
HEWLETT,?PACKARD

RELOCATABLE SUBROUTINES

RELOCATABLE: SUBROUTINES

02116-91780

HEWLETT"' PACKARD

11000 LJo 1 fe Road

Cupertino, California 95014

September 1970

© Copyft,{.ght, 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

Relocatable Subroutines is a programmer's reference to all the subroutines of the various
Hewlett-Packard Relocatable Libraries. It should be used in conjunction with the appropriate
language and system manuals.

The Introduction explains the Relocatable Libraries, their relationships, and their uses.
Section I contains all of the mathematical subroutines from all of the libraries, arranged
alphabetically by subroutine name. Section II provides a similar listing of the utility sub­
routines. Section III is dedicated entirely to the three versions of the Formatter.

There are a 1 so indices that give page references for each routine of each 1 i brary and an index
of a.11 the entry points mentioned in the book.

II I

CONlrENTS

iii PREFACE
V CONTENTS
ix INTRODUCTION

1-1 SECTION I
MATHEMATICAL SUBROUTINES

2-1 SECTION II
UTILITY SUBROUTINES

3-1 SECTION III
THE FORMATTER

3-3 FORMATTED INPUT/OUTPUT
3-3 Format Specifications
3-4 The E Specification
3-6 The F Specification
3-7 The D Specification
3-7 The G Specification
3-8 The Scale Factor (FORTRAN IV ONLY)
3-9 The I Specification
3-10 The O,K,@ Specifications
3-11 The L Specifications
3-11 The A and R Specifications
3-14 The X Specification
3-15 The 11 11

, H Specifications (Literal Strings)
3-16 The / Specification
3-17 How To Put Formats Together
3-19 FREE FIELD INPUT
3-19 Data Item Delimiters
3-20 Floating Point Input

v

SECTION III (Cont.)
THE FORMATTER

3-20 Octal Input
3-21 Record Terminator
3-21 List Terminator
3-23 UNFORMATTED INPUT/OUTPUT
3-23 Records
3-24 ASSEMBLY LANGUAGE CALLING SEQUENCES
3~25 Input: Selecting A Calling Sequence
3-26 Output: Selecting a Calling Sequence
3-27 Notes
3-28 Internal Conversion
3-29 Notes
3-30 Buffered 1/0 With The Formatter
3-31 Example Calling Sequences

TABLES
2-31 Table 2-1 SYMBOL/CHARACTER TABLE

INDICES
1-1 INDEX I
11-1 INDEX II
III-1 INDEX III
IV-1 INDEX IV
V-1 INDEX V All Entry Points

VI

JNTRC)OUc:1·1c>

INTRODUCTION

Every Hewlett-Packard operating system that has a relocating loader (BCS, RTE, DOS, DOS-M) also has

one or more Relocatable Libraries. The subroutines. in these libraries perform mathematical and

utility functions for user programs. The Relocating Loader links each user program with the sub­

routines that it needs.

From the library point of view, an operating system has three characteristics:

1. The system is disc-based (RTE, DOS, etc.) or is not (BCS).

2. The system includes EAU (Extended Arithmetic Unit) or does not.

3. The system includes extended precision c:1rithmetic and formatting (FORTRAN IV 1 ibrary) or

does not.

For each possible operating system there are two appropriate libraries: a standard library (BCS or

disc-based, EAU or non-EAU) and an optional FORTRAN IV Library. (There are also special libraries

for 4K BCS installations.) Each library has a five-character identifier. These libraries include:

K4N.N

K4E.N

EAU.N

LIB.N

FTN4N

F2N.N

F2E.N

F4D.N

Non-EAU FORTRAN Library (4K)

EAU FORTRAN Library (4K)

EAU Relocatable Library (BCS)

Non-EAU Relocatable Library (BC:S)

BCS FTN IV Library

Non-EAU RTE/DOS Relocatable Library (without HP FORTRAN Formatter)

EAU RTE/DOS Relocatable Library (no Formatter)

RTE/DOS FORTRAN IV Library (with FORTRAN IV Formatter)

RTE/DOS HP FORTRAN Formatter

where N is the revision letter (A,B,C •••).

In additfon there are two Plotter libraries that sL1pport the printing of graphs: a BCS version and

an RTE/DOS version.

IX

The chart below shows the decision process for choosing the correct libraries for any possible
system configuration:

EAU PH I LO SOPHY

(RTE REQUIRES EAU)

F2N.A

HP
FORTRAN

FORMATTER

RTE/DOS

BEGIN

YES

F2E.A

YES

F4D.A

BCS

NO

LIB.A

NO

(4K NON-EAU USE K4N.A
4K EAU USE K4E.A)

YES

EAU.A

YES

FTN4A

The Extended Arithmetic Unit provides hardware multiply, divide and double load-store. In order to
promote compatability between different systems, all compilers generate non-EAU code. That is, code
generated by the FORTRAN compiler calls the multiply subroutine rather than using the hardv~are in­
struction. At run-time, if the system contains an EAU library, these subroutine calls are replaced
by the corresponding EAU hardware instruction.

ORGANIZATION OF THIS BOOK

This book is organized into three sections plus several indices. Since many subroutines appear in
more than one library, each subroutine is documented only once. All mathematical subroutines are
grouped into Section I, ordered alphabetically by name. All utility subroutines are covered in
Section II, also ordered alphabetically. Section III covers all the Formatters.

For each library, there is an index that lists the subroutines in the order they appear in the
library. With each subroutine is a page reference.

x

The final index provides an alphabetic list, with page references, of every entry point mentioned in
the book. This is provided in case you know the entry point of a routine, but not the name.

The Page Format

Each subroutine is documented on a page of standard format. (See the sample page.) The following
items may appear for each subroutine:

11 NAME 11

Purpose

Entry Points

External References

Calling Sequences

Method

Attribute Chart

The name of the routine record in the NAM record.

The use of the routine.

The entry points to the routine. If these are centered,
they apply to both the BCS version and the DOS/RTE version
of the routine. An entry of 11 N/A 11 means the routine is
not available in that system. After the DOS/RTE entry
point, ther1~ is a letter in parentheses giving the type of
the routine: U for utility, P for privileged, and R for
re-entrant.

These are other subroutines that are called by the sub­
routine. If centered, they apply to both versions of the
routine; if divided into two columns, they are different
for the two versions. If the DOS/RTE version is type P
or R, then it also references $LIBR and $LIBX.

This is the assembly language calling sequence for each
entry point. If there is only one calling sequence, it
is centered. The arrow (+) indicates a return point.
11 A11 and 11 B11 indicate the A- and B- registers.

This gives the algorithm for producing the result and/or
the accuracy of the routine.

For each entry point, this chart gives the fol lowing
i n fa rma ti on :

a. Parameters: their type (real, integer, double
rea·1 or complex) and whether they are loaded
into the A- and B- registers.

b. Result: the type of the result and the registers
(if any) where it is returned.

c. Basic FORTRAN: whether the routine is an intrinsic
function (i.e., ABS(x)), callable subroutine, or
uncallable in HP FORTRAN.

XI

PURPOSE:

SAMPLE

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

NOTES:

COMMENTS:

PAGE FORMAT

NAME

BCS DOS/RTE (TYPE)

ENTRY POINTS:

XII

LOADING SEQUENCES

d. FORTRAN IV: Whether the routine is an intrinsic
function callable subroutine, or uncallable in
HP FORTRAN IV.

e. ALGOL: whether the routine is an intrinsic,
callable or uncallable procedure in HP ALGOL.

f. Err1:>rs: This gives a summary of any error con­
ditions in this format:

condition+ (message or code)

(If the condition occurs, the message is printed.)

If two libraries are used with an operating system, they must be loaded tn a speci:fic manner.

In BCS, the FORTRAN IV Library must be loaded before the standard library.

In disc-based systems, either the FORTRAN IV Library or the HP FORTRAN formatter must be loaded in
addition to the standard library.

XII I

SE:C IC)l\J

MltT~HEMJ~tlCAL SUB OUTI E

ABS

PURPOSE: Calculate the absolute value of a real x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:

Errors:

BCS

ABS
Real: A & B
Rea 1: A & B
Function: ABS (x)
Function: ABS (x)

Intrinsic: ABS (x)

None

DOSI RTE (TYPE)

ABS _(_P)_

.. FCM

OLD x
JSB ABS
-+result in A & B

ENTRY POINTS:

l - l

AIMAG

PURPOSE: Extract the imaginary part of a complex x.

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ENTR

AI MAG
Complex
Two-word imaginary: A & B
Callable as function
Intr. function: AIMAG (x)

Callable as real procedure
None

1-2

AIMAG {P)

1
JSB AIMAG
DEF *+2
DEF x

DOS/ RTE (TYPE)

.ENTP

~result in A & B

ENTRY POINTS:

AllNT

PURPOSE: Truncate a real x:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

Y =SIGN (x). (largest integer :: / x /), or Y = [x]

BCS DOS/ RTE (TYPE)

AINT (P)

.FLUN

.PACK

OLD x
JSB AINT
-+ Y in A & B

ENTRY POINTS:

AINT

Real: A&B

Real: A&B

Not callable

Function: AINT (x)

Not callable

None

1-3

ALOG

PURPOSE: Calculate the natural logarithm of a real x:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

Y = 1 n (x)

BCS

. FLUN, . MANT, FLOAT, . ERRR

OLD x
JSB ALOG (or LN)
+ return (Y in A, B)

LN (R)
ALOG

DOSI RTE (TYPE)

.FLUN, .MANT, FLOAT

OLD x
JSB ALOG (or LN)
JSB ERR0 (error return)
+return (Yin A&B)

(that is, x = 2I x F)
Let F = mantissa (x)
Then Y = I + log2F

I = characteristic (x) ~

(loge2) = loge2(+Tl :3c~ z2]-l/J
where

and

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

Z = F- /'2/2
F+ vlif./2

c1 1.2920070987

c2 2.6398577035

c3 = 1.6567626301

ALOG
Real: A & B
Real: A & B
Function: ALOG(x)
Function: ALOG (x)
Not Callable
x ~ 0 + (02 UN)

ENTRY POINTS:

LN
Real: A & B
Real: A & B
Not Callable
Not Callable
Intrinsic Procedure
Same

NOTES: ALOG is the FORTRAN entry point; LN is the ALGOL entry point.

1-4

PURPOSE:

ALOGT

Calculate the common logarithm (base 10) of real x:

y = 10910 x

BCS D 0 SI RTE (TYPE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

DLD x
JSB ALOGT
+ normal return

Y = log10 x = log10e*logex

ALOGT (U)

ALOG

DLD x
JSB ALOGT

(result in A&B) + error return
+ normal return

Accuracy depends on the accuracy of ALOG.

ATTRIBUTES:
ENTRY POINTS:

ALOGT
Parameters: Real

Result: Real: A&B
Basic FORTRAN: Not Callable

FORTRAN IV: Intr. Function: ALOGT _(_xl
ALGOL: Not Callable

Errors: If x ~ 0 + {~2 UN)

l ··5

(result in A&B)

AMOD

PURPOSE: Calculate the real remainder of x/Y for real x and Y:

z = x modulo Y

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

.ENTR
AINT

AMOD (P)

I
JSB AMOD
DEF * + 3
DEF x
DEF Y
-+ z in A & B

Z = X - [X/Y] * X

ATTRIBUTES: ENTRY POINTS:

AMOD

Parameters: Real
Result: Rea 1: A&B

Basic FORTRAN: Ca 11ab1 e as Function
FORTRAN IV: Intrinsic Function: AMOD (X ,Y)

ALGOL: Callable as Real Procedure
Errors: If Y = 0, then z = x

1-6

D 0 SI RTE (TYPE)

.ENTP
AINT

-

ATAN

PURPOSE: Calculate the arctangent of a real x:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

Y = tan- l (x)

BCS DOSI RTE (TYPE)

.AIAN
Real: A & B

ARCTA (R)
ATAN

.CHEB

OLD x
JSB ATAN (or ARCTA)
+ return (y in A&B)

if abs (x) > l then u = l/x else u = x
Y = u * Cheby(2*u*u - 1)
if abs (x) < l then answer = Y
else if x >-0 then answer= n/2-Y
else answer = -n/2-Y

ENTRY POINTS:

8BCI8
Real: A & B

Real: A & B (radiansl Real: A & B lradiansl
Function: ATAN lxl Not Callable
Function: ATAN (xl Not Callable
Not Callable Intrinsic Function: ARCTANixl
None None

NOTES: 1. ATAN is the FORTRAN entry point and ARCTA is the ALGOL entry point.
2. Result ranges from -n/2 to n/2.

1-7

ATAN2
PURPOSE: Calculate the real arctangent of the quotient of two reals: z = arcta.n (Y/x)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD: If x

If x

If x

= 0, z =
> 0, z =
< 0, z =

BCS

.ENTR, SIGN, ATAN

sign (Y) Tr/2
arctan (Y/X;

arctan (Y/x) + sign (Y) .TI

ATAN2 (R)

l
JSB ATAN2
DEF * + 3
DEF Y
DEF x
~ z in A & B

DOSI RTE (TYPE)

.ENTP, SIGN, ATAN

Accuracy depends on accuracy of ATAN.

ATTRIBUTES: ENTRY POINTS:

ATAN 2

Parameters: Real

Result: Real: A & B

Basic FORTRAN: Callable as Function

FORTRAN IV: Intr. Function: ATAN2 (Y,X)

ALGOL: Callable as Real Procedure

Errors: None

1-8

CABS

PURPOSE: Calculate the real absolute value (modulus) of complex x: Y = !xi

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

.ENTR, SQRT

METHOD:
Y = !xi = lx1+i*x21 = I xi+ x~

CABS (R)

1
JSB CABS
DEF *+2
DEF x
-+ Y in A & B

Accuracy depends on the accuracy of SQRT.

ATTRIBUTES:
ENTRY POINTS:

CABS
Parameters: Complex

Result: Real: A&B
Basic FORTRAN: Callable as Function

FORTRAN IV: In tr. Function: CABS ixl
ALGOL: Callable as Real Procedure

Errors: None

1-9

DOS/ RTE (TYPE)

. ENTP, SQRT

CADD

PURPOSE: Add complex x to complex y: z = x + Y (z is complex)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.CADD
Complex
Complex
Not Callable
Not Callable
Not Callable
None

BCS

.CADD (P)
CADD

GET AD]
AD RES

JSB .CADD or
DEF z (result)
DEF x
DEF Y

DOS/ RTE (TYPE)

.PCAD
JSB CADD
DEF * + 4
DEF z (result)
DEF x
DEF Y

ENTRY POINTS:

CADD
ComElex
Complex
Call able
Callable
Callable
None

1-10

CDIV

PURPOSE: Divide complex x by complex y: z = x/Y

ENTRY
POINTS:

!EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

.CDIV

Comj>_l ex

Complex

Not Callable

Not Callable

Not Callable

None~

BCS DOSI RTE (TYPE)

.CDIV (P)
CDIV

GET AD l .PCAD
AD RES

JSB .CDIV or JSB CDIV
DEF z (result) DEF * + 4
DEF x DEF z (res.ult)
DEF t' DEF x
-+ DEF Y

-+

ENTRY POINTS:

CDIV

Coml2_1 ex

Complex

Callable

Callable

Callable

None

1-11

CEXP

PURPOSE: Calculate the complex exponential of a complex x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

. ENTR, EXP,
SIN, COS
JSB CEXP
DEF *+3
DEF Y (result)
DEF x
+ Normal return

CEXP (R)

METHOD:
y = yl + i.y2= ex= ex1 + i x2 = exl (cos x 2 + i.sin x 2)

Accuracy: depends on the accuracy of EXP and SIN.

ATTRIBUTES:
ENTRY POINTS:

CEXP
Parameters: Complex

Result: Complex

Basic FORTRAN: Not Callable

FORTRAN IV: Intr. Function: CEXP(x)
ALGOL: Not Callable

Errors: Note 1

NOTES: 1. If x1 · log2e ~ 124, + (07 OF).

l I X2 l I If 2 -:;;.- + 2 >214+(05 OR).

1-12

D 0 SI RTE (TYPE)

.ENTP, EXP,
SIN, COS
JSB CEXP
DEF *+3
DEF Y (result)
DEF x
+ Error return
+ Normal return

CHE BY

PURPOSE: Evaluate the chebyshev series at a real x for a particular table of coefficients c.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS DOS/RTE (TYPE)

. CHEB (R)

None

OLD x
JSB • CHEB
DEF c (table, note 1)
~ result in A & B

METHOD: T1. = 2 . T1._1 - T1._ 2 + cn-i' (' m 1 1) 1=p,, ••.. ,n-.

where
T_ 2 = T_ 1 = 0

n = number of coefficients
Answer = Tn-l - Tn_ 3

ATTRIBUTES:

Parameters:
Result:

·Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

2

.CHEB

Real
Real
Not Callable
Not Callable
Not Callable
TAN(x) for x close

ENTRY POINTS:

to TI/2

NOTES: 1. Table c consists of a series of real coefficients terminated by an
integer zero.

1-13

CLOG

PURPOSE: Calculate the complex natural logarithm of a complex x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

.ENTR, ALOG
CABS, ATAN2

JSB CLOG
DEF *+3
DEF Y (result)
DEF x
-+ Normal return

CLOG (R)

Y = y1 + ;.y2 =loge x =loge (x1 + i.x2) loge(r) + i .e

where _ / 2 2
r - x1 + x2

e = a re tan (:~)

Accuracy depends on the accuracy of ALOG and SQRT.

ATTRIBUTES:
ENTRY POINTS:

CLOG

Parameters: Complex

Result: Complex

Basic FORTRAN: Not Callable

FORTRAN IV: Intr. Function: CLOG(x)

ALGOL: Not Callable

Errors: If x = 0 -+ (02 UN)

1-14

DOSI RTE (TYPE)

. ENTP, ALOG
CABS, ATAN2

JSB CLOG
DEF *+3
DEF Y (result)
DEF x
-+ Error return
-+ Normal return

-
-

CMPLX

PURPOSE: Combine a real x and an imaginary Y into a complex z.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

CMPLX (P)

.ENTR I
JSB CMPLX
DEF *+4
DEF z
DEF x
DEF Y
+

ENTRY POINTS:

CMPlX

Real & Imaginar~
Complex

Ca 11ab1 e

Intr. Function: CMPLX lx_LY}
Ca 11 ab le

None

·1-1 s

DOSI RTE (TYPE)

.ENTP

CMPY

PURPOSE: Multi ply complex x by complex y: z = x · Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.CMPY
Complex
Complex
Not Callable
Not Callable
Not Callable
None

BCS

.CMPY
CMPY (P)

GET AD
j ADRES

JSB .CMPY or
DEF z (result)
DEF x
DEF Y
-r

ENTRY POINTS:

CMPY
Complex
Complex
Callable
Ca 11 able
Callable
None

1-16

DOS/ RTE (TYPE)

.PCAD

JSB CMPY
DEF * + 4
DEF z (result)
DEF x
DEF Y
+

CON JG

PURPOSE: Form the conjugate! Y of a complex x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

CONJG (P)

.ENTR

I .• FCM

JSB CONJG
DEF * + 3
DEFY (result)
DEF x
-+

ENTRY POINTS:

CONJG

Complex

Complex

Callable

Intr. Function: CONJG (x)

Callable

None

l ·· 17

D 0 SI RTE (TYPE)

.ENTP
•. FCM

CSNCS

PURPOSE: Calculate the complex sine or cosine of complex x: Y = sine (x)
Y = cosine (x)

BCS DOS/ RTE (TYPE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

. ENTR, SIN, cos
EXP, .. FCM

CSIN (R)
ccos

I . ENTP, SIN,
EXP, .. FCM

JSB CSIN (or CCOS)
DEF * + 3
DEF Y
DEF x
JSB error routine
+ Normal return

METHOD: Sine: y = v1 + i·Y 2 = sin (x) = sin (x1 + i·x2) =

si;(xl) (ex2 + .-x2) + i(co;(x2))(ex2 - .-•2)

Cosine: Y = v1 + v2 . i = cos(x) = cos(x 1 + i.x2) =

(co;(x1))(ex2 + e-•2) +(i·si;(x1))(ex2 _ .-x2)

Accuracy depends on the accuracy of EXP and SIN.

ATTRIBUTES:
ENTRY POINTS:

CSIN ccos
Parameters: Complex Complex

Result: Complex Complex

Basic FORTRAN: Not Callable Not Callable

cos

FORTRAN IV: Intr. Function: CSIN (x) Intr. Function: CCOS (x)

ALGOL: Not Callable Not Callable

Errors: Note l • Note 1 .

NOTES:

1-18

CSQRT

PURPOSE: Calculate the complex square root of complex X: Y = y1 + i·y2 = lx1+; .x2

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:
If x = 0, Y = 0

BCS

. ENTR, .. DLC,
SQRT, CABS

If x 1 > 0 ; y 1 = j x 1 + I x I • y 2 == x 2

2 2Y1
If x1 < 0; v2 = sign(X2) ~ -X1 : !XI

CSQRT (R)

I
JSB CSQRT
DEF * + 3
DEF Y (result)
DEF x
-+

Accuracy depends on the accuracy of SQRT.

