06207
$ADDR 06534

$EX07 06150
$ADDR 06327

$EX08 06150
ADDR 06305

$EX09 06150
ASCII 06421

$EX10 06150

$EX11 06150
$SRCH 06336

$EX12 06150

$EX13 06150
ASCII 06507

$EX14 06150
ASCII 06452

$EX15 06150
ASCII 06440

$EX16 06150

$EXl 7 06150
$LBL 06544

$EX18 06150

$EX19 06150
$LBL 06470

c-4

SAMPLE DSGEN LISTINGS

$EX20 06150
ASCII 06453

I/0 DRIVER MODULES

(NONE)

LWA SYS 06663

FWA USER?
7000

USER SYSTEM PROGRAMS

JOBPR 07000

LOADR 07000

ASMB 07000

ASMBD 14113

ASMBl 14113

ASMB2 14113

ASMB3 14113

ASMB4 14113

ASMB5 14113

FTN 07000

FTN0l 10127
SREAD 16241
.OPSY l 6774

FTN02 10127

FTN03 10127

FTN04 10127
%WRIT 14515
FADSB 15213
.OPSY 15356
.FLUN 15413
.PACK 15431
DUMRX 15542
DLDST 15626

*SYSTEM STORED ON DISC

C-5

l 6K SYSTEM

SAMPLE DSGEN LISTINGS

SYS GEN CODE?
1234

SYS DISC CHNL?
10

SECTORS/TRACK?
12

SYS DISC SIZE?
200

DRIVES?
4

FIRST SYSTEM TRACK?
0
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
3

USER DISC SUBCHNL?
0

TIME BASE GEN CHNL?
20

IS 2114?
NO

LWA MEM?
37677

ALLOW :SS?
YES

PRGM INPT?
PT

LIBR INPT?
MT

PRAM INPT?
TY

*EOT
*EOT
*EOT

C-6

SAMPLE DSGEN LISTINGS

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EX01 ,0
$EX02,0
$EX03,0
$EX04,0
$EX05,0
$EX06,0
$EX07 ,0
$EX08,0
$EX09,0
$EX10,0
$EX11 ,0
$EX12,0
$EX13,0
$EX14,0
$EX15,0
$EX16,0
$EX17 ,0
$EX18,0
$EX19,0
$EX20 ,0
$ADDR,0
$LIBL,0
$SRCH,0
ASCII,0
DVR00,4
DVR02,0
DVR12,0
DVR15,0
/E

SYSTEM LINKS?
177

USER LINKS?
500

SYSTEM

DISCM 02000
*$CIC 02000
*$DYTY 04355
*$LDEX 04350
*EXEC 02362
*$DISC 03540
*$ IDLl 0371 7
*$MUCT 04440
*$MOLD 03167
*$RQER 03010

C-7

SAMPLE DSGEN LISTINGS

*$JLOD 04145
*$MOVE 03521
*$TYPE 03632
*$SYIO 04363
*$BFND 04467
*$EFAD 02657
*$ABRT 04211
*$WAIT 03404
*SETEQ 03505
*$XCIC 02013
*$CIC3 02057
*SAVE$ 03771
*$CLER .04241
*$0PER .02361
*ERR01 .03.026
*ERR.03 .03032
*ERR.04 .03034
*ERR.05 .03036
*ERR06 03040
*LUCHK .02726
*$DMA .03354
*$BLOP .03341
*$MBSY 03347
*$LDVR .033.07
*RQEQT .02751
*IO. LU .03567
*DRIVR 03.053
*ERRTN .03.004
*I0.40 .02671
*$GDTK .03274
*MPY17 04462
*DISCX .03264
* .. RRL .04443
*DEF04 02615
*DEF13 04474
*DEF19 .04502
*DEF2.0 045.03

$EX.01 04515
*$EX01 .04515

$EX02 04576
*$EX02 04576

$EX03 .04646
*$EX03 .04646

$EX.04 047.03
*$EX.04 .04703

$EX05 05224
*$EX.05 .05224

C-8

SAMPLE OSGEN LISTINGS

$EX06 ,05373
*$EX06 ,05373

$EX07 05432
*$EX07 ,05432

$EX08 05611
*$EX08 ,05611

$EX09 05746
*$EX09 05746

$EX10 06217
*$EX10 06217

$EX1 l 06363
*$EX11 06363

$EX12 06551
*$EX12 06551

$EX13 06740
*$EX13 06740

$EX14 07277
*$EX14 07277

$EX15 07601
*$EX15 07601

$EX16 10i)73
*$EX16 10073

$EX17 l 0210
*$EX17 10210

$EX18 10604
*$EX18 10604

$EX19 11267
*$EX19 11267

$EX20 11607
*$EX2~ 11607

ASCII 12112
*CNDEC 12112
*CNOCT 12116

$ADDR 12204
*$ADDR 12204

C-9

SAMPLE DSGEN LISTINGS

$SRCH 12221
*$SRCH 12221
*$CMPR 12461

$LBL 12546
*LBLIO 12566
*ISL BL 1 26.02
*LBLMV 1256.0
*CHS UM 12546
*MESSG 12616

DVR.02 12636
*I..02 12636
*C . .02 12.715

DVR.05 13.04.0
*I..05 1 3.04.0
*C . .05 13113

DVR12 133.07
*I.12 133.07
*C.12 13514

DVR15 14.037
*I. 15 14.037
*C.15 14175

DVR31 14741
*I. 31 14741
*C. 31 15.024

* EQUIPMENT TABLE ENTRY

l.0,DVR31,D,R
12,DVR22,D
14,DVR.05,R
l 5, DVR.01
16,DVR.02,R
17, DVRl 2, R
21,DVR15,R,D
22,DVR.0.0
/E

* DEVICE REFERENCE TABLE

1 = EQT #?

3
2 = EQT #?

l
3 = EQT #?

C-10

SAMPLE DSGEN LISTINGS

1
4 = EQT #?

5
5 = EQT #?

7
6 = EQT #?

67 =EQT#?

48 = EQT #?

2
9 = EQT #?

