HEWLETT .hp. PACKARD

HP BASIC

HP 02116-9077

HP BASIC

IilEVVIJETﬂ”§i§§lﬂ4(7hhﬁl?l)
bt

11000 Wolfe Road
Cupertino, California 95014

April 1970

First Edition, Aug. 1968
Revised, April 1970

© Copyright, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re-
cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A,

PREFACE

The purpose of this text is to help the programmer lTearn how
to use BASIC rather than how to program. A "semi-programmed"
frame format is used for ease in reference and self-instruction.

The contents of this second edition are organized in sequence
from least to most difficult. Since the sections are modu-
lar, experienced programmers may follow any sequence of in-
struction. Related features are grouped by section and cross-
referenced where appropriate. Any examples presented in color
may be used as a practice exercise.

Operating instructions are presented in Section VIII.

NEW AND CHANGED INFORMATION

This text replaces the "BASIC LANGUAGE" Reference Manual
published August, 1968.

The external specifications of HP BASIC have been changed to
allow interface with the HP Magnetic Tape System. Material
pertinent to this change is contained in Section VII, "For
Advanced Programmers".

The format has been changed to facilitate self-instruction
and reference. More examples, including sample programs,
have been added.

A "Quick Reference" section is included in the Appendix

section; it is a summary of all BASIC features explained
in the text.

iv

CONVENTIONS USED IN THIS TEXT

SAMPLE

RUN

And then...

2@ PRINT X,Y

statement number

return linefeed

esc ctrl

alt-mode

Note: Both X and...

CALL

EXPLANATION
|
Black, all capitals in examples indicates com-
puter-output information.

Mixed upper and Tower case black is used for
regular text.

Green, all capitals indicates a statement or
command typed by the programmer.

Black Tower case italics indicates a general

form, derived from BASIC syntax requirements

(Section VI). ‘

Green underlining indicates an essential part
of a general form; each underlined item is a

separate, essential element.

Represents the terminal keys:
Return, Linefeed, Escape, Control, and

Alt-Mode.

Mixed upper and lower case italics is used for
notes.

Oversize black is used for page headings.

The letter "0"
Zeroes are slashed.

Please examine the sample on the next page.

PAGE FORMAT

The reference page format is as uniform as possible. This
sample shows how positioning and typeface relate to content.

Black frames are used on reference pages.

EXAMPLES: ——— Several sample

— statements or commands

GENERAL FORM:
(Each essential element underlined in green.)

PURPOSE

A clear and concise explanation of the purpose or function.

COMMENTS

A series of several items containing:
Pertinent information
Additional explanation or examples
Helpful hints.

Reference to other sections or subsections related to the
contents of this page.

Section No. Page No.

vi

1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16

2-1

2-2
2-5
2-6
2-7
2-8
2-9
2-10

CONTENTS

PREFACE

NEW AND CHANGED INFORMATION
CONVENTIONS USED IN THIS TEXT
PAGE FORMAT

HOW TO USE THIS BOOK

SECTION I
COMMUNICATING WITH THE COMPUTER

STATEMENTS
STATEMENT NUMBERS

INSTRUCTIONS

OPERANDS

A PROGRAM

FREE-FORMAT LANGUAGE

BEFORE WORKING WITH THE COMPUTER
RETURN

ENTERING A PROGRAM

MISTAKES AND CORRECTIONS
DELETING OR CHANGING A STATEMENT
RUNNING A PROGRAM

STOPPING A PROGRAM

HOW THE PROGRAM WORKS

SECTION II
THE ESSENTIALS OF BASIC

VOCABULARY

THE ASSIGNMENT OPERATOR
THE RELATIONAL OPERATORS
THE AND OPERATOR

THE OR OPERATOR

THE NOT OPERATOR

ORDER OF PRECEDENCE

vii

CONTENTS

2-11 STATEMENTS

2-12 LET

2-13 REM

2-14 INPUT

2-16 PRINT

2-21 GO TO

2-22 IF ... THEN

2-23 FOR ... NEXT

2-25 NESTING FOR ... NEXT LOOPS
2-26 READ, DATA AND RESTORE
2-28 WAIT

2-29 END AND STOP

2-30 SAMPLE PROGRAM

2-33 RUNNING THE SAMPLE PROGRAM
2-34 COMMANDS

2-35 RUN

2-36 LIST

2-37 SCRATCH

2-38 TAPE

2-39 PTAPE

2-40 PLIST

3-1 SECTION III

ADVANCED BASIC

3-2 VOCABULARY

3-6 SUBROUTINES AND FUNCTIONS

3-7 GOSUB. ..RETURN

3-8 FOR ... NEXT WITH STEP

3-9 GENERAL MATHEMATICAL FUNCTIONS
3-10 TRIGONOMETRIC FUNCTIONS

3-11 DEF FN
3-12 COM

3-14 TAB AND SGN FUNCTIONS

viii

4-1

4-1

4-3
4-4

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17

5-1

7-1
7-2
7-6

CONTENTS

SECTION IV
MATRICES
VOCABULARY
DIM
MAT ... ZER
MAT ... CON

INPUTTING SINGLE MATRIX ELEMENTS
PRINTING SINGLE MATRIX ELEMENTS
MAT PRINT

READING SINGLE MATRIX ELEMENTS
MAT READ

MATRIX ADDITION

MATRIX SUBTRACTION

MATRIX MULTIPLICATION

SCALAR MULTIPLICATION

COPYING A MATRIX

IDENTITY MATRIX

MATRIX TRANSPOSITION

MATRIX INVERSION

SECTION V
LOGICAL OPERATIONS

LOGICAL VALUES AND NUMERIC VALUES
RELATIONAL OPERATORS

BOOLEAN OPERATORS

SOME EXAMPLES

SECTION VI
SYNTAX REQUIREMENTS OF BASIC

SECTION VII
FOR ADVANCED PROGRAMMERS

MODIFYING HP BASIC
CALL
BYE

ix

CONTENTS

7-7 FIRST AND LAST WORD OF AVAILABLE MEMORY
7-7 FIRST WORD AVAILABLE IN PASE PAGE

7-8 LINK POINTS

7-9 LINKAGES TO SUBROUTINES
7-11 HOW TO MAKE MORE PROGRAM SPACE

8-1 SECTION VIII

OPERATING INSTRUCTIONS

8-3 HP 2114--HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE
8-4 HP 2115, HP 2116--HOW TO LOAD A CONFIGURED HP BASIC
SYSTEM TAPE
8-5 HOW TO CONFIGURE A BASIC SYSTEM USING PBS (HP 2114)
8-7 HOW TO CONFIGURE A BASIC SYSTEM USING PBS (HP 2115, HP 2116)
A-1 APPENDIX A

HOW TO PREPARE PAPER TAPE OFF-LINE

B-1 APPENDIX B
SAMPLE PROGRAMS

C-1 APPENDIX C
QUICK REFERENCE TO BASIC

D-1 APPENDIX D
ERROR CODES AND DIAGNOSTICS

INDEX

HOW TO USE THIS BOOK

If your purpose is: Read:

Quickly acquiring a minimum working Sections I and II.
knowledge of HP BASIC:

Acquiring a good working knowledge Sections I, through VII,
of HP BASIC: in sequence.
Learning the complete HP BASIC The entire book, in sequence.
system:
Learning to operate the computer: Section VIII,
Reference only: 1. Contents
2. Appendix C
3. The index
4. Index tabs to locate the

appropriate section.

Xi

SECTION I: COMMUNICATING WITH THE COMPUTER

SECTION II: THE ESSENTIALS OF BASIC

SECTION IlI: ADVANCED BASIC

SECTION 1V: MATRICES

SECTION V: LOGICAL OPERATIONS

SECTION VI: SYNTAX REQUIREMENTS OF BASIC

SECTION VII: FOR ADVANCED PROGRAMMERS

SECTION VIII: OPERATING INSTRUCTIONS

APPENDICES AND INDEX

"SECTION |
COMMUNICATING WITH THE COMPUTER

There are many types of languages. English is a
natural Tanguage used to communicate with people.

To communicate with the computer, formal Tanguages
are used. A formal language is a combination of
simple English and algebra; for example, BASIC is
a formal language used to communicate with the
computer.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda-
mental rules:

19 INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5
3p PRINT S

49 GO TO 1P

50 END

The following pages show how to interpret these rules.
Notice how the statements are written. What they do
is explained later.

1-1

STATEMENTS

INIWILYLS

This is a BASIC statement:

19 INPUT A,B,C,D,E

COMMENTS

A statement contains a maximum of 72 characters

(one teletypewriter line).

A statement may also be called a line.

STATEMENT NUMBERS

STATEMENT NUMBER

Each BASIC statement begins with a statement number (in
this example, 20):

20 LET S=(A+B+C+D+E)/5

COMMENTS

The number is called a statement number OY a line number.

The statement number is chosen by you, the programmer. It
may be any integer from 1 to 9999 inclusive.

Each statement has a unique statement number. The computer

uses the numbers to keep the statements in order.

Statements may be entered in any order; they are usually
numbered by fives or tens so that additional statements

can be easily inserted. The computer keeps them in numeri-
cal order no matter how they are entered. For example, if
statements are input in the sequence 30,10,20; the computer
arranges them in the order: 10,20,30.

1-3

INSTRUCTIONS

S3dAL INFWILVYLS

The statement then gives an instruction to the
computer (in this example, PRINT):

30 PRINT S

COMMENTS

Instructions are sometimes called statement types
because they identify a type of statement. For

example, the statement above is a "print" statement.

1-4

OPERANDS

OPERANDS

If the instruction requires further details, operands
(numeric details) are supplied (In this example, 10;

on the previous page, "S"):

4p GO TO 1P

COMMENTS

The operands specify what the instruction acts upon; for
example, what is PRINTed, or where to GO.

1-5

WYH904d v

A PROGRAM

The sequence of BASIC statements
given on the previous pages is

called a program.

The Tast statement in a program,
as shown here, is
an END statement.

COMMENTS

19 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E)/5
30 PRINT S

4p GO TO 1P
50 END

The last (highest numbered) statement in a program

must be an END statement.

The END statement informs the computer that the

program is finished.

1-6

FREE-FORMAT LANGUAGE

f FREE-FORMAT LANGUAGE |

BASIC is a "free format" 1anguage--the computer
ignores extra blank spaces in a statement. For
example, these three statements are equivalent:

30 PRINT S
30 PRINT S
3PPRINTS

COMMENTS

When possible, leave a space between words and

numbers in a statement. This makes a program
easier for people to read.

1-7

(Spot check)

Be sure you are familiar with these terms before
continuing:

statement
instruction
statement type
statement number
1ine number
operand

program

A1l of these terms are defined in the context of
this section.

1-8

BEFORE WORKING WITH THE COMPUTER

==
=
-
=
o
=
=t
1~
o
=
ad
loz
=)
v
jro)
o

o
Lt
=
=}
£
3
=1
w
=
=

The following pages explain how to correct mistakes
and 1ist programs.

Since you will probably have to make several correc-
tions in your first attempts to use the computer,
these features should be learned before beginning.

RETURN

The return key must be pressed after each statement.

EXAMPLES: 19 INPUT A,B,C,D,E, return
20 LET S=(A+B+C+D+E)/5 return
3@ PRINT S return

49 GO TO 19 return
50 END return

COMMENTS

Pressing return informs the computer that the state-
ment is complete. The computer then checks the state-

ment for mistakes.

ENTERING A PROGRAM

ENTERING A PROGRAM |

i
{

This frame shows how to enter the sample program.
If you are not sure how the computer responds when
a statement is entered, use it as a practice
exercise.

19 INPUT A,B,C,D,E return

linefeed

20 LET S = (A+B+C+D+E)/5 return

linefeed
3P PRINT S return

linefeed

49 GO TO 1P return

linefeed
50 END return

linefeed

COMMENTS

The computer responds with a linefeed (terminal skips
a line) after each statement is entered, indicating
that the statement has been checked, accepted, and the
computer is ready for another statement.

MISTAKES AND CORRECTIONS

The reverse arrow (<) key acts as a backspace,
deleting the immediately preceding character.

Typing: 20 LR<ET S=1p return
is equivalent to typing: 2P LET S=1p return

And typing: 30 LET« « <« PRINT S return
is equivalent to typing: 30 PRINT S return

COMMENTS

The « character is a "shift" 0 on most terminals.

DELETING OR CHANGING A STATEMENT

To delete the statement being typed, press the esc or alt-mode key. This causes
a \ to be printed, and deletes the entire 1ine being typed.

To delete a previously typed statement, type the statement number followed by a

return.

To change a previously typed statement, retype it with the desired changes. The

new statement replaces the old one.

Pressing the esc key deletes
the statement being typed:

To delete statement 5 in the
sequence:

type:

Or, to change statement 5 in
the above sequence, type:

The o1d statement is replaced
by the new one.

Typing an esc (or alt-mode) be-

fore a return prevents replace-
ment of a previously typed
statement.
For example, typing:
or:

has no effect on the original
statement 5.

2P LET S = esc

NOTE: The computer responds with
a \ when esc is typed,

like this:
2P LET S =\

5LETS =290
19 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different, and

have very different functions.

5 return

5 LET S = 5 return

5 LET esc

5 esc

DELETING OR CHANGING
A STATEMENT

I
i

WYd90ud ¥ ININNOY

RUNNING A PROGRAM

This frame shows what happens when the sample program is run.

The program

does not begin execution (does not run) until the command RUN followed by a

return is typed.

NOTE:

COMMENTS

The computer responds with a
linefeed indicating that the
command is being executed.

The question mark indicates that
input is expected. The five num-
bers being averaged should be
typed in, SEPARATED BY COMMAS,

and followed by a return.

The answer is printed.

? indicates that five more
numbers are expected.

The answer is printed.

NOTE: This program continues exe-
cuting indefinitely, unless

terminated by the user. To

terminate, type an S return

when more input is requested.

The program is finished.

The sample program (averaging 5 numbers) has been entered.

RUN return

linefeed

linefeed

84.24 return
linefeed

? -12.5,-50.6,-32,45.6,60 return

2.1 return

linefeed

STOPPING A PROGRAM

When RUN or LIST is typed, BASIC "takes over" the
terminal until the program finishes executing or
the 1listing is complete.

To stop a program that is

running or being listed,

press, then release, any
key.

esc (or any key)

BASIC then responds with
the STOP message:

STOP

COMMENTS

Remember that: S return is used to end input Toops.

i STOPPING A PROGRAM

[

SHUOM WYH90dd FHL MOH

HOW THE PROGRAM WORKS

Line 1@ tells the computer that five numbers will

be input, and that they should be given the labels

A,B,C,D,E in sequence. The first number input is

labeled "A" by the computer, the second "B", etc.

A,B,C,D, and E are called variables. 19 INPUT A,B,C,D,E

After line 10 is executed, the variables and
their assigned values, typed in by the user,
are stored. For example, using the values en-
tered by the user in the previous example, this
information is stored: A = -12.5; B = -50.6;
C=-32; D=45.6; E = 60

Line 2@ declares that a variable called S

exists, and is assigned the value of the sum
of the variables A,B,C,D,E divided by 5: 20 LET S = (A+B+C+D+E)/5

Line 3@ instructs the computer to output the
value of S to user's terminal: 3@ PRINT S

If the PRINT statement were not given,
the value of S would be calculated and
stored, but not printed. The computer
must be given explicit instruction for
each operation to be performed.

Line 49 tells the computer to go to line 19
and execute whatever instruction is there: 49 GO TO 19

NOTE: A "loop" is formed by lines 1¢ to 4¢.
The sequence of statements in this
loop execute until the user breaks
the loop. This particular kind of
loop is called an input loop (because
the user must consistently input data).

Continued on the next page

HOW THE PROGRAM WORKS, CONTINUED

TYPING: S WHEN INPUT IS REQUESTED
BY A "?" IS THE ONLY WAY TO BREAK AN
INPUT LOOP. Other, more controlled
loops are explained later. Line 5¢
is not executed until the loop is
broken by typing: S when input is
requested.

' HOW THE PROGRAM WORKS |

Line 5@ informs the computer that the program
is finished:

SECTION I
THE ESSENTIALS OF BASIC

This section contains enough information to allow

SECTION II

you to use BASIC in simple applications.

Proceed at your own pace. The information in the
vocabulary and operators subsections is included
for completeness; experienced programmers may skip
these.

The "Operators" pages contain brief descriptions,
rather than explanations, of the logical operators.
The novice should not expect to gain a clear under-
standing of logical operators from this presenta-
tion. Section V presents more details and examples
of logical operations. Readers wishing to make best
use of logical capabilities should consult this sec-
tion. Those unfamiliar with logical operations should
also refer to an elementary logic text.

A simple program is included at the end of this section
for reference; it contains a running commentary on the
uses of many of the BASIC statements presented in the
section.

2-1

TERM: SIMPLE VARIABLE

DEFINED IN BASIC AS: A letter (from A to Z); or a
letter immediately followed
by a digit (from @ to 9).

EXAMPLES: AD B
M5 c2
79 D

COMMENTS

Variables are used to represent numeric values.
For instance, in the statement:

19 LET M5 = 96.7

M5 is a variable; 96.7 is the value of the variable
M5,

There is one other type of variable in BASIC, the
array variable; its use is explained in Section 1IV.

TERM: NUMBER

DEFINED IN BASIC AS: A decimal number (the sign is optional) between an
approximate minimum of:

]ﬂ—38 (or 2-129) r

and an approximate maximum of:

m38 (or 2127) !
|

VOCABULARY

Zero is included in this range.

TERM: E NOTATION

DEFINED IN BASIC AS: A means of expressing numbers having more than six
decimal digits, in the form of a decimal number
raised to some power of 1p.

EXAMPLES: 1.000PPE+P6 is equal to 1,000,000 and is read: "7

times 10 to the sixth power" (1x106).
1.02P00E+P4 is equal to 19,2090
1.02000E-P4 is equal to .PPQ1P2

COMMENTS

"E" notation is used to print numbers having more than six significant
digits. It may also be used for input of any number.

When entering numbers in "E" notation, leading and trailing zeroes may
be omitted from the number; the + sign and leading zeroes may be omitted
from the exponent.

The precision of numbers is 6 to 7 decimal digits (23 binary digits).

2-3

TERM: EXPRESSION

DEFINED IN BASIC AS:

A combination of variables, con-
stants and operators which eval-
uates to a numeric value.

EXAMPLES: (P + 5)/27

(where P has previously been
assigned a numeric value.)

Q- (N+4)

(where Q and N have previously
been assigned numeric values.)

TERM: ARITHMETIC EVALUATION

DEFINED IN BASIC AS: The process of calculating the

value of an expression.

2-4

THE ASSIGNMENT OPERATOR

SYMBOL:
EXAMPLES:

GENERAL FORM:

1D LETA=B2=C=0

20 LET A9 = C5

30 LET Y = (N-(R+5))/T

4p LET N5 = A + B2

50 LET P5 = P6=P7=A=B=98.6

LET variable = expression

PURPOSE

Assigns an arithmetic or logical value to a variable.

COMMENTS

When used as an assignment operator, = is read "takes
the value of," rather than "equals". It is, therefore,

possible to use assignment statements such as:

LET X = X+2

This is interpreted

by BASIC as: "LET X take the value

of (the present value of) X, plus two."