ATTRIBUTES: ENTRY POINTS:

CSQRT
Parameters: Complex

Result: Complex
Basic FORTRAN: Ca"llable

FORTRAN IV: Intr. Function: CSQRT (x)

ALGOL: Callable
Errors: None

'1-19

D 0 SI RTE (TYPE)

.ENTP, .. DLC,
SQRT, CABS

CSUB

PURPOSE: Subtract complex Y from complex x: z = x - y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.CSUB
Complex
Complex
Not Callable
Not Callable
Not Callable
None

BCS

.CSUB (P)
CSUB

GET AD l ADRES

JSB .CSUB or
DEF z (result)
DEF x
DEF Y
-+

ENTRY POINTS:

CSUB

Complex
Complex
Callable
Callable
Callable
None

1-20

DOS/ RTE (TYPE)

.PCAD

JSB CSUB
DEF * + 4
DEF z (result)
DEF x
DEF Y
-+

DABS

PURPOSE: Calculate the absolute value of a double real x: Y = /x/

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NOTES:

BCS D 0 SI RTE (TY P E)

DABS (P)

.. DCM, .XFER

JSB DABS
DEF *+3
DEF Y

DEF x
-+-

ENTRY POINTS:

DABS
Double Real
Doub~e Real
Callable
Function: DABS (x)

Callable
NOTE 1

1. If x =Smallest negative number (-2127), then

Y =Largest positive number [(1-2- 39). 2127]
and the overflow bit is set.

1-21

DAT AN

PURPOSE: Calculate the double real arctangent of double real x: y = arctan (x)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS D 0 SI RT E (TY P E)

DATAN (R)

.XADD, .XSUB, .XMPY, .XDIV, .XFER, .. DCM, .FLUN

JSB DATAN
DEF *+3
DEF Y (result)
DEF x

If x < 0, Y = -arctan(-x)

If lxJ>l, let z = l , then Y = 'II - arctan(z)
lxl 2

If I xi <l ' 1 et z = Ix I
If z 2.

If z <

r;:;- 7T 7T Y2 - l, set v = tan16, w= 1b

37T 37T
~- 1 , set v = tan 16 , w = T6

Then T = z-v
l+z·v

Arctan(z)

Arctan(T) : :[+ C::ctan(•) cl [(T2+n2) (•2+n3)+c3l l
(x

2+B,) [(x
2+s2) (x2+B3)+c3]+c2(T2+B3)

c0 = .208979591837

Cl = 2.97061224490 Bl = 5.10299532839

C2 = -3.35025248131 B2 = 2.58417875505

C3 = -.128720995297 B3 = l .21282591656

Accuracy: The relative error in Y = arctan(x+6x) is R = 6x

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

(x2+1) arctan(x)
where 6X represents the round-off error in x. Hence, at
x = .:!:_.001. the accuracy will be 9 significant digits due to
the round-off error in the 39th bit of x. As x diverges from
0, the accuracy becomes 11 significant digits.

ENTRY POINTS:

DATAN
Double Real
Double Real
Callable
Intrinsic Function: DATAN ~x~

Callable
None

1-22

DATN2

PURPOSE: Calculate the double real arctangent of the quotient of two double reals:
z = arc tan (Y/X)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.ENTR,

.XADD,

DATN2
Double Real
Doub 1. e Rea 1

Call able

BCS DOS/ RTE (TYPE)

DATN2 (R)

DSIGN, 01\TAN] . ENTP, DSIGN, DAT AN
.XDIV, .XFER .XADD,

JSB DATN2
DEF *+4
DEF z (res u 1 t)
DEF Y
DEF x
-+

If x = 0, z = sign (Y). TI

2
If x: > 0, z = arctan (Y/x)

.XDIV, .XFER

If x < 0, z = arctan (Y/x) +sign (Y) • TI

Accuracy depends on accuracy of DATAN.

ENTRY POINTS:

Intrinsic Function: DATN2 lY...s.Xl

Callable
None

1-23

DBLE

PURPOSE: Convert a real x to a double real Y.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

nRI F

Real

QQUb]e Rea]
Cgll!;!b]~

Io:tt:] nsj c ELlnct]aa·
Ca 11 able_

NonP

DBLE (P)

. FLUN, • XFER, • XPAK

DBI E

1-24

JSB DBLE
DEF *+3
DEF Y (res u lt)
DEF x

ENTRY POINTS:

'1')

DOS/ RTE (TYPE)

DCOS

PURPOSE: Calculate the double real cosine of double real x: Y = cos (x)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOSI RTE (TYPE)

DCOS (R)

. ENTR, DSIN, l . ENTP, DSIN,

. XFER, .XADD .XFER, .XADD

JSB DCOS
DEF *+3
DEF Y (result)
DEF x
-+

Y = cos (x) = sin (x + n/2)

Accuracy depends on the accuracy of DSIN.

ENTRY POINTS:

DCOS
Double Real
Double Real
Callable
Intrinsic Function: DCOS (x}
Callable
None

1- 25

DDINT

PURPOSE: Truncate a double real x to a double real Y:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

Y =sign (x). (Largest integer.::_ Ix!), or Y = [x]

BCS DOSI RTE (TYPE)

DD INT (P)

• ENTR, .XFER, I • ENTP, .XFER
.FLUN, .XPAK .FLUN, .XPAK

JSB DDINT
DEF *+3
DEF Y
DEF x
+

ENTRY POINTS:

DD INT

Double Real

Double Real

Call able

Intrinsic Function: Dornr L~}

Ca 11ab1 e

None

1-26

-·

DEXP

PURPOSE: Calculate the double real exponential of a double real x: Y = ~

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS D 0 SI RTE (TY P E)

DEXP 1Rl
.ENTR,.ERRR,.XPAK,.XADD,.XSUB,.XMPY, .ENTP,.XADD,.XSUB,.XMPY,.XDIV,
.XDIV,.FLUN,DDINT,SNGL,IFIX,.XFER DDINT,SNGL,IFIX,.FLUN,.XPAK,.XFER

JSB DEXP JSB DEXP
DEF *+3 DEF *+3
DEF Y (result) DEF y (res LI 1t)
DEF x DEF x
+ normal return + error return

+ normal return

N Z
ex= 2 e where: z = ln2 (xlog2e-N)

N = [xlog2e±:_l/2] (see DDINT)

ez = Co + c1 (z(z
2

+c4)+c3z)

Co = 1 .0

cl = 40.0

(z+B1)(z(z2+c4)+c3z)+C2(z2+c4)

c2 = 138.0

c3 = 29.8260869565

c4 = 12.17391304348

Bl = -20.0

Accuracy: The relative error in Y =ex+ ~x is R = b.X where b.X represents
the error in the argument. THus for Jxl <l, the accuracy will
be 11 significant digits, but for jxjnear 100, the accuracy
will be 8 significant digits.

ATTRIBUTES:
ENTRY POINTS:

DEXP
Parameters: Doub.le Real

Result: Double Real
Basic FORTRAN: Not Callable

FORTRAN IV: Intrinsic Function: DEXP _(x)
ALGOL: Not Ca 11 ab l e

Errors: If ex > ll-2-391 2127 ~Qfl

1-·27

DIM

PURPOSE: Calculate the positive difference between real x and Y: z = x - min (x,Y)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

. ENTR

1-28

DIM (P)

J
JSB DIM
DEF *+3
DEF x
DEF Y
+zinA&B

ENTRY POINTS:

DOSI RTE (TYPE)

. ENTP

DllV
(non-EAU Libraries only)

PURPOSE: Divide a two-word integer I by the one-word integer J: K = I/J

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NOTES:

BCS DOSI RTE (TYPE)

.DIV (U)

None

OLD I or OLD I
DIV J JSB,.DIV
-+result in A, remainder in B DEF J

-+result in A, rema i n de r

ENTRY POINTS:

.DIV
Two-word integer (Note 1), integer
Integer 9uotient and remainder in A&B
Not callable
Not callable
Not ca 11ab1 e
-32768 > guotient > 3n67 -+ overflow, quotient + 32767

1. B contains most significant bits, A least.
See MPV.

1-29

in B

DLDST
(non-EAU libraries only)

PURPOSE: Store x, a two-word quantity in the A and B registers, into memory

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:
Ca 11:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

JSB . OLD
DEF x
-+

JSB .OLD
DEF x
-+

.OLD
Two-word quantity
Two-word quantity:
Not callable
Not ca 11 ab 1 e
Not callable
None

DOSI RTE (TYPE)

. OLD (U)

.DST

GETAD, ADRES

or OLD x
-+

or DST x
-+

ENTRY POINTS:

.DST
Two-word quantity:

A&B Two-word quantity
Not callable
Not callable
Not callable
None

1-30

A&B

DLOG

PURPOSE: Calculate the double real natural logarithm of a double real x:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NOTES:

Y = loge x

BCS DOS/ RTE (TYPE)

DLOG (R)

.ENTR, . ERRR, .XADD, .XSUB, .XMPY, . ENTP, . XADD, . XSUB . XMPY, .XDIV,

.XDIV, .XFER, . FLUN, FLOAT, DBLE XFER, .FLUN, FLOAT, DBLE

Accuracy:

DLOG
Double
Double

JSB DLOG
DEF *+3
DEF Y (result)
DEF x

-+ normal return

ln(x) = (n-l/2)ln2 + ln (l+z)
1-z

where: n = EXPON(x)
m = M.ANT (x)
z = m - /2/ 2

m + /2/ 2

ln l+z
r:z

cl -18.4800000000

c2 = -23.643709825

c3 = -.246270037272

See NOTE 1.

ENTRY POINTS:

real
real

Not callable
Intrinsic fun~tioa; DLOG 1xl

Jio.i ~a 11 ab l ~
If x < 0-+ (]] U~)

JSB DLOG
DEF *+3
DEF Y (result)
DEF x
+ error return
-+ norma 1 return

Bl = -15.8484848485

B2 = -3.75400078147

B3 = -1.39751437005

l. The relative error in Y = ln(x+~x) is R = ~x. Hence, the relative
xlnx

error increases as x approaches l. At x = 1.000 :t. .001 the accuracy
will be 9 significant digits due to an error in the 39th bit in the
representation of x. As x diverges from l the accuracy becomes 11
significant digits.

1-31

DLOGT

PURPOSE: Calculate the double real comman logarithm of double real x:
Y = log10x

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RT E (TY P E)

DLOGT (U)

.ENTR, DLOG, .XMPY .ENTP, DLOG, .XMPY

JSB DLOGT JSB DLOGT
DEF *+3 DEF *+3
DEF Y (result) DEF Y (result)
DEF x DEF x
-+ normal return -+ error return

-+ normal return

Y = log10 x = loge x
Accuracy depends on the accuracy of DLOG.

ENTRY POINTS:

1-32

DMOD

PURPOSE: Calculate the double real remainder of two double real values:
z = x mod Y (z = x - [x/Y]Y)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TY P E)

DMOD (p)

~NTR, .XSUB, .XMPY, .XDIV, DDINT l .ENTP, .XSUB, .XMPY, .XD!V, ODINT

JOB DMOD

DMOD
Double Real
Double Real
Ca 11 able
Intrinsic FunctiQn:
Call ab]si
If Y = 01 then z = x

DEF *+4
DEF z (result)
DEF x
DEF Y

ENTRY POINTS:

Dt1lll lx...d

1-33

DSIGN

PURPOSE: Transfer the sign of a double real x to a double real y:
z =sign (y). lxl

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOS/ RTE (TYPE)

DSIGN (P)
L------~1 -'----------

.ENTR •. XFER, .. DCM .ENTP, .XFER, .. DCM

DSIGN
Double Real
Double Real
Callable
Intrinsic Function:
Callable
If y = 0' z = 0.

JSB DSIGN
DEF *+4
DEF z (result)
DEF x
DEF Y

-+

ENTRY POINTS:

DSIGN (x ,Y)

1-34

DSIN

PURPOSE: Calculate the double real sine of double real x:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

Y = sin (x)

BCS

DSIN (R)
.ENTR, .XFER, .XPLY, .XADD, I . XSUB. .XMPY • .XDIV

JSB DSIN
DEF *+3
DEF Y

DEF x
+

x is reduced to the range -~ < x < n
2 - 2

If x <10- 6, sin (x) = x.

1.: C .x21 +l x
Otherwise sin (x) (6 . ~

~=l 1

D 0 SI RTE (TYPE)

.ENTP, .XFER, .XENT .XPLY,

.XADD, .XSUB, . XMPY, . XDIV

c1 = -. 166666666667 E+O c3 = -.198412663895 E-3 c5 = -.250294478915 E-7

c6 = .154001500048 E-9 .833333331872 E-2 c4 = .275569300800 E-5

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

When x is near a non-zero multiple of n, the accuracy of the
result is limited by the accuracy of the subtraction nTI -x.

ENTRY POINTS:

DSIJi
Double Real
Double Real
Callable
Intrinsic FunctiQn: [tSJ ~ (xl
Ca 11 able
None

1 .. 35

DSQRT

PURPOSE: Calculate the double real square root of double real x: Y = sqrt (x)

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOSI RTE (TYPE)

DSQRT (R)

.ENTR, DBLE, SNGL, SQRT, .XDIV,

.XADD, .FLUN, .XPAK, .XFER
.ENTP, DBLE, SNGL, SQRT~ .XDIV,
.XADD, .FLUN, .XPAK, .. XFER

JSB DSQRT
DEF *+3
DEF Y (result)
DEF x
-+ normal return

JSB DSQRT
DEF *+3
DEF Y (result)
DEF x

-+ error return
-+ normal return

A first approximation is found using the
single precision SQRT: z = SQRT (x)

Then Y = z+x/z
-2-

Accuracy is 11 significant digits.

ENTRY POINTS:

1-36

----·...!

ENTIE

PURPOSE: 1) Calculate the greatest integer not algebraically exceeding a real x (ENTIE);

2) Round a real x to the nearest integer; for ties the algebraically larger integer

(. RND).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

OLD x
JSB ENTIE
-)· sign in A, integer in

ENTIE

Real

Integer

Not Callable

Not Callable

...... Jn tr. Funct: ENTIER {x)
None

1-37

D 0 SI RT E (TY P E)

ENTIE (U)
.RND

None

OLD x
JSB . RND

B -+result in A

ENTRY POINTS:

.RND

Real

Integer

Not Callable

Not Callable

Not Callable

None

ENTIX

PURPOSE: Calculate ENTIER of double real X:

Y = ENTIER (x) = greatest integer not algebraically exceeding x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

.ENTR, XFER, .FLUN, .XPAK

ENTIX

Double Real

Double Real

Callable

Callable

Callable

None

1-38

D 0 SI RTE (TYPE)

.XENT (P)
ENTIX I .ENTP, .XFER, .FLUN, .XPAK

JSB .XENT(or ENTIX)
DEF * + 3
DEF Y
DEF x

ENTRY POINTS:

~XENT

Double Real

Double Real

Not Callable

Not Callable

Not Callable -
None

EXP

PURPOSE: Calculate ex, where xis real.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

where

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ERRR, .!ENT,
FLOAT, . PWR2
OLD x
JSB EXP
-+ (Y in A & B)

87 .4"17497202

c2 = 617.9722695

c3 = 0.03465735903

C4 = 9.9545957821

EXP
Real: A & B
Real: A & B
Function: EXP
Function: EXP

(x)
(x)

In tr. Proc.: EXP (x)
x*log~e ~ 124 -+ (07 OF)

DOS/ RTE (TYPE)

EXP (R)

. !ENT, FLOAT,

.PWR2
OLD x
JSB EXP
JSB ERR0 terror)
-+ (Y in A & B)

ENTRY POINTS:

NOTES: 1. If the error condition occurs, the overflow bit is set.

1-39

PURPOSE:

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NOTES:

Add real x to Y:
z = x + y

FADSB

BCS

. FLUN, . PACK

OLD x
JSB .FAD (.FSB)
DEF Y

-+ result in A&B

_.___E8,_Q_

Real
Real
Not Callable
Not Callable
Not Callable
See Note 1

Subtract real Y from x:
z = x - y

DOSI RTE (TYPE)

.FAD, .FSB (P)

1 .FLUN, .PACK, .ZRLB

or

ENTRY POINTS:

.FSB
Real
Real
Not Callable
Not Call ab 1 e

Not Callable
See Note 1

OLD x
FAD (FSB) Y
+result in A&B

1. If the result is outside the range of representable floating point
numbers [-2127 , 2127 (1~2- 23)] the overflow flag is set and the
result 2128 (1-2- 23) is returned. If an underflow occurs, (result
within the range (-2-129 (1+2- 22), 2-129)) the overflow flag is set~
and the result 0 is returned.

1-40

--

FDV

PURPOSE: Divide real x by y: z = X/Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:
Ca 11:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

• FLUN, • PACK

OLD x
JSB . FDV
DEF Y
+ quotient in A&B

.FDV

Real

Real

Not callable

Not callable

Not callable

See FADSB

1-41

DOSI RTE (TYPE)

.FDV (P)

I . FLUN, . PACK, .ZRLB

or OLD x
FDV Y
+ quotient in A&B

ENTRY POINTS:

FLOAT

PURPOSE: Convert integer I to real x

BCS

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

FLOAT
Integer: A
Real: A & B
Function: FLOAT
Function: FLOAT
Not Callable
None

FLOAT (P)

.PACK

LOA I

JSB FLOAT
_,. (x in A & B)

ENTRY POINTS:

(I)

(I)

1-42

DOSI RTE (TYPE)

FMP

PURPOSE: Multiply real x by Y: z = x*Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:
Ca 11:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

• FLUN, • PACK

DLD Y
JSB .FMP
DEF x
-+ product in A&B

.FMP

Real

Real

Not callable

Not callable

Not call ab 1 e

See FADSB

l ·-43

D 0 SI RTE (TY P E)

.FMP (P)

] • FLUN, . PACK, • ZRLB

or DLD Y
FMP x
-+ product in A&B

ENTRY POINTS:

IABS

PURPOSE: Calculate absolute value of integer r.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

IABS (P)

None

LOA I

JSB IABS

-+ (result in A)

ENTRY POINTS:

IABS

Inte_g_er: A

Inte_ger: A

Function: !ABS _(r_l

Function: !ABS _(I1
N.o..:t_ C..a.Uab_le_

None

1-44

DOSI RTE (TYPE)

IAND

PURPOSE: Take the logical product of integers I and J.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

!AND

Integer

Integer

Ca 11ab1 e as

Call able as

Not Callable

None

BCS

!AND (U)

None

JSB !AND

DEF I

DEF J

-+ res u 1 t in A

ENTRY POINTS:

function.

function

1-45

DOS/ RTE (TYPE)

IDIM

PURPOSE: Calculate the positive difference between integers I & J:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

K = I - min (r~J)

BCS

.ENTR

IDIM (P)

I .. ENTP

JSB IDIM

DEF *+3

DEF I

DEF J.

~ K in A

ENTRY POINTS:

IDIM

Integer

Integer

Callable

Intr. function: IDIM lI-2.Jl
Callable as inte_g_er J~rocedure

None

1-46

D 0 SI RTE (TY P E)

IDllNT

PURPOSE: Truncate a double real X to an integer J:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

AT.TR I BUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

NOTES:

J = Sign (x) . (1 argest integer ~ I x I), or J = I x I

BCS DOS/ RTE (TYPE)

ID INT (P)

SNGL, IFIX,
DD INT

JSB IDINT

DEF *+2

DEF x

-+ J in A

ENTRY POINTS:

IDUH
Double real

Inte_ger

Callable as function

Function: IDINT {x}

Callable as i nte_g_er _Qrocedure

NOTE 1.

1. If !DINT (x) is out of range, then J = 32767 and the overflow bit is
set.

1-47

IFIX

PURPOSE: Convert a real x to an integer r.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

IFIX

Real: A & B

Inte er: A

x

IFIX (P)

.FLUN

OLD x
JSB IFIX

-+ (I in A)

ENTRY POINTS:

DOSI RTE (TYPE)

NOTES: 1. Any fractional portion of the result is truncated. If the integer
portion is greater than or equal to 215 , the result is set to 32767.

1-48

INT

PURPOSE: Truncate a real x to an integer J:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

J =Sign (x) . (largest intE!ger .::_I x I), or J = I x I

INT

Real

Integer

Not callable

Function: INT

Not callable

Note 1

BCS

(x)

INT (U)

I FIX

OLD x

JSB INT

+ J in A

ENTRY POINTS:

DOSI RTE (TYPE)

NOTES:
1 . If INT (x) is out of range, then J 32767 and the over fl ow bit is set.

1-49

IOR

PURPOSE: Take logical inclusive - or of integers I and J.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

IOR

Integer

Integer

Callable as function

Callable as function

Not Callable

None

1-50

IOR (U)

None

JSB IOR
DEF I
DEF J

+ result in A

ENTRY POINTS:

DOSI RTE (TYPE)
-·----

ISIGN

PURPOSE: Calculate the sign of z times the absolute value of I, where z is real or integer
and I is integer: Y=sign(z)*lzl

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD: Sarne as SIGN

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TYPE)

I SIGN (P)

None

JSB ISIGN
DEF I
DEF z
-* (Y in A)

ENTRY POINTS:

I SIGN
Real (or int) & integer
Integer: A
Function: I SIGN (z,z)
Function: I SIGN (I,z)
Not Callable
None

1- 51

MANT

PURPOSE: Extract mantissa of a real x where x = MANT (x)* 2EXP(x)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:
Accuracy is 23 bits.

