
HEWLETTffyPACKARD 

HP BASIC 



HP 02116-9077 

HP E~ASIC 

HEWLETT ii PACKARD 

11000 Wolfe Road 
Cupertino, California 95014 

Apri 1 1970 



©Copy!U..ght, 1970, by 

HEWLETT-PACKARD COMPANY 
Cupertino, California 

Printed in the U.S.A. 

Second Edition 

First Edition~ Aug. 
Revised, April 

1968 
1970 

All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system (e.g., in memory, disc or core) or 
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior written permission from the 
publisher. 

Printed in the U.S.A. 



PREFACE 

The purpose of this text is to lhel p the programmer learn how 

to use BASIC rather than how to program. A 11 semi-programmed 11 

frame format is used for ease in reference and self-instruction. 

The contents of this second edition are organized in sequence 

from least to most difficult. :Since the sections are rrodu­

lar, experienced programmers ma.Y follow any sequence of in­

struction. Related features ar1~ grouped by section and cross­

referenced where appropriate. Any examples presented in col or 

may be used as a practice exercise. 

Operating instructions are presented in Section VIII. 



NEW AND CHANGED INFORMATION 

This text rep 1 aces the 11 BAS IC LANGUAGE" Reference Ma nua 1 

published August, 1968. 

The external specifications of HP BASIC have been changed to 

all ow interface with the HP Magnetic Tape System. Material 

pertinent to this change is contained in Section VII, "For 

Advanced Programmers 11
• 

The format has been changed to facilitate self-instruction 

and reference. More examples, including sample programs, 

have been added. 

A "Quick Reference" section is included in the Appendix 

section; it is a summary of all BASIC features explained 

in the text. 

iv 



CONVENTIONS USED IN THIS TEXT 

SAMPLE 

RUN 

And then ... 

20 PRINT X, Y 

s ta t:emen t number 

return linefeed 

esc ctrl 

alt-mode 

Note: Both X and •.. 

CALL 

0 

0 

EXPLANATION 

Black, all capitals in examples indicates com­
puter-output information. 

Mixed upper and lower case black is used for 
regular text. 

Green, all capitals indicates a statement or 
command typed by the programmer. 

Black lower case italics indicates a general 
form, derived from BASIC syntax requirements 
( Sect ·j on V I ) . 

Green underlining indicates an essential part 
of a general form; each underlined item is a 
separate, essential element. 

Represents the terminal keys: 
Return, Linefeed, Escape, Control, and 
Alt-Mode. 

Mixed upper and lower case italics is used for 
notes. 

Oversize black is used for page headings. 

The 1 etter 11 0 11 

Zeroes are slashed. 

Please examine the sample on the next page. 

v 



PAGE FORMAT 

The reference page format is as uniform as possible. This 
sample shows how positioning and typeface relate to content. 
Black frames are used on reference pages. 

EXAMPLES: 

GENERAL FORM: 

Several sample 
statements or commands 

(Each essential element underlined in green.) 

PURPOSE 

A clear and concise explanation of the purpose or function. 

COMMENTS 

A series of several items containing: 
Pertinent information 
Additional explanation or examples 
Helpful hints. 

Reference to other sections or subsections related to the 
contents of this page. 

Section No. Page No. 

vi 



CONTENTS 

iii PREFACE 
iv NEW AND CHANGED INFORMATION 
v CONVENTIONS USED IN THIS TEXT 

vi PAGE FORMAT 
xi HOW TO USE THIS BOOK 

1-1 SECTION I 
COMMUNICATING WITH THE COMPUTER 

1-2 STATEMENTS 
1-3 STATEMENT NUMBERS 
1-4 INSTRUCTIONS 
1-5 OPERANDS 
1-6 A PROGRAM 
1-7 FREE-FORMAT LANGUAGE 
1-9 BEFORE WORKING WITH THE COMPUTER 

1-10 RETURN 
1-11 ENTERING A PROGRAM 
1-12 MISTAKES AND CORRECTIONS 
1-13 DELETING OR CHANGING A STATEMENT 
1-14 RUNNING A PROGRAM 
1-15 STOPPING A PROGRAM 
1-16 HOW THE PROGRAM WORKS 

2-1 SECTION II 
THE ESSENTIALS OF BPSIC 

2-2 VOCABULARY 
2-5 THE ASSIGNMENT OPERATOR 
2-6 THE RELATIONAL OPERATORS 
2-7 THE AND OPERATOR 
2-8 THE OR OPERATOR 
2-9 THE NOT OPERATOR 

2-10 ORDER OF PRECEDENCE 

vii 



CONTENTS 

2-11 STATEMENTS 
2-12 LET 
2-13 REM 
2-14 INPUT 
2-16 PRINT 
2-21 GO TO 
2-22 IF ... THEN 
2-23 FOR ... NEXT 
2-25 NESTING FOR ... NEXT LOOPS 
2-26 READ, DATA AND RESTORE 
2-28 WAIT 
2-29 END AND STOP 
2-30 SAMPLE PROGRAM 
2-33 RUNNING THE SAMPLE PROGRAM 
2-34 COMMANDS 
2-35 RUN 
2-36 LIST 
2-37 SCRATCH 
2-38 TAPE 
2-39 PT APE 
2-40 PUST 

3-1 SECTION I I I 
ADVANCED BASIC 

3-2 VOCABULARY 
3-6 SUBROUTINES AND FUNCTIONS 
3-7 GOSUB ... RETURN 
3-8 FOR ... NEXT WITH STEP 
3-9 GENERAL MATHEMATICAL FUNCTIONS 

3-10 TRIGONOMETRIC FUNCTIONS 
3-11 DEF FN 
3-12 COM 

3-14 TAB AND SGN FUNCTIONS 

viii 



CONTENTS 

4-1 SECTION IV 
MATRICES 

4-1 VOCABULARY 

4-2 DIM 
4-3 MAT ... ZER 
4-4 MAT ... CON 
4-5 INPUTTING SINGLE MATRIX ELEMENTS 

4-6 PRINTING SINGLE MATRIX ELEMENTS 

4-7 MAT PRINT 
4-8 READING SINGLE MATRIX ELEMENTS 

4-9 MAT READ 
4-10 MATRIX ADDITION 

4-11 MATRIX SUBTRACTION 
4-12 MATRIX MULTIPLICATION 

4-13 SCALAR MULTIPLICATION 

4-14 COPYING A MATRIX 

4-15 IDENTITY MATRIX 
4-16 MATRIX TRANSPOSITION 

4-17 MATRIX INVERSION 

5-1 SECTION V 
LOGICAL OPERATIONS 

5-1 LOGICAL VALUES AND NUMERIC VALUES 

5-2 RELATIONAL OPERATORS 
5-4 BOOLEAN OPERATORS 
5-5 SOME EXAMPLES 

6-1 SECTION VI 
SYNTAX REQUIREMENTS OF BASIC 

7-1 SECTION VII 
FOR ADVANCED PROGRP.MMERS 

7-1 MODIFYING HP BASIC 

7-2 CALL 
7-6 BYE 

ix 



CONTENTS 

7-7 FIRST AND LAST WORD OF AVAILABLE MEMORY 
7-7 FIRST WORD AVAILABLE IN PASE PAGE 
7-8 LINK POINTS 
7-9 LINKAGES TO SUBROUTINES 

7-11 HOW TO MAKE MORE PROGRAM SPACE 

8-1 SECTION VIII 
OPERATING INSTRUCTIONS 

8-3 HP 2114--HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE 
8-4 HP 2115, HP 2116--HOW TO LOAD A CONFIGURED HP BASIC 

SYSTEM TAPE 
8-5 HOW TO CONFIGURE A BASIC SYSTEM USING PBS (HP 2114) 
8-7 HOW TO CONFIGURE A BASIC SYSTEM USING PBS (HP 2115, HP 2116) 

A-1 APPENDIX A 
HOW TO PREPARE PAPER TAPE OFF-LINE 

B-1 APPENDIX B 
SAMPLE PROGRAMS 

C-1 APPENDIX C 
QUICK REFERENCE TO BASIC 

0-1 APPENDIX D 
ERROR CODES AND DIAGNOSTICS 

INDEX 

x 



HOW TO USE THIS BOOK 

If your purpose is: 

Quickly acquiring a minimum working 
knowledge of HP BASIC: 

Acquiring a good working knowledge 
of HP BASIC: 

Learning the complete HP BASIC 
system: 

Learning to operate the computer: 

Reference only: 

xi 

Read: 

Sections I and II. 

Sections I, through VII, 
in sequence. 

The entire book, in sequence. 

Sec ti on VII I. 

1. Contents 
2. Appendix C 
3. The index 
4. Index tabs to 1 ocate the 

appropriate section. 



SECTION I: COMMUNICATING WITH THE COMPUTER 

SECTION II: THE ESSENTIALS OF BASIC 

SECTION Ill: ADVANCED BASIC 

SECTION IV: MATRICES 

SECTION V: LOGICAL OPERATIONS 

SECTION VI: SYNTAX REQUIREMENTS OF BASIC 

SECTION VII: FOR J~DVANCED PROGRAMMERS 

SECTION VIII: C)PERATING INSTRUCTIONS 

APPENDICES AND IND·EX 



SEC:TION I 

COMMUNICATING 1WITH THE COMPUTER 

There are many types of 1 anguages. English is a 

natural language used to communicate with people. 

To communicate with the computer, formal 1 anguages 

are used. A formal 1 a.nguage is a combination of 

simple English and al 9ebra; for example, BASIC is 

a formal language usecl to communicate with the 

computer. 

Like natural languages BASIC has grammatical rules, 

but they are much simpler. For example, this series 

of BASIC statements (which calculates the average of 

five numbers given by you, the user) shows the funda­

menta 1 rules: 

l~ INPUT A,B,C,D,E 

20 LET S = (A+B+C+D+E)/5 

3~ PRINT S 

4~ GO TO l~ 

5~ END 

The following pages show how to interpret these rules. 

Notice how the stateme~nts are written. What they do 

is explained later. 

1 -1 



STATEMENTS 

This is a BASIC statement: 

10 INPUT A,B,C,D,E 

COMMENTS 

A statement contains a maximum of 72 characters ------··-

(one te 1 etypewri ter 1 i ne). 

A §._!ateme~_!_ may al so be cal 1 ed a 1 ine. 

1-2 



STATEMENT NUMBERS 

Each BASIC statement begins with a statement number (in 
this example, 20): 

20 LET ~d(A+B+C+D+E)/5 

COMMENTS 

The number is cal 1 ed a statement number or a line number. 

The statement number is chosen by you, the programmer. It 
may be any integer from 1 to 9999 inclusive. 

Each statement has a unique statement number.- The computer 
uses the numbers to keep the statements in order. 

Statements may be entered in any order; they are usually 
numbered by fives or tens so that additional statements 
can be easily inserted. The computer keeps them in numeri­
cal order no matter how they are entered. For example, if 
statements are input in the sequence 30,10,2.0; the computer 
arranges them in the order: 1.0,2.0,30. 

1-3 



INSTRUCTIONS 

The staterrent then gives an instruction to the 

computer (in this example, PRINT): 

3fJ PRINT S 

COMMENTS 

!_Qstruc!-ions are sometimes called statem~!-_!_lJ..~ 
because they identify a type of statement. For 

example, the statement above is a "print" statement. 

1-4 



OPERANDS 

If the instruction requires further details, operands 

(numeric details) are supplied (In this example, H1; 

on the previous page, 11 S11
): 

40 GO TO l ,f) 

COMMENTS 

The operands specify what the instruction acts upon; for 

ex amp 1 e, what is PR IN Ted, or where to GO. 

1-5 



A PROGRAM 

The sequence of BASIC statements 
given on the previous pages is 
called a program. 

The 1 as t s ta temen t "in a program, 
as shown here, is 
an END statement. 

COMMENTS 

10 INPUT A,B,C,D,E 
20 LET S=(A+B+C+D+E)/5 
30 PRINT S 

40 GO TO 10 
Sf) END 

The last (highest numbered) statement in a program 
must be an END statement. 

The END statement informs the computer that the 
program is finished. 

1-6 



FREE-FORM,~T LANGUAGE 

BASIC is a 11 free format 11 1 anguage--the computer 
ignores extra blank spaces in a statement. For 
example, these three statements are equivalent: 

3f) PRINT S 
3!J PRINT S 

3!JPRINTS 

COMMENTS 

When possible, leave a space between words and 
numbers in a statement. This makes a program 
easier for people to read. 

1-7 



Vl 
""O 
C) 

-f 

" ::c: ,.,, 
" ;;<; 

• 
(Spot check) 

Be sure you are familiar with these terms before 

con ti nu i ng: 

statement 

instruction 

statement type 

statement number 

line number 
operand 

program 

All of these terms are defined in the context of 

this sec ti on. 

1-8 



BEFORE WORKING WITH THE COMPUTER 

The following pages explain how to correct mistakes 
and list programs. 

Since you will probably have to make several correc­
tions in your first att1empts to use the computer, 
these features should be learned before beginning. 

11-9 

:i: 
f--

3 



RETURN 

The return key must be pressed after each statement. 

EXAMPLES: 10 INPUT A,B,C,D,E, return 

£~9) LET S=(A+B+C+D+E)/5 return 

30 PRINT S return 

40 GO TO 10 retu,£E_ 

~>0 END return 

COMMENTS 

Pressing return informs the computer that the state­
ment is complete. The computer then checks the state­
ment for mistakes. 

1-10 



ENTERING A PROGRAM 

This frame shows how to enter the sample program. 

If you are not sure how the computer responds when 

a statement is entered, use it as a practice 

exercise. 

ltl INPUT A,B,C,D,E return 

linefeed 

20 LET S = (A+B+C+D+E )/ 5 retuzn 

linefeed 

30 PRINT S ~~eturn 

linefeed 

40 GO TO 10 return 

linefeed 

linefeed 

COMMENTS 

The computer responds with a linefeed (terminal skips 

a 1 ine) after each statement is entered, indicating 

that the statement has been checked, accepted, and the 

computer is ready for another statement. 

1 -11 



MISTAKES AND CORRECTIONS 

The reverse arrow (+) key acts as a backspace, 

deleting the immediately preceding character. 

Typing: 20 LR+ET S=l fJ return 

i s e q u i v a 1 en t to typing: 2YJ LET S=lfJ return 

And typing: 30 LET+ + + PRINT S return 

is equivalent to typing: 3fJ PRINT S return 

COMMENTS 

The+ character is a 11 shift 11 0 on most tennina1s. 

1-12 



DELETING OR CHANGING A STATEMENT 

To delete the statement being typed, press the esc or alt-rrode key. This causes 

a ' to be printed, and deletes the entire 1 ine being typed. 

To delete a previously typed statement, type the statement number fo 11 owed by a 

return. 

To change a previously typed statement, retype it with the desired changes. The 

new statement replaces the old one. 

Pressing the esc key deletes 

the statement being typed: 

To delete statement 5 in the 

sequence: 

type: 

Or, to change statement 5 in 

the above sequence, type: 

The old statement is replaced 

by the new one. 

Typing an esc (or alt-mode) be­

fore a return prevents replace­

ment of a previously typed 

statement. 

For ex amp 1 e , ty pin g: 

or: 

has no effect on the orig in al 

statement 5. 

1-13 

20 LET S = esc 

NOTE: The computer responds with 

a ' when esc is typed, 

like this: 

2f) LET S = ' 

5 LET S = fJ 
10 INPUT A,B,C,D,E 
20 LET S = (A+B+C+D+E)/5 

NOTE: ' and I are different, and 

have very different functions. 

5 return 

5 LET S = 5 return 

5 LET esc 

5 esc 

~ 
<!J 
z 
ci: 1-
::c z 
u~I 
o:::w 
01-

ci: 
<!J 1-
z: Vl 

~ci: 
Cl 



RUNNING A PROGRAM 
This frame shows what happens when the sample program is run. The program 
does not begin execution (does not run) until the command RUN fol low1ed by a 
return is typed. 

NOTE: The sample program (averaging 5 numbers) has been entered. 

COMMENTS 

The computer responds with a 
linefeed indicating that the 
command is being executed. 

The question mark indicates that 
input is expected. The five num­
bers being averaged should be 
typed in, SEPARATED BY COMMAS, 
and followed by a return. 

The answer is printed. 

? indicates that five more 
numbers are expected. 

The answer is printed. 

NOTE: This program continues exe­

cuting indefinitely, unless 

terminated by the user. To 

terminate, type an S return 

when more input is requested. 

The program is finished. 

1-14 

RUN return 

linefeed 

? 95.6,87,3,5,90,82.8 retu.rn 

linefeed 

84.24 return 

linefeed 

? -12.5,-50.6,-32,45.6,60 return 

2.1 return 

linefeed 

? S return 
-·~-··-·-·-··-



STOPPING A PROGRAM 

When RUN or LIST is typed, BASIC "takes over" the 
terminal until the program finishes executing or 
the 1 is ting is complete. 

To stop a program that is 
ru nn in g o r be in g 1 i s te d, 

press, then release, any 
key. 

BASIC then responds with 
the STOP message: 

COMMENTS 

esc (or any key) 

STOP 

Remember that: S return is used to end input loops. 

1-15 



HOW THE PROGRAM WORKS 
:i:: 
0 
:<:: 

~ 
.,,, 
;;o 
0 

~ 
)> 
3: 

~ Line 10 tells the computer that five numbers will 
be input, and that they should be given the labels 
A,B,C,D,E tn sequence. The first number input is 
·labeled "A" by the computer, the second 11 811

, etc. 
A,B,C,D, and E are called variables. 

After line 10 is executed, the variables and 
their assigned values, typed in by the user, 
are stored. For example, using the values en­
tered by the user in the previous example, this 
information is stored: A= -12.5; B = -50.6; 
C = -32; D = 45.6; E = 60 

Line 20 declares that a variable called S 

exists, and is assigned the value of the sum 
of the variables A,B,C,D,E divided by 5: 

Line 30 instructs the computer to output the 
value of S to user's terminal: 

NOTE: If the PRINT statement were not given, 
the value of S would be calculated and 
stored, but not printed. The computer 
must be given explicit instruction for 
each operation to be performed. 

Line 40 tells the computer to go to line 10 
and execute whatever instruction is there: 

NOTE: A "loop" is formed by lines 1(1 to 4¢. 
The sequence of statements in this 
loop execute unti.l the user breaks 
the loop. This particular kind of 
loop is called an input loop (because 
the user must consistently input data). 

Continued on the next page 

1-16 

10 INPUT A,B,C,D,E 

20 LET S = (A+B+C+D+E)/5 

30 PRINT S 

40 GO TO 10 



HOW THE PROGRANI WORKS, 

TYPING: S WHEN INPUT IS REQUESTED 
BY A "?" IS THB ONLY WAY TO BREAK AN 
INPUT LOOP. Other, more COll trolled 
loops are explained later. Line 5¢ 
is not executed until the loop is 
broken by typing: S when i12put is 
requested. 

Line 50 informs the computer that the program 
is finished: 

1-· 17 

CONTINUED 

50 END 



SECTION II 

THE ESSENTIALS OF BASIC 

This section contains enough information to allow 

you to use BASIC in simple applications. 

Proceed at your own pace. The information in the 

vocabulary and operator~; subsections is included 

for completeness; experienced programmers may skip 

these. 

The 11 0perators 11 pages contain brief descriptions, 

rather than explanations, of the logical operators. 

The novice should not expect to gain a cl ear under­

standing of logical operators from this presenta­

tion. Section V presents more details and examples 

of logical operations. Readers wishing to make best 

use of logical capabilities should consult this sec­

tion. Those unfamiliar with logical operations should 

al so refer to an elementary 1 ogic text. 

A sim~e program is included at the end of this section 

for reference; it contains a running commentary on the 

uses of many of the BASIC statements presented in the 

section. 

2-·l 



TERM: SIMPLE VARIABLE 

DEFINED IN BASIC AS: 

EXAMPLES: 

A letter (from A to Z); or a 
letter immediately followed 
by a digit (from 0 to 9). 

A0 
M5 
z9 

COMMENTS 

B 

C2 

D 

Variables are used to represent numeric values. 
For instance, in the statement: 

10 LET M5 = 96.7 

M5 is a variable; 96.7 is the value of the variable 
M5. 

There is one other type of variable in BASIC, the 
array variable; its use is explained in Section IV. 

2-2 



TERM: NUMBER 

DEFINED IN BASIC AS: A decimal number (the sign is optional) between an 

approximate minimum of: 

1,,-38 (or 2-129) 

and an appnJximate maximum of: 

1038 (or 21;~7) 

Zero is inc·1 uded in this range. 

TERM: E NOTATION 

DEFINED IN BASIC AS: A means of expressing numbers having more than six 

decimal dig·its, in the form of a decimal number 

raised to some power of 10. 

EXAMPLES: l .9J009J9JE+06 is equal to l ,9J0.f),0.f)0 and is read: 11 1 

times 10 to the sixth power" (lxl06). 

1 .02.f)09JE+04 is equal to 10,2.f),f) 

1 .02000E-04 is equal to .f)00102 

COMMENTS ----

11 E11 notation is used to print numbers having rrore than six significant 

digits. It may also be used for input of any number. 

When entering numbers in 11 E11 notation, 1 eading and trailing zeroes may 

be omitted from the number; the + sign and leading zeroes may be omitted 

from the exponent. 

The precision of numbers is 6 to 7 decimal digits (23 binary digits). 

2-3 



TERM: EXPRESSION 

DEFINED IN BASIC AS: A combination of variables, con­
stants and operators which eval­
uates to a numeric value. 

EXAMPLES: ( p + 5 )/ 27 

(where P has previously been 
assigned a numeric value.) 

Q - (N + 4) 

(where Q and N have previously 
been assigned numeric values.) 

TERM: ARITHMETIC EVALUATION 

DEFINED IN BASIC AS: The process of calculating the 
value of an expression. 