Several assignments may be made in the same statement, as

in statements 10 and 50 above.

See Section V, "Logical Operations" for a description of

logical assignments.

1
|
|

ASSIGNMENT OPERATOR

!

. SY0LV¥Id0 TYNOILYI Y

RELATIONAL OPERATORS

SYMBOLS:

EXAMPLES: 190 IF A=B THEN 999
119 IF A+B >C THEN 919
120 IF A+B < C+E THEN 92p
1390 IF C>=D*E THEN 939
149 IF C9<= G*H THEN 94p
150 IF P2#C9 THEN 950

IF J <> K THEN 95p

PURPOSE

Determines the logical relationship between two expressions, as

equality:
inequality: # or <
greater than: >
less than: <
greater than or equal to: >=
less than or equal to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature
of logical evaluation of relational operators, at this point.

The comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and
assigned a value of "true" or "false" (the numeric value is 1 for
"true," and @ for false).

When the = symbol is used in such a way that it might have either an
assignment or a relational function, BASIC assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Section V, "Logical Operations."

2-6

THE AND OPERATOR

SYMBOL : AND

EXAMPLES: 60 IF A9<B1 AND C#5 THEN 199
70 IF T7#T AND J=27 THEN 150

83 IF P1 AND R>1 AND N AND V2 THEN 18
99 PRINT X AND Y

PURPOSE

Forms a logical conjunction between two expressions. If both are
"true," the conjunction is "true"; if one or both are "false," the
conjunction is "false."

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced

programmers.
COMMENTS

The numeric value of "true" is 1, of "false" is P.
A1l non-zero values are "true." For example, statement 90 would
print either a P or a 1 (the logical value of the expression X AND
Y) rather than the actual numeric values of X and Y.
Control is transferred in an IF statement using AND, only when all
parts of the AND conjunction are "true." For instance, example
statement 80 requires four "true" conditions before control s trans-

ferred to statement 10.

See Section V, "Logical Operations" for a more complete description
of logical evaluation.

2-7

AND

THE OR OPERATOR

SYMBOL:

EXAMPLES: 1990 IF A>1 OR B<5 THEN 5pp

11p PRINT COR D

120 LET D = X ORY

13p IF (X AND Y) OR (P AND Q) THEN 6@p

OR

PURPOSE

Forms the logical disjunction of two expressions. If
either or both of the expressions are true, the OR dis-
junction is "true"; if both expressions are "false," the

OR disjunction is "false."

NOTE: It is not necessary for the novice to understand how
this operator works. The comments below are for
experienced programmers.

COMMENTS
The numeric values are: "true" =1, "false" = p.

AT11 non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true."

See Section V, "Logical Operations" for a more complete
description of logical evaluation.

2-8

THE NOT OPERATOR

SYMBOL : NOT

EXAMPLES: 3P LET X =Y =9
35 IF NOT A THEN 399

45 IF (NOT C) AND A THEN 4pp
55 LET B5 = NOT P

65 PRINT NOT (X AND Y)

70 IF NOT (A=B) THEN 5pp

NOT

PURPOSE
Logically evaluates the complement of a given expression.

NOTE: It is not necessary for the novice to understand
how this operator works. The comments below are

intended for experienced programmers.

COMMENTS

If A =0, then NOT A = 1; if A has a non-zero value,
NOT A = P.

The numeric values are: "true" = 1, "false" = p; for
example, statement 65 above would print "1", since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35
above, if A equals zero, the evaluation would be "true"
(1); since A has a numeric value of P, it has a logical
value of "false," making NOT A "true."

See Section V, "Logical Operations" for a more complete
description of logical evaluation.

2-9

ORDER OF PRECEDENCE

The order of performing operations is:

4 highest precedence
NOT wunary + unary -

x

+ -

Relational Operators

AND

OR lowest precedence

COMMENTS

If two operators are on the same level, the order of
execution is left to right, for example:

5+ 6%7 is evaluated as: 5 + (6x7)
7/14*2/5 is evaluated as: (7/14)x2
5

Parentheses override the order of precedence in all cases,
for example:

5+ (6x3) is evaluated as: 5 + 18
and
3 + (6+(242)) is evaluated as: 3 + (6+4)

Unary + and - may be used; the parentheses are assumed by
BASIC. For example:

A+ + B is interpreted: A + (+B)
C -+ D -5 is interpreted: C - (+D)-5

Leading unary + signs are omitted from output by BASIC, but
remain in program listings.

STATEMENTS

Statements are instructions to the computer. They are contained
in numbered 1ines within a program, and execute in the order of

their 1ine numbers. Statements cannot be executed without run-

ning a program. They tell the computer what to do while a pro-

gram is running.

Commands are also instructions. They are executed immediately,
do not have 1ine numbers, and may not be used in a program. They

are used to manipulate programs, and for utility purposes.

Here are some examples mentioned in Section I:

Statements Commands
LET RUN
PRINT TAPE
INPUT LIST

Do not attempt to memorize every detail in the "Statements"
subsection; there is too much material to master in a single ses-
sion. By experimenting with the sample programs and attempting to
write your own programs, you will learn more quickly than by
memorizing.

2-11

STATEMENTS

THE LET STATEMENT

EXAMPLES:

19 LET A = 5.p2
20 LET X =Y7 =72 =0

30 LET B9 = 5% (X+2)

49 LET D = (3*C2+N)/(A*(N/2))

GENERAL FORM:

statement number LET variable = number or expression or variable...

PURPOSE

Used to assign or specify the value of a variable. The value
may be an expression, a number, or a variable.

COMMENTS

The assignment statement must contain:

1. A statement number,
LET,
The variable to be assigned a value (for example, B9
in statement 3@ above),
The assignment operator, an = sign,
The number, expression or variable to be assigned to
the variable (for example, 5*%(X+2) in statement 3@ above).

Statement 2P in the example above shows the use of an assignment
to give the same value (@) to several variables. This is a useful
feature for initializing variables in the beginning of a program.

REM

EXAMPLES: 19 REM--THIS IS AN EXAMPLE
2 REM: OF REM STATEMENTS
30 REM
49 REM. STATEMENTS ARE NOT EXECUTED BY BASIC

GENERAL FORM: statement number REM any remark or series of characters

PURPOSE

Allows insertion of a 1ine of remarks or comment
in the T1isting of a program.

COMMENTS

Must be preceded by a 1ine number. Any series of
characters may follow REM,

REM 1ines are part of a BASIC program and are printed
when the program is Tisted or punched; however, they
are ignored when the program is executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.

REM

INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

5 FOR M=1 T0 2
19 INPUT A
290 INPUT A1,B2,C3,720,79,E5
39 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R";

4p INPUT R
50 PRINT A3A1;B2;C3;Z0;79;E5;"R="3R

60 NEXT M

70 END

----------------------- RESULTS = - = mmmm e e e
RUN return

?1 zeturn
?2,3,4,5,6,7 return
WHAT VALUE SHOULD BE ASSIGNED TO R?27 return
1 2 3 4 5 6 7 R=27

?2.5,3.5,4.5,6.,7.2 return
?8.1 return ? indicates that more input is expected
WHAT VALUE SHOULD BE ASSIGNED TO R?-99 return

1.5 2.5 3.5 4.5 6 7.2

8.1 R=-99

General Form:

statement number INPUT variable , variable ,...

PURPOSE

Assigns a value input from the teleprinter to a variable.

INPUT, CONTINUED

COMMENTS

The program comes to a halt, and a question mark is
printed when the INPUT statement is used. The pro-

INPUT

gram does not continue execution until the input
requirements are satisfied.

Only one question mark is printed for each INPUT state-
ment. The statements:

19 INPUT A, B2, C5, D, E, F, G
2(0 INPUT X

each cause a single "?" to be printed. The "?" generated
by statement 19 requires seven input items, separated by

commas, while the "?" generated by statement 20 requires

only a single input item.

The only way to terminate or exit a program when input is
required is entering: S return. Note that the S ends

the program; it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.

See PRINT in this section for output variations.

PRINT

This sample program gives a variety of examples of the PRINT statement.
The results are shown below.

10 LET A=B=C=1p

20 LET D1=E9=29

30 PRINT A,B,C,D1,E9

4p PRINT A/B,B/C/DI+E9

590 PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE"
6@ PRINT "VALUE IN THE SAME STATEMENT."

79 PRINT

8@ PRINT

9p REM* "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.
PP PRINT "'A' DIVIDED BY 'E9' =";A/E9
11p PRINT "11111", "22222", "33333", "44444", "55555", "66666"

129 PRINT "11111"; "22222"; "33333"; "44444"; "55555"; "66666"

1390 END

--------------------------- RESULTS ==mmmmmmmmccmmmcmmmcme e e
RUN return
10 19 19 2P 20
1 2p.95

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

‘A" DIVIDED BY 'E9' = .5

1111 22222 33333 44444 55555
66666

111112222233333444445555566666

NOTE: The "," and ";" used in statements 11§ and 12¢ have

very different effects on the format.

2-16

PRINT, CONTINUED

GENERAL FORM:

statement number PRINT expression , expression , ...

or

statement number PRINT "any text" ; expression ; ...

or

statement number PRINT "text" ; expression ; "text" , "text" , ...

or

statement number PRINT any combination of text and/or expressions

PRINT

or
statement number PRINT

PURPOSE

Causes the expressions or "text" to be output to

the terminal.

Causes the teleprinter to skip a Tine when used
without an operand.

COMMENTS

Note the effects of , and ; on the output of the
sample program. If a comma is used to separate
PRINT operands, five fields are printed per tele-
printer 1line. If semicolon is used, up to twelve
"packed" numeric fields are output per teleprinter
Tine (72 characters).

Text in quotes is printed Titerally.

Remember that variable values must be defined in
an assignment, INPUT, READ or FOR statement before
being used in a PRINT statement.

2-17

INTYd

PRINT, CONTINUED

Although the format of the PRINT statement is "automatic" to
help beginning programmers, the experienced programmer may use
several features to control his output format.

Each line output to the terminal is divided into five print
fields when commas are used as separators (as in statement 30
in the sample program). The fields begin at print spaces @,
15, 3@, 45, and 6@. The first four fields contain fifteen
spaces, and the last field contains twelve. The comma signals
the computer to move to the next print field, or if in the
last field, to move to the next line.

More information may be printed on a line by using semicolons
as separators. Twelve numbers may be printed per line by us-
ing semicolons. (See the output from statements 110 and 120
in the sample program for an example of the differences in the
two separators.)

Spacing within a print field depends on the value and type of
the number being printed. A number 1is always printed in a
field larger than itself and is left-justified. The space re-
quired for a number is determined by these formulas:

Value of Number Type of Number Qutput Field Size
-999< n < + 999 Integer AXXX 0 *

-32768<n< -1000 Integer AXXXXX)

+1000 < n < +32767

.1<n<999999.5 kg;?e Integer or AXXXXXXX) 3y

(Decimal point printed
as one of the x's;
trailing zeros sup-
pressed.)

n<.1 Large Integer or Ax.xxxxineeAAA
999999.5 < n Real

*The A symbol indicates a space.

2-18

PRINT, CONTINUED

Ending a PRINT statement with a semicolon causes the output
to be printed on the same line, rather than generating a
return linefeed after the statement is executed. For example,

the sequence:

20 LET X =1
30 PEINT X;
49 LET X=X+1
50 GG TO 29

produces output in this format:

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
Similarly, ending a PRINT statement with a comma causes output to
fill all five fields on a line before moving to the next line.
The trailing comma in statement 3@ in the sequence:

20 LET X =1
30 PEINT X,
49 LET X=X+1
50 GO TO 2¢

produces output in this format:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

A PRINT statement without an cperand (statements 7@ and 89 in
the sample program) generates a return linefeed.

Three general rules for planning output formats are:

1. If a number is an integer with a value between
-32768 and +32767, inclusive, the decimal point
is not printed.

2-19

PRINT, CONTINUED

2. If the number is an integer out of the above
range or if the number is real and has an
absolute value between .1 and 999999.5, the
number is rounded to six digits and printed
with a decimal point. Zeros trailing the
decimal point are suppressed.

LINIdd

3. If a number is either greater than 999999.5 or
less than .1, it is rounded to six places; the
teletypewriter then prints a space (if positive)
or minus sign (if negative), the first digit,
the decimal point, the next five digits, the
letter E (indicating exponent), the sign of the
exponent, and the exponent.

See the description of the TAB function in Section III for more
information on controlling output format.

2-20

GO TO

EXAMPLES: 10 LET X = 20

50 GOTO 10P

8p GOTO 19
GENERAL FORM:

statement number GO TO statement number

PURPOSE

Transfers control to the specified statement.

COMMENTS
GO TO may be written: GOTO or GO TO.

This statement must be followed by the statement
number to which control 1is transferred.

GO TO overrides the normal execution sequence of
statements in a program.

Useful for repeating a task infinitely, or "jumping"
(G0ing TO) another part of a program if certain con-
ditions are present.

GO TO should not be used to enter FOR-NEXT loops;
doing so may produce unpredictable results or fatal
errors. (See "FOR...NEXT" in this section for de-
tails on loops.)

To get out of a GO TO loop, type: STOP return.

2-21

IF...THEN

SAMPLE PROGRAM: 19 LET N = 19
20 READ X
3@ IF X <=N THEN 69
4@ PRINT "X IS OVER"; N
59 GO TO 199
6@ PRINT "X IS LESS THAN OR EQUAL TO"; N
70 GO TO 2§
8p STOP

GENERAL FORM:

statement number _I_li expression relational op expression THEN statement number

PURPOSE

Transfers control to a specified statement if a specified condition is true.

COMMENTS

Sometimes described as a conditional transfer; "GO TO" is implied by IF...THEN,
if the condition is true. In the example above, if X<=1§, the message in
statement 6@ is printed (statement 6 is executed).

Since numbers are not always represented exactly in the computer, the = oper-
ator should be used carefully in IF...THEN statements. Limits, such as <=,>=,
etc. should be used in an IF expression, rather than =, whenever possible.

If the specified condition for transfer is not true, the program will continue
executing in sequence. In the example above, if X>1¢g, the message in state-
ment 40 prints.

The relational operator is optional in logical evaluations.

See Section V, "Logical Operations," for a more complete description of
logical evaluation.

2-22

FOR...NEXT

EXAMPLES : 190 FORP1 =170 5
119 FOR Q1 = N TO X
120 FORR2 = N TO X STEP 2.5 .
130 FORS =1 TO X STEP Y
149 NEXT S 5
150 NEXT R2 |
160 NEXT QI i
17p NEXT P1

Sample Program - Variable Number Of Loops

49 PRINT "HOW MANY TIMES DO YOU WANT TO LOOP";
59 INPUT A

6p FORJ =1 T0 A

70 PRINT "THIS IS LOOP"; J

8P READ N1, N2, N3

99 PRINT "THESE DATA ITEMS WERE READ:" N1; N2; N3
199 PRINT “SUM ="; (N1+N2+N3)

119 NEXT J
129 DATA 5, 6, 7, 8, 9, 19, 11, 12

139 DATA 13, 14, 15, 16, 17, 18, 19, 29, 21

14p DATA 22, 23, 24, 25. 26, 27, 28, 29, 30
150 DATA 31, 32, 33, 34

16p END

GENERAL FORM:

statement number FOR simple variable = initial value T0 final value

or

statement no. FOR simple var. = initial value T0 final value STEP step value

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT state-

ments of a loop.

2-23

LIX3INTTTYH04

FOR...NEXT CONTINUED
PURPOSE

Allows controlled repetition of a group of statements within a program.

COMMENTS

Initial value, final value and step value may be any expression.

STEP and step value are optional; if no step value is specified, the computer
will automatically increment by one each time it executes the loop.

How the loop works:

The simple variable is assigned the value of the initial value; the value of

Toop executes. When the value of the simple variable passes the final value,

control is transferred to the statement following the "NEXT" statement.

The initial, final, and step values are all evaluated upon entry to the loop
and remain unchanged after entry. For example,

FORI=1TOI+ 5

goes from 1 to 6; that is, the final value does not "move" as I increases with
each pass through the loop.

For further details on the STEP feature, see "FOR...NEXT with STEP" in
Section III,

Try running the sample program if you are not sure what happens when FOR...
NEXT loops are used in a program.

2-24

NESTING FOR...NEXT LOOPS

Several FOR...NEXT loops may be used in the same program;
they may also be nested (placed inside one another). There
are two important features of FOR...NEXT loops:

FOR...NEXT loops may be nested.

— 1) FOR A1 =1 TO 5
—2f) FOR B2 = N TO P

Range of Toop Al ~
30 FOR C3 = X TO Y STEP R

Range of loop B2 —]

Range of Toop €3 — |80 NEXT C3
—) NEXT B2
— 100 NEXT Al

The range of FOR...NEXT loops may not
overlap. The 1oops in the example above
are nested correctly. This example shows
improper nesting.

=10 FOR I =1 T0 5

—30 FOR J = 1 TO N

The range of loops

I and J overlap. 50 NEXT I

—9f) NEXT J

2=25

g
&
=}
=1
-
=
>
wi
=
o
S
w
[}
=
=
=
w
=)
=

READ, DATA AND RESTORE

Sample Program using READ and DATA

15 FOR I=1 TO 5

g 29 READ A
B 4P LET X=A+2
: 45 PRINT A;" SQUARED =";X
- 50 NEXT 1
4 55 DATA 5.24,6.75,30.8,72.65,89.72

6p END

Each data item may be read only once in this
program. BASIC keeps track of data with a
"pointer." When the first READ statement is
encountered, the "pointer" indicates that the
first item in the first DATA statement (the one
with the lowest statement number) is to be read;

the pointer is then moved to the second item of
data, and so on.

In this example, after the loop has executed five
times, the pointer remains at the end of the data
list. To reread the data, it is necessary to re-
set the pointer. A RESTORE statement moves the
pointer back to the first data item.

2-26

READ, DATA AND RESTORE, CONTINUED

Sample Program Using RESTORE with READ and DATA.

20 FOR I =1T0 5

30 READ A

4p LET X=At2

50 PRINT A; "SQUARED =";X

60 NEXT I

80 RESTORE

199 FOR J=1 TO 5

119 READ B

120 LET Y=B+4

139 PRINT B; "TO THE FOURTH POWER =";Y
14p NEXT J

150 DATA 5.24,6.75,30.8,72.65,89.72
160 END

[}
(=4
=]
=
%)
L
o
o
<
=
o
[=}
<
o
&

GENERAL FORM:

statement number READ variable , variable ,...

statement number DATA number , number , ...

statement number RESTORE

PURPOSE

The READ statement instructs BASIC to read an item from
a DATA statement.

The DATA statement is used for specifying data in a pro-
gram. The data is read in sequence from first to last
DATA statements, and from left to right within the DATA
statement.

The RESTORE statement resets the pointer to the first data
item, allowing data to be reread.

2-27

WAIT

EXAMPLE : 90@ WAIT (1990)
99¢ WAIT (3¢90)

GENERAL FORM: statement number WAIT (expression max. value of 32767)

PURPOSE

Introduces delays into a program. WAIT causes the program
to wait the specified number of milliseconds (maximum 32767
milliseconds) before continuing execution.