ATTRIBUTES:

.MANT
Parameters: Real

Result: Real
Basic FORTRAN: Not Callable

FORTRAN IV: Not Cal lab le
ALGOL: Not Callable

Errors: None

BCS

1-52

.MANT (P)

Non..e

OLD
JSB.MANT

D 0 SI RTE (TY P E)
-·----

~ Real Mantissa in A & B

ENTRY POINTS:

PURPOSE:

MOD

Calculate the integer remainder of I/J for integer I & J;
K = I modulo J

BCS DOS/ RTE (TYPE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

.ENTR

MOD (P)

J
JSB MOD
DEF *+3
DEF I
DEF J
-+ K in A & B

METHOD: K = I - [I I J] *I

ATTRIBUTES: ENTRY POINTS:

MOD
Parameters: Integer

Result: Integer
Basic FORTRAN: Callable as function

FORTRAN IV: Intrinsic function: MOD (z,J)

ALGOL: Callable as integer procedure
Errors: If J = 0, then K = I

l-!53

.ENTP

MPY
(non-EAU libraries only)

PURPOSE: Multiply integer I and J: x = I*J

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.MPV (U)

None

LOA J or
JSB .MPV
DEF I
+ x in A&B (Note 1)

ENTRY POINTS:

.MPV
Integer
Two-word integer (Note 1)

Not call able
Not callable
Not callable
None

NOTES: 1. B contains most significant bits of product;
A contains least significant bits.

1-54

D 0 SI RTE (TYPE)

LOA J
MPV I
+ x in A&B (Note l)

-·· ... -·-·~---· ..

MXMND

PURPOSE: Calculate the maximum or minimum of a series of double real values:
y = max (A,B,C,) y = min (A,B,C, •...)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

BCS

DMAXl

DMAXl (R)
DMINl
.XSUB
.XFER

JSB DMAXl(or DMINl)
DEF '~+N+2
DEF Y (result)
DEF ;1 (1)
DEF 13 (2)

DEF x (N)
-+

ENTRY POINTS:

DMINl

D 0 SI RTE (TYPE)

Parameters: Double Real Double Real
Result: Double Real Double Real

Bets i c FORTRAN: Callable as Subrouti n'= Callable as Subroutine
FORTRAN IV: Note 1 Note l

ALGOL: Note 2 Note 2
Errors: If N < 2, then Y = 0 If N < 2, then Y = O

NOTES: 1. Intrinsic functions: DMAXl (A,B,c,)
DMINl (A,B,C,)

2. Callable, but only with a fixed number and parameters.

COMMENTS: Requires at least two parameters.

l-·55

MXMNI

PURPOSE: Calculate the maximum or minimum of a series of integer values:
y = MAX (A,B,C, ••••••) y = MIN (A,B,C, .•.•.•)

BCS DOS/RTE (TYPE)

ENTRY
POINTS: AMAX0, MAX0, AMIN0, MIN0 (R)

EXTERNAL
REFERENCES: FLOAT

CALLING JSB Entry Point
SEQUENCES: DEF *+N+l

DEF A (1)
DEF B (2)

DEF x (N)
~Result in A or A & B

ATTRIBUTES: ENTRY POINTS:

AMAX0 MAX0 AMIN0

Parameters: Integer Integer Integer

Result: Real Integer Real

Basic FORTRAN: Note 1 Note 1 Note 1

FORTRAN IV: Note 1 Note 1 Note 1

ALGOL: Note 2 Note 2 Note 2

Errors: Note 3 Note 3 Note 3

MIN0
Integer
Integer
Note 1

Note 1
Note 2
Note 3

, ___ _

NOTES: 1. Functions: AMAX0 (A,B,C •..•) ' MAX0 (A,B,C .•..) AMN0 (A,B,C •...) ' MIN0 (A,B,C •.•.)

2. Callable as int~ger or real procedure, but only with a fixed number of parameters.
3. If the number of parameters is less than 2, Y = 0.

COMMENTS: Requires at least two parameters.
AMAX0 provides a real maximum.
MAX0 provides an integer maximum.
AMIN0 provides a real minimum.
MIN0 provides an integer minimum.

1-56

MXMNR

PURPOSE: Calculate the maximum or minimum of a series of real values:
Y =Max (A,B,c) Y =Min (A,B,c)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Ba.sic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

AMAXl
Real
Real

Note 1
Note 1

Note 2

Note 3

AMAXl , MAXl, AMINl , MINl

!FIX

JSB Entry Point
DEF *+ N + 1
DEF A (1)
DEF B (2)

DEF x (N)
+ Y in A or A & B

ENTRY POINTS:

MAXl AMINl
Real Real
Integer Real

Note 1 Note 1
Note 1 Note 1
Note 2 Note 2

Note 3 Note 3

NOTES: 1. Functions: AMAXl (A,B,c, ...•), MAXl (A,B,c,),
AMINl (A,B,C, ••••) ' MINl (A,B,C, .•••) •

D 0 SI RTE (TYPE)

(R)

MINl
Real
Integer

Note l
Note 1

Note 2

Note 3

2. Callable as integer or real procedure, but only with a fixed number or parameters.
3. If the number of parameters is less than 2, Y = 0.

COMMENTS: Requires at least two parameters.
AMAXl provides a real maximum.
MAXl provides an integer maximum.
AMINl provides a real minimum.
MINl provides an integer minimum.

l ·-57

PWR2

PURPOSE: Calculate x.2n for real x and integer n: Y = x.2n

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

Exponent of x is increased by n.
Accuracy is 23 bits.

ATTRIBUTES:
.PWR2

Parameters: Real & Integer
Result: Real

Basic FORTRAN: Not Callable
FORTRAN IV: Not Callable

ALGOL: Not Callable
Errors: None

.PWR2 (P)

.FLUN
OLD x
JSB .PWR2
DEC n
+ Y in A & B

ENTRY POINTS:

1-58

D 0 SI RTE (TYPE)

REAL

PURPOSE: Extract the real part of a complex x.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ENTR

REAL
Complex
Real
Callable as Function
Intr. Function: REAL (x)

Callable as real procedure
None

1-59

DOSI RTE (TYPE)

REAL (P)

1 .ENTP

JSB REAL
DEF *+2
DEF x
-+ result in A & B

ENTRY POINTS:

SICOS

PURPOSE: Calculate the sine or cosine of a real x (radians): Y = sine (x) or
Y = cosine (x)

BCS DOS/RTE (TYPE)

ENTRY SIN (R)
POINTS: COS

EXTERNAL
REFERENCES: .. FCM, .!ENT, .PWR2, FLOAT, .CHEB

CALLING
SEQUENCES:

METHOD:
X = X *2/IT

DSD x
JSB SIN (or COS)
-+ Y in A&B

x = x -4 *ENTIER ((x+l)4) (See .!ENT)
If x > 1 then x = 2 - x

Y = x *CHEBY (2*x*x-l)

ATTRIBUTES:
SIN

Parameters: Real Radians: A and B
Result: Real: A and B

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

DLD x
JSB SIN (or COS)
JSB ERR~
-+ Y in A&B

Y = COS (x)

ENTRY POINTS:

cos

Same

NOTES: 1. If the error condition occurs, the overflow bit is set.

2.
1 x + 1 -1- -1>214

-+ (~5 OR)
2 Tf 2

1-60

SIN (x - rr/2)

SIGN

PURPOSE: Calculate the sign of z times the absolute value of x, where z is real or integer
and xis real; if z =~'then the result equals~.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

SIGN
Real or Integer and

Real
Function: SIGN {XI
FunctiQn: SIGN (x s

N_o_t Callable
None

DOS/ RTE (TYPE)

SIGN (P)

.. FCM
JSB SIGN
DEF x
DEF z
-+ (result in A & B)

ENTRY POINTS:

Real

z}

z)

1-61

SNGL

PURPOSE: Convert a double real x to a real Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

SNGL

Double Real
Real
Ca 11 able
Int_r. Function: SNGL (x)

... C .. a..l 1ab1 e ...a..s... Rea 1 P...r.o..c.e_dure
Note 1

SNGL (P)

.XFER, .FLUN,

JSB SNGL
DEF *+2
DEF x

-+ Y in A & B

ENTRY POINTS:

NOTES: 1. If x > (1-2-23)*2127 (the maximum real number),
then Y = (1-2- 23)*2127 , and the overflow bit is set.

1-62

DOS/ RTE (TYPE)

.PACK

SQRT

PURPOSE: Calculate the square root of a real x: Y = ;-i(

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

~ (R)

. FLUN, . PWR2, . ERRR
OLD x
JSB SQRT
-+ (Y in A and B)

D 0 SI RTE (TYPE)

. FLUN, . PWR2
OLD
JSB SQRT
JSB ERR~ (error)
-+ (y in A and B)

METHOD:
Choose f such that x=22b(f), · 25 ~f <l. Then IX= 2b* /i.

If is approximated by p
1

= c1f+c 2, where for .25 ~f <,5, c1=.875, c2=.27863 and for

.5 ~f <l, c1=.578125, c2=.421875

This approximation is improved by two Newton iterations: p
2

=(p
1

+f/p
1

)/2

P3 = (p2+f/p2)/2

is the final result

ATTRIBU:TES:
ENTRY POINTS:

SORT
Parameters: Real: A & B

Result: Real: A & B
Basic FORTRAN: Function: SQRT (x)

FORTRAN IV: Function: SQRT (x}
ALGOL: lfilr_ PrQC: SQRT L~}

Errors: X<~_-+ rn3 UN}

NOTES: 1. If the error condition occurs, the overflow bit is set.

1-·63

TAN

PURPOSE: Calculate the tangent of a real x (radians): y =tangent (x)

ENTRY
POINTS:

BCS

TAN (R)

EXTERNAL
REFERENCES:

.PWR2, .. FCM, . I ENT, .CHEB, FLOAT, .PWR2,

CALLING
SEQUENCES:

METHOD: x = 4*x/rr

. ERRR

OLD x
JSB TAN
-+ (Y in A &

x = x-4* ENTIER((x+l)/4) (See .IENT)
If x>l then w = 2-x else w = x
w = w *CHEBY(2*w*w-l)
If x>l then Y = l/w else y = w

ATTRIBUTES:
TAN

Parameters: Real: A and B

Result: Real: A and B

Basic FORTRAN: Function: TAN (x)

FORTRAN IV: Functjon: TAN (x)

ALGOL: Intr. Proc: TAN (x)
.............

Errors: x>2 1 ~ -+(09 OR), tan (x)

B)

ENTRY POINTS:

-"--"'-""

>2 1
i::t5 -+ overflow

DOSI RTE (TYPE)

.. FCM, . I ENT, . CHEB, FLOAT

OLD x
JSB TAN
JSB ERR0 (error)
-+ (y in A & B)

-

NOTES: 1. If the error condition occurs, the overflow bit is set.

1-64

TANH

PURPOSE: Calculate the hyperbolic tangent of a real x: Y=TANH (x)

ENTRY
POINTS:

BCS DOSI RTE (TYPE)

TANH (R)

EXTERN AL
REFERENCES: .PWR2, EXP, .. FCM, ABS, .FLUN

CALLING
SEQUENCES:

METHOD: 1. x > 0

a. x > 16 TANH (x)
TANH (x) b. . 125 < x < 16

c .. 00005 ~ x < .125 TANH(x)

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

where:
f = 4*x*log2e
c1= 5.7707801636
c2= . 01732867951
c3=14. 1384114018
c4=349.6699888

TANH
Real: A and B
Real: A and B
Function: TANH (x)
Function: TANH (X)

Intr. Proc: TANH (.x)

None

OLD x
JSB TANH
-+ (Y in A and B)

(EXP(2*x)-l)/(EXP(2*x) + 1)

~l+,2 [c2+c3 (c4+?) -1 r
d. x < .00005 TANH(x) = x

2. x < 0 TANH (x) = -TANH (-x)

ENTRY POINTS:

l ·-65

XADSB

PURPOSE: Double real addition and subtraction: z = x + Y z = x - y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TYPE)

.XADD (P)
XAOD .XSUB XSUB

.XFER, .FLUN, .XPAK, . XCOM, GETAD, J .PCAO, .XFER, .FLUN, .XPAK, .XCOM
ADRES

JSB(.XADD or .XSUB) JSB(XADD or XSUB)
DEF z (res u 1 t) or DEF*+4
DEF x DEF z (result)
DEF Y DEF x
-+ DEF Y

-+

ENTRY POINTS:
.....---·

.XADD XADD .XSUB XSUB
Double Real Double Real Doub 1 e Rea 1 Double Real
Double Real Double Real Double Real Double Real
Not Callable Callable Not Callable Callable
Not Call ab 1 e Callable Not Callable Callable
Not Callable Call ab 1 e Not Callable Callable
Note 1 Note 1 Note 1 Note 1

NOTES: 1. If z is outside the range: [-2 128 , 2127 (1-2-39)], then the overflow bit is set and

z = 2127 (1-2-39).

If the result is within the range: [-2- 129 (1+2- 22), 2-129], then the overflow bit
is set and z = 0.

1-66

XDIV

PURPOSE: Divide a double real x by double real Y: z = x / Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

BCS

.XDIV (P)
XDIV

DOS/ RTE (TYPE)

.XFER, .XCOM, .FLUN, .XPACK, GETAD, J .PCAD, .XFER, .XCOM, .FLUN, .XPAK
AD RES

JSB .XDIV
DEF z (result)
DEF x
DEF Y
-+

or

ENTRY POINTS:

JSB XDIV
DEF * + 4
DEF z (result)
DEF x
DEF Y
+

Result: 1--~D~!.!..L.li~><lLI~~~~--~~~~~-1.L1.LI4J.Luo......w.J~~~~~~~~~--1
Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

1 ··67

XMPY

PURPOSE: Multiply double real x by double real Y: z = X*Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

.XMPY (P)
XMPY

.XFER, . FLUN, • XPAK, • XCOM, GETAD, l .PCAD,
AD RES

JSB .XMPY or
DEF z (result)
DEF x
DEF Y
+

ENTRY POINTS:

XMP

Double Real

Double Real

Callable

See XADSB

1-68

DOS/ RTE (TYPE)

. XFER, • FLUN, . XPAK, .XCOM

JSB XMPY
DEF * + 4
DEF z (result)
DEF x
DEF Y
+

XPOLY

PURPOSE: Evaluate double real polynomial:

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.XPLY

Double Real ,Integer
Doub.I e Real
Not Callable
Not Callable
Not Callable
If n:: 0, y = 0

y = c
1

DOSI RTE (TYPE)

.XPLY (R)
XPOLY

.ENTR, .XFER, . XADD, . XMPY

JSB .XPLY or XPOLY
DEF * + 5
DEF Y
DEF n (degree+ 1)
DEF x
DEF c

1
(first element of coefficient array)

ENTRY POINTS:

XPOLY

Double Real, Integer
Double Real
Callable
Callable
Callable
If n :S 0, y = 0

1-69

.CDBL

PURPOSE: Converts a complex x to real Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.CDBL

Com_Q_l ex
Double real
Not callable
1illt call abl~

Not callable
..Mone_

1-70

D 0 SI RTE (TYPE)

.CDBL (U)

REAL
DBLE

JSB .CDBL
DEF Y (DP result)
DEF x (complex)
-+

ENTRY POINTS:

.CFER

PURPOSE: Transfer a complex x to complex Y

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.CFER
Complex
Complex
Not callable
Not ca 11 ab 1 e
Not callable
None

1-71

DOS/ RTE (TYPE)

.CFER (U)

GETAD
AD RES

JSB .CFER
DEF Y
DEF x

+

ENTRY POINTS:

.CINT

PURPOSE: Convert a complex x to an integer.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

_._C_IlIT

Com[Jlex

Integer in A

Not callable

Not callable

Not callable

None

1-72

DOS/ RTE (TYPE)

.CINT iUl
REAL
I FIX

JSB . CINT
DEF x
-+result in A

ENTRY POINTS:

.CTOI

PURPOSE: Raise a complex x to an integer power I: z = xI (z is complex)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

See .RTOI

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

. ERRR, . CMPY, .CDIV,
GETAD, ADRES

JSB .CTOI
DEF z (result)
DEF x
DEF J
-+ Normal Return

.CTOI
Complex & integer
Complex
Not callable
Not callable
Not call ab 1 e
x = 0, I<O -+ (14 UN)_

DOSI RTE (TYPE)

. CTO I (R)
.CMPY, .CDIV,
.PCAD

JSB .CTOI
DEF z (res u 1 t)
DEF x
DEF J

-+ Error Return
-+ Norma 1 Return

ENTRY POINTS:

1-73

.DCPX

PURPOSE: Converts a double real x to a complex Y.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.DCPX
Double real
Com..E_l ex
Not callable
Not callable
Not ca 11ab1 e
None

BCS

.DCPX (U)

SNGL
CMPLX

JSB .DCPX
DEF Y
DEF x

-+

ENTRY POINTS:

1-74

DOS/ RTE (TYPE)

.DINT

PURPOSE: Converts a double real x to an integer ..

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

.DINT

Double real

In te_g_er ill A

Not callable

No_t_ c:a 11 able

lint_ _call ab 1 e

None

BCS

.DINT (U)
SNGL
IFIX

JSB • DINT
DEF x
~result in A

ENTRY POINTS:

1-·75

DOSI RTE (TYPE)

.DTOD

PURPOSE: Raise a double real x to a double real power Y:

z = xy (z is double real)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

BCS

JSB . DTOD

.DTOD iRl
DEXP, DLOG
. XMPY, . XFER

JSB .DTOD

DOS/ RTE (TYPE)

CALLING
SEQUENCES: DEF z (result) DEF z (result)

METHOD:

DEF x
DEF Y

+ normal return

If x = 0 and Y>O, z = 0.
If x 1 O and Y = 0, z = 1.
If X>O and Yf0, z = EXP(Y*log(x))

DEF x
DEF Y

+ error return
+ normal return

Accuracy depends on the accuracy of DLOG and DEXP.

ATTRIBUTES:
ENTRY POINTS:

.DTOD
Parameters: Double real

Result: Double real
Basic FORTRAN: Not callable

FORTRAN IV: Not callable
ALGOL: Not callable

Errors: Note 1

NOTES: 1. x = 0, Y'<O + (13 UN)
x<O, ¥10- + (13 UN)

x>(l-2-39)2 127
+ (10 OF)

1-76

.DTOI

PURPOSE: Calculate a double real x raised to an integer power I:

y = xI (Y is double real)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

See .RTOI

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

. ERRR, . XMPY,

.XDIV, .XFER

JSB .DTOI
DEF Y (result)
DEF x
DEF I

+ Normal return

.DTOI

Double real & inte_g_er

Double real

Not callable

JiQ:t._c_allabla

Jia..:t. call ab] e
If x = 0, I < 0 -+ _(12 UNl

l-·77

D 0 SI RTE (TYPE)

.DTOI (R)

.XMPY, .XDIV,
.XFER

JSB . DTOI
DEF Y (result)
DEF x
DEF I

+ Error return
-+ Normal return

ENTRY POINTS:

.DTOR

PURPOSE: Raise a double real x to a real power Y:

z = xy (z is double real)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

JSB . DTOR
DEF z (result)
DEF x
DEF Y

+ normal routine

.DTOR

.DTOD
DBLE

Convert Y to double precision and call .DTOD.

D 0 SI RTE (TYPE)

(U)

JSB .DTOR
DEF z (resu-1 t)
DEF x
DEF Y

+ error return
+ normal return

ATTRIBUTES: ENTRY POINTS:

.DTOR
Parameters: Real & double real

Result: Double real
Basic FORTRAN: Not callable

FORTRAN IV: Not callable
ALGOL: Not callable

Errors: See .DTOD

1-78

.EAU.
(EAU libraries only)

PURPOSE: Replace calls to .MPV, .DIV, .OLD, and .DST with hardware
EAU instructions.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

1-79

DOSI RTE (TYPE)

.MPV (U)

.DIV .OLD .DST

None

See MPV, DIV, DLDST

.FLUN

PURPOSE: 11 Unpack 11 a real x; place exponent in A, lower part of mantissa in B.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

• FLUN

Real

A & B

Not callable

NQ..t. ~a lJ_ab_le_

l!o..t. ..c.all ab l e

None

BCS DOS/ RTE (TYPE)

• FLUN (P)

None l • ZRLB

OLD x
JSB • FLUN
-+ exponent in A
Lower mantissa in B

ENTRY POINTS:

1-80

.ICPX

PURPOSE: Converts an integer I to a complex Y.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ICPX
Integer in A
Complex
Not callable
Not callable
Not callable
None

1 -81

DOS/ RTE (TYPE)

.ICPX (U)

FLOAT
CMPLX

LOA I
JSB .ICPX
DEF Y
-+

ENTRY POINTS:

.IDBL

PURPOSE: Converts an integer I to double real Y.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

. !DBL
Integer in A
Double
Not callable
Not callable
Not callable
None

BCS

. IDBL (U)

FLOAT
DBLD

.LOA I
JSB . !DBL
DEF Y

-+

ENTRY POINTS:

1-82

D 0 SI RTE (TYPE)

.IENT

PURPOSE: Calculate ENTIER (x) for real x: r = ENTIER (x)

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS DOSI RTE (TYPE)

• !ENT (P)

!FIX, . FLUN,
FLOAT

OLD x
JSB .!ENT
JSB error routine
-+ r in A

ENTRY POINTS:

• !ENT

Real

Integer

Not callable

Not callable

Not callable

EXPO (x_l > 14, user must sl!.12.Ql..Y error routine

1-83

.ITOI

PURPOSE: Calculate IJ for integer I and J: K = IJ

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

.ERRR

JSB . nor
DEF I
DEF J
-+ K in A

. !TOI (p)

None

JSB .ITO!
DEF I

DEF J
JSB ERR~
-+ K in A

ATTRIBUTES:
ENTRY POINTS:

. ITOI
Parameters: Integer

Result: Integer
Basic FORTRAN: Not callable

FORTRAN IV: Not callable
ALGOL: Not callable

Errors: See Note 1.