2-4 



THE ASSIGNMIENT OPERATOR 

SYMBOL: 

EXAMPLES: 

GENERAL FORM: 

= 

l~ LET A = B2 = C = ~ 
20 LET A9 = C5 
3~ LET Y = (N-(R+5))/T 
4~ LET N5 = A + B2 

5~ LET P5 = P6=P7=A=B=98.6 

PURPOSE 

Assigns an arithmetic or logical value to a variable. 

COMMENTS 

When used as an assignment operator, = is read "takes 

the value of, 11 rather than 11 equals 11
• It is, therefore, 

possible to use assignnEnt statements such as: 

LET X = X+2 

This is interpreted by BASIC as: 11 LET X take the value 

of (the present va 1 ue of) X, pl us two. 11 

Severa 1 assignments may be made in the same statement, as 

in statements 10 and 5~ above. 

See Section V, "Logical Operations" for a description of 

logical assignments. 

2-5 



RELATIONAL OPERATORS 

SYMBOLS: 

EXAMPLES: 

= # <> > < >= <= 

100 IF A=B THEN 900 

110 IF A+B >C THEN 910 

120 IF A+B < C+E THEN 920 

130 IF C>=D*E THEN 930 

140 IF C9<= G*H THEN 94~ 

15~ IF P2#C9 THEN 950 

1 60 IF J <> K THEN 950 

PURPOSE 

Determines the logic al relationship between two express ions, as 

equality: = 

in e qua 1 i ty : # or <> 

greater than: > 

less than: < 

greater than or equal to: >= 

1 ess than or equal to: <= 

COMMENTS 

NOTE: It is not necessary for the novice to understand the nature 

of logical evaluation of relational operators, at this point. 

The comments below are for the experienced programmer. 

Expressions using relational operators are logically evaluated, and 

assigned a value of "true" or 11 false 11 (the numeric value is 1 for 

"true," and 0 for false). 

When the = symbol is used in such a way that it might have either an 

assignment or a relational function, BASIC assumes it is an assignment 

operator. For a description of the assignment statement usinig logical 

operators, see Section V, "Logical Operations." 

2-6 



THE AND OPERATOR 

SYMBOL: 

EXAMPLES: 

AND 

60 IF A9<B1 .AND C#5 THEN 100 

70 IF T7#T AND J=27 THEN 150 
80 IF P 1 AND R > l AND N AN D V2 lli EN 1 0 
90 PRINT X AND Y 

PURPOSE 

Forms a 1 ogi cal conjunction between two express ions. If both a re 
11 true, 11 the conjunction is 11 true 11

; if one or both are 11 false, 11 the 

conjunction is 11 fa1se. 11 

NOTE: It is not necessary for the novice to understand how this 

operator works. The comments below are for experienced 

programmers. 

COMMENTS 

The nu mer i c v a 1 ue of 11 true 11 i s 1 , o f 11 fa 1 s e 11 is ~L 

Al1 non-zero values are "true. 01 For example, statement 90 would 

print either a 0 or a 1 (the logical value of the expression X AND 

Y) rather than the actual numeric values of X and Y. 

Control is transferred in an IF statement using AND, only when all 

parts of the AND conjunction are 11 true. 11 For instance, example 

statement 80 requires four 11 true 11 conditions before control is trans­

ferred to statement 10. 

See Section V, "Logical Operations 11 for a more complete description 

of logical evaluation. 

2-7 

Cl 
z: 
< 



SYMBOL: 

EXAMPLES: 

THE OR OPERATOR 

OR 

100 IF A>l OR B<5 THEN 500 
110 PRINT C OR D 
120LETD=XORY 
130 IF (X ANDY) OR (P AND Q) THEN 600 

PURPOSE 

Forms the logical disjunction of two expressions. If 

either or both of the expressions are true, the OR dis­

junction is 11 true 11
; if both expressions are "false," the 

OR disjunction is "false." 

NOTE: It is not necessary for the novice to understand how 

this operator works. The comments below are for 

experienced programmers. 

COMMENTS 

The numeric values are: "true" = 1, "false" = 0. 

All non-zero values are true; all zero values are false. 

Control is transferred in an IF statement using OR, when 

either or both of the two expressions evaluate to "true." 

See Section V, "Logical Operations" for a more complete 

des c ri pti on of 1ogica1 eval ua tio n. 

2-8 



THE NOT OPERATOR 

SYMBOL: 

EXAMPLES: 

NOT 

30 LET X = Y = 0 
35 IF NOT A THEN 300 
45 IF (NOT C) AND A THEN 400 
55 LET 85 = NOT P 

65 PRINT NOT (X AND Y) 

70 IF NOT (A=B) THEN 50~ 

PURPOSE 

Logically evaluates the complement of a given expression. 

NOTE: It: is not necessary for the novice to understand 

how this opera t:or works. The comments below are 

intended for experienced programmers. 

COMMENTS 

If A= 0, then NOT A= l; if A has a non-zero value, 

NOT A = 0. 

The numeric values an~: 11 true 11 = 1, 11 fal se 11 = 0; for 

example, statement 65 above would print 11 1 11
, since the 

express ion NOT (X AND Y) is true. 

Note that the logical specifications of an expression may 

be changed by evaluat'ing the complement. In statement 35 

above, if A equals zero, the evaluation would be 11 true 11 

(l); since A has a numeric value of 0, it has a logical 

va 1 u e of 11 fa 1 s e , 11 ma k i n g NOT A 11 true . 11 

See Section V, "Logic.al Operations 11 for a more complete 

description of 1 ogica·1 evaluation. 

2-9 



0 
;o 
c:J 
fT1 
;o 

~ 
-o 
::0 ,,., 
n ,,., 
0 ,,., 
:z 
n ,,., 

ORDER OF PRECEDENCE 

The order of performing operations is: 

t highest precedence 

NOT unary + unary -

* I 
+ 
Relational Opera tors 

AND 

OR lowest precedence 

COMMENTS 

If two operators are on the same level, the order of 
execution is left to right, for example: 

5 + 6*7 
7 /14*2/5 

is evaluated as: 
i s e val u a te d as : 

5 + (6x7) 
(7/14)x2 

5 

Parentheses override the order of precedence in all cases, 
for example: 

5 + (6x3) is evaluated as: 5 + 18 
and 

3 + (6+(2t2)) is evaluated as: 3 + (6+4) 

Unary + and - may be used; the parentheses are assumed by 
BAS IC. For example: 

A + + B is interpreted: A + (+B) 
C - + D -5 is interpreted: C - (+D)-5 

Leading unary + signs are omitted from output by BASIC, but 
remain in program listings. 

2-10 



STATEMENTS 

Statements are instructions to the computer. They are contained 

in numbered 1 ines within a program, and execute in the order of 

their 1 ine numbers. Stateme~nts cannot be executed without run­

ning a program. They tel 1 the computer what to do while a pro­

gram is running. 

Commands are also instructions. They are executed immediately, 

do not have line numbers, and may not be used in a program. They 

are used to manipulate programs, and for utility purposes. 

Here are some examples mentioned in Section I: 

Statements 

LET 

PRINT 
INPUT 

Commands 

RUN 
TAPE 

LIST 

Do not attempt to memorize every detail in the 11Statements 11 

subsection; there is too much material to master in a single ses­

sion. By experimenting with the sample programs and attempting to 

write your own programs, you will learn more quickly than by 

memo ri zing. 

2-11 



THE LET STATEMENT 

EXAMPLES: 

GENERAL FORM: 

l,el LET A= 5.02 
20 LET X = Y7 = Z = ,el 
30 LET B9 = 5* (Xt2) 
40 LET D = (3*C2tN)/(A*(N/2)) 

~~9tement_!_l_umbe~ LET variable::_ number or expression or variable ... 

PURPOSE 

Used to assign or specify the value of a variable. The value 
may be an expression, a number, or a variable. 

COMMENTS 

The assignment statement must contain: 

1. A statement number, 
2. LET, 
3. The variable to be assigned a value (for example, B9 

in statement 30 above), 
4. The assignment operator, an= sign, 
5. The number, expression or variable to be assigned to 

the variable (for example, 5*(Xt2) in statement 30 above). 

Statement 2£) in the example above shows the use of an assignment 
to give the same value (0) to several variables. This is a useful 
feature for initializing variables in the beginning of a program. 

2-12 



EXAMPLES: 

l~EM 

l~ REM--THIS IS AN EXAMPLE 
2~ REM: OF REM STATEMENTS 
3~ REM-----/////*****!!!!! 
4~ REM. STATEMENTS ARE NOT EXECUTED BY BASIC 

PURPOSE 

Al lows insertion of a 1 ine of remarks or comment 
i n the 1 is tin g of a program . 

COMMENTS 

Must be preceded by a line number. Any series of 
characters may foll ow REM. 

REM 1 ines are part of a BASIC program and are printed 
when the program is listed or punched; however, they 
are ignored when the program is executing. 

Remarks are easier to read if REM is followed by a 
punctuation mark, as in the example statements. 

2-13 



INPUT 

This program shows severa 1 variations of the INPUT s ta temen t and their effects. 

5 FOR M=l TO 2 

10 INPUT A 

Sample Program Using INPUT 

20 INPUT Al , B2, C3, Z0, zg, E5 
3fJ PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R11

; 

4fJ INPUT R 

5 fJ PRINT A ; A 1 ; B2 ; C3 ; Z0 ; zg ; E 5; "R= 11 
; R 

60 NEXT M 
70 END 

RESULTS ------------------------------
RUN return 

?l return 

? 2 , 3, 4 , 5, 6, 7 E~~ rn_ 

WHAT VALUE SHOULD BE ASSIGNED TO R?27 return ---
2 3 4 5 6 7 R=27 

?l .5 return 

?2.5,3.5,4.5,6.,7.2 return 

?8. l Fe"!:_!!._~!}_ ? i.ndicates that more input is expected 

WHAT VALUE SHOULD BE ASSIGNED TO R?-99 return 

1.5 2.5 3.5 4.5 6 7.2 

8 .1 R=-99 

Genera 1 Form: 
statement number INPUT variable .t_ variable !___ • •• 

PURPOSE 

Assigns a value input from the teleprinter to a variable. 

2-14 



IN PUT, CONTINUED 

COMMENTS 

The program comes to a halt, and a question mark is 

printed when the INPUT statement is used. The pro­

gram does not continue execution until the input 

requirements are satisfied. 

Only one question mark is printed for each INPUT state­

ment. The s ta temen ts: 

H) INPUT A, B:~, C5, D, E, F, G 

20 INPUT X 

each cause a single 11 '? 11 to be printed. The 11 ? 11 generated 

by statement 10 requires seven input items, separated by 

commas, while the 11 ?11 generated by statement 20 requires 

only a single input item. 

The only way to terminate or exit a program when input is 

required is entering: S return. Note that the S ends 

the program; it must be restarted with the RUN command. 

Relevant Diagnostics: 

'? indicates that input is required. 

See PRINT in this section for output variations. 

2-15 



PRINT 

This sample program gives a variety of examples of the PRINT statement. 

The results are shown below. 

10 LET A= B=C=l _0 

20 LET Dl =E9=20 

3.0 PRINT A,B,C,Dl ,E9 

40 PRINT A/ B, B/C/Dl +E9 

50 PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE" 

60 PRINT "VALUE IN THE SAME STATEMENT." 

70 PRINT 

80 PRINT 

90 REM* "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE. 

1 00 p RI NT II I A I D I v ID ED By I E 9 I = II ; A/ E 9 

11.0 PRINT II 11111 11
' II 22222 11

' 
11 33333 11

' 
11 44444 II' II 55555"' 11 66666 1

'
1 

120 PRINT 11 11111 11
; 

11 22222 11
; "33333"; "44444"; "55555"; 11 66666 111 

130 END 

RESULTS ----------------------------

RUN return 

10 l $1 

20.05 

10 20 

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE 

VALUE IN THE SAME STATEMENT. 

'A' DIVIDED BY 'E9' = .5 

11111 22222 33333 

66666 

111112222233333444445555566666 

44444 

20 

55555 

NOTE: The "," and ";" used in statements 11¢ and 12¢ have 

very different effects on the format. 

2-16 



PRINT, CONTINUED 

GENERAL FORM: 

statement number _!'RINT express~lon .!_expression 

or 

, ... 

statement number PRINT "any text" ; expression ; ••. 
---- - -

or 

statement n~mbf!.E_ _!'RINT "text" L expression I_ "text" !___ "text" 

or 
I • • • 

statemen_~_number _!>RINT any combination of text and/or expressions 

or 

statement number PRINT 

PURPOSE 

Causes the el!p_!_f!f!!~!!?J~_s_ or "text" to be output to 
the termi na 1 . 

Causes the teleprinter to skip a line when used 

without an operand. 

COl~ENTS 

Note the effects of , and ; on the output of the 

sample program. If a comma is used to separate 

PRINT operands, five fields are printed per tele­

printer line. If sem"icolon is used, up to twelve 
11 packed 11 numeric fields are output per teleprinter 

line (72 characters). 

Text in quotes is printed 1 i teral ly. 

Remember that variable values must be defined in 

an assignment, INPUT, READ or FOR statement before 

being used in a PRINT statement. 

2-17 



""Cl 
;o 

:z 
-I 

PRINT, CONTINUED 

Although the format of the PRINT statement is 11 automatic 11 to 
help beginning programmers, the experienced programmer may use 
several features to control his output format. 

Each line output to the terminal is divided into five print 
fields when commas are used as separators (as in statement 30 
in the sample program). The fields begin at print spaces 0, 
15, 30, 45, and 60. The first four fields contain fifteen 
spaces, and the last field contains twelve. The comma signals 
the computer to move to the next print field, or if in the 
last field, to move to the next line. 

More information may be printed on a line by using semicolons 
as separators. Twelve numbers may be printed per line by us­
ing semicolons. (See the output from statements 110 and 120 
in the sample program for an example of the differences in the 
two separators.) 

Spacing within a print field depends on the value and type of 
the number being printed. A number is always printed in a 
field larger than itself and is left-justified. The space re­
quired for a number is determined by these formulas: 

Value of Number 

-999< n < + 999 

-32768<n< -1000 
+1000 < n < +32767 

. 1::;n::;999999.5 

n<. 1 
999999.5 < n 

Type of Number 

Integer 

Integer 

Large Integer or 
Real 

Large Integer or 
Real 

*The A symbol indicates a space. 

2-18 

Output Field Size 

f\.xxxxxxxf\.f\.f\.f\. 

(Decimal point printed 
as one of the x 1 s; 
trailing zeros sup­
pressed.) 

Ax. xxxxxE±ee f\.f\.f\. 



PRINT, CONTINUED 

Ending a PRINT statement with a semicolon causes the output 
to be printed on the same line, rather than generating a 
return linefeed after the statement is executed. For example, 
the sequence: 

20 LET X = 1 
30 PFINT X; 
40 LET X=X+l 
50 GO TO 20 

produces output in this format: 

1 2 3 4 5 6 7 8 9 10 
13 14 15 16 17 18 19 20 21 22 

11 
23 

12 
24 

Similarly, ending a PRINT statement with a comma causes output to 
fill all five fields on a line before moving to the next line. 
The trailing comma in statement 30 in the sequence: 

20 LET X = l 
30 P~:INT X, 
40 LET X=X+l 
50 GO TO 20 

produces output in this format: 

1 2 3 4 5 
6 7 8 9 10 
11 12 13 14 15 

A PRINT statement without an operand ( s ta temen ts 70 and 80 
the sample program) generates a return linefeed. 

Three general rules for planning output formats are: 

1. If a number is an integer with a value between 
-32768 and +32767, inclusive, the decimal point 
i s not p ri n te d . 

~~-19 

in 



PRINT, CONTINUED 

2. If the number is an integer out of the above 
range or if the number is real and has an 
absolute value between .1 and 999999.5, the 
number is rounded to six digits and printed 
with a decimal point. Zeros trailing the 
decimal point are suppressed. 

3. If a number is either greater than 999999.5 or 
less than .1, it is rounded to six places; the 
teletypewriter then prints a space (if positive) 
or minus sign (if negative), the first digit, 
the decimal point, the next five digits, the 
letter E (indicating exponent), the sign of the 
exponent, and the exponent. 

See the description of the TAB function in Section III for more 
information on controlling output format. 

2-20 



EXAMPLES: 

GENERAL FORM: 

GO TO 

l ,fl LET X = 20 

5,fl GOTO l VJ.fl 

8,fl GOTO lk'J 

statement number GO .JO s ta temen t number 

PURPOSE ----

Transfers control to the specified statement. 

COMMENTS 

GO TO may be written: GOTO or GO TO. 

This statement must be followed by the statement 
number to which control is transferred. 

GO TO overrides the normal execution sequence of 
statements in a program. 

Useful for repeating a task infinitely, or 11 jumping 11 

(GOing TO) another part of a program if certain con­
ditions are present. 

GO TO should not be used to enter FOR-NEXT loops; 
doing so may produce unpredictable results or fatal 
errors. (See 11 FOR ... NEXT 11 in this section for de­
ta i1 s on 1 oops. ) 
To get out of a GO TO loop, type: STOP return. 

2-21 



SAMPLE PROGRAM: 

GENERAL FORM: 

IF ... THEN 

10 LET N = 10 
2fJ READ X 

30 IF X <=N THEN 60 
40 PRINT II x IS OVER"; N 

50 GO TO 100 
60 PRINT 11 X IS LESS THAN OR EQUAL TO"; N 

lfJ GO TO 20 
80 STOP 

PURPOSE 

Transfers control to a specified statement if a specified condition is true. 

COMMENTS 

Sometimes described as a conditional transfer; 11 GO TO" is implied by IF ... THEN, 
if the condition is true. In the example above, if X<=l0, the message in 
statement 60 is printed (statement 60 is executed). 

Since numbers are not always represented exactly in the computer, the = oper­
ator should be used carefully in IF ... THEN statements. Limits, such as<=,>=, 
etc. should be used in an IF expression, rather than =, whenever possible. 

If the specified condition for transfer is not true, the program will continue 
executing in sequence. In the example above, if X>l0, the message in state­
ment 4ft' prints. 

The relational operator is optional in logical evaluations. 

See Section V, "Logical Operations," for a more complete description of 
logical evaluation. 

2-22 



EXAMPLES: 

FOR .... NEXT 

lYJ,, FJR Pl = 1 TO 5 

11~ FOR Ql = N TO X 
12_0 F3R R2 = N TO X STEP 2 5 

130 FOR S = l TO X STEP Y 

140 NEXT S 

l 5f) NEXT R2 

161' NEXT Ql 

l 70 NEXT Pl 

Sample Program - Variable Number Of Loops 

40 PRINT 11 HOW MANY TIMES DO YOU WANT TO LOOP"; 

50 INPUT A 

6fJ FOR J = 1 TO A 

lfJ PRINT 11 THIS IS LOOP 11
; J 

8fJ READ N1 , N2, N3 

9fj PRINT 11 THESE DATA ITEMS WERE READ: II Nl; N2; N3 

1.00 PRINT 11 SUM =11
; (Nl+N2+N3) 

110 NEXT J 

l 20 DAT A 5 , 6 , 7 , 8 , 9, Hl, 11, 12 

130 DATA 13, 14, 15, 16 ~ 17' l 8, 19' 20, 21 

140 DATA 22, 23, 24, 25 ~· 26, 27, 28, 29, 30 
150 DATA 31, 32., 33, 34 

l 6fJ END 

GENERAL FORM: 

statement nwnber FOR simple va~ial?J:!!._ =-initial value TO final value 

or 
statement no. FOR simp]e var. =- initial value TO final value STEP step value 

statement number NEX1._ simple_ variaJ;>l~ 

NOTE: The same simple variable must be used in both the FOR and NEXT state­

ments of a loop. 

2-23 



FO R ... N EXT CONTINUED 

PURPOSE 

Allows controlled repetition of a group of statements within a program. 

COMMENTS 

Eni_tial:_ __ 'f.!_~!:_~!!__, final value and ste_~~!:_-~~. may be any expression. 

~TE~ and ste:e_val~~ are optional; if no step value is specified, the computer 

will automatically increment by one each time it executes the loop. 

How the loop works: 

The simple variable is assigned the value of the ~!!-itia!:__-r.:_'!:_lue.; the value of 

the simple variable is increased by 1 (or by the ~!~.12 .. Y!..~!:-u.~) each time the 

loop executes. When the value of the ~~!!TP~_e.__.Y"f!:.!.~able passes the ~~~~!!-_!:___~~-tz-~-' 

control is transferred to the statement following the 11 NEXT 11 statemi~nt. 

The initial, final, and step values are all evaluated upon entry to the loop ----- ---
and remain unchanged after entry. For example, 

FOR I = 1 TO I + 5 

goes from 1 to 6; that is, the final value does not 11move 11 as I increases with 

each pass through the loop. 

For further details on the STEP feature, see 11 FOR ... NEXT with STEP" in 

S ec ti on I I I. 

Try running the sample program if you are not sure what happens when FOR ... 

NEXT loops are used in a program. 

2-24 



NESTING FOR ... NEXT LOOPS 

Several FOR ... NEXT loops may be used in the same program; 
they may also be nested {placed inside one another). There 
are two important features of FOR ... NEXT loops: 

1. FOR ... NEXT 1 oops may be nested. 

,.........l~ FOR Al = 1 TO 5 

R f 1 Al 
___. ,..... 20 FOR B2 = N TO P an ge o oop --

[
3~ FOR C3 = X TO Y STEP R 

Range of loop B2-----.,,. : 

Range of loop C3 --- -- ,, 8~ NEXT C3 

--. 90 NEXT B2 
--1~0 NEXT Al 

2. The range of FOR ... NEXT loops may not 
overlap. The loops in the example above 
are nested correctly. This example shows 
improper nesting. 

The range of loops 

I and J overlap. 