COMMENTS
The time delay produced by WAIT is not precisely the number
of milliseconds specified because there is no provision to
account for time elapsed during calculation or terminal-

computer communication.

One millisecond = 1/1000 second.

2-28

END AND STOP

EXAMPLES:
20p IF A # 27.5 THEN 350

3pp STOP

a
o
-
7]
o
=
<
o
=
]

50p IF B # A TEEN 9999

550 PRINT "B = A"
6Pp END
9999 END

GENERAL FORM:
any statement number STOP

any statement number END

highest statement number in program END

PURPOSE

Terminates execution of the program.

COMMENTS

The highest numbered statement in the program must be an END
statement.

END and STOP statements may be used in any portion of the program
to terminate execution.

END and STOP have identical effects; the only difference is that
the highest numbered statement in a program must be an END statement.

2-29

WY4908d 3TdWYS

SAMPLE PROGRAM

If you understand the effects of the statement
types presented up to this point, skip to the
"COMMANDS" section.

The sample program on the next two pages uses
several BASIC statement types.

Running the program gives a good idea of the
various effects of the PRINT statement on tele-
printer output. If you choose to run the program,
you may save time by omitting the REM statements.

After running the program, compare your output
with that shown under "RUNNING THE SAMPLE PROGRAM."
If there is a difference, LIST your version and
compare it with the one presented on the next

two pages. Check the commas and semi-colons; they
must be used carefully.

2-30

SAMPLE PROGRAM, CONTINUED

1§ REMARK: "REMARK" OR "REM" IS USED TG INDICATE REMARKS OR COMMENTS

2@ REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.

3@ REM: THE COMPUTER LISTS AND PUNCHES THE "REM" LINE, BUT DOES NOT z
4 REM: EXECUTE IT. =
5¢ REM: "PRINT" USED ALONE GENERATES A "RETURN" "LINEFEED" %
6@ PRINT -
7¢ PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY."

89 PRINT ‘

9@ PRINT "IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS."

18@ PRINT

119 PRINT "PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY."

12¢ PRINT

133 PRINT

14@ REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED

15¢ REM: TO ZERO (THEIR VALUE IS SET AT ZERO).

16@ LET A=N=R1=S=0

18 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY

199 REM: NUMBERS HE WANTS TO AVERACGE.

2@8@ PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";

219 INPUT N

223 PRINT

23@ PRINT "0.K., TYPE IN ONE OF THE ";N;"NUMBERS AFTER EACH QUES. MARK."

243 PRINT "DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER."

25@ PRINT

26@ PRINT "NOW, LET'S BEGIN"

27¢ PRINT

28@ PRINT

3@@ REM: "N" IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ

319 REM: 1 TO "N" NUMBERS AND KEEP A RUNNING TOTAL.

3280 FOR I=1 TO N

33@ INPUT A

340 LET S=S+A

35@ NEXT I Continued on the next page

2-31

REM:
REM:
REM:
REM:
REM:
REM:
REM:
REM:
REM:
REM:
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM:
REM:
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

SAMPLE PROGRAM, CONTINUED

“I" IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES
THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS PERFORMED.

"I" INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.

"A" IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE

USER INPUTS A NUMBER.

"S" WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM

OF ALL NUMBERS TO BE AVERAGED.

AFTER THE LOOP IS EXECUTED "N" TIMES, THE PROGRAM CONTINUES.
A SUMMARY IS PRINTED FOR THE USER.

N; "NUMBERS WERE INPUT."

"THEIR SUM IS:";S

"THEIR AVERAGE IS:";S/N

NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
RESTARTING THE PROGRAM.

"DO YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"

“TYPE 1 IF YES, @ IF NO"
"BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER."

“YOUR REPLY";
R1

IF R1=1 THEN 120

REM:

THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.

IF R1#@ THEN 700

GO TO

PRINT
GO TO
END

720

"TO REITERATE, YOU SHOULD TYPE 1 IF YES, @ IF NO."
640

2-32

RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.
IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.
PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.

HOW MANY NUMBERS DO YOU WANT TO AVERAGE?

0.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.
DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.
NOW, LET'S BEGIN

? 99 return

? 87.6 return
? 92.7 return
? 79.5 return
? 84 return

5 NUMBERS WERE INPUT.

THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, P IF NO

BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, @ IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE?

2-33

RUNNING A PROGRAM

SANYWWOD

COMMANDS

Remember the difference between commands and
statements. (See "Statements" in this section.)

Commands are direct instructions to the computer,
and are executed immediately. They are used for
utility purposes and for program manipulation.

Do not try to memorize all of the details in the
COMMANDS subsection. The various commands and
their functions will become clear to you as you
begin to write your own programs.

2-34

RUN

EXAMPLE: RUN return

GENERAL FORM: RUN

PURPOSE

Starts execution of a program at the Towest
numbered statement.

COMMENTS
A running program may be terminated by pressing

any key. To terminate a running program at some
point when input is required, type:

S return

2-35

RUN

LIST

EXAMPLE:

LIST return
or

GENERAL FORM: LIST

LIST statement number

PURPOSE

Produces a Tisting of all statements in a program
(in statement number sequence) when no statement
number is specified.

When a statement number is specified, the Tisting
begins at that statement.

COMMENTS

A 1isting may be stopped by pressing any key.

2-36

SCRATCH

EXAMPLE: SCRATCH return

GENERAL FORM: SCRATCH

PURPOSE

Deletes (from memory) the program currently being
accessed from the teleprinter.

COMMENTS

SCRATCH erases everything in the user's area of computer
memory.

SCRATCHed programs are not recoverable. For information

about saving programs on paper tape, see the PLIST com-
mand in this section.

SCRATCH

TAPE

TAPE return

TAPE
or
AP

EXAMPLES:

GENERAL FORM:

3dvi

PURPOSE

Informs the computer that following input is from
paper tape being read from the terminal tape reader.

COMMENTS
BASIC responds to the TAPE command with a linefeed.
TAPE suppresses linefeeds following statements.

Error messages are printed as the tape is input; the
tape reader is held inactive while they are being

printed.

2-38

PTAPE

EXAMPLES: PTAPE return

GENERAL FORM: PTAPE

or
PTA

PURPOSE

Causes the computer to read in a program from the
punched tape photoreader.

COMMENTS
If the computer does not have a photoreader, the
message:
STOP
READY

is printed on the terminal, and BASIC waits for
further input.

BASIC responds to the PTAPE command with a linefeed.

2-39

PTAPE

PLIST

EXAMPLE : PLIST return
GENERAL FORM: PLIST
or

PLIST statement number

PURPOSE

Causes the program in memory to be punched onto paper tape,
with Teading and trailing guide holes; also produces a Tist-
ing of the program on the HP modified ASR-33 terminal; one
listing is produced on the HP modified ASR-35 in 'KT' mode.

COMMENTS

Be sure to press the "ON" button on the terminal paper tape
punch before pressing return after PLIST.

If there is no paper tape punch on the terminal, a listing is
printed.

BASIC uses the high-speed punch if available, otherwise the
terminal punch is used.

2-40

SECTION 111

ADVANCED BASIC

This section describes further capabilities
of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and
briefly reviewing the commands and functions
presented here. Matrices are explained in
the next section.

The inexperienced programmer need not spend
a great deal of time on programmer-defined
and standard functions. They are shortcuts,
and some programming experience is necessary
before their applications become apparent.

3-1

SECTION 111

TERM: ROUTINE

DEFINED IN BASIC AS: A sequence of program statements

which produces a certain result.

PURPOSE

Routines are used for frequently performed

A¥YINGYI0A

operations, saving the programmer the work
of defining an operation each time he uses
it, and saving computer memory space.

COMMENTS

A routine may also be called a program,
subroutine, or sub-program.

The task performed by a routine is defined
by the programmer.

Examples of routines and subroutines are
given in this section.

3-2

TERM: ARRAY OR MATRIX

DEFINED IN BASIC AS: An ordered collection of numeric data

(numbers).

COMMENTS

Arrays are divided into columns (vertical) and rows (horizontal):

C | ROWS

nZ2=cro

Arrays may have one or two dimensions. For example,

1.0
2.1
3.2
4.3

is a one-dimensional array, while
6 ,5,4
3,2,1
p,9,8

is a two-dimensional array.

Array elements are referenced by their row and column position
For instance, if the two examples above were arrays A and Z

respectively, 2.1 would be A(2); similarly, @ would be Z(3,1).
The references to array elements are called subscripts, and

set apart with parentheses. For example, P(1,5) references the
fifth element of the first row of array P; 1 and 5 are the sub-
scripts. In X(M,N) M and N are the subscripts.

VOCABULARY

AdYINgYI0L

TERM: STRING

DEFINED IN BASIC AS: P to 65 teleprinter characters
enclosed by quotation marks
(one 1ine on a teleprinter terminal).

COMMENTS

Sample strings: "ANY CHARACTERS!?*/---"
"TEXT 1234567..."

Quotation marks may not be used within a string.
Strings are used only in PRINT statements.

The statement number PRINT, and quotation marks are not included
in the 65 character count. Each statement may contain up to 72
characters. Maximum string length is 72 characters minus 6
characters for "PRINT", two for the quotation marks, and the num-
ber of characters in the statement number.

TERM: FUNCTION

DEFINED IN BASIC AS: The mathematical relationship between
two variables (X and Y, for example)

such that for each value of X there is
one and only one value of Y.

COMMENTS

The independent variable in a function is called an argument;
the dependent variable is the function value. For instance,
if X is the argument, the function value is the square root
of X, and Y takes the value of the function.

TERM: WORD

DEFINED IN BASIC AS: The amount of computer memory

space occupied by two teleprinter
characters.

COMMENTS

Numbers require two words of memory space when stored as
numbers. When used within a string, numbers require 1/2
word of space per character in the number.

VOCABULARY

SNOILINNS B

SUBROUTINES AND FUNCTIONS

The following pages explain BASIC features useful for re-
petitive operations -- subroutines, programmer-defined
functions and standard functions.

The programmer-defined features, such as GOSUB,
FOR...NEXT with STEP, and DEF FN become more useful as
the user gains experience and learns to use them as
shortcuts.

Standard mathematical and trigonometric functions are

convenient timesavers for programmers at any level.
They are treated as numeric expressions by BASIC.

3-6

GOSUB...RETURN

EXAMPLE: 59 READ A2
60 IF A2<1PP THEN 8P
7P GOSUB 409

380 STOP (sTOP,END, or GO TO frequently precede
the first statement of a subroutine
to prevent accidental entry.)

390 REM--THIS SUBROUTINE ASKS FOR A 1 OR @ REPLY.
4pp PRINT "A2 IS>1pp"

419 PRINT "DO YOU WANT TO CONTINUE";

429 INPUT N

43p IF N #@ THEN 459

44p LET A2 = P

4§Q RETURN

600 END

GENERAL FORM: statement number GOSUB statement number starting subroutine

statemént number RETURN

e)
PURPOSE
GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB statement which
transferred control.

GOSUB...RETURN eliminates the need to repeat frequently used groups of state-
ments in a program.

COMMENTS

The portion of the program to which control is transferred must logically end
with a RETURN statement.

RETURN statements may be used at any desired exit point in a subroutine.
GOSUB...RETURN'S may be "nested" to a level of nine during execution. There is
no lTimit on physical nesting in the Tisting.

3-7

. .RETURN

GOSUB.

FOR...NEXT WITH STEP

EXAMPLES : 2¢ FOR I5 = 1 TO 2@ STEP 2
49 FOR N2 = @ TO -19 STEP -2
89 FOR P = 1 TO N STEP X5
9% FOR X = N TO W STEP (N+2-V)

GENERAL FORM:

statement no. FOR simple var. = expression T0 expression STEP expression

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,
199 FOR N = 1 TO 2 STEP .¢1

is a valid statement which produces approximately 100

loop executions, incrementing N by .01 each time.

Since no binary computer represents all decimal numbers

exactly, round-off errors may increase or decrease the

number of steps when a non-integer step size is used.

A step size of 1 is assumed if STEP is omitted from a
FOR statement.

A negative step size may be used, as shown in statement
4@ above.

3-8

GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES: 642 PRINT EXP(N); ABS(N)
652 IF RND (p)>=.5 THEN 9p¢
662 IF INT (R) # 5 THEN 919

672 PRINT SQR (X); LOG (X)

GENERAL FORM: The general mathematical functions may be used as
expressions, or as parts of an expression.

B

MATHEMATICAL FUNCTIONS i

PURPOSE

Facilitates the use of common mathematical functions by pre-defining them as:
ABS (expression) the absolute value of the expression;

EXP (expressiqg) the constant e raised to the power of the expression
value (in statement 642 above, etN)

INT (expression) the largest integer < the expression;

LOG (expression) the logarithm of the positively valued expression to the
base e;

RND (erression) a random number between 1 and @; the expression is a
dummy - argument ;

SQR (expression) the square root of the positively valued expression.

COMMENTS

The RND function is restartable; the sequence of random numbers using RND
is identical each time a program is RUN.

3-9

TRIGONOMETRIC FUNCTIONS

EXAMPLES: 5@@ PRINT SIN(X): COS(Y)
519 PRINT 3*SIN(B); TAN (C2)
52p PRINT ATN (22.3)

539 IF SIN (A2) <1 THEN 8pp
549 IF SIN (B3) = 1 AND SIN(X) <1 THEN 99

PURPOSE

Facilitates the use of common trigonometric functions by
j pre-defining them, as:

SNOILONA4 DTYLIWONOSIYL

SIN (expression) the sine of the expression (in radians);
COS (expression) the cosine of the expression (in radians);
TAN (expression) the tangent of the expression (in radians);

ATAN (expression) the arctangent of the expression.

COMMENTS

The function is of the value of the expression (the value in
parentheses, also called the argument).

The trigonometric functions may be used as expressions or parts
of an expression.

ATN returns the angle in radians.

DEF FN

EXAMPLE : 6@ DEF FNA (B2) = A+2 + (B2/C)
79 DEF FNB (B3) = 7*B3+2
8P DEF FNZ (X) = X/5

GENERAL FORM:

statement no. DEF FN single letter A to z (simple var.) = expression

PURPOSE

Allows the programmer to define functions.

COMMENTS

A maximum of 26 programmer-defined functions are possible
in a program (FNA to FNZ).

Any operand in the program may be used in the defining ex-
pression; however such circular definitions as:

1@ DEF FNA (Y) = FNB (X)

20 DEF FNB (X) = FNA (Y)

cause infinite Tooping.

See the vocabulary at the beginning of this section for
a definition of "function" and an explanation of
"arguments".

COM

EXAMPLES: 1 COM A(10), B(
1 COM C(5), D(5

3,3) first program
)s F(3,3) subsequent program

GENERAL FORM:

lowest statement no.COM subscripted array var., separated by commas

PURPOSE

Allows a BASIC program to store data in memory for retrieval
by a subsequent BASIC program.

COMMENTS

The data designated by a COM statement is accessible only as
an array; since COM designates a common array of data, the

same array variable can not appear in both DIM and COM state-
ments within a program.

COM must be the first statement entered and the lowest numbered
statement in a program.

3-12

COM, CONTINUED

The common area is a block of contiguous data in memory (two computer words
per number.) The storage space is allotted in the order that the arrays ap-
pear in the COM statement; the elements within an array are stored row by row.

It is the user's responsibility to see that the portions of the common area
are accessed properly by subsequent programs. For example, if the first pro-
gram starts with the statement "1 COM A(10), B(3,3)" and a subsequent program
with "1 COM C(5), D(5), F(3,3)", the common storage area elements are assigned
as follows:

Element First Program Second Program
Position Reference Reference

1 A(1) c(1)

2 A(2) c(2)

3 A(3) C(3)

4 A(4) C(4)

5 A(5) C(5)

6 A{6) D(1)

7 A(7) D(2)

8 A(8) D(3)

9 A(9) D(4)
10 A(10) D(5)
11 B(1,1) F(1,1)
12 B(1,2) F(1,2)
13 B(1,3) F(1,3)
14 B(2,1) F(2,1)
15 B(2,2) F(2,2)
16 B(2,3) F(2,3)
17 B(3,1) F(3,1)
18 B(3,2) F(3,2)
19 B(3,3) F(3,3)

A reference in the first program to 3(1,1) accesses the same element as a
reference to F(1,1) in the second program. If A contained only 9 elements,
however, the B(1,1) and F(1,1) references would access different elements.

The length of the common area may vary between programs, but for any two pro-

grams, information may be transferred only via the portion which is common to
both.

If the first program declares "1 COM A(10), B(5,5)" and a succeeding program
contains "1 COM D(10), E(5,5), F(10)", the values of F would be unpredictable.
If the second program contained "1 COM D(10)" only, the contents of B would be

destroyed.

3-13

SNOILONN4 N9S QNV gyl

THE TAB AND SGN FUNCTIONS

EXAMPLES: 509 IF SGN (X) # @ THEN 8@¢
519 LET Y = SGN(X)
52@ PRINT TAB (5); A2; TAB (2@)"TEXT"
53@ PRINT TAB (N),X,Y,Z2
549 PRINT TAB (X+2) "HEADING"; R5

GENERAL FORM: The TAB and SGN may be used as expressions,
or parts of an expression. The function
forms are:

TAB L_expression indicating number of spaces to be moved)

SGN (expression)

PURPOSE

TAB (expression) is used only in a PRINT statement,
and causes the terminal typeface to move to the space
number specified by the expression (@ to 71). The
expression value after TAB is rounded to the nearest

integer. Expression values greater that 71 cause a
return linefeed to be generated.

SGN (expression) returns a 1 if the expression is
greater than @, returns a @ if the expression
equals @, returns a -1 if the expression is less
than 0.

SECTION 1V

MATRICES

This section explains matrix manipulation. It is intended
to show the matrix capabilities of BASIC and assumes that
the programmer has some knowledge of matrix theory.

TERM: MATRIX (ARRAY)

DEFINED IN BASIC AS: An ordered collection of numeric data

SECTION IV

(numbers).

Matrix elements are referenced by subscripts following the
matrix variable, indicating the row and column of the ele-
ment. For example, if matrix A is:

1 2

4 5

7 3 9

the element 5 is referenced by A(2,2); likewise, 8 is A(3,2).

See Section III,"Vocabulary" for a more complete description
of matrices

4-1

DIM

EXAMPLES: 119 DIM A (5@), B(20,20)
129 DIM Z (5,20)
130 DIM S (5,25)
149 DIM R (4,4)

GENERAL FORM:

statement number DIM matrix variable (integer) ...

or

statement number DIM matrix variable (integer , integer) ...

PURPOSE

Reserves working space in memory for a matrix.

COMMENTS

The integers refer to the number of matrix elements if only one dimension
is supplied, or to the number of rows and columns respectively, if two
dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements
if one-dimensional, or 10 rows and columns if two-dimensional.

The working size of a matrix may be smaller than its physical size. For
example, an array declared 9 x 9 in a DIM statement may be used to store
fewer than 81 elements; the DIM statement supplies only an upper bound
on the number of elements.

The absolute maximum matrix size depends on the memory size of the computer.