NOTES: 1. Condition Error Code

I = 0, J .::_ 0 08 UN

IJ > 223 08 OF

On error return, overflow bit is set.

1-84

DOS/ RTE (TYPE)

(error return)

.PACK

PURPOSE: Convert signed mantissa of real x into normalized real format.

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

None

.PACK
Mantissa in A & B

Real

Not Callable

Not Callable

Not Cf!llable
None

DOSI RTE (TYPE)

.PACK (P)

l . ZRLB

OLD x
JSB .PACK
BSS 1 (exponent)
~ result in A & B

ENTRY POINTS:

1-85

.RTOD

PURPOSE: Raise a real x to a double real power Y: Z=XY (Z is double real)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

JSB .RTOD
DEF z (result)
DEF x
DEF Y

+ Normal Return

METHOD: Convert x to double real and call .DTOD.

ATTRIBUTES:

RTOO
Parameters: Real and Double Real

Result: Double Rea 1

Basic FORTRAN: Not Callable

FORTRAN IV: Not Callable

ALGOL: Not Callable

Errors: See .DTOD

1-86

D 0 SI RTE (TY P E)

.RTOD (U)

.DTOD
DBLE

JSB .RTOD
DEF z (result)
DEF x
DEF Y
+ Error Return
-+ Norma 1 Return

ENTRY POINTS:

--

.RTOI

PURPOSE: Calculate xI for real x and integer I: Y=XI.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

.RTOI (R)

.ERRR

JSB .RTOI
DEF x
DEF I

-+ Y in A & B

DOS/ RTE (TYPE)

None

JSB . IUOI
DEF x
DEF I

JSB ERR~
-+ Y in A & B

METHOD: The only possibility of inaccuracy is that introduced by roundoff in the FMP or the
FDV routine if I < 0.

xI gives the same result as the expression:

X*X*X* •• *X 1/~....:.J
~ or It1111es

L.....-----1

ATTRIBUTES:
ENTRY POINTS:

.RTOI

Parameters: Real & Integer

Result: Real

Basic FORTRAN: Not Callable

NOTES:

FORTRAN IV: Not Callable

ALGOL: Not Callable

Errors: See Note 1

1. Condition

X = 0, I < 0
xlII> 2128

Error Code

~6 UN

(floating point overflow)

On error return, overflow bit is set.

'1-87

.RTOR

PURPOSE: Calculate xy for real x and Y: z = xy

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NOTES: 1.

BCS

.RTOR (R)
ALOG, EXP;
.ERRR

JSB .RTOR
DEF x
DEF Y
-+ z in A & B

.RTOR
Real
Real
Not Callable
Not Callable
Not Callable
See Note 1

Condition

x < 0, y ~ 0 }
= 0, ,. 0

lx*ALOG(x) I ~ 124

ENTRY POINTS:

Error Code
04 UN

07 OF
On error return, the overflow bit is set.

1-88

DOSI RTE (TYPE)

ALOG, EXP

JSB .RTOR
DEF x
DEF y

JSB ERRY'
-+ z in A & B

.XCOM

PURPOSE: Complements a double real unpacked mantissa in place. Upon return,
A-register= 1 if exponent should be adjusted; otherwise A= 0.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.XCOM
Double real
Double real
Not callable
Not ca]] '1.bl e
Not call ab 1 e
None

BCS DOS/ RTE (TYPE)

.XCOM (P)

.XFER

JSB .XCOM
DEF x
ADA (exponent)
STA (exponent)

ENTRY POINTS:

1-89

PURPOSE: Double real transfer: Y = x

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

LOA (address of x)
LOB (address of Y)
JSB .XFER
+

.XFER
Double real
Double real
Not callable
Not callable
Not callable
None

.XFER

DOSI RTE (TYPE)

.XFER (P)

.OFER

None

JSB .OFER
OR DEFY

DEF x
+

ENTRY POINTS:

.OFER
Double real
Double real
Not callable
Not callable
Not callable
None

1-90

.XPAK

PURPOSE: Double real mantissa is normalized, rounded, and packed with exponent;
result is double real.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

._lPAK
Double real2
Double real
Not ca 11ab1 e

1io..t. ~.l l ab l e
1io..t. ..call ab 1 e

See XADSB

BCS DOS/ RTE (TYPE)

.XPAK (P)

.XFER

LDA exponent
JSB .XPAK
DEF x (3-word mantissa)
+result in x

ENTRY POINTS:

ex12onent

1-91

.. CCM

PURPOSE: Complements a complex variable x in place.

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

__._ .CCM
Complex
Complex
Not callable
Not callable
Not callable
None

BCS

.. CCM (u)

GETAD
ADRES .. FCM

JSB .. CCM
DEF x
-+

ENTRY POINTS:

1-92

DOSI RTE (TYPE.)

PURPOSE: Double real compliment.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

nr.M

Double

Double real

Not callable

Not callable

Jfilt callable

None

.. DCM

BCS DOSI RTE (TYPE)

.. DCM (P)

. FLUN, • XCOM

.XPAK, .XFER

JSB •• DCM
DEF x
-+

ENTRY POINTS:

1-93

.. DLC

PURPOSE: Load and complement a real x.

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.. DLC
Real
Real
Not callable
Not callable
Not callable
None

1-94

DOSI RTE (TYPE:)

.. DLC (P)

None

JSB .. DLC
DEF x
~compliment in A & B.

ENTRY POINTS:

PURPOSE: Complement real x

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

•• FCM

Real

Real

Not callable

Not callable

Not callable

None

.. FCM

BCS DOSI RTE (TYPE)

•• FCM (P)

•• DLC

OLD x
JSB •• FCM
-+ result in A & B

ENTRY POINTS:

1--95

AXIS

PURPOSE: Plots one axis (x or Y) of a graph with a specified axis label,
a specified length, and specified values at each inch marker.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOS/ RTE (TYPE)

E AXIS (U)
----------1

NUMB, SYMB, PLOT,
and numerous library subroutines

AXIS
Mixed
N/A

JSB AXIS
DEF *+9
DEF floating-point origin: x coordinate
DEF floating-·point origin: Y coordinate
DEF axis 1 abel
DEF integer number of characters in label (positive to

place label counterclockwise to axis--as in Y axis-­
and negative to place label clockwise--as in X axis)

DEF length of axis in floating-point inches
DEF angle of axis in floating-point degrees
DEF minimum value of axis (calculated by SCALE)
DEF incremental value (calculated by SCALE)
+ norma 1 return

ENTRY POINTS:

Callable as subroutine
Callable as subroutine
Ca 11 able as CODE procedure
None

NOTES: 1. SCALE must be called before /\XIS.
2. AXIS calls SYMB to plot the labels 0.14 inches high.
3. Sample ca 11 s to AXIS:

Plot the X axis, starting at (0,0) with the label 11 POWER 11 on
the clockwise side, 6.5 inches long, at 0 degrees.

CALL AXIS (0.0,0.0,IPWR,-5,6.5,0.0,X(51),X(52))
Plot a similar Y axis with the label 11 PSI 11 on the counterclockwise
side, ten inches long at 90 degrees.

CALL AXIS (0.0,0.0,IPSI,3,l~.0.90.0,Y(51),Y(52))

2-1

BINRY

PURPOSE: Reads or writes data at a specified location (logical unit number,
track, sector, and offset) of a disc.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

N/A

BREAD
Mixed
Mixed
Callable
Callable

~

None

D 0 SI RT E (TYPE)

BREAD, BWRIT (U)

EXEC, .OPSY

JSB BREAD {of BWRIT) (Note 1)
DEF *+7
DEF buffer
DEF buffer length {words)
DEF logical unit
DEF track
DEF sector
DEF offset {Note 2)
-r

ENTRY POINTS:

BWRIT
Mixed
Mixed
Callable
Callable
Callable
N.Q.ne

NOTES:
1. BREAD is the read entry point and BWRIT is the write entry point.

2. Offset: If the offset equals 0, the transfer begins on the sector
boundary; if the offset equals n, the transfer skips n vwrds
into the sector before starting.

2-2

CLl~IO

PURPOSE: Performs a system clear request which makes all I/0 devices available
for the initiation of a new operation. (In RTE/DOS, CLRIO is a durrmy
compatibility routine.)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

. IOC.

CL RIO
None
None
Callable
Callable
Callable
None

BCS DOSI RTE (TYPE)

CLRIO (U)

l None

JSB CLRIO
DEF *+l
-+

ENTRY POINTS:

2·-3

PURPOSE:

CODE

Provides internal conversion according to a FORMAT from one core
area to another core area.

ENTRY
POINTS:

BCS DOSI RTE (TY PIE)

CODE (P)
ACODE

EXTERN AL
REFERENCES: None

CALLING
SEQUENCES: JSB CODE

DEF *+l
Read or write request
(see Note 1)

METHOD: Utilizes the internal conversion capability of the Formatter.

ATTRIBUTES: ENTRY POINTS:

CODE A CODE
Parameters: None None

Result: None None
Basic FORTRAN: Callable Call able

FORTRAN IV: Callable Callable
ALGOL: Not callable (Note 21 C~ll ab 1 e (Note 2)

Errors: None None

NOTES: 1. The call to CODE must immediately precede a READ or WRITE request where the
identifier of an ASCII record buffer replaces the logical unit number. Any
labels must be attached to the CODE call. as it and the READ/WRITE call are
treated as one statement.

In FORTRAN the calling sequences are:

CALL CODE
READ (v,n)L

CALL CODE
WRITE (v,n)L

where v is the unsubscripted identifier of an ASCII record buffer;
n is the number of a FORMAT Statement; and
L is an Input/Output List of variables.

On read, the contents of the ASCII record v are converted according to the
FORMAT n and are stored in the variables listed in L.

On write, the contents of the variables listed in L are converted to ASCII
according to FORMAT n and the ASCII characters are stored in v.

2. ALGOL programmers must use the entry point ACODE instead of CODE.

2-4

DBIKPT

PURPOSE: Processes breakpoints for DOS/RTE DEBUG. Never called by user programs.
See DEBUG

ENTRY
POINTS:

EXTERN AL
REFERENCES:

BCS

N/A

DOS/ RTE (TYPE)

$DBP2, $MEMR (U)

$DBP1, DEBUG

'2.-5

PURPOSE:

METHOD:

COMMENTS:

DEBUG

Aids the user in debugging his relocatable assembly language programs ..

The operator links DEBUG to a program at load-time. See the
manual for your operating system.

The BCS DEBUG executes programs interpretively and allows the operator to
set values in memory and registers, dump memory, set relocation bases,
establish a breakpoint at an instruction or operand, and set up a trace.

The RTE/DOS DEBUG does not interpret programs; it places jump subroutine
instructions in each breakpoint location and allows the program to execute
normally until it reaches a breakpoint. The operator can set a relocation
base, set instruction breakpoints, dump rremory, and set values in memory
or registers.

2-6

ENDIO

PURPOSE: Delays further program execution until all current input/output
operations are completed.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

END IO

. roe ..

JSB ENDIO
DEF *+l
~ returns when all I/O is

completed.

Executes a system status request.

ATTRIBUTES:

ENDlD_
Parameters: None

Result: None
Basic FORTRAN: Callable

FORTRAN IV: Callable
ALGOL: Call able

Errors: None

2-7

DOS/ RTE (TYPE)

N/A

ENTRY POINTS:

ERR¢

PURPOSE: Prints a 4 character error code on the list device (the BCS version is a
dummy routine for compatability).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

NONE

METHOD: NN is the routine identifier
xx is the error type }

D 0 SI RT E (TY P E)

ER!ill (U)

l EXEC, .OPSY

LOA NN}
LOB xx see below
JSB ERR0

-+

pairs of ASCII characters.

Prints this on the list device: name NN xx

where name is the name of the program.

ATTRIBUTES:
ENTRY POINTS:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors: None

2-8

EXEC

PURPOSE: Provides program termination for RTE/DOS compatable programs when run in BCS.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

EXEC

.STOP

JSB EXEC
DEF *+2
DEF RCODE
+

RCODE DEC 6

METHOD: Calls .STOP.

ATTRIBUTES:
EXEC

Parameters: Integer
Result: None

Basic FORTRAN: Use END statement in main
FORTRAN IV: Use END statement in main

ALGOL: Use END$
Errors: None

2-9

DOSI RTE (TYPE)

N/A, part of system

ENTRY POINTS:

program.
proJl_ram

GET AD

PURPOSE: Determines the true address of a parameter passed to a subroutine and
places the address in ADRES.

BCS D 0 SI RT E (TY P E)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD: JSB SUB
DEF X[, I]

SUB NOP
JSB GETAD
DEF SUB,!
LOA ADRES

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

GETAD. (U)
AD RES

NONE

JSB GETAD
DEF SUB,!
LOA ADRES
see below

ENTRY POINTS:

GET AD
Inte_g_er Address
Address
Not Callable
Not Callable
Not Callable
None

NOTES: 1. May not be called by privileged or re-entrant routines;
see .PCAD.

2-10

A DR ES
NA
Integer
Not Callable
Not Callable
Not Callable
None

INDEX

PURPOSE: Returns the address (.INDA) or value (.INDR) of an ALGOL array.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

. IOC.

DOS/ RTE (TYPE)

. INDA (U)

. INDR

J EXEC

JSB .INDA (or .INDR)
DEF drray table (see below)
DEF- number of indices
DEF subscript l

DEF subscript N
~result in A or A & B

METHOD: Array Table:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

TABLE ABS number of indices (+=real, - integer)
ABS size of 1st dimension
ABS -lower bound of 1st dimension

ABS size of last dimension
ABS - lower bound of last dimension

ENTRY POINTS:

. INDA .INDR
Integer Integer
Address: A Va 1 ue: A or A &
Not Callable Not Callable
Not Ca 11ab1 e Not Callable
Not Call ab 1 e Not Callable
See Note 1 See Note 1

NOTES: 1. If array not properly defined:
A = Address of Call
Prints INDEX? on teleprinter.

When RUN is pushed, routine returns with result= 0.

2-· ll

B

--

ISSW

PURPOSE: Sets the sign bit (15) of A-Register equal to bit N of the switch register.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

ISSW

Integer
Inte_g_er
Function: ISSW {N}
Function: _ISSW ill

ISSW (U)

NONE

LOA N
JSB ISSW
-+ resu 1 t in A

ENTRY POINTS:

Not callable directly; see ALGOL manual.

None

2-12

DOS/ RTE (TYP IE)

!

LEA DR

PURPOSE: Produces consecutive feed frames (octal zeroes) on punched tape to serve as
1 eader.

BCS DOSI RTE (TYPE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

LEADR N/A

. roe.' . ENTR

JSB LEADR
DEF * + 3
DEF u (see below)
DEF N (see below
-+

METHOD: u is the octal unit-reference number of the punched tape unit;

N is the decimal number of inches of leader to be punched.

ATTRIBUTES:
ENTRY POINTS:

LEADR
Parameters: Integer

Result: None
Basic FORTRAN: Callable

FORTRAN IV: Callable
ALGOL: Callable

Errors: If u is not a P.a12er taQe device-+ comouter halts (A

2-13

= OJ.

LINE

PURPOSE: Plots a line and/or symbols through the successive data points in
arrays previously scaled by the SCALE routine.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

LINE
Mixed
N/A

BCS D 0 SI RT E (TY P IE)

JSB LINE
DEF *+7

LINE (U}

SYMB, PLOT, numerous library r~
DEF x (real array scaled for the abscissa)
DEF Y (real array scaled for the ordinate}
DEF N (integer number of points to be plotted}
DEF K (repeat factor, same as in SCALE}
DEF J (integer control value)
DEF L (number of centered symbols to be plotted;

see SYMB for table)

where J = 0, for a line plot only;
= 1, for a symbol at every point; no line;
= -1, for a line and a symbol at every point;
= -2, for a line and a symbol at every second point;
= -N, for a line and a symbol at every Nth point.

ENTRY POINTS:

Callable as subroutine
Callable as subroutine
Callable as CODE _p_rocedure
None

NOTES: 1. Since the LINE routine requires the adjusted minimum and delta values
produced by the SCALE routine, SCALE must be called before LINE for
each graph.

2. Sample calls to LINE:

CALL LINE (x, Y, St), H), t)}

(plots a line of 50 XY values)

CALL LINE (x, Y, s~. l. -5, 3)

{plots a line of 50 points with a 11 +11 symbol at every fifth point)

2-14

PURPOSE:

MAGTP

Performs utility functions on rnagnetic tape and other devices:
checks status, performs rewind/standby, writes a gap, issues a
cl ear request, and does bl ockecl ·input/output.

ENTRY
POINTS:

BCS

r
IEOF,IERR,IEOT,ISOT,LOCAL,IWRDS,
RWSTB ,GAP3,CLEAR, !UNIT ,BFINP ,BFOUT.

D 0 SI RTE (TYPE)

IEOF,IERR,IEOT,ISOT,LOCAL,
IWRDSjN/A in RTE).RWSTB

EXTERNAL
REFERENCES: 1. ENTR, • IOC. .ENTR, EXEC

ATTRIBUTES:
ENTRY POINTS:

IEOF,IERR,IEOT,ISOT,LOCAL,IWRDS,IUNIT RWSTB,GAP3,CLEAR,BFINP,BFOUT
Parameters: Integer Integer

Result: Integer: A N/A
Basic FORTRAN: Callable as function Callable as subroutine

FORTRAN IV: Callable as function Callable as subroutine
ALGOL: Callable as integer procedure Callable as subroutine

Errors: Returns on illegal call Ret·urns on 111e9al call

CALLING
SEQUENCES:

The calling sequence and purpose of each entry point is:

JSB IEOF
DEF *+2
DEF unit
+

JSB IERR
DEF*+2
DEF unit
+

JSB IEOT
DEF *+2
DEF unit
+

JSB ISOT
DEF *+2
DEF unit
+

JSB LOCAL
DEF *+2
DEF unit
+

JSB IWRDS
DEF *+2
DEF unit
+

JSB IUNIT
DEF *+2
DEF unit
+

Returns a negative value in A if an end-of-file
was encountered during last tape operation on
the logical unit specified.

Returns a negative value in A if a parity or
timing error was not cleared after three read
attempts during the last operation on the
specified unit (cannot occur if EOF occurs).

Returns a negative value in A if an end-of-tape
was encountered during the last forward movement
of the specified unit.

Returns a negative value in A if the start-of-tape
marker is under the tape head of the specified
unit.

Returns a negative value in A if the specified
unit is in local mode.

(Not available in RTE.) Returns the value of the
transmission log of the last read/write operation
on the specified unit. (In the formatter environ­
ment, this value is always a positive number of
characters.)

(Not available in DOS/RTE.) Returns the status
word (EQT word #2) of the specified logical unit.
If the unit is busy, the word is negative. If
the specified unit is 0, the routine returns
system status.

2-15

CALLING
SEQUENCES:

JSB RWSTB
DEF *+2
DEF unit

JSB GAP3
DEF *+2
DEF unit

JSB CLEAR
DEF *+2
DEF unit

JSB BFINP
DEF *+4
DEF unit
DEF buffer

address
DEF buffer

1 ength

JSB BFOUT
DEF *+4
DEF unit
DEF buffer

address
DEF buffer

1 ength

MAGTP

Rewinds the specified logical unit and sets it
to LOCAL.

(Not available in DOS/RTE.) Writes a gap on the
specified logical unit.

(Not available in DOS/RTE.) Issues a clear
request to the specified unit.

Performs buffered input from the specified unit
to the specified buffer. (Not available in
DOS/RTE.) Unit is positive for binary, negative
for ASCII. Buffer length is positive for words,
negative for characters.

Performs buffered output from the specified
buffer to the specified unit. (Not available
in DOS/RTE.) Unit is positive for binary,
negative for ASCII. Buffer length is positive
for words, negative for characters.

