i

fp, PACKARD

ot
FORTRAN IV

REFERENCE MANUAL

FORTRAN IV
REFERENCE MANUAL

|

HEWLETT ﬁ PACKARD
11000 Wolfe Road
Cupertino, California 95014

5951-1321

October 1970

© Copyrnight, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Copyright © 1970 by Hewlett-Packard Company, Cupertino, California.
All rights reserved. No part of this publication may be reproduccd,
stored in a retrieval system (e.g., in memory, disc or corc) or
be transmitted by any means, electronic, mechanical, photocopy, re-
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

The Hewlett-Packard FORTRAN IV Reference Manual describes the language ele-

ments used to code source programs in the HP FORTRAN IV programming language.

The front matter includes a Table of Contents and an Introduction to the
manual. Sections I through III describe the form of source programs and the
types, identification and formats of data and expressions used in HP FORTRAN
IV. Sections IV through IX describe the language elements used to code a
source program, including the formats and uses of HP FORTRAN IV statements.
The Appendices describe the formats of data in core memory, the form of HP
FORTRAN IV jobs, departures from and extensions of ANSI FORTRAN IV specifi-
cations, features included in HP FORTRAN IV for compatibility with HP FORTRAN

and HP FORTRAN IV compiler error diagnostics.

NOTE: Throughout the manual are special boxed notes
that explain departures from ANSI FORTRAN IV
specifications or features for compatibility
with HP FORTRAN.

This manual is a reference text for programmers who have had FORTRAN pro-

gramming experience, either with HP FORTRAN or with other FORTRAN compilers.

iii

2-1
2-1
2-1
2-2
2-2
2-3

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-12
2-12
2-13
2-13
2-14

CONTENTS

PREFACE
INTRODUCTION

SECTION I
THE FORM OF A FORTRAN IV PROGRAM
FORTRAN IV SOURCE PROGRAMS
FORTRAN IV CHARACTER SET
SOURCE PROGRAM LINES
SOURCE PROGRAM STATEMENTS AND LABELS
ORDER OF STATEMENTS IN A SOURCE PROGRAM

SECTION II
DATA, CONSTANTS, VARIABLES AND ARRAYS
IDENTIFYING DATA TYPES
Data Type Association
Establishing Data Names
Using Data Names
WRITING CONSTANTS, VARIABLES AND ARRAYS
INTEGER CONSTANT
REAL CONSTANT
DOUBLE PRECISION CONSTANT
COMPLEX CONSTANT
LOGICAL CONSTANT
HOLLERITH CONSTANT
OCTAL CONSTANT
SIMPLE VARIABLE
ARRAY
ARRAY ELEMENT
SUBSCRIPT EXPRESSIONS
SUBSCRIPT
DEFINING VARIABLES AND ARRAY ELEMENTS
SUBSCRIPTED VARIABLE

SECTION III
3-1 EXPRESSIONS

3-1 ARITHMETIC EXPRESSIONS
3-1 Arithmetic Operators
3-1 Arithmetic Elements
3-2 Combining Arithmetic Elements
3-3 Exponentiation of Arithmetic Elements
3-3 Evaluating Arithmetic Expressions
3-4 LOGICAL EXPRESSIONS
3-4 Logical Operators
3-5 Logical Elements
3-5 RELATIONAL EXPRESSIONS
3-6 Relational Operators
SECTION IV
4-1 SPECIFICATION STATEMENTS
4-1 ARRAY DECLARATOR
4-2 EXTERNAL
4-3 TYPE-
4-4 DIMENSION
4-5 COMMON
4-6 EQUIVALENCE
4-8 DATA
SECTION V
5-1 ASSIGNMENT STATEMENTS
5-1 ARITHMETIC ASSIGNMENT STATEMENT
5-3 LOGICAL ASSIGNMENT STATEMENT
5-4 ASSIGN TO STATEMENT
SECTION VI
6-1 CONTROL STATEMENTS
6-2 GO TO (UNCONDITIONAL)
6-3 GO TO (ASSIGNED)
6-4 GO TO (COMPUTED)

vi

SECTION VI (cont.)
CONTROL STATEMENTS

6-5 IF (ARITHMETIC)
6-6 IF (LOGICAL)
6-7 CALL

6-8 RETURN

6-9 CONTINUE

6-10 STOP

6-11 PAUSE

6-12 DO

SECTION VII
7-1 INPUT/OUTPUT STATEMENTS

7-1 IDENTIFYING INPUT/OUTPUT UNITS
7-1 IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS
7-2 INPUT/OUTPUT LISTS

7-2 Simple Lists

7-2 DO-Implied Lists

7-3 FORMATTED AND UNFORMATTED RECORDS
7-4 READ (FORMATTED)

7-5 WRITE (FORMATTED)

7-6 READ (UNFORMATTED)

7-7 WRITE (UNFORMATTED)

7-8 REWIND, BACKSPACE, ENDFILE

7-9 FREE FIELD INPUT

7-9 Data Item Delimiters

7-10 Record Terminator

7-11 Sign of Data Item

7-11 Floating Point Number Data Item
7-11 Octal Data Item

7-12 Comment Delimiters

vii

SECTION VIII
8-1 THE FORMAT STATEMENT

8-2 FORMAT

8-3 FIELD DESCRIPTOR

8-5 REPEAT SPECIFICATION

8-6 I-TYPE CONVERSION (INTEGER NUMBERS)

8-8 SCALE FACTOR

8-10 E-TYPE CONVERSION (REAL NUMBERS)

8-12 F-TYPE CONVERSION (REAL NUMBERS)

8-14 G-TYPE CONVERSION (REAL NUMBERS)

8-16 D-TYPE CONVERSION (DOUBLE PRECISION NUMBERS)
8-17 COMPLEX CONVERSION (COMPLEX NUMBERS)
8-18 L-TYPE CONVERSION (LOGICAL NUMBERS)
8-19 @-TYPE, K-TYPE AND O-TYPE CONVERSIONS

(OCTAL NUMBERS)
8-21 A~-TYPE CONVERSION (HOLLERITH INFORMATION)
8-23 R-TYPE CONVERSION (HOLLERITH INFORMATION)
8-25 wH EDITING (HOLLERITH INFORMATION)
8-26 "..." EDITING (HOLLERITH INFORMATION)
8-27 X-TYPE CONVERSION (SKIP OR BLANKS)
8-28 FIELD SEPARATOR
SECTION IX

9-1 FUNCTIONS AND SUBROUTINES

9-1 FUNCTIONS

9-2 SUBROUTINES

9-2 DATA TYPES FOR FUNCTIONS AND SUBROUTINES
9-3 DUMMY ARGUMENTS

9-4 STATEMENT FUNCTION

9-5 Defining Statement Functions

9-5 Referencing Statement Functions

9-6 FORTRAN IV LIBRARY FUNCTION

9-10 FUNCTION SUBPROGRAM

9-11 Defining Function Subprograms

9-13 Referencing Function Subprograms

viii

SECTION IX (cont.)
FUNCTIONS AND SUBROUTINES

9-15 SUBROUTINE

9-16 Defining Subroutines

9-16 Referencing Subroutines
APPENDIX A

A-1 FORMATS OF DATA IN CORE MEMORY

APPENDIX B
B-1 COMPOSING A FORTRAN IV JOB DECK

APPENDIX C
C-1 SUMMARY OF CHANGES TO ANSI FORTRAN IV

APPENDIX D
D-1 COMPATIBILITY OF HP FORTRAN AND FORTRAN IV

APPENDIX E
E-1 FORTRAN IV COMPILER ERROR DIAGNOSTICS

I-1 INDEX
TABLES
2-13 Table 2-1. The Value of a Subscript (in an Array)
3-2 Table 3-1. Results: Combining Arithmetic Elements
3-3 Table 3-2. Results: Exponentiation of
Arithmetic Elements

5-2 Table 5-1. Rules for Assigning e to v

9-7 Table 9-1. FORTRAN IV FUNCTIONS

E-3 Table E-1. FORTRAN IV Compiler Error Diagnostics

ix

INTRODUCTION

The Hewlett-Packard FORTRAN IV Compiler is used to construct object language
programs from source language programs written according to the rules of the

HP FORTRAN IV language.

The user codes source language programs (using this manual as a reference),
creates a source language paper tape or punched card deck (called a job deck)
and loads the job deck into a HP operating system that features the Compiler.
When loaded, the HP FORTRAN IV Compiler automatically translates the source
programs into machine language and produces relocatable object programs on

punched paper tape.

The Compiler operates in two passes. During the first pass, the job deck is
read into core memory; a symbol table is constructed in core and a set of
intermediate machine code is generated and written to the system disc. Dur-
ing the second pass, the Compiler searches the symbol table for object code
references; completes translation of the intermediate object code on the
disc and produces a relocatable binary object program on punched paper tape.
Source and object listings may be produced, if the user specifies them in

the job deck.

The HP FORTRAN IV Compiler is available in three HP operating systems: Disc
Operating System (DOS), Real-Time Executive (RTE) and Moving-Head Disc Oper-
ating System (DOS-M). The hardware configurations required for compiling
and executing HP FORTRAN IV programs under the control of these systems are
the same as the minimum requirements for the systems, as described in these

manuals. (Except that 16K is required to compile under DOS control.)

Disc Operating System (HP 02116-91748)

Real-Time Software (HP 02116-9139)

Moving-Head Disc Operating System (HP 02116-91779)

xi

The libraries of relocatable subroutines available with HP FORTRAN IV are
described in the Relocatable Subroutines manual (HP 02116-91780).

NOTE: HP FORTRAN IV source programs cannot be compiled
under the control of the Basic Control System (BCS).
However, object programs produced by the HP FORTRAN IV
Compiler can be loaded and executed under BCS control
if the HP 2114A computer has 8,192 words of core memory
and the equipment configuration includes an HP 2752
Teleprinter.

xii

SECTION |
THE FORM OF A FORTRAN IV PROGRAM

The HP FORTRAN IV Cohpiler accepts as input a source program written accord-
ing to the specifications contained in this manual. Each source program is
constructed from characters grouped into lines and statements. The elements
used to construct a source language program are defined in the following

text.

FORTRAN IV SOURCE PROGRAMS

The following terms define FORTRAN IV Source Programs.

Executable Program: A program that can be used as a self-contained
computing procedure. An executable program consists
of precisely one main program and possibly one or

more subprograms.

Main Program: A set of statements and comments not containing

a FUNCTION or a SUBROUTINE statement.

Subprogram: A set of statements and comments containing a
FUNCTION or a SUBROUTINE statement. When defined
by FORTRAN statements and headed by a FUNCTION
statement, it is called a function subprogram.
When defined by FORTRAN statements and headed
by a SUBROUTINE statement, it is called a sub-
routine subprogram. Subprograms can also be
written in HP FORTRAN, HP ALGOL, or HP Assembly

Language.

Program Unit: A main program or a subprogram.

1-1

FORTRAN IV CHARACTER SET

A source language program is written using the following character set.

Letters: The twenty-six letters A through Z.

Digits: The ten digits O, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits
is interpreted in the decimal base number system
when a number system base interpretation is

appropriate.

Alphanumeric Character: A letter or a digit.

Blank Character: Has no meaning and may be used to improve the

appearance of a program with the following

exceptions:

a. A continuation line cannot contain a blank

in column 6.

b. A blank character is valid and significant

in Hollerith data strings.

c. In numeric input conversions, leading blanks
are not significant, but embedded blanks are
converted to zeros. A field of all blanks

is converted to all zeros.

Special Characters: Used for special program functions. They are:

SYMBOL REPRESENTING

blank

= equals

+ plus

- minus

* asterisk

/ slash

(left parenthesis

) right parenthesis

' comma

. decimal point

$ currency symbol

SOURCE PROGRAM LINES

Source program lines are written according to the following rules.

Lines: A line is a string of 72 characters. All charac-
ters must be from the HP ASCII character set.
The character positions in a line are called columns,
and are consecutively numbered 1, 2, 3, ..., 72.
The number indicates the sequential position of a
character in the line, starting at the left and

proceeding to the right.

Comment Line: The letter C in column 1 of a line designates that
line as a comment line. A comment line must be
immediately followed by an initial line, another
comment line, or an end line. A comment line
does not affect the program in any way, and is

available as a convenience for the user.

Program Line: The first statement of a main program may be the

following:

PROGRAM name (Pl,Pz,...,PS)

name = An alphanumeric identifier of up to five
characters. The parenthesized parameter list
is optional; if present:
Pl = The program type, as follows:
0 = System program
1l = Real-Time, Core-Resident
2 = Real-Time, Disc-Resident
3 = Background, Disc-Resident (main program)
4 = Background, Core-Resident
5 = Background Segment (subprogram)
6 = Library (re-entrant or privileged)
7 = Utility

The program type is set to 3 if not given.

P2-P8 = Real-Time parameters. See Real-Time

Software manual.

Initial Line: An intial line is a line that is neither a comment
line nor an end line, and that contains the digit O
or the character blank in column 6. Column 1 through

5 may contain a statement label or the character blank.

Continuation Line: A continuation line is a line that contains any charac-
ters other than the digit 0 or the character blank in
column 6, and does not contain the character C or $ in
column 1. Any other character may be placed in column 1.
Any characters may be placed in columns 2 through 5. A
continuation line may only follow an initial line or
another continuation line. A maximum of 19 continuation

lines can be used after one initial line.

End Line:

An end line is a line with the character blank in
columns 1 through 6, the characters E, N and D
(preceded by, interspersed with, or followed by
blank characters) in columns 7 through 72. The
end line indicates to the compiler the end of the
written description of a program unit. Every pro-

gram unit must terminate with an end line.

SOURCE PROGRAM STATEMENTS AND LABELS

Source program statements and statement labels are written according to

the following rules.

Statements:

Statement Labels:

A statement consists of an intial line optionally
followed by continuation lines. The statement is
written in columns 7 through 72 of the lines. The
order of the characters in the statement is columns 7
through 72 of the first continuation line, columns 7

through 72 of the next continuation line, etc.

Optionally, a statement may be labeled so that it
may be referred to in other statements. A statement
label consists of from one to five digits. The value
of the integer represented is not significant but
must be greater than zero. The statement label may
be placed anywhere in columns 1 through 5 of the
initial line of the statement. The same statement
label may not be given to more than one statement in
a program unit. Leading zeros are not significant

in differentiating statement labels.

Symbolic Names: A symbolic name consists of from one to six alpha-
numeric characters (except that external names, i.e.,
main program, SUBROUTINE and FUNCTION names are
limited to five characters), the first of which must

be alphabetic.

ORDER OF STATEMENTS IN A SOURCE PROGRAM

When the source program is a main program:

PROGRAM LINE

SPECIFICATION STATEMENTS

DATA STATEMENTS

ARITHMETIC STATEMENT FUNCTIONS
EXECUTABLE STATEMENTS

END STATEMENT

When the source program is a subprogram:

FUNCTION or SUBROUTINE STATEMENT
SPECIFICATION STATEMENTS

DATA STATEMENTS (See Note 2.)
ARTITHMETIC STATEMENT FUNCTIONS
EXECUTABLE STATEMENTS

END STATEMENT

NOTE: 1. FORMAT Statements can appear anywhere in a source program,
as long as they appear after the PROGRAM LINE (main pro-
gram) or FUNCTION or SUBROUTINE statement (subprogram).

2. Items in the DATA statement list are intialized at loading
and not at every entrance to a program or subprogram.

SECTION 11
DATA, CONSTANTS, VARIABLES AND ARRAYS

There are six types of data in HP FORTRAN IV:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
HOLLERITH

Each data type has a specific format in core memory and a unique mathema-

tical significance and representation.

IDENTIFYING DATA TYPES

A symbolic name, called a data name, is used to reference or otherwise
identify data of any type. The following rules are used when identifying

data:

a. Data is named when it is identified, but not necessarily made

available.
b. Data is defined when it has a value assigned to it.

c. Data is referenced when the current defined value of the data
is made available during the execution of the statement that

contains the data reference.

Data Type Association

The data name used to identify data carries the data type association,
subject to the following restrictions:
a. A data item keeps the same data type throughout the program

unit.

b. If a TYPE- statement is used to establish a data type association
(for integer, real, double precision, complex or logical data),
it overrides the implied association which occurs in integer and
real data types in variables and arrays. (See "Establishing Data

Names," below.)

Establishing Data Names

There are different ways of establishing a data name for a data type, depend-

ing upon the type of data and how the data is used.

The form of a string representing a constant defines both the value and the
type of the data. This definition is a function of how data is stored in

core memory. The type of a constant is implicit in its name.

A data name that identifies a variable or an array may have its data type
specified in a TYPE- statement. (See Section IV, "Specification Statements.")
In the absence of an explicit declaration in a TYPE- statement, the data type

is implied by the first character of the data name, as follows:

I, JdJ, XK, L, M, or N = integer type data

any other letter real type data

Using Data Names

Data names are used to identify

VARIABLES
ARRAYS, or ARRAY ELEMENTS
FUNCTIONS (See Section IX.)

WRITING CONSTANTS, VARIABLES AND ARRAYS

The following pages describe how to write constants, variables and arrays
in HP FORTRAN IV. See Appendix A "Formats of Data in Core Memory," for

a description of how each data type is stored in core memory.

INTEGER CONSTANT

PURPOSE: An integer constant is written as a string of digits interpreted

as a decimal number.

FORMAT:

n = a decimal number with a range of -32,768 to 32,767

COMMENTS: An integer constant is signed when it is written immediately
following a + or - sign. If it is unsigned, an integer constant

is assumed to be positive.

EXAMPLES:

-32768
32767

-12
329
+5557

REAL CONSTANT

PURPOSE: A real constant is written as a string of decimal digits con-
taining an integer part, a decimal point, a decimal fraction
and an exponent, in that order.

FORMAT:
+m . n Ex
m = an integer constant
. = a decimal point
n = a decimal constant representing a fraction
Ex = the character E followed by the exponent, a signed
or unsigned integer —

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number
10, raised to the power indicated by the integer following the
E.

Either m or n (but not both) may be omitted; and either the
decimal point or the exponent (but not both) may be omitted
from a real constant.

EXAMPLES:

1.29 0.18E+2
.00123 2E-3
-901. 1.E+15
256.177E2 -256.177E-2

DOUBLE PRECISION CONSTANT

PURPOSE: A double precision constant is written as a string of decimal
digits containing an integer part, a decimal point, a decimal

fraction and an exponent, in that order.

FORMAT:

im . n Dx

8
Il

an integer constant

a decimal point

o}
Il

a decimal constant representing a fraction
Dx = the character D followed by the exponent, a signed or

unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number 10,

raised to the power indicated by the integer following the D.

The D is an essential part of the expression, as it identifies
the number as a double precision constant. However, m, the
decimal point and n may be omitted, except that a decimal point

must separate m and n when both are specified

EXAMPLES:
1.29D0
.0123D-1
256.17702D02
=-256.17702D-2
2D-3

COMPLEX CONSTANT

PURPOSE: A complex constant is composed of a real part and an imaginary
part, and is written as an ordered pair of real constants, sep-

arated by a comma and enclosed in parentheses.

FORMAT:

, m.)

(my 2

my and m, are real constants, signed or unsigned

COMMENTS: The first real constant is the real part; the second, the

imaginary part.

EXAMPLES:
(1.29, 256.177E-2)
(-901., 0.)
(-.123E+01, -12.3E-4)
(0., 0.)

LOGICAL CONSTANT

PURPOSE: A logical constant is a truth value, either true or false.
FORMAT:
.TRUE.
.FALSE.

COMMENTS: The periods must be used as shown.

EXAMPLES:
.TRUE.
.FALSE.

PURPOSE :

HOLLERITH CONSTANT

A Hollerith constant is written as an integer constant followed
by the letter H, followed by one or two characters from the

FORTRAN character set.