MAT...ZER

EXAMPLES: 3¢5 MAT A = ZER
31@ MAT Z = ZER (N)
315 MAT X = ZER (3@, 19)
320 MAT R = ZER (N, P)

GENERAL FORM:

statement number MAT matrix variable = LER

or

statement number MAT matrix variable = ZER (expression)

or

statement number MAT matrix variable = ZER (expression , expression)

PURPOSE

Sets all elements of the specified matrix
equal to @; a new working size may be
established.

COMMENTS

The new working size in a MAT...ZER is an
implicit DIM statement, and may not exceed
the 1imit set by the DIM statement on the
total number of elements in an array.

Since @ has a logical value of "false,"
MAT...ZER is useful in logical initialization.

MAT...ZER

MAT...CON

EXAMPLES: 2P5 MAT C = CON
219 MAT A = CON (N,N)
22 MAT Z = CON (5,20)
23p MAT Y = CON (50)

GENERAL FORM:

statement number MAT matrix variable = CON

or

statement number MAT matrix variable = CON (expression)

or

statement number MAT matrix variable = CON (expression , expression)

PURPOSE

Sets up a matrix with all elements equal to 1;

a new working size may be specified, within the
limits of the original DIM statement on the total
number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted as in example statement 2@5.

Note that since 1 has a logical value of "true,"
the MAT...CON statement is useful for logical
initialization.

The expressions in new size specifications should

evaluate to integers. Non-integers are rounded
to the nearest integer value.

4-4

INPUTTING SINGLE MATRIX ELEMENTS

EXAMPLES: 609 INPUT A(5)
619 INPUT B(5,8)
629 INPUT R(X), N, A(3,3),S.T
639 INPUT Z(X,Y), P3, W$
649 INPUT Z(X,Y), Z(X+1, Y+1), Z(X+R3, Y+S2)

GENERAL FORM:

statement number INPUT matrix variable (expression) ...

oxr

statement number INPUT matrix variable L expression , expression) .

PURPOSE

Allows input of a specified matrix element
from the teleprinter.

v
— =
o=
=
=
»nio
s}
wm
=
=<
=
=
D=
o =T
= =
=

|

COMMENTS

The subscripts (in expressions) used after the matrix
variable designate the row and column of the matrix
element. Do not confuse these expressions with work-
ing size specifications, such as those following a
MAT READ statement.

Expression used as subscripts should evaluate to
integers. Non-integers are rounded to the
nearest integer value.

Inputting, printing, and reading individual array
elements are logically equivalent to simple vari-
ables and may be intermixed in INPUT, PRINT, and
READ statements.

4-5

PRINTING SINGLE MATRIX ELEMENTS

EXAMPLES: 80P PRINT A(3)
819 PRINT A(3,3);
820 PRINT F(X)3;E; C53R(N)
830 PRINT G(X,Y)
849 PRINT Z(X,Y), Z(1,5), Z(X+N), Z(Y+M)

GENERAL FORM:

statement number PRINT matrix variable (expression) v

or

statement number PRINT matrix variable_i_expressionﬂl expression) ...

NIWITI XI¥LWH

II9NIS ONIINTMd

PURPOSE

|
i

Causes the specified matrix element(s) to be printed.

COMMENTS

Expressions used as subscripts should evaluate to
integers. Non-integers are rounded to the
nearest integer value.

A trailing semicolon packs output into twelve
elements per teleprinter line, if possible (statement
819 above). A trailing comma or retura prints five
elements per line.

Expressions (or subscripts) following the matrix
variable designate the row and column of the matrix
element. Do not confuse these with new working
size specifications, such as those following a MAT
IDN statement.

4-6

MAT PRINT

EXAMPLES:

509 MAT PRINT A
505 MAT PRINT A;

515 MAT PRINT A,B,C
520 MAT PRINT A,B,C;

GENERAL FORM:
statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable , matrix variable ...

—

PURPOSE

Causes an entire matrix to be
printed, row by row, with double
spacing between rows.

COMMENTS

Matrices may be printed in "packed"
rows up to 12 elements wide by us-

ing the ";" separator, as in example
statement 505. Separation with commas
or a return prints 5 elements per row.

4-7

MAT PRINT

READING MATRIX ELEMENTS

EXAMPLES: 999 READ A(6)

91p READ A(9,9)

929 READ C(X); P R7

939 READ C(X,Y)

94p READ Z(X,Y), P(R2, S5), X(4)
GENERAL FORM:

statement number READ matrix variable (expression)

or

statement number READ matrix variable (expression , expression) ...

PURPOSE

INIQYIY

Causes the specified matrix element to be
read from the current DATA statement.

TUSINBIT XTMLWH

COMMENTS

Expressions (used as subscripts) should
evaluate to integers. Non-integers are
rounded to the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT READ statement.

The MAT READ statement is used to read an

entire matrix from DATA statements. See
details in this section.

4-8

MAT READ

EXAMPLES: 350 MAT READ A
370 MAT READ B(5),C,D
38p MAT READ Z (5,8)
399 MAT READ N (P3,Q7)

GENERAL FORM:
statement number MAT READ matrix variable

or

statement number MAT READ matrix variable (expression) ...

or

statement number MAT READ matrix variable i_expression s expression l_...

PURPOSE

MAT READ

Reads an entire matrix from DATA statements.
A new working size may be specified, within
the Timits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in the row,
column order: 1,1; 1,23 1,3; etc. In this
case, the DIM statement controls the number of
elements read.

MATRIX ADDITION

EXAMPLES: 319 MAT C
320 MAT X
33p MAT P

GENERAL FORM:

statement number MAT matrix variable = matrix variable + matrix variable

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical
dimensions; addition is performed
element-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 ele-
ments if two-dimensional. Dimensions
must be the same as the operand matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 32f.

MATRIX SUBTRACTION

EXAMPLES: 550 MAT C
560 MAT B = B
579 MAT X

GENERAL FORM:

statement number MAT matrix variable = matrix variable - matrix variable

PURPOSE

Establishes a matrix equal to the difference

of two matrices of identical dimensions; sub-
traction is performed element-by-element.

MATRIX SUBTRACTION

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has more
than 10 elements, or 10 x 10 elements if
two-dimensional. Its dimension must be the
same as the operand matrices.

The same matrix may appear on both sides of
the = sign, as in example statement 560.

MATRIX MULTIPLICATION

EXAMPLES: 930 MAT Z = B * C
94p MAT X = A *A
950 MAT C = Z * B

GENERAL FORM:

statement number MAT matrix variable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the product
of the two specified matrices.

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma-
trix C = (N,Q), multiplying matrix B by matrix
C results in a matrix of dimensions (P,Q).

Note that the product matrix must have an
appropriate working size.

The same matrix variable may not appear on
both sides of the = sign.

SCALAR MULTIPLICATION

EXAMPLES: 110 MAT A = (5) * B
115 MAT C = (18) * C
120 MAT C = (N/3) * X
139 MAT P = (Q7*N5) * R

GENERAL FORM:

statement number MAT matrix variable = (expression) * matrix variable

PURPOSE
Establishes a matrix equal to the pro-
duct of a matrix multiplied by a speci-
fied expression (number); that is, each
element of the original matrix is multi-
plied by the number.

SCALAR MULTIPLICATION !

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it con-
tains more than 10 elements (10 x 10
if two-dimensional).

The same matrix variable may appear on
both sides of the = sign.

Both matrices must have the same working
size.

EXAMPLES:

GENERAL FORM:

COPYING A MATRIX

405 MAT B = A
419 MAT X
42p MAT Z

statement number MAT matrix variable = matrix variable

PURPOSE

Copies a specified matrix into a
matrix of the same dimensions;
copying is performed element-by-
element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 if two-
dimensional. It must have the same di-
mensions as the copied matrix.

IDENTITY MATRIX

EXAMPLES: 2p5 MAT A = IDN
219 MAT B = IDN (3,3)
215 MAT Z = IDN (Q5, Q5)
22p MAT S = IDN (6, 6)

GENERAL FORM:

statement number MAT arrau variable = IDN

or

statement number MAT array variable = IDN (expression , expression)

PURPOSE

Establishes an identity matrix (all @'s, with
a diagonal from left to right of all 1's); a
new working size may be specified.

IDENTITY MATRIX

COMMENTS
The IDN matrix must be two-dimensional and square.

Specifying a new working size has the effect of a
DIM statement.

Sample identity matrix:

| -
- s
- | s

4-15

MATRIX TRANSPOSITION

EXAMPLES: 959 MAT Z = TRN (A)
969 MAT X = TRN (B)
979 MAT Z = TRN (C)

GENERAL FORM:

statement number MAT matrix variable = IRN (matrix variable)

PURPOSE

Establishes a matrix as the transposition of
a specified matrix (transposes rows and columns).

COMMENTS

© NOLLISOJSNYYL XTLYMW

Sample transposition:

Original Transposed
1 2 3 1 4 7
4 5 6 2 5 8
7 8 9 3 6 9

Note that the dimensions of the resulting matrix
must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C =
TRN (A), C must have dimensions of 5,6.

Matrices cannot be transposed or inverted into
themselves.

MATRIX INVERSION

EXAMPLES: 38¢ MAT A = INV(B)
399 MAT C = INV(A)
409 MAT Z = INV(Z)

GENERAL FORM:

statement number MAT matrix variable = INV (matrix variable)

PURPOSE

Establishes a square matrix as the inverse of
the specified square matrix of the same dimensions.

S
—
%)
o
o]
=
=
><
=
o
=

COMMENTS

The inverse is the matrix by which you multiply
the original matrix to obtain an identity matrix.

For example,

Original Inverse Indentity
100 100 100
110 X -110 = 010
111 0-11 001

Number representation in BASIC is accurate to 6-7
decimal digits; matrix elements are rounded
accordingly.

SECTION V
LOGICAL OPERATIONS

LOGICAL VALUES AND NUMERIC VALUES

A distinction should be made between logical values and
the numeric values produced by logical evaluation, when
using the logical capability of BASIC.

The logical value of an expression is determined by defi-
nitions established in the user's program.

The numeric values produced by logical evaluation are as-
signed by BASIC. The user may not assign these values.

Logical value is the value of an expression or statement,
+ using the criteria:

“true"

"false"

any nonzero expression value

1]

any expression value of zero

=
=
S
—
—
©
]
7]

When an expression or statement is Togically evaluated,
it is assigned one of two numeric values, either:

1, meaning the expression or statement is "true",
or
@, meaning the expression or statement is "false".

5-1

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evalua-
tions:

1. As a simple check on the numeric value of an expression.

EXAMPLES: 150 IF B=7 THEN 609
208 IF A9#27.65 THEN 789

309 IF (Z/19)>p THEN 8p@

When a statement is evaluated, if the "IF" condition is currently
true (for example, B = 7 in statement 15@), then control is trans-
ferred to the specified statement; if it is not true, control passes
to the next statement in the program.

Note that the numeric value produced by the logical evaluation is un-
important when the relational operators are used in this way. The
user is concerned only with the presence or absence of the conditon
indicated in the IF statement.

RELATIONAL OPERATORS, CONTINUED

2. As a check on the numeric value produced by logically
evaluating an expression, that is: '"true" = 1, "false" = .

610 LET X=27
615 PRINT X=27
620 PRINT X#27
630 PRINT X>=27

EXAMPLES:

The example PRINT statements give the numeric values produced by logi-
cal evaluation. For instance, statement 615 is interpreted by BASIC

as "Print 1T if X equals 27, @ if X does not equal 27." There are only
two logical alternatives; 1 is used to represent "true," and @ "false."

The numeric value of the logical evaluation is dependent on, but dis-
tinct from, the value of the expression. In the example above, X equals
27, but the numeric value of the Togical expression X=27 is 1 since

it describes a "true" condition.

5-3

| RELATIONAL OPERATORS |

k

S¥0LYY3d0 NY3I009

BOOLEAN OPERATORS

There are two ways to use the Boolean Operators.
1. As Togical checks on the value of an expression or expressions.

EXAMPLES: 519 IF A1 OR B THEN 679
52¢ IF B3 AND C9 THEN 68¢
539 IF NOT C9 THEN 699

549 IF X THEN 799

Statement 510 is interpreted: "If either Al is true (has a non-zero value) or
B is true (has a non-zero value), then transfer control to statement 670

Similarly, statement 54@ is interpreted: "If X is true (has a non-zero value),
then transfer control to statement 7@9."

The Boolean operators evaluate expressions for their logical values only: these
are "true" = any non-zero value, "false" = zero. For example, if B3 = 9 and C9
= -5, statement 52p would evaluate to "true," since both B3 and C9 have a non-
zero value.

2. As a check on the numeric value produced by logically evaluating an expres-
sion, that is: "true" =1, "false" = §.

EXAMPLES: 499 LET B
509 PRINT

51@ PRINT
520 PRINT

Statements 50@ - 520 return a numeric value of either 1, indicating that the
statement has a logical value of "true", or @, indicating a logical value of
"false".

Note that the criteria for determining the logical values are:
true = any non-zero expression value
false = an expression value of §.

The numeric value 1 or @ is assigned accordingly.

5-4

SOME EXAMPLES

These examples show some of the possibilities for combining logical operators
in a statement.

It is advisable to use parentheses wherever possible when combining logical
operators.

EXAMPLES: 319 IF (A9 AND B7)=p OR (A9 + B7)>1p@ THEN 9p@
31¢ PRINT (A-B) AND (X<Y)

320 LET C = NOT D
33¢ IF (C7 OR D4) AND (X2 OR Y3) THEN 93¢
349 IF (A1 AND B2) AND (X2 AND Y3) THEN 949

The numerical value of "true" or "false" may be used in algebraic operations.
For example, this sequence counts the number of zero values in data statements.

90 LET X
190 FOR 1
119 READ A
120 LET X = X+(A=p)

130 NEXT I

149 PRINT N; "VALUES WERE READ."
159 PRINT X; "WERE ZEROES."

16@ PRINT (N-X); "WERE NONZERO."

p
1 TON

[}

EXAMPLES

Note that X is increased by 1 or @ each time A is read; when A = @, the ex-
pression A = @ is true, and X is increased by 1.

5-5

SECTION VI
SYNTAX REQUIREMENTS OF BASIC

LEGEND
1:= "is defined as..."

|I0 Y,II
< > enclose an element of BASIC

LANGUAGE RULES

The <com statement>, if any exists, must be the first statement
presented and have the Towest sequence number; the last state-
ment must be an <END statement>.

A sequence number may not exceed 9999 and must be non-zero.

Exponent integers may not have more than two digits.

A formal bound may not exceed 255 and must be non-zero.

SECTION VI

A subroutine number must 1ie between 1 and 63, inclusive.

Strings may not contain the quote character (").

A <bound part> for an IDN must be doubly subscripted.

An array may not be inverted or transposed into itself.

An array may not be replaced by itself multiplied by another array.

6-1

SYNTAX REQUIREMENTS

<basic program>
<program statement>
<sequence number>
<basic statement>

<let statement>
<let head>
<formula>
<conjunction>
<boolean primary>

<arithmetic expression>

<term-

<factor>

<primary>

<relational operator>
<operand>

<variable>
<simple variable>
<subscripted variable>

<array identifier>
<subscript head>
<subscript>
<letter>

<digit>

<left bracket>
<right bracket>
<sign>

<unsigned number>

<program statement>|<basic program><program statement>(])

<sequence number><basic statement>carriage return
<1nteger>(2)
<let statement>|<dim statement>|<com statement> |

<def statement>|<rem statement>|<go to statement>|

<if statement>|<for statement>|<next statement>|
<gosub statement>|<return statement>|<end statement>|
<stop statement>|<wait statement>|<call statement>|
<data statement>|<read statement>|<restore statement>|
<input statement>|<print statement>|<mat statement>

<let head><formula>

LET<variable>=|<let head><variable>=
<conjunction>|<formula>0R<conjunction>

<boolean primary>|<conjunction>AND<boolean primary>

<arithmetic expression>|<boolean primary>
<relational operator><arithmetic expression>

<term> | <arithmetic expression> + <terms |
<arithmetic expression> - <term>

<factor>|<term>*<factor>|<term>/<factor>
<primary>|<sign><primary>|NOT<primary>
<operand> | <primary>+<operand>
>[<l>=|<=|=|#|<>

<variable>|<unsigned number>|<system function>|
<function>|<formula operand>

<simple variable>|<subscripted variable>
<letter>|<letter><digit>

<array identifier><subscript head><subscript>
<right bracket>

<letter>

<left bracket>|<left bracket><subscript>

<formula>
A[BICIDIE|FIGIH|I|IIKIL|M[N|OIP|QIR|S|T|UIVIW[X|Y|Z
0|1]2|3]4]5|6]|7|8|9

(1L

)|]

+|-

<decimal part>|<decimal part><exponent>

SYNTAX REQUIREMENTS, CONTINUED

<decimal part>
<integer>
<exponent<
<system function>

<system function name>

<parameter part>
<actual parameter>
<function>

<formula operand>
<dim statement>
<formal array list>
<formal array>

<formal bound head>
<formal bound>
<com statement>
<def statement>

<formal parameter>
<rem statement>
<character string>

<goto statement>
<if statement>
<for statement>
<for head>

<for variable>
<initial value>
<limit value>
<step size>
<next statement>
<gosub statement
<return statement-
<end statement>
<stop statement>

<integer> |<integer>.<integer>|.<integer>
<digit>|<integer><digit>
E<integer>]E<sign><integer>(3)
<system function name><parameterpart>
SIN|COS|TAN|ATN|EXP |LOG|ABS |SQR|INT |RND |SGN

<left bracket><actual parameter><right bracket>
<formula>

FN<letters<parameter part>

<left bracket><formula><right bracket>

DIM<formal array list>

<formal array>|<formal array list>,<formal array>

<array identifier><formal bound head><formal bound>
<right bracket>

<left bracket>|<left bracket><formal bound>,
<integer> (4)
COM<formal array list>

DEF FN<letter><left bracket><formal parameter>
<right bracket>=<formula>

<simple variable>
REM<character string>

any teletype character except carriage return, alt mode,
escape, rubout, or line feed, or null, control B,
control C, left arrow

GO TO<sequence number>

IF<formula>THEN<sequence number>

<for head>|<for head>STEP<step size>

FOR<for variable>=<initial value>TO<limit value>

SYNTAX

<simple variable>
<formula>

<formula>

<formula>

NEXT<for variable>
GOSUB<sequence number>
RETURN

END

STOP

XYLNAS

SYNTAX REQUIREMENTS,

<wait statement>
<call statement>
<call head>

<subroutine number>
<data statement>
<constant>

<read statement>
<variable list>
<restore statement>
<input statement>
<print statement>
<print head>

<print part>

<string>
<delimiter>
<print formula>
<mat statement>
<mat body>

<mat read>
<actual array>
<bound part>
<actual bound head>
<actual bound>
<mat print>

<mat print part>

<mat replacement>
<mat formula>

CONTINUED

WAIT<parameter part>
CALL<call head><right bracket>

<left bracket><subroutine number>|<call head>,
<actual parameter>

(5)

DATA<constant>|<data statement>,<constant>

<integer>

<unsigned number>|<sign><unsigned number>
READ<variable Tist>

<variable>|<variable list>, <variable>
RESTORE

INPUT<variable 1list>

<print head>|<print head><print formula>
PRINT|<print head><print part>

<string>|<string><delimiter>|<print formula>
<delimiter>|<print formula><string>|
<print formula><string><delimiter>

"<character string>"(6)

.3

<formula>| TAB<parameter part>

MAT<mat body>

<mat read>|<mat print>|<mat replacement>
READ<actual array>|<mat read>, <actual array>

<array identifier>|<array identifier><bound part>
<actual bound head><actual bound><right bracket>

<left bracket>|<left bracket><actual bound>,
<formula>

PRINT<mat print part>|PRINT<mat print part><delimiter>

<array identifier>|<mat print part><delimiter>
<array identifier>

<array identifier>=<mat formula>

<array identifier>|<mat function>|<array identifier>
<mat operator><array identifier>|<formula operand>*

<array identifier>

SYNTAX REQUIREMENTS, CONTINUED

<mat function> ::= <mat initialization>|<mat initialization><bound part>|
INV<array parameter>|TRN<array parameter>
<mat initialization> i= ZERlCONIIDN(7)
<array parameter> ::= <left bracket><array identifier><right bracket>(8)
- (9)
<mat operator> pi= o+ |*

SYNTAX

6-5

SECTION VII
FOR ADVANCED PROGRAMMERS

MODIFYING HP BASIC

As indicated in the configuration instructions, an HP BASIC
system configured with PBS may include user-written assembly
language subroutines. These subroutines are accessed with a
CALL statement while a BASIC program is running. HP BASIC
may also be run under the HP Magnetic Tape System (MTS), pro-
vided that the amount of core memory in the configured tape of
HP BASIC is the same as the MTS under which it is run.