The previous two calls should be followed by !UNIT tests
for completion of operation in systems which are not
using buffered .IOC ..

2-16

MEMRY

PURPOSE: Performs memory a 11 oca ti on for buffered . IOC. ; user program requests
buffers to be allocated and released from the meioory available
after program loading.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ALC., .RTN., .CLR.

.MEM., • IOC.

To allocate a buffer:

JSB .ALC
DEC number of words

DOSI RTE (TYPE)

N/A

Upon return, if the buffer request is filled:
A=address of first word of buffer
B=number of words allocated

If the buffer is not allocated because sufficient
memory is temporarily unavailable:

A=O
B=maximum buffer length that can be allocated

without releasing some previous buffer space.
If the buffer is not allocated because sufficient
memory is not available even when all buffers are
released:

A=-1
B=maximum buffer length that can be allocated

if all other buffers are released.

To determine the largest possible buffer that can be allocated if all
other buffers are released:

JSB .AlC.
DEC 32767

The results are returned in the registers:
A=-1
B=maximum buffer length

To release a specified area of buffer:

JSB .RTN.
DEF address of first wo.rd of buffer to be released
DEC number of words to be released
-+

To release all storage allocated:

CLA
STA . CLR.

ENTRY POINTS:

.ALC. .RTN. .CLR.
Integer Inteqers NLA
Values: A&B N/A NL_A
Not callable Not callable Not callable
Not call ab l e Not callable Not callabJe
Not ca 11 ab 1 e Not callable Not ca 11 ab l_e_
None None None

2-· l 7

NUMB

PURPOSE: Plots a floating-point nurrber, with or without the decimal point, at
a specified height, location, and angle.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

NUMB

Mixed
N/A
Callable as

BCS

JSB NUMB
DEF *+7

DOS/ RTE (TYPE)

NUMB (U) ~
SYMB and numerous library subr~

DEF floating-point x coordinate of
lower left corner where number
is to be plotted

DEF floating-point Y coordinate
DEF height, in floating-point inches,

of number
DEF the floating-point number to be plotted
DEF the angle, in floating-point degrees,

at which the number is to be plotted
DEF N

where N = 0, for print the decimal point of
an integer;

subroutine

= 1, for suppress decimal point of an
integer.

ENTRY POINTS:

Callable as subroutine
Callable as CODE procedure
None

NOTES: 1. Sample call to NUMB:
Plot three nurrbers ,l inches high, with decimal point
suppressed, at 8.79 inches above 0,0 and at 5.32, 6.3
and 7. 16 inches to the right of 0,0.
CALL NUMB (5.32, 8.79, 0.10, FLOAT (r), 0.0, -1)
CALL NUMB (6.30, 8.79, 0.10, FLOAT (J), 0.0, -1)
CALL NUMB (7. 16, 8.79, 0.10, FLOAT (K), 0.0, -1)

2-18

OVF

PURPOSE: Returns value of overflow bit in bit 15 of the A-Register
and clears the overflow bit.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS DOSI RTE (TYPE)

OVF (U)

None

JSB OVF
~ result in A

METHOD: If overflow bit is set (on), the A-Register is set negative;
if the overflow bit is off, the A-Register is set positive.

ATTRIBUTES:
ENTRY POINTS:

OVF
Parameters: None

Result: Inte_g_er: A
Basic FORTRAN: Not callable

FORTRAN IV: Not ca 11ab1 e
ALGOL: Not callable

Errors: None

2·-19

PAUSE

PURPOSE: Prints the following message on the teleprinter: name: PAUSE xxxx or
name: STOP xxxx where name is the calling program name and xxxx is th1~
specified integer I.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

N/A

.PAUS
Integer
None
Not callable
Not callable
Not ca 11 able
None

DOS/ RTE (TY P !::)

.PAUS. .STOP (U)

EXEC

LOA I
JSB .PAUS (or .STOP)
+
See Note l.

ENTRY POINTS:

.STOP
Inte_g_er
None
Not callable
Not callable
Not callable
None

NOTES: 1. When .PAUS is used. the program may be restarted using
GO (RTE) or :GO (DOS).

2-20

PLOT

PURPOSE: Moves the pen of a plotter to any location on the graph with the pen up
or down, establishes new origin points, sets the plotter logical unit
(RTE/DOS), determines current position, varies the plot factor, and
allows external buffers to be established.

BCS DOS/ RTE (TYPE)

ENTRY ~ POINTS: ·,WHERE,FACT,PLOTB PLOT,PLTLU,WHERE,FACT,PLOTB (U)

EXTERNAL
REFERENCES: 'R,.IOC.,IFIX,FLOAT .ENTR,EXEC,IFIX,FLOAT

ATTRIBUTES:
ENTRY POINTS:

PLOT WHERE FACT PLO TB PLTLU

Parameters: Mixed None Real Mixed Integer

Result: N/A Real N/A N/A N/A
Basic FORTRAN: Callable Callable Callable Call able Callable

FORTRAN IV: Callable Callable Callable Callable Callable

ALGOL: Callable Callable Call able Callable Call ab le

Errors: None None None None None

:~-21

PLOT

CALLING SEQUENCES:

PLOT Calling Sequences

The PLOT routine is called by a FORTRAN CALL statement or an Assembly Language
calling sequence.

FORTRAN: CALL PLOT x, Y, IC

x and Y = the coordinates to which the pen is to be moved. All X and Y
coordinates must be expressed as floating-point inches in
deflection from the origin.

IC= an integer constant or variable name set equal to one of the following:

-2 = Move with the pen down; consider the point where the
pen stops (x,Y) as the new origin.

-3 = Move with the pen up; consider the point where the
pen stops (x,Y) as the new origin.

+2 = Move with the pen down; origin unchanged.

+3 = Move with the pen up; origin unchanged.

ASSEMBLY LANGUAGE:

JSB PLOT
DEF *+4
DEF x (Defines address of x coordinate)
DEF Y (Defines address of y coordinate)
DEF IC (Defines address of pen command)
+

PLOT Coding Requirements

Before a call is made to PLOT in DOS/RTE, an initial call to the PLTLU entry point
must be made to insure that the logical unit number of the referenced plotter is
placed in the l/0 request.

A single FORTRAN statement moves the pen to the desired location.

All X and Y,coordinates must be expressed as floating-point inches in deflection
from the origin.

2-22

PL.OT

PLOT Example

To plot a rectangle 8.5 11 by 11 11 startinu at the origin, four calls to the PLOT
routine must be made (assuming that the pen starts at the origin).

CALL PLTLU (ILU)

Initial call to PLTLU for plotter's log·ical unit number

CALL PLOT (11. ,0. ,+2)

Moves the pen from X,Y = (0,0) to X,Y = (11 ,0)

CALL PLOT (11.,8.5,+2)

Moves the pen from X,Y = (11,0) to X,Y == (11,8.5)

CALL PLOT (0.,8.5,+2)

Moves the pen from X,Y = (11,8.5) to X,Y = (0,8.5)

CALL PLOT (0.,0.,+2)

Moves the pen from X,Y = (0,8.5) to the origin

PLOT Associated Functions

The PLOT routine can perform additional functions when calls are made to the
following entry points: PLTLU, WHERE, FACT and PLOTB.

PLTLU ENTRY POINT (RTE/DOS ONLY)

A call to the PLTLU entry point allows the user to designate the logical unit number
for the plotter. The logical unit numb,er must be designated before a call to the
PLOT routine. Otherwise, the user program will be terminated when an 1/0 request
containing a logical unit value of zero is made by the PLOT routine. The logical
unit number may be varied by the user program to direct output to more than one
plotter. (In BCS, the PLOT routine examines the equipment table to find the first
plotter; all output is then made to that plotter.)

PLTLU Calling Sequences

The PLTLU function can be called by a FORTRAN CALL statement or an Assembly Language
calling sequence.

FORTRAN: CALL PLTLU (ILU)

ILU = An integer value representing the logical unit number. Refer to the
Real-Time Software and DOS reference manuals for discussion of logical
unit values.

ASSEMBLY LANGUAGE:

JSB PL TLU
DEF *+2
DEF ILu (Defines address of logical unit value)
-r

2-23

PLOT

WHERE ENTRY POINT

A call to the WHERE entry point allows the user to determine the current plottE!r
pen position.

WHERE Calling Sequences

The WHERE function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL WHERE (x,Y)

x and y = The addresses in which the X and Y coordinates of the current
pen position are stored (in floating-point format) by the
WHERE function.

ASSEMBLY LANGUAGE:

WHERE
*+3

JSB
DEF
DEF
DEF

x {Define the locations where the current}
y pen positions are to be stored.

FACT ENTRY POINT

A call to the FACT entry point allows the user to vary the plot scale factor.

FACT Calling Sequences

The FACT function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL FACT (N)

N = The floating point number used to establish the new scaling factor.
Note that N is multiplied by 100.00 for the 100 plotter increments/
inch when the new scaling factor is established. The plot factor i:s
initialized at 1.

ASSEMBLY LANGUAGE:

JSB FACT
DEF *+2
DEF FCT (Defines the address of the factor modifier)
-+

2-24

PLOT

PLOTB ENTRY POINT

A call to the PLOTB entry point allows the user to specify a 11 plot work 11 buffer
external to the PLOT routine. This entry point is initialized using an internal
ten-word buffer.

PLOTB Calling Sequence~

The PLOTB function can be called by a FORTRAN CALL statement or an Assembly
Language calling sequence.

FORTRAN: CALL PLOTB (A,L)

A = The starting address of the external buffer. An address of zero
specifies the ten-word internal buffer.

L = A positive decimal integer specifying the buffer length in words.

ASSEMBLY LANGUAGE:

JSB PLOTB
DEF *+3
DEF A (Defines the buffer sta:rting address)
DEF L (Defines the buffer length)
-+

2-25

PT APE

PURPOSE: Positions a magnetic tape unit by spacing forward or backward a
number of files and/or records.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOS/ RTE (TYPE)

1--------r----
PTAPE (U) ~

• IOC. , • ENTR EXEC, . ENTR

JSB PTAPE
DEF *+4
DEF logical unit
DEF file count
DEF record count
-+

{ see below

File count: positive for forward, negative for backward.

For example:

0 means make no file movements.
-1 means backspace to the beginning of the current file.
1 means forward space to beginning of the next file.

-2 means backspace to the beginning of the previous file.

Record count: positive for forward, negative for backward.

The file count is executed first, then the record count.
EOF marks count as a record.

For example:

0,-1 means move back one record.
-1,0 means backspace to the first record of the current file.

See Note 1.

ENTRY POINTS:

PTAPE
Integers
None
Callable
Callable
Callable
None

NOTES: 1. The diagram below shows how the position of the magnetic tape would change
with several example file/record counts.

(-1,-2) (-1,-1) (-1,0) (~,-1) (+l,-1) (+1,0)

o•o~rn'o o•o o\m'o
liJ 1 l1J

where c:::===J = record current
position

COMMENTS:

1. After using PTAPE, always check status with MAGTP.

2-26

RM PAR

PURPOSE: Retrieves parameters passed by operator when a suspended program is
resumed.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

N/A

RMPAR
Integer
Integer
Callable
Call ab 1 e
Callable
None

BCS DOSI RTE (TYPE)

RMPAR (U)

None

Suspend call
JSB RMPAR
DEF *+2
DEF ARRAY
+

ARRAY BSS 5

ENTRY POINTS:

2-27

SCALE

PURPOSE: Scales an array of floating-point numbers to fit a specified size graph;
the values generated are used by the LINE and AXIS routines.

ENTRY
POINTS:

BCS DOSI RTE (TYPE)

SCALE (U)

EXTERNAL
REFERENCES: Numerous library subroutines

CALLING
SEQUENCES:

(Separate calls
JSB SCALE

required for X and Y axes)

DEF *+5
DEF array containing real values
DEF length of axis in floating-point inches
DEF integer number of points to be plotted
DEF x (integer which specifies the points to
-r be scaled: K=l, every point; K=2, every

other _2_0int; K=3, eve~ third 2_oint; etc.)

ATTRIBUTES:
ENTRY POINTS:

SCALE
Parameters: Mixed

Result: NLA
Basic FORTRAN: Callable as subroutine

FORTRAN IV: Callable as subroutine
ALGOL: Ca 11ab1 e as CODE Qrocedure

Errors: None

NOTES:
1. The adjusted minimum value is a number less than or equal to the minimum data value.

The adjusted delta value is the result of subtracting the minimum data value from
the maximum data value, divided by the length of the axis and adjusted to provide
one-inch increments that will cover the data. The adjusted scale values are used
by the LINE and AXIS routines.

2. The adjusted values are stored following the array. The minimum value for Y is
stored in Y(NP*K+l), where NP is the number of points to be plotted; the delta
value is stored in Y(NP*K+2). Therefore, the array must be dimensioned (x+2)
locations larger than (NP*K), which is the number of locations necessary for data
points. Normally, x=l, so an array ZIP of ten data points would be dimensioned
as ZIP (12).

3. Sample use of SCALE: Scale every point in a 50-point array, fitting X values on a
6.5-inch X axis and Y values on a 10-inch Y axis:

DIMENSION X(52),Y(52)

CALL SCALE (X,6.5,50,1)
CALL SCALE (Y,10.~,5~,l)

2-28

SR·EAD

PURPOSE: Reads a record from a device specified by a logical unit number
(used QD.}.l'._ by system programs).

BCS DOS/ RTE (TYPE)

ENTRY E POINTS: %READ, %JFIL, %RDSC, (U)

EXTERNAL
REFERENCES: .OPSY, EXEC

2:-29

PURPOSE:

SYMB

Plots a string of characters at a specified location on the plotter;
nunter, height, and angle of characters can be varied.

BCS DOSI RTE (TYP IE)

ENTRY
POINTS: SYMB (U) =1

EXTERNAL
REFERENCES: PLOT,SIN,COS,.ENTR PLOT,SIN,COS,.ENTR,ERR~

CALLING
SEQUENCES:

JSB SYMB
DEF *+7
DEF x (defines address of floating-point X coordinate)
DEF Y (defines floating-point Y coordinate)
DEF size (defines height in floating-point inches)
DEF IASCI (defines address of ASCII array or special symbol number)
DEF THETA (defines angle in degrees)
DEF N (defines number or type of characters)

If N>O, N = number of ASCII characters to be plotted from array .rnscr.

N=O, plot only lower character from IASCI.

N<O, plot special symbol #N (N=-1, move with pen up, N<-1, pe1n down)

ATTRIBUTES:
ENTRY POINTS:

SYMB
Parameters: Mixed

Result: N/A
Basic FORTRAN: Callable as subroutine

FORTRAN IV: Callable as subroutine
ALGOL: Callable as CODE _Qrocedure

Errors: None

NOTES:

1. Example:

Plot a line of 39 symbols from !BUFF along the X axis,
starting l inch to the right and 9 inches above (0,0),
with characters 0.14 inches high.

CALL SYMB(l .~,~.~,~.14,IBUFF,~.~,39)

Plot a right-direction arrow (symbol #20) 4 inches above
and to the right of (0,0). The desired height is 0.5
inches.

CALL SYMB(4.~,4.~,~.5,NUMB,~.~,-l)

where NUMB contains a decimal 20.

COMMENTS:

1. See Table SYMB-1 for a list of characters that the SYMB routine can plot.

Any program that calls SYMB in the RTE/DOS environment must call PLOTLU first
to establish the plotter logical unit. (See PLOT.)

2-30

--

SYMB

TABLE '~-1. SYMBOL/CHARJ\CTER TABLE

SYMBOLS

Centered Symbols 1 Uncentered Symbols 2

0[]5~10t1 15 20 -+ 25 +

1C)6tll* 16 ! 21 2:

26.7~12z 17 + 22 >

3 + 8 Z 13 I 18.::. 23 6
4X9Yl4~ 19 = 24 f

AS CI I CHt1RACTERS 2

126 @ 39 M 52 z 65 I 78 4
27 A 40 N 53 [66 79 5
28 B 41 0 54 \ 67 80 6
29 c 42 p 55 J 68 * 81 7
30 D 43 Q 56 t 69 82 8

31 E 44 R 57 + 70 ' 83 9
32 F 45 s 58 pen up 71 - 84 :
33 G 46 T 59 72 . 85 ;
34 H 47 u 60 II 73 I 86 <

35 I 48 v 61 # 74 ~ 87 =
36 J 49 w 62 $ 75 1 88 >

37 K 50 x 63 % 76 2 89 ?

38 L 51 y 64 & 77 3

1centered symbols are centered with respect to their reference point;
they are useful in point plotting, with or without an accompanying
line plot.

2uncentered symbols are plotted such that the lower left corner of the
symbol starts from the specified reference point; these symbols are
useful mainly in captions and notes on the graph. ASCII characters
are likewise plotted uncentered.

2-31

#COS

PURPOSE: Entry to CCOS with no error return.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.ENTR, CCOS

#COS
Complex
Complex
Not callable
Not ca 11 able
Not callable
None

BCS

#COS (U)

1 ERR0,

JSB #COS
DEF *+3
DEF Y
DEF x
-+

ENTRY POINTS:

2-32

DOSI RTE (TY PIE)

.ENTR, CCOS

#EXP

PURPOSE: Entry to CEXP with no error return.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

• ENTR, CEXP

#EXP

Complex

Com2_1 ex

Not callable

Not callable

Not callable

None

2-33

D 0 SI RTE (TYPE)

#EXP (U)

l ERR~, ENTR, CEXP

JSB #EXP
DEF *+3
DEF Y
DEF x
-+

ENTRY POINTS:

#LOG

PURPOSE: Entry to CLOG with no error return.

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

.ENTR, CLOG

#LOG

Complex

Complex

Not callable

Not callable

Not callable

None

2-34

DOSI RTE (TYPE)

#LOG (U)

I ERR~, . ENTR, CLOG

JSB #LOG
DEF *+3
DEF Y
DEF x
-+

ENTRY POINTS:

#SIN

PURPOSE: Entry to CSIN with no error routine.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

. ENTR, CSIN

#SIN

Complex

Complex

Not ca 11ab1 e

Not callable

Not callable

None

2-35

DOSI RTE (TYPE)

#SIN (U)

1 ERR0, .ENTR, CSIN

JSB #SIN
DEF *+3
DEF Y
DEF x
-+

ENTRY POINTS:

$EXP

PURPOSE: Entry to DEXP with no alternate error routine.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TYPE)

$EXP (U)
~-R-,-D-E-XP~~~~~~~~~-..--l~ER-R-~-,-.-E-NT_R_,_D_E_X_P~·~~~~-4

j_EXP
Double real
Double real
Not callable
Not callable
Not callable
None

2-36

JEB $EXP
DEF *+3
DEF Y
DEF x

ENTRY POINTS:

$LOG

PURPOSE: Entry to DEXP with no error return.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

.ENTR, DLOG

$LOG
Double real
Double real
Not callable
Not call able
Not callable
None

~'.-37

DOS/ RTE (TYPE)

$LOG (U)

J ERR~, .ENTR, DLOG

JSB %EXP
DEF *+3
DEF Y
DEF x
+

ENTRY POINTS:

$LOGT

PURPOSE: Entry to DLOGT with no error return.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

.ENTR, DLOGT

$LOGT

Double real

Double real

Not call able

Not callable

Not callable

None

BCS

$LOGT (U)

I DLOGT,

JSB $LOGT
DEF *+3
DEF Y
DEF x
-+

ENTRY POINTS:

-

2-38

DOSI RTE (TYPE)

• ENTR, ERR9l

____ ____..

$SQRT

PURPOSE: Entry to DSQRT with no error return.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

DSQRT, • ENTR

$SQRT

Double real

Double real

Not ca 11 ab 1 e

Not callable

Not callable

None

2-39

DOS/ RTE (TYPE)

$SQRT (U)

J DSQRT, ERR0, .ENTR

JSB $SQRT
DEF *+3
DEF Y
DEF x
+

ENTRY POINTS:

0/o ABS

PURPOSE: Call-by-name entry to IABS(x)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:
Errors:

BCS

%ABS

Integer: A

Integer: A

Not callable

Not callable

Not ca 11 ab l e

None

2-40

D 0 SI RTE (TYPE)

%ABS (U)

IABS

JSB %ABS
DEF *+2
DEF I
+ result in A

ENTRY POINTS:

0/oAN

PURPOSE: Call-by-name entry to TAN(x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

%AN
Real
Real: A&B
Not callable
Not callable
Not callable
None

.....-

2-·41

DOSI.RTE (TYPE)

%AN (U)

TAN

JSB %AN
DEF *+2
DEF x
-+ result in A&B

ENTRY POINTS:

0/oAND

PURPOSE: Call-by-name entry to IAND(I,J).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:

Errors:

BCS

%AND
Integer

1---·
Integer
Not callable
Not call ab 1 e
Not callable
None

2-42

DOS/ RTE (TYPE)

%AND (U)

IAND

JSB %AND
DEF *+3
DEF I
DEF J

-+result in A

ENTRY POINTS:

0/oANH

PURPOSE: Ca 11-by-name entry to TANH (x) .