~ 10 FOR I -- 1 TO 5 

,...... 3 0 FOR J == 1 TO N 

._to- 50 NEXT I 

..._g0 NEXT J 



READ, DATA AND RESTORE 

Sample Program using READ and DATA 

15 FOR I=l TO 5 

20 READ A 
4fJ LET X=At2 

45 PRINT A; II SQUARED =11 ;X 
5fJ NEXT I 

55 DATA 5.24,6.75,30.8,72.65,89.72 

6fJ END 

Each data item may be read only once in this 
program. BASIC keeps track of data with a 
11 pointer. 11 When the first READ statement is 
encountered, the 11 pointer 11 indicates that the 
first item in the first DATA statement (the one 
with the lowest statement number) is to be read; 
the pointer is then moved to the second item of 
data, and so on. 

In this example, after the loop has executed five 
times, the pointer remains at the end of the data 
list. To reread the data, it is necessary to re­
set the pointer. A RESTORE statement moves the 
pointer back to the first data item. 

2-26 



READ, DATA AND R~ESTORE, CONTINUED 

Sample Program Using RESTORE with READ and DATA. 

GENERAL FORM: 

20 FOR I = 1 TO 5 

3.0 READ A 
4.0 LET X==At2 

5.0 PRINT A; 11 SQUARED =";X 

6.0 NEXT I 

8.0 RESTORE 

1.00 FOR J=l TO 5 

11.0 READ B 

12.0 LET V:=Bt4 

13.0 PRINT B; 11 TO THE FOURTH POWER = 11
; Y 

14.0 NEXT J 

15.0 DATA 5.24,6.75,30.8,72.65,89.72 

161' END 

statement number READ :variable .L variable .L" •• 

statement number DATA ;number L number L ••• 

statement number RESTORE 

PURPOSE 

The READ statement instructs BASIC to read an item from 

a DATA statement. 

The DATA statement is used for specifying data in a pro­

gram. The data is read in sequence from first to last 

DATA statements, and from left to right within the DATA 

statement. 

The RESTORE statement resets the pointer to the first data 

item, allowing data to be reread. 

2-27 



EXAMPLE: 

WAIT 

900 WAIT ( 1000) 
990 WAIT ( 3000) 

GENERAL FORM: statement nu1!'!?_~-~- WAIT l expression "!!lax ~-~al~~e o!.__}_276_7-_ l 

PURPOSE 

Introduces delays into a program. WAIT causes the program 
to wait the specified number of milliseconds (maximum 32767 
milliseconds) before continuing execution. 

COMMENTS 

The time delay produced by WAIT is not precisely the number 
of milliseconds specified because there is no provision to 
account for time elapsed during calculation or terminal­
computer communication. 

One millisecond= 1/1000 second. 

2-28 



EXAMPLES: 

GENERAL FORM: 

END AND STOP 

200 IF A# 27.5 THEN 350 

300 STOP 

500 IF B # A ThEN 9999 

550 PRINT 11 8 = A11 

600 END 

9999 END 

any statement number STOP 

any __ ~ ta tem~!L!: __ E.!~mb~r END 

highe::;t st_i}t~er~}!2~ number _!:_n p_rog_!__i!:!ll_ ENQ_ 

PURPOSE 

Terminates execution of the program. 

COMMENTS 

The highest numbered statement in the program must be an END 

statement. 

END and STOP statements may be! used in any portion of the program 

to terminate execution. 

END and STOP have identical effects; the only difference is that 

the highest numbered statement in a program must be an END statement. 

~~-29 

CL 
C) 

~ 
0 
z: 
~ 

0 
z: 
w 



SAMPLE PROGRAM 

If you understand the effects of the statement 
types presented up to this point, skip to the 
11 COMMANDS 11 section. 

The sample program on the next two pages uses 
several BASIC statement types. 

Running the program gives a good idea of the 
various effects of the PRINT statement on tele­
printer output. If you choose to run the program, 
you may save time by omitting the REM staterrents. 

After running the program, compare your output 
with that shown under 11 RUNNING THE SAMPLE PROGRAM. 11 

If there is a difference, LIST your version and 
compare it with the one presented on the next 
two pages. Check the commas and semi-colons; they 
must be used carefully. 

2-30 



SAMPLE PROGRAM, CONTINUED 

10 REMARK: 11 REMARKn OR 11 REM 11 IS USED TO INDICATE REMARKS OR COMMENTS 

20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM. 

30 REM: THE COMPUTER LISTS AND PUNCHES THE 11 REM" LINE, BUT DOES NOT 

40 REM: EXECUTE IT. 

50 REM: 11 PRINT" USED ALONE GENERA1ES A "RETURNn 11 LINEFEED 11 

60 PRINT 

70 PRINT nTHIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFV. 11 

80 PRINT 

90 PRINT 11 IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS. 11 

100 PRINT 

110 PRINT 11 PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY. 11 

120 PRINT 

130 PRINT 

140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED 

150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO). 

160 LET A=N=Rl=S=0 

180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY 

190 REM: NUMBERS HE WANTS TO AVERAGE. 

200 PRINT 11 HOW MANY NUMBERS DO YOU \\:ANT TO AVERAGE"; 

210 INPUT N 
220 PRINT 

230 PRINT 11 0. K. , TYPE IN ONE OF THE 11
; N; 11 NUMBERS AFTER EACH QUES. MARK." 

240 PRINT "'DON 1 T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER. 11 

250 PRINT 

260 PRINT 11 NOW, LET'S BEGIN 11 

270 PRINT 

280 PRINT 

300 REM: 11 N11 IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ 

310 REM: 1 TO 11 Nn NUMBERS AND KEEP A RUNNING TOTAL. 

320 FOR I=l TO N 

330 INPUT A 

340 LET S=S+A 

350 NEXT I Continued on the next page 

2-31 



SAMPLE PROGRAM, CONTINUED 

360 REM: 11 ! 11 IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES 

370 REM: THE TASK SPEC I FI ED IN THE 11 FOR-NEXT" LOOP IS PERFORMED. 

380 REM: 11 ! 11 INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED. 

390 REM: 11 A11 IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE 

400 REM: AVERAGED. THE VALUE OF 11 A11 CHANGES EACH TIME THE 

410 REM: USER INPUTS A NUMBER. 

420 REM: 11 S11 WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM 

430 REM: OF ALL NUMBERS TO BE AVERAGED. 

440 REM: AFTER THE LOOP IS EXECUTED 11 N11 TIMES, THE PROGRAM CONTINUES. 

460 REM: A SUMMARY IS PRINTED FOR THE USER. 

470 PRINT 

480 PRINT 

490 PRINT N; "NUMBERS WERE INPUT. II 

500 PRINT 

510 PRINT "THEIR SUM IS: 11 ;S 

!i20 PRINT 

530 PRINT "THEIR AVERAGE rs: 11 ;S/N 

540 PRINT 

550 PRINT 

570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR 

580 REM: RESTARTING THE PROGRAM. 

590 PRINT 11 DO YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?" 

600 PRINT 

610 PRINT "TYPE 1 IF YES, 0 IF N0 11 

620 PRINT "BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. 11 

630 PRINT 

640 PRINT "YOUR REPLY"; 

650 INPUT Rl 

660 IF Rl=l THEN 120 

670 REM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY. 

680 IF Rl#0 THEN 700 

690 GO TO 720 

700 PRINT "TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF N0. 11 

710 GO TO 640 

720 END 

2-32 



RUNNING THE SAMPLE PROGRAM 

RUN return 

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY. 
IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS. 
PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY. 
HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 
O.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK. 
DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER. 
NOW, LET'S BEGIN 
? 99 return 

? 87.6 return 

? 92. 7 return 

? 79. 5 return 

? 84 return 

5 NUMBERS WERE INPUT. 
THEIR SUM IS: 442.8 
THEIR AVERAGE IS: 88.56 
DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS? 
TYPE 1 IF YES, 0 IF NO 
BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. 
YOUR REPLY? 2 return 

TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO. 
YOUR REPLY? 1 return 

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? 

2·-33 



COMMANDS 

Remember the difference between commands and 

statements. (See 11 Statements 11 in this section.) 

Conmands are direct instructions to the computer, 

and are executed immediately. They are used for 

utility purposes and for program manipulation. 

Do not try to memorize all of the deta i1 s in the 

COMMANDS subsection. The various commands and 

their functions will become clear to you as you 

begin to write your own programs. 

2-34 



RUN 

EXAMPLE: RUN return 

GENERAL FORM: RUN 

Starts execution of a program at the lowest 
numbered statement. 

COMMENTS ----

A running program may be terminated by pressing 
any key. To terminate a running program at some 
point when input is required, type: 

S rEturn 

2--35 



EXAMPLE: 

GENERAL FORM: 

LIST 

LIST return 

or 

LIST 10~ re.J;_urn 

LIST 

LIST statement number 

PURPOSE 

Produces a 1 is ting of al 1 statements in a program 
(in statement number sequence) when no statement 
number is specified. 

When a statement number is specified, the listing 
begins at that statement. 

COMMENTS 

A listing may be stopped by pressing any key. 

2-36 



SCRATCH 

EXAMPLE: SCRATCH return 

GENERAL FORM: SCRATCH 

or 

SCR 

PURPOSE 

Deletes (from memory) the program currently being 

accessed from the teleprinter. 

COMMENTS 

SCRATCH erases everythi:ng in the user• s area of computer 

merrory. 

SCRATCHed programs are not recoverable. For information 

about saving programs on paper tape, see the PLIST com­

mand in this section. 

:2-37 



EXAMPLES: 

GENERAL FORM: 

TAPE 

TAPE return 

TAPE 
or 

TAP 

PURPOSE 

Informs the computer that following input is from 
paper tape being read from the terminal tape reader. 

COMMENTS 

BASIC responds to the TAPE command with a linefeed. 

TAPE suppresses linefeeds following statements. 

Error messages are printed as the tape is input; the 
tape reader is held inactive while they are being 
printed. 

2-38 



EXAMPLES: 

GENERAL FORM: 

PT APE 

PTAPE return 

PT APE 

or 

PTA 

PURPOSE 

Causes the computer to read in a program from the 

punched tape photo reader. 

COMMENTS 

If the computer does not have a photoreader, the 

message: 

STOP 

READY 

is printed on the terminal, and BASIC waits for 

further input. 

BASIC responds to the PTAPE command with a linefeed. 

2-39 



PLIST 

EXAMPLE: PUST return 

GENERAL FORM: PUST ---

or 
PLIST statement number 

PURPOSE 

Causes the program in memory to be punched onto paper tape, 
with leading and trailing guide holes; also produces a list­
ing of the program on the HP modified ASR-33 terminal; one 
listing is produced on the HP modified ASR-35 in 'KT' mode. 

COMMENTS 

Be sure to press the 11 0N 11 button on the terminal paper tape 
punch before pressing return after PLIST. 

If there is no paper tape punch on the terminal, a listing is 
printed. 

BASIC uses the high-speed punch if available, otherwise the 
terminal punch is used. 

2-40 



SEC:TION Ill 

This section describes further capabilities 
of BASIC. 

The experienced programmer has the option of 
skipping the 11 Vocabulary 11 subsection, and 
briefly reviewing the commands and functions 
presented here. Matrices are explained in 
the next section. 

The inexperienced programmer need not spend 
a great deal of time on programmer-defined 
and standard functions. They are shortcuts, 
and some programming experience is necessary 
before their applications become apparent. 

3-1 

' 0 

·~ 



TERM: ROUTINE 

DEFINED IN BASIC AS: A sequence of program statements 
which produces a certain result. 

PURPOSE 

Routines are used for frequently performed 
operations, saving the programmer the work 
of defining an operation each time he uses 
it, and saving computer memory space. 

COMMENTS 

A routine may also be called a program, 
subroutine, or sub-program. 

The task performed by a routine is defined 
by the programmer. 

Examples of routines and subroutines are 
given in this section. 

3-2 



TERM: ARRJ~y OR MATRIX 

DEFINED IN BASIC AS: An ordered collection of numeric data 
(numbers). 

COMMENTS 

Arrays are divided into columns (vertical) and rows (horizontal): 

C ROWS 

0 
L 
u 
M 
N 
s 

Arrays may have one or two dimensions. For example, 
1.0 
2. 1 
3.2 
4.3 

is a one-dimensional array, whi 1 e 
6 ' 5 ' 4 
3 ' 2 ' 1 
0 ' 9 ' 8 

is a two-dimensional array. 

Array elements are referenced by their row and column position 
For instance, if the two examples above were arrays A and Z 
respectively, 2. 1 would be A(2); similarly, 0 would be Z(3,l). 
The references to array elements are called subscripts, and 
set apart with parentheses. For example, P(l ,5) references the 
fifth element of the first row of array P; 1 and 5 are the sub­
scripts. In X(M>N) M and N are the subscripts. 

3-3 



DEFINED IN BASIC AS: 

TERM: STRING 

0 to 65 teleprinter characters 
enclosed by quotation marks 
(one line on a teleprinter terminal). 

COMMENTS 

Sample strings: 11 ANY CHARACTERS! ?*/--- 11 

"TEXT 1234567 ... II 

Quotation marks may not be used within a string. 
Strings are used only in PRINT statements. 

The statement number PRINT, and quotation marks are not included 
in the 65 character count. Each statement may contain up to 72 
characters. Maximum string length is 72 characters minus 6 
characters for 11 PRINT", two for the quota ti on marks, and thie num­
ber of characters in the statement number. 

TERM: FUNCTION 

DEFINED IN BASIC AS: The mathematical relationship betwE~en 
two variables (X and Y, for example) 
such that for each value of X there is 
one and only one value of Y. 

COMMENTS 

The independent variable in a function is called an argument; 
the dependent variable is the function value. For instance, 
if X is the argument, the function value is the square root 
of X, and Y takes the value of the function. 

3-4 



TERNI: WORD 

DEFINED IN BASIC AS: The amount of computer memory 
space occupied by two teleprinter 
characters. 

COMMENTS 

Numbers require two words of memory space when stored as 
numbers. When used within a string, numbers require 1/2 
word of space per character in the number. 

3-·5 



SUBROUTINES AND FUNCTIONS 

The following pages explain BASIC features useful for re­
petitive operations -- subroutines, programmer-defined 
functions and standard functions. 

The programmer-defined features, such as GOSUB, 
FOR ... NEXT with STtP, and DEF FN become more useful as 
the user gains experience and learns to use them as 
shortcuts. 

Standard mathematical and trigonometric functions are 
convenient timesavers for programmers at any level. 
They are treated as numeric expressions by BASIC. 

3-6 



EXAMPLE: 

GOSU 8 ... RETURN 

50 READ A2 
6~ IF A2<100 THEN 80 
7~ GOSUB 400 

38~ STOP (STOP,END, or GO TO frequently precede 
the first statement of a subroutine 
to prevent accidental entry.) 

39~ REM--THIS SUBROUTINE ASKS FOR A l OR 0 REPLY. 
400 PRINT 11 A2 IS>l00" 
410 PRINT 11 DO YOU WANT TO CONTINUE 11

; 

420 INPUT N 

430 IF N #0 THEN 450 
440 LET A2 = 0 
450 RETURN 

600 END 

GENERAL FORM: statement number GOSUB statement number starting subroutine 

. 
statement number RETURN 

PURPOSE 

GOSUB transfers control to the specified statement number. 

RETURN transfers control to the statement following the GOSUB statement which 
transferred control. 

GOSUB ... RETURN eliminates the need to repeat frequently used groups of state­
ments in a program. 

COMMENTS 

The portion of the program to which control is transferred must logically end 
with a RETURN statement. 

RETURN statements may be used at any desired exit point in a subroutine. 
GOSUB ... RETURN'S may be 11 nested 11 to a level of nine during execution. There is 
no limit on physical nesting in the listing. 

3-7 



EXAMPLES: 

GENERAL FORM: 

FOR ... NEXT WITH STEP 

20 FOR IS = 1 TO 20 STEP 2 
40 FOR N2 = 0 TO -10 STEP -2 
80 FOR P = 1 TO N STEP XS 
90 FOR X = N TO W STEP (Nt2-V) 

statement no. FOR_ simple var. ::_ expr_!!._ssion TO expression STEP expression_ 

PURPOSE 

Allows the user to specify the size of the 
increment of the FOR variable. 

COMMENTS 

The step size need not be an integer. For instance, 
100 FOR N = 1 TO 2 STEP .01 

is a valid statement which produces approximately 100 

loop executions, incrementing N by .01 each time. 
Since no binary computer represents all decimal numbers 
exactly, round-off errors may increase or decrease the 
number of steps when a non-integer step size is used. 

A step size of 1 is assumed if STEP is omitted from a 
FOR statement. 

A negative step size may be used, as shown in statement 
40 above. 

3-8 



GENERAL MATHEMATICAL FUNCTIONS 

EXAMPLES: 642 PRINT EXP(N); ABS(N) 
652 IF RND (0)>=.5 THEN 900 
662 IF INT (R) # 5 THEN 910 
672 PRINT SQR (X); LOG (X) 

GENERAL FORM: The general mathematical functions may be used as 
expressions, or as parts of an expression. 

PURPOSE ----

Facilitates the use of common mathematical functions by pre-defining them as: 

ABS (expression) the absolute valiue of the expression; 

EXP (expression) the constant e raised to the power of the expression 
value (in statement 642 above, etN) 

INT (expression) the 1 arges t i nte!ger .s_ the expression; 

LOG (expression) the logarithm of the positively valued expression to the 
base e; 

RND (expression) a random number between 1 and 0; the expression is a 
dummy argument; 

SQR (expression) the square root of the positively valued expression. 

COMMENTS 

The RND function is restartable; the sequence of random numbers using RND 
is identical each time a program is RUN. 

3-9 



EXAMPLES: 

TRIGONOMETRIC FUNCTIONS 

500 PRINT SIN(X): COS(Y) 
510 PRINT 3*SIN(B); TAN (C2) 
520 PRINT ATN (22.3) 
530 IF SIN (A2) <l THEN 800 
540 IF SIN (B3) = 1 AND SIN(X) <l THEN 90 

PURPOSE 

Facilitates the use of conman trigonometric functions by 
pre-defining them, as: 

SIN ~xpression) 

COS (expression) 

TAN (expre.ss_io1.1_) 

ATAN (expressio~) 

the sine of the expression (in radians); 
the cosine of the expression (in radians); 
the tangent of the expression (in radians); 
the arctangent of the expression. 

COMMENTS 

The function is of the value of the expression (the value in 
parentheses, also called the argument). 

The trigonometric functions may be used as expressions or parts 
of an expression. 

ATN returns the angle in radians. 

3-10 



EXAMPLE: 

GENERAL FORM: 

DEF FN 

60 DEF FNA (B2) = At2 + (B2/C) 
70 DEF FNB (B3) = 7*B3t2 
80 DEF FNZ (X) = X/5 

statement no. DEF FN :single letter_l!_to ~ l_ simple var. l_ ~expression 

PURPOSE 

Allows the programmer to define functions. 

COMMENTS 

A maximum of 26 programmer-defined functions are possible 
in a program (FNA to FNZ). 

Any operand in the program may be used in the defining ex­
pression; however such circular definitions as: 

10 DEF FNA (Y) = FNB (X) 
20 DEF FNB (X) = FNA (Y) 

cause infinite looping. 

See the vocabulary at the beginning of this section for 
a definition of 11 function 11 and an explanation of 
11 arguments 11

• 

3-11 

r~-
1 

I 
L_ 



n 
0 
:;;:: 

COM 

EXAMPLES: COM A(lO), B(3,3) first program 

COM C(5), 0(5), F(3,3) subsequent program 

GENERAL FORM: 

PURPOSE 

Allows a BASIC program to store data in memory for retrieval 
by a subsequent BASIC program. 

COMMENTS 

The data designated by a COM statement is accessible only as 
an array; since COM designates a common array of data, the 

same array variable can not appear in both DIM and COM state­
ments within a program. 

COM must be the first statement entered and the lowest numbered 
statement in a program. 

3- 12 



COM, CONTINUED 

The common area is a block of contiguous data in memory (two computer words 
per number.) The storage space is a"llotted in the order that the arrays ap­
pear in the COM statement; the elements within an array are stored row by row. 

It is the user's responsibility to see that the portions of the common area 
are accessed properly by subsequent programs. For example, if the first pro­
gram starts with the statement 11 1 COM A(lO), B(3,3) 11 and a subsequent program 
with 11 1 COM C(5), 0(5), F(3,3) 11

, the common storage area elements are assigned 
as follows: 

Element Fi rs t Program Second Program 
Position Reference Reference 

1 A( 1) C( 1 ) 
2 A(2) C(2) 
3 A(3) C(3) 
4 A( 4) C(4) 
5 A(5) C(5) 
6 A{6) D(l) 
7 A(7) 0(2) 
8 A(8) 0(3) 
9 A(9) 0(4) 

10 A( 10) 0(5) 
11 B(l,l) F(l,l) 
12 B(l ,2) F(l ,2) 
13 B(l ,3) F(l,3) 
14 B(2, 1) F( 2, 1) 
15 B(2,2) F(2,2) 
16 B(2,3) F(2,3) 
17 B(3, 1) F( 3, 1) 
18 B(3,2) F(3,2) 
19 B(3,3) F(3,3) 

A reference in t~e first program to 3(1 ,1) accesses the same element as a 
reference to F(l,l) in the second program. If A contained only 9 elements, 
however, the B(l,l) and F(l,l) references would access different elements. 

The length of the common area may vary between programs, but for any two pro­
grams, information may be transferred only via the portion which is common to 
both. 

If the first program declares 11 1 COM A(lO), B(5,5) 11 and a succeeding program 
contains 11 1 COM 0(10), E(5,5), F(l0) 11

, the values of F would be unpredictable. 
If the second program contained 11 1 COM 0(10) 11 only, the contents of B would be 

destroyed. 