The information in this section is intended to help the pro-
grammer in modifying HP BASIC. Users are reminded that HP
cannot be responsible for non-standard or user-modified
software.

7-1

SECTION VII

el

CALL

EXAMPLE: 29 CALL (5, A(10),1, 1188, 10)

GENERAL FORM: statement number CALL (statement number , parameter list)

PURPOSE

Allows addition of absolute assembly language routines (such as input-output
drivers) to BASIC, for specialized configurations. CALL transfers control
to the specified assembly Tanguage subroutine.

COMMENTS

Subroutines executed by CALL are not constrained by BASIC and have absolute
control of the computer. The assembly Tanguage subroutine may, therefore,
alter any portion of the system, including BASIC. For this reason, it is
recommended that only programmers proficient in assembly language attempt to
add CALL subroutines to BASIC programs.

CALL subroutines are "loaded into the computer" through the photoreader or
terminal tape reader either at configuration time or as a load-time overlay.

The CALL subroutine number is a positive integer between 1 and 63 specifying

the desired subroutine. If no such subroutine number exists, the statement
is rejected.

CALL, CONTINUED

The other parameters, separated by commas, may be any formula and their number
is dependent upon the subroutine called. For example, a subroutine designated
by 5 is appended to the system to take readings from an A to D subsystem and
store them in an array. The parameters specify the array into which the val-
ues are inserted, the channel number of the first point to be measured, the
setup for the A to D converter and the number of points to be measured. A
representative call for this subsystem is:

20 CALL (5, A[1], 1, 1188, 10)
number of points
A to D setup

Starting channel number

First element of data array

Subroutine number

When using the CALL statement, it is important that correct parameters be
specified. Accidentally reversing the first and second parameters could de-
stroy the core-resident BASIC system, unless precautions have been taken by
the writer of the called subroutine to protect the BASIC system.

The parameters of a CALL statement provide the dynamic 1link between BASIC and
the called subroutine. Prior to transferring control to the subroutine, BASIC
evaluates the parameters and stacks the addresses of the results. Upon enter-
ing the subroutine, the A-register contains the address of this stack (i.e.,
the address of the addresses of the parameter values.) The A-register initial-
1y points to the address of the first parameter; successively decrementing the
A-register causes it to point to successive parameter addresses. For example,
if the A-register = 17302 when a subroutine is entered, the first parameter
address is 17302, the second 17301, the third 17300, etc.

7-3

CALL

CALL, CONTINUED

The parameter addresses passed by BASIC give the subroutine access to values
in the BASIC program. The only way a called subroutine can transmit results
to a BASIC program is to store them by means of a parameter address.

Transmittal of quantities of data between a BASIC program and a called sub-
routine is most conveniently handled through arrays. Since only addresses are
passed to a subroutine, an array parameter must be an element of the array (in
general this would be the first element of the array). It is important to re-
member that arrays are stored by rows, and that each element is a floating
point number occupying two (16-bit) words. Hence, if an array A has M columns
per row, the address of A[I,J] is (address A[1,1]+ 2(M(I-1) + (J-1))).

To output from a subroutine to the terminal:

1. Load a buffer address into the B-register.
2. Load a character count into the A-register.
3. Execute a JSB 102B, I.

The referenced block of core is then interpreted as an ASCII string and output,
followed by a return linefeed if the count was negative.

Whenever data is transferred from a called subroutine through the address of a
parameter, there is a danger that the BASIC system or a program might be de-
stroyed. This situation can arise when parameters are specified incorrectly
or insufficient space is allocated in a data array. For example, constants
such as 2 or -1.1 in a BASIC program are stored in the program as they appear;
therefore, storing through the address of a constant parameter changes the
actual constant in the CALL statement. A subsequent execution of that state-
ment may lead to unpredictable results. A parameter that is an expression
(for example, A AND B or NOT A AND B) is evaluated and the result placed in a
temporary location. Since the parameter address references this temporary

CALL, CONTINUED

location, storing into it will not harm the BASIC system or program. However,
the value stored there is lost to the BASIC program. If a called subroutine
stores more values in an array than the array can hold, the resulting overflow
of data may destroy the BASIC system or program.

Users of CALL statements should be cautioned against using unsuitable parame-
ters in CALL statements (especially against using a simple variable or a con-
stant where an array element is expected). Also, when using arrays as param-
eters it is good practice to include the dimensions of the array as additional
parameters to allow a means of checking within the subroutine.

An effective protection requires additional programming effort. BASIC contains
sets of pointers delimiting the areas of memory within which different types

of parameters exist. By checking parameter addresses against these bounds,

the subroutine can verify that they are of the expected type. If X represents
the parameter address, the following applies:

a. Constant parameter (1128) <X <(]138)
b. Simple variable parameter (1168) <X <(1178)
c. Array parameter 1) In common storage (1108) <X <(1128)
2) Not in common storage (1138) <X <(1158)
d. Expression parameter (1158) <X <(1208)

where (1128) means the contents of location number octal 112.

7-5

CALL

BYE

EXAMPLES:
GENERAL FORM:

PURPOSE

Produces a HLT 778 when used under the HP BASIC system;
or causes transfer of control from the HP BASIC system
to the Magnetic Tape System (MTS) executive when used in
an MTS based HP BASIC system.

COMMENTS

HP BASIC may be configured as part of an HP Magnetic Tape
System.

If it is intended to run under the Magnetic Tape System, PBS
may be configured separately or together with the HP BASIC
interpreter.

User-written assembly language subroutines may be added to an
MTS based HP BASIC system; they may be configured along with
the drivers and interpreter using PBS or added while preparing
the MTS.

Note that configuration of an HP BASIC system cannot be done

under the control of an MTS, rather a configured system may be
one of the subsystems supplied when creating an MTS.

Remember that an HP BASIC system running under MTS must specify
the same core memory size as the MTS.

7-6

FIRST AND LAST WORDS OF AVAILABLE MEMORY

The first word of available memory (FWAM) is
contained in location 1108 in the HP BASIC sys-
tem.

The last word of available memory (LWAM) is con-
tained in Tocation 1118 in the HP BASIC system.

COMMENTS

When HP BASIC is run under MTS, FWAM is contained
in location 1108; LWAM is dynamically determined
and placed in location 1068 after the system is
loaded.

FIRST WORD AVAILABLE IN BASE PAGE

The address of the first word available in base
page is contained in location 1148. A1l Tocations
from the location referenced in 1148 through 17778
are not used by BASIC, and are therefore available
for CALL subroutines or other modifications.

MEMORY

7-7

SANN

LINK POINTS

For ease in user modification, locations 2018
through 3228 contain links to various sub-
portions and subroutines of BASIC in creating
customized systems. The identity and locations
of these links is fixed (will not change with
subsequent versions), but the contents of these
locations are subject to change if the routines
they point to move as a result of future re-
visions. The assembly language listings of the
HP BASIC interpreter captions each link briefly.
Since these Tinks are an integral part of BASIC,
the user is responsible for interpreting and
using this information.

LINKAGES TO SUBROUTINES

BASIC accesses called subroutines through a table containing
linkage information. Entries in the table, one per subroutine,
are two words in length. Bits 5-0 of the first word contain

the number identifying the subroutine (chosen freely from 1 to
778 inclusive) and bits 15-8 contain the number of parameters
passed to the subroutine. (CALL statements with an incorrect
number of parameters are rejected by the syntax analyzer.)

The second word contains the absolute address of the entry point
of the subroutine. (Control is transferred via a JSB.) Although
subroutine numbers need not be assigned in any particular order,
all entries in the table must be contiguous. An acceptable aux-
iliary tape contains the following:

1. An ORG statement to origin the program at an address greater
than that of the last word of the BASIC system. The address
of this last word + 1 is contained in Tocation 1108 of the
standard BASIC system. Hence, a suitable lower limit for the
origin address can be determined by loading BASIC and examin-

ing location 1108.
2. The subroutine linkage table described above.
3. The assembly language subroutines.
4. Code to set the following Tinkage addresses:

a. In location 1108 put the address of the last word + 1 used
in the auxiliary tape.

b. In location 1218 put the address of the first word of the
subroutine linkage table.

c. In location 1228 put the address of the last word + 1 of the

subroutine Tinkage table.

7-9

LINKS

SXNIT

LINKAGES TO SUBROUTINES, CONTINUED

Assuming, for example, that location 1108 of the standard
BASIC system contains 131428; an acceptable auxiliary tape

could be assembled from the following code:

ORG 13142B

SBTBL OCT 2406 Subroutine 6 has 5 parameters
DEF SB6
OCT 1421 Subroutine 17 has 3 parameters
DEF SB17

ENDTB EQU *

SB6 NOP

Subroutine #6 body

JMP SB6,1
SB17 NOP

Subroutine #17 body

JMP SB17, I
LSTWD EQU *
ORG 110B
DEF LSTWD
ORG 121B
DEF SBTBL
DEF ENDTB
END

Acceptable calls to subroutines SB6 and SB17 might be

CALL (6, A, B, 1, N*3, SIN(X+Y)
CALL (17, A[1], 5, N)

NOTE: Location 1118 of the standard BASIC system contains
the address of the last word of available memory. It
is not possible to create a system which requires more
space than that existing between the addresses in loca-
tions 1108 and 1118. Systems using all or most of this

space leave very little space for the user of the system.

7-10

HOW TO MAKE MORE PROGRAM SPACE

(DELETING THE MATRIX SUBROUTINES)

This assembly language pseudo-program shows a method of
deleting the MAT execution package to gain more user space,
or for replacing it with CALL routines or other customized code.

ORG <contents of 2108>
ocT 0,0
ORG 110B
DEF <contents of 2118>

This sequence has the effect of preventing the syntax processor
from recognizing "MAT" and of resetting the first word of avail-

able memory pointer to the first word of the matrix execution
package.

SECTION VI
OPERATING INSTRUCTIONS

The minimum hardware configuration for HP BASIC is a computer
(HP 2114, 2115, 2116 series) with 8K of core memory and an HP
modified ASR-33 or ASR-35 teletype terminal. A photoreader
and high-speed paper tape punch are optional.

Minimum software modules for an HP BASIC system are the HP BASIC

interpreter binary tape and the Prepare BASIC System (PBS) binary

tape. Additional user-written assembly language subroutines may
be included in an HP BASIC system.

The HP BASIC tape contains the BASIC interpreter only. The PBS
tape contains drivers for the terminal, photoreader, high-speed
punch, and the routines necessary to configure these elements
into an HP BASIC system. User-written assembly language sub-
routines may be included in a configuration produced by PBS.

Since HP BASIC is designed to allow the user to include "custom"
software such as CALL subroutines in his HP BASIC system, user-
written subroutines or modifications may be included on an HP
BASIC system tape produced by PBS, or they may be loaded into

an HP BASIC system separately through the photoreader or term-
inal tape reader.

The following pages explain how to configure an HP BASIC system
using PBS, and how to load the configured HP BASIC tape into the
computer. Steps are included in the PBS preparation procedures
for including user-written subroutines on the composite system
tape produced by PBS.

8-1

SECTION VIII

SNOILINYLSNI

OPERATING INSTRUCTIONS CONTINUED

The most convenient method of loading a configured HP BASIC
system is to have included all software elements of the HP
BASIC system on the composite tape produced by PBS. Users
with constantly changing CALL subroutines or modifications

to the standard software have the option of configuring a
system with PBS, (without including the other software ele-
ments) and then loading the various other elements (such as
the BASIC interpreter, CALL subroutines, and modifications)
into the computer separately. If the user chooses to load
non-standard software tapes separately from the PBS configured
system tape and the BASIC interpreter, they must be Toaded af-
ter the configured system tape and the interpreter (loaded
separately if not on the configured tape).

8-2

HP 2114 COMPUTER

HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE

1. Make sure the computer and photoreader (tape reader) are
turned on.

2. Make sure the terminal control switch is in the LINE
position.

3. Put the tape in the photoreader (tape reader) with
a. the arrows on the tape facing up, and to the right;
b. the tape threaded through the guides, under the
Tamp and between the rollers. (With a tape reader,
you may have to press the LOAD button first.)

4. Raise the tape guide (exposing the word RUN); or with the
tape reader, press the READ button.

5. Touch the PRESET and LOAD buttons simultaneously. (The
tape is read by the computer.)

6. When the tape stops, check the MEMORY DATA register for
1020778 (1ights 15,10,5,4,3,2,1,0 on).

7. Remove and rewind the tape.
8. Touch the CLEAR REGISTER button.

9. Set the SWITCH REGISTER to 100, (Touch button 6.)

g (
10. Touch the LOAD ADDRESS button.
11. Touch the RUN button.

BASIC responds: READY on the terminal.

8-3

HP 2114

HP 2115, HP 2116 COMPUTERS

HOW TO LOAD A CONFIGURED HP BASIC SYSTEM TAPE

1. Make sure the computer, power supply, and photoreader
(tape reader) are turned on.

2. Make sure the terminal control switch is in the LINE
position.

3. Put the tape in the photoreader (tape reader) with:
a. the arrows on the tape facing up, and to the right.
b. the tape threaded through the guides, under the
lamp and between the rollers. (With a tape reader,
you may have to press the LOAD button first.)

4. Raise the tape guide (exposing the word RUN); or on the
tape reader, press the READ button.

5. Set the SWITCH REGISTER to 077700, by putting switches
14,13,12,11,9,8,7,6 in the up pos?tion; all others should
be down.

Press the LOAD ADDRESS button.

Set the SWITCH REGISTER TO 000000 (all switches down).
Move the LOADER switch to the ENABLED position.

Press the PRESET button.

O W 0O N O

Press the RUN button. (Tape is read by the computer.)

11. When the tape stops, check the T-REGISTER for 102077
(Tights 15,10,5,4,3,2,1,0 on).

8
12. Move the LOADER switch to the PROTECTED position.
13. Remove and rewind the tape.

14. Set the SWITCH REGISTER to 1008 (switch 6 in the up position;
all others down).

15. Press the LOAD ADDRESS button.
16. Press the PRESET button.

9L1Z dH “Sile dH

17. Press the RUN button.

BASIC responds: READY on the terminal.

8-4

NOTE:

10.
11.
12.
13.
14.
15.

16.

HP 2114 COMPUTER

CONFIGURING A BASIC SYSTEM USING PBS TAPE

This set of instructions is not restartable before Step 21.
Make sure that the computer tape reader (photoreader) and high-speed
punch are turned on.
Make sure the terminal control switch is in the LINE position.
Touch the HALT button.
Place the PBS binary tape in the photoreader or tape reader:
a. Arrows on the tape face up and point to the right.
b. Thread the tape through the guide, under the Tamp, and
between the rollers. (With the tape reader, press the
LOAD button.)

Raise the tape guide, exposing the word RUN. (On the tape reader, press
the READ button.)

Touch the CLEAR REGISTER button.

Touch the PRESET and LOAD buttons simultaneously. (Tape is read by the
computer.)

When the tape stops, check the MEMORY DATA register for 1020778 (1ights
15,10,5,4,3,2,1,0 on).

Remove and rewind the tape.

Repeat steps 3 through 9, using the BASIC binary tape; then go to step 11.
Touch the CLEAR REGISTER button.

Set the SWITCH REGISTER to 0000028 (touch button 1).

Touch the LOAD ADDRESS button.

Touch the CLEAR REGISTER button.

Set the SWITCH REGISTER to the select code of the terminal (octal number,
right-justified) by touching the appropriate SWITCH REGISTER buttons.*

Touch the RUN button.

HP 2114

*Touch button 15 if a serial teletype driver is desired; a buffered teletype

terminal driver is provided if button 15 is not set.

8-5

| W3LSAS JISVE 34VdIdd

17.

18.

19.

20.

21.

22.
23.
24,
25.
26.

CONFIGURING A BASIC SYSTEM USING PBS TAPE

PBS queries: PHOTOREADER I/0 ADDRESS?

Enter the select code for the photoreader from the terminal keybcard
(octal number), followed by a return. If there is no photoreader, type
a return only.

PBS queries: PUNCH I/0 ADDRESS?

Enter the select code for the high-speed tape punch (octal number) from
the terminal keyboard, followed by a return. If there is no punch, type
a return.

PBS queries: SYSTEM DUMP I/0 ADDRESS?
Enter the select code of the high-speed tape punch (octal number) from

the terminal keyboard, followed by a return. If there is no punch, type
a return.

PBS queries: CORE SIZE?

Enter the core memory size of the computer on which the HP BASIC system
is to be run (8,16,24, or 32), followed by a return. Typing only a return
indicates an 8K core memory size.

PBS then punches a configured BASIC tape on the high-speed punch. If
there is no punch, the message: TURN ON TTY PUNCH, PRESS RUN is printed.
Respond by turning the terminal punch on and pressing the RUN button.
Touch the CLEAR REGISTER button.

Repeat steps 3 to 9 above, using the configured tape, then go to step 24.
Set the SWITCH REGISTER to 1008 (touch button 6).

Touch the LOAD ADDRESS button.

Touch the RUN button. BASIC responds: READY.

8-6

NOTE :

10.
11.
12.
13.
14.

15.
16.

HP 2115, HP 2116 COMPUTERS

CONFIGURING A BASIC SYSTEM USING PBS TAPE

The PBS loading sequence is not restartable. If you make a mistake or
the tapes do not load properly, begin at step 1.

Make sure the computer, power supply, photoreader, and high speed punch
are turned on.

Turn the terminal control switch to the LINE position.

Press the HALT button (on the computer).