8
10 = EQT #?
0
11 = EQT #?
/E

* INTERRUPT TABLE

11'1
13, 2
14,3
15 ,4
16,5
17' 6
21,7
22,8
/E

EXEC SUPERVISOR MODULES

(NONE)

1/0 DRIVER MODULES

DVR00 15701
*I .~0 15701
*C.00 16031

DVR,01 15701
*I.~l 15701
*C.01 15753

DVR22 15701
*I.22 15701
*C.22 16441

LWA SYS 16535

C-11

SAMPLE DSGEN LISTINGS

FWA USER?
17000

USER SYSTEM PROGRAMS

JOBPR 17000
*JOBPR 17000

LOADR 17000

ASMB 17000
*ASMB 23515
*?ASCN 20677
*?ASMB 17554
*?BNCN 21507
*?BPKU 22325
*?CHOP 17646
*?CHPI 22607
*?DCOD 22615
*?ENDS 22227
*?ERPR 22147
*?MSYS 22666
*?GETC 22653
*?MOVE 20437
*?MSYM 21774
*?RLUN 23374
*?AFLG 23423
*?LSTL 21716
*?LUNI 23431
*?RFLG 23420
*?Z 23441
*?ASMl 20371
*?LABE 20407
*?OKOL 22306
*?ORRP 21602
*?PNLE 23436
*?SETM 22673
*?SUP 22302
*?LPER 22305
*?PERL 22270
*?LOUT 22335
*?LTFL 22274
*?DRFL 23426
*?LTSA 22557
*?LTSB 22560
*?ORGS 22300
*?CNTR 22367
*?TSTR 23427
*?ASII 23445
*?ICSA 22145
*?FLGS 23415
*?BFLG 23416
*?LFLG 23417

C-12

SAMPLE DSGEN LISTINGS

*?TFLG 23421
*?X 23440
*?MESX 17505
*?ASCI 23444
*?LINC 22107
*?LINS 21764
*?LIST 21652
*?LUNP 23433
*?OPLK 17600
*?OPER 22637
*?PKUP 22320
*?PLIT 22405
*?PNCH 20631
*?PRNT 22032
*?RSTA 20105
*?LWA 23437
*?RDSC 23400
*?WEOF 23020
*?WRIF 23101
*?LGFL 23425
*?SEGM 17541
*?SYMK 20506
*?V 22632
*?ARTL 22471
*?LST 22273
*?PLIN 23430
*?PCOM 22111
*?SECT 23414
*?NEAU 17443
*?HA38 22346
*?XRFI 17540

ASMBD 24113
*ASMBD 24435

ASMBl 24113
*ASMBl 24361
*?LIT! 25023
*?CMQ 24553
*?INSR 24721
*?HA3Z 24522
*?ENP 24655
*?EXP 24640

ASMB2 24113
*ASMB2 24344
*?ART 25013
*?BREC 24470
*?LKL I 25527
*?SK.PR 24434
*?SPCR 24437

C-13

SAMPLE DSGEN LISTINGS

ASMB3 24113
*ASMB3 24623

ASMB4 24113
*ASMB4 24361
*?INS? 24534

ASMB5 24113
*ASMB5 24344

FTN 17000
*%WLIC 20042
*%FTN0 17000
*%WPRN 17735
*%ERRR 17701
*%ROIS 17557
*%WDIS 17244
*%SEGN 17224
*%WTRA 17236
*%WSEC 17237
*%RTRA 17347
*%RSEC 17350
*%RBFA 17352
*%LUNO 17203
*%LUNI 17204
*%LUNP 17205
*%NAMA 17226
*%RTYP 17227
*%WLIN 20017
*%WPAG 20043
*%TILT 20074
*%ROSI 20044
*%WDS I 20056
*%WOUT 17334
*%RBFW 17623
*%LABL 17733
*%CONA 17734
*%ENDP 20105
*%WDLU 17241
*%RDLU 17346
*%RFLG 17554
*%WBFW 17341
*%WBFA 17232
*%HEON 20010
*%DUP8 17373
*%NXDV 17402
*%NELM 17352
*%STYP 17433
*%LGO 17202

C-14

SAMPLE DSGEN LISTINGS

FTN01 20127
*%FTN1 23550

SREAD 26241
*%READ 26241
*%JFIL 267'/J7
*%RDSC 26663

.OPSY 26774
*.OPSY 26774

FTN02 20127
*%FTN2 20741

FTN'/J3 20127
*%FTN3 22117

FTN04 20127
*%FTN4 2'/J7'/J2

%WRIT 24515
*%WRIT 24700
*%WRIF 24577
*%WBUF 24777

FADSB 25213
*.FAD 25213
*.FSB 25220

.OPSY 25356
*.OPSY 25356

.FLUN 25413
*.FLUN 25413

.PACK 25431
*.PACK 25431

DUMRX 25542
*$LIBR 25542
*$LIBX 25570

DLDST 25626
*.OLD 25626
~.DST 25636

ALGOL 1700'/J
*HPAL 27517
*%HPST 27733

MPV 31275
*.MPV 31275

%WRIT 3142'/J
*%WRIT 31603
*%WRIF 31502
*%WBUF 31702

SREAD 32116
*%READ 32116
*%JFIL 32564
*%RDSC 32540

.OPSY 32651
*.OPSY 32651

C-15

SAMPLE DSGEN LISTINGS

ALGLl 32706
*ALGLl 33350
*%LNAL 32707
*%ABAL 32706

*SYSTEM STORED ON DISC

C-16

APPENDIX D

RELATION TO OTHER SOFTWARE

The Hewlett-Packard 2116 and 2114 are general-purpose computers; as such,

they can handle other HP software when the Moving-Head Disc Operating System

is inactive. Every computer is shipped with the software and documentation

appropriate to the system configuration.

Prepare Tape System can be used to store the relocatable modules of DOS-M

on a magnetic tape. DSGEN can then read from this magnetic tape to generate

a system.

In an attempt to make OOS-M compatible with the Real-Time Executive, OOS-M

simulates the Real-Time EXEC requests as follows (See REAL-TIME SOFTWARE,

02116-9139) :

READ/WRITE

I/O CONTROL

I/O STATUS

DISC ALLOCATION

DI SC RELEASE

PROGRAM COMPLETION

PROGRAM SUSPENSION

PROGRAM SEGMENT LOAD

PROGRAM SCHEDULE

CURRENT TIME

EXECUTION TIME (TIMER)

Identical for work area of disc and

JC/O devices.

Identical

Status word 2 returns transmission log

instead of Real-Time Equipment Table

word 5.