FORMAT:

n Hx

o}
1l

an integer constant (either 1 or 2)

m
Il

the Hollerith descriptor, which is the character H

"
1l

one or two alphanumeric characters

COMMENTS:

EXAMPLES:

If n = 1, the character immediately following the H is placed
in the left half of the computer word used to store the constant.

The right half of the word contains a blank character.

If n = 2, the first character after the H is put in the left
half of the word, the next character in the right half.

An error diagnostic occurs if n = 0 or n >2.

Hollerith constants are typed as integer.

1H@ 2HBB
1HA 2H$S
2H A 2H12

OCTAL CONSTANT

PURPOSE: An octal constant is written as a string of from one to six
octal digits terminating with a B octal descriptor. An octal

constant is an implied integer constant.

FORMAT:

inln2n3n4n5n 6B

nl to n6 = octal digits

B = the octal descriptor, the character B

COMMENTS: 1If an octal constant has more than six digits or if the
leading digit in a six-digit constant is greater than one,
an error diagnostic occurs.

may be omitted if they equal 0. The

Integers n. up to n

1 5
octal constant may carry a sign.

EXAMPLES:
21B
+00B
0B
1777778
-1705B

SIMPLE VARIABLE

PURPOSE : Is the symbolic name of a single wvalue.

FORMAT:
One to six alphanumeric characters, the first of

which must be a letter.

COMMENTS: 1If the variable has a first character of I, J, K, L, M or N,
it is implicitly typed as an integer variable. All other

first letters imply that the variable is real.

Implicit typing may be overridden for individual symbolic

names by declaring them in a TYPE- statement. (See Section IV.)

EXAMPLES:
Integer Real
1125 Al25
JMAX HMAX
MREAL REAL
K X

ARRAY

An array is an ordered set of data of one, two or three dimensions. An array
is identified by a symbolic name called the array name. The size and number
of dimensions of an array must be defined in a DIMENSION, COMMON or TYPE-

statement.

ARRAY ELEMENT

An array element is a member of the array data set. The array element is

identified by a subscript immediately following the array name.

An array element may be defined and referenced.

SUBSCRIPT EXPRESSIONS

A subscript expression may be any arithmetic expression allowed in FORTRAN IV.
If the expression is of a data type other than integer, it is converted to

integer before being used as a subscript.

In a program unit any appearance of a symbolic name that identifies an array

must be immediately followed by a subscript, except in the following cases:
a. In the list of an input/output statement
b. In a list of dummy arguments

c. In the list of actual arguments in a function or subroutine

reference
d. In a COMMON statement
e. In a TYPE- statement

f. In a DATA statement

SUBSCRIPT

A subscript is written as a parenthesized list of subscript expressions.
Each subscript expression is separated by a comma from its successor, if

there is a successor.

The number of subscript expressions must be less than or equal to the num-
ber of dimensions declared for the array name in a DIMENSION, COMMON or
TYPE- statement. The value of a subscript is defined in Table 2-1, below.
The value refers to the number of array elements (stored in column order)

inclusively between the base entry and the one represented by the subscript.

TABLE 2-1

THE VALUE OF AN ARRAY SUBSCRIPT
(IN AN ARRAY)

ARRAY DI- SUBSCRIPT SUBSCRIPT MAXIMUM SUB-
MENSION (S) DECLARATOR SUBSCRIPT VALUE SCRIPT VALUE
1 (A) (a) a A
2 (A,B) (a,b) a+A* (b-1) A*B
3 (A,B,C) (a,b,c) a+A* (b-1)
+A*B* (c-1) A*B*C

Usage of an unsubscripted array name always denotes the first element of
that array, except in an I/O statement or a DATA statement, where the

entire array is referenced.

DEFINING VARIABLES AND ARRAY ELEMENTS

Variables and array elements become initially defined (before execution
begins) if, and only if, their names are associated in a DATA statement
with a constant of the same data type as the variable or array in question.
Any entity not so defined is said to be "undefined" at the time the first

executable statement in a main program is executed.

2-13

SUBSCRIPTED VARIABLE

PURPOSE: Refers to a particular element of an array of the same symbolic
name as that of the subscripted variable.
FORMAT:
s (ayr 8yr ceey @)
s = the symbolic name of the array
a = expression(s) which determine the values of the
subscript(s) of the subscripted variable
n=1, 2, or 3
COMMENTS: subscripted variables must have their subscript bounds specified
in a COMMON, DIMENSION, or TYPE- statement prior to their first
appearance in an executable statement or in a DATA statement.
A subscript may be any arithmetic expression. If non-integer,
the subscript is evaluated and converted to integer (by truncating)
before being used as a subscript.
A subscripted variable is named and typed according to the same
rules as a simple variable.
EXAMPLES :

A(3,5,2) MAX (I,J)
I(10) MIN (I-J, (I-J)*K/A,4)
ARRAY (2,5)

SECTION Il
EXPRESSIONS

An expression is a constant, variable or function reference (see Section IX),
or combination of these, separated by operators, commas or parentheses.

Expressions are evaluated by the compiler.

There are three types of expressions: arithmetic, logical and relational.

ARITHMETIC EXPRESSIONS

An arithmetic expression, formed with operators and elements, defines a
numerical value. Both the expression and its elements identify integer,

real, double precision or complex values.

Arithmetic Operators

The arithmetic operators are:

Symbol Mathematic Function Example
*% exponentiation A**B
division A/B
* multiplication A*B

- subtraction (or negative value) A-B or -A

+ addition (or positive value) A+B or +A

Arithmetic Elements

The arithmetic elements are defined as:

PRIMARY: An arithmetic expression enclosed in paren-
theses, a constant, a variable reference, an

array element reference or a function reference.

FACTOR: A primary, or a construct of the form:

PRIMARY**PRIMARY
TERM: A factor, or a construct of one of the
forms:
TERM/FACTOR
TERM*TERM
SIGNED TERM: A term, immediately preceded by + or -

SIMPLE ARITHMETIC EXPRESSION: A term, or two simple arithmetic express-—

ions separated by + or -.

ARITHMETIC EXPRESSION: A simple arithmetic expression or a signed
term or either of the preceding forms
immediately followed by + or -, followed by

a simple arithmetic expression.

Combining Arithmetic Elements

When adding, subtracting, dividing or multiplying, the compiler combines

arithmetic elements according to the rules shown in Table 3-1.

TABLE 3-1

RESULTS: COMBINING ARITHMETIC ELEMENTS (+,-,%*,/)
FIRST
ELEMENT SECOND ELEMENT TYPE
TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER REAL DOUBLE PRECISION COMPLEX
REAL REAL REAL DOUBLE PRECISION COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE PRECISION COMPLEX
PRECISION PRECISION PRECISION
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

Exponentiation of Arithmetic Elements

Arithmetic elements can be exponentiated according to the rules shown in

Table 3-2.
TABLE 3-2
RESULTS: EXPONENTIATION OF ARITHMETIC ELEMENTS (**)
EXPONENT TYPE

BASE TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER NOT ALLOWED NOT ALLOWED NOT ALLOWED
REAL REAL REAL DOUBLE PRECISION NOT ALLOWED
DOUBLE DOUBLE DOUBLE

PRECISION PRECISION PRECISION DOUBLE PRECISION NOT ALLOWED
COMPLEX COMPLEX NOT ALLOWED NOT ALLOWED NOT ALLOWED

Evaluating Arithmetic Expressions

The compiler evaluates arithmetic expressions from left to right, according

to the following rules:

PRECEDENCE: () parentheses, for grouping expressions, then
*k exponentiation, then
*,/ multiplication and division (whichever occurs

first) then
- unary minus, then

+,- addition and subtraction (whichever occurs first).

SEQUENCE: Evaluation begins with the subexpression most deeply

nested within parentheses.

Within parentheses, subexpressions are evaluated from

left to right in the order of precedence above.

Function references are evaluated from left to right as

they occur.

No factor is evaluated that requires a negative valued primary to be raised
to a real or double precision exponent. No factor is evaluated that requires
raising a zero valued primary to a zero valued exponent. No element is

evaluated if its value has not been mathematically defined.

LOGICAL EXPRESSIONS

A logical expression is a rule for computing a logical value. It is formed

with logical operators and logical elements and has the value true or false.

Logical Operators

The logical operators and the logical result of their use in an expression

are:
Symbol Mathematic Function Example
.OR. LOGICAL DISJUNCTION A .OR. B
.AND. LOGICAL CONJUNCTION A .AND. B
.NOT. LOGICAL NEGATION .NOT.A
Logical Expression LOGICAL RESULT IS
(logical elements A and B) TRUE FALSE
A. OR. B If either A or If both A and B
B is true are false
A .AND. B If both A and B If either A or B
are true is false
.NOT. A If A is false If A is true

Logical Elements

The logical elements are defined as:

LOGICAL PRIMARY: A logical expression enclosed in parentheses, a
relational expression, a logical constant, a
logical variable reference, a logical array element

reference, or a logical function reference.

LOGICAL FACTOR: A logical primary, or .NOT. followed by a logical
primary.
LOGICAL TERM: A logical factor or a construct of the form:

LOGICAL TERM .AND. LOGICAL TERM

LOGICAL EXPRESSION: A logical term or a construct of the form:

ILOGICAL EXPRESSION .OR. LOGICAL EXPRESSION

RELATIONAL EXPRESSIONS

A relational expression is a rule for computing a conditional logical ex-
pression. It consists of two arithmetic expressions separated by a re-
lational operator. The relation has the value true or false as the relation
is true or false. The operands of a relational operator must be of type
integer, real, or double precision, except that the operators .EQ. and .NE.

may have operands of type complex.

Relational Operators

The relational operators are:

S ol Mathematic Function
.LT. less than
.LE. less than or equal to
.EQ. equal to
.NE. not equal to
.GT. greater than
.GE. greater than or equal to

EXAMPLE: If A =5 and B = 3, then

(A .LT. B) is false
((A .LE. B) .OR. (B .LE. A)) is true

Example

I A

.LT.
.LE.
.EQ.
.NE.
.GT.
.GE.

W W w w w w

SECTION 1V
SPECIFICATION STATEMENTS

Specification statements are non-executable statements that specify variables,
arrays and other storage information to the compiler. There are six specifi-

cation statements in HP FORTRAN IV.

EXTERNAL
TYPE-
DIMENSION
COMMON
EQUIVALENCE
DATA

ARRAY DECLARATOR

DIMENSION, COMMON and TYPE- statements use array declarators to specify the
arrays used in a program unit. An array declarator indicates the symbolic
name of the array, the number of dimensions (one, two or three), and the

size of each array dimension. An array declarator has the following format:

v (1)
v = the symbolic name of the array
i = one, two or three declarator subscripts (for one, two or
three dimensional arrays). Each subscript must be an
integer constant or a dummy integer variable name. (See

Section IX.)

If a two or a three dimensional array is being specified, each declarator

subscript is separated from its successor by a comma.

The values given for the declarator subscripts indicate the maximum value
that the subscripts can attain in any array element name. The minimum

value is always one.

EXTERNAL

PURPOSE: To declare external function or subroutine names that will be

referenced in the program unit.

FORMAT :

EXTERNAL v V.s eees V

1’ "2 n

v = any external function or subroutine name

COMMENTS: 1If an external function or subroutine name is used as an argu-
ment to another external function or subroutine, it must appear
in an EXTERNAL statement in the program unit in which it is so

used.

NOTE: EXTERNAL names are limited to five characters in
length.

EXAMPLES:
EXTERNAL FUN, IS, SIN

TYPE-

PURPOSE: To declare the data type of variable names, array names, function

names or array declarators used in a program unit.
FORMAT:

INTEGER
REAL
DOUBLE PRECISION Vl' V2 ey Vn
COMPLEX
LOGICAL
v = a variable, array, function, or array declarator.

COMMENTS: subroutine names cannot appear in a TYPE- statement.
If the same symbolic name appears in more than one TYPE-
statement, the last use of the name states the data type.
A TYPE- statement can be used to override or confirm the implicit
typing of integer or real data and must be used to declare the
data type for double precision, complex or logical data.
A symbolic name in a TYPE- statement informs the compiler that
it is of the specified data type for all appearances in the
program unit.

EXAMPLES:

INTEGER I,A,ARRAY(3,5,2)

REAL MAX, UNREAL, R(5)

DOUBLE PRECISION D, DOUBLE(2), DARRAY(3,3)
COMPLEX C, CPLEX, CARRAY(2,3,4), CAREA
LOGICAL T, FALSE, L(4), J

4-3

DIMENSION

PURPOSE: To specify the symbolic names and dimension(s) of arrays used

in a program unit.

FORMAT :
DIMENSION v, (i), v,(i)/ -vuy v (1))

v(i) = an array declarator

COMMENTS: Every array in a program unit must be specified in a DIMENSION,
TYPE or COMMON statement.

EXAMPLES:
DIMENSION MATRIX(3,3,3)
DIMENSION I(4), A(3,2)

PURPOSE :

COMMON

To provide a means for sharing core memory between a main program

and its subprograms, or for sharing core memory between subprograms.

FORMAT :

COMMON a

a = a list of variable names, array names or array

declarators.

COMMENTS:

A symbolic name that appears in a COMMON statement must be a vari-
able name, an array name or an array declarator. Once these names
are used in a COMMON statement, they cannot be used in another COM-

MON statement in the same program unit.

All entities in the COMMON statement are declared to be in unlabeled

(blank) common.

The size of a common block is the sum of the storage required for
the elements introduced through COMMON and EQUIVALENCE statement
in a program unit. Entities are strung together in the order of

appearance.

NOTE: Named common blocks are not permitted in HP FORTRAN IV.

EXAMPLES :

COMMON I, CAREA(2,3), J(3)

EQUIVALENCE

PURPOSE: Allows the sharing of core memory locations by two or more

entities.

FORMAT:
EQUIVALENCE (k.), (k,), «.., (k)

k = a list of two or more variable names, array names or

array element names with integer constant subscripts.

COMMENTS: A symbolic name which appears in an EQUIVALENCE statement must

be a variable, array or array element name.

Equivalence can be established between different data types, but
the EQUIVALENCE statement cannot be used to equate two or more

entities mathematically.

The EQUIVALENCE statement can associate a variable in COMMON with
one or more variables not in COMMON, or may associate two or more

variables none of which are in COMMON.

No equivalence grouping is allowed between two entities in COMMON.

A variable not in COMMON, when equivalenced to a variable in
COMMON, becomes a part of the COMMON area. A COMMON area, how-
ever, only can be lengthened by equivalence groupings. If an
equivalence grouping causes an entity to be relocated before the

first entity in COMMON, an error diagnostic occurs.

EXAMPLES:

See the following page for examples of correct equivalence

grouping.

4-6

INTEGER I, A, ARRAY

REAL R(4)

COMPLEX CAREA

LOGICAL L

DOUBLE PRECISION DOUBLE(2), DARRAY

DIMENSION DARRAY (2)

DIMENSION I(4),A(3,2), L(4)

COMMON CAREA (2,2), I, DOUBLE

EQUIVALENCE (CAREA(2,1),R), (DOUBLE (2),DARRAY)
EQUIVALENCE (A (3,2), L(4))

Results in this COMMON and

equivalenced area of 29 words

(26 words in original COMMON,
3 added by EQUIVALENCE).

Results in this non-COMMON

equivalenced area of six words.

1

A(l,1)
A(2,1)
A(3,1) L(1l)
A(1,2) L(2)
A (2,2) L(3)
A(3,2) L(4)

CAREA
(1,1)
CAREA RL)
(2,1)
R(2)
CAREA R(3)
(1,2)
R(4)
CAREA
(2,2)
I(1l)
T(2)
I(3)
I(4)
DOUBLE
(1)
DOUBLE DARRAY
(2) (1)
DARRAY
(2)

PURPOSE:

DATA

To define the initial values of variables, single array elements,

portions of arrays or entire arrays.

FORMAT:

' e d
DATA kl/dl/ k2/d2/’ ’ kn/ n/

k = lists of names of variables, array elements or arrays

d = lists of constants (optionally signed) which can be

immediately preceded by an integer constant (followed
by an asterisk) identifying the number of times the
constant is to be repeated.

= separators, used to bound each constant list

COMMENTS:

Mixed mode assignments are not permitted. The DATA statement
may only assign values that agree in mode to their identifiers.
Hollerith data can be assigned only to integer type variables

or arrays.

If a list contains more than one entry, the entries must be
separated by commas. An initially-defined variable, array ele-
ment or array may not be in common, nor can it be a dummy argu-

ment.

DATA statements must come after all other specification state-

ments in the program.

NOTE: Unsubscripted array names are allowed in DATA statements.
If the array has n elements, the next n constants from
the list are used to initialize the array (in column
order). If the remainder of the constant list has m<n
elements in it, then only the first m elements of the
array are initialized.

EXAMPLES:

DATA A,CARRAY(2,3,1)/6*0, (1.0,-2.39E-1)/
DATA FALSE,ARRAY/.FALSE., 2HIA/,D/-2.39D-01/

4-8

SECTION V
ASSIGNMENT STATEMENTS

Assignment statements are executable statements that assign values to vari-

ables and array elements. There are three types of assignment statements:

Arithmetic assignment statements
Logical assignment statements

ASSIGN TO statement

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: causes the value represented by an arithmetic expression to be

assigned to a variable.

FORMAT:

v = e

a variable name or an array element name of any data

<
]

type except logical

any arithmetic expression

0
]

COMMENTS: v is altered according to the rules expressed in Table 5-1,
A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:
K = 2HAB
A(I,J,K)=SIN(X)*2.5-A(2,1,3)
1=1

Table 5-1.

RULES FOR ASSIGNING e to v

If v Type Is

Integer Integer Assign
Integer Real Fix & Assign
Integer Double Precision Fix & Assign
Integer Complex

Real Integer

Real Real Assign

Real Double Precision

Real Complex

Double Precision Integer

Double Precision Real

Double Precision Double Precision Assign
Double Precision Complex

Complex Integer

Complex Real

Complex Double Precision

Complex Complex Assign
NOTES :

1. Assign means transmit the resulting value, without change, to
the entity.

2. Real Assign means transmit to the entity as much precision of the
most significant part of the resulting value as a real datum can
contain.

3. DP Evaluate means evaluate the expression then DP Float.

4. Fix means truncate any fractional part of the result and transform
that value to the form of an integer datum.

5. Float means transform the value to the form of a real datum.

6.

And e Type Is

The Assignment Rule Is

Fix Real Part & Assign

Float & Assign

DP Evaluate & Real Assign

Assign Real Part

DP Float & Assign

DP Evaluate & Assign

DP Evaluate Real Part & Assign

Convert & Assign
as Real Part With

Imaginary Part = 0

DPVFloat means transform the value to the form of a double pre-

cision datum, retaining in the process as much of the precision

of the value as a double precision datum can contain.

LOGICAL ASSIGNMENT STATEMENT

PURPOSE: Causes the value represented by the logical expression to be as-

signed to a simple or subscripted variable.

FORMAT:
v=e

a logical variable name or a logical array element

<
It

name

e = a logical expression

COMMENTS: A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:

T = .TRUE.
FALSE = .FALSE.
T = A.LT.B

ASSIGN TO STATEMENT

PURPOSE : Initializes an assigned GO TO statement variable reference by

storing in it the location of a statement label.

FORMAT:

ASSIGN k TO i

~
Il

a statement label

[
I

an integer variable name

COMMENTS: After the ASSIGN TO statement is executed, any subsequent exe-
cution of an assigned GO TO statement using the integer variable
causes the statement identified by the assigned statement label

to be executed next.

The statement label must refer to an executable statement in the

same program unit in which the ASSIGN TO statement occurs.

Once mentioned in an ASSIGN TO statement, an integer variable

may not be referenced in any statement other than an assigned

GO TO statement until it has been redefined.