3-13 



THE TAB AND SGN FUNCTIONS 

EXAMPLES: 500 IF SGN (X) # 0 THEN 800 
510 LET Y = SGN(X) 
520 PRINT TAB (5); A2; TAB (20) 11 TEXT" 
530 PRINT TAB (N),X,Y,Z2 
S40 PRINT TAB (X+2) "HEADING"; R5 

GENERAL FORM: The TAB and SGN may be used as expressions, 
or parts of an expression. The function 
forms are: 

TAB i expression in<:I.4!?a.~.4_!2.CI_ __ !1:E!E'!?_~r of spaces to be moved l_ 

SGN _{_ expression l 

PURPOSE 

TAB (~~~~~:f~m) is used only in a PRINT statement, 
and causes the terminal typeface to move to the space 
number specified by the expression (0 to 71). The 
:!!!_pressi<:?_E__ value after TAB is rounded to the nearest 
integer. Expression values greater that 71 cause a 
return linefeed to be generated. 

SGN (~!!_1?!:_~~5-.:f_9p) returns a 1 if the expression is 
greater than 0, returns a 0 if the expression 
equals 0, returns a -1 if the expression is less 
than 0. 

3-14 



SECTION IV 

MATRICES 

This section explains matrix manipulation. It is intended 
to show the matrix capabilities of BASIC and assumes that 
the programmer has some knowledge of matrix theory. 

TERM: MATRIX (ARRAY) 

DEFINED IN BASIC AS: An ordered collection of numeric data 
(numbers). 

Matrix elements are referenced by subscripts following the 
matrix variable, indicating the row and column of the ele­
ment. For example, if matrix A is: 

;2 3 

4 !) 6 

7 8 9 

the element 5 is referenced by A(2,2); likewise, 8 is A(3,2). 

See Section III, 11 Vocabulary 11 for a more complete description 
of matrices 

4-1 



DIM 

EXAMPLES: 110 DIM A (50), 8(20,20) 
12.0 DIM Z (5,20) 
130 DIM S (5,25) 
14.0 DIM R (4 ,4) 

GENERAL FORM: 

or 

PURPOSE 

Reserves working space in memory for a matrix. 

The maximum integ~~- value (matrix bound) is 255. 

COMMENTS 

The integers refer to the number of matrix elements if only one dimension 
is supplied, or to the number of rows and columns respectively, if two 
dimensions are given. 

A matrix (array) variable is any single letter from A to Z. 

Arrays not mentioned in a DIM statement are assumed to have 10 elements 
if one-dimensional, or 10 rows and columns if two-dimensional. 

The working size of a matrix may be smaller than its physical size. For 
example, an array declared 9 x 9 in a DIM statement may be used to store 
fewer than 81 elements; the DIM statement supplies only an upper bound 
on the number of elements. 

The absolute maximum matrix size depends on the memory size of the computer. 

4-2 



EXAMPLES: 

GENERAL FORM: 

MAT ... ZER 

3~)5 MAT A = ZER 
310 MATZ = ZER (N) 
315 MAT X = ZER (30, 10) 

320 MAT R = ZER (N, P) 

statement number MAT matrix variable = ZER ------- -- - -
or 

statement number MAT matrix variable .::. ZER _(_ expression l 
or 

statement number MAT matrix va1-:iable ::, ZER i expression ..!.. expression l 

PURPOSE 

Sets all elements of the specified matrix 
equal to 0; a new working size may be 
established. 

COMMENTS 

The new working size in a MAT ... ZER is an 
implicit DIM statement, and may not exceed 
the limit set by the DIM statement on the 
total number of elements in an array. 

Since 0 has a logical value of 11 false, 11 

MAT ... ZER is useful in logical initialization. 

4-3 



EXAMPLES: 

MAT ... CON 

205 MAT C = CON 
210 MAT A = CON {N,N) 
220 MAT Z = CON {5,20) 
230 MAT Y = CON (50) 

GENERAL FORM: 
statement number MAT matrix variable = CON --

or 

statement number MAT matrix variable ::_ CON i expression l 
or 

statement number MAT matrix variable ~CON _L expression .!... expression J_ 

PURPOSE 

Sets up a matrix with all elements equal to l; 
a new working size may be specified, within the 
limits of the original DIM statement on the total 
number of elements. 

COMMENTS 

The new working size {an implicit DIM statement) 
may be omitted as in example statement 205. 

Note that since l has a logical value of 11 true, 11 

the MAT ... CON statement is useful for logical 
initialization. 

The expressions in new size specifications should 
evaluate to integers. Non-integers are rounded 
to the nearest integer value. 

4-4 



INPUTTING SINGLE MATRIX ELEMENTS 

EXAMPLES: 600 INPUT A(5) 
610 INPUT B ( 5 , 8 ) 
620 INPUT R(X), N, A(3,3),S,T 
630 INPUT Z(X,Y), P3, W$ 
640 INPUT Z(X,Y), Z(X+l, Y+l), Z(X+R3, Y+S2) 

GENERAL FORM: 
statement number _INPUT matrix variable l expression l ... 

or 

statement number _INPUT matrix variable i expression..!.. expression l ... 

PURPOSE 

Allows input of a specified matrix element 
from the teleprinter. 

COMMENTS 

The subscripts (in expressions) used after the matrix 
variable designate the row and column of the matrix 
element. Do not confuse these expressions with work­
ing size specifications, such as those following a 
MAT READ statement. 

Expression used as subscripts should evaluate to 
integers. Non-integers are rounded to the 
nearest integer value. 

Inputting, printing, and reading individual array 
elements are logically equivalent to simple vari­
ables and may be intermixed in INPUT, PRINT, and 
READ statements. 

4-fi 



::;;: .,,/ 

§ ~~1 
,,-, G> 
r-
IT1 V1 

~~i, __, r· 
V1 ...,, 

I 

PRINTING SINGLE MATRIX ELEMENTS 

EXAMPLES: 

GENERAL FORM: 

800 PRINT A(3) 
810 PRINT A(3,3); 
820 PRINT F(X);E; C5;R(N) 
830 PRINT G(X, Y) 

840 PR INT Z ( X , Y) , Z ( 1 , 5) , Z ( X +N) , Z ( Y +M) 

statement number PRINT matrix variable ex pres_sJo!!:_ ) 

or 

statement _numb~~ .£>R~N~ matr~-~--l?_i!-_!.~!Jle l el!P!.!!.!!_~J!?.!2 ~ expre~~SiC!!!:_ ). 

PURPOSE 

Causes the specified matrix element(s) to be printed. 

COMMENTS 

Expressions used as subscripts should evaluate to 
integers. Non-integers are rounded to the 
nearest integer value. 

A trailing semicolon packs output into twelve 
elements per teleprinter line, if possible (statement 
810 above). A trailing comma or return prints five 
elements per line. 

Expressions (or subscripts) following the matrix 
variable designate the row and column of the matrix 
element. Do not confuse these with new working 
size specifications, such as those following a MAT 
ION statement. 

4-6 



I 

EXAMPLES: 

GENERAL FORM: 

MAT PRINT 

5,0~ MAT PRINT A 
510 5 MAT PR I NT A ; 
515 MAT PRINT A,B,C 
520 MAT PRINT A,B,C; 

statement number MAT PRINT matr~lx variable 

or 

statement number MAT PRINT matr~lx variable , matrix variable 

PURPOSE 

Causes an entire matrix to be 
printed, row by row, with double 
spacing between rows. 

COMMENTS 

Matrices may b13 printed in 11 packed 11 

rows up to 12 elements wide by us-
ing the 11

;
11 separator, as in example 

statement 505. Separation with commas 
or a return prints 5 elements per row. 

4-7 



EXAMPLES: 

READING MATRIX ELEMENTS 

900 READ A(6) 
910 READ A(9,9) 
920 READ C(X); P; R7 
930 READ C (X, Y) 

940 READ Z(X,Y), P(R2, SS), X(4) 

GENERAL FORM: 

or 

statement, _ _E_L!!_llber READ_ matrix. T.(_ariab__le l expr!=!_SS~_<:?.1.3.. __!. expressioI! l 

PURPOSE 

Causes the specified matrix element to be 
read from the current DATA statement. 

COMMENTS 

Expressions (used as subscripts) should 
evaluate to integers. Non-integers are 
rounded to the nearest integer. 

Expressions following the matrix variable 
designate the row and column of the matrix 
element. Do not confuse these with working 
size specifications, such as those following 
MAT READ statement. 

The MAT READ statement is used to read an 
entire matrix from DATA statements. See 
details in this section. 

4-8 



EXAMPLES: 

MAT READ 

:350 MAT READ A 
:370 MAT READ B(5) ,C ,D 
:380 MAT READ Z (5 ,8) 
:390 MAT READ N {P3,Q7) 

GENERAL FORM: 
statement number MAT READ matrix variable 

or 

statement number MAT READ matrix variable _l expression l ... 
or 

statement number MAT READ matrix variable i expression -.!.. expression l ... 

PURPOSE 

Reads an entire matrix from DATA statements. 
A new working size may be specified, within 
the limits of the original DIM statement. 

COMMENTS 

MAT READ causes the entire matrix to be filled 
from the current DATA statement in the row, 
column order: 1 ,l; l ,2; 1,3; etc. In this 
case, the DIM statement controls the number of 
elements read. 

4-·9 



EXAMPLES: 

GENERAL FORM: 

MATRIX ADDITION 

310 MAT C = B + A 
320 MAT X = X + Y 
330 MAT P = N + M 

PURPOSE 

Establishes a matrix equal to the 
sum of two matrices of identical 
dimensions; addition is performed 
element-by-element. 

COMMENTS 

The resulting matrix must be previously 
mentioned in a DIM statement if it has 
more than 10 elements, or 10 x 10 ele­
ments if two-dimensional. Dimensions 
must be the same as the operand matrices. 

The same matrix may appear on both sides 
of the = sign, as in example statement 32~. 

4-10 



EXAMPLES: 

MATRIX SUBTRACTION 

550 MAT C = A - B 
560 MAT B ~ B - Z 

570 MAT X = X - A 

GENERAL FORM: 
statement number MAT matrix var:Lable = matrix variable - matrix variable 

PURPOSE ----

Establishes a matrix equal to the difference 
of two matrices of identical dimensions; sub­
traction is performed element-by-element. 

COMMENTS 

The resulting matrix must be previously 
mentioned in a DIM statement if it has more 
than 10 elements, or 10 x 10 elements if 
two-dimensional. Its dimension must be the 
same as the operand matrices. 

The same matrix may appear on both sides of 
the = sign, as in example statement 560. 

4-11 



EXAMPLES: 

MATRIX MULTIPLICATION 

930 MAT Z = B * C 
940 MAT X = A *A 
950 MAT C = Z * B 

GENERAL FORM: 

statement number MAT matrix variable = matrix variable * matrix variable 

PURPOSE 

Establishes a matrix equal to the product 
of the two specified matrices. 

COMMENTS 

Following the rules of matrix multiplication, 
if the dimensions of matrix B = (P,N) and ma­
trix C = (N,Q), multiplying matrix B by matrix 
C results in a matrix of dimensions (P,Q). 

Note that the product matrix must have an 
appropriate working size. 

The same matrix variable may not appear on 
both sides of the = sign. 

4-12 



SCALAR MULTIPLICATION 

EXAMPLES: 110 MAT A = (5) * B 
115 MAT C = (10) * c 
120 MAT C = (N/3) * X 
130 MAT P = (Q7*N5) * R 

GENERAL FORM: 
statement number MAT matrix variable = expression * matrix variable 

PURPOSE ----
Establishes a matrix equal to the pro­
duct of a matrix multiplied by a speci­
fied expression (number); that is, each 
element of the original matrix is multi­
plied by the number. 

COMMENTS ---

The resulting matrix must be previously 
mentioned in a DIM statement if it con­
tains more than 10 elements ( 10 x 10 

if two-dimensional). 

The same matrix variable may appear on 
both sides of the = sign. 

Both matrices must have the same working 
size. 

4-13 



EXAMPLES: 

GENERAL FORM: 

COPYING A MATRIX 

405 MAT B :: A 
410 MAT X = Y 
420 MAT Z = B 

statement number MAT matrix variable = matrix variable 

PURPOSE 

Copies a specified matrix into a 
matrix of the same dimensions; 
copying is performed element-by­
element. 

COMMENTS 

The resulting matrix must be previously 
mentioned in a DIM statement if it has 
more than 10 elements, or 10 x 10 if two­
dimensional. It must have the same di­
mensions as the copied matrix. 

4-14 



EXAMPLES: 

GENERAL FORM: 

IDENTITY MATRIX 

205 MAT A = ION 

210 MAT B = ION (3,3) 

215 MAT Z = ION (Q5, QS) 

220 MAT S = ION ( 6 , 6) 

statement number MAT arrau variable .::_ ION 

or 

§tatemenL!Jy._rpher MAT array variable .::. I DN 1 expression .J.. expression l 

PURPOSE ---

Establishes an identity matrix (all 01 s, with 
a diagonal from left to right of all 11 s); a 
new working size may be specified. 

COMMENTS 

The ION matrix must be two-dimensional and square. 

Specifying a new working size has the effect of a 
DIM statement. 

Sample identity matrix: l 0 0 

0 1 0 
0 0 

4-15 



MATRIX TRANSPOSITION 

EXAMPLES: 

GENERAL FORM: 

959 MAT Z = TRN (A) 
969 MAT X = TRN (B) 

979 MAT Z = TRN (C) 

statement numl2_~r MAT matrix variab:f:.§1. _::. TRN _( matrix variablE~ .l 

PURPOSE 

Establishes a matrix as the transposition of 
a specified matrix {transposes rows and columns). 

COMMENTS 

Sample transposition: 

Original Trans~osed 

2 3 4 7 
4 5 6 2 5 8 

7 8 9 3 6 9 

Note that the dimensions of the resulting matrix 
must be the reverse of the original matrix. For 
instance, if A has dimensions of 6,5 and MAT C = 
TRN (A), C must have dimensions of 5,6. 

Matrices cannot be transposed or inverted into 
themselves. 

4-16 



MATRIX INVERSION 

EXAMPLES: 

GENERAL FORM: 

38flJ MAT A = INV(B) 
390 MAT C = INV(A) 
400 MAT Z = INV (Z) 

statement number MAT matrix va.riable..::. INV 1 matrix variable l 

PURPOSE ----

Establishes a square matrix as the inverse of 
the specified square matrix of the same dimensions. 

COMMENTS 

The inverse is the matrix by which you multiply 
the original matrix to obtain an identity matrix. 

For example, 

Original In verse Indenti ty 

(
1 0 u 1 1 0 

1 1 1 ~ 0 OJ 1 1 0 

0-1 1 

= ~ 0 OJ 0 1 0 

0 0 1 

x 

Number representation in BASIC is accurate to 6-7 
decimal digits; matrix elements are rounded 
accordingly. 

4-17 

z: 
0 

Vl 

°" w 
> 
z: 



SECTION V 

LC>GICAL ,OPERATIONS 

LOGICAL VALUES AND NUMERIC VALUES 

A distinction should be made between logical values and 
the numeric values produced by logical evaluation, when 
using the logical capability of BASIC. 

The logical value of an expression is determined by defi­
nitions established in the user's program. 

The numeric values produced by logical evaluation are as­
signed by BASIC. The user may not assign these values. 

Logical value is the value of an expression or statement, 
, using the criteria: 

any nonzero expression value = 11 true 11 

any expression valw~ of zero= 11 false 11 

When an expression or statement is logically evaluated, 
it is assigned one of two numeric values, either: 

1, meaning the expr(~ssion or statement is 11 true 11
, 

or 
~,meaning the expression or statement is 11 false 11

• 



RELATIONAL OPERATORS 

There are two ways to use the relational operators in logical evalua­
tions: 

1. As a simple check on the numeric value of an expression. 

EXAMPLES: 150 IF 8=7 THEN 600 
200 IF A9#27.65 THEN 700 
300 IF (Z/10)>0 THEN 800 

When a statement is evaluated, if the 11 IF 11 condition is currentl.Y 
true (for example, B = 7 in statement 150), then control is trans­
ferred to the specified statement; if it is not true, control passes 
to the next statement in the program. 

Note that the numeric value produced by the logical evaluation is un­
important when the relational operators are used in this way. The 
user is concerned only with the presence or absence of the conditon 
indicated in the IF statement. 

5-2 



RELATIONAL OPERATORS, CONTINUED 

2. As a check on the numeric value produced by logically 
evaluating an expression, that is: "true" = l, "false" = 0. 

EXAMPLES: 610 LET X=27 
615 PRINT X=27 
620 PRINT X#27 
630 PRINT X>=27 

The example PRINT statements give the numeric values produced by logi­
cal evaluation. For instance, statement 615 is interpreted by BASIC 
as "Print l if X equals 27, 0 if X does not equal 27." There are only 
two logical alternatives; l is used to represent "true," and 0 "false." 

The numeric value of the logical evaluation is dependent on, but dis­
tinct from, the value of the expression. In the example above, X equals 
27, but the numeric value of the logical expression X=27 is l since 
it describes a 11 true 11 condition. 

5-·3 



BOOLEAN OPERATORS 

There are two ways to use the Boolean Operators. 
1. As logical checks on the value of an expression or expressions. 

EXAMPLES: 510 IF Al OR B THEN 670 
520 IF 83 AND C9 THEN 680 

530 IF NOT C9 THEN 690 
540 IF X THEN 700 

Statement 510 is interpreted: "If either Al is true (has a non-zero value) or 
B is true (has a non-zero value), then transfer control to statement 670 

Similarly, statement 540 is interpreted: "If Xis true (has a non-zero value), 
then transfer control to statement 700. 11 

The Boolean operators evaluate expressions for their logical values only: these 
are "true" = any non-zero value, "false" = zero. For example, if B3 == 9 and C9 

~ = -5, statement 520 would evaluate to 11 true, 11 since both 83 and C9 have a non-
~ zero value. 
~ 
~ 

~ 2. As a check on the numeric value produced by logically evaluating an expres-
sion, that is: "true" = 1, 11 false 11 = 0. 

EXAMPLES: 490 LET B = C = 7 
5~~ PRINT B AND C 
510 PRINT C OR B 
520 PRINT NOT B 

Statements 5~0 - 520 return a numeric value of either 1, indicating that the 
statement has a logical value of "true", or 0, indicating a logical value of 
"false". 

Note that the criteria for determining the logical values are: 
true = any non-zero expression value 
false= an expression value of 0. 

The numeric value 1 or 0 is assigned accordingly. 

5-4 



SOME EXAMPLES 

These examples show some of the possibilities for combining logical operators 
in a statement. 

It is advisable to use parentheses wherever possible when combining logical 
operators. 

EXAMPLES: 31~ IF {A9 AND B7)=0 OR {A9 + 87)>100 THEN 900 
310 PRINT (A>B) AND (X<Y) 
320 LET C = NOT D 
330 IF {C7 OR D4) AND {X2 OR Y3) THEN 930 
340 IF (Al AND 82) AND (X2 AND Y3) THEN 940 

The numerical value of "true" or "false" may be used in algebraic operations. 
For example, this sequence counts the number of zero values in data statements. 

90 LET X = 0 
100 FOR I = 1 TO N 

110 READ A 
120 LET X = X+{A=0) 
130 NEXT I 
140 PRINT N; "VALUES WERE READ. II 

150 PRINT X; "WERE ZEROES. II 

160 PRINT {N-X); "WERE NONZERO. II 

Note that X is increased by 1 or 0 each time A is read; when A = 0, the ex­
pression A= 0 is true, and Xis increased by 1. 

5-5 



SECTION VI 

SYNTAX REQUIREMENTS OF BASIC 

LEGEND 

- "is defined as ... 11 

11or11 

< > enclose an element of BASIC 

LANGUAGE RULES 

1. The <com statement>, if an.Y exists, must be the first statement 
presented and have the lowest sequence number; the last state­
ment must be an <END statement>. 

2. A sequence number may not exceed 9999 and must be non-zero. 

3. Exponent integers may not have more than two digits. 

4. A formal bound may not exceed 255 and must be non-zero. 

5. A subroutine number must lie between 1 and 63, inclusive. 

6. Strings may not contain the quote character ( 11
). 

7. A <bound part> for an ION must be doubly subscripted. 

8. An array may not be inverted or transposed into itself. 

9. An array may not be replaced by itself multiplied by another array. 

6- l 



SYNTAX REQUIREMENTS 

<basic program> 

<program statement> 

<sequence number> 

<basic statement> 

<let s ta temen t> 

<let head> 

<formula> 

<conjunction> 

<boo.lean primary> 

<arithmetic expression> 

<term> 

<factor> 

<primary> 

<rel a ti o n al o per a to r > 

<operand> 

<variable> 

<simple variable> 

<subscripted variable> 

<array identifier> 

<subscript head> 

<subscript> 

<letter> 

<di g'it> 

<left bracket> 

<right bracket> 

<sign> 

<unsigned number> 

<program statement> I <basic program><program statement> (l) 

<sequence number><basic statement>carriage return 

<integer> (2 ) 

<let statement>l<dim statement>j<com statement>! 
<def statement> <rem statement> <go to statement> I 
<if statement> I <for s ta temen t> I <next s ta temen t> I 
<gosub statement>J<return statement>l<end statement>! 
<stop statement>! <wait statement>/<cal l statement> I 
<data statement> <read statement> <restore! statement>! 
<input statement> I <print statement> I <mat statement> 

<let head><formul a> 

LET<variable>=l<let head><variable>= 

<conjunction> I <formul a>OR<conjunction> 

<boolean primary>! <conjunction>AND<boolean primary> 

<arithmetic expression> I <boolean primary> 
<relational opera tor><ari thmet ic express ion> 

<term>l<arithmetic expression>+ <term>! 
<arithmetic expression> - <term> 

<factor> I< term>*<f actor> I< term>/ <factor> 

<primary>J<sign><primary>JNOT<primary> 

<operand>J<primary>t<operand> 

>l<l>=i<=l=l#I<> 

<Variable>l<unsigned number>J<system function>! 
<function> <formula operand> 

<simple variable>l<subscripted variable> 

<letter> I <letter> <digit> 

<array identifier><subscript head><subscript> 
<right bracket> 

<letter> 

<left bracket>l<left bracket><subscript> 

<formula> 

AIBICIDIEI FIGIHI IIJI KILIMINIOIPIQIRISITIUIVIWIXIYIZ 

0111213141516171819 
(I [ 

)IJ 
+!-

<decimal part>J<decimal part><exponent> 

6-2 



SYNTAX REQUIREMENTS, CONTINUED 

<decima 1 part> 
<·integer> 
<exponent< 
<system function> 
<system function name> 
<parameter pa rt> 
<actual parameter> 
<function> 
<formula operand> 
<dim statement> 
<formal array 1 ist> 
<forma 1 array> 

<formal bound head> 
<forma 1 bound> 
<com statement> 
<def statement> 

<formal parameter> 
<rem statement> 
<character string> 

<goto statement> 
<·if statement> 
<for statement> 
<for head> 
<for variable> 
«in it i a 1 v a 1 ue> 
«1 imi t va 1 ue> 
<step size> 
<next statement> 
<gosub statement 
<return statement> 
<«~nd statement> 
<stop statement> 

-

-
-
-
-
-
-

.. 
-

-

.. 