Simulates request in work area.

No action; tracks cannot be released.

Identical

Identical

Identical

~rreated as segment load.

Word 5 set to ~, other words identical.

Not accepted See N option of RUN request.

NOTE: The RTE System runs on a 2116 only and uses a fixed-head disc or
drum memory with a sector sJze of 64 words.

D-1

APPENDIX E

LINE PRINTER FORMATTING

When a user program makes a READ/WRITE EXEC call to the line printer

(HP 2778A or HP 2778A-Ol), the line printer driver DVR12 interprets the

first character in the line as a carriage control character and prints it

as a space. The control characters have the following meanings:

Character

blank

CJ

1

*
others

Meaning

Single space (print on every line) ,

Double space (print on every other line) ,

Eject page,

Suppress space (overprint next line) ,

Single space.

Each printed line is followed by cm automatic single space unless suppressed

by the asterisk (*). Double spacing requires an additional single space

prior to printing the next line. If the last line of a page is printed and

the following line contains a "l", then a completely blank page occurs.

When a user program makes an I/O CONTROL EXEC call and the function code

equals 11
8

(see Section IV, I/O CONTROL EXEC CALL), then the optional param­

eter word defines a format action to be taken by the line printer. The par­

ameter word has these meanings:

Parameter Word (Dec)

< ~

~ to 55

56 to 63

64

65

Meaning

Page eject,

Space ~ to 55 lines ignoring page boundaries,

Use carriage control channel equal to the

word - 55,

Set a.utomatic page eject mode,

Clear automatic page eject mode.

E-1

LINE PRINTER FORMATTING

*DVR12 checks for certain program names (FTN, ASMB, ALGOL LOADR, JOBPR); for

these programs, it prints the first character of each line and generates a

single space.

If the parameter word equals zero, the automatic single space is to be sup­

pressed on the next print operation only.

CARRIAGE CONTROL CHANNELS

If the parameter word is between 55 and 64, then the printer spaces using

the standard carriage control channels, which have the following meanings:

Channel 1 Single space with automatic page eject.

Channel 2 Skip to next even line with automatic page eject.

Channel 3 Skip to next triple line with automatic page eject.

Channel 4 Skip to next 1/2 page boundary.

Channel 5 Skip to next 1/4 page boundary.

Channel 6 Skip to next 1/6 page boundary.

Channel 7 Skip to bottom of the page.

Channel 8 Skip to top of next page.

AUTOMATIC PAGE EJECT

During non-automatic page eject mode, if the parameter word is equal to 56,

then it is interpreted as equal to 1. Automatic page eject mode applies

only to single space operations.

E-2

APPENDIX F

SUMMARY OF DIRECTIVES
DIRECTIVE

:ABORT

:ADUMP[,FWA[,LWA][,B],L]

:BATCH, logical unit

:COMMENT string

:DATE,day[,hour,min]

:DD

DESCRIPTION

Terminate the current job.

Dump a program if it aborts

Switch from keyboard to batch mode, or

reassign batch device.

Print a message.

Set the date and the time (if time­

base is present).

Dump on entire disc onto a disc on

another subchannel.

:DD,X Dump the system area only to another

disc.

:DD,U[,file[,(name)],file[,(name)] .. .]

:DN,n

: DUMP, log. unit ,file[,s
1

[,s
2

]]

:EDIT,file log.unit],new]

: EJOB

: EQ[,n]

: GO[,Pl 'p 2· •• P 5]

: IN ,label

Dump all or specified files of the

user disc to another disc, optionally

assigning new file names.

Declare an I/O device down.

Dump all or part of a user file to a

peripheral I/O device.

Edit a source statement file stored on

disc, optionally creating a new file.

Terminate the current batch and/or job

normally.

List the equipment table.

Continue processing a suspended

program.

Label or unlabel ("*") the current

user disc.

F-1

SUMMARY OF DIRECTIVES

DIRECTIVE

:JFILE,file

:JOB[,name]

: L. I ST , S , 1 og. uni t , f i 1 e [, m [, n]]

: LI ST , U, log. unit [, f i 1e
1

, •••]

: LI ST, X, log. unit [,file
1

, • ••]

:LU[,n
1

[,n
2
]]

:OFF

:PAUSE

:PDUMP[,FWA[,LWA]][,B][,L]

:PROG,name[,P
1

,P
2
•.. P

5
]

: PURGE[,file
1
,file

2
, •••]

:RUN,name[,time][,N]

: SA, track,sector[,number]

:SO,track,sector[,number]

:SS

:SS,99

DESCRIPTION

Specify a source file on the d:Lsc for

the assembler or compiler.

Initiate a user job.

List all or part of a source statement

file.

List the user directory.

List the system directory.

Assign or list logical units.

Abort the currently executing program

or operation without terminating the

job.

Suspend the current job.

Dump a program after normal completion.

Turn on a system or user program.

Delete user files.

Run a user program

Dump disc In ASCII to standard list

device.

Dump disc in octal to standard list

device.

Set up system search for file names

over all subchannels.

Set up system search for file names

over specified subchannels.

Restrict search for file names to

current user disc {plus system direc­

tory for RUN & FROG).

F-2

DIRECTIVE

:STORE,A,file,sectors

:STORE,B,file,sectors

:STORE,P[,name1, name
2

, •••]

:STORE,R,file [,log.unit]

:STORE,S,file,log.unit

:TRACKS

:TYPE

:UD[,[1abe1][,n]]

:UP,n

SUMMARY OF DIRECTIVES

DESCRIPTION

Reserve space for an ASCII data file.

Reserve space for a binary data file

Store temporary Loader generated pro­

grams as permanent files.

Store a relocatable file from a

peripheral I/O device or from the JBIN

area of disc after an assembly or compi­

lation.

Store a source statement file from a

peripheral I/O device.

Print the disc track status of the

current user disc.

Return to keyboard mode from batch mode.

Change the subchannel assignment for

the user disc, or request label & sub­

channel information for a user disc.

Declare an I/O device up.

F-3

APPENDIX G

SUMMARY C)F EXEC CALLS

Consult Section III for the complete details on each EXEC call.