EXAMPLES:
ASSIGN 1234 TO ILABEL
GO TO ILABEL, (100,1234,200) (or, GO TO ILABEL)
1234 1 =1

SECTION VI
CONTROL STATEMENTS

Normally, a program begins with the execution of the first executable state-
ment in the program. When the execution of that statement is completed, the
next sequential executable statement is executed. This process continues

until the program ends.

A subprogram, if referenced, starts with its first executable statement,
then executes the next sequential executable statement, and so on, until it

returns control to the program statement which referenced it.

Control statements are executable statements that alter the normal flow of

a program or subprogram. There are eleven control statements in HP FORTRAN

Iv.

GO TO (Unconditional)
GO TO (Assigned)
GO TO (Computed)
IF (Arithmetic)
IF (Logical)
CALL

RETURN

CONTINUE

PAUSE

STOP

DO

GO TO

UNCONDITIONAL

PURPOSE: Causes the statement identified by the statement label to be

executed next.

FORMAT :
G TO k
k = a statement label

COMMENTS: The program continues to execute from the statement identified

by k.

EXAMPLE:
GO TO 1234

GO TO

ASSIGNED

PURPOSE: Causes the statement identified by the current value of an in-

teger variable reference to be executed next.

FORMAT:
GO TO 1i, (kl, k2, .o kn)
GO TO i
i = an integer variable reference
k = a statement label

COMMENTS: The current value of i must have been assigned by a previous
execution of an ASSIGN TO statement.

The compiler does not check if i contains one of the state-
ment labels in the list; the list is for programmer's docu-
mentation purposes only.

EXAMPLE:
ASSIGN 1234 TO ILABEL

GO TO ILABEL, (1234,200,100) " (or, GO TO ILABEL)

GO TO

COMPUTED

PURPOSE: Causes the statement identified by an indexed label from a

list of labels to be executed next.

FORMAT:
GO TO (kl, k2, ceey kn), e
k = a statement label
e = an arithmetic expression

COMMENTS: The expression is evaluated, and converted to integer, if

necessary.

If the expression value is less than one, statement kl is
executed. If the expression value is greater than n,
statement kn is executed. If 1 < e < n, statement ke is

executed.

EXAMPLE:
GO TO (100,200,300), k

100 CONTINUE . (if k < 1)
2)
3)

200 CONTINUE (if k
300 CONTINUE (if k

v

6-4

IF

ARITHMETIC

PURPOSE: Causes one of two or three statements to be executed next, depend-

ing upon the value of an arithmetic expression.

FORMAT:
IF (e) kl' k2, k3
IF (e) kl, k2
e = an arithmetic expression of type integer, real or
double precision.
k = a statement label

COMMENTS: wWhen the statement contains three statement labels, the state-

17 k2, or k3 is executed next if

the value of e is less than zero, equal to zero, or greater than

ment identified by the label k
zero, respectively.

When the statement contains two statement labels, the statement
identified by kl is executed next when the value of e is less
than zero; k2 is executed next when the value of e is equal to

or greater than zero.

EXAMPLES:
IF (A - B) 100, 200, 300
IF (SIN(X) - A*B) 100,200

PURPOSE:

IF

LOGICAL

Causes a statement to be executed next if a logical expression is

true, or causes one of two statements to be executed, depending

upon the value of the logical expression.

FORMAT:

IF (e) s

IF (e) k., k

1 2

an executable statement (except a DO or a logical IF)

]
1]

a logical expression

a statement label

o
I

COMMENTS:

EXAMPLES:

If the logical expression is true (first format), statement s
is executed. If s does not transfer control elsewhere, execu-
tion then continues with the statement following the IF. If

e is false, the statement s is not executed, but the next

sequential statement after the IF is executed.

If the logical expression is true (second format), statement
kl is executed. If the logical expression is false, state-

ment k2 is executed.

IF (A .EQ. B) A = 1.0
IF (SIN(X) .LE. (A-B)) 100,200

6-6

CALL

PURPOSE: Causes a subroutine to be executed.

FORMAT:

CALL
CALL s (a1, a

0
]

V)]
1l

an actual argument

YRR an)

the name of a subroutine

COMMENTS: When the subroutine returns control to the main program, exe-

cution resumes at the statement following the CALL.

An actual argument is a constant, a variable name, an array

name, an array element name, expression or subprogram name.

Actual arguments in a CALL statement must agree in order,

type and number with the corresponding dummy parameters in

a subroutine. (See Section IX.)

EXAMPLES:

CALL MATRIX

CALL SUBR (I, J)

SUBROUTINE MATRIX

RETURN
END
SUBROUTINE SUBR (I,J)

RETURN
END

PURPOSE

RETURN

Causes control to return to the current calling program unit, if
it occurs in a function subprogram or a subroutine. Causes the

program to stop if it occurs in a main program.

FORMAT:

RETURN

COMMENTS:

EXAMPLES:

When the RETURN statement occurs in a subroutine, control returns
to the first executable statement following the CALL statement

that referenced the subroutine.

When the RETURN statement appears in a function subprogram, con-
trol returns to the referencing statement. The value of the
function is made available in the expression which referenced

the function subprogram.

The END statement of a function subprogram or a subroutine is

also interpreted as a RETURN statement.

CALL MATRIX SUBROUTINE MATRIX
I = MIX(L,M)/A*B RETURN
. END

INTEGER FUNCTION MIX(I,J)

-
.
-

MIX =I+ J
RETURN
END

CONTINUE

PURPOSE: Causes continuation of the program's normal execution sequence.

FORMAT:

CONTINUE

COMMENTS: The CONTINUE statement can be used as the terminal statement in a
DO loop.

If used elsewhere, the CONTINUE statement acts as a dummy state-

ment which causes no action on the execution of a program.

EXAMPLE:

5 CONTINUE

STOP

PURPOSE: causes the program to stop executing.

FORMAT:
STOP n
STOP

n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, STCP is printed on the teleprinter
output unit. If n is given, its value is also printed, after the

word STOP.

EXAMPLES:
STOP 1234
STOP

6-10

—

PAUSE

PURPOSE: Causes the program to stop executing. Execution is resumable in
sequence.
FORMAT:
PAUSE
PAUSE n
n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, PAUSE is printed on the tele-

printer output unit. If n is given, its value is also printed,

after the word PAUSE.

The decision to resume processing is not under program control.
To restart, a system directive must be issued by the system

operator.

EXAMPLES:
PAUSE 1234
PAUSE

o
I

11

DO

PURPOSE: To initiate and control the sequence of instructions in a pro-

grammed loop.

FORMAT:
DO n i

I
=4
=
=

DOn i =

|
=}

n = the statement label of an executable statement (called
the terminal statement)

i = a simple integer variable name (called the control variable)

ml = an arithmetic expression (called the initial parameter)
m2 = an arithmetic expression (called the terminal parameter)
m3 = an arithmetic expreésion (called the step-size parameter)

COMMENTS: The terminal statement must physically follow and be in the
same program unit as the DO statement. The terminal statement
may not be any form of a GO TO, an arithmetic IF, a two-branch
logical IF, a RETURN, STOP, PAUSE, DO or a logical IF statement

containing any of these statements.

The initial, terminal and step-size parameters can be any arith-
metic expressions. However, if these expressions are not of
type integer, they are converted to integer (by truncation)

after they are evaluated.

If the step-size parameter is omitted (format 2), a value of +1

is implied for the step size.

NOTE: The step-size may be positive or negative, allowing
either incrementing or decrementing to the terminal
parameter value.

COMMENTS:
(cont.)

The range of a DO statement is from (and including) the first
executable statement following the DO to (and including) the

terminal statement of the DO.

When the range of one DO statement contains another DO statement,
the range of the contained DO must be a subset of the range of the

containing DO.

Succeeding executions of the DO loop do not cause re-evaluation of
the initial, terminal or step-size parameters. Therefore, any
changes made within the DO loop to the values of variables occur-
ing in these expressions do not affect the control of the loop's
execution. Only changes to the control variable itself or to

the incrementation or step-size parameters (if they are unsigned

simple integer variables) affect the loop's execution.

NOTE: A DO statement is executed at least once regardless
of the relationship of the initial parameter to the
terminal parameter.

If a subprogram reference occurs in the range of a DO, the actions
of that subprogram are considered to be temporarily within that

range.

When a statement terminates more than one DO loop, the label
of that statement may not be used in any GO TO or arithmetic
IF statement that occurs anywhere but in the range of the

most deeply nested DO that ends with that terminal statement.

EXAMPLES:

DO 51=1,5 DO 20 I=1,10,2 DO 20 1=1,10,2
5 CONTINUE DO 20 J=1,5 DO 15 J=2,5
20 CONTINUE 15 CONTINUE

20 CONTINUE

The following occurs when a DO statement is executed:

a. The control variable is assigned the value represented by the
initial parameter. The DO loop is executed at least once regard-
less of the relationship of the initial parameter to the terminal

parameter value.
b. The range of the DO is executed.

c. If control reaches the terminal statement, then after execution
of the terminal statement, the control variable of the most re-
cently executed DO statement associated with the terminal state-
ment is modified by the value represented by the associated step-

size parameter.

d. If the value of the control variable (after modification by the
step-size parameter) has not gone past the value represented by
the associated terminal parameter, then the action described
starting as step b. is repeated, with the understanding that the
range is that of the DO whose control variable has been most re-
cently modified. 1If the value of the control variable has gone
past the value represented by its associated terminal parameter,

then the DO is said to have been satisfied.

At this point, if there were one or more other DO statements
referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
modified by the value represented by its associated step-size
parameter and the action in step d. is repeated until all DO
statements referring to the particular terminal statement are
satisfied, at which time the first executable statement follow-

ing the terminal statement is executed.

Upon exiting from the range of a DO by the execution of a GO TO
or an arithmetic IF statement (that is, by exiting other than by
satisfying the DO), the control variable of the DO is defined
and is equal to the most recent value attained as defined in

steps a. through e.

SECTION VII
INPUT/OUTPUT STATEMENTS

Input/output statements are executable statements which allow the transfer
of data records to and from external files and core memory, and the position-

ing and demarcation of external files. The HP FORTRAN IV input/output state-

ments are:

READ (Formatted Records)
WRITE (Formatted Records)
READ (Unformatted Records)
WRITE (Unformatted Recoxds)
REWIND

BACKSPACE

ENDFILE

NOTE: All external files must be sequential files.

IDENTIFYING INPUT/OUTPUT UNITS

An input or output unit is identified by a logical unit number assigned to
it by the operating system. (See the DOS, RTE and DOS-M manuals for a de-
cription of logical units.) The logical unit reference may be an integer
constant or an integer variable whose value identifies the unit. Any vari-
able used to identify an input/output unit must be defined at the time of

its use.

IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

The format specifier for a record or records may be an array name or the
statement label of a FORMAT statement (see Section VIII). If the format
specifier is an array name, the first part of the information contained in
the array must constitute a valid FORMAT specification: a normal FORMAT

statement less the statement number and the word "FORMAT."

If the format specifier is a FORMAT statement label, the identified state-

ment must appear in the same unit as the input or output statement.

7-1

INPUT/QUTPUT LISTS

An input list specifies the names of the variables, arrays and array elements
to which values are assigned on input. An output list specifies the refer-
ences to variables, arrays, array elements and constants whose values are
transmitted on output. Input and output lists have the same form, except
that a constant is a permissable output list element. List elements consist
of variable names, array names, array element names and constants (output
only), separated by commas. The order in which the elements appear in the

list is the sequence of transmission.

There are two types of input/output lists in HP FORTRAN IV: simple lists
and DO-implied lists.

Simple Lists

A simple list, n, is a variable name, an array name, an array element name,

a constant (output only) or two simple lists separated by a comma. It has

the form:

DO-Implied Lists

A DO-implied list contains a simple list followed by a comma and a DO-implied
specification, all enclosed by parentheses. It has the form:

(n, i =m, m

1 Ty M)

o]
Il

a simple list

-
Il

a control variable (a simple integer variable)

m, the initial parameter (an arithmetic expression)

m, the terminal parameter (an arithmetic expression)

the step-size parameter (an arithmetic expression)

Data defined by the list elements is transmitted starting at the wvalue of

ml, in increments of m3, until m_. is exceeded. If m3 is omitted, the step-

2
size is assumed to be +1.

The step-size parameter may be positive or negative, allowing incrementing

or decrementing to the terminal parameter value.

The elements of a DO-implied list are specified for each cycle of the

implied DO loop.

EXAMPLES:
Simple List DO-Implied List
A,B,C ((ARRAY (T,J),J=1,5),I=1,5)
READ (5,10)A,B,C READ (5,10) ((ARRAY (I,J),J=1,5),1I=1,5)

Note: For output lists, signed or unsigned
constants are permitted as list
elements.

FORMATTED AND UNFORMATTED RECORDS

A formatted record consists of a string of the characters that are permissi-
ble in Hollerith constants. The transfer of such a record requires that a
format specification be referenced to supply the necessary positioning and
conversion specifications. The number of records transferred by the exe-
cution of a formatted READ or WRITE statement is dependent upon the list

and referenced format specification.

An unformatted record consists of binary values.

READ

FORMATTED

PURPOSE: To read formatted records from an external file into core memory.

FORMAT:
READ (u,f) k
READ (u,*) k
READ (u,f)
u = an input unit
f = an array name or a FORMAT statement label
k = an input list

*
|

= specification for free-field input (no format statement)

COMMENTS: The format statement or specification (in an array) can be any-

where in the program unit.

If free-field input is specified, the formatting is directed by
special characters in the input records; a FORMAT statement or

specification is not required.

EXAMPLES:
READ (5,100) (A(I), I =1, 20)
READ (5,200) A,L,X
READ (5,*) (a(J), J=1, 10)
READ (5,ARRAY)
READ (5,100) ((a(1,J),I=1,5),J=1,20)

WRITE

FORMATTED

PURPOSE: To write formatted records from core memory to an external file.

FORMAT:
WRITE (u,f) k
WRITE (u,f)

u = an output unit
= an array name or a FORMAT statement label
k = an output list

COMMENTS: The format statement or specification (in an array) can be any-

where in the program unit.

EXAMPLES:
WRITE (2,200) A, L, X
WRITE (2, ARRAY)

READ

UNFORMATTED

PURPOSE: To read one unformatted record from an external file.

FORMAT:
READ (u) k
READ (u)

u = an input unit

k = an input list

COMMENTS: The sequence of values required by the list may not exceed the

sequence of values from the unformatted record.

READ (u) causes a record to be skipped.

EXAMPLES:
READ (5) A, L, X
READ (5)

WRITE

UNFORMATTED

PURPOSE: To write one unformatted record from core memory to an external

file.

FORMAT:
WRITE (u) k

an output unit

[+
I

~
]

an output list

COMMENTS: This statement transfers the next binary record from core memory

to unit u from the sequence of values represented by the list k.

EXAMPLES:
WRITE (2) A, L, X

7-7

REWIND, BACKSPACE, ENDFILE

PURPOSE: These statements are used for magnetic tape files. REWIND is
used to rewind a tape to the beginning of tape. BACKSPACE is
used to backspace a tape file one record. ENDFILE is used to
write an end-of-file record on a tape file.

FORMAT:
REWIND u
BACKSPACE u
ENDFILE u
u = an input/output unit

COMMENTS: If the magnetic tape unit is at beginning of tape when a REWIND
or a BACKSPACE statement is executed, the statement has no effect.

EXAMPLES:

BACKSPACE 2
ENDFILE I
REWIND 5

FREE FIELD INPUT

By following certain conventions in the preparation of his input data, a HP
FORTRAN IV programmer can write programs without using an input FORMAT state-
ment. The programmer uses special characters included within input data

items to direct the formatting of records.

Data records composed this way are called free field input records, and can
be used for numeric input data only. Free field input is indicated in a
formatted READ statement by using an asterisk (*) instead of an array name

or a FORMAT statement label.

The special characters used to direct the formatting of free field input

records are:

space or , data item delimiters
/ record terminator

+ or - sign of item

. E+ - floating point number
@ octal integer

".o" comments

Data Item Delimiters

A space or a comma is used to delimit a contiguous string of numeric and
special formatting characters (called a data item), whose value corresponds
to a list element. A data item must occur between two commas, a comma and
a space or between two spaces. (A string of consecutive spaces is equiva-
lent to one space.) Two consecutive commas indicate that no data item is
supplied for the corresponding list element, i.e., the current value of the
list element is unchanged. An initial comma causes the first list element

to be skipped.

EXAMPLES:

100 READ (5,*) I, J, K, L 200 READ (5,*) 1, J, K, L
Input data items: Input data items:
1720,1966,1980,1492 »»1794,2000

Result: Result:

I=1720 I = 1720

J = 1966 J = 1966

K = 1980 K = 1794

L = 1492 L = 2000

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

EXAMPLE:

READ (5,*%) I, J, K, L, M

Input data items:

987,654,321,123/DESCENDING

456

Result:
I = 987
J = 654
K = 321
L =123
M = 456

NOTE: If the input list requires more than one
external input record, a slash (/) is
required to terminate each of the input
records except the last one.

Sign of Data Item

Data items may be signed. If they are not signed, they are assumed to be

positive.

Floating Point Number Data Item

A floating point data item is represented in the same form as E-TYPE con-
version of an external real number on input. (See Section VIII.) If the
decimal point is not present, it is assumed to follow the last digit of

the number.

Octal Data Item

The symbol @ is used to indicate an octal data item. List elements

corresponding to the octal items must be type integer.

EXAMPLE:

READ (5,*) I, J, K

Input Data Items:
@177777, @0, @5555

Result:

I =177777B
J=0

K = 5555B

7-11

Comment Delimiters

Quotation marks ("...") are used to bound comments; characters appearing

between quotation marks are ignored.

EXAMPLE:

READ (5,%) I, J, K, L

Input Data Items:
123, 456, "ASCENDING"123, 456

Result:
I =123
J = 456
K = 123
L = 456

SECTION VIII
THE FORMAT STATEMENT

There are three ways a user can transfer data records to and from core

memory using READ and WRITE statements (described in Section VII).

a. As "free field input" when the input data itself contains
special characters that direct the formatting of the records

in core memory. (See "Free Field Input.")

b. As unformatted input or output records containing strings of
binary values. (See "READ (Unformatted)" and "WRITE
(Unformatted).")

c. As formatted input or output records. (See "READ (Formatted)"
and "WRITE (Formatted).")

When a formatted READ or WRITE statement is executed, the actual number of

records transferred depends upon:

a. The elements of an input/output list (if present), which

specify the data items involved in the transfer, and

b. A format specification for the list element(s), which
defines the positioning and conversion codes used for the

string of characters in a record.

A format specification for a formatted READ or a formatted WRITE list

element can be defined in either:

a. A FORMAT statement, or

b. An array, the first elements of which contain a valid format
specification constructed according to the rules of a FORMAT

statement (minus the FORMAT statement label and the "FORMAT").

The FORMAT statement and its components are described in the following

pages.

FORMAT

PURPOSE: The FORMAT statement is a non-executable statement that provides
format control for data records being transferred to and from

core memory by defining a format specification for each record.

FORMAT:
label FORMAT t .o
(a,8,2; t52, %0 a1 D)
label = a statement label.
q = a series of slashes (optional)
t = a field descriptor, or a group of field descriptors
z = a field separator

COMMENTS: A FORMAT statement must be labeled.

When a formatted READ statement is executed, one record is read
when format control is initiated; thereafter, additional records
are read only as the format specification(s) demand. When a for-
matted WRITE statement is executed, one record is written each

time a format specification demands that a new record be started.

EXAMPLES:
READ (5,100)A,B,C WRITE (2,200)A,L,X

. .

100 FORMAT (2F5.1, F6.2) 200 FORMAT (F5.1, I10, F6.4)

The components of a format specification (field separators, field descriptors,

scale factor, repeat specification and conversion codes) are described in

the following pages.

FIELD DESCRIPTOR

PURPOSE: To provide the elements that define the type, magnitude and

method of conversion and editing between input and output.