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

%ANH

Real

Real: A&B

Not callable

Not callable

Not callable

None

2-·43

DOSI RTE (TYPE)

%ANH (U)

TANH

JSB %ANH
DEF *+2
DEF x
-+result in A&B

ENTRY POINTS:

0/oBS

PURPOSE: Call-by-name entry to ABS(x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

%BS
Real
Real: A&B
Not callable
Not callable
Not callable
None

2-44

D 0 SI RTE (TYPE)

%BS (U)

ABS

JSB %BS
DEF *+2
DEF x
-r result in A&B

ENTRY POINTS:

0/o IFIX

PURPOSE: Call-by-name entry to IFIX(x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

%FIX
Real
Integer: A
Not callable
Not callable
Not callable
None

DOSI RTE (TYPE)

%FIX (U)

IFIX

JSB %FIX
DEF *+2
DEF x
-+ result in A

ENTRY POINTS:

0/olGN

PURPOSE: Call-by-name entry to SIGN (x, z)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

%IGN
Real or integer and real
Real
Not ca 11ab1 e
Not callable
Not callable
None

2-46

DOS/ RTE (TYPE)

%IGN (U)

SIGN

JSB %IGN
DEF *+3
DEF x
DEF z
-+result in A & B

ENTRY POINTS:

0/olN

PURPOSE: Call-by-name entry to SIN (x).

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

%IN
Real

Real: A & B

Not callable

Not callable

Not callable

None

2-47

DOSI RTE (TYPE)

%IN (U)

SIN

JSB %IN
DEF *+2
DEF x
+result in A & B

ENTRY POINTS:

0/ol NT

PURPOSE: Call-by-name entry to AINT (x).

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:

Errors:

BCS

%INT
Real
Real
Not callable
Not callable
Not callable
None

2-48

DOSI RTE (TYPE)

%INT (U)

AINT

JSB %INT
DEF *+2
DEF x
-+result in A & B

ENTRY POINTS:

0/o LOAT

PURPOSE: Call-by-name entry to FLOAT (r)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

o/nLOAT
Integer
Real: A&B
Not callable
Not callable
Not callable
None

BCS

%LOAT (U)

FLOAT

JSB %LOAT
DEF *+2
DEF I

-+result in A&B

ENTRY POINTS:

2-49

D 0 SI RTE (TY P E)

0/oLOG

PURPOSE: Call-by-name entry to ALOG (x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

'!:::I or,
Real

Real: A&B

Not callable

Not callable

Not callable

None

2-50

DOSI RTE (TYPE)

%LOG (U)

ALOG

JSB %LOG
DEF *+2
DEF x
-+ result in A&B

ENTRY POINTS:

0/o LOGT

PURPOSE: Call-by-name entry to ALOGT (x) ..

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

%LOGT
Real
Real
Not callable
Not callable
Not callable
None

BCS

%LOGT (U)

ALO GT

JSB %LOGT
DEF *+2
DEF x
-+ res u 1 t i n A& B

ENTRY POINTS:

2-51

DOS/ RTE (TYPE)

0/oNT

PURPOSE: Call-by-name entry to INT (x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

%NT

Real

Inteaer

Not callable

Not callable

Nnt call.ab.le.

Jione

2-52

DOS/ RTE (TYPE)

%NT (U)

INT

JSB %NT
DEF *+2
DEF x (real)
-+ result in A

ENTRY POINTS:

0/oOR

PURPOSE: Ca 11-by-name entry to IOR (r, J).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

o/nOR

Integer

Integer: A

Not callable

Not callable

Not ca 11ab1 e

None

2··53

D 0 SI RT E (TY P E)

%OR (U)

IOR

JSB %OR
DEF *+3
DEF I

DEF J
+ result in A

ENTRY POINTS:

0/oOS

PURPOSE: Call-by-name entry to COS (x).

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

2-54

D 0 SI RTE (TY P E)

%OS (U)

cos

JSB %OS
DEF *+2
DEF x
-+ result in A&B

ENTRY POINTS:

0 /oOT

PURPOSE: Standard call-by-name subroutine for NOT function.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS

Executes complement of I.

ATTRIBUTES:

%OT
Parameters: Inte_ger

Result: Inte_ger: A
Basic FORTRAN: Not callable

FORTRAN IV: Not callable
ALGOL: Jioi _cal l__a_b 1 e

Errors: None

2-55

JSB %OT
DEF *+2
DEF I
-+ result in A

ENTRY POINTS:

DOSI RTE (TYPE)

0 /o QRT

PURPOSE: Call-by-name entry to SQRT (x).

ENTRY
POINTS:

EXTERN AL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

%QRT
Real
Real: A&B
Not ca 11 ab 1 e
Not callable
Not ca 11 ab 1 e
None

2-56

D 0 SI RTE (TYPE)

%QRT (U)

SQRT

JSB %QRT
DEF *+2
DEF x
->- result in A&B

ENTRY POINTS:

0/o SIGN

PURPOSE: Call-by-name entry to !SIGN (r, z).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

%SIGN

Real (or integer) & int1~ger

Integer: A

Not callable

Not ca 11 able

Not callable

None

2-57

%SIGN (U)

I SIGN

JSB %SIGN
DEF *+3
DEF I
DEF z
-+ result i n A

ENTRY POINTS:

D 0 SI RTE (TY P E)

0/oSSW

PURPOSE: Call-by-name entry to !SSW (N).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

%SSW
IntPnPr

IntF>aer: A
Not callable
Not callable
Not callable
None

BCS

%SSW (U)

!SSW

JSB %SSW
DEF *+2
DEF N (integer)
+ result in A

ENTRY POINTS:

2-58

DOS/ RTE (TYPE)

0/o TAN

PURPOSE: Call-by-name entry to ATAN (x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS

__llAN

Real
Real: A&B
Not callable
Not callable
N..o.t ca 11 ab la

None

2-59

D 0 SI RTE (TYPE)

%TAN (U)

ATAN

JSB %TAN
DEF *+2
DEF x
-+ result in A&B

ENTRY POINTS:

0/oWRIS

PURPOSE: Writes a disc source file (used~ by system programs).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

COMMENTS:

BCS

N/A

DOSI RTE (TYPE)

%WRIS, %WRIN, %WEOF, (~
EXEC, .OPSY ~

l. This routine can only be called in the RTE System.

2-60

0/oW' RIT

PURPOSE: Writes a load-and-go file on disc (used~ by system programs).

BCS DOSI RTE (TYPE)

ENTRY

E POINTS: %WRIT, %WRIF, (U)

EXTERNAL
REFERENCES: .OPSY, EXEC

2-61

0/oXP

PURPOSE: Call-by-name entry to EXP (x).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS

%XP

Real

Real: A&B

Not ca 11 ab 1 e

Not ca 11ab1 e

Not call ab 1 e

None

2-62

D 0 SI RTE (TYPE)

%XP (U)

EXP

JSB %XP
DEF *+2
DEF x
-+ result in A&B

ENTRY POINTS:

.ENTR

PURPOSE: Transfers the true addresses of parameters from a call fog sequence
into a subroutine; adjusts return address to the true return point.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Ba.sic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOSI RTE (TYPE)

.ENTR .ENTR, .ENTP (P)

None

For all BCS subroutines, all DOS/RTE Utility routines:

PARAM BSS N
SUB NOP

JSB .ENTR
DEF PARAM

(N = maximum number of parameters)
(entry point to subroutine)

For all privileged routines:

PARAM BSS N
SUB NOP

JSB $LIBR
NOP
JSB .ENTP
DEF PARAM

(N =maximum number of parameters)
(entry point)

For all re-entrant routines:

TDB NOP
DEC Q+N+3
NOP

VARBL BSS Q
PARAM BSS N

.ENTR
Address
Address
Not callable
Not ca 1 1 ab 1 e
Not callable
None

SUB NOP
JSB $LIBR
NOP
DEF TDB
JSB .ENTP
DEF PARAM
STA TDB+2

(re-entrant processing table)
(size of table)

(subroutine variables)
(parameter addresses)
(entry point)

(sets return address)

ENTRY POINTS:

.ENTP
Address
Address
Not ca 11 ab le
Not callable
Not callable
None

NOTES: 1. The true parameter address is determined by eliminating all
indirect references.

2. .ENTR assumes the subroutinE~ call is of the form:
.JSB SUB
DEF *+n+l
D~F P1

DEF Pn

2··63

.ERRR

PURPOSE: Writes a specified ASCII error code on the list device.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:

Errors:

BCS

.ERRR N/A

. IOC.

JSB .ERRR
ASC l, xx
ASC 1, YY
xx and YY are error codes.

ENTRY POINTS:

.ERRR
ASCII characters
None
Not callable
Not callable

1lo.t_ ...ka.11 ille_

None

2-64

DOSI RTE (TYPE)

.GOTO

PURPOSE: Transfers control to the location indicated by a FORTRAN computed
GO TO statement: GO TO (K

1
, K

2
, ••• KN) J

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.GOTO
Addresses
None
Not callable
Not callable
Not callable
None

BCS DOSI RTE (TYPE)

.GOTO (U)

None

JSB .GOTO
DEF *+N+l
DEF J

DEF K
1

DEF KN

+

ENTRY POINTS:

2·-65

PURPOSE:

.MAP.

Returns actual address of a particular element of a
two-dimensional FORTRAN array.

BCS D 0 SI RTE (TY P iE)

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

.MAP. (U)

None

JSB .MAP.
DEF array
DEF first subscript
DEF second subscript
OCT first dimension, as below
-+ result in A

Length of first dimension is actual for a real array, two's complement
for an integer array.

ATTRIBUTES:
ENTRY POINTS:

.MAP.
Parameters: Integer

Result: Integer
Basic FORTRAN: Not callable

FORTRAN IV: Not callable
ALGOL: Not callable

Errors: None

2-66

.OPSY

PURPOSE: Determines, for disc-based systE!ms, which operating system
(RTE, DOS, DOS-·M) is in control.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

N/A

.OPSY

None

Integer

Not ca.11ab1 e

Not ca.llable

Not ca.11ab1 e

None

BCS D 0 SI RTE (TYPE)

.OPSY (P)

None

JSB .OPSY
+ result in A
A = 0: DOS
A= 1: DOS-M
A = -2: RTE

ENTRY POINTS:

2-67

.PALIS

PURPOSE: Prints PAUSE on the teleprinter and halts the computer with a specified
integer (r) in the A-Register. Returns to cal 1 ing program when restarted.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOSI RTE (TYPE)

.PAUS N/A, see PAUSE

. IOC.

LOA I
JSB .PAUS
+ return when RUN is pushed.

ENTRY POINTS:

.PAUS
Integer
None
Not callable (Note l)

Not callable (note l)

Not callable (Note 1)

None

NOTES: 1. In FORTRAN and ALGOL use PAUSE statement.

2-68

.PCAD

PURPOSE: Return the true address of a parameter passed to a subroutine.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS DOS/ RTE (TYPE)

N_L_A

JSB SUB
DEF X[,I]

SUB NOP

JSB .PCAD
DEF SUB, I

.PCAD iPl

None

JSB .PCAD
DEF SUB, I
-+ result in A
(See below for context)

(call to subroutine; indirect bit is optional
on parameter)

(entry point to subroutine)

-+ address of X in A

ENTRY POINTS:

.PCAD
Indirect Address
Direct Address: A
Not callable
Not callable
Not ca 11ab1 e
None

NOTES: 1. .PCAD has the same purpose as GETAD.
2. .PCAD is used by re-entrant or privileged by subroutines because they

cannot use GETAD.

2··69

.PRAM

PURPOSE: Processes parameter values and/or addresses passed to Assembly
language subroutines by ALGOL programs.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

.PRAM
Integer
Integer & Real
Not call ab 1 e
Not callable
Not callable
None

BCS D 0 SI RTE (TYPE)

.PRAM (U)

None

JSB .PRAM
<code words>
<parameters>

(HP 02116-9072). See the ALGOL manual

ENTRY POINTS:

COMMENTS: Used in Assembly language subroutines to retrieve parameters from
calling sequence inside the ALGOL calling program.

2-70

.STOP

PURPOSE: Prints STOP on the teleprinter and halts the computer with a specified
integer (r) in the B-Register.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

BCS DOSI RTE (TYPE)

.STOP N/ A, see PAUSE

. roe.

LOA I
JSB .STOP
{no return)

Returns to entry point HALT in the BCS loader. In stand-alone mode the
HALT 778 is irrecoverable. In MTS mode control returns to .IPL..

ATTRIBUTES:
ENTRY POINTS:

i-!STOP
Parameters: Inte_g_er

Result: None
Basic FORTRAN: Not callable (Note 1)

FORTRAN IV: Not callable (Note 1)
ALGOL: Not callable (Note l)

Errors: None

NOTES: 1. In FORTRAN and ALGOL use the STOP statement.

2-71

.SWCH

PURPOSE: Switches execution control to the xth of a sequence of N labels
(implements ALGOL switch statement).

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TY P E)

E __ .SWCH(_U) -~
None .~

.SWCH
Addresses
N/A
Not callable
Not ca 11ab1 e
Not call ab 1 e

LOA I
JSB S
~ return if I is out of range

S NOP
JSB .SWCH
ABS N (see below)
DEF Label 1
DEF Label 2

DEF Label N

N is the number of labels.
If xis out of range, .SWCH returns.

ENTRY POINTS:

If I is out of range, returns.

2-72

.TAPE

PURPOSE: Performs magnetic tape rewind, backspace or end-of-file operations
on a specified logical unit.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

BCS

. IOC.

METHOD: Constant:

ATTRIBUTES:

Parameters:
Result:

Ba.sic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

30XYYB

x = 4 for REWIND
= 2 for BACKSPACE
= 1 for END FILE

YY = logical unit number

.TAPE
Integer
None
Not callable (Note 1)

Not callable (Note 1)
Not callable (Note 1)

None

DOS/ RTE (TYPE)

.TAPE (U)

I EXEC

LOA constant
JSB .TAPE
constant = see below

ENTRY POINTS:

NOTES: 1. In FORTRAN and ALGOL use utility statements.

2-·73

.ZRLB

PURPOSE: Eliminates calls to $LlBR and $LIBX that are unnecessary in DOS and DOS-M •

. ZRLB is ca 11 ed by FADSB, FMP, FDV, . FLUN, and • PACK.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

METHOD:

ATTRIBUTES:

Parameters:

Result:

Basic FORTRAN:

FORTRAN IV:

ALGOL:

Errors:

BCS DOS/ RTE (TYPE)

• ZRLB (P)

$LIBR,$LIBX,.OPSY

SUB NOP
JSB $LIBR
NOP
JSB .ZRLB
DEF EXIT

EXIT JSB $LIBX
DEF SUB
JMP SUB~I

In RTE. DOS, and DOS-M, this routine replaces the instruction 11 JSB .ZRLB 11

in the calling sequence with an 11 RSS 11
• In DOS and DOS-M only, the

instructions 11 JSB $LIBR 11 and 11 JSB $LIBX 11 are both replaced by 11 RSS 11
•

ENTRY POINTS:

.ZRLB

None

None

Not callable

Not callable

Not callable

None

2-74

.. MAP

PURPOSE: Computes the address of a specif'ied element of a 2 or 3 dimension array;
returns the address in the A-Register.

ENTRY
POINTS:

EXTERNAL
REFERENCES:

CALLING
SEQUENCES:

ATTRIBUTES:

Parameters:
Result:

Basic FORTRAN:
FORTRAN IV:

ALGOL:
Errors:

BCS D 0 SI RTE (TYPE)

E~~~~~-~~-"-MA_P_(_U)~~~~~~~~~----1
None

For 2 dimensions:
LDA = D!i'
LDB N (see below)
JSB .. MAP
DEF base address
DEF 1st subscript
DEF 2nd subscript
DEF length of 1st dimension
+ address in A

N = number of words. per vari ab 1 e.

For 3 dimensions:
LOA = D-1
LOB N (see below)
JSB •• MAP
DEF base address
DEF 1st subscript
DEF 2nd subscript
DEF 3rd subscript
DEF length of 1st dimension
DEF length of 2nd dimension
+ address in A

ENTRY POINTS:

.. MAP
Integer
Integer
Not callable
Not callable
Not ca 11 ab 1 e
None

2-75

SEC:~TI II

lJTIL.lTY SUBROIJTIN I~

THE FORMATTER

The Formatter is a subroutine that is called by relocatable programs to perform formatted data trans­
fers, to interpret formats, to pro vi de unformatted input and output of bi nary data, to provide free
field input, and to provide buffer-to-buffer conversion. The Formatter is first given a string of
ASCII characters that constitutes a format code. This 11 format 11 tells the Formatter the variables
to transfer, the order, and the conversion (on input, ASCII characters are converted to binary values
and on output, binary values are converted to ASCII). Then the calling program gives the Formatter
a string of variables to be output or filled by input.

In FORTRAN and ALGOL programming, the programmer first defines a FORMAT string through FORMAT
statements.

For examp 1 e:

FORTRAN: 10 FORMAT (I5,A2,5Fl2.3)

'~ identifier actual format

ALGOL: FORMAT F23 (I5,A2,5Fl2.3);
;' ~

identifier actual format

Then the programmer uses a READ or WRITE statement giving the logical unit number of the device to
be used, the format identifier, and a list of variables.

For examp 1 e:

FORTRAN:

ALGOL:

20 WRITE (2,10) INT,LETR,ARRAY
;' ,,~

logical format variable
unit identifier list

WRITE y,F23, INT, LETR, VARI);
logical fo~at~e

unit identifier list

The FORTRAN and ALGOL Compilers automatically generate the correct calls to the Formatter. In
assembly language, the programmer is responsible for all calls to the Formatter, as will be discussed
1 ater.

There are three different formatters used in relocatable Hewlett-Packard software systems:

1. 4K Formatter
2. Basic FORTRAN Formatter
3. FORTRAN IV Formatter

The 4K Formatter is the simplest formatter, as it must operate in 4,096 words of memory. The Basic
FORTRAN Formatter includes all the features of the 4K Formatter, plus several more. The FORTRAN IV
Formatter is expanded even further to include double precision number conversion.

3-1

These three formatters are distributed as follows:
1. 4K Formatter:

a. K4i~.N Non-EAU 4K FORTRAN Library
b. K4E.N EAU 4K FORTRAN Library

2. Basic FORTRAN Formatter:
a. LIB.N non-EAU Relocatable Program Library
b. EAU.N EAU Relocatable Program Library
c. RTE/DOS Basic FORTRAN Formatter (separate)

3. FORTRAN IV Formatter:
a. FTN4N BCS FORTRAN IV Library
b. F4D.N RTE/DOS FORTRAN IV Library

Where N is the revision letter (A,B,C, etc.).

3-2

FORMATTED INPUT/OUTPUT

Formatted input/output is distinguished from unformatted input/output by the presence of a format
identifier in the READ or WRITE statement. The format identifier refers to a format that is a string
of ASCII characters bounded by parentheses. The ASCII characters consist of a series of format
specifications or codes. Each code specifies either a conversion or an editing operation. Conversion
specifications tell the formatter how to handle each variable in the data list.

To summarize:
Format specifications may be nested (enclosed in parenthesis) to a depth of one level. In FORTRAN IV

they may be nested to a depth of four levels.
Conversion specifications tell the formatter how to convert variables into ASCII output and how to

convert ASCII input into binary variable data.
Editing specifications tell the formatter what literal strings to put on output, when to begin new

records and when to i~sert blanks.

FORMAT SPECIFICATIONS

A format has the following form: (spec, ... ,r(spec, ...),spec, ...)

where:
spec is a format specification and r is an optional repeat factor which must be an integer.

Conversion Specifications

rEw.d
rFw.d
rlw

Real number with exponent
Real number without exponent
Decimal Integer

r@w }
rKw, row Octal Integer } [Not available on 4K]

ASCII character rAw,rRw

FORTRAN IV FORMATTER ONLY:

srDw. d
srGw.d
rlw

Double precision number with exponent
Real number with digits
Logical variable

Editing Specifications

where:

nX Blank field
nH character string

Y'
11 character string 11

r/ begin new record

r is an integer repetition factor,
w and n are non-zero integer constants representing the width of a field in the external

character string,
d is an integer constant representing the digital fraction in the part of the string, and
s is an optional scale factor.

3-3

THE E SPECIFICATION

The E specification defines a field for a real number with exponent.

On output, the E specification converts numbers (integers, real, or double precision) in memory into
character form. The E field is defined in a format by the presence of the E specification (Ew.d).
The field is w positions in the output record. The variable is printed out in floating-point form,
right justified in the field as

where

w
~

-.x1 ... xd E:tee
~

d

xl ... xd are the most significant digits of the value, the e 1 s are the digits of the exponent
w is the width of the field, dis the number of significant digits, and the minus
sign is present if the number is negative.

Thew must be large enough to contain the significant digits (d), the sign, the decimal point, E, and
the exponent. In general, w should be greater than or equal to d + 6.

If w is greater than the number of positions required for the output value, the quantity is right
justified in the field with spaces to the left. If w is not large enough (e.g., less than d + 6),
then the value of dis truncated to fit in the field. If this is not possible, the entire field is
filled with dollar signs ($).