For each EXEC call, this appendix includes only the parameters (P
1

through

P)of the assembly language callinq sequence.
n

READ/WRITE:

RCODE DEC 1 or 2

CONWD OCT c

BUFFR BSS n

BUFFL DEC n or

DTRAK DEC p

DSECT DEC q

I/0 CONTROL:

RCODE DEC 3

CONWD OCT c

PARAM DEC n

-2n

PROGRAM COMPLETION:

RCODE DEC 6

PROGRAM SUSPEND:

RCODE DEC 7

Transfer input or output.

1 = read or 2 = write

(See Section III for control information.}

(n-word buffer}

(buffer le!ngth, words (+} , characters (-) •)

{disc track; optional)

{disc sector; optional)

Carry out control operations.

(See Section III for control information.}

(Optional parameter required by some CONWDs.)

Signal encl of program.

Suspend calling program.

G-1

PROGRAM SEGMENT LOAD:

RCODE DEC 8

SNAME ASC 3,xxxxx

TIME REQUEST:

RCODE DEC 11

ARRAY BSS 5

I/0 STATUS:

RCODE DEC 13

CONWD DEC n

s~rATS NOP

TLOG NOP

FI LE READ/WRITE:

RCODE DEC 14 or

C'ONWD OCT c

BUFFR BSS n

15

BUFFL DEC n or -2n

FNAM.E ASC 3,xxxxx

RSECT DEC m

WORK AREA STATUS:

RCODE DEC 16

NTRAK DEC n

T:RACK NOP

S'rRAK NOP

SUMMARY OF EXEC CALLS

Load segment of calling program.

(xxxxx is segment name)

Request the 24-hour time and day.

(Time values; tens of milliseconds, seconds,

minutes, hours, returned in that order.)

Request device status.

{Logical unit number)

{Status returned here)

(Transmission log returned here)

Read or write a user data file.

(14 = read or 15 =write.)

{See Section III for control information.)

{Buffer of n words.)

(Length of buffer in words {+) or
characters (-).)

(User file name= xxxxx.)

{Relative sector within file.)

Ascertain if n contiguous work tracks are
available.

(Number of consecutive tracks desired.)

(Desired first track; from LIMITS call.)

(Actual starting track, or ~ if n not
available.)

G-2

WORK AREA LIMITS:

RCODE DEC 17

FTRAK NOP

LTRAK NOP

SIZE NOP

SEARCH FILE NAMES:

RCODE DEC 18

FNAME ASC 3,xxxxx

NSECT NOP

CHANGE USER DISC:

RCODE DEC 23

LABEL ASC 3,xxxxx

SUBCH DEC (~ to 7)

SUMMARY OF EXEC CALLS

Ascertain first and last tracks of work area.

(Returns first work track number here.)

(Returns last work track number here.)

(Returns number of sectors per track here.)

Ascertain if a file name exists in the
di rectory.

(xxxxx is the file name.)

(Number of sectors in file returned here, or
~ if not found.)

Change the current user disc subchannel.

(Disc label= xxxxx or ASCII 1, * for unlabel.)

(Subchannel number; optional parameter.)

G-3

APPENDIX H

MESSAGES

During the operation of DOS-M certain messages may be printed on the system

teleprinter. These messages may be error reports or simply informative;

they are generated by various part:s of DOS-M. Appendix H lists these mes­

sages alphabetically including where they originated, what they mean, and

what response, if any, the operator must make. Messages that begin with a

variable name or a non-alphabetic character are listed by the first non­

variable, alphabetic character.

Message Source

BAD CONTROL STATE. JOB PR

BEGIN 'DEBUG' OPERATION DEBUG

CHECKSUM ERROR JOB PR

CW nnnnn

DEVICE #nn DOWN JOBPR

DICTIONARY OVERFLOW JOB PR

??? DISC DIS CM

Description

Directive just entered is not acceptable
in DOS-M. Enter correct directive on
system teleprinter.

Any legal DEBUG operations may now be
entered. Enter any legal DEBUG operations.

Checksum error in INPUT to :ST,R,file,
LU directive. Correct tape.

In a READ/WRITE EXEC call at nnnnn, buffer
is out of memory bounds. Correct program.

EQT # nn is unavailable (down) .
Use the UP,nn directive to make the
device available (UP). (Then use the GO
directive if needed.)

No room is left for entries in the user
file dictionary. Put file on another
disc or remove some of the files.

Informs user that user disc was labeled
by a non-DOS-M system. May be made a
DOS-M disc by labeling or unlabeling
with :IN.

DISC GEN CODE nnnn NOT SYS GEN CODE nnnn ERR POSS
DIS CM Informs the user that the disc being

requested was initialized (labeled) by a
system with a different system Generation
Code. Generation code on disc may be
updated by labeling or unlabeling using
IN.

H-1

Message

DISC NOT ON SYSTEM

DONE?

??? LABEL xxxxxx
DOS LABEL xxxxxx
TSB LABEL xxxxxx

DUPLICATE FILE NAME

$END ALGOL

$END ASMB

$END ASMB CS

$END ASMB NPRG

$END ASMB PASS

$END ASMB XEND

END FI LE

Source

DIS CM

JOBPR

DIS CM

JOBPR

ALGOL

ASMB

ASMB

ASMB

ASMB

ASMB

JOBPR

MESSAGES

Description

No disc pack with the currently requested
label can be found on the system. Mount
disc pack with correct label or ready
drive containing disc.

Thirty feed frames (paper tape) or an
end-of-file (magnetic tape) have occurred
during input. Enter YES for end of in­
put; NO for more input.

Attempting to label (or unlabel) an already
labeled disc pack. Enter YES to relabel
the disc pack or NO to drop the rE~quest to
relabel the disc pack.

Double defined file name found in a :STORE
directive (other than STORE,P), or an EDIT
directive with a new file name; or on DD,U.
Remove file or rename file.

End of ALGOL compilation. No response required.

Assembly as completed. No response required.

Assembly has ended because of an E~rror
in the Assembler Control statement. Correct
the control Statement.

Assembly has terminated because no JFILE
was found when required. Define the file
using a JFILE directive.

Another pass of the source progrffin through
the input device is required. Printed on
the system after Pass 1. Replace the pro­
gram in the input device and type: :GO.

Assembly stops. An EOF occurred in the
source program before an END stab~ment.
Add an END statement to the program.

During an EDIT, (1) the master file ended
before completion of editing or (:2) a
colon occurred in column 1 of a source
statement. Check input to the EDIT pro­
gram.