FORMAT: oOne of the following conversion and editing codes:

Integer data:
Real data:

Double pre-
cision data:

Logical data:
Blank data:

Complex data:

£
Il

riw

srEw.d
srFw.d
srGw.d

srDw.d
rLw

wX
sEw.d,Ew.d

Octal data:

Hollerith
data:

rQw
rKw
rOw

YAw
rRw

thlh2 .o hw

r hlh2 e hW

a positive integer constant, representing the length of

the field in the external character string.

s = a scale factor designator (optional for real and double

precision type conversions).

r = a repeat specification, an optional positive integer

constant indicating the number of times to repeat the

succeeding field descriptor or group of field descriptors.

h = any character in the FORTRAN character set.

d = an non-negative integer constant representing the number

of digits in the fractional part of the external charac-

ter string (except for G-type conversion codes).

. a decimal point.

The characters F,

E, G, I, @ X, o, L, A, R, H, ", and X

indicate the manner of conversion and editing between the

internal and external character representations, and are

called the conversion codes.

COMMENTS: For all field descriptors, except “hlh2 ... h " the field length

(w) must be specified, and must be greater than or equal to d.

For field descriptors of the form w.d, the d must be specified,

even if it is zero.

A basic field descriptor is a field descriptor unmodified by the

scale factor (s) or the repeat specification (r).

The internal representation of external fields corresponds to the

internal representation of the corresponding data type constants.
A numeric input field of all blanks is treated as the number =zero.

The use of a decimal point in the input data field overrides the

d portion of a floating point conversion format.
Negative numbers are output with a minus sign.

If the output field is larger than that required by the datum
being written, the datum is right-justified in the output field.

The number of characters produced by an output conversion must
not exceed the field width (w). If the characters produced do
exceed the field width, the field is filled with the currency

symbol $.

EXAMPLES:
2110 2@2
E20.10 2K2
F5.1 202
G20.10 272
D10.2 2R2
E10.4, E10.4 2HAB
2X "ABCD"

REPEAT SPECIFICATION

PURPOSE: Allows repetition of field descriptors through the use of a
repeat count preceding the descriptor. The specified con-
version is interpreted repetitively, up to the specified

number of times.

FORMAT:

r (basic field descriptor)

r = an integer constant, called the group repeat count.

COMMENTS: All basic field descriptors may have group repeat counts,

except these codes: wH or wX.

A further grouping may be formed by enclosing field descriptors,
field separators, or basic groups within parentheses, and by
specifying a group repeat count for the group. The depth of
this grouping is limited to the fourth level.

The parentheses enclosing the format specification are not

group deliniating parentheses.

EXAMPLES:
2110
6E14.6
4(E10.4, E10.4)
3/

I-TYPE CONVERSION

INTEGER NUMBERS

PURPOSE: Provides conversion between an internal integer number and an

external integer number.

FORMAT:
riw
= a repeat specification (optional)
w = length of external field
COMMENTS:

Input: The external input field contains a character string
in the form of an integer constant or a signed integer
constant. Blank characters are treated as zeros.

Output: The external output field consists of blanks, if
necessary, a minus (if the value of the internal
datum is negative), and the magnitude of the internal
value converted to an integer constant, right-
justified in the field.

If the output field is too short, the field is
filled with the currency symbol $.
EXAMPLES :

See the next page.

EXAMPLES: (Cont.)

INPUT:
External Field Format Internal Number
-,123 I5 -123
12003 I5 12003
~102 14 102
3 11 3

OUTPUT:

Internal Number Format External Field
-1234 15 -1234
+12345 15 12345
+12345 I4 $$S$§
+12345 16 12345

PURPOSE:

SCALE FACTOR

Provides a means of normalizing the number and exponent parts of

real or double precision numbers specified in a FORMAT statement.

FORMAT:

nP

n = an integer constant or a minus sign followed by

an integer constant.

]
I

the scale factor indicator, the character p

COMMENTS:

Input:

Output:

EXAMPLES:

When format control is initialized, a scale factor of zero is
established. Once a scale factor has been established, it
applies to all subsequent real and double precision conversions

until another scale factor is encountered.

When there is no exponent in the external field, the relation-
ship between the externally represented number (E) and the
internally represented number (I) is this:

I=E¢*10 "

When there is an exponent in the external field, the scale

factor has no effect.

For E- and D- type output, the basic real constant part (I) of
the output quantity is multiplied by 10" and the exponent is
reduced by n. For G-type output, the effect of the scale factor
is suspended unless the magnitude of the datum to be converted

is outside the range that permits effective F-type conversion.

See the next page.

EXAMPLES:

(Cont.)
INPUT:

External Field

528.6
.5286E+03
528.6

OUTPUT :

Internal Number

528.6
.5286
5.286
52.86
-5286.

Format
1PF10.3
1pG10.3
-2PD10.3

Format
1PF8.2
2PE10.4
-1PD10.4
1pG10.3
1pG10.3

Internal Number

52.86
528.6
52860.

External Field
~5286.00
52.860E-02
~.0529D+02

AnD2.9,0n4
-5.286E+03

E-TYPE CONVERSION

REAL NUMBERS

PURPOSE: Provides conversion between an internal real number and an
external floating-point number.
FORMAT:
s rEw. d
s = a scale factor (optional)
r = a repeat specification (optional)
w = the length of the external field
. = the decimal point
d = the total number of digits to the right of the
decimal point in the external field.
COMMENTS:
Input: The external input field may contain an optional sign,
followed by a string of digits optionally containing
a decimal point, followed by an exponent, in one of
the following forms: a signed integer constant; or
E followed by an integer constant or a signed integer
constant.
Output: The external output field may contain a minus sign (or
a blank, if the number is positive), a zero, a decimal
point, the most significant rounded digits of the internal
value, the letter E and a decimal exponent (which is
signed if it is negative).
EXAMPLES:

See the next page.

8-10

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number
123.456E6 E9.3 123456000
.456E6 E6.5 456000
.456 E4.3 .456
123E6 E5.0 123000000
123 E3.1 12.3
E6 E9.3 0
A E9.3 0

OUTPUT:

Internal Number Format External Field
+12.34 E10.3 ~ns123E+02
-12.34 E10.3 ~—.123E+02
+12.34 El2.4 ~Ann+1234E+02
-12.34 El2.4 ~a—+1234E+02
+12.34 E7.3 .12E+02
+12.34 E5.1 $$$55

8-11

F-TYPE CONVERSION

REAL NUMBERS

PURPOSE : Provides conversion between an internal real number and an

external fixed-point number.

FORMAT:
srFw.d
s = a scale factor (optional)
r = a repeat specification (optional)
w = the length of the external field
. = the decimal point
d = the total number of digits to the right of the
decimal point in the external field
COMMENTS:

Input: The external input field is the same as for E-TYPE

conversion.

Output: The external output field may contain blanks, a minus
(if the internal value is negative), a string of digits
containing a decimal point (as modified by the scale

factor) rounded to d fractional digits.

EXAMPLES:

See the next page.

8-12

EXAMPLES: (Cont.)

INPUT: Same as in E-TYPE conversion, except "F" replaces "E"
in the format specification.

OUTPUT:

Internal Number Format External Field
+12.34 F10.3 ~~rnnal2.340
-12.34 F10.3 ~aa—12.340
+12.34 F12.3 anan~nal2.340
-12.34 F12.3 ~anna—12.340
+12.34 F4.3 12.3
+12345.12 F4.3 $$53

8-13

G-TYPE CONVERSION

REAL NUMBERS

PURPOSE: Provides conversion between an internal real number and an

external floating-point or fixed-point number.

FORMAT:
srGw.d

s = a scale factor (optional)

r = a repeat specification (optional)

w = the length of the external field

. = the decimal point

d = the total number of digits to the right of the

decimal point in the external field.

COMMENTS:
Input: The external input field is the same as for E-TYPE conversion.
Output: The external output field depends upon the magnitude of the

real data being converted, and follows these rules:

Magnitude Of Data Equivalent Conversion
0.1 < N <1 F(w-4).4,4X

1 <N <10 F(w-4).(d-1),4X

10972 < w < 10971 F(w-4).1,4X

10971 < n < 104 F (w-4).0,4X
otherwise SEw.d

EXAMPLES:
See the next page.

EXAMPLES:

(Cont.)

INPUT: Same as for E-TYPE conversion, except

that "G" replaces "E" in the format specification.

OUTPUT:
Format Internal Number External Field
.05234 ~n+523E-01
.5234 nne523.ann
G10.3 52.34 an52.3nnnn
523.4 an523. . nnn
5234. ~~e523E+04

8-15

D-TYPE CONVERSION

DOUBLE PRECISION NUMBERS

PURPOSE: Provides conversion between an internal double precision number

and an external floating-point number.

FORMAT:
srDw. d
s = a scale factor (optional)
r = a repeat spécification (optional)
w = the length of the external field

. = the decimal point

Q
Il

the total number of digits to the right of the

decimal point in the external field.

COMMENTS:

Input: The external input field is the same as for E-TYPE
conversion.

Output: The external output field is the same as for E-TYPE
conversion, except that the character D replaces the
character E in the exponent.

EXAMPLES:

INPUT: Same as in E-TYPE conversion except "D" replaces "E."

OUTPUT: sSame as in E-TYPE conversion except "D" replaces "E."

8-16

COMPLEX CONVERSION

COMPLEX NUMBERS

PURPOSE: Provides conversion between an internal ordered pair of real

numbers and an external complex number.

FORMAT :
A complex datum consists of a pair of separate real data.
The total conversion is specified by two real field de-
scriptors, interpreted successively. The first descriptor

supplies the real part; the second, the imaginary part.

COMMENTS:

Input: Same as for any pair of real data.

Output: Same as for any pair of real data.

EXAMPLES:

See E-, F- and G-TYPE conversions.

L-TYPE CONVERSION

LOGICAL NUMBERS

PURPOSE: Provides conversion between an external field representing a

logical value and an internal logical datum.

FORMAT:
L w

w = the length of the external field.

COMMENTS:

Input: The external input field consists of optional blanks
followed by a T or an F followed by optional characters,
representing the values true or false, respectively.

Output: The external output field consists of w - 1 blanks
followed by a T or an F as the value of the internal
logical datum is true or false, respectively.

EXAMPLES:

INPUT:

External Field Format Internal Number
~TRUE L5 100000B

OUTPUT:

Internal Number Format External Field
0 (or positive) L3 L F
(negative) L1l T

8-18

@ -TYPE, K-TYPE AND O-TYPE CONVERSIONS

OCTAL NUMBERS

PURPOSE : Provides conversion between an external octal number and an

internal octal datum.

FORMAT:
r @w
r Kw
row

r = a repeat specification (optional)

=
I

the width of the external field in octal digits.

COMMENTS: 1ist elements must be of type integer.

Input: If w > 6, up to six octal digits are stored; non-octal digits
are ignored. If the value of the octal digits within the field
is greater than 177777, results are unpredictable. If w < 6 or
if less than six octal digits are encountered in the field, the

number is right-justified with zeros to the left.
Output: If w > 6, six octal digits are written right-justified in the

field with blanks to the left. If w < 6, the w least significant

octal digits are written.

EXAMPLES:

See the next page.

8-19

EXAMPLES:

(Cont.)
INPUT:

External Field

123456
-123456
2342342342
s 396E-05

OUTPUT:

Internal Number

99

929

-1
32767

Format

@e6
07
2K5
2@4

Format
K6
02
@8
@6

8-20

Internal Number

123456
123456
023423 and 042342
000036 and 000005

External Field
~aa143
43
~AL77777
~17777

A-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:
rAw
r = a repeat specification, (optional)
w = the length of the Hollerith character string.
COMMENTS:

Input: If w > 2, the rightmost two characters are taken from
the external input field. If w = 1, the character
appears left-justified in the word, with a trailing
blank.

Output: If w > 2, the external output field consists of w - 2
blanks, followed by two characters from the internal
representation. If w = 1, the character in the left
half of the word is written.

EXAMPLES:

See the next page.

8-21

EXAMPLES:

(Cont.)
INPUT:

External Field

XYZ
XYZ
X

OUTPUT :

Internal Value

XY
XY
XY

Format

A2
A3
Al

Format

A2
Ad
Al

8-22

Internal Value

b:4'4
YZ
XA

External Field

Xy
~aXY

R-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:
rRw
r = a repeat specification (optional)
w = the length of the Hollerith character string.
COMMENTS: The Rw descriptor is equivalent to the Aw descriptor, except

that single characters are right-justified in the word with
leading binary zeros (on input); and on output, if w = 1,

the character in the right half of the word is written.

NOTE: The HP FORTRAN conversion Aw is replaced by the HP
FORTRAN IV conversion Rw: a single character
stored in a word under R format control is placed
in the right half of the word with zeroes to the
left half. On output, using the Rw format, the
right half of the word is written.

EXAMPLES: See the next page.

NOTE: The FORTRAN IV program can be modified at run-time
to interpret A as in HP FORTRAN if the user calls
the OLDIO entry point:

CALL OLDIO
To change back to a HP FORTRAN IV A conversion,
the user calls the NEWIO entry point:

CALL NEWIO

EXAMPLES:

(Cont.)
INPUT:

External Field

XYZ
XYZ
X

OUTPUT:

Internal Value

Xy
XY
Xy

Format

R2
R3
Rl

Format

R2
R4
R1

8-24

Internal Value

XY
YZ
(0):4

External Field

XY

~ XY

wH EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be read into, or written from,

the characters following the wH descriptor in a format specifi-

cation.
FORMAT:
w e
H hl h2 h,
w = a nonzero positive integer constant equal to the total

number of h's

=
1l

any character in the HP ASCII character set.

COMMENTS:
Input: The characters in the external field (hl to hw) replace
the characters in the field specification.
Output: The characters in the field specification are written
to an output file.
EXAMPLES:
INPUT:
Resulting Internal Value
External Field Format of Formatted Item
PACKARD JHHEWLETT 7HPACKARD
OUTPUT :
Format External Field
7HPACKARD PACKARD

8-25

“...” EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be written from the characters

enclosed by the quotation marks in a format specification.

FORMAT:
r"hl h2 . hw"

h = any character in the FORTRAN character set,

except "

a repeat count.

o}
]

COMMENTS: 1Input: The number of characters within the quotation

marks is skipped (equivalent to wX).

Output: Is equivalent to wH, with a repeat specification

capability added.

EXAMPLES:
OUTPUT:
Format External Field
"ABZ" ABZ
"/\/\A" PNPNPN
PALE LAY kkkkkk

8-26

X-TYPE CONVERSION

SKIP OR BLANKS

PURPOSE: Allows a specified number of characters to be skipped (input)

or allows a specified number of blanks to be inserted (output).

FORMAT:

w X

w = a positive integer constant

COMMENTS:
Input: In the external input field, W characters are skipped.
Output: In the external output field, w blanks are inserted.
EXAMPLES:
14X
2X

8-27

FIELD SEPARATOR

PURPOSE: To separate each field descriptor, or group of field descriptors

in a FORMAT statement.

FORMAT:

/ or ,

COMMENTS: A repeat count can be specified immediately preceding the slash

(/) field separator.

Each slash terminates a record. A series

of slashes causes records to be skipped on input, or lines to

be skipped on an output listing.

EXAMPLES:
READ (5,100)A,B
100 FORMAT (F5.1,F7.3)

READ (5,101)A,B
101 FORMAT (F5.1/F7.3)

READ (5,102)A,B
102 FORMAT (//A///B//)

WRITE (6,100)A,B

WRITE (6,101)A,B

WRITE (6,102)A,B

Causes A and B to be read from one record.

Causes A and B to be read from two

consecutive records.

Causes two records to be skipped, A to be
read from the third record, two more
records to be skipped, B to be read from
the sixth record and one additional record

to be skipped.

Causes A and B to be printed on the same

line.

Causes A and B to be printed on two con-

secutive lines.

Causes two lines to be skipped, A to be
printed on the third line, two more lines
to be skipped, B to be printed on the
sixth line and one more additional line
to be skipped.

8-28

SECTION IX
FUNCTIONS AND SUBROUTINES

An executable FORTRAN IV program consists of one main program with or with-
out subprograms. Subprograms, which are either functions or subroutines,
are sets of statements that may be written and compiled separately from the

main program.

A main program calls or references subprograms; subprograms can call or
reference other subprograms as long as the calls are non-recursive. That is,
if subprogram A calls subprogram B, subprogram B may not call subprogram A.
Furthermore, a program or subprogram may not call itself. A calling program

is a main program or subprogram that refers to another subprogram.

Main programs and subprograms communicate by means of arguments (parameters).
The arguments appearing in a call or a reference are called actual argu-
ments. The corresponding parameters appearing within the called or refer-

enced definition are called dummy arguments.

FUNCTIONS

If the value of one quantity depends on the value of another quantity,
then it is a function of that quantity. Quantities that determine the

value of the function are called the actual arguments of the function.

In HP FORTRAN IV, there are three types of functions (collectively called
function procedures); they supply a value to be used at the point of refer-

ence.

a. A statement function is defined and referenced internally in

a program unit.

b. A FORTRAN IV library function is processor-defined externally
to the program unit that references it. The FORTRAN IV functions

are stored on an external disc or tape file.

9-1

c. A function subprogram is user-defined externally to the program
unit that references it. The user compiles function subprograms,
loads them with his calling program unit and references them the

same way he references FORTRAN IV library functions.

SUBROUTINES

The HP FORTRAN IV user can compile a program unit and store the resultant
object program in an external file. If the program unit begins with a
SUBROUTINE statement and contains a RETURN statement, it can be called as

a subroutine by another program unit.

DATA TYPES FOR FUNCTIONS AND SUBROUTINES

All functions are identified by symbolic names.

A symbolic name that identifies a statement function may have its data type
specified in a TYPE- statement. In the absence of an explicit declaration

in a TYPE- statement, the type is implied by the first character of the name:

I, J, XK, L, Mor N

integer type data

]

any other letter real type data
A symbolic name that identifies a FORTRAN IV function has a predefined data

type associated with it, as explained in Table 9-1.

A symbolic name that identifies a function subprogram may have its data type
specified in the FUNCTION statement that begins the subprogram. In the ab-
sence of an explicit declaration in the FUNCTION statement, the data type is
implied by the first character of the name, as for statement functions. A
function subprogram which has been explicitly tfped in its FUNCTION statement

must also have its name identically typed in each program unit which calls it.

The symbolic names which identify subroutines are not associated with any

data type.

DUMMY ARGUMENTS

Dummy arguments are identified by symbolic name. They are used in functions
and subroutines to identify variables, arrays, other subroutines or other
function subprograms. The dummy arguments indicate the type, order and

number of the actual arguments upon which the value of the function depends.

When a variable or an array reference is specified by symbolic name, a dummy
argument can be used, providing a value of the same type is made available

through argument association.

When a subroutine reference is specified by the symbolic name, a dummy argu-

ment can be used if a subroutine name is associated with that dummy argument.

When a function subprogram reference is specified by symbolic name, a dummy
argument can be used if a function subprogram name is associated with that

dummy argument.

STATEMENT FUNCTION

PURPOSE: To define a user-specified function in a program unit for later

reference in that program unit.
FORMAT:
£ (ajr @yr eees @) = e
f = the user-specified function name, a symbolic name
a = a distinct variable name (the dummy arguments of the
function)

e = an arithmetic or logical expression

COMMENTS: The statement function is referenced by using its symbolic name,
with an actual argument list, in an arithmetic or logical ex-
pression.
In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow any specification statements used in the program
unit.
The name of a statement function must not be a variable name or
an array name in the same program unit.

EXAMPLES:

ISUM(I,J,K) = I+J+K

I

ROOT1 (A,B,C) = (-B+SQRT (B**2-4.0%A*C))/(2.0*A)
L = ISUM(M**2,]1,M-1)

Ir

R = ROOT1 (X,Y,Z)

Defining Statement Functions

The names of dummy arguments may be identical to variable names of the same
type that appear elsewhere in the program unit, since they bear no relation

to the variable names.