.. 

-

.. 

. ·= 
-

-
-

-

<integer>l<integer>.<integer>J.<integer> 
<digit>]<integer><digit> 
E<integer>JE<sign><integer>(3) 
<system function name><parameterpart> 
SINICOSITANjATNIEXPILOGIABSISQRjINTIRNDISGN 
<left bracket><actual parameter><right bracket> 
<formula> 
FN<letter><parameter part> 
<left bracket><formula><right bracket> 
DIM<formal array list> 
<forma 1 array> J <formal array 1ist>,<forma1 array> 
<arrayidentifier><formal bound head><formal bound> 
<right bracl<et> 
<left brack1~t> l <left bracket><forma 1 bound>, 
< i n te g er> ( 4 ) 
COM<forma 1 array 1 i st> 
DEF FN<letter><left bracket><formal parameter> 
<right bracket>=<formula> 
<simple variable> 
REM<character string> 
any teletype character except carriage return, alt mode, 
escape, rubout, or line feed, or null, control B, 
control C, left arrow 

- GO TO<sequence number> 
- IF<formula>THEN<sequence number> 
- <for head>j<for head>STEP<step size> 

-

: := 

-
. ·= 

FOR<for variable>=<initial value>TO<limit value> 
<simple variable> 
<formula> 
<formula> 
<formula> 
NEXT<for variable> 
GOSUB<sequence number> 
RETURN 
END 
STOP 

6-3 



<.n 
-< 
:z 
--1 

~ 

SYNTAX REQUIREMENTS, CONTINUED 

<wait s ta temen t> 

<cal 1 statement> 

<call head> 

<subroutine number> 

<data statement> 

<constant> 

<read statement> 

<Variable 1 is t> 

<restore statement> 

<input statement> 

<print s ta temen t> 

<print head> 

<print part> 

<string> 

<delimiter> 

<print formula> 

<mat statement> 

<mat body> 

<mat read> 

<actual array> 

<bound pa rt> 

<actua 1 bound head> 

<actual bound> 

<mat print> 

<mat print pa rt> 

<mat replacement> 

<mat formula> 

. ·= 

WAIT<parameter part> 

CALL<cal 1 head><ri ght bracket> 

<left bracket><subroutine number>J<call head>, 
<actual parameter> 
<integer> (S) 

DATA<constant>J<data statement>,<constant> 

<unsigned number>J<sign><unsigned number> 

READ<variable 1 ist> 

<variable>l<variable list>, <variable> 

RESTORE 

INPUT<variable list> 

<print head> I <print head><print formula> 

PRINTJ<print head><print part> 

<string>J <string><del imiter> I <print formul .a> 
<delimiter>J<print formula><string>J 
<print formula><string><del imiter> 
11 <c;ha rac ter string> 11 

( 
6 ) 

, I ; 
<formula>JTAB<parameter part> 

MAT <mat body> 

<mat read>J<mat print>J<mat replacement> 

READ<actual array>J <mat read>, <actual array> 

<array identifier>J<array identifier><bound part> 

<actual bound head><actual bound><right bracket> 

<left bracket>J<left bracket><actual bound>, 

<formula> 

PRINT<mat print part> I PRINT<mat print part><del imiter> 

<array identifier> I <mat print part><delimiter> 
<array identifier> 

<array identifier>=<mat formula> 

<array i denti fi er> I <mat function> I <array i den ti fi er> 
<mat operator><array identifier> I <formula operand>* 
<array identifier> 

6-4 



SYNTAX REQUIREMIENTS, CONTINUED 

<mat function> 

<mat initialization> 
<array pa ramete-r> 
<mat operator> 

. ·= <mat initialization>l<mat initialization><bound part>! 
INV<array parameter> TRN<array parameter> 
ZER I CON I IDN (7) 

- <left bracket><array identifier><right bracket>(B) 
+1-1*(9

) .. = 

6-5 



SECTION VII 

FOR ADVANCED PROGRAMMERS 

MODIFYING HP BASIC 

As indicated in the configuration instructions, an HP BASIC 
system configured with PBS may include user-written assembly 
language subroutines. These subroutines are accessed with a 
CALL statement while a BASIC program is running. HP BASIC 
may also be run under the HP Magnetic Tape System (MTS), pro­
vided that the amount of core memory in the configured tape of 
HP BASIC is the same as the MTS under which it is run. 

The information in this section is intended to help the pro­
grammer in modifying HP BASIC. Users are reminded that HP 
cannot be responsible for non-standard or user-modified 
software. 

7-1 



CALL 

EXAMPLE: 2~ CALL (5, A(lO),l, 1188, 10) 

GENERAL FORM: statement number CALL 1 statement number .!.. parameter list l 

PURPOSE 

Allows addition of absolute assembly language routines (such as input-output 
drivers) to BASIC, for specialized configurations. CALL transfers control 
to the specified assembly language subroutine. 

COMMENTS 

Subroutines executed by CALL are not constrained by BASIC and have absolute 
control of the computer. The assembly language subroutine may, therefore, 
alter any portion of the system, including BASIC. For this reason, it is 
recommended that only programmers proficient in assembly language attempt to 
add CALL subroutines to BASIC programs. 

CALL subroutines are "loaded into the computer" through the photoreader or 
terminal tape reader either at configuration time or as a load-time overlay. 

The CALL subroutine number is a positive integer between 1 and 63 specifying 
the desired subroutine. If no such subroutine number exists, the statement 
is rejected. 

7-2 



CALL, CONTINUED 

The other parameters, separated by commas, may be any formula and their number 
is dependent upon the subroutine called. For example, a subroutine designated 
by 5 is appended to the system to take readings from an A to D subsystem and 
store them in an array. The parameters specify the array into which the val­
ues are inserted, the channel number of the first point to be measured, the 
setup for the A to D converter and the number of points to be measured. A 
representative call for this subsystem is: 

20 CALL (5, A[l], 1 ' ,r 10) 
t 

number of points 

A to D setup 

Starting channel number 

First element of data array 

Subroutine number 

When using the CALL statement, it is important that correct parameters be 
specified. Accidentally reversing the first and second parameters could de­
stroy the core-resident BASIC system, unless precautions have been taken by 
the writer of the called subroutine to protect the BASIC system. 

The parameters of a CALL statement provide the dynamic link between BASIC and 
the called subroutine. Prior to transferring control to the subroutine, BASIC 
evaluates the parameters and stacks the addresses of the results. Upon enter­
ing the subroutine, the A-register contains the address of this stack (i.e., 
the address of the addresses of the parameter values.) The A-register initial­
ly points to the address of the first parameter; successively decrementing the 
A-register causes it to point to successive parameter addresses. For example, 
if the A-register = 17302 when a subroutine is entered, the first parameter 
address is 17302, the second 17301, the third 17300, etc. 

7-3 

_J 
_J 

5 



n 

CALL, CONTINUED 

The parameter addresses passed by BASIC give the subroutine access to values 
in the BASIC program. The only way a called subroutine can transmit results 
to a BASIC program is to store them by means of a parameter address. 

Transmittal of quantities of data between a BASIC program and a called sub­
routine is most conveniently handled through arrays. Since only addresses are 
passed to a subroutine, an array parameter must be an element of th1e array (in 
general this would be the first element of the array). It is important to re­
member that arrays are stored by rows, and that each element is a floating 
point number occupying two (16-bit) words. Hence, if an array A has M columns 
per row, the address of A[I,J] is (address A[l,l]+ 2(M(I-l) + (J-1))). 

To output from a subroutine to the terminal: 

1. Load a buffer address into the B-register. 
2. Load a character count into the A-register. 
3. Execute a JSB 102B, I. 

The referenced block of core is then interpreted as an ASCII string and output, 
followed by a return linefeed if the count was negative. 

Whenever data is transferred from a called subroutine through the address of a 
parameter, there is a danger that the BASIC system or a program might be de­
stroyed. This situation can arise when parameters are specified incorrectly 
or insufficient space is allocated in a data array. For example, constants 

~ such as 2 or -1.1 in a BASIC program are stored in the program as they appear; 
therefore, storing through the address of a constant parameter changes the 
actual constant in the CALL statement. A subsequent execution of that state-

ment may lead to unpredictable results. A parameter that is an expression 
(for example, A AND B or NOT A AND B) is evaluated and the result placed in a 
temporary location. Since the parameter address references this temporary 

7-4 



CALL, CONTINUED 

location, storing into it will not harm the BASIC system or program. However, 
the value stored there is lost to the BASIC program. If a called subroutine 
stores more values in an array than the array can hold, the resulting overflow 
of data may destroy the BASIC system or program. 

Users of CALL statements should be cautioned against using unsuitable parame­
ters in CALL statements (especially against using a simple variable or a con­
stant where an array element is expected). Also, when using arrays as param­
eters it is good practice to include the dimensions of the array as additional 
parameters to allow a means of checking within the subroutine. 

An effective protection requires additional programming effort. BASIC contains 
sets of pointers delimiting the areas of memory within which different types 
of parameters exist. By checking parameter addresses against these bounds, 
the subroutine can verify that they are of the expected type. If X represents 
the parameter address, the followin~J applies: 

a. Constant parameter (1128) <X <(1138) 

b. Simple variable parameter (1168) <X <(1178) 

c. Array parameter 1) In common storage (1108) ~X <(1128) 

2) Not iin common storage (1138) ,::X <(1158) 

d. Expression parameter (1158) <X <(1208) 

where (1128) means the contents of location number octal 112. 

7-5 



BYE 

EXAMPLES: BYE 

GENERAL FORM: BYE 

PURPOSE 

Produces a HLT 778 when used under the HP BASIC system; 
or causes transfer of control from the HP BASIC system 
to the Magnetic Tape System (MTS) executive when used in 
an MTS based HP BASIC system. 

COMMENTS 

HP BASIC may be configured as part of an HP Magnetic Tape 
System. 

If it is intended to run under the Magnetic Tape System, PBS 
may be configured separately or together with the HP BASIC 
interpreter. 

User-written assembly language subroutines may be added to an 
MTS based HP BASIC system; they may be configured along with 
the drivers and interpreter using PBS or added while preparing 
the MTS. 

Note that configuration of an HP BASIC system cannot be done 
under the control of an MTS, rather a configured system may be 
one of the subsystems supplied when creating an MTS. 

Remember that an HP BASIC system running under MTS must specify 
the same core memory size as the MTS. 

7-6 



FIRST AND LAST WORDS OF AVAILABLE MEMORY 

The first word of available memory (FWAM) is 
contained in location 1108 in the HP BASIC sys­
tem. 

The last word of available memory (LWAM) is con­
tained in location 111 8 in the HP BASIC system. 

COMMENTS 

When HP BASIC is run under MTS, FWAM is contained 
in location 1108; LWAM is dynamically determined 
and placed in location 1068 after the system is 
loaded. 

FIRST WORD AVAIL.ABLE IN BASE PAGE 

The address of the first word available in base 
page is contained in location 1148. All locations 
from the location referenced in 1148 through 17778 
are not used by BASIC, and are therefore available 
for CALL subroutines or other modifications. 

7-7 



. i 

c 
z 
" I C/'J ; 

LINK POINTS 

For ease in user modification, locations 201 8 
through 3228 contain links to various sub­
portions and subroutines of BASIC in creating 
customized systems. The identity and locations 
of these links is fixed (will not change with 
subsequent versions), but the contents of these 
locations are subject to change if the routines 
they point to move as a result of future re­
visions. The assembly language listings of the 
HP BASIC interpreter captions each link briefly. 
Since these links are an integral part of BASIC, 
the user is responsible for interpreting and 
using this information . 

7-8 



LINKAGES T01 SUBROUTINES 

BASIC accesses called subrout~nes through a table containing 
linkage information. Entries in the table, one per subroutine, 
are two words in length. Bits 5-0 of the first word contain 
the number identifying the subroutine (chosen freely from 1 to 
778 inclusive) and bits 15-8 contain the number of parameters 
passed to the subroutine. (CALL statements with an incorrect 
number of parameters are rejected by the syntax analyzer.) 
The second word contains the absolute address of the entry point 
of the subroutine. (Control is transferred via a JSB.) Although 
subroutine numbers need not be assigned in any particular order, 
all entries in the table must be contiguous. An acceptable aux­
iliary tape contains the following: 

1. An ORG statement to origin the program at an address greater 
than that of the last word of the BASIC system. The address 
of this last word + 1 is contained in location 1108 of the 
standard BASIC system. Hence, a suitable lower limit for the 
origin address can be determined by loading BASIC and examin­
ing location 1108. 

2. The subroutine linkage table described above. 

3. The assembly language subroutines. 

4. Code to set the following linkage addresses: 

a. In location 1108 put the address of the last word+ 1 used 
in the auxiliary tape. 

b. In location 121 8 put the address of the first word of the 
subroutine linkage table. 

c. In location 1228 put the address of the last word+ 1 of the 
subroutine linkage table. 

7-9 

' -
' ...J 



r 

LINKAGES TO SUBROUTINES, CONTINUED 

Assuming, for example, that location 1108 of the standard 
BASIC system contains 131428 ; an acceptable auxiliary tape 
could be assembled from the following code: 

ORG 131428 
SBTBL OCT 2406 Subroutine 6 has 5 parameters 

DEF SB6 

END TB 
SB6 

OCT 1421 
DEF SBl 7 
EQU * 
NOP 

JMP SB6,I 
SB17 NOP 

JMP SB17, 
LSTWD EQU * 

ORG l lOB 
DEF LSTWD 
ORG l 21B 
DEF SBTBL 
DEF ENDTB 
END 

Subroutine 17 has 3 parameters 

Subroutine #6 body 

Subroutine #17 body 

I 

Acceptable calls to subroutines SB6 and SB17 might be 

CALL (6, A, B, 1, N*3, SIN(X+Y) 
~ CALL (17, A[l], 5, N) 
(/) 

NOTE: Location 111
8 

of the standard BASIC system contains 

the address of the last word of available memory. It 

is not possible to create a system which requires mon~ 

space than that existing between the addresses in loca­

tions 110
8 

and 111
8

. Systems using all or most of this 

space leave very little space for the user of the system. 

7-10 



HOW TO MAKE MORE PROGRAM SPACE 

(DELETING THE MATRIX SUBROUTINES) 

This assembly language pseudo-program shows a method of 
deleting the MAT execution package to gain more user space, 
or for replacing it with CALL routines or other customized code. 

ORG <contents of 2108> 

OCT 0,0 
ORG 11 OB 
DEF <contents of 211 8> 

This sequence has the effect of preventing the syntax processor 
from recognizing 11 MAT 11 and of resetting the first word of avail-

able memory pointer to the flirst word of the matrix execution 
package. 

7-11 

~ 
<(LU 
o::u 
(.9<( 
oa.. 
o::CJ> 
a.. 



SECTION VIII 

OPERATING INSTRUCTIONS 

The minimum hardware configuration for HP BASIC is a computer 
(HP 2114, 2115, 2116 series) with 8K of core memory and an HP 
modified ASR-33 or ASR-35 teletype terminal. A photoreader 
and high-speed paper tape punch are optional. 

Minimum software modules for an HP BASIC system are the HP BASIC 
interpreter binary tape and the Prepare BASIC System (PBS) binary 
tape. Additional user-written assembly language subroutines may 
be included in an HP BASIC system. 

The HP BASIC tape contains the BASIC interpreter only. The PBS 
tape contains drivers for the terminal, photoreader, high-speed 
punch, and the routines necessary to configure these elements 
into an HP BASIC system. User-written assembly language sub­
routines may be included in a configuration produced by PBS. 

Since HP BASIC is designed to allow the user to include 11 custom 11 

software such as CALL subroutines in his HP BASIC system, user­
written subroutines or modifications may be included on an HP 
BASIC system tape produced by PBS, or they may be loaded into 
an HP BASIC system separately through the photoreader or term­
inal tape reader. 

The fo 11 owing pages exp 1 a in how to configure an HP BASIC sys tern 
using PBS, and how to load the configured HP BASIC tape into the 
computer. Steps are included in the PBS preparation procedures 
for including user-written subroutines on the composite system 
tape produced by PBS. 

8-1 



OPERATING INSTRUCTIONS CONTINUED 

The most convenient method of loading a configured HP BASIC 
system is to have included all software elements of the HP 
BASIC system on the composite tape produced by PBS. Users 
with constantly changing CALL subroutines or modifications 
to the standard software have the option of configuring a 
system with PBS, (without including the other software ele­
ments) and then loading the various other elements (such as 
the BASIC interpreter, CALL subroutines, and modifications) 
into the computer separately. If the user chooses to load 
non-standard software tapes separately from the PBS configured 
system tape and the BASIC interpreter, they must be loaded af­
ter the configured system tape and the interpreter (loaded 
separately if not on the configured tape). 

8-2 



HP 2114 COMPUTER 

HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE 

1. Make sure the computer and photoreader (tape reader) are 
turned on. 

2. Make sure the terminal control switch is in the LINE 
position. 

3. Put the tape in the photoreader (tape reader) with 

a. the arrows on the tape facing up, and to the right; 

b. the tape threaded through the guides, under the 
1 amp and between the ro 11 ers. (With a tape reader, 
you may have to press the LOAD button first.) 

4. Raise the tape guide (exposing the word RUN); or with the 
tape reader, press the READ button. 

5. Touch the PRESET and LOAD buttons simultaneously. (The 
tape is read by the computer.) 

6. When the tape stops, check the MEMORY DATA register for 
1020778 (lights 15,10,5,4,3,2,l,O on). 

7. Remove and rewind the tape. 

8. Touch the CLEAR REGISTER button. 

9. Set the SWITCH REGISTER to 1008 (Touch button 6.) 

10. Touch the LOAD ADDRESS button. 

11. Touch the RUN button. 

BASIC responds: READY on the terminal. 

8-3 

..,,. 
N 

c.. 
:r: 



'l5 
N 

01 

'l5 
N 

°' 

HP 2115, HP 2116 COMPUTERS 

HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE 

1. Make sure the computer, power supply, and photoreader 
(tape reader) are turned on. 

2. Make sure the terminal control switch is in the LINE 
position. 

3. Put the tape in the photoreader (tape reader) with: 

a. the arrows on the tape facing up, and to the right. 

b. the tape threaded through the guides, under the 
lamp and between the rollers. (With a tape reader, 
you may have to press the LOAD button first.) 

4. Raise the tape guide (exposing the word RUN); or on the 
tape reader, press the READ button. 

5. Set the SWITCH REGISTER to 077700 by putting switches 
14,13,12,11 ,9,8,7,6 in the up pos~tion; all others should 
be down. 

6. Press the LOAD ADDRESS button. 

7. Set the SWITCH REGISTER TO 000000 (all switches down). 

8. Move the LOADER switch to the ENABLED position. 

9. Press the PRESET button. 

10. Press the RUN button. (Tape is read by the computer.) 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

When the tape stops, check the T-REGISTER for 102077 8 ( 1 i gh ts 1 5 , 10 , 5 , 4, 3, 2 , 1 , 0 on) . 

Move the LOADER switch to the PROTECTED position. 

Remove and rewind the tape. 

Set the SWITCH REGISTER to 1008 (switch 6 in the up position; 
all others down). 

Press the LOAD ADDRESS button. 

Press the PRESET button. 

Press the RUN button. 

BASIC responds: READY on the terminal. 

8-4 



HP 2114 COMPUTER 

CONFIGURING A BASIC SYSTEM USING PBS TAPE 

NOTE: This set of inst.ructions is not restartable before Step 21. 

1. Make sure that the computer tape reader (photoreader) and high-speed 
punch are turned on. 

2. Make sure the terminal control switch is in the LINE position. 

3. Touch the HALT button. 

4. Place the PBS binary tape in the photoreader or tape reader: 

a. Arrows on the tape face up and point to the right. 

b. Thread the tape through the guide, under the lamp, and 
between the rollers. (With the tape reader, press the 
LOAD button.) 

5. Raise the tape guide, exposing the word RUN. (On the tape reader, press 
the READ button.) 

6. Touch the CLEAR REGISTER button. 

7. Touch the PRESET and LOAD buttons simultaneously. (Tape is read by the 
computer.) 

8. When the tape stops, check the MEMORY DATA register for 1020778 (lights 
15,10,5,4,3,2,l,O on). 

9. Remove and rewind the tape. 

10. Repeat steps 3 through 9, using the BASIC binary tape; then go to step 11. 

11. Touch the CLEAR REGISTER button. 

12. Set the SWITCH REGISTER to 0000028 (touch button 1). 

13. Touch the LOAD ADDRESS button. 

14. Touch the CLEAR REGISTER button. 

15. Set the SWITCH REGISTER to the select code of the terminal (octal number, 
right-justified) by touching the appropriate SWITCH REGISTER buttons.* 

16. Touch the RUN button. 

*Touch button 15 if a serial teletyp1e driver is desired; a buffered teletype 
terminal driver is provided if button 15 is not set. 