H-2

Message Source

$END FTN FTN

MESSAGES

Description

Compilation has completed. No response
required.

END JOB xxxx [RUN = xxxx MIN. xx.x SEC EXEC = xxxx MIN. xx.x SEC]
JOB PR

ENTER FILE NAME(S) OR /E
LOADR

ENTRY ERROR DEBUG

EQT xx CH xx DVRxx D R Ux Sx

JOB

EXTRA PARAMETERS JOBPR

FI nnnnn DIS CM

HPAL ALGOL

IB nnnnn DIS CM

IE nnnnn DISCM

IGNORED DISCM

End of current job. Total job time and
execution time of the job are printed on
the system teleprinter and standard list
device if a time-base generator is present.
Enter next job.

Enter list of relocatable program files.
To terminate list of file names type "/E".

DEBUG operation entered was illegal.
Correct entry.

Equipment table entry printed by the
directive :EQ. No action required

More than 15 parameters in a directive.
Reduce the number of parameters.

In a FILE READ/WRITE EXEC call, the file
requested at nnnnn cannot be found. Call~

ing program is aborted. Check for File
name requested at nnnnn. If the File
nnnnn is not present, enter the File nnnnn.

Control statement error. Correct con­
trol statement.

Illegal buffer address in EXEC call at
.location nnnnn. Program is aborted.
Correct buffer program address.

If a colon occurs in the first column of
input entered through the batch device
during a program execution, the program
is aborted, and control is given to the
~JOBPR. nnnnn is the memory location of
the input request.

Input from system teleprinter during pro-
13"ram execution cannot be processed.
Correct input.

H-3

Message

*IGNORED

file
ILLEGAL

ILLEGAL DI GIT

ILLEGAL LUN

Source

JOBPR

JOB PR

JOB PR

JOB PR

ILLEGAL PROGRAM RUN LIMITS
DISCM

ILLEGAL PROGRAM TYPE JOBPR

INPUT ERROR DIS CM

INPUT:DATE, XXXXXXXXXX[,H,M,]
DIS CM

I/0 ERR ET EQT #mm DIS CM

I/0 ERR NR EQT #mm DIS CM

MESSAGES

Description

All directives following EJOB and before
next JOB except BATCH, TYPE, TRACKS, and OFF
are ignored. Enter acceptable directive.

On a source file LIST directive, the re­
quested file was not a source file. Re­
type LIST directive using source file.
A file name begins with a non-alphabetic
character. Rename the file.

In a decimal number, character is other
than ~-9. Enter correct decimal number.
In an octal number, digit is other than
~-7. Enter correct octal number.

Logical unit requested is equal to zero,
greater than the number of logical units
in the system, not the correct type (i.e.,
input type for output device), etc. Enter
a correct logical unit.

Attempt to run a user main or segment
whose user area limits or base page limits
wi 11 not fit within the limits of the
current system. Recreate user mains or
segments on current system using LOADR.

Program requested in a RUN or PROG is
not legal. Enter correct name.

Equipment table entry number of logical
unit number in EQ, LU, UP or DN is illegal.
Enter correct equipment table entry number.

When system is initiated from the disc,
DOS-M requires a DATE directive. The "HM"
is ignored in DOS-M if a Time Base Gener­
ator is not in the system. Enter a DATE
directive.

End-of-tape on device #mm. EQT ~:mm is
unavailable. To make the device available
(up) use the UP,n directive.

The device #mm is not ready. To make the
device available (up), use the UP,n
directive.

H-4

Message

I/0 ERR PE EQT #mm

IT nnnnn

1/0 ERRt::}usER DISC

JBIN OVF

JOB ABORTED!

Source

DIS CM

DISCM

DIS CM

FTN,
ASMB

JOBPR

MESSAGES

Description

Parity error on device #mm returns to
program return address with A set to
status, B set to ~- Call maintenance.

Illegal disc track or sector address in
EXEC call from location nnnnn. Program
is aborted. Correct the track or sector
address in EXEC call.

A parity error or device not ready
occured when attempting to assign a
user disc. Disc may not be formatted;
format it with DSGEN.

Overflow of job binary area during assembly
or compilation. Reduce size of job or
purge user files.

Correct problem and start new job.

JOB xxxxx dddddddddd [TIME = xxxx MIN. xx.x SECS EXEC = xxxx MIN. xx.x SEC.]

LQJ 1

L02

L03

L04

L05

LQJ6

LQJ7

LQJ8

LQJ9

L 1 QJ

JOB PR

LOADER

Message printed at the beginning of each
job. The time information is deleted in
DOS-M if a Time Base Generator is not
included in the system. Start job.

Checksum error on tape.

Illegal record.

Memory overflow.

Base page overflow.

Symbol table overflow.

Duplicate main or segment name (may be
caused by attempting to run the loader
twice in one job).

Duplicate entry point.

No main or segment transfer address.

Record out of sequence.

Insufficient directory work area, or
user area space.

H-5

Message Source

Ll l

Ll2

Ll 3

Ll4

Ll5

Ll6

LBL = 111111 DIS CM

LIMIT ERROR JOB PR

xxxx LINES JOB PR

****LIST END**** JOB PR

LN nnnnn DIS CM

LOADR COMPLETED WADR

LOADR SUSP WADR

LOADR TERMINATED LOADR

LOAD TAPE WADR

MESSAGES

Description

Program name table overflow.

User file specified cannot be found.

Program name duplication.

Non-zero base page length.

Segment occurred before main.

Program overlay (illegal ORG).

Disc subchannel referenced is labeled
111111. If attempting to change user disc
subchannel, enter UD with correct label.

In a directive, source statement numbers
are out of order (EDIT), dump limits are
incompatible (PDUMP, ADUMP), sector numbers
are illegal (DUMP) , or beginning source
statement number is greater than final
statement number (EDIT). Correct directive
and re-enter.

Total number of statements stored by a
STORE,S directive. No re.sponse .re.quired.

Terminates list of source statements
generated by a LIST directive. No response
required.

Logical unit requested by an EXEC call
at nnnnn is unassigned. Program is aborted.
Reassign logical unit.

Loading has completed. No responses
required.

Loader has suspended (usually at EOT) .
Type :GO,n to restart the Loader
with proper parameter value.