The dummy arguments must be simple variables; they represent the values
passed to the statement function. These values are used in an expression
to evaluate the user-specified function. Dummy arguments cannot be used to

represent array elements or function subprograms.

Aside from the dummy arguments, the expression may contain only these values:

Constants

Variable references (both simple and subscripted)

FORTRAN IV library function references

External function references

References to previously-defined statement functions in the

same program

Referencing Statement Functions

When referenced, the symbolic name of the statement function must be immedi-

ately followed by an actual argument list.

The actual arguments constituting the argument list must agree in order,
number and type with the corresponding dummy arguments. An actual argument
in a statement function reference may be an expression of the same type as

the corresponding dummy argument.

When a statement function reference is executed, the actual argument values
are associated with the corresponding dummy arguments in the statement
function definition and the expression is evaluated. Following this, the
resultant value is made available to the expression that contained the state-

ment function reference.

FORTRAN IV LIBRARY FUNCTION

PURPOSE: To reference a processor—-defined function by specifying its sym-
bolic name in an arithmetic or logical expression. The value is

made available at the point of reference.

FORMAT :
An arithmetic or logical expression that
contains the symbolic name of the FORTRAN

IV function (together with an actual argument list)

as a primary.

COMMENTS: Table 9-1 contains the FORTRAN IV library functions available
with the HP FORTRAN IV Compiler.

The symbolic name for the function cannot appear in a TYPE- state-
ment which defines the name as a data type different from that
specified for the function in Table 9-1 unless the user supplies

his own version of the FORTRAN IV library function.

NOTE: HP FORTRAN IV makes no distinction between "intrinsic"
and "external" functions.

EXAMPLES:
SIN(Y)

>
Il

I

IFIX(X)

FORTRAN IV Function

TABLE 9-1

FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic

Definition Arguments Name

Type of:

Argument

Function

Absolute Value

Truncation

Remaindering*

Choosing Largest Value

Choosing Smallest Value

Transfer of Sign

Positive Difference

Obtain Most Significant
Part of Double Precision

Argument

Obtain Real Part of Complex

Argument

Obtain Imaginary Part of

Complex Argument

Express Single Precision
Argument in Double

Precision Form

|al

Sign of a times
largest integer

< |al

a. (mod a2)

1

Max (al, a eel)

21

Conversion from

integer to real

Conversion from

real to integer

Sign of a, times

|a, |

a, - Min (al, a2)

Real
Integer

Double

Real
Real
Double

Real

Integer

Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

Integer

Real
Integer

Double

Real

Integer

Double

Complex

Complex

Real+
Integer+

Double

Real+
Integer+

Integer

Real*

Integer*

Real
Real
Integer
Integer
Double

Real
Real
Integer
Integer

Double

Real+

Integer+

Real+
Integer+
Double

Real

Integer

Real

TABLE 9-1 (cont.)
FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic Type of:
FORTRAN IV Function Definition Arguements Name Argument Function

Express Two Real Arguments - Complex

in Complex Form

Obtain Conjugate of a Complex Complex

Complex Argument

Exponential Real Real+
Double Double+
Complex Complex+

Natural Logarithm Real Real+
Double Double+
Complex Complex+

Common Logarithm Real Real+

Double Double+

Trigonometric Sine Real Real+
Double Double
Complex Complex+

Trigonometric Cosine Real Real+

Double Double

Complex Complex+

Trigonometric Tangent Real Real+
Hyperbolic Tangent Real Real+

Square Root 1 Real Real+
Double Double+

Complex Complex

Arctangent arctan(a) Real Real+

Double Double

arctan(al/az) Real Real

Double Double
Remaindering* a; (mod a2) Double Double*
Modulus Complex Real
Logical Product i.j Integer Integer+
Logical Sum i+3 Integer Integer+

Complement i Integer Integer+

Sense Switch Register Integer Integer+
Switch (n)

* The functions MOD, AMOD and DMOD are defined as al-[al/azla2
where [X] is the largest integer whose magnitude does not exceed

the magnitude of X and whose sign is the same as the sign of X.

+ These FORTRAN IV functions have different entry points when
called by value and called by name. See the Relocatable
Subroutines manual for a complete description of each entry

point.

FUNCTION SUBPROGRAM

PURPOSE: To define a user-specified subprogram that supplies a function
value when its symbolic name is used as a reference.
FORMAT:
t FUNCTION f (al, Ayr ey an)
t = omitted, or one of the following data type identifiers
REAL
INTEGER
DOUBLE PRECISION
COMPLEX
LOGICAL
f = the symbolic name of the function
a = a dummy argument.

COMMENTS: The FUNCTION statement must be the first statement of a function
subprogram. A function subprogram is referenced by using its
symbolic name (together with an actual argument list) as a prim-—
ary in an arithmetic or logical expression in another program unit.
A function subprogram may not be called recursively.

EXAMPLES:

VAR = USER] (X,Y,Z)**USER2 (X,Y) REAL FUNCTION USERI (A,B,C)
USER1 = A+B/C
RETURN
END

REAL FUNCTION USER2(VARR1, VARR2)

USER2 =
RETURN
END

9-10

VARR1-VARR2

Defining Function Subprograms

The symbolic name of the function subprogram must also appear as a variable
name in the defining subprogram. During every execution of the subprogram,
this variable must be defined, and, once defined, may be referenced or re-
defined. The value of the variable at the time of execution of any RETURN

statement in this subprogram is called the value of the function.

The symbolic name of the function subprogram must not appear in any non-
executable statement in this program unit, except as a symbolic name of the

function subprogram in the FUNCTION statement.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

COMMON or DATA statement in the function subprogram.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the function. An array which is declared with dummy
dimensions in a function must correspond to an array which is declared with
constant dimensions (through some sequence of argument association) in a
calling program unit. An array declared with dummy dimensions may not be

in COMMON.

The symbolic name of a dummy argument may represent a variable, array, a

subroutine or another function subprogram.

The function subprogram may contain any statements except PROGRAM, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly

references the function being defined.

The function subprogram may define or redefine one or more of its arguments
to return results as well as the value of the function. Therefore, the user
must be aware of this when writing his programs. For example, a function
subprogram that defines the value of GAMMA as well as finding the value of
ZETA could be coded:

FUNCTION ZETA (BETA, DELTA, GAMMA)
A = BETA**2 - DELTA**3

GAMMA = A*5.2

ZETA = GAMMA**2

RETURN

END

Then, a program referencing the function could be:

GAMMB = 5.0
RSLT = GAMMB+7.5 + ZETA (.2,.3,GAMMB)

which results in the following calculation:
RSLT = 5.0 + 7.5 + ZETA, where ZETA is determined as:

A= ,2%%2 - . 3%*%3 = _04 - .027 = .013

GAMMA = .013*5.2 = .0676 (GAMMB is not altered)
ZETA = .0676**2 = _.00456976
RSLT = 5.0 + 7.5 + .0046976 = 12.50456976

However, the program:

GAMMB = 5.0
RSLT = ZETA (.2,.3,GAMMB) + 7.5 + GAMMB

would result in the following calculations for ZETA and GAMMB:

A = ,2%%2 - .3%*3 = .04 - .027 = .013
GAMMA = .013*5.2 = .0676 = GAMMB
ZETA = .0676**2 = ,00456976
RSLT = .00456976 + 7.5 + .0676 = 7.57216976

Referencing Function Subprograms

The actual arguments of a function subprogram reference argument list must
agree in order, number and type with the corresponding dummy arguments in

the function subprogram.

When referenced, the symbolic name of the function subprogram must be
immediately followed by an actual argument list, except when used in a

TYPE- or EXTERNAL statement, or as an actual argument to another subprogram.

An actual argument in a function subprogram reference may be one of the

following:

A constant

A variable name

An array element name

An array name

Any other expression

The name of a FORTRAN IV library function

The name of a user-defined FUNCTION or SUBROUTINE subprogram.

If an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced function subprogram, the actual argument must be a

variable name, an array element name, or an array name.

Execution of a function subprogram reference results in an association of
actual arguments with all appearances of dummy arguments in executable
statements and adjustable dimensions in the defining subprogram. If the
actual argument is an expression, this association is by value rather than
by name. Following these associations, the first executable statement of

the defining subprogram is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-
stant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes

place.

If a dummy argument of a function subprogram is an array name, the corres-

ponding actual argument must be an array name or an array element name.

SUBROUTINE

PURPOSE: To define a user-specified subroutine, which may be compiled

independently from a program unit which references it.

FORMAT:
SUBROUTINE s
SOUBROUTINE s (al, Ayr ey an)
s = the symbolic name of the subroutine
a = dummy argument

COMMENTS: To reference a subroutine, a program unit uses a CALL statement.

The SUBROUTINE statement must be the first statement in a

subroutine subprogram.

The SUBROUTINE statement cannot be used in a function subprogram.

EXAMPLES:
CALL MATRIX SUBROUTINE MATRIX
Ir Ir
CALL SUBR(I,J) RETURN
END

SUBROUTINE SUBR(I,J)
I

RETURN

END

9-15

Defining Subroutines

The symbolic name of the subroutine must not appear in any statement except

as the symbolic name of the subroutine in the SUBROUTINE statement itself.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,

COMMON, or a DATA statement in the subroutine.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the subroutine. An array which is declared with
dummy dimensions in a subroutine must correspond to an array which is de-
clared with constant dimensions (through some sequence of argument associ-
ation) in a calling program unit. An array declared with dummy dimensions

may not be in COMMON.

The symbolic name of a dummy argument may be used to represent a variable,

array, another subroutine or a function subprogram.

The subroutine defines or redefines one or more of its arguments to return

results.
The subroutine may contain any statements except a FUNCTION statement,

PROGRAM statement, another SUBROUTINE statement, or any statement that

directly or indirectly references the subroutine being defined.

Referencing Subroutines

The actual arguments which constitute the argument list must agree in
order, number and type with the corresponding dummy arguments in the de-

fining subroutine. (A Hollerith constant must correspond to an integer type

dummy argument.)

An actual argument in a subroutine reference may be one of the following:

A constant

A variable name

An array element name

An array name

Any other expression

A FORTRAN IV library function name

A user-defined function or subroutine subprogram name

If an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced subroutine, the actual argument must be a variable name,

an array element name, or an array name.

Execution of a subroutine reference results in an association of actual
arguments with all appearances of dummy arguments in executable statements
and adjustable dimensions in the defining subroutine. If the actual argu-
ment is an expression, this association is by value rather than by name.
Following these associations, the first executable statement of the de-

fining subroutine is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-

stant subscript just before the association of arguments takes place.

If a dummy argument of a subroutine is an array name, the corresponding

actual argument must be an array name or an array element name.

APPENDIX A
FORMATS OF DATA IN CORE MEMORY

The six types of data used in HP FORTRAN IV (integer, real, double precision,
complex, logical and Hollerith) have the following formats when stored in

core memory.

INTEGER FORMAT

PURPOSE: An integer datum is always an exact representation of a positive,

negative or zero valued integer, occupies one 16-bit word and
15 15

has a range of -2 to 2 1.
FORMAT:
lis] 1 ' o]
IQ_lSign i number bits l

REAL FORMAT

PURPOSE: A real datum is a processor approximation to the positive, neg-
ative or zero valued real number, occupies two consecutive

le-bit words in core memory and has an approximate range of 10_38
38

to 107 .
FORMAT:
<«———1mplied binary point
|15 14 0 word 1
l fraction bits
t_sign of fraction
llS 8| 7 1' OI word 2
fraction bits exponent bits I
Isign of exponent ———L5

COMMENTS: A real number has a 23-bit fraction and a 7-bit exponent.

Significance (to the user) is to six or seven decimal digits,

depending upon the magnitude of the leading digit in the

faction.

DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a
positive, negative or zero valued double precision number,

occupies three consecutive 16-bit words in core memory and

has an approximate range of lO—38 to 1038.
FORMAT:
e————1implied binary point
|15 14 OJ word 1
I fraction bits
t_sign of fraction
'15 0 word 2
' fraction bits
|15 s| 7 1] o] d s

fraction bits I exponent bits | ’I
sign of exponent

COMMENTS: A double precision number has a 39-bit fraction and a 7-bit

exponent.

Significance (to the user) is to eleven or twelve decimal
digits, depending upon the magnitude of the leading digit in

the fraction.

COMPLEX FORMAT

PURPOSE: A complex datum is a processor approximation to the value of a
complex number and occupies four consecutive 1l6-bit words in core
memory. Both the real and imaginary parts have an approximate
range of 10"38 to 1038.

FORMAT:
- «——— implied binary point
|15 14 QJ word 1
I fraction bits
t_sign of fraction
real
part
L IlS 8'7 'O | word 2
fraction bits | exponent bits | I
sign of exponent ————}
<«———1mplied binary point
(15} 14 0 I word 3
fraction bits
sign of fraction
imaginary
part
I 817 1 |O I word 4
fraction bits exponent bits I l
sign of exponent
COMMENTS: Both the real part and the imaginary part have 23-bit fractions

and 7-bit exponents; both have the same significance as a real

number.

LOGICAL FORMAT

PURPOSE: A logical datum occupies one 16-bit word in core memory. The

sign bit determines the truth value: 1 = true, 0 = false.

FORMAT:
lis]14 ol . .TRUE.
i]o o0 00000000000 o
|15 14 of . FALSE.

IO I 6 6 6 0 0 0 O0CO0OO0OO0OO0OO0OO0OTO Ol

HOLLERITH FORMAT

PURPOSE: A Hollerith datum is a one or two character string taken from
the HP ASCII character set; it occupies one 1l6-bit word in

core memory.

FORMAT:
|15 s | 7 o]
l HOLLERITH 1 | HOLLERITH 2 |

A-5

APPENDIX B
COMPOSING A FORTRAN IV JOB DECK

After a source program has been written, it is submitted as a FORTRAN IV
job deck. A job deck is input in the form of punched cards or a source

paper tape or through a teleprinter. The job deck has the following form:

FORTRAN CONTROL STATEMENT
MAIN PROGRAM

Ir
END STATEMENT
SUBPROGRAM (1)

Ir
END STATEMENT

SUBPROGRAM (n)
I
END STATEMENT
FORTRAN END JOB STATEMENT

FORTRAN END JOB STATEMENT

A FORTRAN end job statement is a source statement that contains the currency

symbol ($) in column one or END$ in columns 7-72.

The FORTRAN control statement is described on the following page.

PURPOSE:

FORTRAN CONTROL STATEMENT

To describe the type of output to be produced by the compiler.

FORMAT:

FTNI pll P2/ P3r p4' p5

FTN4, pl/ p2/ ,p3l p4’ p5

Pl - P5 = optional parameters, in any order, chosen from the follow-

ing set:

Binary Output. An object program is to be punched in re-
locatable binary format suitable for loading by any of

the operating system loaders.

List Output. A listing of the source language program is

to be produced as the source program is read in.

Assembly Listing. A listing of the object program in
assembly level language is to be produced in the second

pass.

Mixed Listing. A listing of both the source and object
program is produced; each source line is included with
the object code it generated in the compilation pro-
cess. This listing is produced during the second pass,
and therefore it is necessary to store the source
language program on the disc when it is read in during
the first pass. (Sufficient disc space must be avail-
able for storing both the source and intermediate code

in order for this parameter to be used.)

Table Listing. A listing of the symbol table for each

main or subprogram is produced during the second pass.

COMMENTS: Undefined source program statement numbers are printed when an

END Statement is encountered.

If both M and A are specified, M is used. Both A and M will

generate the symbol table listings automatically.

APPENDIX C
SUMMARY OF CHANGES TO ANSI FORTRAN

The HP FORTRAN IV Compiler conforms to the American National Standards
Institute FORTRAN IV specifications as described in the ASA publication

X3.9-1966, with the following exceptions and extensions.

EXCEPTIONS TO STANDARD

Program, subprogram and external names are limited to five characters.

Named COMMON blocks are not allowed.

BLOCK DATA subprograms are not allowed. (With the elimination of named
COMMON blocks, BLOCK DATA subprograms have no function.)

Intrinsic functions are treated as external functions.

EXTENSIONS OF STANDARD

A subscript expression may be any arithmetic expression allowed in HP
FORTRAN IV. However, if an expression is of a type other than integer,

it is converted to type integer after it has been evaluated.

The initial, terminal and step-size parameters of a DO statement (or an
implied.DO in an input or output list) may be any arithmetic expressions.
If the expressions are not of type integer, they are converted to type
integer after they have been evaluated. The step-size parameter may be
either positive or negative, thereby allowing either incrementing or

decrementing to the terminal parameter value.

v

The integer variable reference in a computed GO TO can be replaced by any
arithmetic expression. Non-integer expressions are converted to type in-
teger before the GO TO statement is executed. If the value of the express-
ion is less than one, the first statement in the computed GO TO list is
executed. If the value is greater than the number of statements listed in
the GO TO, the last statement in the computed GO TO list is executed.

The Hollerith constant nHc <eeCy may be used in any arithmetic expression

1%2
where an integer constant or an integer-valued expression is permitted.
Note, however, that if n >2, only the first two characters in the constant
are used, that n = 0 is not permitted, and that if n = 1, the character C
is stored in the left half of the computer word, with a blank character in

the right half. Characters are stored in a single word in ASCII form.

Any two arithmetic types may be mixed in any relational or arithmetic oper-

ation except exponentiation.
Additional types of exponentiation are permitted. (See Table 3-2.)

An unsubscripted array name is an admissible list element in a DATA state-
ment. In this case, the correspondence with constant values is as follows:
If the array has n elements, then the next m constants from the list are
used to initialize the array in the order in which it is stored (column
order). If the remainder of the constant list (at the time the array name
is encountered) has m < n elements in it, then only the first m elements

of the array are initialized.

APPENDIX D
COMPATIBILITY OF HP FORTRAN AND FORTRAN 1V

HP FORTRAN IV contains some language extensions to provide compatibility

with HP FORTRAN. These features are:

Special characters included with ASCITI input data can direct its formatting
(free field input); a FORMAT statement need not be specified in the source

program.

Alphanumeric data can be written without giving the character count by speci-
fying heading and editing information in the FORMAT statement through "..."

entries.

The Aw conversion code of HP FORTRAN is equivalent to the Rw conversion code
in HP FORTRAN IV. A single character stored in a word under R format control
is placed in the right half of the word with zeros in the left half. On out-
put, using the Rw format, the right half of the word is written. A HP FORTRAN
program using an Al FORMAT specification may have to be changed to use the

Rl specification. The user may also use calls to OLDIO. (See the Relocatable

Subroutines manual.)

The END statement is interpreted as a RETURN statement (in a subprogram) or
as a STOP statement (in a main program). A RETURN statement in a main pro-

gram is interpreted as a STOP statement.
The HP FORTRAN External Functions which perform masking (Boolean) operations
(IAND, IOR, NOT) and test the sense switches (ISSW) are retained as FORTRAN IV

library functions.

The two-branch arithmetic IF statement (IF (e) nl, n2) is retained in FORTRAN
IVv.

Octal constants are valid in FORTRAN IV.

Using an unsubscripted array name always denotes the first element of that
array, except in an I/O statement or a DATA statement, where the entire array
is referenced. A single subscript, i, with a multiply-dimensioned array,

denotes the ith element of the array as it is stored (in column order).

APPENDIX E
FORTRAN IV COMPILER ERROR DIAGNOSTICS

TYPES OF COMPILER DIAGNOSTICS

There are four types of FORTRAN IV compiler diagnostics:

COMMENT: The compiler continues to process the source statement
containing the error. Executable object code is pro-

duced, even though the program's logic may be faulty.

WARNING: The compiler continues to process the statement, but
the object code may be erroneous. The program should

be recompiled.

STATEMENT TERMINATED: The compiler ignores the remainder of the
erroneous source statement, including any continuation
lines. The object code is incomplete, and the program

must be recompiled.