8-5 



CONFIGURING A BASIC SYSTEM USING PBS TAPE 

17. PBS queries: PHOTOREADER I/0 ADDRESS? 

Enter the select code for the photoreader from the terminal keyboard 
(octal number), fol lowed by a return. If there is no photoreader, type 
a return only. 

18. PBS queries: PUNCH I/0 ADDRESS? 

Enter the select code for the high-speed tape punch (octal number) from 
the terminal keyboard, followed by a return. If there is no punch, type 
a return. 

19. PBS queries: SYSTEM DUMP I/0 ADDRESS? 

Enter the select code of the high-speed tape punch (octal number) from 
the terminal keyboard, fol lowed by a return. If there is no punch, type 
a return. 

20. PBS queries: CORE SIZE? 

Enter the core memory size of the computer on which the HP BASIC system 
is to be run (8, 16,24, or 32), followed by a return. Typing only a return 
indicates an BK core memory size. 

21. PBS then punches a configured BASIC tape on the high-speed punch. If 
there is no punch, the message: TURN ON TTY PUNCH, PRESS RUN is printed. 
Respond by turning the terminal punch on and pressing the RUN button. 

22. Touch the CLEAR REGISTER button. 

23. Repeat steps 3 to 9 above, using the configured tape, then go to step 24. 

24. Set the SWITCH REGISTER to 1008 (touch button 6). 

25. Touch the LOAD ADDRESS button. 

26. Touch the RUN button. BASIC responds: READY. 

8-6 



HP 2115, HP 21116 COMPUTERS 

CONFIGURING A BASIC SYSTEM USING PBS TAPE 

NOTE: The PBS loading sequence is not restartable. If you make a mistake or 
the tapes do not load properly, begin at step 1. 

1. Make sure the computer, power supply, photoreader, and high speed punch 
are turned on. 

2. Turn the terminal control switch to the LINE position. 

3. Press the HALT button (on the computer). 

4. Move the LOADER switch to the PROTECTED position. 

5. Set the SWITCH REGISTER to 0777003 by putting switches 14,13,12,ll,10,9, 
8,7,6 in the up position; all others should be down. 

6. Press the LOAD ADDRESS button. 

7. Check the P-Register and M-Register for 0777008 (lights 14,13,12,ll,10,9, 
8,7,6 on). 

8. Put the tape in the photoreader (on the tape reader, press the LOAD, 
button first) with: 

a. Arrows on facing up and pointing to the right. 
b. Tape threaded through the guide, under the lamp, and between the 

rollers. 

9. Raise tape guide, exposing the word RUN. (The rollers start moving.) 
With the tape reader, press the READ button. 

10. Set SWITCH REGISTER to 000000 (switches 0 to 15 down). 

11. Make sure the LOADER switch is in the ENABLED position. 

12. Press the PRESET button. 

13. Press the RUN button. (Tape is read.) 

14. When the tape stops moving, check the T-REGISTER for 1020778 (lights 
15, 10,5,4,3,2, 1,0 on). 

15. Remove and rewind the tape. 

16. Repeat steps 8 to 15, using the BASIC binary tape instead of PBS; then 
go to step 17 . 

8-7 



CONFIGURING A BASIC SYSTEM USING PBS TAPE 

17. Repeat steps 8 to 15, using user-written assembly language routine tapes 
(if any); then go to step 18. 

18. Move the LOADER switch to the PROTECTED position. 

19. Set the SWITCH REGISTER to 0000028 by putting switch in the up position; 
all others are down. 

20. Press the LOAD ADDRESS button. 

21. Set SWITCH REGISTER to the select code for the terminal (octal number, 
right justified) using switches 0 to 5.* 

22. Press the RUN button. 

23. PBS queries: PHOTOREADER 1/0 ADDRESS? 

Enter the select code for the photoreader from the terminal keyboard 
(octal number), followed by a return. If there is no photoreader, type 
a return only. 

24. PBS queries: PUNCH 1/0 ADDRESS? 

Enter the select code for the high speed tape punch (octal number) from 
the terminal keyboard, followed by a return. If there is no punch, type 
a return. 

25. PBS queries: SYSTEM DUMP 1/0 ADDRESS? 

Enter the select code of the high speed tape punch (octal number) from the 
terminal keyboard, followed by a return. If there is no punch, type a 
return. 

26. PBS queries: CORE SIZE? 

Enter the core memory size of the system or which HP BASIC is to be run 
(8,16,24, or 32) followed by a return. Typing only a return indicates an 
BK core memory. 

27. Tear the punched tape off, and rewind it. 

28. See "How to Load a Configured HP BASIC System Tape" for further 
~ instructions. 
~ 
°' );> 

~ 
n 

~ *Set switch 15 in the up position if using a serial teletype termina·I; leaving 
~ switch 15 down configures the teletype terminal driver for a buffered teletype. 

8-8 



APPENDIX A 

HOW TO PREPARE PAPER TAPE OFF-LINE 

To prepare a paper tape for input: 

1 . Turn te 1 epri n te r contra 1 knob to 11 LOCAL 11 
• 

2. Press the 11 0N 11 button (on tape punch). 

3. Press the 11 HERE IS 11 key; or press @C (control 

shift 11p 11
) severa·1 times to put leading holes 

on the tape. 

4. Type program as us ua 1, fo 11 owing each 1 i ne with 

return linefeed. 

5. Press 11 HERE IS 11
; or press @C several times to 

put trailing holes on the tape. 

6. Press the 11 0FF11 button on the tape punch. 

COMMENTS 

The standard on-line editing features, such as esc, +, and re­

peating the same line number may be punched on tape; esc must 

be foll owed by ~-:eturn linefeed. 

Pressing the 11 8 .. SP. 11 (backspace) button on the tape punch, then 

the "RUBOUT" key physically deletes the previous character from 
a paper tape. 

A-1 
<( 



APPENDIX B 

SAMPLE PROGRAMS 

BATNUM 

DESCRIPTION 

This program simulates a game called "The Battle of Numbers." 

INSTRUCT! ONS 

The game is played with a pile of objects, some of which are 
removed by you and the machine. You must specify whether 
winning is defined as taking or not taking the last object, 
the original number of objects in the pile, who goes first, 
and the minimum and maximum number of objects that can be re­
moved at one time. Typing 0 for your move causes a forfeit, 
and typing 0 for the pile size terminates the game. 

10 PRINT "THIS PROGRAM PLAYS 'THE BATTLE OF' NUMBERS·'" 
20 PRINT 
30 PRINT "IF YOU NEED INSTRUCTIONS TYPE A 1, OTHERWISE TYPE A 2: "J 

40 INPUT I 
50 IF' I=l THEN 70 
60 GOTO 160 
70 PRINT "THE GAME IS PLAYED WITH A PILE OF OBJECTS, SOME OF" 
80 PRINT "WHICH ARE REMOVED ALTERNATELY BY YOU AND THE MACHINE." 
90 PRINT "YOU MUST SPECIFY WHETHER WINNING IS DEFINED AS TAKING'' 
100 PRINT "OR NOT TAKING THE LAST OBJECT, THE ORIGINAL NUMBER OF" 
110 PRINT "OBJECTS IN THE PILE, WHO GOES FIRST, AND THE MINIMUM" 
120 PRINT "AND MAXIMUM NUMBER OF' OBJECTS WHICH CAN BE REMOVED AT" 
130 PRINT "ONE TIME· TYPING '0' FOR YOUR MOVE WILL CAUSE A" 
140 PRINT "FORFEIT, AND TYPING '0' FOR THE PILE SIZE WILL CAUSE" 
150 PRINT "THE TERMINATION OF THE GAME•'' 
160 PRINT "ENTER PILE SIZE: "J 
170 INPUT N 
180 IF N=0 THEN 980 
190 IF N=INTCN) THEN 210 
200 GOTO 160 
2 10 I F N < l THEN 1 6 0 

B-1 



BATNUM, CONTINUED 

220 PRINT "ENTER WIN OPTION - 1 TO TAKE LA.ST, 2 TO AVOID U\ST: "; 
230 INPUT M 
240 IF M= 1 THEN 270 
250 IF M=2 THEN 270 
260 GOTO 220 
270 PRINT "ENTER MIN AND MAX: "J 
280 INPUT A,B 
290 IF A>B THEN 270 
300 IF A<l THEN 270 
310 IF A=INT<A> THEN 330 
320 GOTO 270 
330 IF B=INT<B> THEN 350 
340 GOTO 270 
350 PRINT "ENTER START OPTION - 1 MACHINE FIRST, 2 YOU FIRST: "; 
360 INPUT S 
370 IF S=l THEN 400 
380 IF S=2 THEN 400 
390 GOTO 350 
400 LET C=A+B 
410 IF S=2 THEN 440 
420 GOSUB 470 
430 IF W=l THEN 160 
440 GOSUB 680 
450 IF W=l THEN 160 
460 GOTO 420 
470 LET Q=N 
480 IF M=l THEN 500 
490 LET Q=Q-1 
500 IF M=l THEN 550 
510 IF N>A THEN 590 
520 LET W=l 
530 PRINT "MACHINE TAKES";N;"AND LOSES" 
540 RETURN 
550 IF N>B THEN 590 
560 LET W=l 
570 PRINT "MACHINE TAKES"JNJ"AND WINS" 
580 RETURN 
590 LET P=Q-C*INT<QIC> 
600 IF P >= A THEN 620 
610 LET P=A 
620 IF P <= B THEN 640 
630 LET P=B 
640 LET N=N-P 
650 PRINT "MACHINE TAKES"JPJ"AND LEAVES";N 
660 LET W=0 
670 RETURN 
680 PRINT "YOUR MOVE: "J 
690 INPUT P 
700 IF P=0 THEN 720 
710 GOTO 750 
720 PRINT "MACHINE WINS BY FORFEIP' 

B-2 



730 LET W=l 
740 RETURN 

BATNUM, 

750 IF P=INT<P> THEN 770 
760 GOTO 810 
770 IF P >= A THEN 800 
780 IF P=N THEN 860 
790 GOTO 810 
800 IF P <= B THEN 830 

CONTINUED 

810 PRINT "ILLEGAL MOVE, REENTER IT: ".; 
820 GOTO 690 
830 LET N=N-P 
840 IF N=0 THEN 860 
850 GOTO 930 
860 IF M=l THEN 900 
870 PRINT "YOU LOSE" 
880 LET W=l 
890 RETURN 
900 PRINT "YOU WIN" 
910 LET W= 1 
920 RETURN 
930 IF N >= 0 THEN 960 
940 LET N=N+P 
950 GOTO 810 
960 LET W=0 
970 RETURN 
980 STOP 
990 STOP 
1000 END 

B-3 



9002 
9003 
900 4 
9005 
9006 
9007 
9008 
9009 
~10 

~11 

9012 
9V'l 13 
901 4 
901 5 
901 6 
901 7 
90! l R 
901 9 
9020 
9021 
9022 
9023 
99124 
9025 
9026 
9027 
9028 

I 
>< 

FACTOR 

DESCRIPTION 

This program finds the prime factors of a number. 

INSTRUCTIONS 

The program requests the number to be factored and prints 
out all prime factors and their multiplicity. Input a 
zero or a negative number to terminate execution. 

RESTRICTION 

The number to be factored must be a positive integer less 
than 32768. 

REM FINDS PRIME FACTORS 
PRINT "PROGRAM TO FIND PRIME FACTORS UF A POSITIV[ TNTE:G.h-:'.R." 
PRINT "TU TERMINATE EXECUTION INPUT A '0 '•" 
PRUJT 
PR I NT "WHAT NUMBER IS TO BE FAC TU RED"; 
INPUT A 
IF A <= 32767 THEN 9012 
PRINT "SORRY!THIS PROGRl.\M IS UNLY DESIGNED TO FC\CTOR NIJMBERS" 
P R I NT "0 F 5 D I G I TS UP T 0 3 2 7 6 7 0 R LE S S ! PL E . .".\ SE TRY t\ Gt\ I N" 
GOTO 9005 
LET D=l.\ 
PRINT 
IF~ A=2 THEN 9044 
LET Q=0 
IF A>0 THEN 901R 
STOP 
LET C=2 
GOSUB 9023 
FOR C=3 TO SQRCA) STEP 2 
GOSUB 9023 
GOTO 9039 
LET 8=0 
IF A=C*INTCA/C) THEN 9026 
GOTO 9029 
LET A=A/C 
LET B=B+l 
GUTO 9024 

B-4 



FACTOR, CONTINUED 

9029 IF B<l THEN 9038 
9030 IF Q=l THEN 9037 
9031 LET 0=1 
9032 PRINT .. THE PRIME FACTORS OF";D;"!\RE:" 
9033 PRINf 
90 3 Lt PRINT "PRIME"," MULTI PL IC IT Y" 
9035 PRINT "-----","------------" 
9036 
9037 
903R 
9039 
9040 
9041 

PRINT 
PRINT 
RETURi-..J 
NEXT c 
IF A=l 
IF hl=0 

(:;, R 

THEN 
THE,\J 

901~2 Pt~ P.JT A, 1 
90 L13 GU TO 9'710 5 

9005 
90Lt/.J 

9 0 Lt Lt PR Ii'.JT "THE ;\J UM B Er?" ; A ; " I S P q T ME" 
9045 GOTO 9005 
90 46 s ro P 
9999 END 

B-5 >< 
Cl 
z: 

~ 
c:( 



PLOT 

DESCRIPTION 

This program plots a given function on the terminal. It checks for 
minimum and maximum Y values over the domain (excluding the undefined 
points), calculates the Y-axis spacing, and plots the function. 

INSTRUCTIONS 

Define the function in line 10 by: 

DEF FNF(X) = 

Example: 10 DEF FNF(X) = 25*COS(X)*SIN(X 2/2)/(X 2+1) 

Type RUN. The program requests the following information: 
1. leftXendpoint 
2. right X end point 
3. desired X increment 
4. points on the X-axis for which the function is undefined 

(for example, the denominator becomes zero). 

The output gives: 
1. minimum Y 
2. maximum Y 
3. Y-axis spacing 
4. the plot with the Y-axis horizontal and the X-axis vertical 

on the paper. 

RESTRICTIONS 

The program will not handle functions where Y is a constant over the en­
tire range. 

B-6 



LIST 
10 
l 5 
.20 
30 
40 
50 
60 
70 
80 
90 
100 
1 10 
120 
130 
140 
1 50 
160 
1 70 
180 
190 
~~00 

~~ 10 
220 
230 
240 
;~50 

~~60 

270 
~~80 

290 
300 
310 
:320 
330 
340 
350 
:360 
370 
380 
:390 
400 
410 
420 
430 
440 
450 
460 
47121 
480 
490 

PLOT, 

DEF' F'NF'CX>=SQRC16-CXt2>> 
DIM ZC255J 

CONTINUED 

REM ***** PLOT ***** M4THEMATICS PROGRAM ***** 
REM PLOTS A FUNCTION ON THE TTY. 
LET R1=0 
LET L1=0 
LET Q1=0 
PRINT .. PLEASE INPUT THE FOLLOWING PARAMETERS: 0 

PRINT "LEF'T X-ENDPOINT'•J 
INPUT A 
PRINT "RIGHT X··ENDPOINT"J 
INPUT B 
PRINT "X-SPACING .. J 
INPUT D 
PRINT "THE NUMBER OF' UNOEi<INED POINTS CIF' NONE, ENTER 0> .. Ji 
INPUT N9 
IF' N9=0 THEN 210 
PRINT "ENTER THE UNDEF'INE;) POINTS, FOLLOWING EACH WITH A RETURN" 
F'OR K7=1 TO N9 
INPUT ZCK7l 
NEXT K7 
DEF' F'NGCX>=INTCCY7-Ll>/Dt~.5>+15 
LET L2=R2=F'NF'CA> 
FOR X=A TO B STEP 0 
FOR I=l TO N9 
IF' X=ZCIJ THEN 310 
NEXT I 
IF' F'NF'CX>>L2 THEN 290 
LET L2=F'NF'CX> 
IF F'NF'CX><R2 THEN 310 
LET R2=F'NF'CX> 
NEXT X 
IF' L2 <0 THEN 3S0 
LET Rl=R2 
GOTO 390 
IF R2>0 THEN 370 
GOTO 380 
LET Rl=R2 
LET Ll=L2 
LET Dt=<Rl-Ll>/50 
IF' Ll<Rl THEN 430 
PRINT "THIS IS THE FUNCTION Y=CONSTANT." 
STOP 
PRINT "THE MINIMUM VALUE OF' THE F'UNCTION IS"JL2 
PRINT .. THE MAXIMUM VALUE OF' THE FUNCTION IS .. JR2 
PRINT "THE SPACING ON THE Y-AXIS IS"JDl 
PRINT "" 
LET F'=INTC-Ll/Dt+.5>+15 
IF' A <= 0 THEN 590 
IF' A/D>6 THEN 590 

B-7 
I~ 



500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 

PLOT, CONTINUED 

LET Ql=l 
IF' L1=0 THEN 530 
PRINT TAB<F'>Jn+u 
PRINT 
GOTO 780 
F'OR 1=1 TO INTCA/0-.5> 
PRINT TABCF'>J"+'' 
NEXT I 
LET Q1=0 
F'OR X=A TO B STEP 0 
IF' 0<1.00000E-04 THEN 630 
IF' ABSCX>>1·00000E-05 THEN 630 
LET X=0 
PRINT x, 
F'OR P=t TO N9 
IF' XHZCPJ THEN 750 
IF' X#0 THEN 7 30 
F'OR 12=1 TO 50 
PRINT "+"J 
NEXT 12 
LET Q=l 
PR I NT '"Y" 
GOTO 1060 
PRINT TABCF'>J .. +" 
GOTO 1060 
NEXT P 
IF' X*CX+0>>0 THEN 960 
IF' X<-D/2 THEN 960 
F'OR I =0 TO 50 
IF' Q1>0 THEN 820 
LET Y7=F'NF'CX> 
IF' F'NGCX>=I+15 THEN 850 
IF' I+15=F' THEN 870 
PRINT "+ .. ; 
GOTO 880 
PRINT .. * .. J 
GOTO 880 
PRINT .. O"J 
NEXT I 
IF' I+15#F' THEN 910 
PRINT "+nJ 
PRINT "Y-' 
LET Q=l 
IF' CQ1+1>=1 THEN 1060 
IF' CQ1+1>=2 THEN 550 
IF' CQ1+1>=3 THEN 1150 
IF' X*CX-0>>0 THEN 980 
IF' X <= D/2 THEN 780 
LET Y7=F'NF'CX> 
IF' F'NGCX>>F' THEN 1050 

IF' F'NG<X>=F' THEN 1030 

B-8 



1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
11 50 
1160 
11 70 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 

PLOT, CONTINUED 

PR I NT TAB < r N G < X > > J " * '' J TA 8 C F' > J .. +" 
GOTO 1060 
PRINT TAB<F'>J .. *" 
GOTO 1060 
PR I NT TA 8 < F' > J '' +" J TAB C F' N G C .>O > J " *" 
NEXT X 
Ir X >= 0 THEN 1160 
Ir -X/D>6 THEN 1160 
rOR I=l TO INTC-X/D-.5> 
PRINT TABCF')J"+.,. 
NEXT I 
LET Q1=2 
PRINT 
GOTO 780 
PRINT TAB Cr> ;n+'' 
PRINT TABCr>J .. X" 
IF' Q=0 THEN 1190 
STOP 
PRINT 
PRINT 
PRINT 
F'OR I =0 TO 50 
PRINT "+"J 
NEXT I 
PRINT "Y" 
PRINT 
PRINT 
PR! NT '' 
STOP 
END 

SINCE THE REAL Y-AXIS IS OFF THE GRAPH•" 

B-9 



CURFIT 

DESCRIPTION 

This program performs a least-squares curve fit to the 

following functions: 

1. Y = A + B(X) 

2. Y = A exp (B * X) 
3. Y = A (XB) 

4. Y = A + B/X 
5. y = l/(A + B * X) 
6. Y = X/(A + B * X) 

INSTRUCTIONS 

Before running the program, enter the following data beginning 

in line 9900: 
9900 DATA N 

9901 DATA X1, Y1, X2, Y2 ... 

99-- DATA ... Xn, Yn 
Where: N = Number of data pairs 

xn, yn = the n-th data pair; xn is the independent 
variable and Yn is the dependent variable. 

The program prints summary data for the curve fits for the six 

functions and requests the user to indicate which function he 
wishes detailed information about (input 0, 1, 2, 3, 4, 5, or 6). 
A zero terminates the program. 

RESTRICTIONS 

If there are more than 14 data pairs,change the dimension of 
variables X, Y, U, V in statement 9003 to this numbe~; the 
HP BASIC sys tern must have more than BK of core memory to accom-· 
modate more than 14 data pairs in this program. 