Loader has terminated because of an error.
Check input.

In conjunction with LOADR SUSP, this
message requests that next relocatable
tape be loaded before GO. Load the next
relocatable Tape and enter :GO to read
next tape or :GO,l to indicate that all
tapes are read in.

H-6

Message

LU nnnnn

LUxx EQTxx

LUN UNASSIGNED

xxxxx MISSING

MISSING PARAMETER

MP nnnnn

NAME *IGNORED

NEXT AVAIL TRACK=tt
BAD=n

NO BIN END

NO PROGRAM LOADED

NO SOURCE

NO SOURCE

NUMBER OVERFLOW

Source

DIS CM

JOB PR

JOB PR

DIS CM

JOBPR

DIS CM

JOB PR

JOB PR

JOBPR

LOADR

JOBPR

ALGOL

JOBPR

MESSAGES

Description

Illegal logical unit in EXEC call at
nnnnn. Program is aborted. Enter correct
logical unit number.

Logical unit table entry; EQT #xx assigned
to LU#xx. No response required.

Logical unit requested in a directive is
unassigned. Assign logical unit number
requested in the directive.

:Segment xxxxx requested by an EXEC call
in system or user directory. J·ob is
aborted. Correct job.

.A parameter is missing in a directive.
Retype the directive correctly.

Memory protect violation at location
nnnnn. Program is aborted. Correct
the program.

Illegal JOB name; non-alphabetic first
character. Retype correct Job name.

In TRACK directive, tt = first track be­
yond end of current user area; n = number
of bad tracks. "BAD=n" returned only if
bad tracks do exist. tt = "NONE" if no
tracks are available

No END record detected when storing a
relocatable binary program.

No programs were loaded by the LOADR.
Loading terminates.

No source statements following a /R or /I
in an EDIT directive. Job is aborted.
Enter source statements after the /R or /I.

Source file from disc not pre-set.

lill integer is too large.

H-7

MESSAGES

Message Source

OR nnnnn DIS CM

OVERFLO JBIN JOB PR

PARAMETER ILLEGAL JOB PR

PARITY ERROR/SC=n,TRK=ttt,SCTR=sss
JOB PR

PAUSE xxxx DISCM

RE-ENTER STATEMENT ON TTY
JOBPR

RQ nnnnn

SPARE TRK OVERFLOW

STOP xxxxx nnnnn

SUBCHAN = n

xxxxx SUSP

TAPE END

DIS CM

JOB PR

LIBR

DISCM/
JOBPR

DIS CM

JOB PR

Description

I/O operation requested by EXEC call at
nnnnn is rejected. Program is aborted.
Check program

There is not enough room in the user
area for storing the relocatable binary
from the user area.

A parameter of a directive is illegal.
Re-enter directive.

Parity error during disc read or write.
Call maintenance.

Program has temporarily suspended itself.
xxxx is an octal number. Restart program
using the GO directive

Follows most error messages that do not cause
abort. Type in the correct statement.

Illegal request code in EXEC call at nnnnn.
Program is aborted. Correct the program.

Defective cylinder detected and no spare
tracks available for reassignment.

Program xxxxx has terminated at location
nnnnn.

Given in response to :UD information
request or when :SS makes new subchannel
assignment. No response required.

Program xxxxx suspended by EXEC call or
PAUSE directive. Restart program using
the GO directive.

EOT flag set on magnetic tape or paper
tape device during output via JOBPR
directives :DUMP and :LIST or output of a
JOB or EJOB statement. If a magnetic tape,
it is rewound with standby, if paper tape
a trailer is punched. The JOBPR will then
pause to allow new tape to be set up.
Mount a new magnetic tape. Enter :GO to
continue the output.

H-8

Message

TM nnnnn

#TRACKS UNAVAILABLE

TRAC # TOO BIG

TSB DISC

UD nnnnn

UNLBL

file name UNDEFINED

UNDEFINED EXTS

WRONG INPUT

nn xx

@

*

Source

DIS CM

DISCM

JOBPR

DIS CM

DIS CM

DIS CM

JOBPR

LOADR

JOBPR

ERR~

JOBPR/
DIS CM

DIS CM

Description

Maximum execution time exceeded. The pro­
gram is currently at nnnnn and is aborted.
Increase execution time.

There are not enough work tracks for the
compiler. Purge disc of unecessary files.

Track requested is higher than last avail­
able disc track (track may be in JBIN area) .
Redefine the track request or purge files
or use different disc.

Informs user that the user disc was labeled
by a non-DOS-M system. May be made DOS-M
disc by labeling or unlabeling with :IN.

Unable to find user disc requested by EXEC
call at nnnnn. Mount required disc and
type :GO; or terminate program with :AB
or :OF.

User disc specified in UD is unlabeled.
If trying to change user disc assignment,
enter UD, * [,n].

Undefined file name in PURGE, LIST, RUN,
STORE or DD,U,file. Retype correct file
name on the system teleprinter.

Undefined external references exist in
programs loaded. The external references
are listed one per line. To load additional
programs from paper tape type :GO,~[,n].

Relocatable binary input furnished for a
source file request or vice-versa. Put
in a correct input.

Library routine error code.

Directives may be entered. Enter desired
directive.

Operator attention directives may be
entered. Enter desired directive.

H-9

APPENDIX I

MAGNETIC: TAPE USAGE

Input/output transfers to and from a HP 3¢3¢ magnetic tape unit can be pro­

grammed using the standard READ/WRITE EXEC call. (See Section III.) When

specifying the data buffer length, the programmer must know that a buffer

length of zero (~) ca uses the dri w~r to take no action on a write or an

ASCII read. Only the amount of data that fits within the buffer is trans­

mitted to the user on read. A zero (¢) buffer length on binary read causes

a forward skip one record.

In the I/O STATUS EXEC call, bits 7-~ of the second status word contain the

status of the magnetic tape unit. The bits have the following meaning when

they are set (i.e., equal to one):

BIT MEANING

7 End-of-file record encountered while reading, forward

spacing, or backward spacing.

6 Start-of-tape marker sensed.

5 End-of-tape marker sensed.

4 Timing error on last read/write operation.

3 I/O request rejected by magnetic tape unit.

2 No write enable ring, or the tape unit is rewinding.

1 Parity error on last read/write operation.

fJ Tape unit busy, or in local mode.