COMPILATION TERMINATED: The compiler ignores the remainder of
the FORTRAN IV job. The error must be corrected before

compilation can proceed.

NOTE: If an error occurs in a program, the object code will
contain a reference to the non-system external name
.BAD. This prevents loading of the object tape, un-
less forced by the user. It is strongly recommended
that a program with compilation errors not be executed.

FORMAT OF COMPILER DIAGNOSTICS

When an error is detected, the erroneous source statement is printed, follow-

ed by a message in this format:

** pname ** ERROR nn DETECTED AT COLUMN cc

pname = the program name
nn = the diagnostic error number
cc = column number of source line being scanned when error

detected.

NOTE: If cc = 01, the error is in the source line pre-
ceding the last one printed. If cc = 00, there
is an error in an EQUIVALENCE group.

TABLE E-1

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
01 COMPILER CONTROL STATEMENT MISSING Compilation
. . . t i
There is no FTN or FTN4 directive erminated
preceding the FORTRAN 1V job.
02 ERROR IN COMPILER CONTROL STATE- Compilation
MENT terminated
Incorrect syntax or illegal para-
meter in FTN or FTN4 directive.
03 SYMBOL TABLE OVERFLOW Compilation Reduce number of
.. . terminated symbols (constants,
Insufficient core memory exists .
for continuing compilation variable names and
uing b : statement numbers)
in program and short-
en lengths of vari-
able names and state-
ment numbers.
04 LABELED COMMON NOT ALLOWED Statement Convert labeled
terminated COMMON blocks to
Only unlabeled (blank) COMMON erminate lank COM;(C)N
is allowed in HP FORTRAN 1IV. :
05 NO DISC SOURCE FILE ASSIGNED Compilation Precede compilation
. . . t i d : DOS
The logical unit for input of the erminate by a JFIL? (.) or
. LS (RTE) directive
FORTRAN IV source program is 2, but to operating svstem
the address of source file on disc p g sy
has not been assigned.
06 END OF FILE OCCURRED BEFORE "$" Compilation Example: no "$" or
. . i t
Source input file ended before the terminated EN§$;tatemen f?f
"$" or ENDS$ statement ending the end ot source iile
FORTRAN IV job was encountered.
07 RETURN IN MAIN PROGRAM Comment

A RETURN statement occurs in a
main program. It is interpreted

as a STOP statement.

TABLE E-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
08 ILLEGAL COMPLEX NUMBER Warning Example: non-real
A complex number does not con- constant as part
of complex number:
form to the syntax: (1.0,2)
(+ real constant, + real constant) o
09 MISMATCHED OR MISSING PARENTHESIS Statement
An unbalanced parenthesis exists terminated
in a statement or an expected
parenthesis is missing.
10 ILLEGAL STATEMENT Statement Examples: The first
The statement in question cannot terminated 72 columns of a
be identified. state@ent do not
contain one of the
following: (a) the
'=' sign if it is a
statement function
or an assignment
statement, (b) the
',' following the
initial parameter
if it is a DO state-
ment, (c) 'IF(' for
an IF statement or
(d) the first four
characters of the
statement keyword
for all other state-
ments (e.g. DIME,
WRIT). A statement
keyword may also be
misspelled in the
first four charac-
ters (e.g. RAED).
11 ILLEGAL DECIMAL EXPONENT Statement
Non-integer constant exponent terminated
in floating point constant.
12 INTEGER CONSTANT EXCEEDS MAXIMUM Statement
INTEGER SIZE terminated

An integer constant is not in the
range of -32768 to 32767.

TABLE E-~1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNQSTICS

ERROR
CODE

EXPLANATION

EFFECT ACTION

13

14

15

16

17

18

HOLLERITH STRING NOT TERMINATED

In the use of 'nH', less than n
characters follow the H before
the end of the statement occurs.
In a FORMAT statement, an odd
number of quotation marks sur-
round literals.

CONSTANT OVERFLOW OR UNDERFLOW

The binary exponent of a floating
point constant exceeds the maximum,
i.e., |exponent| > 38. If under-
flow, the value is set to O.

ILLEGAL SIGN IN LOGICAL EXPRESSION

An arithmetic operator precedes
a logical constant.

ILLEGAL OCTAL NUMBER

An octal number has more than six
digits, is greater than 177777B or
is non-integer.

MISSING OPERAND - UNEXPECTED DE-
LIMITER

Missing subscript in an array
declarator in a DIMENSION
statement or missing name in
an EQUIVALENCE group.

ILLEGAL CONSTANT USAGE

A constant is used as a subprogram
or statement function name, as a
parameter of a subprogram or state-
ment function, or as an element

of an EQUIVALENCE group.

Statement
terminated

Warning

Warning Examples:

+.TRUE.

-.FALSE.,

Statement
terminated

Examples:
2777778,

0000012B,
.1234B

Statement
terminated

Examples:
DIMENSION A(2,4,)
EQUIVALENCE (B(2))

Examples:

SUBROUTINE 1234
FUNCTION NAME(X,12,A)
EQUIVALENCE (I,5)

Warning

TABLE E-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
19 INTEGER CONSTANT REQUIRED Statement Examples: A non-
. . . terminated dummy integer vari-
An integer variable is used + e y_ g .
. . able is used in an
where an integer constant is
. array declarator or
required. . .
an integer wvariable
is used as a sub-
script in an
EQUIVALENCE group.
20 EMPTY HOLLERITH STRING Statement
In an 'nH' specification, n=0. terminated
21 NON-OCTAL DIGIT IN OCTAL CONSTANT Warning Example: 1289B
A digit > 7 occurs in an octal
constant.
22 ILLEGAL USAGE OF NAME Statement
A variable is used as a sub- terminated
program name Or an array name
is used as a DO statement
index wvariable.
23 DO TERMINATOR DEFINED PREVIOUS TO Statement Example:
DO STATEMENT terminated 10 po 10 1=1,5
The terminating statement of a DO
loop comes before the DO statement
or is the DO statement itself.
24 ILLEGAL CONSTANT Statement
. . i d
A variable name is expected terminate
but a constant appears.
25 ILLEGAL SUBPROGRAM NAME USAGE Statement Examples: A subpro-
terminated gram name OCCUrsS on

A subprogram name is used where
a variable name or constant is
expected.

the left-hand side
of an assignment

statement. A FUNCTION
or statement function
name occurs as an op-
erand in an expression
but no argument list

is given.

aal

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

NON-DIGIT

A statement number must be a
1-5 digit integer.

ERROR
CODE EXPLANATION EFFECT ACTION
26 INTEGER VARIABLE OR CONSTANT Statement Examples: A sub-
REQUIRED terminated script in an
. . EQUIVALENCE grou
Non-integer value is used where QUIVA . d P
an integer quantity is required element is a non-
ger d Y d : integer constant.
A READ or WRITE
statement has a
non-integer logical
unit reference.
27 STATEMENT NUMBER PREVIOUSLY Statement
DEFINED terminated
The same statement number appears
on two statements.
28 UNEXPECTED CHARACTER Statement
. i d
Syntax of statement is terminate
incorrect.
29 ONLY STATEMENT NUMBER ON SOURCE Warning
LINE
Some source code must appear
within the first 72 columns of
a numbered statement.
30 IMPROPER DO NESTING OR ILLEGAL Statement
DO TERMINATING STATEMENT terminated
The ranges of nested DO loops
overlap or a statement such as
a GO TO, IF, RETURN or END ter-
minated a DO loop.
31 STATEMENT NUMBER STARTS WITH Statement Example: Statement

terminated source code appears
in columns 1-5 of
first line of a
statement.

TABLE E-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
32 INVALID STATEMENT NUMBER Statement
A statement Number has more than terminated
five digits or it contains a non-
digit character.
33 VARIABLE NAME USED AS SUBROUTINE Statement Example: A=SIN
NAME terminated B=SIN (X)
A name which has been previously
used as a variable is now used
in a subprogram reference.
34 STATEMENT OUT OF ORDER Statement Examples: A sub-
Source statements must be in terminated progFam na?e e
e . curring, with an
the order 1. Specification, arqument list, on
2. DATA, 3. Statement Functions, thz 1eft—hand,side
and 4. Executable statements. .
of an assignment
statement may also
generate this
error message.
35 NO PATH TO THIS STATEMENT OR UN- Comment
NUMBERED FORMAT STATEMENT
The statement can never be executed
since it is not numbered and it
follows a transfer of control state-
ment. A FORMAT statement is not
numbered and therefore it cannot
be used by the program.
36 DOUBLY DEFINED COMMON NAME Statement
. terminated
A name occurs more than once in
a COMMON block.
37 ILLEGAL USE OF DUMMY VARIABLE Statement
terminated

A subprogram parameter occurs
in a COMMON statement.

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR

CODE

EXPLANATION

EFFECT

ACTION

38

39

40

41

42

43

MORE SUBSCRIPTS THAN DIMENSIONS

An array name is referenced using

more subscripts than dimensions
declared for it.

ADJUSTABLE DIMENSION IS NOT A
DUMMY PARAMETER

The variable dimension used with

a dummy array name must also be
a dummy parameter.

IMPOSSIBLE EQUIVALENCE GROUP

Two entries in COMMON appear in
an EQUIVALENCE group or two
EQUIVALENCE groups conflict.
Further EQUIVALENCE groups are
ignored.

ILLEGAL COMMON BLOCK EXTENSION

An EQUIVALENCE group requires
the COMMON block base to be
altered. Further EQUIVALENCE
groups are ignored.

FUNCTION HAS NO PARAMETERS OR
ARRAY HAS EMPTY DECLARATOR
LIST

A function must have at least
one parameter. There is in-
sufficient information to
dimension an array name.

PROGRAM, FUNCTION OR SUBROUTINE
NOT FIRST STATEMENT

A PROGRAM statement, if present,

must come first. A FUNCTION or

SUBROUTINE statement is required

for subprograms.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION

44 NAME IN CONSTANT LIST IN Statement
DATA STATEMENT terminated
A constant list in a DATA state-
ment contains a non-constant.

45 ILLEGAL EXPONENTIATION Statement
Exponentiation is not permitted terminated
with data types used.

46 FUNCTION NAME UNUSED OR SUB- Warning
ROUTINE NAME USED
In a FUNCTION subprogram, the
name of the FUNCTION is not de-
fined or a SUBROUTINE name is
used within the subroutine.

47 FORMAT SPECIFICATION NOT AN Statement
ARRAY NAME, STATEMENT NUMBER terminated
OR *

The FORMAT reference in an
I/0 statement is invalid.

48 DO MISSPELLED Comment Example: D@
Keyword DO misspelled.

49 IMPROPER USE OF NAME Statement

. . inated
A variable is used as a sub- terminate
program hame.

50 DO STATEMENT IN LOGICAL IF Warning

A DO statement is illegal as
the "true" branch of a logical
IF.

TABLE E-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
51 CONTROL VARIABLE REPEATED IN Statement
DO NEST terminated
A variable occurs as the index
of two DO loops or implied DO's
or a combination of these which
are nested.
52 LOGICAL IF WITHIN LOGICAL IF Statement
A logical IF statement is terminated
illegal as the "true" branch of
another logical IF.
53 ILLEGAL EXPRESSION OR Statement Examples:
ILLEGAL DELIMITER terminated The expression con-
. . . ins an illegal op-
Arithmetic or logical express- ta g . p
. . . erator or delimiter,
ion has invalid syntax or a . s
.. .. s has a missing opera-
delimiter is invalid in state- .
tor (adjacent oper-
ment syntax. . .
ands) or a missing
operand (adjacent
operators). A READ
or WRITE statement
list has a delimiter
syntax error.
54 DOUBLY DEFINED ARRAY NAME Statement
. . terminated
An array name has dimensions
defined for it twice.
55 LOGICAL CONVERSION ILLEGAL Statement
Conversion of logical data to terminated
arithmetic or arithmetic to
logical is not defined.
56 OPERATOR REQUIRES LOGICAL Statement
OPERANDS terminated

An operand of type INTEGER, REAL,

DOUBLE PRECISION or COMPLEX has

been used with .AND., .OR., .NOT.

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

57

58

59

60

61

62

OPERATOR REQUIRES ARITHMETIC
OPERANDS

A logical operand has been used

in an arithmetic operation, i.e. +,
-, *, /, *%, or a relational opera-

tor.

COMPLEX ILLEGAL

One of the relational operators
.LT., .LE., .GT. or .GE. has a
COMPLEX operand or an IF statement
has a COMPLEX expression.

INCORRECT NUMBER OF ARGUMENTS
FOR SUBPROGRAM

One of the library routines SIGN,
ISIGN, IAND or IOR is called with
the number of arguments less or
greater than two or a library

routine which is called by value is
called with more than one argument.

ARGUMENT MODE ERROR

A library routine which is called
by value is called with an argu-
ment that is DOUBLE PRECISION,
COMPLEX or LOGICAL.

LOGICAL IF WITH THREE BRANCHES

The expression in an IF statement
is of type logical and there are

three statement numbers specified
in the IF statement.

ARITHMETIC IF WITH NO BRANCHES

No statement numbers in an arith-
metic IF statement.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Warning

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

63

64

65

66

67

68

REQUIRED I/0 LIST MISSING

The I/O list required for a free
field input or unformatted out-
put statement has not been
specified.

FREE FIELD OUTPUT ILLEGAL

An '*' in place of a format
designation is illegal in a
WRITE statement.

HOLLERITH COUNT GREATER THAN 2

In an 'nH' specification, n > 2.

PROGRAM UNIT HAS NO BODY

A main program, SUBROUTINE or
FUNCTION requires no object
program.

ENDS OR $ OCCURS BEFORE END
STATEMENT

The end of the FORTRAN job was
encountered before the END state-
ment terminating the current pro-
gram unit.

EXTERNAL NAME HAS MORE THAN FIVE
CHARACTERS

The name of a PROGRAM, SUBROUTINE
or FUNCTION has more than five
characters. The first five
characters are used.

OCTAL STRING IN STOP OR PAUSE
STATEMENT IS TOO LONG

In the statement STOP n or PAUSE n,

n has more than four digits.

Statement
terminated

Statement

terminated

Comment

Warning

Compilation

terminated

Warning

Warning

Only the first two
characters after
the H are used.

Example: END state-
ment contains syn-
tax error or it is
missing.

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
70 EQUIVALENCE GROUP SYNTAX Statement
t inated
An EQUIVALENCE group does not ermihate
start with a left parenthesis.
All further groups are ignored.
71 DUMMY VARIABLE IN DATA LIST Statement
terminated
Dummy parameters of a subprogram
cannot be initialized in a DATA
statement.

72 COMMON VARIABLE IN DATA LIST Statement
Entities of a COMMON block can- terminated
not be initialized with a DATA
statement.

73 MIXED MODE IN DATA STATEMENT Statement

. . i d
A name and its corresponding terminate
constant in a DATA statement
do not agree in type.

74 ILLEGAL USE OF STATEMENT FUNCTION Warning
NAME
The name of a statement function
also occurs in its dummy parameter
list.

75 RECURSION ILLEGAL Statement

. t i d
The current program unit name erminate
has been used in a CALL state-
ment.
76 DOUBLY DEFINED DUMMY VARIABLE Warning

The same dummy variable name
occurs twice in a subprogram
or statement function para-
meter list.

TABLE E-1 (Cont.) HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION EFFECT

ACTION

77

78

79

80

81

82

83

STATEMENT NUMBER IGNORED Warning

A statement number on a specifi-
cation or DATA statement or on a
statement function is ignored.

PROGRAM UNIT HAS NO EXECUTABLE Warning
STATEMENTS

A program unit has only specifi-
cation or DATA statements or
statement functions.

FORMAT DOES NOT START WITH Warning
LEFT PARENTHESIS

FORMAT DOES NOT END WITH Warning
RIGHT PARENTHESIS

ILLEGAL EQUIVALENCE GROUP Statement
SEPARATOR terminated

EQUIVALENCE groups are not
separated by a comma or a non-
array name has subscripts in an
EQUIVALENCE group. All further
EQUIVALENCE groups are ignored.

ILLEGAL USE OF ARRAY NAME IN AN Statement
EQUIVALENCE GROUP terminated

An array name in an EQUIVALENCE
group is not followed by '(', ','
or ')'. All further EQUIVALENCE
groups are ignored.

SUBPROGRAM NAME RETYPED Warning

The type declared for a sub-
program name within its body
does not agree with the type
established in the SUBROUTINE
Oor FUNCTION statement.

TABLE E-1 (Cont.)

HP FORTRAN IV COMPILER ERROR DIAGNOSTICS

More than 19 continuation lines
for a statement.

ERROR
CODE EXPLANATION EFFECT ACTION

84 OBJECT CODE MEMORY OVERFLOW Compiler
Object program size is greater terminated
than 32K.

85 POSSIBLE RECURSION MAY RESULT Comment The user is advised
The use of one of the library z; Egzngibtiz 2:$e
names REAL, SNGL, DBLE, CMPLX, o makepcegtain
FLOAT, CLRIO, IFIX, ERRO or that no mixed mode
EXEC as the name of a PROGRAM,) .

. . exists in the pro-
may produce recursion if the
gram and that no
body of the subprogram so named .
. . . s library subprogram
requires an implicit call to one .
of these names. used requires a
call to ERR{Z.
86 DUMMY VARIABLE IN STATEMENT Warning Example:
FUNCTION CANNOT BE SUBSCRIPTED ASF(A)=A(1,1)+A(2,2)
A dummy variable in a statement
function cannot represent an
array or a subprogram name.
87 TOO MANY CONTINUATION LINES Compilation
terminated

INDEX

Actual argument..... N
AdditioNn....veieenecocenosnnncnes

ANST FORTRAN IV....icceevocccan
Argument, actual.............0
Argument, dummy........000...9
Arithmetic assignment
statement............ .. 0000005
Arithmetic element........cccee...3"
3
6

Arithmetic expression.......... ..
Arithmetic IF........ ceseeseeeann
Arithmetic
ArYay...oe... e eteeeeeeseae..2-12,8~
Array declarator..... O
Array element.......cicevennea..2-12
Assignment statement,
arithmetic....... ceesssaseacnas

Assigned GO TO...vececececananns .
A-Type CONVerSiON.....eoeeeeeass.8-21

B

BACKSPACE . eveteesneannoonnnacnas 7-8

Blank character.....c.eveeeueee..1-2

C

CALL .. eiieeeeecaacaaseanscsacnsns
Character, alphanumeric..........
Character, blank......ccenveeenn..
Character, special.....ccvoeeeen..
Comment line.......ceeevennennns .
COMMON. ...ttt tnereenesccnosensans
COMMON, named....ceceeeeeeonacaas
COMMON, unlabeled....ceceeeeenn .
Complex constant.....eeeveeeeenn .
Complex conversion...... ceeees..8-17
Complex data format....... ceee...A-4
Computed GO TO.....ceveeennncenns 6-4
Constant, complex........ ceeeeeea2=T
Constant, double precision.......2-6
2-9

2-9

8

[

.
|

SR NENN il
SOOI WW NN

Constant, Hollerith..............
Constant,
Constant,
Constant, octal.......cveeene...2-10
Constant, real......c.cevve..2-5,2-7
CONTINUE. ... oieeeeeeensscanasse.0"9

I-1

Continuation line...............1-4
Control statement, FORTRAN......B-2
Control variable...........6-12,7-2
Conversion, A-TYP€....ceees....8-21
Conversion, compleX............8-17
Conversion, D-TyP€.....eeees...8-16
Conversion, E-TypP€.....eces....8-10
Conversion, F-TyPE€...ccesesseas 812
Conversion, G-TYP€...ceceee....8-14
Conversion, I-TypP€.....eveee-...8"6
Conversion, K-TypP€.....eeee....8-19
Conversion, L-TYpP€....cece.....8-18
Conversion, O-TYpP€....cceeee...8-19
Conversion, R-Typ€......e......8-23
Conversion, X-TypPE€..ceeceeeeees.8-27
Conversion, @-Type.....c.e.....8-19

D

DAtaA. e e eeceeeeoaneneeeeessad=8,2-13
Data itemM....eeeeeeeeenoeeeenaasl=9

Data item delimiter.............7-9
Declarator, Array.....ceeeeeee..4-1
Delimiter, data item............7-9
Descriptor, field...............8-3
DigitS..ueeeeeeeasceanassonnansal=2
DIMENSION. cveveveeornoaacensaseesd—d
DiviSion...eeeeeeeeeeeesoeseesss3-l

DO.eeeeecacns DN R e]
DO-implied list....ceeeeeeeeens./=2
DOS es e eveeaneeannecsassaseanssss Xi

Double precision constant.......2-6
Double precision data format....A-3
Dummy argument..............9-3,6-7
D-Type conversion..............8-16

E

WH. eievenecacenneeaasa8-25
B - 1
arithmetic....oeevee...3-1
AYYAY eeeeeoscscoanceess2-1l2
logical...eeeneeceeann.