EXAMPLES:

FORMAT DATA ITEM RESULT

EHL3 +12.34 AA.123E+02
EHL3 -12.34 A - . l 23E+9)2
El2.4 +12.34 A A A. 12 34 E +02
El2.4 -12.34 AA-.1234E+fl)2
E7.3 +12.34 . l 2E+9)2
E5.l +12.34 $$$$$

3-4

The E specification on input tells the formatter to interpret the next w positions in the record as
a real number with exponent. The formatter then converts the field into a number and stores it into
the variable specified in the variable list.

The input field may consist of integer, fraction, and exponent subfields

integer fraction exponent
field field field
~ ~----
+n n. n n E + ee - -

where the format equals Ew.d.

Rules for E Field Input

1. The width of the input item must not be greater than w characters.

2. Initial+ and E are optional.
Example: 123. = +123., 12.+6 = 12.E6

3. If Eis present, the initial +of the exponent is optional.

Example: l23.4E06

4. If the decimal point is left out, the formatter inserts it by multiplying the integer
field by 10-d.

Example: If format = E9.4, 123456E+6 = l2.~456E+6

5. Spaces are ignored in the Basic FORTRAN and 4K Formatter, but in the FORTRAN IV Formatter
blanks are evaluated as zeroes (0).

6. Any combination of integer field, fraction field, and exponent field is legal:

l23.456E6
. 456E6
.456

l23.E6
123.

E6
(all blanks 0)

NOTE: Input to F, G, D and I fields is int:erpreted in the same way as the
E field.

3-5

THE F SPECIFICATION

The F Specification defines a field for a fixed point real number (no exponent).

On output, the F specification converts numbers (integer, real, or double precision) in ct format by
the presence of the F specification (Fw.d). The field is w positions in the output record. The
variable is printed out right-justified in fixed-point form with d digits to the right of the decimal
point:

integer fraction
field field (d)
~~

-x x.xx .. x
~

w

Where w is the total width of the field, the negative sign (-) is optional (positive numbers are
unsigned), dis the length of the fraction field (empty if d=O).

If w is greater than the number of positions required for the output value, the quantity is right
justified in the field with spaces to the left. If w is not large enough to hold the data item,
then the value of d is reduced to fit. If this is not possible, the entire field is filled with
dollar signs ($).

EXAMPLES:

FORMAT DATA ITEM RESULT

Fl~. 3 + 12. 34 AAAA12.340
Fl 0. 3 -12.34 AAA-12.340
Fl2.3 +12.34 AAAAAA12.340
Fl2.3 -12.34 AAAAA-12.340
F4. 3 +12.34 12.3
F4.3 + 12345. 12 $$$$

Input to an F fteld is identical to an E field. All the rules under the E specification apply
equally to the F specification.

3-6

THE 0 SPECIFICATION

The 0 specification is available only on the FORTRJ\N IV formatter. The effect is exactly the same
as using an E specification with exception that on output 11 011 begins the exponent field instead
of 11 E11

•

EXAMPLES:
Ol~. 3

012.4
07.3

THE G SPECIFICATION

The G specification defines an external field for a real number. The magnitude of the number deter­
mines whether or not there is an exponent field.

On output, the G specification converts numbers (integer, real, or double precision) in memory into
character form. The G field is defined in a format by the presence of the G specification (Gw.d).
The field is w spaces wide, with d significant digits. The format of the output depends on the
magnitude of the number (N):

Magnitude

O.l~N<l

1 ~ N<lO

l od-2 ::;N<lOd-1

lOd-l<N<lOd

Otherwise

Output Conversion

F(W-4).d,4X
F(W-4).(d-l),4X

F(W-4). 1 ,4X

F(W-4) .0,4X

sEw.d (s is scale factor)

NOTE: The scale factor is applied only when the G conversion
is done as E.

Example Output

The following real numbers are converted under a Gl0.3 specification:

Number Output Format

.05234 AA.523E-01

.5234 AA0523AAAA
52.34 AA52.3AAAA

523.4 AA523.AAAA
5234. AAo523E+04

Input processing of a Gw.d specification is identical to that of an Ew.d specification.

3-7

~fHE SCALE FACTOR (FORTRAN IV ONLYl.

The optional scale factor for F,E,G, and D conversions is of the form:

nP

When n, the scale factor, is an integer constant or a minus followed by an integer constant. Upon
initialization of the formatter, the scale factor equals zero. Once a scale factor is encountered,
'it remains in effect for all subsequent F,E,G and D fields until another scale is encount1~red.

The scale factor effects are as follows:

1. F,E,G,D input (provided no exponent exists in the external field):
internally represented number equals externally represented number times ten raised to
the -nth power. That ·is, IN=XN*lO-n where IN and XN represent internal and external
numbers, respectively.

2. F,E,G,D, input with exponent field in external field: no effect.

3. F output: external number equals internal number times ten raised to the nth power. ie,

XN = IN*lOn

4. E,D output: mantissa is multiplied by lOn and the exponent is reduced by n. If n ~ 0,
there will be -n leading zeroes and d + n significant digits to the right of the decimal
point. If n>o, there will be n significant digits to the left of the decimal point and
d-n + 1 to the right. The scale factor when applied to E and D output has the effect of
shifiting the decimal point to the left or right and adjusting the exponent accordingly.
Note that when n > 0, there are d + 1 significant digits in the external field.

5. G output: If F conversion is used, the scale factor has no effect. If E conversion is
used, the scale factor has the same effect as with E output.

For example,

Input conversion

Externa 1 field Format Internal number

528.6 1PFl(3.3 52.86

. 5286E+f/l3 1PGHL3 528.6

528.6 -2PD1_0.3 52860.

Output conversion

Internal number Format Externa 1 field

528.6 1PF8.2 A5286.f/lf/l
.5286 2PElf/l.4 52.860E-f/l2
5.286 -1010.4 A.0529D+f/l2

52.86 lPGlll!.3 AA52.9AAAA
-5286. lPGlf/l.3 -5.286E+'1)3

3-8

THE I SPECIFICATION

The I specification defines a field for decimal integer.

On output, the I specification converts numbers (integer, real, or double precision) in memory into
character form. The I field is defined in a format by the presence of the I specification (Iw).
The field occupies w positions in the output record. The variable is converted to an integer, if
necessary, and printed out right-justified in the field (spaces to the left) as:

where

• • 0 A A x f 0 0 • xd
~

w

x, ..•. xd are the digits of the value, (max= 5), w is the width of the field in characters,
and the minus sign (-) is present if the number is negative.

If the output field is too short, the field is filled with dollar signs ($).

15
I5
14
16

Data Item

-1234
+12345
+12345
+12345

Result

-1234
12345
$$$$
Al2345

The l specification on input (Iw) is equivalent to an Fw.O specifications. The input field is read
in, the number is converted to the form suitable to the variable (integer, real, double real), and
the binary value is stored in the variable location.

During input, if a value is less than -3276810 , the value is converted to +32767.

EXAMPLES:

Format ln~ut Field Internal Result

15 -A~23 -123
15 12{lJ{lJ3 12{lJ{lJ3
14 Al02 l{lJ2
Il 3 3

3-9

O,K.@ SPECIFICATION

These three specification types {O,K,@) are equivalent; they are all used to convert octal {base eight)
numbers .

. output

On output, the octal specification {O,K,@) converts an integer value in memory into octal digits for
output. The octal field is defined in a format by the presence of the O(Ow), K(Kw), or @(@w)
specification. The field is w octal digits wide. The integer value is converted and right justified
in the fie 1 d as :

where
d, ...• dn are the octal digits (6 maximum), ••AA are lead spaces, and w is the width.

If w is less than 6, the w least significant octal digits are written.

On input, the octal specification tells the formatter to interpret the next w positions in the input
record as an octal number. The formatter converts the digits into an octal integer and stores it
into an integer variable.

If w is greater than or equal to six, up to six octal digits are stored; non-octal digits with the
field are ignored.

If w is less than six or if less than six octal digits occur in the field, the result is right­
justified in the variable with zeroes {O) to the left.

If the value of the octal digits in the field is greater than 177777, the results are unpredictable.

EXAMPLES:

Format Input Field Internal Result

@6 123456 123456
@7 -123456 123456
2K5 2342342342 ~23423 and 042342
2@4 ,396E-9J5 000036 and ~~0005

3-10

L SPECIFICATION

The L specification allows input or output of logical values:

TRUE= T (external), negative {internal)
FALSE= F (external), non-negative {internal)

On output, the L specification converts numbers (integer, real, or double precision) in memory into
their external logical value (Tor F). The L field is defined by the presence of the L specification
(Lw). The field is w spaces wide, consisting of w-1 blanks followed by a Tor F.

On input, the l specification converts an external character field into the internal true of false
of value. The L specification (Lw) specifies a field w spaces wide, consisting of optional blank,
a Tor F and optional trailing characters. AT is converted to -32,768 (1000008) and an F is con­
verted to 0.

A AND·R SPECIFICATIONS

The A and R specifications define a field of one or two ASCII characters. ASCII characters are
stored as two 8-bit codes per integer variable.

On output, the A and R specifications transfer. ASCII character codes from memory to an external
medium. The field is defined by an A or R specification (Aw or Rw). The field is w positions wide
in the output record. For w ~ 2, A and R are equivalent: the field consists of w-2 blanks followed
by two characters (first the character in the left or high-order bits part of the variable, then the
character in the right part of the variable).

For example:

Variable Format Out~ut Format

AB A2 AB
AB R4 AAAB
AB A6 ,AAAAB

3-11

In order to output a string of characters, the repeat factor must be used.

For example:
Variable

AB, CD, EF, GH 4A2

Output

ABCDEFGH

For w = 1, the FORTRAN IV and Basic FORTRAN formatters differ.

Basic FORTRAN Formatter

In Basic FORTRAN, the A speci ficati.on is the same as the R.. For w = 1, A and R specify the character

in the right half of the variable.

For examp 1 e:

Variable

xv

FORTRAN IV Formatter

Format

Al or Rl

Output

v

The R specification is the same as in the Basic FORTRAN Formatter.

The Al specification takes the character from the left half of the variable.

For example:

Variable

xv Al

Output

x

On input, the A and R specifications transfer ASCII character codes from an external medium to in­
ternal memory. The field is defined by an A or R specification (Aw or Rw). The field is w positions
wide. If w > 2, the right most two characters are taken from the input field.

For example:

Input Field

MN
MNOP
MNOPQR

A2

R4

A6

Variable

MN
OP
QR

3-12

In order to read in a string of more than two characters, the repeat factor must be used.

For examp 1 e:

Input Field

MNOPQRSTUV
FGHIJK

5A2

3A2

Variable

MN,OP,QR,ST,UV
FG ,HI ,JK

For w = l, the FORTRAN IV and Basic FORTRAN Formatter differ.

Basic FORTRAN Formatter

In Basic FORTRAN the A is the same as the R. For w = 1, A and R read in one character and places it
in the right half of the variable with binary zeroes in the left.

For example:

Input

x

FORTRAN IV Formatter

Format

Al or Rl

Variable

[0000000021 x

left right

computer word

The R spciification is the same as in the Basic FORTRAN Formatter.

For Al, one character is read in and placed in the left half of the computer word. An ASCII blank
is placed in the right half.

For examp·le:

Variable

Al

Compatabi "UJ.y_

The FORTRAN IV Formatter can be modified at run-time to interpret A as in Basic FORTRAN. This is
done by calling the OLDIO entry point:

CALL OLDIO

To change back to a FORTRAN IV A specification call NEWIO:

CALL NEWIO

The FORTRAN IV Formatter always begins operation iirl the NEWIO state.

3·-13

.X SPEC I FI CATION

The X specification produces spaces on output and skips characters on input. The comma (,) following
X in the format is optional.

On output, the X specification causes spaces to be inserted in the output record. The X field is
defined by the presence of an X specification (nX) in the format, where n is the number oif spaces
to be inserted. (X alone= lX; 0X is not permitted.)

Examples

Format
E8.3,5X,F6.2,5X,I4

Data Values

+123.4, -12.34, -123

Output Field

,l23E+03AAAAA-12.34AAAAA-123

On input, the X specification causes characters to be skipped in the input record. The X field is
defined by the presence of an X specification (nX) in the format, where n is the number of characters
to be skipped. (X alone= lX; 0X is not permitted.)

Example

Format

8X,I2,10X,F4.2,10X,F5.2

Input Field

WEIGHT AAl~AAPRICEAA$1.98AATOTALAA$19.80

Interna 1 Va 1 ues

10' 1. 98' 19. 8~

3-14

"
11

, H SPECIFICATIONS (Literal Strings}

The H and 111 11 specifications pro vi de for the trans fE!r, with out conversion, of a series of ASCII
characters (except that quotation marks -"- cannot be transferred using " 11

). A comma after this

specification is optional.

On output, the ASCII characters in the format specification {there is no associated variable since
this is only an editing specification) are output as headings, comments, titles, ett. The specifi­
cations are of the form:

where
n is the numbers of characters to be transmitted, c1c2 ••• cn are the characters themselves,
and Hor 11

•••
11 are the specification types.

(H alone= lH; ~His not permitted.)

Note that with 11 11
, the field length is not specifi1S?d; that is determined by the number of characters

between the quotation marks.

Examples:

Format Result

2~HATHISAISAANAEXAMPLE ATHIS IS AN EXAMPLE
11 THISAALSOAISAANAEXAMPLE 11 THISAALSOAISAANAEXAMPLE

3" ABC" ABCABCABC

If H is used on input, the number of characters needed to fill the specification is transmitted from
the input record to the format. A subsequent output statement wi 11 transfer the new heading to the
output record. In this way, head1ings canoe altere!d at run-time.

If 11
" is used on input, the number of characters within the quotation marks is skipped on the input

field.

Example:

Input

HAINPUTAALLOWSAVARIABLEAHEADERS

Result

31HHAINPUTAALLOWSAVARIABLEAHEADERS

3-· 15

/ SPECIFICATION

Th / specification terminates the current record. The I may appear anywhere in the format and need
not be set off by commas. Several records may be skipped by preceding the slash with a repetition
factor (r-1 reocrds are skipped for r/).

On output, a new record means a new line (list device), a carriage return-linefeed {punch device),

or an end-of-record (magnetic tape). Formatted 1/0 records can be up to 67 words (134 characters}
long.

On input, a new record is a new "unit record" (card reader)~ is terminated by a carriage return­
linefeed (teleprinter), or is terminated by an end-of-record (magnetic tape).

Examples:

NOTE: When the formatter reaches the end of a format and still
has values to output, it starts a new record.

Format

22X,6HBUDGET/// 6HWEIGHT,6X, 5HPRICE,9X,
SHTOTAL,8X

Result

(line 1) AAAAAAAAAAAAAAAAAAAAAABUDGET
(line 2)
(1 i ne 3)

(line 4) WEIGHT AAAAAAPRICEAAAAAAAAATOTALAAAAAAAA

3-16

HOW TO PUT FORMATS TOGETHER

1. When two specifications follow each other they are concatenated.
E field I field

Format: E9.4,I6 j 9 characters j 6 characters

2. To leave space between numbers use X.
E field x field

Format: E9.4,3X,I6 9 characters 13 characters 16 characters

3. To start a new Line, use I
E field

Format: E9.4/I6 9 characters

I field
6 characters J

4. Specifications can be gathered together into groups and surrounded by parenthesis.

Ex amp 1 e: (E9. 3' 2X' I 6) l.__E __ ____._I x_.D J
These groups can be nested one level deep, except in the FORTRAN IV Formatter they can be four levels
deep. For example,

(E9.3,3(2X,I6))

I x I I
(E9.3,3(2X,I6)2X,2(I8))

Ix I I Ix I I jx [i

5. Use the repetition factor to repeat single specifications (except nH) or groups of
specifications. This is done by preceding the specification or parenthetical groups
with a repeat count, r. THe conversion is repeated up to r times, unless the list of
variables is exhausted first.

3(E9.3,2X,I6,2X)/

IE !xi Ix\ E !xi !xi E !xi Ix!

6. Use the principle of unlimited groups -- when the formatter has exhausted the specifications
of a format and still has list items left, it inputs a new record for a READ or outputs
the present record for a WRITE and returns to the last, outer-most unlimited group within
the format. An unlimited group is a set of specifications enclosed In parenthesis. If
the format has no unlimited groups, the formatter returns to the beginning of the format.

3-17

Examp1e: Format =

Format =

Format =

(I5,j(3X,F8.4,8(I2)) J
(I5,2(3X,F8.4,8(12I2)),4X,~

(i5,3X,4F8.4,3X) J

7. Keep in mind the accuracy 1imitations of your data. A1though the formatter wii11 print
out or read in as many digits as specified, only certain digits are significant:

Integer variab1es can be between -32,76810 and +32,76710 .
Floating-point numbers can guarantee 6 digits of accuracy {plus exponent).
Double precision can guarantee 11 digits of accuracy {p1us exponent).

8. On input to the FORTRAN IV formatter blanks are interpreted as zero digits, while on
input to the other two formatters. b1anks are not evaluated as part of the data item.

The FORTRAN IV Formatter can be made to act exactly as the other Formatters do by
calling entry point OLDIO. This condition can be reversed by calling entry point NEWIO.
These cal1s are made in FORTRAN as:

CALL OLDIO
CALL NEWIO

In Assembly Language as:

JSB OLDIO
DEF *+l

JSB NEWIO
DEF *+l

3-18

FREE FIELD INPUT

When free field input is used, a format is not necessary. Special symbols included within the data
direct the conversion process:

space or,

I

+ -

. E + - D

@

Data item delimiters

Re?cord terminator

Sign of item

Floating point number

Octal integer

Comments

All other ASCII non-numeric characters are treated as spaces (and delimiters}. Free field input
may be used for numeric data only ..

FORTRAN

In FORTRAN, a free field input operation has this form:

READ (unit, *} variahle list

In ALGOL, a free field input operation has this form:

READ (unit, *, variable list};

Data Item Delimiters

Any contiguous string of numeric and special formatting characters occuring between two commas, a
comma and a space, or two spaces, is a data item whose value corresponds to a list element. A
string of consecutive spaces is equivalent to one space. Two consecutive commas indicate that no
data item is supplied for the corresponding list element; the current value of the list element
is unchanged. An initial comma causes the first list element to be skipped.

EXAMPLES:

1 } 2)

READ(5,*}I,J,K,L READ(5,*}I,J,K,L

Input data: 1720, 1966, 1980, 1392 Input data: 1266,,1794,2000

3·-19

Result: I contains 1720
J contains 1966
K contains 1980
L contains 1392

Floating Point Input

Result: I contains 1266
J contains 1966
K contains 1974
L contains 2000

The symbols used to indicate a floating point data item are the same as those used in representing
floating point data for FORMAT statement directed input:

Integer Fraction Exponent
Field, Field Field

" \ I ~ ..--.. ,.-A-..

~n ... ntn ... n~e:in FORTRAN IV only)

decimal point

If the decimal point is not present, it is assumed to follow the last digit.

EXAMPLES:

READ(5,*)A,B,C,D,E

Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314El

All are equivalent to 3. 14

Octa 1 Input

An octal input item has the following format:

@x1 ... xd

The symbol @ defines an octal integer. The x1 s are octal digits each in the range of 0 through 7.
List elements corresponding to the octal data items must be type integer.

3-20

Record Terminator

A slash within a record causes the next record to bE~ read as a continuation of the data list; the
remainder of the current record is skipped as comments.

Example:

READ(5,*)II,JJ,KK,LL,MM

Input data: 987, 654, 321, 123/DESCENDING
456

Result: II contains 987
JJ contains 654
KK contains 321
Ll contains 123
MM contains 456

Li st Terminator

If a line terminates (with a carriage return and linefeed) and a slash has not been encountered,
the input operation terminates even though all list elements may not have been processed. The
current values of remaining elements are unchanged.

EXAMPLES:

READ(5,*)A,B,C,J,X,Y,Z

Input Data:

A=7.987 B=5E2 C=4.6859E-3 carriage return and linefeed
J=3456 carriage return and linefeed

Result: A contains 7.987
B contains 5E2
C contains 4.6859E-3

J,X,Y,Z are unchanged.

3-21

Comments

All characters appearing between a pair of quotation marks in the same line are considered to
be comments and are ignored.

EXAMPLES:

11 6. 7321 11

6.7321

is a comment and ignored
is a real number

3-22

UNFORMATTED INPUT /OUTPUT

Read and write operations can be unformatted as well as formatted. On an unformatted operation,
binary values are transferred to or from a speciffod logical unit without any conversion.

In FORTRAN, an unformatted READ statement has the form:

READ (unit) var.iable list

Binary records are read in from unit and assigned serially to the locations in the variable list.

In ALGOL, an unformatted READ statement has the form:

READ (unit, varia.ble 1 ist)

In FORTRAN, an unformatted WRITE statement has the form:

WRITE (unit) variable list

The values in the variable list are packed into physical records of 60 words each and are output
to the unit specified. The variable list which may consist of several physical records, is called
a logical record.