The status bits are stored in the EQT entry; they are updated everytime the

driver is called. A dynamic status request is processed as soon as the

magnetic tape EQT entry is available (availability bits equal to ¢~) , and re­

turns the actual status of the device (obtained from the driver) to the call­

ing program in the A-register and to the EQT entry.

Buffers of less than six words are padded to six words. The maximum buffer

length is 16,384.

I-1

MAGNETIC TAPE USAGE

ERROR RECOVERY PROCEDURES

On a read parity error, the driver rereads the record three times before

setting the parity error status bit and returning to the calling pro<3'ram.

The final read attempt is transmitted to the program buffer.

On a write parity error, the driver continues to retry the write until one

of these two conditions occurs:

a) The record is successfully written, or

b) The end-of-tape is encountered.

On a write without the write enable ring, the magnetic tape unit is made

unavailable (magnetic tape not ready). DOS-M prints a message:

I/0 ERR NR EQT#n

and waits for the operator to correct the unit and enter :GO.

At the end-of-tape there are only two legal forward motion requests:

a) Write end-of-file, or

b) Read record.

All other forward motion requests (write, forward space) cause the unit to

be made unavailable. In addition, only one of the legal motion requests may

be made after an end-of-tape. Backward motion requests clear the end-of-tape

status.

I-2

APPENDIX J

DISC LABELS

Sector 0 of track 0 of each disc is used for label information. In addition,

if the user area is on the system disc, a label also occurs in Sector 0 of the

first track after the system area.

The contents of the label include:

Word 0:

Word l:

Word 2:

Words 3-5:

Word 31:

Label presence code (ASCII "LB").

System Proprietary Code:

1. "DO" for OOS-M

2. "TS" for Time-Shared Basic

System generation code assigned at system generation

time. The code can be any 4 decimal digits.

A six-character disc label. If the first character

equals * the disc is unlabeled. This label can only

be set using :IN (for user areas) or by DSGEN (set to

"SYSTEM" for system discs).

Checksum of words 0-30.

The first 64 words are reserved for label information. Word 65 contains the

next available track and sector. Words 66 and 6 7 contain the number of bad

tracks and the next available space track.