Editing,
Editing,
Element,
Element,
Element,

o oo

3
END. .vveveoencansecnsasosansnsasb
ENDFILE. . eeeeeeeccaososoncaaenasl
End job statement, FORTRAN......B-
End 1iNe..veeeeeccocenceonceaanaal
EQUIVALENCE. e voecescacanennass.d
E-Type conversion..............8-10

Evaluating arithmetic

EXPYeSSIiOoNS...iceeeeraecaceasssl3=3
Executable program......e-ee.....1-1
Exponentiation.......eecceeeee...3"1
Exponentiation of

arithmetic elements............3-3
EXPreSSiOoN...eeeeeeceecsceassssaad—l
Expression, arithmetic...........3-1
Expression, logical.....ceeeee...3"4
Expression, relational...........3-5
Expression, subscript...........2-12
EXTERNAL .. .vcveenononsccncaseseassd—
External files......cveeeeneneea.?

F:

b OF-ToX oo ¥ AN
Factor, scale.......... ceeenn ee..8-
Field descriptOor....ceeececeee...8
Field separator......ecceeeeess.8-2
Files, external......cceeeeencessl
FORMAT....cc0eeneacaeeeasd-2,1-6,7-
Format specification..... e...8-1,7
Format, complex data.............A-
Format, double precision data....A
Format, Hollerith data........ ...A
Format,
Format,
Format, .
Formatted READ....cceeoeeeeasl™
Formatted recordS....cceeeee.?

|
HFOHHNMHFRDLDOFHUIWS WHEKFOOWODN

FORTRAN IV job deCK..eeeeeeecesnn B
Free field input.........7-9,7-4,8-1
F-Type conversion...... ceececee..8-12
Function.....ceceeeeecocnseceass9-1
Function, statement..............9-4
Function subprogram.........1-1,9-10

GO TO,
GO TO,
GO TO,
G-Type

H

Hollerith constant......ccceu....2-9
Hollerith data format......ccc... A-5
HP FORTRAN. ...veveeee...111,8-23,D-1

IF, arithmetic.....cccceeeeceece.6=5
IF, logical...ceeaeeeecccsseesseab=6
Initial lin€...ceeeecenaccccsseal=4
Initial parameter..........6-12,7-2
Input/output list...........7-2,8-1
Input/output unit....cccceeeee..7-1
Input, free field.......7-9,7-4,8-1
Integer constant............2-4,2-9
Integer data format.............A-1
Item, data...... cecccsssscsseene 7-9
I-Type CONvVersiON.ceceeeeececcess.8-6

J

FORTRAN IV.eeeeccacane B-1

K

K-Type conversion.....-.........8-19

L

Label, statement........... eeeesl=5
Letter..cceee.e ceecsccscesssesesl=2
Library Function, FORTRAN IV....9-6
LiNeS..eeeeeceecccscsoacasancessl=3
Line, comment..... ceeeseann ceo..l=3
Line, continuation....... ceeeee.l—4
Line, end....cceeeeoascas ceceeen 1-5
Line, initial...ccececececccece I R
Line, pProgram......eeeeeeesse-..1-4
List, DO-implied....ccceececeaee.7=2
List, input/output..........7-2,8-1
List, simple........ cescasaceans 7-2
Logical assignment statement....5-3
Logical constant....ccececcecce.. 2-8
Logical data format....-.. eeeeeesA=5
Logical elementecceeeeeesss3=5
Logical expression..............3-4
Logical IF,......eccesecesecesss6-6
Logical operator................3—4
Logical unit.,......ceeeeeeeecess7-1
L-Type conversion...........-..8-18

M

Magnetic tape unit........cc....7-8
Main program..........s...-+1-1,1-6
Mixed MmOdeveeeessancesssss4-8
Multiplication ,.....eeeeeeesese 3=1

Job deck,

Named COMMON........ cesecsnavoces .4-5
Name, SymboliC.......... ee...1-6,2-1
Octal constant...s?. eeese2-10
Operator, arithmetiC...ceeeeeessa3-1
Operator, logical.......cceceeen. 3-4
Operator, relational............. 3-6
O-Type conversion....... e eeeens 8-19
Parameter, initial.......... 6-12,7-2
Parameter, step-size...... ..6-12,7-2
Parameter, terminal......... 6-12,7-2
Parentheses.....ccc0.. ceeeeacaces 3-3
PAUSE. s i it eveveecasoncscsaanccccs 6-11
Primary........ ceeceenens ceascaes 3-1
Program, executable........ ceeene 1-1
Program line.......cceeeeeaceeanscs 1-4
Program, Main......eeeceecen. 1-1,1-6
Program unit........ caeeaseen ee..ol-1
READ, formatted.............. 7-4,8-1
READ, unformatted............ 7-6,8-1
Real constant......cceeeeecee 2-5,2-7
Real data format......eceeeeeeeen A-2
Record, formatted............ 7-3,8-1
Record terminator.....cceeeeee.. 7-10
Record, unformatted.......... 7-3,8-1
Relational exXpressioN......ccee.. 3-5
Relational operator.......ce..e.. 3-6
RELOCATABLE SUBROUTINES...... xii, 9-9
Repeat specification......ce.c... 8-5
RETURN. .. .cccecececocccocen ceeee..0—8
REWIND..2.oeeoeosocasooasosescoosccs 7-8
RIE. .. eceeeeeecesoscscacccsocnconsns x1
R-Type CONversSioN......eeeeeeess 8-23
Scale factor.....§§ 8-8
Separator, field.......ceeeeeen. 8-28
Simple 1iSt....ceeecesceoaconanns 7-2
Simple variable........ ceemeaann 2-11
Special character....... ce e caeen 1-3
Specification, format........ 8-1,7-3
Specification, repeat............ 8-5
Statement..... ereeessemseensacane 1-5
Statement function....... ceeeee..9-4

I-3

Statement label............. v...1-5
Statement, terminal........ 6-12,6-9
Step-size parameter........6-12,7-2
STOP . v. ceeecsososascsoscooosans 6-10
Subprogram. ceeeean 1-1,1-6
Subprogram, function....... 1-1,9-10
Subprogram, subroutine.......... 1-1.
Subroutine........c.ceeeennn 9-2,9-15
Subroutine subprogram.......... -1
SubsSCript....coceeeeeeevecnnnnn 2-13
Subscript expression........... 2-12
Subscripted variable........... 2-14
Subtraction.......ceeeeeeeceeeens 3-1
SymbolicC namesS.....ceeeeeeea- 1-6,2-1
T
Tape unit, magnetic............. 7-8
B 1 3-2
Terminal parameter......... 6-12,7-2
Terminal statement......... 6-12,6-9
Terminator, record.......oeeeee. 7-10
TYPE- . ..ceeecane ...-..4'312_212-11
U
Unconditional GO TO......o0euwv.. 6-2
Unformatted READ...... teesceensal—6
Unformatted records......oeueu.. 7-3
Unformatted WRITE....... Ceeeee .. 7-7
Unit, input/output.............. 7-1
Unit, logical...... ceeseeceeeaas 7-1
Unit, program......c.ceceeeeeae- ..1-1
Unlabeled COMMON,.oveunn.- ...4-5
\'J
Variable, control.......... 6-12,7-2
Variable, simple........ e 2-11
Variable, subscripted.......... 2-14
wH editing......)O(...... 8-25
WRITE, formatted.......... ..7-5,8-1
Write, unformatted..........7-7,8-1

X

X~-Type conversion.......ceeee.-. 8-27
"..." editing....iiiiiiie.n ..8-26
@-Type conversion.......c.e..... 8-19

SOFTWARE MANUAL CHANGES

FORTRAN IV REFERENCE MANUAL)

(HP 5951-1321)
Dated October 1970

Some of the items below pertain not only to the FORTRAN IV
REFERENCE MANUAL but also to the Manual Change Sheet itself. The highest-

numbered entry

recorded first.

are updated on

is the most current. Therefore, these changes should be

This ensures that earlier entries which have been modified

this sheet. Earlier entries which no longer apply are super-

ceded by later entries.

- Change
Number Page
1 2-6
e 6-7
3 6-8
4 8-21

6-71

Instructions

Delete the last sentence of the last paragraph, and re-

place with:

Either m or n (but not both) can be omitted. A decima:
point must separate m and n when both are specified. When
m is present, both the decimal point and n can be omitted.

In the examples, replace both occurrences of the term
MATRIX with:

MATRX

In the examples, replace both cccurrences of the term
MATRIX with:

MATRX

Add the following note:

NOTE: Input/output cof A-format elements must be to/from
type integer variables or arrays.

l’!E;LVLETT U!?ﬂ PAC:’(AK’D
15

Change

Number Page
2 8-28
6 9-15
7 9-15
8 E-2
9 E-16
10 6-16

- o

Page 2
(HP 5951-1321)

Instructions

Replace the example line:
102 FORMAT (//A///B//)
with:

. 102 FORMAT (//F5.1///F7.3/)

Replace the term SOUBROUTINE in the second format with:
SUBROUTIKE

In the examples, replace both occurrences of the term
MATRIX with: |

MATRX

In the note, replace the second sentence with the follow-
ing:
If cc = 00, there is an error in an EQUIVALENCE group,

and the group (or a portion of the group) is printed
before the error message is printed.

Add the following note:

NOTE: Undefined source program statement numbers are
printed when an END statement is encountered.

For example,
@100 UNDEFINED

means that the statement number 100 did not appear
in columns 1-5 of any of the initial lines of the
program just compiled.

Remove the current page 6-15, &and replace with the
following pages: 6-15 and 6-16. A page 6-16, describing
the END statement, has been adcded to the manual.

Change

Number Page

11 vii
12 6-1
13 8-29
14 viii

Change

Number Page
15 8-29
16 3-4

Page 3
(HP 5951-1321)

Instructions

Add the following to the end of Section VI:
6-16 END

Change the last sentence of the last paragraph to:
There are twelve control statements in HP FORTRAN IV.

Add END to the 1ist of control statéments.
Add page 8-29 to the manual.

Add the following to end of Section VIII:

8-29 CARRIAGE CONTROL

10-71

Instructions

Statement number 140 comment should read: a page is

ejected then a line is skipped

At the bottom of the first paragraph add: Integer over-
flow resulting from arithmetic operations is not detected

at execution time.

Change

Number Page
17 3-6
18 6-12

Page 4
- (HP 5951-1321)

Instructions

Add the following information: '

NOTE: Integer overflow resuTting from arithmetic opera-
tions is not detected at execution time. Care must be
taken when the relational operators .LT., .LE., .GT. and
.GE. are used with integer operands. The object codes

generated by this compiler for relational operators on

integers are: .

P [ME, i 1..EQ. J
LD& 3 . LDA I LDA I
CMA, INA CMA, INA CPA J
ADA I ADA J CCA,RRS

CMA CLA

I .NE. J E .GT. J I _.GE. J
LDA I LDA I LDA I
CPA J CMA, INA - CMA,INA
_CLA,RSS ADA J ADA I
CCA CMA

Add to the bottom of the page:
Integer overflow resulting from arithmetic operations is

not detected at execution time.

B

Page 5
(HP 5951-1321)

5-712

Change

Number Page
19 F-1
20 3-6

Instructions

Add page F-1 to the manual.

July 1972
Add the following information (corrects change 17):

NOTE: Integer overflow resulting from arithmetic operations is
not detected at execution time. Care must be taken when the
relational operators .L.T., .LE., .GT., and .GE. are used with integer
operands. The object codes generated by this compiler for
relational operators on integers are as follows:

I = ILEd | .EQ.J I .NE.J - 1.GT.J I .GE.J
LDAJ LDA | LDA | LDAI LDA | LDA |
CMA,INA CMA,INA CPAJ CPA J CMA,INA CMA,INA
ADA | ADA J CCA,RSS CLA,RSS ADAJ ADA |

CMA CLA CCA CMA

At this point, if there were one or more other DO statements
referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
modifiéd by the value represented by its assdciated step-size
parameter and the action in step d. is repeated until all DO
statements referring to the particular terminal statement are

satisfied, at which time the first executable statement focllow-

~ing the terminal statement is executed.

Upon exiting from the range of a DO by the execution cof a GO TO
or an arithmetic IF statement (that is, by exiting other than by
satisfying the DO), the control variable of the DO is defined
and is equal to the most recent value attained as defined in

steps a. through e.

PURPOSE:

END '

Indicates to the compiler that this is the last statement in

program unit.

FORMAT :

END

COMMENTS:

EXAMPLES :

Every program unit must terminate with an END statement.

The characters E, N and D (once each 'and in that order in
columns 7 through 72) can be preceded by, interspersed
with, or followed by blank characters; column 6 must con-
tain a blank character. Columns 1 through 5 may contain

either a statement label or blank characters.

wnnnnsEND
e ELN.D | .
.100.END

6-16

CARRIAGE CONTROL

PURPOSE: To indicate the line spacing used when printing an output
record on a line printer or a teleprinter.
FORMAT:
0 .
1 as the first character in the record
- * ¢
any other character -

~ = single space (print on every line).

0 = double space (print on every other line).

1 = -eject page

* = suppress spacing (overprint current line).

any other character = single space (print on every line).
EXAMPLES:
When these records are printed... they look like this:
100 FORMAT k"APRINT ON EVERY LINE") PRINT ON EVERY LINE
120 FORMAT ("OPRINT ON EVERY OTHER LINE") PRINT ON EVERY OTHER LINE
140 FORMAT ("1") (a page is ejected)
160 FORMAT ("*PRINT ON CURRENT LINE") (an overprint of current line)
180 FORMAT ("PRINT ON EVERY LINE") RINT ON EVERY LINE
999 FORMAT (lnl, El6.8, I5) (A page is ejected, and a

floating point number and an

integer are then printed.)

[

APPENDIX F

OBJECT PROGRAM DIAGNOSTIC MESSAGES

During execution of the object program, diagnostic messages may be printed

on the output unit by the input/output system supplied for FORTRAN programs.

When a halt occurs, the A-register contains a code which further defines the

nature of the errox:

Message

*FMT

*EMT

*FMT

*EMT

*FMT

A-register

000001

000002

000003

000004

000005

Explanation

FORMAT errox:

a) w or d field does not
contain proper digits.

b) No decimal point'after
w field.

c) w - d <4 for E specification.

a) FORMAT specifications are
nested more than one level
deep.

b) A FORMAT statement contains
more right parentheses than
left parentheses.

a) Illegal character in FORMAT
statement.

b) Format repetition factor of
zero. 5

c) FORMAT statement defines
more character positions
than possible for ‘device.

Illegal character in fixed field
input item or number not right-
justified in field.

A number has an illegal form
(e.g., two ,Es, two decimal
points, two signs, etlc.).

Action

Irrecoverable
error; program
must be
recompiled.

Irrecoverable
error; program

‘must be

recompiled.

Irrecoverable
error; program
must be
recompiled.

Verify data.

Verify data.

UNITED STATES

ALABAMA

P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsvllle 35802

Tel: (205) 881-4591

TWX: 810-726-2204

ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel: (602) 252-5061
TWX: 910-951-1330
5737 East Broadway
Tucson 85716

Tel: (602) 298-2313
TWX: 910-952-1162

CALIFORNIA
1430 East O pe Ave.

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel: (203) 289-9394
TWX: 710-425-3416

111 East Avenue
Norwalk 06851

Tel: (203) 853-1251
TWX: 710-468-3750

FLORIDA

P.0. Box 24210

2806 W. Oakland Park Bivd.
Ft. Lauderdale 33307

Tel: (305) 731-2020

TWX: 510-955-4099

P.0. Box 20007
Station 32814

Fullerton 92631
Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

9606 Aero Drive
San Diego 92123
Tel: (714) 279-3200
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

621 Commonwealth Avenue
Orlando

Tel: (305) 841-3970

TWX: 810-850-0113

Effective April 1, 1972
P.0. Box 13910

6177 Lake Ellenor Dr.
Orlando, 32809

Tel: (305) 859-2900
TWX: 810-850-0113

GEORGIA

P.0. Box 28234

450 Interstate North
Atlanta 30328

Tel: (404) 436-6181
TWX: 810-766-4890

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

ELECTRONIC
SALES & SERVICE OFFICES

LOUISIANA

P.0. Box 856

1942 Williams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX: 710-862-9157

P.0. Box 1648

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

21840 West Nine Mile Road
Southfield 48075

Tel: (313) 353-9100

TWX: 810-224-4882

MINNESOTA

2459 University Avenue
St. Paut 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087

2812 South Brentwood Blvd.
St. Louis 63144

Tel: (314) 962-5000

TWX: 910-760-1670

NEW JERSEY

W. 120 Century Road
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

1060 N. Kings Highway
Cherry Hill 08034

Tel: (609) 667-4000
TWX: 710-892-4945

NEW MEXICO

P.0, Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 265-3713

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

1702 Central Avenue
Albany 12205

Tel: (518) 869-8462
TWX: 710-441-8270

1219 Campviile Road
Endicott 13760

Tel: (607) 754-0050
TWX: 510-252-0890

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797

Tel: (516) 921-0300
TWX: 510-223-0811

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
TWX: 510-926-1516

OHIO

25575 Center Ridge Road
Cleveland 44145

Tel: (216) 835-0300
TWX: 810-427-9129

3460 South Dixie Drive
Dayton 45439

Tel: (513) 298-0351
TWX: 810-459-1925.

1120 Morse Road
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA

2919 United Founders Boulevard

Oklahoma City 73112
Tel: (405) 848-2801
TWX: 910-830-6862

OREGON

Westhills Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225

Tel: (503) 292-9171

TWX: 910-464-6103

PENNSYLVANIA

2500 Moss Side Boulevard
Monroeville 15146

Tel: (412) 271-0724

TWX: 710-797-3650

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 19406

Tel: (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434-5535
TWX: 710-381-7573

*TENNESSEE
Memphis
Tel: (901) 274-7472

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101
TWX: 910-867-4723

P.0. Box 22813
6300 Westpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645

231 Bllly Mitchell Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH

2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681

VERMONT

P.0. Box 2287

Kennedy Drive

South Burlington 05401
Tel: (802) 658-4455
TWX: 510-299-0025

VIRGINIA

P.0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703).285-3431
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2303

*WEST VIRGINIA
Charleston
Tel: (304) 768-1232

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-
est you: Atlanta, Georgia...
North Hollywood, California. ..
Paramus, New Jersey . . . Skokie,
Iinols. Their complete ad-
dresses are listed above.

*Service Only

CANADA

ALBERTA

Hewlett-Packard (Canada) Ltd.
11745 Jasper Ave.

Edmonton

Tel: (403) 482-5561

TWX: 610-831-2431

BRITISH COLUMBIA

Hewlett-Packard (Canada) Ltd.