B-10 



9000 
9001 
9002 
9003 
9004 
9005 
9006 
9007 
9008 
9009 
9010 
9011 
9012 
9013 
9014 
9015 
9016 
9017 
9018 
9019 
9020 
9021 
9022 
9023 
9024 
9025 
9026 
9027 
9028 
9029 
9030 
9031 
9032 
9033 
9034 
9035 
9036 
9~,37 

9038 
9039 
9£~40 

9041 
9042 
9043 
9044 
9045 
9'~46 
9047 
9048 
91~49 

9050 

CURFIT, CONTINUED 

REM ***** CURFIT ***** MATHEMATICS PROGRAM ***** 
REM ***** VERSION 1 ***** 7/31/69 ***** 
REM LEAST SQUARES CURVE FIT #1 
DIM XC14J,YC14J,UC14J,VC1411AC6J,8[6J,SC6J,FC6J 
MAT r=CON 
READ N 
PRINT 
FOR I=l TO N 
READ XCIJ,YCIJ 
NEXT I 
PRINT 
PRINT 
PRINT .... ,"LEAST SQUA .. ~ES CURVES FIT .. 
PRINT 
PRINT "CURVE TYPE",.. INDEX Of .. ," A"," B" 
PRINT " .. , .. DETERMINATION" 
PRINT 
FOR I=l TO 6 
MAT S=ZER 
GOSUB 9120 
Ir <I-5>•CI-6>=0 THEN 9035 
Ir CI-2>•<1-3>=0 THEN 9028 
rOR J=l TO N 
LET VCJJ=YCJJ 
GOSUB 9098 
NEXT J 
Ir I=l THEN 9045 
GOTO 9056 
FOR J=l TO N 
Ir YCJJ <= 0 THEN 9042 
LET VCJJ=LOG<YCJJ> 
GOSUB 9098 
NEXT J 
Ir 1=3 THEN 9050 
GOTO 9045 
FOR J=l TO N 
Ir YCJJ=0 THEN 9042 
LET VCJl=l/YCJl 
GOSUB 9098 
NEXT J 
Ir I=6 THEN 9056 
GOTO 9045 
PRINT .. CAN'T rIT" 
LET FCIJ=0 
GOTO 9063 
FOR J=l TO N 
LET UCJJ=XCJJ 
GOSUB 9101 
NEXT J 
GOTO 9061 
rOR J=l TO N 

B-11 



9051 
9052 
9053 
9054 
9055 
9056 
9057 
9058 
9059 
9060 
9061 
9062 
9063 
'9064 
9065 
9066 
9067 
9068 
9069 
9070 
9071 
9072 
9073 
9074 
9075 
9076 
9077 
9078 
9079 
9080 
9081 
9082 
9083 
9084 
9085 
:1'086 
9087 
9088 
9089 
9090 
9091 
9092 
9093 
9094 
9095 
9096 
9097 
'}098 
9099 
9100 
9101 
9102 

~ 
~ 
>< 

CURFIT, CONTINUED 

IF XCJJ ~= 0 THEN 9042 
LET U [ JJ =:LOG C UL.Jl > 
GOSUB 91e11 
NEXT J 
GOTO 9061 
FOR J=l TO N 
IF X[JJ=e THEN 9042 
LET U[JJ=l/X[JJ 
GOSUB 9101 
NEXT J 
GOSUB 9161 
PRINT CCIJ,ACIJ,BCIJ 
NEXT I 
GOSUB 9105 
PRINT 
PRINT 
PRINT 
PRINT "DETAILS FOR CURVE TYPE Cl TO 6, 0 TO END PROGRAM.) .. J 
INPUT I 
IF I=0 THEN 9186 
LET K=I 
IF FCIJ=t THEN 9076 
GOSUB 9120 
PRINT " COULD NOT BE F'IT." 
GOTO 9065 
GOSUB 9138 
IF <I-l>*CI-5>*CI-6>#0 THEN 9087 
FOR J=l TC> N 
LET Y=ACIJ+BCIJ*XCJJ 
IF 1=1 TH~N 9084 
LET Y=l/Y 
IF 1=5 TH~N 9084 
LET Y=XCJ1*Y 
GOSUB 917S 
NEXT J 
GOTO 9065 
FOR J=l T1J N 
IF I=2 THf~N 9094 
IF 1=3 THEN 9092 
LET Y=AC4l+BC4J/XCJJ 
GOTO 9095 
LET Y=AC3l*CXCJJt8(3J> 
GOTO 9095 
LET Y=AC2J*EXPCBC2J*XCJJ> 
GOSUB 9176 
NEXT J 
GOTO 9065 
LET SC5J=~>CSJ+VCJJt2 
LET SC3J=SC3J+VCJJ 
RETURN 
LET SCtl=SCtJ+UCJJ 
LET SC2J=SC2J+UCJJt2 

B-12 



9103 
9104 
9105 
9106 
9107 
9108 
9109 
9110 
9111 
9112 
9113 
9114 
9115 
9116 
9117 
9118 
9119 
9120 
9121 
9122 
9123 
9124 
9125 
9126 
9127 
9128 
9129 
9130 
91 31 
9132 
9133 
9134 
9135 
9136 
9137 
9138 
9139 
9140 
9141 
9142 
9143 
9144 
9145 
9146 
9147 
9148 
9149 
9150 
91 51 
9152 
9153 
9154 

CURFIT, CONTINUED 

LET SC4l=SC4l+UCJl*VCJJ 
RETURN 
FOR I=l TO N-1 
LET M=I 
FOR J=I+l TO N 
Ir XCMJ <= XCJJ THEN 9110 
LET M=J 
NEXT J 
Ir M=I THEN 9118 
LET P=XCMJ 
LET Q=YCMJ 
LET XCMJ=XCIJ 
LET YCMJ=YCIJ 
LET XCIJ=P 
LET YCIJ=Q 
NEXT I 
RETURN 
LET K=I 
Ir K=l THEN 9136 
IF' K=2 THEN 9134 
Ir K=3 THEN 9132 
Ir K=4 THEN 9130 
Ir K=5 THEN 9128 
PR I NT "6 • Y = X / CA+ B * X > ";1 
RETURN 
PRINT "5• Y=l/CA+B*X> "; 
RETURN 
PRINT u4. Y=A+CB/X)", 
RETURN 
PRINT .. 3. Y=A*CXt8)", 
RETURN 
PRINT "2• Y=A*EXP<B•X>"J 
RETURN 
PRINT "l• Y=A+CB*X>", 
RETURN 
PRINT .. 
GOSUB 9121 

• •• , 

PRINT .. IS A0 J 
Ir K=l THEN 9146 
Ir K=2 THEN 9148 
Ir K=3 THEN 9150 
PRINT " HYPERBOLIC"; 
GOTO 91 51 
PRINT .. LINEAR"J 
GOTO 9151 
PRINT .. N EXPONENTIAL"J 
GOTO 9151 
PRINT H POWER .. J 
PRINT .. rUNCTION. THE RESULTS .. 
Ir K=l THEN 9154 
PR I NT .. Or A LEAST-SQUARES F' IT Or I TS LI NEAR TRANSrlORM" 
PRINT .. <SORTED IN ORDER Or ASCENDING VALUES Or X> .. 

B-13 



. ; )> I; 

. " 

~I 
x 

9155 
9156 
9157 
9158 
9159 
916121 
9161 
9162 
9163 
9164 
9165 
9166 
9167 
9168 
9169 
~11 70 
9171 
9172 
9173 
9174 
9175 
9176 
9177 
9178 
9179 
9180 
9181 
9182 
9183 
9184 
9185 
9186 
991210 
991211 
9999 

CURFIT, CONTINUED 

PRINT .. ARE AS F"OLLOWS:"' 
PRINT 
PRINT "X-ACTUAL .. , .. Y-ACTUAL",'' Y-CALC", .. PCT DIF'F'ER" 
PRINT 
RETURN 
PRINT 
LET B=<N*S[4l-SCll*SC3l>/CN*S[2J-<SCllt2>> 
LET A=CSC3l-B*SClll/N 
LET St=SC5l-CSC3Jt2)/N 
LET S2=CBt2>*<SC2l-CSC1Jt2>/N) 
LET CCIJ=S2/Sl 
Ir CI-l>*<I-4>*CI-5>=0 THEN 9173 
Ir <I-2>*CI-3>=0 THEN 9171 
LET AC6l=B 
LET BC6l=A 
RETURN 
LET ACil=EXP<A> 
GOTO 9174 
LET ACIJ=A 
LET BCIJ=B 
RETURN 
PRINT XCJJ,YCJJ,y, 
LET D=YCJJ-Y 
LET D=·1*SGN<D>*INTC101210*ABSCD/Y>> 
Ir 0<0 THEN 9184 
Ir 0>0 THEN 9183 
PRINT .. 0" 
RETURN 
PRINT u .. J 

PRINT D 
RETURN 
STOP 
DATA 6 
DATA 1,2,3,4,5,6,1,s,9,10,11,12 
END 

B-14 



LOW PAlSS FILTER 

DESCRIPTION 

This program uses constant K prototype T section, and 
M derived (M = 0.6) termination L section to design low 
pass filters. The program gives high attenuation at speci­
fied frequencies in the stop band by adding up to nine 
additional M derived T sections. 

INSTRUCTIONS 

Enter the following information when requested by the program: 

1. Characteristic impedance 
2. Cut-off frequency in Hz 
3. Number of stop band attenuators 
4. Frequency (in Hz) for attenuators 

The program then diagrams the filter and indicates maximum 
attenuation. 

B-15 



tJ:;u~~ 

')i,:,uJ.J 

"; ·:·~J :~) .·~1 

)~·JDS 

'Jl'} ~-} 6 
9rn~n 

:! ~ ~i {0 (~ 

•)['j(j 9 
':J{ij 1 0 
90 1 1 
901 2 
90 1 3 
90 1 4 
901 5 
9(1) 1 6 
90 I 7 
9U 1 8 
9Vi I 9 
(.lf,ii20 

%J2 1 
'/Vi22 
9023 
':)[')2 L! 

%J25 
Cff:J26 
•_1r.;:2 7 
9028 
9CJ29 

9vl3V1 
9C33 1 
9032 
9033 
9l/J3 Lj 

9035 
'}f.-13 6 
')037 
') (')3 8 

9Vi39 
9!!)40 
904 1 
9'Jl.12 
9~JLJ.] 

9ViLV! 
9U4~ 

9C:::1.:i6 
9047 
9(ij/18 

9049 
9050 
9Ci)5 1 
9052 
9053 

~ 
:z s 
>< 

LOW PASS FILTER, CONTINUED 

~.:\EM DESIGNS UV·· PASS FILTER 
FRINT "P;-WGl"':Ai"l FOE 'iHE DESIGl\J OF A LOv~ PASS FILTEW' 
PRil\JT 
PRINT "h!HAT I c: THE DESI~ED CHAF:ACTE~ISTIC IMPEDANCE IN OHtvi.S "; 
Il\j PUT .R 
lVl AT F == 7 t~ F 
,~; 1·~ I i\J T 

Pi--~li\lT "i:.HAT IS THE DESIRED CUTOFF FREQUENCY It\J HZ ''; 
INPUT FClJ 
PRINT 
PRINT "HO~..J MANY ATTENUATORS ARE DESIRED IN THE STOP BAND "; 
INPUT A 
GOTO 902 6 
FOR I=2 TO A+l 
PRINT "~~i HAT I S THE FR E fJ IJ ENCY F 0 R AT TEN UA TOR NUMBER " I - 1 ; 
INPUT FEIJ 
PRINT 
NEXT I 
LET L=10H0*~/(J.14159*FE1J> 
LET C=l.E+06/C3.14159*F[1J*R> 
LET LElJ=.iS*L/2 
LET SE1J==.64*L/1.2 
LET C [ 1 J ~-: • (<+:C/2 
r1 1JTCl 9i-J~3.9 

p;-:.:p.JT 

i F f~ = U TH E: N 9 r;J 2 1] 

GOTO 9vJ15 
FOR I=2 TO ll/j 
IF FEIJ=0 THEN 9036 
LET MEIJ=SQRCl-FEll/F(IJ*FElJ/F(IJ> 
LET LEIJ=MEil*L/2 
LET SEIJ=L*CC1-M[Il*MEIJ>IC4*M[IJ>> 
LET CE I J=C:~M[ I J 
NEXT I 
PRINT 
Pi-,: INT 
GOSUB 9077 
GOSUB 9071 
GOSUB 9075 
CiOSUB 9C/J71 
PRif\JT ">",L/2+L[ 1 J,"l'-'IH"," 
GOSUB 9071 

I" 

PR I f\j"J' "+ - - - - - - - - - - - - - - ", C," M FD - - - - - - - - - - - - - - - - - - - - ·~ - +" 
GOSUB 9071 
LET 1=2 
IF FCIJ=0 THEN 9065 
PRINT u>",L/2+LEIJ,"MH"," I" 
GOSUB 9071 
PRINT "+--------";SE2J"MH +",CE2J,"MFD ----------+" 
GOSUB 9071 
FOR I =3 TO 10 
IF FEIJ=0 THEN 9059 

B-16 



LOW PASS FILTER, CONTINUED 

9Vi54 
9055 
9056 
9vJ~7 

9058 
9(::)59 

PRINT ''>'',L[ I J+L[ I-1 J,''MH'','' I'' 
GO SUB 9t?J71 
PF:INT "+--------"L3[ I J'''MH +",CE I J,"\viFD ----------+" 
GOSUB 9071 
NEXT I 
PRINT ">",L[I-1J+L[1 J,''MH"," I" 
GOSUB 9071 
GOSUR 9vJ75 
GOSUB 9071 
GOSUB 9ftJ77 
GOTO 9079 

9060 
9061 
9vJ62 
9063 
9vJ64 
9065 
9066 
9067 
9068 
9069 
9(1)70 
9'/J71 
9072 
9073 
9074 
9075 
9076 

PHI NT ">", L/~~+L [ 1 J, "MH"," I" 
GOSUB 9CiJ71 
GOSUB 9075 
GOSUB 9071 
GOSUB 9077 
GOTO 9079 
FOR N= 1 TO 2 
PRINT "I"," 
NEXT N 
RETURN 

I I t t t I It , , I" 

PRINT ''+--------'';S[ 1 J''MH +'',CE 1 J,''MF'D ----------+'' 
RETURN 

9077 PRINT "0<-------------",R,"OHM LINE","------------->W' 
9078 RETURN 
9079 PRINT 
9080 PRINT 
9081 PRINT "TEF<MINATING SECT'S GIVE MAX. ATTEN. AT"l .25*FE 1 J''HZ" 
9082 IF F[2J=0 THEN 9088 
9083 PRINT "IN ADDITION TO THOSE SPECIFIED AT:" 
9084 FOR 1=2 TO 10 
9085 IF F[IJ=0 THEN 9088 
9!!JB6 PRIMT FE I J"HZ" 
9087 NEXT I 
9088 STOP 
9999 END 

B-17 >< 
Cl 

,~ 



APPENDIX C 

QUICK REFERENCE TO HP BASIC 

KEY 

alt-mode 

s 

esc 

linefeed 

return 

SPECIAL CHARACTERS 

FUNCTION 

Deletes a 1 ine being typed. (Same as esc). 

Terminates an input loop and causes a jump 
to the END statement. 

Deletes a line being typed (same as alt-mode). 

Causes the teleprinter to advance one line. 

1. Must follow every command or statement. 

2. Causes the teleprinter typeface to return 
to the first print position. 

3. BASIC responds with a linefeed. 

Backspace. Deletes as many preceding characters 
as +'s are typed in. 

C-1 u 
Vl 

~ 



OPERATORS 

SYMBOL SAMPLE STATEMENT PURPOSE/MEANING/TYPE 

= 110 LET A = 0 Assignment operator; assigns a value to 
a variable 

t 120 PRINT Xt2 Exponentiate (as in x2). 
* 130 LET C5 = (A*B)*N2 Multiply 

I 140 PRINT T5/4 Divide 
+ 150 LET P = Rl + 10 Add 

160 X3 = R3 - P Subtract 

NOTE: The numeric values used in logical evaluation are: "true" a.ny non-

# 

<> 

> 

< 

AND 

OR 

NOT 

zero number; "false" = (,1. 

170 IF D=E THEN 600 
180 IF (D+E)#(2*D)THEN 710 
180 IF(D+E)<>(2*D)THEN 700 
190 IF X>l0 THEN 620 
200 IF R8<P7 THEN 640 
210 IF R8>=P7 THEN 710 

220 IF X2<=10 THEN 650 

230 IF G2 ~ND H5 THEN 900 

240 IF G2 JR H5 THEN 910 

250 IF NOT G5 THEN 950 

C-2 

expres?i9_!}_ 
11 equa1s 11 

expressif:lEL 

expre~.~ie!!:_ · does not equa 111 ~}}.·pres~!::_Cl!!:_. 

• 
11 d t 1 11 

• exp!eS~-3_9_~ oes no equa ~xpression 

ex_F!es__~i-_OI]_ 11 is greater than" expression 

expression 11 is 1 ess than 11 expx·ession 

expression "is greater than or equal to" 
~}i_p_£eS~i:__eE_ 

exp_ression 11 is less than or equal to" 
exp_:r;essioT!_ 

expression 1 AND expression 2 must both 
be "true" for statement to be 11 true 11 

If either expression 1 OR ~Eession 2 
is "true", statement is "true. 
Statement is 11 true 11 when expression 
(NOT G5) is "false." 



NAME 

DATA 
DIM 

END 

FOR ... NEXT 

GO TO 

GO SUB 

IF ... THEN 

INPUT 

LET 

NEXT 
READ 
REM 

PRINT 

RESTORE 

STATEMENTS 

EXAMPLE PURPOSE 

360 DATA 9 9, 1fl)6.7, 16. 2~ Specifies data; read from 1 eft to right 
3lfl) DIM A(72) Specifies maximum matrix 

size. 
4fl)fl) END Terminates the program; the last 

statement in a program must be an END 
statement. 

350 FOR J=l TO N STEP ~: Executes statements between FOR and 
NEXT the specified number of times (a 
loop), and in increments of the size 
indicated after STEP; STEP and step 
size may be omitted. --

330 GO TO 900 

420 GOSUB 800 

340 IF A#lfl) THEN 35fl) 

390 INPUT Y2,B4 

300 LET A=B=C=0 

355 NEXT J 
36fl) READ A,B,C 
32fl) REM--ANY TEXT**!! 

356 PRINT A' B' II HELLO" 

357 PRINT X;Y;P;Q;R(5) 

358 PRINT 

380 RESTORE 

Transfers control (jumps) to specified 
statement number. 
Begins executing the subroutine at 
specified statement (see RETURN). 
Logical test of specified condition; 
transfers control if "true". 
Allows data to be entered from tele­
printer while a program is running. 
Assigns variable a value; LET is op­
tional. 
Sets the boundary of the FOR loop. 
Reads information from DATA statement. 
Inserts non-executable remarks in a 
program. 
Prints the specified values; 5 fields 
per line when commas are used as 
separators. 
Prints the specified values; 12 fields 
per line when semicolons are used as 
separators. 
Causes the teleprinter to advance one 
1 i ne. 
Permits re-reading data without re­
running the program. 

C-3 



NAME 

RETURN 

')TOP 

STATEMENTS, CONTINUED 

EXAMPLE 

850 RE~URN 

410 ST)P 

C-4 

PURPOSE 

Transfers control to statement follow­
ing its GOSUB. 
Terminates the program; may be used 
anywhere in program. 



COM~~ANDS 

NOTE: Commands are executed immediately; they do not require statement 

numbers. 

FULL NAME 

BYE 
LIST 

PT APE 

PUST 

RUN 
SCRATCH 
TAPE 

EXAMPLE 

BYE 
LIST 

LIST 150 

PT APE 

PUST 

RUN 
SCRATCH 

TAPE 

PURPOSE 

Returns user from BASIC to MTS executive. 
Produces a listing of current program 
Produces a listing, starting at specified 
statement. 
Allows input of a program on paper tape through 
the pho.toreader. 
Punches the program in memory onto paper tape. 
Starts program execution. 
Erases current program. 
Informs computer that following input is from 
paper tape. 

C-5 



FUNCTIONS 

NOTE: PRINT is used for examples only; other statement types may be used. 

FULL NAME 

DEF FN 

ABS ( X) 

EXP (X) 

INT ( X) 

LOG ( X) 

RND ( X) 

SQR ( X) 

SIN ( X) 

cos ( X) 

TAN ( X) 

ATN (X) 

TAB ( X) 

SGN ( X) 

EXAMPLE 

300 DEF FNA (X)=(M*X)+B 

310 PRINT ABS ( X) 

320 PRINT EXP ( X) 

330 PRINT INT ( X) 

340 PRINT LOG (X) 

350 PRINT RND (X) 

360 PRINT SQR (X) 

370 PRINT SIN (X) 

380 PRINT COS ( X) 

390 PRINT TAN (X) 

400 PRINT ATN ( X) 

420 PRINT TAB ( X) ;A 

440 PRINT SGN ( X) 

C-6 

PURPOSE 

Allows the programmer to define func­
tions; the function label (A) must be 
a letter from A to Z; the argument (X) 
must be mentioned in the function 
definition. 
Gives the absolute value of the expres­
sion (X). 
Gives the constant e raised to the 
power of the expression value (X); in 
this example, etX. 
Gives the largest integer ~ the expres­
sion (X). 
Gives the natural logarithm of an ex­
pression; expression must have a 
positive value. 
Generates a random number between 0 
and l; the expression (X) is a dummy 
argument. 
Gives the square root of the expres­
sion (X); expression must have a posi­
tive value. 
Gives the sine of the expression (X); 
X is real and in radians. 
Gives the cosine of the expression (X); 
X is real and in radians. 
Gives the tangent of the expression 
(X); Xis real and in radians. 
Gives the arctangent of the expression 
(X); is real and in radians. 
Tabs to the specified position (X), 
then prints the specified value (A). 
Gives: l if X>0, 0 if X=0, 
-1 if X<0 



MATRICES 

NOTES: 1. Maximum matrix size is 255 elements. 

2. Matrix variables must be a single letter from A to z. 

NAME SAMPLE STATEMENT 

DIM 10 DIM A ( 10, 20) 

MAT ION 15 MAT X = ION (m,n) 

MAT ZER 20 MAT B = ZER 

25 MAT D = ZER (m,n) 

MAT CON 30 MAT C = CON 

35 MAT E = CON (m,n) 

INPUT 40 INPUT A(5,5) 

MAT PRINT 50 MAT PRINT A 

55 PRINT A(X, Y) 

MAT READ 70 MAT READ A 

75 MAT READ A(5,5) 

80 READ A (X, Y) 

PURPOSE 

Allocates space for a matrix of the 
specified dimensions. 

Establishes an identity matrix (with 
all ones down the diagonal). A new 
working size (m,n) may be specified; 

Sets all elements of the specified 
matrix equal to 0. 

A new working size (m,n) may be speci­
fied after ZER. 

Sets all elements of the specified 
matrix equal to 1. 