INDEX

* 2-2

@ •••••••••••••••••••••••••••••••• 2-2

:ABORT ..••.•••...••••..••.•.•.•.. 2-6

Acco1.lllting ..•...••..••....••. 2-4, 2-5

: ADUMP •••••••••••••••••••••••••• 2-39

ALGOL ••..•..•••...•......••••.•• 4-10

ALGOL EXEC calls ...••..•.••••.•.. 3- 3

Assembler ..••••..•.•.•..••..••.. 4-15

Assembly Language EXEC calls •..•• 3-2

Base Page Conun1.lllication Area ..••• A-2

Basic Binary Loader ..•.•.••..••. 6-25

: BATCH ••.... , ••.•.....•••.•....•. 2- 4 7

Batch Mode ..••.•.•......•••. 2-1,2-47

BINRY ••.•.•.••••••••..•••.••.•.•• 3-6

Bootstrap ••.••.••.•••...•.• 6-19, 6-24

Calling Seguences •••••.••.••• 3-2,3-3

Change User Disc EXEC Call ••..•• 3-23

Changing User Discs •.•..••• 2-12,3-23

: COMMENT•••..••.•.••.....• 2-8

Configuring DOS-M Bootstrap .•..• 6-24

Configuring DSGEN .••..••.•.•.... 6-22

Constant•.••.•.•••••.•••...•. A-1

Control Statements ..••• 4-4,4-13,4-18

Control Word •..•.•.....•..•• 3-5,3-10

Conventions .•••.•••••••••••••.••• 6-2

Core Layout••.••...•••.. 1-4,6-14

Data Statement ••.••.•.•••..•.•••. 4-6

: DATE 2-48 ,6-19

:DD •••...•••.••..••.••..••.•..•• 2-14

DEBUG .•.....•••••.••••••••••••••• 4- 30

Device Reference Table• 2-44,6-16

Directives ..••..•.•••.... 1-2,2-1,F-l

Directory Entries ..•.•••.•.•••••• A-7

Disc Controller .•..•••.•....•••••• 1 4

Disc Drives••..••.•••......... 1-4

Disc Labels•.......•......•. 2-50

Disc Loading Phase•....••.•. 6-13

Disc Layout•...•.....•.•.• A-6

DISCM ...••.••.•....••..••.......•. xii

Disc Status ••...••.....••....•... 2-18

Disc-To-Disc Dump •.•........••... 2-14

Disc Usage ...•..•..•.............. 1-4

Downing A Device .••••.•.•...•.•.• 2-46

DOS-M••.......•.•.•....•.•..•. 1-1

: DN ..•••.•.•...•.....•.........•• 2-46

DSGEN •.••.•.••.•..•. 6-1, 6-3 I 6-20 I 6-22

: DU1'11? .•.•••..••.•••...•....•..••. 2- 35

Dumping Files .••..•....•..•••.•.• 2-35

Dumping Programs•..•...•..•. 2-39

Dumping Sectors •.•.•..•....••••.• 2-37

: EDIT .•••.•.••.......•••••.••..•. 2-26

Editing Source Statements••• 2-26

:EJOB .•.•.••••••••••.••.•.••.. 2-4,2-5

:EQ .•••••.•.•..•.........•••.•... 2-42

Equipment Table ..•.•....•••• 2-42,6-15

E~ •••••••••••••••••••••••••••••• 4-9

Error Messages (DOS-M) •.....••..•. H-1

Error Messages (DSGEN)••..... 6-26

EXEC Calls ...•...••...•.•• 1-3,3-1,G-l

EXEC Modules ..••..•..••.•.•••....• xii

External Statement •..••.•..•...... 4-7

Features of DOS-M ••••••..••.••..••. xi

File Names Search EXEC Call 3-21

File Read/Write EXEC Call 3-7

Files .•...••.. 1-6,2-20,2-25,2-29,2-31

Formatting User Discs •..•..•..••. 6-20

INDEX-1

INDEX

FORT R.AJ:i1 • 4-2

FORTRAN EXEC Calls ••.•..•.••.•... 3-3

Function Codes .•••••.••.•••••••• 3-10

Generating DOS-M .•••••••••••••••• 6-3

: c:o. • • • • • • • • • • • o • o o o o o o o o o • • 2-7 I 2-49

Hardware •..•••.••.•••••.•.•••..••.• x

:IN ••...••••••.••••••.•••••••.•• 2-50

Initialization Phase •.•••..•••... 6-5

Initializaing Discs ••••••••.•••• 2-50

Initiating DOS-M .••••.•••••.•••• 6-19

Input/Output •..•••••.•..•••••.•.• 1- 3

Installation •••.••••••••••.•• 1- 7, 6-1

Interrupt Table •••...•.•.••••••• 6-1 7

Introduction •••••••••.•.••.•.•.••• ix

I/O Control EXEC Calls •••...••••• 3-9

I/O Status EXEC Call. .••••..•..•• 3-11

: J'FILE •••..••••.•..•.••.•••.••.• 2- 2 5

: J'OB •••••••.•••••••••.••••.•• 2- 4 I 2- 5

Job Binary Area •.•••..••••..•.•••• 1-5

JOBPR ••••••••••••.•.••••••••••••• xii

Keyboard Mode •••••.••••• 2-1,2-9,2-47

Labels ••.••••••.••••••••••••••••• J-1

Line Printer Formatting .•••.•.••. E-1

: LIST ••••••.••...•••.•.•.•..••.•• 2- 31

Listing Files •.•••.••.•.•••••.•• 2-31

Logical Unit Table .•••• 2-44,4-5,6-16

Load-And-Go 4-1

:LU 2-44

Magnetic Tape ••.•••••••••...•.•.•. I-1

Messages ..•••••••.•.••• 4-3,4-11,4-16

NAM Statement •.•.•••....•. ~ .•.•• 4-20

:OFF 2-52

Operating Procedures (DSGEN) ••.•• 6-3

Operator Attention .•.•••••..•••.• 2-2

ORB Statement .••••••.•••••..•••• 4-19

Parameter Input Phase •••••••.••• 6-10

:PAUSE .•.••••••.••••••..•••••••••• 2-7

Pause Statement •.•••••.•••••••••.. 4-2

: PDUMP •••.••.••.••••••••••••.••.• 2- 39

Preface •••••••••••••.•••••••••.•.• iii

:PROG •.•••••.• 2-10,4-2,4-11,4-15,4-26

Program Completion EXEC Call ••••• 3-10

Program Input Phase ••.•••••.•••••• 6-8

Program Segment Load EXEC Call ••• 3-19

Program Statement ••.•••••••.•••.•• 4-5

Program Suspend EXEC Call •••••••• 3-17

Prograinrning •..•••••..••••••••••••• 4-1

:PURGE •.....••••••.•••••.••••.•.• 2-29

Purging Files .••••..••••••....••• 2-29

Read/Write EXEC Call ••••••••••.••• 3-4

Readying A Device •••••••••••••••• 2-45

Register Contents ••••••••.•••••.•. 6-2

Relation To Other Software ..•.••.• D-1

Relocatable Libraries •••••••.•••• 4-35

Relocating Loader ••••••••.••••••. 4-25

RMPAR •••.•..•..••••••••••••• .2-49 I 3-18

: RUN •.•.••••••••.••••••••••••.••. 2-11

Running Programs ••••.••••••. .2-10,2-11

: SA ..•••.••••••.••.••••••••••.••. 2-37

Sample DSGEN Listings ••••••••.•••• c-1

Sample Jobs •..•.••••.••••••••••••• B-1

Sectors •••••••••••••••.••••••••••• 1-5

Segmentation ••.•••• 3-19, 4-8, ·4-14 ,4-20

SIO Drivers ••••.•••••••••••.••••. 6-23

: so ••.••.•.•••••••••••••••••.•••• 2-3 7

Software Modules ••••.•••••••.•••••• xi

Specifying Source Files ..•••...••• 2-25

:SS .•••••.•••••••••••••.•.••.•••• 2-16

Stop Statement ••••••••••••...••••• 4-8

: STORE •.••••••••..••.••.••••.•••• 2020

Subchannels ••.• 1-4, 2-12, 2-14 ,2-16, 3-23

Supervisor ••••••••••••••.•.• , .••••• xii

INDEX-2

System Area •..•••••••.•..•..•••.. 1-5

System Disc•••..••....•••... 1-5

System Organization ••..•.••..•.•. 1-1

System Search .•••••..••.•••• 1-5,2-16

Tables ..••••..•••••..••......•••• A-1

Time Request EXEC Call. ••...•••. 3-22

: TRACKS ..••••••••..•.••••..•..•. 2-18

Turning Off A Process .•....••••. 2-52

:TYPE .••..••••...••••....••••..•. 2-9

INDEX

:UD .•.•......••.•••••... 1-5,2-12,2-14

:UP .••..••....••...••.........••. 2-45

User Area •..........••............ 1-5

User Disc •.••• 1-5,2-12,2-14,2-16,3-23

Wai ting ..•••...•••••••..•.••••••.. 3-6

Work Area •.•.•••••.•.••• 1-5,3-13,3-14

Work Area Limits EXEC Call .•.•.•. 3-13

Work Area Status EXEC Call•.• 3-14

INDEX-3

w·
z·
:J .

~:
o· _, .
<(•
..... .
::> •
(.).

FROM

HEWLETT,pj PACKARD

READER COMMENT SHEET
MOVING-HEAD

DISC OPEJRATI.NG SYSTEM

02116-91 779 AUGUST,- 1970
Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com­
ments may be made bellow. Use extra pages If you like.

PAGE_OF_
NAME: __________________________________ _

ADDRESS=------------·-----------------------

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE ANO TAPE

FOLD

FOLD

BUSINESS REPLY MAIL

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

------------No Postage Necessary if Mailed in the United States Postage will be paid by ----

MANAGER, SOFTWARE PUBLICATIONS
HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

_, __ _
_ I __ _ _ , __ _ _, __ _
_ I __ _ _, __ _ _ , __ _ _I __ _ _, __ _ _I __ _ _, __ _

_ ! __ _

FOLD

FOLD

UZl16-91779

	000
	001
	002
	003
	005
	006
	007
	008
	009
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	D-01
	E-01
	E-02
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	I-01
	I-02
	J-01
	X-01
	X-02
	X-03
	replyA
	replyB
	xBack