Move the LOADER switch to the PROTECTED position.

Set the SWITCH REGISTER to 077700g by putting switches 14,13,12,11,10,9,
8,7,6 in the up position; all others should be down.

Press the LOAD ADDRESS button.

Check the P-Register and M-Register for 077700, (lights 14,13,12,11,10,9,
8,7,6 on). 8

Put the tape in the photoreader (on the tape reader, press the LOAD,
button first) with:

a. Arrows on facing up and pointing to the right.

b. Tape threaded through the guide, under the lamp, and between the
rollers.

Raise tape guide, exposing the word RUN. (The rollers start moving.)
With the tape reader, press the READ button.

Set SWITCH REGISTER to 000000 (switches O to 15 down).
Make sure the LOADER switch is in the ENABLED position.
Press the PRESET button.

Press the RUN button. (Tape is read.)

When the tape stops moving, check the T-REGISTER for 102077, (1ights
15,10,5,4,3,2,1,0 on).

Remove and rewind the tape.

HP 2115, HP 2116

Repeat steps 8 to 15, using the BASIC binary tape instead of PBS; then
go to step 17.

8-7

WILSAS JISYE Idvd3Iud

17.

18.
19.

20.
21.

22.
23.

24,

25.

26.

27.
28.

CONFIGURING A BASIC SYSTEM USING PBS TAPE

Repeat steps 8 to 15, using user-written assembly language routine tapes
(if any); then go to step 18.

Move the LOADER switch to the PROTECTED position.

Set the SWITCH REGISTER to 0000028 by putting switch 1 in the up position;
all others are down.

Press the LOAD ADDRESS button.

Set SWITCH REGISTER to the select code for the terminal (octal number,
right justified) using switches 0 to 5.%

Press the RUN button.
PBS queries: PHOTOREADER I/0 ADDRESS?

Enter the select code for the photoreader from the terminal keyboard
(octal number), followed by a return. If there is no photoreader, type
a return only,

PBS queries: PUNCH I/0 ADDRESS?

Enter the select code for the high speed tape punch (octal number) from
the terminal keyboard, followed by a return. If there is no punch, type
a return.

PBS queries: SYSTEM DUMP I/0 ADDRESS?

Enter the select code of the high speed tape punch (octal number) from the
terminal keyboard, followed by a return. If there is no punch, type a

return.

PBS queries: CORE SIZE?

Enter the core memory size of the system or which HP BASIC is to be run
(8,16,24, or 32) followed by a return. Typing only a return indicates an
8K core memory.

Tear the punched tape off, and rewind it.

See "How to Load a Configured HP BASIC System Tape" for further
instructions.

*Set switch 15 in the up position if using a serial teletype terminal; leaving
switch 15 down configures the teletype terminal driver for a buffered teletype.

APPENDIX A
HOW TO PREPARE FPAPER TAPE OFF-LINE

To prepare a paper tape for input:

1. Turn teleprinter control knob to "LOCAL".

2. Press the "ON" button (on tape punch).

3. Press the "HERE IS" key:; or press @C (control

shift "p") several times to put leading holes
on the tape.

4, Type program as usual, following each Tine with

return linefeed.

5. Press "HERE IS"; or press @C several times to
put trailing holes on the tape.

6. Press the "OFF" button on the tape punch.

COMMENTS

The standard on-line editing features, such as esc, <+, and re-
peating the same 1ine number may be punched on tape; esc must
be followed by return linefeed.

Pressing the "B.SP." (backspace) button on the tape punch, then

the "RUBOUT" key physically deletes the previous character from
a paper tape.

A-1

APPENDIX A

10
20
30
40
S50
60
70
80
90
102
110
120
130
140
150
160
170
180
190
200
210

APPENDIX B

SAMPLE PROGRAMS

BATNUM
DESCRIPTION
This program simulates a game called "The Battle of Numbers."

INSTRUCTIONS

The game is played with a pile of objects, some of which are
removed by you and the machine. You must specify whether
winning is defined as taking or not taking the last object,
the original number of objects in the piTe, who goes first,
and the minimum and maximum number of objects that can be re-
moved at one time. Typing @ for your move causes a forfeit,
and typing @ for the pile size terminates the game.

PRINT "THIS PROGRAM PLAYS 'THE BATTLE OF NUMBERS.'"
PRINT
PRINT "IF YOU NEED INSTRUCTIONS TYPE A 1s OTHERWISE TYPE A 2: "3
INPUT 1
IF I=1 THEN 79
GOTO 160
PRINT "THE GAME IS PLAYED WITH A PILE OF OBJECTS, SOME OF'
PRINT "WHICH ARE REMOVED ALTERNATELY BY YOU AND THE MACHINE."
PRINT "YOU MUST SPECIFY WHETHER WINNING IS DEFINED AS TAKING"
PRINT "™OR NOT TAKING THE LAST OBJECT», THE ORIGINAL NUMBER OF"
PRINT "OBJECTS IN THE PILE, WHO GOES FIRST, AND THE MINIMUM"
PRINT '"AND MAXIMUM NUMBER OF OBJECTS WHICH CAN BE REMOVED AT"
PRINT '"ONE TIME. TYPING '0O' FOR YOUR MOVE WILL CAUSE A"
PRINT "FORFEIT» AND TYPING '@' FOR THE PILE SIZE WILL CAUSE"
PRINT "THE TERMINATION OF THE GAME."
PRINT '"ENTER PILE SIZE: '3
INPUT N
IF N=¢ THEN 980
IF N=INT(N)> THEN 210
GOTO 160
IF N<i THEN 160

B-1

APPENDIX B

BATNUM, CONTINUED

220 PRINT "ENTER WIN OPTION - 1 TO TAKE LAST, 2 TO AVOID LAST: "3
230 INPUT ™

240 IF M=1 THEN 270

250 IF M=2 THEN 270

260 GOTO 220

278 PRINT '"ENTER MIN AND MAX: '3
280 INPUT A.B

290 IF A>B THEN 270

360 IF A<l THEN 270

318 IF A=INT(A) THEN 330

3290 GOTO 270

3389 IF B=INT(B) THEN 350

348 GOTO 270

350 PRINT "ENTER START OPTION - 1 MACHINE FIRST, 2 YOU FIRST: '3
360 INPUT S

370 IF S=1 THEN 400

380 IF S=2 THEN 400

398 GOTO 359

400 LET C=A+B

418 IF S=2 THEN 440

42@ GOSUB 470

430 IF W=1 THEN 160

44 GOSUB 680

450 IF W=1 THEN 160

460 GOTO 420

470 LET Q=N

480 IF M=1 THEN 500

498 LET Q=Q-1

50M IF M=1 THEN 550

518 IF N>A THEN 590

520 LET W=1

53@ PRINT "MACHINE TAKES"™;3;N3'"AND LOSES"
543 RETURN

558 IF N>B THEN 590

56 LET W=1

57@ PRINT "MACHINE TAKES'"3N3'"AND WINS"
580 RETURN

599 LET P=Q@-C*INT(Q/C)

689 IF P >= A THEN 620

618 LET P=A

620 IF P <= B THEN 640

630 LET P=B

640 LET N=N-P

656 PRINT °''MACHINE TAKES'3P3'"AND LEAVES™";N
660 LET W=0

678 RETURN

688 PRINT "YOUR MOVE: '3

69@ INPUT P

70908 IF P=@ THEN 720

718 GOTO 750

720 PRINT "MACHINE WINS BY FORFEIT"

B-2

9 XION3ddY

730
140
750
760
770
780
790
800
810
820
830
840
850
860
870
880
899
902
210
920
930
940
950
960
970
980
990
1200

BATNUM, CONTINUED

LET W=1

RETURN

IF P=INT(P)Y THEN 770
GOTO 810

IF P >= A THEN 800
IF P=N THEN 860
GOTO 810

IF P <= B THEN 830
PRINT "ILLEGAL MOVE», REENTER IT: "3
GOTO 690
LET N=N-P

IF N=0 THEN 860
GOTO 930

IF M=1 THEN 909
PRINT "YOU LOSE"
LET W=1

RETURN

PRINT "YOU WIN"
LET W=1

RETURN

IF N >= @ THEN 960
LET N=N+P

GOTO 810

LET W=0

RETURN

STOP

STOP

END

B-3

APPENDIX B

l

g XIAN3ddY

onA2
9703
AN 4
9935
9N 6
saa7
9708
9nA9
M19
M1
912
9713
971 4
9015
9016
917
9M1 8
9419
on27
921
9n22
9023
9A24
9325
926
9021
9N2 K

FACTOR

DESCRIPTION

This program finds the prime factors of a number.

INSTRUCTIONS

The program requests the number to be factored and prints

out all prime factors and their multiplicity. Input a

zero or a negative number to terminate execution.

RESTRICTION

The number to be factored must be a positive integer less

than 32768.

REM FINDS PRIME FACTORS

PRINT ""PRUGRAM TO FIND PRIME FACTORS 0OF A POSITIVE INTEGER.'

PRINT "TUO TERMINATE EXECUTION INPUT A

PRINT

PRINT "WHAT NUMBER IS TO BE FACTURED";

INPUT A
IF A <= 32767 THEN 9012

PRINT "SOURRY!THIS PROGRAM IS OUNLY DESIGNED TO FACTUR

lﬂ v ..'

NHUMBERS"

PRINT "OF S DIGITS UP TO 32767 UR LESS!PLEASE TRY AGAIN"

GUTO 9995

LET D=A

PRINT

IF A=2 THEN 9044

LET Q=0

IF A>? THEN 9218

STOP

LET C=2

GOSUB 9723

FOR C=3 TO SQRcA) STEP 2
GOSUB 9023

GOTO 9339

LET B=9

IF A=C*INT(A/C)> THEN 9726
GOTU 9929

LET A=A/C

LET B=B+1

GOTO 9p24

B-4

FACTOR, CONTINUED

9729 IF B<l THEN 9038

9937 IF Q=1 THEN 9937

9731 LET Q=i

9732 PRINT "THE PRIME FACTURS OF";D;"ARE:"
9933 PRINT

9934 PRINT "PRIME","MULTIPLICITY"
9835 PRINT "-=--=ttytecmmmmm oo "
936 PRINT

9m37 PRINT C,B

9038 RETURN

9239 NEXT C

94m IF A=1 THEN 9M0AS

9241 IF Q=0 THEN 9244

9942 PRINT Asl

9243 GUTO 9225

9944 PRINT "THE NUMBER'";A3;"1S PRIME"
9445 GUTU 9775

9m46 STOP

9999 END

B-5

APPENDIX B

I
|

8 XIONIddy

PLOT

DESCRIPTION
This program plots a given function on the terminal. It checks for
minimum and maximum Y values over the domain (excluding the undefined

points), calculates the Y-axis spacing, and plots the function.

INSTRUCTIONS

Define the function in 1ine 1§ by:
DEF FNF(X) = ...
Example: 19 DEF FNF(X) = 25*%COS(X)*SIN(X 2/2)/(X 2+1)

Type RUN. The program requests the following information:
left X end point

right X end point

desired X increment

B w N =

points on the X-axis for which the function is undefined
(for example, the denominator becomes zero).

The output gives:
1. minimum Y
2. maximum Y
3. Y-axis spacing
4

the plot with the Y-axis horizontal and the X-axis vertical
on the paper.

RESTRICTIONS

The program will not handle functions where Y is a constant over the en-
tire range.

B-6

LIST
10
15

o]
o

30

40

50

60

70

80

9@

100
110
120
130
149
158
160
172
189
199
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
378
380
390
409
410
420
430
440
450
469
470
480
490

PLOT, CONTINUED

DEF FNF(X)=S5QR(16-(Xt2))
DIM ZL255]

REM *xx%**k*x PLOT *k*x*%x%x MATHEMATICS PROGRAM

REM PLOTS A FUNCTION ON THE TTY.
LET R1=0
LET L1=0
LET Q1=0

PRINT "PLEASE INPUT THE FOLLOWING PARAMETERS:"

PRINT "LEFT X~-ENDPOINT"3
INPUT A

PRINT "RIGHT X-ENDPOINT"3
INPUT B

PRINT *X-SPACING'"s

INPUT D

* % %k Kk

PRINT "THE NUMBER OF UNDEFINED POINTS (IF NONEs, ENTER @)'3;

INPUT N9
IF N9=@ THEN 210

PRINT "ENTER THE UNDEFINE) POINTS, FOLLOWING EACH WITH A RETURN'"

FOR K7=1 TO N9

INPUT ZEK71

NEXT K7

DEF FNG(X)=INTC((Y7-L1)/D1+.5)+15
LET L2=R2=FNF (A)

FOR X=A TO B STEP D
FOR I=1 TO N9

IF X=Z[I1I] THEN 310
NEXT I

IF FNF(X>>L2 THEN 290
LET L2=FNF (X)

IF FNF(X)<R2 THEN 3190
LET R2=FNF (X)

NEXT X

IF L2<@ THEN 350

LET R1=R2

GOTO 399

IF R2>A THEN 370

GOTO 389

LET R1=R2

LET L1=L2

LET D1=(R1-L1)/50

IF L1<R1 THEN 430
PRINT "THIS IS THE FUNCTION Y=CONSTANT."
STOP

PRINT "THE MINIMUM VALUE OF THE FUNCTION IS"3L2
PRINT "THE MAXIMUM VALUE OF THE FUNCTION IS"3R2

PRINT "THE SPACING ON THE Y-AXIS IS"3DI1
PRINT **

LET F=INT(-L1/D1+.5)+15

IF A <= @ THEN 590

IF A/D>6 THEN 598

B-7

APPENDIX B

PLOT, CONTINUED

586 LET Q1=1

519 1IF L1=0 THEN 530

520 PRINT TAB(F)3"+"

530 PRINT

549 GOTO 780

558 FOR I=1 TO INTC(CA/D-.5)
568 PRINT TAB(F)s3"+"

570 NEXT I

588 LET Q1=0

598 FOR X=A TO B STEP D
600 IF D<1.00000E-B4 THEN 630
610 IF ABS(X)>1.00000E-p5 THEN 630
620 LET X=0

638 PRINT X»

648 FOR P=1 TO N9

650 IF X#ZLPl THEN 750
668 IF X#8 THEN 730

670 FOR I2=1 TO 50

680 PRINT *+'3;

698 NEXT I2

708 LET @=1

718 PRINT "Y"

720 GOTO 10660

738 PRINT TAB(F)Ys3*"+"

749 GOTO 1Q60

750 NEXT P

760 IF X*(X+D)>@ THEN 960
778 IF X<-D/2 THEN 960
780 FOR I=0¢ TO 58

796 IF Q1>@ THEN 820

880 LET Y7=FNF(X)

810 IF FNG(X)=I+15 THEN 850
820 IF I+15=F THEN 870
838 PRINT *"+";

840 GOTO 889

858 PRINT "=*"3

868 GOTO 880

878 PRINT '"0"s

880 NEXT I

8980 IF 1+15#F THEN 919
993 PRINT '"+';

918 PRINT *Y*

9280 LET Q=1

938 IF (Ql1+1)=1 THEN 1060
948 IF (Q1+1)=2 THEN 550
958 IF (Q1+1)=3 THEN 1159
968 IF X*x(X-D)>@ THEN 980
976 IF X <= D/2 THEN 780
988 LET Y7=FNF(X)

998 IF FNG(X)>F THEN 10850
10080 IF FNG(X)>=F THEN 1030

B-8

4 XIGNIddY

PLOT, CONTINUED

1010 PRINT TAB(FNG(X))3"*"3TAB(F)3*+*
1020 GOTO 1068

1330 PRINT TAB(F)3"%"

1040 GOTO 1069

1250 PRINT TAB(F)>3"+*"3TAB(FNG(X)) 3 """
1960 NEXT X

13780 1IF X >= @ THEN 1160
19880 IF -X/D>6 THEN 1160
1099 FOR I=1 TO INT(~X/D=.5)
1100 PRINT TAB(F)3'+*

1118 NEXT I

1120 LET Qt=2

1136 PRINT

1140 GOTO 7898

1159 PRINT TAB(F)s3"+"

1160 PRINT TAB(F)3*"X"

11760 IF Q=@ THEN 1190

1186 STOP

11980 PRINT

1209 PRINT

1218 PRINT

1220 FOR I=0 TO S0

12380 PRINT "+'";

1240 NEXT I

1256 PRINT *Y"

1268 PRINT

1276 PRINT

1288 PRINT ™ SINCE THE REAL Y-AXIS IS OFF THE GRAPH."
1298 STOP
1300 END

B-9

APPENDIX B

g XIGNIddyY

CURFIT

DESCRIPTION

This program performs a least-squares curve fit to the
following functions:

1. Y = A + B(X)

2. Y=Aexp (B*X)

3. Y =A (xB)

4. Y = A + B/X

5. Y=1/(A+ B * X)

6. Y =X/(A+B*X)
INSTRUCTIONS

Before running the program, enter the following data beginning
in Tine 9900:

9909 DATA N

9901 DATA Xy, Yy, XZ’ Yz ces

99-- DATA ... X, Y,
Where: N = Number of data pairs
X Yn = the n-th data pair; Xn is the independent

variable and Yn is the dependent variable.

n?

The program prints summary data for the curve fits for the six
functions and requests the user to indicate which function he

wishes detailed information about (input 9, 1, 2, 3, 4, 5, or 6).
A zero terminates the program.

RESTRICTIONS

If there are more than 14 data pairs,change the dimension of
variables X, Y, U, V in statement 99@3 to this number; the

HP BASIC system must have more than 8K of core memory to accom-
modate more than 14 data pairs in this program.