A new working size (m,n) may be speci­
fied after CON.· 

Allows input from the teleprinter of 
a specified matrix element. 

Prints the specified matrix on the 
te 1 e p ri n te r . 

Prints the specified element of a ma­
trix on the teleprinter; element speci­
fications X and Y may be any expression. 

Reads matrix from DATA statements. 

Reads matrix of specified size from 
DATA statements. 

Reads the specified matrix element 
from a DATA statement. 

C-7 



NAME 

MAT + 

MAT -

MAT* 

MAT = 

MAT TRN 

MAT INV 

MATRICES, CONTINUED 

SAMPLE STATEMENT 

100 MAT C = A+ B 

110 MAT C = A - B 

120 MAT C = A* B 

130 MAT A = B 

140 MAT B = TRN (A) 

150 MAT C = INV ( B) 

PURPOSE 

Matrix addition; A and B must be the 
same size. 
Matrix subtraction; A,B, and C must be 
the same size. 
Matrix multiplication; no. columns in 
A must equal no. rows in B. 
Establishes equality of two matrices; 
assigns values of B to A. 
Transposes an m by n matrix to an n by 
m matrix. 

C-8 

Inverts a square matrix into a square 
matrix of the same size; matrix may be 
inverted into itself. 



APPENDIX D 

ERROR CODES. MEANIN~G, AND PROBABLE CAU$E 

ERROR 
CODE MEANING 

STATEMENT ENDS UNEXPECTEDLY. 

PROBABLE CAUSE 

Statement end (return) found by the 
syntax analyzer. Additional char­
acters are needed to form a consist­
ent statement. 

2 INPUT EXCEEDS 71 CHARACTERS. Too many characters in the line just 
typed. 

3 SYSTEMS COMMAND NOT RECOGNIZED. The line just typed begins with a 
letter, but the initial character 
string does not form a recognizable 
statement type. May be a missing 
statement number. 

4 MISSING OR INCORRECT STATEMENT 
TYPE. The characters immediately following 

the statement number do not form any 
recognizable statement type. 

5 BAD EXPONENT. A number appears followed by an E 
but not followed by a legitimate ex­
ponent integer. 

6 SYMBOL FOLLOWING MAT NOT MAT not followed by PRINT, READ, or 
RECOGNIZED. matrix variable. 

7 LET STATEMENT HAS NO STORE. No assignment operator appears in the 
formula following LET. 

8 MULTIPLE OR MISPLACED COM A COM statement is not the first state-
STATEMENT. ment in the program, does not have the 

lowest sequence number, or is the sec­
ond COM statement in the program. 

9 MISSING OR INCORRECT FUNCTION DEF is not followed by FN<letter>, or 
IDENTIFIER IN DEF. FN is not followed by a letter in a 

formula (for example, A+FN(3)). 

10 MISSING PARAMETER IN DEF 
STATEMENT. 

D-1 

No simple variable is found following 
a 'DEF FN<letter> 1

• 



ERROR CODES CONTINUED 
ERROR 
CODE MEANING 

11 MISSING ASSIGNMENT OPERATOR. 

12 MISSING THEN. 

13 MISSING OR INCORRECT FOR­
VARIABLE. 

14 MI SS ING TO . 

15 INCORRECT STEP IN FOR STATE­
MENT. 

16 CALLED ROUTINE DOES NOT EXIST. 

17 WRONG NUMBER OF PARAMETERS 
IN CALL STATEMENT. 

PROBABLE CAUSE 

No assignment operator found in either 
a DEF statement, a FOR statement, or 
a MAT statement (e.g., FOR A STEP or 
MAT A return). 

An IF statement has no THEN follow-
; ng the decision formula (may be an 
incorrect formula as in IF A+BC 
THEN ... ). Note that a missing* 
between B and C forces end-of-formula 
here. 

A simple variable is not found follow­
ing a FOR or a NEXT; for example, 
FOR A[l] = .•• is not legal. 

No TO found following the ·initial part 
of a FOR statement. May also be an 
incorrect formula as in FOR I = BC TO 

Characters appear fo 11 owing the limit 
formula but do not form a correct 
STEP formula. May also be an incorrect 
formula as in FOR I = l to A+BC STEP 
Y (operator missing between Band c). 

The first parameter of a CALL statement 
does not match any of the defined 
CALL routines. 

18 MISSING OR INCORRECT CONSTANT IN Caused by such things as: 
DATA STATEMENT. DATA 1,2, return (trailing comma) 

or DATA ++3 
May also be caused by an incorrect 
reply to an INPUT statement, 
as +-4. 

19 MISSING OR INCORRECT VARIABLE No variable appears following a READ, 
IN READ STATEMENT. or there is a trailing comma in a 

READ statement; for example, 
READ A,B, return. 

20 NO CLOSING QUOTE FOR PRINT Unmatched 11 in a PRINT statement. 
STRING. 

D-2 



ERROR CODES, CONTINUED 
ERROR 
CODE MEANING 

21 MISSING PRINT DELIMITER OR BAD 
PRINT QUANTITY. 

22 ILLEGAL WORD FOLLOWS MAT. 

23 MISSING DELIMITER. 

24 IMPROPER MATRIX FUNCTION. 

25 NO SUBSCRIPT WHERE EXPECTED. 

26 MAY NOT INVERT OR TRANSPOSE 
MATRIX INTO SELF. 

PROBABLE CAUSE 

Caused by such things as missing 
operators or commas. Generally means 
that two formulas appear to be revers­
ed without separating punctuation. 

MAT is followed by two or more letters, 
but they do not form either PRINT or 
READ. 

Sample causes: 
MAT READ A,B C (missing comma) 
MAT PRINT A;Bl (illegal variable for 
matrix.) 

MAT <letter> = is followed by two or 
more letters which do not form ION, 
CON, ZER, TRN, or INV. 

ION, CON, ZER followed by characters 
but they do not form a legitimate 
subscript. 

27 MISSING MULTIPLICATION OPERATOR. For example, MAT <letter> = (formula) 
(missing* between formula and A.) 

28 IMPROPER MATRIX OPERATOR. MAT letter = letter not followed by +, 
-, or*. 

29 MATRIX MAY NOT BE BOTH OPERAND 
AND RESULT OF MATRIX MATRIX 
MULTI PLICATION. 

30 MISSING LEFT PARENTHESIS. 

31 MISSING RIGHT PARENTHESIS. 

32 OPERAND NOT RECOGNIZED. 

D-3 

Cause should be obvious from inspec­
tion of the line. 

Cause should be obvious from inspec­
tion of the line typed. 

No recognizable operand found where one 
is expected, for example, following a 
binary operator or left parenthesis. 
Usually a typing error. 



ERROR 
CODE 

ERROR CODES, CONTINUED 

MEANING PROBABLE CAUSE 

33 DEFINED ARRAY MISSING SUBSCRIPT An array appearing in a DIM or COM 
PART. statement does not have a proper 

subscriet-bound eart; for example, 
DIM A[3J,B,C[4,5J. (B has no subscript.) 

34 MISSING ARRAY IDENTIFIER. No array identifier found where one 
is expected in a DIM, COM, or MAT 
statement; for example, MAT A = B + 
return (missing array identifier 
before return.) 

35 MISSING OR BAD INTEGER. A required integer is 0, or too large, 
or does not appear at all. 
Required integers appear as sequence 
numbers, formal bounds in DIM and COM 
statements, and as the first parameter 
of a CALL statement. 

36 NON-BLANK CHARACTERS FOLLOWING Something is missing from a statement 
STATEMENT'S LOGICAL END. at a place where the statement could 

1 ogi ca lly end. 

37 OUT OF STORAGE DURING SYNTAX Program is too large. 
PHASE. 

38 PUNCHED TAPE READER NOT READY. Photoreader is off or the RUN-LOAD 
switch is not set to RUN when a PTAPE 
is given. 

39 DOUBLY DEFINED FUNCTION. 

40 FOR STATEMENT HAS NO MATCHING 
NEXT STATEMENT. 

41 NEXT STATEMENT HAS NO MATCHING 
FOR STATEMENT. 

42 OUT OF STORAGE FOR SYMBOL TABLE. 

43 ARRAY APPEARS WITH INCONSISTENT 
DIMENSIONS. 

44 LAST STATEMENT IS NOT END. 

45 ARRAY DOUBLY DIMENSIONED. 

D-4 

The same function is defined in two DEF 
statements. 

The program contains an extra NEXT 
statement, or an improper nesting 
of FOR -- NEXT loops. 

Program is toolarge. 

An array is referenced as being singly­
subscripted in one place and as doubly­
subscripted in another. 

The same array appears twi cie in DIM 
statements, or in both a DIM statement 
and the COM statement. 



ERROR CODES, CONTINUED 
ERROR 
CODE MEANING 

46 NUMBER OF DIMENSIONS NOT 
OBVIOUS. 

47 ARRAY TOO LARGE. 

48 OUT OF STORAGE DURING ARRAY 
ALLOCATION. 

49 SUBSCRIPT EXCEEDS BOUND. 

50 ACCESSED OPERAND HAS UNDEFINED 
VALUE. 

51 NON-INTEGER POWER OF NEGATIVE 
NUMBER. 

52 ZERO TO ZERO POWER. 

53 MISSING STATEMENT. 

54 GOSUBS NESTED 10 DEEP. 

PROBABLE CAUSE 

Several conditions may produce this 
message. Cured by specifying the 
bounds of all arrays which appear in 
MAT statements. 

Number of array elements exceeds 
32767. 

Program and arrays together are too 
large. 

An actual subscript exceeds the de­
clared {or dynamically redeclared 
value) bound; or an attempt is made to 
redimension an array with a bound 
greater than 255 (as in MAT READ 
A[300]). 

Attempted use of a variable or array 
element which has never been assigned 
a value. 

Attempted GOTO, GOSUB, or IF ... THEN 
to a non-existent statement. 

Attempted execution of ten GOSUBs in 
a row, with no intervening RETURN 1 s. 
{Refers to the logical execution of 
a program, not the physical layout.) 

55 RETURN FINDS NO ADDRESS. RETURN is encoutered during execution 
when no GOSUBs are active. 

56 OUT OF DATA. More data has been requested in READ 
or MAT READ statements than exists in 
the DATA statements. 

57 OUT OF STORAGE DURING EXECUTION. Insufficient working space to execute 
the program. 

D-5 



ERROR 
CODE 

ERROR CODES, CONTINUED 

MEANING PROBABLE CAUSE 

58 DYNAMIC ARRAY EXCEEDS ALLOCATED An array redimensioning request 
STORAGE. requires more elements in the new 

working size than exist in the orig­
inal array definition (for example, 
A[5,5] cannot be redimensioned to 
A[4,6], although the converse is true.). 

59 DIMENSIONS NOT COMPATIBLE. A MAT statement cannot be executed 
because the matrix arguments have in­
compatible dimensions for the oper­
ation attempted. 

60 MATRIX OPERAND CONTAINS UNDEFIN- Same as Error 50. 
ED ELEMENT I 

61 SINGULAR OR NEARLY SINGULAR An array cannot be inverted, because 
MATRIX. all significance is lost in the 

calculations. 

62 TRIGONOMETRIC FUNCTION ARGUMENT Applies to SIN, COS, TAN. 
IS TOO LARGE. 

63 ATTEMPTED SQUARE ROOT OF NEG­
ATIVE ARGUMENT. 

64 ATTEMPTED LOG OF NEGATIVE 
ARGUMENT. 

WARNING-ONLY ERRORS 
(Program continues executing.) 

65 NUMERICAL OVERFLOW, RESULT 
TAKEN TO BE+ OR - INFINITY. 

66 NUMERICAL UNDERFLOW, RESULT 
TAKEN TO BE ZERO. 

67 LOG OF ZERO TAKEN TO BE 
-INFINITY I 

D-6 

A calculated result or number input 
exceeds the capacity of numerical 
representation. The value is replaced 
by the largest representable number 
of appropriate sign. 

Number is too close to zero to be 
represented as other than zero. 



ERROR CODES, CONTINUED 
ERROR 
CODE MEANING 

68 EXP OVERFLOWS, RESULT TAKEN 
TO BE +INFINITY. 

69 DIVISION BY ZERO, RESULT TAKEN 
TO BE +OR -INFINITY. 

70 ZERO RAISED TO NEGATIVE POWER, 
RESULT TAKEN TO BE + INFINITY. 

D-7 

PROBABLE CAUSE 



INDEX 
A PROGRAM • • •l-6 
ABS FUNCTION •••3-9 
ACCESSING DATA •••2-26 
ACCESS ING MATRIX ELEMENTS • • • 4-8,, 4-9, 4-14 
ADDING MATRICES •••4-10 
ADVANCED BASIC •••3-t 
ALL ONES MATRIX •••4-4 
ALL ZERO MATRIX •••4-3 
AND fl .. 2-7 
AND OPERATOR •••2-7 
ARITHMETIC EVALUATION • ··2-4 
ARRAYS • • •4-1 
ASSEMBLY LANGUAGE LINK POINTS •••7-8 
ASSEMBLY LANGUAGE SUBROUTINES •••7-2 
ASSIGNMENT OPERATOR •••2-5 
AT N rUNCT ION • .. J-10 
BACKSPACE •••l-12 
BACKUS NORt'AL FORM • • • 6-·t 
BASE PAGE • • • 7-7 
BEFORE WORKING WITH THE COMPUTER •••1-10 
BOOLEAN OPERATORS •••SYNTAX REQUIREMENTS OF BASIC 
BREAK KEY •••1-15 
BYE •••7-6 
CALL • • • 7-2 
COM •• •3 -12 
COMMANDS • • ·2-33 
COMMON DATA •••3-12 
COMMON STORAGE AREA •••3-12 
COMMUNICATING WITH THE COMPUTER •••1-1 
CONDITIONAL TRANSFERS • ••2-22 
CONFIGURING INSTRUCTIONS •••8-1 
CONVENTIONS USED IN THIS TEXT •••V 
COPYING A MATRIX •••4-14 
COS FUNCTION ••·3-10 
CUSTOM SUBROUTINES •••7-2 
DATA • • ·2-26 
DEL ET ING A PROGRAM • • • 2-36 
DEL ET IN G A ST AT EM ENT • • • t -1 3 
DELETING MATRIX ROUTINES •• • 7-t t 
DIAGNOSTIC MESSAGES ••• 0-1 
DIM • .. 4-2 
DIMENSION STATEMENT • ••4-2 
E NOTATION •••2-2 
END fl .. 2-29 
ENfERING A PROGRAM • ••1-11 
ERROR CODES • • ·D- t 
ESSENTIALS Or BASIC •••2-1 
EVALUATION •••2-4 
EXP FUNCTION ••• 3-9 
EXPRESSION •••2-4 
DEr FN •• ·3-11 
FIRST WORD AVAILABLE BASE PAGE ••• 7-7 
rIRST WORD AVAILABLE MEMORY •••7-7 

1-1 



IN DEX, CONTINUED 

rOR • •• NEXT •• ·2-23 
FOR···NEXT WITH STEP •••3-8 
FORMAT • • • l-7 
FORMAT CONTROL •••2-16, 3-14 
rORMATT ING •• ·2-1 6 
rREE-rORMAT LANGUAGE ••• 1 -7 
FUNCTION • • •3-4 
F'UNCTIONS • ••3-6, 3-9, 3-10• 3-14, 3-11 
F'WAM • • • 7-7 
GENERAL MATHEMATICAL rUNCTIONS •••3-9 
GO TO • • • 2-21 
GOSUB···RETURN •••3-7 
HIERARCHY OF OPERATORS •••2-10 
HOW THE PRO GRAM WORKS • • • 1 -1 6 
HOW TO MODIF'Y HP BASIC •••7-1 
HOW TO USE THIS BOOK •••XI 
IDENTITY MATRIX •••4-15 
Ir•••THEN •••2-23 
INCREASING MEMO RY SPACE AVAILABLE • • • 7-11 
INEQUALITY SYMBOL • ••2-6 
INPUT • .. 2-14 
INPUT TO MATRIX •••4-5 
INSTRUCTIONS •••1-4 
INT F'U t\CT ION • .. J-9 
INVERTING A MATRIX •••4-17 
LAST WORD AVAILABLE MEMORY •••7-7 
LET •••2-12 
Lit-£ NUMBERS •••1-3 
LINK POINTS IN BASIDIC •••7-8 
LIN<AGE TO SUBROUTINES •••7-9 
LIST • .. 2 -35 
LOADING INSTRUCTIONS •••8-1 
LOGICAL ENDPOINTS IN PROGRAM • • ·2-29 
LOGICAL 0 PERAT IONS • • ·5-1 
LOGICAL VALUES • •• 5-1 
LOOPS •••2-23 
LWAM •• .7-7 
MAGNETIC TAPE SYSTEM •••7-1 
MAKING MORE PROGRAM SPACE •••7-11 
MAT PRINT • • •4- 7 
MAT READ ... 4-9 
MAT ••• coN ... 4-4 
MAT- •• ·ZER • • .4-3 
MATH F'UNCT IONS • .. 3-9 
MATRICES • • e4- l 
MATR IX ADD IT ION • •• 4-10 
MATRIX INVERSION • .. 4-17 
MATRIX SUBTRACTION •••4-11 
MATRIX TRANSPOSITION •••4-16 
MISTAKES AND CORRECTIONS •••l-12 
MTS •••7-1 
NEW AND CHANGED INFORMATION •••IV 
l'ESTING FOR ... NEXT LOOPS •• ·2-25 

I-2 



• 

INDEX, CONTINUED 

N:>T • • ·2-9 
NOT OPERATOR •••2-9 
NUMBER • • ·2-2 
NUMERIC VALUES •• ·5-1 
OPERANDS • • ·1 -5 
OPERATING INSTRUCTIONS •••8-1 
OR • • ·2-8 
OR OPERATOR ••·2-8 
ORDER OF" PRECEDENCE OF' OPERATORS • • ·2- 10 
OUTPUT CONTROL •••2-16, 3-14 
PAGE FORMAT •••VI 
PASSING DATA BETWEEN PROGRAMS •••3-12 
PBS • • •8-1 
PLIST •••2-39 
PR EC IS ION • .. 2-2 
PREFACE • •• I I I 
PREPARE BASIC SYSTEM TAPE •••8-1 
PRINT •••2-16 
PRINT FORMAT •• ·2-16 
PR I NT IN G A MAT R I X • .. ~1- 7 
PRINTING MATRIX ELEMENITS • • •4-6 
PROBABLE CAUSES FOR EF?RORS • • • 0-1 
PROGRAM DELETION •••2-36 
PROGRAM INPUT •••2-37 
PROGRAM LIS TING • •• 2-~~5 
PROGRAMMER-DEFINED FUNCTIONS •••3-11 
PTAPE •••2-38 
PUNCHING A PAPER TAPE •••2-39 
PU f\CH ING PAPER TAPE 0 FFL INE • • • A-1 
QUICK REFERENCE TO BASIC • • • C-t 
READ • • • 2-26 
READ IN G A MAT RI X • • • 4 •· 9 
READ IN G MAT R I X EL EM ENT S • • • 4 - 8 
RELATIONAL OPERATORS •••2-6 
REM •••2-13 
RESERVING ARRAY SPACE •••4-2 
RESTORE • .. 2-26 
RETURN •••1-10 
RETURN KEY •••1-10 
RND FUNCTION •••3-9 
ROUTINE • .. J-2 
RUN • .. 2-34 
RUt-NING A PROGRAM • ••lt-14 
SAMPLE PRO GRAM • .. 2-3~' 
SAMPLE PRO GRAMS • •• B- l 
SAVING PROGRAMS • .. 2-:~9 
SCALAR MULTIPLHCATION •••4-13 
SCRATCH • .. 2-36 
SGN FUNCTION • • •3-14 
SIMPLE VARIABLE •••2-3 
SIN FUNCTION •••3-10 
STATEMENT NUMBERS • •• '.l -3 
STATEMENT TYPES •••l-4 

I-·3 



INDEX, CONTINUED 
STATEMENTS •••l-2 
STOP •• ·2-29 
STOPPING A PROGRAM •••l-15 
STRING • •· ·3-4 
SUBROUTINE LINKAGE TO BASIC •••7-9 
SUBROUTINES • ••3-6 
SUBTRACTING MATRICES •••4-11 
SYNTAX REQUIREMENTS Or BASIC •••6-1 
SYSTEM MODIFICATIONS •••7-1 
TAB rUNCT ION • • ·3-14 
TAN rUNCT ION • .. J-10 
TAPE • •• 2-37 
TRANSPOSING A MATRIX •••4-16 
TRIGONOMETRIC F"LNCTIONS • • ·3-10 
VARIABLE • • ·2-3 
VOCABULARY •• ·3-2 
WAIT • • ·2-28 
WORD • •• 3-5 

I-4 



'· \,, 

ill 

i, 
I,, 

I, 

f, 

l· 
I• .. 
j' 

t' 
1' 

1' 
j' 

( 

', 

t' 

t" 
w· 
z·· 
:::i. 

f, 

c,:, '• z. o· 
..J ,, 
ct,. 
I-,• 
::> ,. 
CJ. 

FROM 

HEWLET1'f1if PACKARD 

READER COMMENT SHEET 

HP BASIC 

02116-9077 April l970 
Hewlett-Packard welcomes your evaluation of this text. 
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like. 

PAGE_OF_ 

NAME:------------------~ 

ADDRESS:~~~~~~·~~~~~~~~~~~ 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE 



FOLD 
; 

FOL1D 
-----------------------------------------------------~---

FOLD 

BUSINESS REPLY MAIL 

No Postage Necessary if Mailed in the United States Postage will be paid by 

SUPERVISOR, SOFTWARE PUBLICATIONS 
HEWLETT - PACKARD 

CUPERTINO DIVISION 
11000 Wolfe Road 

Cupertino, California 
95014 

FIRST CLASS 
PERMIT N0.141 

CUPERTINO 
CALIFORNIA 

---· ---· ---· 
-

! 



02116-9077 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