4519 Canada Way
North Burnaby 2
Tel: (604) 433-8213
TWX: 610-922-5059

MANITOBA

Hewlett-Packard (Canada) Ltd.
511 Bradford Ct.

Winnipeg

Tel: (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd.

Suite 206

Halifax

Tel: (902) 455-0511

TWX: 610-271-4482

ONTARIO

Hewlett-Packard (Canada) Ltd.
880 Lady Ellen Place

Ottawa 3

Tel: (613) 255-6180, 255-6530
TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.
50 Galaxy Bivd.

Rexdale

Tel: (416) 677-9611

TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire

Tel: (514) 697-4232

TWX: 610-422-3022

Telex: 01-20607

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Ltd. in Pointe Claire, at
the complete address listed
above.

CENTRAL AND SOUTH AMERICA

ARGENTINA

Hewlett-Packard Argentina
S.A.C.e.l

Lavalle 1171 - 3°

Buenos Aires

Tel: 35-0436, 35-0627, 35-0431
Telex: 012-1009

Cable: HEWPACKARG

BRAZIL

Hewlett-Packard Do Brasil
l.e.C Ltda.

Rua Frei Caneca 1119

$ao Paulo - 3, SP

Tel: 288-7111, 287-5858
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
Praca Dom Feliciano 78
Salas 806/808

Porto Alegre

Rio Grande do Sul (RS)-Brasil
Tel: 25-8470

Cable: HEWPACK Porto Alegre

Hewlett-Packard Do Brasil
l.e.C. Ltda.

Rua da Matriz 29

Botafogo ZC-02

Rio de Janeiro, GB

Tel: 246-4417

Cable: HEWPACK Rio de Janeiro

CHILE

Héctor Calcagni y Cla, Ltda.
Bustos, 1932-3er Piso
Casilla 13942

Santiago

Tel: 423 96

Cable: CALCAGN! Santiago

COLOMBIA

Instrumentacion

Henrik A. Langebaek & Kier
Ltda.

Carrera 7 No. 48-59

Apartado Aereo 6287

Bogota, 1 D.E.

Tel: 45-78-06, 45-55-46

Cable: AARIS Bogota

Telex: 44400 INSTCO

COSTA RICA

Lic. Alfredo Gallegos Gurdidn
Apartado 10159

San José

Tel: 21-86-13

Cable: GALGUR San José

ECUADOR

IUS
calle Guayaquil 1246
Post Office Box 3199
Quite
Tel: 212-496; 219-185
Cable: HORVATH Quito

EL SALVADOR

Electronic Associates
Apartado Postal 1682
Centro Comercial Gigante
San Salvador, EI Salvador
Paseo Escalon 4649-4th Piso
Tel: 23-44-60, 23-32-37
Cable: ELECAS

MEXICO

Hewlett-Packard Mexicana, S.A.
e C.V.

622 Adoifo Prieto

Col. del Valle

Mexico 12, D.F.

Tel: 543-4232; 523-1874
Telex: 0017-74507

de Radi ierl

NICARAGUA

Roberto Ter4n G.
Apartado Postal 689
Edificio Terén

Managua

Tel: 3451, 3452

Cable: ROTERAN Managua

PANAMA

Electrénico Balboa, S.A.

P.0. Box 4929

Ave. Manuel Espinosa No. 13-50
Bldg. Alina

Panama City

Tel: 230833

Telex: 3481003, Curundu,
Canal Zone

Cable: ELECTRON Panama City

PARAGUAY

Z.T. Melamed S.R.L.
Division: Aparatos y Equipos
Medicus

PERU

Compaiiia Electro Medica S.A.
Ave. Enrique Canaual 312
San Isidro

Casilla 1030

Lima

Tel: 22-3900

Cable: ELMED Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-PTA de Tierra

San Juan 00906

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

SURINAME
Surtel-Radio Holland N.V.
P.0. Box 155

Paramaribo

Salon de Exposicion y Escritorio: 1¢l: 72118

Chile 482

Edificio Victoria—Planta Baja
Asuncion, Paraguay

Tel: 4-5069, 4-6272

Cable: RAMEL

Cable: Treurniet Paramaribo

URUGUAY

Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877
Casilla de Correo 370
Montevideo

Tel: 40-3102

Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard De Venezuela

C.A.

Apartado 50933

Caracas

Tel: 71.88.05, 71.88.69, 71.99.30
Cable: HEWPACK Caracas

Telex: 39521146

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto Callfornia 94304
Tel: (415) 493-1501
TWX: 910—373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8461

E11-71

EUROPE

AUSTRIA
Hewlett-Packard Ges.m.b.H
Innstrasse 23/2

Postfach 45

A-1204 Vienna

Tel: (0222) 33 66 06-09
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
S.A/N.V.

Avenue du Col-Vert, 1
B-1170 Brussels

Tel: (02) 72 22 40

Cable: PALOBEN Brussels
Telex: 23 494

DENMARK
Hewlett-Packard A/S
Datavej 38

DK-3460 Birkerod
Tel: (01) 81 66 40
Cable: HEWPACK AS
Telex: 16640 hp as

Hewlett-Packard A/S
Torvet 9

DK-8600 Silkeborg
Tel: (06)-82-71-66
Telex: 16640 hp as
Cable: HEWPACKAS

FINLAND
Hewlett-Packard Oy
Bulevardi 26

P.0. Box 12185

SF-00120 Helsinki 12

Tel: 13-730

Cable: HEWPACKOY-Helsinki

Hewlett-Packard France
4 Quai des Etroits

F-69 Lyon 52me

Tel: (78) 42 63 45
Cable: HEWPACK Lyon
Telex: 31617

Hewlett-Packard France
29 rue de la Gare

F-31 Blagnac

Tel: (61) 85 82 29
Telex: 51957

GERMAN FEDERAL
REPUBLIC

Hewlett-Packard Vertriebs-GmbH
Berliner Strasse 117

Postfach 560/40

D-6 Nieder-Eschbach/Ffm 56
Tel: (0611) 50-04

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 FRA

Hewlett-Packard Vertriebs-GmbH
Herrenbergerstrasse 110
D-7030 Bahlingen, Wiirttemberg
Tel: (07031) 66 72 86

Cable: HEPAK Bdblingen

Telex: 72 65 739

Hewlett-Packard Vertriebs-GmbH
Vogelsanger Weg 38

D-4 Diisseldorf

Tel: (0211) 63 80 31/35

Telex: 85/86 533

Hewlett-Packard Vertriebs-GmbH
Wendenstr. 23

D-2 Hamburg 1

Tel: (0411) 24 05 51/52

Cable: HEWPACKSA Hamburg
Telex: 21 53 32

Hewlett-Packard Vertriebs-GmbH

Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel: (0811) 60 13 061-7
Telex: 05-24985

Cable: HEWPACKSA Miichen

(West Berlin)

Hewlett-Packard Vertriebs-GmbH
Wilmersdorfer Strasse 113/114
D-1000 Berlin W. 12

Tel: (0311) 3137046

Telex: 18 34 05

GREECE

Kostas Karayannis

18, Ermou Street
Athens 126

Tel: 230301,3,5

Cable: RAKAR Athens
Telex: 21 59 62 RKAR GR

IRELAND
Hewlett-Packard Ltd.
224 Bath Road

Slough, SL1 4 DS, Bucks
Tel: Slough 753-33341
Cable: HEWPIE Slough
Telex: 84413

ITALY

Hewlett-Packard Italiana S.p.A.
Via Amerigo Vespucci 2
1-20124 Milan

Tel: (2) 6251 (10 lines)

Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard Italiana S.p.A.
Via Marocco, 7

LUXEMBURG
Hewlett-Packard Benelux
S.A./N.V.

Avenue du Col-Vert, 1
B-1170 Brussels

Tel: (03/02) 72 22 40
Cable: PALOBEN Brussels
Telex: 23 494

NETHERLANDS
Hewlett-Packard Benelux, N.V.
Weerdestein 117

P.0. Box 7825

Amsterdam, Z 11

Tel: 020-42 77 77

Cable: PALOBEN Amsterdam
Telex: 13 216

NORWAY
Hewlett-Packard Norge A/S
Box 149

Nesveien 13

N-1344 Haslum

Tel: (02)-53 83 60

Telex: 16621

PORTUGAL

Telectra-Empresa Tecnica de
Equipamentos

Electricos S.a.r.l.

Rua Rodrigo da Fonseca 103

P.0. Box 2531

Lishon 1

Tel: 68 60 72

Cable: TELECTRA Lisbon

Telex: 1598

SPAIN
Hewiett-Packard Espafiola, S.A.
Jerez No 8

SWEDEN

Hewlett-Packard Sverige AB

Enighetsvdgen 1-3

Fack

S-161 20 Bromma 20

Tel: (08) 98 12 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Hagakersgatan 9C

§-431 41 Malndal

Tel: (031) 27 68 00/01
Telex: 21 312 hpmindls

SWITZERLAND

Hewlett Packard (Schweiz) AG
Ziircherstrasse 20

CH-8952 Schlieren Zurich
Tel: (01) 98 18 21/24

Cable: HPAG CH

Telex: 53933

Hewlett-Packard (Schweiz) AG
Rue du Bois-du-Lan 7

P.0. Box 85

1217 Meyrin 2 Geneva

Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva
Telex: 27333 HPSA CH

TURKEY

Telekom Engineering Bureau
P.0. Box 376

Karakdy

Istanbul

Tel: 49 4

Cable: TELEMATION Istanbul

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road
Slough, SL1 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 84413

Hewlett-Packard Ltd.
‘“‘The Graftons”
Stamford New Road
Altrincham, Cheshire
Tel: (061) 928-8626
Telex: 668068

YUGOSLAVIA

Belram S.A,

83 avenue des Mimosas
Brussels 1150, Belgium
Tel: 34 33 32, 34 26 19
Cable: BELRAMEL Brussels
Telex: 21790

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H
Innstrasse 23/2

Postfach 45

A-1204 Vienna, Austria

Tel: (0222) 33 66 06-09
Cable: HEWPACK Vienna
Telex: 75923 hewpak a

ALL OTHER EUROPEAN

COUNTRIES CONTACT:

Hewlett-Packard S.A.

Rue du Bois-du-Lan 7

1217 Meyrin 2 Geneva
Switzerland

Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva

Telex: 12-1563 1-00144 Rome - Eur Madrid 16 Telex: 2.24.86

FRANCE Tel: (6) 5912544/5, 5915947~ Tel: 458 26 00

Hewlett-Packard France Cable: HEWPACKIT Rome

Quartier de Courtaboeuf Telex: 61514

Boite Postale No. 6

F-91 Orsay

Tel: (1) 907 78 25

Cable: HEWPACK Orsay

Telex: 60048

AFRICA, ASIA, AUSTRALIA

ANGOLA CYPRUS Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. PAKISTAN (WEST) TAIWAN

Telectra Empresa Técnia Kypronics 96 Park Lare Nitto Bldg. Mushko & Company, Ltd. Hewlett Packard Taiwan
de Equipamentos Eléctricos 19 Gregorios & Xenopoulos Road Secunderabad 3, India 2300 Shinohara-cho, Oosman Chambers 39 Chung Shiao West Road

P.0. Box 1152 Tel: 7 63 91 Kohoku-ku Abdullah Haroon Road Sec. 1

SAR
Rua de Barbosa Rodrigues
42-1°

Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA
Hewlett-Packard Australia
Pty. Ltd.

22-26 Weir Street

Glen Iris, 3146

Victoria

Tel: 20.1371 (6 lines)
Cable: HEWPARD Melbourne
Telex: 31024

Hewlett-Packard Australia
Pty. Ltd.

61 Alexander Street

Crows Nest 2065

New South Wales

Tel: 43.7866

Cable: HEWPARD Sydney

Telex: 21561

Hewlett-Packard Australia
Pty. Ltd.

y. Ltd.

97 Churchill Road
Prospect 5082

South Australia

Tel: 65.2366

Cable: HEWPARD Adelaide

Hewlett Packard Australia
Pty.

2nd Floor, Suite 13
Casablanca Buildings
196 Adelaide Terrace
Perth, W.A. 6000

Tel: 21-3330

Cable: HEWPARD Perth

Hewlett-Packard Australia
Pty. Ltd

y. N

10 Woolley Street

P:0. Box 191

Dickson A.C.T. 2602

Tel: 49-8194

Cable: HEWPARD Canberra ACT

Hewlett-Packard Australia
Pty. Ltd

6 Harvard Street

P.0. Box 135

Kenmore 4069 Queensland
Tel: 78 6069

CEYLO!

United Electrlcals Ltd.
P.0. Box 681

Vahala Building

Staples Street

Colombo 2

Tel: 5496

Cable: HOTPOINT Colombo

Nicosia
Tel: 6282-75628
Cable: HE-1-NAM!

ETHIOPIA
African Salespower & Agency
Private Ltd., Co.

Cable: BLUEFROST

Blue Star, Ltd.

23/24 Second Line Beach
Madras 1, India

Tel: 2 39 55

Telex: 379

Cable: BLUESTAR

P. 0. Box 718

58/59 Cunningham St. Biue Star, Ltd.

Addis Ababa 1B Kaiser Bungalow

Tel: 12285 Dindli Road

Cable: ASACO Addisabab pur, India
Tel: 38 04

HONG KONG Cable: BLUESTAR

Schmidt & Co. (Hong Kong) Ltd. INDONESIA

P.0. Box 297

1511, Prince’s Building 15th Floor
10, Chater Road

Hong Kong

Tel: 240168, 232735

Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 20BR, India
Tel: 29 50 21

Telex: 2156

Cable: BLUEFROST

Blue Star Ltd.

Band Box House
Prabhadevi

Bombay 25DD, India
Tel: 45 73 01

Telex: 2156

Cable: BLUESTAR

Blue Star Ltd.
14/40 Civil Lines
Kanpur, India
Tel: 6 88 82
Cable: BLUESTAR

Blue Star, Ltd.

7 Hare Street
P.0. Box 506
Calcutta 1, India
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Blue Star Ltd.

Blue Star House,
34 Ring Road
Lajpat Nagar

New Delhi 24, India
Tel: 62 32 76
Telex: 463

Cable: BLUESTAR

Blue Star Ltd.
17-C Ulsoor Road
Bangalore-8

Bah Bolon Trading Coy. N.V.
Djalah Merdeka 29
Bandung

Tel: 4915; 51560

Cable: ILMU

Telex: 08-809

IRAN

Telecom, Ltd.

P. 0. Box 1812

240 Kh. Saba Shomali
Teheran

Tel: 43850, 48111
Cable: BASCOM Teheran
Telex: 2664

ISRAEL

Electronics & Engineering
Div. of Motorola Israel Ltd.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines)

Cable: BASTEL Tel-Aviv

Telex: Bastel Tv 033-569

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Ohashi Building

1-59-1 Yoyogi

Shibuya-ku, Tokyo

Tel: 03-370-2281/7

Telex: 232-2024YHP

Cable: YHPMARKET TOK 23-724

Yokogawa-Hewlett-Packard Ltd.
Nisei Ibaragi Bldg.

2-2-8 Kasuga

Ibaragi-Shi

Osaka

Tel: (0726) 23-1641

Telex: 385-5332 YHPOSAKA

Yokogawa-Hewlett-Packard Lid.
Ito Building

No. 59, Kotori-cho
Nakamura-ku, Nagoya City
Tel: (052) 551-0215

Yokohama 222
Tel: (405) 432-1504/5

JORDAN

Constantin E. Macridis
Clemenceau Street

P.0. Box 7213

Beirut, Lebanon

Tel: 220846

Cable: ELECTRONUCLEAR Beirut

KENYA

Kenya Kinetics
P.0. Box 18311
Nairobi, Kenya
Tel: 57726
Cable: PROTON

KOREA

American Trading Co.,
Korea, Ltd.

Seoul P.0. Box 1103

Karachi 3
Tel: 511027, 512927
Cable: COOPERATOR Karachi

Mushko & Company, Ltd.
388, Satellite Town
Rawalpindi

Tel: 41924

Cable: FEMUS Rawalpindi

PHILIPPINES
Electromex Inc.

5th Floor, Architects
Center Bldg.

Ayala Ave., Makati, Rizal
C.C.P.0. Box 1028
Makati, Rizal

Tel: 86-18-87, 87-76-77
Cable: ELEMEX Manila

SINGAPORE
hanical and

Overseas Insurance
Corp. Bldg. 7th Floor
Taipei

Tel: 389160,1,2, 375121,
Ext. 240

Telex: TP824 HEWPACK
Cable: HEWPACK Taipei

THAILAND

The International
Engineering Co., Ltd.

P. 0. Box 3!

614 Sukhumvlt Road

Bangkok

Tel: 910722 (7 lines)

Cable: GYSOM

TLX INTENCO BK-226 Bangkok

UGANDA
Uganda Tele-Electric Co., Ltd.
P.0. Box 4449

7th & 8th floors, DaeKyung Bldg. _ Engineering Company Ltd.
107 Sejong Ro 9, Jalan Kilang
Chongro-Ku, Seoul Red Hill Industrial Estate
Tel: 75-5841 (4 lines) Singapore, 3
Cable: AMTRACO Seoul Eell;l‘i“?ﬁgég& BG3§IGH

able: .
LEBANON ¢ neapore
Constantin E. Macridis Hewlett-Packard Far East
Clemenceau Street Area Office
P.0. Box 7213 P.0. Box 87
Belirut Alexandra Post Office
Tel: 220846 Singapore 3
Cable: ELECTRONUCLEAR Beirut Tel: 633022
MALAYSIA Cable: HEWPACK SINGAPORE

MECOMB Malaysia Ltd.

2 Lorong 13/6A

Section 13

Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

A. N. Goncalves, LDA.
4.1 Apt. 14 Av. D. Luis
P.0. Box 107
Lourenco Marques
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
94-96 Dixson St.

P.0. Box 9443

we|lmgton, N.Z.

Tel: 56-5

Cable: HEWPACK Wellington

Hewlett Packard (N.Z.) Ltd.
Box 51092

Pukuranga

Tel: 569-651

Cable: HEWPACK, Auckland

PAKISTAN (EAST)
Mushko & Company, Ltd.
1, Jinnah Avenue

Dacca 2

Tel: 280058

Cable: NEWDEAL Dacca

SOUTH AFRICA

Hewlett Packard South Africa
(Pty.), Ltd.

P.0. Box 31716

Braamfontein Transvaal

Milnerton

30 De Beer Street

Johannesburg

Tel: 725-2080, 725-2030

Telex: 0226 JH

Cable: HEWPACK Johannesburg

Hewlett Packard South Africa
(Pty.), Ltd.

Breecastle House

Bree Street

Cape Town

Tel: 3-6019, 3-6545

Cable: HEWPACK Cape Town
Telex: 5-0006

Hewlett Packard South Africa
(Pty.), Ltd.

641 Ridge Road, Durban

P.0. Box 99

Overport, Natal

Tel: 88-6102

Telex: 567954

Cable: HEWPACK

Tel: 57279
Cable: COMCO Kampala

VIETNAM

Peninsular Trading Inc.

P.0. Box H-

216 Hien-Vuong

Saigon

Tel: 20805, 93398

Cable: PENTRA, SAIGON 242

ZAMBIA

R. J. Tilbury (Zambia) Ltd.
P.0. Box 2792

Lusaka

Zambia, Central Africa
Tel: 73793

Cable: ARJAYTEE, Lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard
Co-ordination Office for
Mediterranean and Middle
East Operations

Via Marocco, 7

1-00144 Rome-Eur, Italy
Tel: (6) 59 40 29

Cable: HEWPACKIT Rome
Telex: 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard

INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto, California 94304
Tel: (415) 326-7000

(Feb. 71 493-1501)

TWX: 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8461

E 11-71

5951-1321

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	I-01
	I-02
	I-03
	u-01
	u-02
	u-03
	u-04
	u-05
	u-06
	u-07
	u-08
	u-09
	x-01
	x-02
	xBack