B-10

9029
9001
920082
906 3
900 4
9805
9G06
98017
99008
9009
9010
9011
9012
2013
901 4
9015
9016
92017
9018
9019
2020
2021
9022
2023
9024
2025
9026
9027
92028
2029
9030
9031
9032
2033
9034
9035
9036
9037
9038
9839
90 40
20 41
oB 42
9043
90 44
90 45
93 46
93 47
20 48
90 49
2050

CURFIT, CONTINUED

REM ***%* CURFIT *&*%*%*% MATHEMATICS PROGRAM *k%*x*k%
REM **%*% VERSION 1 kk%*% T/31/69 *k%x*k*x%
REM LEAST SQUARES CURVE FIT #1
DIM XU141,YL14),UL14],VI141,A06)5B{6],S(61,F(6]
MAT F=CON

READ N

PRINT

FOR I=1 TO N

READ XLIl,Y(I]

NEXT I

PRINT

PRINT

PRINT * ","LEAST SQUARES CURVES FIT"
PRINT

PRINT "CURVE TYPE",*" INDEX OF"," AT, B"
PRINT * ","DETERMINATION®
PRINT

FOR I=1 TO 6

MAT S=ZER

GOSUB 9129

IF (I-5)*(I-6)=0 THEN 9035

IF (I-2)*%(1-3)>=0 THEN 9028

FOR J=1 TO N

LET VIiJi=YLJ]

GOSUB 92298

NEXT J

IF I=1 THEN 9045

GOTO 9856

FOR J=1 TO N

IF Y[J) <= @ THEN 9042

LET VILJI=LOG(Y[J1)

GOSUB 9898

NEXT J

IF 1=3 THEN 90859

GOTO 9045

FOR J=1 TO N

IF YUJ)=0 THEN 9042

LET VI#Jl=1/YLJ]

GOSUB 9998

NEXT J

IF I=6 THEN 9856

GOTO 9845

PRINT "CAN'T FIT"™

LET FCIl=0

GOTO 9063

FOR J=1 TO N

LET ULJI=XLJ]

GOSUB 92191

NEXT J

GOTO 9061

FOR J=1 TO N

APPENDIX B

g XIQGN3ddY

2051
9052
9853
9854
98055
9956
928057
9958
9059
9960
9961
2062
9963
9064
9965
9066
9067
7068
9369
9079
9071
9372
2073
INT4
9A15
90176
9077
9978
M 79
9980
281
29082
9383
2284
2085
9086
9887
2088
2089
2090
9991
9092
9093
909 4
2095
9096
9097
9098
9899
9100
9101
9182

CURFIT, CONTINUED

IF XC{J)l <= @ THEN 9042
LET ULJI=LOGCULJI)
GOSUB 91ai1

NEXT J

GOTO 9461

FOR J=1 TO N

IF XCLJ1l=¢ THEN 9042
LET Ul Jl=1/X0J]

GOSUB 91e1

NEXT J

GOSUB 91¢€1

PRINT CCIJ,ACI1,BLI]
NEXT 1

GOSUB 91185

PRINT

PRINT

PRINT

PRINT *DETAILS FOR CURVE TYPE (1
INPUT I

IF I=6 THEN 9186

LET K=1

IF FLIl=1 THEN 9076
GOSUB 91293

PRINT * COULD NOT BE FIT.*
GOTO 9965

GOSUB 9138

IF (I-1)*(I-5)*%(I-6)#A THEN 9687
FOR J=1 TD N

LET Y=A(I1+BII1*xX[J]
IF I=1 THZIN 9084

LET Y=1/Y

IF I=5 THZIN 9084

LET Y=XLJlxY

GOSUB 9175

NEXT J

GOTO 9065

FOR J=1 TO N

IF I=2 THEN 9094

IF I=3 THEN 9492

LET Y=A[41+BL 41/X[J]
GOTO 9895

LET Y=A[31%(X[J1t*BL31)
GOTO 9095

LET Y=AL[21*EXP(BL[2]*xX(J])
GOSUB 9176

NEXT J

GOTO 9065

LET SC(S51=S[51+VLJltr2
LET S£31=S[31+VLJ]
RETURN

LET SC131=SC11+UCJ]

LET S[21=5[21+UCJ1t2

TO 6>

@ TO END PROGRAM.)*3

CURFIT, CONTINUED

9183 LET SC41=SC41+ULJ3I*VLJ]
9104 RETURN

9195 FOR I=1 TO N-1

9106 LET M=I

9187 FOR J=I+1 TO N

9198 IF XI{M] <= X[J]l THEN 9110
9109 LET M=J

91180 NEXT J

9111 IF M=1 THEN 9118

9112 LET P=XIM]

9113 LET Q@=YIL[M]

9114 LET XI[MI=X[I1]

9115 LET YIMI=Y(I]

9116 LET X[I1=P

9117 LET YLIl=Q@

9118 NEXT 1

2119 RETURN

9128 LET K=I

9121 IF K=1 THEN 9136

9122 IF K=2 THEN 9134

9123 IF K=3 THEN 9132

9124 IF K=4 THEN 9130

9125 IF K=5 THEN 9128

9126 PRINT '"6. Y=X/(A+B*X) '3
9127 RETURN

9128 PRINT "S5. Y=1/C(A+B*X) *;
9129 RETURN

9130 PRINT "4. Y=A+(B/X)>"»
9131 RETURN

9132 PRINT 3. Y=A%(XtB)>",
9133 RETURN

9134 PRINT *"2. Y=A*XEXP(B*X)";
9135 RETURN

9136 PRINT "1« Y=A+(B*xX)>",
9137 RETURN

9138 PRINT " s

92139 GOSUB 9121

91406 PRINT "™ IS A"s

9141 IF K=1 THEN 9146

9142 IF K=2 THEN 9148

9143 IF K=3 THEN 9150

9144 PRINT * HYPERBOLIC";
9145 GOTO 9151

9146 PRINT " LINEAR"3S

9147 GOTO 9151

9148 PRINT "N EXPONENTIAL';
9149 GOTO 9151

2150 PRINT * POWER";

9151 PRINT * FUNCTION. THE RESULTS"
9152 IF K=1 THEN 9154

9153 PRINT * OF A LEAST-SQUARES FIT OF ITS LINEAR TRANSFORM"
9154 PRINT " (SORTED IN ORDER OF ASCENDING VALUES OF X)>

B-13

APPENDIX B

CURFIT, CONTINUED

3155 PRINT ™ ARE AS FOLLOWS:"

9156 PRINT

9157 PRINT *X-ACTUAL",»"Y-ACTUAL"," Y-CALC"»*' PCT DIFFER"
2158 PRINT

9159 RETURN

2168 PRINT

9161 LET B=(N*S[41-SC11*S[31)/(N*S[21-(SL11%t2))
9162 LET A=(S[31-B*SL11)/N

9163 LET S1=5S[51-(SL€31t2)/N

9164 LET S2=(Bt2)*(S[2]1-(SCL11t2)/N)
9165 LET CLIl=52/51

2166 IF (I-1)*%(I-4)*%(I-S)=@ THEN 9173
9167 IF (I-2)*(I-3)=0 THEN 9171

9168 LET AL61=B

9169 LET BL61=A

2170 RETURN

9171 LET ALIJI=EXP(A)

9172 GOTO 9174

9173 LET ACIl=A

2174 LET B(1]=B

9175 RETURN

9176 PRINT XCLJl>YLJ1>Y»

9177 LET D=YLJ1-Y

9178 LET D=.1*SGN(DY*INTC(1000*ABS(D/Y))
9179 IF D<@ THEN 9184

9188 IF D>@ THEN 9183

2181 PRINT * ar
2182 RETURN
2183 PRINT i]

9184 PRINT D

9185 RETURN

2186 STOP

9940 DATA 6

9901 DATA 1523354355565 758>9510511,12
9999 END

8 XIGN3ddy
w
1
—
S

LOW PASS FILTER

DESCRIPTION

This program uses constant K prototype T section, and

M derived (M = 0.6) termination L section to design low
pass filters. The program gives high attenuation at speci-
fied frequencies in the stop band by adding up to nine
additional M derived T sections.

INSTRUCTIONS

Enter the following information when requested by the program:

Characteristic impedance

Cut-off frequency in HZ

Number of stop band attenuators
Frequency (in HZ) for attenuators

s w N —

The program then diagrams the filter and indicates maximum
attenuation.

APPENDIX B

4 XI1GNIddY

RAGPERY
a2l
022
g2l
EAL
9925
9726
aned
9n2g
9129
2030
9£31
9A32
94333
9334
g9n35
36
D37
9338
9439
2049
AR 41
DRL2
9343
Q44
545
Qa6
2047
Qi 4HE
9049
9050
94351
9952
91053

LOW PASS FILTER, CONTINUED

REM DESIGNS LOWw pPAa33 FILTER

PRINT "PROGRAM FOR THE DESIGN OF A LOW PASS FILTER"
PRINT

PRINT "WHAT IS THE DESIRED CHARACTERISTIC IMPEDANCE IN OHMS '3
INPUT R

MAT F=7Zgk

PRINT

PRINT "®HAT IS THE DESIRED CUTOFF FREQUENCY IN HZ '3

INFUT FL11

PRINT

PRINT "HOW MANY ATTENUATORS ARE DESIRED IN THE STOP BAND '3
INPUT A

GOTO 9026

FOR I=2 TO A+l

PRINT "WHAT IS THE FREOUENCY FOR ATTENUATOR NUMBER '"I-13
INPUT FLIJ

PRINT

NEXT I

LET L=1003%R/(3.14159%F[11)

L=1
LET C=1.E+06/(3.14159%FL11%R)
LET LLE11=64%/2
LET St1l=z«.64%./1.2
LET COli=ee%k(C/2
GOTO 9029
PRINT

IF A=w THEN 9620

GOTO 9615

FOR I=2 TO 1@

IF FLIJ1=¢! THEN 9836

LET MLIJI=SQRC1-FLVI/FCLII*FL13/FLTI DD
LET LUI1=MLI1*kL/2

LET SCIJ=LxCC1=-MLII*M0I1d)/C4%xM0LI1))
LET CLI1=CxMLIL]

NEXT I

PRINT

PRINT

GOSUB 9677

GOSUB 9971

GNOSUB 9075

GOSUB 9371

PRINT ">",L/2+LL101,"MH","" [N

GOSUE 9871

PRINT "+----cemmemmemm "5Cs" MFD mmmmemmm e e mm e m e m e B
GOSUB 3871

LET I=2
IF FLIl=0 THEN 9865

PRINT ">",L/2+LL 13, " MH"," I
GOSUB 9071
PRINT "#==-==-=-- "3SL21"MH +",CL[21,"MFD ---=-=---- +r

GOSUB 9071
FOR I=3 TO 10
IF FC{I31=0 THEN 9059

945 4
2055
956
9UsT
9958
9459
9260
9461
on62
9N63
9064
9065
9066
9067
9768
9369
CASNAY)
9971
9pI2
9@a73
BT 4
9075
90176
9B77
90878
9079
9080
9081
92082
9083
08 4
9BES
908 6
9087
9088
2999

LOW PASS FILTER, CONTINUED

PRINT "'>",LEII+LEI-135""MH""," "

GOSUB 90871

PRINT "+======-- "3SLIIVMH +"LCLI,"MFD ----

GOSUB 9a7i1
NEXT I

PRINT "">",LEI-13+LL 135" MH"," I

GOSUB 90871

GOSUR 96875

GOSUB 9871

GOSUB 9977

GOTO 9079

PRINT ">",L/2+L[11,"MH"," N
GOSUB 9971

GOSUB 9075

GOSUR 9871

GOSUB 9877

GOTO 9679

FOR N=1 TO 2

PRINT "I",'™ ", ", "
NEXT N

RETURN

PRINT "+==-wc==-- "3S5C13"MH +"5CL13,"MFD ----

RETURN

PRINT "@g<~wmme e e e e Y"oR,"OHM LINE","===--

RETURN

PRINT

PRINT

PRINT "TERMINATING SECT'S GIVE MAX. ATTEN.
IF FL23=0 THEN 9088

PRINT "IN ADDITION TO THOSE SPECIFIED AT:"
FOR I=2 TO 10

IF FLI1=0 THEN 92088

PRINT FLII"HZ"

NEXT I

STOP

END

AT 1e25%FL13"HZ"

APPENDIX B

APPENDIX C

QUICK REFERENCE TO HP BASIC

KEY

alt-mode

S

esc

linefeed

return

SPECIAL CHARACTERS

FUNCTION
Deletes a line being typed. (Same as esc).

Terminates an input loop and causes a jump
to the END statement.

Deletes a Tine being typed (same as alt-mode).
Causes the teleprinter to advance one line.
1. Must follow every command or statement.

2. Causes the teleprinter typeface to return
to the first print position.

3. BASIC responds with a linefeed.

Backspace. Deletes as many preceding characters
as «<'s are typed in.

C-1

BASIC REFERENCE

OPERATORS

SYMBOL SAMPLE STATEMENT PURPOSE/MEANING/TYPE

= 1190 LET A =0 Assignment operator; assigns a value to
a variable

1 120 PRINT X+2 Exponentiate (as in X?).

* 13 LET C5 = (A*B)*N2 Multiply

/ 140 PRINT T5/4 Divide

+ 150 LET P = R1 + 19 Add

- 160 X3 =R3 - P Subtract

NOTE: The numeric values used in logical evaluation are: "true" = any non-

zero number; "false" = (.

= 170 IF D=E THEN 609 expression "equals" expression

189 IF (D+E)#(2*D)THEN 710 expression does not equal" expression

<> 180 IF(D+E)<>(2*D)THEN 7¢0 expression "does not equal" expression

> 199 IF X>1@ THEN 620 expression "is greater than" expression

< 20P IF R8<P7 THEN 649 expression "is less than" expression

>= 219 IF R8>=P7 THEN 710 expression "is greater than or equal to"
expression

<= 22¢ IF X2<=19 THEN 650 expression "is less than or equal to"
expression

AND 230 IF G2 AND H5 THEN 999 expression 1 AND expression 2 must both
be "true" for statement to be "true"

OR 240 IF G2 JR H5 THEN 910 If either expression 1 OR expression 2
is "true", statement is "true."

NOT 25@ IF NOT G5 THEN 950 Statement is "true" when expression

(NOT G5) is "false."

C-2

NAME

DATA
DIM

END

FOR...NEXT

GO TO
GOSUB
IF...THEN
INPUT
LET

NEXT
READ
REM

PRINT

RESTORE

STATEMENTS

EXAMPLE

360 DATA 99,196.7, 16.2
319 DIM A(72)

4P@ END

35@¢ FOR J=1 TO N STEP 3

330 GO TO 999

420 GOSUB 8pp

340 IF A#1Q THEN 350
399 INPUT Y2,B4

30P LET A=B=C=p

355 NEXT J
360 READ A,B,C
320 REM--ANY TEXT**.!.

356 PRINT A,B,"HELLO"

357 PRINT X;Y;P;Q;R(5)

358 PRINT

380 RESTORE

PURPOSE

Specifies data; read from left to right

Specifies maximum matrix
size.

Terminates the program; the last
statement in a program must be an END
statement.

Executes statements between FOR and
NEXT the specified number of times (a
Toop), and in increments of the size
indicated after STEP; STEP and step
size may be omitted.

Transfers control (jumps) to specified
statement number.

Begins executing the subroutine at
specified statement (see RETURN).

Logical test of specified condition;
transfers control if "true".

Allows data to be entered from tele-
printer while a program is running.

Assigns variable a value; LET is op-
tional.

Sets the boundary of the FOR loop.
Reads information from DATA statement.

Inserts non-executable remarks in a
progranm.

Prints the specified values; 5 fields
per line when commas are used as
separators.

Prints the specified values; 12 fields
per line when semicolons are used as
separators.

Causes the teleprinter to advance one
line.

Permits re-reading data without re-
running the program.

C-3

BASIC REFERENCE

JINIYI43Y JISve

NAME

RETURN

5Top

STATEMENTS, CONTINUED

EXAMPLE PURPOSE

85p RETURN Transfers control to statement follow-
ing its GOSUB.

41p STIP) Terminates the program; may be used

anywhere in program.

COMMANDS

NOTE: Commands are executed immediately; they do not require statement

numbers.
FULL NAME EXAMPLE ' PURPOSE
BYE BYE Returns user from BASIC to MTS executive.
LIST LIST Produces a listing of current program
LIST 150 Produces a listing, starting at specified
statement.
PTAPE PTAPE Allows input of a program on paper tape through
the photoreader.
PLIST PLIST Punches the program in memory onto paper tape.
RUN RUN Starts program execution.
SCRATCH SCRATCH Erases current program.
TAPE TAPE Informs computer that following input is from
paper tape.

C-5

BASIC REFERENCE

IONIYIAIY DISvE

NOTE :

FULL NAME

DEF FN

ABS (X)

EXP (X)

INT (X)

LOG (X)

RND (X)

SQR (X)

SIN (X)
Cos (X)
TAN (X)
ATN (X)
TAB (X)

SGN (X)

300

319
320
330

340

350

360

379
380
399
400
420

449

EXAMPLE

FUNCTIONS

DEF FNA (X)=(M*X)+B

PRINT ABS

PRINT EXP

PRINT INT

PRINT LOG
PRINT RND
PRINT SQR

PRINT SIN
PRINT COS
PRINT TAN
PRINT ATN
PRINT TAB

PRINT SGN

(X)
(X)

(X)
(X)

(X)

(X)

(X)
(X)

C-6

PRINT is used for examples only; other statement types may be used.

PURPOSE

Allows the programmer to define func-
tions; the function Tabel (A) must be
a letter from A to Z; the argument (X)
must be mentioned in the function
definition.

Gives the absolute value of the expres-
sion (X).

Gives the constant e raised to the
power of the expression value (X); in
this example, etX.

Gives the largest integer < the expres-
sion (X).

Gives the natural logarithm of an ex-
pression; expression must have a
positive value.

Generates a random number between @
and 1; the expression (X) is a dummy
argument.

Gives the square root of the expres-
sion (X); expression must have a posi-
tive value.

Gives the sine of the expression (X);
X is real and in radians.

Gives the cosine of the expression (X);
X is real and in radians.

Gives the tangent of the expression
(X); X is real and in radians.

Gives the arctangent of the expression
(X); is real and in radians.

Tabs to the specified position (X),
then prints the specified value (A).
Gives: 1 if X>@, 9 if X=0,

-1 if X<@

MATRICES

NOTES: 1. Maximum matrix size is 255 elements.

2. Matrix variables must be a single letter from A to Z.

NAME SAMPLE STATEMENT PURPOSE

DIM 19 DIM A (18, 29) Allocates space for a matrix of the
specified dimensions.

MAT IDN 15 MAT X

IDN (m,n) Establishes an identity matrix (with
all ones down the diagonal). A new
working size (m,n) may be specified;

MAT ZER 20 MAT B = ZER Sets all elements of the specified

matrix equal to @.

25 MAT D

ZER (m,n) A new working size (m,n) may be speci-
fied after ZER.

MAT CON 30 MAT C = CON Sets all elements of the specified

matrix equal to 1.

35 MAT E = CON (m,n) A new working size (m,n) may be speci-
fied after CON.

INPUT 49 INPUT A(5,5) Allows input from the teleprinter of
a specified matrix element.

MAT PRINT 5@ MAT PRINT A Prints the specified matrix on the
teleprinter.

55 PRINT A(X,Y) Prints the specified element of a ma-
trix on the teleprinter; element speci-
fications X and Y may be any expression.

MAT READ 70 MAT READ A Reads matrix from DATA statements.

75 MAT READ A(5,5) Reads matrix of specified size from
DATA statements.

8@ READ A(X,Y) Reads the specified matrix element

from a DATA statement.

(4]
1
~
BASIC REFERENCE

MATRICES, CONTINUED

NAME SAMPLE STATEMENT PURPOSE

MAT + 109 MAT C= A+ B Matrix addition; A and B must be the
same size.

MAT - 1M@ MAT C= A- B Matrix subtraction; A,B, and C must be

the same size.

MAT* 120 MAT C= A* B Matrix multiplication; no. columns in
A must equal no. rows in B.
MAT = 130 MAT A= B Establishes equality of two matrices;

assigns values of B to A.

MAT TRN 149 MAT B = TRN (A) Transposes an m by n matrix to an n by
m matrix.
MAT INV 159 MAT C = INV (B) Inverts a square matrix into a square

matrix of the same size; matrix may be
inverted into itself.

C-8

JINIY343Y DISYe

‘.,{w‘.\.
e e R AN b R el

APPENDIX D

ERROR CODES, MEANING, AND PROBABLE CAUSE

ERROR
CODE

10

MEANING

STATEMENT ENDS UNEXPECTEDLY.

INPUT EXCEEDS 71 CHARACTERS.