In ALGOL, an unformatted WRITE statement has the form:

WRITE (unit,. variable list)

In Assembly Language, the pro9ram calls the formatter directly. (See 11 Assembly Language Calling
Sequences. 11

)

Records ---

Unformatted I/0 through the formatter is limited to physical records of 60 words maximum. If a
variable list contains more than 60 words of data, the data is broken into more than one record.
(For example, 100 words of data are broken into two records of 60 and 40 words each.)

When paper tape or unit record devices are used, (teleprinter, mark sense card reader etc.) how­
ever, only 59 words of each record contain data. The first word issued is for the record length.

3-23

ASSEMBLY LANGUAGE CALLING SEQUENCES

In FORTRAN and ALGOL, when the progranmer uses a READ or WRITE statement the compiler generates
all the necessary calls to the Formatter.

In Assembly Language the programmer is responsible for all calls to the Formatter. For each I/0
operation, the program must first make an 11 Initialization 11 call (entry points .DIO and .BIO). This
call establishes the format to be used (if any), and the logical unit and a way to say whether the
operation is input or output. Then, for each data item, the program must make a separate call which
depends on the type of data. Finally, for output only, the program must make a termination call
that tells the Formatter to output the last record.

Figure 3-1 flowcharts the process of selecting an input calling sequence. Figure 3-2 flowcharts
the output calling sequerrce.

Variable items in the calling sequences include:

unit

format

end of list

real

integer

double

length

address

is the logical unit number of the desired I/0 device.

is the label of an ASC psuedo-instruction that defines the format
specification.

is the location following the last data call to the formatter. When an
error occurs in the format specification or the input data, the formatter
returns to this location.

is the address of the real variable.

is the address of the integer variable.

is the address of the double precision variable

is the number of elements (not the number of memory locations) in the
array. Maximum length of an external physical record is 67 words for
formatted data and 60 words for binary data. Formatted data blocks can
be of any length if the format breaks the data in multiple records using
11

/
11 and unlimited groups. If bi nary data exceeds 60 words, the record

is read in or written out and the formatter skips to the next record.
(Note: For this reason, binary data should be read in with the same

variable list as that used to write it out.)

is the first location of the array.

3-24

START

INITIAL CALL

LOA unit
CLB, INB
JSB • BIO.

REAL

DATA CALL

LOA Length
LOB Address
JSB • RAR.

INPUT

SELECTING A CALLING SEQUENCE

INITIAL CALL

LOA unit
CLB, INB
JSB .DIO.
OCT ~
DEF end of list

DATA CALL

LOA Length
LOA Address
JSB • IAR.

NO

INITIAL CALL

LOA unit
CLB, INB
JSB .DIO.
DEF format
DEF end of list

DOUBLE PREC. REAL

I

DATA CALL DATA CALL

JSB .XAY. JSB • IOR.
DEF Address DST Real
DEC Length

3--25

DOUBLE PREC.

DATA CALL DATA CALL

JSB .IOI. JSB .XIO.
STA Integer DEF Double

REAL

DATA CALL

LDA Length
LDB Address
JSB .RAR.

OUTPUT

SELECTING A CALLING SEQUENCE

DATA CALL

LDA Length
LDA Address
JSB . IAR.

START

INITIAL CALL
LDA unit
CLB
JSB .DIO.
DEF format
DEF end of list

YES

DOUBLE PREC.

DATA CALL

JSB .XAY.
DEF Address
DEC Length

REAL

DATA CALL

DLD Real
JSB . IOR.

3-26

IN I TI AL CALL
LDA unit
CLB
JSB . BIO

TERMINATION CALL
JSB .DTA.

DATA CALL

LDA Integer
JSB . IOI.

DOUBLE PREC.

DATA CJ\LL

JSB .XIO.
DEF Double

1. Double precision calls are available only in the FORTRAN IV Formatter.

2. In the FORTRAN IV Formatter, there are alternative calling sequences for data items:

Real Variable

JSB • RIO.

DEF real

Integer Variables

JSB • I IO.

DEF integer

Real Arrays

JSB . RAY.

DEF address

DEC length

Integer Arrays

JSB . IAY.

DEF address

DEC length

3. Also in the FORTRAN IV Formatter, the statement "DEC length" in array cal 1 ing sequences can

be replaced by "DEF L,1 11 where L is defined ehewhere in the program as the array length.

3·-27

INTERNAL CONVERSION

The Formatter provides the programmer with the option of using the conversion parts of the Formatter
only without any input or output. This process is called "internal conversion. 11

On 11 input 11
, ASCII data is read from a buffer and converted according to a format (or free fi.eld)

into a variable list. (This is known as decoding.)

On 11 output 11
, binary data is converted to ASCII according to a format and stored in a buffer. (This

is known as encoding.)

Internal Conversion Calling Sequence

Output (Binary to ASCII Conversion): ENCODING

CLA
CLB
JSB .DIO.
DEF buffer (destination)
DEF format

DEF end of list

Calls to define each variable
(Same as regular calls)

Termination Call
(Same as regular calls)

where buffer is a storage area for the ASCII 11 output 11 to be stored into.

Input (ASCII to Binary Conversion): DECODING

Formatter Free Field

CLA CLA
CLB, INB CLB, INB
JSB .DIO. JSB .DIO.
DEF buff er DEF buffer

DEF format ABS ~

DEF end of list DEF end of list

Calls to define each variable
(Same as regular calls)

where buffer is a storage area containing ASCII characters which will be converted by thE!
Formatter into binary values.

3-28

1. Internal conversion ignores 11
/" specifications or unlimited groups. The concept of records does

not apply during internal conversion.
2. In FORTRAN, internal conversion can be used through the subroutine CODE. A call to CODE must

immediately precede a READ or WRITE request where the identifier of an ASCII record buffer (array
name) replaces the logical unit number. Any labels must be attached to the CODE call, as it and
the READ/WRITE statement are treated as one statement.

The calling sequences are:

CALL CODE

READ (buffer, format) variable list

CALL CODE

WRITE (buffer, format) variable list

3. In ALGOL, the entry point ACODE is used for internal conversion (since CODE is a reserved

word). ACODE must be declared an 11 code 11 proCE!dure before being called.

3-29

BUFFERED I /0 WITH THE FORMATTER

Normally, when a program uses the Formatter, it can only execute one I/O operation at a time.
However, the internal conversion feature of the Formatter can be used with direct calls tc1 .IOC.
(through the MAGTP subroutine} to provide both buffered and formatter 1/0.

The following flowchart shows how a program can read in data from two units (Ul and U2) into two
buffers (Bl and B2) at the same time by calling .IOC •• When unit Ul is complete, buffer Bl is
converted into list Ll by the Formatter (while input continues on unit U2).

No

No

START

.IOC. - Begin read
from Ul into Bl

Ul U2

Yes

.IOC. - Ul complete?

Yes

.IOC. - Begin read
from U2 into B2

FRMTR - Convert Bl
into Ll

.IOC. - U2 complete?

Yes

FRMTR - Convert B2
into L2

No

3-30

.IOC. - Begin read
from U2 into B2

.IOC. - Ul complete

Yes

EXAMPLE CALLING SEQUENCES

EXAMPLE l :: FORMATTED INPUT

Purpose

A 20 character double precision number and a 10 character integer are read and converted from the
first record. 80 characters are read from the second record and st0red in ASCII form in the array
ALPHA. Execution continues with the instruction at ENDLS.

LOA INPUT Input unit number
CLB, INB Input flag
JSB .DIO. Initialization enterance
DEF FMT Location of format
DEF ENDLS End of list
JSB .XIO. Declare double precision variable
DEF DP Location of variable
JSB .IIO. Declare integer variable
DEF I Location
JSB . IAY. Declare integer array
DEF ALPHA Location
DEC 80 Number of elements

ENDLS -+ (Continue program here)

INPUT DEC Unit number
DP BSS 3 Double precision variable
I BSS 1 Integer va ri ab 1 e
ALPHA BSS 80 Integer array
FMT ASC 9,(D20.12,Il~/80Al) Format specification

3-31

EXAMPLE 2: UNFORMATTED OUTPUT EXAMPLE

1000 2-word elements in the array ARRAY are punched on the standard punch unit. The output will
consist of 60 word records (59 data words and 1 control word) unti1 the entire array is punched.

LOA PUNCH Output unit number
CLB Output flag
JSB .BIO Binary initialization enterance
LOA =01000 Number of elements in array
LOB AD RES Location of array
JSB .RAR. Real (2-word) array enterance
JSB .OTA. Output termination
+

PUNCH DEC 4 Unit number
AD RES DEF ARRAY Location of ARRAY
ARRAY BSS 2000 Defines 1000 2-word elements.

EXAMPLE 3: INTERNAL CONVERSION AND FREE FIELD INPUT

The ASCII data starting at BUFFR is converted in free field form to binary. R will contain the
binary representation of .0001234 and I will contain the binary representation of 28.

CLA
CLB,INB
JSB
DEF
ABS
DEF
JSB
DST
JSB
STA

ENDLS +

R BSS
BSS

BUFFR ASC

.DIO.
BUFFR
0
ENDLS
. IOR.
R
. IOI.

2

6,123.4E-6,28

Internal conversion flag
ASCII to binary flag
Initialization enterance
Location of ASCII data
Specifies ASCII data is in free-field form
End of list
Declare real variable
Store binary item in R
Declare integer variable
Store in I

Real variable
Integer variable
ASCII data to be converted to binary.

3-32

se:c·r1c> 111

·rHE FOR~~AT IE .

INf)lc:E

INDEX I
LIB.N, K4N.N, EAU.N, K4E.N
N is the revision letter

In EAU.N and K4E.N, .EAU. replaces MPV, DIV, DLDST.

Name Page Reference Name Page Reference

MEMRV 2-17 .RTOI 1-87
FRMTR 3-1 . ITO! 1-84
CODE 2-4 .PRAM 2-70
MAGTP 2-15 FDV 1 ... 41
%ANH 2-43 FMP 1-43
%XP 2-62 .MAP. 2-66
%IN 2-47 .IENT 1-83
%OS 2-54 FLOAT 1-42
%AN 2-41 . PACK 1-85
%BS 2-44 LEA DR 2-13
%LOG 2-50 .ENTR 2-63
%QRT 2-56 ENTIE 1-37
%IGN 2-46 .EAU. (EAU libraries only) 1-79
%LOAT 2-49 MPV (Non-EAU libraries only) 1-54
%FIX 2-45 DIV (Non-EAU libraries only) 1-29
%TAN 2-59 DLDST (Non-EAU libraries only) 1-30
%ABS 2-40 GETAD 2-10
%SIGN 2-57 !FIX 1-48
%AND 2-42 ERR0 2-8
%OR 2-53 EXEC 2-9
%OT 2-55 .PAUS 2-68
%SSW 2-58 .STOP 2-71
TANH 1-65 I SIGN 1-51
TAN 1-64 .ERRR 2-64
ATAN 1-7 PWR2 1-58
.RTOR 1-88 .GOTO 2-65
EXP 1-39 .SWCH 2-72
SQRT 1-63 .FLUN 1-80
ALOG 1-4 MANT 1-52
SI COS 1-60 IAND 1-45
CHEBV 1-13 IOR 1-50
SIGN 1-61 IABS 1-44
ABS 1 -1 OVF 2-19
.. FCM 1-95 !SSW 2-12
.. DLC 1-94 END IO 2-7
FADSB 1-40 .TAPE 2-73
PTA PE 2-26 CL RIO 2-3
INDEX 2-11

I-1

INDEX II
FTN4N and F4D.N

N is the revision letter

Name Page Reference Name Page Reference

FMTIO (F4D.N only) 3-1 MOD 1-53
FRMTR 3-1 AINT 1-3
%INT 2-48 INT 1-49
%NT 2-52 ID INT 1-47
%LOGT 2-51 DD INT 1-26
$SQRT 2-39 MXMNI 1-55
$LOGT 2-38 MXMNR 1-57
$LOG 2-37 MXMND 1-56
$EXP 2-36 DSIGN 1-34
#COS 2-32 DIM 1-28
#SIN 2-35 IDIM 1-46
#LOG 2-34 .CFER 1-71
#EXP 2-33 .. CCM 1-92
.RTOD 1-86 .. MAP 2-75
.DTOR 1-78 . !DBL 1-82
.DTOD 1-75 .ICPX 1-81
DEXP 1-27 .DCPX 1-74
ALO GT 1-5 .DINT 1-75
DLOGT 1-32 .CINT 1-72
DLOG 1-31 .CDBL 1-70
DATN2 1-23 REAL 1-59
DATAN 1-22 AIMAG 1-2
DCOS 1-25 CMPLX 1-15
DSIN 1-34 CONJG 1-17
XPOLY 1-69 DBLE 1-24
ENTIX 1-38 SNGL 1-62
DSQRT 1-36 XADSB 1-66
CLOG 1-14 XMPY 1-68
ATAN2 1-8 XDIV 1-67
CSQRT 1-19 CADD 1-10
CABS 1-9 CSUB 1-20
CEXP 1-12 CMPY 1-16
CSNCS 1-18 CDIV 1-11
DMOD 1-33 .• DCM 1-93
.OTO! 1-77 .XPAK 1-91
.CTOI 1-73 .XCOM 1-89
DABS 1-21 .XFER 1-90
AMOD 1-6 .PCAD (F40.N only) 2-69

II-1

INDEX Ill
F2E.N and F2N.N

N is the revision letter
In F2E.N, .EAU. replaces MPV, DIV, DLDST.

Name Page Reference Name Page Reference

CL RIO 2-3 CHEBV 1-13
%ANH 2-43 MANT 1-52
%XP 2-62 PTA PE 2-26
%IN 2-47 MAGTP 2-15
%OS 2-54 .ENTR 2-63
%AN 2-41 IFIX 1-48
%BS 2-44 FLOAT 1-42
%LOG 2-50 .FLUN 1-70
%QRT 2-56 .PACK 1-85
%IGN 2-46 .. DLC 1-94
%LOAT 2-49 .GOTO 2-65
%FIX 2-45 IAND 1-45
%TAN 2-59 IOR 1-50
%ABS 2-40 OVF 2-19
%SIGN 2-57 !SSW 2-12
%AND 2-42 .MAP. 2-66
%OR 2-53 RM PAR 2-27
%OT 2-55 CODE 2-4
%SSW 2-58 ENTIE 1-37
GE TAD 2-10 .SWCH 2-72
TANH 1-65 .PRAM 2-70
.RTOR 1-88 INDEX 2-11
TAN 1-64 %WRIS 2-60
EXP 1-39 PAUSE 2-20
SI COS 1-60 ERR~ 2-8
SQRT 1-63 BINRV 2-2
SIGN 1-61 SREAD 2-29
ALOG 1-4 %WRIT 2-61
.IENT 1-83 .ZRLB 2-74
ABS 1-1 .OPSV 2-67
ATAN 1-7 .TAPE 2-73
PWR2 1-58 DEBUG 2-6
FDV 1-41 DBKPT 2-5
FMP 1-43 . EAU. (EAU libraries only) 1-79
.. FCM 1-95 DLDST (Non-EAU libraries only) 1-30
FADSB 1-40 MPV (Non-EAU libraries only) 1-54
.RTOI 1-87 DIV (Non-EAU libraries only) 1-29
. ITO! 1-84
!SIGN 1-51

I II-1

INDEX IV
Plotter Libraries

Name Page Reference

LINE 2-14
AXIS 2-1
SCALE 2-28
NVMB 2-18
SYMB 2-30
PLOT 2-21

IV-1

INDEX V

ALL ENTRY POINTS

NAME PAGE NAME PAGE NAME PAGE

ABS 1-1 DEXP 1-27 MINI 1-57
ACODE 2-4 DIM 1-28 MOD 1-53
AD RES 2-10 DLOG 1-31 NUMB 2-18
AI MAG 1-2 DLOGT 1-32 OVF 2-19
AINT 1-3 DMAXl 1-55 PLOT 2-22
ALOG 1-4 DMINl 1-55 PLO TB 2-25
ALO GT 1-5 DMOD 1-33 PLTLU 2-23
AMAXO 1-56 DSIGN 1-34 PT APE 2-26
AMAXl 1-57 DSIN 1-35 REAL 1-59
AMINO 1-56 DSQRT 1-36 RMPAR 2-27
AMINl 1-57 END IO 2-7 RWSTB 2-15
AMOD 1-6 ENTIE 1-37 SCALE 2-28
AR CT A 1-7 ENTIX 1-38 SIGN 1-61
ATAN 1-7 ERRO 2-8 SIN 1-60
ATAN2 1-8 EXEC 2-9 SNGL 1-62
AXIS 2-1 EXP 1-39 SORT 1-63
BFINP 2-15 FACT 2-24 SYMB 2-30
BFOUT 2-15 FLOAT 1-42 TAN 1-64
BREAD 2-2 GAP3 2-15 TANH 1-65
BWRIT 2-2 GETAD 2-10 WHERE 2-24
CABS 1-9 IABS 1-44 XADD 1-66
CADO 1-10 !AND 1-45 XDIV 1-67
ccos 1-18 IDIM 1-46 XMPY 1-68
CDIV 1-11 ID INT 1-47 XPOLY 1-69
CEXP 1-12 IEOF 2-15 XSUB 1-66
CLEAR 2-15 IEOT 2-15 #COS 2-32
CLOG 1-14 !ERR 2-15 #EXP 2-33
CL RIO 2-3 !FIX 1-48 #LOG 2-34
CMPLX 1-15 INT 1-49 #SIN 2-35
CMPY 1-16 IOR 1-50 $DBP2 2-5
CODE 2-4 I SIGN 1-51 $EXP 2-36
CON JG 1-17 !SOT 2-15 $LOG 2-37
cos 1-60 !SSW 2-12 $LOGT 2-38
CSIN 1-18 !UNIT 2-15 $MEMR 2-5
CSQRT 1-19 IWRDS 2-15 $SQRT 2-39
CSUB 1-20 LEA DR 2-13 %ABS 2-40
DABS 1-21 LINE 2-14 %AN 2-41
DATAN 1-22 LN 1-4 %AND 2-42
DATN2 1-23 LOCAL 2-15 %ANH 2-43
DBLE 1-24 MAXO 1-56 %B5 2-44
DCOS 1-25 MAXl 1-57 %FIX 2-45
DD INT 1-26 MINO 1-56 %IGN 2-46

V-1

INDEX

NAME PAGE NAME PAGE NAME PAGE
%IN 2-47 .DTOD 1-76 .SWCH 2-72
%INT 2-48 .DTOI 1-77 .TAPE 2-73
%JFIL 2-29 .DTOR 1-78 .XADD 1-66
%LOAT 2-49 .ENTP 2-63 .XAY. 3-25
%LOG 2-50 .ENTR 2-63 3-26

%LOGT 2-51 .ERRR 2-64 .XCOM 1-89

%NT 2-52 .FAD 1-40 .XDIV 1-67

%OR 2-53 .FDV 1-41 .XENT 1-38

%OS 2-54 .FLUN 1-80 .XFER 1-90

%OT 2-55 .FMP 1-43 .XIO. 3-25
3-26

%RDSC 2-29 .FSB 1-40 .XMPY 1-68
%READ 2-29 .GOTO 2-65 .XPAK 1-91
%QRT 2-56 . IAR. 3-25 .XPLY 1 -69
%SIGN 2-57 3-26

.IAY. 3-27 .ZRLB 2-74
%SSW 2-58 .• CCM 1-9:2
%TAN 2-59 .ICPX 1-81

. IDBL 1-82 .. DCM 1-93
%WEOF 2-60

. IENT 1 -83 .. DLC 1-94
%WRIF 2-61

. I IO. 3-27 .. FCM 1-95
%WRIN 2-60

. INDA 2-11 .. MAP 2-75
%WRIS 2-60
%WRIT 2-61 . INDR 2-11

%XP 2-62 . IOI. 3-25
3-26

.ALC. 2-17 . IOR. 3-25

.BIO. 3-25 3-26
3-26 . ITOI 1-84

.CADD 1-10 .MANT 1-52

.CDBL 1-10 .MAP. 2-66

.CDIV 1-11 .MPV 1-54

.CFER 1-71 1-79

.CHEB 1-13 .OPSY 2-67

.CINT 1-72 .PACK 1-85
.CLR. 2-17 .PAUS 2-20
.CMPY 1-16 2-68

. CSUB 1-20 .PCAD 2-69

.CTOI 1-73 .PRAM 2-70

.DCPZ 1-74 .PWR2 1-58

.OFER 1-90 .RAR. 3-25
3-26

.DINT 1-75 .RAY. 3-27

.DIO. 3-25 .RIO. 3-27 3-26

.DIV 1-29 .RND 1-37
1-79 .RTN . 2-17

. DLD 1-30 .RTOD 1-86
1-79 .RTOI 1-87

.DST 1-30 .RTOR 1-88 1-79
.STOP 2-20

2-71

V-2

02116-91780

	0-000
	0-001
	0-002
	0-003
	0-005
	0-006
	0-007
	0-009
	0-010
	0-011
	0-012
	0-013
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	1-95
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2_00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3_00
	I_0-00
	I_1-01
	I_2-01
	I_3-01
	I_4-01
	I_5-01
	I_5-02
	xBack