SYSTEMS COMMAND NOT RECOGNIZED.

MISSING OR INCORRECT STATEMENT
TYPE.

BAD EXPONENT.

SYMBOL FOLLOWING MAT NOT
RECOGNIZED.

LET STATEMENT HAS NO STORE.

MULTIPLE OR MISPLACED COM
STATEMENT.

MISSING OR INCORRECT FUNCTION
IDENTIFIER IN DEF.

MISSING PARAMETER IN DEF
STATEMENT.

D-1

PROBABLE CAUSE

Statement end (return) found by the
syntax analyzer. Additional char-
acters are needed to form a consist-
ent statement.

Too many characters in the line just
typed.

The 1ine just typed begins with a
letter, but the initial character
string does not form a recognizable
statement type. May be a missing
statement number.

The characters immediately following
the statement number do not form any
recognizable statement type.

A number appears followed by an E
but not followed by a legitimate ex-
ponent integer.

MAT not followed by PRINT, READ, or
matrix variable.

No assignment operator appears in the
formula following LET.

A COM statement is not the first state-
ment in the program, does not have the
lowest sequence number, or is the sec-
ond COM statement in the program.

DEF is not followed by FN<letters>, or
FN is not followed by a letter in a
formula (for example, A+FN(3)).

No simple variable is found following
a 'DEF FN<letter>'.

ERROR CODES

$3000 ¥0Y¥3

ERROR
CODE

11

12

13

14

15

16

17

18

19

20

ERROR CODES CONTINUED

MEANING

MISSING ASSIGNMENT OPERATOR.

MISSING THEN.

MISSING OR INCORRECT FOR-
VARIABLE.

MISSING TO.

INCORRECT STEP IN FOR STATE-
MENT.

CALLED ROUTINE DOES NOT EXIST.

WRONG NUMBER OF PARAMETERS
IN CALL STATEMENT.

MISSING OR INCORRECT CONSTANT IN
DATA STATEMENT.

MISSING OR INCORRECT VARIABLE
IN READ STATEMENT.

NO CLOSING QUOTE FOR PRINT
STRING.

D-2

PROBABLE CAUSE

No assignment operator found in either
a DEF statement, a FOR statement, or

a MAT statement (e.g., FOR A STEP or
MAT A return).

An IF statement has no THEN follow-
ing the decision formula (may be an
incorrect formula as in IF A+BC

THEN ...). Note that a missing *
between B and C forces end-of-formula
here.

A simple variable is not found follow-
ing a FOR or a NEXT; for example,
FOR A[1] = ... is not legal.

No TO found following the initial part
of a FOR statement. May also be an

incorrect formula as in FOR I = BC TO ...

Characters appear following the limit
formula but do not form a correct

STEP formula. May also be an incorrect
formula as in FOR I = 1 to A+BC STEP

Y (operator missing between B and c).

The first parameter of a CALL statement
does not match any of the defined
CALL routines.

Caused by such things as:

DATA 1,2, return (trailing comma)
or DATA ++3

May also be caused by an incorrect
reply to an INPUT statement,

as +-4.

No variable appears following a READ,
or there is a trailing comma in a
READ statement; for example,

READ A,B, return.

Unmatched " in a PRINT statement.

ERROR
CODE

21

22

23

24

25

26

27

28

29

30

31

32

ERROR CODES,

MEANING
MISSING PRINT DELIMITER OR BAD
PRINT QUANTITY.

ILLEGAL WORD FOLLOWS MAT.

MISSING DELIMITER.

IMPROPER MATRIX FUNCTION.

NO SUBSCRIPT WHERE EXPECTED.

MAY NOT INVERT OR TRANSPOSE
MATRIX INTO SELF.

MISSING MULTIPLICATION OPERATOR.

IMPROPER MATRIX OPERATOR.

MATRIX MAY NOT BE BOTH OPERAND
AND RESULT OF MATRIX MATRIX
MULTIPLICATION.

MISSING LEFT PARENTHESIS.

MISSING RIGHT PARENTHESIS.

OPERAND NOT RECOGNIZED.

CONTINUED

PROBABLE CAUSE

Caused by such things as missing
operators or commas. Generally means
that two formulas appear to be revers-
ed without separating punctuation.

MAT is followed by two or more letters,
but they do not form either PRINT or
READ.

Sample causes:

MAT READ A,B C (missing comma)

MAT PRINT A;:B1 (illegal variable for
matrix.)

MAT <letter> = is followed by two or
more letters which do not form IDN,
CON, ZER, TRN, or INV.

IDN, CON, ZER followed by characters
but they do not form a legitimate
subscript.

For example, MAT <letter> = (formula)
(missing* between formula and A.)

MAT letter =
= OY' *o

letter not followed by +,

Cause should be obvious from inspec-
tion of the line.

Cause should be obvious from inspec-
tion of the Tine typed.

No recognizable operand found where one
is expected, for example, following a
binary operator or left parenthesis.
Usually a typing error.

ERROR CODES

ERROR
CODE

33

34

35

36

37

38

39

40

41

42
43

44
45

ERROR CODES, CONTINUED

MEANING

DEFINED ARRAY MISSING SUBSCRIPT
PART.

MISSING ARRAY IDENTIFIER.

MISSING OR BAD INTEGER.

NON-BLANK CHARACTERS FOLLOWING
STATEMENT'S LOGICAL END.

OUT OF STORAGE DURING SYNTAX
PHASE.
PUNCHED TAPE READER NOT READY.

DOUBLY DEFINED FUNCTION.
FOR STATEMENT HAS NO MATCHING
NEXT STATEMENT.

NEXT STATEMENT HAS NO MATCHING
FOR STATEMENT.

OUT OF STORAGE FOR SYMBOL TABLE.

ARRAY APPEARS WITH INCONSISTENT
DIMENSIONS.

LAST STATEMENT IS NOT END.
ARRAY DOUBLY DIMENSIONED.

D-4

PROBABLE CAUSE

An array appearing in a DIM or COM
statement does not have a proper
subscript-bound part; for example,

DIM A[38,B,C[4,53. (B has no subscript.)

No array identifier found where one
is expected in a DIM, COM, or MAT
statement; for example, MAT A = B +
return (missing array identifier

before return.

A required integer is @, or too large,
or does not appear at all.

Required integers appear as sequence
numbers, formal bounds in DIM and COM
statements, and as the first parameter
of a CALL statement.

Something is missing from a statement
at a place where the statement could
logically end.

Program is too large.

Photoreader is off or the RUN-LOAD
switch is not set to RUN when a PTAPE
is given.

The same function is defined in two DEF
statements.

The program contains an extra NEXT
statement, or an improper nesting
of FOR -- NEXT Toops.

Program is toolarge.

An array is referenced as being singly-
subscripted in one place and as doubly-
subscripted in another.

The same array appears twice in DIM
statements, or in both a DIM statement
and the COM statement.

ERROR
CODE

46

47

48

49

50

51

52
53

54

55

56

57

ERROR CODES, CONTINUED

MEANING

NUMBER OF DIMENSIONS NOT
OBVIOUS.

ARRAY TOO LARGE.

OUT OF STORAGE DURING ARRAY
ALLOCATION.

SUBSCRIPT EXCEEDS BOUND.

ACCESSED OPERAND HAS UNDEFINED
VALUE.

NON-INTEGER POWER OF NEGATIVE
NUMBER.

ZERO TO ZERO POWER.

MISSING STATEMENT.

GOSUBS NESTED 19 DEEP.

RETURN FINDS NO ADDRESS.

OUT OF DATA.

OUT OF STORAGE DURING EXECUTION.

D-5

PROBABLE CAUSE

Several conditions may produce this
message. Cured by specifying the
bounds of all arrays which appear in
MAT statements.

Number of array elements exceeds
32767.

Program and arrays together are too
large.

An actual subscript exceeds the de-
clared (or dynamically redeclared
value) bound; or an attempt is made to
redimension an array with a bound
greater than 255 (as in MAT READ
A[300]).

Attempted use of a variable or array
element which has never been assigned
a value.

Attempted GOTO, GOSUB, or IF... THEN
to a non-existent statement.

Attempted execution of ten GOSUBs in
a row, with no intervening RETURN's.
(Refers to the logical execution of
a program, not the physical layout.)

RETURN is encoutered during execution
when no GOSUBs are active.

More data has been requested in READ
or MAT READ statements than exists in
the DATA statements.

Insufficient working space to execute
the program.

ERROR CODES

i

ERROR CODES, CONTINUED
ERROR

CODE MEANING PROBABLE CAUSE

58 DYNAMIC ARRAY EXCEEDS ALLOCATED An array redimensioning request
STORAGE. requires more elements in the new
working size than exist in the orig-
inal array definition (for example,
A[5,5] cannot be redimensioned to
A[4,6], although the converse is true.).

59 DIMENSIONS NOT COMPATIBLE. A MAT statement cannot be executed
because the matrix arguments have in-
compatible dimensions for the oper-
ation attempted.

60 MATRIX OPERAND CONTAINS UNDEFIN- Same as Error 50.

ED ELEMENT.
61 SINGULAR OR NEARLY SINGULAR An array cannot be inverted, because
MATRIX. all significance is Tost in the

calculations.

62 TRIGONOMETRIC FUNCTION ARGUMENT Applies to SIN, COS, TAN.
IS TOO LARGE.

63 ATTEMPTED SQUARE ROOT OF NEG-
ATIVE ARGUMENT.

64 ATTEMPTED LOG OF NEGATIVE

ARGUMENT.
WARNING-ONLY ERRORS
(Program continues executing.)
65 NUMERICAL OVERFLOW, RESULT A calculated result or number input
TAKEN TO BE + OR - INFINITY. exceeds the capacity of numerical
representation. The value is replaced
by the largest representable number
of appropriate sign.
66 NUMERICAL UNDERFLOW, RESULT Number is too close to zero to be
TAKEN TO BE ZERO. represented as other than zero.

67 LOG OF ZERO TAKEN TO BE
~-INFINITY.

53000 ¥ou¥3

ERROR CODES, CONTINUED
ERROR

CODE MEANING PROBABLE CAUSE

68 EXP OVERFLOWS, RESULT TAKEN
TO BE +INFINITY.

69 DIVISION BY ZERO, RESULT TAKEN
TO BE + OR -INFINITY.

79 ZERO RAISED TO NEGATIVE POWER,
RESULT TAKEN TO BE + INFINITY.

o
1
~
ERROR CODES

INDEX

A PROGRAM e 16

ABS FUNCTION ©0e3-9

ACCESSING DATA ee¢e2-26

ACCESSING MATRIX ELEMENTS ee¢ed4-85 4-9, 4-14
ADDING MATRICES ee¢e4-10

ADVANCED BASIGC se¢e¢3-1

ALL ONES MATRIX « ee4-4

ALL ZERO MATRIX ¢ «e4-3

AND L4 002‘7

AND OPERATOR v 0e2=17

ARITHMETIC EVALUATION .« ¢e2-4

ARRAYS ee e 4-1

ASSEMBLY LANGUAGE LINK POINTS ees7-8
ASSEMBLY LANGUAGE SUBROUTINES eee 7-2
ASSIGNMENT OPERATOR e ee2-5

AT N FUNCTION e «e3-10

BACKSPACE eee =12

BACKUS NORMAL FORM ¢ ee6-1

BASE PAGE e e¢e¢7-7

BEFORE WORKING WITH THE COMPUTER e¢es1-18
BOOLEAN OPERATORS e« ««SYNTAX REQUIREMENTS OF BASIC
BREAK KEY ee¢e¢1-15

BYE eee7-6

CALL «se7=2

COM eee3~-12

COMMANDS ©ee2-33

COMMON DATA cee3~12

COMMON STORAGE AREA «¢ee3-12
COMMUNICATING WITH THE COMPUTER eseel-1
CONDITIONAL TRANSFERS « ¢e2-22
CONFIGURING INSTRUCTIONS esee8-1
CONVENTIONS USED IN THIS TEXT eseV
COPYING A MATRIX ee «4-14

COS FUNCTION o ee3-10

CUSTOM SUBROUTINES oeee7-2

DATA o« 02"26

DELETING A PROGRAM «e¢e2=36

DELETING A STATEMENT ee»1-13
DELETING MATRIX ROUTINES eee7-11
DIAGNOSTIC MESSAGES eeeD-1

DIM o e¢ed=2

DIMENSION STATEMENT e« oo 4-2

E NOTATION es o2=2

END ¢ «e2-29

ENTERING A PROGRAM eeeol1-11

ERROR CODES seeD-1

ESSENTIALS OF BASIC ¢ ee2-1
EVALUATION se e2=4

EXP FUNCTION ee¢e3-9

EXPRESSION 0002"4

DEF FN oo «3-11

FIRST WORD AVAILABLE BASE PAGE eee7-7
FIRST WORD AVAILABLE MEMORY esee7-7

I-1

INDEX, CONTINUED

FOR e ¢« NEXT ¢e¢e2-23

FOR ¢« eNEXT WITH STEP ee¢3-8
FORMAT <o o1=7)

FORMAT CONTROL e ¢e2-16s 3-14
FORMATTING eee2-16

FUNCTION « «e3-4

FUNCTIONS e« ¢¢3~6> 3-9s 3-18, 3-14, 3-11
FWAM eee7-7

GENERAL MATHEMATICAL FUNCTIONS «¢¢3-9
GO TO eee2-21

GOSUB e¢ ¢RETURN e¢e¢¢3-7

HIERARCHY OF OPERATORS +¢42-10
HOW THE PROGRAM WORKS «e¢e¢l1-16

HOW TO MODIFY HP BASIC ee«7-1

HOW TO USE THIS BOOK « «eXI
IDENTITY MATRIX e ee4-15

IF ee o« THEN + ¢e2-23

INCREASING MEMORY SPACE AVAILABLE esee7-11
INEQUALITY SYMBOL ¢ «s2-6

INPUT eee2-14

INPUT TO MATRIX e ee4=S

INT FUNCTION ¢ ¢¢3-9

INVERTING A MATRIX e e04-17

LAST WORD AVAILABLE MEMORY eee7~7
LET ee¢e2-12

LINE NUMBERS ese1-3

LINK POINTS IN BASIDIC ee¢e7-8
LINKAGE TO SUBROUTINES eee7-9
LIST ¢ «+2 =35

LOADING INSTRUCTIONS eee8-1
LOGICAL ENDPOINTS IN PROGRAM ee2-29
LOGICAL OPERATIONS < ««5-1

LOGICAL VALUES e ee5-1

LOOPS «..2-23

LWAM +e o 7=7

MAGNETIC TAPE SYSTEM ees7-1
MAKING MORE PROGRAM SPACE sss7-11
MAT PRINT 0004’7

MAT READ eee4-9

MAT ¢ e «CON o 004~ 4

MAT O'.ZER e se4-3

MATH FUNCTIONS e ¢e3-9

MATRICES « »e4-1

MATRIX ADDITION ¢ e 4-10

MATRIX INVERSION esesed4-17

MATRIX SUBTRACTION see¢4-11

MATRIX TRANSPOSITION «se4-16
MISTAKES AND CORRECTIONS eeel-12
MTS eee7=1

NEW AND CHANGED INFORMATION e¢e¢elV
MESTING FOR-. NEXT LOOPS ees2=25

I-2

INDEX, CONTINUED

NOT o 0ee2-9

NOT OPERATOR ee2-9

NUMBER « « «2=2

NUMERIC VALUES e+ «5-~1

OPERANDS oo el -5

OPERATING INSTRUCTIONS ee«s8-1

OR 0002”8

OR OPERATOR . --2“8

ORDER OF PRECEDENCE OF OPERATORS e +2=-10
OUTPUT CONTROL e ee2-16s 3-14
PAGE FORMAT eeeVI

PASSING DATA BETWEEN PROGRAMS +e¢¢3-12
PBS .'.8'-1

PLIST «4e2-39

PRECISION ¢ 0e 22

PREFACE o s I11

PREPARE BASIC SYSTEM TAPE ee¢e8-1
PRINT eee2-16

PRINTING A MATRIX e es4=~-7
PRINTING MATRIX ELEMENTS eee4-6
PROBABLE CAUSES FOR ERRORS e¢esD-1
PROGRAM DELETION o «+2-36
PROGRAM INPUT e+ ¢2=37

PROGRAM LISTING ¢ ee2-35
PROGRAMMER-DEFINED FUNCTIONS e¢¢e¢3-11
PTAPE + ¢ ¢2-38

PUNCHING A PAPER TAPE s+ «2-39
PUNCHING PAPER TAPE OFFLINE eeeA-1
QUICK REFERENCE TO BASIC ee+C-1
READ +4¢2-26

READING A MATRIX e«ee4-9

READING MATRIX ELEMENTS es¢4-8
RELAT IONAL OPERATORS «++2-6

REM <«02-13

RESERVING ARRAY SPACE ee+4-2
RESTORE o ¢e¢2-26

RETURN ee¢ o1-10

RETURN KEY eseli-10

RND FUNCTION ¢ ¢ «3~9

ROUTINE ¢ ¢e3-2

RUN ¢ 9e2-34

RUNNING A PROGRAM e¢sel1-14
SAMPLE PROGRAM ¢ «2-30

SAMPLE PROGRAMS ¢ ¢eB-1

SAVING PROGRAMS « «e2-39

SCALAR MULT IPLHCATION e¢s04-13
SCRATCH o «¢2-36

SGN FUNCTION ee+e3-14

SIMPLE VARIABLE e ¢e2-3

SIN FUNCTION «ee3-10

STATEMENT NUMBERS « ¢e1-3
STATEMENT TYPES « eet=-4

I-3

INDEX, CONTINUED

STATEMENTS ee o1 =2

STOP oo 02'29

STOPPING A PROGRAM ese1-15

STRING s« 43-4

SUBROUTINE LINKAGE TO BASIC see7-9
SUBROUTINES « «¢3-6

SUBTRACTING MATRICES eee4-11
SYNTAX REQUIREMENTS OF BASIC ee¢e6-1
SYSTEM MODIFICATIONS eee7-1

TAB FUNCTION e ee3-14

TAN FUNCTION o +e3~10

TAPE ¢ «e2-37

TRANSPOSING A MATRIX eee4-16
TRIGONOMETRIC FUNCTIONS e¢ee3-10
VARIABLE s+ +2-3

VOCABULARY e ¢3-2

WAIT eee2-28

WORD ¢se3~5

I-4

CUT ALONG LINE

§ W T TR T e e e T e T T e

e

sl

HEWLETT @ PACKARD

READER COMMENT SHEET
HP BASIC

02116-9077 April 1970

Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com-
ments may be made below. Use extra pages if you like.

FROM
NAME:

ADDRESS:

PAGE_OF —

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FIRST CLASS H
PERMIT NO.141 §
CUPERTINO !

CALIFORNIA

BUSINESS REPLY MAIL

——————
A — i
No Postage Necessary if Mailed in the United States Postage will be paid by N f
——— :
S E— i
SUPERVISOR, SOFTWARE PUBLICATIONS ————— :
HEWLETT - PACKARD —
CUPERTINO DIVISION T —— :
11000 Wolfe Road e — '

Cupertino, California S ——

95014 T ——

A ——

02116 -9077

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

